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Chapter 1. Introducing Large Language Models



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.




Let me guess: you wouldn’t be reading this book if it wasn’t for ChatGPT.


OpenAI revealed the groundbreaking model in 2022. Unlike previous models, ChatGPT could engage in free-form dialogue and assist in many daily tasks, from writing texts and coding snippets to creative ideation and making decisions. Its vast knowledge base and fluent language generation capabilities offered a tantalizing glimpse into the future of generative AI, where AI appeared to be able to communicate and understand like humans. The arrival of ChatGPT was a seismic event comparable to the unexpected launches of Google Search, Facebook, iPhone 1, and Tesla, which seemingly materialized out of thin air and felt more like magic than technology.


However, even with its impressive performance, ChatGPT had its limitations. It could be inconsistent, biased, and sometimes factually incorrect. Its reasoning capabilities were not fully developed, often producing plausible-sounding outputs based on statistical patterns in its training data. It can be fairly said that the hype of ChatGPT sparked a generative AI revolution, with companies and researchers racing to develop and present their own large language models (LLMs).


The sudden rush in interest highlighted the transformative potential of LLM technology, and while early generative AI systems like GPT-3, which appeared two years earlier in 2020, showed only promise, ChatGPT made it undeniable that the new era of human-AI collaboration has dawned. Businesses immediately rushed to integrate generative AI into their products and services. At the same time, venture capitalists poured money into generative AI startups. When the first hype wave settled down, specific concerns were raised about the data used for training, recurring bias, incorrect answers, and the general spread of misinformation.


LangChain, an open-source framework, was explicitly developed to address the challenges of building applications with LLMs like the ones underneath ChatGPT. When Harrison Chase started working on LangChain, it was more of a pet project than a formal business endeavor. His interest was sparked by conversations with friends working on applications utilizing LLMs. Recognizing their complexities and everyday challenges, he created a framework that could simplify the LLM-related application development process. The open-source platform addressing the above challenges, named LangChain, quickly gained traction, attracting contributors from companies like Anthropic, OpenAI, Cohere, and other AI research labs.

Note

The initial pull requests focused on building LangChain foundational elements, including prompt structures and LLM objects and chains, such as math, python, and search.




Chapter 3 discusses LangChain in much more detail. For now, we’ll concentrate on understanding how language models work, what types of LLMs exist, their differences, whether size matters, and how they generate text.


The landscape of generative AI is vast and rapidly evolving. Various generative AI models can synthesize and transform textual, audial, and visual content, as shown in Figure 2-1. Multiple text-to-audio/image/video/3D/code and vice-versa models exist from OpenAI, Google, Microsoft, and other technological companies. Text is the connecting link between most transformations shown in Figure 2-1, as most training data includes text-code, text-image, and other pairs. This book adds scientific formats to that list to help you learn how to build applications to achieve scientific results.

Note

A multimodal model integrates and processes multiple types of data simultaneously (e.g., text, images, audio) within a single framework, enabling it to understand and generate responses that consider all input modalities together. Text-to-X and X-to-text models, even multiple,  specialize in converting a single type of input to another (e.g., text-to-image, image-to-text)




Unsurprisingly, the heart of the genAI ecosystem belongs to language models, in which mathematical entities predict the following tokens (think of tokens as words for now) in a sentence. These LLMs vary significantly by the immense number of parameters used. Parameters are variables in the model learned from the training data: basically, parameters control model’s ability to understand and generate human-like text. Their number varies from smaller models with only millions of parameters to giant ones with up to trillions of parameters. This diversity in scale allows for a wide range of applications, from simple question-answering to complex reasoning tasks.



[image: Generative AI models]
Figure 1-1. Generative AI models




The operational backbone of the generative AI ecosystem is the computing infrastructure required to run LLMs. Performing inference or, simply said, running generate text mode live on these models involves a substantial number of mathematical operations, necessitating specialized GPUs capable of handling these tasks in parallel. However, access to the necessary GPUs is expensive, leading AI engineers to leverage computational platforms like Runpod and UbiOps, or cloud platforms that offer GPU rentals for LLM workloads. This setup underscores the intensive computational requirements and the central role of GPUs in making LLM applications feasible.

Note

OpenAI used a supercomputer with nearly 300,000 CPU cores and 10,000 V100 GPUs to train GPT-3. The training of OpenAI’s GPT-3, with 175 billion parameters, is estimated to cost around $10 million and consume approximately 1,300 MWh of electricity, equivalent to the annual energy consumption of around 125 average U.S. households.




Hugging Face has emerged as a crucial hub in the LLM ecosystem, providing a comprehensive repository for open-source models, tools for fine-tuning models, leaderboards for performance comparison, and datasets for training and evaluation. This platform simplifies accessing and working with LLMs, offering everything from model weights to licensing information.


An application programming interface (API), is like a synthesis methodology in chemistry. Just as a methodology provides detailed instructions on conducting the synthesis, an API provides a set of rules and tools that allow different software applications to communicate with each other. You don’t need to understand the inner workings of the software, just like you don’t need to know the intricate chemical details — you just need to follow the methodology/API to get the desired result.


When comparing paid LLM APIs like OpenAI GPTs, Google Geminis, or Anthropic Claudes with open-source alternatives like Mistral Mixtrals, Technology Innovation Institute Falcons and Meta Llamas, a key consideration lies in the trade-off between cost and control. Despite their better performance, proprietary models may not be suitable for all cases, especially those with specific data needs or concerns over privacy and customization. On the other hand, open-source models offer users complete control over their data, enhanced privacy, and the ability to tailor the models to their specific requirements. However, running one in the cloud might cost a lot, while running its own local environment may require particular hardware. While third-party models like OpenAI GPTs may appeal to users valuing convenience, open-source options are compelling for those prioritizing data control and customization.


From an end-product perspective, open-source LLMs may have advantages over proprietary models regarding transparency, control, and cost efficiency. Open-source models allow developers to inspect, modify, and customize the code to better suit their needs. This level of control is crucial in sensitive fields, particularly healthcare, where reliability and trust are of first importance. Some tech life science and healthcare companies and startups illustrate this point by either implementing from the start or transitioning from proprietary to open-source models to better align with their operational needs.








Embedding Models


Embedding models transform complex data into relatively high-dimensional vectors. These vectors capture the semantic meaning of the text based on the context in which words appear. Think of it as translating complex information into a simple, consistent format. For example, in everyday language, the word cat might be represented as a list of numbers that capture its meaning and relationships to other words like dog or pet, but most likely will be far away from atomic.


Text embedding models have evolved significantly over time. Earlier models like Word2Vec and GloVe focused on word-level embeddings, capturing semantic relationships between words based on their co-occurrence in the text. Transformer-based models like BERT were a leap forward, as they were context-aware embeddings, capturing a more nuanced understanding of the text. Today’s embedding models use LLMs and analyze large text datasets, learning to associate each term with a point in a high-dimensional space. Such spaces already include, but not limited to 4096 dimensions. Consider embedding as a text version of RNA representing genetic information as a high-dimensional vector with 4 categorical types rather than a float for embeddings.


Embeddings are invaluable for various applications, including similarity measurement, clustering, and classification. If not mentioned otherwise, I’ll be using the term embeddings for text embeddings, highlighting when the embedding type is different, as there are plenty of images, audio, and other types of embedding models. In life sciences, you might use molecular embeddings, such as SMILES, as one of the simplest examples or more advanced biological sequence embeddings.

Tip

SPECTER2 is an embedding model trained on over 6M triplets of scientific paper citations. Given the combination of the title and abstract of a scientific paper or a short textual query, the model can be used to generate effective embeddings for downstream applications.




Similarly to LLMs, embedding models can be either proprietary or open-source. The landscape of embedding models extends far beyond what OpenAI or Cohere (an AI company whose embedding models are currently popular) offers. It is true that proprietary embedding models mostly have better quality and are affordable. However, there are many open-source embedding models (`GTE`s, `E5`s, `BERT`s, `MPNet`s), some of which are ranking relatively high on the Massive Text Embedding Benchmark (MTEB) Leaderboard. Like open-source LLMs, such alternatives provide flexibility, allowing for self-hosting, modification, and control that proprietary models cannot match. A comparison between different embedding models is shown in Example 2-1.


We’ll compare all-mpnet-base-v2 and avsolatorio/GIST-Embedding-v0 both from SentenceTransformer and text-embedding-3-small from OpenAIEmbeddings. We’ll define a list of the following sentences:



	
I’m an airline pilot



	
I like flying



	
I’m afraid of having flights



	
I have aerophobia



	
I fear scary pictures of airplanes in the clouds



	
I have all my data in cloud






I’ve chosen these sentences to highlight how different embedding models interpret the similarity of various phrases. Sentences 2 and 3 are opposite (flying and having flights are synonymous, with the like and afraid being antonymous), so they should have a low similarity score, whereas sentences 3 and 4 are basically synonymous. Other sentences serve as benchmarks containing words, that might “trick” the embedding model. Each of these models will later convert the sentences into their respective embeddings.


Example 1-1. Embeddings


from langchain.embeddings import HuggingFaceEmbeddings
from langchain_openai import OpenAIEmbeddings
from sentence_transformers import SentenceTransformer

sentences = [
    "I'm an airline pilot",
    "I like flying",
    "I'm afraid of having flights",
    "I have aerophobia",
    "I fear scary pictures of airplanes",
    "I have all my data in cloud",
]

hf_embeddings = HuggingFaceEmbeddings(
    model_name= "sentence-transformers/all-mpnet-base-v2"
)
openai_embedding = OpenAIEmbeddings("text-embedding-3-large")
gist_embedding = SentenceTransformer("avsolatorio/GIST-Embedding-v0")



We can compare different embedding models by comparing how similar they score the above-listed sentences. The similarity matrices are provided in Figure 2-2. For example, for the text-embedding-large-3, the similarity score between I’m an airline pilot and I like flying is 0.56. Different models calculate absolute scores, so we’ll primarily focus on their relative comparison. For the text-embedding-large-3, the most similar phrases (0.63) are I’m afraid of having flights and I have aerophobia which is correct. We can also note that the second closest pair (0.57) is I’m afraid of having flights and I fear scary pictures of airplanes which can be explained by the similarity of the afraid - fear pair, but also showcasing potential lack of context understanding. The antonym pair I like flying and I’m afraid of having flights also showed high result (0.54), underlining the context of flying but underestimating the negative context.


For the all-mpnet-base-v2 model, the second-highest score (0.64) was shown for the I’m afraid of having flights and I have aerophobia pair. The only pair scoring more (0.65) was the I have aerophobia and I fear scary pictures of airplanes pair, showcasing a similar issue we’ve seen earlier for the text-embedding-large-3 embedding model. The antonym pair I like flying and I’m afraid of having flights showed relatively low result (0.49), compared to other pair scores.


For the GIST-Embedding-v0 model I’m afraid of having flights and I fear scary pictures of airplanes has the highest score (0.86), with the I’m afraid of having flights and I have aerophobia pair in second (0.83). The antonym pair I like flying and I’m afraid of having flights showed relatively close result (0.79), compared to other pair scores. As previously said, a comparison of all similarity matrices of the above-described embedding models is provided in Figure 2-2.



[image: Embeddings]
Figure 1-2. Comparing text-embedding-3-large, all-mpnet-base-v2 and GIST-Embedding-v0 embedding models




Each model captures a slightly different relationship between sentences, primarily depending on the data they’ve been trained on and their dimensional size. It is also worth mentioning that the text-embedding-3-large contains 4 times more dimensions (3072) than the other embedding models under comparison (768). The choice of embedding model you use depends on the specific task and dataset. For instance, word embeddings may be more suitable for tasks involving individual words. In contrast, sentence embeddings are better suited for tasks involving longer pieces of text. Mistral-based embedding models, initialized from Mistral-7B, excel in performance but come with a significant size of 14 GB. E5, GIST, and other models are designed to handle data efficiently while being close to or smaller than 1 GB.


The future of embeddings seems particularly promising with the rise of multimodal models capable of processing and relating information across various forms of data (text, images, video, etc), representing a frontier in AI research and application. If appropriately trained, they will maintain the semantic relationships within each data type and across different types, enabling, for example, the direct comparison of compounds to their synthesis method or medical image to diagnosis.

Note

We’ll often use embeddings in the following chapters, as they are essential in searching relevant documents and retrieving facts and information.




The embedding concept can be used beyond the natural language processing (NLP) field. Molecular embeddings can be used to represent molecules in a form that can be easily processed by machine learning models. These embeddings transform complex molecular structures into fixed-size vectors, capturing the essential features of the molecules. This approach is particularly useful in tasks such as drug discovery, where rapid and accurate chemical similarity searches are crucial. Traditional methods often rely on brute-force comparisons, which can be computationally intensive given the vast size of modern chemical databases.










Chat and Large Language Models


One way to classify LLMs is by their API or open-source status, which is covered above. Others require an understanding of the text generation process. Before we dive into how text is generated, we’ll need to look into the topic of tokens.










Tokens


The word token is one of those words with many meanings. In language models, tokens are the fundamental units of text that the model operates on - words, subwords, and punctuation. Tokens are generated by a process called tokenization, performed by a tokenizer. Besides breaking down the input text into a sequence of tokens, tokenizers convert them into numerical representations that the model can process. The subword tokenization technique, which involves splitting words into smaller units, is handy for handling out-of-vocabulary words not present in the model’s vocabulary. The model can better handle rare or unseen words by breaking down words into subword units, improving its overall performance. An example of tokenizing text can be seen in Figure 2-3. Notice how not only individual words and punctuation are separated into tokens but also words such as LangChain, delve, generative, and tokenization due to their complexity. To better understand how tokenizers work, you can try tokenizing custom text using OpenAI tokenizer.



[image: Tokenization]
Figure 1-3. GPT-3.5 and GPT-4 tokenizers




During training, the tokenizer converts the input text into a sequence of tokens from which the model can learn. During inference, the same tokenizer prepares the user input for the model to generate predictions or outputs. Different language models may use different tokenization strategies, depending on the specific language model and its architecture, and the choice of tokenizer can significantly impact the model’s performance and efficiency.

Note

SMILES, or Simplified Molecular Input Line Entry System, is a notation that allows a user to represent a chemical structure in a way that humans and computers can easily read and write. Each molecule is described using a text string, where atoms are represented by their chemical symbols (like C for carbon and O for oxygen). Bonds are represented by specific characters (= for double bonds, # for triple bonds). Rings and branches in the molecular structure are indicated using numbers and parentheses. This compact and linear notation makes storing and sharing complex molecular structures in databases and digital communications easier.




In scientific research, a token’s fundamental block can be calculated differently. Example 2-2 shows how the wireframe for tokenization implementation works. We’re importing the necessary tokenizer using the AutoTokenizer method, define a list of strings and includes two functions:



	
run_tokenizer, which applies a tokenization function to each SMILES string



	
run_decoding, which decodes the tokenized outputs back into human-readable strings.






The tokenizer is instantiated with a pre-trained model, the SMILES strings are tokenized, and the resulting tokens are decoded back into strings. The final decoded result is stored in the variable result.


Example 1-2. Tokenization


from transformers import AutoTokenizer

smiles = ['ClCCCN1CCCC1',
          'CI.Oc1ncccc1Br',
          'COC(=O)Cc1c(C)nn(Cc2ccc(C=O)cc2)c1C.[Mg+]Cc1ccccc1',
          'N#Cc1ccnc(CO)c1',
          'C=C(O)C(=O)N [O-]C(=O)C1=CC=CC=C1',
          'C1CC[13CH2]CC1C1CCCCC1',
          'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O',
          'C([13C]N(CC(=O)[O-])CC(=O)[O-])N(CC#N)CC(=O)[O-].[Na+].[Na+].[Na+]'
 ]

def run_tokenizer(func):
  return [func(smi) for smi in smiles]

def run_decoding(tokenizer, encoded):
  return [[tokenizer.decode(y) for y in x['input_ids']] for x in encoded]

tokenizer = AutoTokenizer.from_pretrained(model_name)
encoded = run_tokenizer(tokenizer)
result = run_decoding(tokenizer, encoded)



Specialized tokenizers, such as those designed for handling chemical SMILES strings, usually outperform general-purpose tokenizers because they account for the unique structure and syntax of chemical representations (Figure 2-4). SMILES strings have specific patterns, such as rings, branches, and stereochemistry, which general tokenizers might not capture effectively. A specialized tokenizer (GIMLET/molT5, ChemBERTa, BasicSmilesTokenizer, etc) for SMILES will recognize chemical substructures and functional groups, allowing for more meaningful token segmentation. This results in tokens that better represent the chemical information, improving the performance of downstream tasks like molecular property prediction or chemical reaction modeling. Notice, how substructures as 13C and Na+ are handled.



[image: Various tokenizers for SMILES]
Figure 1-4. Different tokenization techniques for a chemical molecule




The effectiveness of specialized tokenizers for SMILES lies in their ability to reduce token complexity and improve sequence representation. For instance, instead of breaking down a benzene ring into individual characters or nonsensical subwords, a specialized tokenizer will recognize the entire ring as a single meaningful token. This approach not only preserves the chemical semantics but also enhances model interpretability and performance in cheminformatics applications.












Text and Sequence Generation


Let’s dive into how models generate text and other token sequences.
There are two primary components of a language model:



	
Encoder: Responsible for processing and understanding the input



	
Decoder: Responsible for interpreting endorsed data and producing the output.






The encoder-decoder bond is the core of the transformer architecture (Figure 2-4) that ignited the creation of LLMs. Imagine your body trying to understand a message sent by the brain. First, the message (or input) needs to be processed and prepared (encoded) to send it through the nervous system. Then, once the message reaches its destination, it needs to be interpreted and acted upon (decoded). This is quite similar to how encoder-decoder architectures in LLMs work.

Note

GPT stands for Generative Pre-trained Transformer. Generative means the model is designed to create or generate text. Pre-trained indicates that the model has been trained on a vast amount of text data before being fine-tuned for specific tasks. Although GPT uses only the decoder part of the original Transformer architecture (Figure 2-5), it still retains the fundamental mechanisms, such as self-attention, that allow it to understand and generate sequences of text effectively.




In technical terms, the encoder takes an input sequence of tokens and converts it into a higher-dimensional space representing the input’s essential information. It does this through layers that include mechanisms like multi-head self-attention, which helps the model understand the relationship and importance of different parts of the input​​. Once the message (now encoded) reaches its destination, it needs to be decoded or interpreted. The decoder takes the encoded data and generates an output sequence from it. It also uses layers with similar multi-head attention mechanisms but includes an additional encoder-decoder attention mechanism. This allows the decoder to focus on different parts of the encoded input at different times, generating an accurate and contextually relevant output​​.



[image: Transformer architecture]
Figure 1-5. Transformer architecture




Based on the mechanism, language models can be encoder, decoder, and encoder-decoder. Encoder-only models are good at understanding and processing input (like analyzing a sequence for classification purposes) but don’t generate anything new. In chemistry, such potential models can encode molecular structures (e.g., SMILES strings) to predict chemical properties, such as solubility, reactivity, or toxicity. In healthcare, such models can encode or analyze health records (EHRs) and medical notes to detect diseases or predict patient outcomes.


Decoder-only models are the opposite - these models are excellent at focusing on what comes next in a sequence​​. Hence, such models are great for generating texts if they are texts-based, genes if they were trained on genes, etc. Most common applications would include text involvement: translating unstructured event reports into standardized medical terms, facilitating pharmacovigilance, drug safety monitoring, generating patient-specific treatment recommendations based on electronic health records, and aiding clinicians in making informed decisions. In the research area, decoders can draft scientific abstracts, summaries, or reports from structured data, enhancing data interpretation and dissemination.


Another popular architecture involving encoder-decoder pair is autoencoders. Autoencoders are unsupervised learning techniques to reconstruct the input data as closely as possible. encoder-decoder architectures focus on generating an output in a different format or structure based on the input data.
Encoder-decoder architectures, on the other hand, focus on generating the output in a differently based on the input data.

Note

We will talk more on autoencoders in Chapter 9, when we’ll create a variational autoencoder for molecule generation.




Transformers are built around the concept of self-attention mechanisms, which enable the model to weigh the importance of different input elements (e.g., words or tokens) relative to each other. This mechanism allows Transformers to capture long-range dependencies and relationships between elements in the input data very effectively.


Transformers can be used in both encoder-decoder and autoencoder-like configurations, depending on the specific task. When using both encoder and decoder, the transformers output will be similar to decoding models, with the encoded output making such models incredibly versatile and able to handle complex tasks. Possible applications may include predicting synthetic pathways by encoding reactants and decoding products or generating natural language descriptions of medical images: X-rays, CT, or MRI scans. In the last case, the encoder processes the image data while the decoder generates a detailed caption. The generated text might describe the relevant findings, anatomical structures, and potential abnormalities, possibly assisting radiologists and physicians in interpreting and reporting on medical images.


Implementation of different architectures is quite close, what can be seen in Example 2-3. You may notice that the steps are pretty much the same: initialize the model and tokenizer, encode input text via tokenizer, encode the input text for a model that includes such step, and, in case of the presence of the decoding step, decode the model’s output. Notice how the encoder output differs from the decoder output — the output of the encoder can’t be understood by humans but can be used by algorithms for machine learning and generative AI tasks.


Example 1-3. Encoder, decoder and encoder-decoder models


# Import necessary libraries
from transformers import (
 AutoTokenizer,
 AutoModel,
 GPT2Tokenizer,
 GPT2LMHeadModel,
 AutoModelForSeq2SeqLM
)

## Encoder

# Load the tokenizer and model
model = AutoModel.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

# Encode the input text
input_text = "This is a sample sentence."
encoded_input = tokenizer(input_text, return_tensors='pt')
model_output = model(**encoded_input)

# Process the model output
embeddings = model_output.last_hidden_state
>>> tensor([[[-0.1993, -0.2101, -0.1950,  ..., -0.4733,  0.0861,  0.7103],
 [-0.5400, -0.7178, -0.2873,  ..., -0.7211,  0.5801,  0.3946],
 [-0.1421, -0.7375,  0.3737,  ..., -0.3740,  0.0750,  0.9687],
 ...,
 [ 0.1321, -0.2893, -0.0043,  ..., -0.1772, -0.2123, -0.1983],
 [ 0.4060,  0.0366, -0.7327,  ...,  0.4169, -0.3416, -0.4542],
 [ 0.0646, -0.2088, -0.1323,  ...,  0.5954, -1.0679,  0.0173]]])

## Decoder

model = GPT2LMHeadModel.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

input_text = "Butane is the only compound"
input_ids = tokenizer.encode(input_text, return_tensors='pt')

# Generate text
output = model.generate(input_ids, max_length=50, num_return_sequences=1)

# Decode the generated text
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
>>> Butane is the only compound that can be used to make a chemical that ...


## Encoder-Decoder

model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
inputs = tokenizer("Butane is the only compound", return_tensors="pt")
outputs = model.generate(**inputs)

generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
>>> butane is the only compound to be used in the treatment of cancer...



Now, after understanding tokenizers, encoding, and decoding models, we can observe how new tokens are generated. Obviously, this takes place only for decoding and encoding-decoding models, as encoding models cannot generate new data. We’ll take the phrase The formula of dihydrogen …​ as an example for Figure 2-6:


	
Tokenize the input



	
If the model has an encoder - we encode the input tokens



	
We generate logits for every possible token. Logits are the raw output values the model generates that represent the odds or degree of preference for a particular token.



	
Logits may be converted to probabilities to apply some decoding strategies.








[image: Encoding-decoding]
Figure 1-6. Encoding-decoding



Note

Notice how the word dihydrogen is split into three tokens (Figure 2-6). We’ve seen similar behavior above with the OpenAI tokenizer. Advanced tokenizers may split the words into multiple parts, especially useful for scientific terms and nomenclature names. If the tokenizer was trained with scientific data included, it would be more proficient at handling complex and technical vocabulary, ensuring better tokenization for scientific texts.




You might have heard of the infinite monkey theorem, which suggests that if there is an infinite number of monkeys randomly typing on keyboards or selecting words from a vocabulary for an endless amount of time, they could eventually produce any given text, whether it be a work of Shakespeare, documentation of a certain programmatic language or even the theory of everything. This idea illustrates the concepts of infinity and probability, implying that any possible outcome can be achieved with enough attempts and sufficient time.


Large language models work much more intelligently. They do not simply press keys or pick words randomly but analyze the context and generate text based on it. We’ve seen that in the example of the GPT-3.5-Turbo-Instruct model in Figure 2-6 above. The knowledge base of the LLM — the amount and quality of the data, as well as the number of model parameters and it’s architecture is crucial. Among all possible following tokens, we can highlight the two with much higher probabilities than others: mon and phosphate, and that makes total scientific sense.


In order to compare, let’s look at the probabilities for the next token for several other models:



	
seyonec/ChemBERTa-zinc-base-v1



	
bigscience/bloom-560m



	
internlm/internlm-chat-7b



	
AI4Chem/ChemLLM-7B-Chat






In Figure 2-7, looking at the tokens generated by ChemBERTa, one can notice that all of them are one-symbol: 1, 2,[,(, c. This is because the model is trained on SMILES generation and isn’t proper to use for text generation (technically it should be used for fill-mask tasks).


The Bloom-560M model is a model of general use but not as large as the GPT-3.5-Turbo-Instruct model. We can see that the continuation of the text is relatively solid:



	
The formula of dihydrogen ation is given …​



	
The formula of dihydrogen peroxide is …​



	
The formula of dihydrogen phosphate is …​



	
The formula of dihydrogen is given by …​



	
The formula of dihydrogen as a potential …​







[image: Token distribution]
Figure 1-7. Token distribution for different models for “The formula of dihydrogen …​”




What is notable about the tokens of the Bloom model is their close-to-uniform distribution. This might happen when the amount of data the model is trained on related to the query provided isn’t that large. This is mostly observed for smaller LLMs, but even larger models can have similar distributions in specific domains.

Note

Language models predict mon because dihydrogen monoxide is the scientific name for water.




The two bottom distributions of Figure 2-7 are connected: the internlm-chat-7b is a language model, whereas the ChemLLM-7B-Chat model is a fine-tuned version of internlm-chat-7b. Fine-tuning models involves taking a pre-trained model and teaching it specific knowledge or skills by training or fine-tuning it further on a smaller, specialized dataset. This process helps the model become better at specific tasks, like understanding medical terms if it’s trained on medical texts, making it more accurate and effective in those areas.


When the data used for training is not deep enough, the context may be quite vague. As mentioned above, this might lead to equal distributions among all tokens or an explicit leader or two among relatively equal-valued tokens. Notice how this changes when the base internlm-chat-7b model is trained on regular data and the fine-tuned ChemLLM-7B-Chat was uptrained with chemical data: phosph, oxide, di and tri - chemical tokens increase their probabilities, while regular tokens as is have their probabilities dropped. As GPT-3.5-Turbo-Instruct model is approximately 175B parameters, it’s fair to suggest it was also trained on a significant amount of scientific papers. This can explain the similarity among top tokens between a truly large language model and a smaller one that is domain-tuned.












Decoding Strategies


So far, I’ve discussed that different models provide different probability distributions based on the data, architecture, and configuration on which the model was trained. However, even the same model can produce various outputs depending on the strategy implemented. There are several decoding strategies, but all of them fall into either the deterministic or randomized category.


The most straightforward strategy would be greedy sampling. Simply put, in a greedy strategy, the model always chooses the token it believes is the most probable at each step — it doesn’t consider other possibilities or explore different options, as shown in Figure 2-8. The model selects the token with the highest probability every time. One of the major benefits of this strategy is - the low chance of generating completely incorrect results or gibberish output.



[image: Greedy strategy]
Figure 1-8. Greedy strategy




Greedy sampling is also easily reproducible - starting with the same input, you’ll always end up with the same output. On the other hand, slight variations in the input or model state can lead to completely different sequences, providing potential diversity.

Note

The greedy algorithm is entirely predictable. This determinicity is a crucial factor in detecting AI-generated content. The process involves analyzing the probabilities of specific tokens appearing together in a given sequence. As the greedy AI-generating approach is based on tokens with the highest immediate likelihood, it leads to recognizable patterns in the text.




Using a greedy strategy is computationally efficient but comes with the cost of getting repetitive or overly deterministic outputs. Since the model only considers the most probable token at each step, it may not capture the full diversity of the context and language or produce the most creative responses. Taking the best option at each time step can sometimes lead to suboptimal solutions by getting trapped in local optima. Instead, we can explore several options at every step, ending up with a graph of possible text continuations. By keeping track of the top-k hypotheses at each step, beam search can find better overall sequences that may have been missed by too aggressive pruning by the greedy approach. This set of top-k tokens is called a beam. You can see the difference between the greedy sampling and beam strategy in Figure 2-9.



[image: Beam strategy]
Figure 1-9. Beam strategy




Assuming the Bayesian nature of probabilities, the most probable, hence, “correct” beam is the one with the highest cumulative probability. In Figure 2-9, beam search can be seen in action: we have 2 beams split at every fork. Even though the token phosp at first split was less probable, the cumulative score of the potential beam resulted higher than the one of greedy sampling. With a larger beam width, more hypotheses are considered, increasing the chances of finding the optimal sequence and the computational cost. A smaller beam width can serve as a trade-off, reducing computational complexity but allowing the exploration of better solutions.

Note

A beam search with 1 beam is basically greedy decoding.




So far, the decoding strategies described have been entirely deterministic. As mentioned, such approaches are advantageous, but they also lack variety. Dealing with so many probabilities, there should be a way to introduce some stochasticity, right?


Indeed, there is. Instead of always choosing the token with the highest probability, the model can sample from the predicted probability distribution over the vocabulary. Imagine it as spinning a wheel, where the area of each token is defined by its probability (Figure 2-10). The higher the probability, the more chances the token will get selected. It is a relatively cheap computational solution, and due to high relative randomness — the sentences (or token sequence) will probably be different every time.



[image: Pie Chart]
Figure 1-10. Probability pie chart




Random sampling can be done in different ways. Besides the basic approach discussed earlier, we can consider adjusting probabilities. As previously discussed, the softmax function is used to convert logits to probabilities. However, it is possible to adjust the equation using the temperature hyperparameter T, as shown in Figure 2-11. The temperature parameter modifies the probability distribution, acting as a scaling factor to the logits of the model before computing the softmax distribution. A temperature value of 1.0 leaves the original distribution unmodified, while values greater than 1.0 increase the entropy (randomness) of the distribution, making less likely tokens more probable. Conversely, values less than 1.0 decrease the entropy, making the distribution more peaked around the most likely tokens.



[image: Logits]
Figure 1-11. Logits




Temperature uptuning combined with random sampling can be used in creative applications, such as idea brainstorming, discovery exploration, or open-ended dialogue systems, where a balance between coherence and novelty is desired. It allows language models to explore broader possibilities while maintaining partial control over the outputs. Decreasing the temperature will lead to similar effects as greedy decoding.

Tip

A temperature below 0.01 will lead to a greedy search. In contrast, an extremely high temperature above 5 may lead to all tokens having a similar probability.




High temperature encourages the model to explore a wider range of possibilities, potentially generating more novel or unexpected outputs. In order to have more control, several techniques, such as top-k or top-p, can be implemented. In top-k sampling, the model samples from the k most likely tokens - in all scenarios, you won’t select a token outside the k limit. You can hardcode the k to, say, 3 or 5 - in these cases, all the probabilities will be counted for only these tokens. However, the issue is selecting the optimal value, as this number may vary depending on the token distribution. Nucleus sampling (also known as top-p sampling) calculates the smallest possible set of tokens that account for a cumulative probability mass of p (Figure 2-12). The advantage of nucleus sampling is that it allows for more dynamic and adaptive token selection based on the context. The number of tokens selected at each step varies depending on the probabilities of the tokens at each step in the context, leading to more diverse and higher-quality outputs simultaneously.



[image: Top-p strategy]
Figure 1-12. TopP strategy














Language Models


In our previous example, we’ve been using a chat model (internlm/internlm-chat-7b) along with classic LLMs (bigscience/bloom-560m) to generate next tokens. The difference between them is their training data: a traditional LLM is trained on large text corpora using self-supervised learning, with the objective of predicting the next word given the previous words. Chat or dialogue models, on the other hand, are LLMs that are fine-tuned and trained explicitly on conversations and question-answer pairs. They maintain an understanding of the language but are designed to model the entire context of the conversation, including the speaker’s roles and conversation history. A great illustration between a traditional LLM and a chat model is shown in Figure 2-13.



[image: Language model types]
Figure 1-13. Language model types




The application of both model types is quite similar. LLMs are designed for broader language understanding and generation tasks, catering to various applications beyond simple conversational interactions. In contrast, chat models shine in their proficiency in response quality and are tailored for more conversational contexts, providing relevant and engaging responses in real-time interactions. You can use both models to draft an abstract. While building personal assistants, I’ll be using conversational models in this book, but will also require LLMs trained in domain knowledge as expert models and convenient tools.

Note

Later on, if not mentioned otherwise, LLM will mean both chat and conversational - both types of language models trained on a large corpus of data.




The pool of language models is huge. LLMs such as GPT-4o by OpenAI, Claude 3 by Anthropic, and Gemini 1.5 and PaLM 2 by Google represent the forefront of AI advancements in 2024. These models boast billions of parameters, enabling them to perform various complex tasks, from natural language understanding to code generation and reasoning. The LLMs developed by Meta (LLaMA 3), Mistral AI (Mixtral 8x22B) and other organizations are notable for their open-source nature, providing researchers and developers with powerful tools to build upon. These models have demonstrated exceptional performance across various benchmarks (Open LLM Leaderboard LMSYS Chatbot Arena), making them indispensable for applications in AI research, enterprise solutions, and beyond (Table 2-1).


Table 1-1. Latest top large and small language models


	Model
	Creator
	Year
	Number of Parameters
	Open Source
	LLM or SLM





	GPT-4o

	OpenAI

	2024

	Unknown

	No

	LLM




	Claude 3

	Anthropic

	2024

	Unknown

	No

	LLM




	PaLM 2

	Google

	2024

	540B

	No

	LLM




	Gemini 1.5

	Google DeepMind

	2024

	Unknown

	No

	LLM




	Falcon 180B

	Technology Innovation Institute

	2023

	180B

	Yes

	LLM




	LLaMA 3

	Meta

	2024

	70B

	Yes

	LLM




	Mixtral 8x22B

	Mistral AI

	2024

	141B (39B active)

	Yes

	LLM




	Phi-3-mini

	Microsoft

	2024

	3.8B

	No

	SLM




	Stable LM 2

	Stability AI

	2024

	1.6B

	Yes

	SLM




	TinyLlama-1.1B

	Open Source Community

	2024

	1.1B

	Yes

	SLM







I’ve been talking primarily about LLMs, but there is an alternative direction - small language models (SLMs). SLMs like Microsoft’s Phi-3-mini and Phi-2 offer a different approach focusing on efficiency and specific use cases. Although smaller with fewer parameters (usually under 10B), these models excel in targeted applications where computational resources and quick response times are critical. For instance, the TinyLlama-1.1B and Falcon 7B models are open-source and optimized for real-time data processing and deployment in resource-constrained environments. SLMs highlight the potential of compact models to deliver high performance without the need for extensive computational power, making them suitable for various applications, including mobile devices, edge computing, and specialized industry solutions.


In the field of chemistry, specialized LLMs like MolT5, LlaSMol, and others are being developed to address chemistry-related challenges in the field (Table 2-2). These models facilitate tasks such as molecule design, property prediction, and chemical text mining. MolT5 combines sequences from different domains, while LlaSMol focuses on high-quality instruction tuning datasets. ChatChemTS enables chemists to design new molecules through chat interactions. These models enhance the capabilities of chemists by integrating domain-specific knowledge and improving the accuracy and efficiency of chemical research and applications.


In the field of biology, specialized LLMs like GenomicLLM, BioNeMo, and others are being developed to tackle biological research challenges (Table 2-2). GenomicLLM is designed for genomic data analysis, while BioNeMo by NVIDIA supports applications in biomolecular and drug discovery research, including protein, DNA, and RNA data formats. Models like OpenFold and ProtT5 focus on protein modeling and sequence generation, enhancing our understanding of protein structures and functions. These models leverage the power of LLMs to advance biological research, offering tools that can analyze complex biological data and generate insights across genomics, proteomics, and cellular biology.


Table 1-2. Latest top large and small language models in life science


	Model
	Creator
	Year
	Open Source
	Domain





	MolT5

	Edwards et al.

