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Chapter 1. Learning the Language of Proteins



A Note for Early Release Readers


With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.




It is not an exaggeration to state that life as we know it operates via  proteins  . The human genome contains  genes  that encode around 20,000 different proteins. Some of these proteins have relatively simple-to-understand  functions  – such as collagen providing structural support and elasticity to tissues and organs, or haemoglobin shuttling oxygen and carbon dioxide between the lungs and rest of the body. Other proteins have more abstract functions, such as acting as messengers or signalling molecules that transmit information within and between cells. For example, insulin is a protein hormone that signals to cells to uptake sugar.


We will get into the details of how exactly DNA and proteins work later, but in the same way that physicists approximate a cow as a sphere, here we can approximate a protein as a blob that is simply noisily bumping around the crowded cell environment in a sometimes-productive fashion. The particular details of its blobby structure have been honed by millions of years of evolution in a way that allows it to perform its molecular function.


One important detail at this stage is that a protein can be represented as a string of its constituent building blocks, called  amino acids  – in the same way that the English alphabet has 26 letters that can be combined to form words, the protein alphabet has 21 letters that can be combined to form proteins.


With that in mind, here is the end goal of this chapter: we will train a neural network that predicts a protein’s function given a string representing its composition. For example:



		
	Given the amino acid sequence of the protein collagen (  XJFKLSAJFK  …), we might predict its function as likely to be  structural  with probability 0.7,  enzymatic  with probability 0.01, and so on.

	

		
	Given the amino acid sequence of the protein insulin (  XXJSHDAKD  …), we might predict its function as likely to be  metabolic  with probability 0.6,  cohesion  with probability 0.05, and so on.

	




Why would you want to predict protein function from sequence? This is actually a very fundamental problem in biology, with some of the following example use-cases:



		
	Genome annotation  : As we sequence the genomes of more and more species, we need algorithms to annotate the functions of newly-identified proteins (which are encoded by genes). This is especially useful for proteins that are quite distant in evolutionary terms from proteins with known function, since we can’t just draw parallels based on shared recent evolution.

	

		
	Biotechnology and protein engineering  : Being able to predict a protein’s function from sequence should be useful for engineering purposes, since you could in theory optimize a protein sequence to have a high predicted probability of a certain function of interest.

	

		
	Understanding disease mechanisms  : Similarly, if you can predict protein function well, you can start to understand why some mutations lead to disease. For example, you might discover that a seemingly diverse set of mutations all tend to lower an individual’s ability to metabolize a certain lipid. This could direct you towards a useful mechanistic hypothesis to further explore.

	




The protein function prediction task might sound simple, but it’s actually very difficult – to make good predictions, a model would actually have to understand many aspects of biophysics, protein structure, and general cell biology. Many research groups are working on squeezing the best possible performance from models on this problem. However, luckily, in this chapter we are unencumbered by needing to chase top performance, and will instead simply lay the groundwork for exploring this problem. There is quite a bit to get through, but we will take things step by step starting with the background and then moving on to the implementation.


Note that this chapter is a tad on the long side, since we will be introducing various concepts that we will reuse in later chapters (such as proteins, embeddings, fine-tuning, and so forth).



Biology Primer


This chapter began by saying that proteins are essential units of function within the cell, fulfilling many diverse functions. A protein’s function is very closely tied to its three-dimensional structure, which in turn is determined by its primary amino acid sequence.


To recap the flow of information: a gene encodes the primary amino acid sequence of a protein. The amino acid sequence of a protein encodes its structure, and a protein’s structure encodes its function. Ultimately, the amino acid sequences for proteins are encoded by the DNA in an organism’s genome, which has itself been honed by billions of years of evolution.



Protein Structure


Protein structure can be broken down into four hierarchical levels:



		
	Primary structure  : The linear sequence of amino acids we referenced earlier

	

		
	Secondary structure  : The local folding of amino acids into helices and sheets

	

		
	Tertiary structure  : Results from larger 3D folding of protein segments

	

		
	Quaternary structure  : Multiple protein subunits come together into a single complex (optional).

	




As an example, Figure 1-1 shows the structural organization levels of hemoglobin.


[image: _images/protein_structure_wikipedia.png]
Figure 1-1. An illustration of a protein’s four hierarchical levels or organization in three dimensional space. Source:  Wikipedia  .




The human genetic code directly codes for 20 main amino acids. Each one has a distinct chemical structure, but they can be put into groups based on their overall high-level property (such as repelling or attracting water, or having a negative or positive charge). Universities still regularly torture biochemistry undergraduates by making them memorize each amino acid’s structure, along with their 1-letter and 3-letter codes. Figure 1-2 shows a diagram of the amino acid structures, but there are perhaps more rewarding pursuits than memorizing the exact structures. However, the general concept of certain amino acids (like  D  or  E  ) having certain chemical properties (in this case, being acidic, or negatively-charged) is important and will come up repeatedly in this book.


[image: _images/amino_acids_cropped.png]
Figure 1-2. The chemical structure of the common amino acids in living organisms, grouped by biochemical similarity. Adapted from an infographic from Compound Interest.







Protein Function


As you can imagine, there is a huge diversity of functions that proteins play in the cell. One of the most popular projects cataloguing protein function is the Gene Ontology (GO) project, which links each protein with one or more GO annotations.  GO annotations  label a protein’s function on three different levels:



		
	Biological process  : This refers to the relatively high-level biological pathways and functions the protein is involved in – for example, facilitating cell replication, repairing damage to DNA, playing a role in metabolizing carbohydrates, or triggering an immune response to an invading virus.

	

		
	Molecular function  : These are lower-level, molecular functions of the protein. For example, a protein might bind DNA, or be an enzyme that catalyzes a reaction, or act as a receptor by binding a neurotransmitter and transmitting the signal.

	

		
	Cellular component  : This refers to which specific sub-locations of the cell the protein is found in. Some proteins are pervasive and can be found in many sub-compartments of the cell. Other proteins are only found in specific locations, such as the nucleus (DNA-containing compartment of the cell) or cytoplasm (the main jelly-like inside space of the cell). Although the cellular component annotation may not seem like it’s directly annotating protein  function  , the location of a protein is in practice often very functionally important. We have dedicated a whole chapter to cell localization .

	




There are thousands of these possible annotations, and one protein can have many different annotations. The GO annotation system also labels its annotations with a measure of confidence – in this chapter, we will only be working with the smaller set of higher-confidence, experimentally-derived annotations (rather than computationally-inferred annotations, which can be more error-prone).







Machine Learning Primer


We have briefly looked at the biological background of what proteins are and that they encode their function. We will now look at what machine learning techniques are suitable and can be used to learn from protein sequences.



Large Language Models


It is hard these days to go anywhere without bumping into  large language models  (LLMs). Many of the recent AI advances such as ChatGPT, Gemini, Claude, and Llama fall under this umbrella. Although an enormous amount of research and engineering have gone into building these models, their fundamental essence is very simple: the model has simply been trained to predict the most likely next token (e.g. a word) given the context of previous tokens (with some occasional slight variations; see for example masked LMs where some words at random positions are not shown to the model during training to make it more context-aware).


One of the most fascinating AI discoveries in the last decade has been the realization that if you train a sufficiently large model (in terms of the number of  parameters  or dimensions in the neural network) on a sufficiently large text dataset (in terms of the number of tokens) to simply predict the next token, a huge amount of fascinating capabilities can emerge. For example, without being trained for it explicitly, these models can often learn to summarize text, translate between languages, and generate even creative content such as poetry and stories.


These capabilities hold promise for biological research and applications. Fundamentally, biology is quite language-like: there are large datasets of DNA “text” and protein “text”, and these sequences have similar correspondences to words, sentences, and compositional grammar. Models for biology applications can be trained using the next-token-prediction approach in a similar way that natural language LLMs can. Although still an emerging field, there is increasing evidence that DNA and protein language models can learn meaningful representations of biology. Later in this chapter, we will explore one of the most successful protein language models to date, called ESM2.





Embeddings


One of the most fascinating and practical aspects of language models – and deep learning models more broadly – is the concept of  embeddings  . Embeddings are numerical vectors that represent a piece of data, such as a word, document, or even a protein. You can think of an embedding as an array of numbers (for example,  np.array([0.1,  -0.3,   1.3,   0.9,   0.2])   is an array of length 5) that encodes the meaning and contextual information of the entity it represents.


For instance, similar words in English, like  lion  ,  tiger  , and  panther  , would have embeddings that cluster closely together in a “word meaning space”. Similarly, related proteins, such as collagen I and collagen II, would likely occupy nearby regions in a “protein meaning space”. A common way to measure their similarity is cosine similarity, which reflects how much two vectors “point in the same direction,” capturing the overlap in their meaning.


A related concept is the notion of continuous  latent spaces  , where entities are represented as embedding vectors in a high-dimensional space. These spaces capture abstract relationships and allow smooth transitions between concepts. For instance, in a protein latent space, embeddings can encode functional or structural similarities, making it possible to identify evolutionary relationships or predict unknown functions. This continuous representation also supports tasks like clustering, interpolation, or even generating novel entities by exploring regions of the space.





Pre-training and Fine-tuning


Many prediction problems are actually highly related – for example, whether you are interested in training a model to detect extremism in text, answer questions in a graduate law entrance exam, or compose capybara-related poetry, your model will need to have a strong foundational understanding of language. This commonality between tasks means that it often makes sense to use a pre-trained foundational model that has already learned a fundamental competency from training on massive amounts of data, rather than trying to train your own new model from scratch.


The power of using a pre-trained model is especially strong if you do not have a lot of training data. A common workflow is to do a more light-weight  fine-tuning  (additional training) of the pre-trained model on your smaller or more specific dataset in order to improve performance on your task. This idea of fine-tuning pre-trained foundational models has become very popular in the machine learning community, with numerous people building on open source models to leverage their power for specific use-cases.


In this chapter, we will simply be working with the extracted embeddings of a pre-trained model rather than directly fine-tuning it, but we will get to fine-tuning in later, more advanced chapters.







Representations of Proteins and Protein LMs


Previously, we talked about what proteins are, and how their structure is composed in a hierarchical fashion from a linear sequence of amino acids up to a fully 3D structure that dictates their function. To make this less abstract, let’s load up an example protein structure and visualize it using the  py3Dmol  library to give it a good stare:







import py3Dmol
import requests


def fetch_protein_structure(pdb_id: str) -> str:
  """Grab PDB protein structure from RCSB Protein Data Bank."""
  url = f"https://files.rcsb.org/download/{pdb_id}.pdb"
  response = requests.get(url)
  return response.text


# NOTE: The Protein Data Bank (PDB) is the main database of protein structures.
#       Each structure has a PDB ID. Here are 3 examples, but you can find many
#       more at www.rcsb.org.
protein_to_pdb = {
  "insulin": "3I40",  # NOTE: Human. Involved in sugar metabolism.
  "collagen": "1BKV",  # NOTE: Human. Involved in structural roles.
  "proteasome": "1YAR",  # NOTE: Archeabacterial. Involved in degradation.
}

protein = "collagen"  # @param ["insulin", "collagen", "proteasome"]
pdb_structure = fetch_protein_structure(pdb_id=protein_to_pdb[protein])

pdbview = py3Dmol.view(width=400, height=300)
pdbview.addModel(pdb_structure, "pdb")
pdbview.setStyle({"cartoon": {"color": "spectrum"}})
pdbview.zoomTo()
pdbview.show()











The output of this code cell is an interactive 3D protein structure, which should look something like Figure 1-3 :


[image: _images/collagen.png]
Figure 1-3. Collagen protein structure visualized using  py3Dmol  .




Have a look at the  insulin  and  proteasome  structures too to get a sense of the diversity of protein structures.



Representing a Protein Numerically


These 3D representations of proteins are great for visualization purposes, but it’s difficult to know how to work with them in the context of machine learning – we first need to represent a protein numerically in order to learn any patterns within their organization. For this, it is common to start with the 1-dimensional amino acid sequence of a protein.


Generally, we know the protein sequence of all human proteins – you can look these up in databases such as  Uniprot  . In the case of insulin, its amino acid sequence is the following (source  here  ):







# NOTE: Technically, this is actually the precursor protein to insulin that will
#       get processed into 2 separate protein chains later.
insulin_sequence = (
  "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG"
  "GPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"
)
print(f"Length of the insulin protein precursor: {len(insulin_sequence)}.")













Length of the insulin protein precursor: 110.











Now we have a  sequence representation  of a protein loaded up in python. But since machine learning deals with numerical data, we will now apply one type of representing this sequence in a numerical form, that is one-hot encoding.





One-hot Encoding of a Protein Sequence.


The simplest way to represent a protein sequence is using a  one-hot encoding  of its amino acid sequence. Here is how it works:



		
	Since there are 20 possible amino acids, each amino acid must be one of these 20 options.

	

		
	We can therefore represent each amino acid as a binary vector that is 19 zeroes and a single 1 in the position corresponding to that amino acid.

	




For example, imagine we want to one-hot encode a very small protein with just 5 amino acids:  MALWN  .


First, let’s define the mapping between an amino acid letter code to an integer index:







amino_acids = [
  "R",
  "H",
  "K",
  "D",
  "E",
  "S",
  "T",
  "N",
  "Q",
  "G",
  "P",
  "C",
  "A",
  "V",
  "I",
  "L",
  "M",
  "F",
  "Y",
  "W",
]

amino_acid_to_index = {
  amino_acid: index for index, amino_acid in enumerate(amino_acids)
}

amino_acid_to_index













{'R': 0,
 'H': 1,
 'K': 2,
 'D': 3,
 'E': 4,
 'S': 5,
 'T': 6,
 'N': 7,
 'Q': 8,
 'G': 9,
 'P': 10,
 'C': 11,
 'A': 12,
 'V': 13,
 'I': 14,
 'L': 15,
 'M': 16,
 'F': 17,
 'Y': 18,
 'W': 19}











Given a specific protein sequence, we can convert it to a sequence of integers:







# NOTE: Methionine, alanine, leucine, tryptophan, methionine.
tiny_protein = ["M", "A", "L", "W", "M"]

tiny_protein_indices = [
  amino_acid_to_index[amino_acid] for amino_acid in tiny_protein
]

tiny_protein_indices













[16, 12, 15, 19, 16]











We can now proceed to convert the protein sequence indices into a one-hot encoding.


Note

Why can’t we simply work with the indices directly and skip the one-hot encoding step? The problem is that numerical indices can imply false relationships, such as an artificial order or similarity between amino acids (e.g., assuming smaller differences between indices indicate greater similarity). By representing each amino acid as a distinct binary vector, one-hot encoding preserves their categorical nature, ensuring the model doesn’t infer non-existent patterns based on numerical proximity.




(see Figure 1-4 ):



		
	The one-hot encoding matrix will have a shape [5, 20], since each of the five amino acids in the protein sequence will have an encoding vector of length 20.

	

		
	Each vector will be composed of 19 zeroes, with a single 1 in the position corresponding to that amino acid’s integer index.

	




[image: _images/protein_one_hot_encoding.png]
Figure 1-4. One-hot encoding encodes a protein string into a numerical matrix of mostly zeroes.




In code, we can use the handy utility in the JAX library to get this embedding:







import jax

one_hot_encoded_sequence = jax.nn.one_hot(
  x=tiny_protein_indices, num_classes=len(amino_acids)
)

print(one_hot_encoded_sequence)













2024-11-18 12:51:04.658186: W external/xla/xla/service/gpu/nvptx_compiler.cc:765] The NVIDIA driver's CUDA version is 12.2 which is older than the ptxas CUDA version (12.6.77). Because the driver is older than the ptxas version, XLA is disabling parallel compilation, which may slow down compilation. You should update your NVIDIA driver or use the NVIDIA-provided CUDA forward compatibility packages.










[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]]











So the encoding for the first amino acid  M  is:







one_hot_encoded_sequence[0]













Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
       0., 0., 0.], dtype=float32)











We can visualize the one-hot encoded matrix representing our tiny protein sequence  MALWN  as shown in Figure 1-5 :







import matplotlib.pyplot as plt
import seaborn as sns

fig = sns.heatmap(
  one_hot_encoded_sequence, square=True, cbar=False, cmap="inferno"
)
fig.set(xlabel="amino acid index", ylabel="protein sequence")











[image: _images/b42f42cdcae300a4136d84343d98766d03a40a3218f0c73e29a74ff618f05cb3.png]
Figure 1-5. Visualized protein encoding matrix from our raw data matrix.




Having this basic numerical representation of a protein sequence allows us to interact with proteins mathematically. Although a good starting point, at the moment this representation is too basic to be useful. Let’s now examine dense learned embeddings of amino acids.





Learned Embeddings of Amino Acids


Throughout the rest of this chapter, we will use a popular pre-trained protein language model called  ESM2  released in 2023 by  Meta  (where ESM stands for  Evolutionary Scale Modeling  ). The model is hosted on the  Hugging Face  platform . In case you are not yet familiar with Hugging Face, it is a really fantastic resource of  thousands of pre-trained models  that you can quickly load and start playing around with.


We will discuss more about how the ESM2 model works in a minute, but first, let’s explore how it has learnt to represent individual amino acids. To access the model, we will use the Hugging Face  transformers  library – ESM2 is a  transformer  -based model, which is a type of neural network architecture  introduced in 2017  that has proven very powerful for modelling sequential information such as language. Let’s import the required module and load up the ESM2 tokenizer and model:







from transformers import AutoTokenizer, EsmModel

# NOTE: Model checkpoint name taken from this GitHub README:
#       https://github.com/facebookresearch/esm#available-models-and-datasets-
model_checkpoint = "facebook/esm2_t33_650M_UR50D"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = EsmModel.from_pretrained(model_checkpoint)











We can examine the mapping between tokens and indices that the ESM2 tokenizer uses:







vocab_to_index = tokenizer.get_vocab()
vocab_to_index













{'<cls>': 0,
 '<pad>': 1,
 '<eos>': 2,
 '<unk>': 3,
 'L': 4,
 'A': 5,
 'G': 6,
 'V': 7,
 'S': 8,
 'E': 9,
 'R': 10,
 'T': 11,
 'I': 12,
 'D': 13,
 'P': 14,
 'K': 15,
 'Q': 16,
 'N': 17,
 'F': 18,
 'Y': 19,
 'M': 20,
 'H': 21,
 'W': 22,
 'C': 23,
 'X': 24,
 'B': 25,
 'U': 26,
 'Z': 27,
 'O': 28,
 '.': 29,
 '-': 30,
 '<null_1>': 31,
 '<mask>': 32}











You can see it’s quite similar to the amino acid to integer mapping we made manually earlier in this chapter, but contains some additional useful tokens. For example, there is a token for an unknown amino acid (  unk  ), a token designating the end of the string (  eos  for end of sentence), and tokens for a couple of very rare amino acids (  U  for selenocysteine and  O  for pyrrolysine).


Let’s use the EMS2 tokenizer to encode our tiny protein sequence:







tokenized_tiny_protein = tokenizer("MALWM")["input_ids"]
tokenized_tiny_protein













[0, 20, 5, 4, 22, 20, 2]











We could choose to chop off the initial  cls  and final  eos  tokens if we wanted to:







tokenized_tiny_protein[1:-1]













[20, 5, 4, 22, 20]











Now, let’s extract the model’s learned embeddings for each amino acid:







token_embeddings = model.get_input_embeddings().weight.detach().numpy()
token_embeddings.shape













(33, 1280)











You can see that for each of the 33 possible input tokens, the model has a 1280-dimensional embedding vector.


Although it’s a bit tricky for humans to visualize a space in 1280 dimensions, we can use a dimensionality reduction technique such as tSNE or UMAP to map this information down to two dimensions and plot where each token lies in this reduced 2-dimensional space:







import pandas as pd
from sklearn.manifold import TSNE

tsne = TSNE(n_components=2, random_state=42)
embeddings_tsne = tsne.fit_transform(token_embeddings)
embeddings_tsne_df = pd.DataFrame(
  embeddings_tsne, columns=["first_dim", "second_dim"]
)
embeddings_tsne_df.shape













(33, 2)











Figure 1-6 is a scatter plot that shows this visually represented.







import seaborn as sns

fig, ax = plt.subplots(figsize=(5, 5))
sns.scatterplot(
  ax=ax, data=embeddings_tsne_df, x="first_dim", y="second_dim", s=50
)











[image: _images/11ce2d1a5b9bfc350a1dfd31ee492bb5a3e7bf7dd3cfeb32a079c66217e1a93b.png]
Figure 1-6. tSNE projection of learned embeddings for all amino acids as extracted from the EMS2 model.




To sanity check whether similar types of tokens and amino acids cluster together within this new 2D space, we can label each token with a known property label (using, for example, the amino acids property plot from earlier in the chapter), and replot the scatter plot, as shown in Figure 1-7 .







embeddings_tsne_df["token"] = list(vocab_to_index.keys())

token_labels = {
  "<cls>": "special_token",
  "<pad>": "special_token",
  "<eos>": "special_token",
  "<unk>": "special_token",
  "L": "hydrophobic",
  "A": "hydrophobic",
  "G": "special_amino_acid",
  "V": "hydrophobic",
  "S": "polar_uncharged",
  "E": "negatively_charged",
  "R": "positively_charged",
  "T": "polar_uncharged",
  "I": "hydrophobic",
  "D": "negatively_charged",
  "P": "special_amino_acid",
  "K": "positively_charged",
  "Q": "polar_uncharged",
  "N": "polar_uncharged",
  "F": "hydrophobic",
  "Y": "hydrophobic",
  "M": "hydrophobic",
  "H": "positively_charged",
  "W": "hydrophobic",
  "C": "special_amino_acid",
  "X": "special_amino_acid",
  "B": "special_amino_acid",
  "U": "special_amino_acid",
  "Z": "special_amino_acid",
  "O": "special_amino_acid",
  ".": "special_token",
  "-": "special_token",
  "<null_1>": "special_token",
  "<mask>": "special_token",
}

embeddings_tsne_df["label"] = embeddings_tsne_df["token"].map(token_labels)
embeddings_tsne_df.head()

fig, ax = plt.subplots(figsize=(5, 5))
sns.scatterplot(
  ax=ax,
  data=embeddings_tsne_df,
  x="first_dim",
  y="second_dim",
  hue="label",
  s=50,
  alpha=0.7,
  palette="Set2",
)

# NOTE: Add the token name next to its position in the embedding space.
offset = 0.02
for i, token in enumerate(embeddings_tsne_df["token"]):
  plt.annotate(
    text=token,
    xy=(
      embeddings_tsne_df["first_dim"][i] + offset,
      embeddings_tsne_df["second_dim"][i] - offset,
    ),
    alpha=0.6,
  )

plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))











[image: _images/0f863abb457262c75d41a00be9cf549d3dd500d431ef1415f38f740347a9bfbe.png]
Figure 1-7. Adding the amino acids’ properties shows that those that are biochemically similar to each other cluster together in the tSNE projection.




In Figure 1-7 it does indeed look like similar types of input tokens tend to group together within this space. For example, all of the hydrophobic (water-repellant) amino acids are grouped together in the upper left of the plot, and many of the special technical tokens like  <cls>  and  <eos>  group together in the lower right of the plot.





Exploring the ESM2 Protein Language Model


Now that you are more familiar with token embeddings, let’s discuss how the EMS2 model actually works. EMS2 is a  masked language model  (MLM), which means it was trained by repeatedly randomly masking a certain percentage of the amino acids in the protein sequence and asking the model to predict them. In the case of ESM2, a randomly-selected 15% of the amino acids in each amino acid sequence were masked during training. Figure 1-8 illustrates this setup visually, comparing it to how the models work for natural languages, such as English.


[image: _images/language_model_training.png]
Figure 1-8. A comparison between training an English language model and a protein language model.




Let’s see if the ESM2 model can predict a masked amino acid in the insulin protein sequence:







insulin_sequence = (
  "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG"
  "GPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"
)

masked_insulin_sequence = (
  # NOTE: Let's mask the `L` amino acid in the 29th position
  #       (0-based indexing).
  #       ...LALLALWGPDPAAAFVNQH  L   CGSHLVEALYLVCGERGFF...
  "MALWMRLLPLLALLALWGPDPAAAFVNQH<mask>CGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG"
  "GPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"
)

# NOTE: Tokenize the masked insulin sequence.
masked_inputs = tokenizer(masked_insulin_sequence)["input_ids"]

# NOTE: Check that we indeed have a <mask> token in the place that we expect it.
#       Note that the tokenizer adds a <cls> token to the start of the sequence,
#       so we in fact expect the <mask> token at position 30 (not 29).
assert masked_inputs[30] == vocab_to_index["<mask>"]











The  <mask>  token tells the model that the amino acid has been masked and that the model should predict it. Let’s load up the ESM2  EsmForMaskedLM  class to load the full model with the language prediction head in order to get its predictions for what the masked token might be. We will take a somewhat smaller model to drive home the point that some amino acid positions are easier to predict than others, and smaller models have more trouble to pick out the correct one:







from transformers import EsmForMaskedLM

# NOTE: Model checkpoint name taken from this GitHub README:
#       https://github.com/facebookresearch/esm#available-models-and-datasets-
model_checkpoint = "facebook/esm2_t30_150M_UR50D"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
masked_lm_model = EsmForMaskedLM.from_pretrained(model_checkpoint)
















model_outputs = masked_lm_model(
  **tokenizer(text=masked_insulin_sequence, return_tensors="pt")
)
model_preds = model_outputs.logits

# NOTE: Index into the predictions at the <mask> position.
mask_preds = model_preds[0, 30].detach().numpy()

# NOTE: Apply softmax to convert the model's predicted logits to probabilities.
mask_probs = jax.nn.softmax(mask_preds)

# NOTE: Visualize the predicted probability of each token.
letters = list(vocab_to_index.keys())
fig, ax = plt.subplots(figsize=(6, 4))
plt.bar(letters, mask_probs, color="grey")
plt.xticks(rotation=90)
plt.title("Model probabilities for the masked amino acid.")











We see that the model correctly predicts the token  L  (Leucine) with very high probability in Figure 1-9 .


[image: _images/e4bc22b9b1876693070179ee6c54adc0b28b38f4d62344993ba0b67313ce0a7b.png]
Figure 1-9. The model predicts the masked amino acid to be most likely an  L  (Leucine).




Let’s rewrite this code as a more general function that plots the predicted probabilities of a masked amino acid:







def plot_predicted_probabilities(amino_acid_seq: str, mask_index: int):
  """Plots probabilities of masked amino acid.

  Args:
      amino_acid_seq: Amino acid sequence
      mask_index: 0-based index of amino acid position to mask.
  """
  if mask_index < 0 or mask_index > len(amino_acid_seq):
    raise ValueError("Mask index outside of sequence range.")
  masked_seq = (
    amino_acid_seq[0:mask_index] + "<mask>" + amino_acid_seq[(mask_index + 1) :]
  )
  print(f"{amino_acid_seq}\n{masked_seq}")
  masked_inputs = tokenizer(masked_seq, return_tensors="pt")
  # TODO: set define MASK_TOKEN_INDEX and use?
  model_outputs = masked_lm_model(**masked_inputs)
  model_preds = model_outputs.logits

  # NOTE: Index into the predictions at the <mask> position.
  mask_preds = model_preds[0, mask_index + 1].detach().numpy()

  # NOTE: Apply softmax to convert the model's predicted logits to
  #       probabilities.
  mask_probs = jax.nn.softmax(mask_preds)

  # NOTE: Visualize the predicted probability of each token.
  letters = list(vocab_to_index.keys())
  fig, ax = plt.subplots(figsize=(6, 4))
  plt.bar(letters, mask_probs, color="grey")
  plt.xticks(rotation=90)
  plt.title(
    "Model probabilities for the masked amino acid at index="
    f"{mask_index} (true amino acid = {amino_acid_seq[mask_index]})."
  )
  return fig


fig = plot_predicted_probabilities(
  amino_acid_seq=insulin_sequence, mask_index=26
)  # NOTE: 0-based











[image: _images/6958bc1b69675d03a9554554488126c7147672cc2089a668879dc61ad4694c90.png]
Figure 1-10. The model predicts a range of possible amino acids for the masked position.




In this case, the model does not have a clear strong preference for what the masked amino acid might be – the most likely amino acids are  A  ,  T  and  S  , but plenty of other options are also possible as shown in Figure 1-10 . This lack of a strong preference could reflect the biochemical flexibility of the sequence at this position. Regions of the protein might tolerate multiple amino acids due to functional redundancy, structural flexibility, or even intrinsic disorder, allowing residues like A, T, and S to be equally plausible based on the sequence context.





Strategies for Extracting an Embedding for an Entire Protein


So far, we have been examining how the ESM2 model represents each individual amino acid. How can we use this capability to come up with a representation for the entire protein?


Some possible ideas:



		
	Concatenation of amino acid embeddings  : We could loop through each amino acid in a protein sequence, grab its embedding, and concatenate these values into one long vector. For example, if we have a protein of length  10  and each amino acid has an embedding of length  1280  , then the protein would have an embedding of length  10  *   1280   =   12800   . This approach preserves the embedding of each constituent amino acid but has two main drawbacks:


	
			
		Variable length  : Longer proteins with more amino acids will have longer embeddings. This makes them hard to use in downstream applications (e.g. training a model to predict each protein’s function) since models generally expect static input shapes.

		

			
		Huge representations  : For very long proteins, this concatenated embedding vector could be quite large. The longest protein in the human body is called titin, which is a ~  34,000  amino acid protein that gives our muscle cells elasticity. With this approach, its embedding would be over 43 million values long (  34,000  *   1280   =   43,520,000   ), which seems like quite a bulky and inefficient representation.

		

			
		Overly simple  : Amino acids do not exist in a vacuum, and their function depends on their context. The concatenation approach treats them as independent (though perhaps our downstream model could correct this to some extent).

		

	

	

		
	Averaging of amino acid embeddings  : We could loop through each amino acid in a protein sequence, grab its embedding, and then simply mean average this embedding. For example, if we have a protein of length  10  and each amino acid has an embedding of length  1280  , then the protein would have an embedding of length  1280  .


	
			
		This approach produces constant length protein embeddings, regardless of the protein length, which is convenient. It is also a fairly compact representation – just  1280  numbers represent a protein function. However, its major con is still  over-simplification  – it is still quite a crude approximation to say that a protein’s embedding is the mean of its amino acid embeddings, especially since the ordering of the amino acids is lost. It’s like saying that a book’s meaning is the mean of its word embeddings – there will still be some information there, but it glosses over a lot of informative structure.

		

	

	




A better idea than the two just mentioned is to use the language model’s sequence embeddings directly. The ESM2 model has been trained to predict masked tokens given a context of amino acids, which means it already has the capability of generating a contextualized embedding for a string of amino acids. We can simply run the model on our input sequence (say, of length  100  ) and extract the model’s internal hidden state at a late layer (perhaps the final hidden layer, which is also coincidentally size  1280  for this model checkpoint), giving a protein embedding of shape  (100,  1280)   . We can then mean over the spatial axis (100) to produce a final embedding of length  1280  .





Extracellular Versus Membrane Protein Embeddings


We’ll introduce the GO (Gene Ontology) dataset soon, in the next section on predicting protein function, but first let’s just say we have a mapping between each protein (in the form of an accession in UniProt, the main protein information dataset) and its sequence to the cellular locations that the protein is found in:







import pandas as pd

protein_df = pd.read_csv(
  "/workspace/content/chapters/proteins/sources/assets/data/sequence_df_cco.csv"
)
protein_df = protein_df[~protein_df["term"].isin(["GO:0005575", "GO:0110165"])]
num_proteins = protein_df["EntryID"].nunique()
print(f"Loaded {len(protein_df)} annotations about {num_proteins} proteins.")
protein_df.head()













Loaded 294731 annotations about 21457 proteins.










	
		
				 
				Unnamed: 0
				EntryID
				Sequence
				taxonomyID
				term
				aspect
				Length
		

	
	
		
				0
				0
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				9606
				GO:0005622
				CCO
				258
		

		
				1
				1
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				9606
				GO:0031981
				CCO
				258
		

		
				2
				2
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				9606
				GO:0043229
				CCO
				258
		

		
				3
				3
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				9606
				GO:0043226
				CCO
				258
		

		
				5
				5
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				9606
				GO:0043231
				CCO
				258
		

	











The  term  column refers to specific cellular localization tags:







# Filter protein dataframe to proteins with a single location.
num_locations = protein_df.groupby("EntryID")["term"].nunique()
proteins_one_location = num_locations[num_locations == 1].index
protein_df = protein_df[protein_df["EntryID"].isin(proteins_one_location)]

go_function_examples = {
  "extracellular": "GO:0005576",
  "membrane": "GO:0016020",
}

sequences_by_function = {}

min_length = 100
max_length = 500  # Limit length for speed + to prevent OOMs.
num_samples = 20

for function, go_term in go_function_examples.items():
  proteins_with_function = protein_df[
    (protein_df["term"] == go_term)
    & (protein_df["Length"] >= min_length)
    & (protein_df["Length"] <= max_length)
  ]
  print(f"Found {len(proteins_with_function)} human proteins", flush=True)
  print(f'with the molecular function "{function}" ({go_term})', flush=True)
  print(f"and {min_length}<=length<={max_length}.", flush=True)
  print(f"Sampling {num_samples} proteins at random.", flush=True)
  sequences = list(
    proteins_with_function.sample(num_samples, random_state=42)["Sequence"]
  )
  sequences_by_function[function] = sequences













Found 164 human proteins










with the molecular function "extracellular" (GO:0005576)










and 100<=length<=500.










Sampling 20 proteins at random.










Found 65 human proteins










with the molecular function "membrane" (GO:0016020)










and 100<=length<=500.










Sampling 20 proteins at random.











We will swap in a slightly smaller ESM2 model that requires less memory, and write the function  get_protein_embeddings  to extract the model’s representation of protein sequences:







import numpy as np
import torch

model_checkpoint = "facebook/esm2_t6_8M_UR50D"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = EsmModel.from_pretrained(model_checkpoint)


def get_protein_embeddings(sequences):
  """Get protein embedding by taking mean over amino acid embeddings."""
  device = "cuda" if torch.cuda.is_available() else "cpu"
  model_inputs = tokenizer(sequences, padding=True, return_tensors="pt")
  model_inputs.to(device)
  # model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
  model.to(device)
  outputs = model(**model_inputs)
  embeddings = outputs.last_hidden_state.detach().cpu().numpy()
  seq_len = embeddings.shape[1]
  return np.sum(embeddings, axis=1) / seq_len













Some weights of EsmModel were not initialized from the model checkpoint at facebook/esm2_t6_8M_UR50D and are newly initialized: ['esm.pooler.dense.bias', 'esm.pooler.dense.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
















# Let's grab the protein embeddings for each set of sequences.
extracellular_protein_embeddings = get_protein_embeddings(
  sequences=sequences_by_function["extracellular"]
)

membrane_protein_embeddings = get_protein_embeddings(
  sequences=sequences_by_function["membrane"]
)











The shapes of these embeddings are (20, 320), showing that for each of the 20 sampled proteins, regardless of their length, we have a length 320 embedding vector:







print(extracellular_protein_embeddings.shape)
print(membrane_protein_embeddings.shape)

combined_embeddings = np.concatenate(
  [extracellular_protein_embeddings, membrane_protein_embeddings], axis=0
)













(20, 320)
(20, 320)











Figure 1-11 examines what the embeddings look like by again transforming them down to two dimensions, as shown in the following code:







import seaborn as sns
from sklearn.manifold import TSNE

embeddings_tsne = TSNE(n_components=2, random_state=42).fit_transform(
  combined_embeddings
)

embeddings_tsne_df = pd.DataFrame(
  embeddings_tsne, columns=["first_dimension", "second_dimension"]
)

embeddings_tsne_df["Location"] = ["Extracellular Protein"] * len(
  extracellular_protein_embeddings
) + ["Membrane Protein"] * len(membrane_protein_embeddings)

fig = sns.scatterplot(
  data=embeddings_tsne_df,
  x="first_dimension",
  y="second_dimension",
  hue="Location",
  s=50,
  alpha=0.7,
  palette="Set2",
)
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.title("tSNE of Protein Embeddings")
plt.tight_layout()











[image: _images/db689893f7e3dc3a93f057ec09d7e6920e1327bb67eb03f3488bb3bce42625f0.png]
Figure 1-11. The mean hidden layer embeddings of extracellular and membrane proteins exhibit distinct patterns, as evidenced by their clustering into separate groups when visualized using t-SNE.




