

 [image: cover.jpegs]

Rust from Beginner to Professional

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Early Access Publication: Rust from Beginner to Professional

Early Access Production Reference: B31234

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK

ISBN: 978-1-83620-887-7

www.packt.com

Table of Contents

 	Rust from Beginner to Professional: A practical Rust guide to go from beginner to expert and become a proficient, qualified developer

 	1 Getting Started with Rust

 	Join our book community on Disocrd

 	Introduction

 	Welcome to the realm of Rust programming!

 	Technical requirements

 	What is Rust?

 	What is Rust good for?

 	Key Features of Rust

 	The Rust Ecosystem

 	Why Learn Rust?

 	Installation and Hello World

 	Installing Rust

 	Verifying the Installation

 	Setting Up Your Development Environment

 	Hello World

 	Compiling and Running Your Hello World

 	Using Cargo and Crates.io

 	Verifying Cargo Installation

 	Creating a New Rust Project

 	Managing Dependencies with Cargo.toml

 	Installing Dependencies from Crates.io

 	Building and Running Your Project

 	Publishing Your Project to Crates.io

 	Initializing a New Rust Project with `cargo init`

 	Creating a Library with cargo init --lib

 	Cargo and Crates.io to manage dependencies

 	Your First Real Rust Program: A Web Server

 	Project initialization with Cargo

 	Creating a Simple Web Server

 	Running the Web Server

 	Summary

 	Core Rust Syntax Concepts

 	Embracing Rust's Philosophy

 	Variables and Mutability

 	Data Types

 	Control Flow

 	Functions

 	Chapter Summary

 	Questions

 	Assignment

 	2 Rust Syntax and Functions

 	Join our book community on Disocrd

 	Introduction

 	Variable Declarations and Mutability

 	Immutable Variables

 	Mutable Variables

 	Shadowing

 	Data Types and Structures

 	Scalar Types

 	Compound Types

 	Structs

 	Methods and Associated Functions

 	Enums

 	Summary

 	Functions in Rust

 	Function Syntax

 	Parameter Passing

 	Return Values

 	Ownership and Functions

 	Control Flow Constructs

 	If and Else Statements

 	Loop Constructs

 	Pattern Matching with match

 	Pattern Matching with Option

 	Summary

 	Understanding Rust's Approach to Error Handling

 	The Result Type

 	The Option Type

 	The panic! Macro

 	Summary

 	Summary

 	Questions

 	Assignments

 	Assignment 2.1 - Variable Declarations and Mutability

 	Assignment 2.2 - Data Types and Structures

 	Assignment 2.3 - Control Flow Constructs

 	Assignment 2.4 - Functions in Rust

 	Assignment 2.5 - Modules and Namespacing

 	Assignments Solutions

 	2.1 Solution

 	2.2 Solution

 	2.3 Solution

 	2.4 Solution

 	2.5 Solution

 	Cover

 	Table of contents

Rust from Beginner to Professional: A practical Rust guide to go from beginner to expert and become a proficient, qualified developer

Welcome to Packt Early Access. We’re giving you an exclusive preview of this book before it goes on sale. It can take many months to write a book, but our authors have cutting-edge information to share with you today. Early Access gives you an insight into the latest developments by making chapter drafts available. The chapters may be a little rough around the edges right now, but our authors will update them over time.

You can dip in and out of this book or follow along from start to finish; Early Access is designed to be flexible. We hope you enjoy getting to know more about the process of writing a Packt book.

	Chapter 1: Getting Started with Rust

	Chapter 2: Rust Syntax and Functions

	Chapter 3: Functions and Modules in Rust

	Chapter 4: Ownership, Borrowing, and Lifetimes

	Chapter 5: Composite Types

	Chapter 6: Error Handling in Rust

	Chapter 7: Object-Oriented Programming in Rust

	Chapter 8: Functional Language Features

	Chapter 9: Patterns and Matching

	Chapter 10: Smart Pointers and Memory Management

	Chapter 11: Managing System Resources

	Chapter 12: Rust’s Concurrency and Parallelism

	Chapter 13: Rust for Web Development: Building Fullstack Applications

	Chapter 14: System Programming in Rust: Concrete Examples

	Chapter 15: Dockerization and Deployment

	Chapter 16: Appendix - Common Pitfalls in Rust Programming

1 Getting Started with Rust

Join our book community on Disocrd

https://packt.link/rustfbtp

Introduction

Welcome to the realm of Rust programming!

If you've found your way here, you're probably intrigued by Rust's reputation as a robust, contemporary language specialized in systems programming focusing on safety, speed, and reliability.

Rust was also voted the "most admired programming language" in the Stack Overflow 2024 Developer Survey (~83%). This is a clear sign that learning it is valuable for your career.

This book is for you whether you're an experienced developer looking to expand your knowledge, a beginner who wants to explore new technologies, or a curious coder stepping into unknown territory. I am a strong believer that the Rust adoption will grow more and more in the future, and if you are reading this, you probably agree with me. But even if you are not convinced yes,

In this chapter, we start our journey by understanding the essence of Rust programming. We'll dive deep into the core principles defining Rust and explain why it shines among other programming languages. Rust has some unique features that really make it "special" among the other languages. Following that, we'll set up your development environment together, ensuring you're fully equipped to dive into Rust coding right away. Finally, we'll start with the practical side of Rust by walking you through creating your first Rust program: a simple yet functional web server. Yes, you can use Rust for the backend, and I find it fascinating. Understanding its functionalities is easier than starting working with CLIs from the beginning.

By the end of this chapter, you'll better understand Rust's importance and why it's popular among developers, giving you the confidence to start your journey with Rust.

Let's get started!

Technical requirements

You can use any operating system you want, but it is highly recommended that you have Git, the system versioning system. All the code examples are available in the `book-compendium` folder of the GitHub repository.

You will also need an IDE. Any IDE works, but for this book, I will use VS Code, with a couple of extensions.

	GitHub: https://github.com/FrancescoXX/rustcrab/book-compendium

	Git: https://git-scm.com/downloads

	VS Code (or any other IDE): https://code.visualstudio.com/download

What is Rust?

According to Wikipedia,

"Rust is a general-purpose programming language emphasizing performance, type safety, and concurrency. It enforces memory safety, meaning that all references point to valid memory, without a garbage collector. To simultaneously enforce memory safety and prevent data races, its 'borrow checker' tracks the object lifetime of all references in a program during compiling."

This definition sounds fascinating but can also be quite confusing. This brief explanation alone isn't enough to fully grasp what Rust is and what makes it unique!

Let's break down this definition and explain each part:

General-Purpose Programming Language: Rust is versatile and can be used for various applications, from system-level programming to web development. Its ability to adapt to different types of applications is what makes it unique.

Emphasizing Performance, Type Safety, and Concurrency: Rust is designed with three main goals in mind:

	Type Safety: Rust ensures that your code adheres to strict type rules, reducing bugs and making it easier for you and other developers to understand and maintain.

	Performance: Rust allows you to write high-performance software that runs as fast as programs written in C or C++.

	Concurrency: Rust provides powerful tools for writing concurrent code, allowing you to take full advantage of multi-core processors without the risk of data races.

Enforces Memory Safety Without a Garbage Collector: Memory safety means that all pointers (references) point to valid memory. Rust achieves this without a garbage collector, which is typically used in other languages like Java or Go to manage memory automatically. Instead, Rust uses a system of ownership with rules that the compiler checks at compile time.

The Borrow Checker: To enforce memory safety and prevent data races, Rust employs a mechanism known as the "borrow checker." This system tracks the lifetime of all references in a program during compilation, ensuring that references are always valid and that multiple threads do not unexpectedly modify data.

No Worries!

If some of these concepts sound complex or unfamiliar right now, don't worry! Throughout this book, we'll explore these topics in-depth, providing clear explanations and practical examples to help you understand and master Rust programming.

By the end of the book, any doubts you have now will be resolved, and you'll be confident in your ability to use Rust effectively.

What is Rust good for?

So, what is Rust good for?

Rust is highly valued for its ability to deliver high-performance, secure, and concurrent software solutions. It excels in systems programming, where speed and reliability are critical.

With its strong focus on memory and thread safety, Rust is ideal for building low-level system components like operating systems, device drivers, and embedded systems. But don't worry, we will start with something much simpler to help you become familiar with the syntax quickly.

Rust's robust concurrency model and expressive type system make it exceptionally well-suited for creating scalable and resilient network services, web servers, and concurrent applications. In fact, many real-world applications, such as the Firefox browser engine, Dropbox's file storage backend, and Cloudflare's performance-critical systems, currently use Rust.

In a recent communication from the US government, the White House recommended memory-safe programming languages and security-by-design principles to prevent cyberattacks. Rust was highlighted as a key example of such a language. While Rust doesn't make your application secure by default, it enforces strict rules that require developers to handle memory safely and efficiently.

The hard part of learning Rust is often adapting to its unique approach to memory management. Unlike C and C++, where developers manually manage memory or languages with garbage collection, Rust requires you to adopt a different mindset. Be open-minded and ready to embrace this new way of thinking.

Overall, Rust is versatile and excels in many areas, from system-level programming to web development. It provides the tools and guarantees necessary to build robust and efficient software, making it a valuable addition to any developer's skill set.

