

Tabnine

The AI-Enabled SDLC

A Tech Leader’s Guide to Navigating the Future of Software Development

Brent Laster & Eran Yahav

The AI-Enabled SDLC

by Brent Laster and Eran Yahav

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editors: Jill Leonard and David Michelson

		Production Editor: Kristen Brown

	
		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		May 2025: First Edition

Revision History for the Early Release

		2024-11-06: Fourth Release

			2024-12-04: Fifth Release

				2025-01-17: Sixth Release

				2025-03-04: Seventh Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098176105 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The AI-Enabled SDLC, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Tabnine. See our statement of editorial independence.

978-1-098-17610-5

[LSI]

Brief Table of Contents (Not Yet Final)

Preface (available)

Chapter 1: Generative AI in Software Development (available)

Chapter 2: Opportunities and Challenges: What to Expect from Adding Generative AI to Your Processes (available)

Chapter 3: Planning with AI (available)

Chapter 4: Using AI for Code Creation and New Feature Development (available)

Chapter 5: Increasing Test Coverage through AI Generation (available)

Chapter 6: Resolving Bugs with AI (available)

Chapter 7: Automated Creation of Documentation (available)

Chapter 8: Simplifying Maintenance with AI Onboarding and Explanations (unavailable)

Chapter 9: Augmenting, Refactoring, and Updating with AI (unavailable)

Chapter 10: From AI Assistant to AI Engineer: The Future of AI in Software Development (unavailable)

Preface

How many applications with AI assistants have you encountered in the last month? The last week? Do you even notice anymore, or does it just seem that, in any significant application or role, something labeled as AI is now included?

It doesn’t feel like much of a stretch to say that every app now wants some kind of AI helper embedded in their product. The world has become fascinated with the ability to have conversations with AI and the models that back it. Nearly every industry is working feverishly to figure out how to gain an edge from this capability.

Likewise, growth in AI skills is not only surging, but becoming expected. For example, a study from PwC finds that:

		Growth in jobs that require AI specialist skills have outpaced all jobs since 2016.

		Skills sought by employers are changing at a 25% higher rate in occupations most able to use AI.

		 Jobs that require AI specialist skills carry up to a 25% wage premium in some markets.

Perhaps in no other industry are there greater expectations for what incorporating AI can do, than in the software industry. After all, software is the most expensive content being generated today. The same industry that gave us AI is now poised to take the greatest advantage of its generative capabilities. The possibilities are amazing - and confusing.

As an engineering leader, you no doubt want to (or must) make sure that you are adopting the AI tools and processes that are relevant, useful, and offer genuine value-add. These need to be considered in light of your team, your company, and ultimately your customers. An AI assistant that reads your email, summarizes it, and offers insights may seem cool (and a bit intrusive). But is it really useful for producing software? A chat interface that can draft a report may make your workday better, but is it helping your team simplify their work? What is it that makes a real difference for software development? And how do you get it right?

The it in this case is how to leverage AI in your software development life cycle (SDLC). The word leverage is deliberate. It’s not business-speak. You rely on your team’s creativity, coding prowess, experience, time-management, etc. Your team relies on being able to use the tooling they need to help them get their job accomplished effectively and efficiently. Incorporating AI into the SDLC process, when done correctly, can multiply the effects of all of these and benefit everyone.

In this book, we’ll show you where and how AI can be put to work in your SDLC to make a true difference. How we’ll do that is by focusing on the right application of Generative AI (GenAI) throughout the SDLC. There’s no smoke and mirrors here - just a realistic look at all the places GenAI can most effectively make an impact for the SDLC’s core job, and your ultimate goal - producing solid, quality code that results in solid, quality products.

Why We Wrote This Book

From our interactions with customers, software developers and others, it’s become clear to us that a map of how to strategically and realistically apply AI in the SDLC could help a lot of engineering organizations. From our experience in software production, creating tools, and with an understanding of AI’s possibilities and limits, we know the route to successfully using AI in the SDLC. This book brings all of that experience together.

Intended Audience

The primary audience for this book is the engineering team lead, driving software production, who wants to understand how to incorporate Generative AI tooling effectively and efficiently in their SDLC.

In terms of background, we expect that the reader is someone who has significant experience in designing and writing code, as well as the mechanisms and best practices for getting it to production, such as CI/CD. The assumption is that you also have those in place and working well.

On the AI side, you don’t need to be an AI expert to read this. We’ll be focusing on Generative AI and the tools that help with coding specifically. For those, some basic familiarity with the concepts of LLMs, chat interfaces, and code completion is assumed, but we’ll also briefly survey LLMs in Chapter 1.

Beyond that target audience, we think that anyone involved with software development, from developers to the CTO, can find value in the chapters. If there are particular parts that really strike you as potentially useful for others in different roles, we encourage you to share with them. Even if not directly applicable in their position, it may be the catalyst for a useful discussion.

The Structure of This Book

Since we’re discussing how to best incorporate AI and your SDLC process together, each chapter is tied to an aspect of AI’s impact or how it can be used in a specific phase of the SDLC.

Chapters one and two provide a baseline of how AI fits in with software development and what to realistically expect when you start incorporating it.

Chapters three through nine deal with how AI can be added to the separate SDLC phases.

The SDLC Phases

While there are many different definitions of the set of phases in an SDLC, we have chosen one that we think is fairly representative of most, so we can be consistent throughout the book. This definition may not match yours, but we think there’s enough similarities that you’ll be able to apply the ideas and guidance into your particular set of phases.

The last chapter discusses the future of AI in software development and where to go from here.

Here’s a quick list of the main topics covered in each chapter.

		Chapter 1: The role of AI in software development

		Chapter 2: What to expect from adding generative AI to your process

		Chapter 3: Planning new software development with AI assistance

		Chapter 4: Code creation and new feature development

		Chapter 5: Increasing test coverage through AI generation

		Chapter 6: Fixing issues and bugs with AI coaching

		Chapter 7: Automated creation of documentation

		Chapter 8: Simplifying maintenance with AI onboarding and explanations

		Chapter 9: Code refactoring, updates, and translations

		Chapter 10: The future of AI in software development

While you’ll likely find value in every chapter, it’s not necessary to read these in order. Feel free to skip ahead to a chapter that piques your interest or looks particularly relevant to an area you’re challenged with or want to focus on adding AI to.

Keeping up with GenAI

Technology continues to evolve and grow in capabilities and use. That’s especially true with AI. The scope of change is truly staggering given the number of models, techniques, and creative implementations we’re seeing in the space now.

We’ve done our best to create this text with the latest information available. But, you may notice some sections include disclaimers that reference “as of the time of writing”. We’ve deliberately produced this book on an expedited schedule to try to capture the current relevancy, but you should always consult the latest available information/documentation for any tools and techniques referenced in the text.

We hope that this book helps guide you through the GenAI tooling landscape and allows you to find the benefits of using it in your SDLC and avoid the pitfalls. Best of luck in your journey and thanks for reading.

Chapter 1. Generative AI in Software Development

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

Across all industries, the expectations for Generative AI (GenAI) are high. A recent Forbes survey on AI in Business found that the majority of business owners expect AI will have a positive impact on their business and that AI will be a key asset in several areas. According to that survey, AI is expected to:

		increase productivity (64%)

		improve decision-making (44%)

		decrease response times (53%)

		help avoid mistakes (48%)

		save costs (59%)

		streamline job processes (42%)

For reasons that we’ll outline in this chapter, we believe that software development is the industry best poised to realize these kind of actual benefits and even go beyond the expectations. From planning processes through release and maintenance cycles, taking the opportunities to automate your processes and evolve your technology have always been key practices for successful software delivery. Automating and evolving using GenAI is the next opportunity.

In this period of great expectations, it’s important to acknowledge that the hype and confusion around GenAI are also high. The same study identified, that, among business owners surveyed:

		43% are concerned about becoming too reliant on AI

		35% are anxious about the technical skills needed

		30% are concerned about AI-generated misinformation

		31% are apprehensive about data security and privacy when using AI

You and your team may share some of these same expectations and concerns when considering using AI. So how do you best target incorporating AI to get the benefits and avoid the pitfalls? In this book, we’ll be using two primary strategies:

		Focusing on the realistic applications of GenAI coding assistants versus the more aspirational AI processes and tools

		Providing dedicated chapters for application of GenAI in the SDLC stages

To begin, let’s level-set on some foundational pieces. In this chapter, we’ll cover

		The rise of LLMs

		Where does GenAI really fit?

		Software development assistants and their fit for purpose

		The software development lifecycle

		Applying GenAI in the SDLC

These sections will give you a good baseline on how to think about GenAI overall and help bound what we’ll be talking about in the rest of the book. A good place to start is by looking at the role of LLMs, but not as generators of prose, social content, or futuristic images. We need to understand how they relate to your mission - developing software - and what makes them well-suited for that.

The rise of LLMs

It may be hard to believe, but we are dealing with technologies that, at their core, are over sixty years old. Both software development and AI can trace their formal origins back to the 1950’s. The data sciences that underlie today’s GenAI, machine learning (ML) and natural language processing (NLP), have been around for decades.

Historically, ML and NLP were viewed as out of reach of most people, including most engineers, unless you were a data scientist or an academic. So, what happened that brought us to the point where we are today - with generative AI available everywhere? The transformation can largely be attributed to the development of large language models (LLMs), and adding a chat interface to them. As shown in Figure 1-1, public interest in AI in general spiked significantly after the release of ChatGPT in November, 2022.

[image:]
Figure 1-1. Spike in searches for “AI” worldwide after release of ChatGPT (source Google Trends)

We don’t need to go into all of the details of how an LLM is created, or how it works here. There are plenty of other sources available to go into the interesting, math-heavy (and frequently mind-numbing) details on that. For our purposes, we’ll just define an LLM as an AI model, trained across huge amounts of data, that can predict a sequence of output that is a logical response to some prompt. (This is a significant oversimplification, but we’re aiming for simplification here.)

What makes LLMs different from traditional computer models that can process formatted data, or respond to a math problem, is that large language models are trained to take into account context as well as syntax and structure. They are prediction engines and they are good at it. Adding a chat interface onto them has captured the public’s imagination because we feel we can talk to them almost as we would another person. And we can even tell them to focus their context and prediction functionality to emulate an expert in nearly any field.

But an LLM is still really just an engine. Without augmentation, its knowledge is only as complete as the data it was trained on. And without that same augmentation, it’s information is only as up-to-date as the data when it was initially trained. (That’s why you see lots of press about approaches like RAG (Retrieval Augmented Generation) and fine tuning to supplement an LLMs training.) So, it’s not a best fit for every use case.

Where does GenAI really fit?

LLMs plus a chat interface can captivate as a cool technology that anyone can interact with. But our focus here is putting these models to work. The buzz around LLMs might have us believe that they work equally well for nearly any content generation task. But the reality is different. A recent graphic from Gartner (Figure 1-2) shows that all things are not equal when it comes to the type of tasks these sophisticated prediction engines do best (under the umbrella term Generative AI) .

[image:]
Figure 1-2. Analysis of use cases of Generative AI (credit: Gartner, Inc.)

Notice that content generation is in the High category on that list (even though it’s at the bottom). If we were able to dive deeper, we would undoubtedly see that a certain type of content generation ranks very high - code completions and suggestions. The reason is because programming languages, unlike human languages, have an extremely well-defined, orderly structure and grammar. This is by design and necessity. If the syntax isn’t right, the code won’t run. If the semantics aren’t right, you will get incorrect or unexpected results.

The rules that must be followed to create executable, correct code lend themselves well to a predictable set of tokens. Thus, the process of helping create code is an excellent use case for LLMs that have been adequately trained on large bases of good code examples. We can harness the LLM engine for code completions from a simple element to complete functions. And we can get helpful responses on coding questions through chatting in natural language with it, conversing as if we were having a technical discussion with another member of the team.

Harnessing the models for these kind of coding tasks is the realm of AI assistants or AI coding assistants. These is where the intelligence part of GenAI can be most directly and usefully applied today. It’s also the category of GenAI tooling that we’re focusing on in this book. While these assistants can be referred to by different names, we’re just going to refer to them, from here on, as software development assistants (SDAs), starting in the next section, which looks at the overall application of SDAs in software development.

Software Development Assistants: Fit for Purpose

It’s no secret that AI-powered software development tools are in high-demand by many software development teams due to the potential benefits and potential productivity increases. And it’s probably not a well-kept secret that use of these kind of tools is often widespread within organizations - likely even yours - whether directed or sanctioned by management or not. (A 2023 Stack Overflow developer survey found that 77% of those who responded felt favorably about using AI in their workflow, and 70% of them were already using AI.)

At least as of this moment, the trend of using AI in software development is only expected to increase. Gartner predicts that, by 2028, 75% of enterprise software engineers will be using AI software development assistants in their development processes.

We’ve seen these sorts of seismic shifts in software development before. Software release requirement and planning cycles have been brought from months or years down to weeks (or even days). Crafting bespoke infrastructure for engineering has been replaced with Infrastructure as Code. Hard-coded scripting to do builds, testing, and packaging have been replaced by CI/CD. The ability to deliver to, and run resiliently in, the cloud is a requirement for any application that needs to scale. Secure software is an expectation out of the gate, with an expectation that remediation for security vulnerabilities and updates will happen within very short time frames.

Most of these innovations came about from software engineers addressing a need to solve a unique problem in producing or running software. The adoption of these innovations spread organically as developers and organizations saw the extra value they provided. They have been in use for many years, and are now widely accepted as best practices.

What differentiates a technology innovation from being a novelty, versus a trend, versus a long-term best-practice? It largely depends on how well the tech can be applied accurately and securely to solve a novel problem or solve an existing problem better than other current solutions (i.e. the fit). GenAI, in particular, has captured people’s imaginations for its potential fit across many different domains. Even within software development, the proposed use cases range from simple code completion to being able to develop complete systems from scratch, as a typical software engineer would.

In reality, some of these applications of GenAI are still more aspirational than practical. The actual fit for SDAs is less than full system development, but more than just code completions during the development phase. Engineers at nearly all phases can benefit from using SDAs for targeted tasks. We’ll be discussing examples throughout the coming chapters. But, as a guideline, consider any task where you would normally be asking someone to generate/update basic content, research public examples, or gather insights from your codebase, as potential fits.

With this context, we’re ready to discuss how SDAs can fit into the SDLC. The first steps for that are agreeing on what an SDLC is and then mapping out the potential SDLC integration points with GenAI.

Rolling your own

One other key point on using software development assistants: while teams have the option to create their own, we don’t see it as a good use of your time. Beyond simply connecting to the LLM and getting answers, there are key elements such as quality of training, fine-tuning, infrastructure, and providing a suitable interface to consider. And it is an on-going commitment to maintain. There are many vendors that have strong contenders for software-development assistants at reasonable price-points. If you were to create your own system, any gains you make and time saved using GenAI in your SDLC processes would likely be cancelled out by the time and effort to roll your own.