We can see that, while certainly imperfect, it does look like membrane proteins tend to cluster in a different part of this space than extrecellular proteins. This is encouraging, because it suggests that the mean final hidden layer contains some useful information on the function or location of a protein.







Preparing the Data


There is a trend in machine learning books and blog posts rushing into the exciting meat of training and evaluating models as soon as humanly possible. However, in practice, training models is often a minor fraction of the work – a good chunk of the time is spent trying to understand and structure the data and the problem. Additionally, debugging modelling issues often involves looking back to the data, so there is really no avoiding the topic. In that spirit, here we will go through the process of preparing the data step-by-step, rather than having you load up a polished csv file from the ether.


Ultimately we want to fine-tune a model to predict protein function from sequence, so we would like to prepare a dataset containing pairs of  (protein_sequence,  protein_function)   . This immediately raises a few questions:



		
	How should we represent the concept of protein function?

	

		
	Have biologists already systematically classified different types of protein functions? How complete is our current knowledge?

	

		
	Is there a compiled dataset of human protein functions we can just download and use?

	




These are all important questions, and the first step in the data prep process is just to use a search enginer to search for related terms and poke around existing resources. For example, if you search for “protein function dataset” and examine the first page of results, you will encounter a competition called  CAFA (Critical Assessment of Functional Annotation)  , which is a community-organized challenge where different groups build models to predict a protein’s function. You may know about the competition CASP (Critical Assessment of protein Structure Prediction) if you are familiar with AlphaFold – these types of public competitions have historically been critical for pushing scientific progress in applied machine learning. Let’s now explore the CAFA challenge further.



Loading the CAFA3 Data


There have been several rounds of CAFA, but it looks like the data from CAFA3 is the most recent readily available dataset. We are going to download the  CAFA  3   Targets   and  CAFA  3   Training   Data   files from  their website  . Let’s load up the file containing the labels, i.e. the function of every protein:







import os

import pandas as pd

ROOT_DIR = "/workspace/content/chapters/proteins/sources/assets/data"

labels = pd.read_csv(
  os.path.join(ROOT_DIR, "train_terms.tsv.zip"), sep="\t", compression="infer"
)

labels













	
		
				 
				EntryID
				term
				aspect
		

	
	
		
				0
				A0A009IHW8
				GO:0008152
				BPO
		

		
				1
				A0A009IHW8
				GO:0034655
				BPO
		

		
				2
				A0A009IHW8
				GO:0072523
				BPO
		

		
				3
				A0A009IHW8
				GO:0044270
				BPO
		

		
				4
				A0A009IHW8
				GO:0006753
				BPO
		

		
				...
				...
				...
				...
		

		
				5363858
				X5L565
				GO:0050649
				MFO
		

		
				5363859
				X5L565
				GO:0016491
				MFO
		

		
				5363860
				X5M5N0
				GO:0005515
				MFO
		

		
				5363861
				X5M5N0
				GO:0005488
				MFO
		

		
				5363862
				X5M5N0
				GO:0003674
				MFO
		

	



5363863 rows × 3 columns










As a quick explanation of these three columns show :



		
	The  EntryID  column refers to the protein ID in the UniProt database.

	

		
	The  term  refers to a specific protein function, in terms of a GO (Gene Ontology) accession.

	

		
	The  aspect  refers to which of the three possible GO function categories the GO term belongs to:


	
			
		BPO: biological process

		

			
		MFO: molecular function

		

			
		CCO: cellular component

		

	

	




The  term  column just contains the GO accession codes, but ideally we’d like to know the associated function in plain English! Unfortunately, this information isn’t provided in the CAFA download, but from poking around the  Gene Ontology downloads page  , we can see that this information exists there. The ontology information is stored in graph format as an  .obo  file, and a quick Google search shows that the  obonet  Python library can load these files. Let’s grab the description associated with each GO accession:







import obonet


def get_go_term_descriptions() -> pd.DataFrame:
  """Fetch mapping between GO terms and their descriptions from GO source."""
  url = "https://current.geneontology.org/ontology/go-basic.obo"
  graph = obonet.read_obo(url)

  # Extract GO term IDs and names from the graph nodes.
  id_to_name = {id: data.get("name") for id, data in graph.nodes(data=True)}
  go_term_descriptions = pd.DataFrame(
    zip(id_to_name.keys(), id_to_name.values()), columns=["term", "description"]
  )
  return go_term_descriptions


go_term_descriptions = get_go_term_descriptions()
go_term_descriptions.head(5)













	
		
				 
				term
				description
		

	
	
		
				0
				GO:0000001
				mitochondrion inheritance
		

		
				1
				GO:0000002
				mitochondrial genome maintenance
		

		
				2
				GO:0000006
				high-affinity zinc transmembrane transporter a...
		

		
				3
				GO:0000007
				low-affinity zinc ion transmembrane transporte...
		

		
				4
				GO:0000009
				alpha-1,6-mannosyltransferase activity
		

	











We can merge this table back onto our labels dataframe:







labels = labels.merge(go_term_descriptions, on="term")
labels













	
		
				 
				EntryID
				term
				aspect
				description
		

	
	
		
				0
				A0A009IHW8
				GO:0008152
				BPO
				metabolic process
		

		
				1
				A0A009IHW8
				GO:0034655
				BPO
				nucleobase-containing compound catabolic process
		

		
				2
				A0A009IHW8
				GO:0072523
				BPO
				purine-containing compound catabolic process
		

		
				3
				A0A009IHW8
				GO:0006753
				BPO
				nucleoside phosphate metabolic process
		

		
				4
				A0A009IHW8
				GO:1901292
				BPO
				nucleoside phosphate catabolic process
		

		
				...
				...
				...
				...
				...
		

		
				5085153
				X5L565
				GO:0050649
				MFO
				testosterone 6-beta-hydroxylase activity
		

		
				5085154
				X5L565
				GO:0016491
				MFO
				oxidoreductase activity
		

		
				5085155
				X5M5N0
				GO:0005515
				MFO
				protein binding
		

		
				5085156
				X5M5N0
				GO:0005488
				MFO
				binding
		

		
				5085157
				X5M5N0
				GO:0003674
				MFO
				molecular_function
		

	



5085158 rows × 4 columns










For now, let’s only consider molecular functions (  MFO  ), and then examine which functional annotations are most common:







labels = labels[labels["aspect"] == "MFO"]
labels["description"].value_counts().head(10)













description
molecular_function                         78637
binding                                    57380
protein binding                            47987
catalytic activity                         25324
organic cyclic compound binding            12889
heterocyclic compound binding              12694
nucleic acid binding                       10236
transferase activity                        9868
hydrolase activity                          7887
catalytic activity, acting on a protein     7099
Name: count, dtype: int64











Next, let’s load up the protein sequences associated with each protein ID. This information is in the file  train_sequences.fasta  (where  .fasta  is a common format for storing biological sequences such as protein and DNA sequences). We can use BioPython’s  SeqIO  to parse the  .fasta  file.


Note

No one knows about BioPython’s  SeqIO  module or  .fasta  formats or cytoplasmic proteins or GO annotations or CAFA data – until, of course, they do. It is extremely normal to encounter unfamiliar terms and concepts on a daily basis in this field, especially since we are working at the intersection of multiple fields. Extensive and frequent Googling is not only expected, but highly encouraged.




We can store each sequence string as a column in a pandas dataframe for easier use:







from Bio import SeqIO

sequences_file = os.path.join(ROOT_DIR, "train_sequences.fasta")
fasta_sequences = SeqIO.parse(open(sequences_file), "fasta")

data = []
for fasta in fasta_sequences:
  data.append(
    {
      "EntryID": fasta.id,
      "Sequence": str(fasta.seq),
    }
  )
sequence_df = pd.DataFrame(data)
sequence_df.head()













	
		
				 
				EntryID
				Sequence
		

	
	
		
				0
				P20536
				MNSVTVSHAPYTITYHDDWEPVMSQLVEFYNEVASWLLRDETSPIP...
		

		
				1
				O73864
				MTEYRNFLLLFITSLSVIYPCTGISWLGLTINGSSVGWNQTHHCKL...
		

		
				2
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
		

		
				3
				A0A0B4J1F4
				MGGEAGADGPRGRVKSLGLVFEDESKGCYSSGETVAGHVLLEAAEP...
		

		
				4
				P54366
				MVETNSPPAGYTLKRSPSDLGEQQQPPRQISRSPGNTAAYHLTTAM...
		

	











Note that proteins can have very different lengths:







sequence_df["Length"] = sequence_df["Sequence"].str.len()
sequence_df.head()













	
		
				 
				EntryID
				Sequence
				Length
		

	
	
		
				0
				P20536
				MNSVTVSHAPYTITYHDDWEPVMSQLVEFYNEVASWLLRDETSPIP...
				218
		

		
				1
				O73864
				MTEYRNFLLLFITSLSVIYPCTGISWLGLTINGSSVGWNQTHHCKL...
				354
		

		
				2
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				258
		

		
				3
				A0A0B4J1F4
				MGGEAGADGPRGRVKSLGLVFEDESKGCYSSGETVAGHVLLEAAEP...
				415
		

		
				4
				P54366
				MVETNSPPAGYTLKRSPSDLGEQQQPPRQISRSPGNTAAYHLTTAM...
				415
		

	











One other detail is that this dataset contains proteins from many organisms. Part of the CAFA download contains a  taxonomy.csv  file, which looks like this:







taxonomy_file = os.path.join(ROOT_DIR, "train_taxonomy.tsv.zip")
taxonomy = pd.read_csv(taxonomy_file, sep="\t", compression="infer")
taxonomy.head(5)













	
		
				 
				EntryID
				taxonomyID
		

	
	
		
				0
				Q8IXT2
				9606
		

		
				1
				Q04418
				559292
		

		
				2
				A8DYA3
				7227
		

		
				3
				Q9UUI3
				284812
		

		
				4
				Q57ZS4
				185431
		

	











This file contains an organism code  taxonomyID  for every protein, which is maintained by the  NCBI database  (there’s many different databases in biology!). We can merge this onto our dataframe of protein sequences, and filter to just the taxonomy ID for  Homo sapiens  :







sequence_df = sequence_df.merge(taxonomy, on="EntryID")
sequence_df = sequence_df[sequence_df["taxonomyID"] == 9606]
sequence_df.head()













	
		
				 
				EntryID
				Sequence
				Length
				taxonomyID
		

	
	
		
				2
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				258
				9606
		

		
				5
				P33681
				MGHTRRQGTSPSKCPYLNFFQLLVLAGLSHFCSGVIHVTKEVKEVA...
				288
				9606
		

		
				7
				Q16787
				MAAAARPRGRALGPVLPPTPLLLLVLRVLPACGATARDPGAAAGLS...
				3333
				9606
		

		
				10
				Q96S79
				MVSTYRVAVLGARGVGKSAIVRQFLYNEFSEVCVPTTARRLYLPAV...
				203
				9606
		

		
				14
				Q5MNZ6
				MNLLPCNPHGNGLLYAGFNQDHGCFACGMENGFRVYNTDPLKEKEK...
				344
				9606
		

	
















sequence_df = sequence_df.merge(labels, on="EntryID")
print(
  f'Dataset contains {sequence_df["EntryID"].nunique()} human proteins '
  f'with {sequence_df["term"].nunique()} molecular functions.'
)
sequence_df.head()













Dataset contains 16336 human proteins with 4151 molecular functions.










	
		
				 
				EntryID
				Sequence
				Length
				taxonomyID
				term
				aspect
				description
		

	
	
		
				0
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				258
				9606
				GO:0003676
				MFO
				nucleic acid binding
		

		
				1
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				258
				9606
				GO:1990837
				MFO
				sequence-specific double-stranded DNA binding
		

		
				2
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				258
				9606
				GO:0001216
				MFO
				DNA-binding transcription activator activity
		

		
				3
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				258
				9606
				GO:0005488
				MFO
				binding
		

		
				4
				O95231
				MRLSSSPPRGPQQLSSFGSVDWLSQSSCSGPTHTPRPADFSLGSLP...
				258
				9606
				GO:0001228
				MFO
				DNA-binding transcription activator activity, ...
		

	











We can already see that each protein can be assigned multiple molecular functions.


In the table below we check how often each molecular function occur in this dataset:







sequence_df["term"].value_counts()













term
GO:0003674    16336
GO:0005488    15148
GO:0005515    14541
GO:0003824     3875
GO:0097159     2998
              ...  
GO:0046525        1
GO:0000104        1
GO:0008177        1
GO:0016635        1
GO:0050295        1
Name: count, Length: 4151, dtype: int64











Next we look at what the top labels are. There are some labels so common as to be uninformative, which can trip up machine learning models, since they learn to fixate on just predicting these abundant labels. Let’s remove these “uninteresting” protein functions:







uninteresting_functions = [
  "GO:0003674",  # "molecular function". Applies to 100% of proteins.
  "GO:0005488",  # "binding". Applies to 93% of proteins.
  "GO:0005515",  # "protein binding". Applies to 89% of proteins.
]

sequence_df = sequence_df[~sequence_df["term"].isin(uninteresting_functions)]
sequence_df.shape













(109735, 7)











It also looks like some molecular functions are incredibly rare – for example,  GO:0099609  (or  microtubule lateral binding  ) only occurs once. Our machine learning model would need many example proteins per function in order to learn the associations. For this reason, let’s filter this dataset of 4,170 functions down to those with at least 50 proteins:







common_functions = (
  sequence_df["term"]
  .value_counts()[sequence_df["term"].value_counts() >= 50]
  .index
)

sequence_df = sequence_df[sequence_df["term"].isin(common_functions)]
sequence_df["term"].value_counts()













term
GO:0003824    3875
GO:0097159    2998
GO:1901363    2943
GO:0003676    2469
GO:0042802    1803
              ... 
GO:0004714      52
GO:0005516      51
GO:0031490      51
GO:0019003      50
GO:0015179      50
Name: count, Length: 305, dtype: int64











We can now reformat this dataframe so that we have one protein per row with many columns representing each possible molecular function (we will use the handy  pivot  function in pandas):







sequence_df["value"] = 1.0

sequence_df = (
  sequence_df[["EntryID", "Sequence", "Length", "term", "value"]]
  .pivot(
    index=["EntryID", "Sequence", "Length"], columns="term", values="value"
  )
  .fillna(0)
  .reset_index()
)

sequence_df.head()













	
		
				term
				EntryID
				Sequence
				Length
				GO:0000166
				GO:0000287
				GO:0000976
				GO:0000977
				GO:0000978
				GO:0000981
				GO:0000987
				...
				GO:0140677
				GO:0140678
				GO:1901265
				GO:1901363
				GO:1901681
				GO:1901702
				GO:1901981
				GO:1902936
				GO:1990782
				GO:1990837
		

	
	
		
				0
				A0A024R6B2
				MIASCLCYLLLPATRLFRALSDAFFTCRKNVLLANSSSPQVEGDFA...
				670
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				1
				A0A087WUI6
				MSRKISKESKKVNISSSLESEDISLETTVPTDDISSSEEREGKVRI...
				698
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				2
				A0A087X1C5
				MGLEALVPLAMIVAIFLLLVDLMHRHQRWAARYPPGPLPLPGLGNL...
				515
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				3
				A0A0C4DG62
				MAHVGSRKRSRSRSRSRGRGSEKRKKKSRKDTSRNCSASTSQERSK...
				218
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				4
				A0A0C4DGF1
				MSLPPIRLPSPYGSDRLVQLAARLRPALCDTLITVGSQEFPAHSLV...
				302
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

	



5 rows × 308 columns










Great, this dataset is getting closer to a format that a machine learning model can make use of. Let’s do some final sanity checks.


First, let’s find out how many proteins there are:







sequence_df["EntryID"].nunique()













10709











This number sounds reasonable, since there are around 21,000 human genes. We know we applied some filtering steps, so we’d expect a number less than this. It’s good to keep rough order-of-magnitude estimates in mind - for example, we would be worried if this number was 1,000 or 1,000,000.


Next, let’s see whether there are any repeated protein sequences:







sequence_df["Sequence"].nunique()













10698











It looks like in a handful of cases, there are duplicate sequences (for example, P0DP23, P0DP24, P0DP25). This seems ok so we will leave this in.







sequence_df[sequence_df["EntryID"].isin(["P0DP23", "P0DP24", "P0DP25"])]













	
		
				term
				EntryID
				Sequence
				Length
				GO:0000166
				GO:0000287
				GO:0000976
				GO:0000977
				GO:0000978
				GO:0000981
				GO:0000987
				...
				GO:0140677
				GO:0140678
				GO:1901265
				GO:1901363
				GO:1901681
				GO:1901702
				GO:1901981
				GO:1902936
				GO:1990782
				GO:1990837
		

	
	
		
				1945
				P0DP23
				MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTE...
				149
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				...
				1.0
				1.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				1946
				P0DP24
				MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTE...
				149
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				...
				1.0
				1.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				1947
				P0DP25
				MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTE...
				149
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				...
				1.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

	



3 rows × 308 columns










This gives us a final dataset linking 10709 human proteins to 305 molecular functions.


Since our simple mean embedding approach is quite memory intensive, let’s filter down the dataframes to proteins with a maximum length of 500 in order to avoid running out of memory:







print(sequence_df.shape)
sequence_df = sequence_df[sequence_df["Length"] <= 500]
print(sequence_df.shape)













(10709, 308)
(5957, 308)














Splitting the Dataset into Subsets.


We will split the dataset into several distinct sets:



		
	A  training  dataset. This will contain the proteins used for training our models.

	

		
	A  validation  dataset. We will evaluate our model predictions on this dataset, and use these results to guide improvements to the model.

	

		
	A  test  dataset. We will do a final, one-off evaluation of the model on this dataset. Importantly, we will  not  use any information we glean from this test data to guide further model development. A test dataset is our best approximation of the model’s  generalizability  , or how well it would fare in the wild on totally unseen data:

	









from sklearn.model_selection import train_test_split

# 60% of the protein sequences will go into the training set.
train_sequence_ids, valid_test_sequence_ids = train_test_split(
  list(set(sequence_df["EntryID"])), test_size=0.40, random_state=42
)

# 20% of the protein sequences will go into the validation set
# and the remaining 20% into the test set.
valid_sequence_ids, test_sequence_ids = train_test_split(
  valid_test_sequence_ids, test_size=0.50, random_state=42
)
















train_df = sequence_df[sequence_df["EntryID"].isin(train_sequence_ids)]
valid_df = sequence_df[sequence_df["EntryID"].isin(valid_sequence_ids)]
test_df = sequence_df[sequence_df["EntryID"].isin(test_sequence_ids)]

print(
  f"train_df has {len(train_df)} entries.",
  f"valid_df has {len(valid_df)} entries.",
  f"test_df has {len(test_df)} entries.",
)













train_df has 3574 entries. valid_df has 1191 entries. test_df has 1192 entries.














Converting Protein Sequences into their Mean Embedding


We will now convert the sequences into their mean embedding, as we did above. To speed things up, we will calculate the embeddings on a GPU (if available in your environment):







import jax

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}.")

num_devices = jax.device_count()
device_type = jax.devices()[0].device_kind
print(f"Found {num_devices} JAX devices of type {device_type}.")

model = model.to(device)
model = model.eval()













Using device: cpu.
Found 1 JAX devices of type Tesla T4.











The extraction of the embedding of each protein is a bit time consuming (~45 minutes to compute 3546 training protein embeddings on a T4 GPU in a colab), so we have precomputed these values here (available via our GitHub repo). However, have a read through the function below in order to understand how to do the extraction:







def get_protein_embeddings_for_df(df: pd.DataFrame) -> pd.DataFrame:
  """Get protein embeddings for each protein sequence in a dataframe."""
  protein_embeddings = []
  # Iterate through each row of the protein dataframe, extract the embeddings,
  # and store each of the 640 values in a separate column in the dataframe.
  for _, row in df.iterrows():
    protein_embeddings.append(
      {
        "protein_id": row["EntryID"],
        **{
          f"{i}": value
          for i, value in enumerate(get_protein_embeddings(row["Sequence"])[0])
        },
      }
    )
  return pd.DataFrame(protein_embeddings)


# NOTE: the code below is not run, instead we load a precomputed version
# train_df_embeddings = get_protein_embeddings_for_df(train_df)
# valid_df_embeddings = get_protein_embeddings_for_df(valid_df)
# test_df_embeddings = get_protein_embeddings_for_df(test_df)











Let us load up the precomputed embeddings and merge them with the sequence information respectively:







TRAIN_EMBEDDINGS = os.path.join(
  ROOT_DIR, "protein_embeddings_mfo_train.feather"
)
VALID_EMBEDDINGS = os.path.join(
  ROOT_DIR, "protein_embeddings_mfo_valid.feather"
)
TEST_EMBEDDINGS = os.path.join(ROOT_DIR, "protein_embeddings_mfo_test.feather")

# Load up the precomputed embeddings, and merge to get the target columns.
train_df_embeddings = pd.read_feather(TRAIN_EMBEDDINGS)
train_df_embeddings = train_df_embeddings.merge(
  sequence_df, left_on="protein_id", right_on="EntryID"
)

valid_df_embeddings = pd.read_feather(VALID_EMBEDDINGS)
valid_df_embeddings = valid_df_embeddings.merge(
  sequence_df, left_on="protein_id", right_on="EntryID"
)

test_df_embeddings = pd.read_feather(TEST_EMBEDDINGS)
test_df_embeddings = test_df_embeddings.merge(
  sequence_df, left_on="protein_id", right_on="EntryID"
)











The table below gives us a glimpse of the training dataset that the model will learn from:







train_df_embeddings.head()













	
		
				 
				protein_id
				0
				1
				2
				3
				4
				5
				6
				7
				8
				...
				GO:0140677
				GO:0140678
				GO:1901265
				GO:1901363
				GO:1901681
				GO:1901702
				GO:1901981
				GO:1902936
				GO:1990782
				GO:1990837
		

	
	
		
				0
				A0A0C4DG62
				-0.065512
				-0.082175
				0.098743
				-0.269771
				0.013446
				-0.065619
				0.152717
				0.113927
				-0.159093
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				1
				A0A0C4DGF1
				-0.152215
				-0.023353
				0.042297
				-0.214534
				-0.103596
				0.017758
				0.069620
				-0.126128
				-0.341459
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				2
				A0A0C5B5G6
				-0.217298
				0.047842
				0.176156
				-0.306724
				-0.084912
				-0.135284
				0.008247
				-0.218395
				-0.107923
				...
				0.0
				0.0
				0.0
				1.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				3
				A0AVI4
				-0.084655
				-0.123139
				0.050184
				-0.063417
				-0.010784
				-0.105071
				-0.052546
				-0.040143
				-0.148751
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

		
				4
				A0PJZ3
				-0.054693
				-0.104153
				0.039825
				-0.128401
				-0.060448
				-0.086891
				-0.060855
				0.156418
				-0.200114
				...
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
				0.0
		

	



5 rows × 949 columns










For convenience, let’s define a global variable  TARGETS  to store the column names of all GO terms:







TARGETS = list(sequence_df.columns[sequence_df.columns.str.contains("GO:")])
NUM_TARGETS = len(TARGETS)











Let’s now build an iterable TensorFlow dataset from this dataframe that we can call  next  on in order to fetch batches of data:







import tensorflow as tf
import tensorflow_datasets as tfds

EMBEDDING_DIM = 640
BATCH_SIZE = 32


def build_dataset(
  df_embeddings: pd.DataFrame,
  batch_size: int = 8,
  is_training: bool = False,
  shuffle_buffer: int = 50,
):
  """Construct iterable Tensorflow dataset from an embedding dataframe."""
  dataset = tf.data.Dataset.from_tensor_slices(
    {
      "sequence_embedding": df_embeddings[list(map(str, range(EMBEDDING_DIM)))],
      "target": df_embeddings[TARGETS],
    }
  )
  if is_training:
    dataset = (
      dataset.shuffle(shuffle_buffer)
      .batch(batch_size, drop_remainder=True)
      .repeat()
    )
  else:
    dataset = dataset.batch(batch_size, drop_remainder=True)
  return iter(tfds.as_numpy(dataset))


train_ds = build_dataset(train_df_embeddings, BATCH_SIZE, is_training=True)
valid_ds = build_dataset(valid_df_embeddings, BATCH_SIZE, is_training=False)
test_ds = build_dataset(test_df_embeddings, BATCH_SIZE, is_training=False)











These datasets are iterators, so we can call  next  on them in order to fetch a batch of data.







batch = next(train_ds)
batch["sequence_embedding"].shape, batch["target"].shape













((32, 640), (32, 305))











Note that because we have a  .repeat()  in our train dataset code, the iterator will fetch batches indefinitely (looping over the same batches), whereas the validation dataset will eventually run out of batches to fetch.







Training the Model


We will now train a simple  flax  linear model on top of the mean protein embeddings. Flax is quite similar to many other deep learning frameworks (especially  Haiku  , if you have encountered it). In our setup, note that our model is only an MLP (multi-layer perceptron, which is multiple linear layers with some non-linearities) – we are not modifying (back-propagating into) the original ESM2 model:







import flax.linen as nn
import jax
import jax.numpy as jnp
import optax


class Model(nn.Module):
  dim: int = 256
  num_targets: int = NUM_TARGETS
  dropout_rate: float = 0.3

  @nn.compact
  def __call__(self, batch, is_training=False):
    # TODO: 'is_training' is not used - remove for this model?
    x = batch["sequence_embedding"]
    x = nn.Sequential(
      [
        nn.Dense(self.dim * 2),
        jax.nn.gelu,
        nn.Dense(self.dim),
        jax.nn.gelu,
        nn.Dense(self.num_targets),
      ]
    )(x)
    return x


mlp = Model()












Defining the Training Loop


With the model and data set up, we can now initialize our model parameters, our optimizer, and write a function to perform a single training step (which encompasses a model forward pass, a loss computation, a gradient computation, and an update of the model parameters using the gradients):







from flax.training import train_state


def create_train_state(model, params_key, batch, learning_rate):
  variables = model.init(params_key, batch, is_training=False)
  params = variables["params"]
  optimizer = optax.adam(learning_rate)
  return train_state.TrainState.create(
    apply_fn=model.apply, params=params, tx=optimizer
  )


@jax.jit
def train_step(state, batch):
  """A single training step and updates parameters."""

  def loss_fn(params):
    """Applies sigmoid to logits and computes cross-entropy loss."""
    preds = state.apply_fn({"params": params}, batch, is_training=True)
    loss = optax.sigmoid_binary_cross_entropy(
      logits=preds, labels=batch["target"]
    ).mean()
    return loss

  grad_fn = jax.value_and_grad(loss_fn)
  loss, grads = grad_fn(state.params)
  state = state.apply_gradients(grads=grads)
  return state, loss











We should also implement some metrics to quantify how well the model is doing as it trains:







from sklearn import metrics


# TODO: @jax.jit this
def eval_step(state, dataset) -> dict[str, float]:
  """Build data and evaluate predictions."""
  # dataset = valid_ds
  dataset_metrics = []
  for batch in dataset:
    # batch = next(dataset)
    preds = state.apply_fn({"params": state.params}, batch, is_training=False)
    batch_metrics = compute_batch_metrics(preds=preds, targets=batch["target"])
    dataset_metrics.extend(batch_metrics)
  return pd.DataFrame(dataset_metrics).mean(axis=0).to_dict()


# TODO: @jax.jit this
def compute_batch_metrics(
  targets: np.ndarray, preds: np.ndarray, thresh=0.5
) -> dict[str, float]:
  """Compute eval metrics on a single example's targets and predictions."""
  # TODO: consider removing safety clause?
  # if np.sum(targets) == 0:
  #     return {
  #     'accuracy': 0, 'recall': 0, 'precision': 0, 'auprc': 0, 'auroc': 0}
  probs = jax.nn.sigmoid(preds)
  batch_metrics = []
  for t, p in zip(targets, probs):
    batch_metrics.append(
      {
        "accuracy": metrics.accuracy_score(t, p >= thresh),
        "recall": metrics.recall_score(t, p >= thresh),
        "precision": metrics.precision_score(t, p >= thresh, zero_division=0.0),
        "auprc": metrics.average_precision_score(t, p),
        "auroc": metrics.roc_auc_score(t, p),
      }
    )
  return batch_metrics











Given that we have 3546 training examples, and a batch size of 32, it will take  len(train_df_embeddings)  /   BATCH_SIZE   =   110.8   around 111 training steps for the model to see the entire dataset.


In the next chunk of code, everything comes together and variations of this basic setup will be repeated in every chapter. We have the training loop where we first define a training state, and then loop over the batches to train the model and evaluate it every so often:







def train(model, train_ds, valid_df_embeddings, num_steps, learning_rate):
  init_rng = jax.random.PRNGKey(42)
  main_key, params_key = jax.random.split(key=init_rng, num=2)
  dummy_batch = jax.tree_util.tree_map(jnp.array, batch)
  state = create_train_state(model, params_key, dummy_batch, learning_rate)
  del main_key

  losses = []
  eval_metrics = {}

  for step in range(num_steps):
    train_batch = next(train_ds)
    train_batch = jax.tree_util.tree_map(jnp.array, train_batch)
    state, loss = train_step(state, batch)
    losses.append({"step": step, "loss": loss})

    if step % 25 == 0:
      # NOTE: we rebuild the validation dataset as it gets depleted
      valid_ds = build_dataset(
        valid_df_embeddings, BATCH_SIZE, is_training=False
      )
      eval_metrics[step] = eval_step(state, valid_ds)
      print(f"Step {step} eval metrics:", eval_metrics[step], flush=True)

  all_metrics = {"losses": losses, "eval_metrics": eval_metrics}
  return state, all_metrics











Let’s now train the model:







state, all_metrics = train(mlp, train_ds, valid_df_embeddings, num_steps=300, learning_rate=0.001)











In Figure 1-12 we can see that the model trains fairly stably, with the training loss curve looking reasonable (sharp initial decline into a long tail; no substantial spikes). We also see that the validation performance saturates (stops improving) quite quickly, perhaps even around 100 steps. This is around 1 single training epoch. This suggests that the model rapidly learns basically all it can learn from our mean protein embeddings, and does not benefit too much from extended training.







import matplotlib.pyplot as plt
import seaborn as sns

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(9, 4))

# Plot training loss curve.
loss_plot_df = pd.DataFrame(all_metrics["losses"])
loss_plot_df["loss"] = loss_plot_df["loss"].astype(float)
sns.lineplot(ax=ax[0], x="step", y="loss", data=loss_plot_df, color="grey")
ax[0].set_title("Training loss over training steps.")

# Plot validation metrics curves.
eval_plot_df = (
  pd.DataFrame(all_metrics["eval_metrics"])
  .T.reset_index()
  .rename(columns={"index": "step"})
  .astype(float)
)
sns.lineplot(
  ax=ax[1],
  x="step",
  y="value",
  hue="variable",
  data=eval_plot_df.melt("step"),
  palette="Set2",
)
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))
ax[1].set_title("Validation metrics over training steps.")











[image: _images/6671b33d668b3e07066de03e31c104d5ae500579a5799cc25531c2bc53aeebb9.png]
Figure 1-12. Evaluation of the MLP model across training steps provides insights into the model’s training progress and effectiveness.







Examining the Model Predictions


It’s great to have a model training and the curves going in the right direction, but this is just the start. Now we can analyze the model’s predictions and its strengths and weaknesses.


First, let’s make all the predictions on the validation set and store these as a dataframe so that we can inspect them easily:







# Materialize all the validation set predictions.
# NOTE: we do batch_size 1 to ensure we do not drop the remainder
valid_ds = build_dataset(valid_df_embeddings, batch_size=1, is_training=False)

valid_preds = []

for valid_batch in valid_ds:
  preds = state.apply_fn(
    {"params": state.params}, valid_batch, is_training=False
  )
  probs = jax.nn.sigmoid(preds)
  valid_preds.extend(probs)

valid_true_df = valid_df_embeddings[["protein_id"] + list(TARGETS)].set_index(
  "protein_id"
)

valid_predictions_df = pd.DataFrame(
  np.stack(valid_preds), columns=list(TARGETS), index=valid_true_df.index
)











To get a broad overview of the true vs. predicted protein functions, we can plot heatmaps of the validation  protein  x   protein_function   matrices side by side as you can see in Figure 1-13 .







# TODO: make white background, as otherwise the print version
#       of the book will only look black
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(11, 4))
sns.heatmap(ax=ax[0], data=valid_true_df, yticklabels=False, xticklabels=False)
ax[0].set_title("True functional annotations by protein.")
ax[0].set_xlabel("Functional category")

sns.heatmap(
  ax=ax[1], data=valid_predictions_df, yticklabels=False, xticklabels=False
)
ax[1].set_title("Predicted functional annotations by protein.")
ax[1].set_xlabel("Functional category")











[image: _images/b1e8dd671636c437785589457a42f42e896076e17bc86c5965f590c1859fd61c.png]
Figure 1-13. True versus prediction functional annotations by protein over the entire validation set, visualized as heatmaps.




From a bird’s eye view, it looks like in Figure 1-13 the model is decent at predicting the most common functional categories (the column-like stripes), but struggles to pick up on the sparser speckle patterns. It also looks like there are some functions that it hardly ever predicts (empty columns), and some functions that it gets fairly trigger happy on (dense columns, e.g. the bands on the very left).


Let’s compute the metrics for each protein function separately:







def compute_metrics_on_example(
  target: np.ndarray, preds: np.ndarray
) -> dict[str, float]:
  """Compute eval metrics on a single example's targets and predictions."""
  if np.sum(target) == 0:
    return {"accuracy": 0, "recall": 0, "precision": 0, "auprc": 0, "auroc": 0}

  return {
    "accuracy": metrics.accuracy_score(target, preds >= 0.5),
    "recall": metrics.recall_score(target, preds >= 0.5),
    "precision": metrics.precision_score(
      target, preds >= 0.5, zero_division=0.0
    ),
    "auprc": metrics.average_precision_score(target, preds),
    "auroc": metrics.roc_auc_score(target, preds),
  }


metrics_by_function = {}
for function in TARGETS:
  metrics_by_function[function] = compute_metrics_on_example(
    valid_true_df[function], valid_predictions_df[function]
  )
















to_plot = pd.DataFrame(metrics_by_function).T
to_plot = to_plot.merge(
  go_term_descriptions, left_index=True, right_on="term"
).set_index("term")
to_plot = to_plot.sort_values("auprc", ascending=False)
to_plot













	
		
				 
				accuracy
				recall
				precision
				auprc
				auroc
				description
		

		
				term
				 
				 
				 
				 
				 
				 
		

	
	
		
				GO:0003824
				0.707809
				0.751220
				0.555957
				0.615211
				0.790250
				catalytic activity
		

		
				GO:0004888
				0.947943
				0.782609
				0.534653
				0.585202
				0.961882
				transmembrane signaling receptor activity
		

		
				GO:0004930
				0.973971
				0.365854
				0.750000
				0.575335
				0.972322
				G protein-coupled receptor activity
		

		
				GO:1901363
				0.748950
				0.382716
				0.556054
				0.536699
				0.760559
				heterocyclic compound binding
		

		
				GO:0097159
				0.748111
				0.405405
				0.569620
				0.517223
				0.744440
				organic cyclic compound binding
		

		
				...
				...
				...
				...
				...
				...
				...
		

		
				GO:0015370
				0.999160
				0.000000
				0.000000
				0.001235
				0.320168
				solute:sodium symporter activity
		

		
				GO:0004713
				0.999160
				0.000000
				0.000000
				0.000858
				0.021008
				protein tyrosine kinase activity
		

		
				GO:0046332
				0.000000
				0.000000
				0.000000
				0.000000
				0.000000
				SMAD binding
		

		
				GO:0004714
				0.000000
				0.000000
				0.000000
				0.000000
				0.000000
				transmembrane receptor protein tyrosine kinase...
		

