

Harness

AI-Native Software Delivery

Proven Practices to Produce High-Quality Software Faster

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Nick Durkin, Eric Minick, and Chinmay Gaikwad

AI-Native Software Delivery

by Nick Durkin, Eric Minick, and Chinmay Gaikwad

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Aquisitions Editor: Louise Corrigan

		Development Editor: Jeff Bleiel

		Production Editor: Elizabeth Faerm

		Copyeditor: TO COME

		Proofreader: TO COME

		Indexer: TO COME

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		August 2025: First Edition

Revision History for the Early Release

		2024-09-19: First Release

		2025-03-04: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098171995 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. AI-Native Software Delivery, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Harness. See our statement of editorial independence.

978-1-098-17193-3

[LSI]

Brief Table of Contents (Not Yet Final)

Chapter 1: Introduction (available)

Chapter 2: Source Control Management (unavailable)

Chapter 3: The Build and Pre-Deployment Testing Steps of Continuous Integration (available)

Chapter 4: Deploying to Test Environments (unavailable)

Chapter 5: Developer Security (unavailable)

Chapter 6: Chaos Engineering and Serice Reliability (unavailable)

Chapter 7: Deploying To Production (unavailable)

Chapter 8: Feature Management and Experimentation (available)

Chapter 9: AI for Automation and Cloud Cost Management (unavailable)

Chapter 10: Platform Engineering (unavailable)

 Chapter 1. Introduction

 A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book. There is no GitHub repo at this time.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jbleiel@oreilly.com.

 Most software development teams have war stories of deployments gone wrong. These are the stories that put us on paths to modernize our delivery practices. Our deployments might include weeks or months of feature work and extensive refactoring. Developers, operations team members, a coterie of managers, and maybe a number of executives, gather in a conference “war” room. Up to this point, there has been minimal collaboration between development and operations. However, now these two groups are working together as a single team. The team starts ticking through a long checklist or playbook of manual steps.

 But even exhaustive checklists do not guarantee a trouble free deployment. Given the number of changes in the release, the deployment is likely complex and risky. The team might find that a key dependency was missing from the Production environment. The team might discover that an incompatible library version was installed, or that a critical setting was misconfigured, or that a migration step fails or is forgotten, or that changes have caused requests to a partner service to fail. Any number of missteps could take an already complex deployment offtrack. Tensions would rise, firefighting would ensue, and the hours would stretch on. The team would hope to wrap up deployment and any subsequent manual smoke testing within the deployment window. If the deployment failed irreparably and could not be salvaged, the team would hope that a rollback to the previous version would not result in unexpected difficulties, extending downtime and complexity.

 When a deployment was finally complete, an exhausted team would retreat. Often the team would be expected to be vigilant as traffic resumed for the span of a “critical care period. A stabilization period of a few days or weeks might follow in which the development team might pause all feature work to focus on hotfixes or patches.

 Heavy-lift, high-stakes deployments were draining for both the development and operations teams. These big-production deployments, followed by cycles of stabilization work, distracted teams from continuing to build features that added business value. The strain on teams often led to burnout.

 In contrast, modern software delivery streamlines and accelerates the entire process of getting software from the developer’s computer to the end user. Deployments are frequent, low-drama, low-risk and highly automated. Development teams are able to focus on the best part of their role, writing code and implementing the features that will make customers happy.

 In this chapter, we will describe how software delivery has evolved over the past 25 years. We will define DevOps and describe how DevOps practices enable modern software delivery. We will look at numerous challenges to the current state of DevOps. Lastly, this chapter will provide an overview of how modern software delivery and DevOps practices can evolve to meet these challenges.

 Development + Operations = DevOps

 The term “DevOps'' was coined in 2009, by agile project manager, Patrick Debois, combining the words “development” and “operations''. Debois used the term to convey a shift across organizations to break down the traditional walls between development and operations teams.

 Two main factors created these walls.

 	Poor communication and collaboration

 	
 Developers commonly focused on writing code and features, then essentially “threw” the finished product over a metaphorical wall to the Ops team. Ops then bore the responsibility of deploying, maintaining, and troubleshooting the code in production.

 This widely circulated “disaster girl” meme captures the dynamic.

 [image: CAPTION TO COME]
 Figure 1-1. [CAPTION TO COME]

 	Conflicting priorities

 	
 Development teams prioritized rapid development and the quick release of new features, while Ops teams focused on system stability, security, and preventing downtime. Despite their different priorities, these teams are inherently interconnected and interdependent. As Chris Read noted in 2008, “No matter how awesome your code is, how elegantly you’ve solved the problem at hand, how nice and readable the code is – if you can’t get it into production your software is just a collection of bits. Likewise, you can have the best network, the most scalable hardware, the neatest cable patching scheme – but it’s just a big fancy heater if it’s not running the code your business needs.”1

 This goal mismatch, sometimes referred to as “the core chronic conflict”, could lead to friction and finger-pointing when issues arose.

 In response, DevOps principles encourage communication at every stage. DevOps principles encourage Ops involvement early in development and Devs ongoing partnership in supporting code long after it has been deployed.

 A Short History of DevOps

 Increasingly sophisticated software teams, new software methodologies, along with new tools help pave the way for DevOps. In this section we’ll look at these factors.

 Agile in the Aughts

 After the dot com bubble in early 2000, organizations became very interested in and receptive to new ideas about how to make software development more efficient. New “agile” methodologies that built on lean manufacturing ideas became popular. Agile methodologies argued against “waterfall” software delivery patterns that emphasized extensive upfront planning and a strict linear sequence of distinct phases. In contrast, agile methodologies promoted short development cycles and frequent releases that were highly responsive to change. Kent Beck described a set of agile practices for software development in his book Extreme Programming Explained, published in October 1999. In 2001, Beck and other influential advocates of agile processes, spoke to similar themes in the Agile Manifesto,2 which promoted constant collaboration and empowered self-organized teams.

 Continuous Integration and Continuous Delivery (CI/CD)

 Over the next decade, technology organizations were increasingly influenced by agile thinking. One effect is the adoption of continuous integration and continuous delivery (CI/CD) practices.

 Continuous integration is a practice that enables a key agile tenet: the frequent delivery of working software. Developers frequently merge their code changes into a shared repository. With continuous integration, each merge triggers an automated build and testing process. This automated system quickly catches errors and conflicts, allowing teams to fix early in the development cycle. Continuous integration encourages smaller, more frequent updates, leading to faster delivery, reduced integration issues, and a healthier codebase. Chapter 2 will cover Continuous Integration in detail.

 Continuous delivery is a natural extension of continuous integration. Continuous delivery automates the process of taking code that has passed the integration build and tests and prepares it for release to production environments. This includes steps like packaging, configuring, and deploying the software to staging areas. CD enables teams to push new features, bug fixes, and updates rapidly and reliably, ensuring that deployable software is always available.

 Delivering a “potentially shippable product” at the conclusion of each development cycle is another key agile practice. “Potentially shippable” simply means reliable, tested, packaged software that could be deployed to production. (In practice, many organizations that embraced continuous delivery, delivered only internally and continued to deploy to production infrequently. Continuous delivery did not equal continuous deployment.) Chapter 3 will cover Continuous Delivery in detail.

 Milestones in Early DevOps

 Whereas agile methodologies tend to focus on the planning and execution parts of the software delivery lifecycle, early DevOps, inspired by agile thinking, focussed primarily on delivery and operations. DevOps described a system that included collaboration between the development and operations teams, processes including CI/CD, and specific tools.

 In the years that followed the emergence of DevOps, the movement gained significant momentum. A key milestone occurred in 2009, when the inaugural DevOpsDays conference was held. This event brought together professionals to share their experiences and insights on DevOps practices.

 Another significant development was the 2010 publication of the book “The Phoenix Project” by Gene Kim, Kevin Behr, and George Spafford. This fictional narrative illustrated the challenges faced by a fictional IT organization and how the adoption of DevOps principles and practices led to a dramatic turnaround in its performance. It made the case for DevOps in a way that resonated with both technical and non-technical audiences. The following year, 2011, saw the release of another influential publication, the “DevOps Handbook” by Gene Kim, Jez Humble, Patrick Debois, and John Willis. This practical guide helped many organizations start their DevOps journey by providing a comprehensive framework for implementing DevOps.

 In 2013, the initial Puppet Labs (now Puppet) “State of DevOps” report by Gene Kim and Jez Humble drew attention. The report didn’t just focus on technical metrics; it highlighted the business benefits of DevOps adoption, demonstrating that organizations implementing DevOps could ship code 30 times faster than their peers, with a 50% reduction in failures. This tied DevOps practices directly to the business outcomes that leaders care about. DevOps provided a clear competitive advantage.

 DevOps 1.0

 DevOps has progressed from a loose, niche concept to an well-established set of ideas we can refer to as “DevOps 1.0.” Attributes of DevOps 1.0 include:

 	Cultural Transformation

 	
 Recognizing the significance of cultural shifts to align software development and operations teams.

 	Automation Practices

 	
 Implementing practices such as continuous integration (CI) and continuous delivery (CD), to streamline software delivery.

 	Tools for Automation

 	
 Utilizing specific tools to automate various stages of the software delivery pipeline, including code commits, testing, deployment, and production monitoring.

 Across numerous industries, companies of varying sizes have experienced significant wins by embracing DevOps 1.0. Harness customer Acme Technology provides a typical example. In 2012, Acme Technology updated their software once a quarter. Preparing and testing a new release to deploy to production was a process that took weeks. Update windows were scheduled for weekends. Deploying to production took 2 to 6 hours of manual steps and was very error-prone. Acme Technology brought their development and operations teams together to define and implement a basic DevOps pipeline that included Jenkins and Spinnaker for CI/CD and X for automated testing. With these changes, Acme was able to accelerate their release cycles to twice a month.

 Challenges to DevOps 1.0

 DevOps 1.0 provided valuable concepts, practices, and tools that helped companies like Acme. However, companies today face new challenges in fully realizing the benefits of DevOps as result of:

 	
 Software trends that have introduced complexities that require DevOps to adapt

 	
 DevOps 1.0 toolsets that are lacking in either features or have become overly complex for many organizations.