	2022

	Yes

	Chemistry




	LlaSMol

	OSU NLP Group

	2024

	Yes

	Chemistry




	ChatChemTS

	-

	2024

	Yes

	Chemistry




	ChemLLM

	-

	2024

	Yes

	Chemistry




	MoLFormer

	IBM

	2022

	Yes

	Chemistry




	multitask-text-and-chemistry-t5

	GT4SD

	2023

	Yes

	Chemistry




	StructChem

	-

	2024

	Yes

	Chemistry




	MegaMolBART

	NVIDIA

	2024

	Yes

	Chemistry




	GenomicLLM

	-

	2024

	Yes

	Genomics




	BioNeMo

	NVIDIA

	2024

	Yes

	Biomolecular




	Mol-Instructions

	-

	2024

	Yes

	Biomolecular




	SpaCCC

	-

	2024

	Yes

	Cell Biology




	OpenFold

	-

	2024

	Yes

	Protein Modeling




	ProtT5

	Technical University of Munich

	2024

	Yes

	Protein Sequences




	ConPLex

	MIT

	2024

	No

	Drug-Protein Interaction




	DNABERT

	NVIDIA

	2024

	Yes

	Genomics




	scBERT

	NVIDIA

	2024

	Yes

	Single-cell RNA Sequencing




	EquiDock

	NVIDIA

	2024

	Yes

	Protein Interaction Prediction




	ChemLLM

	-

	2024

	Yes

	Chemical Translation




	Me-LLaMA

	-

	2024

	Yes

	General Medical




	Med-PaLM 2

	Google Research

	2024

	No

	General Medical




	BioMistral

	-

	2024

	Yes

	General Medical




	MedLLM

	-

	2024

	Yes

	General Medical




	ClinicalBERT

	-

	2019

	Yes

	Clinical Text




	BioBERT

	-

	2020

	Yes

	Biomedical Text Mining




	SciBERT

	ENNLP

	2019

	Yes

	Scientific Text




	BlueBERT

	-

	2019

	Yes

	Biomedical NLP







In the field of drug discovery, specialized LLMs like ConPLex and others are being developed to tackle drug discovery challenges (Table 2-2). ConPLex, created by MIT, is designed to predict drug-protein interactions and leverage high-quality numerical representations to bypass the need for detailed atomic structures. BioNeMo framework, covered earlier, supports various models, including DNABERT for genomic predictions and MegaMolBART for generative chemistry applications. Models like scBERT and EquiDock further enhance single-cell RNA sequencing and protein interaction prediction capabilities, respectively.


In the field of medicine, specialized LLMs like Me-LLaMA, Med-PaLM 2, and others are being developed to address unique medical challenges. Me-LLaMA provides foundation models for various medical applications, enhances clinical workflows, and supports decision-making processes. Google’s Med-PaLM 2 aims to deliver high-quality answers to medical questions, leveraging a vast corpus of medical literature and clinical guidelines. BioMistral and MedLLM provide open-source solutions tailored for medical domains, enhancing the ability to distill complex information and provide timely insights for healthcare professionals. These models are crucial for applications such as clinical decision support, patient education, and personalized treatment approaches, significantly impacting the future of healthcare​.


As you can see, many language models are dedicated to solving generic and niche challenges. And this is just the beginning. We’ll be using some of the specialized models listed in Table 2-1 and Table 2-2 in further chapters.












Large Language Model Limitations


Now it should be clearer how the language models work and their strengths. One of the main limitations of a language model is that it cannot access or integrate real-time information beyond training data. LLMs are static models that rely solely on the knowledge embedded in their weight during training. This leads to a lack of awareness of the latest news, discoveries, publications, or changes in the world after their training ends. This restriction makes LLMs ineffective for applications that require up-to-date information. Another major limitation is the need for more interactive functionality in LLMs. While LLM can produce text similar to human language, it cannot perform actions or operations beyond the output of natural languages: web searches, calculations, data extracting from external sources, or interactions with other systems or APIs. This limits their ability to provide substantive contexts that require the integration of multiple sources of information or executing analytical tasks.


LLM responses may show trends that reflect the biases present in training data. Among the various common forms, there are gender, race, or ideological prejudices that can lead to unfair or harmful results. When used for research, LLMs, trained on a wide amount of text and web data, might produce incorrect scientific results due to inaccurate scientific knowledge on the web. Would you prefer to get answers regarding climate change, vaccine side effects, or GMO health influence from the aggregating web or from scientific publications?


The combination of these factors leads LLMs to generate nonsensical or factually incorrect outputs from time to time. This phenomenon is known as hallucination. The detection and mitigation of such hallucinations is a major challenge, especially in scientific research and healthcare - fields where accuracy and reliability are of the utmost importance. Usually, this occurs due to the lack of transparency and interpretability, making it challenging to understand the reasoning behind their results and the specific knowledge they possess. Chapter 4 discusses whether hallucinations are always bad and how to deal with them to create truthful workflows. Another limitation addressed in the book is that LLMs cannot directly process and analyze raw data formats commonly used in research, such as genomic sequences, protein structures, or image data. LLMs can process and generate text related to life sciences but cannot directly interpret or manipulate the underlying data formats without additional preprocessing or integration.

Tip

To test your knowledge, think about why LLMs will struggle with directly processing and analyzing raw data formats, even in text format.




LLMs may also struggle with the complex, multi-step reasoning and conclusions necessary for many scientific applications. Understanding the complex mechanisms of biological processes, interpreting experimental results, or developing new therapeutic approaches often involves integrating various knowledge domains and forming logical connections. It may be difficult for LLMs to capture or generalize just from their training data. In addition, the highly technical and specialized nature of the terms and concepts of life sciences can pose a challenge to LLM, especially when it comes to emerging or niche areas.










Summary


This chapter covered the fundamentals and applications of LLM. We’ve looked into these powerful models and discussed their ability to generate and understand human-like text. We’ve also discussed embedding models and explicitly compared the performance and applications of several embedding models, analyzing how embeddings capture semantic meaning, enabling better text representation and retrieval.


You’ve also studied what tokens are, looked at several model token generations, and learned different decoding strategies that impact the quality and consistency of the generated content. We’ve also looked into the application of large and small language models in the life sciences, pointing out their strengths and limitations.


In the next chapter, I’ll introduce you to LangChain, a robust framework for developing applications with language models. You’ll learn about various LangChain components, including indexes and indexing methods essential to organizing and searching data efficiently, vector searching and databases, chains, and the LangChain Expression Language (LCEL), providing insight into building complex workflows. Concepts such as prompts, storage, tools, and agents are introduced, resulting in a practical guide to building applications with LangChain. We’ll also look into the basics of LangGraph.
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Chapter 2. Introducing LangChain



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.




After looking at all the pros and cons of using LLMs, it’s safe to say that surrounding a language model with powerful tools and components would significantly boost the capabilities of a generative AI application.
And this is exactly what LangChain is - a comprehensive framework for application development with large language models.


The framework’s name, a blend of language and chain, reflects its core principle of chaining modular components together to build complex applications. By abstracting standard tasks and providing pre-built components and templates for various applications (for example, chatbots, summarization tools, question-answering systems, and so on), LangChain aims to lower the barrier to entry for developers interested in leveraging the power of language models. This not only simplifies the development process but also encourages experimentation and innovation within the community. With LangChain, building Jarvis from Iron Man seems more realistic than ever.


LangChain utilizes quite a lot of components to build generative AI applications. Most fall into one of seven categories: models, indexes, chains, prompts, memory, tools, and agents, as shown in Figure 3-1.



[image: LangChain components]
Figure 2-1. LangChain Components




Overcoming the limitations of LLMs involves techniques like retrieval-augmentation generation (RAG). Chapter 4 talks much more on the topic, but it makes perfect sense to cover the basics. RAG consists of accessing external knowledge bases to supplement the absent or outdated information in the LLM’s training data, providing relevant context and reducing the risk of hallucinations. The index can be both a SQL/NoSQL database or a vector store. Later in this book, examples of how to connect the LLM to various databases of chemical compounds, gene sequences, protein structures, and clinical trial data are provided to enhance model knowledge in these domains.


Another technique we’ll use is chaining. We’ll build chains to integrate agents, tools, and other actions like searches and calculations into the LLM’s workflow. In drug discovery, an LLM could be chained with computational tools to predict the binding affinities of candidate molecules to target proteins, aiding in the design of potential new therapeutics.


Prompt engineering is another popular technique that extracts the most out of LLMs. You’ll learn how to carefully craft prompts to provide critical context that appropriately guides the LLM’s responses. While building assistants, we’ll configure well-designed prompts to help an LLM accurately interpret and analyze the instructions we’ll provide.


Incorporating memory capabilities into the LLM allows it to retain conversation context and persist data across interactions. This is especially useful for chat or other sequential applications. For example, LLM can handle patients’ medical history and ongoing treatment plans, providing more informed and consistent recommendations.








Indexes


Right after ChatGPT went viral, “Use ChatGPT for your own documents” services and applications appeared like mushrooms after a rain. It made a lot of sense, as allowing users to chat with their data would be a good use of generative AI in general and LangChain in particular. The goal is to retrieve the context (relevant information from your documents, databases, and APIs) to the language model. Knowing and prioritizing the context will make the LLM more likely to generate the response correctly - hence the name retrieval-augmented generation. I briefly mentioned the RAG technique earlier, and we’ll explore it more deeply in Chapter 4.

Note

RAGs are so powerful that a particular class of language models integrates retrieval techniques into the training and inference processes: Retrieval-Augmented Language Models (RALMs).




RAGs improve the quality and accuracy of the generated responses by using the fetched context besides their training data, basically retrieving additional context, as shown in Figure 3-2. During the inference process, an LLM could retrieve pertinent medical information from external sources like academic literature, clinical guidelines, or electronic health record databases in healthcare applications. This retrieved data can then be incorporated into the context, enabling the LLM to generate fluent, coherent responses aligned with the latest domain-specific knowledge and best medicine practices.



[image: Basic RAG pipeline]
Figure 2-2. Basic RAG pipeline




There are multiple sources that we can retrieve: structured tables and unstructured documents, texts and images, graphs, and the web. In order to extract data efficiently, special lookup tables called indexes are used. In this book, both the index and the table of contents (TOC) allow readers to easily navigate and locate specific topics by directing them to the corresponding pages for each listed term or heading respectively. For our data and purposes, we’ll be building indexes ourselves, whether for our own knowledge base or other private sources of information and data. Indexing the whole web is taken care of by search engines, with corresponding tools in LangChain.


Let’s review how indexing for text data works. Imagine you need to find something in the text. What will you start with? Most probably, you’ll open a built-in search bar and look for specific words, hoping that they are not very common throughout the document and that the fragment you’re looking for contains the searchable word. But such plans can easily fail: typos, synonyms, high term frequency and so on.


Similar problems occur when we need to provide context to the model — we search for relevant blocks of text in the selected documents. A better solution involves vector search, which identifies and retrieves vectors (embeddings, discussed in Chapter 2, are a specific type of vector representations) based on their similarity to a query vector. The underlying principles of indexing and querying vector stores remain largely the same for text and image data. Both data sources are transformed into dense embedding vectors. The main difference is that text embedding models are designed to capture linguistic and semantic relationships. In contrast, image embedding models capture visual and perceptual relationships. One notable advantage of using vector stores is the ability to perform multimodal queries, where text and image data can be combined and searched simultaneously. For example, a query could involve finding images semantically related to a given text description or finding text documents that are visually relevant to a given image. In this book, we’ll perform a multimodal medical retrieval.

Tip

The reason for converting text to vectors is to perform the proper comparison. What would you do if you were asked to compare azobenzene, benzene, and pyridine? Chemists would spot that options one and three are the same compound because they compare chemical representations of words rather than the words themselves. Converting words to vector format allows for comparing their numeric representation.




Indexing is important in multiple fields, especially when searching and retrieving data may be problematic. An indexed extensive database of patient information, treatment outcomes, and epidemiological data could transform the way diseases are researched and treated by medical professionals and public health agencies. For scientists and researchers, the situation is similar: indexing an extensive database of scientific papers, research articles, and patents can significantly speed up the search for experimental procedures, pathways, and accomplished outcomes.

Tip

To better understand the role of indexing, imagine there is a specific article on a particular topic that you need to find, and you can’t use aggregator search indexes. You’d probably try to look up the content and search within specialized journals covering the particular topic. Now, imagine that you can use the external search, but it only displays half of the articles of interest on the top page. You may argue that you’ll look at several pages instead of one. But when was the last time you opened page 2 of Google, Bing or other search engine? If you don’t see it on page 1 an AI application won’t see it either.




Working with a vector store usually includes building the index and finding the closest neighbors. There are multiple ways to complete both steps.










Indexing


Like traditional database systems, where indexing enables faster access to data records, indexing for vector embeddings aims to structure the vectors to facilitate efficient similarity searches and proximity queries.
Consider similarity search as finding items in a database that are most alike based on their vector representations and closely related in meaning or characteristics. Proximity queries search for items near each other in a vector space, focusing on how close or far apart the items are from a specific point or each other. By organizing vectors such that similar ones are stored close, indexing techniques enable rapid identification and retrieval of relevant embeddings, which is crucial for applications that rely on vector similarity comparisons.


There are several main classes of indexing algorithms:



	
Flat indexing is a basic method that calculates the similarity between the query vector and every single vector in the index, ensuring high accuracy but lacking speed. It is suitable when absolute precision is crucial or for smaller datasets. However, such a brute-force approach for larger datasets becomes increasingly slow compared to other indexing methods that trade off some accuracy for improved performance.



	
Product quantization (PQ) works by splitting the vector space into smaller subspaces and quantizing each subspace separately. This approach reduces the dimensionality of the vectors, allowing for efficient storage and fast similarity searches. While PQ offers speed advantages, it may sacrifice some accuracy in the search results.



	
Tree-based is one of the most commonly used indexing algorithms for vector embeddings. K-dimensional tree (k-d tree) data structures divide the high-dimensional space where the vectors reside, enabling efficient nearest-neighbor searches (Figure 3-3). However, as the dimensionality of the vectors increases, traditional indexing methods like k-d trees can become less effective.






In Figure 3-3, you can see, that once we start to index the letters in lexicographical order, we’re measuring each letter to the closest 2 neighbors only. Especially well it’s seen in the bottom row, where the letter d is farthest from letter a and isn’t consider near enough. The reason for not saving all distances, is the quadratic complexity - each new node would have its distance being calculated to all existent nodes. As more and more documents are being added, the benefits of this method becomes more and more obvious.
During the search process, our query is allocated based on the vector representation. We start with node a and its neighbors, understanding which one is closer. As node c is closer, we “interview” its neighbors as we’ve done on previous step, until we end up in a case, when the neighbors are farther than the node. In Figure 3-3, node e is the closest, finishing the a-c-e path.



[image: Search in vector database]
Figure 2-3. Indexing and searching in a vector database





	
Locality-sensitive hashing (LSH) is a hashing-based indexing method that maps similar data points to the same hash buckets. This technique is particularly well-suited for high-dimensional vector embeddings, as it can efficiently handle the curse of dimensionality. LSH provides fast approximate nearest neighbor searches but may know for errors. The Annoy algorithm is a widespread implementation of LSH that uses random projection trees to index vectors efficiently.



	
Hierarchical Navigable Small World (HNSW) is a graph-based indexing algorithm that constructs a hierarchical graph structure to organize the vectors, leveraging a combination of randomization and greedy search techniques. This approach is known for its high search accuracy, scalability, and efficient nearest-neighbor search capabilities.






The choice of indexing algorithm depends on the application’s specific requirements and the vector data’s characteristics. Suppose you prioritize fast search speeds and will trade off some accuracy. In that case, algorithms like PQ or Annoy/LSH might be suitable. If you require high search accuracy and scalability, HNSW could be a better option. However, it may come with increased computational overhead. If memory usage is a critical concern, algorithms like PQ, which reduce the dimensionality of vectors, could be preferred over others that store the full vector representations.












Vector Search


Now that we’ve indexed the data, we can search through it. The search algorithm is often defined by the indexing approach. Instead of handling this ourselves, we’ll be using some of the developed packages.



	
FAISS (Facebook AI Similarity Search) is a library developed by Meta that provides efficient similarity search and clustering of dense vectors. It offers various indexing algorithms, including the abovementioned PQ, LSH, and HNSW. FAISS is widely used for large-scale vector search tasks and supports both CPU and GPU acceleration, making it a powerful tool for applications where performance is critical, such as large-scale image retrieval or recommender systems.



	
Annoy, discussed above, is a C++ library (a Python wrapper exists) for approximate nearest neighbor search in high-dimensional spaces, developed and maintained by Spotify. It implements the Annoy algorithm, which uses a forest of random projection trees designed to be efficient and scalable. Annoy is best suited for large-scale vector data applications where accuracy is less critical than speed, such as real-time search or recommendation systems.






Besides the most popular vector search packages, several others are worth mentioning. Google’s ScaNN is a TensorFlow-based library combining compression and hashing techniques. NMSLIB is a generic similarity search library that provides a range of algorithms for indexing and searching large-scale datasets, supporting dense and sparse vectors and various distance metrics. HNSWLIB is a fast and scalable library for nearest neighbor search, using a hierarchical graph structure to speed up the search process and support dense and sparse vectors.


I’ve mentioned similarity several times already. To define it, more than one metric can be used. Euclidean distance and cosine similarity are the two most popular approaches. Considering their absolute magnitudes, Euclidean distance calculates the straight-line distance between two vectors. In comparison, cosine similarity measures the cosine of the angle between two vectors, focusing on their overall orientation and direction, regardless of their magnitudes.

Note

Imagine comparing the genetic makeup of two species, where each dimension represents a different gene. Euclidean distance between them would resemble drawing a straight line across these dimensions to quantify their genetic divergence. Cosine similarity measures the cosine of the angle between two vectors, assessing how similar the directions of their genetic vectors are, regardless of their magnitude. This will indicate how closely related two species are regarding their genetic directions, even if one species has much more genetic variation (“longer” vector) than the other. Thus, while Euclidean distance quantifies the absolute genetic difference, cosine similarity focuses on the directionality of their genetic traits, providing a different perspective on their relationship.














Vector Database


The vector stores are the last topic we’ll cover regarding indexes and vector search. You’ve learned why context is important, why and how data is embedded, how similarity is defined, and how vector search is performed. Now, it’s time to look into how vectors are stored, a.k.a. vector store.


Choosing the right vector store can significantly impact the RAG application’s performance, scalability, and overall effectiveness. Today, there are 80+ integrations between different stores and LangChain. Instead of describing each or a few, I’ll cover practical aspects of using different vector stores, such as cloud/self-hosted, performance, scalability, budget, friendliness, etc. An example of implementing a vector store through LangChain is shown in Example 3-1 for FAISS.


After importing some required packages, we initialize our embedding model, which will convert our texts to numeric representations. As an example, we’ll take 2 short documents related to gene technology and 1 regarding photosynthesis. The documents are later split into chunks using LangChain text splitters (we’ll look at them further in this chapter), and the resulting chunks, after being embedded, are loaded to the vector store. The vector store can be called with similarity_search() and similarity_search_with_score() methods to extract the closest chunks. Notice that for FAISS in Example 3-1, the lower score represents a closer distance from the user query to available text chunks.


Example 2-1. FAISS similarity_search_with_score


from langchain.vectorstores.faiss import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter

embedding_model = OpenAIEmbeddings(model="text-embedding-3-large")

# Create life science documents
doc1 =""" The human genome consists of approximately 3 billion base pairs of DNA.
These sequences contain the instructions for building and maintaining the human
body."""
doc2 =""" CRISPR-Cas9 is a revolutionary gene-editing technology that allows for
precise, directed changes to genomic DNA. It has the potential to correct genetic
defects and treat diseases."""
doc3 =""" Photosynthesis is the process by which green plants and some other
organisms use sunlight to synthesize foods with the help of chlorophyll from
carbon dioxide and water."""

# This step is only because the demo sentences are too short for actual
# documents to mimic a document being split.
documents = "\n".join([doc1, doc2, doc3])

# Split documents into chunks (usually needed)
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 50, chunk_overlap=10,
    separators=["\n"], keep_separator=False
)
chunks = text_splitter.split_text(documents)

# Initialize FAISS vector store
vector_store = FAISS.from_texts(chunks, embedding_model)

query = "What is CRISPR-Cas9?"
vector_store.similarity_search_with_score(query)
>>> [(Document(page_content='CRISPR-Cas9 is a revolutionary...'), 0.5625741),
 (Document(page_content='The human genome consists ...'), 1.7101107),
 (Document(page_content='Photosynthesis is the ...'), 1.7713351)]



This approach proves quite efficient because large text datasets can be split into smaller chunks, and only relevant chunks of text will be passed to the LLM rather than all the documents. This will allow us to save on tokens and reduce the noise provided to the LLM.


One of the primary considerations is whether you prefer a cloud-hosted or a self-hosted solution. Cloud-hosted vector stores, such as Azure Search, Google Cloud Platform’s Vertex AI, Amazon Web Services’ OpenSearch, Weaviate, and Pinecone, offer the convenience of managed services and scalability. However, they may come with additional costs and potential vendor lock-in. On the other hand, self-hosted vector stores provide more control and flexibility. For those with high technical expertise, libraries like FAISS, HNSWLib, and LanceDB are popular. If you have moderate technical expertise, consider ClickHouse or PostgreSQL with extensions like PGVector or Chroma. Supabase and Rockset offer user-friendly self-hosted solutions for those with lower technical expertise.


Performance and latency requirements are also crucial factors to consider. If you require real-time or sub-millisecond latency, options like MemoryVectorStore and Pinecone may be suitable. For applications that can tolerate moderate latency (milliseconds to tens of milliseconds), FAISS, HNSWLib, and Tigris could be appropriate choices. If higher latency (seconds) is acceptable, OpenSearch, Elasticsearch, or database-based options like PGVector might be viable. Scalability and distributed computing capabilities are essential for applications that need to handle large volumes of data or require high availability. Vector stores like FAISS, Pinecone, and Weaviate offer scalable architectures and support for distributed computing, making them suitable for large-scale deployments.


Budget and cost considerations can also significantly affect your decision-making process. If you have a limited budget, open-source options like Chroma, FAISS, OpenSearch, and ClickHouse are often the go-to. For moderate budgets, managed services with pay-as-you-go models could be appropriate, especially for cloud solutions.












Chains


Chains are the fundamental building blocks in LangChain. They allow you to break down complex tasks into manageable steps, with each step utilizing a large language model, vector store, tool, data sources, processing components, and other LangChain modules. Chaining LLMs with different modules allows for tackling multiple-step tasks beyond any single model’s capability. This unlocks new potential for automating complex information retrieval, analysis, and synthesis workflows across many life science domains.


One example application is building a pipeline to explore the latest research on a specific protein of interest. Such a chain could involve:


	
A web scraper component to gather relevant research papers from online databases, journals, and repositories.



	
An LLM to analyze the text of the retrieved papers and extract essential information like the protein’s function, structure, interaction partners, etc.



	
A summarization component to condense and synthesize the extracted findings into a concise report.







By chaining these or similar components together, researchers can automate what would otherwise be a tedious and time-consuming manual process of literature review and data consolidation. The modularity of LangChain allows pre-built chains for common workflows like data collection or analysis to be reused across different research pipelines simply by integrating the chain as a component itself. This enables collaboration and sharing of analysis building blocks across teams.

Tip

As discussed earlier, all LLMs were trained on diverse data. Suppose you’ve selected a model that used text data in various languages during training. In that case, you may use them to search or analyze a paper from another language.












The LangChain Expression Language (LCEL)


So, how would one construct a chain? If you’ve been in the data or tech world, you probably have dealt with pipelines and different orchestration tools. LangChain found a way to keep the process of chain creation simple. The LangChain Expression Language (LCEL) provides a declarative way to compose different language components and models into chains to accomplish complex tasks. LCEL uses the Runnable protocol, a standard interface for working with LangChain components. This protocol defines methods like invoke(), stream(), batch(), and their async counterparts, allowing components to be executed synchronously or asynchronously on single inputs, batches of inputs, or streamed incrementally.

Warning

Since the release of LCEL in version 0.1.0, all previous chains got legacy status. Many examples from 0.0.x will not work, as earlier versions aren’t backward compatible.




There are multiple benefits of LCEL. One of them is its built-in support for streaming outputs as they are generated, minimizing time-to-first-token latency. It also automatically optimizes execution by running chain steps that can operate in parallel concurrently. You can easily configure retry policies and fallback options to increase the reliability of their chains at scale. Another great benefit is the auto-generated input and output schemas based on the components used. These schemas enable type safety and validation when composing multiple elements into a pipeline. Intermediate outputs from steps in the chain can also be accessed, aiding debugging and presenting feedback to users as processing occurs. Under the hood, LCEL chains leverage built-in optimizations like automatically batching synchronous operations in parallel using thread pools when the batch() methods are called. The async methods similarly execute their synchronous counterparts on thread pools by default for native async execution with minimal boilerplate.

Tip

The | operator is simply here to say: “Take the output on the left and pass it as input to the right.”




The primary LCEL composition primitives are RunnableSequence and RunnableParallel. A RunnableSequence executes a series of components one after another, with the output of each step fed as input to the next. Example 3-2 defines a simple chain to better understand their use. The goal will be to convert Fahrenheit temperature to Celcius by subtracting 32 and multiplying the result by 5/9, which is set using the | step delimiter.


Example 2-2. RunnableSequence


from langchain_core.runnables import RunnableLambda, RunnableSequence

# A RunnableSequence constructed using the `|` operator
sequence = RunnableLambda(lambda x: x - 32) | RunnableLambda(lambda x: x * 5/9)

#or

sequence = RunnableSequence(
    first=RunnableLambda(lambda x: x - 32),
    last=RunnableLambda(lambda x: x * 5/9)
)

> sequence.invoke(32)
#await sequence.ainvoke(32)
>>> 0

> sequence.batch([32, 0, -40])
#await sequence.abatch([32, 0, -40])
>>> [0, -17.7777, -40]



RunnableParallel allows multiple components to be run concurrently on the same input data. Utilizing RunnableParallel allows simultaneous conversion to Celcius and Réaumur temperature scales, as shown in Example 3-3. You can combine both RunnableParallel and RunnableSequence to develop complicated nested chains.


Example 2-3. RunnableParallel


from langchain_core.runnables import RunnableLambda, RunnableParallel

# A sequence that contains a RunnableParallel constructed using a dict literal
sequence = RunnableLambda(lambda x: x - 32) | {
    'to_celcius': RunnableLambda(lambda x: x * 5/9),
    'to_reaumur': RunnableLambda(lambda x: x * 4/9)
}

#or

sequence = RunnableLambda(lambda x: x - 32) | RunnableParallel(
    to_celcius = RunnableLambda(lambda x: x * 5/9),
    to_reaumur = RunnableLambda(lambda x: x * 4/9)
)

> sequence.invoke(32)
#await sequence.ainvoke(32)
>>> {'to_celcius': 0, 'to_reaumur': 0}

> sequence.batch([32, 0, -40])
#await sequence.abatch([32, 0, -40])
>>> [{'to_celcius': 0, 'to_reaumur': 0},
 {'to_celcius': -17.7777, 'to_reaumur': -14.222},
 {'to_celcius': -40, 'to_reaumur': -32}]



In addition to the core components, LangChain provides various data formatting and transformation primitives that can be inserted into LCEL chains to bind arguments, invoke custom logic, and manipulate inputs/outputs as needed when building complex pipelines. LCEL integrates seamlessly with other LangChain features like LangSmith for the traceability of complex chains and LangServe for smooth chain deployment to production with just a few lines of code. These topics will be discussed in Chapter 5, which is dedicated to LangChain add-ons, and Chapter 6, where we’ll build different chain applications, including a hypothesis-debate application.












LangGraph


LangGraph is built on top of LangChain and enables building stateful, multi-actor applications using LLMs. While LangChain’s Expression Language allows composing different components into linear chains or directed acyclic graphs (DAGs), LangGraph extends this capability by introducing cycles. This cyclic nature makes LangGraph particularly well-suited for developing agent-like behaviors, where an LLM is repeatedly queried in a loop to determine the action to take based on the current state.


Let’s compare a possible clinical decision support process with and without loops (Figure 3-4). A possible acyclic workflow might look like the following plan:


	
Gather patient symptoms and medical history.



	
Use NLP/LLM to extract relevant medical information.



	
Suggest the patient retake some of the tests that were taken a long time ago.



	
Apply a rule-based or machine learning-based model to determine the appropriate level of care.



	
Provide the recommendation to the patient.








[image: Sequential and cyclic processes]
Figure 2-4. Sequential and Cyclic Processes




The described process is straightforward, meaning there are no loops or cycles, and the workflow can be described as a set of several chains. But what if we want a feedback loop before making a final decision? Here’s a possible process:


	
Gather patient symptoms, lab results, and medical history.



	
Use NLP/LLM to extract relevant medical information.



	
Generate hypothesis and follow-up question.



	
Collect feedback provided by the doctor or clinician. If the input is negative, repeat steps 3 or 5→3 else move to 6



	
Suggest the patient take specific tests.



	
Apply a rule-based or machine learning-based model to determine the appropriate level of care.



	
Provide the recommendation to the patient.







As you can see, the second theoretical abstraction is much more realistic, with a doctor’s feedback in the middle, than the first sequential one. In LangGraph, the core building blocks are nodes and edges. Each node represents a chain of computation that can be executed using LangChain components like language models, retrievers, parsers, etc. The edges define the data flow between these computational nodes. A graph can have cycles, meaning a node can send data back to itself or another node from which it received data. Chapter 8 have the code implementation of the medical application described.

Warning

LangGraph is not optimized for DAG-only workflows. If your application needs to perform iterative tasks and handle complex decision-making processes, LangGraph is the better choice. For strictly linear workflows that do not require cyclic operations, the LangChain Expression Language is more suitable.




A central concept in LangGraph is the state, which gets passed between nodes in the graph during execution. If a LangGraph node can be compared to a team member, then the state is like a team group chat. Each node can update this internal state with its return value. LangGraph provides flexibility in defining the state representation, allowing it to be tailored to the specific application needs. For instance, when working with chat models, the state could be a list of chat messages exchanged so far. LangGraph offers built-in support for asynchronous execution, streaming token responses, persistence to save and resume graph state, human-in-the-loop workflows, visualization tools for understanding complex graphs, and “time travel” debugging to jump to any previous state. These capabilities make LangGraph a powerful tool for developing advanced LLM applications that require stateful, multi-step processing.


We’ll be constructing LangGraph teams throughout the book, starting from Chapter 6, where we’ll build a team to create scientific reports on particular topics.












Prompts


Prompt became one of the most popular words in 2023, expressing a huge gain in popularity right after the ChatGPT release (Figure 3-5), even shifting the original meaning. In the context of generative AI, a prompt is usually understood as an instruction given to an AI, which determines or influences the content it generates. Prompt engineering became so popular that is was said English would become the most popular programming language. Tons of prompt cheat sheets, prompting masterclasses, etc., appeared in a short amount of time. Someday, we’ll learn that an Annual Prompt Award or Prompt hackatons are being organized. As no coding is actually required, prompt engineering communities are one of the largest amongst all AI development communities.



[image: Google Trends on 'prompt' and 'prompt engineering']
Figure 2-5. Google Trends on prompt and prompt engineering




This promptomania is due to its simplicity and flexibility in effectively “programming” increasingly sophisticated AI models through structured natural language instructions. It wasn’t long until prompts went from being a simple input to more like tiny programs instructing generative AI models on producing desired outputs. Just as traditional software engineering involves writing code to achieve specific functionality, prompt engineering requires carefully crafting natural language instructions that leverage the hidden APIs of AI models. Prompts started to bridge human intent and the AI’s ability to comprehend and generate highly relevant content.


What makes prompts so powerful is their ability to guide AI models to produce highly tailored and relevant content, even when the exact “function calls” are not explicitly stated. This flexibility is a departure from typical API interactions, where a mismatch in terminology can lead to a complete breakdown in functionality. With prompts, the models often grasp the underlying intent and generate outputs that meet the user’s needs, often despite imperfect phrasing.

Tip

Studying prompt engineering helps you better form the intuition of how the LLM generates responses context-wise. There are multiple courses on prompt engineering, including O’Reilly’s Prompt Engineering for Generative AI. Definitely learn the basics, as we’re stepping into the world where this skill will be as necessary as MS Excel was a decade or two ago.




Thinking of prompts as tiny programs also highlights an interesting parallel to the evolution of programming languages. Just as developers must familiarize themselves with the idiosyncrasies of different languages, those working with generative AI will need to adapt to the unique “dialects” of each model. Mastering prompt-based interaction with a particular AI system can become an important skill.


In life science, prompt engineering is less popular than in general. Primarily, this is due to the performance of LLMs in life science disciplines. The issues are related to the training data and the capabilities of LLMs - they aren’t designed for equation solving, experiment plan creation, medical diagnostics, etc. Prompt engineering allows maximum extraction from the LLM, but it can’t extract the language of science from a general language model.


Nevertheless, prompts can be efficiently used for specifically trained and tuned models. Example 3-4 shows how prompt modification affects the output of the previously mentioned multitask-text-and-chemistry-t5-base-augm model. We’ll compare the output of the model for raw input and supported with prefixes Continue the following phrase as a chemist:  and You are a professional chemistry researcher. Finish the following sentence: . As we’ve looked at decoding strategies in Chapter 2, you know that prompt inclusion affects the model’s output.


Example 2-4. Prompt chemical example


class Model:
    def __init__(self, model, tokenizer):
        self.model = model
        self.tokenizer = tokenizer

    def generate_model_output(self, input_text, max_length=512, num_beams=5):

        encoded_input = self.tokenizer(input_text, return_tensors="pt")

        output_ids = self.model.generate(
            input_ids=encoded_input["input_ids"],
            max_length=max_length,
            num_beams=num_beams
        )
        output_text = self.tokenizer.decode(
            output_ids[0], skip_special_tokens=True
        )
        output_text = output_text.strip()

        return output_text

from transformers import T5ForConditionalGeneration, AutoTokenizer
model_name = "GT4SD/multitask-text-and-chemistry-t5-base-augm"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
chem_t5_model = Model(model, tokenizer)

# The text to be continued
TEXT = "The formula of dihydrogen monoxide is"

# Original text
input_text = f"{TEXT}"
chem_t5_model.generate_model_output(input_text)
>>> [O-][Mn](=O)(=O)=O

# Prompt 1
input_text = f "Continue the following phrase as a chemist: {TEXT}"
chem_t5_model.generate_model_output(input_text)
>>> [O-][Mn](=O)(=O)=O.[O-][Mn](=O)(=O)=O.[O-][Mn](=O)(=O)=O

# Prompt 2
input_text = f"""You are a professional chemistry researcher.
Finish the following sentence: {TEXT}"""
chem_t5_model.generate_model_output(input_text)
>>> The molecule is a dihydrogen monoxide. It is a conjugate base of a
dihydrogen monoxide(2+). It is a conjugate acid of a dihydrogen monoxide(1-).



Clearly, just continuing the raw phrase doesn’t result in a good output. We got significantly better results only by instructing the model through a prompt to continue the sentence as a professional chemical researcher, as the modification to continue as a chemist wasn’t very instructive to the model.


In further applications, we’ll be designing different prompts as part of chains and agents. Following are several examples of prompts that can be used in research applications:


	Chemical research

	

	
Chemical synthesis pathway prediction: Based on the current knowledge database, outline a potential synthesis pathway for [compound name], including reaction conditions and intermediates.



	
Environmental impact assessment: Assess the potential environmental impact of releasing [chemical compound] into [specific environment], focusing on biodegradation pathways and toxicology.



	
Chemical property prediction: Predict the boiling point and solubility in water of [chemical compound], based on its molecular structure.



	
Reaction mechanism exploration: Explain the mechanism of the [specific reaction name], highlighting the key transition states and intermediates.








	Biological studies

	

	
Gene function annotation: Annotate the function of the [specific gene] in [organism], including its role in metabolic pathways and disease associations.



	
Microbial community analysis: Analyze the composition of the microbial community in [specific environment] and its impact on ecosystem functions.



	
Evolutionary relationship mapping: Map out the evolutionary relationships between [list of species], focusing on [specific gene or trait].



	
Biological pathway simulation: Simulate the [specific biological pathway] in [organism], identifying key regulatory points and potential therapeutic targets.








	Medical and healthcare

	

	
Diagnostic criteria summary: Summarize the diagnostic criteria for [specific disease], including necessary laboratory tests and imaging studies.



	
Treatment option comparison: Compare the efficacy and side effects of [treatment A] vs. [treatment B] for [specific condition].



	
Clinical trial outcome prediction: Predict the outcome of clinical trial [trial ID] based on the intervention’s mechanism of action and patient demographics.



	
Epidemiological trend analysis: Analyze the trend of [specific disease] incidence in [geographical area] over the last decade.








	Drug discovery

	

	
Drug-target interaction prediction: Predict the interaction between [drug compound] and [biological target], including potential off-target effects.



	
Pharmacokinetic profile modeling: Model the pharmacokinetic profile of [new drug compound], focusing on absorption, distribution, metabolism, and excretion.



	
Side effect profile compilation: Compile a profile of potential side effects for [drug compound], based on its chemical structure and mechanism of action.