The Software Development Life Cycle

Let’s define what we mean by SDLC. Although intrinsically we can all describe it, there’s no standard definition that everyone would agree on. Since interpretations can vary, we’ll just cite this one from Amazon:

“The software development lifecycle (SDLC) is the cost-effective and time-efficient process that development teams use to design and build high-quality software. The goal of SDLC is to minimize project risks through forward planning so that software meets customer expectations during production and beyond. This methodology outlines a series of steps that divide the software development process into tasks you can assign, complete, and measure.”

In short, the SDLC is about how you produce software, and do it well, in an orderly, collaborative, and transparent way. Hopefully, it’s also cost-effective, timely, and of high quality. (If not though, incorporating AI isn’t a cure-all, although it has the potential to help.) Within the SDLC, there are different options for strategies to govern how work flows at the high level. These strategies have names you’re likely well-acquainted with, or at least recognize, such as agile, waterfall, spiral, etc.

Regardless of which strategy or methodology you’re using, there’s an iterative set of phases involved. And like the definition of SDLC itself, there’s no universal, standard set. The ones you use may be significantly different from, or significantly similar to, what another company, or even another organization in your company, is using.

Since we want to make sure we are being consistent throughout the book, we’re picking a specific set of phases to work with. Here’s the ones we’re going with, in order, and some basic definitions of what each phase includes.

		Plan: This phase involves defining the scope, objectives, and purpose of the project. It includes gathering requirements, conducting feasibility studies, and creating a project plan or roadmap.

		Create: In this phase, the actual coding and development of the software take place. Developers write code to implement the defined requirements and functionalities.

		Test: The software is tested extensively to identify any problems or shortcomings. This phase includes the various testing types and stages (unit testing, integration testing, system testing, and acceptance for example) to ensure the software meets the organization’s quality standards and requirements.

		Fix: Following on the Test phase, this phase involves debugging, correcting errors, and making necessary adjustments to improve the software’s performance and functionality.

		Document and Explain: Documentation is created to provide detailed information about the software’s design, development, and usage. Communication of the functionality, features, and usage of the software to stakeholders, users, and team members occurs. Training sessions, presentations, and user guides are created to ensure everyone understands how to use and benefit from the software.

		Deploy: Final testing, validation, and signoffs occur. Software is made available in production environments and rolled out to users per the release strategy. User-facing support and maintenance strategies are activated.

		Maintain: Ongoing support and maintenance are provided to ensure the software continues to function correctly and efficiently. This includes updating the software with new features, fixing any new bugs, and making improvements based on user feedback and changing requirements. This phase also includes internally-driven changes such as porting to another language or framework or refactoring the code.

It’s almost certain that these are not the same names and definitions as in your SDLC. But we think that most readers will be able to see clear correspondence with the SDLC process that they have.

For the last part of our chapter, we’ll tie these ideas altogether and look at how we can apply GenAI in an SDLC at a high level.

Applying GenAI in the SDLC

Reading through the list in the previous section, you may already be envisioning ways that GenAI could be beneficial in some of the phases. For others, it may seem murky or unlikely that it could really provide much value-add. You may also have previous experience with AI assistants in your own processes that you’re recalling - good or bad. Those will probably be front and center, as you read through the rest of the book. But it’s important to keep an open perspective as we discuss the realities of what GenAI can, and can’t, do in the SDLC.

Table 1-1 lists some bullet points showing where and how GenAI, provided through SDAs, can be incorporated into the phases we previously outlined.

	Table 1-1. Potential use cases for software development assistants in SDLC phases
	
		
				Phase
				Potential use cases
		

	
	
		
				Plan
				
			
					Help answer general coding questions

					Better understand your codebase

					Find reusable functions or code

			

			
		

		
				Create
				
			
					Develop code prototypes from ideas or specs

					Accelerate implementation by suggesting and completing code

					Explain code examples

					Help developers learn new languages or frameworks quickly

			

			
		

		
				Test
				
			
					Develop unit tests quickly

					Provide testing information and examples

					Identify edge cases for testing

					Implement tests and code using best practices like TDD

			

			
		

		
				Fix
				
			
					Find and recommend fixes for:
				
						Logic errors

						Security vulnerabilities

						Performance issues

				

				

			

			
		

		
				Document & Explain
				
			
					Document code with headers and comments

					Provide details for newcomers and ensure maintainability

					Document classes and functions for APIs

					Create documentation in frameworks like Swagger

					Assist with onboarding new engineers

					Explain project code, language, or framework

					Identify and explain code problems or vulnerabilities

			

			
		

		
				Maintain
				
			
					Simplify refactoring and updates with natural language prompts

					Identify code vulnerability and exploitability

			

			
		

	

The lists for the phases in this table are done with broad strokes to help start building out an overall vision and understanding. In the later chapters, we’ll be guiding you through application in the different areas in detail. But there are steps you can take now to start formulating your own overall plan for integration.

Actionable Steps

In each chapter of this book, we’re going to leave you with advice on steps to take based on the chapter content. We recommend following through on these exercises to get the most out of the discussions.

For this chapter, consider creating your own version of Table 1-1 This can be as simple as sketching out the table on a piece of paper, a whiteboard, a spreadsheet or whatever application you prefer. (We do recommend eventually transferring this to an electronic format that can be updated and shared easily.)

Start with the list of your SDLC phases for the first column. (If you haven’t fully codified them yet, this is a great time to do that.) Then, given the context we’ve laid out here and the examples shared in the table, brainstorm a few bullet points for each phase on how you think that GenAI via SDAs can fit into each phase. We recommend doing this as a team exercise if possible to help build understanding and agreement and head off any FUD around future changes.

Brainstorming approach

While we’ve suggested a form and way to approach this, you should use whatever form of brainstorming works best for you and your team. For example, if creating a mind map for this is more typical of the way you develop ideas, feel free to use that approach. We do recommend eventually transferring the results into a simple form like a table that can be easily and quickly digested.

One additional note on this exercise: don’t limit yourself at this point - this is brainstorming. You may come up with use cases that we haven’t thought of. There will be opportunities to validate those later. Once you have this table, continue to refer to it, update it, and evolve it as you progress through the integration process and the rest of the book.

Chapter 2. Opportunities and Challenges: What to expect from adding generative AI to your process

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

In Chapter 1, we laid out the foundations and motivations for incorporating GenAI into your SDLC. As you start to make changes in that direction, it’s helpful to have some ideas of what to expect for key areas of change. In this chapter, we’ll provide some thoughts for awareness and planning. We’ll also share suggested approaches for some challenges that you may encounter along the way.

Specifically, we’ll look at the changing role of the software engineer, how to protect code quality as velocity increases, real-world impacts on productivity and satisfaction, and common pitfalls and risks.

Getting the business onboard

When GenAI is proposed as an addition to the engineering process, there will need to be various discussions within the business to ensure common understanding about what will change, get everyone on board and reach agreement on plans. While not the focus of this book, hopefully much of the information we present in its chapters will be helpful with those discussions.

To start, let’s look at how we can help the software engineers on our teams understand what to expect.

The changing role of the software engineer

To paraphrase a quote from Vivienne Ming, executive chair and co-founder, Socos Labs: "Everyone will have access to amazing AI in the future, but the differentiator will be your creative talent. Invest in turning your talent into a team of explorers who can solve problems using AI to remove the busy work.”1

The notion of turning your engineering talent into explorers is a helpful analogy for how team members can understand how their role may change, making use of AI. With software development assistants (SDAs), developers working in an IDE can accelerate their output as the AI supports them in near real-time with suggestions for code, tests, and documentation.

Via the chat interfaces, they can explore languages and frameworks (that they need, or want, to learn), as well as getting feedback and input on existing code. In fact, many SDAs allow adding existing private codebases to augment their available training. Taking advantage of that functionality can provide insights and information from your own codebase that would not have been possible otherwise.

The characterization of AI as a tool to remove the busy work is worth emphasizing. Teams can delegate the more routine, derivative (i.e. “less fun”) aspects of coding and process to the AI assistant. This allows them to focus more on the tasks and innovations that require their unique experience, creativity, and deeper engagement to complete. Overall, this ensures a better use of resources across the team, as well as a generally more productive environment and higher job satisfaction. Ultimately, engineers can fully realize their roles.

In this updated way of working, GenAI is another tool in the developer’s toolbox, and a highly flexible and powerful one. For those who take the time to learn and adapt, they can leverage GenAI in partnership with their own creativity and experience to get more done more easily. This combination helps realize the payoff of the promise to remove much of the monotony from coding and accelerate personal learning and innovation. If applied well, there’ll be more opportunities to focus on the fun and interesting parts of the job that made developing software a desired career.

In terms of turning out code, increased productivity(more efficiency, higher business value) generally implies increased velocity (more, faster throughput). But, increases in productivity and velocity don’t imply an automatic increase in code quality. In fact, if not managed well, the opposite can happen.

The introduction of GenAI may initially seem to be turning out good quality code faster. But the real proof point is when the code is being considered for merging. If the code is produced faster, only to be rejected when the pull request is evaluated, the gains are temporary. And ultimately, rework could cause any initial productivity gains to be cancelled out by required rework.

So how do you protect code quality as the velocity increases? As it turns out, this is a topic where we can draw comparisons with something that most developers and engineering leaders are already familiar with. It’s also the subject of the next section.

Protecting code quality as velocity increases

Stack Overflow (SO) came on the scene in 2008. Ever since, developers have applauded it as a boon to productivity, and management has (at least at some level) feared it as a potential detriment to code quality. The premise of SO is simple - ask a programming or tooling question and crowdsource answers. There’s no guarantee of quality of the responses, just a limited review and voting process if other users take an interest in it. Any guarantee and responsibility for quality come after its use and are the responsibility of the developer using it.

Whether acknowledged or not, your developers are using SO, and there is code that originated from the forum living in your code base. Likewise, if your codebase is of any substantial size, you also have code that originated from a third-party, open-source component or project site (such as GitHub) living there too.

Having been developers ourselves, and led organizations of developers, we know that use of these sources (subject to honoring licensing, copyrights, etc.) isn’t a bad thing. As a general rule, anything that can help coders ultimately produce code more quickly and effectively - whether a website or an AI assistant - is a good thing. But there is one main caveat.

That caveat is this: you must protect the quality of your code even as the velocity with which you’re creating it increases. No matter how fast the assembly line goes, there must be quality inspections happening along the way and consistent controls that can identify quality issues early.

There is a direct correlation with AI adoption in your SDLC. As noted previously, GenAI can, if done correctly, accelerate velocity and productivity for your engineers. It can also result in more potential quality issues downstream in your code if the necessary quality processes aren’t adapted accordingly. To understand the potential scenario better, let’s look at both why challenges arise, and how we can help enforce quality at the needed levels, when GenAI is in the mix.

The Why

A recent whitepaper from GitClear compared the quality and maintainability of AI-assisted code, versus what a human would create.

"We find disconcerting trends for maintainability. Code churn -- the percentage of lines that are reverted or updated less than two weeks after being authored -- is projected to double in 2024 compared to its 2021, pre-AI baseline. We further find that the percentage of ‘added code’ and ‘copy/pasted code’ is increasing in proportion to ‘updated', ‘deleted', and ‘moved’ code.’”

In the worst cases, there can be a tendency to let AI-generated content “off the hook” when it comes to holding it to the same high standards as human-generated content. But, it is still the human who has the larger context and ultimate responsibility. It’s critical that your team members using AI software development assistants not relax their quality standards because the code originated from AI tooling.

It’s also key that developers (regardless of their experience and level) not let themselves be coded into a corner with the AI’s suggestions. That can happen if they allow the AI-generated suggestions to take them down a path that looks promising and start to be guided by it against their instincts. Another symptom is accepting subsequent suggestions without evaluating whether they are moving them closer to, or further away from, the intended functioning and design.

Think of it this way. Every code completion or generated response that you accept is like accepting code from another developer. This is still code that will have to be reviewed, approved and maintained for the life of the application. Trust but verify.

The How

Ensuring code quality can best be done via educating developers, building standard cross-checks into the processes, and ensuring best practices are enforced and followed.

The types of cross-checks we’re talking about here include:

		Making an intelligent decision about how much of a coding example or suggestion is worth using (or not)

		Adapting any examples or suggestions to your design and requirements

		Enforcing code reviews and inspections from others

		Testing at all levels, and of all dimensions (performance, scalability, recovery, etc.)

		Scanning for security vulnerabilities

		Enforcing coding style and conventions

		Checking for adherence to requirements

These checks help ensure that whether code was created from scratch, primed from an answer on SO, or suggested in whole or part by an AI coding assistant, it is subject to the same validation and quality constraints.

One other approach to guide recommendations is by informing the SDA of your own teams patterns and methods. This can be done via functionality built-in to some of the SDAs to incorporate your private code. Since your patterns and methods have made it through the code review process in the past, teaching the SDA about them puts it in a position to suggest content that has been deemed ok to merge in the past.

There’s also an opportunity for increased productivity to correlate to increased quality. As your team gets more comfortable using GenAI to help with the standard coding tasks, their velocity can naturally increase on all coding tasks. That means, given consistency in workload, they can also have more bandwidth to create tests, perform code reviews, and ensure coverage is in place that protects the code quality. With the same oversights mentioned above, those tasks can be further automated with the AI assistants, leading to a productive quality cycle.

Dependence on the AI for validation

Don’t be tempted to rely on the AI (or other AI tools) to solely validate results. Always have human reviewers in the mix and always give them the final responsibility and final say in approving any code for merging in your codebase.

Ensuring the team expects that increasing velocity is balanced with increasing validation isn’t a new concept. But it does take on a greater importance as AI is introduced further into your SDLC processes and across its phases.

In our next section, we’ll discuss more specifics about several key results areas that can help to frame your expectations after the changes.

Real-world impacts on productivity and satisfaction

We are still early into the era of incorporating GenAI into software development. However, there has already been a wealth of data gathered on the results of using it in practice and in production. Keeping with our earlier suggestions of the aspects where GenAI can make a difference, we’re going to look at its impacts in two key areas: productivity and satisfaction.

Productivity

In 2023, McKinsey did a controlled study of developers split into two groups. One group was given access to GenAI tools that could do general-purpose chat and code completion, while another group had no access to any AI tools. The experiment looked at three key kinds of tasks: code generation, code refactoring, and code documentation.

What were the results? The group using the AI tools experienced a 20%-50% faster than average rate for the three types of tasks. They were also 25%-30% more likely to finish the tasks within the time allotted. Table 2-1 summarizes the benefit areas identified in the study and the corresponding productivity improvement opportunities.