 The following sections will explore details of each reason.

 Software trends that strain
 DevOps
 1.0

 Software evolves fast and new paradigms and platforms are constantly challenging how we design, implement and deploy software. In recent years, the following trends have created new requirements for our DevOps processes.

 	Importance of the digital experience and consumerization of enterprise

 	
 In this era of digital disruption, Marc Andreessen’s prophetic claim that software is eating the world proves ever more accurate. The digital experience a company provides is becoming the primary touchpoint for customers, shaping how they experience a brand. Moreover, the consumerization of enterprise technology means that employees expect the same seamless experiences and continual updates they experience with customer-targeted applications. These expectations pressure DevOps teams to deliver even more frequent releases, maintain high availability, and enable experimentation to power rapid innovation.

 	The adoption of cloud-native and microservices architectures

 	
 In 2012, Acme was able to benefit from DevOps 1.0 practices. At that time, Acme used a service-oriented architecture that included 5 services deployed to a single virtual machine, servicing web and mobile clients. By 202x Acme was completing a migration to cloud-hosted microservices that added several new features. The new architecture included dozens of discrete microservices deployed to individual containers. The Acme DevOps 1.0 pipeline was not equipped to address the requirements of this new architecture.

 Over the past decade, microservice and cloud-native architectures have become the de facto standard for modern software development, driven by the need for greater scalability, flexibility, and agility in software systems. These architectures introduce significant new requirements for DevOps teams, like Acme’s. Adoption of microservices leads to a proliferation of services to deploy, each with its own dependencies and configurations. Orchestrating deployments and maintaining consistency across these distributed services becomes increasingly challenging.

 Usage of containers (a key feature of cloud-native systems) and serverless architectures necessitates new strategies for deployment and management adds another layer of complexity. DevOps teams must now handle deployments across dozens or even hundreds of ephemeral containers or serverless functions, requiring robust orchestration tools, automated processes for building and managing container lifecycles, and a deep understanding of these emerging technologies. Automating the entire lifecycle of containers, from building images to pushing them to registries and rolling out updates with minimal downtime, is critical for efficient container management.

 	The rise of Open Source Software

 	
 Open Source Software (OSS) has become a ubiquitous part of modern software development. While OSS offers numerous benefits, it introduces new challenges for DevOps teams. Managing dependencies, ensuring compatibility with different versions, and maintaining security patches across multiple OSS components can be a daunting task. Additionally, teams must carefully vet the code and ensure it aligns with their organization’s security and compliance standards.

 DevOps 1.0 toolsets are lacking

 Tech giants like Meta, Alphabet, Microsoft, Apple, and Amazon (the ‘MAMMAs') drive high quality and highly reliable products and services through robust DevOps processes. With vast resources at their disposal, they can invest heavily in tooling and foster deep internal expertise. However, most organizations lack comparable means to build large DevOps teams and implement ideal DevOps processes. These organizations must frequently choose between meeting DevOps needs and projects that add direct business value. While DevOps 1.0 tools are numerous, teams struggle to construct a complete software delivery pipeline for the following reasons.

 	Automation pipelines quickly become very complex

 	
 Organizations are managing an average of 14 different tools to deploy software. The following diagram illustrates the phases of a software delivery pipeline and the standard tools that are used in each phase.

 An automation pipeline to deploy Rails, Sidekiq, and NodeJS apps might include the following tools.3

 	
 Docker image building and Kubernetes, obviously

 	
 Filebeat + Logstash for log collection, pushing logs into Opensearch + Kibana

 	
 Github actions for running CI and application CD

 	
 ArgoCD for deploying “infrastructure” applications

 	
 Helm for managing deployments + upgrades

 	
 Kube-state-metrics for gathering container metrics

 	
 Prometheus for storing metrics

 	
 Grafana for making prometheus metrics useful

 	
 KEDA for autoscaling

 	
 Terraform for managing the AWS infrastructure, roles, permissions, etc.

 	
 Artifactory for storing images and Helm charts

 	
 Yabeda libraries for instrumenting Sidekiq, Rails, and Puma and pushing application metrics into Prometheus

 	
 New Relic for exception capture and monitoring

 	
 Custom organization-managed Github runners

 The integration and management of this toolset may pose a considerable challenge for a team with limited resources.

 	Widely-used open source tools are often suboptimal

 	
 A DIY approach to DevOps often results in a less efficient pipeline. Jenkins, for example, lacks features that could reduce developer effort and shorten the time to production. Maintaining uptime and scaling Jenkins requires significant resources. Long provisioning times can lead to slow builds. Jenkins struggles to utilize build resources efficiently, resulting in extended queue times. Lastly, support for containers and Kubernetes was not a priority so implementation is minimal. Chapter 3 will cover these issues in additional detail.

 	DIY pipelines result in redundant and wasteful efforts

 	
 Often teams must implement plumbing to bring tools and systems together. This leads to substantial re-inventing the wheel. For example, Jenkins and Spinnaker are standard tools used for CI/CD. These tools provide powerful features for automating the software development and deployment process, but they require teams to build essential constructs like role-based access control (RBAC), audit logs, and notifications from scratch. Implementing and maintaining is effort that could otherwise be applied to delivering value to customers.

 DevOps v2.0

 DevOps 1.0 has significantly accelerated the software delivery process for many companies. Yet its complexity, the gaps it leaves, the investment it requires leaves room for improvement. Enter DevOps 2.0 – a vision defined by a simpler developer experience, end-to-end automation with views to easily manage all of the moving parts, and AI capabilities that augment the entire pipeline. This evolution shifts the focus from tools and processes to the people and outcomes they serve.

 DevOps 2.0 processes and tools enhance the developer experience with powerful new features. Developers start new projects and services within minutes by automating the setup of development and delivery toolchains. Out-of-the-box integrations give developers the ability to easily spin up and connect repositories, agile projects, and pipelines. To streamline the process further, templates encapsulate an organization’s best practices ensuring consistency and eliminating work management overhead when creating new services. Teams focus on building their applications, not on tedious infrastructure setup.

 DevOps 2.0 tools detangle the complexity of DevOps 1.0 solutions with a more cohesive, tightly integrated tool set. Essential constructs (RBAC, audit logs) are integrated. Support for various deployment strategies and experimentation approaches are built in, enabling the frequent releases and rapid iterations teams need. New tools support scale to support large-scale deployments across multiple environments, including on-premises, cloud, and hybrid setups. DevOps 2.0 tools will offer secure pipelines, and policy enforcement to minimize the inherent risks of open-source adoption and AI-written code.

 Lastly, AI is baked into DevOps 2.0 tools and processes throughout the software delivery pipeline. AI supercharges developer workflows. Imagine tools that can generate code, comments, tests, and infrastructure scripts, or pull out relevant code snippets using natural language search. AI-powered tools will help generate test cases, and machine learning will help speed up test cycles by only executing relevant tests. Leveraging ML, tools will provide personalized guidance during onboarding, detect vulnerabilities and offer remediation advice or instigate repairs, and even help write and understand policies. Reliability will be upleveled deployment verification, AI recommended experiments and change impact analysis. This AI-driven transformation across the SDLC will boost productivity, improve quality, reduce risk, and enhance the overall developer experience.

 Summary

 Modern software delivery emphasizes rapid releases, seamless experiences, and constant innovation, driving a need to transform traditional DevOps practices. While DevOps 1.0 laid the groundwork with CI/CD and initial cross-team collaboration, its reliance on complex toolchains built from disparate OSS solutions creates hurdles. These challenges stem from growing architectural complexity (microservices, containers), the proliferation of open-source components, and the increasing need to manage diverse toolsets. DevOps 2.0 aims to address these issues by simplifying the developer experience, offering more integrated and intelligent toolsets, and infusing AI throughout the pipeline. This evolution promises greater efficiency, enhanced quality, and a focus on delivering value rather than just managing tools.

 The next three chapters, we will cover the backbone of DevOps automation. This includes source control management for effective version control, building and testing using continuous integration for efficient development, and deploying internally using continuous delivery systems for seamless software releases. We will explore both the DevOps 1.0 approaches and the opportunities presented by DevOps 2.0.

 1 https://blog.chris-read.net/2008/11/26/retrospectively-breaching-the-wall-between-developers-and-operations
2 Kent Beck; James Grenning; Robert C. Martin; Mike Beedle; Jim Highsmith; Steve Mellor; Arie van Bennekum; Andrew Hunt; Ken Schwaber; Alistair Cockburn; Ron Jeffries; Jeff Sutherland; Ward Cunningham; Jon Kern; Dave Thomas; Martin Fowler; Brian Marick (2001). “Manifesto for Agile Software Development”. Agile Alliance. Retrieved 14 June 2010.

3 https://www.reddit.com/r/devops/comments/17tlqjl/complexity_in_modern_devops

 Chapter 2. The Build and Pre-Deployment Testing Steps of Continuous Integration

 A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. There is no GitHub repo at this time.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jbleiel@oreilly.com.

 Simply put, our modern software delivery practices provide a structure to help us plan, write, build, test, and deploy software. In the previous chapter we looked at how Source Control Management systems help track and manage changes as we write code.

 In this chapter, we turn our attention to continuous integration. Figure 2-1 shows a CI/CD pipeline that we’ll look at in this chapter and return to in chapter 4 and again in Chapter 8.

 [image: A CI CD pipeline.]
 Figure 2-1. A CI/CD pipeline.

 In this chapter we’ll cover the continuous integration steps, focusing on building and pre-deployment tests. Pre-deployment tests include static scans, unit tests and integration tests.

 (In the next chapter, we’ll continue our review of a CI/CD pipeline, reviewing the continuous delivery steps to provide infrastructure, deploy to one or more pre-production, test environments and continue testing with additional types of tests.)

 In addition to the key continuous integration steps, in this chapter we’ll review continuous integration tools and we’ll discuss factors to consider when selecting a CI tool. You will come away with an understanding of how to improve efficiency, quality and security in your build pipeline.