		
				GO:0042626
				0.000000
				0.000000
				0.000000
				0.000000
				0.000000
				ATPase-coupled transmembrane transporter activity
		

	



305 rows × 6 columns










It appears that there is a huge spread of model performance by the specific protein function – the seems to do fairly well at predicting some functions like  catalytic  activity   but is hopeless at other functions like  growth  factor   activity   . Why do you think this might be the case? Some points to consider:



		
	From the machine learning side, are our target labels balanced or imbalanced? What is the network incentivized to optimize for during training, and how does this interact with class imbalance?

	

		
	From the biology side, could some protein functions be harder to learn to predict given our specific setup, or harder to predict in general?

	




Let’s examine the first point and explore how our auprc metric correlates with the number of proteins with that function in the training set:







# Compute number of occurences of each function in the training set.
train_n_by_function = pd.DataFrame(train_df[TARGETS].sum(), columns=["train_n"])
to_plot = to_plot.merge(train_n_by_function, left_index=True, right_index=True)
to_plot













	
		
				 
				accuracy
				recall
				precision
				auprc
				auroc
				description
				train_n
		

	
	
		
				GO:0003824
				0.707809
				0.751220
				0.555957
				0.615211
				0.790250
				catalytic activity
				1210.0
		

		
				GO:0004888
				0.947943
				0.782609
				0.534653
				0.585202
				0.961882
				transmembrane signaling receptor activity
				219.0
		

		
				GO:0004930
				0.973971
				0.365854
				0.750000
				0.575335
				0.972322
				G protein-coupled receptor activity
				132.0
		

		
				GO:1901363
				0.748950
				0.382716
				0.556054
				0.536699
				0.760559
				heterocyclic compound binding
				961.0
		

		
				GO:0097159
				0.748111
				0.405405
				0.569620
				0.517223
				0.744440
				organic cyclic compound binding
				985.0
		

		
				...
				...
				...
				...
				...
				...
				...
				...
		

		
				GO:0015370
				0.999160
				0.000000
				0.000000
				0.001235
				0.320168
				solute:sodium symporter activity
				4.0
		

		
				GO:0004713
				0.999160
				0.000000
				0.000000
				0.000858
				0.021008
				protein tyrosine kinase activity
				6.0
		

		
				GO:0046332
				0.000000
				0.000000
				0.000000
				0.000000
				0.000000
				SMAD binding
				15.0
		

		
				GO:0004714
				0.000000
				0.000000
				0.000000
				0.000000
				0.000000
				transmembrane receptor protein tyrosine kinase...
				1.0
		

		
				GO:0042626
				0.000000
				0.000000
				0.000000
				0.000000
				0.000000
				ATPase-coupled transmembrane transporter activity
				6.0
		

	



305 rows × 7 columns










It already looks like the better performing functions were better represented in the training set. Let’s make a scatter plot of this to confirm this trend:







fig, ax = plt.subplots(figsize=(4, 4))
sns.scatterplot(
  x="train_n", y="auprc", data=to_plot, alpha=0.5, s=50, color="grey"
)











[image: _images/efb35b74908664e109d64c73bf29b3ef7f84932c66c27dec317202552fe779e7.png]
Figure 1-14. Protein functions that were better represented in the training dataset are better predicted by the model.




In Figure 1-14 , it looks like we have a positive correlation between the number of training examples of a specific protein function in the training set and the model’s auprc on the validation set, which is generally what we would expect.





Evaluating Model Usefulness


Is an  auprc=0.654  for the protein function  catalytic  activity   good or bad? It’s hard to know in a vaccuum. Is it perhaps completely expected by chance? How do we interpret these metrics, and how do we know if the model has learnt anything useful?


Let’s make some simple baseline methods to compare against our model:



		
	Coin flip  : For each possible protein label, we will predict either 0 or 1 at random, with equal probability.

	

		
	Proportional guessing  : For each possible protein label, we will look up how often that label is 0 or 1 in the training set. We will then predict either 0 or 1 at random with the probabilities set by the training proportions.

	









def make_coin_flip_predictions(valid_true_df: pd.DataFrame) -> pd.DataFrame:
  """Make random coin flip predictions for each protein function."""
  predictions = np.random.choice([0.0, 1.0], size=valid_true_df.shape)
  return pd.DataFrame(predictions, columns=TARGETS, index=valid_true_df.index)


def make_proportional_predictions(
  valid_true_df: pd.DataFrame, train_df: pd.DataFrame
) -> pd.DataFrame:
  """Make random protein function predictions proportional to frequency."""
  percent_1_train = dict(train_df[TARGETS].mean())
  proportional_preds = []
  for target_column in TARGETS:
    prob_1 = percent_1_train[target_column]
    prob_0 = 1 - prob_1
    proportional_preds.append(
      np.random.choice([0.0, 1.0], size=len(valid_true_df), p=[prob_0, prob_1])
    )
  return pd.DataFrame(
    np.stack(proportional_preds).T, columns=TARGETS, index=valid_true_df.index
  )


prediction_sets = {
  "coin_flip_baseline": make_coin_flip_predictions(valid_true_df),
  "proportional_guess_baseline": make_proportional_predictions(
    valid_true_df, train_df
  ),
  "model": valid_predictions_df,
}











Now let’s evaluate these baselines in exactly the same way as we evaluated our model:







def compute_overall_metric(predictions_df):
  overall_metrics = []
  for i in range(len(valid_true_df)):
    overall_metrics.append(
      compute_metrics_on_example(valid_true_df.iloc[i], predictions_df.iloc[i])
    )
  return pd.DataFrame(overall_metrics).mean()


metrics_by_method = {}
for method, predictions_df in prediction_sets.items():
  metrics_by_method[method] = compute_overall_metric(predictions_df)

np.round(pd.DataFrame(metrics_by_method).T, 3)













	
		
				 
				accuracy
				recall
				precision
				auprc
				auroc
		

	
	
		
				coin_flip_baseline
				0.500
				0.498
				0.023
				0.025
				0.499
		

		
				proportional_guess_baseline
				0.957
				0.088
				0.084
				0.040
				0.533
		

		
				model
				0.973
				0.178
				0.323
				0.286
				0.736
		

	











It looks like our model is substantially better than randomly guessing protein functions (auprc=0.28 versus 0.04 is over a 20% boost), which is nice. However, we can see that most of this improvement comes from much higher precision, and not much higher recall - this means that when the model positively predicts a certain function for a protein, it is relatively good, but it fails to make positive predictions frequently (i.e. it is prone to false negatives).


We can further characterize the model’s strength and weaknesses by function, compared to the baselines:







auprc_by_function = {}
for method, predictions_df in prediction_sets.items():
  metrics_by_function = {}
  for function in TARGETS:
    metrics_by_function[function] = compute_metrics_on_example(
      valid_true_df[function], predictions_df[function]
    )
  to_plot = pd.DataFrame(metrics_by_function).T
  to_plot = to_plot.merge(
    go_term_descriptions, left_index=True, right_on="term"
  ).set_index("term")
  to_plot = to_plot.sort_values("auprc", ascending=False)
  auprc_by_function[method] = dict(zip(to_plot.index, to_plot["auprc"]))











In Figure 1-15 we visualize the auprc by function as a bar plot:







to_plot = (
  pd.DataFrame(auprc_by_function)
  .merge(go_term_descriptions, left_index=True, right_on="term")
  .set_index("term")
)

best_performing = (
  to_plot.sort_values("model", ascending=False).head(20).melt("description")
)
fig, ax = plt.subplots(figsize=(8, 5))
sns.barplot(
  x="description",
  y="value",
  hue="variable",
  data=best_performing,
  palette="Set2",
)
ax.set_title("The model's 20 best performing protein functions")
ax.set_ylabel("auroc")  # Set the y-axis label
plt.xticks(rotation=90)











[image: _images/5e91bf6ffebb64548d228943ba85aa7f8a3c38356d234cab7a46e1c58a4de465.png]
Figure 1-15. Barplot of the best performing protein functions as measured by validation set auPRC.







Final Check on the Test Set


Have a look at the next section for ideas on how to extend and improve this model. Once you are happy with your exploration, we can move on to the final step of this project: making the final predictions on the test set. Remember not to touch the test set until the last stage of your project.


We will make predictions on the test set of proteins in the same way as we did on the validation set:







test_ds = build_dataset(test_df_embeddings, BATCH_SIZE, is_training=False)
eval_step(state, test_ds)













{'accuracy': 0.9711093265396544,
 'recall': 0.152629638552765,
 'precision': 0.3180359527193408,
 'auprc': 0.26489635998674027,
 'auroc': 0.724104273498244}
















valid_ds = build_dataset(valid_df_embeddings, BATCH_SIZE, is_training=False)
eval_step(state, valid_ds)













{'accuracy': 0.9730172795746566,
 'recall': 0.17735343470474585,
 'precision': 0.32255191495105384,
 'auprc': 0.2847989556428837,
 'auroc': 0.7347370055466421}











The test set metrics are fairly similar to the ones we observed on the validation set, which makes sense. It’s common for test metrics to be slightly lower than validation metrics, since we have spent time checking and rechecking the validation metrics, and hence have likely slightly overfit to them. The test metrics are more reliable and would be the final values we would report to others.







Improvements and Extensions


While our model is clearly learning something about protein function from sequence, there are plenty of further improvements that we can make. However, before diving in to trying various tricks, this is a good time to step back and check back in with the broader picture:



		
	Why are you doing this? Who will be using this model, and what are their concrete needs? Can you already get this prototype model into the hands of a user, in order to get early feedback?

	

		
	When are you done? Is what you already have good enough? What specific improvement to the model would be required to make it more useful? What sort of performance have others reported on this task or similar tasks?

	

		
	Which aspects of the model still need to be optimised? Do you perhaps only care about a certain aspect of model performance? Maybe you only actually want to classify proteins as enzymes vs. non-enzymes. You shouldn’t waste time optimising something that is not useful in practice.

	

		
	What is the model doing? Is model interpretation actually more important than pure performance? Perhaps you care more about why a model considers a certain protein sequence to be capable of reaction catalysis, rather than squeezing out higher metrics in general.

	




Ideally, in your own projects, you will have already answered some of these questions prior to starting modelling, but it’s still helpful to revisit them during the course of the technical implementation.



Biology Extensions


From the biology perspective you could take this project further:



		
	Extend to multiple species  : In this chapter, you have been training on a dataset of human proteins only, which makes sense given that you were interested in predicting human protein function. You could perhaps improve model performance by also adding training data from other organisms, where the utility of non-human data might depend on that organism’s evolutionary distance to humans.

	

		
	Examine protein multifunctionality  : Is the model worse when predicting the function of multifunctional proteins? Try segmenting proteins into buckets based on the number of functions they have, and making a scatter plot of model performance (say auprc) by the number of protein functions.

	

		
	Discover new putative protein functions  : Can you find examples where the model is quite certain that a protein has a certain function, but the label says it doesn’t? Why could this be? Could there be cases where this isn’t a false positive prediction, and the label is actually wrong? How would you follow up on these predictions to try to verify them?

	







Machine Learning Extensions


From a machine learning point of view there are some more directions you could try:



		
	Experiment with the MLP  : Our MLP on top of the mean protein embedding is fairly simple. See if you can play around with its number of layers and the capacity (number of neurons). As you increase model capacity, there might be a tendency of the model to overfit faster. Try introducing dropout (  nn.Dropout  ) and batch normalisation (  nn.BatchNorm  ) as regularisation to reduce overfitting.

	

		
	Introduce augmentation  : We had a fairly limited number of training data points in this problem. Try increasing the dataset size by taking many different crops of each protein sequence and simply treating these as new training examples (using the targets of the original full protein sequence). How aggressively can you crop a protein while still retaining some useful signal?

	

		
	Use additional features  : In this chapter, we have been feeding the mean protein embedding into a small MLP in order to predict protein function. However, this removes information on protein length, which might be a relevant (if simple) feature for protein function prediction. Could you expand the model input to also take protein length? Hint: check out  nn.Embed  . If you expanded the model to be multi-species, could you also feed in the organism species in as a feature?

	

		
	Consider using other base models  : You could plug in a different protein language model from HuggingFace, or even explore combining embeddings from multiple models by concatenating them.

	

		
	Explore multi-tasking versus single tasking  : It is surprisingly often the case that single-task models (those that predict just a single output) outperform multi-task models (those that predict many outputs). Could training a separate MLP for each protein function be better than our single MLP that simultaneously predicts the probability of every function?

	




Note

Here, we have been using frozen mean protein embeddings and training a linear model on top of them. However, it is likely that these embeddings are not optimal for our specific task of protein function prediction, since they were trained on a different task altogether (recall the masked language modelling task). As a challenge task, see if you can figure out how to directly tune the parameters of the ESM2 model to our task by backpropagating gradients into the main model parameters.









Summary


In this chapter, you have taken our first practical step into the exciting domain of deep learning for biology. You prepared a dataset, extracted embeddings from a pre-trained model, used them to train a light-weight model, and assessed its performance. In the next chapter, we will expand on some of these machine learning concepts while we tackle a different problem in the domain of DNA sequences.
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 Chapter 2. Learning the Logic of DNA

 
 
A Note for Early Release Readers


With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.



 
  This chapter focuses on building a deep learning model that predicts whether DNA will bind
  
   transcription factors
  
  (TFs), which are key proteins that physically interact with specific DNA patterns and play a crucial role in regulating genes in most organisms. Both
  
   convolutional
  
  and
  
   transformer
  
  -based architectures will be explored, along with model interpretation techniques that provide insights into the model’s decision-making process and extract meaningful biological information.
 

 
  We will tackle this problem in stages, gradually increasing the complexity:
 

 
  	
   
    
     Start simple
    
    : First, we’ll train a straightforward convolutional network to predict whether each DNA sequence binds a single transcription factor, CTCF. The binding of some TFs is harder to predict than others and CTCF binding is relatively to predict, making it a great starting point. This initial stage will focus on setting up the end-to-end workflow of building the dataset, training the model, and checking that it has learned something biologically meaningful.
   

  

  	
   
    
     Increase complexity
    
    : Next, we’ll delve into probing the model’s understanding of DNA sequences using input gradients to identify specific binding motifs in DNA. We’ll adapt our modeling approach to predict whether 10 transcription factors bind to the DNA sequences. To improve model performance, we’ll introduce normalization and regularization techniques. We’ll also incorporate evaluation metrics to better track model performance during training, and manually examine some predictions to begin to understand the model.
   

  

  	
   
    
     Advanced techniques
    
    : Finally, we’ll explore whether adding transformer blocks can enhance our model’s performance, and further examine the model’s predictions in order to better understand its behavior.
   

  

 

 
  We generally recommend structuring your projects this way, with progressively increasing complexity. This makes debugging easier, since it’s easier to pinpoint where errors are happening in an easier system. It also helps you track progress more effectively.
 

 
  But first, let’s get into the biology and machine learning primers to lay down some useful foundations for this work.
 

 
  
   Biology Primer
  

  
   It is remarkable that all the information needed to build an entire organism is encoded within the DNA of a single cell. Every human begins as a tiny cell, roughly 100 micrometers in diameter, with its DNA densely packed into a nucleus only about 6 micrometers wide. This DNA acts as the blueprint for processes such as cell division and differentiation, ultimately giving rise to the many different specialized cell types and tissues in an adult.
  

  Note

   
    The
    
     genome
    
    refers to the complete set of DNA in an organism, encompassing all of its genes and genetic material. While
    
     genetics
    
    research typically focuses on the study of individual genes or small gene groups,
    
     genomics
    
    takes a broader approach, analyzing the entire genome or even many genomes across organisms or species.
   

  

  
   The human genome is vast, spanning over 3 billion base pairs. It holds immense complexity and carries with it several billion years of evolutionary history.
  

  
   
    What Is DNA?
   

   
    DNA is the molecule of inheritance, the basis of all life as we know it. Its structure was first discovered in 1953 by Watson, Crick and Franklin, marking a pivotal moment in the biological sciences. The first draft of the human genome was published in 2001
    , laying the groundwork for modern genomics. But these dates are quite recent, and although we now understand some of the
    
     what
    
    of the genome, we are very far from knowing the
    
     how
    
    of how it actually functions.
   

   
    For example, we know that DNA is composed of four different
    
     letters
    
    or
    
     nucleotide bases
    
    , namely A (adenine), C (cytosine), G (guanine), and T (thymine) and that the human genome is composed of 3.2 billion letters that are spread across 23 pairs of chromosomes. The DNA is tightly packed down into dense
    
     chromatin
    
    in order to fit into the cell nucleus as you can see in
    Figure 2-1
    .
   

   
    [image: _images/dna_organization.png]
    Figure 2-1. 
     Structural organization of DNA within the nucleus. DNA wraps around histone proteins to form nucleosomes, which resemble beads on a string. These nucleosomes are further compacted into chromatin fibers, which are ultimately assembled into chromosomes.
    

   

   
    Here are just a few of the many open questions we still have about DNA:
   

   
    	
     
      What roles do the 3.2 billion letters of the human genome play? Are all of them biologically functional?
     

    

    	
     
      How can every cell in the human body contain the exact same genome, yet perform vastly different functions? For example, consider how different a neuron is from a muscle cell.
     

    

    	
     
      If only about 2% of the genome codes for proteins, what is the purpose of the remaining 98%?
     

    

    	
     
      How do genetic variations contribute to disease, or explain the differences we observe between individuals?
     

    

    	
     
      How do environmental factors like diet or infections interact with our DNA to influence gene expression and overall health?
     

    

   

   
    Deep learning models hold promise in helping us to understand the human genome and to address these questions, thanks to their ability to detect patterns in large, complex, and often noisy datasets.
   

  

  
   
    Coding and Non-Coding Regions
   

   
    Genes, which make up the
    
     coding
    
    regions of the genome, are composed of DNA and provide instructions for building
    
     proteins
    
    . The median human gene is around 15,000 DNA bases long. These instructions are transcribed (or copied) into ribonucleic acid (RNA), which directs the assembly of proteins.
   

   
    This flow of information from DNA to RNA to proteins is called the central dogma of molecular biology. Think of genes as the blueprints and proteins as the workers that carry out a multitude of tasks, from providing structure to cells and tissues to orchestrating the chemical reactions that keep us alive.
   

   
    The preceding information is mostly correct, but biology is flexible and full of exceptions. For instance, many genes have crucial functions without coding for proteins, and the field of epigenetics describes mechanisms that regulate gene expression beyond the traditional DNA-to-RNA-to-protein pathway.
   

   
    We mentioned that only 2% of the human genome is composed of protein-coding genes - although much of the remaining 98% was once considered
    
     junk DNA
    
    , we now know that many of these
    
     non-coding regions
    
    are functionally important (though unfortunately, in harder to understand ways). The vast majority of disease-associated mutations are in these non-coding regions of the genome.
   

   
    One key type of non-coding region is the sites that bind transcription factors (TFs), which play a crucial role in regulating gene expression. These regions will be the focus of the remainder of this chapter.
   

  

  
   
    Transcription Factors Orchestrate Gene Activity
   

   
    
     Transcription factors
    
    (TFs) are molecular maestros in the intricate
    
     regulation
    
    of genes, orchestrating when and how genes are activated or
    
     expressed
    
    within cells. Imagine TFs as the conductors, directing the performance by binding to specific DNA sequences near genes and either activating or silencing their expression. These proteins wield immense influence, determining which genes are turned on or off, thereby governing the production of RNA molecules and ultimately the protein molecules that carry out much of the actual molecular work in the cell.
   

   
    Their ability to fine-tune gene expression makes transcription factors pivotal players in almost every biological process, from the development of organs and tissues to responding to signals and stresses in our ever-changing environment. There are around 1,600 different transcription factors in humans, each of which bind to different types of short DNA sequences called
    
     motifs
    
    .
   

  

  
   
    Factors Influencing TF Binding
   

   
    Transcription factors recognize specific DNA sequences much like puzzle pieces fitting together. For example, a particular TF may preferentially bind to the motif
    
     ACTG
    
    . The motif sequence forms a distinct physical shape, which is recognized and bound by the complementary shape of the transcription factor protein. Since different transcriptions have different shapes, they bind to different motifs. Some transcription factors are highly selective in their binding, targeting only specific sequences, while others are more versatile and can bind to a variety of different DNA sequences.
   

   
    Several other factors influence whether a TF will successfully bind to a particular DNA region. Interestingly, for any given transcription factor, there are many, many more matching motifs in the genome than actual binding sites. This discrepancy is due to additional influences, such as the following:
   

   
    	
     
      
       Chromatin structure
      
      : How tightly the DNA is packed can either facilitate or hinder the accessibility of binding sites. Open chromatin is more accessible to protein binding, while tightly packed regions are less so.
     

    

    	
     
      
       Cellular signaling
      
      : Specific signals within the cell can activate or deactivate TF binding, depending on the cellular context and conditions.
     

    

    	
     
      
       Auxiliary proteins
      
      : Other proteins can help facilitate or inhibit the binding of TFs.
     

    

   

   
    Finally, note that even though a TF might bind to a specific DNA sequence, the cell is a highly dynamic and crowded environment, with molecules constantly moving and interacting – biology is blurry and messy! It’s easy to forget this point, especially when working with a dataset that represents a static snapshot in time.
   

  

  
   
    Measuring TF Binding
   

   
    There are now many techniques
    to measure where transcription factors bind to the genome, but the cornerstone method remains
    
     
      ChIP-seq
     
    
    (chromatin immunoprecipitation followed by sequencing). TFs transiently bind and release DNA, constantly coming on and off. ChIP-seq freezes this interaction in place by chemically cross-linking the TFs to the DNA. Once these TF-DNA complexes are locked together, they can be isolated, and the associated DNA is sequenced and mapped back to the genome to determine where the TFs were bound.
   

   
    These experiments produce peaks, or regions of DNA where transcription factors have bound, reflecting the varying strength of TF binding across different regions. However, to simplify the data, we can threshold the signal to binarize the outcome, indicating whether the protein ever binds to a given sequence or not. This type of binary dataset is what we will be working with in this chapter.
   

  

 

 
  
   Machine Learning Primer
  

  
   
    Convolutional Neural Networks
   

   
    
     Convolutional neural networks
    
    (CNNs) are a type of deep learning architecture that focuses on hierarchically extracing features from input data by learning feature extractors called
    
     filters
    
    or
    
     kernels
    
    . CNNs were initially developed for image processing tasks, where early layers would learn to recognize low-level features like edges and textures, while deeper layers capture increasingly abstract features like shapes, objects, and scenes. This hierarchical feature extraction makes CNNs the go-to architecture for image analysis and related fields.
   

   
    A typical CNN architecture consists of several core components:
   

   
    	
     
      
       Convolutional layers
      
      : These apply learned filters to the input, capturing patterns such as edges in images or motifs in DNA sequences.
     

    

    	
     
      
       Pooling layers
      
      : These downsample the feature maps, reducing spatial dimensions while retaining important information, improving model efficiency.
     

    

    	
     
      
       Normalization
      
      : This step (for example batch normalization) helps stabilize training, allowing the model to converge faster and perform better.
     

    

    	
     
      
       Fully connected layers
      
      : These layers, often appearing near the end of the network, combine features extracted in the earlier stages to make predictions, such as class probabilities.
     

    

   

   
    For further details on how CNNs work, check out the
    
     3Blue1Brown video tutorial
    
    .
   

  

  
   
    Convolutions for DNA Sequences
   

   
    CNNs can be extended beyond 2D image data to 1D data, such as DNA sequences. DNA sequences can be represented as a one-hot encoded array of nucleotides (A, T, C, G) similar to how we represented amino acids in Chapter 2. 1D convolutions can then be used to detect motifs—specific short sequences of bases—that are important for a biological process like transcription factor binding. The convolutional filters (or kernels) slide across the sequence, much like in image processing, and detect specific motifs. A kernel might start by identifying simple patterns like AT-rich or GC-rich regions, while deeper layers may capture more complex and biologically significant motifs of various lengths that are associated with specific TF binding events.
   

  

  
   
    Transformers
   

   
    While CNNs excel at feature extraction, but
    
     transformers
    
    are a particularly powerful deep learning architecture for capturing long-range dependencies in sequences, such as those found in language or biological sequences. Transformer-based models have been so successful that it’s hard to believe that their core mechanism was only introduced in 2017. Since then, transformer-based models have spread like wildfire, becoming state-of-the-art in a range of sequence-processing tasks, ranging from language tasks like translation, summarization, and speech recognition to biological sequence modelling. Older generation models could also do these tasks to some extent but transformer models have displaced them as the state-of-the-art.
   

   
    Their core innovation—the
    
     self-attention
    
    mechanism—enables transformers to capture long-range dependencies in data more efficiently than previous architectures.
    
     Long-range dependencies
    
    refer to relationships between elements in a sequence that are far apart. In the context of natural language processing (NLP), this could mean that words or phrases separated by entire paragraphs (or even pages) still influence one another. In the context of DNA, a small sequence located thousands of bases away from a gene could affect the gene’s expression. Transformers excel at modeling these types of interactions by allowing every element in a sequence to
    
     attend
    
    to every other element, regardless of the distance between them. That said, the attention mechanism of transformers scales notoriously poorly (quadratically with the number of tokens) but there has been significant efforts to overcome this limitation.
   

   Note

    
     If you would like to develop a more in-depth understanding of transformers, we recommend the popular blog post
     
      The Illustrated Transformer
     
     by Jay Alammar, and the
     
      3Blue1Brown video tutorial on attention in transformers
     
     . We will just cover the basics of attention here.
    

   

  

  
   
    Attention
   

   
    At the highest level, you can view
    
     attention
    
    as a black box that enriches the embedding of each token in a sequence by using the embeddings of all the other tokens. In other words, it’s a way of making each token more context-aware, as shown in
    Figure 2-2
    :
   

   
    [image: _images/attention_mechanism.png]
    Figure 2-2. 
     Using attention, the input vectors can be transformed to become context-aware.
    

   

   
    Attention achieves this by assigning varying levels of importance (or attention) to different parts of the input sequence when processing each element, as shown in
    Figure 2-3
    .
   

   
    [image: _images/transformer_components.png]
    Figure 2-3. 
     In the transformer block, each word in a sentence is processed using a self-attention operation, which calculates attention weights to determine how each word relates to others in the sequence. The result is a matrix that captures the importance of each word relative to the entire input. Note that self-attention first transforms each word into query, key, and value vectors (not shown here), but the main concept remains the same.
    

   

   
    The attention mechanism starts by generating three different “versions” (or views) of the same input sequence embeddings:
    
     queries (Q)
    
    ,
    
     keys (K)
    
    , and
    
     values (V)
    
    . These versions are created by applying linear transformations to the original embeddings, as seen in
    Figure 2-4
    .
   

   
    [image: _images/query_key_value.png]
    Figure 2-4. 
     Transformations of the input matrix into query, key, and value matrices. Each input matrix (4x3) is multiplied by its respective weight matrix (3x3) to produce the transformed query, key, and value matrices (4x3). These transformations are crucial for the self-attention mechanism, enabling the model to separate relevance (queries and keys) from content (values) during processing.
    

   

   
    For each token, the query is compared to the keys of all other tokens to compute attention scores, which form the
    
     attention weight matrix
    
    . This matrix represents how much attention each token should pay to the others in the sequence. The attention scores are then used to weight the values, and each output vector is the weighted sum of the input embeddings. This process allows each token to be enriched with information from the entire sequence, making the token more context-aware.
   

   
    For example, in a simple transformer self-attention operation during a translation task, let’s consider an input sequence with 4 tokens:
    
     the
    
    ,
    
     cat
    
    ,
    
     is
    
    ,
    
     black
    
    . Each token will attend to every other token, resulting in a 4x4 attention weight matrix. To compute a single entry, say for how much
    
     cat
    
    attends to
    
     the
    
    , we take the query vector for
    
     cat
    
    and the key vector for
    
     the
    
    . The dot product of these two vectors gives a score, which is then passed through a softmax function across all tokens to obtain the attention weight. This weight will tell us how much
    
     cat
    
    should pay attention to
    
     the
    
    in the context of the sequence. In the context of DNA, attention would capture regulatory regions that increase or decrease gene activity interacting with gene promoters (which are on/off switches at the beginning of genes).
   

   
    Why in the world are we doing this? This may sound wacky and arbitrary at first – why create three different versions of the same input (Q, K, and V)? Think of it like this:
   

   
    	
     
      The
      
       query (Q)
      
      is what the current token wants to know. It acts as the “search filter” that scans the other tokens for relevant information.
     

    

    	
     
      The
      
       key (K)
      
      is what each token in the sequence has to offer. It is compared against the query to see if it matches what the query is looking for. The comparison between Q and K determines the attention weights.
     

    

    	
     
      The
      
       value (V)
      
      is the actual information each token holds. The attention weights (calculated using Q and K) are applied to the V vectors to determine how much of each token’s information should contribute to the output.
     

    

   

   
    By having these three distinct versions, the model can ask, “How much relevant information does each token have for what I need?” based on the similarity between
    
     queries
    
    and
    
     keys
    
    . This design effectively separates relevance from content, allowing the model to determine which tokens are important (using Q and K) while independently passing the actual information (from V) to the output.
   

   
    The real power comes from the fact that these
    
     Q
    
    ,
    
     K
    
    , and
    
     V
    
    matrices are
    
     learned
    
    during training. The model learns how to transform the input embeddings into these versions in such a way that, when multiplied, they provide meaningful representations. By learning these transformations, the model ultimately improves its performance on the overall task, whether that’s language translation or understanding DNA elements.
   

  

  
   
    Multi-headed Attention
   

   
    
     Multi-headed attention
    
    extends the power of the attention mechanism by running multiple attention operations (multiple
    
     heads
    
    ) in parallel. Each head can focus on different parts of the sequence or detect different types of dependencies (although often there is redundancy). The results from each head are then combined, allowing the model to capture a wider range of patterns and relationships in the data.
   

  

  
   
    Model Interpretation
   

   
    A common criticism of deep learning models is that they are a
    
     black box
    
    – the predictions of the model might be good, but it’s impossible to grasp how exactly those predictions were made, in the sense of understanding the flow of reasoning that led to that prediction. Although deep learning models are indeed more inscrutable than simpler machine learning algorithms like linear models or decision tree-based models, we do have techniques to probe their underlying logic. These techniques fall under the umbrella of
    
     model interpretation
    
    .
   

   
    Model interpretation for deep learning models is itself a very large and active field of research that we can’t do justice here. Briefly, the most frequently used model interpretation techniques in the AI for biology space are as follows:
   

   
    	
     
      
       Mutagenesis
      
      : To determine which biological features the model considers most useful when making its predictions, we can alter or
      
       mutate
      
      aspects of the input and observe the effect on the predictions. For example, say we are modeling biological properties from DNA sequence, such as gene expression levels from DNA sequence. To see how much a given region of DNA sequence affects the output, we can amend it (by shuffling, replacing it with random letters, or deleting it) and see how much predictions change. If the model predicts quite different predictions, we know that region of DNA was important.
     

     
      	
       
        Pros: A very direct approach of measuring the effect of input features on model predictions, yielding rich outputs.
       

      

      	
       
        Cons: Computationally expensive, as we need to make model forward passes for each altered input.
       

      

     

    

    	
     
      
       Input gradients
      
      : We can get a faster but more approximate measure of input importance by computing the gradient of the model’s output with respect to each input feature. This is quite a popular technique, and we will describe this in more detail in the next section.
     

     
      	
       
        Pros: Very efficient, requiring only a single backward pass to get the importance of each input feature.
       

      

      	
       
        Cons: The resulting maps can be noisy, making it difficult to distinguish between meaningful patterns and random fluctuations.
       

      

     

    

    	
     
      
       Attention mechanisms
      
      : For deep learning models that use attention mechanisms (such as transformers), we can have a look at the actual attention matrix to see what the model is paying attention to when making its predictions.
     

     
      	
       
        Pros: Attention mechanisms offer a clear and interpretable view of the model’s focus, and a 2D attention matrix allows a visualization of how each input feature is relevant to each of the others.
       

      

      	
       
        Cons: The attention operation is quite computationally expensive – the basic implementation scales quadratically with input sequence length, meaning that in practice we can’t use attention to model very long DNA strings without first condensing them down in some way.
       

      

     

    

   

   
    There are many offshoots and improvements of these basic interpretability ideas, and (luckily) it is increasingly common to see a lot of model interpretation work done in deep learning for biology papers.
   

   
    Let’s now dive into more depth about two model interpretation approaches which we will implement in this chapter.
   

  

  
   
    In Silico Saturation Mutagenesis
   

   
    This technique is a bit of a mouthful but essentially just refers to the process of making every possible alteration (or mutation) to a biological sequence (such as DNA or protein), and then generating a separate model prediction for each altered sequence. This is a computationally expensive process, since we have to make so many forward passes with a model, but the results can often be quite informative, as they really capture the effect of every possible variation in the input data on the output. The richness of the generated data often justifies the expense.
   

   Note

    
     Note on the terminology: it’s
     
      mutagenesis
     
     since we are inducing mutations,
     
      saturation
     
     because we are making every single possible mutation, and
     
      in silico
     
     since we are making computational predictions of the effect of the mutation (rather than experimentally studying the effects of mutations in the lab
     
      in vitro
     
     or
     
      in vivo
     
     ).
    

   

   
    Figure 2-5
    shows a plot we will make in this chapter:
   

   
    [image: _images/dna_chapter_aim.png]
    Figure 2-5. 
     Example of an in silico saturation mutagenesis plot.
    

   

   
    These types of plots allow us to quickly visualize which part of the sequence are most important for the final prediction - since they visualize the salient or important regions of the input, the are sometimes called
    
     saliency maps
    
    . In this case, it looks like altering any of the central bases might disrupt a motif that the protein binds to, generally leading to lower predicted probabilities of binding.
   

  

  
   
    Input Gradients
   

   
    Input gradients provide a faster way to generate a saliency map, summarizing which parts of the sequence most influence the model’s predictions. Simply put,
    
     input gradients
    
    are the derivatives of the model’s output with respect to its input. If you’re familiar with how neural networks are optimized, you’ve likely encountered gradients before, specifically those related to model parameters – these are the derivatives of the model’s output with respect to each parameter in the network, which are used to update the parameters during training.
   

   
    The idea behind input gradients is similar but applied to the input data instead of the model’s parameters. By calculating these gradients, we can determine how small changes in each part of the input affect the model’s output. For example, in the context of DNA sequences, this means understanding how changes in each base of DNA influence the probability of a protein binding to that sequence. A large gradient indicates that the model is highly sensitive to changes at that particular position in the sequence, suggesting that it is important.
   

   
    Specifically, in our example of a protein binding to a DNA sequence:
   

   
    	
     
      A
      
       large negative gradient
      
      at a DNA base suggests that changing it would significantly lower the probability of binding.
     

    

    	
     
      A
      
       large positive gradient
      
      indicates that altering it would significantly increase the probability of binding.
     

    

   

   
    What does “making a small change to the input” mean when the input is a one-hot encoded DNA sequence, rather than a continuous scalar value?_ In a one-hot encoded DNA sequence, each base (A, T, C, G) is represented as a binary vector, with each base being discrete and categorical (e.g.,
    
     [1,
     
      0,
     
     
      0,
     
     
      0]
     
    
    for A and
    
     [0,
     
      1,
     
     
      0,
     
     
      0]
     
    
    for C). However, during gradient calculation, we treat these bases as if they were continuous values. This means that, mathematically, we consider small changes to the one-hot vectors, even though you can’t actually have a base that is, for example, 90% A and 10% C (represented as
    
     [0.9,
     
      0.1,
     
     
      0,
     
     
      0]
     
    
    ). While this isn’t biologically possible, it is still a useful abstraction that allows us to compute gradients and gain insights into which parts of the sequence are most influential for the model’s predictions.
   

   
    You can think of input gradients as a faster, but more indirect and approximate, version of in silico saturation mutagenesis. While input gradients offer a general idea of influential regions, in silico mutagenesis provides a comprehensive and precise evaluation by directly testing each mutation’s effect, but is much more expensive.
   

  

 

 
  
   Building a Simple Prototype
  

  
   The first task we will cover in this chapter is a
   
    binary classification task
   
   – given 200 DNA bases, we want to predict whether it will bind a specific transcription factor called CTCF. Out of the >1,500 transcription factors in humans, CTCF is actually a particularly interesting TF, because it is involved in
   
    genome architecture
   
   , which is the elaborate 3D folding of the genome into specific spatial compartments.
  