Key Features of Rust

What makes Rust stand out compared to other programming languages are its unique features and design principles:

Memory Safety: Rust ensures memory safety without sacrificing performance by employing a strict set of compile-time checks to prevent common programming errors such as null pointer dereferencing and data races.

Concurrency: Rust provides powerful abstractions for writing concurrent code, allowing developers to leverage the full potential of modern multi-core processors without worrying about data races or deadlocks.

Performance: Rust offers performance comparable to low-level programming languages like C and C++, thanks to its zero-cost abstractions and efficient memory management model.

Expressiveness: Rust's expressive syntax and powerful type system enable developers to write clear, concise, and maintainable code, making it easier to reason about complex systems.

The Rust Ecosystem

In addition to its core language features, Rust offers a dynamic ecosystem of libraries, tools, and frameworks that amplify its functionality and streamline development processes.

Rust's ecosystem caters to various industries and use cases, such as web development, system programming, data analysis, and gaming. Rust provides developers with a robust toolkit to tackle diverse challenges, like building high-performance web servers or crafting efficient system utilities. It can also be used to conduct data processing tasks.

The Rust community is very welcoming and committed to being open-source. The Rust language itself is an open-source project!

This is the perfect environment to grow a robust and solid language with a solid basis and a bright future.

Why Learn Rust?

As a developer, learning Rust offers several advantages:

	Enhanced Productivity: Rust's strict compiler checks and powerful tooling help developers catch bugs early and write more reliable code, reducing development time and debugging efforts.

	Career Opportunities: Rust is gaining popularity in industries such as systems programming, cloud computing, and cybersecurity, opening up exciting career opportunities for Rust developers. It can be the right choice for the future of your career.

	Personal Growth: Mastering Rust challenges your problem-solving skills and expands your programming toolkit, making you a more versatile and in-demand developer.

Installation and Hello World

This chapter will cover the essential steps to install Rust on your system and write your first Rust program.

We'll start by guiding you through the installation process, followed by a demonstration of compiling and running a "Hello World" program in Rust.

Installing Rust

Before diving into Rust programming, you must set up your development environment by installing the Rust toolchain.

You can download and install Rust by visiting https://www.rust-lang.org/tools/install and following the instructions for your operating system.

Rust provides convenient installation options for different platforms, ensuring a smooth setup process:

	Linux/Unix: The official installer or package manager can install Rust on Linux—and Unix-based systems.

	macOS: Rust is well-supported on macOS, and you can install it using the official installer or Homebrew package manager.

	Windows: Rust offers a straightforward installation experience through the official installer or Chocolatey package manager.

Verifying the Installation

Once Rust is installed on your system, you can verify the installation by opening a terminal or command prompt and running the following command:


```
rustc --version
```


This command should display the installed version of the Rust compiler, confirming that Rust is successfully installed on your machine.

Setting Up Your Development Environment

In addition to the Rust compiler, you'll need a text editor or integrated development environment (IDE) to write and edit Rust code. Popular choices for Rust development include:

Visual Studio Code: A lightweight and versatile code editor with excellent support for Rust through extensions. Some extensions that might be useful are:

	Rust analyzer

	Even Better Toml

	IntelliJ IDEA: A powerful IDE with robust Rust support provided by the Rust plugin.

	Sublime Text: A customizable text editor with Rust syntax highlighting and plugin support.

Choose the editor or IDE that best suits your preferences and workflow.

Hello World

With Rust installed and your development environment set up, you can write your first Rust program.

For our first program, we'll use the Rust compiler (rustc) directly, even if this is not recommended for creating a project. We will do this just once to understand how the Rust compiler works. For all future projects, we will use a package manager that will compile all our project files for us.

Open your preferred text editor or IDE and create a new file named hello.rs. In this file, enter the following code:


```
fn main() {
    println!("Hello, Rust!");
}
```


This simple Rust program consists of a single function named "main", which prints the message "Hello, Rust!" to the console using the println! macro. Similar to the main function in other programming languages, the main function serves as the entry point for all Rust programs.

Note: In Rust, a macro is a way of writing code that writes other code, known as metaprogramming. The println! Macro is used to print text on the console. If you don't fully understand what a macro is right now, don't worry! We'll cover macros in more detail later in the book.

Compiling and Running Your Hello World

To compile and run your Rust program, open a terminal or command prompt, navigate to the directory containing your hello.rs file, and execute the following

command:


```
rustc hello.rs
```


This command compiles your Rust source code into an executable binary named hello (or hello.exe on Windows). Once the compilation process is complete, you can run the executable to see the output:


```
./hello
```


You should see the message "Hello, Rust!" printed on the console, indicating that your Rust program was executed successfully.

Note: While experimenting with rustc to create a basic "Hello, World!" program can help grasp fundamental concepts, it's essential to recognize that this isn't the conventional method for Rust development. In real-world scenarios, Rust developers utilize Cargo, the official package manager and build system. Cargo offers a more efficient and standardized approach to handling dependencies, building projects, and running tests.

By embracing Cargo, developers can streamline workflow, automate repetitive tasks, and maintain project consistency. In the following chapters, we'll explore Cargo's usage and uncover its diverse features for developing, testing, and distributing Rust applications.

Using Cargo and Crates.io

Cargo is Rust's package manager and build system, designed to streamline developing, building, and managing Rust projects.

Crates.io is the official repository for Rust crates, where you can find and share libraries and tools written in Rust.

This is what the website "crates.io" looks like:

Verifying Cargo Installation

Before we use Cargo and Crates.io, let's ensure that your system has Rust and Cargo installed.


```
cargo –version
```


If you see something like this, you are good to go. Otherwise, check the installation procedure.

Creating a New Rust Project

With Rust and Cargo installed, you can create a new Rust project using the cargo new command. Open your terminal or command prompt and navigate to the directory where you want to create your project. Then, run the following command:


```
cargo new my_project
```


Replace my_project with the desired name of your project. This command will create a new directory named my_project containing the files and folders necessary for a basic Rust project.

Managing Dependencies with Cargo.toml

When you create a new Rust project with Cargo, it generates a file named Cargo.toml. This file serves as the manifest for your project and contains metadata about your project, including its name, version, authors, and dependencies.

The .toml extension is used for configuration files in Rust projects because TOML (Tom's Obvious, Minimal Language) provides a human-readable format that is easy to write and understand. This makes it ideal for specifying project dependencies, build settings, and other configuration details concisely and intuitively.

Let's take a look at an example Cargo.toml file:


```
[package]
name = "my_project"
version = "0.1.0"
authors = ["Your Name <your@email.com>"]
edition = "2018"
[dependencies]
```


In the [dependencies] section, you can specify the dependencies required by your project. You can add dependencies manually by editing the Cargo.toml file, or you can use Cargo commands to manage dependencies automatically.

Installing Dependencies from Crates.io

To add a dependency to your project from Crates.io, you can use the cargo add command. For example, to add the rand crate, which provides random number generation functionality, run the following command:


```
cargo add rand
```


This command will automatically update your Cargo.toml file to include the rand crate as a dependency and fetch the latest version from Crates.io.

Building and Running Your Project

Once you've set up your project and added any necessary dependencies, you can build and run your project using Cargo commands. To build your project, navigate to your project directory in the terminal and run:


```
cargo build
```


This command will compile your project and produce an executable binary in the target/debug directory. To run your project, use the following command:


```
cargo run
```


Cargo will compile your project if necessary and then execute the generated binary.

Publishing Your Project to Crates.io

If you've developed a Rust library or tool to share with the Rust community, you can publish it to Crates.io. To publish your project, make sure you have a Cargo.toml file with the appropriate metadata, and then run the following command:


```
cargo publish
```


This command will package and upload your project to Crates.io, making it available for others to use and download.

Initializing a New Rust Project with `cargo init`

The cargo init command is your go-to tool for initializing a new Rust project. It simplifies the setup process by generating your project's necessary files and directories.

To create a new Rust project, open your terminal or command prompt, navigate to the desired directory where you want to create your project, and execute the following command:


```
cargo init
```


This command creates a new Rust project in the current directory. Upon execution, you'll find two main components generated:

	Cargo.toml: This file serves as the manifest for your project. It contains metadata about the project, including its name, version, dependencies, and other configurations.

	src/ directory: This directory houses your project's Rust source code. Specifically, it contains a file named main.rs, which serves as the entry point for a binary (executable) Rust project.

After running cargo init, you can start writing Rust code. Open the generated project in your favorite text editor or integrated development environment (IDE) and begin coding immediately.

Creating a Library with cargo init --lib

Alternatively, if you intend to create a Rust library (a reusable crate) instead of a binary project, you can utilize the --lib option with the cargo init command. This option tells Cargo to generate a library project structure instead of a binary project.

To create a new Rust library project, execute the following command:


```
cargo init --lib
```


Cargo generates a project structure tailored for a library with the-- lib option. This structure includes a src/ directory with a file named lib.rs, which contains the initial code for your library.

Using the --lib option, you can easily set up a Rust library project and develop reusable components and functionality that can be shared across multiple projects.

Note that this command also works with `cargo new`.

Cargo and Crates.io to manage dependencies

Using Cargo and Crates.io, you can easily manage dependencies, build and run your projects, and share your Rust code with others in the community. As we progress through the book, we'll continue to leverage Cargo and explore more advanced features and workflows for Rust development.