	Table 2-1. Productivity findings and benefits resulting from the use of AI
	
		
				Finding
				Benefit
		

	
	
		
				Accelerated results on manual and repetitive tasks
				Taking less time to do boilerplate tasks
		

		
				Getting a head start on the first draft of new code
				Bootstrapping projects
		

		
				Faster turnaround on updates to existing code (e.g. quicker code modernization)
				Simplifying updates
		

		
				Increased ability to tackle new challenges from lower cognitive load
				Allowing reserving more brainpower for new tasks
		

	

None of these will likely be surprising to anyone who has had exposure to SDAs. However, there is an additional category not always pointed to by data like this - gaining more familiarity with the internal code base used in the products. As noted earlier, many SDAs have functionality to add internal codebases to the set of data that can be queried and searched.

The referenced gains came from a combination of an AI chat agent and AI code generation (code completion) set of tools. This maps to the notions of using the tools to do exploring and acceleration that we referenced earlier. This functional combination is what has consistently produced results with users and also a key mechanism that has enabled higher job satisfaction.

Satisfaction

The same McKinsey study previously cited also looked at how being able to use GenAI tools impacted developer job satisfaction. Job satisfaction is an umbrella term taking into account factors such as developer experience, happiness in the role, sense of accomplishment and fulfillment, etc.

Looking across these factors, as shown in Figure 2-1 excerpted from the study, GenAI tools had a notable potential to improve the developer experience.

[image:]
Figure 2-1. Improvements in developer experience using GenAI tools (source McKinsey & Company)

Also, according to the report “Developers using generative AI-based tools were more than twice as likely to report overall happiness, fulfillment, and a state of flow. They attributed this to the tools’ ability to automate grunt work that kept them from more satisfying tasks and to put information at their fingertips faster than a search for solutions across different online platforms.”

Similarly, GitHub reported that in a study with Accenture on integrating GitHub Copilot, they found significant improvements in multiple areas, including:

		90% were more fulfilled with their job using the AI

		95% enjoyed coding more

Of course, these are subjective metrics and may well vary depending on the situation the tools are being used for. However, they paint a promising outlook in terms of increased satisfaction for developers when working with GenAI.

Overall increases in productivity and satisfaction should lead to corresponding increases in work quantity and work quality. And the data seems to bear that out. A study from Harvard Business School found that for well-suited AI tasks, workers completed 12% more tasks and finished 25% faster. However, its important to remember that real-world impacts may not always be positive and in fact may introduce unforeseen risks.

For example, if the engineering teams’ output increases as a rate that exceeds the testing capacity, then the testing phase(s) can become a constriction point (bottleneck) in the SDLC. The dependencies between phases highlights the need for a coordinated and balanced approach to leveraging GenAI in the SDLC. This applies whether we are talking about dependencies on technology, processes or humans. A prerequisite to being able to work towards a coordinated and balanced approach is to make sure you understand the pitfalls and risks that can prevent that. Some of these will be unique to your particular situation and implementation. But in the next section of this chapter, we’ll share a few common ones to be aware of.

Common pitfalls and risks

While its easy to focus on the benefits that we expect from adopting SDAs into our processes, it’s important to be equally aware of the potential pitfalls and risks that may arise as well. Generally, these fall into three categories:

		Perceived job impacts

		Relevancy concerns

		Assumptions about the role of the AI

The first category can be observed either when people assume that AI is useless or does not have a good fit in engineering roles. Conversely, some assume that it will take over and/or eliminate engineering roles.

Perceived job impacts

Since ChatGPT burst onto the scene in 2022, a long-smoldering debate about whether AI would make software engineering jobs obsolete has caught fire. At one extreme has been the idea that GenAI will become all-powerful and be able to do anything that a human can do. At the other extreme is the idea that AI is significantly over-hyped, and so prone to hallucinations, derivative coding, and bad interpretations, that it can not be relied upon at all.

As with most extremes, the truth lies in the middle. AI applied correctly can be extremely powerful, but it is not all powerful. It can also be incorrect, and lacks the nuances and understandings that humans have. But in key areas with a well-structured, closed set of content, such as software generation, and proper application and oversight, it has significant potential.

This potential can drive excitement and enthusiasm about leveraging GenAI. It can also be something that raises red flags among your software engineers. Those flags are likely one of the first items you’ll hear formed as a concern from your team. Likely the biggest question you’ll face: “Will adopting GenAI eliminate jobs?" There are of course no guarantees. But the wider application of GenAI done correctly can enable willing engineers to increase their productivity do their jobs even more effectively, ultimately making them more valuable.

Engineer engagement vs replacement

To paraphrase a popular saying “AI won’t take your software engineers’ jobs. But someone who knows how to use AI might." The point here is straightforward. Engineers are valued for their experience, creativity, problem-solving, collaboration, and ability to get software out the door. They are also expected to learn and grow their skills, picking up whatever new language, framework, paradigms, processes or apps are required/needed. (To keep things simple, we’re going to lump these categories together as “tools/tooling” in the rest of the book.)

For as long as there have been jobs in programming and software development, there have been demands to learn new tooling to remain competitive. It’s unrealistic to think that much of the specific tooling that devs were formally trained on, even five years ago, is entirely relevant today, unless it’s in a legacy role that requires it.

Likewise, it’s unlikely that any dev, doing some repeated process for even a few months, hasn’t heard a directive to “automate it”. It’s expected that devs don’t just use the same tools over and over to produce code. All of us in the technical arena are (or should be) expected to leverage tools to get better at producing code, whether by optimization, automation, or migration. Growth is a necessity and requirement to do the job. There’s a reason there’s an “R” in “R&D”.

If you encounter these kind of concerns, help your team remember that learning and getting proficient with new tooling aligns with the expectation to be productive, modern, and competitive in the market. That’s the true skill set that sustains their technical role and carries them forward long-term.

As we discussed in the earlier section on the changing role of the software engineer, GenAI is another tool. It has the potential to remove much of the monotony and boilerplate tasks from coding. And, if applied well, this should result in more cycles to focus on the fun and interesting parts of the job that made them interested in developing software in the first place.

Of course, not everyone may want to adapt and learn. In the real world, there are those who avoid change or prefer to only keep doing what they’ve been doing. But the prospect of using GenAI doesn’t change those kind of behaviors. Apprehension around using GenAI may be high initially, but the same can be said for any number of innovations that have come along in the last few decades and are now part of our daily lives, such as cloud, CI/CD, etc. People challenges will not be solved or changed by the introduction of Gen AI.

AI and performance challenges

A study done by Harvard Business School and Boston Consulting group examined the performance impacts on creative tasks and problem-solving with and without AI. The results not only showed benefits across the board when AI was used, but also found that low performers experienced a 43% productivity improvement compared to when they did not use AI. Of course, any such result would have to be considered in light of whatever other variables were involved, the roles, etc.

Getting the most from the AI tooling assumes that the tool is always producing relevant results. Due to the way the underlying models are trained, that’s not always a safe assumption.

Relevancy

The underlying AI models your software development assistant relies on were trained on content that was current as of a certain point in the past. Therefore, code produced from the assistant may be using deprecated functions, features, APIs, etc. If these are not caught by your developers or automated processes (such as compilers, linters, etc.,) you risk introducing outdated or deprecated code into your codebase.

There are various strategies that can help with this situation. One revolves around inserting updated code examples in your local editing environment to make the newer references available to the AI. An example of doing this might be taking a section of a change log with examples of an updated method and inserting it temporarily into a file in your workspace. This is time-consuming and relies on identifying an issue up front, then manually finding and inserting an up-to-date example.

A second approach relies on having automated update/translation tools to bring code up to current expectations as part of a systemic process. This can be automated but depends on either such tools existing or being created and being able to handle all use cases.

A third strategy would be to fine-tune or retrain the underlying AI models to bring their training data up-to-date. This is, at most, a temporary fix and, at worst, a long and expensive proposition that most businesses are not equipped to effect.

The other option is to leverage a common technique used for this situation called Retrieval-Augmented Generation (RAG). RAG allows you to transform your data into a form that can be stored, queried, and searched as additional context to the AI model’s knowledge. This is the recommended approach since it puts your content into the mix and allows for the data to be as relevant as your content is. We’ll have more to say about this in Chapter 3 when we talk about SDA features like tabnine’s Connection functionality.

Another similar risk can be limited domain knowledge. Given the broad bases that AI models are trained on, they can lack deep domain-specific knowledge and knowledge of key overall relationships across data. This, in turn, can make them less effective for highly specialized problem sets or things that require industry-specific or organization-specific knowledge. However, the same approach as we described above using RAG can be used to offset these shortcomings.

Sometimes the shortcomings may not come from the tech itself, but may be self-imposed. In the next section, let’s look at the challenges that can come from making too narrow or too broad assumptions about the role of the AI.

Assumptions about the AI

You will have many tools in your engineering toolbox. But any tool is only useful if it’s actually used, and if its used for its intended purpose. GenAI and SDAs have the same challenges.

One problem situation that can occur is if an engineer never, or seldom, uses the SDA because they assume its responses won’t be suitable or up to their level. A challenge can also be encountered if an engineer assumes that the tool will always function at their level.

It’s popular among some SDA vendors to assert that their tooling is “an AI pair programmer”. However, this is an incorrect characterization for today’s GenAI products. The assertion implies that the tool understands the larger scope and design and implementation of software projects “out of the box”. Instead, it’s important to remember the tooling is predicting code or answering questions only based on the training and any additional context it is provided from the working environment or RAG. Thus, its context and understanding are limited by the SDA’s ability to leverage context and the information it is exposed to.

Instead of thinking of these tools as AI pair programmers, we recommend you think of the interactions with them as more like the interactions you would have with a programmer who is competent, but new to the project. That is, the new team member can learn and produce code that accomplishes dedicated, focused tasks given appropriate direction from a more experienced team member. But they should not be trusted or expected to tackle tasks that require a deeper or broader knowledge of the design or implementation.

In short, these tools are not programmers on their own. They are knowledgeable, but they do not have judgement. That is still the realm of the developer using the tool.

We see these three areas - job concerns, relevancy, and assumptions about the AI itself as primary pitfalls most adopters of GenAI will broadly have to contend with. Beyond these, there are standard business areas that may raise concerns (security, legal, IT) along the implementation path. In most cases, resolving these is best done by having conversations to help educate the professionals in those areas on some of the technical details surrounding the implementation/integration. The vendor for the tool will probably be in a best position to help with those efforts and your role will likely be to help ensure that the connections are made and that the conversations can happen.

A core strategy for simplifying integration

There’s one last thought we want to leave you with in this chapter. Knowing what to really expect in this process, for all the areas involved, the integration experience can be greatly simplified by knowledge-sharing and training up front. Whether that is from the vendor to the client, the team lead to the team, or even self-training through available resources, providing details early on can help set a more solid understanding of what to expect and also avoid many misconceptions and apprehension.

Of course, there will be different aspects depending on the background knowledge and working area, but in these kind of situations where new, significant technology shifts are being introduced, more information (as long as it is accurate and comprehensive) is always better.

Organized, engaging training can best set the stage for smoother adoption and integration early on. Continuing to make training resources available to the people involved as the integration happens and the tools and processes evolve with GenAI will likewise continue to make your overall efforts easier.

Action items

Armed with the information from this chapter, you should be in a better position to understand what to expect in the key areas we’ve outlined. At this point in the process, you have the opportunity to prepare for how you and your team can deal with these expected scenarios. For example, you can:

		Organize additional training sessions for the tooling to emphasize the ways it can and should be used to improve productivity.

		Discuss with your teams what’s important about improving their job satisfaction and how the GenAI tooling may help with that.

		Seek out and have conversations with any on the team who are apprehensive about their role being partially or fully replaced by the tech.

		Review measures you have in place to protect code quality and consider how they may need to change or evolve to ensure they address AI-assisted output.

		Review the RAG options and functionality provided by the vendor for the SDA and decide what parts of your existing codebase would be worthwhile to include if that is an option.

		Review your workflows through your SDLC and play out what would happen if an increase in one phase put an undue load on a downstream phase (i.e. an increase in development output overloading testing). Develop strategies to mitigate as necessary.

These are a few thoughts, but we encourage you to consider strategies and options for any expectations that you, and others in your team, identify and agree may have realistic impacts.

1 https://www.salesforce.com/video/2072909/

Chapter 3. Planning with AI

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

When you think of the planning phase of the SDLC, you probably first picture a group of developers and product managers sifting through a stack of requirements. They choose the features or fixes the team will work on and estimate the workload. Then, implementation tasks are assigned. Depending on the methodology used, the planning stage may “end” there. In Agile and similar disciplines, this process can be repeated many times across iterations for software development.

At this point, actual code is usually not being written; it is only referenced indirectly in the discussions of developers and product managers for comparison to the new requirements. So, the SDAs’ value in this phase may not be obvious.

However, GenAI (provided through the functionality of SDAs) gives you new capabilities and opportunities for evolving the planning process. In this chapter, we highlight ways you can use SDAs to augment and evolve your planning. For the sake of brevity, we don’t outline every use case particular to a given planning methodology (i.e., Agile vs Waterfall). Instead, we focus on the tangible value-adds you can get regardless of your SDLC methodology.

We survey the benefits that are realized from:

		Connecting your codebase to the SDA

		Quick prototyping with the SDA

		Estimating effort based off of SDA capabilities

		Leveraging SDAs for jumpstarting doc and testing

		Better preparing for migration/updates

		Leveraging the AI for explanations and reviews

Let’s get started by discussing the benefits of being able to use GenAI with your own codebase.

Evolving processes

While we are focused in the book on integrating SDAs into the SDLC phases, that does not mean those phases have to stay as they are and GenAI is just bolted on. Change is good, and with evolution in our available tools and technology, our processes can (and should) also evolve. As you read the remaining chapters in the book, consider how your processes need to evolve to best integrate using the SDA.

Connecting your Codebase

Large language models (LLMs) are useful for code generation because they are trained on large collections of existing code. They understand the semantics and syntax of that training data. However, in reality, there are some practical limitations on the usefulness of these models.

		Out of the box, you can only query or get suggestions based off of the external code the model was trained on, and not on your own codebase.

		Changes in frameworks, language features, etc. that are introduced after the training was completed will not be included, unless there is additional fine-tuning done.

		The training data may not include the languages or frameworks that you are working on. Or those languages and frameworks may not be represented well enough in the training data to provide you with good suggestions/answers.

To help address all of these pain points, many SDAs today can utilize Retrieval-Augmented Generation (RAG). RAG provides a means for the AI to search other data sources, get relevant results from them, and pass those relevant results as additional context for the LLM to consider when responding to a prompt. These data sources can be from any type of source (PDFs, code, web pages, etc.) that is relevant to what you’re working on.