  
   
    Dataset
   

   
    The dataset we will use looks like
    Figure 2-6
    :
   

   
    [image: _images/dna_data_task.png]
    Figure 2-6. 
     The input dataset consists of DNA sequences of length 200 each with a binary label associated.
    

   

   
    The problem is inspired by one of the evaluation tasks in this recent
    
     2024 paper preprint
    
    , which sourced the dataset from this
    
     2023 genomics interpretation paper
    
    .
   

   
    
     Loading the Dataset
    

    
     We start by loading the dataset for both the training and validation datasets.
    

    
     
      
       
        import os
import pandas as pd

ROOT_DIR = '/workspace/content/chapters/dna/sources/assets/data/'

train_df = pd.read_csv(os.path.join(ROOT_DIR, 'CTCF_train_sequences.csv'))
valid_df = pd.read_csv(os.path.join(ROOT_DIR, 'CTCF_valid_sequences.csv'))

train_df


       

      

     

     
      
       
        
         
          
           	
           
           	
            sequence
           
           	
            label
           
           	
            transcription_factor
           
           	
            subset
           
          

         
         
          
           	
            0
           
           	
            TACCACATGAGTTCTCTTTCAGTTTGCTATGGAAGACACAAAAACC...
           
           	
            1
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            1
           
           	
            CATCAACACTCGTGCGACGCCCTCGCATTTTCATTAATGATGGCCT...
           
           	
            0
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            2
           
           	
            GCACACAGCGCAGGAACCTGGCACTGGAGAAGCCACCCAGGCTGTG...
           
           	
            1
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            3
           
           	
            GCCAGCCGAAGCAGAGAGCAGTGCACATGCGTGCAGCTACCAGCAT...
           
           	
            1
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            4
           
           	
            GTCCCGTCCCTTTTCGTGCCTCTGCCCCCACAGCTGCTGCAGTCTG...
           
           	
            1
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            ...
           
           	
            ...
           
           	
            ...
           
           	
            ...
           
           	
            ...
           
          

          
           	
            61078
           
           	
            AATATGACCCTGCTGGCCTTAGGCCTACTCCTGTACCACAAGTGCC...
           
           	
            0
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            61079
           
           	
            GATAAACCAAGGTCGTAAGTTCAGGCTCCGCCTCCCCGCAGGGCCT...
           
           	
            1
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            61080
           
           	
            CCTCCCTCCCATCCCCCACACAGTTTAATGTCTAGAAGGTTGCCTG...
           
           	
            1
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            61081
           
           	
            CAGGAATGCACCGGAAGTCCGCCTCCCGGGACCCGCCGCCGGTCCC...
           
           	
            0
           
           	
            CTCF
           
           	
            train
           
          

          
           	
            61082
           
           	
            AAAACAGAAACTGAAACTTCAAACACAGAGACAGAAAAAAAAAAAA...
           
           	
            0
           
           	
            CTCF
           
           	
            train
           
          

         
        

        
         61083 rows × 4 columns
        

       

      

     

    

    
     In general, it looks like the two classes are fairly balanced (equally represented) in the training dataset, meaning we won’t have to do any rebalancing by downsampling the majority class here:
    

    
     
      
       
        train_df['label'].value_counts()


       

      

     

     
      
       
        label
1    30545
0    30538
Name: count, dtype: int64


       

      

     

    

    
     We need to convert the DNA sequence into one-hot format, in order to represent the DNA strings numerically:
    

    
     
      
       
        import numpy as np


def dna_to_one_hot(dna_sequence: str) -> np.ndarray:
  """Convert DNA into a one-hot encoded format with channel ordering ACGT."""
  base_to_one_hot = {
      'A': [1, 0, 0, 0],
      'C': [0, 1, 0, 0],
      'G': [0, 0, 1, 0],
      'T': [0, 0, 0, 1],
      'N': [1, 1, 1, 1], # N represents any unknown or ambiguous base.
  }
  one_hot_encoded = np.array([base_to_one_hot[base] for base in dna_sequence])
  return one_hot_encoded


       

      

     

    

    
     Let us have a look to see what that looks like:
    

    
     
      
       
        dna_to_one_hot('AAACGT')


       

      

     

     
      
       
        array([[1, 0, 0, 0],
       [1, 0, 0, 0],
       [1, 0, 0, 0],
       [0, 1, 0, 0],
       [0, 0, 1, 0],
       [0, 0, 0, 1]])


       

      

     

    

    
     
      
       
        x_train = np.array([dna_to_one_hot(seq) for seq in train_df['sequence']])
y_train = train_df['label'].values[:, None]

x_valid = np.array([dna_to_one_hot(seq) for seq in valid_df['sequence']])
y_valid = valid_df['label'].values[:, None]


       

      

     

    

   

   
    
     Convert the Data to a TensorFlow Dataset
    

    
     Finally, let’s convert these dataframes to a TensorFlow dataset that we can easily iterate on while training the model:
    

    
     
      
       
        import tensorflow as tf


def convert_to_tfds(
  x: np.ndarray, y: np.ndarray, batch_size: int = 32, is_training: bool = False
):
  """Convert DNA sequences and labels to a TensorFlow dataset."""
  ds = tf.data.Dataset.from_tensor_slices({"sequence": x, "labels": y})

  if is_training:
    ds = ds.shuffle(buffer_size=len(x)).repeat()

  ds = ds.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE)

  return ds.as_numpy_iterator()


       

      

     

    

    
     
      
       
        BATCH_SIZE = 32

train_ds = convert_to_tfds(
    x_train, y_train, batch_size=BATCH_SIZE, is_training=True)
valid_ds = convert_to_tfds(
    x_valid, y_valid, batch_size=BATCH_SIZE, is_training=False)


       

      

     

    

    
     We can sanity check whether the training datasets does indeed return a batch of data:
    

    
     
      
       
        batch = next(train_ds)
print(f'Batch sequence shape: {batch["sequence"].shape}')
print(f'Batch sequence instances: {batch["sequence"][:3,:3,]}...')
print(f'Batch labels shape: {batch["labels"].shape}')
print(f'Batch labels instances: {batch["labels"][:3,]}...')


       

      

     

     
      
       
        Batch sequence shape: (32, 200, 4)
Batch sequence instances: [[[0 1 0 0]
  [1 0 0 0]
  [0 1 0 0]]

 [[1 0 0 0]
  [1 0 0 0]
  [1 0 0 0]]

 [[0 0 0 1]
  [0 0 1 0]
  [0 1 0 0]]]...
Batch labels shape: (32, 1)
Batch labels instances: [[1]
 [0]
 [1]]...


       

      

     

    

   

   
    
     Defining a Simple Convolutional Model
    

    
     Next we define a model, composed of two convolutional layers, a flatten operation, and some linear layers:
    

    
     
      
       
        import flax.linen as nn


class ConvModel(nn.Module):
  conv_filters: int = 64  # Number of filters for conv layers.
  kernel_size: int = (10,)   # Kernel size for 1D conv layers.
  dense_units: int = 128  # Units in first dense fully-connected layer.

  @nn.compact
  def __call__(self, x):
    # First convolutional layer.
    x = nn.Conv(
        features=self.conv_filters,
        kernel_size=self.kernel_size,
        padding='SAME')(x)
    x = nn.gelu(x)
    x = nn.max_pool(x, window_shape=(2,), strides=(2,))

    # Second convolutional layer.
    x = nn.Conv(
        features=self.conv_filters,
        kernel_size=self.kernel_size,
        padding='SAME')(x)
    x = nn.gelu(x)
    x = nn.max_pool(x, window_shape=(2,), strides=(2,))

    # Flatten the values before passing them to the dense layers.
    x = x.reshape((x.shape[0], -1))

    # First dense layer.
    x = nn.Dense(self.dense_units)(x)
    x = nn.gelu(x)

    # Second dense layer.
    x = nn.Dense(self.dense_units // 2)(x)
    x = nn.gelu(x)

    # Output layer (single unit for binary classification).
    return nn.Dense(1)(x)


       

      

     

    

    
     It is a very simple and straightforward convolutional model. We can instantiate our model like this:
    

    
     
      
       
        model = ConvModel()


       

      

     

    

    
     And initialize the model parameters:
    

    
     
      
       
        import jax

LEARNING_RATE = 0.001

init_rng = jax.random.PRNGKey(42)
variables = model.init(init_rng, batch['sequence'])
params = variables['params']


       

      

     

     
      
       
        2024-11-17 11:35:47.695548: W external/xla/xla/service/gpu/nvptx_compiler.cc:765] The NVIDIA driver's CUDA version is 12.2 which is older than the ptxas CUDA version (12.6.77). Because the driver is older than the ptxas version, XLA is disabling parallel compilation, which may slow down compilation. You should update your NVIDIA driver or use the NVIDIA-provided CUDA forward compatibility packages.


       

      

     

    

    
     
      Examining Model Tensor Shapes
     

     
      Remember that keeping track of data shapes is a major part of machine learning work! Always try to figure out what the shapes of the data will be. Recall that each input batch has a shape of
      
       (32,
       
        200,
       
       
        4)
       
      
      , because we set
      
       BATCH_SIZE
      
      to 32, the DNA sequence length to 200 and there are 4 channels for the four bases. As an exercise, you can add
      
       print(x.shape)
      
      statements around different parts of the class and re-running the
      
       model.init
      
      line. As you do this, notice particularly how:
     

     
      	
       
        The
        
         nn.Conv
        
        lines can change the final channel dimension of the data. For example, DNA sequences start with a channel dimension of 4, and the first convolutional layer increases this to 64. If you change to
        
         padding=VALID
        
        instead of
        
         padding=SAME
        
        , how does this affect the spatial sequence dimension?
       

      

      	
       
        The
        
         nn.max_pool
        
        lines halve the sequence dimension, going from a length of 200 to 100 and then from 100 to 50. Say we wanted to condense the spatial dimension even more, for example 5x each time instead of the current 2x. How could we modify the code to accomplish this? How do the
        
         window_shape
        
        and
        
         strides
        
        args behave, and why do you think people tend to set them both to the same value?
       

      

      	
       
        The flattening
        
         reshape
        
        operation changes our tensors from being 2-dimensional (a sequence dimension and a channel dimension) to a single flat dimension that can be used as input to a dense layer of neurons.
       

      

     

     
      Next, let’s examine our newly-initialised model parameters. You can check out the names of the layers in our neural network like this:
     

     
      
       
        
         params.keys()


        

       

      

      
       
        
         dict_keys(['Conv_0', 'Conv_1', 'Dense_0', 'Dense_1', 'Dense_2'])


        

       

      

     

     
      And check that the shape of each layer is what you’d expect it to be like this:
     

     
      
       
        
         for layer_name in params.keys():
  print(f'Layer {layer_name} param shape: {params[layer_name]["kernel"].shape}')


        

       

      

      
       
        
         Layer Conv_0 param shape: (10, 4, 64)
Layer Conv_1 param shape: (10, 64, 64)
Layer Dense_0 param shape: (3200, 128)
Layer Dense_1 param shape: (128, 64)
Layer Dense_2 param shape: (64, 1)


        

       

      

     

     
      We can already make predictions using these randomly-initiated parameters (it’s just that the predictions will be random):
     

     
      
       
        
         preds = model.apply({'params': params}, batch['sequence'])

# Apply sigmoid to convert logits to probabilities.
nn.sigmoid(preds)


        

       

      

      
       
        
         Array([[0.48184654],
       [0.49497557],
       [0.49518043],
       [0.48835826],
       [0.4917969 ],
       [0.49017507],
       [0.48454592],
       [0.48943394],
       [0.4903153 ],
       [0.4699236 ],
       [0.48829004],
       [0.4820599 ],
       [0.48001856],
       [0.4969446 ],
       [0.4957509 ],
       [0.48409235],
       [0.5018997 ],
       [0.47830325],
       [0.49552864],
       [0.48782822],
       [0.4807946 ],
       [0.49381724],
       [0.4893501 ],
       [0.49190268],
       [0.4855278 ],
       [0.4902096 ],
       [0.4917754 ],
       [0.47974044],
       [0.49455953],
       [0.49583265],
       [0.48752645],
       [0.48698947]], dtype=float32)


        

       

      

     

     
      Notice how these predictions are around 0.5, indicating that our randomly-parameterized model is currently just guessing 50/50 for each example.
     

     
      Let’s now define a loss function that we can use to train these parameters:
     

     
      
       
        
         import optax

def loss_fn(params, batch):
  """Make predictions on batch and compute binary cross entropy loss."""
  logits = model.apply({'params': params}, batch['sequence'])
  loss = optax.sigmoid_binary_cross_entropy(logits, batch['labels']).mean()
  return loss


        

       

      

     

     
      Let’s compute an example loss:
     

     
      
       
        
         loss_fn(params, batch)


        

       

      

      
       
        
         Array(0.6997817, dtype=float32)


        

       

      

     

     
      So, in this specific setup, we expect a loss around this value for randomly-initialised weights. Hopefully, with model training, we should see losses much smaller than this as the model learns the signal in the data.
     

     
      We need to define the optimizer we will use to train our model. Adam is a solid classic choice
      , and a learning rate around 1e-3 is a common initial setting. These choices can all be tuned later.
     

     
      
       
        
         LEARNING_RATE = 0.001

optimizer = optax.adam(LEARNING_RATE)
opt_state = optimizer.init(params)


        

       

      

     

     
      Finally, putting everything together, we can write a function to execute a single training step. This process involves several key steps:
     

     
      	
       
        
         Forward pass
        
        : The model takes a batch of data and makes predictions based on the current parameters.
       

      

      	
       
        
         Gradient computation
        
        : The gradients measure how much each parameter influences the final loss. These values guide how the parameters should be adjusted to reduce the loss.
       

      

      	
       
        
         Parameter update
        
        : Using the computed gradients, the parameters are updated in the correct direction to minimize the model’s loss.
       

      

     

     
      See if you can follow along with where each of these steps happens in the
      
       train_step
      
      function:
     

     
      
       
        
         @jax.jit
def train_step(params, opt_state, batch):
  """Run single training step to compute gradients and update model params."""
  loss, grads = jax.value_and_grad(loss_fn)(params, batch)
  updates, opt_state = optimizer.update(grads, opt_state)
  params = optax.apply_updates(params, updates)
  return params, opt_state, loss


        

       

      

     

     
      Let’s run one training step:
     

     
      
       
        
         params, opt_state, loss = train_step(params, opt_state, batch)


        

       

      

     

     
      In theory, the training loss should already be smaller now compared to the previous value (certainly for the same batch). Let’s check:
     

     
      
       
        
         loss_fn(params, batch)


        

       

      

      
       
        
         Array(0.67009616, dtype=float32)


        

       

      

     

     
      That looks promising! Let’s now train the full model.
     

    

   

   
    
     Training the Simple Model
    

    
     We will now essentially just run the preceding
     
      train_step
     
     many times in order to optimize the model. We will go into how to choose the right number of steps later, but for now, let’s just give it a go and train for 500 steps:
    

    
     
      
       
        import tqdm

# Reinitialise the model to make sure we start fresh each time cell is run.
init_rng = jax.random.PRNGKey(42)
variables = model.init(init_rng, batch['sequence'])
params = variables['params']

optimizer = optax.adam(LEARNING_RATE)
opt_state = optimizer.init(params)

# Let's keep track of both the training and validation set losses.
train_losses = []
valid_losses = []

for step in tqdm.tqdm(range(500)):
  batch = next(train_ds)
  params, opt_state, train_loss = train_step(params, opt_state, batch)
  train_losses.append({'step': step, 'loss': train_loss.item()})

  # Compute loss on the entire validation set occasionally (every 100 steps).
  if step % 100 == 0:
    valid_ds = convert_to_tfds(
        x_valid, y_valid, batch_size=len(x_valid), is_training=False)
    valid_loss = loss_fn(params, next(valid_ds))
    valid_losses.append({'step': step, 'loss': valid_loss.item()})

losses = pd.concat([
    pd.DataFrame(train_losses).assign(subset='train'),
    pd.DataFrame(valid_losses).assign(subset='valid'),
    ])


       

      

     

    

    
     And we’re done with the first basic round of training the model!
     Getting to the stage where you’ve identified the problem you want to model, set up a dataset, and got a model training with loss decreasing, as you can see in
     Figure 2-7
     , is already huge milestone in any project. The rest of this chapter will essentially be improvements and elaborations on this general approach.
    

    
     
      
       
        import seaborn as sns
import matplotlib.pyplot as plt


sns.lineplot(data=losses, x='step', y='loss', hue='subset')
plt.show();


       

      

     

     
      
       [image: _images/66f872d77f71b9d904e2277def414fde80944fff92dca7a403ba6547cef6da80.png]
       Figure 2-7. 
        Training and Validation loss over learing steps.
       

      

     

    

   

   
    
     Sanity-checking the Model
    

    
     Before we do anything more complicated, we should first check that the model has learned something sensible. For this, let’s try inferencing the trained model on any new DNA string of interest. For example, since we know from biological experiments that the CTCF protein binds to DNA sequences containing motifs similar to
     
      CCACCAGGGGGCGC
     
     , then in theory the model should predict a very high probability of binding for DNA containing these motifs.
    

    
     Let’s construct the 200-base-long DNA string and convert it to the one-hot encoded format that our model expects:
    

    
     
      
       
        ctcf_motif_dna = 'CCACCAGGGGGCGC'*14 + 'AAAA'
print('Length of CTCF motif-filled DNA string:', len(ctcf_motif_dna))

# We add the None here as a batch axis, since our model expects batched input.
ctcf_input = dna_to_one_hot(ctcf_motif_dna)[None, :]
ctcf_input.shape


       

      

     

     
      
       
        Length of CTCF motif-filled DNA string: 200


       

      

      
       
        (1, 200, 4)


       

      

     

    

    
     Now we can compute the probability that the DNA will bind CTCF:
    

    
     
      
       
        jax.nn.sigmoid(model.apply({'params': params}, ctcf_input))


       

      

     

     
      
       
        Array([[0.9965927]], dtype=float32)


       

      

     

    

    
     Success! That probability is very close to 1. This means that the model has learned to identify some representation of this motif and associate it with CTCF binding to DNA.
    

    
     Conversely, the pseudo-random DNA strings below should have low probability of binding CTCF:
    

    
     
      
       
        random_dna_strings = [
    'A'*200,
    'C'*200,
    'G'*200,
    'T'*200,
    'ACGTACGT'*25,
    'TCGATCGT'*25,
    'TATACGCG'*25,
    'CAGGCAGG'*25,
]

probabilities = []

for random_dna_string in random_dna_strings:
  random_dna_input = dna_to_one_hot(random_dna_string)[None, :]

  probabilities.append(
      jax.nn.sigmoid(model.apply({'params': params}, random_dna_input))[0])

probabilities


       

      

     

     
      
       
        [Array([0.01128979], dtype=float32),
 Array([0.00254648], dtype=float32),
 Array([0.00775326], dtype=float32),
 Array([8.57903e-05], dtype=float32),
 Array([0.23919599], dtype=float32),
 Array([0.00937033], dtype=float32),
 Array([0.08526218], dtype=float32),
 Array([0.01028072], dtype=float32)]


       

      

     

    

    
     
      
       
        model.apply({'params': params}, random_dna_input)


       

      

     

     
      
       
        Array([[-4.5671506]], dtype=float32)


       

      

     

    

    
     These probabilities look relatively low, meaning that the CTCF protein is not likely to bind these sequences of random DNA, which is what we would expect. Now that we know we have a sensible-looking basic approach implemented, we can now move on to some more interesting modelling.
    

   

  

 

 
  
   Increasing Model Complexity
  

  
   Before making our model more complex and modelling more transcription factors, let’s first dig a bit deeper into model interpretation using some more advanced techniques:
   
    in silico mutagenesis (ISM)
   
   and
   
    input gradients
   
   . These are two alternative methods to get
   
    contribution scores
   
   (or
   
    saliency scores
   
   ), which are scores per DNA base that summarize the influence of those bases on the final model output.
  

  
   These techniques will help us understand in more detail what the model has learned about DNA sequences and how it makes its final predictions of the binding probability of the CTCF transcription factor protein.
  

  
   
    In Silico Mutagenesis
   

   
    Recall from the introduction that
    
     in silico saturation mutagenesis
    
    is a technique where each base in a DNA sequence is systematically mutated to all possible alternative bases one at a time, and the effect of each mutation on a given output (for example, transcription factor binding) is quantified. This helps us identify which regions are important to the output – unimportant regions can be freely mutated without impacting predictions, whereas important regions significantly affect the probability of TF binding.
   

   
    Before running all possible mutations, let’s just check the effect of making one single mutation. First, let’s find a DNA sequence in the validation set that binds the CTCF protein (has a label of
    
     1
    
    ):
   

   
    
     
      
       valid_ds = convert_to_tfds(
    x_valid, y_valid, batch_size=BATCH_SIZE, is_training=False)
batch = next(valid_ds)

# The first positive example (sequence that binds the protein) is at index 4.
sequence = batch['sequence'][4].copy()
print(f'This sequence has label: {batch["labels"][4]}')


      

     

    

    
     
      
       This sequence has label: [1]


      

     

    

   

   
    What does the model predict as the probability of CTCF binding?
   

   
    
     
      
       preds = nn.sigmoid(model.apply({'params': params}, sequence[None, :]))
preds


      

     

    

    
     
      
       Array([[0.9095315]], dtype=float32)


      

     

    

   

   
    The original sequence has a predicted 83.5%
    probability of binding the protein. Now, let’s say we change the base at position 100 – a G, encoded as
    
     [0,
     
      0,
     
     
      1,
     
     
      0]
     
    
    – to a C (encoded as
    
     [0,
     
      1,
     
     
      0,
     
     
      0]
     
    
    ):
   

   
    
     
      
       print(f'Original base at index 100: {sequence[100]}')

sequence[100] = np.array([0,1,0,0])
print(f'Mutated base at index 100: {sequence[100]}')


      

     

    

    
     
      
       Original base at index 100: [0 0 1 0]
Mutated base at index 100: [0 1 0 0]


      

     

    

   

   
    Let’s see how the model responds to this mutation:
   

   
    
     
      
       preds = nn.sigmoid(model.apply({'params': params}, sequence[None, :]))
preds


      

     

    

    
     
      
       Array([[0.8957578]], dtype=float32)


      

     

    

   

   
    The model now predicts that the probability of the protein binding the DNA sequence is only 76.2%, which is over 7% lower than before. Recall that the only change is a single mutation from G->C at position 100. This result suggests that it’s possible for changes at certain positions to have a huge impact on the overall prediction.
   

   
    Now that we’ve explored the impact of a single mutation, let’s extend this approach to systematically mutate every single position in the sequence, and make predictions, so we can get a global view of how each DNA base affects the predictions.
   

   
    
     Implementing In Silico Saturation Mutagenesis
    

    
     Here’s how we will implement this technique:
    

    
     	
      
       
        Mutate
       
       : Start with the original DNA sequence. For each position in the sequence, mutate the base to each of the three alternative bases (for example, if the base is A, mutate it to C, G, and T).
      

     

     	
      
       
        Predict
       
       : Use the model to predict the impact of each mutation on the output (the probability of the sequence binding the transcription factor).
      

     

     	
      
       
        Aggregate
       
       : Collect the predictions and analyze which mutations are most impactful on the predicted outcome:
      

     

    

    
     
      
       
        def generate_all_mutations(sequence: np.ndarray):
    """Generate all possible mutations of a one-hot encoded DNA sequence."""
    mutated_sequences = []
    for i in range(sequence.shape[0]):
      original_base = np.argmax(sequence[i])

      # NOTE: at each position, one the four 'mutations' is the original base
      for j in range(4):
        mutated_sequence = sequence.copy()
        mutated_sequence[i] = np.zeros(4)
        mutated_sequence[i][j] = 1
        mutated_sequences.append(mutated_sequence)

    return mutated_sequences

sequence = batch['sequence'][4].copy()
sequences = generate_all_mutations(sequence)
print(f'Number of sequences: {len(sequences)}')


       

      

     

     
      
       
        Number of sequences: 800


       

      

     

    

    
     There are 800 DNA sequences, since the original DNA length is 200, and for each position, there are four possible DNA bases. Note that there are only actually 600 possible
     
      mutated
     
     sequences, since for each existing DNA bases, there are three possible alternative bases, but here we will just work with 800 sequences to make the downstream analysis and plotting a bit simpler for didactic purposes (while being aware that we are being a bit wasteful with compute by making redundant predictions on the same sequence).
    

    
     Let’s now make those predictions. We can actually just stack all 800 sequences and treat them as a large batch to make predictions simultaneously (rather than iterating over each sequence, which would be much slower):
    

    
     
      
       
        batched_sequences = np.stack(sequences)
batched_sequences.shape


       

      

     

     
      
       
        (800, 200, 4)


       

      

     

    

    
     
      
       
        preds = nn.sigmoid(model.apply({'params': params}, batched_sequences))

# Reshape to get the shape (sequence_length, dna_bases).
preds = preds.reshape((200, 4))


       

      

     

     
      
       
        2024-11-18 13:35:47.626870: W external/xla/xla/tsl/framework/bfc_allocator.cc:291] Allocator (GPU_0_bfc) ran out of memory trying to allocate 25.21GiB with freed_by_count=0. The caller indicates that this is not a failure, but this may mean that there could be performance gains if more memory were available.


       

      

     

    

    
     Let’s plot a heatmap of the probability of the protein binding for each possible variation of the DNA sequence in
     Figure 2-8
     :
    

    
     
      
       
        plt.figure(figsize=(20, 3))
sns.heatmap(preds.T, cmap='RdBu_r')
plt.show();


       

      

     

     
      
       [image: _images/a6aa7b14dfc2596468ffd690ae59b924b68b5afb7542eef762f94816221cf35b.png]
       Figure 2-8. 
        All possible variations of a 200-base pair DNA region and their corresponding probabilities of TF binding, represented by a tile plot. Each column indicates a position in the binding site, and each row shows one of the four bases that the original TF binding site can be changed to, with the value representing the probability of TF binding.
       

      

     

    

    
     This is already showing us a few things:
    

    
     	
      
       For most of the 200 positions, it really does not matter what you change the DNA base to; the model will predict close to the original 83.5% probability of the protein binding.
      

     

     	
      
       It looks like there is a central region where mutations do seem to influence the predicted binding probability.
      

     

    

    
     However, the heatmap is a bit hard to read since it is a bit flooded by the model generally predicting the baseline 83.5% probability of binding. What we are really interested in is the
     
      differences
     
     to predicted binding given the mutations. Let’s make the plot clearer in
     Figure 2-9
     :
    

    
     	
      
       We can subtract the baseline probability from each value, so that we can plot the differences we are interested in.
      

     

     	
      
       We should center the diverging color map at 0 so that non-white colors indicate changes: in the online version of this book, red represents mutations that increase the probability above the baseline, while blue indicates mutations that decrease it. In the printed version where this image is grey scale, any non-white shade will indicate a change, with darker shades showing stronger deviations from the baseline.
      

     

     	
      
       Finally, we can label the x and y axes to clarify their meaning.
      

     

    

    
     
      
       
        baseline_pred = nn.sigmoid(model.apply({'params': params}, sequence[None, :]))
preds = preds - baseline_pred

plt.figure(figsize=(20, 3))
sns.heatmap(preds.T, cmap='RdBu_r', center=0, yticklabels=['A', 'C', 'G', 'T'])
plt.xlabel('Position in DNA sequence')
plt.ylabel('DNA Base')
plt.show();


       

      

     

     
      
       [image: _images/72672827d25f141afe56c4efee4cc852b6a314f570cc2a9edb0b43685761b3ce.png]
       Figure 2-9. 
        Difference in predicted binding given mutations.
       

      

     

    

    
     These changes make the picture clearer:
    

    
     	
      
       It is easier to see what most positions have a minimal effect on the predicted probability of transcription factor binding since these regions are white.
      

     

     	
      
       We see the central
       
        important
       
       regions tend to generally
       
        decrease
       
       the
predicted probability of the model predicting that the protein binds the DNA (seen as blue rectangles). Fairly few mutations increase the predicted binding probability (red rectangles).
      

     

     	
      
       Notice how for each position, there is always a base with a score of zero, and this matches the original base in that position of the sequence. A score of zero makes sense since
       
        changing
       
       a base to itself has no effect.
      

     

    

    
     We could summarize this sense of positional
     
      importance
     
     by taking the sum of these absolute differences across the spatial axis, as we have done in
     Figure 2-10
     :
    

    
     
      
       
        fig, (ax1, ax2) = plt.subplots(
    nrows=2, ncols=1, figsize=(16, 4),
    gridspec_kw={'height_ratios': [1, 3]}, sharex=True)

# Line plot to summarize importance of each DNA position.
importance = np.sum(np.abs(preds), axis=1)
ax1.plot(importance, c='black')
ax1.set_ylabel('Importance')
for spine in ax1.spines.values():
  spine.set_visible(False)
ax1.set_xticks([])

# Same heatmap as before.
sns.heatmap(preds.T, cmap='RdBu_r', center=0, cbar=False, ax=ax2)
ax2.set_xlabel('Position in DNA sequence')
ax2.set_ylabel('DNA Base')
plt.show();


       

      

     

     
      
       [image: _images/10d0b531595c190fe319f76af27c9b82528115daced0d6287ea257c65b9f8b2d.png]
       Figure 2-10. 
        Positional importance of the TF binding motif. The bottom panel is the same as in
        Figure 2-9
        with a linegraph superimposed.
       

      

     

    

    
     This is a good point to pause and reflect and consider what these predictions are reflecting biologically. A reasonable hypothesis at this stage is that the central important region of the sequence reflects the actual DNA binding motif for the transcription factor, and the flanks on either side do not actually influence the binding at all. The most dramatic
     
      increase
     
     comes from mutating the base at position 92 from a G->C (14% increase). The biggest
     
      decrease
     
     comes from mutating the base at position 102 from G->A (a whopping 47.6% decrease).  Generally, mutations are more likely to break biological binding rather than enhance it, though specific changes can sometimes strengthen the interaction depending on the context.
    

   

   
    
     Verifying Motif Presence
    

    
     Finally, let’s check if the sequence indeed contains a CTCF binding motif and where it is. Here, we will just use a bioinformatics service to do this one-off check manually - we will input our DNA sequence to the
     
      FIMO tool
     
     which checks if the sequence contains a certain motif (which was
     
      CCACCAGGGGGCGC
     
     for the CTCF transcription factor). You could in theory do strict string matching in Python, but tools like FIMO can do fuzzy matching, which reflects the flexibility of motif recognition in biology. The output states that the sequence contains a match for the CTCF motif between positions 93 and 106 (in the subsequence
     
      GCCTCTGGGGGCGC
     
     ) with a p-value of 2.6e-05.
    

    
     
      
       
        def one_hot_to_dna(one_hot_encoded: np.ndarray) -> str:
  """Convert one-hot encoded format back to DNA sequence."""
  one_hot_to_base = {
      (1, 0, 0, 0): 'A',
      (0, 1, 0, 0): 'C',
      (0, 0, 1, 0): 'G',
      (0, 0, 0, 1): 'T',
      # For unknown or ambiguous base. (O, O, O, O) can also be used
      (1, 1, 1, 1): 'N',
  }

  dna_sequence = ''.join(one_hot_to_base[tuple(base)] for base in one_hot_encoded)
  return dna_sequence

one_hot_to_dna(sequence[92:106, :])


       

      

     

     
      
       
        'GCCTCTGGGGGCGC'


       

      

     

    

    
     We can highlight the location of this binding motif in our heatmap as shown in
     Figure 2-11
     :
    

    
     
      
       
        fig, (ax1, ax2) = plt.subplots(
    nrows=2, ncols=1, figsize=(16, 4),
    gridspec_kw={'height_ratios': [1, 3]}, sharex=True)

# Line plot to summarize importance of each DNA position.
importance = np.sum(np.abs(preds), axis=1)
ax1.plot(importance, c='black')
ax1.set_ylabel('Importance')
for spine in ax1.spines.values():
  spine.set_visible(False)
ax1.set_xticks([])

# Same heatmap as before.
sns.heatmap(preds.T, cmap='RdBu_r', center=0, cbar=False, ax=ax2)
rect = plt.Rectangle(
    xy=(92, 0), width=106-92, height=4,
    linewidth=3, edgecolor='black', facecolor='none')
ax2.add_patch(rect)
ax2.set_xlabel('Position in DNA sequence')
ax2.set_ylabel('DNA Base')
plt.show();


       

      

     

     
      
       [image: _images/539b955fcf4d3e01a1f73a72796709c1148d161c7b87c6cfb7ece1db6a23a3f8.png]
       Figure 2-11. 
        Highlight of the TF binding site overlapping neatly with the region where mutations have the biggest influence.
       

      

     

    

    
     This shows that the binding motif nicely overlaps our region of importance that we computed using ISM.
    

   

   
    
     Implementing Input Gradients
    

    
     In silico mutagenesis produces really nice and interpretable outputs, but can be expensive given that it requires making potentially very many predictions. A computationally cheaper approach to compute contribution scores is using
     
      input gradients
     
     (see the introduction of this chapter for more details on how it works).
    

    
     Let’s implement this method. First, we will again start by fetching a positive class example (an example of a sequence that binds CTCF):
    

    
     
      
       
        valid_ds = convert_to_tfds(
    x_valid, y_valid, batch_size=BATCH_SIZE, is_training=False)
batch = next(valid_ds)

# The first positive example (sequence that binds the protein) is at index 4.
sequence = jnp.asarray(batch['sequence'][4], dtype=jnp.float32)
print(f'This sequence has label: {batch["labels"][4]}')


       

      

     

     
      
       
        This sequence has label: [1]


       

      

     

    

    
     The actual input gradient code is very simple, and simply involves taking the gradient (
     
      jax.grad
     
     ) of the predicted binding probability (output of
     
      predict(x)
     
     with respect to the input
     
      sequence
     
     ):
    

    
     
      
       
        @jax.jit
def compute_input_gradient(params, sequence):
  """Given a single input sequence, compute the gradient of the model output."""
  if len(sequence.shape) != 2:
    raise ValueError('Input must be a single one-hot encoded DNA sequence.')

  sequence = jnp.asarray(sequence, dtype=jnp.float32)[None, :]

  def predict(sequence):
    # We mean to ensure we have a single scalar to take grad of.
    return jnp.mean(model.apply({'params': params}, sequence))

  gradient = jax.grad(lambda x: predict(x))(sequence)
  return jnp.squeeze(gradient)

input_gradient = compute_input_gradient(params, sequence)


       

      

     

    

    
     The shape of the input gradient is:
    

    
     
      
       
        input_gradient.shape


       

      

     

     
      
       
        (200, 4)


       

      

     

    

    
     This gives an indication of how much each base contributes to the ultimate model prediction of CTCF binding. In
     Figure 2-12
     we plot a heatmap of these input gradients to get a feel for what the data looks like:
    

    
     
      
       
        plt.figure(figsize=(20, 3))
sns.heatmap(input_gradient.T, cmap='RdBu', center=0)
plt.show();


       

      

     

     
      
       [image: _images/3b85a9ebf8193c2905b29569e010fd4a955b0b038a73b8838680005188a1d54e.png]
       Figure 2-12. 
        Input gradients indicate the contribution of every base on CTCF binding.
       

      

     

    

    
     It looks quite similar to the results we got via the previous ISM method. We again see a central region from position ~90 to ~110 that appears important for making the prediction. The other positions do not seem to contribute much to the prediction.
    

    
     In
     Figure 2-13
     we zoom in on this central region, and label our x and y axes to make them a bit more informative:
    

    
     
      
       
        dna_sequence = one_hot_to_dna(batch['sequence'][4])

plt.figure(figsize=(10, 2))
sns.heatmap(input_gradient[90:110].T, cmap='RdBu', center=0,
            xticklabels=dna_sequence[90:110], yticklabels=['A', 'C', 'G', 'T'])
plt.tight_layout()
plt.show()

print('Central DNA sequence with high importance: ', dna_sequence[90:110])


       

      

     

     
      
       [image: _images/bce1706eb9d38a0c39950ebf925db13ea943160d7a7ace1ff30bce01a52de718.png]
       Figure 2-13. 
        Input gradients at the zoomed CTCF binding motif.
       