 A Short History of Building and Testing Software

 This is a familiar story. In 1947, while working on the Harvard Mark II computer, a team of engineers discovered a moth trapped in a relay, causing the machine to malfunction. They removed the moth and taped it into their logbook with the note “First actual case of bug being found,” thus solidifying the association of “bug” with software errors. Finding the bug in the machine accurately characterizes testing in the early days of software development. Developers would write code independently and integrate it. Testing was typically done manually and ad hoc. Teams focussed on finding the bugs, ridding “the moths” when errors were discovered. Bugs were typically discovered in production, resulting in delays and unreliable software.

 As software development evolved, testing did become more formalized and rigorous, with a focus on trying to “break” the software to uncover defects. Formal testing methodologies and standards began to emerge, such as the IEEE 829 Standard for Software Test Documentation (1983).

 Structured Software Development and Waterfall Methodologies

 Waterfall methodologies introduced a structured approach to software development, where testing became a distinct phase. Acceptance criteria, defined during requirements gathering, outlined the conditions the software must meet. Test cases were then developed and executed at the end of development to validate these criteria. Defects were documented and resolved until the software met all requirements. This formal approach, however, often resulted in a considerable delay between coding and testing, making early issue detection and resolution challenging.

 Agile and Test-Driven Development

 In Chapter 1 we discussed the emergence of agile methodologies in software development, motivated by the inefficiencies and limitations of the waterfall development. Agile methodologies’ more flexible and responsive development model, emphasizing frequent feedback and iterative development, necessitated new testing approaches that could keep pace with the rapid development cycles, leading to the rise of new testing approaches.

 Extreme Programming (XP) developed by Kent Beck, Ward Cunningham, and Ron Jeffries was a specific agile methodology defined by a set best practices. One fundamental XP practice is test-driven development (TDD). In TDD, you write tests before writing the associated code. Beck’s influential book Extreme Programming Explained, first published in 1999, popularized TDD to a wide audience and early tools like JUnit (for Java) and NUnit (for .NET) provided developers with frameworks to easily write these types of tests before writing corresponding code.

 Writing tests before code encourages developers to think deeply about desired code behavior, leading to better design and fewer defects. While this concept existed previously, TDD’s specific approach of writing failing tests first, then code to pass them, aligned well with Agile’s focus on short cycles and frequent delivery of working software. This practice redefined the notion of completeness. A feature isn’t done when the code is working, but when the automated tests are complete and passing.

 The automated tests created during TDD provide a safety net, allowing developers to refactor code with confidence, knowing that any regressions will be quickly caught by the tests. This enables faster iteration and more frequent releases which in turn allows for quicker feedback from customers and stakeholders. The tests themselves also serve as a form of documentation, clearly articulating the expected behavior of the system.

 Enter Continuous Integration

 As we introduced in Chapter 1, CI is the practice of automating the integration of code changes from multiple contributors into a shared repository, frequently triggering automated builds and tests to ensure the software remains in a working state. This complemented test-driven development.

 The roots of CI trace back to the 1990s. Grady Booch first coined the term “Continuous Integration” in 1991, but it was Kent Beck and Ron Jeffries who truly put it into practice while collaborating on a project in 1997. Their goal was to address the “integration hell” that arose from infrequent code merges, where conflicts and errors would pile up and become increasingly difficult to resolve.

 Early CI systems were often custom-built and tailored to specific projects. One notable example was CruiseControl, created in 2001 by ThoughtWorks. It was one of the first open-source CI servers, allowing teams to automate the building and testing of software with every code commit. However, it lacked a user-friendly interface and flexible job scheduling, leading to the development of Hudson in 2005 by Kohsuke Kawaguchi. Hudson quickly gained popularity due to its ease of use and powerful features.

 In 2011, a dispute with Oracle led to Hudson being forked into Jenkins, which has since become one of the most widely used tools for not only Continuous Integration, but also Continuous Delivery and Deployment. Jenkins’ popularity can be attributed to its flexibility, extensibility, and vast plugin ecosystem, allowing it to integrate with various tools and adapt to different workflows.

 Continuous Integration Today

 Continuous Integration has evolved into a foundational practice in modern software development and CI/CD systems are the backbone of any delivery pipeline. Through the continuous integration of code changes, teams have come to depend on the following advantages.

 	Reduced Integration Problems

 	
 CI eliminates the dreaded “integration hell” by ensuring developers merge their code changes frequently, minimizing conflicts and making them easier to resolve.

 	Faster Feedback

 	
 CI’s automated build and test processes provide developers with rapid feedback on their code changes, allowing them to catch and fix errors quickly, thus maintaining a stable and deployable codebase.

 	Increased Efficiency and Reliability

 	
 By automating the build and testing process, CI eliminates manual errors and inconsistencies, leading to more reliable and predictable builds.

 	Improved Transparency

 	
 CI dashboards and notifications provide real-time visibility into the build and test status, allowing everyone on the team to track progress, identify potential issues, and collaborate more effectively.

 	Accelerated Releases

 	
 By streamlining and automating the build, test, and integration processes, CI enables faster and more frequent releases, allowing businesses to respond more rapidly to customer feedback and market changes.

 In the next section, we’ll look at the function of CI in the delivery pipeline and we’ll explore the landscape of CI tools.

 Continuous Integration in the CI/CD Pipeline

 In Chapter 2, we introduced a CI/CD pipeline, focussing on the relationship between the code repository and code integration. Let’s return to this pipeline and focus on the continuous integration, that is the build step and steps to execute pre-deployment test types including static analysis, unit tests and integration tests.

 The pipeline shown in Figure 2-2 shows a typical CI process.

 [image: CI Pipeline Triggered by Opening a Git PR]
 Figure 2-2. CI Pipeline Triggered by Opening a Git PR

 This example is triggered when a developer opens a PR. The goal of this pipeline is to validate the changes proposed in the PR before the changes are merged into the main branch. Let’s go through the steps.

 	
 Code Trigger: A developer opens a pull request on the hosted repository (e.g., GitHub, GitLab, Bitbucket) which triggers the pipeline

 	
 Checkout: The pipeline checks out the source code from the branch specified in the PR.

 	
 Build: The code is compiled (if necessary) and built into an executable or deployable artifact.

 	
 Static Analysis: Tools like linters and code analyzers scan the code for style violations, potential bugs, and security issues.

 	
 Unit Tests: Automated tests that verify the functionality of individual code units are executed.

 	
 Integration Tests: Relatively fast tests may be run to verify the interaction between different components of the code.

 	
 Feedback: The pipeline provides feedback to the developer about the PR’s status (success/failure) and any issues found. This feedback is displayed directly in the PR on the hosted repository.

 This pipeline detects and notifies developers of any issues within their code. The build step determines whether the code changes have broken the build. The test steps answer the questions: does this code do what is intended? Does this code include security vulnerabilities, unsafe operations, potential bugs, bad practices, deprecated features, or even inconsistent formatting?

 This code pipeline provides developers with near-real-time feedback by detecting issues and running fast tests when pull requests (PRs) are opened or updated. It answers critical questions about the code’s functionality, security, and quality. Developers can then quickly address problems, refine the PR, or confidently merge it when all checks pass, accelerating development and ensuring a robust codebase.

 (In Chapter 4, we’ll explore a complementary CI pipeline triggered when a PR is merged. This pipeline deploys new code to test environments and executes longer-running test suites.)

 Note that while our sample pipeline uses a code change trigger, CI/CD systems typically offer other trigger options like scheduled and manual triggers for more flexibility.

 First Things First: The Essential Build Step

 The build step involves packaging code into a deployable artifact. Code given in a compiled language, like C++, is first compiled and then linked to create machine code. Interpreted languages often require a build step to package code into an intermediate format, such as a Java Archive (JAR) file, for compilation at runtime. Other interpreted languages including JavaScript can be transpiled or minified to optimize it for execution.

 Depending on the type of code, this step or series of steps rely on build automation tools, task runners or build scripts.

 Build automation tools orchestrate the entire build process. Popular examples of automation tools include the following.

 	Make and CMake

 	
 Make is one of the oldest and most fundamental build tools. It uses a Makefile to define dependencies between files and the commands needed to build them. Cmake is a newer cross-platform build system generator that can generate Makefiles, Visual Studio projects, and other build scripts. It’s widely used for C and C++ projects.

 	Ant

 	
 A Java-based build tool that uses XML to describe the build process. It’s known for its flexibility and cross-platform compatibility.

 	Maven

 	
 Another popular Java build tool that goes beyond just compilation. It manages dependencies, builds, tests, and packages projects.

 	Gradle

 	
 A newer build tool that combines the best of Ant and Maven. It uses a Groovy-based DSL for defining builds and offers a more flexible and concise syntax.

 	Bazel

 	
 Developed by Google, Bazel is a powerful build system designed for large-scale projects. It’s known for its speed, scalability, and support for multiple languages.

 	MSBuild

 	
 A build automation platform commonly used with .NET frameworks and languages like C#, Visual Basic .NET, and F#.

 	Cargo

 	
 Cargo is a package manager for the Rust programming language, used to build, compile, and manage Rust projects.

 Task runners automate repetitive tasks in the development workflow, such as minification, concatenation, and transpilation. Widely used task runners for JavaScript include the following.

 	NPM Scripts

 	
 Part of the Node Package Manager (NPM), npm scripts are simple scripts defined in the package.json file that can automate common tasks like starting a development server, running tests, and building for production.

 	Gulp

 	
 A streaming build system that uses JavaScript code to define tasks. It’s known for its speed and efficiency in processing files.

 	Grunt

 	
 Another task runner for JavaScript projects, Grunt uses configuration files to define tasks. It’s known for its vast ecosystem of plugins.

 	Webpack

 	
 A module bundler primarily used for JavaScript applications. It can bundle JavaScript, CSS, and other assets into optimized files for production.

 	Rollup

 	
 Another module bundler that’s known for its focus on generating smaller and more efficient bundles than Webpack.

 Lastly, build scripts are custom scripts (often written in Bash, Python, or other scripting languages) that define the specific steps and commands needed to build a project. These can be used in conjunction with build automation tools or task runners.