The mechanism to enable RAG involves extracting data from the sources into appropriate chunks and then encoding and storing those chunks in a searchable database in a format and structure that is understood by the LLM engines. Given a prompt, the AI can first scan the database for relevant content that is a good match. (Results will be limited to actual content stored in the database, not generated.) The resulting matches are then passed on with the prompt for the LLM to consider in generating the final response. Thus, we retrieve content from the the database with our additional data, and augment the generation of results from the LLM.

RAG allows the AI tooling to include results from our own sources in ways that we could not before. And, assuming the data sources we provide for the RAG process are more up-to-date, we can get more relevant responses. We can also get responses more tailored to the way we do things.

Be aware of the training date

When incorporating any LLM into your processes for a language or framework, it’s helpful to be aware of what version of the language or framework the LLM thinks is current.

For example, if the current version of Java is 23 and the current version when the LLM was trained was 19, then changes between 19 and 23 (deprecation, API version updates, etc.) are not factored into the LLM’s responses. That is, unless you make use of RAG as previously described.

You can sometimes get a reasonable idea of which version was current when the LLM was trained by asking. You can ask it through the Chat interface “What is the current version of (language or platform)?" Depending on the AI app and the model, this may provide a definitive answer or just a diplomatic “I’m not aware” response. If you get the latter response, you can try keying off of the LLM’s training date.

Once you have a version or date, you can make yourself aware of key changes/deprecations that have occurred after that date, and look for any problems in suggestions/responses from the AI. You can also augment the LLM’s training with RAG or more localized coding examples in the IDE.

Some SDAs include the ability to leverage integrated RAG functionality to index private repositories used by your team. This provides search and query capabilities on your private repositories at any stage of the SDLC processes - including planning. For example, the Tabnine tool has a functionality called Connection for this. The Connection feature allows you to specify Git repositories to be encoded and indexed in a RAG datastore. This makes the content of the repositories directly usable in the Tabnine interfaces. Figure 3-1 shows an example of connecting a GitHub repo in this way. (Note the Queued for indexing status as the AI works to transform the repository into a format that the SDA can understand and use.)

[image:]
Figure 3-1. Connecting a repository to Tabnine

Curated Repositories

Remember this point when connecting your team/enterprise/organization Git repositories as sources for the SDA to draw on: the quality of suggestions and search results that the SDA provides based on those repositories will only be as good as the quality of the code in them. This is like the quality of the results returned from the LLM being only as good as the quality of the data the LLM was trained on.

For this reason, it is recommended that you prioritize connecting repositories with vetted, curated examples or solid reference implementations.

Next, you’ll see some ways this functionality can be useful.

Examples in this book

While we’ve chosen to use Tabnine for examples throughout the book, it is worth noting that other SDAs have similar features in most cases.

Getting answers to general coding questions

Suppose you are planning the next iteration of your product, and you know that you will need to create a new pod for a custom resource for a Kubernetes operator. If you’ve never implemented that kind of functionality before, you might plan for extra cycles to research how to implement it from scratch. You might also consider asking another team member to take on the task, potentially taking cycles away from other key efforts.

Once you’ve integrated GenAI into your processes, you can ask the SDA how to do it. You’ll likely get a generic explanation and implementation that can give you a good head start on creating the code. If you supply a more detailed prompt or enough other context, it may even generate code that can be used almost verbatim.

If you have your private codebase connected to the SDA, then you have another option. You can query across your code to see if you already have an example of how this can be implemented. Figure 3-2 shows an example of the Tabnine integration with VS Code for a project. Note the blurb in the lower left that mentions “Tabnine Chat will consider your project, current file, packages, etc. as context for chat responses.” There is also a /code-explore function shown in the chat that has indexed the project and provided an automatic summary of the code, how to run it, etc.

[image:]
Figure 3-2. Tabnine adding local code as context for SDA

Querying your own codebase provides a ready-made example of how the code can be written in a way that’s consistent with your team’s past code, format, style, etc. It also provides an opportunity for code reuse. Knowing that you already have an example, implemented in your existing codebase, can greatly simplify the planning process. If you can reuse the code (or draw on it to start), this frees up cycles that might otherwise be needed for significant research and coding from scratch. In turn, this reduces variabilty in your planning estimates, and allow cycles for other work that might not otherwise get included in the planning.

Code reuse vs code re-generation

Without connecting your codebase, the SDA’s default is to synthesize new code based off of the context in the workspace or IDE. When you connect your codebase, the SDA can search for matches in your codebase and respond with existing code if there’s a fit. In this way, the SDA enables true reuse vs generating another solution.

Another benefit of having your code indexed and connected to your SDA tooling is the ability to understand your own codebase better. We’ll look at the opportunities that come with that next.

Understanding your codebase better

When iterating on an existing codebase, the planning phase can often involve revisiting the current code and working to broadly understand it. Some common use cases might be:

		How did we implement function X?

		Does our code use dependency Y that has this security vulnerability? If so, where?

		We want to migrate from one platform/cloud/language / framework to another - where do we need to focus our efforts?

		The open-source library we use has changed licensing terms - how are we using that?

		Do we have code that does Z?

The common feature of all of these questions is wanting/needing to know all of the places in your codebase where some functionality is implemented or consumed. Having your codebase connected to your SDA can greatly simplify getting the results you need. If you can frame the specific type of information you’re looking for as a query, you can ask the AI a form of “Where do we use X?” and quickly get a meaningful set of responses. Armed with that information, you’ll be better prepared to plan for how much change you’ll need to do.

Dealing with security vulnerabilities

Obviously, depending on the criticality of a security vulnerability, you may need to deal with it prior to a scheduled planning cycle. In the context here, we are referring to security remediations that can wait until the next cycle to be addressed.

Assuming everything else is setup as described earlier, the same indexing and discovery approach is helpful, regardless of whether we are in a planning phase or not.

While having knowledge about your existing code base is useful, you can also use the SDA to help do quick prototypes of code. This is beneficial, at planning time, if you want to further refine the design or vet implementation ideas earlier in the process.

Rapid Code Prototyping

Developers use a number of different techniques to prototype code. One approach is to stub out code by adding comments as place holders to remind them what needs to be implemented later.

SDAs have the capability to create code based on comments in the code. So, a developer can create pseudo-code for a function or process, and then have the SDA take a pass at generating basic code per the comments.

Using this approach, teams can do a live-scoping exercise, sketching out the pseudo code for a new portion of the code as comments in the IDE, and then having the SDA provide code suggestions. In this exercise, the goal is not to worry about correctness of code, but rather to get ideas and estimates of how much coding may actually be needed later on.

For example, if the SDA can generate most of the code needed for basic functionality of a component, that may help validate a workable design. It may also help identify tasks and workloads suitable for less experienced team members. Conversely, if the SDA misses the mark and generates code that is incomplete or doesn’t work or does something unexpected, that may indicate an area that needs more planning/design. It may also indicate a section of functionality that will need additional cycles and/or a more senior expert to shepherd it.

Obviously, this is a very rough gauge and not an exact science or always doable. And it may only be realistic for a subset. But if this process shows that code can be suitably generated via the AI at this early stage, that can aid in painting the picture of how resources should be allocated and planned. And better planning correlates to better estimation.

Estimating Effort

Accurate planning is a direct function of accurate estimation. The more precisely you can estimate how long an individual task will take, the more precise you can be in planning the time and effort your team will require to accomplish the goals for the release.

As your team becomes more and more comfortable using the SDA and its features, they start to develop a better sense of how long certain types of tasks will take to do using the SDA. For example, implementing a new API for the product may become a task that you can handle largely through code generated by the SDA. Once your team understands how to interact with the AI, they can generate code, tests, and even documentation for a new API in the product.

To effectively use this approach, developers must gain experience using the tool, as well as be cognizant of the rough amount of time required to interact with it. This may require several iterations of doing a particular task with the tooling. Or developers may be able to gain a sense of how much effort they can save from just exercising the tool a few times and trying things out. As a general rule, though, any estimates here should likely have some padding built in to allow for unforeseen circumstances.

You can (and should) combine this approach with the option we mentioned earlier to scan the codebase for existing implementations that can be reused. Obviously, if there is existing code you can reuse, that is the shortest path to an estimate.

Your team can also use the same method for estimating efforts for other key requirements such as testing and documentation. That’s the topic of our next section.

Jumpstarting Testing and Documentation

The approaches we’ve outlined so far regarding using SDAs to find code to reuse, determining where functionality is used, and estimating effort, don’t just apply to development. They can also be employed for other areas that are important to consider in the planning phase. Two of the most prominent are testing and documentation.

Typically, we may think of testing and documentation as being peripheral to planning. In some workflows, they are assumed to just naturally occur after development is started/done. However, with the capabilities of the SDA, those functions can aid the planning processes.

If you are prototyping code as discussed earlier, or gathering info on where content is used, then you will already have some basic code to work with. That also means that with a simple prompt to the SDA, you can have it generate test cases and/or documentation for that content.

Without any other prompting, these tests and documentation will likely be more unit-focused. Even at that basic level, the AI results can be given to the testing and documentation teams early on to help them understand what is being planned.

If you determine that existing code from the codebase is reusable, you can likewise share those results with the testing and documentation teams. This allows them to get a jumpstart on planning. They may also identify testing and/or documentation components to reuse. For any code reuse that doesn’t have solid tests or documentation, you can ask the AI to produce that, as supporting material for the reuse.

Another useful strategy at this early stage can be to ask the SDA what other test cases or documentation should be generated/considered. What it suggests in response may identify cases that haven’t been thought of that need to be planned for.

We have chapters later in the book that will go into more detail on both testing and documentation. One area where the AI coding, testing, and documentation features are usable at a larger scale is when you need to deal with a migration scenario. Let’s discuss that next.

Planning for Migration

New releases may only be minor updates, such as features or sets of fixes. However, there are times when a major upgrade may be needed, or even a major migration from one dependency or third-party product to another. Those can have far-reaching effects. For example, a migration from one database provider to another can affect many parts of the codebase and product.

For these kind of major upgrades, if you have your codebase connected to the SDA, you can use the AI to help find the places in the codebase where the feature or provider is referenced. This is not only beneficial, but critical for planning. Having the SDA help identify the scope of the change in this way helps plan for the amount of resources that have to be invested. It also helps surface any hidden/forgotten use cases, such as an obscure API call that has to be handled.

Beyond just identification of where changes need to be made, an SDA can help plan for the work involved in the actual migration. For example, if having to port code to a different language, framework, API, model, etc., you can ask the SDA to translate the code into whatever form you need. The AI may not always be able to complete this. But trying it out can give you a better sense of how well the tool will be able to assist with the migration, and how much effort you need to plan for. Additional use cases could be migrating to other clouds or running on different platforms.

While migration and the other scenarios we’ve described in this chapter largely fall into specific use cases, there is one more general use of GenAI at this early stage that should be kept in mind - leveraging the ability of the SDA to produce natural text explanations of code.

Leveraging the AI for explanations and reviews

During the planning stage, GenAI can function as an additional reviewer on proposed code or algorithms. Plans made at this early stage that can be represented in part by code can also be reviewed by the AI. Using pseudo-code as discussed previously, you can ask the AI to review and also to explain the code. Think of this like asking a fresh set of eyes to look at the planned code. This can give you an opportunity to see things that you may have missed and things that don’t make sense in the explanation.

Reviewing existing code

AI can also review existing code that you identify as a candidate for reuse. Doing this during the planning stage can help identify issues that may not have been surfaced before.

Finally, the generated explanations can also serve as a bridge between developers and others who may not regularly code but need to understand the flow and what is being done, such as product managers. Natural language output from the AI can be shared with everyone involved in the planning process to help ensure understandings of functions, challenges and complexity.

Actionable Items

Each team and organization will have different needs and situations as they are planning. Some may be planning for a simple update, some for a major upgrade, and some for a new product. However, there are some common actions you should take using the SDAs.

		Leverage any built-in RAG or other connection functionality in the SDA to index your codebase so that it is searchable and queryable.

		Identify if there is existing code that is likely reusable via querying.

		Identify if there are unknowns on how to implement changes and search the shared codebase for examples.

		Consider if prototyping code through pseudo-code such as in comments is appropriate.

		Look for opportunities to have the SDA generate tests and documentation for prototyped code and/or reusable code to give other key areas a head start.

		Have the SDA review any proposed code and algorithms for problems.

		Let the SDA help with examples of how to make major migration changes.

		Have the SDA generate natural language text explanations of code that may otherwise be hard for non-engineers to understand. Share as warranted.

Chapter 4. Using AI for Code Creation and New Feature Development

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

In this chapter, you’ll learn about the practical use of SDAs in the day-to-day work of software development engineers. The topics covered include:

		Accelerating code completion

		Researching and exploring solutions

		Delegating tasks

		Using context awareness to ensure the best possible recommendations

Let’s get started by discussing how AI can help you finish coding tasks faster.

Accelerating code completion

Accelerating refers to the tool helping you complete a coding task faster. Software developers spend much of their time crafting code in their editor or IDE. Tools such as intellisense, autocomplete, linters, and spell checkers can be very useful additions to validate and suggest corrections in real time for syntax and semantics. AI brings significant new dimensions to this model.

In the IDE, SDAs function like a super-charged context completion engine. They provide completion suggestions for individual tokens, a line of code, a clause, or even an entire function. The AI gathers surrounding context from what you are working on, and suggests one or more possible completions. Figure Figure 4-1 shows a simple example of this with a coding assistant.

[image:]
Figure 4-1. Function completion via SDA

The AI generates these completions by first gathering context about how and what the dev is coding. This process starts with the installed client in the IDE looking at files in use, examining code in proximity in the active file, parsing any comments, etc. This information is synthesized into a prompt that is passed to the AI model on the remote server. Once the AI model produces results, the server does some basic processing/filtering/checking, and displays relevant suggestions back into the IDE for you to choose from or discard.

Context for acceleration

Depending on the SDA, how it constructs the implied context for suggestions can vary significantly. For example, some SDAs may only consider the other open files in the editor as those being in use or immediately relevant, while other SDAs may index all of the files in a workspace/project so that they can draw on any of the files, whether currently referenced or not.

The ultimate prompt that is passed back to the model is most useful when the client has enough surrounding context to draw from. There is a direct correlation between the content available for the AI to quickly access in your working environment, and the relevancy and detail of the returned suggestions.

For example, if you are working on a function to parse a URL, using a function name such as parseURL will provide a better clue, and likely better suggestions, than one with a name of parseData. Likewise, when you supply additional context, such as opening files with code for any data structures or dependencies you want to use, you’ll get a better result from the AI. This is because it has more immediately accessible references to pull from.