      

      
       
        Central DNA sequence with high importance:  TGGCCTCTGGGGGCGCTCTG


       

      

     

    

    
     And this is indeed basically the CTCF binding motif we found in the previous section.
    

    
     
      
       
        input_grads = []
sequences = []

for i in range(32):
  if batch['labels'][i] == 1:
    sequence = batch['sequence'][i]
    sequences.append(sequence)
    input_grads.append(compute_input_gradient(params, sequence))


       

      

     

    

    
     
      
       
        np.stack(input_grads).shape


       

      

     

     
      
       
        (15, 200, 4)


       

      

     

    

    
     Figure 2-14
     examines the first 10 input gradients corresponding to the first 10 DNA sequences to see if they all share this pattern of having a single important region:
    

    
     
      
       
        fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(12, 6))

for ax, input_grad in zip(axes.flatten(), input_grads[0:10]):
  sns.heatmap(input_grad.T, cmap='RdBu', center=0, xticklabels=False,
              yticklabels=False, cbar=False, ax=ax)

plt.tight_layout()
plt.show();


       

      

     

     
      
       [image: _images/e0afb7695db5118064837f07e87b1d1a10c83897e660a04fd1a7b99e36aa4ca0.png]
       Figure 2-14. 
        10 input gradients show the same pattern of single important region.
       

      

     

    

    
     Let us have a look at the input gradients for negative examples. You might ask why some of these still have central regions highlighted. Recall that the dataset was constructed by taking matched open chromatin peaks. It does look like these 10 sequences share some characteristics:
    

    
     	
      
       The region is central (probably due to the way the dataset was constructed, by centering on a ChIP-seq peak).
      

     

     	
      
       The important regions look to be roughly the same width, which is consistent with a single binding motif, although occasionally the signal is a bit more diffuse.
      

     

    

    
     We could use a tool like
     
      TF-MoDISco
     
     to automatically identify the transcription factor binding motifs from our input gradient contribution scores, but that is out of scope of this introductory chapter.
    

    
     Now that we have added the new model interpretation tools of ISM and input gradients to our toolkit, let us revisit our main modelling problem.
    

   

  

  
   
    Modelling Multiple Transcription Factors
   

   
    As a next bit of increasing complexity, let’s model all 10 transcription factors in the dataset rather than just CTCF.
   

   
    
     Preparing a Multi-TF Dataset
    

    
     Here is the full list of the 10 transcription factors in the original dataset, including CTCF, which is the genome architecture protein we were modelling in the previous section:
    

    
     
      
       
        transcription_factors = [
    'ARID3', 'ATF2', 'BACH1', 'CTCF', 'ELK1',
    'GABPA', 'MAX', 'REST', 'SRF', 'ZNF24',
    ]


       

      

     

    

    
     Feel free to use your favorite search engine to search for these protein names to learn more about them – there are some interesting ones there, including MAX (which is important in cancer biology, specifically in forming a complex that regulates cell growth and division) and REST (which is a master regulator of gene expression in neurons).
    

    
     The key point here is that these proteins have different
     
      binding preferences
     
     – whereas we saw that CTCF tends to bind DNA sequences containing the letters
     
      CCACCAGGGGGCGC
     
     , the MAX binding motif is
     
      CACGTG
     
     , and the SRF motif is
     
      CCW6GG
     
     (where W = A or T, so the motif can be either
     
      CCATGG
     
     or
     
      CCGTGG
     
     ), and so on.
    

    
     Note that the neural network has to discover these motifs automatically – it must learn to associate each motif with the binding of each protein.
    

    
     We could approach this modelling problem in two main ways:
    

    
     	
      
       
        Multitasking
       
       : We could combine the datasets, and for each DNA sequence, simultaneously predict the probability that it binds each of 10 possible transcription factors (a single multiclass classification setup).
      

     

     	
      
       
        Single tasking
       
       : We could train separate models for each transcription factor independently, and not mix any of the data (multiple binary classification setups).
      

     

    

    
     The decision of which approach to take depends on a few factors – for example, do you expect synergy or competition between the separate tasks? In this case, we will train 10 single task models to contrast with the approach in Chapter 2 (and anecdotally, single task models often have a slight edge over multitask model in this space). The 10 transcription factors we are modelling are also not that closely evolutionarily related and have fairly different binding preferences, so single tasking seems sensible here.
    

   

   
    
     Defining a More Complex Model
    

    
     The model will be quite similar, with a few changes and improvements:
    

    
     	
      
       
        Normalization
       
       : We are adding batch norm after the convolutions.
      

      
       	
        
         Recall that batch norm normalizes the activations of the previous layer across the batch, which often helps training stability and convergence, especially in deep networks (our network here is fairly shallow, but batch norm still often helps).
        

       

       	
        
         Batch norm is most commonly used after convolutions, where the input distribution can vary significantly across channels and spatial locations, but sometimes in very deep networks, batch norm is used after, for example, linear layers too.
        

       

       	
        
         Batch norm has different behavior during training and inference. During training (when
         
          training=True
         
         ), batch norm will update its internal statistics based on the current batch. It keeps an exponentially moving average of the activation means and variances. During inference (when
         
          training=False
         
         ), it uses these learned statistics for normalization.
        

       

       	
        
         Our
         
          model.apply
         
         call gets a bit more complicated in order to account for passing the batch norm stats around. We pass the
         
          batch_stats
         
         as additional parameters, specify the new
         
          training
         
         arg to the model call, and also mark the batch stats as
         
          mutable
         
         .
        

       

      

     

     	
      
       
        Regularization
       
       : We will add dropout layers in order to help the model avoid overfitting.
      

      
       	
        
         These are usually applied after linear layers rather than after convolutional layers, since convolutions capture general spatial patterns and are less likely to overfit by nature.
        

       

       	
        
         Dropout requires a PRNG (pseudo-random number generator) key to function during training, since it will select a random subset of neuronal activations to zero out. In Flax, you need to explicitly pass an RNG to the model forward pass during training if it has dropout.
        

       

       	
        
         The dropout rate is a tunable hyperparameter, but a value of 0.5 is often used for larger models. Here, we will use a lower value of 0.2 (dropping 20% of neurons in the dense layer) to avoid underutilising our small model’s capacity.
        

       

      

     

     	
      
       
        Learning rate schedule
       
       : We can improve convergence by using learning rate schedules, which dynamically adjust the learning rate throughout training. For example, a cosine annealing or exponential decay schedule can help the model settle into minima more effectively, avoiding oscillations sometimes seen with a static learning rate.
      

     

    

    
     
      
       
        class ConvModel(nn.Module):
  conv_filters: int = 64  # Number of filters for conv layers.
  kernel_size: int = (10,)  # Kernel size for 1D conv layers
  dense_units: int = 128  # Units in first dense fully-connected layer.
  dropout_rate: float = 0.2  # Proportion of dense neurons to randomly drop out.

  @nn.compact
  def __call__(self, x, training: bool = True):
    # First convolutional layer.
    x = nn.Conv(
        features=self.conv_filters,
        kernel_size=self.kernel_size,
        padding='SAME')(x)
    x = nn.BatchNorm(use_running_average=not training)(x)
    x = nn.gelu(x)
    x = nn.max_pool(x, window_shape=(2,), strides=(2,))

    # Second convolutional layer.
    x = nn.Conv(
        features=self.conv_filters,
        kernel_size=self.kernel_size,
        padding='SAME')(x)
    x = nn.gelu(x)
    x = nn.BatchNorm(use_running_average=not training)(x)
    x = nn.max_pool(x, window_shape=(2,), strides=(2,))

    # Flatten the values before passing them to the dense layers.
    x = x.reshape((x.shape[0], -1))

    # First dense layer.
    x = nn.Dense(self.dense_units)(x)
    x = nn.gelu(x)
    x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=not training)

    # Second dense layer.
    x = nn.Dense(self.dense_units // 2)(x)
    x = nn.gelu(x)
    x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=not training)

    # Output layer (single unit for binary classification).
    return nn.Dense(1)(x)


       

      

     

    

    
     Our
     
      ConvModel
     
     code is getting a bit long and complex. Later in the chapter we will take care of this with a little refactor where we extract the repeated patterns, perhaps into a
     
      ConvBlock
     
     and
     
      DenseBlock
     
     . For now, we can instantiate, initialize, and make predictions with the model as before:
    

    
     
      
       
        model = ConvModel()

init_rng = jax.random.PRNGKey(42)
variables = model.init(init_rng, batch['sequence'])
params = variables['params']
batch_stats = variables['batch_stats']

rng = jax.random.PRNGKey(0)

logits, new_model_state = model.apply(
    {'params': params, 'batch_stats': batch_stats},
    batch['sequence'],
    training=True,
    mutable=['batch_stats'],
    rngs={'dropout': rng},
)

probs = nn.sigmoid(logits)


       

      

     

    

    
     The loss function is similar, but needs to account for dropout and batch norm usage:
    

    
     
      
       
        @jax.jit
def loss_fn(params, batch_stats, batch, rng):
  """Make predictions on batch and compute binary cross-entropy loss."""
  rng, dropout_rng = jax.random.split(rng)

  logits, new_model_state = model.apply(
      {'params': params, 'batch_stats': batch_stats},
      batch['sequence'],
      training=True,
      mutable=['batch_stats'],
      rngs={'dropout': dropout_rng},
  )

  loss = optax.sigmoid_binary_cross_entropy(logits, batch['labels']).mean()

  return loss, (new_model_state['batch_stats'], rng)


       

      

     

    

    
     
      
       
        loss, (batch_stats, rng) = loss_fn(params, batch_stats, batch, rng)
loss


       

      

     

     
      
       
        Array(0.74248177, dtype=float32)


       

      

     

    

    
     The cosine decay learning rate schedule is defined like this:
    

    
     
      
       
        schedule = optax.cosine_decay_schedule(
    init_value=0.001,
    decay_steps=1000  # How long to decay over.
)
optimizer = optax.adam(schedule)
opt_state = optimizer.init(params)


       

      

     

    

    
     And the train step function looks fairly similar:
    

    
     
      
       
        @jax.jit
def train_step(params, batch_stats, opt_state, batch, rng):
  """Run single training step to compute gradients and update model params."""
  (loss, (batch_stats, rng)), grads = jax.value_and_grad(
      loss_fn, has_aux=True)(params, batch_stats, batch, rng)

  updates, opt_state = optimizer.update(grads, opt_state)
  params = optax.apply_updates(params, updates)
  return params, batch_stats, opt_state, loss, rng

params, batch_stats, opt_state, loss, rng = train_step(
    params, batch_stats, opt_state, batch, rng)


       

      

     

    

    
     To test that our learning setup is working well, we can try to overfit to one batch (reduce loss to a very low value):
    

    
     
      
       
        # Overfit on one batch.
for i in range(5):
  params, batch_stats, opt_state, loss, rng = train_step(
      params, batch_stats, opt_state, batch, rng)

  print(f'Step {i} loss: {loss}')


       

      

     

     
      
       
        Step 0 loss: 0.3318668007850647
Step 1 loss: 0.20557956397533417
Step 2 loss: 0.08149038255214691
Step 3 loss: 0.034421686083078384
Step 4 loss: 0.00628482922911644


       

      

     

    

    
     Looks good. Since we want to loop over all transcription factors and model them separately, let’s define two utility functions to make the TF-specific dataset creation and evaluation easier:
    

    
     
      
       
        from sklearn.metrics import accuracy_score, roc_auc_score


def set_up_dataset(
    transcription_factor: str, subset: str, ROOT_DIR: str,
    BATCH_SIZE: int | None = None):
  """Set up TensorFlow datasets for a transcription factor."""
  df = pd.read_csv(
      os.path.join(ROOT_DIR, f'{transcription_factor}_{subset}_sequences.csv'))

  x = np.array([dna_to_one_hot(seq) for seq in df['sequence']])
  y = df['label'].values[:, None]
  batch_size = BATCH_SIZE if BATCH_SIZE is not None else len(x)
  ds = convert_to_tfds(
      x, y, batch_size=batch_size, is_training=(subset=='train'))

  return ds


def evaluate(transcription_factor: str, bootstrap_samples: int | None = None):
  """Compute loss and eval metrics on validation data."""
  # Get valid data and make predictions.
  valid_ds = set_up_dataset(transcription_factor, 'valid', ROOT_DIR, None)
  batch = next(valid_ds)
  x_valid = batch['sequence']
  y_valid = batch['labels']
  logits = model.apply({'params': params, 'batch_stats': batch_stats},
      x_valid, training=False)

  # Compute loss and metrics.
  loss = optax.sigmoid_binary_cross_entropy(logits, batch['labels']).mean()
  return {
      'valid_loss': loss.item(),
      'accuracy': accuracy_score(y_valid, nn.sigmoid(logits)>=0.5),
      'auc': roc_auc_score(y_valid, logits),
  }


       

      

     

    

    
     Now let’s train all of our TF models:
    

    
     
      
       
        BATCH_SIZE = 32
LEARNING_RATE = 0.001
TRAINING_STEPS = 5000

for transcription_factor in transcription_factors:
  print(f'\n{transcription_factor}\n', flush=True)
  train_ds = set_up_dataset(transcription_factor, 'train', ROOT_DIR, BATCH_SIZE)
  valid_ds = set_up_dataset(transcription_factor, 'valid', ROOT_DIR, BATCH_SIZE)

  # Init.
  model = ConvModel()
  init_rng = jax.random.PRNGKey(42)
  variables = model.init(init_rng, batch['sequence'])
  params = variables['params']
  batch_stats = variables['batch_stats']

  # optimizer.
  schedule = optax.cosine_decay_schedule(
      init_value=LEARNING_RATE,
      decay_steps=1000  # How long to decay over.
  )
  optimizer = optax.adam(schedule)
  opt_state = optimizer.init(params)

  # Training loop.
  logged_values = []

  for step in tqdm.tqdm(range(TRAINING_STEPS)):
    batch = next(train_ds)
    params, batch_stats, opt_state, train_loss, rng = train_step(
        params, batch_stats, opt_state, batch, rng)
    logged_values.append(
        {'step': step, 'train_loss': train_loss.item()})

    # Compute loss and metrics on the entire validation set occasionally.
    if step % 100 == 0:
      logged_values.append({'step': step, **evaluate(transcription_factor)})

  # Save logged values from training.
  to_plot = pd.DataFrame(logged_values)
  to_plot = to_plot.melt(
      id_vars=['step'],
      value_vars=['train_loss', 'valid_loss', 'accuracy', 'auc'])
  to_plot['transcription_factor'] = transcription_factor
  to_plot.to_csv(os.path.join(
      ROOT_DIR, f'{transcription_factor}_training_curves.csv'), index=False)


       

      

     

    

    
     Let’s visualize the learning curves resulting from this training in
     Figure 2-15
     :
    

    
     
      
       
        all_data = []

fig, axes = plt.subplots(figsize=(15, 12), nrows=5, ncols=2)
axes = axes.flatten()

for idx, transcription_factor in enumerate(transcription_factors):
  to_plot = pd.read_csv(
      os.path.join(ROOT_DIR, f'{transcription_factor}_training_curves.csv'))
  to_plot = to_plot[to_plot['step'] <= 1000]
  all_data.append(to_plot)

  plot_legend = True if idx == 0 else False

  sns.lineplot(data=to_plot, x='step', y='value', hue='variable',
               alpha=0.8, ax=axes[idx], legend=plot_legend, palette='Set2')

  axes[idx].set_title(transcription_factor)
  axes[idx].set_ylim(0.0, 1.0)

plt.tight_layout();


       

      

     

     
      
       [image: _images/59ab09349eab4267c8225931758c148aacf2f2b1a1fc852d9ab66f9a1ceb35c8.png]
       Figure 2-15. 
        Learning curves of 10 TF binding sites with training loss and validation loss, AUC and accuracy. Each panel maps to a different TF and each TF dataset is class balanced (50% DNA sequences that bind the TF and 50% that do not).
       

      

     

    

    
     It can be hard to know which performance metric is “good enough” – luckily, since we’re using a dataset from a paper, we can see from
     
      a figure
     
     , the auROC scores that different modelling approaches achieved on this same dataset:
    

    
     	
      
       We can see that ATF2 and CTCF auROCs are quite high (nearly 1.0), indicating that learning binding patterns for these particular TFs is fairly straightforward.
      

     

     	
      
       The hardest TFs seem to be ZNF24, ARID3, GABPA and BACH1, with auROCs in the 0.75-0.80 range.
      

     

    

    
     Let’s now see if our model achieved similar auROCs to the paper:
    

    
     
      
       
        curves = pd.concat(all_data)
curves[(curves['variable']=='auc') & (curves['step']==1000)].dropna(
).sort_values('value', ascending=False)


       

      

     

     
      
       
        
         
          
           	
           
           	
            step
           
           	
            variable
           
           	
            value
           
           	
            transcription_factor
           
          

         
         
          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.986727
           
           	
            ATF2
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.982310
           
           	
            CTCF
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.859788
           
           	
            REST
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.853789
           
           	
            SRF
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.841930
           
           	
            MAX
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.831035
           
           	
            ELK1
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.792248
           
           	
            GABPA
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.770007
           
           	
            ARID3
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.767989
           
           	
            BACH1
           
          

          
           	
            16161
           
           	
            1000
           
           	
            auc
           
           	
            0.761042
           
           	
            ZNF24
           
          

         
        

       

      

     

    

    
     These numbers look quite similar to what is in the paper, which is encouraging. Let’s now see if we can apply some further improvements to this model to try to improve these metrics.
    

   

  

 

 
  
   Advanced Techniques
  

  
   Before making our model more complex, let’s first clean up our model definition to break it down into more modular
   
    ConvBlock
   
   and
   
    MLPBlock
   
   components. This will make our model code easier to read and maintain:
  

  
   
    
     
      class ConvBlock(nn.Module):
  conv_filters: int
  kernel_size: int
  pool_size: int

  @nn.compact
  def __call__(self, x, training: bool = True):
    x = nn.Conv(
        features=self.conv_filters,
        kernel_size=self.kernel_size,
        padding='SAME')(x)
    x = nn.BatchNorm(use_running_average=not training)(x)
    x = nn.gelu(x)
    x = nn.max_pool(x, window_shape=(self.pool_size,), strides=(self.pool_size,))
    return x

class MLPBlock(nn.Module):
  dense_units: int
  dropout_rate: float = 0.0

  @nn.compact
  def __call__(self, x, training: bool = True):
    x = nn.Dense(self.dense_units)(x)
    x = nn.gelu(x)
    x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=not training)
    return x


     

    

   

  

  
   This allows us to make our
   
    ConvModel
   
   code model more compact:
  

  
   
    
     
      class ConvModel(nn.Module):
  num_conv_blocks: int = 2
  conv_filters: int = 64
  kernel_size: int = (10,)
  num_mlp_blocks: int = 2
  dense_units: int = 128
  dropout_rate: float = 0.2

  @nn.compact
  def __call__(self, x, training: bool = True):
    for _ in range(self.num_conv_blocks):
      x = ConvBlock(
          conv_filters=self.conv_filters,
          kernel_size=self.kernel_size,
          pool_size=2)(x, training=training)

    x = x.reshape((x.shape[0], -1))

    for i in range(self.num_mlp_blocks):
      x = MLPBlock(
          dense_units=self.dense_units // (i + 1),
          dropout_rate=self.dropout_rate)(x, training=training)

    return nn.Dense(1)(x)


     

    

   

  

  
   
    Adding Self-Attention and Transformer Blocks
   

   
    Next, let’s try adding transformer blocks to our architecture. These blocks can capture long-range dependencies in the DNA sequence, which can complement the local features extracted by the convolutional blocks.
   

   
    Note that in our case, the DNA sequences are actually quite short (only 200 bases), so it’s possible we won’t see much of an improvement from adding transformer blocks. However, for modelling sequences that are longer, attention mechanisms are generally quite helpful for integrating long-range context.
   

   
    Flax already has a
    
     SelfAttention
    
    implementation, so we can just directly use this in our
    
     TransformerBlock
    
    code:
   

   
    
     
      
       class TransformerBlock(nn.Module):
  num_heads: int = 8
  dense_units: int = 64
  dropout_rate: float = 0.2

  @nn.compact
  def __call__(self, x, training: bool = True):
    # Self-attention with layer norm.
    residual = x
    x = nn.LayerNorm()(x)
    x = nn.SelfAttention(num_heads=self.num_heads)(x)
    x += residual

    # Feedforward block.
    residual = x
    x = nn.LayerNorm()(x)
    x = nn.Dense(self.dense_units)(x)
    x = nn.gelu(x)
    x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=not training)
    x = nn.Dense(self.dense_units)(x)  # No GELU after this Dense.
    x += residual
    return x


      

     

    

   

   
    A few notes here:
   

   
    	
     
      The heavy lifting here is done by the
      
       nn.SelfAttention
      
      call.
     

    

    	
     
      We introduce
      
       residual connections
      
      , which help information flow and stabilize gradients during training.
     

    

    	
     
      Layer normalization is more commonly used than batch norm in transformer blocks
     

    

   

  

  
   
    Defining the Final Model Architecture
   

   
    This allows us to define our final hybrid
    
     ConvTransformerModel
    
    which combines both convolutional and transformer blocks:
   

   
    
     
      
       class ConvTransformerModel(nn.Module):
  num_conv_blocks: int = 2
  conv_filters: int = 64
  kernel_size: int = (10,)
  num_mlp_blocks: int = 2
  dense_units: int = 128
  dropout_rate: float = 0.2  # Global.
  num_transformer_blocks: int = 0
  num_transformer_heads: int = 8
  transformer_dense_units: int = 64

  @nn.compact
  def __call__(self, x, training: bool = True):
    for _ in range(self.num_conv_blocks):
      x = ConvBlock(
          conv_filters=self.conv_filters,
          kernel_size=self.kernel_size,
          pool_size=2)(x, training=training)

    for i in range(self.num_transformer_blocks):
      x = TransformerBlock(
          num_heads=self.num_transformer_heads,
          dense_units=self.transformer_dense_units,
          dropout_rate=self.dropout_rate)(x, training=training)

    x = x.reshape((x.shape[0], -1))

    for i in range(self.num_mlp_blocks):
      x = MLPBlock(
          dense_units=self.dense_units // (i + 1),
          dropout_rate=self.dropout_rate)(x, training=training)

    return nn.Dense(1)(x)


      

     

    

   

   
    This setup allows us to try various different settings for the model to see which performs the best. There are many model settings you could try, and it’s not always easy to know where to start exploring the space of different possible settings. The following dictionary contains a few fairly different models, but there’s many more settings you could play with, like removing batch norm, trying different transformer block MLP sizes, trying different learning rate schedules, and so on:
   

   
    
     
      
       models = {
    'baseline': ConvTransformerModel(),

    # Ablations (removing specific parts of the model one at a time).
    'single_conv_only': ConvTransformerModel(
        num_conv_blocks=1, num_transformer_blocks=0, num_mlp_blocks=0),
    'fewer_conv_channels': ConvTransformerModel(conv_filters=8),
    'remove_MLP': ConvTransformerModel(num_mlp_blocks=0),

    # Potential improvements.
    'add_one_transformer_block': ConvTransformerModel(num_transformer_blocks=1),
    'add_two_transformer_block': ConvTransformerModel(num_transformer_blocks=2),
}


      

     

    

   

   Tip

    
     Consider trying different configurations of the transformer block itself, such as changing the number of attention heads or units in the feedforward network for a more thorough exploration.
    

   

   
    We will try training these different model variations out on the problem of predicting whether the transcription factor ZNF24 binds to DNA. Recall that ZNF24 was the most difficult TF (auROC=0.76), so let’s use that see if we can improve on this value at all.
   

  

  
   
    Computing Bootstrap Metrics
   

   
    One final improvement we’ll make to our setup involves how we compute our evaluation metrics – previously, we would just compute a single accuracy or a single auROC for the entire validation set. However, it would be handy to have a sense of how much
    
     variability
    
    there was to these metrics in order to trust the results more. Ideally, we’d have 100 real validation datasets, but we don’t – instead, we can mimic this scenario by
    
     bootstrap sampling
    
    .
   

   
    	
     
      We first make predictions on the entire validation set. Say our validation set has 5,000 examples.
     

    

    	
     
      Next, we sample a new set of 5,000 examples from this set,
      
       with replacement
      
      . This means that each example has the chance of being sampled and placed into the new set multiple times.
     

    

    	
     
      Then, we compute the evaluation metric on this new set of 5,000 examples (which will contain some repeat examples). This is one single bootstrap metric sample.
     

    

    	
     
      We repeat the process some number of times, for example 100 times. This will give a sense of how variable the metric is to relatively small shifts in the validation set composition.
     

    

   

   
    Since the predictions still only need to be made once, we can easily recompute metrics many times cheaply. We will alter our
    
     evaluate
    
    function to take an optional
    
     bootstrap_samples
    
    argument to implement this concept:
   

   
    
     
      
       def evaluate(transcription_factor: str, bootstrap_samples: int | None = None):
  """Compute loss and evaluation metrics on validation data."""
  valid_ds = set_up_dataset(transcription_factor, 'valid', ROOT_DIR, None)
  batch = next(valid_ds)
  x_valid = batch['sequence']
  y_valid = batch['labels']

  logits = model.apply(
      {'params': params, 'batch_stats': batch_stats}, x_valid, training=False)

  if bootstrap_samples is None:
    loss = optax.sigmoid_binary_cross_entropy(logits, y_valid).mean()
    return {
        'valid_loss': loss.item(),
        'accuracy': accuracy_score(y_valid, nn.sigmoid(logits) >= 0.5),
        'auc': roc_auc_score(y_valid, logits),
    }

  bootstrap_metrics = []
  for bootstrap_sample in range(bootstrap_samples):
    # Sample indices with replacement.
    indices = np.random.choice(
        np.arange(len(x_valid)), size=len(x_valid), replace=True)
    x_valid_bootstrap = x_valid[indices]
    y_valid_bootstrap = y_valid[indices]

    logits_bootstrap = logits[indices]

    bootstrap_metrics.append({
        'bootstrap_sample': bootstrap_sample,
        'valid_loss': optax.sigmoid_binary_cross_entropy(
            logits_bootstrap, y_valid_bootstrap).mean().item(),
        'accuracy': accuracy_score(
            y_valid_bootstrap, nn.sigmoid(logits_bootstrap) >= 0.5),
        'auc': roc_auc_score(y_valid_bootstrap, logits_bootstrap),
    })

  return bootstrap_metrics


      

     

    

   

   
    Now, we can call
    
     evaluate
    
    with
    
     bootstrap_samples=3
    
    to get three slightly different values of the loss, accuracy, and auc:
   

   
    
     
      
       evaluate(transcription_factor='ZNF24', bootstrap_samples=3)


      

     

    

    
     
      
       [{'bootstrap_sample': 0,
  'valid_loss': 0.56317538022995,
  'accuracy': 0.6920309905921417,
  'auc': 0.7575816601325085},
 {'bootstrap_sample': 1,
  'valid_loss': 0.5710060596466064,
  'accuracy': 0.676535694521306,
  'auc': 0.7472136869626156},
 {'bootstrap_sample': 2,
  'valid_loss': 0.5705404281616211,
  'accuracy': 0.6900940785832872,
  'auc': 0.7510605681851601}]


      

     

    

   

   
    This sense of the error bars around a metric will make comparing the performance of different models easier down the line.
   

  

  
   
    Sweeping Over Different Models
   

   
    With all of this in place, we can train the different models in the
    
     model
    
    dict and compare them:
   

   
    
     
      
       def format_save_logged_data(
    logged_data, transcription_factor: str, model_name: str):
  """Format logged losses and metrics into a tidy dataframe."""
  logged_df = pd.DataFrame(logged_data).melt(
      id_vars=['step'],
      value_vars=['train_loss', 'valid_loss', 'accuracy', 'auc'])
  logged_df['transcription_factor'] = transcription_factor
  logged_df['model_name'] = model_name
  file_name = f'{transcription_factor}_{model_name}_training_curves.csv'
  logged_df.to_csv(os.path.join(ROOT_DIR, file_name), index=False)


BATCH_SIZE = 32
LEARNING_RATE = 0.001
TRAINING_STEPS = 1000
transcription_factor = 'ZNF24'

train_ds = set_up_dataset(transcription_factor, 'train', ROOT_DIR, BATCH_SIZE)
valid_ds = set_up_dataset(transcription_factor, 'valid', ROOT_DIR, BATCH_SIZE)

for model_name, model in models.items():
  print(f'\nTraining model {model_name}...\n', flush=True)

  # Init.
  init_rng = jax.random.PRNGKey(42)
  variables = model.init(init_rng, batch['sequence'])
  params = variables['params']
  batch_stats = variables['batch_stats']

  # optimizer.
  schedule = optax.cosine_decay_schedule(
      init_value=LEARNING_RATE,
      decay_steps=1000  # How long to decay over.
  )
  optimizer = optax.adam(schedule)
  opt_state = optimizer.init(params)

  # Training loop.
  logged_data = []

  for step in tqdm.tqdm(range(TRAINING_STEPS + 1)):
    batch = next(train_ds)
    params, batch_stats, opt_state, train_loss, rng = train_step(
        params, batch_stats, opt_state, batch, rng)
    logged_data.append(
        {'step': step, 'train_loss': train_loss.item()})

    # Compute loss and metrics on the entire validation set occasionally.
    if step % 100 == 0:
      metrics_bootstrap = evaluate(transcription_factor, bootstrap_samples=100)
      logged_data.extend(
          [{'step': step, **metrics} for metrics in metrics_bootstrap])

  format_save_logged_data(logged_data, transcription_factor, model_name)


      

     

    

   

   
    We can plot our learning curves and metrics over time for each model as we have done in
    Figure 2-16
    :
   

   
    
     
      
       fig, axes = plt.subplots(figsize=(10, 8), nrows=3, ncols=2)
axes = axes.flatten()

all_logged_df = []

for idx, model_name in enumerate(models.keys()):
  file_name = f'{transcription_factor}_{model_name}_training_curves.csv'
  logged_df = pd.read_csv(os.path.join(ROOT_DIR, file_name))
  all_logged_df.append(logged_df)

  plot_legend = True if idx == 0 else False
  sns.lineplot(data=logged_df, x='step', y='value', hue='variable',
               alpha=0.8, ax=axes[idx], legend=plot_legend, palette='Set2')
  axes[idx].set_title(model_name)
  axes[idx].set_ylim(0.3, 1.0)

all_logged_df = pd.concat(all_logged_df)

plt.tight_layout();


      

     

    

    
     
      [image: _images/f198e163f4e5d5886c7b4ef4d60b37d92cdbda2d67c4ec41df3a67a53286f800.png]
      Figure 2-16. 
       Learning curves comparing model variants’ performance on the ZNF24 binding sites.
      

     

    

   

   
    And to visualize differences in model performance more easily, as you can see in
    Figure 2-17
    , we can plot just the auROC over time for each model:
   

   
    
     
      
       sns.lineplot(
    data=all_logged_df[(all_logged_df['variable']=='auc')].dropna(),
    x='step', y='value', hue='model_name', alpha=0.8, palette='Set2');


      

     

    

    
     
      [image: _images/a9dee0aa8ff4a1065c40d7d3824260ad8635bf2fd02c57e665217b942ddbd26a.png]
      Figure 2-17. 
       Model variant comparison quantifies module contributions to performance.
      

     

    

   

   
    Let’s also access the precise values of the auROCs at step 1000 per model:
   

   
    
     
      
       # Mean of eval set bootstrap sample auROCs as step 1000.
all_logged_df[(all_logged_df['step']==1000) &
 (all_logged_df['variable']=='auc')].groupby(
     'model_name')['value'].mean().sort_values()


      

     

    

    
     
      
       model_name
single_conv_only             0.708175
fewer_conv_channels          0.737995
remove_MLP                   0.743255
baseline                     0.751500
add_two_transformer_block    0.764663
add_one_transformer_block    0.766391
Name: value, dtype: float64


      

     

    

   

   
    From this initial exploration, we can already see some trends. Rather than exhaustively go into optimizing each hyperparameter, let’s make some observations and hypothesize about what might be fruitful to explore next:
   

   
    	
     
      
       Importance of convolutions
      
      : The model
      
       single_conv_only
      
      , which is essentially a single convolutional block with 64 channels, already gets us to 0.71 auROC, suggesting that this initial convolutional block is quite important to this problem. Decreasing channels in our conv blocks hurts, so we do need the capacity there. Given its importance, we could optimize the number of channels, kernel width, and number of blocks next. Maybe we do not need the pooling after convolutions to condense the sequence dimension. since our DNA sequence is fairly short.
     

    

    	
     
      
       Self-attention
      
      : Adding transformer blocks seems helpful. Could more transformer blocks, or more attention heads per block, or a bigger MLP per block help even more? When would we hit diminishing returns? When would we run out of memory? Also, notice that we only trained for 1,000 steps here, and models with more parameters might take longer to train – perhaps we should train longer? Finally, it looks like validation loss initially spikes in the transformer models; could lowering the initial learning rate smooth out that training instability?
     

    

    	
     
      
       Potentially unnecessary components
      
      : Removing the MLP seems harmless or even helpful. Maybe we do not need that component, and it’s just wasted parameters.
     

    

   

   
    We won’t go into optimising these hyperparameters  here, but hopefully, this gives you a taste for some of the interesting explorations you can do with these types of models.
   

  

 

 
  
   Summary
  

  
   In this chapter we have looked into the facinating world of gene regulation by transcription factor binding. We started simple and built some more basic models that can recognize sequence motifs. We progressively increased complexity to push the boundaries of what the models could learn. We tapped into some more advanced modules that we could build into our final model to evaluate how performance was improved. This process of starting simple and increasing complexity is a very useful way to develop as you are less likely to get distracted or confused somewhere along the way.
  

  
   Up to this point, we have worked with data that has a sequential nature – first with protein sequences in Chapter 2, and now with DNA sequences in this chapter. While many techniques will remain similar, we will next explore a biological problem with an entirely different inherent structure: graphs.
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 Chapter 3. Understanding Drug-Drug Interactions Using Graphs

 
 
A Note for Early Release Readers


With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.



 
  
   Graphs
  
  are a fundamental structure found everywhere in the world around us. A familiar example is social networks, where
  
   nodes
  
  represent individuals and
  
   edges
  
  capture relationships. In train systems, nodes could represent stations and edges the routes between them. Less obvious examples include research collaborations linked by co-authorship, web pages interconnected by hyperlinks, and supermarket baskets, where frequently co-purchased items are connected.
 

 
  [image: _images/example_graphs.png]
  Figure 3-1. 
   Examples of graphs from different contexts. The social network shows people as nodes connected by edges representing relationships. The rail network illustrates stations as nodes and train routes as edges. The molecule network depicts the molecular structure of caffeine, where nodes represent atoms, and edges represent chemical bonds (hydrogen atoms are not shown).
  

 

 
  Biology, too, is filled with data that naturally lends itself to a network framework—genes interact to control cell functions, proteins physically bind to each other, and cells send signals to each other, all forming graph-like systems. Even molecules can be represented as graphs, with atoms as nodes and chemical bonds as edges. At larger biological scales, ecological food webs capture predator-prey and other species interactions, while disease transmission networks map the spread of pathogens through populations.
 

 
  These types of network relationships can be modeled using
  
   graph neural networks
  
  (GNNs). Recently, deep learning on graphs has become increasingly popular and effective. In this chapter, we will explore a graph of
  
   drug-drug interactions
  
  (DDIs) to gain insights into its connectivity. Specifically, we aim to predict whether two nodes should connect, which is a task known as
  
   link prediction
  
  . Link prediction is valuable here because, while we have an existing DDI graph, it may be incomplete – some true connections between drugs might be missing due to limited research or untested combinations. By accurately predicting these links, one could improve drug safety by identifying potential negative interactions and even discover new combination therapies by predicting which drugs might interact positively.
 