 Prioritizing Quality and Security with Static Analysis

 Immediately after we build our code, we run static analysis tools which may include a linter. Linters are a specific type of static analysis tool used to check coding style (ensuring, for example consistent formatting and naming patterns), for interpreted languages like JavaScript, linters check for typos, missing semicolons, or incorrect language usage. These tools examine source code without executing it, similar to proofreading a document before publishing it. They help identify potential issues early in the development process. Static code analysis encompasses a range of techniques to evaluate code for:

 	Potential Bugs

 	
 Identifies common programming errors, like null pointer dereferences, resource leaks, or logic flaws.

 	Security Vulnerabilities

 	
 Detects insecure coding practices that could lead to SQL injections, cross-site scripting (XSS), or other exploits.

 	Code Smells

 	
 Flags maintainability issues, like duplicate code, excessive complexity, or unused variables, suggesting areas for refactoring.

 	Adherence to Standards

 	
 Enforces coding guidelines and best practices specific to a language or project, ensuring consistency and readability.

 By integrating these static analysis tools into the early stages of the development process, we not only ensure code quality but we also implement a best practice referred to as shift-left security. Shift-left security refers to the strategy of implementing security practices in the earliest stages of development. We’ll dig into shift left security in Chapter 5.

 Automated Testing: Test Early, Test Often

 Automated testing is fundamental to the CI/CD pipeline. After our example pipeline runs static analysis checks, it executes unit and integration tests against new code. Let’s look at these test types.

 	Unit Tests

 	
 These tests validate the smallest isolated pieces of code (units), such as functions or methods, to verify that they behave as expected in isolation. Imagine a simple weather application that fetches weather data from an external API, processes it, and displays it to the user. Unit tests might test functions that process raw weather data, validating that they correctly convert the data into the desired formats. The tests validate the conversion logic alone.

 	Integration Tests

 	
 These tests focus on verifying the interactions between software modules, ensuring proper communication and data exchange. Integration tests are relatively fast, often conducted after unit testing, and, like unit tests, help identify issues early. An integration test for the same weather app might focus on how the data fetching and processing modules interact. These tests could verify that the app correctly retrieves and handles weather data from the API, including error scenarios, using partial mocking to simulate real-world API responses. Unlike unit tests, which isolate components, integration tests assess how multiple components work together. Integration tests that are used early in the pipeline, as in our example pipeline, should avoid slow operations such as accessing a database, file system or other external systems.

 Unit and integration test frameworks are numerous, and vary by language, for example:

 	Java

 	
 JUnit 5 and TestNG are frameworks for unit testing. Mockito and Spring are used for Java Integration testing.

 	JavaScript

 	
 Jest and Mocha for JavaScript are widely used for unit testing. Jest also supports integration testing.

 	Python

 	
 pyTest and pyUnit (UnitTest) are options for both unit and integration testing.

 	.NET

 	
 Nunit and xUnit for NET are options for unit testing whereas Moq, NSubstitute are commonly used for integration testing.

 	Ruby

 	
 RSpec supports both Ruby unit and integration testing.

 	Mobile (iOS/Android)

 	
 XCTest for iOS, and Espresso for Android are standard bearers for mobile unit and integration testing.

 Unit and integration tests act as a first line of defense, alerting developers to potential bugs or regressions in their code. These quick, automated checks are just the beginning of our testing strategy. In the next chapter, we’ll look at a subsequent pipeline that is triggered when the PR is closed and merged.

 Thoroughly testing each unit of code, including all possible scenarios, results in a large but crucial suite of tests—even for seemingly simple code. However, since unit tests are isolated and don’t rely on external resources, they execute rapidly.

 Our pipeline prioritizes these speedy unit tests as the foundation, followed by integration tests that verify how different components work together, and finally, a smaller number of comprehensive end-to-end tests that simulate real-world usage.

 In the next section we’ll look at how the Testing Pyramid framework illustrates how to balance different test types for optimal software quality.

 The Test Pyramid

 The Test Pyramid provides a model for structuring our tests strategically, prioritizing different types based on their scope and speed. While the Test Pyramid is sometimes depicted with specific test types at each layer, we prefer to conceptualize layers that encompass broad classes of tests as shown in Figure 2-3.

 [image: Large sets of fast tests make up the base of the Test Pyramid. Smaller sets of slower tests form the higher layers.]
 Figure 2-3. Large sets of fast tests make up the base of the Test Pyramid. Smaller sets of slower tests form the higher layers.

 At the base of our pyramid are pre-deployment tests. This includes test types like unit tests, integration tests, and static scans. These tests are small and execute quickly. Integration testing can refer to a range of test strategies; we include at this level fast integration tests that do not include interactions with external systems (databases, network services). The wide pyramid base reflects that suites of these types of tests should be large and, ideally, cover the complete codebase. Tests should be designed to provide fast feedback to the developer.

 Moving up the pyramid, we depict the middle layer as including any type of tests that we execute against deployed code in a pre-production, test environment. Generally, these tests are typically slower but provide valuable insights into how the system functions as a whole.

 At the peak of the pyramid, we find manual tests. These are slow and labor-intensive and occur after the code has been vetted by layers of automated testing.

 Embracing the pyramid approach allows teams to balance speed, cost, and effectiveness in their testing efforts. By focusing on a solid foundation of small and fast tests and supplementing them with strategic testing against deployed code, we can achieve comprehensive test coverage while minimizing the time and resources required.

 A robust testing strategy is key to a streamlined pipeline, accelerating delivery of high-quality releases. In the next section we’ll consider the CI tool choice itself. We’ll look at factors to consider to, again, accelerate the delivery of high-quality releases.

 Continuous Integration Tools

 Effective CI processes are essential for modern development teams. In this section, we’ll look at legacy CI tools and the features that characterize modern tools.

 A major national retailer, anticipating a surge in digital demand, found itself at a crossroads. Their legacy CI/CD tools, including Jenkins, were fragmented across client web, mobile and backend service teams, causing long build times that cost the company a staggering $500,000 annually in idle developer time. These tools not only stifled innovation but also posed significant security risks, further exacerbated by the $800,000 spent yearly on maintenance and custom scripts. This substantial investment diverted resources away from enhancing the customer experience. Faced with mounting challenges and escalating costs, the retailer sought a unified CI/CD platform to streamline operations, accelerate innovation, and fortify security.

 Their compounding challenges shed light on the inherent limitations of Jenkins, especially as organizations scale and digital demands intensify. Let’s look at some of those limitations.

 Jenkins Considered

 Jenkins deserves credit for bringing continuous integration into the mainstream. An open-source automation server, Jenkins leverages a vast ecosystem of plugins that extend its functionality and features and gives users the ability to customize their pipelines endlessly. The Jenkins Plugin Marketplace is a central repository where users can find and install thousands of these community-developed plugins. The Jenkins community is large and its documentation is extensive. It is an adaptable solution for diverse development environments.

 Yet Jenkins brings notable challenges.

 Plugin Complexity

 Jenkins’ flexibility and extensive plugin ecosystem often lead to a complex and fragmented architecture, hindering maintainability and increasing developer toil. The reliance on Groovy scripts for pipeline customization can make troubleshooting and updates cumbersome, especially as the number of pipelines and their complexity grows.

 In addition, modern CI/CD solutions often embrace the “pipeline as code” paradigm, using declarative languages like YAML to define pipelines. This approach is generally considered more straightforward and maintainable than Jenkins’ scripting-heavy approach. It allows for better version control, collaboration, and easier troubleshooting.

 Lastly, the need to manage a multitude of plugins, each with its own configuration, introduces maintenance overhead. Team members find themselves spending valuable time on mundane tasks like resolving plugin conflicts, updating dependencies, and deciphering cryptic error messages. This detracts from focus on innovation and core development, slowing down innovation and delivering features.

 Scalability Challenges

 Jenkins’ architecture, primarily designed for single-server setups, often struggles to scale efficiently as the number of jobs, pipelines, and users increases. This can lead to performance bottlenecks, slower build times, and overall system instability. While Jenkins offers distributed builds and clustering options, setting up and maintaining these solutions can be complex and resource-intensive, requiring specialized expertise and significant overhead. As a result, scaling Jenkins horizontally to meet the demands of large organizations or high-throughput CI/CD workflows often becomes a major challenge.

 Security Concerns

 While Jenkins plugins provide extensibility, they also introduce potential vulnerabilities. Each plugin, with its own codebase and dependencies, expands the attack surface of a Jenkins instance. Monitoring these plugins for vulnerabilities and ensuring timely updates becomes an ongoing overhead for administrators. Furthermore, configuring Jenkins security, including user permissions, access controls, and network configurations, can be intricate. Misconfigurations can expose the system to unauthorized access or malicious activities. The dynamic nature of the plugin ecosystem and the potential for misconfigurations mean you must be vigilant in monitoring risks and proactive to mitigate risks within your Jenkins environment.

 Resource Usage

 Jenkins’ resource consumption can be a significant drawback, especially as the number of jobs and plugins increases. The Java-based architecture often leads to high memory usage, and managing numerous concurrent builds can put a strain on CPU and disk resources. This can result in slower build times, increased infrastructure costs, and potential performance issues. In larger environments, scaling Jenkins horizontally can become complex and resource-intensive, requiring additional hardware and careful configuration.

 Beyond Jenkins

 Due to Jenkins limitations, companies like our national retailer often outgrow Jenkins and seek modern, fully-managed solutions that offer:

 	Built-in, fully supported building blocks

 	
 Modern CI/CD tools offer extensive libraries of built-in, fully supported building blocks that streamline pipeline setup. This eliminates reliance on community-maintained plugins, ensuring reliability and stability. However, recognizing the need for customization, most solutions still support extensibility through custom plugins. This empowers teams to automate unique workflows and tailor the CI/CD environment to their specific needs.

 	Pipelines define declaratively

 	
 Modern CI/CD tools streamline pipeline definition using declarative code like YAML, making them more accessible and easier to maintain than Jenkins’ Groovy scripts. This accelerates setup and minimizes errors associated with manual scripting.