Think of it as being like asking a new dev on your project team to complete a coding task. The more supporting context, examples, and background information you provide, the more likely the new dev can quickly understand what’s being asked for, what’s already available, the project’s coding style, etc. And, the more likely they produce a better result, drawing on that supporting information.

There may be times when the AI’s constant suggestions are not as helpful for your workflow. For example, if a developer is just trying to get some code entered, the AI’s suggestions can be a distraction or less useful. So, SDAs include an option to turn off the suggestions, usually either for the current language/framework, or for some set period of time. It’s important that you make developers aware of that option and help them feel comfortable to use it when needed. Otherwise, the AI may be seen as too intrusive in those kind of scenarios.

Anyone coding with the AI should adopt the mindset of a reviewer as well as a developer. You need to understand how to leverage the capabilities of the tool to make a thoughtful decision on the AI’s proposals. You can accept and reject parts of a suggestion, versus accepting a full suggestion and then having to rework it.

Quick, but reasonable assessment of the AI suggestions is an important skill to cultivate. For example, the SDA may suggest a full function definition that doesn’t fit well. But the next line of that suggestion may be a good fit and worth accepting to get further along. The same applies for paging through multiple suggestions returned from the AI. The first option that is presented may not be a good fit, but the 2nd or later option may work well.

This way of working with the SDA allows software professionals to multiply their code output by joining their development efforts with the suggestions from the AI. Using this, you can complete coding challenges faster than would otherwise be possible. However, faster in the short term does not always mean correct in the long term. Even beyond your initial assessment, it is important to use the same manual and automatic review and validation processes to evaluate the coding suggestions and ensure they are suitable for merging. You must also help your team feel comfortable rejecting them if they do not measure up at any point in the reviews.

Acceleration is the workhorse of the AI automation space. But when you need to do research and exploring outside of the editor in support of creating or updating code, the AI can assist with that as well.

Researching and exploring solutions

As developers, we are used to working from requirements written with natural language. Examples include customer specifications, user stories, storyboards, etc. A significant part of the SDLC process involves translating from those requirements correctly into code.

Historical methods for getting from text to code included research and exploring solutions online, searching through existing codebases manually, or pinging coworkers. Tried and tested approaches such as brainstorming, generating pseudocode in a walk-through, searching Stack Overflow, and grepping code bases for relevant examples are effective, but tedious. Depending on workload, access, and scheduling, there can be a number of iterations required to even get to a working draft.

In the chat interfaces provided by SDAs, we shortcut and simplify this process by consulting the AI and having it do the initial work. We interact with it through natural language. We ask it what, where, how questions just as we would a coworker, and have follow up discussions in the same chat. For example, you can tell the AI “I need a function in Go that does X” or ask it “How does Y work in Go?”. If you connect your code repositories with the SDA, you can also include your own codebase as a source for prompts.

This conversational interface with our search and code generation tools is an innovation that hasn’t been available to programmers before. Like a search engine, the more detailed and focus we can make our query, the better results we’ll get. Unlike a search engine, we don’t have to try and sift through long streams of results. Instead we can talk with the AI in the same sort of natural language that we would use when speaking with another developer on the team. A brief example of using the AI chat feature in VS Code is shown in Figure 4-2.

[image:]
Figure 4-2. Using the AI chat feature in VS Code

The AI as new programmer vs pair programmer

As we’ve discussed in previous chapters, it’s important to set expectations appropriately when using the AI. While it’s popular in some messaging to tout the AI as a pair programmer, you should temper expectations around this. The AI is not fully up-to-speed on your overall design, intent, and history of your project. Rather, think of the tool like a programmer that is new to the codebase. They are capable of being assigned programming and research tasks, but not experienced with how the product works, reasons why implementation decisions were made, or the nuances of your code.

All of these cases use a conversational style with the AI to explore options, just as you might have a brief conversation with another developer on the team. Anything you want to brainstorm or explore can be done/asked via the chat interface. This is explorer mode where, much like you might have done with Stack Overflow in the past, you explore options and solutions with the AI.

Remember that you don’t have to settle for the first response that the AI generates. In fact, until you gain practice with prompting the AI in this way, you will usually need to iterate multiple times. Leveraging our analogy of working with a programmer who is new to your team, a simple text message/short interaction may not be enough for them to understand fully what you want. It may take a couple of rounds of messages to get enough context. There’s also an iterative process as you learn how best to communicate with each other. The same applies with the AI. Fortunately, there are various best practices that can be used for learning to prompt the AI better. See this page for a good list.

Whether you are accessing the AI functionality using the chat interface or the editor, there is a scope of content that the AI is drawing on for context. For some general coding questions not related to the current project, it may be using the model’s training. But, when the code in the current project is involved, it’s important to understand how that scope is being determined and how you can affect it if needed.

Defining Scope

The SDA interactions in the editor have an implicit scope since the intent is to return suggestions from the AI without an explicit prompt. We mentioned how this works in the earlier section on accelerating code completions.

When you are working in a chat interface, the context can sometimes be implicitly derived. For example, you select a block of code in the file actively being edited. You then switch to the chat interface and ask a general question that relates to the code. In that case, the AI will usually assume the selection in the active file is the context.

However, in cases where the context may not be directly inferred (or may be incorrectly inferred), you need to specify the context for the AI. The SDA will have available qualifiers to allow you to specify a particular file, all files in the workspace or project, selected text, etc. It’s important to ensure you specify which context you intend when creating your prompt. An example of a prompt for a selected set of lines from a file in the IDE is shown in Figure 4-3 .

[image:]
Figure 4-3. Target prompt for selected set of code

When using the chat interface, the SDA will also have a way to see which references (files, selections, etc.) it used as context when producing a response. This is usually shown at the start or end of the output as shown in Figure 4-4.

[image:]
Figure 4-4. References used by chat in targeting response

Assigning Roles

Some SDAs may also include the ability to set context at a higher level than for each response. For example, you may be able to set the role of the AI, as in “Always respond in Python” or “You are a Python expert”.

There is a way to expand the available set of references, and increase the odds of getting more relevant and directly usable responses from your AI prompts. The approach is to include your own codebase as additional context to get better recommendations. We referenced this in Chapter 3 as a way to help with planning. It has even more potential use during this part of the cycle.

Using context awareness to ensure the best possible recommendations

If you think about where most of your critical business assets live as far as software, it’s in your own codebase. Draw upon what’s already been created and developed where you can, so you don’t have to reinvent the wheel. This makes a lot of sense and is, overall, much more efficient than coding from scratch.

However, until the arrival of SDAs, easily finding code and gathering data from your codebase could be a challenging task. Often, engineers relied on either institutional knowledge, or simple search engines. Today, gathering insights from your codebase is a natural extension of using AI.

Many SDA providers include the ability to connect and index your repositories as a centerpiece of their enterprise offerings. You can utilize this to allow connections to standard hosting repository sites like GitHub, GitLab, etc. You can then leverage the AI processes to index and search your own repositories using the same natural language chat interface of the SDA.

In Chapter 3, we highlighted an example of using this functionality. But here’s the overall flow to be aware of as you plan your use of the functionality:

		Ensure your SDA version supports this. As mentioned above, this feature set is usually only found in the plans that provide Enterprise-level functionality or is limited in other plans.

		Choose which repositories in your codebase should be included.

		Use the SDA provided mechanisms to add your selected repositories to the system.

		Give the SDA time to parse and index your selected repositories.

		Adjust any access or other settings as needed.

		Begin querying your own codebase with the SDA!

For the second item in the list, keep in mind that the AI is not assessing any quality metrics for your code, and is not reviewing it or validating it as it searches. It is simply using it as additional sources to respond to your prompts. If the code that you choose to use here is not of a good quality, you may get results from the AI that reflect that. To safeguard against reference code quality issues, it’s important to ensure the typical reviews, testing, and other validation checks are in place. (This is covered more in Chapter 2.)

So, what kinds of advantages can you expect when you connect your existing repositories to the AI? Picture having a coworker that is intimately familiar with all of the code in your repositories and being able to ask them any questions about code content, structure, or purpose. Here’s some example questions the connected functionality can help you answer:

		Where do we use dependency X?

		Are there examples of how to implement Y?

		What does function Z do?

Of course, there are many more. Anything you could ask a colleague about the actual code, you can ask the AI. Finding an example implementation already in the code can save tremendous time from having to research externally and implement from scratch. Examples also can provide important guidelines about how to incorporate constructs or dependencies in you new code. And the ability to search and gather results across the codebase can be especially useful. For example, consider the case where a vulnerability is found and you need to know everywhere the affected code is used to quickly provide updates.

In addition to the exploratory functionality that the chat interface makes possible, there is an additional way to put it to work for you. Through the natural language, conversational interface with the AI, you can provide it with directions to create new content or act on existing content.

Delegating Tasks

Let’s look again at the analogy of adding a new developer to your team who is competent and skilled, but not familiar with your codebase. They also are not versed on the project’s history, runtime interactions, etc. In working with this developer, you or other experienced team members will eventually be assigning tasks for them to complete as part of the team. Examples might be to “write a function that does X” or “port this code” or “document this code”.

The SDA is like that new developer on your team. It has training on how to create code based on the underlying AI model. It has context to draw on based on your development environment and, if connected, your private repositories. It also can have tasks delegated to it.

Within the SDA interface, you can assign the AI tasks in multiple ways. When working in the editor creating code, you can add a directive in a comment, as in "// Create a function to determine if a phone number passed in is valid." Or, in the chat interface, you can create a prompt that is not a comment that does the same thing. Many SDAs also provide a shortcut in the editor to invoke a dialog to interact with chat without having to switch to the separate chat interface.

The advantage of using the comment directive is that it provides a quick response based on the current context (code, open files, etc.) that you are working in. (This is the acceleration use case we discussed earlier.) Given the implied context, the comment can be brief. This is less likely to interrupt your flow and doesn’t require you to go out of your editor to continue. Figure 4-5 shows an example of having the AI invoked to create a function in JavaScript via the comment mentioned previously.

[image:]
Figure 4-5. Function creation driven by a comment

The same quick response based on the current context can also be a disadvantage though. Results obtained this way can be more simplistic, and less relevant to avoid taking extra time to generate. There is also not a way to tell the SDA through comments in the editor to factor in additional content.

The chat interface allows for more comprehensive and customized responses. You can use prompts with natural language and also specify the scope for the AI to consider (a file, selection, the entire workspace, etc.). This provides greater control and flexibility. Additionally, the AI can produce more detailed responses due to the extended time and space available in the chat interface. For example, the AI not only created code in response to a prompt, but also provided sample code for testing. These features make it convenient to integrate chat output back into your editor.

Figure 4-6 shows an example of providing the same prompt to the chat interface. Note that in addition to creating a full set of code, the chat interface also responded with example code that you could run to test the code. Each of the generated code segments has options to insert it into the current file, copy it or create a new file from it. These kind of shortcuts make it easy to integrate chat output back into your editor.

[image:]
Figure 4-6. Corresponding output for phone number validation in chat

The caveats of using the Chat interface are that you have to be more precise in your prompt (since you don’t have the same implicit context to draw on). And, if you use the separate chat interface (as opposed to the editor dialog shortcut) you’ll have an extra step to do to choose and insert code back into the editor. But these are a small price to pay for the extra detail and content that the chat interface usually provides.

Use cases

Now that you understand how the SDA can be used in your daily development workflow, we’ll finish out this chapter by looking at some common ways to make use of the technology in a typical developer workflow. Here’s a quick list of some:

		Code completion suggestions as you type

		Complete or partial functions, procedures, etc. generated via directive comments

		Automatic test generation

		Automatic documentation of code

		Regular expression generation

		Patterns/mappings generation

		Explaining code

		Reviewing code

		Translating code between languages/frameworks

		Generating manifests for frameworks like Kubernetes

		Finding APIs to use

And, if your code repositories are connected to the SDA, it can also do these type of operations:

		Search your codebase for examples

		Identify where dependencies or third-party pieces are used

There are multiple other examples we could list out here, but this should give you a few ideas of where you could start using SDAs within your own coding efforts.

Action Items

To help prepare your team for using these tools, there are a couple of key steps to take. These include:

		Assessing the feature set of the tool and plan you have

		Ensuring the typical licensing and authorization mechanisms are in place

		Getting training on how to most effectively use the AI

		Establishing logging and telemetry

		Identifying and connecting code repositories if not already done

		Learning to write good prompts

Chapter 5. Increasing Test Coverage through AI Generation ​

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

Our last chapter focused on how to use the SDA for one of the main tasks that engineers do during the SDLC - developing code. As emphasized in the other chapters, code developed with the help of an SDA still needs to have all of the same kinds of validation done on it as any other code. After initial review and approval by the SDA user, the code needs to undergo thorough testing. But creating test cases is not always as straightforward, or as prioritized, as it should be.

In this chapter, we look at how to use the SDA to help with testing your code, ensuring good test coverage, and simplifying and automating best practices.

Generative AI and Testing

Per the nature of generative AI, nothing is guaranteed to be exactly like you want. So, as with the code suggestions and chat answers, it is important to review the suggested tests, ensure they are valid and a good fit. If not, edit them or refactor your prompt and iterate.

Testing Context

A key area where an SDA can help engineers is in learning a skill, language, or framework that is new to them. This applies whether you are creating content for the project or doing maintenance on it. The AI can be used to fill in gaps in knowledge, and bootstrap functionality. This holds true for testing as well as any other coding. For example, if you are not familiar with how to do unit testing in the context of what you’re working on, you can ask the AI.

Suppose you are tasked with maintaining a Go project that you have not previously worked with. You can get general information on the project using the SDA’s ability to explore (as discussed more in Chapter 4). Figure 5-1 shows that when we use the capability of a chat interface to get information about a project, we get information about what existing Testing Frameworks are used. The AI also identifies the approach for testing as Behavior-Driven Development (BDD) testing.

[image:]
Figure 5-1. Initial information on testing context provided by SDA

But what if you aren’t familiar with how to test in this environment? You can ask the AI more broad questions such as What is the process for testing and debugging the project's code? As shown in Figure 5-2, the SDA responds with a helpful overview of the process relevant to this particular project.

[image:]
Figure 5-2. Asking the AI about testing and debugging the project at a broader level

The point here is that as opposed to just creating tests, the AI helps you understand how to test with a particular language. And from there, you can use the AI to create the individual targeted tests.

Automating the Generation of Tests

The main thing to remember when using an SDA to write tests is that tests are code. So, the same approaches that you saw in the previous chapter to generate, and work with, suggestions for implementing code apply to tests as well. However, most SDAs also provide specialized interfaces to help with test generation.

Specialized interfaces

Some editors and IDEs may integrate targeted functionality for common use cases like generating tests. These typically invoke the chat interface directly to accomplish the functionality.