Your First Real Rust Program: A Web Server

While a "Hello, World!" program is often the first step in learning a new programming language, it only scratches the surface of what can be done. Here, we'll go beyond the introductory "Hello, World!" example and create a slightly more sophisticated yet still manageable project.

We'll explore one of the many practical applications of Rust by building a simple yet functional web server. Yes, you heard that right – Rust can be used to develop web servers!

Project initialization with Cargo

To initialize a new Rust project with Cargo, open a terminal or command prompt, navigate to your desired project directory, and execute the following command:


```
cargo new hello_web
```


This command creates a new directory named hello_web containing the necessary files and directories for a Rust project. Inside the hello_web directory, you'll find Cargo.toml, the manifest file that specifies project metadata and dependencies, and a src directory containing the project's source code.

Now that we have our project set up with Cargo, let's write our first Rust program: a simple web server that responds "Hello, World!" to incoming requests.

Creating a Simple Web Server

In the src directory of your hello_web project, create a new file named main.rs. This file will contain the source code for our web server. Open main.rs in your preferred text editor or IDE, and enter the following code:


```
use std::io::{Read, Write};
use std::net::{TcpListener, TcpStream};
fn main() {
    let listener = TcpListener::bind("127.0.0.1:3000").unwrap();
    for stream in listener.incoming() {
        handle_client(stream.unwrap());
    }
}
fn handle_client(mut stream: TcpStream) {
    stream.read(&mut [0; 1024]).unwrap();
    stream.write(b"HTTP/1.1 200 OK\r\n\r\nHello, World!").unwrap();
}
```


If you already have something running on port 3000, just change the port and keep referring to that one for the parts below.

You don't have to understand each part for now. We will dive deep into each part of this book.

This Rust program sets up a TCP listener on localhost port 3000 and waits for incoming connections. When a connection is received, it sends an HTTP response with the message "Hello, World!" back to the client. This simple web server demonstrates the power and expressiveness of Rust, even for network programming.

Running the Web Server

To compile and run our web server, navigate to the root directory of your hello_web project in a terminal or command prompt and execute the following command:


```
cargo run
```


Cargo will compile your Rust code and run the resulting executable. Once the server is running, open a web browser and navigate to http://localhost:3000 to see the "Hello, World!" message displayed in the browser.

Summary

In this section, we learned how to initialize a new Rust project using Cargo, create a simple web server that responds with "Hello, World!" using Rust's standard library, and run the web server locally.

With Cargo's help, managing Rust projects and building complex applications becomes more manageable and efficient.

Core Rust Syntax Concepts

In this section, we'll explore some fundamental concepts of Rust syntax, providing you with a solid understanding of the language's building blocks. Seeing actual code is one of the best ways to become familiar with a new language. We will present some examples and briefly explain what they do.

This section is designed to be valuable regardless of your previous experience with Rust. If you've already experimented with Rust, these examples serve as a good refresher. However, if this is your first time encountering Rust code, you might not grasp everything immediately. That's perfectly fine! Think of this as your guitar teacher playing a song to demonstrate what's possible before teaching you how to play it yourself.

Embracing Rust's Philosophy

Rust is not just a programming language; it's a philosophy. It emphasizes safety, performance, and concurrency without compromising expressiveness or developer productivity.

Unlike many other languages, Rust achieves these goals without relying on garbage collection, making it suitable for systems programming where low-level control and resource management are critical.

In this chapter, we'll dive deeper into Rust's core syntax concepts, exploring its unique features and mindset that set it apart from other programming languages.

Variables and Mutability

By default, variables in Rust are immutable, meaning they cannot be changed once a value is assigned to them. This is the opposite approach that JavaScript has, where everything is mutable by default. To make things harder, you declare variables in Rust using the "let" keyword, which is the same JavaScript uses! But this is a different language, and it's way different from JavaScript (even is sometimes the code might look similar)

This immutability is a key feature that promotes safety and predictability in your code.

However, no worries, Rust also provides the flexibility to declare variables as mutable.

Immutable Variables

Let's start with an example of an immutable variable, inside a function called "main". In Rust, the keyword to declare a new function is "fn". Rust is a curly brackets language


```
fn main() {
    let x = 5;  // Immutable variable
    println!("The value of x is: {}", x);
}
```


In this example, x is an immutable variable. If you try reassigning a value to x, Rust will throw a compile-time error. This immutability helps prevent unintended side effects in your programs, making your code more reliable and easier to understand.

Mutable Variables

Often, you need to change the value of a variable. In such cases, you can declare the variable as mutable using the "mut" keyword:


```
fn main() {
    let mut y = 10;  // Mutable variable
    println!("The initial value of y is: {}", y);
    y = 15;  // Updating the value of y
    println!("The updated value of y is: {}", y);
}
```


Here, y is a mutable variable, which allows us to change its value after it has been initialized. This flexibility is useful in scenarios where the variable's value needs to be modified during the program's execution.

Shadowing

Rust also supports a concept called shadowing, which allows you to declare a new variable with the same name as a previous variable.

We will see this in more detail in a following chapter, but here is a first example. The new variable shadows the previous one within its scope. This can be particularly useful when you want to perform a transformation on a value without mutating the original variable:


```
fn main() {
    let z = 5;  // Immutable variable
    let z = z + 1;  // Shadowing the previous variable
    println!("The value of z after shadowing is: {}", z);
    let z = "six";  // Shadowing with a different type
    println!("The value of z after shadowing with a different type is: {}", z);
}
```


In this example, z is shadowed twice: first to increment its value and then to change its type. Shadowing allows for reusing variable names while transforming data clean and readable.

Constants

Rust also allows you to define constants, which are always immutable and must be annotated with a type.

Constants are declared using the const keyword and can be used to define values that are known at compile time and will not change:


```
fn main() {
    const MAX_POINTS: u32 = 100_000;
    println!("The maximum points are: {}", MAX_POINTS);
}
```


Constants are different from variables in that they cannot be shadowed and are always immutable, providing a clear and concise way to define fixed values in your program.

In summary, Rust's approach to variables and mutability emphasizes safety and predictability by default while offering flexibility to handle scenarios where mutability is necessary. Understanding the distinctions between immutable variables, mutable variables, shadowing, and constants will help you write clearer and more maintainable Rust code.

As you progress, you'll see how these principles contribute to Rust's philosophy of ensuring safe and efficient programming.

Data Types

Rust is a statically typed language, meaning it must know the types of all variables at compile time. This characteristic ensures type safety and performance but also requires you to be explicit about the types you use. Rust provides several built-in data types, including integers, floating-point numbers, Booleans, characters, etc.

This section will quickly showcase some of these fundamental data types. In the upcoming chapters, we'll explore these types in much greater detail, where dedicated sections, questions, and assignments will help reinforce your understanding and proficiency.

Integers

Integers are whole numbers without a fractional component. Rust supports both signed (i.e., positive or negative) and unsigned (i.e., only positive) integers. The size of integers can vary, and Rust provides several types, such as i8, i16, i32, i64, and i128 for signed integers and u8, u16, u32, u64, and u128 for unsigned integers.


```
fn main() {
    let int_num: i32 = -42;         // 32-bit signed integer
    let uint_num: u64 = 123456;     // 64-bit unsigned integer
    println!("Signed Integer: {}", int_num);
    println!("Unsigned Integer: {}", uint_num);
}
```


In this example, int_num is a 32-bit signed integer, and uint_num is a 64-bit unsigned integer.

Floating-Point Numbers

Floating-point numbers are used to represent real numbers with fractional components. Rust provides two types of floating-point numbers: f32 (32-bit) and f64 (64-bit).


```
fn main() {
    let float_num: f64 = 3.14;      // 64-bit floating-point number
    println!("Floating-point: {}", float_num);
}
```


In this example, float_num is a 64-bit floating-point number.

Booleans

Booleans represent truth values and can be either true or false.


```
fn main() {
    let is_true: bool = true;       // Boolean (true/false)
    println!("Boolean: {}", is_true);
}
```


In this example, is_true is a Boolean variable with a value of true.

Characters

The char type represents a single character. Rust's char type is Unicode-compliant, meaning it can represent more than just ASCII characters.


```
fn main() {
    let char_symbol: char = 'A';    // Unicode character
    println!("Character: {}", char_symbol);
}
```


In this example, char_symbol is a character variable representing the Unicode character 'A'.

There are more complex Data Types, but I will stop here. We will have a dedicated section later. The goal here was to get you more familiar with the Rust Syntax.

In this brief overview, we've seen examples of some fundamental data types in Rust. Each type serves a unique purpose and represents different data in your programs. As we proceed through the book, we'll delve deeper into these data types, exploring their properties, how to use them effectively, and how they fit into the broader context of Rust programming.

Through dedicated sections, questions, and assignments, you'll thoroughly understand Rust's type system and how to leverage it to write robust and efficient code.

Control Flow

Control flow is essential to any programming language, dictating how the program's statements are executed. Rust provides a rich set of control flow constructs, including if expressions, loop loops, while loops, and for loops. These constructs allow you to direct the flow of your program based on conditions and iterations, making your code more dynamic and responsive to different inputs and states.

Rust's control flow mechanisms are designed to be both powerful and expressive, enabling you to write clear and concise logic. One of the unique aspects of Rust's control flow is its emphasis on safety and performance.

For instance, if expressions in Rust can return values, allowing for more compact and expressive code. Rust's loop constructs also come with safety guarantees that prevent common pitfalls like infinite loops and unintended side effects.