	
Drug repurposing opportunities: Explore potential repurposing opportunities for [existing drug], considering new findings in pathophysiology of [specific disease].











Using prompts, you can set examples to be considered for desired input-output pairs. For example, a lot of research cases contain step-by-step thinking processes. We can instruct the generative AI application on what we expect by providing samples of such a thought process, as shown in the Example 3-5. This method is called few-shot learning. It involves providing the model with a few examples of the desired input-output pairs to guide its responses. This technique is particularly useful when there’s limited data, allowing the model to understand the task with minimal examples. The provided examples help the model generate more accurate and contextually appropriate outputs by demonstrating the expected behavior in similar cases​.


After setting up the examples list, we set the PromptTemplate to convert the given examples to LangChain-friendly prompt format and set the final prompt using FewShotPromptTemplate. The final prompt contains placeholders for our variables in {figure brackets}.


Example 2-5. Few shot examples


from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate

examples = [
    {
        "question": "Is Penicillin effective against E. coli?",
        "answer": """
Are follow-up questions needed here: Yes.
Follow up: What class of antibiotics does Penicillin belong to?
Intermediate answer: Penicillin belongs to the beta-lactam class of antibiotics.
Follow up: What mechanism of action does Penicillin have?
Intermediate answer: Penicillin interferes with the synthesis of the bacterial
cell wall.
Follow up: Is E. coli resistant to beta-lactam antibiotics?
Intermediate answer: Many strains of E. coli have developed resistance to
beta-lactam antibiotics, including Penicillin.
So the final answer is: Penicillin is generally not effective against E. coli due
to resistance.
""",
    },
    {
        "question": "What is the mechanism of action of SSRIs?",
        "answer": """
Are follow-up questions needed here: No.
So the final answer is: SSRIs, or Selective Serotonin Reuptake Inhibitors, work by
inhibiting the reuptake of serotonin in the brain, increasing the availability of
serotonin in the synaptic gap, which helps improve mood and reduce symptoms of
depression.
""",
    },
    {
        "question": "Do Aspirin and Ibuprofen have the same mechanism of action?",
        "answer": """
Are follow-up questions needed here: Yes.
Follow up: What is the mechanism of action of Aspirin?
Intermediate Answer: Aspirin works by inhibiting the enzyme cyclooxygenase (COX),
which reduces the formation of prostaglandins and thromboxanes, leading to its
anti-inflammatory and anticoagulant effects.
Follow up: What is the mechanism of action of Ibuprofen?
Intermediate Answer: Ibuprofen also inhibits the cyclooxygenase (COX) enzyme,
reducing the production of prostaglandins.
So the final answer is: Yes, both Aspirin and Ibuprofen have the same mechanism of
action, which is the inhibition of the COX enzyme.
""",
    },
]

# setting the prompt template to process the examples list
example_prompt = PromptTemplate(
    input_variables=["question", "answer"],
template="Question: {question}\n{answer}"
)

# setting the prompt template to be used with the LLM
prompt = FewShotPromptTemplate(
    examples=examples,
    example_prompt=example_prompt,
    suffix="Question: {input}",
    input_variables=["input"],
)



There are many underlying rocks and best practices regarding prompt strategies. The recent launch of the LangChain Hub was driven by solving common issues with prompts. The key motivations are to bring the distributed knowledge and expertise around prompting in one place, address the challenge of non-transferable prompts across different LLM models, and facilitate cross-team collaboration by making prompt management more accessible and transparent. LangChain Hub aims to address this need by serving as the go-to place for developers to discover new use cases and polished prompts. You can always design your own prompt, but with LangChain Hub, you are also free to test some shared prompts from your domain. Example 3-6 is a code sample of defining your own prompt and pulling from LangChain Hub for summarization tasks.


Example 2-6. Prompt chemical example


# define your own prompt
from langchain.prompts import PromptTemplate
prompt = (
    PromptTemplate.from_template("Summarize the following abstract {abstract}")
    + "using the following format {format}"
)

# or pull from hub

from langchain import hub
prompt = hub.pull("<someones>/abstract-formatting-prompt")











Memory


Out of the box, language models don’t maintain coherent context or use information from previous prompts or conversations. As a result, they fail to remember or build upon the details mentioned earlier, leading to incomplete responses. This limitation poses challenges for applications that require maintaining a consistent dialogue or understanding context over extended interactions.


In LangChain, memory refers to the persisting state between executions of a chain or agent (Figure 3-6). Robust memory approaches allow not only building conversational and interactive applications but also improving the coherence and relevance of LLM responses over time by storing chat history context. This is achieved by passing conversational memory to models on each call to provide consistency using chains rather than treating each user input as an isolated prompt.



[image: LangChain memory pipeline]
Figure 2-6. LangChain memory pipeline




Agents (discussed later this chapter) can also persist facts, relationships, and deductions in memory, keeping the agent contextually informed. Memory of objectives and completed tasks allows agents to track progress on multi-step goals across conversations. Moreover, retaining information in memory reduces the number of calls to LLMs for repetitive information.

Note

Memory is what makes chatbots so worthwhile. Imagine how useless a chatbot would be if there were no memory. Chatbots could not provide contextually relevant responses or improve their interactions over time without memory.




LangChain provides a standard interface for memory, integrations with storage options like databases, and design patterns for effectively incorporating memory into chains and agents. Besides third-party integration, LangChain provides several memory options, each with different trade-offs. For example, ConversationBufferMemory stores all messages, while ConversationBufferWindowMemory retains only recent messages.


The choice of memory approach depends on factors like persistence requirements, data relationships, and scale. In-memory caching can improve performance, while durable database storage enables long-term state preservation. Purpose-built memory servers offer specialized optimizations for conversational context. An example of memory implementation in LangChain is shown in Example 3-7 below. For that, we use RunnableWithMessageHistory to incorporate previous messages into our runnable chain by including the result of get_session_history() in the MessagesPlaceholder(variable_name="history") in our prompt template. In the run_chat() method, we’ll specify the second parameter as a session to illustrate the work of memory. We define our session as abc123 and ask, What are the side effects of taking aspirin?. After getting a valid answer, we continued the session by asking, Can I take it before flight? and got a valid response once again. But let’s ask the same question under session xyz123. We get a response to provide more details as the model is out of context, which is logical, as you can’t ask the second question without knowing the previous conversation, as seen in Example 3-7.


Example 2-7. Prompt chemical example


from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai.chat_models import ChatOpenAI

class Chat:
    def __init__(self, store=None, model=None):
        self.store = store if store is not None else {}
        self.model = model if model is not None else ChatOpenAI(temperature=0)
        self.prompt_template = self._create_prompt_template()
        self.runnable = self.prompt_template | self.model
        self.chat = RunnableWithMessageHistory(
              self.runnable,
              self.get_session_history,
              input_messages_key="input",
              history_messages_key="history",
          )

    @staticmethod
    def _create_prompt_template():
        """ Constructs and returns a chat prompt template."""
        return ChatPromptTemplate.from_messages([
            ("system", """You're an assistant who's good at understanding medicine
            side effects and contraindications"""),
            MessagesPlaceholder(variable_name="history"),
            ("human", "{input}")
        ])

    def get_session_history(self, session_id: str) -> BaseChatMessageHistory:
        return self.store.setdefault(session_id, ChatMessageHistory())

    def run_chat(self, input_text, session_id: str) -> str:
        response = self.chat.invoke(
            {"input": input_text},
            config={"configurable": {"session_id": session_id}},
        )
        return response.pretty_print()

# initiate chat
med_chat = Chat()

# session abc123
med_chat.run_chat("What are the side effects of taking aspirin?", "abc123")
>>> Common side effects of taking aspirin include:
1. Stomach upset or pain
2. Heartburn
3. Nausea
......

# session abc123 continues
med_chat.run_chat("Can I take it before flight?", "abc123")
>>> It is generally safe to take aspirin before a flight, especially if you are
using it for its blood-thinning properties to prevent blood clots during long
periods of immobility. However, there are a few considerations to keep in mind:
......

# new session xyz123
med_chat.run_chat("Can I take it before flight?", "xyz123")
>>> I'd be happy to help, but could you please provide more information about the
medication you're asking about? Knowing the specific medication will allow me to
give you a more accurate answer regarding whether it's safe to take before a
flight.



Example 3-7 above, isn’t using an actual memory, but a dictionary instead. There are multiple valuable options, besides the integrations, that can be used to persist the relevant state among chains and agents:


	ConversationBufferMemory

	
This is the simplest form of conversation memory. It stores the entire conversation history between the user and the AI system without limitation or summarization.



	ConversationBufferWindowMemory

	
This memory variant keeps a limited window of the most recent interactions in the conversation instead of storing the entire history. This can be useful for tasks where recent context is most important and helps to avoid overloading the system with too much data.



	ConversationEntityMemory

	
This memory focuses on storing and retrieving specific entities mentioned in the conversation. Entities could be things like names, locations, dates, or any other kind of data point that the system needs to track.



	ConversationKGMemory

	
This memory refers to a Knowledge Graph (KG) memory. A knowledge graph stores information in a structured format, with relationships between different entities. A ConversationKGMemory would allow the AI system to access and incorporate knowledge from this external knowledge graph into its conversation.



	ConversationSummaryBufferMemory

	
This memory combines the idea of a buffer with summarization. It stores a summarized version of the conversation history rather than the entire conversation. This can be useful for reducing the amount of data the system needs to process while maintaining some context.





Note

There might be more memory and other component options then described in this book as LangChain continue to grow.












Tools


Tools are a fundamental component of LangChain, bridging the gap between language models and external services, APIs, and functions required for real-world applications. LangChain tools primarily aim to extend language models’ capabilities beyond pure text processing. In other words, they enable language models to accomplish a much broader set of tasks by calling custom specialized capabilities.


Tools abstract away the complexities of integrating with external systems. They present a simple, uniform interface that the language model can utilize without needing to understand the underlying implementation details, as it is shown in Example 3-8 below. We’ll create GeneSequenceAnalyzer and DilutionCalculator tools using different approaches via BaseTool construct (Example 3-8. - GeneSequenceAnalyzer) and @tool decorator (Example 3-8. - DilutionCalculator). There is little difference between the methods. @tool decorator is easier and faster to define and automatically creates a Tool or StructuredTool from the function’s name and description. In contrast, the BaseTool option has more flexibility in assigning synchronous and asynchronous runs.


Example 2-8. Custom tool examples


from typing import Type, Optional, Union
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, tool
from langchain.callbacks.manager import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)

# GeneSequenceAnalyzer - Option 1 through BaseTool subclass
#==============================================
class GeneSequenceInput(BaseModel):
    sequence_a: str = Field(description="First DNA sequence")
    sequence_b: str = Field(description="Second DNA sequence")

class GeneSequenceAnalyzer(BaseTool):
    name = "GeneSequenceAnalyzer"
    description = """Compares two DNA sequences to determine their similarity
    percentage."""
    args_schema: Type[BaseModel] = GeneSequenceInput
    return_direct: bool = True

    def _calculate_similarity(self, sequence_a: str, sequence_b: str) -> float:
        """ Calculates the similarity percentage between two DNA sequences."""
        matches = sum(1 for a, b in zip(sequence_a, sequence_b) if a == b)
        length = max(len(sequence_a), len(sequence_b))
        return (matches / length) * 100 if length > 0 else 0

    def _run(
        self, sequence_a: str, sequence_b: str,
        run_manager: Optional[CallbackManagerForToolRun] = None
    ) -> str:
        """ Compares two DNA sequences."""
        similarity_percentage = self._calculate_similarity(sequence_a, sequence_b)
        return f """The similarity between the given DNA sequences is
        {similarity_percentage:.2f}%."""

    async def _arun(
        self,
        sequence_a: str,
        sequence_b: str,
        run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
    ) -> str:
        """ GeneSequenceAnalyzer does not support async operations."""
        raise NotImplementedError("GeneSequenceAnalyzer does not support async")
#---------------------------------------------

# DilutionCalculator - Option 2 through @tool
#==============================================
class DilutionInput(BaseModel):
    aliquot_volume_ml: float = Field(
        ...,
        description="Volume of the stock solution to be diluted, in milliliters"
    )
    final_volume_ml: float = Field(
        ...,
        description="Final volume of the solution after dilution, in milliliters"
    )

@tool(args_schema=DilutionInput)
def calculate_dilution(
        aliquot_volume_ml: float,
        final_volume_ml: float,
        run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
    """ Calculate the dilution factor."""
    if aliquot_volume_ml <= 0 or final_volume_ml <= 0:
        return "Both aliquot volume and final volume must be greater than 0."
    if aliquot_volume_ml > final_volume_ml:
        return "Aliquot volume cannot be greater than the final volume."

    dilution_factor = final_volume_ml / aliquot_volume_ml
    return f "The dilution factor is {dilution_factor:.2f}"
#---------------------------------------------



We’ve defined a GeneSequenceAnalyzer and a DilutionCalculator tool. Now it’s time to create a chain and ask questions that can be answered using our defined tools. To perform so, we’ll bind our LLM with these tools using model.bind_tools() and defining call_tool method to be used in the chain we invoke. The chain contains the mapping of tools that can be called. We’ll ask a DNA comparison question, a dilution problem, and a general drug discovery question in Example 3-9. But how will the chain decide what tool to call?

Tip

By default, when you use bind_tools(), the model has the flexibility to either return a single tool call, multiple tool calls, or no tool calls at all. However, certain models offer a tool_choice parameter that allows you to enforce the model to call a specific tool. If a model supports this parameter, you can pass in the name of the tool you want the model to always use, like tool_choice="xyz_tool_name”. Alternatively, you can set tool_choice="any” to compel the model to call at least one tool, without specifying which particular tool it should use.




The design of tools, including their name, description, and input schema, is crucial in how effectively the language model can understand and utilize them. Careful consideration must be given to ensure a clear, intuitive, and unambiguous interface. The LLM model, once bound, has access to all the tool names, descriptions, and input fields. Based on this context, the model decides what tool to call.


Let’s look at the DilutionInput. We can notice that each field has its own description: initial and target volume. The model extracts the information from the query, looks at the provided tools list, and returns the tool function (calculate_dilution()) and the parameters (aliquot_volume_ml and final_volume_ml) that should be called. The LLM decides what tool should be called with parameters, and the chain executes the selected function, gets the result, and passes it back to the model, which generates the final response.


Example 2-9. Custom tool execution examples


#continuation of Example 3-8

from langchain_openai import ChatOpenAI
from langchain.output_parsers import JsonOutputToolsParser
from langchain_core.runnables import (
    Runnable,
    RunnableLambda,
    RunnablePassthrough,
)
from operator import itemgetter

tools = [GeneSequenceAnalyzer(), calculate_dilution]
tool_map = {tool.name: tool for tool in tools}

# bind our model to use tools
model = ChatOpenAI(model="gpt-4o", temperature=0)
model_with_tools = model.bind_tools(tools)

def call_tool(tool_invocation: dict) -> Union[str, Runnable]:
    """Function for dynamically constructing the end of the chain based on the
    model-selected tool."""
    tool = tool_map[tool_invocation["type"]]
    return RunnablePassthrough.assign(output=itemgetter("args") | tool)

# .map() allows us to apply a function to a list of inputs.
call_tool_list = RunnableLambda(call_tool).map()
chain = model_with_tools | JsonOutputToolsParser() | call_tool_list

chain.invoke("How similar are AGCTGACCTG and AGCTTACCGT gene sequences?")
>>> [{'type': 'GeneSequenceAnalyzer',
  'args': {'sequence_a': 'AGCTGACCTG', 'sequence_b': 'AGCTTACCGT'},
  'output': 'The similarity between the given DNA sequences is 70.00%.'}]

chain.invoke("""How diluted will the solution be if I add 100 ml to my current
50 ml solution?""")
>>> [{'type': 'calculate_dilution',
  'args': {'aliquot_volume_ml': 50, 'final_volume_ml': 150},
  'output': 'The dilution factor is 3.00'}]

chain.invoke("""I need to get 1 l solution from a 40 ml I initally have. What will
be the dilution factor?""")
>>> [{'type': 'calculate_dilution',
  'args': {'aliquot_volume_ml': 40, 'final_volume_ml': 1000},
  'output': 'The dilution factor is 25.00'}]

chain.invoke("What is the difference between a drug's efficacy and its potency?")
>>> []



There are multiple useful pre-built tools in LangChain. Google Scholar, Wolfram Alpha, and PubMed integrations sound promising from a research perspective. In later chapters, we’ll define multiple custom tools to call external Python packages and science-related APIs.


One of the most important aspects of tools is their composability. Language models can flexibly combine multiple tools to accomplish more complex, multi-step tasks. For example, a model could use a search tool to find relevant information, a conversion tool to uniform the information, and a calculation tool to perform required computations. Another example is using document loader and splitter tools in RAG. This combinatorial power unlocks the significant potential to develop complex-level pipelines.

Tip

LangChain provides convenient toolkits - collections of tools designed to be used together for specific tasks that already have easy-to-use loading methods. Check out the Integrations section in the LangChain documentation to see the complete list of ready-made toolkits, including working with CSV and JSON files, pandas, etc.




From a developer’s perspective, the modular design of tools also enables easier testing and debugging. Since tools are standalone components, their behavior can be isolated and validated independently. This helps ensure the overall system functions as intended and reduces the cognitive load on the language model.










Agents


LangChain agents are a powerful concept that enables creating dynamic, goal-oriented, interactable systems. An agent is an autonomous software entity that can reason and decide actions to accomplish specific objectives.


Agents are most similar to chains, but there is a crucial difference. Previously, when we set up chains, we specified what exactly to do after what. Agents use LLMs as reasoning engines and decide which tools to use and in what order. They orchestrate and leverage chains to take goal-driven actions. While chains define reusable logic by sequencing components, agents use chains as tools to observe the environment, decide which chain to execute, take the specified action, and repeat the process.


The agent executor runtime manages the loop of querying the agent, executing tool actions, and returning observations. This runtime handles lower-level complexities like error handling, logging, and parsing, freeing the agent developer to focus on the high-level logic. This means agents can handle errors by catching exceptions and trying alternative chains of actions on their own. The nature of agents is composable, as they can combine reusable component chains, enabling powerful and flexible system architectures.

Tip

Consider the LangChain agent as an independent AI instance you can program by setting the model, prompts, and tools.




A key limitation of agents and chains is their statelessness – each execution occurs in isolation without retaining prior context. This is where the concept of memory, discussed earlier, becomes critical in LangChain. Memory refers to persisting information across chain and agent executions to enable statefulness and handle multi-step workflows. Example 3-10 shows an agent that can find the closest pair of DNA sequences, using the slightly modified tool above. We’ll use the knowledge gained throughout this chapter defining a calculate_dna_similarity tool and pulling the prompt from LangChain Hub to create a ReAct agent.


A ReAct LangChain agent is designed to reason and act (hence the name ReAct) based on the information it processes. It combines reasoning (thinking and planning) with acting (taking steps or performing tasks) to achieve specific goals. This means the agent doesn’t follow a fixed set of instructions but evaluates the situation, makes decisions, and takes actions dynamically. This approach allows the agent to adapt to new information and changes in its environment, making it more flexible and intelligent in handling complex tasks. We’ll use create_react_agent() method to create a ReAct agent and AgentExecutor to be able to invoke the agent. Example 3-10 asks to find the two closest genes from the given list: AGCTA, CTTAC, AGCTG, and AGAGA, based on the tools and knowledge the LLM possesses.


Example 2-10. Agent gene sequence comparison


from langchain.pydantic_v1 import BaseModel, Field
from langchain import hub
from langchain.agents import AgentExecutor, create_react_agent
from langchain_openai import OpenAI

# we'll need to modify our tool to take a single input
class GeneSequenceSingleInput(BaseModel):
    pair: str = Field(..., description="Pair of DNA sequences to be compared")

@tool(args_schema=GeneSequenceSingleInput)
def calculate_dna_similarity(pair: str) -> float:
    """ Calculates the similarity percentage between two DNA sequences."""
    sequence_a, sequence_b = pair.split(", ")
    matches = sum(1 for a, b in zip(sequence_a, sequence_b) if a == b)
    length = max(len(sequence_a), len(sequence_b))
    return (matches / length) * 100 if length > 0 else 0

tools = [calculate_dna_similarity]

prompt = hub.pull("hwchase17/react")
model = OpenAI(temperature=0)

# Construct the ReAct agent
agent = create_react_agent(model, tools, prompt)

# Create an agent executor by passing in the agent and tools
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

agent_executor.invoke({"input": "Find two closest genes from the given list:
AGCTA, CTTAC, AGCTG, AGAGA"})

> Entering new AgentExecutor chain...
I should use calculate_dna_similarity to compare each pair of genes
Action: calculate_dna_similarity
Action Input: AGCTA, CTTAC 0.0 means there is no similarity between these two
genes
Action: calculate_dna_similarity
Action Input: AGCTA, AGCTG 80.0 means there is a high similarity between these
two genes
Action: calculate_dna_similarity
Action Input: AGCTA, AGAGA 60.0 means there is a moderate similarity between
these two genes
Action: calculate_dna_similarity
Action Input: CTTAC, AGCTG 0.0 means there is no similarity between these two
genes
Action: calculate_dna_similarity
Action Input: CTTAC, AGAGA 0.0 means there is no similarity between these two
genes
Action: calculate_dna_similarity
Action Input: AGCTG, AGAGA 40.0 means there is a low similarity between these
two genes
Thought: I now know that the two closest genes are AGCTA and AGCTG with a
similarity of 80.0%
Final Answer: The two closest genes are AGCTA and AGCTG with a similarity of 80.0%.

> Finished chain.

>>> {'input': '''Find two closest genes from the given list: AGCTA, CTTAC, AGCTG,
AGAGA''',
'output': 'The two closest genes are AGCTA and AGCTG with a similarity of 80.0%.'}



Indeed, AGCTA and AGCTG are the closest two sequences among AGCTA, CTTAC, AGCTG, AGAGA. The agent identified that the calculate_dna_similarity tool is required to be called recursively to find the closest pair using grid search. There is a current limitation for the ReAct agent to use tools with multiple inputs, but this can be overcome with using other agents.


LangChain provides several built-in agent types optimized for different use cases. The OpenAI Tools agent is designed for chat history, multi-input tools, and parallel function calling. It is well-suited for conversational AI with tools applications. The OpenAI Functions agent works with models that support the OpenAI function calling interface, enabling structured interactions. The XML and JSON Chat agents handle inputs and outputs in those formats, catering to specialized model types. The Structured Chat agent supports tools with multiple inputs, while the ReAct (used in Example 3-10) and Self Ask With Search agents are optimized for simpler models and single-tool scenarios. This diversity of agent options empowers developers to choose the right agent for their specific needs, whether building a sophisticated conversational assistant or a focused task-oriented tool.


In multiple cases later in this book, we’ll create custom agents by defining prompts, providing relevant tools, and leveraging language models. We’ll look into developing agents that dynamically determine which databases to search, which papers to read, and how to summarize key findings to answer a research question. For experimental design, an agent could suggest a sequence of experiments to test a hypothesis based on available lab equipment and past results. For medical diagnosis, an agent can interview a patient, order tests, and suggest potential diagnoses. Treatment planning agents could consider a patient’s medical history, current condition, and available options to recommend a personalized care plan. Monitoring and alerting agents could continuously track patient data and trigger interventions when necessary.










Creating Apps with LangChain


Now that we’ve seen all the main LangChain components, it’s time to look at how LangChain glues them together. The pipeline we’ll look into is identifying details of the research behind the Nobel Prize for Chemistry in 2023.


Let’s install all the necessary Python packages. The versions of the packages aren’t given in the book, as the packages continue to evolve, but they are provided in the official book repository LangChain4LifeScience:


pip install langchain langchain-community langchain-core langchain-openai\
    openai tiktoken chromadb pandas pypdf xmltodict


Next, import all the packages


# model
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

#index
from langchain_community.vectorstores import Chroma

# chains
from langchain_core.runnables import (
    RunnablePassthrough,
    RunnableLambda,
)

# memory
from langchain.memory import ConversationSummaryBufferMemory, ChatMessageHistory

# prompts
from langchain_core.prompts.chat import ChatPromptTemplate, MessagesPlaceholder

#tools
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.tools import format_tool_to_openai_function
from langchain.tools.retriever import create_retriever_tool
from langchain_community.tools.pubmed.tool import PubmedQueryRun

# agents
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_to_openai_function_messages
from langchain.agents.output_parsers.openai_functions import (
    OpenAIFunctionsAgentOutputParser,
)

# other imports
from operator import itemgetter


In our example, we’ll be using all components for illustrative purposes, to see how they work together.


We’ll be using ChatMessageHistory to store the history of conversations. Among the best practices for ChatModels is to “warm up” the model by giving a couple of question-answer pairs before the user inputs. For our case, we’ll include the hello-hello introduction dialogue. The history will be stored in ConversationSummaryBufferMemory - this way, we will buffer and summarize the memory after each user query-response pair. The MEMORY_KEY constant allows other components to access the memory by key.


# Creating memory
MEMORY_KEY = "chat_history"
history = ChatMessageHistory()
history.add_user_message("Hi, I want you to help me to answer some questions and
complete a couple of tasks")
history.add_ai_message("Hello! Sure I can help you. Can you specify your task?")

memory = ConversationSummaryBufferMemory(
    llm=ChatOpenAI(model=model_name),
    return_messages=True,
    memory_key=MEMORY_KEY,
    chat_memory=history
)


We’ll instruct the model with a prompt to be an assistant that can help answer scientific questions, use necessary tools, and, if not sure, respond with a fallback response. Notice how MEMORY_KEY is used to access chat memory:


prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            """
            You are an assistant to help answer scientific questions.
            Use tools you have if required.
            Be sure to understand the question correctly.
            If you don't know the answer - respond "Sorry, I don't know"
            """,
        ),
        MessagesPlaceholder(variable_name=MEMORY_KEY),
        ("user", "{input}"),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ]
)


A standard procedure for a RAG pipeline is to load the document, chunk it, embed it, and save it in some storage. This topic will be discussed in detail in Chapter 4, meanwhile, we’ll upload the file using PyPDFLoader and split the document with RecursiveCharacterTextSplitter. This allows us to get small chunks of the documents we can efficiently embed with OpenAIEmbeddings and store in Chroma vector store. We’ll define a search_through_pdf_text retriever tool to have the ability to look up the vector store. We’ll also define PubmedQueryRun tool to be able to ask questions regarding the publications:


link="https://www.nobelprize.org/uploads/2023/10/advanced-chemistryprize2023.pdf"
pdf_loader = PyPDFLoader(link)
pdf_doc = pdf_loader.load()

text_splitter = RecursiveCharacterTextSplitter(
    separators=["\n"],
    chunk_size = 500,
    chunk_overlap=200,
    keep_separator=False
)
chunks = text_splitter.split_documents(pdf_doc)

vectorstore = Chroma.from_documents(
    documents=chunks, embedding=OpenAIEmbeddings()
)
retriever = vectorstore.as_retriever()

retrive_tool = create_retriever_tool(
    retriever,
    "search_through_pdf_text",
    """This function searches and returns data from pdf text regarding
    Nobel prize winners and their work""",
)

tools = [PubmedQueryRun(), retrive_tool]
formatted_functions = [format_tool_to_openai_function(t) for t in tools]


For this example, we’ll use gpt-3.5-turbo, as we don’t need a specially trained model. The example works similarly to other general models described earlier. As shown in the “Tools” section, we’ll bind the language model with tools using the bind() method:


model_name = "gpt-3.5-turbo"
llm = ChatOpenAI(temperature=0,model_name=model_name)
llm_with_tools = llm.bind(functions=formatted_functions)


Finally, we’ll initiate an agent that will take the tool-powered language model, prompt, and memory and assign a chain for it to utilize. We’ll set verbose=True to see intermediate steps:


agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_function_messages(
            x["intermediate_steps"]
        ),
    }
    | RunnablePassthrough.assign(
        **{MEMORY_KEY: RunnableLambda(memory.load_memory_variables) |
        itemgetter(MEMORY_KEY)}
    )
    | prompt
    | llm_with_tools
    | OpenAIFunctionsAgentOutputParser()
)

qa = AgentExecutor(agent=agent, tools=tools, memory=memory, verbose=True)


Figure 3-7 shows the visualization of our pipeline. We upload the document to vector store and use the qa agent to retrieve information from it and answer users questions. We additionally set the PubMed tool to retrieve data from the PubMed API.



[image: LangChain Basic Pipeline]
Figure 2-7. LangChain basic pipeline




It is now time to test our Q&A agent. We’ll begin with a question to identify if the application is set correctly, if the prompts are working as expected, and if the model peaks the web. Let’s ask about the Nobel Prize for 2023 in Literature, which is definitely not provided in our document.


query = "Who and for what won the Nobel prize in Literature in 2023?"
result = qa.invoke({"input": query})
> Entering new AgentExecutor chain...
Sorry, I don't know.

> Finished chain.
>>> Sorry, I don't know.


So far so good. There is no mentioning of Nobel prizes in other fields in the document. Now let’s ask about chemistry:


query = "Sorry, I meant chem"
result = qa.invoke({"input": query})

> Entering new AgentExecutor chain...

Invoking: `search_through_pdf_text` with `{'query': '''Nobel Prize in Chemistry
2023'''}`

Nobel Prize® and the Nobel Prize® medal design mark
are registrated trademarks of the Nobel Foundation4 OCTOBER 2023
Scientific Background to the Nobel Prize in Chemistry 2023
QUANTUM DOTS – SEEDS OF NANOSCIENCE
The Nobel Committee for Chemistry
THE ROYAL SWEDISH ACADEMY OF SCIENCES  has as its aim to promote the sciences
and strengthen their influence in society.
BOX 50005 (LILLA FRESCATIVÄGEN 4 A), SE-104 05 STOCKHOLM, SWEDEN
TEL +46 8 673 95 00  WWW.KVA.SE

1 (17)
 Quantum dots — seeds of nanoscience
The Royal Swedish  Academy of Sciences has decided to award Moungi G. Bawendi,
Louis
E. Brus, and Aleksey I. Yekimov the Nobel Prize in Chemistry 2023, for the
discovery and
synthesis of q uantum do ts.
Introduction
This year's Nobel Prize in Chemistry recognizes the discovery and synthesis of
nanometre-sized
semiconductor crystals , the properties of which are determined by quantum size
effects. Referred ....

The Nobel Prize in Chemistry 2023 was awarded to Moungi G. Bawendi, Louis
E. Brus, and Aleksey I. Yekimov for the discovery and synthesis of quantum
dots.

> Finished chain.
>>> The Nobel Prize in Chemistry 2023 was awarded to Moungi G. Bawendi, Louis E.
Brus, and Aleksey I. Yekimov for the discovery and synthesis of quantum dots.


Notice how the memory worked, as the execution chain is called Nobel Prize in Chemistry 2023, without us specifying the year within this question. You might also see 2 chunks were pulled from the document and the LLM provided its answer based on the context collected from these chunks. Let’s now ask about the crystal compounds used in the paper to create nanoparticles:


query = "What crystal compounds were used in the paper to create nanoparticles?"
result = qa.invoke({"input": query})

> Entering new AgentExecutor chain...

Invoking: `search_through_pdf_text` with `{'query': '''crystal compounds used to
create nanoparticles'''}`


or departments dedicated to nano science and nanotechnology.
In a sense, nanotechnology and nanoparticles have been used for many centuries.
52 For example,
a hair -blackening recipe originating from the Greco -Roman period has been shown
to work by
...

14 (17) (27)Efros,  A. L.;  Brus, L. E. Nanocrystal Quantum Dots: From Discovery
to Modern
Development. ACS Nano 2021, 15 (4), 6192-6 210. DOI:  10.1021/acsnano.1c01399.
(28)Yekimov, A.; Onushchenko, A.  A.; Tsekhomskii, V . Exciton light absorption by
CuCl
microcrystals in glass matrix. Sov.  Glass Phys. Chem.  1980,  6, 511-5 12.
(29) Golubkov,  V. V.; Yekimov, A. I.;  Onushchenko, A. A.;  Tsekhomskii,  V. A.
Growth kinetics of

63 Finally, particles
can be selected using purification and size -
dependent precipitation. The result is  macroscopic
quantities of nanoparticles with regular core structure and shape, with consistent
surface derivation and electronically passivated semiconductor surface, and with a
well -defined size
that is determined by dynamic temperature control during th e growth phase.
62 Relatively sharp optical
absorption  (Fig. 4)  and emission spectra wereThe crystal compounds used in the
paper to create nanoparticles were CdS (Cadmium Sulfide) crystallites.

> Finished chain.

>>>The crystal compounds used in the paper to create nanoparticles were CdS
(Cadmium Sulfide) crystallites


The application successfully extracted the crystal compound used to create nanoparticles, although that’s not the only crystal compound mentioned in the article. It is seen that the agent used a search_through_pdf_text tool for our query. Most similar blocks of text were pulled from the vector store, and the language model formed the final response using retrieved context.

Note

Why do you think the agent didn’t retrieve all crystal compounds?
What can be changed to extract all crystals?
Will the results change if we select a more “chemical” model?


Try implementing your thoughts into the code snippet and observe the reaction.




Finally we’ll use the PubMed integration to look up the latest publications about the crystals mentioned. Look closely at how the memory is utilized once again and the query for the PubMed is reformulated:


query = "What are the title of 3 most recent publication for each of the crystals
mentioned"
result = qa.invoke({"input": query})
>>>
> Entering new AgentExecutor chain...

Invoking: `pub_med` with `CdS nanoparticles synthesis`

Published: 2024-04-03
Title: Real-time monitoring of CdTe quantum dots growth in aqueous solution.
Copyright Information: © 2024. The Author(s).
Summary::
Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical
properties are strongly size-dependent. Therefore, the real-time monitoring of
crystal growth pathway during synthesis gives an excellent opportunity to a smart
design of the QDs luminescence. In this work, we present a new approach for ...

Published: --
Title: {'sub': '2', 'i': 'Phaseolus vulgaris', '#text': 'Non-toxic orange carbon
dots stimulate photosynthesis and CO assimilation in hydroponically cultivated
green beans ().'}
Copyright Information:
Summary::
Continuous increasing leaf photosynthesis may enhance plant yield. As an
evolutionary property, plants use less photosynthetic capacity than is
theoretically possible. Plant nanobionics is a bioengineering field that improves
plant functions using nanoparti
Invoking: `pub_med` with `CdSe nanoparticles synthesis`

Published: 2023-12-14
Title: Bioelectrochemically triggered apoferritin-based bionanoreactors: synthesis
of CdSe nanoparticles and monitoring with leaky waveguides.
Copyright Information: This journal is © The Royal Society of Chemistry.
Summary::
['2', '2', '2', '2']
Herein, we describe a novel method for producing cadmium-selenide nanoparticles
(CdSe NPs) with controlled size using apoferritin as a bionanoreactor triggered by
local pH change at the electrode/solution ...

For CdS nanoparticles synthesis:
1. Title: Real-time monitoring of CdTe quantum dots growth in aqueous solution.
2. Title: Non-toxic orange carbon dots stimulate photosynthesis and CO
assimilation in hydroponically cultivated green beans.

For CdSe nanoparticles synthesis:
1. Title: Bioelectrochemically triggered apoferritin-based bionanoreactors:
synthesis of CdSe nanoparticles and monitoring with leaky waveguides.

> Finished chain.

Tip

Running PubmedQueryRun out of the box multiple times will result in a “Too Many Requests, waiting for X seconds…​” error. The retry happens every sleep_time = 0.2 seconds with max_retry=5. Adjust the parameters, to be able to query PubMed efficiently.




We’ll create more applications starting Chapter 6, diving deeper into building and querying different scientific resource APIs. Due to inner-tool default restrictions, we weren’t able to fetch all the data we wanted. Still the result is promissing, as the end result is valid.










Summary


This chapter provides a gentle introduction to LangChain, exploring its fundamental components and functionalities. We’ve discussed every LangChain component, including various indexing techniques and the use of vector searches and vector databases for efficient data retrieval, the importance of chains, and the LangChain Expression Language, highlighting their roles in constructing complex workflows. Discussions regarding prompts, memory, tools, and agents were provided, each explained with multiple examples to illustrate their practical applications. You can now start creating LangChain applications using multiple modules studied.


We’ve scratched the RAG surface and the importance of avoiding hallucinations. This topic will be covered in detail in chapter 4. We’ve only peeked into creating LangGraph teams. Still, more in-depth and practical knowledge will be gained in the following chapters. Further chapters will discuss other LangChain initiatives and other LLM orchestration projects.
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Chapter 3. Hallucinations and RAG Systems



In the era where LLMs have become incredibly sophisticated, their outputs often appear so accurate and insightful that it is easy to start trusting them implicitly. I recently had a debate with a colleague on a scientific topic I am quite familiar with. All my arguments were “double-checked” by consulting ChatGPT, which is trained on data from various forums and Wikipedia. LLMs can indeed generate coherent narratives, provide detailed explanations, and even mimic human-like reasoning. However, this trust can be misleading. You may notice occasional inaccuracies or outright fabrications as you continue digging deeper into their responses. The unsettling fact is that these powerful tools, despite their impressive capabilities, sometimes mess up the facts and invent events that never happened, basically hallucinating.