 
  
   Biology Primer
  

  
   Drug-drug interactions occur when the effects of one drug are altered by the presence of another. DDIs can amplify each drug’s effects, counteract them, or change the way a drug is processed in the body, which may result in either therapeutic benefits or adverse outcomes.
  

  
   
    Beneficial Drug-Drug Interactions
   

   
    In some cases, DDIs can be harnessed for therapeutic advantage. In cancer treatment, for example, combination therapies pair drugs that target different pathways in cancer cells. One drug may inhibit tumor growth, while another restricts the tumor’s blood supply, weakening it further. This multi-targeted approach not only improves patient outcomes but also reduces the likelihood of drug resistance.
   

   
    Similarly, certain antibiotics work better in combination – for instance, penicillin and gentamicin are often combined to treat infections like endocarditis. Penicillin weakens the bacterial cell wall, allowing gentamicin to penetrate the cell and disrupt protein synthesis, leading to a more effective antibiotic treatment.
   

  

  
   
    Harmful Drug-Drug Interactions
   

   
    Negative DDIs are generally much more common than beneficial ones—most drugs are not designed with each other in mind, which often leads to unintended side effects in patients taking multiple medications. Additionally, many drugs influence similar biological pathways, increasing the likelihood that one drug will amplify or counteract the effects of another.
   

   
    	
     
      
       Amplification example
      
      : Aspirin, commonly used as a pain reliever or blood thinner, can amplify the effects of other anticoagulants, such as warfarin. When taken together, both drugs thin the blood more than intended, raising the risk of excessive bleeding or bruising.
     

    

    	
     
      
       Counteracting example
      
      : Ibuprofen can reduce the effectiveness of antihypertensive drugs, such as ACE inhibitors and beta-blockers. Ibuprofen causes the body to retain sodium and fluid, which raises blood pressure and counteracts these medications.
     

    

   

   
    Most negative DDIs are actually more
    
     indirect
    
    . For instance, many drugs are metabolized in the liver by the cytochrome P450 enzyme system, so drugs that inhibit this system can impact a wide range of other medications. Grapefruit, though not a “drug” in the traditional sense, contains compounds that inhibit the cytochrome P450 system. One of the most serious grapefruit interactions occurs with certain statins used to control cholesterol. Grapefruit compounds inhibit an enzyme that would normally break down these statins, causing higher-than-expected drug levels to accumulate in the bloodstream. This buildup can lead to very severe side effects, including liver damage and muscle tissue breakdown.
   

  

  
   
    DrugBank
   

   
    DrugBank is one of the largest databases of drug interactions, providing detailed information on drugs and their known interactions. It has been widely used in various DDI studies. For example, in
    Figure 3-2
    ,
    
     an early study from 2016
    
    clustered DrugBank DDIs (at the time, the database contained around 1,000 nodes; in this chapter, we work with a more recent version containing over 4,000 nodes) to reveal major drug clusters, including those related to cytochrome P450 interactions discussed earlier:
   

   
    [image: _images/drugbank_clusters.png]
    Figure 3-2. 
     Community-based drug-drug interaction network (CBDDIN) from Udrescu et al. 2016 using data from DrugBank 4.1, containing 1,141 nodes (drugs) and 11,688 edges (drug-drug interactions). Clustering was performed using the Force Atlas 2 layout algorithm, which simulates a physical system to position nodes closer together based on their interactions, with colors assigned to highlight distinct communities of interacting drugs.
    

   

   
    In this chapter, we will use a processed version of DrugBank’s DDI data, available through a publicly accessible benchmark dataset from the
    
     Open Graph Benchmark
    
    resource by Stanford. Before diving into the dataset and its applications, let’s begin with a brief primer on machine learning on graphs.
   

  

 

 
  
   Machine Learning Primer
  

  
   You probably already have an intuitive sense of what a graph is, but to be more precise, a graph is a structure that represents relationships between pairs of objects. It consists of two main components:
  

  
   	
    
     
      Nodes (or vertices)
     
     : These represent individual entities, like people in a social network or proteins in an interaction network.
    

   

   	
    
     
      Edges
     
     : These are the connections between nodes, indicating relationships or interactions. In a social network, for example, an edge might represent a friendship, while in a protein interaction network, an edge represents an observed physical interaction between two proteins.
    

   

  

  
   Graphs can be
   
    directed
   
   (where edges have a direction, showing a one-way relationship) or
   
    undirected
   
   (indicating a two-way relationship). An example of a directed biological graph is predator-prey relationships between species in an ecosystem – an owl preys on mice, but usually not the other way around. An example of an undirected biological graph is gene co-expression networks, where the nodes are genes and the edges are correlations between the expression levels of each gene pair.
  

  
   Edges can have
   
    attributes
   
   such as
   
    weights
   
   , which reflect the strength of a connection. Nodes can also have attributes that capture additional information. For example, in the predator-prey example, edge weights might represent the number of times one species predates another, and each node might contain additional information about that species such as its estimated population size. Graphs vary in connection density (sparse vs. dense), may include self-loops (nodes connected to themselves), and can be dynamic (changing over time, like social networks).
  

  
   Certain graph properties have significant computational implications. For instance,
   
    graph size
   
   can pose a challenge, as large graphs may need to be distributed across multiple processing units to avoid memory overload.
   
    Graph sparsity
   
   -which is the proportion of existing edges relative to the total possible edges in the graph–affects storage and computation efficiency, with specialized techniques designed to handle sparsely connected networks. Additionally, sparse graphs allow for more efficient convolution operations, as fewer neighbors need to be considered (explained further below). Finally, the level of
   
    connectivity
   
   plays a crucial role – while graphs with many small, disconnected subgraphs can often be processed in parallel, densely connected graphs are more challenging or even impossible to parallelize.
  

  
   
    Representing Graph Structures
   

   
    In
    Figure 3-3
    , we see an undirected graph containing 5 nodes (N0, N1, N2, N3, N4) and 5 edges.
   

   
    [image: _images/graph_representations.png]
    Figure 3-3. 
     Visual representation of an undirected graph. The same graph represented as an adjacency matrix and an edge list.
    

   

   
    We can numerically represent the graph structure in two main ways:
   

   
    	
     
      
       Adjacency matrix
      
      : Each node is listed along the rows and columns of a matrix, with edges indicated by values in the corresponding cells.
     

    

    	
     
      
       Edge list
      
      : Each row in this list represents an edge by specifying its start and end nodes.
     

    

   

   
    The choice of representation impacts memory usage, especially depending on graph sparsity. An adjacency matrix has fixed memory usage, as it accounts for all possible edges, while an edge list only stores the edges that exist. For sparse graphs, where the number of edges is much smaller than the total possible, an edge list is typically much more memory efficient.
   

  

  
   
    Graph Neural Networks
   

   
    With this foundational understanding of graphs, we can explore how GNNs leverage this structure to learn complex relationships. GNNs are designed to work directly with graph structures, capturing information from nodes and their connections. By iteratively aggregating information from neighboring nodes, GNNs generate rich representations (embeddings) that encode both the properties of individual nodes and the overall structure of the graph.
   

   
    GNNs are commonly used for three main tasks:
   

   
    	
     
      
       Node classification
      
      : Predicting the type or property of a node within a graph. For example, determining the category of a drug within a drug-drug interaction network.
     

    

    	
     
      
       Link prediction / edge classification
      
      : Predicting the probability or type of connection between two nodes. For example, predicting whether a new drug is likely to interact with existing drugs in the network (the task of this chapter).
     

    

    	
     
      
       Graph classification
      
      : Predicting a property of an entire graph. For example, identifying whether a drug molecule—represented as a graph of atoms and bonds—possesses a specific property, such as solubility or binding effectiveness to a target protein associated with a disease.
     

    

   

  

  
   
    Graph Embeddings and Message Passing
   

   
    A primary goal in GNNs is to learn the structure around each node by generating a per-node embedding vector that captures information from its neighborhood. Unlike in images, where pixels have a fixed spatial arrangement, graph connections lack inherent order, making traditional convolutional approaches less applicable. To address this, frameworks like Kipf and Welling’s Graph Convolutional Network (GCN) introduced the concept of
    
     message passing
    
    . In this approach, each node iteratively exchanges “messages” with its neighbors, aggregating their information to build an embedding that represents its local neighborhood structure.
   

   
    Message passing is a flexible framework that underpins many GNN models. It often refers to the interaction between
    
     sender
    
    and
    
     receiver
    
    nodes, where the sender transmits information, and the receiver aggregates it to update its own representation.
    
     Graph convolution
    
    is one specific implementation of message passing, where nodes aggregate information from their neighbors using functions such as summation, mean, or max. In contrast, non-convolutional approaches like the Graph Attention Network (GAT) use attention mechanisms to assign different weights to neighbors based on their relative importance.
   

   
    The choice of aggregation function—whether sum, mean, max, or attention—affects the types of patterns the GNN can learn. Increasing the number of message-passing layers expands each node’s receptive field, allowing it to gather information from more distant neighbors and providing a broader view of the graph. However, adding too many layers can lead to
    
     over-smoothing
    
    , where node embeddings across the graph become indistinguishable. For many applications, two or three layers—capturing information within two hops—offer a good balance, enabling nodes to encode meaningful local information while maintaining distinct embeddings.
   

  

  
   
    Cold-Start Problem
   

   
    A significant challenge in graph neural networks is predicting on
    
     unseen nodes
    
    , often referred to as the
    
     cold-start problem
    
    . Many traditional graph models operate in a
    
     transductive
    
    setting, where training occurs on a fixed graph, limiting predictions to relationships among nodes seen during training.
   

   
    However, real-world applications often involve dynamic graphs where new nodes are introduced. For example:
   

   
    	
     
      In a social network, a new user joins, and the platform needs to predict their potential connections.
     

    

    	
     
      In a recommendation system, a newly released product must be matched to relevant users based on preferences.
     

    

    	
     
      In drug discovery, a newly synthesized compound must be evaluated for interactions with existing molecules.
     

    

   

   
    To address the cold-start problem, GNNs can adopt an
    
     inductive learning
    
    approach, enabling generalization to new, unseen nodes. This capability is essential for dynamic graphs where new nodes are frequently added, as it eliminates the need to retrain the model whenever the graph changes. It is achieved by learning patterns and relationships that are transferable across the graph. For example:
   

   
    	
     
      Instead of memorizing specific connections, the model identifies structural similarities (e.g., the role of a node in its local neighborhood) or shared features (e.g., common attributes across nodes).
     

    

    	
     
      When a new node is added, its feature vector and immediate connections to existing nodes provide enough context for the model to embed it within the graph and make predictions.
     

    

   

   
    Notable frameworks like GraphSAGE focus on inductive learning by sampling neighborhoods and aggregating local features to generate embeddings for unseen nodes. Techniques such as feature propagation and attention mechanisms further enhance this capability, making GNNs highly adaptable to evolving, real-world graphs.
   

  

  
   
    GraphSAGE
   

   
    In this chapter, we implement a
    
     GraphSAGE
    
    model, an inductive approach that can predict the properties of nodes it has never seen before by aggregating information from their neighbors. In the original paper, GraphSAGE was evaluated on tasks like classifying academic papers into six biology-related categories using citation graphs, assigning Reddit posts to 50 communities based on user interactions, and predicting protein functions across multiple protein-protein interaction graphs. These benchmarks demonstrated GraphSAGE’s ability to generalize to unseen nodes and outperform traditional methods, highlighting its versatility in dynamic, real-world graphs.
   

   
    A key advantage of GraphSAGE is its scalability to massive graphs. Training on large graphs can be resource-intensive because embedding updates for each node require iterating over its neighbors. GraphSAGE addresses this challenge by using
    
     subsampling
    
    , where only a small, fixed number of neighbors is sampled for each node. These subgraphs are processed in mini-batches, significantly reducing memory and computation costs.
   

   
    As illustrated in {numref}graphsage_illustration (from the
    
     original paper
    
    ), GraphSAGE has two main components: sampling a subgraph and aggregating neighborhood information for each node. The resulting embeddings can be used for downstream tasks like node classification or link prediction. While GraphSAGE can incorporate edge or node annotations, it does not depend on them, and for most of this chapter, we will focus solely on the graph structure.
   

   
    [image: _images/graphsage_illustration.png]
    Figure 3-4. 
     GraphSAGE stands for Graph SAmple and AggreGatE, representing its two main steps: (1) sampling a node’s neighbors and (2) aggregating their features to generate an embedding. These embeddings can be used for downstream tasks, such as predicting node properties or relationships within the graph.
    

   

  

 

 
  
   Selecting a Dataset
  

  
   In this chapter, we’ll work with a unique data source: the Open Graph Benchmark (OGB) dataset of processed DrugBank DDIs called
   
    
     ogbl-ddi
    
   
   . This dataset is particularly convenient for two reasons:
  

  
   	
    
     It is well-studied, providing a wealth of existing research to draw inspiration from.
    

   

   	
    
     It enables us to compare our model’s performance
     with other approaches using the
     
      leaderboard
     
     .
    

   

  

  
   Additionally, OGB simplifies the workflow by offering built-in data loaders compatible with various deep learning frameworks and an
   
    Evaluator
   
   class for computing problem-specific metrics. This allows us to focus on building and refining our model rather than spending time on data preparation.
  

  
   
    Dataset Description
   

   
    We have already discussed drug-drug interaction networks in general. The OGBL DDI dataset in particular is an unweighted, undirected graph of DDIs, where each node is an FDA-approved or experimental drug and edges represent interactions between drugs.
   

   
    To make the problem more challenging, the dataset is split in an interesting way—by the proteins that each drug targets. This “protein-target split” ensures that the test set contains drugs that primarily bind to different proteins than those in the training and validation sets, meaning they operate through distinct biological mechanisms. This forces the model to learn more generalizable biology. If we created our own split—such as a random split of drugs—there would likely be greater overlap in biological mechanisms between the training and test sets, making the problem easier but reducing the model’s ability to generalize to unseen drugs in real-world scenarios.
   

  

  
   
    Exploring the Dataset
   

   
    As always, let’s start by doing some exploratory analysis of the dataset to get a feeling for what we’re dealing with. We start by loading the data:
   

   
    
     
      
       from ogb.linkproppred import LinkPropPredDataset

# Quite a large graph, may take a few minutes to load.
dataset = LinkPropPredDataset(name="ogbl-ddi")


      

     

    

   

   
    The
    
     ogbl-ddi
    
    dataset has now been downloaded and is neatly packed into an object ready for inspection. The full graph is accessible with
    
     .graph
    
    :
   

   
    
     
      
       dataset.graph


      

     

    

    
     
      
       {'edge_index': array([[4039, 2424, 4039, ...,  338,  835, 3554],
        [2424, 4039,  225, ...,  708, 3554,  835]]),
 'edge_feat': None,
 'node_feat': None,
 'num_nodes': 4267}


      

     

    

   

   
    We see that the graph is stored in
    
     edge-list format
    
    within the key
    
     edge_index
    
    . Note that
    
     edge_feat
    
    and
    
     node_feat
    
    are both None, indicating that we do not have any additional features in the graph other than the graph structure, like properties of the drugs or interaction strengths. Let’s see how many nodes and edges are in the graph:
   

   
    The graph is stored in
    
     edge-list
    
    format under the key
    
     edge_index
    
    . Both
    
     edge_feat
    
    and
    
     node_feat
    
    are None, meaning the graph includes only the structure—without additional edge features such as interaction strengths or node features such as drug properties. Next, let’s examine the number of nodes and edges in the graph:
   

   
    
     
      
       print(
  f'The graph contains {dataset.graph["num_nodes"]} nodes and '
  f'{dataset.graph["edge_index"].shape[1]} edges.'
)


      

     

    

    
     
      
       The graph contains 4267 nodes and 2135822 edges.


      

     

    

   

   
    We can plot the
    
     degree distribution
    
    , or the distribution of the number of connections per node, to get a sense of high-level graph structure:
   

   
    
     
      
       import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

degrees = np.bincount(dataset.graph["edge_index"].flatten())

sns.histplot(degrees, kde=True)
plt.xlabel("Degree")
plt.ylabel("Frequency")
plt.title("Degree Distribution")
plt.show();


      

     

    

    
     [image: _images/fe14b34a3c6fc348ed1f6cfc9d6936ee09c98900e9f17da327230e60f2c7aca7.png]
    

   

   
    We observe that a few drugs act as
    
     hubs
    
    , exhibiting high degree by interacting with many other drugs, while most drugs exhibit low degree, interacting with only a few. This pattern is consistent with a
    
     
      power-law distribution
     
    
    , commonly seen in biological and social networks, where a small number of elements have very high connectivity (hubs) while the majority have low connectivity. However, it is important to note that this characteristic might be specific to this dataset and may not generalize across all drug-drug interaction networks.
   

   
    We can compute the
    
     density
    
    of the graph, or the ratio of edges to the number of possible edges, to quantify how densely interconnected our graph is:
   

   
    
     
      
       num_nodes = dataset.graph["num_nodes"]
num_observed_edges = dataset.graph["edge_index"].shape[1]

# Since each edge in an undirected graph can be represented in two ways, we
# multiply by 2 to account for the bidirectionality.
num_observed_edges = 2 * num_observed_edges

# For any graph with n nodes, the maximum number of edges (assuming no
# self-loops) is n * (n-1).
num_possible_edges = num_nodes * (num_nodes - 1)

density = num_observed_edges / num_possible_edges

print(
  f"There are {num_observed_edges} observed edges and {num_possible_edges} "
  f"possible edges,\ngiving a graph density of {round(density, 2)}"
)


      

     

    

    
     
      
       There are 4271644 observed edges and 18203022 possible edges,
giving a graph density of 0.23


      

     

    

   

   
    This shows that while the dataset contains a seemingly large number of edges, it is not extremely dense, as 77% of possible connections are absent. With a density of 23%, the graph can be considered moderately interconnected, though this interpretation is subjective and depends on the specific context.
   

   
    The dataset comes with its own methods to extract useful information. For example,
    
     .get_edge_split
    
    will list the graph’s edges across the different data splits:
   

   
    
     
      
       data_split = dataset.get_edge_split()
data_split


      

     

    

    
     
      
       {'train': {'edge': array([[4039, 2424],
         [4039,  225],
         [4039, 3901],
         ...,
         [ 647,  708],
         [ 708,  338],
         [ 835, 3554]])},
 'valid': {'edge': array([[ 722,  548],
         [ 874, 3436],
         [ 838, 1587],
         ...,
         [3661, 3125],
         [3272, 3330],
         [1330,  776]]),
  'edge_neg': array([[   0,   58],
         [   0,   84],
         [   0,   90],
         ...,
         [4162, 4180],
         [4168, 4260],
         [4180, 4221]])},
 'test': {'edge': array([[2198, 1172],
         [1205,  719],
         [1818, 2866],
         ...,
         [ 326, 1109],
         [ 911, 1250],
         [4127, 2480]]),
  'edge_neg': array([[   0,    2],
         [   0,   16],
         [   0,   42],
         ...,
         [4168, 4259],
         [4208, 4245],
         [4245, 4259]])}}


      

     

    

   

   
    We can see that the graphs are stored in edge list format, and that the
    
     valid
    
    and
    
     test
    
    splits actually contain two types of edges:
   

   
    	
     
      The
      
       edge
      
      key holds the positive data, representing known drug interactions. Here,
      
       positive
      
      refers to interactions that are known, whether beneficial or harmful.
     

    

    	
     
      The
      
       edge_neg
      
      key contains negative edges, representing drug pairs with no known interactions. However, because some interactions may simply be undiscovered, this data is considered
      
       weakly labeled
      
      and may include inaccuracies.
     

    

   

   
    Importantly, the training dataset does not explicitly include unconnected node pairs as negative edges (i.e., there is no predefined
    
     edge_neg
    
    for training). However, in a sparse network, most node pairs are unconnected, and these unconnected pairs can be treated as potential negative edges. During training, negative edges are typically sampled from this large pool, and the sampling method is a key tuning parameter that can significantly impact model performance. Some negative edges are easier to identify than others, which can artificially inflate performance metrics. By contast, the validation and test datasets include a predefined
    
     edge_neg
    
    key, which explicitly lists a set of unconnected node pairs for evaluation purposes.
   

   
    Let’s now examine the relative sizes of the
    
     train
    
    ,
    
     valid
    
    , and
    
     test
    
    splits:
   

   
    
     
      
       print(
  f'Number of edges in train set: {data_split["train"]["edge"].shape[0]}\n'
  f'Number of edges in valid set: {data_split["valid"]["edge"].shape[0]}\n'
  f'Number of edges in test set: {data_split["test"]["edge"].shape[0]}'
)


      

     

    

    
     
      
       Number of edges in train set: 1067911
Number of edges in valid set: 133489
Number of edges in test set: 133489


      

     

    

   

   
    Another crucial consideration is whether all nodes in the validation and test sets are also present in the training set. This check determines if the model will encounter nodes during validation and testing that it hasn’t seen during training. Starting with this easier scenario—where all nodes in the validation and test sets are present in the training set—allows us to evaluate the model’s ability to predict connections within a transductive setting before tackling the more complex inductive case, where the model must handle entirely unseen nodes. You can perform this check with the following code:
   

   
    
     
      
       train_nodes = np.unique(data_split["train"]["edge"])
valid_nodes = np.unique(data_split["valid"]["edge"])
test_nodes = np.unique(data_split["test"]["edge"])

# Check if all nodes in valid and test sets are present in train set.
valid_in_train = np.isin(valid_nodes, train_nodes).all()
test_in_train = np.isin(test_nodes, train_nodes).all()

# Print results
print(f"All validation nodes are in training nodes: {valid_in_train}")
print(f"All test nodes are in training nodes: {test_in_train}")


      

     

    

    
     
      
       All validation nodes are in training nodes: True
All test nodes are in training nodes: True


      

     

    

   

   
    Starting with a transductive setup ensures that the model can perform well when no unseen nodes are involved, laying the groundwork for more challenging inductive tasks. Techniques like GraphSAGE excel in inductive settings because they generate embeddings based on a node’s local neighborhood. This means that even if a node is unseen during training, as long as it connects to known nodes, the model can embed it meaningfully. However, for now, we’ll focus on the easier transductive case.
   

  

  
   
    Examining Drug Names
   

   
    Although not immediately available in the graph object, there is additional annotation data that comes with the
    
     ogbl-ddi
    
    dataset. Let’s examine this information:
   

   
    
     
      
       import pandas as pd

ddi_descriptions = pd.read_csv(
  "./dataset/ogbl_ddi/mapping/ddi_description.csv.gz"
)
ddi_descriptions.head()


      

     

    

    
     
      
       
        
         
          	
          
          	
           first drug id
          
          	
           first drug name
          
          	
           second drug id
          
          	
           second drug name
          
          	
           description
          
         

        
        
         
          	
           0
          
          	
           DB00001
          
          	
           Lepirudin
          
          	
           DB06605
          
          	
           Apixaban
          
          	
           Apixaban may increase the anticoagulant activi...
          
         

         
          	
           1
          
          	
           DB00001
          
          	
           Lepirudin
          
          	
           DB06695
          
          	
           Dabigatran etexilate
          
          	
           Dabigatran etexilate may increase the anticoag...
          
         

         
          	
           2
          
          	
           DB00001
          
          	
           Lepirudin
          
          	
           DB01254
          
          	
           Dasatinib
          
          	
           The risk or severity of bleeding and hemorrhag...
          
         

         
          	
           3
          
          	
           DB00001
          
          	
           Lepirudin
          
          	
           DB01609
          
          	
           Deferasirox
          
          	
           The risk or severity of gastrointestinal bleed...
          
         

         
          	
           4
          
          	
           DB00001
          
          	
           Lepirudin
          
          	
           DB01586
          
          	
           Ursodeoxycholic acid
          
          	
           The risk or severity of bleeding and bruising ...
          
         

        
       

      

     

    

   

   
    We can see that each row is a drug-drug interaction, with each drug having an ID (an accession in the
    
     DrugBank database
    
    ) and a description of the nature of the interaction.
   

   Note

    
     The dataset is derived from
     
      DrugBank
     
     , which provides extensive information about drugs and their interactions. While some of this information is included in the benchmark dataset, much more could be added, such as chemical properties, target genes, and other drug-specific details. However, access to the full DrugBank resource is not free for non-academic users.
    

   

   
    When working with our graph, we will mostly be dealing with node indices, but we can always look up the mapping between node ID and DrugBank drug IDs and drug names:
   

   
    
     
      
       node_to_dbid_lookup = pd.read_csv(
  "./dataset/ogbl_ddi/mapping/nodeidx2drugid.csv.gz"
)
node_to_dbid_lookup.head()


      

     

    

    
     
      
       
        
         
          	
          
          	
           node idx
          
          	
           drug id
          
         

        
        
         
          	
           0
          
          	
           0
          
          	
           DB00001
          
         

         
          	
           1
          
          	
           1
          
          	
           DB00002
          
         

         
          	
           2
          
          	
           2
          
          	
           DB00004
          
         

         
          	
           3
          
          	
           3
          
          	
           DB00005
          
         

         
          	
           4
          
          	
           4
          
          	
           DB00006
          
         

        
       

      

     

    

   

   
    This annotation allows us to look a bit deeper at the degree distribution observation from earlier. What are the drugs that bind so many other drugs? Let’s examine the drugs with the highest number of edges. Since all but 14 drug interactions are represented twice in this dataframe (once as
    
     A-B
    
    and once as
    
     B-A
    
    ), we can count on the
    
     first
     
      drug
     
     
      name
     
    
    column to get the most frequently binding drugs:
   

   
    
     
      
       ddi_descriptions["first drug name"].value_counts().head(10)


      

     

    

    
     
      
       first drug name
Quinidine         2477
Chlorpromazine    2431
Desipramine       2345
Amitriptyline     2338
Clozapine         2324
Doxepin           2273
Clomipramine      2269
Haloperidol       2269
Carbamazepine     2267
Imipramine        2260
Name: count, dtype: int64


      

     

    

   

   
    Figure 3-5
    visualizes the structure of these top interacting drugs.
   

   
    [image: _images/top_interacting_drugs.png]
    Figure 3-5. 
     Chemical structures of the top 10 drugs with the highest number of drug-drug interactions in the dataset. Interestingly, many of these drugs, such as desipramine, amitriptyline, and clomipramine, share a common three-ring (tricyclic) core structure, which may contribute to their similar interaction profiles. Structures were acquired from DrugBank.
    

   

   
    This list of drugs may seem a bit obscure if you’re not accustomed to memorizing drug names, but there are a few emergent patterns here:
   

   
    	
     
      
       Affecting transporter proteins
      
      . The drug with the highest number of interactions (2,477) is quinidine, used to treat certain heart arrhythmias. Like other drugs on this list, such as clozapine and carbamazepine, quinidine interacts strongly with transporter proteins (with the most famous one being a protein called P-glycoprotein), which regulate the absorption and transport of many drugs across cells. This broad influence on drug levels largely explains its high interaction count in this dataset.
     

    

    	
     
      
       Affecting drug metabolism
      
      . Many of these drugs, like the antidepressants (desipramine, amitriptyline, clomipramine, imipramine), antipsychotics (chlorpromazine, clozapine, haloperidol), and the mood stabilizer carbamazepine, are metabolized by the CYP450 enzyme family in the liver. This system, introduced earlier, plays a major role in drug metabolism and is central to many drug interactions since drugs that inhibit or activate CYP450 enzymes can alter the metabolism of other drugs taken simultaneously.
     

    

    	
     
      
       Dosage sensitivity
      
      . Finally, another factor is that these top-interacting drugs also tend to have narrow
      
       therapeutic ranges
      
      , meaning even small changes in blood concentrations can lead to adverse effects. This makes interactions more likely to occur and be noticed.
     

    

   

   
    From this additional table of drug information, we can construct a lookup table of
    
     node_id
    
    to DrugBank
    
     dbid
    
    to drug names, allowing us to bring more biological context to our project as we start modeling:
   

   
    
     
      
       first_drug = ddi_descriptions[["first drug id", "first drug name"]].rename(
  columns={"first drug id": "dbid", "first drug name": "drug_name"}
)
second_drug = ddi_descriptions.loc[
  :, ["second drug id", "second drug name"]
].rename(columns={"second drug id": "dbid", "second drug name": "drug_name"})
dbid_to_name_lookup = (
  pd.concat([first_drug, second_drug]).drop_duplicates().reset_index(drop=True)
)

drugs_lookup = pd.merge(
  node_to_dbid_lookup.rename(
    columns={"drug id": "dbid", "node idx": "node_id"}
  ),
  dbid_to_name_lookup,
  on="dbid",
  how="inner",
)

drugs_lookup.iloc[935]


      

     

    

    
     
      
       node_id            935
dbid           DB01043
drug_name    Memantine
Name: 935, dtype: object


      

     

    

   

  

  
   
    Visualizing Graphs
   

   
    Now let’s take a look at what a portion of this graph data actually looks like. The entire graph is too large to meaningfully visualize all at once, but we can sample a subgraph and visualise that. The strategy here is to select a subset of nodes from the original training graph and then subset the split dataset by these nodes:
   

   
    
     
      
       import numpy as np

np.random.seed(42)


def get_subgraph(edges: np.ndarray, node_limit: int) -> np.ndarray:
  """Gets a subgraph from a gpaph by sampling nodes and their associated edges.
  """
  nodes = np.unique(edges)
  sampled_nodes = np.random.choice(nodes, size=node_limit, replace=False)
  filtered_edges = edges[
    np.isin(edges[:, 0], sampled_nodes) & np.isin(edges[:, 1], sampled_nodes)
  ]
  print(f"Subgraph has {filtered_edges.shape[0]} edges")
  return filtered_edges


# Sample 50 nodes from the training set.
subgraph = get_subgraph(node_limit=50, edges=data_split["train"]["edge"])


      

     

    

    
     
      
       Subgraph has 152 edges


      

     

    

   

   
    We have visualized the graph in
    Figure 3-6
    using the
    
     plot_ddi_graph
    
    function, which leverages the popular
    
     networkx
    
    library, a widely used tool for graph visualization in Python:
   

   
    
     
      
       import networkx as nx


def plot_ddi_graph(graph: np.ndarray, drugs_lookup: pd.DataFrame) -> plt.Figure:
  """Plots a drug-drug interaction graph with labeled nodes."""
  fig = plt.figure(figsize=(15, 15))
  G = nx.Graph()
  G.add_edges_from(graph)
  pos = nx.spring_layout(G)
  nx.draw(
    G=G,
    pos=pos,
    with_labels=False,
    node_color="lightgray",
    edge_color="gray",
    node_size=10,
    alpha=0.3,
  )
  labels = (
    drugs_lookup[drugs_lookup["node_id"].isin(G.nodes)]
    .set_index("node_id")["drug_name"]
    .to_dict()
  )
  nx.draw_networkx_labels(G=G, pos=pos, labels=labels, font_size=12)
  return fig


fig = plot_ddi_graph(subgraph, drugs_lookup)
fig.show()


      

     

    

    
     
      [image: _images/a6ac9773d24a790f6b6a565eaf878dc3815a12db7afcdc9cb483c55f7dfd2afb.png]
      Figure 3-6. 
       A sampled subgraph of the drug-drug interaction network, with nodes labeled by drug names. This visualization highlights the diversity of interactions, including densely connected clusters (e.g., around procaine, a dental anaesthetic) and isolated or sparsely connected drugs. While this graph was sampled for clarity, it illustrates how certain drugs act as hubs, reflecting their broad interaction profiles, and others interact more selectively, potentially due to specific biological mechanisms.
      

     

    

   

  

 

 
  
   Building a Dataset
  

  
   Having explored the dataset from
   
    LinkPropPredDataset
   
   , we now turn our attention to the process of preparing it for use in the
   
    jax/flax
   
   framework. Although the dataset isn’t out-of-the-box compatible, this offers a valuable opportunity to better understand the intricacies of graph processing. In this section, we’ll walk through the necessary adjustments to ensure the dataset is properly formatted for our model.
  

  
   Fortunately, we don’t have to start from scratch. The
   
    jax
   
   ecosystem has
   
    jraph
   
   , a graph library that offers foundational, graph-aware classes and data structures, allowing us to build flexible graph-processing models while benefiting from
   
    jax
   
   ’s speed and efficiency.
  

  Note

   
    PyTorch, particularly its extension library
    
     pytorch-geometric
    
    , is arguably the most comprehensive deep learning framework for working with graphs. It offers a robust toolkit that simplifies selecting graph models from a model zoo, handling efficient data loading, and working with convenient data classes. Datasets like OGBL have dedicated data loaders tailored for this framework. However, in this chapter, we are using
    
     jraph
    
    , as it integrates seamlessly with JAX, aligning better with our overall approach.
   

  

  
   Let’s get started with building a dataset we can train models on. As mentioned, there are several ways to represent a graph, such as using an adjacency matrix or an edge list. Since we’re using
   
    jraph
   
   , we go for the edge-list format, the default, which is much more memory-efficient for sparser datasets like a drug-drug interaction network.
  

  
   
    Creating a Datasets Builder
   

   
    We have packaged the dataset building into a class called
    
     DdiDatasetBuilder
    
    . At first, this might seem a bit overwhelming, but stick with us — you’ll recognize many parts from the dataset exploration section as we go along. Let’s go through it step-by-step, starting with the main method
    
     build
    
    :
   

   
    
     
      
         def __init__(
    self, path: str = "content/chapters/graphs/sources/assets/data/dataset"
  ):
    """Initializes the dataset builder with a path to the dataset."""
    self.path = path


      

     

     
      
         def build(self) -> dict[str, Dataset]:
    """Builds and returns a dictionary of datasets

    Note that `n_nodes` is shared across splits because it defines the node
    embedding dimensions and because the node space is the same for train,
    validation, and test splits. Validation and test nodes are subsets of
    training nodes, ensuring embeddings are available for all splits. This does
    not introduce information leakage as splits are different in their edges.

    Returns:
      datasets (dict[str, Dataset]): Dictionary of dataset for train,
        validation, and test splits.
    """
    datasets = {}
    n_nodes, split_pairs = self.download()
    annotation = self.prepare_annotation()

    for name, split in split_pairs.items():
      pos_pairs, neg_pairs = split["edge"], split["edge_neg"]
      graph = self.prepare_graph(n_nodes, pos_pairs)
      pairs = self.prepare_pairs(graph, pos_pairs, neg_pairs)
      datasets.update({name: Dataset(n_nodes, graph, pairs, annotation)})

    return datasets


      

     

    

   

   
    During instantiation, the builder receives a
    
     path
    
    to ensure the dataset is stored in the specified location, eliminating the need to redownload it every time. The
    
     build
    
    method then generates a dictionary where the keys indicate data splits, each associated with a
    
     Dataset
    
    value. We’ll examine the
    
     Dataset
    
    class in detail shortly, but for now, think of it as a dataset bundle with convenience methods for easier handling during training.
   

   
    
     Download the Raw Dataset
    

    
     The raw dataset is first downloaded, leveraging the
     
      LinkPropPredDataset
     
     we saw before. Since the training split does not have negative pairs, we add a
     
      neg_edges
     
     key, in order simplify later handling:
    

    
     
      
       
          def download(self) -> tuple[int, dict]:
    """Downloads the dataset and returns the number of nodes and edge splits."""
    raw = LinkPropPredDataset(name="ogbl-ddi", root=self.path)
    # Note that the full graph is available in raw.graph
    n_nodes = raw[0]["num_nodes"]
    split_pairs = raw.get_edge_split()
    split_pairs["train"]["edge_neg"] = None  # Placeholder for negative edges.
    return n_nodes, split_pairs


       

      

     

    

   

   
    
     Prepare the Annotation
    

    
     The dataset annotation is not directly useful when training our model in this project, however it is very handy to have readily accessible to perform all sorts of sanity checks. You will recognize the implementation from the dataset exploration section
     :
    

    
     
      
       
          def prepare_annotation(self) -> pd.DataFrame:
    """Prepares node annotations mapping node IDs to database IDs and drug
    names.
    """
    ddi_descriptions = pd.read_csv(
      f"{self.path}/ogbl_ddi/mapping/ddi_description.csv.gz"
    )
    node_to_dbid_lookup = pd.read_csv(
      f"{self.path}/ogbl_ddi/mapping/nodeidx2drugid.csv.gz"
    )
    # Merge first and second drug descriptions into a single lookup.
    first_drug = ddi_descriptions.loc[
      :, ["first drug id", "first drug name"]
    ].rename(columns={"first drug id": "dbid", "first drug name": "drug_name"})

    second_drug = ddi_descriptions.loc[
      :, ["second drug id", "second drug name"]
    ].rename(
      columns={"second drug id": "dbid", "second drug name": "drug_name"}
    )
    dbid_to_name_lookup = (
      pd.concat([first_drug, second_drug])
      .drop_duplicates()
      .reset_index(drop=True)
    )

    # Merge with node-to-DBID lookup.
    annotation = pd.merge(
      node_to_dbid_lookup.rename(
        columns={"drug id": "dbid", "node idx": "node_id"}
      ),
      dbid_to_name_lookup,
      on="dbid",
      how="inner",
    )
    return annotation


       

      

     

    

    
     The annotation is the same for all the dataset splits, hence we only need to prepare it once and assign it to the
     
      Dataset
     
     .
    