In this section, we'll showcase some basic examples of these constructs. In later chapters, we'll explore these constructs in more depth, providing dedicated sections, questions, and assignments to help you master them.

Control Flow Example

Let's look at a single example that demonstrates the usage of if expressions, loop loops, while loops, and for loops in Rust:


```
fn main() {
    // If expression
    let num = 5;
    if num > 0 {
        println!("Positive");
    } else if num < 0 {
        println!("Negative");
    } else {
        println!("Zero");
    }
    // Loop
    let mut counter = 0;
    loop {
        println!("Loop iteration: {}", counter);
        counter += 1;
        if counter == 3 {
            break;
        }
    }
    // While loop
    let mut countdown = 5;
    while countdown > 0 {
        println!("Countdown: {}", countdown);
        countdown -= 1;
    }
    println!("Liftoff!");
    // For loop
    for i in 1..=5 {
        println!("For loop iteration: {}", i);
    }
}
```


In this single example:

	If Expression: The program checks if the number is positive, negative, or zero and prints the corresponding message.

	Loop: The loop prints the iteration count three times and then exits using the break statement. It is an interesting construct as it doesn't exist in most of programming languages, replaced by a "while(true)" statement.

	While Loop: The program counts down from 5 to 1 and then prints "Liftoff!".

	For Loop: The for loop prints the numbers from 1 to 5, inclusive.

In this section, we've demonstrated some of Rust's fundamental control flow constructs, including if expressions, loop loops, while loops, and for loops, through a single cohesive example. Each construct serves a unique purpose and provides different ways to manage the flow of your program.

As we continue the book, we'll explore these constructs more deeply, exploring their nuances and applications in various contexts. With dedicated sections, questions, and assignments, you'll thoroughly understand Rust's control flow mechanisms and how to use them effectively in your programs.

Functions

In this final section of the chapter, we'll explore functions, a fundamental building block of Rust programs. Functions allow you to encapsulate and reuse logic throughout your code, making it more modular and easier to maintain. Defining and using functions is essential for writing effective Rust programs.

Functions in Rust are defined using the fn keyword, followed by the function name, parameters, and the function body. Let's define a simple function to see how it works.

Functions example

Here's an example that demonstrates the definition and invocation of a function in Rust:


```
fn main() {
    // Function definition
    fn greet(name: &str) {
        println!("Hello, {}!", name);
    }
    // Function invocation
    greet("Alice");
    greet("Bob");
    // Another function example
    fn add(a: i32, b: i32) -> i32 {
        a + b
    }
    let sum = add(5, 7);
    println!("The sum is: {}", sum);
}
```


In this example, we see both the function definition and the function invocation:

Function Definition:

	The greet function takes a single parameter name of type &str (a string slice) and prints a greeting message. This demonstrates how to define a function and use parameters.

	The add function takes two parameters 'a' and' b' of type i32 (32-bit integers) and returns their sum. This demonstrates how to define a function that returns a value.

Function Invocation:

	We call the greet function twice with different arguments ("Alice" and "Bob"), demonstrating how to pass arguments to functions.

	We call the add function with arguments 5 and 7, store the result in the variable sum, and print it.

These are just a few of the core syntax concepts in Rust. In this chapter, we've introduced the basics of Rust programming, including variables and mutability, data types, control flow, and functions. Each of these topics is crucial for building a solid foundation in Rust.

As we progress through the book, we'll explore more advanced topics and dive deeper into Rust's syntax and features. Each chapter will provide detailed explanations, practical examples, questions, and assignments to help you master Rust programming. By the end of this book, you'll have a comprehensive understanding of Rust and be well-equipped to tackle complex programming challenges confidently.

Chapter Summary

In this opening chapter, we took our first steps into Rust programming. We explored why Rust has become such a hot topic among developers and how its unique features make it stand out in various fields, such as system programming and web development.

Getting practical, we talked about setting up your Rust development environment. We ensured you're all set to start writing code, from installing Rust to initializing your first project.

Then, we dived into Rust's core syntax concepts. We covered everything from variables and data types to control flow and functions, giving you a solid foundation to build.

We also introduced you to Cargo, Rust's trusty package manager and build system. We showed you how to use it for project management, handling dependencies, and publishing your work.

As we wrap up this chapter, you now understand Rust's basics and practical tools. Armed with this knowledge, you can confidently start your Rust journey. So, let's dive in and explore what Rust has to offer!

Questions

Before we proceed to the next chapter, let's take a moment to reflect on a few key questions.

These questions reinforce the concepts discussed in this chapter and ensure a solid understanding as we move forward.

	What key features of Rust make it stand out among other programming languages?

	How does Rust ensure memory safety and prevent common programming errors?

	What is Cargo, and what role does it play in Rust development?

	Can you provide examples of projects or domains where Rust is commonly used?

	Considering its unique features and syntax, how can beginners approach learning Rust effectively?

Discuss strategies for newcomers to adapt to Rust's concepts and gradually build their proficiency.

Assignment

Throughout the book, at the end of each chapter, there might be some assignments for you. Spend some time trying to solve them. They are not very complicated but more like extensions of what we have seen in the chapter.

Extend the simple web server created in this chapter to handle additional HTTP routes. Add at least one additional GET request route and one additional POST request route.

Experiment with different responses for each route, such as returning JSON data or serving static files. Test your modifications and ensure the server responds correctly to the new routes.

2 Rust Syntax and Functions

Join our book community on Disocrd

https://packt.link/rustfbtp

Introduction

In this chapter, we will dive deep into the foundational aspects of Rust programming, focusing on the language's syntax and functions. Understanding these basics is crucial as they form the building blocks for more advanced Rust programming concepts. This chapter aims to provide a comprehensive overview of variable declarations, data types, functions, control flow constructs, and error handling in Rust. By the end of this chapter, you will have a solid understanding of how to write basic Rust programs, manipulate data, and handle errors effectively.

Rust is known for its strict and expressive syntax, which enforces safety and correctness in your code. By learning Rust's syntax, you will not only write more reliable programs but also gain a deeper understanding of how Rust ensures memory safety and performance. We will start with the fundamental concept of variable declarations and mutability, exploring how Rust handles data storage and manipulation. This foundation will help you appreciate the language's design philosophy and how it guides you towards writing safe and efficient code.

Next, we will dive into Rust's data types and structures, which are essential for organizing and managing data. Rust provides a rich set of built-in data types, including integers, floating-point numbers, booleans, and characters. Additionally, Rust's compound types, such as tuples and arrays, allow you to group multiple values together. Understanding these types and how to use them effectively is crucial for building robust applications.

Functions are another critical aspect of Rust programming. We will explore how to define and use functions in Rust, including how Rust's ownership model affects data passing in and out of functions. This section will cover the syntax for function definitions, parameter passing, and return values, providing you with the tools to write modular and reusable code.

Control flow constructs such as if, else, loops, and pattern matching are vital for writing dynamic and responsive programs. We will examine how Rust implements these constructs and how you can use them to control the flow of your programs effectively. Understanding control flow is key to writing programs that can respond to different conditions and inputs.

Finally, we will discuss Rust's approach to error handling. Rust's robust error handling mechanisms, including the Result and Option types, allow you to write programs that gracefully handle unexpected conditions. We will also look at the panic! macro, which provides a way to handle unrecoverable errors. Mastering Rust's error handling strategies will enable you to build reliable and resilient applications.

Throughout this chapter, we will provide detailed explanations, examples, and exercises to help you grasp these concepts and apply them in your own Rust projects. By the end of this chapter, you will have a strong foundation in Rust syntax and functions, preparing you for more advanced topics in subsequent chapters.

Variable Declarations and Mutability

One of the first concepts you'll encounter in Rust is how to declare variables. Rust places a strong emphasis on safety and immutability. By default, variables in Rust are immutable, meaning once a value is assigned to a variable, it cannot be changed. This immutability helps prevent bugs and makes your code easier to understand and reason about. However, Rust also provides the flexibility to declare mutable variables when needed.

Immutable Variables

In Rust, you declare an immutable variable using the let keyword. Immutable variables are a cornerstone of Rust's safety guarantees, ensuring that values do not change unexpectedly, which can help avoid many common programming errors.

fn main() {
 let x = 5;
 println!("The value of x is: {}", x);
 // x = 6; // This line would cause a compile-time error because x is immutable
}

In the example above, x is declared as an immutable variable with a value of 5. Any attempt to modify x will result in a compile-time error, enforcing the immutability guarantee.

Rust's preference for immutability by default helps in maintaining a clear and predictable state throughout your program. This makes it easier to track how data changes over time, reducing the likelihood of bugs caused by unintended modifications.

Mutable Variables

While immutability is the default, there are cases where you need to change a variable's value. Rust allows you to declare mutable variables using the mut keyword. Mutable variables provide the flexibility to update and manage state as needed while maintaining control over when and where changes can occur.

fn main() {
 let mut x = 5;
 println!("The value of x is: {}", x);
 x = 6; // This is allowed because x is mutable
 println!("The value of x is: {}", x);
}

In this example, x is declared as mutable, allowing its value to be changed from 5 to 6. Using mut gives you the flexibility to modify variables while still adhering to Rust's safety principles.