Hallucinations, Their Causes and Consequences


Chapter 2 looked into how LLMs work under the hood, and it is quite logical that hallucinations stem from the fundamental nature of how LLMs operate. At their core, language models do not inherently understand or verify the information they generate. They merely predict the next word in a sequence based on vast amounts of training data. For an LLM, the choice between using a correct fact or a fabricated one is essentially the same as choosing between different grammatical constructions or pronouns.


Figure 4-1 shows similar visual hallucinations made by a model. In the current state of AI, adding an extra body part, a freckle on a face, a candle on a cake, or an atom in a molecule are all very similar. The model does not discern truth from falsehood — it strives to produce the most statistically likely continuation of a given text prompt. This limitation means that without external fact-checking mechanisms, the reliability of the information provided by LLMs can be inconsistent.



[image: Visual Model Hallucinations]
Figure 3-1. Visual model hallucinations




I’ve often seen cases, when any error made by a language model is often referred as a hallucination. This isn’t quite right, as some errors are hallucinations, but some are not, and they often differ primarily in their origins and implications. Data errors are typically factual inaccuracies or logical inconsistencies in the generated output that result from misunderstandings or misinterpretations of the input data or context. They often occur despite the model’s attempt to respond accurately. Hallucinations, on the other hand, refer to instances where the LLM generates information or details that are entirely fabricated and not grounded in the input data or known facts. While data errors reflect the model’s limitations in processing or recalling information, hallucinations highlight its potential to produce novel but potentially false content without a strong basis in reality.
Table 4-1 shows examples of data errors and hallucinations.


Table 3-1. Examples of data errors and hallucinations


	Data Error
	Hallucination





	An LLM cites a retracted study claiming that a particular vaccine is linked to autism, reflecting errors from training on flawed datasets.

	An LLM cites a non-existent article link about a particular vaccine causing autism.




	An LLM provides inaccurate treatment guidelines for diabetes management based on practices that have been superseded by more recent research and standards.

	An LLM invents unrelated treatment guidelines for diabetes.




	An LLM associates some symptoms with an incorrect diagnosis or syndrome based on outdated information.

	An LLM invents a non-existent syndrome with a detailed but fictional description that matches the symptoms.




	An LLM recommends using hydroxychloroquine for treating COVID-19, based on early and now outdated studies.

	An LLM describes a fictional drug called “Covicure” as a cure for COVID-19 without any real basis.




	An LLM suggests an obsolete protocol for gene editing based on older CRISPR technology.

	An LLM describes a completely fictional gene-editing method.




	An LLM recommends an old chemical synthesis pathway for a drug that has since been corrected and optimized.

	An LLM describes a completely imaginary synthesis process involving real or made-up chemicals.




	An LLM recommends an old chemical synthesis pathway for a drug that has since been corrected and optimized.

	An LLM describes a real synthesis process, but involving made-up ratios and numbers.




	An LLM refers to a biological classification system that has been updated using old terminology.

	An LLM invents an entirely new species with made-up characteristics and taxonomical classification.







Different reasons cause different mistakes. Let’s look at some cases:



	
Quality of training data: If a language model is trained on chemical datasets that contain mislabeled or mischaracterized compounds, the model might suggest synthesizing a compound that doesn’t match its intended pharmacological profile. This divergence between the source (actual chemical properties) and the reference (labeled data) can lead to misleading suggestions.



	
Bias of training data: For multimodal models, if an AI model is trained predominantly on images from one demographic group, it may perform poorly on other groups. For instance, a model trained primarily on lighter skin tones might fail to detect skin cancer in patients with darker skin tones.



	
Model error inevitability: AI models used in genetic research might hallucinate gene interactions that do not exist. For instance, a model predicting gene-disease associations might suggest spurious relationships due to overfitting and the inherent noise in genetic data.



	
Model capabilities: Imagine you’re asking a model to create a novel molecular structure. The generated compound might be novel, but it’ll likely be chemically unstable or biologically inactive.



	
Incorrect assumptions: An AI model in pharmacology might incorrectly assume that all compounds with similar structures have similar biological activities, leading to false predictions about drug efficacy.






LLMs are sometimes humorously referred to as large lying models due to their propensity for making mistakes. Recognizing this flaw, major tech companies have invested significant resources in attempts to mitigate the problem. Various strategies have been employed, from integrating external databases to developing more sophisticated algorithms to flag potential inaccuracies. Despite these efforts, a perfect solution still needs to be found. Consequently, many companies have resorted to issuing disclaimers, acknowledging the limitations of their models. Phrases like our LLM can make mistakes, our model may display inaccurate info, double-check its responses or check important information have become commonplace, underscoring the ongoing challenge of ensuring the accuracy of AI-generated content. Such a “solution” highlights the critical need for human oversight and the importance of approaching AI-generated information with a healthy degree of skepticism.


AI hallucinations pose significant challenges in life science research by introducing inaccuracies and potentially misleading information into critical research areas. One of the primary concerns is the incorrect or non-existent citations provided by AI models. Studies have shown that these models often generate references that are either entirely fabricated or inaccurate. For instance, a study revealed that out of 178 references cited by GPT-3, 69 were incorrect or non-existent, and 28 had no known scientific digital object identifier (DOI) and could not be located through a Google search​.


In addition to incorrect citations, AI hallucinations display false information itself. On several occasions, LLMs have been caught falsifying information and fabricating both the sources and authors for the referenced information. This highlights the risk of using AI-generated content in academic research, as it can propagate falsehoods that are difficult to verify.


Recent models are trained on a much larger amount of data and even have tools to access the web. Even if the provided article reference is accurate, the extracted information is not guaranteed to be correct. Such behavior and the AI’s tendency to “double-down” on incorrect information, sometimes providing even more misleading details when challenged​, can severely undermine the reliability of research outputs and trust in AI-assisted scientific processes.










Hallucinations and possible solutions


Let’s put aside generative paraphrasing for scientific community to deal with and focus on hallucinations. What solutions can we implement to generate more reliable answers? Collecting high-quality data for model training is one of the most efficient, as using diverse, well-structured datasets can reduce biases and improve accuracy​. Implementing common machine learning regularization techniques during training and setting clear boundaries for AI responses can help prevent overfitting and reduce hallucinations​. However, the most effective way, though expensive, is incorporating human review processes to validate AI outputs. The model providers implement all these methods to make them lie less.


But as stated earlier, hallucinations are not only driven by model capabilities, but also by incorrect data. The data becomes incorrect and outdated every day, so fine-tuning may not be the best option to generate up-to-date answers, as it will be a continuous race against time - the model will become outdated even before it finishes the training process.

Note

Fine-tuning with high-quality data is necessary to increase the model’s overall performance. This is mainly why most of the model providers release a new version of a model several times a year.




Integrating potential fact-checking systems that compare AI-generated content against verified databases and real-world knowledge will increase the truthfulness of the AI model’s outputs. Such mechanisms can act as a secondary layer of validation, ensuring that the outputs are consistent with facts​. Moreover, such systems can be mimicked by other LLMs - if you ask a model the same question multiple times or multiple models - it will be much easier to spot hallucinations, as models provide the same correct answer but hallucinate differently.


Another option may be to use explicit prompt engineering. Crafting clear, specific, and context-rich prompts can reduce the chances of hallucinations. Providing detailed instructions and breaking down complex queries into smaller, manageable parts can help the AI understand and respond more accurately using techniques like the chain-of-thought and ReAct methods, where the model explains its reasoning step-by-step.
This might help in some cases, but unfortunately, it won’t provide you with the latest data information unless certain tools are used.


The solution that so far shows the best result to avoid hallucinations, is retrieval-augmented generation (RAG). RAG is a technique that enhances language models by combining them with external knowledge bases. Instead of looking for internal data on which the model was trained, the model integrates relevant information from a curated knowledge base, making the responses more grounded in factual data and reducing the likelihood of hallucinations. Moreover, RAG systems may incorporate best practices from other hallucination-reduction solutions, such as prompt engineering and fact-checking practices.


RAG usually operates through a several-stage process, as shown in Figure 3-4.


	
Indexing and data preparation: Storing and indexing external documents to make them retrievable based on specific queries. Comes prior to asking any question.



	
Question interpretation: Interpret and refine the user’s query to understand its intent and context.



	
Routing to correct database/index: Direct the question to the appropriate database or index based on its content.



	
Query construction: Construct an effective query for the selected database or index.



	
Data retrieval: Search and rank relevant data based on the processed query.



	
Data augmentation and response generation: Integrate the top-ranked data into the LLM’s prompt. Generate a coherent and relevant response by combining language skills with the integrated data.








[image: RAG]
Figure 3-2. Retrieval-augmented generation




Chapter 3 covered the basics of RAG. In this book, we’ll build multiple chains and agents using the RAG methodology. Let’s dive into the RAG steps a bit deeper.










Retrieval-Augmented Generation (RAG)


To start with, Example 3-1, sets a basic LangChain RAG pipeline.
First, we pull the predefined prompt retrieval_qa_chat_prompt from the LangChain hub. This prompt serves as the template for the question-answering chat system. As you can see, the template instructs the model to provide answers in context only. The retriever would typically be set to a component capable of retrieving relevant documents or information based on a query.


Example 3-1. Basic RAG pipeline


from langchain_core.prompts import ChatPromptTemplate
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
from langchain import hub

retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")
'''
or
prompt = ChatPromptTemplate.from_messages([
 ("system", "Answer any use questions based solely on the context below:

<context>
{context}
</context>"),
 ("placeholder", "{chat_history}"),
 ("human", "{input}"),
])
'''
llm = ChatOpenAI()
retriever = ... # vector_store.as_retriever()
combine_docs_chain = create_stuff_documents_chain( llm, retrieval_qa_chat_prompt )
retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain)
chain.invoke({"input": "What is the ..."})



Next, the create_stuff_documents_chain chain is used to create a document processing chain by combining the LLM and the retrieval prompt - to process the not-yet-defined context and generate coherent responses. The retrieval_chain is then created by combining the retriever and the document processing chain using the create_retrieval_chain function. This combined chain incorporates our retrieved data into the context of the create_stuff_documents_chain, wrapping the entire process from retrieving relevant documents to generating a final answer.


Let’s now look at what might go wrong while creating the RAG pipeline. In Chapter 12, which is dedicated to building commercial chatbots, we’ll discuss aspects such as system capacities, security, and safety of RAG pipelines. In this chapter, we’ll focus on the parts of RAG that affect the performance of the output results.










Indexing and Data Preparation


Efficient indexing and data preparation are crucial for RAG systems as they determine the quality and breadth of the external knowledge source. Indexing large document collections can be computationally expensive and resource-intensive, especially for unstructured data. Chapter 3 already briefly covered document loaders, splitters, and vector stores. This chapter will focus on potential improvements and issues we can implement and face within the RAG pipeline.


One of the most important issues during indexing may occur with multimodal data. A simple yet powerful concept for RAG involves decoupling the documents used for answer synthesis from the references later employed by the retriever. For instance, we can create a summary of a lengthy document optimized for vector-based similarity searches while still feeding the full document to the LLM to preserve context during answer synthesis. Most importantly, this approach is not limited to text alone and can be applied broadly to tables or images, enhancing the versatility and effectiveness of RAG systems. Example 4-2 shows a LangChain implementation of multiple vector indexing.


Example 3-2. Multi vector indexing


import uuid
from langchain_core.documents import Document
from langchain.storage import InMemoryByteStore
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.retrievers.multi_vector import MultiVectorRetriever

# Chain for summarizing documents
chain = (
 {"doc": lambda x: x.page_content}
    | ChatPromptTemplate.from_template("Summarize the following document:\n\n{doc}")
    | ChatOpenAI(max_retries=0)
    | StrOutputParser()
)

summaries = chain.batch(docs, {"max_concurrency": 4})
vectorstore = Chroma(collection_name="summaries",
                     embedding_function=OpenAIEmbeddings())

# Storage layer for the parent documents
store = InMemoryByteStore()
id_key = "doc_id"

# Retriever setup
retriever = MultiVectorRetriever(
    vectorstore=vectorstore,
    byte_store=store,
    id_key=id_key,
)
doc_ids = [str(uuid.uuid4()) for _ in docs]

# Link docs to summaries
summary_docs = [
 Document(page_content=s, metadata={id_key: doc_ids[i]})
    for i, s in enumerate(summaries)
]

# Add documents to the retriever
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))

# Query example: research on CRISPR in plant biology
query = "CRISPR gene editing in plant biology"
sub_docs = vectorstore.similarity_search(query, k=1)
sub_docs[0]

>> Document(metadata={'doc_id': 'd40dfef4-...'}, page_content='The document
"Genome-Editing Technologies: Principles and Applications" from the Cold Spring
Harbor Perspectives in Biology journal, provides a comprehensive overview ...')



Another strategy to maintaining summaries alongside raw documents is Retrieval Augmented Transformer for Knowledge Synthesis (RAPTOR). It is a method that enhances long-context LLMs by integrating retrieval strategies through a hierarchical document abstraction tree. This tree is created by recursively embedding, clustering, and summarizing documents, resulting in high-level summaries that consolidate information from multiple documents.


RAPTOR addresses limitations like latency and cost associated with long-context LLMs by enabling efficient retrieval across large documents without extensive chunking. By embedding both raw documents and their summaries, RAPTOR ensures robust and contextually relevant responses, making it an effective tool for diverse applications requiring detailed and integrated knowledge retrieval.


ColBERT (Contextualized Late Interaction over BERT) and RAGatouille are two more techniques used to improve RAG systems. Regular RAG typically embeds documents and user queries into dense vectors and then computes the similarity between these vectors to retrieve relevant documents. ColBERT encodes both the documents and queries into high-dimensional vectors using BERT, but rather than combining these vectors into single representations, ColBERT retains the token-level embeddings. It then computes the relevance by performing late interaction, meaning the token embeddings from the query interact with the token embeddings from the documents, allowing for more detailed and context-sensitive matching. This allows capturing more nuanced information and relationships within the text, leading to more precise retrieval results.


RAGatouille builds on this by combining retrieval with generation, leveraging a ColBERT retriever to find relevant documents and an LLM generator to produce coherent responses. Together, these methods enable RAG systems to provide more accurate and contextually rich answers by effectively integrating retrieved information into the generation process. An Python implementation is shown in Example 4-3.


Example 3-3. ColBERT + RAGatouille


from ragatouille import RAGPretrainedModel
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")

RAG.index(
    collection=[...],
    index_name= "TopSecretResearchProject",
    max_document_length=250,
    split_documents=True,
)
RAG.search(
    query="Effect of nanoparticles coagulant concentration for water treatment", k=5
    )













Query Translation and Understanding


Accurately interpreting the user’s query is a fundamental step in RAG systems, as it guides the subsequent retrieval and generation processes. However, everyone has their own manner of speech, so misinterpreting the query’s intent or context may not come as a surprise and can lead to irrelevant or incorrect responses. Let’s look at some common issues and how one can tackle them.












Incomplete and unfinished answers


This problem addresses partial responses that don’t provide all details despite the information being present and accessible


Examples:



	
Asking for details on a specific gene’s function returns its name and basic description, with no explanation of its role in the organism’s physiology.



	
Asking What are the stages of mitosis? and only getting Mitosis is the process of cell division.



	
Querying What is the boiling temperature of X? and receiving The boiling temperature of X varies, depending on the …






A possible solution is to refine the query process to dig deeper and provide complete information. One of the solutions might be the Hypothethical Document Embedding (HyDE)  concept, when an LLM formulates a hypothetical response to a query, and embeddings are created for both the query and the hypothetical response. In LangChain HypotheticalDocumentEmbedder is used to create such embeddings. As a result, you retrieve documents whose embeddings in the vector space most closely match those generated (Example 4-4). Consider applying prompt compression if your prompt is large and the amount of context passed is measured by chapters rather than pages.


Example 3-4. Basic RAG Pipeline


from langchain.chains import HypotheticalDocumentEmbedder
from langchain_openai import OpenAIEmbeddings

base_embeddings = OpenAIEmbeddings()
hyde_embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings)

vectorstore = Chroma.from_documents(
    documents=..., embedding=hyde_embeddings, collection_name=...
)
retriever = vectorstore.as_retriever()















One small change in user query, one giant shift in the results


Most of the time, the way a user query is formulated — its clarity, specificity, and use of relevant keywords — significantly impacts the RAG system’s ability to retrieve and generate accurate and relevant information. It’s a significant problem if the user slightly paraphrases his request, and it will affect the result.


Examples:



	
Searching for effects of genetic mutations on health might receive broad, generalized information about genetic mutations. In contrast, a query formulated as effects of BRCA1 gene mutations on breast cancer risk yields specific, detailed studies and results.



	
Queries like methods to enhance immune function versus how to boost your immune system may lead to different sets of advice, with the former potentially retrieving more scientifically backed recommendations and the latter pulling in a broader range of content, including personal blogs or even sarcastic advice.






There are multiple approaches to solving such problems: simply rewriting the question to keep them “standardized” or more advanced using a multi-query approach and/or Rank Fusion Search. Both solutions are shown in Example 4-5. The intuition behind the multi-query approach is that the initial wording of a question, once embedded, may not align well with a document we wish to retrieve. By rewriting the question differently, we increase the likelihood of retrieving the desired document.
Among other options, you can decompose a complicated question into several, solving one at a time and using a step-back approach to ask a broader question.


Example 3-5. Multi-query: different perspectives


from langchain.prompts import ChatPromptTemplate

template = """You are an AI language model assistant. Your task is to generate five
different versions of the given user question to retrieve relevant documents from a
vector database. By generating multiple perspectives on the user question, your goal
is to help the user overcome some of the limitations of the distance-based
similarity search.
Provide these alternative questions separated by newlines.
Original question: {question}"""

prompt_perspectives = ChatPromptTemplate.from_template(template)

generate_queries = (
 prompt_perspectives
    | ChatOpenAI(temperature=0)
    | StrOutputParser()
    | (lambda x: x.split("\n"))
)

# Utility function to get unique documents
def get_unique_documents(documents: list[list]):
 flattened_documents = [doc for sublist in documents for doc in sublist]
 stringified_documents = [json.dumps(doc) for doc in flattened_documents]
 unique_stringified_documents = set(stringified_documents)
 unique_documents = [json.loads(doc) for doc in unique_stringified_documents]

    return unique_documents

def reciprocal_rank_fusion(results: list[list], k=60):
 fused_scores = {}
    for docs in results:
        # Assumes the docs are returned in sorted order of relevance
        for rank, doc in enumerate(docs):
 doc_str = langchain.load.dumps(doc)
            if doc_str not in fused_scores:
 fused_scores[doc_str] = 0
 previous_score = fused_scores[doc_str]
 fused_scores[doc_str] += 1 / (rank + k)

# Retrieval chain
mq_retrieval_chain = generate_queries | retriever.map() | get_unique_documents

# or for RAG Fusion implementation:
mq_retrieval_chain = generate_queries | retriever.map() | reciprocal_rank_fusion















Decomposing complex questions


Some of the questions may propose a particular challenge due to its complexity. In the next section, we’ll figure out how to deal with questions that may refer to several indexes. A helpful technique to solve complex questions might be to upgrade the chain-of-thoughts prompts by using the decomposition technique, shown in Example 4-6.


Example 3-6. Query decomposition


from langchain.prompts import ChatPromptTemplate

template ="""You are a helpful assistant that generates multiple sub-questions
related to an input question. \n
The goal is to break down the input into a set of sub-problems / sub-questions that
can be answered in isolation. \n
Generate multiple search queries related to: {question} \n
Output (3 queries):"""
prompt_decomposition = ChatPromptTemplate.from_template(template)

# LLM
llm = ChatOpenAI(temperature=0)

# Chain
generate_queries_decomposition = (
 prompt_decomposition |
 llm |
 StrOutputParser() |
 (lambda x: x.split("\n"))
)

# Run
question = "What are the key mechanisms of action for mRNA vaccines?"
generate_queries_decomposition.invoke({"question": question})
>>> ['1. How do mRNA vaccines stimulate the immune system?',
 '2. What cellular processes are involved in the action of mRNA vaccines?',
 '3. What are the roles of lipid nanoparticles in mRNA vaccine delivery?']



Now, to answer the original question, you can decompose questions either independently in parallel or recursively using the answer of a previous question as context for the current one.














Stepping back


Another technique that might help in understanding complex queries is reformulating the original question into a more abstract, higher-level query. This process involves stepping back from the initial question to consider a broader context, which helps the model generate more accurate and comprehensive answers, as it is shown in Example 4-7. The example implements a few shot technique that can be used and transferred to other methods.


Example 3-7. Step back


# Few Shot Examples
from langchain_core.prompts import FewShotChatMessagePromptTemplate
examples = [
 {
        "input": "What are the key molecular mechanisms involved in the regulation
        of the circadian rhythm in mammals?",
        "output": "what is the general mechanism of circadian rhythm regulation in
        living organisms?",
 },
 {
        "input": "How does the microbiome influence the immune system in humans?",
        "output": "what is the role of the microbiome in human health?",
 },
 {
        "input": "What are the primary factors contributing to the development of
        antibiotic resistance in bacterial populations?",
        "output": "what are the main causes of antibiotic resistance?",
 }
]
# We now transform these to example messages
example_prompt = ChatPromptTemplate.from_messages(
    [
        ("human", "{input}"),
        ("ai", "{output}"),
    ]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
 example_prompt=example_prompt,
 examples=examples,
)
prompt = ChatPromptTemplate.from_messages(
 [
 (
            "system",
            """You are an expert at world knowledge. Your task is to step back and
            paraphrase a question to a more generic step-back question, which is
            easier to answer. Here are a few examples:""",
 ),
        # Few shot examples
 few_shot_prompt,
        # New question
 ("user", "{question}"),
 ]
)

generate_queries_step_back = prompt | ChatOpenAI(temperature=0) | StrOutputParser()
question = "How do changes in pH affect the solubility of ionic compounds in aqueous
solutions?"
generate_queries_step_back.invoke({"question": question})

>>> how does pH impact the solubility of substances in water?















Routing to Correct Database/Index


In RAG systems with multiple knowledge sources or indexes, routing the query to the appropriate database or index is crucial for efficient and accurate retrieval. However, determining the relevant knowledge domain can be challenging, especially for queries spanning multiple topics or domains.


Routing issues might occur when a LangChain agent selects a tool based on the question, context, and tool description. Let’s look into issues such as incorrect route/domain selection, inefficient handling of multi-domain questions when several knowledge bases might required to be retrieved, and routing loops and dead-ends. Chapter 12 discusses the importance of correctly handling off-topic questions.


The routing algorithm might develop a bias towards certain models or resources, over-utilizing them even in scenarios where they are not the best fit.


Examples:



	
A query about Boiling temperature of water under 10 atm didn’t trigger a RAG pipeline but instead returned the answer from the models knowledge base, ignoring the pressure and returning 100°C (or 212°F).



	
A Can you help me? query didn’t trigger the special “medical assistance” prompt, leading to a generic response rather than tailored medical guidance.



	
A query about CRISPR-Cas9 genome editing techniques is consistently routed to a general-purpose biology model, ignoring a specialized genetic engineering resource.



	
A query about new developments in cancer immunotherapy is routed to a general clinical research model instead of a specialized oncology database.



	
The query is routed to the wrong database/table, leading to incorrect results, such as mixing up pharmacology data with toxicology data.






One of the possible solutions would be to fine-tune description and decision-making model to refine the routing logic over time. In Example 4-8, we’ll define a data model RouteQuery with a datasource field that can be either chemistry, drug_discovery, or biology. To incorporate RouteQuery, we’ll use with_structured_output LLM configuration. We’ll also define a system prompt to instruct the LLM to act as an expert in routing questions to the correct data source. The router is an LCEL chain with the prompt and the structured LLM.


Example 3-8. Logical routing


from typing import Literal
from langchain_core.pydantic_v1 import BaseModel, Field

# Data model
class RouteQuery(BaseModel):
    """Route a user query to the most relevant datasource."""
    datasource: Literal["chemistry", "drug_discovery", "biology"] = Field(
    ..., description= "Given a user question, choose which datasource would be most
    relevant for answering their question"
    )

# LLM with function call
structured_llm = llm.with_structured_output(RouteQuery)

# System prompt
system_prompt ="""You are an expert at routing a user question to the appropriate
data source. Based on the programming language the question is referring to, route
it to the relevant data source."""

# Prompt
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        ("human", "{question}"),
    ]
)

# Define router
router = prompt | structured_llm

question =""" What are the thermodynamic properties of the
compound formed when chlorine reacts with benzene under light?
"""

result = router.invoke({"question": question})
>>> RouteQuery(datasource='chemistry')



After collecting the result, you can define your algorithm’s route:


from langchain_core.runnables import RunnableLambda
def choose_route(result):
    if "chemistry" in result.datasource.lower():
        return "chemical chain" # Chemistry-related logic here
    elif "drug_discovery" in result.datasource.lower():
        return "drug_discovery chain" # Drug discovery-related logic here
    else:
        return "biology chain" # Logic related to biology here

full_chain = router | RunnableLambda(choose_route)
full_chain.invoke({"question": question})
>>> chemical chain


Besides the logical routing (LLM-based) that uses language models’ reasoning and contextual understanding capabilities to process and compare text, we can also use semantic (embedding-based) routing.
Such routing aims to use vector representations to capture semantic meaning and compare text based on similarity. It is efficient and scalable, well-suited for tasks involving content matching and retrieval, but may lack the depth of logical reasoning provided by LLMs.


A code implementation of semantic routing is provided in Example 4-9. The Most crucial part will be to define the specific prompt templates for each domain. Using the OpenAIEmbeddings class, we embed these templates and then compare the embedding of the user’s query to determine the most similar prompt template using cosine similarity. The prompt_router function handles this comparison, similar to the logic above.


Example 3-9. Semantic routing


from langchain.utils.math import cosine_similarity
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

# Domain prompts
chemistry_template ="""You are a very knowledgeable chemistry professor. You excel
at answering chemistry questions ...
Here is a question:
{query}"""

drug_discovery_template ="""You are an expert in drug discovery. You are adept at
answering questions related to drug discovery ...
Here is a question:
{query}"""

biology_template ="""You are a very knowledgeable biology professor. You are great
at answering biology questions...
Here is a question:
{query}"""

# Embed prompts
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
prompt_templates = [chemistry_template, drug_discovery_template, biology_template]
prompt_embeddings = embeddings.embed_documents(prompt_templates)

# Route question to prompt
def prompt_router(input):
    # Embed question
 query_embedding = embeddings.embed_query(input["query"])
    # Compute similarity
 similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]
 most_similar = prompt_templates[similarity.argmax()]
    # Chosen prompt
    if most_similar == chemistry_template:
        print("chemical chain") # Chemistry-related logic here
    elif most_similar == drug_discovery_template:
        print("drug_discovery chain") # Drug discovery-related logic here
    else:
        print("biology chain") # Logic related to biology here
    return PromptTemplate.from_template(most_similar)

chain = (
 {"query": RunnablePassthrough()}
 | RunnableLambda(prompt_router)
 | ChatOpenAI()
 | StrOutputParser()
)

chain.invoke(question)
>>> chemical chain



Chapter 6 will look into cases where several different indexes can be retrieved to answer the users’ query. In some instances, the routing logic might create loops where a query is passed between resources without concluding, or it may route a query to a resource that cannot handle it, resulting in a dead-end. An example of such behavior might be incorrectly determining a SQL database, with the agent repeatedly generating the same incorrect query. A solid solution would be to establish fallback options for queries that cannot be resolved through regular routing.












Constructing the Queries


So far, we’ve considered what the user wants and the data source most appropriate to answer the question. Constructing an effective query for the selected database or index is essential for retrieving relevant information. However, this process can be complex, requiring mapping the natural language query to structured queries or representations suitable for the underlying data format.












Asking tables and SQL/noSQL/graph databases


Getting specific answers from structured formats like tables, documents, or lists can be tricky, especially if you don’t pass proper descriptions of your data. Worst case: the system needs to extract meaningful information from tables, leading to incomplete or incorrect answers.


Retrieving specific information from structured data formats, such as tables and SQL databases, can be difficult without precise descriptions. Most of the tabular agents work by taking the column names of a couple of rows of data and attempting to create a schema based on that information. This can lead to incomplete or incorrect answers for multiple reasons, from misunderstanding the column’s purpose and required filters to be applied to creating a wrong SQL query due to LLM quality building dialect queries.


An example of a basic SQL retriver is provided below (Example 4-10).


Example 3-10. SQL Retrieval


from langchain.agents.agent_toolkits import create_retriever_tool
from langchain_community.agent_toolkits import create_sql_agent

db = SQLDatabase.from_uri("sqlite:///ConfidentialBiologyResearch.db")

retriever = vector_db.as_retriever(search_kwargs={"k": 5})
description = """Use this to look up values to filter on. Input is an approximate
spelling of the scientific term, output is valid scientific terms. Use the term most
similar to the search."""
retriever_tool = create_retriever_tool(
    retriever,
    name="search_scientific_terms",
    description=description,
)

agent = create_sql_agent(
    llm=llm,
    db=db,
    extra_tools=[retriever_tool],
    prompt=prompt,
    agent_type= "openai-tools",
    verbose=True,
)

agent.invoke({"input": "How many experiments on plant-microbe interactions have
resulted in increased nitrogen fixation in legumes?"})



NoSQL databases, designed to handle large volumes of unstructured data, also present unique challenges for query construction. These databases often lack the rigid schema of traditional relational databases, which can lead to inconsistencies and difficulties in querying specific data points. For example, retrieving detailed experimental metadata or specific patient records from a NoSQL database might result in incomplete or ambiguous results due to the flexible data models. This can hinder accurate data retrieval and analysis, necessitating robust query mechanisms and data validation processes to ensure the accuracy and reliability of the extracted information.


Graph databases are gaining more and more popularity in multiple fields. However, querying graph databases can also pose challenges due to the complexity of the relationships and the need for precise query formulations. For instance, extracting specific pathways or interaction networks might result in overly complex or incomplete results if the query does not accurately capture the desired relationships. It also strongly depends on the amount of data for a specific query language that was used for LLM training. For example, Neo4j (Example 4-11), one of the most popular graph databases, has tons of text-to-graph datasets used for LLM training and being used for retrieval purposes, as shown in the example below.


Example 3-11. Neo4j retrieval


from langchain_community.graphs import Neo4jGraph
from langchain.chains import GraphCypherQAChain

graph = Neo4jGraph()
chain = GraphCypherQAChain.from_llm(graph=graph, llm=llm, verbose=True)
response = chain.invoke({"query": "Which genes are involved in the metabolic pathway
of glucose in Homo sapiens?"})



The latest models show promising results in query construction on most popular databases. Still, you can increase the quality dramatically by providing some few-shot query examples and enriched schemas with descriptions.














Requesting APIs


API requests formulated through URI often encounter significant challenges. Constructing effective URI queries requires detailed knowledge of the API’s syntax, parameters, and the specific data structure being queried. Misunderstanding or incorrectly specifying these elements can lead to incomplete, irrelevant, or overwhelming results.


For example, requesting specific genomic sequences or protein structures might yield entire datasets instead of the targeted information if the URI query parameters are not accurately defined. The problem, in this case, occurs with a potential number of token limitations and processing the complex output. Another issue occurs when the URI is a single symbol wrong, returning a None answer. The system will later process this result as no information exists/found, which may lead to incorrect conclusions. These complexities highlight the need for comprehensive few-shot training and/or sophisticated query-building tools to effectively navigate and leverage the full potential of life sciences APIs.


# Sample code example
from langchain.chains.query_constructor.base import (
    StructuredQueryOutputParser,
    get_query_constructor_prompt,
)

# Generate a prompt and parse output
prompt = get_query_constructor_prompt(
    document_content_description, metadata_field_info
)
output_parser = StructuredQueryOutputParser.from_components()
query_constructor = prompt | llm | output_parser

# Invoke the query constructor with a sample query
query_constructor.invoke({
    "query": "Recent studies on CRISPR gene editing in plant biology focusing on
    increasing crop yield, published in high-impact journals"
})

>>> {
    "query": "CRISPR gene editing and crop yield",
    "filter": "and(eq(\"field\", \"plant biology\"), gt(\"impact_factor\", 10),
    eq (\"publication_type\", \"journal\"), gt(\"year\", 2019))"
}














Challenges with HTML, code and PDFs:


Extracting answers from complex document layouts, such as HTML, code and PDFs, may present significant challenges in data retrieval. These documents often contain important information embedded in tables, graphs, or other non-text elements that can be difficult for systems to parse accurately. In one case, the system may miss critical information, leading to incomplete or misleading results; in another, the pdf layout may be so complicated it may corrupt the retrieved documents (have you tried to convert a .pdf to .docx or .odt?). These issues underscore the need for advanced parsing techniques and tools to accurately interpret and extract data from complex document layouts to ensure comprehensive and reliable information retrieval. In the following chapters, we’ll look into implementing computer vision capabilities to parse tables and drawings in documents.


retriever = vector_store.as_retriever(
 search_type= "similarity",
 search_kwargs={
 "k": NUMBER_OF_RESULTS,
 "search_distance": SEARCH_DISTANCE_THRESHOLD},
 filters = {
"namespace": "...",
"allow_list": "..."
...
)


Using metadata is sometimes quite effective while querying, which involves leveraging structured information about data to enhance search accuracy and relevance. Metadata includes details like author, date, file type, tags, and categories, which help filter and refine search results. Incorporating metadata into query construction allows you to create more targeted and efficient searches, especially when dealing with large datasets. This approach allows for precise retrieval of information by specifying conditions that must be met, such as filtering documents by a specific author or date range, thereby improving the overall search experience.

Tip

Many user queries are best answered not by finding documents or data similar in the embedding space, but by leveraging the structure inherent in the data and expressed in the user query. For example, consider the query, What are the latest research articles on cancer treatment published in 2023? There is a portion (cancer treatment) that we may want to look up semantically, but also a component (year == 2023) that we want to look up exactly.
















Data Retrieval


As we’ve constructed the necessary query, it’s time to retrieve and rank relevant data based on the processed query, which is a critical step in RAG systems. Some annoying issues can take place at this stage.












Incorrect document ranking


Poor document ranking algorithms can result in the most relevant information being buried under less pertinent data. In the worst case, essential documents are overlooked because they are ranked lower than less relevant information. This issue often appears while querying data through semantic search. To address this, several tricks are suggested, as using several chunk_sizes, varying and similarity metrics and embedding models, and implementing reranking strategies to improve the retrieval accuracy of relevant documents. When paraphrasing the question, we’ve briefly touched on Rank Fusion Search in Query Translation and Understanding section earlier. We can use the mentioned Reciprocal Rank Fusion or other ranking algorithms to combine the results of multiple ranked lists.














Incomplete and low-quality information


Incomplete or outdated data can lead to significant issues, misleading the user. Another problem occurs when the system doesn’t find data in a particular data source, so instead, it uses its knowledge base or, even worse — invents data — the most threatening case of hallucinating.
Problems of incomplete data can have an additional angle if the property requested by the user is absent in the data source. Imagine requesting data on the toxicity of compounds from a data source containing only thermodynamic properties. Filters won’t be applied, leading to the possible conclusion that no toxic compounds exist in the dataset.


Another innovative method incorporating self-reflection to enhance the quality and relevance of retrieved documents is corrective retrieval-augmented generation (CRAG). Unlike traditional RAG approaches that perform a single retrieval step and then proceed to generation, CRAG introduces a grading mechanism to evaluate the relevance of the retrieved documents to the user’s query, as shown in Figure 4-5. If the documents are found to be relevant, they undergo a refinement process to extract and retain the most pertinent information. Contrariwise, if documents are considered ambiguous or incorrect, the system performs an additional web search to supplement the initial retrieval, ensuring that the generated response is based on the most accurate and comprehensive information available.



[image: CRAG]
Figure 3-3. Corrective retrieval-augmented generation (CRAG)




Chapter 6 talks more about LangGraph. Consider LangGraph at the moment as an orchestra of nodes and edges, where each node is an agent, and each edge is a communication line. Necessary agents are built to grade the relevance of retrieved documentsdocuments’ and use web search tools.














Data Augmentation and Response Generation


Integrating the top-ranked data into the LLM’s prompt and generating a coherent and relevant response is the ultimate goal of RAG systems. The last step of this process, data augmentation, and response generation, requires combining models’ language skills with external knowledge.
There is a large number of potential issues to keep in mind and enhancements to apply.












Relevant context missing


One of the possible issues is missing or not considering important context, which might get lost, leading to less accurate answers. In the worst case, a lack of context leads to generic or irrelevant answers, ignoring the nuance of the query.