 	Native support for containerization and orchestration

 	
 Jenkins predates the widespread adoption of Docker and Kubernetes and while Jenkins pipelines can use plugins to work with and orchestrate containers, the lack of native support often results in cumbersome configurations. Newer tools, in contrast, seamlessly incorporate containerization and orchestration features, simplifying the deployment and management of applications in containerized environments.

 In the next sections, we’ll look at additional modern features that tools newer than Jenkins offer. Before we turn our attention to these features, let’s consider a fundamental question when considering CI/CD tools: whether to host and manage tools yourself or select a fully-managed solution. The decision will impact everything from development velocity, cost-effectiveness to maintenance requirements. Given the importance of mobile, it’s essential to select a CI/CD setup that handles the complexities of building and deploying mobile applications. In this section, we’ll look at CI/CD hosting options and we’ll look at the factors to consider specific to mobile app development.

 Hosting Options

 Organizations have three primary build infrastructure choices for their CI/CD systems: self-hosted on-premises, self-hosted cloud, and vendor-hosted (cloud). Each option presents unique benefits and drawbacks that should be carefully considered.

 Self-hosted, On-Prem Solutions

 Self-hosting a CI/CD system on-premises gives you complete control and ownership over their infrastructure and data. This approach allows for maximum customization, enabling tailoring to specific security protocols and organizational needs. Additionally, some organizations may prefer the one-time payment model associated with on-prem solutions. However, this approach comes with several drawbacks. It necessitates substantial upfront investment in hardware, software, and time and effort to maintain and update. The demand for ongoing maintenance and potential scalability challenges can strain resources, particularly for smaller organizations.

 Self-hosted, Cloud Solutions

 The self-managed, cloud-hosted model strikes a balance between control and scalability. Organizations maintain control over their CI/CD software while leveraging the cloud’s flexibility and scalability. This approach reduces the need for physical hardware and simplifies scaling compared to on-prem solutions.

 Cloud hosted applications run within virtualized environments called hypervisors and when considering cloud hosting, the type of hypervisor you select will impact simplicity and performance. The two types of hypervisors to understand are:

 	Type 1 bare-metal hypervisor

 	
 These run directly on the hardware, offering superior performance and isolation but requiring dedicated hardware.

 	Type 2, embedded hypervisors

 	
 These run on top of an operating system, providing easier setup and flexibility but potentially with lower performance.

 Bare-metal might be better for demanding, high-security setups, while embedded could be suitable for less intensive needs and budget constraints.

 Any cloud-hosted toolset will require ongoing maintenance and updates, and your organization will remain responsible for managing the cloud infrastructure. This can lead to similar challenges as on-prem solutions, albeit with potentially reduced upfront costs.

 Fully Managed, Vendor-Hosted Solutions

 Vendor-hosted CI/CD solutions offer a fully managed service where the vendor handles infrastructure, maintenance, and updates. Your organization focuses on development rather than infrastructure management. These solutions are highly scalable, easy to use, and often follow a pay-as-you-go model, making them cost-effective. However, they may offer less customization than self-hosted options, and potentially limit your organization’s ability to tailor the system to your specific needs. Additionally, concerns about data security and potential vendor lock-in can arise with this approach.

 Mobile App Development-specific Challenges

 Having a robust and efficient CI/CD solution is crucial to keep pace with the fast release cycles and high quality apps that mobile users expect. Developing for mobile brings unique challenges; your processes and your CI/CD tools must be able to manage device fragmentation and frequent mobile OS updates.

 When choosing between self-hosted and fully managed CI/CD solutions, consider that self-hosted solutions, while offering control and customization, can lead to challenges like physical hardware constraints. In addition, your team will be responsible for constant maintenance and updates to build environments. These complexities can lead to unexpected costs. The frequent release cycles of tools like Xcode for iOS development necessitate regular hardware updates, which can be a significant time and resource drain for any team.

 Fully managed CI/CD solutions, on the other hand, alleviate these pain points by providing automatic updates to build environments and predictable costs. This allows your team to focus on building features and improving their apps rather than managing infrastructure. Moreover, fully managed CI/CD solutions specifically optimized for mobile development offer mobile-specific integrations and features that streamline the development process. Many of these platforms fully manage challenges of mobile development, such as device fragmentation and OS updates, for you.

 Modern Features

 Returning to our retailer: they researched newer options and decided to move on from Jenkins and the set of plugins and tools pieced together to work with it. They selected a unified platform that simplified their toolset while providing the scalability and cost savings that they required. They were able to consolidate CI/CD processes for services, client web, and mobile teams onto this single platform. This new platform eliminated the need for extensive scripting, saving developer time and enabling them to focus on innovation. It also leveraged AI/ML for testing, resulting in further cost savings and much faster builds. Furthermore, a unified platform improved security by supporting security testing early in the pipeline, enabling faster detection and remediation of vulnerabilities. The efficiency, security, and reliability of the new platform enabled the retailer to easily handle their digital growth.

 In the next sections, we will look at features in modern systems that enable faster, cost-effective, and secure pipelines.

 Accelerate Builds with Caching

 We’ll start with a powerful optimization technique that can drastically reduce build times. Caching is a technique used in CI/CD to store and reuse build artifacts, dependencies, and intermediate results. This significantly reduces build times by avoiding redundant operations and focusing on building only what has changed. This not only speeds up development cycles but also conserves computational resources and energy. Modern CI/CD systems intelligently manage this caching process, optimizing builds without manual intervention.

 Caching can be done at different stages - caching software dependencies, caching docker layers, and caching build outputs from tools like Bazel, Gradle, and Maven.

 Harness’s Cache Intelligence streamlines build steps by automatically caching and restoring software dependencies for various build tools like Bazel, Maven, Gradle, Yarn, Go, and Node, provided their default cache paths are used. This approach can dramatically reduce your build times, especially in large projects with complex dependencies, enabling faster feedback loops and increased productivity.

 Streamline Testing with Test Intelligence

 Consider a scenario where a developer modifies a single line of code in a seldom used component within a large application. We have high code coverage with our large and robust set of unit tests; these are the foundation of our test strategy, the base of our Test Pyramid. Yet, when little code has changed, executing the entire test suite results in lengthy and resource-intensive and very inefficient test cycles.

 Modern tools can mitigate with AI tooling that intelligently selects and executes only the tests directly relevant to the modified code. Harness Test Intelligence (TI) is an example of this approach. TI significantly reduces the time and resources required for testing, leading to faster feedback loops and more efficient development processes.

 Three components work together to enable Harness TI:

 	TI Service

 	
 This service understands your repository, git-commits and unit tests and uses this data to dynamically build a graph that maps the relationships between code methods and their corresponding unit tests. This graph is continuously updated to reflect changes in the codebase.

 	A Test Runner Agent

 	
 This component communicates with the service and executes tests.

 	A Test Step

 	
 This is the step you add to your CI pipeline to integrate TI into your workflow.

 The TI workflow begins when a developer initiates a pull request and triggers the pipeline. The TI Service analyzes the code changes, comparing to its graph to identify the tests that need to be executed. It considers not only the code modifications but also any changes or additions to the tests themselves. This ensures that all relevant aspects of the codebase are thoroughly tested while avoiding redundant test runs.

 By focusing on the impacted tests, TI significantly reduces the testing time, especially in large projects with extensive test suites. This translates to faster builds and faster feedback for developers, allowing them to identify and address issues more quickly. In addition, the Harness CI UI provides detailed reports that give insights into which tests were selected and why. This helps developers understand the impact of their changes and improve the overall quality of the test suite.

 AI-Power Build and Test Insights

 Modern CI/CD tools also leverage AI to automate tedious tasks and provide insights when things go wrong. For example, Harness CI/CD tools include AI-Powered Development Assistant (AIDA) which can auto-generate your pipelines, analyze code for potential issues, and troubleshoot build and deployment failures in real-time. If a CI build fails AIDA can analyze log files, pinpoint the error, and even suggest potential fixes. This saves your time, reduces downtime, and accelerates the software delivery process.

 Unify CI/CD Metrics with Enterprise Observability

 A modern CI/CD solution should be a team player, working with the other key platforms in your corporate ecosystem, particularly the observability platform that your organization relies on to understand system behavior, identify performance bottlenecks, and proactively detect and resolve issues before they impact users or business operations. Observability platforms include Elastic with Logstash and Kibana (“ELK”), a popular open source platform; and, Datadog and Splunk, well-known commercial options.

 Modern continuous integration tools provide telemetry data to these platforms by implementing OpenTelemetry, an open-source framework. This brings in CI/CD metrics to enable observability and dashboards that can help you understand what’s happening and improve build performance and reliability.

 Modern CI/CD Support for Monorepos

 Versioning and dependency management becomes very challenging when managing complex codebases across several repositories. Monorepos are single repositories that store all project or organization-related code that offer a solution for complex codebases. A single repository simplifies dependency management by keeping a single copy of any shared library or component, and simplifies code sharing and reuse across different projects. While monorepos increase the risk of merge conflicts and require careful design to avoid tightly coupled code, many large companies have successfully adopted them for massive codebases, demonstrating that an effectively managed monorepo can provide a very scalable approach.

 When adopting a monorepo strategy, it’s important to understand the unique requirements that monorepos make of code repositories and CI tools. With potentially hundreds of developers contributing to a large monorepo, managing changes and pull requests efficiently becomes critical. Teams must be able define appropriate access by subdirectories, in part to ensure that only relevant reviewers are notified for each change. Repositories should support subdirectory-specific ownership.

 Additionally, monorepos require specialized CI capabilities. CI systems must facilitate selective building and testing of affected components, implement advanced dependency management strategies to handle complex relationships between projects, leverage caching mechanisms to optimize build times, and support parallelism to efficiently execute builds and tests across multiple machines.

 Modern tools like Harness CI support advanced monorepos with advanced trigger capabilities and repository cloning. For example, you can define a trigger to execute a pipeline if a pull request, issue comment, or push event is sent for file changes from specific directories in the Git repo. This ensures that only specific pipelines are triggered in response to a change.