Shadowing

Rust also supports a feature known as shadowing, where you can declare a new variable with the same name as a previous variable. The new variable shadows the previous one, effectively creating a new variable while retaining the name.

fn main() {
 let x = 5;
 let x = x + 1; // This shadows the previous x
 println!("The value of x is: {}", x);
}

In this example, the second declaration of x shadows the first one. This allows you to reuse variable names in a safe way, enabling transformations and updates without mutability.

Shadowing is useful in situations where you want to perform a transformation on a value and maintain immutability. Each shadowed variable is a new variable, allowing you to apply transformations step-by-step without modifying the original value.

Understanding variable declarations and mutability is the first step in mastering Rust's syntax. With these concepts, you can start to write more complex and expressive Rust code, building a solid foundation for further exploration of the language's features.

Data Types and Structures

Rust provides a rich set of built-in data types that allow you to store and manipulate data efficiently. Understanding these types is essential for effective Rust programming. Rust's data types can be broadly categorized into scalar types and compound types.

Scalar Types

Scalar types represent a single value. Rust's scalar types include integers, floating-point numbers, booleans, and characters.

Integers: Rust supports various integer types, including signed (i8, i16, i32, i64, i128, and isize) and unsigned (u8, u16, u32, u64, u128, and usize) integers. These types differ in size and whether they can represent negative values.

fn main() {
 let signed_int: i32 = -42;
 let unsigned_int: u32 = 42;
 println!("Signed integer: {}, Unsigned integer: {}", signed_int, unsigned_int);
}

Floating-Point Numbers: Rust provides two floating-point types, f32 and f64, for representing decimal numbers. The default type is f64 because it is more precise.

fn main() {
 let float_num: f64 = 3.14;
 println!("Floating-point number: {}", float_num);
}

Booleans: The boolean type bool represents a value that can be either true or false.

fn main() {
 let is_rust_fun: bool = true;
 println!("Is Rust fun? {}", is_rust_fun);
}

Characters: The character type char represents a single Unicode scalar value, which can be used to store a wide range of characters, including letters, numbers, and symbols.

fn main() {
 let letter: char = 'R';
 let emoji: char = '😊';
 println!("Letter: {}, Emoji: {}", letter, emoji);
}

Compound Types

Compound types can group multiple values into one type. The two primary compound types in Rust are tuples and arrays.

Tuples: Tuples group together multiple values of different types into a single compound type. Tuples have a fixed length: once declared, they cannot grow or shrink in size.

fn main() {
 let tuple: (i32, f64, char) = (500, 6.4, 'R');
 let (x, y, z) = tuple; // Destructuring the tuple
 println!("Tuple values: {} {} {}", x, y, z);
}

Tuples are useful for returning multiple values from a function or grouping different types of data together.

Arrays: Arrays are collections of multiple values of the same type. Arrays in Rust have a fixed length.

fn main() {
 let array: [i32; 3] = [1, 2, 3];
 println!("Array values: {} {} {}", array[0], array[1], array[2]);
}

Arrays are beneficial when you need to store a fixed-size list of elements. However, their fixed length can be a limitation in scenarios where you need a dynamically sized list.

Slices: Slices are a type that allows you to reference a contiguous sequence of elements in a collection rather than the whole collection. They are a view into a data structure and do not own the data they reference.

fn main() {
 let array = [1, 2, 3, 4, 5];
 let slice = &array[1..3]; // Slice of the array from index 1 to 3 (excluding 3)
 println!("Slice: {:?}", slice);
}

Slices are especially useful for working with parts of arrays or other collections without copying data. They provide a safe and efficient way to access sub-sections of data.

Strings: Strings in Rust are a bit more complex than simple scalar types. Rust has two main types for strings: String and &str (string slice).

String: A growable, heap-allocated data structure. It is mutable and can store a dynamic number of characters.

fn main() {
 let mut s = String::from("Hello");
 s.push_str(", world!");
 println!("{}", s);
}

&str: An immutable reference to a string slice. It can refer to a part of a String or a string literal.

fn main() {

let s = "Hello, world!"; // string literal

println!("{}", s);

}

Understanding and using these data types and structures effectively will enable you to organize and manage your data efficiently in Rust. As you become more familiar with these types, you'll be able to write more complex and efficient Rust programs.

With a solid understanding of Rust's variable declarations, mutability, and data types, we can now move on to exploring how Rust handles functions, including syntax, parameter passing, and return values. This will include a look at how Rust's ownership model applies to data passed into and out of functions.

Structs

Structs are a fundamental feature in Rust that allow you to create custom data types. Structs group together related data, allowing you to create complex data structures with named fields. There are three types of structs in Rust: classic structs, tuple structs, and unit structs.

Classic Structs

Classic structs are the most commonly used type of struct. They allow you to define a data structure with named fields. Each field in a struct can have a different type, and you can access these fields using dot notation.

struct User {
 username: String,
 email: String,
 sign_in_count: u64,
 active: bool,
}
fn main() {
 let user1 = User {
 username: String::from("someusername123"),
 email: String::from("someone@example.com"),
 sign_in_count: 1,
 active: true,
 };
 println!("Username: {}", user1.username);
 println!("Email: {}", user1.email);
 println!("Sign in count: {}", user1.sign_in_count);
 println!("Active: {}", user1.active);
}

In this example, the User struct has four fields: username, email, sign_in_count, and active. The main function creates an instance of User and prints the values of its fields.

Tuple Structs

Tuple structs are similar to classic structs but use unnamed fields. They are useful when you want to group a few values together without needing named fields.

struct Color(i32, i32, i32);
fn main() {
 let black = Color(0, 0, 0);
 println!("Black: ({}, {}, {})", black.0, black.1, black.2);
}

In this example, the Color struct is defined with three unnamed fields. The fields are accessed using dot notation with indices.

Unit Structs

Unit structs are the simplest form of structs and do not have any fields. They are useful for creating types that don't need to store data but still need to implement certain traits.

struct AlwaysEqual;
fn main() {
 let _subject = AlwaysEqual;
}

In this example, the AlwaysEqual struct has no fields. It can be used to implement traits or mark specific types in your code.

Struct Initialization and Update Syntax

When creating instances of structs, you can use the struct update syntax to create a new instance based on an existing one. This is especially useful when most of the fields in the new instance have the same values as an existing instance.

struct User {
 username: String,
 email: String,
 sign_in_count: u64,
 active: bool,
}
fn main() {
 let user1 = User {
 username: String::from("user1"),
 email: String::from("user1@example.com"),
 sign_in_count: 1,
 active: true,
 };
 let user2 = User {
 email: String::from("user2@example.com"),
 ..user1 // Copies the remaining fields from user1
 };
 println!("Username: {}", user2.username);
 println!("Email: {}", user2.email);
 println!("Sign in count: {}", user2.sign_in_count);
 println!("Active: {}", user2.active);
}

In this example, the user2 instance is created using the struct update syntax, copying the username, sign_in_count, and active fields from user1 and providing a new value for the email field.

Methods and Associated Functions

You can define methods and associated functions for structs to provide behavior associated with your data types. Methods are defined within an impl block.

struct Rectangle {
 width: u32,
 height: u32,
}
impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
 fn can_hold(&self, other: &Rectangle) -> bool {
 self.width > other.width && self.height > other.height
 }
}
fn main() {
 let rect1 = Rectangle {
 width: 30,
 height: 50,
 };
 let rect2 = Rectangle {
 width: 10,
 height: 40,
 };
 let rect3 = Rectangle {
 width: 60,
 height: 45,
 };
 println!("The area of rect1 is {} square pixels.", rect1.area());
 println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));
 println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));
}

In this example, the Rectangle struct has two methods: area and can_hold. The area method calculates the area of the rectangle, and the can_hold method checks if the rectangle can contain another rectangle.

Associated Functions

Associated functions are functions that are associated with a struct but do not take self as a parameter. They are often used to define constructors or other functions that are related to the struct but do not operate on a specific instance.

impl Rectangle {
 fn square(size: u32) -> Rectangle {
 Rectangle {
 width: size,
 height: size,
 }
 }
}
fn main() {
 let sq = Rectangle::square(3);
 println!("The area of the square is {} square pixels.", sq.area());
}

In this example, the square function is an associated function of the Rectangle struct. It creates a new Rectangle instance with equal width and height.

Understanding and using structs effectively will allow you to define and manage complex data structures in Rust, providing a solid foundation for building robust applications. With a comprehensive grasp of variable declarations, data types, and structs, you are now ready to explore functions in Rust, including syntax, parameter passing, and how Rust's ownership model affects data passing.

Enums

Enums, short for enumerations, are a powerful feature in Rust that allow you to define a type by enumerating its possible variants. Enums are particularly useful when you need to work with a value that can be one of several distinct types. Enums can also hold data, making them extremely versatile for various programming scenarios.

Defining Enums

You define an enum using the enum keyword, followed by the name of the enum and its variants. Each variant can optionally hold data.

enum IpAddrKind {
 V4,
 V6,
}
fn main() {
 let four = IpAddrKind::V4;
 let six = IpAddrKind::V6;

 println!("IPv4: {:?}, IPv6: {:?}", four, six);
}

In this example, the IpAddrKind enum has two variants: V4 and V6. These variants can be used to represent different kinds of IP addresses.