Examples:



	
Asking about the side effects of a specific medication in a particular patient population and getting general information about the medication instead.



	
Inquiring about gene expression changes under specific experimental conditions but receiving broad information about gene expression.






The colustion may be to enhance the system’s ability to grasp the context of the question to fetch more accurate answers. A possible issue might also occur in memory used in the chain.














Data overflow


When overloaded with information, the RAG pipeline might not extract the correct information as there is too much noise, irrelevant information, and contradictions. In the worst case, noise overwhelms the system, resulting in off-topic, confusing, or overly generalistic answers.


Examples:



	
Searching for specific biomarker data in a large genomic dataset and getting overwhelmed with unrelated gene information due to improper filtering.



	
Looking for detailed results of a clinical trial but finding excessive background information on clinical trial methodologies.






The solution is to clean up the data and focus on compressing and summarizing information to reduce confusion, keeping attention on the problem that needs to be solved. A great idea would be to use the RRR method: Rewrite-Retrieve-Read, similar to paraphrasing the initial query covered earlier:


def parse_text(text):
    return text.strip('"').strip("**")

from langchain import hub
from langchain.prompts import ChatOpenAI, StrOutputParser, RunnablePassthrough

rewrite_prompt = hub.pull("langchain-ai/rewrite")
rewriter_chain = rewrite_prompt | ChatOpenAI() | StrOutputParser() | parse_text

rewrite_retrieve_read_chain = (
    {
        "context": {"x": RunnablePassthrough()} | rewriter_chain | retriever,
        "question": RunnablePassthrough(),
    }
    | prompt
    | model
    | StrOutputParser()
)

result = rewrite_retrieve_read_chain.invoke(...)














Output Format Management


Ensuring the output is correct per the instruction, like a table or list, is crucial. In the worst case, the system ignores format requests, providing information in a way that’s hard to use or understand. This is especially crucial when the chain designed isn’t the last, and its output serves as input for another chain. Using output parsers, clear instructions, and reformatting tools is better to shape the necessary answers to avoid such issues.














Self-RAG


A valuable idea to avoid hallucinations is using self-retrieval-augmented generation (Self-RAG), illustrated in Figure 4-6. Self-RAG involves a cyclical process where the model constructs a query, retrieves relevant documents, evaluates their relevance, and generates responses while continuously critiquing and refining its output.



[image: Self-RAG]
Figure 3-4. Self-retrieval-augmented generation (Self-RAG)




The Self-RAG process starts with the user’s question, followed by a query construction step and a retrieval step where relevant documents are fetched. These documents are then graded by an agent for relevance. The generation step follows only if the retrieved data is found relevant, where the model creates an answer; otherwise, a new query is constructed. The generated answer is then checked for hallucinations by another agent, and if none are found and the answer is satisfactory, the final answer is provided to the user. If the answer contains hallucinations or does not sufficiently address the question, the query is re-evaluated and possibly re-written to improve clarity and accuracy, thus restarting the cycle. This iterative method ensures the answers are well-supported by evidence and maintains high factual integrity, leveraging both the semantic context of the query and the structured data retrieved from the database.​












The Advantages of Hallucinating


So far, we’ve only spoken about the dark side of hallucinations: how to detect them and tackle them. Similar to every cloud having a silver lining, there is a light side of hallucinations, particularly in creativity and brainstorming. One of the abilities of these models is to generate novel and unexpected ideas. Unlike human thought processes, which are typically constrained by experience and learned knowledge, LLMs can produce imaginative and unconventional outputs. The hallucinations of LLMs can serve as a catalyst for human creativity, inspiring new directions and concepts that might not have emerged through traditional brainstorming methods. Future chapters discuss how to leverage and implement a combination of RAG and brainstorming.


LLM hallucinations can be insightful by introducing innovative hypotheses and experimental designs. One of the key advantages is the generation of novel research questions that might not be immediately apparent to human researchers. By leveraging the vast amounts of data they are trained on, LLMs can propose unexpected correlations and associations between biological entities, such as genes, proteins, and diseases. Though not consistently accurate, these suggestions may inspire researchers to explore new avenues and uncover groundbreaking discoveries that might have otherwise remained unexplored. This may be especially helpful for interdisciplinary research, as LLMs can create synthetic hypotheses that combine elements from different disciplines.


Another advantage is in the domain of problem-solving. LLMs can suggest out-of-the-box solutions by making connections that a human might overlook. These connections, even if initially perceived as unrealistic or inaccurate, can stimulate innovative thinking and lead to developing practical solutions through refinement and iteration. In scientific research or technological innovation, where interdisciplinary insights can lead to breakthroughs, the ability of LLMs to cross-pollinate ideas from diverse domains through seemingly “hallucinated” connections can be precious.










Summary


This chapter explored the hallucination phenomena, examining their causes, consequences, and potential solutions. We dived with multiple examples into the Retrieval-Augmented Generation concept, detailing the processes of indexing and data preparation, query translation and understanding, routing to the correct database or index, query construction, data retrieval, and the augmentation and generation of responses. We’ve also studied several advanced RAG concepts and discussed the possible advantages of hallucinations.


In future chapters, we’ll often use RAG pipelines. The following chapter will cover other LangChain initiatives and other LLM orchestration projects.
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Chapter 4. Building Personal Assistants



While working as a research scientist in a chemistry lab, most of my work was far from what is seen in movies: there was much more routine and less action. I recently bumped into a sketch in Figure 1, that covers the topic and had quite a laugh. But jokes aside. The questions that real scientists bump into daily may take enormous time and effort to solve. Is there a chance we can obtain movie superpowers with the help of generative AI?



[image: Real Scientists]
Figure 4-1. Real scientist vs movie scientists (inspired by The Upturned Microscope)




Generative AI can’t replace humans, but it can augment human capabilities to accelerate the pace of scientific discovery. Powered by LLMs, generative AI applications can help with topic explanation, parse vast scientific literature, extract insights, identify patterns, generate hypotheses, run calculations, and much more. Generative AI is already used by researchers to create clear and concise reports, presentation materials, and parts of research papers, ensuring their findings are communicated accurately and effectively.


We’ll dive into creating life science applications in Chapters 7-11, covering Biology, Chemistry, Healthcare and Drug Discovery. We’ll dedicate this Chapter to building personal assistants who can help with research and development.








Building assistants with Chains


In Chapter 3 we’ve discussed how to use chains in LangChain. In LangChain, a chain is a powerful concept that allows you to combine multiple operations and steps into a cohesive pipeline. Such sequences of operations provide a flexible and modular approach to orchestrating complex tasks by breaking them down into smaller, more manageable steps, mirroring how human researchers often tackle complex research tasks. Chains are handy for automating and streamlining various aspects of the research process, allowing complex tasks to be carried out by passing data from one function or module to another in a structured way.


Each chain can consist of multiple sub-chains or steps, where the output of one step serves as the input for the next, creating a seamless flow of information processing. The chain complexity may vary from simple data retrieval to more complex interactions involving multiple language models and external APIs. A basic example of a chain can include transforming a user query into an API call, reading the memory, retrieving data, and then formatting that data into a user-friendly response, as shown in Example 6-1.


Example 4-1. create_history_aware_retriever


from langchain import hub
from langchain_core.prompts import MessagesPlaceholder, ChatPromptTemplate
from langchain_core.messages import HumanMessage, AIMessage
from langchain_community.chat_models import ChatOpenAI
from langchain_community.vectorstores import FAISS
from langchain.chains import create_history_aware_retriever

llm = ChatOpenAI()
vector = FAISS.from_documents(documents, embeddings)
retriever = sample_vector_store.as_retriever()
prompt = ChatPromptTemplate.from_messages([
 MessagesPlaceholder(variable_name="chat_history"),
 ("user", "{input}"),
 ("user", "Given the above conversation, summarize the experimentation design")
])
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
chat_history = [
 HumanMessage(content="Can you use metric system when providing answers?"),
 AIMessage(content="Sure!")
]

retriever_chain.invoke({
 "chat_history": chat_history,
 "input": "Tell me how ..."
})



The create_history_aware_retriever is one of the supported chain types in LangChain. These imports are wrappers for an LCEL chain underneath. If you look into the source code of create_history_aware_retriever, stuff_documents_chain and create_sql_query_chain chains, shown in Example 6-2, you’ll notice the construction of chains follows a certain sequence:


Example 4-2. LCEL underwear of create_history_aware_retriever, stuff_documents_chain and create_sql_query_chain chains


# create_history_aware_retriever
return (
 RunnableBranch(
 (
 # Both empty string and empty list evaluate to False
 lambda x: not x.get("chat_history", False),
 # If no chat history, then we just pass input to retriever
 (lambda x: x["input"]) | retriever,
 ),
 prompt
 | llm
 | StrOutputParser()
 | retriever,
 ).with_config(run_name="chat_retriever_chain")
)

# stuff_documents_chain
return (
 RunnablePassthrough.assign(**{DOCUMENTS_KEY: format_docs}).with_config
 (run_name="format_inputs")
 | prompt
 | llm
 | StrOutputParser() 
).with_config(run_name="stuff_documents_chain")

# create_sql_query_chain
return (
    RunnablePassthrough.assign(**inputs) # type: ignore
    | (
      lambda x: {
        k: v
        for k, v in x.items()
        if k not in ("question", "table_names_to_use")
      }
    )
    | prompt_to_use.partial(top_k=str(k))
    | llm.bind(stop=["\nSQLResult:"])
    | StrOutputParser()
    | _strip
)



Above LCEL chains have a particular repeating pattern. In order to understand it, let’s take a closer look at how LCEL chains are constructed.
The simplest chain possible can consist only of a single link. This prominent element is the LLM - ChatAnthropic, ChatOpenAI, or any other chat model. We’ll ask the model: What is a bond?.


model = ChatOpenAI()
chain_1 = model
chain_1.invoke(("human", "What is a bond?"))

>>> AIMessage(content='A bond is a fixed income investment in which an investor
loans money to an entity (such as a corporation or government) for a defined
period of time at a fixed interest rate. The entity borrows the funds ...',
response_metadata={'token_usage': {'completion_tokens': 92, 'prompt_tokens':
17, 'total_tokens': 109}, ...


The answer is technically correct, even though the context of this book allowed us to expect a more chemical response. This is why prompt instruction often precedes the model in an LCEL chain. The input for the chain will be a dictionary with the key question and a value like What is a bond?. The prompt template uses this input to construct a prompt tailored for the language model. The example below creates a prompt like You are a chemist. Answer the following question: What is a bond? The prompt is usually set up using some prompt templates - an instance of the ChatPromptTemplate class, which knows how to format the prompt appropriately for a chat-based language model that expects a series of messages as input.

Note

The pipe operator (|) allows chaining functions together by feeding the output of one function as input to the next function. When the Python interpreter sees a | b, it attempts to call the \\__or__ method of object a with b as the argument. This allows defining custom \\__or__ methods that take another object and return a new callable that combines the two objects’ functionality. The Runnable class demonstrates this by wrapping a function and defining an \\__or__ method that returns a new Runnable instance whose \\__call__ method applies the two original functions in sequence. This way, functions can be chained using the pipe operator, with each function consuming the output of the previous one in the chain.




prompt = ChatPromptTemplate.from_template("""
 You are a chemist. Answer the following question: {question}
""")
chain_2 = prompt | model
chain_2.invoke({"question": "What is a bond?"})

>>> AIMessage(content='In chemistry, a bond is a strong force of attraction that
holds atoms together in a molecule. Bonds are formed when atoms share or ...',
response_metadata={'token_usage': {'completion_tokens': 81, 'prompt_tokens': 23,
'total_tokens': 104}, ...


Including a prompt definitely gave better results in terms of expectations. Still, the output is messy, containing metadata and unnecessary details that the user output should not contain. The purpose of an output parser is to take the output from the language model (the BaseMessage object) and convert it into a desired format. The StrOutputParser simply converts the message content into a regular Python string. This string is the final output of the chain and can be used or displayed as needed. Other output parsers could be used to format the output differently, such as extracting specific information or converting it to a different data structure.


output_parser = StrOutputParser()
chain_3 = prompt | model | output_parser
chain_3.invoke({"term": "What is a bond?"})

>>> In chemistry, a bond is a force that holds two or more atoms together in a
molecule. Bonds are formed when electrons are shared, transferred, or ...


Now, we have the output that we can pass on to the user. In the chains provided above, there are also Runnable components. Runnable is a key concept in LangChain that enables the creation of modular, composable chains or pipelines of different components. Runnables are deeply integrated into LangChain, making it easy to incorporate various LangChain components (prompts, models, output parsers, etc.) into your pipelines. The main Runnable types are RunnableParallel, which allows running multiple components in parallel and merging their outputs; RunnableLambda, which wraps a Python function to make it pipe-compatible; Runnable, which selects which branch to run based on a condition; and RunnablePassthrough, which is used to pass inputs through unchanged. Combining these Runnables allows you to construct sophisticated chains that integrate data retrieval, prompting, model execution, post-processing, and custom logic into a single cohesive pipeline.


In Chapter 4, we’ve discussed how RAG systems provide relevant context-wise results. It seems logical to add the retrieval step as first in the prompt | model | output_parser chain. This allows us to set up the context prior and provide it in the prompt that will be fed to the LLM, as shown in Example 6-3


Example 4-3. RAG LCEL pipeline


model = ChatOpenAI(model="...")

vectorstore = DocArrayInMemorySearch.from_texts(
 [
 "DNA carries genetic information within cell chromosomes.",
 "Ecosystems consist of living organisms and their physical environment.",
 "The human heart pumps blood through arteries and veins.",
 "Some bacteria cause diseases while others are beneficial.",
 "Homeostasis maintains steady internal conditions in living systems.",
 "Natural selection helps organisms adapt and survive in their environments.",
 "Mitochondria produce ATP, the main energy source for cells.",
 "Photosynthesis in plants produces oxygen.",
 "The brain controls body functions and is located in the skull.",
 "The immune system defends against harmful substances by detecting antigens."
 ],
 embedding=OpenAIEmbeddings(),
)
retriever = vectorstore.as_retriever()

template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
output_parser = StrOutputParser()

# Setup retrieval and handling of inputs
retrieval = RunnableParallel(
 {"context": retriever, "question": RunnablePassthrough()}
)

# Combine the components into a processing chain
chain = retrieval | prompt | model | output_parser

chain.invoke("How do plants release oxygen?")
>>> Plants release oxygen through photosynthesis.

chain.invoke("What is the main energy source for cells?")
>>> The main energy source for cells is ATP, which is produced by mitochondria.

chain.invoke("Who painted mona Lisa?")
>>> I'm sorry, I cannot provide an answer to that question based on the given
context.



As we’ve learned more about the LCEL syntax, I could’ve developed similar logic in plain Python. Runnable and LCEL add an additional layer of abstraction on top of LangChain, not fully respecting PEP20 and the Zen of Python with its “non-pythonic” syntax. Moreover, while Runnables aim to be efficient, LCEL may introduce some performance issues overhead, particularly for computationally intensive tasks due to their dynamic nature. Tooling support and debugging capabilities are limited, and intermediary inputs and final outputs must be passed down from the start to the end in LCEL, which can lead to extra arguments in most chains, even if they are not used.


However, despite all that, there are significant benefits of using LCEL on an industrial level, such as using Runnables to break down complex pipelines into smaller, reusable components. This potentially enables running multiple components in parallel using RunnableParallel, significantly improving performance when dealing with independent tasks or data sources. LCEL also provides built-in support for async operations and a consistent interface for all chains, making it easier to industrialize your code with out-of-the-box stream, async, fallback models, typing, runtime configurations, etc.


Runnables also provide a straightforward mechanism for linking multiple chains, allowing the design and creation of more complex pipelines. This capability significantly enhances the flexibility and scalability of applications, making it easier to handle sophisticated data transformations and interactions within the LangChain framework. An example of chaining two different chains by passing a parameter in between is provided in Example 6-4. We’ll pass symptoms as input and expect possible lab exams to be conducted.


Example 4-4. Multiple LCEL chains


# Prompt to determine the disease based on symptoms
prompt_symptom = ChatPromptTemplate.from_template("Based on these symptoms, what
disease might this person have: {symptoms}?")

# Prompt to recommend lab exams based on the suspected disease
prompt_disease = ChatPromptTemplate.from_template(
 "What lab exams should be taken to confirm a diagnosis of {disease}?"
)

model = ChatOpenAI()

# Chains to determine the disease from symptoms
sub_chain_symptom = prompt_symptom | model | StrOutputParser()
sub_chain_disease = prompt_disease | model | StrOutputParser()

main_chain = (
 {"disease": sub_chain_symptom}
 | sub_chain_disease
)

>>> main_chain.invoke({"symptoms": "fever, cough, and shortness of breath"})
Recommended Lab Exams: Some lab exams that may be helpful in confirming a diagnosis
of pneumonia, bronchitis, or COVID-19 include:
1. Chest X-ray: This imaging test can help identify any abnormalities in the lungs,
such as inflammation or fluid buildup, which may indicate pneumonia.
2. Complete blood count (CBC): This test can help determine if there is an infection
present by measuring the levels of white blood cells, red blood cells, and platelets
in the blood.
3. C-reactive protein (CRP) test: Elevated levels of CRP in the blood may indicate
inflammation, which can be a sign of pneumonia or other infections.
......



In the Example 6-4, we have 3 chains: 1 general chain and 2 sub-chains. Each of the subchains has the same prompt | model | output_parser structure. The main chain is responsible for passing the output of the sub_chain_symptom as the dictionary input to sub_chain_disease. Figure 6-2 visualizes the chains we’ll develop in further examples for ease of understanding.



[image: Chain schemas]
Figure 4-2. Multi-chain examples




Example Y shows a more complicated example where several subchains are merged. We’ll cover a case when an observation under a specific condition can be used for experiment planning with outcome prediction. The application will generate a hypothesis based on the observation. Based on the hypothesis, an experiment with conditions similar to the ones under observation will be created. Afterward, the expected results are generated, showcasing the experiment and hypothesis reasoning.

Tip

Calling chain.get_graph().print_ascii() in Python will allow you to visualize the obtaining chain.




In the code below, I won’t use any main chain. Instead, I’ll show how the call stack happens when invoking the last chain. The user will pass a dictionary with observation and condition keys. The outer experiment_outcome chain will call the experiment_suggestion chain, which will call the hypothesis_generator chain to process the input. Let’s observe it in Example 6-5.


Example 4-5. Experimentation planning with LCEL chains


model = ChatOpenAI()

prompt_observation = ChatPromptTemplate.from_template(
 "Based on the observation: {observation}, what is a possible biological explanation
 or hypothesis?"
)
prompt_hypothesis = ChatPromptTemplate.from_template(
 "What experiment could we perform to test the hypothesis: {hypothesis}, considering
  the condition: {condition}?"
)
prompt_experiment = ChatPromptTemplate.from_template(
 "Given the setup: {experiment_setup}, what might be the expected outcome of this
  experiment?"
)

hypothesis_generator = (
 {"observation": RunnablePassthrough()}
 | prompt_observation
 | model
 | StrOutputParser()
)

experiment_suggestion = RunnableParallel(
 {"hypothesis": hypothesis_generator, "condition": RunnablePassthrough()}
) | prompt_hypothesis
| model
| StrOutputParser()

experiment_outcome = (
 {"experiment_setup": experiment_suggestion}
 | prompt_experiment
 | model
 | StrOutputParser()
)

>>> experiment_outcome.invoke({"observation": "Pea plants with round seeds produce
mostly round seed offspring, even when crossed with wrinkled seeds.",
"condition": "controlled pollination"})

Experiment Prediction: The expected outcome of this experiment would be that the
majority of the offspring plants will have round seeds, even if one parent has
wrinkled seeds. This would support the hypothesis that the trait for seed shape in
pea plants is controlled by a single gene with two alleles, one for round seeds
(dominant) and one for wrinkled seeds (recessive). The expected ratio of round
seeds to wrinkled seeds in the offspring would be approximately 3:1, as predicted
by Mendel's laws of inheritance for a dominant-recessive gene pair.



In the Example 6-6 below, we’ll develop a debate prototype. We’ll implement RunnableParallel to enable branching of the processing chain, where the output from one component is simultaneously directed to multiple subsequent components (pros and cons). Subsequent components then converge to merge the results, synthesizing a comprehensive final response.

Tip

Notice that we define a model and output parser for every subchain we use. Swapping for a domain-tuned model where necessary makes a lot of sense. Changing the output parser may be useful if the following outputs expect a specific format of data: string, dictionary, pandas dataframe, etc.




We’ll set up all the chains so that once the argument is generated, both arguments_for and arguments_against chains are called. The results of executing these chains are later passed to the final_responder chain. To orchestrate the pipeline, we’ll set a main_chain, similar to one of the previous examples.


Example 4-6. Debate with LCEL chains


model = ChatOpenAI()

# Chain to generate an initial argument
generate_argument = (
 ChatPromptTemplate.from_template("Generate an argument about: {input}")
 | model
 | StrOutputParser()
 | {"base_response": RunnablePassthrough()}
)

# Chain to list the positive aspects (pros) of the argument
arguments_for = (
 ChatPromptTemplate.from_template("List the pros or positive aspects of:
 {base_response}")
 | model
 | StrOutputParser()
)

# Chain to list the negative aspects (cons) of the argument
arguments_against = (
 ChatPromptTemplate.from_template("List the cons or negative aspects of:
 {base_response}")
 | model
 | StrOutputParser()
)

# Template for the final responder to synthesize the debate
final_responder = (
 ChatPromptTemplate.from_template(
 "Discussion on {input}:\n\nPros:\n{arguments_for}\n\nCons:\n{arguments_against}\n\n
 Can you provide a balanced conclusion?"
 )
 | model
 | StrOutputParser()
)

# Full chain to manage the debate
main_chain = (
 generate_argument
 | {
 "arguments_for": arguments_for,
 "arguments_against": arguments_against,
 "input": itemgetter("base_response")
 }
 | final_responder
)

>>> chain.invoke({"input": "the use of CRISPR technology in human embryos"})
Debate Summary: In conclusion, the use of CRISPR technology in human embryos
presents both potential benefits and significant ethical and societal concerns.
While proponents argue that it has the potential to eliminate genetic diseases,
reduce suffering, and enhance desirable traits, opponents raise valid concerns
about ethical implications, unintended consequences, unequal access, and lack
of regulation...



Using Runnables, you can create a router chain and use recursion to loop through a chain. You can develop complex logic if you toss a RunnableBranch with a RunnableLambda as an end-of-loop statement. I’ll not cover this in this Chapter, but it’s a great exercise to practice your LangChain skills.


If you’ve read up until now, you’ve come close to becoming the master of chains. Next on our list are agents.










Building assistants with Agents


Generative AI can automate and streamline many routine processes by setting up chains (discussed above) or agents (Chapter 3) tailored to specific tasks. Although they may seem alike - there is a core difference between them. While a chain is a sequence of preset steps (though you may include branches), an agent is a component that can use attached tools and define the sequence of steps itself. Let’s build a simple calculator agent (Example 6-7) that will demonstrate the possibilities of an agent. We’ll specify multiple tools for mathematical operations and let the agent decide what tools to use and when.


Example 4-7. Calculator agent


class NumericInput2(BaseModel):
 a: float = Field(description="first number")
 b: float = Field(description="second number")

@tool("sum_2_numbers", args_schema=NumericInput2)
def sum2(a, b):
 """Sum two numbers."""
 return a + b

@tool("substract_2_numbers", args_schema=NumericInput2)
def substract2(a, b):
 """Subtract two numbers."""
 return a - b

@tool("multiply_2_numbers", args_schema=NumericInput2)
def multiply2(a, b):
 """Multiply two numbers."""
 return a * b

@tool("divide_2_numbers", args_schema=NumericInput2)
def divide2(a, b):
 """Divide two numbers."""
 return a / b

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
tools = [sum2, substract2, multiply2, divide2]
prompt = ChatPromptTemplate.from_messages(
 [
 (
 "system",
 "You are a calculator. Use PEMDAS. Make sure to use the tools. If tools can't be
 used, perform the operation as you can",
 ),
 ("placeholder", "{chat_history}"),
 ("human", "{input}"),
 ("placeholder", "{agent_scratchpad}"),
 ]
)

calculator_agent = create_tool_calling_agent(llm, tools, prompt)
calculator_agent_executor = AgentExecutor(
    agent=calculator_agent, tools=tools, verbose=True, handle_parsing_errors=True
)

calculator_agent_executor.invoke({"input": "3 / 3 + 3 * 3"})
> Entering new AgentExecutor chain...
Invoking: `multiply_2_numbers` with `{'a': 3, 'b': 3}`
9.0
Invoking: `divide_2_numbers` with `{'a': 3, 'b': 3}`
1.0
Invoking: `sum_2_numbers` with `{'a': 1, 'b': 9}`
10.0
The result of the expression 3 / 3 + 3 * 3 is 10.
> Finished chain.
>>> {'input': '3 / 3 + 3 * 3',
 'output': 'The result of the expression 3 / 3 + 3 * 3 is 10.'}

calculator_agent_executor.invoke({"input": "Take half of the previous answer
and deduct 5"})
> Entering new AgentExecutor chain...
Invoking: `divide_2_numbers` with `{'a': 10, 'b': 2}`
5.0
Invoking: `substract_2_numbers` with `{'a': 5, 'b': 5}`
0.0
Half of the previous answer (5) deducted by 5 is 0.
> Finished chain.
>>> {'input': 'Take half of the previous answer and deduct 5',
 'output': 'Half of the previous answer (5) deducted by 5 is 0.'}



Notice how the calculator_agent is not bound by a rigid sequence of operations. Instead, it evaluates the input dynamically and decides which tools (sum, subtract, multiply, divide) to use based on the context. This flexibility allows the agent to handle complex queries and perform multiple operations in the correct order of precedence (PEMDAS: Parentheses, Exponents, Multiplication and Division, Addition and Subtraction), as defined by its own prompt. The tools’ selection and sequence are determined by the large language model brain of the agent.


The reason behind using the create_tool_calling_agent in Example 7 is the possibility of using tools that accept multiple inputs. Tool calling allows a model to detect when one or more tools should be called and respond with the inputs that should be passed to those tools. Callable tools for Examples 6-8 and 6-9 are shown in Figure 6-3.



[image: Agents and their Tools]
Figure 4-3. Tool usage by agents




The independence of agents from predefined sequence patterns and rich tool supply makes them much more flexible in use. For instance, an agent could be designed to perform comprehensive literature searches, summarize key findings, or generate initial literature review drafts. Separate agents could be tasked with cleaning and preprocessing data, ensuring consistency and adherence to established standards, and freeing researchers to focus on data analysis and interpretation.
Furthermore, agents can be configured to handle various writing tasks, such as generating research proposals, report drafts, or even portions of scientific papers. By leveraging generative AI’s natural language generation capabilities, these agents can produce high-quality, coherent writing while adhering to specific formatting guidelines and citation styles. This saves time and ensures consistency and accuracy in communicating research findings.


An example of a scientific publication search agent that looks up data in Scopus and Arxiv is given in Examples 6-8 and 6-9. The code for setting up the agent and executing was split for explanation purposes. We’ve gone with a simpler, no-chat language model for our application, thus, create_react_agent was used. If you want to convert the application to use Chat models, it is better to select the create_tool_calling_agent used above.


Example 4-8. Scientific search agent setup


generate_scopus_url_prompt = """
 Generate a SCOPUS API query URL based on the user's request.

 Instructions:
 - Use Boolean operators (AND, OR, AND NOT) to combine keywords.
 - URL-encode the query string.
 - Use field restriction codes to search specific fields.
 - Use proximity operators (pre/n, w/n) for proximity searches.
 ...
 (view full prompt in GitHub: https://github.com/IvanReznikov/LangChain4LifeScience)
 ...

 User request: "return data regarding 9780123456789 isbn"
 URL query: https://api.elsevier.com/content/search/scopus?query=ISBN(9780123456789)
 &apiKey=7f59af...

 User request: {user_query}
 URL query:
"""

generate_scopus_url_prompt = PromptTemplate.from_template(generate_scopus_url_prompt)

chain = (
 {"user_query": RunnablePassthrough()}
 | generate_scopus_url_prompt
 | llm
 | StrOutputParser()
)

generate_scopus_query_tool = Tool(
 name="generate_scopus_url",
 func=chain.invoke,
 description="A tool to generate a scopus url to retrieve data"
)

@tool('request_url')
def request_url(url):
 "Tool for querying url"
 ...

agent_prompt = hub.pull("hwchase17/react")
agent_prompt.template = """
 You are a scientific search assistant. You have access to scopus and arxiv.
 To query Scopus, first generate a query using generate_scopus_url and execute it
 using query_url tool
 If arxiv or scopus is mentioned - query them. Else, query both.
 Provide final result in the following format:
 Arxiv results:
 <arxiv results>
 Scopus results:
 <scopus results>
""" + agent_prompt.template

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
tools = load_tools(
 ["arxiv"],
) + [generate_scopus_query_tool, request_url]

sci_search_agent = create_react_agent(llm, tools, agent_prompt)
agent_executor = AgentExecutor(
    agent=sci_search_agent, tools=tools, verbose=True, handle_parsing_errors=True
)



There are 3 ways in which tools were defined above. ArXiv tool is present in langchain and is loaded using the load_tools function. There is currently no tool to access Scopus search - so we’ll develop our own using public APIs. Based on the documentation, Scopus search results can be accessed via constructed links. For this case, 2 tools were built - one to create a URL and one to fetch the data.


The Scopus API instructions can be well used to construct URLs, as well as several few-shot training examples. A chain would be ideal for incorporating all the logic described, providing an instruction prompt and the LLM engine. Such a chain can be wrapped in a tool that an agent can later call. Once the Scopus link is created, we’ll use a request_url tool to retrieve the data from the API.


For the agent prompt, we can use the standard react one, pulled from the LangChain hub. We’ll slightly modify it to incorporate our agents’ tasks, hinting at what tool to use when and the expected format for the result.


Example 6-9 shows the result of executing List the latest 5 langchain paper? versus our scientific search agent. You can observe the Reasoning-Action (ReAct) framework in action, as the agent utilizes a Thought → Action → Action Input → Observation sequence of events, where the next thought is dependent on the question or previous observation before providing the Final Answer.


Example 4-9. Scientific search agent execution


# mid 2024 query
result = agent_executor.invoke(
 {
 "input": "List the latest 5 langchain paper?",
 }
)

> Entering new AgentExecutor chain...
I should query Arxiv for the latest langchain papers.
Action: arxiv
Action Input: "langchain"
Published: 2023-08-15 Title: From Prompt Injections to SQL Injection Attacks: How
Protected is Your LLM-Integrated Web Applicati...

I have found the 5 latest langchain papers on Arxiv.
Action: generate_scopus_url
Action Input: "langchain"
https://api.elsevier.com/content/search/scopus?query=TITLE-ABS-KEY(langchain)&count=5
...

I should now query Scopus for the latest langchain papers.
Action: request_url
Action Input: https://api.elsevier.com/content/search/scopus?
query=TITLE-ABS-KEY(langchain)&count=5 ... 
... 'prism:coverDate': '2024-07-01', 'prism:doi': '10.1016/j.mfglet.2024.03.010',
'pii': 'S2213846324000221', 'citedby-count': '0', 'affiliation': [{'@_fa': 'true',
'affilname': 'Fraunhofer Institute for Casting...

I have retrieved the latest langchain papers from Scopus.

Final Answer: Arxiv results: 1. Title: From ...
> Finished chain.

>>>
Arxiv results:
1. Title: From Prompt Injections to SQL Injection Attacks: How Protected is Your
LLM-Integrated Web Application? Authors: Rodrigo Pedro, Daniel Castro, Paulo
Carreira, Nuno Santos Published: 2023-08-15
... (2 more results)

Scopus results:
1. Title: Large language model based agent for process planning of fiber composite
structures Author: Holland M. Published: July 2024
... (4 more result)



One may ask: Why bother developing your own tools, chains, agents, and apps? The answer is simple: trust and control. I’ve seen multiple “scientific search” applications that claimed effective live search, only to figure they are looking in their own db or vectorstore, which might be significantly outdated. Plus, once you master LangChain, you can always customize your generative AI application. In Example 6-9, you might’ve noticed that the result for Arxiv was dated much earlier than the Scopus result. The main reason, shown in Example 6-10, is that the default Arxiv LangChain tool does not support sorting options, whereas ArXiv API and the original Python package that’s used as the tool bases both do.


Example 4-10. ArXiv comparison between LangChain wrapper and original package


from langchain_community.utilities.arxiv import ArxivAPIWrapper
import arxiv
query = "langchain"

# langchain wrapper for arxiv
arxiv_tool = ArxivAPIWrapper(
 top_k_results = 3,
 ARXIV_MAX_QUERY_LENGTH = 300,
 load_max_docs = 3,
 load_all_available_meta = False,
 doc_content_chars_max = 40000
)
result = arxiv_tool.run(query)
>>> Published: 2023-08-15 Title: From Prompt Injections to SQL Injection Attacks:
How Protected is Your ...

# default arxiv API client
client = arxiv.Client()
search = arxiv.Search(
 query,
 max_results = 3,
 sort_by = arxiv.SortCriterion.SubmittedDate
)
result = client.results(search)
>>> 2024-05-03 12:30:01+00:00 Comparative Analysis of Retrieval Systems in the ...



The writing capabilities are often showcased as one of the best cases to use generative AI, especially language models, as they are language models because they work well with texts. While individual agents can be highly effective for specific routine tasks, the true power of generative AI lies in the ability to orchestrate teams of agents working together on more complex research challenges. Instead of one agent struggling with juggling tens of tools, we can organize a team of agents, each with their own set of prompts, models, and tools. By combining the capabilities of multiple specialized agents, researchers can create powerful workflows that seamlessly integrate various steps in the research process.


For example, consider a research project aimed at identifying potential drug candidates for a particular disease. A team of agents could be assembled, with each agent responsible for a specific aspect of the process. One agent might be tasked with conducting a comprehensive literature review, identifying relevant studies and synthesizing key findings. Another agent could analyze existing databases of molecular structures and biological pathways, using machine learning models to predict potential drug-target interactions. Yet another agent could be responsible for designing and simulating virtual experiments, evaluating the efficacy and safety of promising drug candidates.


These individual agents could then collaborate, sharing their outputs and insights with each other. A coordinating agent could oversee the entire process, ensuring that the outputs from each agent are integrated and analyzed cohesively. This collaborative approach leverages the strengths of each individual agent while mitigating their respective limitations, resulting in a more comprehensive and efficient research pipeline.
Moreover, the modular nature of these agent teams allows for flexibility and adaptability. As new research challenges emerge or priorities shift, the composition of the agent team can be reconfigured, with new agents added or existing ones modified to meet the project’s evolving needs. This agility can accelerate the pace of research and foster a more dynamic and responsive scientific ecosystem.










Building Assistants with Multiple Agents


LangChain’s primary focus has always been on directed chains, as one can suggest by its name. Tasks are organized in a linear sequence or a non-cyclic graph where each step follows a predefined order, ensuring the flow of operations is clear and straightforward. This structure is beneficial for processes such as data pipelines or workflow automation. LangChain excels in scenarios where tasks must be executed in a strict sequence, each step dependent on the completion of the previous one, which aligns well with the principles of Directed Acyclic Graphs​ (DAGs).


However, if we want to build a team of agents that can communicate with each other, we might need another type of agent organization. In contrast to LangChain, LangGraph is a more flexible graph-based structure that enables the creation of cyclic workflows where tasks can loop back and forth. This evolution from linear chains to complex graphs allows for greater adaptability and sophistication in handling dynamic and iterative processes. LangGraph’s ability to introduce cycles into agent runtimes is particularly noteworthy, as it enables repetitive loops that are essential for tasks requiring iterative improvements, such as refinement of search queries or continuous learning systems.


In LangChain, an agent is a system powered by a language model that decides which actions to take. The agent runtime runs this agent in a loop, deciding on actions, executing them, recording observations, and continuing until the agent decides to stop. LangGraph enhances this by making it easier to customize the agent runtime, offering more flexible and dynamic ways to create these runtimes compared to the previous agent runtime - AgentExecutor class, which handled tools and errors in a specific manner.


A key innovation in LangGraph is the introduction of cyclical agent runtimes, addressing the need for cycles in executing agents, which traditional frameworks like LangChain Expression Language lack. LangGraph has an AgentExecutor class, close to the one in LangChain, and a ChatAgentExecutor that manages agent states as lists of messages. This is particularly useful for chat-based models representing function calls and responses as message types. LangGraph allows for modifications to these base executors, such as adding human-in-the-loop interactions or specifying the order of tool usage, enhancing the flexibility and functionality of agent execution.