   

   
    
     Prepare the Graph
    

    
     Next we look at
     
      prepare_graph
     
     , the main function of the dataset builder.
    

    
     
      
       
          def prepare_graph(
    self, n_nodes: int, pos_pairs: np.ndarray
  ) -> jraph.GraphsTuple:
    """Prepares a Jraph graph from positive edge pairs."""
    senders, receivers = self.make_undirected(pos_pairs[:, 0], pos_pairs[:, 1])
    graph = jraph.GraphsTuple(
      nodes={"gid": jnp.arange(n_nodes)},  # Optional global node ID.
      edges=None,
      senders=senders,
      receivers=receivers,
      n_node=jnp.array([n_nodes]),
      # TODO: Should this number be halved after making the graph undirected?
      n_edge=jnp.array([len(senders)]),
      globals=None,
    )
    return graph


       

      

     

    

    
     The
     
      make_undirected
     
     method ensures that the drug-drug interaction graph is undirected, meaning the relationship between drugs
     
      A-B
     
     is equivalent to
     
      B-A
     
     . Since
     
      jraph
     
     does not offer a toggle between directed and undirected graphs, we need to represent all edges in both directions. This process, known as
     
      symmetrizing
     
     the graph, makes the adjacency relationships symmetric, effectively converting a directed graph into an undirected one. This transformation is applied across all dataset splits.
    

    
     Practically, implementing this transformation is straightforward. We start with the
     
      pos_pairs
     
     and add a corresponding set of edges where the sender and receiver nodes are swapped:
    

    
     
      
       
          @staticmethod
  def make_undirected(
    senders: jnp.ndarray, receivers: jnp.ndarray
  ) -> tuple[jnp.ndarray, jnp.ndarray]:
    """Makes an undirected graph by duplicating edges in both directions."""
    # Jraph requires undirected graphs to have both A->B and B->A edges
    # explicitly.
    senders_undir = jnp.concatenate((senders, receivers))
    receivers_undir = jnp.concatenate((receivers, senders))
    return senders_undir, receivers_undir


       

      

     

    

    
     Next, we prepare the graph using the main parameters that
     
      GraphsTuple
     
     expects:
     
      senders
     
     and
     
      receivers
     
     , which define the edges by specifying the source and destination nodes. Each node or edge can be annotated, with node annotations stored in
     
      nodes
     
     and edge annotations in
     
      edges
     
     .  In addition,
     
      GraphsTuple
     
     incorporates metadata such as
     
      n_nodes
     
     and
     
      n_edges
     
     , which indicate the number of nodes and edges, respectively, and
     
      globals
     
     , which can store graph-level information such as a unique graph identifier or aggregated features. While we won’t use
     
      globals
     
     here, it remains available for scenarios requiring data applicable to the entire graph.
    

    Warning

     
      You may wonder why we sometimes need to pass the number of nodes independently from the graph. Why can’t this be inferred from the edges? Inferring node count from edges could miss isolated nodes, which have no connections to other nodes (i.e. no interactions with other drugs).
     

    

    
     In general,
     
      GraphsTuple
     
     is a versatile data structure that can host data in various ways. Instead of having one
     
      GraphsTuple
     
     per data split, we could construct a single graph containing both training and evaluation datasets, using the
     
      nodes
     
     attribute to specify which set each node belongs to.
    

   

   
    
     Prepare the Pairs
    

    
     With the graph in place, we use the
     
      prepare_pairs
     
     method to obtain the drug-drug pairs—both positive and negative — that the model will classify as either connected or not:
    

    
     
      
       
          def prepare_pairs(
    self, graph: int, pos_pairs: jax.Array, neg_pairs: jax.Array | None = None
  ) -> Pairs:
    """Prepares positive and negative edge pairs."""
    if neg_pairs is None:
      neg_pairs = self.infer_negative_pairs(graph)
    return Pairs(pos=pos_pairs, neg=neg_pairs)


       

      

     

    

    
     For evaluation datasets, preparing pairs is straightforward, as we can directly use the positive and negative pairs provided by the OGBL dataset.
    

    Note

     
      You might wonder why we don’t use the edges from the graph we just created to generate the positive pairs. The reason is that, since we made the graph undirected, each positive pair is represented twice, which could lead to redundancy and errors during evaluation.
     

    

    
     For the training dataset, preparing pairs is slightly more complex because negative pairs are not provided and must be inferred using the
     
      infer_negative_pairs
     
     method:
    

    
     
      
       
          def infer_negative_pairs(self, graph: jraph.GraphsTuple) -> jnp.array:
    """Infers negative edge pairs

    Infers negative edge pairs by masking existing connections in the adjacency
    matrix. This method creates an adjacency mask where:
    - A value of 1 indicates no edge exists between two nodes (potential
      negative edges).
    - Existing edges in the graph are masked out (set to 0).
    - Only the upper triangular part of the matrix is considered to avoid
      duplicate edges (since edges are undirected and represented twice in a
      full adjacency matrix).

    Inspired by:
    https://github.com/google-deepmind/educational/blob/master/colabs/summer_schools/intro_to_graph_nets_tutorial_with_jraph.ipynb

    Notes:
    - We could use a sparse matrix implementation from scipy for efficiency in
      larger graphs.
    - The diagonal is excluded because self-loops are not considered in this
      implementation.

    Args:
      graph (jraph.GraphsTuple): The graph structure containing nodes and edges.

    Returns:
      jnp.ndarray: A list of negative edge pairs as an array of shape (N, 2).
    """
    # Initialize a matrix where all possible edges are marked as potential
    # negative edges (1).
    neg_adj_mask = np.ones((graph.n_node[0], graph.n_node[0]), dtype=np.uint8)

    # Mask out existing edges in the graph (set to 0).
    neg_adj_mask[graph.senders, graph.receivers] = 0

    # Use the upper triangular part of the matrix to avoid duplicate pairs and
    # self-loops.
    neg_adj_mask = np.triu(neg_adj_mask, k=1)
    neg_pairs = jnp.array(neg_adj_mask.nonzero()).T  # Extract indices.
    return neg_pairs


       

      

     

    

    
     The method begins by constructing an adjacency matrix, initializing it with zeros using numpy. It then marks all existing edges with ones. To identify negative edges, the method flips the matrix values, so connections become zeros and non-connections become ones. Finally, it retains only the upper triangle (
     
      triu
     
     ) of the matrix (excluding the diagonal) to avoid self-loops and duplicate pairs. The remaining non-zero entries are converted into an edge list of negative node pairs.
    

    
     The resulting negative pairs far outnumber the positive pairs due to the graph’s sparsity. This imbalance can be advantageous, as it provides more examples of negative edges to sample. However, as mentioned previously, the way negative pairs are sampled significantly affects performance, as some pairs are trivial to predict as unconnected. We will need to carefully select a fair subset of negative pairs during training.
    

    Note

     
      Using an adjacency matrix approach assumes that it can fit into memory. If this is not feasible, alternative methods for generating negative node pairs include sampling a non-comprehensive subset or using efficient implementations that rely on sparse adjacency matrices.
     

    

    
     The positive and negative pairs are then encapsulated in a
     
      Pairs
     
     dataclass, which we’ll examine further during training. This simple dataclass stores arrays of positive and negative pairs and includes utilities for subsampling pairs during learning and accessing pairs in batches.
    

   

  

 

 
  
   Building a Prototype
  

  
   Let’s start simple. We need to build a model that predicts links between nodes. We’ll do this without any node annotations, relying solely on the graph’s connectivity. Interestingly, as you will see, the connectivity information alone can train a model to predict likely connections. This differs from our previous chapters, where we classified instances based on labels. While link prediction can be framed as a binary classification problem —
   
    connection
   
   vs
   
    no-connection
   
   — it is somewhat different.
  

  
   Our model will consist of several key components that collectively enable link prediction. Some are directly defined as part of the model setup, while others are integral to the training process. These components include:
  

  
   	
    
     Part of the model:
    

    
     	
      
       
        Neighborhood encoding
       
       : Generates node embeddings that capture the local structure of the network.
      

     

     	
      
       
        Link prediction
       
       : Predicts connectivity for both positive and negative node pairs.
      

     

    

   

   	
    
     Part of the training loop:
    

    
     	
      
       
        Negative sampling
       
       : Selects unconnected node pairs for the model to learn from.
      

     

     	
      
       
        Loss function
       
       :   Computes the loss that the model minimizes during training.
      

     

    

   

  

  
   
    Node Encoder
   

   
    Arguably the most impactful choice for our model is how we encode the nodes’ neighborhood. For this, we use a GraphSAGE-inspired implementation:
   

   
    
     
      
       class NodeEncoder(nn.Module):
  """Encodes nodes into embeddings using a two-layer GraphSAGE model."""

  n_nodes: int
  embedding_dim: int
  last_layer_self: bool
  degree_norm: bool
  dropout_rate: float

  def setup(self):
    """Initializes node embeddings, which cover the full graph's n_nodes."""
    # TODO: use flax.linen.Embed?
    # TODO: (https://flax.readthedocs.io/en/v0.5.3/_autosummary/flax.linen.Embed.html)
    self.node_embeddings = self.param(
      "node_embeddings",
      jax.nn.initializers.glorot_uniform(),
      (self.n_nodes, self.embedding_dim),
    )

  @nn.compact
  def __call__(self, graph: jraph.GraphsTuple, is_training: bool) -> jnp.array:
    """Encodes the nodes of a graph into embeddings."""
    # NOTE: the graph can be a subgraph and thus we use a subset of embeddings
    # TODO: evaluate whether this subsetting is required?
    x = self.node_embeddings[graph.nodes["gid"]]

    # Apply the first GraphSAGE layer.
    x = SAGEConv(
      self.embedding_dim, with_self=True, degree_norm=self.degree_norm
    )(graph, x)
    x = nn.relu(x)
    x = nn.Dropout(rate=self.dropout_rate, deterministic=not is_training)(x)

    # Apply the second GraphSAGE layer.
    x = SAGEConv(
      self.embedding_dim,
      with_self=self.last_layer_self,
      degree_norm=self.degree_norm,
    )(graph, x)

    return x


      

     

    

   

   
    The main input parameters to the module are:
   

   
    	
     
      
       n_nodes
      
      : Defines the total number of nodes in the original graph.
     

    

    	
     
      
       embedding_dim
      
      : Specifies the dimensionality of the node embeddings. This parameter controls how richly the encoding captures neighborhood information. A low value (e.g., 16 or 32) can limit the model’s ability to represent complex structures, while a higher value (e.g., 128 or 256) increases computational cost. The choice of
      
       embedding_dim
      
      should balance expressiveness, efficiency, and graph size. Larger graphs amplify the computational burden of higher dimensions, making smaller values (e.g., 32 or 64) more practical, while smaller graphs can afford richer embeddings with higher dimensions.
     

    

    	
     
      
       dropout_rate
      
      : Determines the fraction of neurons to be randomly ignored during each training iteration to reduce overfitting.
     

    

    	
     
      
       last_layer_self
      
      and
      
       degree_norm
      
      : Configure the behavior of the graph convolutions, which will be explained in detail in the next section.
     

    

   

   
    The core of GraphSAGE lies in the node_embeddings. In the setup method, this matrix is initialized as a learnable parameter using the self.param method, with dimensions defined by the number of nodes and the embedding dimension. It is initialized with the glorot_uniform method to ensure stable training. As we will see later, node embeddings are iteratively updated by aggregating information from each node’s neighbors, progressively capturing higher-order connectivity patterns. These embeddings effectively serve as feature representations for nodes, encoding information about their local neighborhoods.
   

   
    The goal is for these embeddings to converge to representations that capture the likelihood of connectivity between node pairs, learning robust encodings through iterative neighborhood aggregation.
   

   
    In the
    
     __call__
    
    method, the main logic of the encoder is implemented. A critical parameter — though hard-coded in this implementation — is the number of
    
     SAGEConv
    
    layers, which determines the number of hops in the graph. For instance, with two convolution layers:
   

   
    	
     
      The first layer updates each node’s embedding by aggregating information from its immediate neighbors.
     

    

    	
     
      The second layer repeats this process, incorporating information from neighbors one hop further away.
     

    

   

   
    Thus, the number of layers defines how far each node’s neighborhood is considered. Between these graph convolutions, ReLU activation is applied to introduce non-linearity, enabling the model to learn complex patterns, and dropout is used for regularization to prevent overfitting.
   

  

  
   
    Graph Convolution
   

   
    We have now reached the very core of the model architecture for this chapter. Let’s dive deeper into the workings of the
    
     SAGEConv
    
    module:
   

   
    
     
      
       class SAGEConv(nn.Module):
  """GraphSAGE convolutional layer with optional self-loops and degree
  normalization.
  """

  embedding_dim: int
  with_self: bool
  degree_norm: bool

  # TODO: consider adding back since in pytorch implementation?
  # TODO: root_weight: bool = True
  @nn.compact
  def __call__(self, graph: jraph.GraphsTuple, x) -> jnp.array:
    # TODO: consider adding from pytorch implementation:
    # TODO: if self.root_weight:
    # TODO:     x = nn.Dense(self.embedding_dim)(x)
    n_nodes = self.get_n_nodes(graph)

    # Add self-loops if enabled.
    if self.with_self:
      senders, receivers = self._add_self_edges(graph, n_nodes)
    else:
      senders, receivers = graph.senders, graph.receivers

    # Aggregate node features from neighbors.
    if not self.degree_norm:
      x_updated = jraph.segment_mean(
        x[senders], receivers, num_segments=n_nodes
      )
    else:

      def get_degree(n):
        return jax.ops.segment_sum(jnp.ones_like(senders), n, n_nodes)

      x_updated = self.normalize_by_degree(x, get_degree(senders))
      x_updated = jraph.segment_mean(
        x_updated[senders], receivers, num_segments=n_nodes
      )
      x_updated = self.normalize_by_degree(x_updated, get_degree(receivers))

    # Combine node and neighbor embeddings by concatenation.
    combined_embeddings = jnp.concatenate([x, x_updated], axis=-1)

    return nn.Dense(self.embedding_dim)(combined_embeddings)

  @staticmethod
  def _add_self_edges(
    graph: jraph.GraphsTuple, n_nodes: int
  ) -> tuple[jax.Array, jax.Array]:
    """Adds self-loops to the graph. Note this assumes self edges are not in the
    graph yet.
    """
    all_nodes = jnp.arange(n_nodes)
    senders = jnp.concatenate([graph.senders, all_nodes])
    receivers = jnp.concatenate([graph.receivers, all_nodes])
    return senders, receivers

  @staticmethod
  def normalize_by_degree(x: jnp.array, degree: jnp.array) -> jnp.array:
    """Normalizes node features by the square root of the degree."""
    # We set the the degree to a minimum of 1.
    return x * jax.lax.rsqrt(jnp.maximum(degree, 1.0))[:, None]

  @staticmethod
  def get_n_nodes(graph):
    """Returns the number of nodes in the graph in a jittable way."""
    return tree.tree_leaves(graph.nodes)[0].shape[0]


      

     

    

   

   
    When setting up a
    
     SAGEConv
    
    layer, we specify the embedding dimension (using
    
     embedding_dim
    
    ), whether to add self-loops (
    
     with_self
    
    ), and whether to apply degree normalization (
    
     degree_norm
    
    ). The latter two options are optional, as their impact on model performance depends on the dataset’s characteristics, such as size and connectivity patterns. Enabling or disabling these features can significantly influence model behavior.
   

   
    The
    
     SAGEConv
    
    layer performs the following key steps:
   

   
    	
     
      
       Optionally add self-edges
      
      : Allows each node to consider its own embedding during aggregation.
     

    

    	
     
      
       Aggregate neighborhood embeddings
      
      : Gathers and averages embeddings from neighboring nodes.
     

    

    	
     
      
       Optionally normalize by degree
      
      : Adjusts the contributions of neighbors based on their connectivity to reduce bias from highly connected nodes.
     

    

    	
     
      
       Combine embeddings with neighbors
      
      : Merges the original node embeddings with the aggregated neighborhood embeddings.
     

    

   

   
    
     Adding Self Edges
    

    
     In the
     
      NodeEncoder
     
     , we use two
     
      SAGEConv
     
     layers, and the first layer has the
     
      with_self
     
     parameter set to
     
      True
     
     . Adding self-loops ensures that a node’s own embedding is included in the aggregation process during neighborhood updates (it is included in the list of senders, effectively treating the node as one of its own neighbours). Without self-loops, the updated embedding for a node would only reflect information aggregated from its neighbors, which could cause the node’s representation to drift entirely toward its neighbors’ embeddings, losing its unique characteristics. By including self-loops, the node contributes to its own updated embedding, maintaining a balance between its original representation and the aggregated neighborhood information.
    

    
     This is conceptually similar to adding the diagonal to an adjacency matrix, where each node connects to itself. The
     
      last_layer_self
     
     parameter in the
     
      NodeEncoder
     
     determines whether self-loops are added in the second convolutional layer as well.
    

   

   
    
     Aggregating the Neighborhood
    

    
     At this step, we leverage the graph structure for the first time. Specifically, for each edge, we use the sender node’s embedding (or features) and aggregate these on a per-receiver basis. This process produces an updated embedding for each receiver node by combining the features of all sender nodes connected to it via edges. The result is a neighborhood-based update that encodes information from the node’s neighbors.
    

    
     In our implementation, we use
     
      jraph.segment_mean
     
     as the aggregation function. However, other aggregation methods, such as sum, max, or attention-weighted aggregation, are also possible. The choice of aggregation method depends on the dataset and task requirements, and it is often beneficial to experiment with multiple options to determine the most effective one.
    

   

   
    
     Normalize by Degree
    

    
     If degree normalization is applied, it ensures that all nodes, regardless of their connectivity, contribute equally during training. This can prevent exploding or vanishing gradients and stabilize training. However, degree normalization can also oversmooth embeddings, potentially causing the model to lose finer details about a node’s local structure.
    

    
     In our implementation, we use symmetric normalization wherein we:
    

    
     	
      
       Normalize by the degree of the senders before aggregation.
      

     

     	
      
       Normalize by the degree of the receivers after aggregation.
      

     

    

    
     Whether normalization improves performance depends on the dataset and its specific characteristics. Testing both normalized and unnormalized variants can help determine the best approach.
    

   

   
    
     Combine Embeddings with Neighborhood
    

    
     After aggregation (and optional normalization), we combine the updated node embeddings with the original embeddings, typically by concatenation. This creates a unified representation for each node that incorporates its original features and information from its immediate neighborhood. This enrichment step ensures that the node embeddings reflect both local context and graph connectivity.
    

    
     The concatenation of the original and aggregated embeddings doubles their dimensionality. To address this, the combined embeddings are passed through a fully connected
     
      Dense
     
     layer, which reduces the dimensionality back to the original embedding size. Hence, the Dense layer actually serves two purposes:
    

    
     	
      
       Maintains consistent dimensionality: Ensures that the embeddings have the correct shape for the next layer in the model.
      

     

     	
      
       Learns better representations: Optimizes how the original and neighborhood features are combined, creating more meaningful embeddings.
      

     

    

    
     Since this
     
      Dense
     
     transformation is learnable, the model adapts during training to maximize the utility of both local and neighborhood information.
    

    Note

     
      During model training, the graph structure remains static. The only component that changes is the
      
       node_embeddings
      
      , which are updated at each training iteration based on the learned representations.
     

    

   

  

  
   
    Predicting Links
   

   
    We use the updated node embeddings to predict whether a pair of nodes is connected. If the node embeddings successfully capture the graph’s connectivity information, the model should gradually improve its predictions. Let’s look at how these node embeddings are used to predict links:
   

   
    
     
      
       class LinkPredictor(nn.Module):
  """Predicts interaction scores for pairs of node embeddings."""

  embedding_dim: int
  n_layers: int
  dropout_rate: float

  @nn.compact
  def __call__(
    self,
    sender_embeddings: jax.Array,
    receiver_embeddings: jax.Array,
    is_training: bool,
  ) -> jax.Array:
    """Computes scores for node pairs."""
    x = sender_embeddings * receiver_embeddings  # Element-wise multiplication.

    # Apply MLP layers with ReLU activation and dropout.
    for _ in range(self.n_layers)[:-1]:
      x = nn.Dense(self.embedding_dim)(x)
      x = nn.relu(x)
      x = nn.Dropout(self.dropout_rate, deterministic=not is_training)(x)

    # Final output layer is a single neuron. Logit output used for binary link
    # classification.
    x = nn.Dense(1)(x)

    return jnp.squeeze(x)


      

     

    

   

   
    The
    
     LinkPredictor
    
    takes the embeddings of a sender and receiver node and predicts the likelihood of an edge between them. Here’s how it works:
   

   
    	
     
      
       Combining embeddings
      
      : The sender and receiver embeddings are combined using element-wise multiplication. This creates an interaction representation between the nodes. This step is essential for incorporating contextual information from both embeddings into the prediction.
     

    

    	
     
      
       Transforming representations
      
      : The interaction representation is passed through several layers, each consisting of a
      
       Dense
      
      layer followed by ReLU activation. Dropout is applied after each layer to prevent overfitting.
     

    

    	
     
      
       Output layer
      
      : The final
      
       Dense
      
      layer outputs a single logit for each pair of nodes. A logit is an unnormalized score representing the likelihood of a connection. This raw output is passed through a sigmoid function during the loss computation, converting it into a probability between 0 and 1.
     

    

   

  

  
   
    Drug-Drug Interaction Model
   

   
    Let’s now put everything together into a
    
     DdiModel
    
    that we can train:
   

   
    
     
      
       class DdiModel(nn.Module):
  """Graph-based model for predicting drug-drug interactions (DDIs)."""

  n_nodes: int
  embedding_dim: int
  dropout_rate: float
  last_layer_self: bool
  degree_norm: bool
  n_mlp_layers: int = 2

  def setup(self):
    """Initializes the node encoder and link predictor modules."""
    self.node_encoder = NodeEncoder(
      self.n_nodes,
      self.embedding_dim,
      self.last_layer_self,
      self.degree_norm,
      self.dropout_rate,
    )
    self.link_predictor = LinkPredictor(
      self.embedding_dim, self.n_mlp_layers, self.dropout_rate
    )

  def __call__(
    self,
    graph: jraph.GraphsTuple,
    pairs: dict,
    is_training: bool,
    is_pred: bool = False,
  ):
    """Generates interaction scores for node pairs."""
    # Compute node embeddings. The 'h' stands for hidden state or embedding.
    h = self.node_encoder(graph, is_training)
    # TODO: consider adding mean embeddings
    # TODO: if not is_training:
    # TODO:     embeddings = self.add_mean_embedding(embeddings)

    if is_pred:
      scores = self.link_predictor(h[pairs[:, 0]], h[pairs[:, 1]], False)

    else:
      pos_senders, pos_receivers = pairs["pos"][:, 0], pairs["pos"][:, 1]
      neg_senders, neg_receivers = pairs["neg"][:, 0], pairs["neg"][:, 1]
      scores = {
        "pos": self.link_predictor(
          h[pos_senders], h[pos_receivers], is_training
        ),
        "neg": self.link_predictor(
          h[neg_senders], h[neg_receivers], is_training
        ),
      }
    return scores

  def create_train_state(
    self, rng_init: jax.Array, rng_dropout: jax.Array, tx, dataset: Dataset
  ) -> TrainState:
    """Initializes the training state with model parameters."""
    variables = self.init(
      rng_init, dataset.graph, dataset.pairs.get_dummy(), is_training=False
    )
    return TrainState.create(
      apply_fn=self.apply, params=variables["params"], tx=tx, key=rng_dropout
    )

  @staticmethod
  def add_mean_embedding(embeddings: jax.Array) -> jax.Array:
    """Concatenates a mean embedding to the existing embeddings."""
    mean_embeddings = jnp.mean(embeddings, axis=0, keepdims=True)
    embeddings = jnp.concatenate([embeddings, mean_embeddings], axis=0)
    return embeddings


      

     

    

   

   
    A walk-through this code:
   

   
    	
     
      In the
      
       setup
      
      method, you’ll notice the familiar
      
       node_encoder
      
      and
      
       link_predictor
      
      modules. These correspond to the components described earlier, responsible for generating node embeddings and predicting links, respectively.
     

    

    	
     
      In the
      
       __call__
      
      method:
     

    

    	
     
      The
      
       node_encoder
      
      is applied to the input graph to compute updated node embeddings, stored in
      
       h
      
      . The use of
      
       h
      
      as a variable name follows a common convention, where
      
       h
      
      represents a “hidden state” or embedding.
     

    

    	
     
      For training, the positive and negative node pairs are processed separately:
     

    

    	
     
      
       Positive pairs
      
      : The embeddings of sender and receiver nodes in the positive pairs are passed to the link_predictor to calculate connection likelihoods.
     

    

    	
     
      
       Negative pairs
      
      : Similarly, the embeddings of sender and receiver nodes in the negative pairs are processed to estimate their likelihood of being unconnected.
     

    

    	
     
      If the
      
       is_pred
      
      flag is set to
      
       True
      
      , the method predicts scores for arbitrary node pairs. This flexibility is crucial for using the trained model on new, unseen data during inference.
     

    

    	
     
      In the
      
       create_train_state
      
      method:
     

    

    	
     
      This method initializes the model’s parameters and sets up its training state. It also prepares the optimizer (
      
       tx
      
      ) for parameter updates and uses random seeds (
      
       rng_init
      
      and
      
       rng_dropout
      
      ) for reproducibility during training.
     

    

   

   
    You will also have noticed a
    
     is_pred
    
    flag in the method signature - it allows us to use the trained model to predict on any node pairs once it is trained and we want to apply it to a problem of interest.
   

   
    Finally, the
    
     create_train_state
    
    method, as you will see is simply called to initiate the model during training, which is what we will attend to next.
   

  

 

 
  
   Training the Model
  

  
   From the previous sections, we have established how to prepare datasets and define a model. Now, we’ll proceed by creating instances of both before moving forward with training.
  

  
   
    Create a Manageable Dataset
   

   
    To efficiently explore how a model learns from graphs, we’ll create a smaller subset of the dataset. This allows us to work with a more manageable graph size for experimentation. The following function helps subset the dataset:
   

   
    
     
      
       def subset_datasets(
  datasets: dict[str, Dataset],
  node_limit: int,
  rng_subset: jax.Array,
  keep_original_ids: bool = False,
) -> dict[str, Dataset]:
  """Creates a subset of datasets by sampling a fixed number of nodes."""
  node_ids = jax.random.choice(
    rng_subset, datasets["train"].graph.n_node[0], (node_limit,), replace=False
  )
  sub_datasets = {}

  for name, dataset in datasets.items():
    sub_datasets[name] = dataset.subset(node_ids, keep_original_ids)
  return sub_datasets


      

     

    

   

   
    This function selects a subset of nodes based on a specified
    
     node_limit
    
    and applies this subset consistently across all dataset splits (e.g., training, validation, test). By default, the subsetted graph renumbers the node IDs to create a smaller, compact graph. However, you can retain the original node IDs from the full dataset by setting the
    
     keep_original_ids
    
    parameter to True.
   

   
    We will create a subset containing approximately 10% of the total graph data:
   

   
    
     
      
       datasets = DdiDatasetBuilder().build()

node_limit = 500
rng = jax.random.PRNGKey(42)
rng, rng_subset = jax.random.split(rng, 2)

sub_datasets = subset_datasets(datasets, node_limit, rng_subset)


      

     

    

   

   
    By reducing the dataset size, we create a graph that is easier to handle during initial experimentation. This smaller graph allows us to test the model architecture and training setup more efficiently.
   

   
    We now have a graph with a set of positive and negative node pairs that we can learn from. The visualization in
    Figure 3-7
    provides a high-level view of the training dataset’s structure, where nodes represent drugs and edges represent interactions between them. The circular layout arranges all nodes around a circle, with edges connecting related nodes.
   

   
    While the individual node labels and details may not be legible in this plot, it offers a broad overview of key graph properties. These include the density of connections, overall sparsity, and the presence of clusters or isolated nodes. This visualization illustrates the graph’s complexity, despite being a small subsampled set.
   

   
    
     
      
       from dlfb.graphs.inspect import plot_graph

plot_graph(sub_datasets["train"]);


      

     

    

    
     
      [image: _images/61d8e47335a3564d003386b7dc944679a964397ebc3cb58652677d15d18e5c17.png]
      Figure 3-7. 
       Circular layout of training dataset of 500 nodes. Each node represents a drug, and edges represent interactions between them.
      

     

    

   

  

  
   
    The Training Loop
   

   
    Next, let’s examine the training loop:
   

   
    
     
      
       @restorable(restore_fn=ddi_restore_fn)
def train(
  rng: jax.Array,
  model: DdiModel,
  datasets: dict[str, Dataset],
  learning_rate: float,
  num_epochs: int,
  loss_fn: Callable,
  norm_loss: bool = False,
  eval_every: int = 10,
  **restore_kwargs,
) -> tuple[TrainState, list[dict]]:
  """
  Training loop for training the DDI model over multiple epochs, logging
  training and evaluation metrics.

  This function is decorated with `@restorable`, which may add or modify
  `**restore_kwargs` depending on whether a trained model should be stored in
  at a given `store_path` so it can be loaded upon a rerun. It is not used in
  this function.

  Args:
    rng (jax.Array): Key for seeding random number generator.
    model (DdiModel): The model to be trained.
    datasets (dict[str, Dataset]): A dictionary containing train, validation,
      and test datasets.
    learning_rate (float): The learning rate for the adam optimizer.
    num_epochs (int): The number of training epochs.
    loss_fn (Callable): The loss function to use for optimizing the model
      parameters.
    norm_loss (bool, optional): If True, normalizes the loss by the number of
      pairs. Defaults to False.
    eval_every (int, optional): Frequency (in epochs) to evaluate on validation
      and test sets. Defaults to 10.
    **restore_kwargs:
      - store_path (str, optional): Path to store a trained model for later
          restoring.

  Returns:
    tuple[TrainState, list[dict]]: Final training state and a list of epoch
      metrics.
  """
  # Split RNG to make separate initialization and dropout RNG keys.
  rng, rng_init, rng_dropout = jax.random.split(rng, 3)

  # Initialize training state.
  tx = optax.adam(learning_rate)
  state = model.create_train_state(rng_init, rng_dropout, tx, datasets["train"])

  batch_size = optimal_batch_size(datasets)

  metrics = []

  epochs = tqdm(range(num_epochs))  # Epoch progress bar.
  for epoch in epochs:
    epoch_metrics = setup_epoch_metrics(epoch)

    rng, rng_shuffle, rng_sample = jax.random.split(rng, 3)

    # Training loop.
    for pairs_batch in datasets["train"].pairs.get_train_batches(
      batch_size, rng_shuffle, rng_sample
    ):
      rng, rng_dropout = jax.random.split(rng, 2)
      state, (loss, metric) = train_step(
        state,
        datasets["train"].graph,
        pairs_batch,
        rng_dropout,
        loss_fn,
        norm_loss,
      )
      epoch_metrics["train"]["loss"].append(float(loss))
      epoch_metrics["train"]["hits@20"].append(float(metric))

    # Evaluation loop.
    if epoch % eval_every == 0:
      for split in ["valid", "test"]:
        for pairs_batch in datasets[split].pairs.get_eval_batches(batch_size):
          loss, metric = eval_step(
            state, datasets[split].graph, pairs_batch, loss_fn, norm_loss
          )
          epoch_metrics[split]["loss"].append(float(loss))
          epoch_metrics[split]["hits@20"].append(float(metric))

      # Update progress bar with epoch summary.
      epochs.set_description(summarize_epoch_metrics(epoch_metrics))

    metrics.append(epoch_metrics)

  return state, metrics


      

     

    

   

   
    As always, the
    
     train
    
    function consists of several stages:
   

   
    	
     
      
       Initialization
      
     

     
      	
       
        The function initializes the model with its parameters and sets up random seeds (
        
         rng
        
        ) for reproducibility.
       

      

      	
       
        The optimizer is defined using
        
         optax.adam
        
        , and the dataset is split into batches.
       

      

     

    

    	
     
      
       Training over epochs
      
     

     
      	
       
        For each epoch, we use the
        
         train_step
        
        function to train the model on batches of data pairs from the training set. Each batch updates the model to minimize the loss function and improve its predictions incrementally.
       

      

      	
       
        During each epoch, the function tracks key metrics such as the training loss and
        
         hits@20
        
        , which measure the model’s performance.
       

      

     

    

    	
     
      
       Evaluation
      
     

     
      	
       
        At regular intervals (controlled by
        
         eval_every
        
        ), the model’s performance is evaluated on validation and test splits using the
        
         eval_step
        
        function. This allows us to monitor how well the model generalizes to unseen data.
       

      

     

    

   

   
    This particular train function supports different loss functions, providing flexibility to experiment with alternative approaches. Additionally, the norm_loss flag controls whether the returned loss values should be normalized.
   

   
    Two helper functions,
    
     setup_epoch_metrics
    
    and
    
     summarize_epoch_metrics
    
    , play an important role in tracking and visualizing performance:
   

   
    	
     
      
       setup_epoch_metrics
      
      : Initializes a dictionary to store metrics for each dataset split (e.g., training, validation, and test).
     

    

    	
     
      
       summarize_epoch_metrics
      
      : Formats and prints the tracked metrics neatly, making it easier to monitor progress during training.
     

    

   

   
    Finally, the dataset is processed in batches, where each batch consists of a selection of node pairs (positive and negative) used for training and evaluation. This batch structure is managed by the
    
     Pairs
    
    class, which handles data sampling and ensures consistency across training and evaluation. We’ll now take a closer look at the Pairs class.
   

  

  
   
    The Pairs Class
   

   
    The
    
     Pairs
    
    class is a convenience class designed to simplify handling positive and negative node pairs during training and evaluation.
   

   
    
     
      
       @dataclass
class Pairs:
  """Represents positive and negative pairs of drug-drug interactions (DDIs).

  Attributes:
    pos (jax.Array): Positive pairs of drugs that are known to interact.
    neg (jax.Array): Negative pairs of drugs that are assumed not to interact.
  """

  pos: jax.Array
  neg: jax.Array

  def get_eval_batches(self, batch_size: int) -> Generator["Pairs", None, None]:
    """Generates evaluation batches of positive and negative pairs."""
    indices = jnp.arange(self._n_pairs())
    for i in range(self._n_batches(batch_size)):
      batch_indices = jnp.array(indices[i * batch_size : (i + 1) * batch_size])
      yield Pairs(
        pos=self.pos[batch_indices], neg=self.neg[batch_indices]
      ).to_dict()

  def _n_batches(self, batch_size: int) -> int:
    """Calculates number of batches in the dataset given a batch size."""
    return int(np.floor(self._n_pairs() / batch_size))

  def _n_pairs(self) -> int:
    """Returns the smaller number of positive or negative pairs to ensure
    balanced batching.
    """
    return int(min(self.pos.shape[0], self.neg.shape[0]))

  def get_train_batches(
    self, batch_size: int, rng_shuffle: jax.Array, rng_sample: jax.Array
  ) -> Generator[dict[str, jax.Array], None, None]:
    """Generates shuffled training batches with sampled negative pairs."""
    # Shuffle indices for positive pairs.
    indices = jax.random.permutation(rng_shuffle, jnp.arange(self._n_pairs()))

    # Get sample of negative pairs.
    neg_sample = self._global_negative_sampling(rng_sample)

    for i in range(self._n_batches(batch_size)):
      batch_indices = jnp.array(indices[i * batch_size : (i + 1) * batch_size])
      yield Pairs(
        pos=self.pos[batch_indices], neg=neg_sample[batch_indices]
      ).to_dict()

  def _global_negative_sampling(self, rng_sample: jax.Array) -> jax.Array:
    """Samples negative pairs from the entire set to match positive set size."""
    return jax.random.choice(
      rng_sample, self.neg, (self.pos.shape[0],), replace=False
    )

  def get_dummy(self) -> "Pairs":
    """Returns a small dummy subset of positive and negative pairs."""
    return Pairs(pos=self.pos[:2], neg=self.neg[:(2)]).to_dict()

  def to_dict(self) -> dict:
    """Converts the Pairs object back to a dictionary."""
    return {"pos": self.pos, "neg": self.neg}


      

     

    

   

   
    The class provides several key methods:
   

   
    	
     
      
       get_eval_batches
      
      : Creates evaluation batches with the specified batch size, ensuring that positive and negative pairs are balanced and match in shape.
     