Enums with Data

Enums can hold different types of data. Each variant of an enum can have associated data of different types, much like a struct.

enum IpAddr {
 V4(String),
 V6(String),
}
fn main() {
 let home = IpAddr::V4(String::from("127.0.0.1"));
 let loopback = IpAddr::V6(String::from("::1"));
 println!("Home IP: {:?}", home);
 println!("Loopback IP: {:?}", loopback);
}

In this example, each variant of the IpAddr enum holds a String representing an IP address. This allows the enum to store different types of data depending on the variant.

Matching with Enums

One of the most powerful features of enums is pattern matching. The match expression allows you to execute code based on which variant of the enum you have.

We will see the match statement in an upcoming Chapter. For now, you can just consider it as a switch statement on steroids.

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}
fn main() {
 let msg = Message::Move { x: 10, y: 20 };
 match msg {
 Message::Quit => println!("Quit message"),
 Message::Move { x, y } => println!("Move to x: {}, y: {}", x, y),
 Message::Write(text) => println!("Write message: {}", text),
 Message::ChangeColor(r, g, b) => println!("Change color to red: {}, green: {}, blue: {}", r, g, b),
 }
}

In this example, the Message enum has four variants, each capable of holding different types of data. The match expression checks which variant is present and executes the corresponding code block.

Enum Methods

Enums, like structs, can have methods associated with them. Methods are defined within an impl block.

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}
impl Message {
 fn call(&self) {
 match self {
 Message::Quit => println!("Quit message"),
 Message::Move { x, y } => println!("Move to x: {}, y: {}", x, y),
 Message::Write(text) => println!("Write message: {}", text),
 Message::ChangeColor(r, g, b) => println!("Change color to red: {}, green: {}, blue: {}", r, g, b),
 }
 }
}
fn main() {
 let msg = Message::Write(String::from("Hello, Rust!"));
 msg.call();
}

In this example, we define a method call for the Message enum that matches on self and prints a message based on the variant. This encapsulates the behavior associated with each variant within the enum itself.

Enums provide a powerful way to define types that can be one of a few different variants. This makes your code more expressive and type-safe, reducing the likelihood of errors and making your intentions clear.

With a comprehensive understanding of enums, along with variable declarations, data types, and structs, you are now well-equipped to handle complex data modeling in Rust. Next, we will explore Rust's function syntax, parameter passing, and return values, along with how Rust's ownership model applies to functions.

Summary

In this section, we explored the fundamental aspects of Rust's syntax and data structures, including variable declarations, mutability, data types, structs, and enums. Understanding these basics is essential for writing effective Rust programs.

Variable Declarations and Mutability: Rust emphasizes immutability by default, enhancing safety and predictability. Mutable variables can be declared using the mut keyword, and shadowing allows you to reuse variable names safely.

Data Types: Rust offers a variety of scalar types (integers, floating-point numbers, booleans, and characters) and compound types (tuples and arrays) to manage data efficiently. Each type serves specific purposes, enabling you to choose the most appropriate type for your needs.

Structs: Structs are a powerful feature in Rust that allow you to define custom data types with named fields. Classic structs, tuple structs, and unit structs provide flexibility in how you structure your data. Methods and associated functions can be defined for structs, encapsulating behavior and operations related to your data.

Enums: Enums allow you to define a type by enumerating its possible variants, which can hold data. They are particularly useful when you need to work with a value that can be one of several distinct types. Enums can have methods associated with them, enabling you to encapsulate behavior within the enum itself.

By mastering these concepts, you can create and manage complex data structures effectively, laying a strong foundation for further exploration of Rust's features.

Next, we will dive deep into Rust's function syntax, parameter passing, and return values, with a focus on how Rust's ownership model affects functions.

Functions in Rust

Functions are a core component of Rust programming, providing the means to organize your code into reusable blocks. Functions encapsulate logic, making your code more modular, maintainable, and easier to understand. In this section, we will explore Rust's function syntax, parameter passing, return values, and how Rust's ownership model impacts functions.

Function Syntax

In Rust, functions are defined using the fn keyword, followed by the function name, a list of parameters, and the function body enclosed in curly braces. Functions can take zero or more parameters and return a value.

fn main() {
 println!("Hello, world!");
}
fn greet(name: &str) {
 println!("Hello, {}!", name);
}
fn add(a: i32, b: i32) -> i32 {
 a + b
}

In the example above:

main is the entry point of a Rust program and does not take any parameters.

greet takes a single parameter of type &str (a string slice) and prints a greeting message.

add takes two parameters of type i32 and returns their sum. The return type is specified after the -> symbol.

Parameter Passing

Rust supports passing parameters to functions by value, by reference, and by mutable reference. Understanding how these different modes of parameter passing work is crucial for managing data ownership and borrowing in Rust.

Passing by Value

When you pass a parameter by value, Rust makes a copy of the parameter. This means that changes to the parameter within the function do not affect the original value.

fn main() {
 let x = 5;
 takes_value(x);
 println!("x in main: {}", x); // x remains unchanged
}
fn takes_value(mut some_integer: i32) {
 some_integer += 1;
 println!("x in function: {}", some_integer); // this change does not affect x in main
}

In this example, takes_value receives a copy of x, so modifications to some_integer inside the function do not affect the original x.

Passing by Reference

Passing a parameter by reference allows the function to borrow the parameter without taking ownership. This is useful for allowing functions to read data without modifying it.

fn main() {
 let s = String::from("hello");
 takes_reference(&s);
 println!("s in main: {}", s); // s remains unchanged
}
fn takes_reference(some_string: &String) {
 println!("s in function: {}", some_string);
}

In this example, takes_reference borrows s using a reference. The function can read s but cannot modify it.

Passing by Mutable Reference

Passing a parameter by mutable reference allows the function to borrow and modify the parameter. This is useful for allowing functions to update data.

fn main() {
 let mut s = String::from("hello");
 takes_mutable_reference(&mut s);
 println!("s in main: {}", s); // s is modified by the function
}
fn takes_mutable_reference(some_string: &mut String) {
 some_string.push_str(", world");
}

In this example, takes_mutable_reference borrows s mutably, allowing it to modify the original String.

Return Values

Functions in Rust can return values, and the return type is specified after the -> symbol. The return value can be any type, including custom types like structs and enums.

fn main() {
 let sum = add(5, 3);
 println!("The sum is: {}", sum);
}
fn add(a: i32, b: i32) -> i32 {
 a + b
}

In this example, the add function returns the sum of its two parameters. The return value is specified as i32 after the -> symbol.

Ownership and Functions

We will talk more in deep about Ownership in Chapter 4, but let's make an example

Rust's ownership model plays a significant role in how functions handle data. When you pass parameters to a function, the ownership of those parameters can change depending on how they are passed.

	Passing by Value: Transfers ownership to the function.

	Passing by Reference: Borrows the value without transferring ownership.

	Passing by Mutable Reference: Borrows the value mutably without transferring ownership.

Understanding these rules helps you write functions that manage data safely and efficiently.

fn main() {
 let s = String::from("hello");
 takes_ownership(s);
 // println!("{}", s); // s is no longer valid here
 let x = 5;
 makes_copy(x);
 println!("x in main: {}", x); // x is still valid here
}
fn takes_ownership(some_string: String) {
 println!("{}", some_string);
}
fn makes_copy(some_integer: i32) {
 println!("{}", some_integer);
}

In this example:

	takes_ownership takes ownership of some_string, so s is no longer valid after the function call.

	makes_copy takes a copy of some_integer, so x remains valid after the function call.

Understanding these function principles, including syntax, parameter passing, return values, and ownership, is essential for writing effective and modular Rust code. Next, we will explore Rust's control flow constructs, including if, else, loops, and pattern matching, to control the flow of your programs effectively.

Control Flow Constructs

Control flow constructs are essential in any programming language, as they allow you to dictate the flow of execution in your programs. Rust provides a variety of control flow mechanisms, including conditional statements (if and else), loops (loop, while, and for), and pattern matching (match). These constructs enable you to build dynamic and responsive applications by controlling how and when different parts of your code are executed.

If and Else Statements

Conditional statements in Rust allow you to execute code based on certain conditions. The most common conditional statements are if and else.

fn main() {
 let number = 7;
 if number < 5 {
 println!("The number is less than 5");
 } else if number > 5 {
 println!("The number is greater than 5");
 } else {
 println!("The number is exactly 5");
 }
}

In this example, the if statement checks if number is less than 5, greater than 5, or exactly 5, and executes the corresponding block of code.

Rust requires that the condition in an if statement be a boolean expression. This ensures clarity and reduces potential errors that can arise from using non-boolean conditions.

Loop Constructs

Rust provides several types of loops for repeating code: loop, while, and for. Each type of loop is suited to different use cases.

The loop Keyword

The loop keyword creates an infinite loop. You can exit the loop using the break statement.

fn main() {
 let mut counter = 0;
 loop {
 counter += 1;
 if counter == 10 {
 break;
 }
 println!("Counter: {}", counter);
 }
}

In this example, the loop runs indefinitely until the break statement is executed when counter reaches 10.

The while Keyword

The while keyword creates a loop that runs as long as a condition is true.

fn main() {
 let mut number = 3;
 while number != 0 {
 println!("{}!", number);
 number -= 1;
 }
 println!("Liftoff!");
}

In this example, the while loop runs until number is 0, printing each countdown number.

The for Keyword

The for keyword creates a loop that iterates over a collection of items, such as an array or a range.

fn main() {
 let a = [10, 20, 30, 40, 50];
 for element in a.iter() {
 println!("The value is: {}", element);
 }
}

In this example, a.iter() creates an iterator over the elements of the array a. The for loop then iterates over each element, printing its value.