In LangGraph, the agent’s runtime is tracked through a graph state, allowing each node to push updates to the state, eliminating the need to pass the entire state from node to node. Agent states and nodes are defined to enable the agent to make decisions and execute tools. The state includes inputs, chat history, agent outcomes, and a list of steps taken by the agent. Nodes are defined to determine the agent’s actions and execute tools, with edges connecting these nodes to create a conditional or continuous workflow. Conditional edges allow for different paths based on the agent’s outcomes, while normal edges ensure a consistent return to the agent for further actions. This setup allows for dynamic and flexible agent runtimes. Later we’ll take a look on Example 11, where a similar to LangChain agent workflow with 2 nodes and both types of edges is implemented. The graphical illustration can be seen on Figure 6-4.



[image: LangGraph Agent Schema]
Figure 4-4. LangGraph simple agent schema




LangGraph also introduces the concept of compiling the graph structure into an executable form, enabling it to handle inputs and produce outputs. By running the graph with specific inputs, the agent can make decisions, call tools, and update its state accordingly. The results of each node and the final agent state can be observed, providing a comprehensive overview of the agent’s execution process. This approach allows for easy customization and extension of agent functionality, making LangGraph a powerful tool for developing advanced agent-based systems. Example 12 shows a single LangGraph agent implementation with several loops necessary to answer the requested question.


Example 4-11. LangGraph Agent


class AgentState(TypedDict):
 input: str
 chat_history: list[BaseMessage]
 agent_outcome: Union[AgentAction, AgentFinish, None]
 intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]

# Define the agent
def run_agent(data):
 agent_outcome = agent_runnable.invoke(data)
 return {"agent_outcome": agent_outcome}

# Define the action node - function to execute tools
tool_executor = ToolExecutor(tools)
def execute_tools(data):
 agent_action = data["agent_outcome"]
 output = tool_executor.invoke(agent_action)
 return {"intermediate_steps": [(agent_action, str(output))]}

def should_continue(data):
 # If the agent outcome is an AgentFinish, then we return `end` string
 if isinstance(data["agent_outcome"], AgentFinish):
 return "end"
 else:
 return "continue"

# Define a new graph
workflow = StateGraph(AgentState)

# Define the two nodes we will cycle between
workflow.add_node("agent", run_agent)
workflow.add_node("action", execute_tools)

# Set the entrypoint as `agent`
workflow.set_entry_point("agent")

# Add a conditional edge
workflow.add_conditional_edges(
 "agent", #start node
 should_continue, #function that will determine which node is called next
 # Mapping for next action
 {
 # If `tools`, then we call the tool node.
 "continue": "action",
 # Otherwise we finish.
 "end": END,
 },
)

# Add a normal edge from `tools` -> `agent` - after `tools` is called,
# `agent` node is called next.
workflow.add_edge("action", "agent")

# Compliling graph
app = workflow.compile()

inputs = {"input": """How does the microstructure of a metal alloy change during
 heat treatment, and what are the subsequent effects on its
 mechanical properties and corrosion resistance in marine environments?""",
 "chat_history": []}
for s in app.stream(inputs):
 print(list(s.values())[0])
 print("----")

>>> {'agent_outcome': AgentActionMessageLog(
tool='semanticscholar',
tool_input={'query': 'microstructure of metal alloy during heat treatment'},
log="\nInvoking: `semanticscholar` with `{'query': 'microstructure of metal alloy
during heat treatment'}`\n\n\n",
message_log=[AIMessage(content='', additional_kwargs={'function_call':
{'arguments': '{"query":"microstructure of metal alloy during heat treatment"}',
'name': 'semanticscholar'}}, response_metadata={'finish_reason': 'function_call'},
id='run-08c14f2f-7d25-4c2a-9df0-08f227ceb95f-0')])}
'----'
{'intermediate_steps': [(AgentActionMessageLog(
tool='semanticscholar',
tool_input={'query': 'microstructure of metal alloy during heat treatment'},
log="\nInvoking: `semanticscholar` with `{'query': 'microstructure of metal alloy
during heat treatment'}`\n\n\n",
message_log=[AIMessage(content='', additional_kwargs={'function_call':
{'arguments': '{"query":"microstructure of metal alloy during heat treatment"}',
'name': 'semanticscholar'}}, response_metadata={'finish_reason': 'function_call'},
 id='run-08c14f2f-7d25-4c2a-9df0-08f227ceb95f-0')]),
                         'Published year: 2022\n'
                         'Title: Effect of heat treatment and ageing on '
                         'microstructure for hypoeutectic Al-7Si alloy and '
                         'hybrid metal matrix composites\n'
                         '...)]}
'----'
{'agent_outcome': AgentActionMessageLog(
tool='semanticscholar',
tool_input={'query': 'mechanical properties and corrosion resistance of metal alloys
 in marine environments'},
log="\nInvoking: `semanticscholar` with `{'query': 'mechanical properties and
corrosion resistance of metal alloys in marine environments'}`\n\n\n",
message_log=[AIMessage(content='', additional_kwargs={'function_call':
{'arguments': '{"query":"mechanical properties and corrosion resistance of metal
alloys in marine environments"}', 'name': 'semanticscholar'}},
response_metadata={'finish_reason': 'function_call'},
id='run-a168e895-1a08-40f2-8ac1-f430308bab39-0')])}
'----'
{'intermediate_steps': [(AgentActionMessageLog(
tool='semanticscholar',
tool_input={'query': 'mechanical properties and corrosion resistance of metal alloys
in marine environments'},
log="\nInvoking: `semanticscholar` with `{'query': 'mechanical properties and
corrosion resistance of metal alloys in marine environments'}`\n\n\n",
message_log=[AIMessage(content='', additional_kwargs={'function_call': {
    'arguments': '{"query":"mechanical properties and corrosion resistance of metal
    alloys in marine environments"}', 'name': 'semanticscholar'}},
response_metadata={'finish_reason': 'function_call'},
id='run-a168e895-1a08-40f2-8ac1-f430308bab39-0')]),
                         'Published year: 2016\n'
                         'Title: Electrodeposited Metal Matrix Composites for '
                         'Enhanced Corrosion Protection and Mechanical '
                         'Properties\n'
                         'Authors: Casey R. Thurber\n'
                         'Astract: In the oil and gas industry, high corrosion '
                         'resistance and hardness are needed to extend the '
                         'lifetime of the coatings due to exposure to high '
                         'stress and salt environments. Electrodeposition has '
                         ...)]}
'----'
{'agent_outcome': AgentFinish(
return_values={'output': 'The microstructure of a metal alloy changes during heat
treatment, and this can have subsequent effects on its mechanical properties and
corrosion resistance in marine environments. Here are some findings from research
papers:\n\n1. **Effect of Heat Treatment on Microstructure and Mechanical Properties:
**\n   - A study on the fabrication and microstructure of an aluminum-based hybrid
composite alloy found that heat treatment at 540°C for 12 hours...
**Corrosion Protection and Mechanical Properties in Marine Environments:**\n   - In
the oil and gas industry, electrodeposition of metal matrix composites has been used
to enhance corrosion resistance and hardness in marine environments. A study ...
These findings provide insights into the changes in microstructure, mechanical
properties, and corrosion resistance of metal alloys during heat treatment and their
subsequent behavior in marine environments.')}
'----'



How one can organize LangGraph agents mirrors different organizational structures, where multiple nodes (or departments) can interact in various ways, allowing for parallel processing and iterative refinement. If we take a look at Figure 5, we can view the most common types of organizational structures from a graph perspective:
Hierarchical Structures (Figure 5a) can be represented as a tree graph, where a single root node (typically the CEO or top executive) and subordinate nodes branch out from the root, representing the different levels of management and employees. The hierarchical structure is characterized by a transparent chain of command and well-defined reporting relationships.
Flat Structures (Figure 5b) can be represented as a graph with fewer levels or a single level, where most nodes (employees) are connected to a central node (manager or coordinator). This structure promotes decentralization, cross-functional collaboration, and faster decision-making.
Matrix Structures (Figure 5c) can be represented as a graph with cross-functional connections, where employees may report to multiple managers or project leaders based on their functional expertise and project assignments. The matrix structure combines the advantages of functional and product/project-based structures.
Network Structures (Figure 5d) can be represented as a decentralized graph with multiple interconnected nodes (teams or individuals) that collaborate and share information seamlessly. The network structure is often seen in organizations that prioritize agility, innovation, and knowledge sharing.



[image: Different Organizational Structures]
Figure 4-5. Different organizational structures




Using the above organizational structures, we can create multi-agent collaborations that will divide a complex problem into smaller sub-tasks and assign each sub-task to a specialized agent or model. The key idea is to leverage the strengths of different AI agents, each designed to excel at a particular task or skill domain. By combining the capabilities of multiple specialized agents collaboratively, the overall system can tackle challenges that would be difficult for any single agent alone.

Tip

You can visualize the structure of your graph using the following code:


from IPython.display import Image, display
display(Image(graph.get_graph(xray=True).draw_mermaid_png()))


or


display(Image(app.get_graph().draw_png()))


where graph is your compiled workflow




This is accomplished by creating a state graph of nodes representing the various AI agents and tools involved. The nodes communicate by passing messages and state data between each other, following predefined logic. Some nodes may be responsible for gathering data, others for analysis, generating visualizations, etc. Each hands off to the next best-suited node when its part is complete. The nodes can invoke tools and functionality when required to assist in their sub-tasks.


The collaborative multi-agent approach can provide an efficient divide-and-conquer strategy for complex problem-solving. It allows the overall system to be greater than the sum of its parts by synergistically combining the specialized capabilities of different AI components. This paradigm has emerged as a powerful way to develop sophisticated AI solutions that can outperform what would be possible with any individual, general-purpose AI agent or AI model.


In Example 11, the decision-making agent was the Agent node. It is an effective strategy to have one supervisor agent that can collect and analyze the results from other agents and make weighted decisions on what actions to take next - close to flat structures, as shown in Figure 5b. Below, in Example 12, a team that searches scientific results, visualizes them and generates a summary report is built. The communication schema of such a team is shown on Figure 6.



[image: Communication Among AI Agents in a Scientific Search and Report Team]
Figure 4-6. Communication among AI agents in a scientific search and report team




The team can be described as follows:



	
User: The user initiates the process by inputting a request such as List 10 llms with results on STEM and Humanities results on MMLU. Create a report that includes the histogram of different model scores and an overall table. Include the summary of the findings in the report.



	
Supervisor: The supervisor agent determines which nodes (agents) to engage based on the next action. The Researcher is called if the action determines to gather information from academic and research databases. If visualization is required, the Supervisor calls VizGenerator, whereas the ReportGenerator is called if the Supervisor requests a report to be generated. If any calls don’t meet the quality, the Supervisor will call the respective Agent again. Once the Supervisor decides the task is completed, it passes the FINISH command to the user.



	
Researcher: The Researcher agent receives the request from the Supervisor. It triggers the search functions of tools provided (arxiv and semanticscholar). The response is passed back to the Supervisor.



	
VizGenerator: The VizGenerator agent receives the request from the Supervisor. It triggers the python REPL, to generate and execute python/matplotlib code. The response is passed back to the Supervisor.



	
ReportGenerator: The ReportGenerator agent receives the request from the Supervisor. It triggers the write_report tool to create the summary, generate HTML text, and save the file to storage. The response is passed back to the Supervisor.






Example 4-12. Research, visualization and report team


def create_agent(llm: ChatOpenAI, tools: list, system_message: str) -> AgentExecutor:
    # Create a prompt template with the system message and placeholders for messages
    # and agent scratchpad
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_message),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),
        ]
    )

    # Create the agent using the LLM, tools, and prompt
    agent = create_openai_tools_agent(llm, tools, prompt)

    # Create an executor for the agent with the specified tools
    executor = AgentExecutor(agent=agent, tools=tools)

    return executor


def agent_node(state: AgentState, agent: AgentExecutor, name: str) -> dict:
    # Invoke the agent with the current state
    result = agent.invoke(state)

    # Return the result message with the agent's output
    return {
        "messages": [HumanMessage(content=result["output"], name=name)]
    }

# Create a prompt template with the system message and placeholders for messages
# and agent scratchpad
    prompt = ChatPromptTemplate.from_messages(
        [
            ("system", system_message),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),
        ]
    )

    # Create the agent using the LLM, tools, and prompt
    agent = create_openai_tools_agent(llm, tools, prompt)

    # Create an executor for the agent with the specified tools
    executor = AgentExecutor(agent=agent, tools=tools)
    return executor

# Define the team members
members = ["Researcher", "VizGenerator", "ReportGenerator"]

# Define the options for the next action
options = ["FINISH"] + members

# Define the system prompt
system_prompt = (
    "You are a supervisor tasked with managing a conversation between the "
    "following workers: {members}. Given the following user request, "
    "respond with the worker to act next. Each worker will perform a "
    "task and respond with their results and status. When finished, "
    "respond with FINISH."
)

# Create the prompt template
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
 MessagesPlaceholder(variable_name="messages"),
        (
            "system",
            "Given the conversation above, who should act next? "
            "Or should we FINISH? Select one of: {options}",
        ),
    ]
).partial(options=str(options), members=", ".join(members))

# Define the function for routing the next action
function_def = {
    "name": "route",
    "description": "Select the next role.",
    "parameters": {
        "title": "routeSchema",
        "type": "object",
        "properties": {
            "next": {
                "title": "Next",
                "anyOf": [
                    {"enum": options},
                ],
            }
        },
        "required": ["next"],
    },
}

# Initialize the LLM
llm = ChatOpenAI(model="gpt-4o", temperature=0, streaming=True)

# Define the AgentState class to represent the state of each agent
class AgentState(TypedDict):
 messages: Annotated[Sequence[BaseMessage], operator.add]
 next: str

# Create the research agent
research_agent = create_agent(
 llm,
 tools=load_tools(["arxiv"]) + [SemanticScholarQueryRun()],
 system_message="You should provide accurate data for the chart generator to use.",
)
research_node = functools.partial(
    agent_node, agent=research_agent, name="Researcher"
)

# Create the rest of nodes:
chart_agent = ...
chart_node = ...
report_agent = ...
report_node = ...

# Create the supervisor chain using the ChatPromptTemplate and other configurations
supervisor_chain = (
 prompt
 | llm.bind_functions(functions=[function_def], function_call="route")
 | JsonOutputFunctionsParser()
)

# Define the workflow using the StateGraph
workflow = StateGraph(AgentState)
workflow.add_node("Researcher", research_node)
workflow.add_node("VizGenerator", chart_node)
workflow.add_node("ReportGenerator", report_node)
workflow.add_node("supervisor", supervisor_chain)

# Ensure workers report back to the supervisor when done
for member in members:
 workflow.add_edge(member, "supervisor")

conditional_map = {member: member for member in members}
conditional_map["FINISH"] = END
workflow.add_conditional_edges(
    "supervisor", lambda state: state["next"], conditional_map
)
workflow.set_entry_point("supervisor")

# Compile the workflow graph
graph = workflow.compile()



An example of a generated report is shown on Figure 7. Of course if you had a predefined template for the report you could use or design a tool to read it and use it in the resulting document.



[image: Generated Report Example]
Figure 4-7. Generated Report Example




Composing your AI teams, one can draw a parallel with the nine Belbin team roles framework, describing team dynamics. These roles are categorized into Action-Oriented, People-Oriented, and Thought-Oriented roles, each bringing unique strengths and contributions to the team. In the context of AI teams using LangGraph, these roles can be mapped to the functions and capabilities of AI-driven agents.


Action-Oriented roles, such as Shaper, Implementer, and Completer-Finisher, are crucial for driving progress and ensuring that projects are executed efficiently. In an AI team, a Shaper can be represented by an AI project manager or a planning agent that dynamically adjusts strategies and plans. This is the role that our Supervisor fulfilled. Implementers can be AI agents that focus on coding, integrating systems, or using tools. Completer-Finishers ensure the quality and accuracy of the outputs, which can be embodied by validation and testing agents that rigorously check the AI models outputs for errors and inconsistencies.


People-Oriented roles like Coordinators, Team Workers, and Resource Investigators ensure smooth communication and collaboration. Despite having “people” in the category, these roles can still be effectively used in AI teams. Coordinators can be AI agents that manage workflows and distribute tasks among team members, ensuring alignment with the overall project goals. Currently, we’ve set the agents, their tools, and communication manually, but this might change and be set by a Coordinator agent. Team Workers foster cooperation and maintain team morale, which can be supported by AI-driven feedback systems. One can experiment with that later. Resource Investigators, that explore opportunities and external connections, can be replaced by AI agents that scan for the latest research, tools, and technologies, feeding valuable insights into the project. This AI role is yet the most futuristic.


Thought-Oriented roles, including Plant, Monitor Evaluator, and Specialist, drive innovation and strategic thinking. Plants, the creative thinkers, can be AI agents that generate new ideas and solutions through techniques like brainstorming and pattern recognition. We’ve covered a case in Chapter 4, how creativity can be boosted by increasing the temperature. These agents might be powered by different models of different finetuned domains and different temperature outputs. Monitor Evaluators critically analyze ideas and proposals, a role that can be fulfilled by analytical AI agents that evaluate data and model performance. As AI agents are different from humans, combining this role with the Supervisor role may make sense. Specialists who provide in-depth knowledge in specific areas can be represented by domain-specific finetuned models and RAG systems.

Note

Of course, there are other ways to manage and divide team roles: Margerison-Mccann, Strength Deployment Inventory, and others. Describing Belbin team roles aims to give ideas of potential team member connections, functions, and prompts that should be introduced to AI teams.




AI-powered teams can be created for various data-related jobs: auto labeling, data extraction, imputation, and synthesis. A wide range of applications where the potential of AI teams will flourish are time-consuming and manual-intensive. As a PhD student, I spent nearly half a year preparing all necessary literature reviews. Other time-consuming tasks are format standardization for different publications and slide preparation. We’ll continue building specialized research teams with different architectures and complexities to solve various tasks in the coming chapters.










Summary


This chapter explored the construction of personal assistants using LangChain, focusing on implementing various chains and agents. I demonstrated how to build assistants with chains, illustrating the call stack process through the experiment planning application that used a separate chain to process experiment output and a chain to generate hypotheses. The use of parallel chains was shown with the debate prototype example. We’ve also developed an agent assistant for scientific publication search, integrating Scopus and Arxiv. We’ve also built several teams of AI models that communicated with each other to generate a scientific report based on user requests.


Following chapters will contain multiple examples of LangChain pipelines and LangGraph teams under different life science domains.


TODO:
https://langchain-ai.github.io/langgraph/concepts/high_level/
https://langchain-ai.github.io/langgraph/concepts/agentic_concepts/











Chapter 5. LangChain for Chemistry



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 7th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.




Microsoft, NVIDIA, IBM, and other tech companies use AI to level up our understanding of chemistry. They’re using generative AI to help find new drugs, materials, and products faster than ever. This technology makes testing new ideas in silico first more efficient, saving time and money.


Much of the generative AI effort has been put into drug discovery, which we’ll discuss in Chapter 9. But there are plenty of examples besides. Microsoft is using Azure Quantum Elements to improve research in materials science. This tool combines elements of generative AI and quantum computing to find and develop new materials with specific properties more efficiently. Companies like Unilever use such technology to create better products, like personalized hair care solutions, quicker with less waste. Microsoft is also working with other companies like Johnson Matthey to solve climate change problems.


Multiple companies invest in AI research, reflecting their belief that these technologies will become even more significant. Now, as never, you might see life science companies partnering with tech companies to expand their reach and improve the quality of their AI systems.


As discussed in Chapter 2, the type of generative AI model outputs may vary. In the case of chemistry, the three most important types of generative AI can be used: text-based, code-based, and chemistry-based. This categorization is primarily based on the output or as the main component. Of course, there may be boundary cases, but I’ll decomposite possible applications below:








Text-Based


In text-based applications, the central part is text processing and generating output text. Most of such applications will use language and written text as sources of information gain.










Information search


LLMs, trained on chemical literature, may provide specific details about reactions, mechanisms, or material properties much quicker than traditional search, making literature reviews faster.












Explaining chemical phenomena


Finetuned LLMs can explain chemical concepts, such as why specific redox potentials occur, though these explanations may sometimes need to be more accurate or complete. Similarly, trained models can also be used to generate hypotheses and plan experiments by suggesting step-by-step pathways and explaining their reasoning to optimize synthesis routes. Such an example was shown previously in Chapter 6.












Summarizing research papers


LLMs can condense large amounts of chemical research papers, highlighting key findings and methods and helping researchers stay current with new developments.












Working with scientific equipment


LangChain applications can retrieve information regarding the configuration of scientific equipment and possible automation. Future applications will be able to manage laboratory equipment through text commands, showing their ability to conduct experiments in optimal configuration using a text-based interface.












Code-Generative


In code-based applications, the central part is code generation. The output may be a number, formula, or image, but they are generated as a result of function executions, tool usage, or API calls.










Using APIs and chemical Python packages


LangChain tools can be used to call APIs like PubMed or ChemSpider for chemical information retrieval or to execute predefined methods, while LLMs can generate dynamic code using Python packages. Such code can be executed to perform calculations, analyze data, and predict properties. This opens significant potential, and later in this chapter, you’ll discover how to solve multiple tasks using LLM-powered RDKit or other packages.












Creating input files for chemistry software


Developing LLM prompts, we can generate files for computational chemistry programs like Gaussian, GAMESS, or other software by specifying structures, methods, desired outputs, and other parameters.












Chemistry-Generative


In chemistry-based applications, the central part is dedicated to working with chemistry-tuned LLMs and generating molecules or chemical compounds as an output. Most applications may have different inputs for the encoder part, but the decoders’ output is a graph, a SMILES, or other chemical or material output.










Creating new molecules


The primary expectation of chemistry-tuned LLMs is to generate molecules. Possible molecular structures can be created based on the text description, precursors, desired chemical characteristics, or other data correctly fed into the encoder. This will speed up the search for new materials and reagents in the future. For example, one can develop an application to explore block polymers and design molecules based on chemical constraints. Another possibility is to adjust chemical data from text inputs. For example, one can develop a LangChain application to alter existing molecules to improve properties like solubility.












Predicting chemical reactions


Using the tuned LLM, a LangChain application may be able to forecast products and intermediates of reactions, helping chemists design efficient and selective synthetic routes by anticipating possible issues. This may be done purely by an LLM, but a LangChain app can assist with extracting the most and best from the model using external tools and agents.












Designing catalysts and optimizing reaction conditions


Similar to the above points, a LangChain application may be designed to generate catalysts by predicting how changes will affect their activity and selectivity. Other applications can suggest optimal conditions for reactions.


There might be cases that fall outside the above-suggested categorization and may fall into multiple categories. Let’s look at an example:












Converting Between Notations


Text-based LLMs and chemistry-tuned models may be used as the core in LangChain applications to convert between compound names and SMILES notation. A code-based application can also be used to look up specialized APIs and use code packages to return a SMILES output.


Let’s look at how pure text-based and code-based models can be used to develop applications. Later, we’ll explore how LangChain applications can be used for chemical text cleanup and take a look at how generative chemistry may use chemical models.












Creating Applications with External Packages


Let me show you ways how LangChain can enhance chemical research and analysis. The aim is to demonstrate how these advanced technologies can streamline and improve tasks. For example, I’ve picked simple benchmarks, such as molecular formula determination, molecular weight calculation, and visualization of chemical structures in 2D and 3D from the SMILES (simplified molecular-input line-entry system) representation. We’ll look into different strategies, the specifics of each method, and how they contribute to achieving accurate and efficient results in chemistry.


In order to define the quality of these applications, we’ll set several questions regarding aspirin (Figure 8-1) SMILES representation  CC(=O)OC1=CC=CC=C1C(=O)O:



	
Query 1: What is the formula of CC(=O)OC1=CC=CC=C1C(=O)O?



	
Query 2: What is the molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O?



	
Query 3: Draw a 2D representation of CC(=O)OC1=CC=CC=C1C(=O)O?



	
Query 4: Draw a 3D representation of CC(=O)OC1=CC=CC=C1C(=O)O?






The answers for these questions are shown in Figure 8-1 below from the PubChem resourse.



[image: Aspirin Chemical Data]
Figure 5-1. Aspirin Chemical Data




First, we’ll look into ChemCrow, a powerful tool that leverages the capabilities of large language models to interpret and generate chemical information. Having a couple of exciting tools up its sleeve, such as SMILES2Name, SMILES2Weight for our purposes, but also multiple other RDKit, rxn4chemistry, PubChem, ChemSpace integrations. After the first version published in April 2023, ChemCrow was published in Nature next year. This approach demonstrates the utility of generative AI in understanding and manipulating chemical data with high accuracy.


We’ll learn how ChemCrow can perform versus our benchmark, but before that, I want to stop how ChemCrow integrates safety tools to ensure the responsible and safe execution of chemical tasks. The ControlledChemicalCheck tool cross-references CAS numbers against a list of controlled substances to prevent the synthesis of hazardous chemicals, stopping operations if a match is found. The ExplosiveCheck tool verifies the explosive nature of a molecule by consulting the PubChem database and issuing warnings if necessary. The SafetySummary tool provides a comprehensive overview of a molecule’s safety, including operational safety, Globally Harmonized System (GHS) for Hazard Classification and Labelling information, environmental risks, and social impacts, supplemented by LLM to fill any data gaps. These tools collectively enhance ChemCrow’s safety by preemptively identifying potential hazards, ensuring compliance with safety standards, and providing critical safety information to users.

Warning

Safety is paramount when leveraging LLMs to democratize access to chemical, medical, and biological knowledge. While these tools can significantly advance research and education, developers must anticipate potential misuse and the severe consequences that could arise from it. Erroneous guidance in chemical synthesis could create hazardous substances or unsafe experimental conditions, endangering both researchers and the environment. Additionally, the misuse of these tools could facilitate the production of illicit drugs or chemical weapons. Developers must implement robust safety checks, validation protocols, and ethical guidelines to mitigate these risks, ensuring that the powerful capabilities of LLMs are harnessed responsibly and safely.




Having ChemCrow as a solid benchmark, we’ll investigate the performance of pure gpt-3.5-turbo and gpt-4o models in handling similar tasks. By comparing the outputs of these models, we’ll gain insights into the strengths and limitations of using standalone generative AI models in chemistry. This comparison will highlight the differences in performance and accuracy when using different versions of GPT for chemical data interpretation.


We’ll also explore the implementation of LangChain simple chains, combining prompting techniques with OpenAI models. This method involves creating a simple prompt encouraging the LLM that it is a “world-class specialist in chemistry.” By examining the effectiveness of this chain-based approach, we’ll understand how a simple prompt can assist in achieving desired outcomes in chemical analysis.


Moreover, we’ll look into developing a custom ReAct agent equipped with specialized tools that include ReturnFormula, ReturnMolecularWeight, Return2DMolecule, and Return3DMolecule. We’ll see how you can design tools and navigate a LangChain agent to perform desired tasks.


Lastly, we’ll discuss an innovative approach to scrape all code documentation and use FAISS retrievers to build agents that can search through cleaned and split RDKit documentation. We’ll explore how this approach enables the LLM to provide more accurate and contextually relevant answers, showcasing the potential of combining generative AI with extensive documentation.

Note

Experimenting with generative AI differs significantly from traditional software testing due to its inherently non-deterministic nature. Unlike traditional software that produces consistent outputs for given inputs, generative AI systems, particularly those based on large language models, generate outputs that may vary widely even with the same input prompt and temperature. This variability originates from the probabilistic nature of the underlying algorithms, which sample from distributions of possible responses, incorporating randomness to enhance creativity and versatility, as discussed in Chapter 2.




I’ll display code fragments to illustrate how different models, chains, and agents work. Complete code can be found in GitHub










ChemCrow


Currently, ChemCrow’s latest version (0.3.24) does not support the LangChain 0.1+, making it challenging to use with other agents. We’ll run the ChemCrow agent with two OpenAI models: gpt-3.5-turbo and gpt-4o. The model has several purposes: the conversational one and the one used for tools, as seen in Example 8-1. We’ll set them the same for both cases under study, although the tools we’re interested in do not require a language model.


Example 5-1. ChemCrow initialization


from chemcrow.agents import ChemCrow
chem_model = ChemCrow(model=..., tools_model=..., temp=0)



In Example 8-2, we’ll apply both models for the created ChemCrow instance to convert aspirin SMILES into a formula. It’s worth noting that there is no built-in ChemCrow tool to do so. As you can see from Example 8-2, the agent powered by the gpt-3.5-turbo model called several irrelevant tools (Name2SMILES and SMILES2Weight) before returning the answer C10H8O4, which is definitely incorrect. The gpt-4o model is called a built-in Python_REPL tool to execute generated by the model code and return the result. This method has a significant drawback, relying on the compatibility of the code generated and the package installed, which we will discuss later.


Example 5-2. ChemCrow answer for 1st query


query_1 = "What is the formula of CC(=O)OC1=CC=CC=C1C(=O)O?"
chem_model.run(query_1)

# gpt-3.5-turbo
>>>
> Entering new RetryAgentExecutor chain...
I need to convert the given molecule into its SMILES notation to determine its
formula.
Action: Name2SMILES
Action Input: CC(=O)OC1=CC=CC=C1C(=O)O
Observation: CC(=O)OC1=CC=CC=C1C(=O)O

Thought:
[23:03:11] Explicit valence for atom # 1 Si, 8, is greater than permitted
Thought: The SMILES notation for the given molecule is CC(=O)OC1=CC=CC=C1C(=O)O.
Action: SMILES2Weight
Action Input: CC(=O)OC1=CC=CC=C1C(=O)O
Observation: 180.042258736
Thought:Final Answer: The formula of the molecule CC(=O)OC1=CC=CC=C1C(=O)O is
C10H8O4 with a molecular weight of approximately 180.042 g/mol.

> Finished chain.
'
The formula of the molecule CC(=O)OC1=CC=CC=C1C(=O)O is C10H8O4 with a molecular
weight of approximately 180.042 g/mol.

# gpt-4o
>>>
> Entering new RetryAgentExecutor chain...
Action: Python_REPL
Action Input:
"`python
from rdkit import Chem