For example, VS Code includes the Codelens integration in its editor. This is a line of clickable options displayed above a section of code, as shown in Figure 5-3.

[image:]
Figure 5-3. Codelens in IDE integration

Notice the Test entry in the line of options. When you invoke that in this particular integration, you’re directed to the chat interface where the AI can help you with creating a new test plan (Figure 5-4).

[image:]
Figure 5-4. New test plan generation

This is an example of the SDA guiding you through a more interactive process rather than just simple test generation. In this scenario, the SDA includes its own Test Agent that presents you with a set of suggested test cases that you can pick from, generate, and insert into your testing file (Figure 5-5).

[image:]
Figure 5-5. Creating the test file from the plan

You can also prompt the SDA to create tests via natural language conversations in the chat interface. This adds some opportunities to drive the SDA to be more comprehensive.

Creating Tests through the Chat Interface

In an SDA’s chat interface, you can generate tests from the simple to the complex. For example, if you prompt the AI to Create tests for the 'is_prime' function using Python, the SDA will dutifully do just that, as shown in Figure 5-6.

[image:]
Figure 5-6. Tests generated from chat interface

This is not really different from what we got via the approach using comments in the editor. However, since we’re working in the chat interface, the AI has more time and space for generating replies. So, the output also includes information on how to run the test function. And it adds a natural language explanation (shown in the following listing).

This code defines a test function test_is_prime that uses the assert
 statement to verify the correctness of the is_prime function.
 The test function checks the prime status of various numbers and
 ensures that the function returns the expected results. The test
 function is then called to run the tests.

Beyond these simple tests though, we can push the AI to look for additional test cases that need to be covered. For example, we can ask the SDA through the chat interface What other test cases should be considered? If we apply this question to our previous use case, the SDA identifies several other conditions that should be checked and dumps that information out. Here’s the relevant part of the output:

assert is_prime(-10) == False
assert is_prime(1) == False
assert is_prime(1000000007) == True # a large prime number
...
assert is_prime(1000000087) == True # another large prime number

test_is_prime()

This code extends the previous test function test_is_prime to
 include additional test cases. It covers various scenarios,
including negative numbers and large prime numbers. The test
 function is then called to run the tests.

Likewise, you can ask the AI how you can test other attributes of the code, such as performance and security. This is as simple as a prompt that says How can I test the overall performance of the is_prime function with large inputs? Excerpts from the resulting code and explanation generated by the AI are shown in the next listing.

import time

def test_performance():
 start_time = time.time()
 is_prime(1000000007) # a large prime number
 print(f"Execution time for a large prime number:
{time.time() - start_time} seconds")

...

 start_time = time.time()
 is_prime(1000000087) # another large prime number
 print(f"Execution time for another large prime number:
{time.time() - start_time} seconds")

test_performance()

This code defines a test function test_performance that measures
the execution time of the is_prime function with large prime
numbers.It uses the time module to calculate the time before and
after each function call, and then prints the execution time for
each large prime number. The test function is then called to run
the performance tests.

You can also ask the SDA How can I test the security of the 'is_prime' function?

In this case, it generates the code for a function to test behavior with different types of inputs, to check if the target function raises expected errors for invalid inputs. Validating that the code behaves as expected in an error situation is an important part of testing and one that the AI can also help with.

Testing before the coding and leveraging frameworks

Consider also leveraging the SDAs to support testing best practices. Let’s take Test-Driven Development (TDD) as an example. If you’re not familiar with the term, it’s an approach for software development that emphasizes writing test cases for code before writing the actual code itself. TDD is considered a requirement in many coding projects and groups. (A fairly quick, but informative overview can be found here.)

You can use the SDA starting from the point of creating test cases for TDD through implementing the code to be tested. Consider a simple example where we want to create a test class and tests for students at a university, using the testing framework Mockito. If we already have a pom.xml file, we simply tell the interface to add mockito dependency. Or, if we are starting from scratch, we have the SDA create the pom.xml file we want with a more extensive and precise prompt: add a pom.xml file with a mockito dependency version 3.3.3, and compiler source and target version 1.8.

At this point, following the TDD philosophy, we have the AI create a new test class for us, referencing the pom.xml file. Again, we can be very specific to get the setup we want. An example prompt might be:

Referencing #file:pom.xml, create only a StudentTest class for a
student enrolled at a university. A student will have personal
attributes such as a first and last name, a phone number,
an address, and a contact email. The StudentTest class should be
part of a com.example package.

From there, we can review the results and save the file as part of the project. At this point we can run the test class to try the tests. As expected, this will fail because the referenced targets for the tests haven’t been defined yet. So, following on the next steps for TDD, we create the minimum code to make these tests pass. Do this by prompting the AI specifically. Assuming the StudentTest class is available in the editor, we can use a prompt like: Referencing #editor, create a student class with verbose comments.

Once we’ve reviewed that code and added it to our project, the tests should pass.

Action Items

Since testing is an integral part of the development process, there are a number of steps you can take to prepare for incorporating the AI into the process. These include:

		Identifying new frameworks or languages where there is uncertainty about how to test and enlisting the SDA’s help with those.

		Looking at where you may need to test additional cases and having the AI generate test cases for those.

		Looking into whether you can more easily implement testing strategies and best practices like TDD using AI.

Chapter 6. Resolving Bugs with AI

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

SDAs provide significant value in the early stages of the SDLC by helping to simplify and automate developing a product. But they also can help reduce the time and stress of dealing with problems found in the code. Many of the same techniques and approaches that you’ve seen in the previous chapters also apply when dealing with bugs. This includes leveraging integrated functionality to quickly resolve basic problems identified by your development environment.

Fixing issues flagged in your IDE with AI

The most obvious and immediate kinds of problems to be solved are syntax errors or warnings introduced when coding. These are the ones flagged by your IDE. They are also the ones most easily solved with an SDA’s built-in functionality.

For example, suppose we have a section of code written in Go like the following:

opts == zap.Options{
 Development: True,
 }
opts.BindFlags(flag.CmdLine)
flag.Parse()

The Go integration with Visual Studio Code flags opts, True, and CmdLine as undefined. Without AI, we would need to either consult someone, search for examples, or try to debug through the IDE’s fix capabilities (if they exist). This could be time-consuming as we try to debug and resolve each issue in turn without causing other problems.

However, with the SDA, we can simply highlight the code inline, and select one of the integrated fix options. For example, Tabnine and Copilot both have shortcut fix this code options available through context menus and shortcut command for the chat side. Figure 6-1 shows an example of invoking the Fix this code option from the context menu.

[image:]
Figure 6-1. Suggested fixes from SDA

Notice that the suggested change not only addressed all three issues, but also caught the mistake of using == vs := in the first line. Those kind of errors can be challenging to identify, especially for someone who is not well-versed in the language and syntax. As with other inline suggestions, there are options to accept or discard the suggested change.

It’s also possible to use simple shortcuts in the chat interface to zero in on the causes of issues flagged in the IDE. Figure 6-2 shows an example of using a /fix-code shortcut on the same code.

[image:]
Figure 6-2. Fixing code through chat

Since we are in the chat interface, the AI also provides an explanation of the needed changes as well as the recommended code updates.

Like the IDE, the SDA relies on integration with extensions/modules/plugins to be able to identify and help resolve issues. Our example here is based on a single programming language (Go) integration. But, SDAs can also help address errors reported by other tools integrated into the IDE, such as code-quality tools like Sonar.

This sort of quick fix functionality is excellent for dealing with syntax errors. But what happens if you instead have a logic error that you need to pin down and fix. When you’re unsure where to start, you can ask the AI for general guidance and ideas.

Using AI to identify areas to investigate

Issues are reported in terms of the problems encountered, the current environment, and the symptoms observed when running the software. As a developer, you first need to narrow in on where the problem originates by reproducing the issue and tracking it back to the actual code that is causing the problem. SDAs can help with this in some cases by giving suggestions for where the problem could originate. As an example, I have code for a Kubernetes operator in GitHub and posed this question to GitHub Copilot: “A problem was reported that the code fails after 10 minutes - where should I look for the cause?”

Copilot responded with the following:

Based on the findings, here are the areas to investigate:

Main Go File (main.go):
Recent changes were initially added on June 30, 2024. Review the
logic around metrics binding, health probe, and leader election
setup, especially in the main function.

Dockerfile:
Recent changes were also initially added on June 30, 2024.
Verify the build and runtime environment settings, especially in
the ENTRYPOINT command.

Configuration Files:
No recent changes were found for config.yaml. Ensure that the
configuration settings are appropriate for long-running tasks.

GitHub Actions Workflows:
Failed to fetch logs for deploy.yml and test.yml. Manually check
workflow logs on GitHub for errors or alerts related to execution
timing.Focus on checking for potential issues in the Go code and
Dockerfile. Additionally, review the GitHub Actions logs for any
automated tests or deployment issues.

While this is broad guidance, it can serve to suggest starting points for deeper diving based off of the various sections of code and changes in the repository. As with any prompt, the more detailed that you can make the prompt, the more likely you are to get a better response.

Better responses from connecting your codebase

The above example was obtained from a repository that was indexed by the SDA. As discussed in previous chapters, indexing your codebase allows the AI to parse and store data from it in a way the AI can easily search and use, leading to better, more detailed responses.

This approach is likely to be more applicable in a select set of cases. For example, if you are new to a codebase, this high-level interrogation may produces some suspect areas to look further at. If you are already well acquainted with the code, this may not be as useful. Regardless of whether you use AI at the start, when the likely cause is identified, AI can often prove useful in helping to address it.

Using AI to help fix issues

Once the logic problem is identified, the AI can help suggest ways to fix the issue. There are several approaches you can take depending on the complexity and severity involved.

If a problem is obvious, you may not need the SDA at all. However, if you have multiple issues, it can still be worth invoking the AI and telling it to "fix the issues" to let it automate multiple fixes and save yourself some cycles.

If the solution is not obvious, but you know where the problem resides, you can interrogate the AI more generally with "How do I fix this code?“. Or, you can direct it to resolve a problem in a particular section of code, as in "Provide a fix for the code in routine y“.

But what if you don’t know where the problem is originating? You can leverage the AI to do some detective work to narrow in on the problem. Some possible questions you could ask are:

		What are some places in this repository where logic/performance/security errors can occur?

		What are the most recent significant changes to the codebase?

		What are the code changes that affected this code in branch x from date y to date z?

The answer to the last question can be found in other ways, but having the AI perform the query can simplify the process.

Using our example repository and asking Copilot about places in a repository where errors can occur (first question above) yields this response.

The most likely places where logic errors could occur in the
gwstudent2/sec-demo repository are:

* In the main.go file, specifically around the database
operations and HTTP handling. The code involves creating and
executing SQL statements, which could be error-prone.
* In the models/models.go file, particularly in the query functions
 (NameQuery, AuthorQuery, ReadQuery). These functions contain SQL
injection vulnerabilities due to non-parameterized queries.

To get the most out of this kind of interactive functionality with your AI assistant, you need to have your codebase indexed/connected so the AI can treat the code the same as the data in the model and search and use it to give you the best, most detailed responses. Having your code base indexed will allow the AI to provide deeper and more comprehensive answers for you.

One other possible approach if you’re not having success figuring out the issue is to ask the SDA to produce an alternate version of the code for comparison and to try. For example, you could prompt it to "create a version of this function that uses construct y instead of x“. Or "create a version of this code with the following assumptions“. If you want to explore the algorithm and functioning in a language or form you’re more familiar with, you can tell the AI to translate the code into the other language and work with that translation. This approach for validating a fix in an alternative implementation demonstrates one of the ways to leverage AI to better understand what is contributing to the issue.

Exploring with AI to understand

Sometimes, you encounter an issue that is challenging to debug because it cannot be easily reproduced. Or it may be one that could originate in different parts of the code. When these type of issues are encountered, you can use the AI to help further narrow in on the cause. This is a form of using the SDA in explorer mode, as we discussed in previous chapters.

For example, suppose there is an issue with the code consuming too much system resources. One approach to mitigating the problem is to make it more efficient. With an SDA, you can simply ask How can I make this code more efficient? Using our previous example of the Kubernetes operator code, Copilot responded to this question with a three-step suggestion.

Optimize Pod Management:
In controllers/roarapp_controller.go, optimize the pod listing and
 status update logic.
Avoid unnecessary deep comparisons and context creation.

Enhance Resource Management:
Review and adjust resource limits and requests in manager.yaml and
other deployment files.
Ensure resource configurations are appropriate for your cluster's
capacity.

Minimize Unneeded Operations:
Check and remove any redundant operations or TODOs noted in various
 files like main.go and Makefile.

If these responses seem too generic, you can use a more specific prompt such as: How can I make this code be more efficient with system resources?

The answer the SDA supplies is more tuned to the system resources aspect.

Recommendations for Optimization

1. Optimize Pod Management in roarapp_controller.go:
* Use a single context throughout rather than creating a new one for
 each operation.
* Avoid deep comparisons for status updates and use simpler checks
 if possible.
* Refactor the loop to count pods and update status for better
efficiency.

2. Enhance Resource Management in manager.yaml:
* Adjust CPU and memory limits/requests based on actual usage
patterns.
* Remove unnecessary annotations and comments to reduce clutter.

3. Refactor Makefile:
* Combine similar commands to reduce redundancy.
* Streamline dependencies and remove any unused targets.

Would you like to see specific code changes for these suggestions?

Notice in the last sentence that the AI also offers to show you specific code changes for suggestions.

A similar process can also be used for performance concerns.

There is one other useful strategy you can employ when using AI to learn more about issues. You can ask the AI "Where else might this problem occur?" or "What other parts of the codebase use this routine?" to gather information about other areas where the code might be impacted. The responses to these prompts can often help you identify areas you should investigate. Often though, you may already have a ticket tracking the issue and identifying impacts and areas of concern. If that’s the case, some SDAs can now work directly from the ticket to help you get to a fix.

Using AI to work with tickets

With recent advancements, some SDAs can now interact with your ticket tracking mechanisms. For example, GitHub’s Copilot integration with GitHub.com (public and private instances) allows for summarizing and asking questions about GitHub Issues. It also allows for creating summaries of the changes managed in pull requests, often used to resolve the issues. Using these features not only save time, but generally provide better documentation and organization of changes than what a developer might include.

An example of a Copilot-generated pull request summary is shown in Figure 6-3.

[image:]
Figure 6-3. Copilot-generated pull request summary

The AI creates simple, granular summaries of each change and even adds links ([1], [2], [3]) to each different commit without any human intervention needed.