 Cloning a monorepo before a build can take long because of the nature of monorepos. With Harness CI, you can specify a sparse checkout to clone a subdirectory instead of the entire repo.

 Summary

 CI has become an indispensable practice, reducing integration issues, providing faster feedback, and improving overall efficiency. In this chapter, we looked at modern, fully-managed CI/CD tool features, contrasting the tradeoffs with the costs and challenges of self-hosting. We looked at the importance of prioritizing faster, smaller unit tests for quick feedback, followed by slower test types for comprehensive coverage. The continuous integration pipeline we looked at exemplified this practice: in the context of opening a PR, we build, complete static scans and then run quick tests to ensure our code does what it should and doesn’t introduce regressions.

 In the next chapter, we’ll continue with CI/CD with focus on deploying to test environments and executing the slower tests that evaluate the system’s performance, resiliency, and end-to-end behavior.

 Chapter 3. Feature Management and Experimentation

 A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 8th chapter of the final book. There is no GitHub repo at this time.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jbleiel@oreilly.com.

 In Chapter 7, we explored the challenges and best practices for deploying software to production. We focused on strategies to mitigate risk and ensure reliability, looking at progressive deployment strategies, paired with robust rollback mechanisms. This approach helps us identify issues in new software versions early to safeguard the integrity of production systems. Recall that we touched on feature flags as one important progressive deployment strategy; feature flags are a mechanism to deploy individual features within a single version of software in a progressive way. In this chapter, we will continue the discussion on the use of feature flags as a tool for managing feature deployment.

 We will also dive deep into another role of feature flags -- how they can be a driver of experimentation. While feature flags are great for reducing deployment risks and enabling progressive delivery, their impact goes far beyond. They empower you to run experiments to learn about your users, optimize your feature design ideas, validate hypotheses, and make data-driven decisions that improve product usability, engagement, and overall business outcomes. Feature management and experimentation management are closely related—feature flags provide the infrastructure for controlling how and when features are released, while experimentation leverages this control to gather insights and make data-driven decisions. However, as powerful as feature management with feature flags is, they come with their own risks and challenges, which we’ll also explore.

 Recall our discussion of the Knight Capital incident in the previous chapter. A faulty software deployment led to $460 million in losses within 45 minutes. The incident occurred when Knight Capital deployed a new version of its trading software that reactivated a dormant piece of legacy code. A misconfigured feature flag was to blame for the reactivation. This flag, meant to control whether a piece of legacy code was active or inactive, was mistakenly enabled on some servers but not others. The inconsistency triggered outdated logic, leading to over 4 million erroneous trades in less than an hour.

 While feature flags offer immense potential to help teams deliver at scale, as the Knights incident shows, their misuse or mismanagement can introduce significant risks. An effective feature management requires thoughtful planning, thorough testing, and strong governance to prevent these kinds of disasters.

 In this chapter, we’ll examine the limitations of home-grown feature management and experimentation solutions, which often lack the necessary safeguards. We’ll look at how modern, full-featured systems not only reduce the risks but also unlock the full potential of feature management and experimentation as strategic tools for delivering high-quality software. Lastly, we’ll explore how AI can supercharge your feature management and experimentation.

 Benefits of Feature Management in Modern Software Development

 Imagine that our organization is implementing a payment platform that handles basic online transactions for small businesses. This platform supports payment processing, invoicing, basic analytics, and integrations with e-commerce platforms. We release new features continuously and rapidly to make iterative improvements and address user feedback.

 In this section, we’ll look at how we can use feature management to free our organization from the constraints of traditional release processes to speed up our payment platform release cyclesWe’ll discuss how to use feature management to support collaboration across teams and progressive delivery. Lastly, we will look at how feature flags can help us manage technical debt.

 Speed up development cycles with feature flags

 At their simplest, feature flags that let us deploy new features that are “turned off”, decoupling deployment from release. Then, we can flip our feature flag, like a switch, to activate the feature later on, without having to deploy new code. This approach helps us realize trunk-based development. As we looked at in Chapter 2, continuous integration involves regularly merging code changes into a shared repository with automated testing ensuring the quality of each integration. Trunk-based development builds on this by encouraging developers to make small, frequent commits directly to the main branch, often called the “trunk.”

 Alternatives to trunk-based development involve long-lived feature branches. With these alternatives, integration becomes increasingly difficult over time because when multiple teams work in isolated branches for extended periods, they often discover costly conflicts only during integration. This delayed integration also weakens the benefits of continuous integration practices, as problems might not be detected until long after the code was written. Trunk-based development is widely regarded as an industry best practice because it helps teams minimize merge conflicts and maintain a steady flow of updates to the main branch. The more frequently changes are merged, the higher the likelihood that the main branch remains deployable at any moment. This means faster, more reliable releases.

 In the absence of feature flags, it’s difficult to deploy the small changes that characterize trunk-based development because all changes become immediately active in the production environment. This necessitates tight synchronization of releases among teams, limiting the ability to safely merge and deploy incomplete features. Consequently, this can lead to delays in deployment and the increased risk of very large releases.

 Feature flags provide an elegant solution to this challenge. By enabling developers to wrap new features or experimental changes within feature flags, they can commit their work to the main branch even if the functionality is not fully developed or are not production-tested. The flag effectively acts as a gatekeeper, ensuring that the incomplete feature remains turned off in production until you are ready. This approach eliminates the need for long-lived feature branches. This helps teams maintain a high deployment velocity and validate other aspects of the codebase without being hindered by feature completion timelines.

 Decouple teams to reduce coordination overhead

 Going back to our payment platform, let’s say we want to introduce a new “Subscription Payments” feature. The frontend team is responsible for updating the user interface to support recurring payment options, the backend team must implement APIs for managing subscription plans, and the analytics team is tasked with tracking user behavior for subscriptions.

 Without feature flags, the release becomes a tightly coupled, high-risk event. The frontend team can’t deploy the updated UI until the backend APIs are live, leaving their work unfinished in staging. The backend team can’t fully test APIs because the frontend isn’t integrated, delaying validation of workflows. The analytics team can’t implement tracking because the subscription system isn’t functional in production.

 This dependency forces all teams to align their schedules and coordinate a large, monolithic and risky rollout. Any delays by one team ripple across the others, creating bottlenecks. If a critical bug is discovered, rolling back the feature means undoing work across all teams, often requiring a redeployment of the entire application.

 Using feature flags, each team can work independently and release their changes incrementally. The frontend team can deploy the subscription management UI early, hiding it behind a feature flag.This allows them to validate basic functionality in production while awaiting backend readiness. The backend team can implement and deploy subscription APIs to production, also gated by a feature flag. These APIs can be tested with test data or limited users, even if the frontend is not yet live. The analytics team can add tracking mechanisms and deploy them behind another flag. They can simulate user flows to ensure metrics are collected correctly without exposing the functionality to actual users.

 Once all components are ready, the feature flags are toggled on for internal testing. Once validated internally, the feature can then be rolled out to production. Not only have we reduced the risk in releasing the “Subscription Payments” feature, we’ve reduced the overhead in coordinating across multiple teams.

 Support progressive delivery with phased rollouts

 When our “Subscription Payments” feature is ready to go, we can use feature flags to gradually roll out the update. With modern feature flags systems we can apply target criteria, such as user attributes or percentages, to enable a feature for a subset of users. This allows us to verify in production by slowly enabling the feature, monitoring its performance, and making adjustments before expanding to a larger audience.

 During this phased rollout, we are looking at key metrics such as API error rates, response times, payment success rates, and customer feedback. If we observe anomalies, like a spike in failed payment attempts, increased latency, or reports of a broken user experience, this could indicate that the new feature has introduced issues that we need to investigate before proceeding.

 If we do find problems, we can easily rollback by simply toggling the flag off. The new functionality is disabled for all users without requiring a redeployment of the codebase. The system instantly reverts to the stable, previously tested version of the application, minimizing disruption and giving the team time to investigate and address the issue.

 Manage tech debt with feature flags

 Feature flags aren’t just for launching new functionality—they can serve as a safety net when modernizing legacy code. Feature flags in this way act as a dimmer switch rather than just an on/off button. When refactoring, you can gradually transition from old code to new implementations while maintaining the ability to roll back if issues arise.

 Here’s how this typically works in practice: First, you write your new, improved code implementation alongside the existing code. You then create a feature flag that lets you control which version runs—the old or new implementation. This allows you to test the new code in production with a small percentage of traffic while most users continue using the proven legacy code. As you gain confidence in the new implementation, you can gradually increase the percentage of traffic it handles.

 This approach is particularly valuable for large-scale refactoring projects. Rather than performing a risky “big bang” replacement, you can use feature flags to migrate users in controlled waves. If you discover any issues, you can immediately revert to the old system for affected users without disrupting your entire user base.

 The true power of this pattern emerges in complex systems where multiple components are being modernized simultaneously. Feature flags give you fine-grained control over your modernization effort, letting you coordinate multiple refactoring initiatives while maintaining system stability.

 Optimizing results through experimentation

 We’ve seen how feature flags can help us release faster with trunk-based development and eliminating the need for co-ordinated multi-team roll outs. We’ve seen how we can derisk our releases with progressive roll out of features. But how does this matter if we are not releasing features that provide value? This is where experimentation comes in.

 Feature management systems often include robust support for experimentation, enabling teams to run controlled, measurable tests directly within their existing application infrastructure. By combining fine-grained targeting, randomized percentage assignments for user populations, and automated statistical analysis, these systems allow engineering and product teams to conduct experiments seamlessly within the same infrastructure used for feature rollouts. This eliminates the need for separate experimentation platforms which means you only need to manage, monitor and write integration code for a single pattern.

 Well-designed experiments transform product development. Rather than relying on subjective opinions and endless debates, you can use real-world user behavior to guide your decisions. This replaces conference room speculation and endless debate with concrete data about the changes and new features that will actually engage your users. Feature flags allow us to segment users into groups (e.g., A and B) and expose each group to different variations of a feature. For example, in an online payment platform, one group might see a “Quick Pay” button, while another experiences an updated “Express Checkout” workflow.