Using Ranges with the for Loop

Rust's range syntax is highly versatile, allowing you to define both inclusive and exclusive ranges. This is particularly useful for looping a specific number of times without needing to manually manage loop counters.

fn main() {
 for number in 1..5 {
 println!("Exclusive range value: {}", number);
 }
 for number in 1..=5 {
 println!("Inclusive range value: {}", number);
 }
}

In the first for loop, the range 1..5 is exclusive, meaning it includes numbers from 1 to 4. In the second for loop, the range 1..=5 is inclusive, meaning it includes numbers from 1 to 5.

Nesting Loops

You can also nest for loops to iterate over multiple collections or ranges simultaneously. This is useful for multidimensional data structures like matrices or grids.

fn main() {
 let matrix = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 9],
];
 for row in matrix.iter() {
 for element in row.iter() {
 print!("{} ", element);
 }
 println!();
 }
}

In this example, the outer for loop iterates over each row of the matrix, and the inner for loop iterates over each element within the row, printing the matrix in a grid format.

Pattern Matching with match

Pattern matching with the match statement is one of Rust's most powerful features. It allows you to handle complex control flow by matching values against patterns and executing code based on which pattern is matched. The match statement can match literals, variables, wildcards, and even destructure structs and enums.

Matching Literals

You can match literals directly in a match statement. This is useful for handling specific values differently.

fn main() {
 let number = 1;
 match number {
 1 => println!("One"),
 2 => println!("Two"),
 3 => println!("Three"),
 _ => println!("Other"),
 }
}

In this example, the match statement matches the value of number against the literals 1, 2, and 3. The underscore _ serves as a catch-all pattern for any value that does not match the specified literals.

Matching with Variables

You can bind values to variables within a match statement, which is useful for extracting parts of a complex value.

fn main() {
 let pair = (2, -2);
 match pair {
 (x, y) if x == y => println!("The numbers are equal"),
 (x, y) if x + y == 0 => println!("The numbers are opposites"),
 (x, y) => println!("Different numbers: ({}, {})", x, y),
 }
}

In this example, the match statement matches the tuple pair and binds its elements to x and y. The additional if conditions (called guards) allow for more complex matching logic.

Destructuring Enums

Pattern matching is particularly powerful with enums, allowing you to destructure and handle each variant differently.

enum Message {
 Quit,
 Move { x: i32, y: i32 },
 Write(String),
 ChangeColor(i32, i32, i32),
}
fn main() {
 let msg = Message::Move { x: 10, y: 20 };
 match msg {
 Message::Quit => println!("Quit message"),
 Message::Move { x, y } => println!("Move to x: {}, y: {}", x, y),
 Message::Write(text) => println!("Write message: {}", text),
 Message::ChangeColor(r, g, b) => println!("Change color to red: {}, green: {}, blue: {}", r, g, b),
 }
}

In this example, the Message enum has four variants, each capable of holding different types of data. The match expression checks which variant is present and executes the corresponding block of code.

Combining Patterns

Rust allows you to combine patterns using the | operator, which matches any one of multiple patterns.

fn main() {
 let x = 1;
 match x {
 1 | 2 => println!("One or two"),
 3 => println!("Three"),
 _ => println!("Anything"),
 }
}

In this example, the pattern 1 | 2 matches if x is either 1 or 2.

Matching Ranges

You can also match ranges of values using the ..= syntax.

fn main() {
 let x = 5;
 match x {
 1..=5 => println!("One through five"),
 _ => println!("Something else"),
 }
}

In this example, the pattern 1..=5 matches if x is any value from 1 to 5 inclusive.

Pattern Matching with Option

The Option type is a commonly used enum in Rust, representing a value that can be either Some (containing a value) or None (no value).

fn main() {
 let some_number = Some(5);
 let absent_number: Option<i32> = None;
 match some_number {
 Some(x) => println!("The number is: {}", x),
 None => println!("No number"),
 }
 match absent_number {
 Some(x) => println!("The number is: {}", x),
 None => println!("No number"),
 }
}

In this example, the match statements handle both Some and None variants of the Option type, demonstrating how to work with optional values safely.

Understanding and effectively using control flow constructs in Rust will enable you to write dynamic and responsive programs. With these tools, you can control how and when different parts of your code are executed, making your programs more flexible and robust.

Next, we will explore Rust's approach to error handling using the Result and Option types, as well as the panic! macro. This will help you build reliable applications that gracefully handle errors and unexpected conditions.

Summary

In this section, we explored the various control flow constructs provided by Rust, including if and else statements, loops (loop, while, and for), and pattern matching with match.

These constructs are essential for directing the flow of execution in your programs and handling different scenarios effectively.

If and Else Statements: Conditional statements allow you to execute code based on specific conditions, providing a way to handle different paths of execution.

Loop Constructs:

	loop: Creates an infinite loop, which can be exited using the break statement.

	while: Runs as long as a condition is true, allowing for conditional looping.

	for: Iterates over a collection of items or a range, simplifying iteration and eliminating errors associated with manual indexing.

Pattern Matching with match: The match statement provides a powerful and expressive way to handle different patterns, including literals, variables, destructuring structs and enums, and combining patterns. Pattern matching is particularly useful with enums, allowing you to handle each variant differently and extract values from complex data types.

Advanced Control Flow:

	Combining Patterns: Using the | operator to match multiple patterns.

	Matching Ranges: Using the ..= syntax to match a range of values.

	Pattern Matching with Option: Handling optional values safely by matching Some and None variants.

With these control flow constructs, you'll be able to write Rust programs that are dynamic and responsive, handling various scenarios with ease. These tools are essential for creating flexible and robust applications.

Next, we will look at Rust's approach to error handling using the Result and Option types, as well as the panic! macro. This will help you build reliable applications that can effectively manage errors and unexpected conditions.

Understanding Rust's Approach to Error Handling

Error handling is a crucial aspect of building robust and reliable applications. Rust provides a powerful and flexible approach to error handling that ensures your programs can gracefully manage unexpected conditions and recover from errors. In this section, we'll explore Rust's primary error handling tools: the Result and Option types, as well as the panic! Macro.

This section will give you a basic understanding of these concepts, but error handling in Rust is rich and multifaceted. Therefore, we will dedicate an entire chapter to diving deeper into these topics later in the book. For now, let's scratch the surface and get acquainted with Rust's fundamental error handling mechanisms.

The Result Type

The Result type is a powerful tool for error handling in Rust. It is an enum that can be either Ok or Err, representing success and failure, respectively. The Result type is commonly used for functions that can return an error.

fn divide(dividend: f64, divisor: f64) -> Result<f64, String> {
 if divisor == 0.0 {
 Err(String::from("Cannot divide by zero"))
 } else {
 Ok(dividend / divisor)
 }
}
fn main() {
 match divide(10.0, 2.0) {
 Ok(result) => println!("Result: {}", result),
 Err(e) => println!("Error: {}", e),
 }
 match divide(10.0, 0.0) {
 Ok(result) => println!("Result: {}", result),
 Err(e) => println!("Error: {}", e),
 }
}

In this example, the divide function returns a Result<f64, String>. If the division is successful, it returns Ok with the result. If the divisor is zero, it returns Err with an error message. The match statement in main handles both cases, ensuring the program responds appropriately.

The Option Type

The Option type is used when a value can be either something or nothing. It is an enum with two variants: Some and None. The Option type is useful for functions that might not return a value.

fn find_element(arr: &[i32], target: i32) -> Option<usize> {
 for (index, &element) in arr.iter().enumerate() {
 if element == target {
 return Some(index);
 }
 }
 None
}
fn main() {
 let numbers = [1, 2, 3, 4, 5];
 match find_element(&numbers, 3) {
 Some(index) => println!("Found at index: {}", index),
 None => println!("Not found"),
 }
 match find_element(&numbers, 6) {
 Some(index) => println!("Found at index: {}", index),
 None => println!("Not found"),
 }
}

In this example, the find_element function returns an Option<usize>. If the target element is found in the array, it returns Some with the index. If the target is not found, it returns None. The match statement in main handles both cases.

The panic! Macro

The panic! macro is used to indicate a program failure and immediately terminate execution. It is typically used in scenarios where the program cannot continue due to an unrecoverable error.

fn main() {
 let result = divide(10.0, 0.0);
 if let Err(e) = result {
 panic!("Application error: {}", e);
 }
}
fn divide(dividend: f64, divisor: f64) -> Result<f64, String> {
 if divisor == 0.0 {
 Err(String::from("Cannot divide by zero"))
 } else {
 Ok(dividend / divisor)
 }
}

In this example, if the divide function returns an error, the program will panic and terminate. While panic! is useful for handling unrecoverable errors, it should be used sparingly and only when absolutely necessary.

Understanding these basic error handling mechanisms is essential for writing robust Rust programs. While this section provides an introduction, we will delve deeper into Rust's error handling capabilities in a dedicated chapter later in this book. There, we will explore more advanced techniques and best practices for managing errors in Rust.

Summary

In this section, we explored Rust's approach to error handling using the Result and Option types, as well as the panic! macro. These tools are essential for building robust and reliable applications by ensuring that your programs can gracefully manage unexpected conditions and recover from errors.