# Define the SMILES string
smiles = "CC(=O)OC1=CC=CC=C1C(=O)O"

# Convert SMILES to a molecule
molecule = Chem.MolFromSmiles(smiles)

# Get the molecular formula
formula = Chem.rdMolDescriptors.CalcMolFormula(molecule)
print(formula)
```
Observation: C9H8O4

Thought:Final Answer: The formula of CC(=O)OC1=CC=CC=C1C(=O)O is C9H8O4.

> Finished chain.
'
The formula of CC(=O)OC1=CC=CC=C1C(=O)O is C9H8O4.



For the 2nd query to determine the molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O, both ChemCrow instances selected the SMILES2Weight tool and returned the correct answer. Let’s proceed to the 3rd and 4th queries, which involve drawing 2D and 3D representations of aspirin. In the case of drawing a 2D representation, the gpt-3.5-turbo powered ChemCrow instance did call the Python_REPL tool to execute generated by the model code, similar to the gpt-4o case for the 1st query. The correct code for the 2D representation was also generated by the gpt-4o, and the model even attempted to display base64. Regarding the 3D representation, shown in Example 8-3 both models suddenly realized they were doing with molecules and called the ControlChemCheck tool. Such behavior represents caveats and the not-truely deterministic nature of OpenAI language models. Though the gpt-4o powered agent suggested using other software, it can be safely said both agents failed to generate a 3D structure. Example 8-3 also highlights the issue of LLM hallucinations in the field of tool selection.


Example 5-3. Incorrect tool definition in ChemCrow


> Entering new RetryAgentExecutor chain...
The question involves a molecule, so I need to check if it is a controlled chemical
first.

Action: ControlChemCheck
Action Input: CC(=O)OC1=CC=CC=C1C(=O)O
Observation: CC(=O)OC1=CC=CC=C1C(=O)O has a low similarity (0.3056) to a known
controlled chemical. This is substance is safe, you may proceed with the task.
Thought:
[23:04:18] Explicit valence for atom # 1 Si, 8, is greater than permitted
Thought: The molecule is not a controlled chemical. I can proceed to draw the 3D
representation of the molecule.

Action: Name2SMILES
Action Input: CC(=O)OC1=CC=CC=C1C(=O)O
Observation: CC(=O)OC1=CC=CC=C1C(=O)O
Thought:
[23:04:19] Explicit valence for atom # 1 Si, 8, is greater than permitted
Final Answer: The 3D representation of the molecule with the SMILES string "CC
(=O)OC1=CC=CC=C1C(=O)O" can be visualized using molecular visualization software
such as Jmol, Avogadro, or Chem3D. You can input the SMILES string into one of
these tools to generate and view the 3D structure.

> Finished chain.
'
The 3D representation of the molecule with the SMILES string "CC(=O)OC1=CC=CC=C1C
(=O)O" can be visualized using molecular visualization software such as Jmol,
Avogadro, or Chem3D. You can input the SMILES string into one of these tools to
generate and view the 3D structure.



As we’ve seen, the ChemCrow agents can be helpful in some chemical tasks, as several queries were solved by inner tools, either Python_REPL. Besides calling unnecessary tools, other issues must be met, such as the initial setup and import of the package. Currently, it requires users to declare all API keys, including those not in use, before importing the package. Furthermore, the package has limitations in supporting local LLMs, and its chemical functionalities are somewhat restricted. Customization options are also limited. For instance, if you want to disable the verbose mode, the package requires the OpenAI key to be clearly declared, which is entirely unexpected. However, one of the significant issues is the current incompatibility with the latest LangChain updates.


These aspects position ChemCrow as a suitable tool for beginners, but it might only partially meet the needs of advanced users seeking extensive customization and broader functionalities. This experiment also shows the limitation of the agent using their own tools. We’ll explore this constraint more deeply when building custom agents later in this chapter.

Tip

In the last call, one of the safety checks was triggered.
How would you construct the agent to call the safety check before executing the user query?
Can you think of a way to optimize the solution, calling the tool rarer depending on the substance/query case?














LLMs


Now, as we’ve set the benchmark, let us explore what raw models are capable of. gpt-4o has demonstrated superior accuracy across various benchmarks compared to gpt-3.5-turbo. For instance, gpt-4o achieves high scores on academic exams and professional tests, reflecting its advanced comprehension and problem-solving abilities. This makes it especially valuable for tasks requiring detailed and precise answers, such as those in scientific and technical fields.


You may ask why a domain model isn’t compared to the GPT models. I did, and the results aren’t that good (score 1 out of 4 questions for ChemLLM and 0/4 for LLM4Chem, as shown in Example 8-4), as shown in Figure 8-2 for the AI4Chem/ChemLLM-20B-Chat-DPO model. The models may be tuned to beat specific benchmarks, but even wrapping our SMILES with <SMILES> pads doesn’t work well. Moreover, though we’ve expected the molecular formula to be answered for another query (Example 8-4), the generated formula is still incorrect (C11H10O5 instead of C9H8O4)


Example 5-4. LLM4Chem


from generation import LlaSMolGeneration
generator = LlaSMolGeneration('osunlp/LlaSMol-Llama2-7B')

> generator.generate("What is the formula of CC(=O)OC1=CC=CC=C1C(=O)O?")
>>> <productIUP> CCCCCC...CCCCCCCCCCCCMS(CCCCCCCCCCCCMSMSMS...MSMSMSMS

> generator.generate("What is the molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O?")
>>> <loginst> P2 </loginst> What is the molecular formula of CC(=O)OC1=CC=CC=C1C
(=O)O? <loginst> CCCCCCCC...CCCCCCCCS </loginst> </loginst> </loginst </
loginst ...

> generator.generate("Draw 2D representation of CC(=O)OC1=CC=CC=C1C(=O)O?")
>>> <SMILES> CC(=O)OC1=CC=CC=C1C(=O)O </SMILES> </SMILES> The molecule is a
benzoate ester obtained by formal condensation of the carboxy group of benzoic
acid with the hydroxy group of 2-acetylphenol. It is a benzoate ester and a
member of benzoic acids ....

> generator.generate("What is the formula of <SMILES> CC(=O)OC1=CC=CC=C1C(=O)O </
SMILES>?")
>>> <SMILES> CC(=O)OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 </SMILES> .</s>

generator.generate("What is the molecular mass of <SMILES> CC(=O)OC1=CC=CC=C1C
(=O)O </SMILES>?")
>>> <MOLFORMULA> C11H10O5 </MOLFORMULA> .</s>



As discussed in Chapter 2, I feel there is a need for domain LLMs, but primarily for expert-answering purposes. LLMs hardly do simple math, so calculations cannot be trusted. Most chemical models, as LlaSMol, ChemLLM, and other mentioned in Chapter 2, are trained to solve specific tasks (sometimes to beat the benchmark). Despite being finetuned on domain data, they often lack the size compared to huge models, which may be trained on the same domain data as well. Moreover, new compounds are created, new results are collected, and such models won’t catch up, as discussed in Chapter 3. We compare pure models, their prompt version, and tool-powered agents to see if a general model can decide which tool to use to solve a domain issue.



[image: AI4Chem/ChemLLM-20B-Chat-DPO]
Figure 5-2. AI4Chem/ChemLLM-20B-Chat-DPO session




The model initialization will be done using the LangChain wrapper ChatOpenAI, with the temperature set to 0. We’ll go through the same queries in the same order, starting with the 1st query regarding the brutto-formula of aspirin. Not surprisingly, both models failed, as in the example with ChemCrow powered by gpt-3.5-turbo model. Both models correctly identified aspirin’s molecular mass, which might be explained by information from articles and Wikipedia. Both the models couldn’t draw either the 2D or 3D model, but they tried to explain how to do so, which may suggest that both models understand the verb draw as it is on paper. Overall, both models performed poorly, scoring 1 correct answer out of 4 queries.












LCEL chains


It is time to learn how prompting will help the gpt-3.5-turbo and gpt-4o models. We’ll use a simple LCEL chain, including a prompt and the selected model, as shown in Example 8-5. Everything has stayed the same for the gpt-3.5-turbo compared to the pure LLM test, except the chain tried calculating the molecular mass step-by-step, as we’ve asked, but started with the incorrect formula rather than pulling from its own knowledge base. But the prompt changed much for the gpt-4o model. First, being a world-class specialist in chemistry helped the model to answer the correct brutto formula. It did retrieve the correct mass from its knowledge base, but most surprising is the answer for the 4th query to draw a 3D representation of CC(=O)OC1=CC=CC=C1C(=O)O. It seems the prompt triggered some “chemical” area of the language model, and it decided to extract deep chemical knowledge and adapt using the chemapps.stolaf.edu website for 3D molecule visualization. This also illustrates the difference in training data between the models.


Example 5-5. LCEL chains


template = """
You are a world-class specialist in chemistry.
Return only the final answer.
Question: {question}
Answer: Let's think step by step.
"""
prompt = ChatPromptTemplate.from_template(template)
chain = prompt | model

# gpt-3.5-turbo
> chain.invoke({"question":"What is the molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O?"})
>>> First, we need to calculate the molecular mass of each element in the
compound:\n- Carbon (C): 12.01 g/mol\n- Oxygen (O): 16.00 g/mol\n- Hydrogen (H):
1.01 g/mol\n\nNext, we need to count the number of each element in the
compound:\n- C: 9\n- O: 3\n- H: 8\n\nFinally, we calculate the total molecular
mass:\n(9 x 12.01) + (3 x 16.00) + (8 x 1.01) = 108.09 + 48.00 + 8.08 = 164.17 g/
mol\n\nTherefore, the molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O is 164.17 g/mol.

# gpt-4o
> chain.invoke({"question": "What is the formula of CC(=O)OC1=CC=CC=C1C(=O)O?"})
>>> C9H8O4

> chain.invoke({"question": "What is the molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O"})
>>> The molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O is 180.16 g/mol

> chain.invoke({"question": "Draw 3D representation of CC(=O)OC1=CC=CC=C1C(=O)O?"})
>>> The 3D representation of the molecule CC(=O)OC1=CC=CC=C1C(=O)O is:\n\n![3D
Structure](https://chemapps.stolaf.edu/jmol/jmol.php?model=CC(=O)OC1=CC=CC=C1C(=O)O)



As a result, the LCEL chain, despite delivering no correct answers, can be compared with pure LLM performances. On the other hand,  the gpt-4o model showed much improvement after simple prompt operations, offering much potential and solving 3 out of 4 user queries correctly.












Custom LangChain agent


We’ve already worked with LangChain agents and tools in Chapters 3 and 6. In this strategy, we’ll create a gpt-4o based ReAct agent with all the necessary tools: ReturnFormula, ReturnMolecularWeight, Return2DMolecule, and Return3DMolecule. In Example 8-6, you can see one of several ways to define a custom function, a custom tool, and set this tool to be used by the agent. We’ll slightly modify the ReAct prompt to avoid looping our functions. Otherwise, after displaying an image, the answer returned by the function is None, which makes the agent believe the tool wasn’t properly called or an error occurred, so it may call the tool again.


Example 5-6. LangChain custom agent with tools


# define function
def return_formula(smiles):
 mol = get_mol(smiles)
    if mol:
        return CalcMolFormula(mol)
    return True

#define tool
class ReturnFormula(BaseTool):
 name = "return_formula"
 description = "Return empirical chemical formula of a given smiles"
 def _run(self, smiles: str):
        return return_formula(smiles)

# ... and other tools

tools = [ReturnFormula(), ReturnMolecularWeight(), Return2DMolecule(),
Return3DMolecule()]

template ="  "" Answer the following questions as best you can. You have access to
the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

If the tool returns True - assume the tool completed its task
As soon as you finish the task - exit the chain.

Begin!

Question: {input}
Thought:{agent_scratchpad}"""

prompt = PromptTemplate.from_template(template)

agent = create_react_agent(openai_handler.model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

> agent_executor.invoke({"input": "What is the formula of CC(=O)OC1=CC=CC=C1C(=O)O?"})
> Entering new AgentExecutor chain...
To determine the empirical chemical formula of the given SMILES string
"CC(=O)OC1=CC=CC=C1C(=O)O", I will use the return_formula tool.

Action: return_formula
Action Input: CC(=O)OC1=CC=CC=C1C(=O)O
C9H8O4 I now know the final answer.

Final Answer: The formula of CC(=O)OC1=CC=CC=C1C(=O)O is C9H8O4.

> Finished chain.



All the tools were created based on the RDKit chemoinformatics package. As you can see in the Example 8-6 above, to answer the question, return_formula tool was used. In fact, necessary tools were called for all 4 user queries, scoring 4 correct answers out of 4, including correct 2D and 3D rotatable representations of aspirin, shown in Figure 8-3. As we’ve covered before, such success originates from good tool descriptions and proper model choices.



[image: 2D and 3D generated representations of aspiring]
Figure 5-3. 2D and 3D generated representations of aspiring














RDKit custom agents


So far, we’ve analyzed how pure gpt-3.5-turbo and gpt-4o models and simple chains on their basis behave, how chemistry-tuned LLMs fail, and how agents with predefined functions perform versus the queries we’ve defined. The best result so far was achieved with the custom agent, where we defined all necessary functions. But once your agent hits a question outside the tools defined, our custom agent will fail to answer correctly. We can use a PythonREPL tool, which allows the ChemCrow agent to generate a 2D image of the aspirin molecule. However, there is a potentially serious issue with this approach.


Think of the data that’s being used to train models. We’ve discussed this problem in Chapter 4, discussing retrieval-augmented generation (RAG) vs using models knowledge base: the data might be outdated. So if the documentation or the example used for training is no longer relevant if you don’t have the proper package installed (say, the code would require some additional packages), or if there is a Python version issue, or any other developers nightmare comes true, as the list doesn’t stop here, the PythonREPL won’t be able to run the generated code correctly.


Can we use the ideas we’ve implemented for RAG to develop an up-to-date agent? Yes, we can! The RAG concept will just be slightly adapted:


We’ll take the RDKit documentation
We’ll split it into chunks
We’ll upload the chunks to a vectorstore
Based on the user query, we’ll pull the relevant example and chunks of documentation


With this approach, we’ll be able to use a range of package versions as long as they have documentation. The complete documentation is already scraped and can be accessed along with the script for scrapping all RDKit documentation. Looking into the future, websites that will make vector-friendly documentation more likely to be used than others.

Note

Instead of scraping, one can suggest using an inspect package or something similar to accessing the internal docstring of documentation. In the full code repo, this approach is shown to only cover some available methods of the RDKit library.




In Example 8-7, we’ll split the scraped data, upload it to the vectorstore, and set a retriever to be used. While scrapping data, we can set any separator that will be unique. We’ll use the same separator to split the data. Notice, that we don’t need the chunk_overlap in this case, as we want every document to be stored separately. Next, we’ll create a FAISS vectorstore and upload all the split chunks of documentation.


We’ve already discussed different embedding models in Chapter 2. Depending on the task, some models are better suited than others. As our documents are a mixed type of text and code, OpenAI embedding models can be easily used, as they were also trained on code. Alternatively, you can try instructor-xl, CodeBERT, or others.


We’ll also change the search_type for the retriever. We often use the similarity type that represents the similarity score, which measures how alike two items are based on cosine similarity (usually default) or Euclidean distance. This score represents the likeness of a particular document to a given query or item. In contrast, Maximal Marginal Relevance (MMR) aims to balance relevance and diversity in the results. It does this by considering how similar each item is to the query (relevance) and how dissimilar each item is to the items already selected (diversity). In our case, we would want to look for slightly different code fragments and examples to better generate the code to run.


Example 5-7. LangChain documentation retrieval agent


from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain

# load and split data
loader = TextLoader(doc_filepath)
text_splitter = CharacterTextSplitter(
 separator=separator,
 chunk_size=1000,
 chunk_overlap=0,
 length_function=len,
 is_separator_regex=False,
 keep_separator=False,
)
texts = loader.load_and_split(text_splitter)

# retrieve from vectorstore
embeddings = OpenAIEmbeddings()
rdkit_db = FAISS.from_documents(data, embeddings)
rdkit_retriever = rdkit_db.as_retriever(search_type="mmr")



We will construct 2 types of agents: create_react_agent and create_tool_calling_agent, both shown in Example 8-8. The prompts will be slightly different, due to the architecture of the agents, but the tools will be the same:



	
rdkit_search to look for relevant documentation



	
python_repl to execute generated code based on the read documentation






The reason for choosing these agents is because they are best suited: tool calling enables a model to identify when to invoke tools, whereas the ReAct framework allows the same through thought processing. For best representation, in Example 8-8, the response for only the second query is given. You can notice how the create_react_agent enters the AgentExecutor chain, considers and uses rdkit_search, and uses molecular mass to find appropriate documentation fragments. The model summarizes and decides to go with CalcExactMolWt(). Afterward, the python_repl with the generated code is called, and the answer is received. Similar actions take place for the create_tool_calling_agent: Calculate molecular mass of a molecule query is used to retrieve code fragments from the vectorstore, followed by code generation with the MolWt() method and executing the code using python_repl tool. The result is slightly different as different methods for calculating molecular mass was used.


Example 5-8. create_react_agent and create_tool_calling_agent output


# create_react_agent

> Entering new AgentExecutor chain...
To determine the molecular mass of the given chemical compound, we need to use RDKit
to calculate it. RDKit is a powerful tool for cheminformatics that can handle such
tasks efficiently. First, I will search the RDKit documentation to find the
appropriate function for calculating the molecular mass.
Action: rdkit_search
Action Input: molecular mass
"`retrieved context`"

The RDKit documentation provides two relevant functions for calculating the molecular
weight of a molecule: 1. `rdkit.Chem.rdMolDescriptors.CalcExactMolWt(mol[,
onlyHeavy=False])`: This function returns the exact molecular weight of the molecule.
2. `rdkit.Chem.Descriptors.MolWt(mol)`: This function returns the average molecular
weight of the molecule. For our purpose, we will use the `CalcExactMolWt` function to
get the exact molecular weight of the given molecule with the SMILES string
`CC(=O)OC1=CC=CC=C1C(=O)O`. Let's proceed with the calculation.

Action: python_repl
Action Input:
"`generated code for execution running rdMolDescriptors.CalcExactMolWt(molecule)```

180.042258736

I now know the final answer.

Final Answer: The molecular mass of the compound with the SMILES string
`CC(=O)OC1=CC=CC=C1C(=O)O` is 180.042258736 g/mol.

> Finished chain.
{'input': 'What is the molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O',
 'output': 'The molecular mass of the compound with the SMILES string
 `CC(=O)OC1=CC=CC=C1C(=O)O` is 180.042258736 g/mol.'}


# create_tool_calling_agent

> Entering new AgentExecutor chain...
Invoking: `rdkit_search` with `{'query': 'Calculate molecular mass of a molecule'}`
"`retrieved context`"
Invoking: `python_repl` with
"`generated code for execution running Descriptors.MolWt(molecule)```


180.15899999999996
The molecular mass of the compound with the SMILES notation
`CC(=O)OC1=CC=CC=C1C(=O)O` is approximately 180.16 g/mol.

> Finished chain.
{'input': 'What is the molecular mass of CC(=O)OC1=CC=CC=C1C(=O)O',
 'output': 'The molecular mass of the compound with the SMILES notation
 `CC(=O)OC1=CC=CC=C1C(=O)O` is approximately 180.16 g/mol.'}



Similar results were achieved for other queries, demonstrating the potential of such an approach, as both agents correctly solved all the tasks. This way, you’re more flexible with creating agents for different packages, and you do not have to hardcode the functionality you may need in advance. This allows you to develop agents you can use independently or as part of a team, as we’ve covered in the LangGraph section in Chapter 6.

Tip

While creating chains and agents and working with images and large files as text, csv, json, a good token-saving practice would be to save local files. Imagine you’ve generated an image using a tool. The agent might return the base64 representation, as seen above, or a large dictionary/json would be unnecessarily processed while passing data from one agent to another. It is better to save a local file and pass the filename to the following agent or user.




Let’s summarize the results in Table 8-1. Considering the fact we weren’t asking complex questions, the standalone LLMs showed hallucinations while fetching the data from their inner knowledge base. Similar hallucinations were seen for the gpt-3.5-turbo-powered LCEL chain, whereas the gpt-4o showed more promise, demonstrating the upgrade the model received compared to earlier versions. Developing agents with predefined tools shows excellent results and can be considered a solution for repeated calculations. ChemCrow is an interesting agent that can partially solve chemical tasks using built-in tools and a python execution tool, allowing the agent to scale as the LLM capabilities increase by using additional functionality initially not defined. The question arises of why such an agent should be developed in the first place if a single-tool python_repl agent can have comparable quality. The most universal approach was demonstrated using different agent types (create_react_agent and create_tool_calling_agent) where the package documentation was split and stored in a vectorstore, allowing retrieving most relevant chunks to be used as context for code generation and execution. Such an approach allows using the RAG concept for various package-related tasks.


Table 5-1. Code-based applications results


	Model
	What is the formula of X?
	What is the molecular mass of X?
	Draw 2D representation of X
	Draw 3D representation of X





	gpt-3.5-turbo

	-

	+

	-

	-




	gpt-4o

	-

	+

	-

	-




	LCEL chain (gpt-3.5-turbo)

	-

	-

	-

	-




	LCEL chain (gpt-4o)

	+

	+

	-

	+




	Chemistry-tuned LLMs (multiple)

	-

	-

	-

	-




	chemcrow (gpt-3.5-turbo)

	-

	+

	+

	-




	chemcrow (gpt-4o)

	+

	+

	+

	-




	agent with custom tools

	+

	+

	+

	+




	react agent with vectorstore

	+

	+

	+

	+




	tool caling agent with vectorstore

	+

	+

	+

	+

















Using Text-Based LLMs in Chemical Applications


In Chapter 6, we’ve discussed how LLMs can be used for scientific purposes. In multiple applications, we’ve been using text capabilities in different ways: heavily (summarizing texts, searching purposes) to light (formulating a final response, lubricant for internal planning and communication).


Good data is better than big data. Most importantly, good data helps machine learning models learn better and make more reliable predictions. In our second case, we’ll develop a simple LangChain application to look for typos in chemical databases. In Example 8-9, we’re exploring how to call the PubChem API to check for possible typoed substances.


Example 5-9. Generating “ethyl” typos and retrieving PubChem data


# Set the chain to generate possible typos
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
prompt = ChatPromptTemplate.from_messages(
 [
 (
 "system",
 "You are a professional editor and typo-catcher",
 ),
 ("placeholder", "{chat_history}"),
 ("human", "{input}"),
 ("placeholder", "{agent_scratchpad}"),
 ]
)

typo_chain = prompt | llm | StrOutputParser()

# Our example will involve looking for PubChem substance with typos
word = "ethyl"
typo_llm_response = typo_chain.invoke(f"  ""
 Return a semicolon-separated list of 10 most possible typos for word {word}.
 The resposnse should contain only possible typos!
 Don't include initial word {word} and don't add duplicates"""
)
typo_list = [x.strip() for x in typo_llm_response.replace(".", "").split(";")]
>>> ['ehtyl', 'etyl', 'ethly', 'eythl', 'ethil', 'eylth', 'ehtil',
'etyhl', 'ethly', 'ehylt']

# Method to call pubchem and retrieve data
def get_pubchem_data(subword):
 response = requests.get(
 'https://pubchem.ncbi.nlm.nih.gov/sdq/sdqagent.cgi?infmt=json&outfmt=json&query=
 {%22select%22:...[{%22*%22:%22'+subword+'%22}]}...}',
 cookies={},
 headers={},
 )
 return response

for subword in typo_list:
 response = get_pubchem_data(subword)
 total_count = response.json()['SDQOutputSet'][0]['totalCount']
 if total_count:
 print(subword, total_count)
>>>
ehtyl 54
etyl 21
ethly 10
ethly 10



As you can see, there are indeed typos in the PubChem database, as shown in Example 8-9 and Figure 8-4. This could prevent one from finding correct compounds, leading to incorrect search results. The same can be said for potential RAG pipelines. Finding all mistakes can increase the quality of generative AI applications and chemistry-tuned LLMs.



[image: Ehtyl and ethly data in PubChem]
Figure 5-4. Ehtyl and ethly data in PubChem












Using Chemistry-Based LLMs


So far, we’ve explored the development of applications that could integrate computational chemistry tools and APIs with text language models. Scientific language models incorporating scientific knowledge are becoming powerful tools for molecular discovery, from analyzing small molecules to complex macromolecules such as proteins and polymers. Open-source resources are being highlighted to enhance the accessibility and utility of LMs in scientific research.


The traditional methods of molecular discovery, which often follow a “Design → Make → Test → Analyse” (DMTA) workflow, are fraught with challenges, including high costs (up to several billions per new drug and millions for new additive/material), massive data screening requirements, and biases in hypothesis formulation. Deep generative models can address these issues by refining hypotheses, reducing biases, and identifying the most promising avenues for further investigation. Chemistry-tuned language models are better at understanding context and reasoning, potentially making them suitable for tasks like predicting the properties of chemical entities from SMILES representations.


Chapter 2 covered various tokenizers used by different language models. Several chemical token formats can be used for chemical-tuned models: SMILES strings, Self Referencing Embedded Strings (SELFIES), International Chemical Identifier (InChI), and others. These components ensure the accurate generation and analysis of molecular data, as they can serve as molecular fingerprint.


Purely from a token perspective, what format will work the best? How much information can each format share? What can be used to generate new similar molecules? Consider that language models learn from token sequences. Before moving forward, take a look at Table 8-2, and try answering these questions.


Table 5-2. SELFIES, SMILES and InChI of aspirin, ethanol and glucose


	Name
	SELFIES
	SMILES
	InChI





	Aspirin (Acetylsalicylic Acid)

	[C][C][=O][O][C][C][C][=C][C][=C][C][Ring1][Branch1]

	CC(=O)OC1=CC=CC=C1C(=O)O

	InChI=1S/ C9H8O4/ c1-6(10)13-9-5-3-2-4-7(9)8(11)12/ h2-5H,1H3,(H,11,12)




	Ethanol (Ethyl Alcohol)

	[C][C][O][H]

	CCO

	InChI=1S/ C2H6O/ c1-2-3/ h3H,2H2,1H3




	Glucose

	[C][C][C][C][C][C][O][H][O][H][O][H][O][H][O][H][O][H][O][H]

	C(C1C(C(C(C(O1)O)O)O)O)O

	InChI=1S/ C6H12O6/ c7-1-2-3(8)4(9)5(10)6(11)12-2/ h2-11H,1H2







One of the great initiatives for scientific research is the Generative Toolkit 4 Scientific Discovery (GT4SD), whose mission is to accelerate scientific discovery by creating an open community around generative models for science. They have trained a model to perform several chemical tasks:



	
Chemical reaction prediction



	
Retrosynthesis prediction



	
Description-to-smiles



	
Smiles-to-caption



	
Paragraph-to-actions






Below, we’ll test chemistry-tuned LLMs based on their ability and quality to perform such tasks. We’ll start by configuring our ChemistryGenerator and defining the models, as shown in Example 8-10. As shown in chapter 2, we’re defining the model and tokenizer as pairs for each LLM. Some of the LLMs under analysis won’t be able to perform specific tasks, as they were trained and configured to generate SMILES only. New LLMs appear every week, so if you’re interested in the latest results, check out the latest code version in the official GitHub LangChain4LifeScience repository. In the book, we’ll be using the following models:



	
GT4SD/multitask-text-and-chemistry-t5-base-augm



	
GT4SD/multitask-text-and-chemistry-t5-small-augm



	
molt5-large-caption2smiles



	
AI4Chem/CHEMLLM-2b-1_5






We’ll be using base and small versions of the GT4SD model, to identify how parameter size influences the quality of the results. We’ll also use the CHEMLLM-2b-1_5 model to see how smaller models grasp chemistry knowledge. We’ll also use molt5-large-caption2smiles due as a comparison for SMILES-related tasks. The code in Example 8-10


Example 5-10. Configuring chemistry LLMs


class ChemistryGenerator:
 def __init__(self, model, tokenizer, temperature=0.0001, do_sample=False,
 max_length=512, num_beams=5):
    self.model = model.bfloat16()
    self.model.to(device)
 tokenizer.pad_token = "[PAD]"
 tokenizer.padding_side = "left"
    self.tokenizer = tokenizer
    self.generation_config = GenerationConfig(
        do_sample=do_sample,
        top_k=1,
        num_beams=num_beams,
        temperature=temperature,
        max_new_tokens=max_length,
        pad_token_id = self.tokenizer.pad_token_id,
        repetition_penalty=1.5,
        num_return_sequences=1
 )

 def run_model(self, input_text):
    text = self.tokenizer(input_text, return_tensors="pt").to(device)

    output = self.model.generate(input_ids=text["input_ids"],
    generation_config=self.generation_config)
    if device == "cuda":
        output = self.tokenizer.decode(output[0], skip_special_tokens=True)
    else:
        output = self.tokenizer.decode(output[0].cpu(), skip_special_tokens=True)
    try:
    output = output.split(self.tokenizer.eos_token)[0]
    output = output.replace(self.tokenizer.pad_token, "")
    output = output.replace("<unk>","\\\\")
    output = output.strip()
    except Exception as e:
    print(e)
 return output

# https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-base-augm
gt4sd_model_name = "GT4SD/multitask-text-and-chemistry-t5-base-augm"
model = AutoModelForSeq2SeqLM.from_pretrained(gt4sd_model_name)
tokenizer = AutoTokenizer.from_pretrained(gt4sd_model_name)

gt4sd_base_generator = ChemistryGenerator(model, tokenizer)

# https://huggingface.co/laituan245/molt5-large-caption2smiles
laituan245_model_name = "laituan245/molt5-large-caption2smiles"
tokenizer = T5Tokenizer.from_pretrained(laituan245_model_name)
model = T5ForConditionalGeneration.from_pretrained(laituan245_model_name)

laituan245_generator = ChemistryGenerator(model, tokenizer)

# https://huggingface.co/GT4SD/multitask-text-and-chemistry-t5-small-augm
gt4sd_model_name = "GT4SD/multitask-text-and-chemistry-t5-small-augm"
model = AutoModelForSeq2SeqLM.from_pretrained(gt4sd_model_name)
tokenizer = AutoTokenizer.from_pretrained(gt4sd_model_name)

gt4sd_small_generator = ChemistryGenerator(model, tokenizer)

# https://huggingface.co/AI4Chem/CHEMLLM-2b-1_5
ai4chem_model_name = "AI4Chem/CHEMLLM-2b-1_5"
model = AutoModelForCausalLM.from_pretrained(ai4chem_model_name, torch_dtype=torch.
float16, device_map="auto",trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(ai4chem_model_name,trust_remote_code=True)

ai4chem_generator = ChemistryGenerator(model, tokenizer)

#(To be continued with examples)



Let’s start with the most direct task: predicting a chemical reaction. As an example, we’ll use an Fischer esterification reaction - a process of combining an organic acid (RCOOH) with an alcohol (R’OH) to form an ester (RCOOR').

Note

In the LangChain4LifeScience repository, more examples are shown, including other reactions, and smiles <> text conversions




instance = "CC(=O)O.OCC>[H+].[Cl-].OCC"
input_text = f "Predict the product of the following reaction: {instance}"
# expected result: CC(=O)OCC

gt4sd_base_generator.run_model(input_text)
>>> CCOCCOCCO...

laituan245_generator.run_model(input_text)
>>> C1C2CN(CN2C3=C(N1)N=C(NC3=O)N)C4=CC=C(C=C4)OCC5(CC5)C6=CC=CC=C6

gt4sd_small_generator.run_model(input_text)
>>> CCOC(=O)CCOC(C)=O

ai4chem_generator.run_model(input_text)
>>> OCCCOCCC....


To simplify the results, their visualization is present in Figure 8-5 to predict the outcome of the chemical reaction. As you can notice, none of the models predicted the correct result, although GT4SD/multitask-text-and-chemistry-t5-small-augm model was quite close.



[image: LLM reaction predictions]
Figure 5-5. LLM reaction predictions




In chapter 2, I used the infinite monkey theorem, as an example for token generation, where monkeys select the next token, and eventually, one will generate the correct answer. Models are usually ranked based on their answers that estimate model performance. It is better to use scores for scientific models, as some models might give correct or close to correct answers, while others may be very far from the truth. For example, the answer generated by the laituan245/molt5-large-caption2smiles model is very questionable, as there is little chance the final compound will contain nitrogen atoms if no reactions contain them.

Note

When training generative models, it is essential to set the metrics correctly. In chapter 12, I’ll cover the topic of training our own LLMs, and we’ll discuss the metrics and policies used.




Let’s try a retrosynthetic task: ask the model to predict the reaction to synthesize a particular product. For simplicity, we’ll use the same reaction we’ve used above.


instance = "CC(=O)OCC"
input_text = f "Predict the reaction that produces the following product:
{instance}"
# expected result: CC(=O)O.OCC>[H+].[Cl-].OCC

gt4sd_base_generator.run_model(input_text)
>> CC(=O)OCC.CC(=O)[O-]CC(=O)[O-][Pb+2][Pd].CC(=O)[O-]CC(=O)[O-][Pb+2][Pd]
[Pd].CC(=O)[O-]CC(=O)[O-][Pb+2][Pd].CC(=O)[O-]CC(=O)[O-][Pb+2]

laituan245_generator.run_model(input_text)
>> CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)N2C=CC(=NC2=O)N)O)O)O

gt4sd_small_generator.run_model(input_text)
>> O=C([O-])[O-][K+][K+].CC(=O)OCC

ai4chem_generator.run_model(input_text)
>> CC(=O)OCC(=O)OCC(=O)O...


Like the above, in Figure 8-6, SMILES answers are converted to molecular representations for simplicity.



[image: LLM retrosynthesis predictions]
Figure 5-6. LLM retrosynthesis predictions




Once again, neither of the models suggested a correct reaction, performing worse than for cases with a forward reaction. This can be explained by the training process and the fact that forward processes are easier to understand from the language perspective rather than backward ones.


SMILES represent fragments of molecules. Think of the following example: what is the result of AB + C → ?
Most likely one of three options: A + BC, AC + B or ABC.
But if I ask from a language perspective how to get ABC, there are tons of potential language options: A + BC, AC + B, AB + C, A + B + C, ABD + C, etc. Without understanding the science behind the chemical reactions, the models are just widely guessing possible solutions.

Warning

While I mention that better or longer training can help achieve better results, without a proper understanding of reactions, any model won’t produce decent results for reaction prediction.
Organic chemistry is famous for its stereochemical reactions. With this in mind, is it fair to expect that a 1D sequence of SMILES tokens will grasp the complexity of a 3D reaction?




We’ve seen how SMILES to SMILES conversion is handled. Let’s see if incorporating text into tasks or outputs improves results.
We’ll ask the LLMs to generate a molecule based on the description.


instance ="  ""The molecule appears as white crystals with a strong phenol odor.
Slightly soluble to soluble in water, depending on the isomer, and denser than
water. Noncombustible. Used as an intermediate in organic synthesis of dyes and
drugs. The molecule is a monochlorophenol substituted at the pare position by a
chlorine atom."""
input_text = f "Write in SMILES the described molecule: {instance}"
# expected output: C1=CC(=CC=C1O)Cl

gt4sd_base_generator.run_model(input_text)
>> C1=CC(=CC=C1Cl)Cl

laituan245_generator.run_model(input_text)
>> C1=CC(=C(C=C1Cl)O)N=C2C=CC(=[NH2+])C=C2

gt4sd_small_generator.run_model(input_text)
>> C1=CC(=CC=C1Cl)O

ai4chem_generator.run_model(input_text)
>> It is a member of monochlorophenols and a member of monochlorobenzenes.


This task was the one I had the highest hopes for, the laituan245/molt5-large-caption2smiles model, based on its name. We will talk slightly about what must be changed to avoid bias in generative models (in multiple cases, nitrogen atoms are generated). Both GT4SD models showed promising results, though the model is designed to solve such tasks specifically. Moreover, the multitask-text-and-chemistry-t5-small-augm model successfully generated the correct answer, as shown in Figure 8-7.

Note

Speaking about the metrics, the generated SMILES is correct from a chemical perspective but incorrect from a language perspective.





[image: LLM retrosynthesis predictions]
Figure 5-7. LLM SMILES from description predictions




We’ll continue with the reverse task once again. We’ll ask the LLM to generate a description based on the SMILES.


instance = "COC1=C(C=C2C3CC4=CC(=C(C=C4C(N3)CC2=C1)OC)OC)OC"
input_text = f "Caption the following smile: {instance}"
# expected output: 4-Chlorophenol appears as white crystals with a strong phenol
odor. Slightly soluble to soluble in water, depending on the isomer, and denser
than water. Noncombustible. Used as an intermediate in organic synthesis of dyes
and drugs. The molecule is a monochlorophenol substituted at the pare position by
a chlorine atom.

gt4sd_base_generator.run_model(input_text)
>> The molecule is a chlorocatechol that is catechol in which the hydrogen para-
to the hydroxy group is replaced by a chlorine. It is a chlorocatechol and a
member of monochlorobenzenes.

laituan245_generator.run_model(input_text)
>> CC(=O)N[C@@H]1[C@H]([C@@H]([C@H](OC1OCC=C)CO)O)O[C@H]2[C@@H]([C@H]([C@@H]
([C@H](O2)CO)O)O)O

gt4sd_small_generator.run_model(input_text)
>> The molecule is a chlorophenol that is phenol in which the hydrogen at
position 4 has been replaced by a chlorine. It has a role as a bacterial
xenobiotic metabolite. It is a chlorophenol and a member of monochlorobenzenes.
It derives from a hydride of a phenol.

ai4chem_generator.run_model(input_text)
>> C1=CC(=CC=C1O)Cl


Once again, it is no surprise that both GT4SD models showed good results, with the multitask-text-and-chemistry-t5-small-augm model resulting in a more accurate answer.


Our last task for the LLMs (GT4SD only) will be to extract instructions from text. This field might have significant potential for robotic labs or standardized instruction environments. The model should correctly recognize different named entities from the text.


instance = '''
The invention describes a novel method for the synthesis of acetylsalicylic acid.
Since 1900, when Hoffman received the patent for the manufacture of acetyl
salicylic acid from acetic anhydride and salicylic acid, there have been many
modifications of the synthesis: Ledeler (1901) added sulfuric acid to the system
in order to accelerate the process of esterification. A. Bercy, (Nature, No.
2977, p.462, 1936) further proposed to make this synthesis in the presence of
acetic acid as a solvent, heating the system to 90° C. for some time and then
cooling to 20° C. Other authors (e.g., E.J.Perry, Chem. Abst. Vol. 10 No. 2121),
proposed that during the synthesis process at those temperatures, the ester
o-AcC6H4CO2C6H4CO2H is formed and then it is decomposed into acetyl salicylic
acid and salicylic acid.
'''
input_text = f" Which actions are described in the following paragraph: {instance}"
# expected result:
- ADD acetic anhydride
- ADD salicylic acid
- ADD sulfuric acid
- ADDSOLVENT acetic acid
- SETTEMPERATURE 90° C
- SETTEMPERATURE 20° C.

gt4sd_base_generator.run_model(input_text)
>>
ADD acetic acid;
ADD sulfuric acid;
ADD acetic acid;
SETTEMPERATURE 90° C;
SETTEMPERATURE 20° C;
YIELD ester o-AcC6H4CO2C6H4CO2H.

gt4sd_small_generator.run_model(input_text)
>>
ADD acetyl salicylic acid;
ADD acetic anhydride;
ADD salicylic acid;
SETTEMPERATURE 90° C;
SETTEMPERATURE 20° C.


Both models show promise in this field, though both should have included some steps or excluded extra ones. As the quality of the models continues to increase, solving the named entity recognition problem will become less and less of a complex job.


We’ve seen what chemistry-tuned LLMs are capable of. Based on the previous experiments, the multitask-text-and-chemistry-t5-small-augm model showed most promise. However, using such LLM as a core for LangChain, though possible, isn’t recommended. Instead, we can combine the LangGraph idea of delegating specific tasks to responsible agents. In Example 8-11, we’ll create a ReAct agent that will use a chemistry-tuned model as a tool, with the core being GPT-based. Such architecture will allow the planning and tool-calling abilities of the core model and knowledge of the chemistry model to be used at full capacity. For the rest, we’ll use the code from the Example 8-6 regarding the development of custom tools earlier in this chapter.


Example 5-11. Running GT4SD chemical LLM in LangChain


model = ChatOpenAI()

def run_chem_llm(input_text):
 return gt4sd_small_generator.run_model(input_text)

class ReturnChemLLM(BaseTool):
 name = "return_chem_llm_response"
 description = "Answers all chemistry-related questions"

 def _run(self, text: str):
 return run_chem_llm(text)

# Initialize tools
tools = [
 Return2DMolecule(),
 ReturnChemLLM()
]

template ="  "" Answer the following questions as best you can. You have access
to the following tools:
...
"""
prompt = PromptTemplate.from_template(template)

agent = create_react_agent(model, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

# Let's ask about Diels–Alder_reaction
# Expectations: C1=CCC=C1.C=C > C1=CC2CCC1C2
agent_executor.invoke({"input": "Draw the molecule that is the product of the
following reaction: C1=CCC=C1.C=C"})
>>>
> Entering new AgentExecutor chain...
To determine the product of the reaction between C1=CCC=C1 and C=C, I need to
identify the type of reaction and the resulting product.

Action: return_chem_llm_response
Action Input: What is the product of the reaction between C1=CCC=C1 and C=C?

The product of the reaction between C1=CCC=C1 and C=C is C=CCc1ccccc1. Now, I
need to draw the 2D flat representation of this molecule.


Action: return_2d_molecule
Action Input: C=CCc1ccccc1

I now know the final answer.

Final Answer: The 2D flat representation of the molecule C=CCc1ccccc1 has been
drawn.

> Finished chain.
{'input': 'Draw the molecule that is the product of the following reaction:
C1=CCC=C1.C=C',
 'output': 'The 2D flat representation of the molecule C=CCc1ccccc1 has been
 drawn.'}



As in previous cases, the illustrated result is shown in Figure 8-7.
We’ve used the tool-calling LLM to decide the plan, and what tool to use, and even though the chemistry-tuned LLM mispredicted the result, the application worked much as expected.



[image: LangChain molecule prediction]
Figure 5-8. LangChain molecule prediction




The strategy of having smaller models to solve specific tasks has vast potential. Not only can they be trained and updated faster and cheaper, but the quality of the dedicated tasks can be higher than for larger models. According to the original paper Unifying Molecular and Textual Representations via Multi-task Language Modelling, the number of parameters for the small model is 60M, whereas the base is 220M. On multiple occasions, we’ve seen the small model outperform the base one, potentially showing signals of overfitting.