    

    	
     
      
       get_train_batches
      
      : Creates shuffled training batches with re-sampled negative pairs, introducing diversity in each epoch.
     

    

    	
     
      
       get_dummy
      
      : Returns a small sample of pairs, useful for debugging or testing the pipeline.
     

    

   

   
    
     Batching by Pairs
    

    
     During each epoch, we must process a large number of positive and negative node pairs. As we’ve seen in the introduction to graph convolution layers, calculating node embeddings for large networks can become computationally expensive. To address this, we use batching—processing subsets of the data one at a time. This strategy is applied to both training and evaluation data, with some key differences.
    

    
     	
      
       Training batches
      

      
       	
        
         The
         
          get_train_batches
         
         method provides batches of positive and negative pairs, shuffling the data at the start of every epoch to introduce diversity in the order of pairs.
        

       

       	
        
         
          Negative sampling
         
         : Negative pairs are re-sampled once per epoch using the _global_negative_sampling method. This introduces additional variation and helps the model learn from diverse examples.
        

       

      

     

     	
      
       Evaluation batches
      

      
       	
        
         The
         
          get_eval_batches
         
         method simply fetches batches of positive and negative pairs determined by the
         
          batch_size
         
         parameter.
        

       

       	
        
         To ensure compatibility, the _n_pairs method selects the smaller of the two sets (positive or negative pairs) so that their shapes match.
        

       

       	
        
         No shuffling: During evaluation, batches are processed in a fixed order to ensure reproducibility and consistent metrics across runs. Deterministic processing simplifies debugging and ensures order-dependent metrics like Hits@K or MRR are comparable.
        

       

      

     

    

    
     To maintain consistent batch sizes, the
     
      Pairs
     
     class drops the last incomplete batch during both training and evaluation. This ensures that every batch has the same number of pairs, avoiding irregularities in computation. Over multiple epochs, shuffling ensures that all pairs will eventually be seen, even if some are skipped in a given epoch.
    

    
     To maximize efficiency, we use the
     
      optimal_batch_size
      
       utility
      
     
     function. This function calculates the largest possible batch size that minimizes the number of dropped instances during training and evaluation. It ensures a balance between computational efficiency and effective data utilization by determining batch sizes that are both large and consistent across datasets:
    

    
     
      
       
        def optimal_batch_size(
  datasets: dict[str, Dataset], remainder_tolerance: float = 0.125
) -> int:
  """Calculates optimal batch size

  Determines the largest batch size for consistent shapes across subsets to
  optimize JAX compilation.

  Args:
    datasets (dict[str, Dataset]): A dictionary of datasets for train,
      validation, and test splits.
    remainder_tolerance (float): Fraction of leftover data tolerated per split.

  Returns:
    int: The largest batch size that ensures consistent batch shapes across
      splits while minimizing unused data (remainders).
  """
  # Calculate the minimum length of positive and negative pairs for each
  # dataset.
  lengths = [
    min(dataset.pairs.pos.shape[0], dataset.pairs.neg.shape[0])
    for _, dataset in datasets.items()
  ]

  # Determine the allowable remainders per split based on the remainder
  # tolerance.
  remainder_thresholds = [
    int(length * remainder_tolerance) for length in lengths
  ]
  max_possible_batch_size = min(lengths)

  for batch_size in range(max_possible_batch_size, 0, -1):
    remainders = [length % batch_size for length in lengths]
    if all(
      remainder <= threshold
      for remainder, threshold in zip(remainders, remainder_thresholds)
    ):
      return batch_size
  return max_possible_batch_size


       

      

     

    

    
     Consistent batch sizes are critical for optimizing jitted functions, which rely on static input shapes for efficiency. They eliminate costly recompilation for varying batch sizes, ensure optimal memory and compute utilization on accelerators like GPUs or TPUs, and reduce the complexity of handling irregular batches.
    

   

   
    
     Sampling Negative Pairs
    

    
     An important aspect of training is how we sample negative pairs. Since there are many more pairs without connections than with connections, we cannot use all negative examples; doing so would create a highly imbalanced training dataset. Instead, we select a subset of negative pairs to balance the dataset. This is where
     
      _global_negative_sampling
     
     comes in.
    

    
     The subset of negative samples can significantly impact training. In this implementation, we use the simplest approach:
     
      global sampling
     
     , where we uniformly sample from all possible negative pairs. This strategy is suitable when we are broadly interested in potential node connections across the entire graph.
    

    
     
      
       
          def _global_negative_sampling(self, rng_sample: jax.Array) -> jax.Array:
    """Samples negative pairs from the entire set to match positive set size."""
    return jax.random.choice(
      rng_sample, self.neg, (self.pos.shape[0],), replace=False
    )


       

      

     

    

    
     While global sampling is straightforward and effective, many alternative strategies exist that drive the model to learn different patterns. For example:
    

    
     	
      
       
        Local sampling
       
       : Ensures that negative pairs share at least one sender node, focusing on pairs that are structurally similar to positive pairs. This can help the model learn more fine-grained distinctions.
      

     

     	
      
       
        Hard negative sampling
       
       : Selects negative pairs that the model struggles to classify as negatives (i.e. pairs with high predicted likelihood of being connected, even though they are not). This approach forces the model to improve on challenging cases and can accelerate learning.
      

     

     	
      
       
        Adversarial negative sampling
       
       : Generates challenging negative pairs using an adversarial approach, where a secondary model selects negatives that maximize the main model’s loss. While computationally expensive, it can lead to robust embeddings and improved performance.
      

     

     	
      
       
        Ratio of positive to negative pairs
       
       : Balances the number of positive and negative pairs in the dataset. While a 1:1 ratio is common, some tasks may benefit from a higher ratio of negatives (e.g., 1:5). In our DDI problem, we explored varying the ratio but it did not significantly impact performance (not shown) and introduced unnecessary complexity.
      

     

    

   

  

  
   
    The Train Step
   

   
    The
    
     train_step
    
    function is where the actual learning takes place during training. It updates the model parameters by calculating gradients of the loss function with respect to the model’s predictions. We define it as a nested function that is applied to the training state.
   

   
    You’ll notice that the
    
     @jax.jit
    
    decorator takes a different form here, using
    
     partial
    
    with
    
     static_argnames
    
    . This ensures that certain arguments, like the loss function (
    
     loss_fn
    
    ), are fixed (static) during compilation. By treating these arguments as static,
    
     jax
    
    avoids recompiling the function every time the argument changes, significantly improving computational efficiency while allowing flexibility to switch loss functions when needed.
   

   
    
     
      
       @partial(jax.jit, static_argnames=["loss_fn", "norm_loss"])
def train_step(
  state: TrainState,
  graph: jraph.GraphsTuple,
  pairs: dict[str, jax.Array],
  rng_dropout: jnp.array,
  loss_fn: Callable = binary_log_loss,
  norm_loss: bool = False,
) -> tuple[TrainState, tuple[jax.Array, jax.Array]]:
  """Performs a single training step, updating model parameters.

  Args:
    state (TrainState): The current training state, including parameters and
      optimizer.
    graph (jraph.GraphsTuple): The input graph structure for the model.
    pairs (dict[str, jax.Array]): Dictionary containing positive ("pos") and
      negative ("neg") drug pairs.
    rng_dropout (jnp.array): RNG key for dropout during training.
    loss_fn (Callable, optional): Loss function to compute training loss.
      Defaults to binary_log_loss.
    norm_loss (bool, optional): If True, normalizes the loss by the number of
      pairs. Defaults to False.

  Returns:
      tuple: Updated training state and a tuple containing the loss and hits@20
        metric.
  """

  def calculate_loss(params):
    """Computes loss and hits@20 metric for the given model parameters."""
    scores = state.apply_fn(
      {"params": params},
      graph,
      pairs,
      is_training=True,
      rngs={"dropout": rng_dropout},
    )
    loss = loss_fn(scores)
    metric = evaluate_hits_at_20(scores)
    return loss, metric

  # Note that calculate_loss is defined as a scoped function to simplify access
  # to additional variables (e.g., state, graph, pairs) without requiring them
  # to be explicitly passed, while maintaining compatibility with
  # jax.value_and_grad.
  grad_fn = jax.value_and_grad(calculate_loss, has_aux=True)
  (loss, metric), grads = grad_fn(state.params)
  state = state.apply_gradients(grads=grads)

  if norm_loss:
    loss = loss / (pairs["pos"].shape[0] + pairs["neg"].shape[0])

  return state, (loss, metric)


      

     

    

   

   
    Depending on the loss function, normalization may be required. Some loss functions, such as those that compute the mean over scores, inherently normalize their results. Others, like those that compute sums, need explicit normalization by dividing the total loss by the number of pairs used in the calculation. This ensures that the loss values remain comparable across different batch sizes or datasets.
   

   
    The loss function that we use is the binary log loss:
   

   
    
     
      
       @jax.jit
def binary_log_loss(scores: dict[str, jax.Array]) -> jax.Array:
  """Computes the binary log loss for interacting (pos) and non-interacting
  (neg) drug pairs.
  """
  # Clip probabilities to avoid numerical instability.
  probs = jax.tree.map(
    lambda x: jnp.clip(nn.sigmoid(x), 1e-7, 1 - 1e-7), scores
  )

  # Compute positive and negative losses.
  pos_loss = -jnp.log(probs["pos"]).mean()
  neg_loss = -jnp.log(1 - probs["neg"]).mean()

  return pos_loss + neg_loss


      

     

    

   

   
    This loss function performs the following steps:
   

   
    	
     
      
       Sigmoid transformation
      
      : Converts the raw logits (unbounded scores) into probabilities in the range (0, 1), which represent the probability of a positive class (a DDI link between drugs).
     

    

    	
     
      
       Clipping
      
      : Ensures numerical stability by constraining probabilities to a range slightly within (0, 1). This prevents undefined operations like
      
       log(0)
      
      , which can occur when probabilities are exactly 0 and lead to divergence in the loss function.
     

    

    	
     
      
       Loss calculation
      
      : Positive pairs contribute to the loss if their predicted probability deviates from 1. Negative pairs contribute if their predicted probability deviates from 0. The total loss is the sum of the average positive and negative losses, encouraging the model to correctly classify positive and negative pairs.
     

    

   

  

  
   
    Evaluation Metric
   

   
    Finally we want to evaluate the model performance. This follows a very similar approach to the training:
   

   
    
     
      
       @partial(jax.jit, static_argnames=["loss_fn", "norm_loss"])
def eval_step(
  state: TrainState,
  graph: jraph.GraphsTuple,
  pairs: dict[str, jax.Array],
  loss_fn: Callable = binary_log_loss,
  norm_loss: bool = False,
) -> tuple[jax.Array, jax.Array]:
  """Performs an evaluation step, computing loss and hits@20 metric."""
  scores = state.apply_fn(
    {"params": state.params}, graph, pairs, is_training=False
  )
  loss = loss_fn(scores)
  if norm_loss:
    loss = loss / (pairs["pos"].shape[0] + pairs["neg"].shape[0])

  metric = evaluate_hits_at_20(scores)
  return loss, metric


      

     

    

   

   
    The notable differences in
    
     eval_step
    
    are:
   

   
    	
     
      
       No training
      
      : The
      
       is_training
      
      flag is explicitly set to
      
       False
      
      , disabling operations like dropout.
     

    

    	
     
      
       Evaluation metric
      
      : Instead of focusing solely on the loss, we calculate a metric commonly used in link prediction tasks:
      
       Hits@20
      
      .
     

    

   

   
    Hits@20 evaluates how well the model ranks positive node pairs compared to negative pairs. Specifically, it identifies the 20th highest score among the negative pairs as a threshold and calculates the proportion of positive scores that exceed this threshold. This indicates how often the model ranks positive interactions above the most confident negative interactions.
   

   
    Here’s the implementation:
   

   
    
     
      
       @jax.jit
def evaluate_hits_at_20(scores: dict[str, jax.Array]) -> jax.Array:
  """Computes the hits@20 metric for ranking positive pairs above negatives.

  This metric evaluates how well the model ranks positive scores (interacting
  drug pairs) compared to the top 20 highest negative scores (non-interacting
  drug pairs).

  For each positive score in `scores["pos"]`, it checks if it is greater than
  the 20th highest score among `scores["neg"]`. The metric is calculated as the
  proportion of positive scores that surpass this threshold, indicating the
  model's ranking quality.

  The implementation is inspired by the OGB benchmark:
  https://github.com/snap-stanford/ogb/blob/f631af76359c9687b2fe60905557bbb241916258/ogb/linkproppred/evaluate.py#L214

  Args:
    scores (dict[str, jax.Array]): A dictionary with "pos" and "neg" keys,
    where:
      - `scores["pos"]`: Scores for positive (interacting) pairs.
      - `scores["neg"]`: Scores for negative (non-interacting) pairs.

  Returns:
    jax.Array: The hits@20 metric as a single scalar value.

  Example:
    Given the scores:
        scores = {
            "pos": jnp.array([95, 90, 35]),
            "neg": jnp.array([70, 68, 66, 65, 64,
                              63, 62, 61, 60, 59,
                              58, 57, 56, 55, 54,
                              53, 52, 51, 50, 49])
        } # Only 20 "neg" scores.
    The 20th highest score in `scores["neg"]` is 49.
    In this example, two of the "pos" scores (95, 90) are greater than 49,
    so hits@20 = 2 / 3 = 0.666.
  """
  # Find the 20th highest score among negative edges.
  kth_score_in_negative_edges = jnp.sort(scores["neg"])[-20]

  # Compute the proportion of positive scores greater than the threshold.
  return (
    jnp.sum(scores["pos"] > kth_score_in_negative_edges)
    / scores["pos"].shape[0]
  )


      

     

    

   

   Note

    
     We could have imported the
     
      ogb.linkproppred.Evaluator
     
     from the Open Graph Benchmark (OGB) library, which computes Hits@20. However, by directly implementing the metric, we make the evaluation process more transparent and tailored to our specific use case. This approach provides greater flexibility for modifications and extensions while clearly showing how the model is evaluated.
    

   

  

  
   
    Train the Simplest Model
   

   
    We are finally ready to train the model. We’ll start with a relatively simple architecture and monitor its performance:
   

   
    
     
      
       rng, rng_train = jax.random.split(rng, 2)

model = DdiModel(
  n_nodes=sub_datasets["train"].n_nodes,
  embedding_dim=128,
  last_layer_self=False,
  degree_norm=False,
  dropout_rate=0.3,
)

state, metrics = train(
  rng=rng_train,
  model=model,
  datasets=sub_datasets,
  learning_rate=0.001,
  num_epochs=200,
  eval_every=1,
  loss_fn=binary_log_loss,
  norm_loss=False,
  store_path="models/initial_model",
)


      

     

    

   

   
    The learning curves in
    Figure 3-8
    show the training process over 200 epochs. The training loss (left, blue) decreases steadily, and the Hits@20 metric (right) improves progressively. In terms of Hits@20, this trend also holds for the validation and test sets indicating that the model is learning something. However, for the validation data, and in particular the test data, there are signs of overfitting. The loss increases early during training, indicating that the model struggles to generalize to unseen data:
   

   
    
     
      
       from dlfb.graphs.inspect import plot_learning

plot_learning(metrics);


      

     

    

    
     
      [image: _images/5832ace3703f4d6636f3c679fd6ffef0fdc0bb9c0891a08cf50bcdbee540bd5c.png]
      Figure 3-8. 
       Learning curves showing the loss (left) and Hits@20 metric (right) over training epochs. The shaded regions around the train lines (blue)represent the 95% confidence intervals, highlighting variability across training data batches in each epoch.
      

     

    

   

   
    Training a model is an important milestone. However, as seen in the learning curves, the test dataset shows signs of overfitting, with loss increasing early in training. Interestingly, the validation dataset does not exhibit the same degree of overfitting. This could be because the validation set is often indirectly used during training to optimize the setup, which might lead the model to generalize better to it. Alternatively, slight distributional shifts between the validation and test datasets could also explain the difference. It is worth rerunning the model on different random subgraphs and see whether the random seed influencws the divergence between validation and test performance. Next, we will explore key parameters to address overfitting and enhance the model’s performance.
   

  

 

 
  
   Improving the Model
  

  
   Everything is working — we have prepared a dataset, built a model, and trained it. However, the model’s performance is suboptimal. Next, we’ll explore some tweaks to see if we can achieve better results.
  

  
   
    Change to AUC Loss
   

   
    So far, we’ve used binary log loss to train our model.However, for our task, the primary goal is to ensure that positive pairs are ranked higher than negative pairs. While probabilities can also be used to prioritize, they often saturate near 1 or 0 for confident predictions, making it harder to differentiate between highly ranked pairs. In contrast, ranking-based metrics focus on the relative ordering of scores, which better aligns with the task of identifying and prioritizing the most promising drug interactions. This is particularly valuable in DDI prediction, where the goal is often to focus on the top-scoring pairs for further investigation.
   

   
    Inspired by a
    
     paper
    
    on
    
     Pairwise Learning for Neural Link Prediction
    
    (PLNLP), which outlines key stages of a link prediction pipeline, we will swap the loss function to better align with our objective. Instead of focusing on binary classifications, we adopt a ranking-based approach that encourages the model to score connected pairs higher than unconnected ones, aligning conceptually with the Area Under the Curve (AUC) metric.
   

   
    AUC measures the probability that a randomly chosen positive instance (connected node pair) has a higher score than a randomly chosen negative instance (non-connected pair). While directly optimizing AUC would be ideal, it is computationally challenging because its gradients are often undefined or zero. To address this, we use a
    
     surrogate loss function
    
    that mimics AUC’s properties while remaining easy to optimize.
   

   
    A simple and effective surrogate is the squared loss, which penalizes deviations from the target score difference of 1 between positive and negative pairs. This means the model is penalized both when the difference is less than 1 (underestimation) and greater than 1 (overestimation). By minimizing this penalty, the model learns to consistently assign higher scores to connected pairs while maintaining an appropriate margin over unconnected ones. Here’s the implementation:
   

   
    
     
      
       @jax.jit
def auc_loss(scores: dict[str, jax.Array]) -> jax.Array:
  """Computes the AUC-based loss for interacting (pos) and non-interacting
  (neg) drug pairs.
  """
  return jnp.square(1 - (scores["pos"] - scores["neg"])).sum()


      

     

    

   

   
    This loss function encourages the model to score linked pairs higher than non-linked pairs, improving its ranking performance. The motivation for discarding the cross-entropy loss is that the Hits@N metric, commonly used by Open Graph Benchmark (OGB) for evaluating link prediction benchmarks, does not measure the quality of predicted probabilities. Instead, it focuses solely on ensuring that true edges are ranked higher than false edges. Although the difference between these approaches is subtle, it has significant practical implications. Let’s explore these:
   

   
    
     
      
       rng, rng_train = jax.random.split(rng, 2)

model = DdiModel(
  n_nodes=sub_datasets["train"].n_nodes,
  embedding_dim=128,
  last_layer_self=False,
  degree_norm=False,
  dropout_rate=0.3,
)

_, metrics = train(
  rng=rng_train,
  model=model,
  datasets=sub_datasets,
  learning_rate=0.001,
  num_epochs=200,
  eval_every=1,
  loss_fn=auc_loss,
  norm_loss=True,
  store_path="models/initial_model_auc",
)


      

     

    

   

   
    From the learning curves in
    Figure 3-9
    you can see that changing the loss function has made all the difference. The loss for the training, validation, and test sets decreases consistently, following very similar trajectories. Additionally, the Hits@20 evaluation metric improves steadily for both the validation and test sets, indicating better generalization.
   

   
    
     
      
       plot_learning(metrics);


      

     

    

    
     
      [image: _images/f161b7ce398b63a1f63e3fec5b732f9010114b292e20cdf94455a8d542635da9.png]
      Figure 3-9. 
       Learning curves for loss (left) and Hits@20 (right) for a model trained with AUC-based loss.
      

     

    

   

   
    Since the loss is still decreasing, we could extend the training to more epochs to see if performance improves further. Additionally, we can explore a broader range of parameters to push the model’s performance. These parameters, which are not learned during training but set manually beforehand, are known as hyperparameters.
   

  

  
   
    Sweeping Model and Training Parameters
   

   
    Our model and training loop involve various hyperparameters, and it is not immediately clear which combination will lead to the best performance. Looking at the previous model’s results, we observe that the Hits@20 metric on the training set does not approach 1, which might be expected for a relatively small dataset. This suggests the model may be
    
     underfitting
    
    the training data, potentially due to limitations in capacity or misaligned objectives. One possible explanation is that the embedding dimension (
    
     embedding_dim
    
    ) is too small to adequately capture the complexity of the graph’s connectivity, which we will explore first.
   

   
    
     Varying Embedding Dimensions
    

    
     Let us vary the
     
      embedding_dim
     
     parameter and train new models for each value to evaluate its impact on performance. Since the models seemed to benefit from additional epochs in previous experiments, we will also extend the training duration. Below are the parameters that we will use for the model and training:
    

    
     
      
       
        embedding_dims = [64, 128, 256, 512]

model_params = {
  "n_nodes": sub_datasets["train"].n_nodes,
  "last_layer_self": False,
  "degree_norm": False,
  "dropout_rate": 0.3,
}
training_params = {
  "rng": rng_train,
  "datasets": sub_datasets,
  "learning_rate": 0.001,
  "num_epochs": 500,
  "eval_every": 25,
  "loss_fn": auc_loss,
  "norm_loss": True,
}


       

      

     

    

    
     This loop automates the process of training models with different embedding dimensions and storing their evaluation metrics.
    

    
     
      
       
        from dlfb.graphs.inspect import expand_metrics

all_metrics = []
for embedding_dim in embedding_dims:
  model = DdiModel(**{"embedding_dim": embedding_dim, **model_params})
  _, metrics = train(
    model=model,
    **training_params,
    store_path=f"models/sweep_embedding_dim:{embedding_dim}",
  )
  df = expand_metrics(metrics).assign(**{"embedding_dim": embedding_dim})
  all_metrics.append(df)
all_metrics_df = pd.concat(all_metrics, axis=0)


       

      

     

    

    
     As shown in
     Figure 3-10
     , there is a clear relationship between embedding size and model performance: the larger the embedding vector per node, the better the performance. Larger embeddings enable the model to capture more complex relationships in the graph, leading to improved results:
    

    
     
      
       
        import seaborn as sns
from matplotlib import pyplot as plt

data = all_metrics_df
data = data[(data["metric"] == "hits@20")]
data = data.groupby(["metric", "split", "embedding_dim"], as_index=False)[
  "value"
].max()
data = data.sort_values(by=["split", "value"])

tab10_colors = sns.color_palette("tab10")
custom_palette = {
  "train": tab10_colors[0],
  "valid": tab10_colors[1],
  "test": tab10_colors[2],
}

plt.figure(figsize=(7, 3.5))
sns.barplot(
  data=data, x="embedding_dim", y="value", hue="split", palette=custom_palette
)
plt.ylim(0.5, 1)
plt.xlabel("Embedding Dimensions")
plt.ylabel("Maximum Hits@20")
plt.show();


       

      

     

     
      
       [image: _images/0292bdeb206f944db473b852a102f4c607e192623e9a52390d8e019cd1f2a311.png]
       Figure 3-10. 
        Maximum Hits@20 achieved by models with varying embedding dimensions, highlighting the impact of embedding size on performance.
       

      

     

    

    
     We can also see that our initial model with
     
      embedding_dim=128
     
     now performs better due to the extended training duration. Additionally, models with embedding dimensions above 256 achieve Hits@20 values of 1 on the training dataset, indicating that the model has the capacity to more fully learn the training data.
    

    Note

     
      Increasing the embedding size and training for longer epochs comes with higher computational costs. Whether this trade-off is worthwhile depends on the resources available and the relative importance of improving model performance in your specific use case.
     

    

   

   
    
     Varying multiple hyperparameters
    

    
     Next, we extend our approach by sweeping over multiple model parameters simultaneously. This builds on the concept of the previous section but at a larger scale, enabling us to explore regions of the hyperparameter space that may yield better-performing models.
    

    
     We will vary the following parameters:
    

    
     	
      
       Dropout rate: 0, 0.3 or 0.5
      

     

     	
      
       Self-edges in the last convolutional layer: Whether or not to add self-edges (
       
        last_layer_self
       
       : True or False).
      

     

     	
      
       Degree normalization: Whether to normalize embeddings by node degree (
       
        degree_norm
       
       : True or False).
      

     

     	
      
       Number of layers in the link predictor: (
       
        n_mlp_layers
       
       : 1, 2 or 3).
      

     

    

    
     For this experiment, we will fix the embedding dimension at 512, as it was among the best-performing configurations in the earlier sweep. We could stick to 256, since the gains do not seem too great for the additional computational cost, however, in anticipation of building models that can handle larger datasets, it is reasonable to opt for a larger number of dimensions and provide the ability to learn more complex graph patterns.
    

    
     
      
       
        import itertools

model_params = {
  "n_nodes": sub_datasets["train"].n_nodes,
  "embedding_dim": 512,
}

model_params_sweep = {
  "dropout_rate": [0, 0.3, 0.5],
  "last_layer_self": [True, False],
  "degree_norm": [True, False],
  "n_mlp_layers": [1, 2, 3],
}
keys, values = zip(*model_params_sweep.items())
model_param_combn = [
  dict(zip(keys, combo)) for combo in itertools.product(*values)
]
pd.DataFrame(model_param_combn)
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     To train models with each parameter combination, we use the following approach:
    

    
     
      
       
        def name_from_params(params: dict) -> str:
  """Generates a string from a parameters dictionary"""
  return "_".join([f"{k}:{v}" for k, v in params.items()])


all_metrics = []
for combn in model_param_combn:
  model = DdiModel(**{**combn, **model_params})
  _, metrics = train(
    model=model,
    **training_params,
    store_path=f"models/sweep_all_{name_from_params(combn)}",
  )
  df = expand_metrics(metrics).assign(**combn)
  all_metrics.append(df)
all_metrics_df = pd.concat(all_metrics, axis=0)


       

      

     

    

    
     Similar to the earlier experiment, this loop automates the process of training models across all parameter combinations. Each model’s performance is evaluated, and metrics such as Hits@20 are recorded for later analysis.
    

    
     We then calculate the maximum Hits@20 metric for each parameter combination and split. Additionally, we generate a more readable representation for the convolutional layer configurations used in the encoder. This systematic exploration helps us identify the most effective combinations of hyperparameters for optimizing the model.
    

    
     We then extract the maximum Hits@20 metric for each parameter combination and split, generating a more readable annotation for the convolutional layer configurations of the encoder:
    

    
     
      
       
        def conv_layer_annot(row):
  if row["last_layer_self"] and row["degree_norm"]:
    return "with self-edges and norm"
  elif row["last_layer_self"]:
    return "with self-edges, no norm"
  elif row["degree_norm"]:
    return "with norm, no self-edges"
  else:
    return "no self-edges and no norm"


data = all_metrics_df
data = data[(data["metric"] == "hits@20") & (data["split"] != "train")]
data = data.groupby(
  ["metric", "split", *list(model_params_sweep.keys())], as_index=False
)["value"].max()
data = data.sort_values(by=["split", "value"])
data["conv_layer"] = data.apply(conv_layer_annot, axis=1)


       

      

     

    

    
     In
     Figure 3-11
     , we provide an overview of model performance across hyperparameter combinations. This plot contains a lot of information, so let’s first clarify how to interpret it – each pair of points represents the evaluation of a model on the validation and test splits. The aim is to identify models where validation and test performance are similar, as this suggests the model has learned a general representation of the graph without overfitting to the validation data. This is especially crucial because the dataset is split by protein targets, meaning the test split contains drugs targeting different proteins than those in the training and validation sets.
    

    Tip

     
      By focusing on models with consistent performance across splits, we can better understand which hyperparameter configurations lead to robust and generalizable models.
     

    

    
     
      
       
        fig = sns.relplot(
  data=data,
  x="conv_layer",
  y="value",
  row="dropout_rate",
  col="n_mlp_layers",
  hue="split",
  facet_kws=dict(margin_titles=True, despine=False),
  height=2,
)
fig.figure.subplots_adjust(wspace=0.1, hspace=0)
for ax in fig.axes.flat:
  for label in ax.get_xticklabels():
    label.set_rotation(45)
    label.set_ha("right")
fig.set_axis_labels("", "maximum Hits@20")
plt.show();
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       Figure 3-11. 
        Overview of hyperparameter combinations and their impact on model performance, measured by maximum Hits@20. Each facet represents a specific combination of the number of MLP layers and dropout rates, while the x-axis shows different parameter configurations for the graph convolutional layers.
       

      

     

    

    
     We pick out two models of interest. One is the best-performing model without dropout, featuring the simplest convolutional layer setup and only one layer for the link predictor. The other has similar performance but uses a high dropout rate and a more complex setup.
    

    
     Let us inspect the learning curve for the model with the best performing model model hyper parameters in
     Figure 3-12
     :
    

    
     
      
       
        metrics = all_metrics_df
metrics = metrics[
  (metrics["dropout_rate"] == 0.0)
  & metrics["last_layer_self"]
  & metrics["degree_norm"]
  & (metrics["n_mlp_layers"] == 1)
]

plot_learning(metrics, is_expanded=True);
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       Figure 3-12. 
        Learning curves for loss (left) and Hits@20 (right) of the highest-performing model. The training set achieves near-perfect Hits@20, but validation and test metrics stagnate and diverge, suggesting overfitting.
       

      

     

    

    
     The training loss and Hits@20 curves indicate strong learning on the training set, but diverging validation and test metrics are still indicative of overfitting.
    

    
     Let us also examine the learning curve of an alternative high-performing model in
     Figure 3-13
     . This model comes from a different region of the hyperparameter space and features additional layers in the link predictor, combined with a high dropout rate to improve generalization. It also employs a distinct configuration for the convolutional layer. Notably, the validation and test splits exhibit similar performance, which suggests that this model has learned a more generalizable representation of the graph:
    

    
     
      
       
        metrics = all_metrics_df
metrics = metrics[
  (metrics["dropout_rate"] == 0.5)
  & metrics["last_layer_self"]
  & metrics["degree_norm"]
  & (metrics["n_mlp_layers"] == 2)
]

plot_learning(metrics, is_expanded=True);
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       Figure 3-13. 
        Learning curves for loss (left) and Hits@20 (right) of an alternative high-performing model. This configuration demonstrates improved generalization, with validation and test metrics remaining stable and closely aligned.
       

      

     

    

    
     The learning curves indicate that this model is slower to fit the training set, but validation and test metrics remain stable throughout training. The close alignment between validation and test Hits@20 suggests that this model generalizes better compared to the previous configuration.
    

    Note

     
      There are numerous hyperparameters that could still be tuned, including those already exposed in our model and training setup, as well as others not yet explored. For example, we could investigate the effects of different negative sampling strategies, adjust the ratio between negative and positive pair examples, or add more graph convolutional layers. However, for this smaller dataset, we are satisfied with the performance observed so far.
     

    

   

  

  
   
    Training on a Larger Dataset
   

   
    Finally, we will train a model on a larger dataset. This time, we scale up from using about a tenth of the dataset to approximately half of it.
   

   
    As previously mentioned, the suitability of model architectures can depend on the dataset size and connectivity. After further parameter exploration with this larger dataset, we found that degree normalization is essential for achieving good performance. Additionally, an intermediate dropout rate of 0.3 yielded the best results for this particular dataset.
   

   
    
     
      
       node_limit = 2134
rng = jax.random.PRNGKey(42)
rng, rng_subset, rng_train = jax.random.split(rng, 3)
sub_datasets = subset_datasets(datasets, node_limit, rng_subset)

model = DdiModel(
  n_nodes=sub_datasets["train"].n_nodes,
  embedding_dim=512,
  dropout_rate=0.3,
  last_layer_self=True,
  degree_norm=True,
  n_mlp_layers=2,
)

_, metrics = train(
  rng=rng_train,
  model=model,
  datasets=sub_datasets,
  learning_rate=0.001,
  num_epochs=1000,
  eval_every=25,
  loss_fn=auc_loss,
  norm_loss=True,
  store_path="models/larger_model",
)


      

     

    

   

   
    In
    Figure 3-14
    , you can see our best model yet, trained on the larger dataset. Interestingly, while its performance on the validation and test sets is comparable to the models trained on the smaller datasets (~0.9 Hits@20), the training Hits@20 is noticeably lower. This could be due to the larger dataset introducing more challenging and diverse negative samples, making it harder for the model to achieve perfect ranking on the training data. This observation highlights the trade-off between dataset size and the model’s ability to fit the training data perfectly.
   

   
    Although we cannot directly compare our results to those on the OGBL leaderboard, the model’s consistent performance across validation and test splits suggests that it could handle even larger datasets without significant drops in performance. Further experimentation, including tuning the hyperparameters and adjusting the negative sampling strategy, would be needed to confirm this.
   

   
    
     
      
       plot_learning(metrics);
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      Figure 3-14. 
       Learning curves for loss (left) and Hits@20 (right) of the best-performing model trained on the larger dataset. Performance is robust but does not show significant improvement over smaller datasets, suggesting further hyperparameter tuning or model adjustments may be needed.
      

     

    

   

   
    There are still several tweaks we could apply to further improve performance. For example, a learning rate schedule that reduces the learning rate during later epochs could help mitigate the overfitting we observe towards the end of training.
   

   Note

    
     You might wonder why we are not proceeding with modelling the full dataset. The reason is straightforward: the current implementation is too memory-intensive. With an embedding size of 512 for all nodes, we encounter out-of-memory issues during XLA compilation (
     
      ValueError:
      
       RESOURCE_EXHAUSTED
      
     
     ). While it is possible to disable JAX’s standard GPU memory preallocation
     , this approach significantly slows down computation.
    

    
     An alternative solution is to adopt a sampling approach, as proposed in GraphSAGE, which processes subgraphs in batches, making it feasible to handle larger datasets without compromising on embedding dimensions. This would allow us to scale to even larger graphs while maintaining efficient memory usage.
    

   

  

 

 
  
   Conclusion
  

  
   In this chapter, we built a model that learns the structure of graphs and predicts the likely connectivity of new nodes added to the graph, provided they have at least one known connection to the existing graph. While we focused on using graph neural networks to model drug-drug interactions, this approach is broadly applicable to numerous problems in biology.
  

  
   There are several avenues for improving the performance of our model. Exploring larger graphs and implementing graph sampling techniques could enable the model to scale more efficiently. However, the most significant gains are likely to come from incorporating additional biological context. By augmenting the model with drug annotation information or other relevant features, rather than relying solely on network connectivity, we could make predictions that are not only more accurate but also more interpretable.
  

  
   For example, incorporating chemical structure data, such as molecular fingerprints or functional group information, could help the model learn why certain drugs interact. Additionally, integrating transcriptomic or proteomic profiles might allow the model to predict interactions in a tissue-specific manner. Beyond drug-drug interactions, this approach could also be applied to problems like predicting gene regulatory interactions, identifying potential drug targets, or modeling protein-protein interaction networks, all of which could benefit from added context beyond connectivity alone.
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