	The Result Type: Used for functions that can return an error, the Result type is an enum with Ok and Err variants, representing success and failure. This type helps you handle errors explicitly and ensures that error cases are not ignored.

	The Option Type: Used when a value can be either something or nothing, the Option type is an enum with Some and None variants. It is particularly useful for functions that might not return a value, helping to handle cases where a value might be absent.

	The panic! Macro: Used to indicate a program failure and immediately terminate execution. This macro is helpful for handling unrecoverable errors but should be used sparingly.

These error handling mechanisms form the foundation for writing robust and resilient Rust programs. While this section provides an introduction, we will explore these topics in more depth in a dedicated chapter later in the book.

Summary

In Chapter 2, we covered the fundamental aspects of Rust syntax and functions, focusing on variable declarations, data types, structs, enums, control flow constructs, and error handling. Here's a quick recap:

	Variable Declarations and Mutability: Understanding the importance of immutability by default and the use of the mut keyword for mutable variables. The concept of shadowing to safely reuse variable names.

	Data Types and Structures: A comprehensive look at Rust's scalar and compound types, including integers, floating-point numbers, booleans, characters, tuples, arrays, and slices.

	Structs and Enums: Defining and using custom data types with structs and enums, including methods and associated functions.

	Control Flow Constructs: Utilizing if and else statements, loops (loop, while, and for), and pattern matching with match to manage the flow of your programs.

	Error Handling: An introduction to Rust's approach to error handling with the Result and Option types, and the panic! macro.

By understanding these foundational elements, you are now well-equipped to write basic Rust programs that are both robust and efficient. These concepts form the building blocks for more advanced Rust programming techniques, which we will explore in subsequent chapters. In the next chapter, we will examine Rust's memory management, ownership, and borrowing in greater detail, providing a comprehensive understanding of how Rust ensures memory safety and performance.

Questions

	Variable Declarations and Mutability:

	How do you declare a variable in Rust?

	What is the difference between immutable and mutable variables?

	What is shadowing, and how does it differ from mutability?

Data Types and Structures:

	What are the basic scalar types in Rust?

	How do you define and use a tuple in Rust?

	What is the difference between arrays and slices in Rust?

	How do you define a struct in Rust, and what are methods and associated functions for structs?

	What is an enum, and how can you use it to define different types of values?

Control Flow Constructs:

	How do you use if and else statements in Rust?

	What are the different types of loops in Rust, and how do you use them?

	How does pattern matching with match work in Rust?

	What is the purpose of the if let and while let constructs?

Functions in Rust:

	What is the basic syntax for defining a function in Rust?

	How do you handle parameters and return values in functions?

	How do ownership and borrowing affect function parameters and return values?

	What are closures, and how do they differ from regular functions?

	How can you use higher-order functions to create more flexible code?

Modules and Namespacing:

	How do you define a module in Rust?

	What is the pub keyword, and how does it control visibility in modules?

	How do you structure a Rust project using modules and nested modules?

	How do you use the super and self keywords to navigate module hierarchies?

Assignments

Assignment 2.1 - Variable Declarations and Mutability

Write a Rust program that declares an immutable variable and then shadows it with a new value. Also, declare a mutable variable and change its value.

Assignment 2.2 - Data Types and Structures

Create a struct to represent a rectangle with width and height. Implement a method to calculate the area of the rectangle.

Assignment 2.3 - Control Flow Constructs

Write a Rust program that uses an if statement to check if a number is positive, negative, or zero. Also, create a loop that prints numbers from 1 to 10.

Assignment 2.4 - Functions in Rust

Implement a function that takes two integers and returns their sum. Also, create a closure that multiplies two numbers and use it in a higher-order function.

Assignment 2.5 - Modules and Namespacing

Create a module named math with a function to calculate the square of a number. Use this function in the main program.

Assignments Solutions

2.1 Solution

This program demonstrates the use of immutable and mutable variables in Rust. An immutable variable x is declared and then shadowed with a new value. Additionally, a mutable variable y is declared and its value is changed.

fn main() {
 let x = 5;
 println!("The value of x is: {}", x);
 let x = x + 1; // Shadowing
 println!("The value of x is: {}", x);
 let mut y = 10;
 println!("The value of y is: {}", y);
 y = 20; // Mutability
 println!("The value of y is: {}", y);
}

2.2 Solution

This program defines a Rectangle struct with width and height fields. It also implements an area method for the Rectangle struct to calculate its area.

struct Rectangle {
 width: u32,
 height: u32,
}
impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}
fn main() {
 let rect = Rectangle { width: 30, height: 50 };
 println!("The area of the rectangle is: {}", rect.area());
}

2.3 Solution

This program uses an if statement to determine if a number is positive, negative, or zero. It also includes a for loop that prints numbers from 1 to 10.

fn main() {
 let number = 3;
 if number > 0 {
 println!("The number is positive");
 } else if number < 0 {
 println!("The number is negative");
 } else {
 println!("The number is zero");
 }
 for i in 1..=10 {
 println!("{}", i);
 }
}

2.4 Solution

This program defines a function sum that takes two integers and returns their sum. It also defines a closure multiply that multiplies two numbers and uses it in a higher-order function apply_closure.

fn sum(a: i32, b: i32) -> i32 {
 a + b
}
fn apply_closure<F>(f: F, a: i32, b: i32) -> i32
where
 F: Fn(i32, i32) -> i32,
{
 f(a, b)
}
fn main() {
 let result = sum(10, 20);
 println!("The sum is: {}", result);
 let multiply = |x: i32, y: i32| x * y;
 let result = apply_closure(multiply, 5, 6);
 println!("The product is: {}", result);
}

2.5 Solution

This program defines a module math containing a function square that calculates the square of a number. The main function calls this square function to demonstrate its usage.

mod math {
 pub fn square(x: i32) -> i32 {
 x * x
 }
}
fn main() {
 let number = 4;
 let squared = math::square(number);
 println!("The square of {} is {}", number, squared);
}

media/file4.png
“ crates.io © Browse All Crates | @l Francesco Ciulla

The Rust community’s crate registry

r'/" to search .

Typ

®
n
o

Install Cargo Getting Started

and find out more information about available crates. Become a
contributor and enhance the site with your work. Downloads

152,361

Crates in stock

Instantly publish your crates and install them. Use the API to interact 75'322,855,871

New Crates Most Downloaded Just Updated

bevy_blendy_cameras workflow-encryption
v01.0 V015.0

git-next-core N R N workflow-core N

v011.0 v0.15.0

media/file1.png
= O rust-lang / rust Q Typ:

Po— +-loln & G

<> Code (Issues ‘5k+ 7 Pullrequests 645 (O Actions [Projects 7 @ Security 4 |~ Insights

‘

rusl Public ©Watch 1479 ~ % Fork 123k K Stared 954k~

master ~ ¥ 6Branches © 136 Tags Q Gotofile t + - About

Empowering everyone to build reliable

(%) bors Auto merge of #128065 - Oneiricaligreat-testilence, ... @B 472433 -4 hoursago D 261780 Commits i dE el
B github Move rustbook to its own workspace. 4 days ago & www.rust-lang.org
B8 LICENSES Include REUSE.toml in REUSEtoml. 5 days ago) EE Gnalky
hacktoberfest
I compiler Auto merge of #128165 - saethlin:optimize-c... 7 hours ago
M Readme
libra Auto merge of #128165 - saethlin:optimize-c... 7 hours ago
= v o " o &8 Apache-2.0, MIT licenses found
B sc rewrite export-executable-symbols to rmake 6 hours ago @ Code of conduct
&8 Security poli
| tests Auto merge of #128065 - Oneirical:great-tes... 4 hours ago My
A Activity
[.clang-format Add . clang-fornat last month & Custom properties
[editorconfig Only use max_line_length = 100 for *s lastyear | W 954kstars
® 15kwatching
[.git-blame-ignore-revs Ignore compiletest test directive migration c... 5 months ago ¥ 123kforks
™ Aitattributec Rename confio +oml examnle 10 confio exam lact vear Rebport repository

media/file2.png
® n“st Install Learn Playground Tools Governance Community, Blog

Using rustup (Recommended)

1t looks like you're running Windows. To start using Rust, download the installer, then run the program and follow the onscreen
instructions. You may need to install the Visual Studio C++ Build tools when prompted to do so. If you are not on Windows see "Other
Installation Methods".

DOWNLOAD RUSTUP-INIT.EXE (32-BIT) DOWNLOAD RUSTUP-INIT.EXE (64-BIT)

Windows Subsystem for Linux

If you're a Windows Subsystem for Linux user run the following in your terminal, then follow the on-screen instructions to install Rust.

curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh

media/cover.jpeg
EXPERT INSIGHT

Rust from
Beginner to
Professional

A practical Rust guide to go from beginner to expert
and become a proficient, qualified developer

Francesco Ciulla (pOCkf)

media/file5.png
Francesco ~
$ cargo --version
cargo 1.77.0-nightly (add15366e 2024-01-02)

media/file3.png
rust-analyzer ve-3.20s
The Rust Programming Language rust-lang.org @ 3,512,534 %k ok ok k (222)
a Rust language support for Visual Studio Code

EER =R = o

DETAILS FEATURES

Categories
rust-analyzer

Formatters
This extension provides support for the Rust programming language. It is recommended Programming Languages

over and replaces rust-lang.rust.

media/file0.png

media/file6.png