Taking this type interaction to the next level, AI agents recently added to Tabnine’s SDA can parse a JIRA issue and create a corresponding plan to address it, complete with suggested code. The prompts to interact with the SDA in this way can be as simple as "Implement JIRA ticket (number) and ask any clarifying questions." The SDA will then read the ticket, and suggest a plan of attack to resolve it, along with the necessary code. It’s easy to see how this would be beneficial, not only for new coding efforts, but also for addressing reported issues.

Of course, the more context you provide to the AI coding assistant, the higher the quality of its responses. The same tenet holds true when asking the AI to work from a tracking issue. In addition to the issue itself, agents can also factor in any connected codebases, workspaces, and even chat conversations. All of this provides a solid, default context for the AI to use in coming up with a plan to address the need. It also allows you to give advanced directives to the SDA such as "implement the code as done in [class/file/method name]."

As a bonus, the AI can also be made to check its own work. A prompt such as "Check if my code complies with the requirements in <JIRA issue>" can be a good validation in conjunction with creating suitable test cases for the changed code. Proving a fix is resolved with a test case is an expectation today. Here again, we can leverage AI to help with that as well as providing documentation for the fix.

Testing and Documenting Fixes

Best practices dictate that any fixes made to code also include corresponding tests to prove the changes work. In a previous chapter, we discussed how SDAs can help with approaches for testing, creating test cases and augmenting testing strategies when developing code.

The same approaches can be used when working on addressing issues as well. The different is that you may need to zero in more precisely on what the test case needs to cover if it is an obscure or non-obvious issue. You can use techniques such as more specific prompts, and any mechanisms that the SDA provides for focusing the tests on specific code.

Likewise, you may well need to have additional documentation included with changed code for a fix. AI coding assistants can help with generating different types of documentation, from simple comments to functional updates. We’ll have more to say on how that works in the next chapter.

Action Items

When attempting to use AI to help with investigating and resolving a problem in code, there are several steps you can take to get the best results.

Assess any current issues to determine if AI assistance will be beneficial. For some simpler or well-understood issues, it may be overkill to engage AI during the investigation phase. For some routine fixes, it may be a time savings to have AI handle the resolution. And always ensure that typical validations are in place for any AI-generated result.

Identify the known scope of the issue. Is it localized to a particular function or class or repository? This will help you understand the best approach for engaging the SDSA to help solve it.

If your initial prompt is not getting the results you expect, consider how you can redesign or extend your prompt or add more context to steer the AI in the direction you need.

Allow the SDA to index your codebase if it is not already connected.

If there is a tracking ticket with additional information, consider using the AI to suggest a solution based on that ticket.

Allow the SDA to produce summaries and updates to your tickets as appropriate and useful. But ensure that everyone understands when this is being done.

Use the AI to help generate appropriate test cases for including with the fixed code.

Chapter 7. Automated Creation of Documentation

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 7th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

Documentation plays an essential role in the SDLC. Documentation within, and about, the codebase makes it understandable, reviewable, and is critical for maintainability in the long run.

However, putting in the time and effort to create good documentation can seem tedious and often takes a lower priority to other development-related work. Given how well SDA’s are able to work with text data and natural language processing out of the gate, they are a natural fit when working to ensure good quality documentation for your code.

Documenting Content

In the most common use case, SDAs can produce header documentation and relevant comments in the body of their code. Many have built-in functions to do this, but with limited comments. For example, GitHub Copilot has the /doc shortcut for this purpose.

Take a look at a basic function to check if an input is prime or not. If we ask Copilot to document this function with the /doc shortcut, we’ll get some header documentation suggestions as shown in Figure 7-1

[image:]
Figure 7-1. Invoking the /doc shortcut

To get meaningful comments throughout the code, you will often need to engage directly with the AI through the chat interface and prompt it with something like "verbosely comment the function body“, or "verbosely comment this code so that anyone can easily understand what each line is doing." Applying the latter prompt to our same is_prime example, we get suggested comments throughout as shown in Figure 7-2

[image:]
Figure 7-2. Verbosely commented code

That sums up the basics. Many users think of this as the extent of the documentation capabilities in the AI. But, SDAs have multiple other ways they can help with the different kinds of documentation needed during product development. For example, they can be leveraged when the code is using a documentation framework.

Generating framework-compatible documentation

If the SDA recognizes that the code is in a language that has a standard documentation tool associated with it, it will default to creating comments ready for that tool. Consider a Java class definition with a single method in it. The start of the method is shown in the next listing.

public class ToJSON {
 public JSONArray toJSONArray(ResultSet rs) throws Exception {
 JSONArray json = new JSONArray(); //JSON array that will
be returned
 String temp = null;
 try {
 //we will need the column names, this will save the
table meta-data like column names.
 java.sql.ResultSetMetaData rsmd = rs.getMetaData();

If we tell the SDA to document this class, it will add an extensive set of comments. Here are a few excerpts.

...

/**
* The ToJSON class provides a method to convert a ResultSet from a
database query
* into a JSONArray. This is useful for creating JSON APIs that
interact with relational databases.
...
*/
public class ToJSON {

 /**
 * Converts a given ResultSet into a JSONArray.
 * Each row in the ResultSet will be converted into a JSONObject,
 * and each column in the row will be added to the JSONObject
...
 *
 * @param rs The ResultSet to be converted. This ResultSet is
typically obtained from executing
 * a SQL query against a database.
 * @return JSONArray containing the data from the ResultSet.
Each element in the JSONArray

The header comments above the class definition, and at the start, are generated in a form that is Javadoc-compatible. Figure 7-3 shows an example of the generated Javadoc originating from the generated comments.

[image:]
Figure 7-3. Generated JavaDoc based off of AI-generated comments

Beyond generating documentation for a framework, we can also use the SDA for another common use case - documenting APIs.

Generating Documentation for APIs

If your codebase is setup for an API documentation framework like Swagger, then you can have the SDA generate the corresponding Swagger documentation for your APIs. Let’s look at an example.

Suppose we have a simple application that manages a directory of employees for a company. The application is written in Java and already configured for Swagger. We can tell the SDA to generate Swagger documentation for the APIs, referencing a particular file, with the prompt create Swagger documentation for the APIs in #file:EmployeeController.java.

The SDA’s response (Copilot in this case) is shown in figure Figure 7-4.

[image:]
Figure 7-4. Swagger doc generated by the SDA

A key is being specific with what files you point it to. If you just ask the AI to generate documentation for the entire workspace, it will usually explain to you how to do it, versus doing it itself.

Generating functional documentation

SDAs are also capable of creating functional documentation that is targeted towards external users. For an example, we can leverage the same API code that we used in the last section. In this case, our prompt might look something like: create functional documentation explaining the various public APIs in #file:EmployeeController.java.

Figure 7-5 shows the start of the actual functional API doc generated from the prompt. Note that the output includes some prose style, in an easy-to-read format, but with the necessary details outlined for the API structure. It’s not shown here, but Copilot also outlined a set of steps first that it would follow for this, including Identifying Public APIs, Method Signatures, Endpoint Mapping, etc.

[image:]
Figure 7-5. Functional doc generated by the AI

In general, the same caveat applies for generating this kind of documentation as it did for generating API documentation in the previous section: indicate specific files for the prompt to act on, as opposed to trying to ask Copilot to operate against the entire workspace. However, we can ask some general questions using @workspaceand get good overall documentation. For example, if we ask "@workspace what are the API's parameters and what does it return?“, we get a useful summary. An excerpt is shown in Figure 7-6

[image:]
Figure 7-6. Querying API parameters

Extracting summary documentation

Copilot can also be used to extract a high-level summary of the key documentation from certain types of projects. This can be extremely useful for quickly understanding the significant details of the code base for a project. Referencing the java swagger project we used in the last section, we can gather useful information from it with the prompt @workspace extract the key documentation from the code.

In our case, Copilot extracted data from the pom.xml file, the README.md and the relevant *.java files. It then provided key high-level details on the project’s structure, dependencies, swagger configuration, and testing. An excerpt is shown in Figure 7-7.

[image:]
Figure 7-7. Key documentation extracted from code

It’s easy to see the value-add this kind of extracted content could have for someone who needs to quickly grasp the main technical points about the codebase. This is helpful for routine cases like on-boarding, reviewing, and assuming ownership. But it can also be very valuable in cases where quick updates are needed on code that hasn’t been touched in a long time, such as dealing with security vulnerabilities and/or out of date dependencies.

Action Items

For this chapter, there are just three action items.

1. Examine your SDLC process and identify all of the points where documentation must be manually created or created by another tool.

2. Examine you codebase and look for the places and approaches where documentation is needed or could be improved, or is a bottleneck.

3. Given the lists provided by the first two items and the information in this chapter, consider how you could leverage an SDA to simplify and automate those and return more cycles to your team for other tasks.

About the Authors

Brent Laster is a global training, author and the founder of Tech Skills Transformations: a company dedicated to helping others take their technical skills to new levels. He is also a DevOps director at SAS. Brent has created and conducted training courses on GitHub Copilot and has led enterprise trials in Copilot. He is well-versed in all aspects of the tool and uses it on a regular basis. He also makes sure to keep up with the latest developments for Copilot and related technologies.

Eran Yahav is the CTO of Tabnine and a professor of Computer Science at the Technion, Israel. His research interests include program synthesis, machine learning for code, program analysis, and program verification. As the technical leader on Tabnine, Eran pioneered the use of AI to accelerate and simplify software development with the company’s release of the first of its kind AI coding assistant in 2018.

assets/ch4-comment-driven-function.png
Js phone.js @

1 < 1 > Accept [120] Accept Word (] (5] ** | phone number passed in is valid
2 function isValidPhoneNumber(phoneNumber) {

// regular expression pattern for US phone numbers

const pattern = /™M +1\s?\ (?(\d{3})\)?[-.\s]?(\d{3}) [-.\s]?(\d{4})$/;

// test the input against the pattern
return pattern.test(phoneNumber) ;

assets/ch4-chat-references.png
TABNINE Al: CHAT

© Tabnine Protected v

£ op-new

o =

registers controllers, and starts the manager. It also includes error handling

and health checks.

References (1)

1. main.go — 50-90

+ New Conversation

[+])(e]

Copy | &' &

>

Using workspace

D&

-comain.go X M
<60 main.go

4z]

43

44 func init() {

45 utilruntime.Must(client

46

47 utilruntime.Must(roarap

48 //+kubebuilder:scaffold

49)

50

51 func main() {

52 var metricsAddr string

53 var enablelLeaderElectiol

54 var probeAddr string

55 flag.StringVar(&metrics/

56 flag.StringVar(&probeAd:

P O S TV SRS I

Blzsh =~ D @ - ~

developer@Bs-MacBook—-Pro op-new % []

assets/ch5-testing-context-2.png
TABNINE Al: CHAT
© Tabnine Protected v o3 =
Key Components:

* Controllers: These are the main components that handle the synchronization of resources.
* Custom Resources: These are the objects that your Operator manages.

* Kubernetes API: The Operator interacts with the Kubernetes API to create, update, and
delete resources.

* Go Modules: The project uses Go modules to manage dependencies.

* Testing Frameworks: Ginkgo and Gomega are used for BDD testing.

Project Structure:
The project is organized into several directories, including api, config, controllers, and
hack . The root directory contains essential files like Dockerfile, Makefile, and

S README.md .

Next Steps:

+ New Conversation

Icode-explore >

Using workspace

assets/ch4-phone-function-created-in-chat.png
TABNINE Al: CHAT

© Tabnine Protected v

Here's a simple JavaScript function that can be used to validate a phone number. This function checks if the input string matches the
common format for a North American phone number (10 digits, with optional parentheses, hyphens, and spaces).

function isValidPhoneNumber(phoneNumber) {
// Regular expression for a North American phone number
const phoneNumberRegex =

// Test the input against the regular expression
return phoneNumberRegex.test(phoneNumber) ;

S Insert D Copy 3 New file

You can use this function like this:

const phoneNumberl = "(123) 456-7890";
console. log(isValidPhoneNumber(phoneNumberl)); // Output:

+ New Conversation

assets/ch5-codelens.png
@ isprime.py > @ is_prime
1 # check if an input number is prime or not

Tabnine: Edit | Test | Explain | Document | Ask
2 def is_prime(n):

assets/ch5-testing-context-3.png
TABNINE Al: CHAT

© Tabnine Protected v o

What is the process for testing and debugging the project's code?

© Tabnine [Tabnine Protected |

To test and debug the project's code, you can follow these steps:

Testing:
1. Unit Tests: Run unit tests to verify the functionality of individual components. You can use
the Ginkgo and Gomega testing frameworks provided by the project. Look for files ending
in _test.go inthe controllers directory.

2. Integration Tests: Run integration tests to verify the interaction between different
components. These tests may require a running Kubernetes cluster. You can use the
envtest package provided by the project to set up a local test environment.

@ 3. E2E Tests: Run end-to-end (E2E) tests to verify the overall functionality of the Operator.
These tests may require a running Kubernetes cluster. You can use the envtest package
provided by the project to set up a local test environment.

assets/ch5-gen-test-plan.png
TABNINE Al: CHAT

© Tabnine Protected v

@ Testplan

Selected module
Users/developer/op-new/isprime.py - Lines 2 - 8

Test file
Users/developer/op-new/isprime2.test.py

Suggested tests
~~ Should return False for n =0 v

test_is_prime_returns_false_for_n_0¢
is_prime(0)

Describe how you'd like to modify the test >

> Should return False forn = 1

@ isprime.py U ® @ isprime2.test.py 1, U X

@ isprime2.test.py > @ test_is_prime_returns_false_for_n_0
Tabnine: Edit | Test | Fix | Explain | Document | Ask
1 def test_is_prime_returns_false_for_n_0():
assert is prime(0) False

assets/ch5-new-test-plan-from-codelens.png
TABNINE Al: CHAT

Create new test plan

We first need to review your test file (if you have one)

| have a test file

Tabnine will create a new test file in this location:

/Users/developer/op-new/isprime.test.py

Browse

assets/ch6-ide-fix1.png
v Accept this change (Alt+A) | X Discard this change (Alt+R) | &

<<<<<<< Tabnine <<<<<<<
opts == zap.Options{
| Development: True,
}
opts.BindFlags(flag.CmdLine)
flag.Parse()
opts := zap.Options{
Development: true,
}
opts.BindFlags(flag.CommandLine)
flag.Parse()
>>>>>>> Tabnine >>>>>>>

Refine your request (Alt+F)

assets/ch5-tests-genned-from-chat.png
TABNINE Al: CHAT
© Tabnine Protected v

Create tests for the “is_prime" function using Python.

def test_is_prime():
assert is_prime(2)
assert is_prime(3)

assert is_prime(4)
assert is_prime(5)
assert is_prime(6)

assets/ch6-ide-chat-fix.png
© Tabnine [Tabnine Protected |

opts := zap.Options{
Development: true,

}

opts.BindFlags(flag.CommandLine)

flag.Parse()

Apply -5 Insert D Copy

In the provided code, the errors were caused by incorrect
variable declaration and incorrect usage of the zap.Options
and flag packages. The opts variable should be declared
asa zap.Options type, and the flag.CommandLine should

assets/cover_ER.png
Technical Guide

The
Al-Enabled SDLC

A Tech Leader’s Guide to Navigating
the Future of Software Development

trobnine

assets/ch6-doc-shortcut.png
def is_prime(n):

U oPT4ov

Add documentation com

CwNO LA WN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Check if a number is prime.