 By using feature flags, we can deploy these variations live in parallel, enabling side-by-side experiments that provide real-time, direct comparisons between versions. This approach offers a clear advantage over testing variations in succession, where differences in regular fluctuations, seasonal differences, the presence of marketing campaigns or other factors can skew results. With side-by-side experiments, we ensure that both versions are subjected to the same conditions to get the most reliable and accurate insights. With these comparisons we can confidently identify the version that delivers the most value to users, without the noise and uncertainty that come from sequential testing.

 Building well-structured experiments

 Effective experimentation begins with a well-defined hypothesis that aligns with your business objectives and outlines specific, measurable goals. For instance, you might hypothesize that the “Express Checkout” workflow will increase conversion rates by streamlining the payment process. It is important to remember that the purpose of an experiment isn’t just to confirm your hypothesis—it’s to learn. Early results that contradict your hypothesis aren’t failures; these experiments provide valuable insights that may save months of investment in a project unlikely to achieve its goals.

 A good experiment ensures that results are meaningful and actionable. It separates feature performance from external factors, so that observed outcomes can be attributed solely to the changes being tested. To achieve this, experiments should be based on the following:

 	Strong, Clear Metrics

 	
 Define key metrics that measure success. For the “Express Checkout” workflow, a critical metric might be the conversion rate from checkout initiation to completion. Clear metrics focus the experiment and provide actionable insights.

 	A Meaningful Targeted Audience:

 	
 Use targeting to tailor experiments, turning features on or off, for specific users or segments based on customer profiles, locations, or platforms (e.g., mobile vs. desktop). This precision minimizes the risk of unintended consequences and ensures results are relevant to the intended user group.

 	A Statistically Significant Sample Size:

 	
 Conduct a power analysis before running the experiment to calculate the minimum sample size needed to detect meaningful effects. This reduces the likelihood of drawing inaccurate conclusions and ensures that your results hold statistical significance.

 To make confident product decisions, we need to trust the insights our experiments provide. By designing experiments with these key elements, we can ensure their reliability and accuracy.

 Integrating experimentation with progressive delivery

 Just as we progressively roll out new features like “Subscription Payments” to reduce risk, we can use feature flags to implement experiments in a controlled and safe manner. For example, imagine we develop a revised “Subscription Payments” workflow. This iteration aims to simplify the user experience. Our hypothesis is that this version will lead to an increase in subscription sign-ups.

 To test this hypothesis, we use feature flags to divide users into two groups: one experiences the original workflow, while the other interacts with the updated version. By randomly assigning users, we ensure a fair comparison and collect reliable data on key metrics, such as sign-up rates and completion times. This approach allows us to evaluate the performance of the new workflow in real-world conditions without exposing the entire user base to potential issues.

 If the metrics show that the updated version outperforms the original in driving sign-ups, we can begin gradually rolling it out to a larger percentage of users. This iterative process not only minimizes risk but also ensures that we base our decisions on real data that either confirms or refutes our hypotheses.

 Establishing guardrails

 We talked about the importance of identifying a key metric when defining your experiment’s hypothesis. It’s equally important to identify one or more guardrail metrics. We worked with a company that matches loan seekers with loan providers. Loan seekers use a sign up flow to provide information about the type of loan they are interested in along with a number of other details. The service is able to match the user to the loan provider best able to meet their needs.

 The product team was confident that a redesigned sign-up flow would improve the quality of the loan matches the service could provide. They started by carefully rolling this experiment out to a small cohort of users. In rolling out, the team found that the new flow was causing a substantially higher rate of drop-offs, users who navigated away before completing the experiment. A guardrail metric, in this case drop-off rates, helped the team detect in near real-time and take action. By analyzing the data the product team could then decide what action to take. They could shrink the cohort size or pause wider rollout. This would let them use the experiment to continue to learn about the impact on the goal metric while constraining side-effects. Or, the product team could cancel the experiment altogether if they concluded that the side-effects were too detrimental to the overall business value.

 Guardrail metrics, like drop-off rates in the example above, serve a different purpose from goal metrics but are equally important in ensuring the success of an experiment. While goal metrics measure the primary objective of the experiment—such as improving conversion rates, increasing revenue, or enhancing user engagement—guardrail metrics act as safety checks to monitor for unintended negative consequences. Example metrics used for guardrails include Bounce rate, page load time, customer churn rate, error rate, conversion rate on secondary product lines. Guardrail metrics help you maintain a holistic view of the experiment’s impact, enabling you to balance progress on the primary goal with the overall health and reliability of the product. By tracking both you can make informed decisions about when to continue, pause, or pivot their experiments.

 The most effective guardrails are automated and seamlessly integrated into the experimentation process. Modern feature management systems can monitor guardrails in real time and enforce thresholds automatically. Automating safeguards your systems by lessening the chance of inadvertently missing performance degradation through human error. Making guardrails a core part of the experimentation process helps payment platforms stay agile while maintaining reliability. This approach ensures that new features can deliver value without risking user trust.

 Life without mature feature management tools

 While feature management systems offer immense value, how effective and cost-efficient they are hangs on their implementation and governance. Relying on fragile, home-grown solutions or multiple decentralized implementations can work against you. The trap of DIY systems is that they are simple to get started with; however, as your needs become more complex, the effort to add more and more capabilities becomes increasingly difficult to justify. You may find yourself investing your team’s development time and resources into patching gaps in feature management functionality and fixing bugs, rather than delivering value for your customers. The cost of this effort, and the technical debt you accrue, eventually outweigh any initial savings. In this section, we’ll explore the drawbacks of DIY systems in greater detail.

 Low quality tools impede effective feature flag management

 Feature flags can become liabilities without proper tooling and governance. The challenge lies in the gap between basic feature flag implementation and truly effective feature flag management at scale. As feature flag adoption spreads across teams and projects, these basic tools reveal their limitations. Without sophisticated management capabilities, teams struggle to maintain visibility and control over their growing feature flag ecosystem.

 Consider a typical scenario: A development team implements dozens of feature flags across their application using a basic toggle system. While this works initially, they soon discover they can’t easily track flag ownership, monitor flag status, or manage flag lifecycles. The system lacks crucial capabilities like automated cleanup notifications, usage tracking, or dependency mapping. As a result, developers lose sight of which flags are still needed and which should be retired. The codebase becomes littered with “zombie flags”—permanent toggles that no one dares to remove because they can’t determine if the flag is truly obsolete. Additionally, leaving zombie feature flags in place can gate abandoned or obsolete code, which may not be tested or maintained, creating vulnerabilities and increasing technical debt.

 Professional-grade feature management tools should provide comprehensive governance features, including clear ownership tracking, automated cleanup processes, dependency visualization, and robust access controls. These capabilities ensure feature flags remain an asset rather than a liability as your system grows in complexity.

 Minimal support for experimentation limits your learning

 Home-grown, DIY feature management solutions often evolve organically out of a need for basic feature flagging capabilities. And these systems often do meet your initial needs. However, they can come with hidden costs that become apparent as your organization and requirements grow.

 To start, home-grown systems often lack advanced capabilities required to support high-quality experimentation. For example, while a basic feature flag system might allow you to turn a feature on or off globally, it typically won’t support fine-grained targeting by attributes like geography, device type, or customer tier. Similarly, these systems rarely offer true randomized percentage rollouts, where user populations are divided randomly and consistently to ensure fairness and reliability in experiments. Without these capabilities, experiments can produce skewed or untrustworthy results.

 Additionally, modern experimentation systems include built-in tools for automated statistical analysis and metric tracking, enabling teams to evaluate key performance indicators (KPIs) and guardrail metrics directly within the platform. For instance, if you are testing an updated checkout process on a payment platform, a modern system can automatically calculate conversion rates, identify statistical significance, and flag anomalies like increased error rates—all without manual intervention. Basic systems, by contrast, rely heavily on external tools and manual data aggregation, which increases operational complexity and the risk of errors. This lack of integration and sophistication makes it much harder for teams to experiment effectively, ultimately limiting the potential for data-driven decision-making.

 Lack of integrations slow you down

 Another significant limitation of basic feature management systems is their lack of integration with the broader software development ecosystem, which often results in more handoffs, manual steps, and complex, hard-to-maintain scripting. Modern feature management systems address these challenges by tightly integrating with critical tools and platforms, embedding feature management seamlessly into your workflows.

 Fragile implementations distract your team

 Most notably DIY systems typically don’t scale well. They can be frail and prone to performance bottlenecks. Homegrown solutions often lack formal service level agreements (SLAs) or dedicated support structures, leading to reduced uptime and reliability. When these systems encounter failures, your teams must devote valuable resources to troubleshooting and resolving disruptions.

 A robust feature management system helps you deliver business value efficiently and reliably. While building an in-house solution might be an easy way to get started with feature management, these homegrown systems often struggle to meet the evolving needs of high-performing development teams.

 The challenges multiply when different teams across an organization develop their own independent feature management implementations. This fragmentation creates unnecessary complexity in several critical areas: managing feature deployments, maintaining security standards, and establishing consistent governance practices across the organization. In the following sections, we’ll examine how centralizing feature management through modern, purpose-built tools can streamline operations, enhance security, and improve collaboration across teams.

 Scaling feature management and experimentation

 Scaling feature management and experimentation requires adopting patterns that streamline processes and ensure consistency. In this section we’ll look at the advantages of unifying feature management with a single implementation, leveraging smart integrations to reduce manual work and improve collaboration. We’ll explore how modern platforms help automate governance, while leveraging your existing identity management infrastructure. We’ll understand how modern systems ensure scalability. Finally, we’ll see how AI-driven capabilities transform experimentation.

 Unify with a single feature management implementation

 We have worked with many large companies who seek to modernize their software delivery processes. In this journey, they are often surprised to discover they’re juggling a dozen or more independently built DIY feature management systems sometimes mixed with partially implemented commercial or open-source solutions. As these organizations have grown their software and delivery processes have become more complex, the need for a centralized feature management system becomes clear. Fragmented implementations amplify the risk of misconfigurations, security vulnerabilities, and non-compliance. In industries where auditability is critical, these gaps make compliance an uphill battle.

 Additionally, maintaining multiple bespoke systems across teams introduces more and more technical debt. The effort and resources required to update, patch, and synchronize these systems detracts from delivering business value. Learning how to work with multiple systems is also a tax on developers and product managers when moving between teams.

 A centralized feature management implementation gives companies a single, consistent view of feature flags across all environments and allows for safe, consistent feature rollout capabilities across teams. With a unified platform, companies are able to easily track the state of active flags, monitor their usage, and understand dependencies between features. Lack of a unified view can lead to errors during deployment. Dependencies can become tangled, and the very real risk of activating or deactivating flags incorrectly increases, especially as the complexity of systems grows.

 Reduce manual steps with smart integrations

 Modern systems streamline workflows by embedding feature management directly into the broader software ecosystem. Integrations with IDEs allow developers to create and manage feature flags directly within their coding environment, reducing context switching and streamlining the development process. CI/CD pipeline integrations enable teams to incorporate feature flags into automated build and deployment processes, allowing feature flags to become a natural part of automated build and deployment processes.

 Similarly, connections to task management, notification, and approval platforms like Jira, Slack, MS Teams, and ServiceNow ensure that feature flag changes can be tracked, approved, and communicated in real time, keeping stakeholders informed and reducing miscommunication.

 By eliminating manual scripting and enabling automation across these tools, built-in integrations create workflows that not only reduce toil but also improve collaboration, efficiency, and agility.

 Simplify governance with automated audit trails and enforcement

 Modern feature management systems simplify governance by automating crucial processes such as approvals and policy enforcement. This helps your teams maintain control while reducing operational overhead. For example, you can set up automated workflows to require mandatory approvals for any feature flag changes in production. This ensures that sensitive environments are protected from unintended or risky modifications, while allowing more flexibility in development or staging, where experimentation and iteration are more common. This differentiation in enforcement balances working efficiently with production stability.

 Policies within these systems can also help standardize practices across teams. For instance, consistent flag naming conventions can be enforced automatically, making it easier for teams to understand the purpose of a flag at a glance, even as the number of flags grows. Additionally, modern systems can guide flags through a defined promotion lifecycle, ensuring that temporary flags used for testing or experiments are properly retired once they’re no longer needed. For high-stakes changes, such as deployments in production, these systems can mandate the use of golden pipelines—predefined, validated processes that ensure rigorous testing and reliable rollouts. By automating these governance tasks, modern systems eliminate ambiguity, align teams with organizational standards, and significantly reduce the likelihood of misconfigurations that could jeopardize reliability or security.

 Leverage your existing identity management infrastructure

 Modern feature systems support Single Sign-On (SSO) allowing your team to use existing credentials from inhouse identity providers and SCIM support simplifies user provisioning and role assignments, ensuring that the right accounts and permissions exist across systems. Along with role-based access control (RBAC), you can enforce consistent governance, ensuring that only authorized users can adjust feature flags or modify settings. This ensures every user has the privileges needed for their role when they need it, no more and no less, reducing the likelihood of security breaches and compliance violations. Together, SSO and SCIM enhance governance, streamline onboarding and offboarding, and ensure secure, consistent access control across teams.

 Choose a platform built to scale

 Modern systems are built with scalability and reliability at their core. They leverage content delivery networks (CDNs) and other features of low-latency, high-availability architectures to maintain performance under peak loads, which can grow significantly over time as user bases and system complexity increase. These systems also employ push architectures to propagate configuration updates instantly across environments, enabling features like near-instant rollbacks or real-time targeting changes. By incorporating other best practices for mission-critical applications, such as redundancy and fault tolerance, modern systems ensure that feature management remains robust and responsive, even during periods of heavy traffic or unexpected demand spikes.

 Leverage AI for for more accessible and insightful experimentation

 AI is transforming feature management systems by making experimentation and implementation dramatically more accessible and insightful.

 Traditional experimentation platforms provide statistical results and metrics, but understanding the full implications of these results often requires deep statistical knowledge and careful analysis. Modern AI assistants integrated into feature management platforms can interpret these results in plain language, helping teams extract meaningful insights quickly. For example, if an experiment shows a 5% increase in conversion rates but a slight decrease in average order value, you can ask the AI to explain the tradeoffs and their business implications. The AI can analyze multiple metrics simultaneously, identify correlations, and suggest potential causal relationships that might not be immediately obvious to human analysts.

 Think of it like having a data scientist instantly available to interpret your results and answer follow-up questions. You might ask: “Why did this variant perform better on mobile devices?” or “What user segments showed the most significant improvements?” The AI can dive into the data, explaining patterns and suggesting potential explanations based on the observed behavior. This capability democratizes experimentation analysis, allowing team members without statistical expertise to understand and act on experiment results confidently.

 AI is equally helpful in providing developer assistance. Implementing feature flags and experiments traditionally requires developers to carefully configure SDKs, write targeting rules, and ensure proper tracking of metrics. Modern AI systems can now generate this implementation code automatically based on your experiment configuration. Here’s what makes this particularly powerful: the AI understands the context of your experiment and generates code that’s specifically tailored to your use case.

 For instance, if you’ve configured an experiment to test a new checkout flow for premium users in certain geographic regions, the AI can generate all the necessary code for your chosen programming language. This includes:

 	
 Setting up the feature flag with the correct targeting rules

 	
 Implementing the experiment tracking

 	
 Adding the appropriate metrics collection

 	
 Handling edge cases and error conditions

 The AI adapts its code generation to match your specific needs and can explain its implementation choices. If you need to modify the generated code or implement it in a different programming language, you can simply ask the AI to regenerate it with your new requirements. This dramatically reduces the time from experiment design to implementation while ensuring consistent, high-quality code.

 What’s particularly powerful about these AI integrations is how they work together. You can use the AI to help design your experiment, generate the implementation code, and then later analyze the results—all while maintaining a clear understanding of what’s happening at each step. This creates a more fluid, accessible experimentation process that you move faster while making better-informed decisions.

 Summary

 This chapter explored how feature management and experimentation serve as foundational elements of modern software delivery, enabling teams to deploy code more frequently while maintaining stability through progressive rollouts and robust rollback capabilities. We learned that feature flags not only help manage deployment risk but also drive business value through experimentation, allowing teams to make data-driven decisions based on real user behavior rather than speculation. Additionally, we saw how modern feature management platforms overcome the limitations of homegrown solutions by providing comprehensive governance, scalability, and AI-powered capabilities that make experimentation more accessible and insightful.

 As we turn to cloud cost management in the next chapter, we’ll explore another critical aspect of operating at scale: understanding and optimizing the financial implications of our architectural and operational decisions in cloud environments, where the flexibility that enables rapid feature delivery and experimentation must be balanced against resource efficiency and cost effectiveness.

assets/the_build_and_pre_deployment_testing_steps_of_cont_753897_03.png
Mins/Hours

Time to get feedback

Secs/Mins.

Manual
Tests

Tests against Deployed App

Pre-deployment Tests
(Scans, Unit Tests, Integration Tests)

Effort to write and maintain

UbuntuMono-BoldItalic.otf

UbuntuMono-Italic.otf

UbuntuMono-Regular.otf

css_assets/titlepage_footer_ebook.png
OREILLY®

assets/ER_cover_sponsored_updatedfinal.png
OREILLY"
Early
Release

RAW &
. UNEDITED

Compliments of

®harness

Al-Native
Software Delivery

Proven Practices to Produce
High-Quality Software Faster

Nick Durkin, Eric Minick
& Chinmay Gaikwad

assets/sponsor_ad_dark.png
®harness (

Introducing Al-Native
Software Delivery »

Accelerate Reduce Decrease lead
deployments infrastructure time for changes
by up to costs by up to by up to

75% 70% 90%

harness.io

toc01.html
		Brief Table of Contents (Not Yet Final)

		1. Introduction

 		Development + Operations = DevOps

 		A Short History of DevOps

 		Agile in the Aughts

 		Continuous Integration and Continuous Delivery (CI/CD)

 		Milestones in Early DevOps

 		DevOps 1.0

 		Challenges to DevOps 1.0

 		DevOps v2.0

 		Summary

		2. The Build and Pre-Deployment Testing Steps of Continuous Integration

 		A Short History of Building and Testing Software

 		Structured Software Development and Waterfall Methodologies

 		Agile and Test-Driven Development

 		Enter Continuous Integration

 		Continuous Integration Today

 		Continuous Integration in the CI/CD Pipeline

 		First Things First: The Essential Build Step

 		Prioritizing Quality and Security with Static Analysis

 		Automated Testing: Test Early, Test Often

 		The Test Pyramid

 		Continuous Integration Tools

 		Jenkins Considered

 		Beyond Jenkins

 		Modern Features

 		Summary

		3. Feature Management and Experimentation

 		Benefits of Feature Management in Modern Software Development

 		Speed up development cycles with feature flags

 		Decouple teams to reduce coordination overhead

 		Support progressive delivery with phased rollouts

 		Manage tech debt with feature flags

 		Optimizing results through experimentation

 		Life without mature feature management tools

 		Low quality tools impede effective feature flag management

 		Minimal support for experimentation limits your learning

 		Lack of integrations slow you down

 		Fragile implementations distract your team

 		Scaling feature management and experimentation

 		Unify with a single feature management implementation

 		Reduce manual steps with smart integrations

 		Simplify governance with automated audit trails and enforcement

 		Leverage your existing identity management infrastructure

 		Choose a platform built to scale

 		Leverage AI for for more accessible and insightful experimentation

 		Summary

DejaVuSans-Bold.otf

assets/introduction_420546_01.png
o

|
OPS PROBLEM NOW
-

DejaVuSerif.otf

assets/the_build_and_pre_deployment_testing_steps_of_cont_753897_01.png
Checkot — B
Gode
Trgger

Continuous Integration Continuous Delivery and Deployment

UbuntuMono-Bold.otf

assets/the_build_and_pre_deployment_testing_steps_of_cont_753897_02.png
Feedback to PR
-

i __, Static Analysis.

Checkout Build Tef‘mv

Code
Jrgger Integration
Open PR niegr

Continuous Integration