A prime number is a natural number greater than 1 that is not a product
This function uses a trial division algorithm to determine if the given

Parameters:
n (int): The number to check for primality.

Returns:
bool: True if the number is prime, False otherwise.

Examples:
>>> is_prime(2)
True
>>> is_prime(4)
False
>>> is_prime(17)
True

Check if a number is prime.
if n <= 1:
return False

of two smaller natural n

number is prime.

assets/ch6-copilot-generated-pr-summary.png
Add a description

Write Preview

This pull request includes significant changes to improve security by fixing SQL
injection vulnerabilities and adds a new GitHub Actions workflow for creating
issues. The most important changes are listed below:

Security Improvements:

¢ models/models.go : Fixed SQL injection vulnerabilities by parameterizing
queries in NameQuery , AuthorQuery , and ReadQuery functions. [1] [2] [3]

GitHub Actions:

e .github/workflows/create-issue.yml : Added a new workflow to create
issues manually from the Actions tab, including steps to echo inputs and
create an issue using the GitHub REST API.

assets/ch7-javadoc-detail.png
<« C @ OFile [Users/developer/roarv2/utilsrc/mainfjava/com/demo/util/ToJSON.htmi a%x 0 0

e o Constructor Detail
= ToJSON
public ToJSON()

o Method Detail

= toJSONArray

public org.codehaus.jettison.json.JSONArray toJSONArray(java.sql.ResultSet rs)
throws java.lang.Exception

Converts a given ResultSet into a JSONArray. Each row in the ResultSet will be converted into a JSONObject, and
each column in the row will be added to the JSONObject with the column name as the key. This method provides a
straightforward way to convert relational data into a structured JSON format, making it easier to serialize and
transmit data over HTTP or store it in a document-oriented database.

Parameters:
rs - The ResultSet to be converted. This ResultSet is typically obtained from executing a SQL query against a
database.

Returns:
JSONATrray containing the data from the ResultSet. Each element in the JSONArray corresponds to a row in the
ResultSet, represented as a JSONObject.

Throws:
java.lang.Exception - If there is an error during the conversion process. This could be due to issues
accessing the ResultSet data, problems with the JSON library, or other unexpected issues.

Skip navigation links

assets/ch7-verbosely-comment.png
Initialize the variable i to 5
We will use this variable to check for factors of n
i=5

Loop to check for factors of n
The loop continues until i squared is greater than n
while i % i <= n:

Check if n is divisible by i or i + 2

If it is, then it is not a prime number

ifn%i==0orn% (i+2) = .

Can you explain the logic used?

Verbosely comment this code so that anyone can easily understand what each line is doing|

@ prime.py Current file /&

@0 GPTdov B>+

assets/ch7-updated-functional-doc.png
create functional documentation explaining the various public APIs in #file:EmployeeController.java

J EmployeeController.java

& GitHub Copilot 4 P
v Used 1reference

J EmployeeController.java #file:EmployeeController.java

EmployeeController API Documentation

The EmployeeController class provides a set of RESTful APIs to search and filter employees from an
Employee Directory. These APIs are designed to be consumed by front-end applications or other services.
Below is the functional documentation of the various public APIs exposed by the EmployeeController .

API Endpoints
1. Get All Employees
« Endpoint: /employees/all

* Method: GET
« Description: Retrieves a list of all employees in the directory.

assets/ch7-swagger-doc.png
CHAT + 9

@ techupsins x

create Swagger documentation for the APIS in #file:EmployeeController.java

& GitHub Copilot 4 P
> Used 1 reference

Given the provided excerpt from EmployeeController.java, I'll create a Swagger
documentation outline for the APIs within this controller. Since the actual API methods
(endpoints) are not included in the provided excerpt, I'll assume a common set of CRUD
operations for demonstration purposes.

Swagger Documentation for EmployeeController

swagger: '2.0"
info:
description: This API provides the capability to search Employee from an
version: 1.0.0
title: Employee Directory API
termsOfService: 'http://swagger.io/terms/"
contact:
email: support@example.com
license:
name: Apache 2.0

What are the steps to configure Swagger in a Spring Boot application?

Ask Copilot or type / for commands Vi

assets/ch7-key-documentation.png
The key documentation extracted from the provided code and workspace structure highlights the setup and
configuration of a Spring Boot application with Swagger for API documentation. Here's a summary:

Project Structure and Configuration

Project Base: Spring Boot application designed for demonstrating Swagger integration.
Group ID: com.techupskills.springboot.swagger

Artifact ID: springboot-swagger

Version: 0.0.1-SNAPSHOT

Java Version: 17

Swagger Version: 3.0.0

Packaging: JAR

Parent: Spring Boot Starter Parent with version 3.1.0

Source Encoding: UTF-8

Dependencies

« Spring Boot Starter Web: For building web, including RESTful, applications using Spring MVC.

« Spring Boot Starter Test: For testing Spring Boot applications with libraries including JUnit, Hamcrest, and
Mockito.

« Spring Boot Starter Data JPA: For using Spring Data JPA with Hibernate.

assets/ch7-api-parameters-and-what-returned.png
@workspace what are the API's parameters and what does it return?

<> Workspace g &

> Used 1 reference

The EmployeeController class in EmployeeController.java defines several API endpoints, each with its
own set of parameters and return types. Here's a summary of the parameters and return types for each API
endpoint defined in the class:

1. Get All Employees

o Endpoint: /employees/all

o Method: GET

o Parameters: None

o Returns: ResponseEntity<Object> containing a list of all Employee objects or an error message.
2. Search Employee by employeeld

o Endpoint: /employees/{employeeId}

o Method: GET

o Parameters: employeeld (path variable, required, Integer)

o Returns: ResponseEntity<Object> containing the Employee object with the specified

emploveeld or an error messaae.

assets/ch3-connecting-repo.png
C @ % app.tabnine.com/profile/context-enhancement max &80 0

© tabnine [
o3 Context enhancement
brent@getskillsnow.com
Enable Tabnine Context o

To enhance suggestions, enable the "workspace" context for all users. Tabnine will process
and analyze content from your users' machines on your Tabnine server. All data is encrypted
during transit, and no specific content is retained or used by Tabnine.

Note: Enabling this feature may take up to one hour to propagate to all users. A user can

restart their IDE for this change to take effectimmediately.

Connect external code repositories Edit git providers

Search repository oWl -+ Connect repository

C O git@github.com/brentlaster/roar-op
Queued for indexing

@ O https://github.com/brentlaster/op-new Repository added
Last indexed: August 29, 2024 at 09:46 PM

assets/ch3-code-explore-in-vs-code.png
TABNINE Al: CHAT Release Notes: 1.93.0 co roarapp_controller.go X

© Tabnine Protected v o = controllers > -eo roarapp_controller.go
— 213 func newPodForCR(cr xroarappvlalphal.RoarApp) xcorev
225 return &corevl.Pod{
/c°de'exp|°re 226 ObjectMeta: metavl.ObjectMeta{
4 230 +
. —_— 231 Spec: corevl.PodSpec{
© Tabnine (Tabnine Protected | 232 Containers: []corevl.Container{
Welcome to the Roar Operator Project! 233 {
234 Name: "roar-web",
235 Image: cr.Spec.WebImage,
This project is an advanced Kubernetes Operator that helps 236 Command: [Istring{"catalina.sh",
manage custom resources and automate operations on your 237 i
250 r
cluster. It follows the Operator pattern, using Controllers to PROBLEMS TERMINAL - 5 2sh - o~ %
keep your resources in sync with the desired state. E—
@ developer@Bs-MacBook-Pro op-new % I

To get started, follow these steps:

+ New Conversation

Tabnine Chat will consider your project,
current file, packages, etc. as context

for chat responses.

@ Using workspace

assets/ch4-simple-completion.png
@ isprime.py 1 ®

1

check if an input number is prime or not
Tabnip=sFatis L Tant l Comlain L Ao
def | < 11 > Accept
|if n< 2:
return False
for i in range(2, int(n¥x0.5) + 1):
ifn%is==
return False
return True

Accept Word

assets/ch4-ai-chat.png
ece « > £ op-new D& [08

TABNINE Al: CHAT -6o main.go X M
© Tabnine Protected g | = eomang
v =
abnine Protecte 51 func main() {
) X . . 5 53 var enableLeaderElection b
What is the purpose of the Operator pattern in this project, and how does it 54 var probeAddr string
B help manage resources on the Kubernetes cluster? 55 flag.StringVar(&metricsAddt
56 flag.StringVar(&probeAddr,
57 flag.BoolVar(&enableLeadert
© Tabnine 58 "Enable leader electior
. i . . . 59 "Enabling this will
@ The Operator pattern in this project is a method for extending Kubernetes to 60 opts := zap.Options{
manage complex stateful applications. It aims to simplify the management 61 Development: true,
of applications running on Kubernetes by encapsulating the application's 62 }
. . . 63 opts.BindFlags(flag.Commanc
lonie and raconciliation lnon within a ciistom eontrollar
64 flag.Parse()
+ New Conversation 65
66 ctrl.SetLogger(zap.New(zap.
> BJzsh + ~ i - oA X
@ Using workspace developer@Bs—MacBook-Pro op-new % []

X PmaintO ®0A0 WO £ Live Share @ Ln1,Col1 TabSize:4 UTF-8 LF {§ Go 1.151 (3

assets/ch4-prompt-with-selection.png
eoce = O op-new D& 00

TABNINE Al: CHAT -6o main.go X
© Tabnine Protected v & | = ’Gf‘mai”'lgo
q g 43
/explain-code @selection 44 func init() {
45 utilruntime.Must(clientgos
3
© Tabrine -
47 utilruntime.Must(roarappv
The selected code snippet in the main function sets up the command-line 48 //+kubebuilder:scaffold:s
- .) 49 }
flags, initializes the controller-runtime manager, and configures the manager 50
@ options. Here's a breakdown of the code: 51 func main() {
52 var metricsAddr string
10 Aoling fl 53 var enablelLeaderElection
Qranancens e 54 var probeAddr string
+ New Conversation 55 flag.StringVar (&metricsAdc
56 flag.StringVar(&probeAddr,
s r= P PO

> zsh + v i e A X

@ Using workspace developer@Bs—MacBook—Pro op-new % []

UbuntuMono-BoldItalic.otf

UbuntuMono-Italic.otf

UbuntuMono-Regular.otf

css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

assets/tabnine_ad.png
//Get Al that
gets you//

Generic AI code assistants offer generic

guidance, frustrating your developers.

Tabnine learns from your codebase, habits,
and requirements to provide more accurate
recommendations. That means higher quality
code generation, improved productivity, and

happier developers.

Why settle for generic when you can get

personalized?

Learn more at www.tabnine.com j

DejaVuSans-Bold.otf

assets/sdlc-ch1-google-trends.png
Interest over time @ d <o
100
75
Qo
50 S}
z
25
i e
Dec 6, 2020 Jun 5,2022 Dec 3,2023

Jun 9, 2019

DejaVuSerif.otf

assets/sdlc-ch1-gartner.png
When Generative Al Is
and Is Not Effective

Uso-case Gonerative | Examplouso
family modals’ cases

Prodiction/ Risk preciction.

forecasting customer churn
prediction,sales/
emand forecasting

Decision Decision support,
inteligence augmentation,

Segmentation/ Clustering. customer
classilication segmentation,object
Classifcation

[res— [e—
systems engine, personalized
advice, next
best action
Content Text generation,image
generation and video generation,

synthotc data

Conversations Virtualassistant,
ot imerfaces chatbor, digitl worker

Gartner

UbuntuMono-Bold.otf

assets/sdlc-ch2-dev-satisfaction.png
Generative Al tools have potential to improve the developer experience.

Agreement with statement, M strongly Ml Somewhat Neither agree | Somewhat [l Strongly
% of respondents disagree disagree or disagree agree agree

I was able to focus on)
I felt happy satisfying and meaningful work I was in a ‘flow’ state

25
30 20
30 pl
0 15 20
1 1
Without With Without With Without With
generative Al generative Al generative Al generative Al generative Al generative Al

Note: Figures may not sum to 1009%, because of rounding,

McKinsey & Company

toc01.html
		Brief Table of Contents (Not Yet Final)

		Preface

		Why We Wrote This Book

		Intended Audience

		The Structure of This Book

		Keeping up with GenAI

		1. Generative AI in Software Development

		The rise of LLMs

		Where does GenAI really fit?

		Software Development Assistants: Fit for Purpose

		The Software Development Life Cycle

		Applying GenAI in the SDLC

		Actionable Steps

		2. Opportunities and Challenges: What to expect from adding generative AI to your process

		The changing role of the software engineer

		Protecting code quality as velocity increases

		The Why

		The How

		Real-world impacts on productivity and satisfaction

		Productivity

		Satisfaction

		Common pitfalls and risks

		Perceived job impacts

		Relevancy

		Assumptions about the AI

		A core strategy for simplifying integration

		Action items

		3. Planning with AI

		Connecting your Codebase

		Getting answers to general coding questions

		Understanding your codebase better

		Rapid Code Prototyping

		Estimating Effort

		Jumpstarting Testing and Documentation

		Planning for Migration

		Leveraging the AI for explanations and reviews

		Actionable Items

		4. Using AI for Code Creation and New Feature Development

		Accelerating code completion

		Researching and exploring solutions

		Defining Scope

		Using context awareness to ensure the best possible recommendations

		Delegating Tasks

		Use cases

		Action Items

		5. Increasing Test Coverage through AI Generation ​

		Testing Context

		Automating the Generation of Tests

		Specialized interfaces

		Creating Tests through the Chat Interface

		Testing before the coding and leveraging frameworks

		Action Items

		6. Resolving Bugs with AI

		Fixing issues flagged in your IDE with AI

		Using AI to identify areas to investigate

		Using AI to help fix issues

		Exploring with AI to understand

		Using AI to work with tickets

		Testing and Documenting Fixes

		Action Items

		7. Automated Creation of Documentation

		Documenting Content

		Generating framework-compatible documentation

		Generating Documentation for APIs

		Generating functional documentation

		Extracting summary documentation

		Action Items

		About the Authors