Chemistry-tuned LLMs can generate accurate predictions about complex chemical properties and structures beyond their training data, comparable to other algorithmic and machine learning engines. This capability may offer valuable insights into material properties, synthesis techniques, and design principles. Another potential application can be decoding the predictions of deep learning models, providing more explicit explanations of molecular substructures and their impacts. But the most significant impact LLMs in chemistry can bring as code-based: they allow the development of easy-to-impact applications, call necessary tools, and successfully generate and debug code for complex simulations, underscoring their role as powerful tools for computational chemists.










Summary


This chapter explored the construction of chemical applications using LangChain and chemistry-tuned LLMs. We’ve compared the quality of different approaches and their pros and cons. We’ve also looked into potential cases to build a dynamic code application by fetching package documentation. Besides code-based applications, we’ve looked into cases where text-based models can be used and explored how different chemistry LLMs solve various tasks.


The following chapters will cover more examples of LangChain pipelines and LangGraph teams under different life science domains.











Chapter 6. LangChain in Drug Discovery



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 8th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at ccollins@oreilly.com.




Generative AI is significantly impacting drug discovery, allowing new drug candidates to be created much faster than traditional methods. Numerous pharmaceutical companies are experimenting with AI to search through millions of molecules, producing designs that surprise even seasoned scientists. This technology can generate a year’s worth of molecular structures in just five minutes, opening up new possibilities for medical research. However, while AI can quickly suggest potential drug candidates, there’s no guarantee these molecules will work in real-world settings. The designs AI creates often look strange and only sometimes match existing molecular databases, meaning researchers must evaluate them carefully.








In Silico Drug Discovery


Despite its speed, generative AI in drug discovery faces significant challenges. These AI systems often produce impractical or nonsensical molecules, requiring expert scientists to sort through the results. Programs like DiffLinker illustrate these hurdles, showing that AI can create complex 3D molecular models but still requires human intervention to identify realistic and valuable drug candidates. Tools from various software platforms help refine these AI outputs, but the process remains complex and needs to be fully automated. Domain expertise in medicinal chemistry is essential to interpreting AI outputs, assessing chemical stability, and eliminating unstable or synthetically challenging molecules.


While AI holds great promise in improving the drug discovery process, it isn’t yet a silver bullet. The development of AI-designed drugs still relies heavily on human expertise and traditional testing methods. AI can suggest new pathways and innovative designs, but researchers must thoroughly analyze these to ensure they are chemically stable and therapeutically effective. Current AI technologies can narrow down possibilities and speed up initial discovery phases. However, the journey from a computer model to a successful drug still involves significant human oversight and experimentation. Ultimately, AI has the potential to transform drug discovery by making it more efficient, but it requires careful integration with established scientific methods to truly revolutionize the field.


In recent years, bindings between big tech companies, research institutions, and pharmaceutical firms have become much stronger, reflecting growing opportunities in drug discovery in particular. Although tech giants like Amazon, Microsoft, Apple, and Google lack traditional expertise in the domain field, they are making significant investments in health and wellness, challenging established pharmaceutical companies such as Pfizer, Merck, GSK, and others, who are comparatively less experienced in hardware and software development and handling massive digital datasets.


Microsoft is among the most active big tech players in the pharma market, advancing into biopharmaceutical technology by investing in cloud-based tools for genomics research, launching ambitious programs to solve cancer, and forming strategic partnerships with companies and institutes like UCB, Novo Nordisk, Sanofi, DNAnexus and GHDDI. Their aims vary from integrating AI and computational services into drug discovery to pioneering quantum computing to accelerate drug development.


Alphabet/Google has invested directly and through its DeepMind subsidiary in more than 30 biotech ventures in diverse therapeutic areas, including Spybiotech, a vaccine company, and TScan Therapeutics, a developer of T-cell therapies. Their partnerships with Roche, PathAI, and Boehringer Ingelheim in various fields also prove that drug discovery’s future is in silico. Isomorphic Labs/DeepMind recently introduced a new AlphaFold version (3) - a model that predicts the structure of proteins, DNA, RNA, and ligands and how they interact.


NVIDIA released its BioNeMo platform to study how drugs interact with cells and predict how new drugs might work. It cooperates with companies like Recursion and Terray Therapeutics to ensure their tools are helpful and widely available. Even Meta is developing tools for predicting protein folding, while Intel is optimizing deep learning methods for analyzing complex biological data. The list of interested parties is rapidly growing: Pfizer is collaborating with IBM to use quantum computing for drug discovery, Moderna is partnering with AWS to use its cloud computing capabilities, and AstraZeneca is partnering with Tencent to build an AI-driven digital health platform to name a few.










Drug Generation


One of the most valuable fields of drug discovery is discovering or generating new molecules to synthesize. Generating molecules using AI is not as straightforward as it might seem, primarily due to the complexity of accurately producing chemically valid and useful structures. While various generative models can create molecular structures, the output often contains significant noise, including chemically unstable or nonsensical molecules. The process requires extensive domain expertise to sift through and refine these outputs, identifying any promising candidates for further development. Moreover, transforming these raw structures into something that can be analyzed or synthesized involves intricate steps, such as assigning correct bond orders and ensuring geometric plausibility, which existing built-in tools and algorithms struggle to do effectively.


Even after the initial filtering and refinement, the molecules generated by these models frequently exhibit issues such as geometric strain, chemically unstable rings, or duplicative structures. Manual curation and additional computational checks are necessary to weed out flawed candidates, underscoring the need for expert intervention at some process stages. Moreover, the models themselves are not truly “intelligent” in the way that might be inferred from popular media. Most of them rely on pattern recognition rather than a deep understanding of chemistry, which limits their ability to independently design viable molecules. Therefore, while generative AI in molecular design holds promise, it requires significant human oversight and refinement to produce meaningful results.










Autoencoders


In Chapter 2, we’ve widely discussed and used encoder-decoder transformer architecture.

Note

Reminder:
In an encoder-decoder architecture, the encoder is a neural network that compresses the input data into a lower-dimensional representation, while the decoder takes the lower-dimensional representation from the encoder and generates the output data in the desired format or structure back to the original dimension.




The idea behind autoencoders is to learn efficient embeddings of given data. An autoencoder compresses the input into a latent-space representation (encoder component) and then reconstructs the output from this representation (decoder component), as shown in Figure 9-1.


During training, the input data x is fed to the encoder function 
  
    e theta 
    
      (
      x
      )
    
  
. The input is passed through a series of layers (parameterized by the variable 
  
    t
    h
    e
    t
    a
  
), reducing its dimensions to achieve a compressed latent vector z. The number of layers, type and size of the layers and the latent space dimension are user-controlled parameters. Compression is achieved if the dimension of the latent space is less than that of the input space, eliminating redundant attributes.
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Figure 6-1. Autoencoder schema




The decoder 
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 usually (but not necessarily) consists of near-compliment layers of the layers used in the encoder but in reverse order. A near-complement layer of a layer is one that can be used to undo the operations (to some extent) of the original layer, such as transposed conv layer to conv layer, pooling to unspooling, fully connected to fully connected, etc.


The entire encoder-decoder architecture is collectively trained on the loss function, which encourages the input to be reconstructed at the output.
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The idea is to have a shallow dimensional latent space so that maximum compression is achieved, but at the same time, the error is small enough. Reducing the dimension of the latent space beyond a particular value will result in a significant loss of information.


Figure 9-2 below shows an example of a possible trained latent space for organic compounds.



[image: Autoencoder latent space for organic compounds]
Figure 6-2. Autoencoder latent space for organic compounds




Similar compounds tend to cluster in the latent space. Another important thing to note is that parts of the latent space don’t correspond to any data point (area outside the polygons in Figure 9-2). Using such out-of-the-border inputs to the encoder will result in an output that isn’t similar to any compound in the training data. Such latent spaces are not regularized, and few data regions have generative capability. Sampling anywhere within the data cluster will generate a variation of the data that the cluster belongs to, whereas sampling outside will generate garbage output, most likely improbable molecules. Once the encoder is trained and the training data is removed, there is no way of knowing if the output generated by the decoder from a randomly sampled latent vector is valid or not.


Variational autoencoder (VAE) addresses the non-regularized latent space in the autoencoder and provides the generative capability to the entire space. Instead of outputting the vectors in the latent space, the encoder of VAE outputs parameters of a pre-defined distribution in the latent space for every input. The VAE then constrains this latent distribution, forcing it to be normal. Compared to a regular autoencoder, using a distribution over a single point in the latent space allows the VAE to reconstruct existing data and generate more distributed new data. In drug discovery, a VAE could generate novel molecular structures by learning the underlying patterns of known molecules, helping researchers identify new potential drugs more efficiently.


VAE architectural diagram can be seen in Figure 9-3. As for the autoencoder, the input is passed through a series of layers, reducing its dimensions to achieve a compressed latent vector z. However, each latent variable’s mean and standard deviation instead of the latent space is the output of the encoder. The latent space is then sampled from these values and fed to the decoder to reconstruct the input. The decoder in the VAE works similarly to the one in an autoencoder.



[image: Autoencoder schema]
Figure 6-3. VAE schema




The loss function is defined by the VAE objectives. VAE has two goals:



	
Reconstruct the input (same for the autoencoder)



	
Latent space should be normally distributed






Hence, the training loss of VAE is defined as the sum of the reconstruction loss and the similarity loss. The reconstruction error is calculated the same way as for the autoencoder. The similarity loss is the Kullback–Leibler (KL) divergence (a common statistical metric to compare two distributions) between the latent space distribution and standard Gaussian (zero mean and unit variance). The loss function is then the sum of these two losses.
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The training tries to balance the two losses and ends with a latent space distribution that looks like the unit norm with clusters grouping similar input data points. The unit norm condition ensures that the latent space is evenly spread out and does not have significant gaps between clusters, with similar-looking data clusters usually overlapping in some regions (for example, surfactants (both long hydrophobic body and a COOH tail) or amides (both N and O present)), as shown in Figure 9-4.



[image: VAE latent space for organic compounds]
Figure 6-4. Autoencoder latent space for organic compounds




The main difference between autoencoders and encoder-decoder architectures is their objective and the nature of the output data. Encoder-decoder architectures focus on generating an output in a different format or structure based on the input data. At the same time, autoencoders aim to reconstruct the input data as closely as possible.
In VAEs, the data transformation process revolves around learning a probabilistic latent space. When predicting chemical molecules, the encoder compresses the input data into a lower-dimensional latent space, which could be a chemical compound’s molecular structure or properties. This space is a Gaussian distribution that captures the essential characteristics of the molecule. The decoder then samples from this distribution to probabilistically reconstruct the original molecule or generate new molecules with similar properties. This process enables the VAE to explore various possible molecular configurations with specific desired traits, such as high solubility or strong binding affinity to a target protein.


On the other hand, in Encoder-Decoder LLMs, the data transformation occurs differently. The encoder processes the input text (the SMILES string) to create a contextual representation. This representation captures the relationships between different molecule parts, such as the connections between tokens - atoms and the type of bonds. The decoder then uses this contextual embedding to generate output text, which could be a new SMILES string, some text description, or a prediction of a molecule’s properties (see Chapter 8). Unlike VAEs, LLMs do not rely on a probabilistic latent space but use deterministic contextual embeddings, meaning that given the same input, the model will always produce the same embedding. As discussed in Chapter 2, the probabilistic approach is gained using various decoder sampling techniques.

Note

In Chapter 2, we’ve covered that LLMs are great at capturing connections between tokens being trained on tons of text data. The problem with today’s molecular representation is that cyclic molecular structures are represented using linear token sequences. Autoencoders, on the contrary,




Conditional VAEs (CVAEs) take the idea further by incorporating additional information, or “conditions,” into the generation process. In drug discovery, this condition could be a specific molecule characteristic, such as its solubility, synthetic accessibility score, or other physical or chemical properties. The CVAE then generates new molecules that resemble the known ones and meet the specified conditions. For example, suppose researchers are looking for a molecule that binds well to a particular protein. In that case, they can use a CVAE to generate candidates likely to have this property, making the search for effective drugs faster and more targeted.


Now, we’ll be building our own CVAE network for molecule generation. The full code is provided on the official GitHub repo. First, we’ll transfer all smiles to the graph adjacency matrixes using the RDKit package. We’ll also create a feature matrix for the data provided in the ZINC dataset.

Tip

While traditional SMILES are suitable for representing molecular data as strings, their generated latent spaces aren’t well regularized. A more promising approach is to use SELFIES, which requires converting data formats but shows more generating power.




The encoder, shown in Example 9-1, will take a molecule’s graph adjacency matrix and feature matrix as input. These features are processed via a created RelationalGraphConvLayer graph convolution layer, then are flattened and processed by several Dense layers to derive z_mean and log_var, the latent-space representation of the molecule. The RelationalGraphConvLayer layer applies non-linear transformations to the neighborhood aggregations within the graph.


Example 6-1. CVAE encoder


# keras==2.15.0 tensorflow==2.15.0 tf-keras==2.15.0
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

def set_encoder(
    gconv_units, latent_dim, adjacency_shape,
    feature_shape, dense_units, dropout_rate):

   # Input layers for adjacency matrix and feature matrix
   adjacency = layers.Input(shape=adjacency_shape)
   features = layers.Input(shape=feature_shape)

   # Pass through relational graph convolutional layers
   features_transformed = features
   for units in gconv_units:
      features_transformed = RelationalGraphConvLayer(units)(
         [adjacency, features_transformed]
      )

   x = layers.GlobalAveragePooling1D()(features_transformed)

   # Pass through dense layers
   for units in dense_units:
      x = layers.Dense(units, activation="relu")(x)
      x = layers.Dropout(dropout_rate)(x)

   # Compute the mean and log variance for the latent space
   z_mean = layers.Dense(latent_dim, dtype="float32", name="z_mean")(x)
   log_var = layers.Dense(latent_dim, dtype="float32", name="log_var")(x)

   # Build the encoder model
   encoder = keras.Model([adjacency, features], [z_mean, log_var], name="encoder")
   return encoder



The sampling layer, shown in Example 9-2 helps generate a latent space vector. It takes the mean (z_mean) and log variance (z_log_var) as inputs, defining the latent space distribution. The layer samples a random noise (epsilon) from a standard normal distribution and adjusts it using the provided mean and variance.


Example 6-2. CVAE sampling


class Sampling(layers.Layer):
   def call(self, inputs):
      z_mean, z_log_var = inputs

      # Get batch size and dimensionality of latent space
      batch = tf.shape(z_log_var)[0]
      dim = tf.shape(z_log_var)[1]

      # Sample epsilon from a standard normal distribution
      epsilon = tf.keras.backend.random_normal(shape=(batch, dim))

      # Compute the sampled latent vector
      return z_mean + tf.exp(0.5 * z_log_var) * epsilon



The decoder, shown in Example 9-3, takes the latent-space representation as input and predicts the corresponding molecules’ graph adjacency matrix and feature matrix. As discussed above, the decoder usually mimics a reversed encoder neural network, but it’s not a requirement.


Example 6-3. CVAE decoder


def set_decoder(
   dense_units, dropout_rate, latent_dim,
   condition_dim, adjacency_shape, feature_shape):

   # Input layer for the latent space vector
   latent_input = keras.Input(shape=(latent_dim,))
   condition_input = keras.Input(shape=(condition_dim,))

   # Concatenate latent vector with condition
   x = layers.Concatenate()([latent_input, condition_input])

   for units in dense_units:
      x = layers.Dense(units, activation="tanh")(x) #relu
      x = layers.Dropout(dropout_rate)(x)

   # Generate the adjacency tensor
   x_adjacency = layers.Dense(tf.math.reduce_prod(adjacency_shape))(x)
   x_adjacency = layers.Reshape(adjacency_shape)(x_adjacency)

   # Symmetrize the adjacency tensor
   x_adjacency = (x_adjacency + tf.transpose(x_adjacency, (0, 1, 3, 2))) / 2
   x_adjacency = layers.Softmax(axis=1)(x_adjacency)

   # Generate the feature tensor
   x_features = layers.Dense(tf.math.reduce_prod(feature_shape))(x)
   x_features = layers.Reshape(feature_shape)(x_features)
   x_features = layers.Softmax(axis=2)(x_features)

   # Build the decoder model
   decoder = keras.Model(
      [latent_input, condition_input], outputs=[x_adjacency, x_features],
      name="decoder"
   )
   return decoder



Our CVAE model is trained to optimize four types of losses:


	
Reconstruction Loss (molecule and property)



	
Similarity Loss



	
Property Prediction Loss



	
Graph Loss







The reconstruction loss measures the accuracy of the model’s reconstruction of the input data using categorical_crossentropy. We’re calculating the reconstruction loss for both the molecule and its properties. The similarity loss (KL divergence) encourages the latent space distribution to approximate a standard normal distribution, promoting smoothness and disentanglement in the latent representations.


As we add a condition and a property prediction step, we’ll have another metric: one for checking the prediction and one for checking the condition applied. The property prediction loss calculates the mean squared error between the predicted and actual molecular properties after passing the latent representation through a property prediction model. A graph loss (gradient penalty) also guides the model’s property prediction (such as QED - Quantitative Estimate of Drug-likeness).

Note

A gradient penalty serves as an alternative soft constraint on the 1-Lipschitz continuity, enhancing the gradient clipping scheme used in traditional neural networks by adding a regularization term to the loss function, helping to maintain smoothness and stability during training.




Our architectural schema is similar to the VAE schema above but includes a property prediction step, as shown in Figure 9-5.



[image: CVAE architectural schema]
Figure 6-5. CVAE architectural schema




The model effectively balances reconstruction accuracy, latent space regularization, property prediction, and gradient stability by optimizing all these losses together. The _compute_loss function is shown in Example 9-4.


Example 6-4. An example of loss calculation


def _compute_loss(self, z_log_var, z_mean, qed_true, qed_pred,
   graph_real, graph_generated, condition_tensor):

   adjacency_real, features_real = graph_real
   adjacency_gen, features_gen = graph_generated

   # Reconstruction losses
   adjacency_loss = tf.reduce_mean(
      tf.reduce_sum(
         keras.losses.categorical_crossentropy(adjacency_real, adjacency_gen),
         axis=(1, 2),
      )
   )
   features_loss = tf.reduce_mean(
      tf.reduce_sum(
         keras.losses.categorical_crossentropy(features_real, features_gen), axis=1,
      )
   )

   # KL divergence loss
   kl_loss = -0.5 * tf.reduce_sum(
      1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var), axis=1
   )
   kl_loss = tf.reduce_mean(kl_loss)

   # Property prediction loss
   property_loss = tf.reduce_mean(
      keras.losses.binary_crossentropy(qed_true, qed_pred)
   )

   # Gradient penalty for graph regularization
   graph_loss = self._gradient_penalty(
      graph_real, graph_generated, condition_tensor)

   return kl_loss, property_loss, graph_loss, adjacency_loss, features_loss



After we set up and train the model, we can infer it. We’ll restrict the generative molecular size capability and set the condition to the first and third quantiles of logP (water–octanal partition coefficient - a measure of lipophilicity of a molecule). As we deal with a probabilistic latent space, we can see some molecules “slip” into our target category on large batches despite set conditions. Generate molecules are shown in Figure 9-6.



[image: Generated molecules]
Figure 6-6. Generated molecules




As we can observe, many molecules with lower lipophilicity are generated than the higher ones. The possible reason is the restriction on the molecule size. It is also well seen that most low lipophilic molecules contain multiple water-soluble elements (O and N in particular).


Some of the generated molecules are doubtful to exist in real life, which is a problem discussed at the beginning of this chapter. In Chapter 6 we’ve looked at creating AI agents and how to team them up. With this in mind, you can create an agent responsible for running and optimizing the CVAE code with another agent filtering possible existing molecules using molecular mechanics or similar methods. This can not only be used to filter potential candidates but also as a feedback loop between AI agents.












Knowledge Graphs


A knowledge graph (KG) is a data structure that represents information as a network of interconnected entities, often visualized as nodes (representing things like people, concepts, or objects) and edges (representing relationships between them). This graph-based representation allows for better organization and discovery of knowledge, as it captures not only the entities but also their complex relationships in an easily navigable way.


KGs emphasize the relationships between entities rather than the entities themselves. Drug discovery research may focus on how drugs, diseases, proteins, genes, pathways, and other chemical and biological entities are interconnected. What matters most is not the individual proteins or molecules but how they relate to one another — how proteins interact with small molecules and how similar they are. These relationships provide critical insights for understanding complex biological systems and are valuable for identifying potential drug targets, predicting drug interactions, understanding disease mechanisms, and more.


Drug repurposing is one example of how KGs can be applied in drug discovery. KGs can determine connections between drugs and diseases by linking data on existing drugs, their targets, and disease pathways. For example, traversing and analyzing the KG patterns might highlight that a drug initially developed for a specific disease targets a protein involved in some rare disorder. This can lead to potentially faster and cheaper clinical trials than the traditional drug development process.

Note

In the official GitHub repository, there is a bonus notebook dedicated to performing graph machine learning to predict what drugs can cure other diseases besides those listed in the dataset used for training.




KGs can also help predict drug-drug interactions and map out how different compounds affect various metabolic pathways. This is important for developing combination therapies and avoiding adverse effects. KGs can support target identification by revealing proteins that play key roles in multiple disease pathways, making them promising targets for broad-spectrum drugs. Additionally, KGs can assist in patient stratification for clinical trials by connecting genetic profiles with drug response data, enabling more personalized and effective drug development strategies. Besides the above, KGs can help predict toxicity by linking chemical structures to known side effects. Numerous implementations of KGs could be achieved by connecting the nodes of a KG, an example of which is shown in Figure 9-7.



[image: Example knowledge graph]
Figure 6-7. Example knowledge graph




In Chapters 2 and 4, we’ve discussed the concept of Retrieval-Augmented Generation (RAG) quite a lot. The idea of RAG over KG is to use the nodes and edge data as a source of information rather than a vector store. Applying RAG over KGs may ease the representation of existing drugs, their targets, side effects, pathways, approved indications, and more. Using a RAG model over such a KG can retrieve and synthesize relevant data, such as known interactions or effects of similar compounds. Or one can pull relevant genetic information, cross-reference it with disease phenotypes, and generate hypotheses about disease mechanisms or potential genetic interventions using just a text interface.

Tip

A powerful use of RAGs over KGs is for literature review and hypothesis generation. The RAG system could retrieve relevant scientific papers, traverse the citation tree, and generate a concise summary of the current state of knowledge.




In further examples in this chapter, we’ll use a KG built in the Neo4j graph database. Let’s look at the step-by-step process of how a simple RAG pipeline over a KG works, as shown in Figure 9-8 below.



[image: Rag Pipeline]
Figure 6-8. Example knowledge graph




	
Data Preparation



	
Data Ingestion: Populate your Neo4j database with relevant data.
Schema Design: Design the graph schema to clearly define each node type and relationship.



	
Data Integration: If data comes from multiple sources (e.g., research papers, clinical trials, databases), integrate them into a cohesive graph.







	
Question interpretation



	
Users input a natural language query, such as “What drugs target the BRCA1 gene in breast cancer?” The RAG system may paraphrase the question or filter out if it is irrelevant based on the configurations. Such steps are more frequently met in commercial RAG chatbot applications, which we’ll discuss in more detail in Chapter 12.







	
Routing



	
There might be several types and sources of data that we need to navigate. In our simple RAG pipeline, we have only 1 source, so any question will be addressed for the created KG.







	
Query construction



	
This step involves mapping the terms used in the query to entities and relationships in the Neo4j database. For instance, the “BRCA1 gene” is mapped to a specific node and “targets” to a relationship like “inhibits” or “binds,” depending on the schema information.



	
Modern KG systems offer built-in capabilities beyond simple querying, enabling users to implement recommendation systems, predict links, generate graph embeddings, perform advanced analytics, visualize data, handle real-time processing, and execute machine learning tasks through advanced Cypher query construction.







	
Data Retrieval



	
The Cypher query is executed against the Neo4j database, and the relevant sets of nodes and relationships are retrieved.







	
Augmentation and Generation



	
Result Aggregation: The raw results from the Cypher query are processed to extract meaningful information. This could involve filtering, ranking, or further aggregating data based on relevance, similarity, or other criteria. For example, if multiple drugs target BRCA1, an advanced system may prioritize the information by considering factors like clinical trial phases, efficacy, or side effects.



	
Structured Data to Text Conversion: The structured data (nodes and relationships) retrieved from Neo4j is converted into natural language, for example, “The drug X targets the BRCA1 gene, which is involved in breast cancer. Clinical studies have shown that X is effective in treating breast cancer patients with BRCA1 mutations.”











Chapter 10 will cover RAG over SQL database. Most of the data is stored in table formats. Still, RAG over graph databases offers several unique opportunities compared to traditional SQL or NoSQL databases. The key advantages lie in the ability of graph databases to naturally model complex, interconnected data, representing relationships in anthologies and hierarchies.


A KG database can directly model graph relationships, allowing a RAG system to quickly retrieve and synthesize insights about how a drug might interact with multiple targets or how genetic mutations can influence disease pathways. In contrast, SQL or NoSQL databases will require complex joins or separate tables to represent such relationships, making the retrieval process less intuitive and much slower. Another example of how using KG systems would be beneficial is the efficient handling of complex queries involving multi-hop relationships. For example, tracing the relationship between a genetic mutation and its impact on protein function and linking that to clinical outcomes across different patients.


In Example 9-5, an upload of a simple CSV (Table 9-1) is shown. The code creates nodes for both drugs (Drug), side effects (SideEffect), diseases (Disease), and enzymes (Enzyme).


Table 6-1. Example table of drugs, side effects, diseases and enzymes


	Drug1
	Drug2
	SideEffect
	Disease
	Enzyme





	Aspirin

	Ibuprofen

	Nausea

	Headache

	CYP2C9




	Ibuprofen

	Paracetamol

	Dizziness

	Inflammation

	CYP2D6




	Paracetamol

	Aspirin

	Liver Damage

	Fever

	CYP1A2




	Warfarin

	VitaminK

	Bleeding Disorder

	Blood Clot

	CYP2C9







Relationships between these entities are also established: as a drug causing a side effect, interacting with another drug, binding to an enzyme, and curing a disease. The MERGE keyword ensures that each node and relationship is created only once, even if it appears multiple times in the CSV file. To avoid errors, it’s always better to check if a specified database (testcsv in this case) exists and create one it if not.


Example 6-5. Loading data to Neo4j


from neo4j import GraphDatabase

# These connection parameters might be different per user configuration
driver = GraphDatabase.driver("bolt://localhost:7689", auth=("neo4j", "password"))

# Queries to select all nodes and relationships
MATCH_NODE_QUERY = "MATCH(n) RETURN n LIMIT 10"
MATCH_REL_QUERY = "MATCH p=()-[r]->() RETURN p LIMIT 10"

# Example CSV query to load data
CSV_LOAD_QUERY = """LOAD CSV WITH HEADERS
FROM "https://raw.githubusercontent.com/IvanReznikov/LangChain4LifeScience/main
data/datasets/ch9_test_graph.csv" AS row

// Create Drug nodes
MERGE (d1:Drug {name: row.Drug1})
MERGE (d2:Drug {name: row.Drug2})
// Create nodes
MERGE (s:SideEffect {name: row.SideEffect})
MERGE (dis:Disease {name: row.Disease})
MERGE (e:Enzyme {name: row.Enzyme})
// Establish relationships
MERGE (d1)-[:CAUSES]->(s)
MERGE (d1)-[:INTERACTS_WITH]->(d2)
MERGE (d1)-[:BINDS]->(e)
MERGE (d1)-[:CURES]->(dis)"""

db_name = "testcsv"
db_list = [x.data()['name'] for x in driver.execute_query("SHOW DATABASES").records]
if db_name not in db_list:
   driver.execute_query(f"CREATE DATABASE {db_name}")
   driver.execute_query(CSV_LOAD_QUERY, database_=db_name)
> print("nodes:")
> print([x.data()['n'] for x in driver.execute_query(MATCH_NODE_QUERY,
         database_=db_name).records])
>> nodes:
[{'name': 'Aspirin'}, {'name': 'Ibuprofen'}, ..., {'name': 'Headache'}]

> print("relations:")
> print([x.data()['p'] for x in driver.execute_query(MATCH_REL_QUERY,
         database_=db_name).records])
>> relations:
[[{'name': 'Aspirin'}, 'CAUSES', {'name': 'Nausea'}], [{'name': 'Ibuprofen'},
'CAUSES', {'name': 'Dizziness'}], ..., [{'name': 'Warfarin'}, 'INTERACTS_WITH',
{'name': 'VitaminK'}], [{'name': 'Ibuprofen'}, 'BINDS', {'name': 'CYP2D6'}]]



Similarly, you can upload different data types using other functions and plugins to the Neo4j database. The overall logic would stay the same:



	
upload file



	
extract data



	
set nodes and relationships



	
execute





Tip

There are certain limitations to running a free-tier Neo4j Aura cloud instance. To unlock more possibilities, run Neo4j in your local environment.




Example 9-6 demonstrates creating a basic graph pipeline using LangChain’s GraphCypherQAChain. This chain allows us to ask questions regarding the data stored in the Neo4j graph, with responses returned based on graph traversal.


In this case, the chain is used to query drug categories from the graph. As we have return_direct=True, we expect the final answer not to be modified by the language model. As this chain is simple, you can notice, that for the question “What category does Fluoxymesterone belong to?”, the chain successfully identifies various categories like “Androgens” and “Androstenes” based on the relationships within the graph. However, slight variations in input, such as lowercase “fluoxymesterone”, result in no matches, highlighting the importance of query consistency.


Example 6-6. Basic graph query chain


from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph(url=..., username=..., password=...)
chat_model = ...

basic_chain = GraphCypherQAChain.from_llm(
 chat_model, graph=graph,  verbose=True, return_intermediate_steps=True, return_direct=True
)

> basic_chain.invoke({"query": "What category does Fluoxymesterone belong to?"})
>> {'query': 'What category does Fluoxymesterone belong to?',
 'result': [{'c.name': 'Androstenes'}, {'c.name': 'Androgens'}, ...,
            {'c.name': 'Androstanes'}],
 'intermediate_steps': [{'query': 'MATCH (d:Drug {name: "Fluoxymesterone"})-
 [:belongs_to]->(c:Category)\nRETURN c.name;'}]}

> basic_chain.invoke({"query": "What category does fluoxymesterone belong to?"})
>> {'query': 'What category does fluoxymesterone belong to?',
 'result': [],
 'intermediate_steps': [{'query': 'MATCH (d:Drug {name: "fluoxymesterone"})-
 [:belongs_to]->(c:Category)\nRETURN c;'}]}



The basic pipeline only knows a minimum of our graph - mainly from the Neo4j schema. So there is significant room for improvement to make the GraphCypherQAChain more flexible. We can return intermediate steps from the Cypher QA Chain using the return_intermediate_steps parameter, return direct results using the return_direct parameter, and correct relationship directions in generated Cypher statements before using it with the setting the validate_cypher parameter. We can also define the prompt and set context for the Cypher statement to generate for particular questions. You can limit the number of results from the GraphCypherQAChain using the top_k parameter. You can also use the cypher_llm and qa_llm parameters to define different LLMs for Cypher and answer generation, which might be useful if the qa_llm would be a finetuned domain model with no knowledge of Cypher language.


Example 9-7 shows an implementation of several of these changes and their effect on the responses. As we can use different LLMs for Cypher and question-answering (QA) purposes, we can use different prompts. The QA_TEMPLATE is a customizable prompt for specifying question details, while the more detailed CYPHER_GENERATION_TEMPLATE provides guidelines for generating Cypher queries, referencing the available schema and relationships in the graph. The full up-to-date prompt is provided in the official GitHub repo.


We’ll also set ‘GraphCypherQAChain’ to validate Cypher queries, return intermediate steps, and ensure case-insensitive searches with the toLower method via prompt. This approach looks more sophisticated, especially regarding handling text inconsistencies in node properties.


Example 6-7. Graph query chain with prompt


from langchain_core.prompts.prompt import PromptTemplate
QA_TEMPLATE = """Before generating the cypher query, always decompose what the
final query should do.
Question: {question}
"""
QA_PROMPT = PromptTemplate(
    input_variables=["question"], template=QA_TEMPLATE
)

CYPHER_GENERATION_TEMPLATE =""" Task:Generate Cypher statement to query a graph db.
Instructions: Use only the provided relationship types and properties in the schema.
Schema: {schema}
Below are possible relationships:
Drug interacts with Drug
Drug causes SideEffect
Drug binds to Category, Target, Enzyme, Carrier, Transporter
...
For complex queries, think of the relationships required from the list above.
#What pathways are drugs curing cerebral embolism involved in.
To answer this question, several steps should be provided:
1. Drug - cures -> Disease
2. Drug - involves_in -> Pathway
MATCH (d:Drug)-[:cures]->(:Disease {{name: 'Cerebral Embolism'}}),
(d)-[:involves_in]->(p:Pathway) RETURN p
...
Always use toLower method to avoid case sensitivity:
#What categories does dornase alfa drug belong to?
MATCH (d:Drug)-[:belongs_to]->(c:Category) WHERE toLower(d.name)
CONTAINS('dornase alfa') return d, c
...
As some of the nodes as Disease and SideEffect may have multiple concatenated
values, always use contain statement:
# What drugs cause osteomalacia?
MATCH (d:Drug)-[:causes]->(s:SideEffect) WHERE toLower(s.name)
CONTAINS('osteomalacia') return d, s
...
The question is: {question}"""
CYPHER_GENERATION_PROMPT = PromptTemplate(
    input_variables=["schema", "question"], template=CYPHER_GENERATION_TEMPLATE
)

prompt_chain = GraphCypherQAChain.from_llm(
chat_model, graph=graph, return_intermediate_steps=True, return_direct=True,
   validate_cypher=True, verbose=True, qa_prompt=QA_PROMPT,
   cypher_prompt=CYPHER_GENERATION_PROMPT,
)



As the results of executing Example 9-7 below show, not all prompt rules may be applied, as the generated Cypher query for “What can cure meningitis?” didn’t involve the “CONTAINS” rule. In cases where the node name matches the request directly, the more advanced chain may return better results. We’ll discuss further in this chapter how we can do better.


Example 6-8. 


> prompt_chain.invoke({"query": "What category does fluoxymesterone belong to?"})
>> {'query': 'What category does Fluoxymesterone belong to?',
 'result': [{'c': {'name': 'Androstenes', '_id': 15784}},   {'c': {'name':
 'Fused-Ring Compounds', '_id': 16775}},
   ..., {'c': {'name': 'Androstanes', '_id': 15781}}],
 'intermediate_steps': [{'query': "MATCH (d:Drug {name: 'Fluoxymesterone'})-
 [:belongs_to]->(c:Category) RETURN c"}]}

> prompt_chain.invoke({"query": "What can cure meningitis?"})
>> {'query': 'What can cure meningitis?',
 'result': [],
 'intermediate_steps': [{'query': "MATCH (drug:Drug)-[:cures]->(:Disease {name:
 'Meningitis'})\nRETURN drug"}]}

> prompt_chain.invoke({"query": "What side effect can be caused by expectorants
category drugs?"})
>> {'query': 'What side effect can be caused by expectorants category drugs?',
 'result': [{'se.name': 'Post procedural bile leak'},
  {'se.name': 'Incision site infection'}, ...,  {'se.name': 'Pain;Dolor;PAIN'}],
 'intermediate_steps': [{'query': 'MATCH (:Category {name: "Expectorants"})<-
 [:belongs_to]-(:Drug)-[:causes]->(se:SideEffect)\nRETURN se.name'}]}



Another way to customize the end results is using the use_function_response parameter to pass context from database results to an LLM as a tool/function output. We can instruct the model on generating answers by providing a custom system message as the function_response_system parameter. In such case qa_prompt will have no effect when using use_function_response


Example 6-9. 


chain = GraphCypherQAChain.from_llm(
 chat_model, graph=graph, verbose=True, use_function_response=True,
 function_response_system= "Convert the answer to a bullet list",
)
> chain.invoke({"query": "What category does fluoxymesterone belong to?"})
>>
Androstenes
Androgens
...
Androstanes











Neo4jVectors


Chapter 3 covered indexes and vector stores as one of the main components in LangChain. Vector indexes enable similarity searches and complex analytical queries by representing nodes or properties as vectors in a multidimensional space.


In a Neo4j database, an index is a duplicate of specific primary data, such as nodes, relationships, or properties, that serves as a shortcut to quickly access and retrieve data. Once created, the index is automatically populated and updated by the system. Neo4j offers two indexes: search-performance indexes (exact match), which facilitate fast data retrieval, and semantic indexes (similar match), which enable approximate matches and compute the vector similarity between query strings and data.

Tip

Neo4j integrates vector and keyword indexes, allowing you to use a hybrid search approach.


Neo4jVector.from_existing_index(
   index_name=vector_index_name,
   keyword_index_name=keyword_index_name,
   search_type= "hybrid",
)




There are multiple ways how one can create and use the vector capabilities of Neo4j. While methods such as add_documents, add_texts, and others are similar to ones discussed in previous chapters, there are methods to be applied for an existing graph, such as from_existing_graph(embedding, node_label, ...) that initialize and return a Neo4jVector instance from an existing graph. If the index already exists, there are from_existing_index(embedding, index_name[, ...]) method, to get instance of an existing Neo4j vector index and from_existing_relationship_index(embedding, ...) method to get instance of an existing Neo4j relationship vector index.


In Example 9-8, we’ll create a n_disease_vector with a specified embedding_model, that will embed our text_node_properties of a specified node_label and store under embedding_node_property.


Example 6-10. Creating node vector index


n_disease_vector = Neo4jVector.from_existing_graph(
   embedding=embedding_model,
   ...
   index_name="n_vector_diseases",
   node_label= "Disease",
   text_node_properties=["name"],
   embedding_node_property= "embedding",
)

> n_disease_vector.similarity_search_with_score("meningitis", k=5)
>> [
   (Document(metadata={...},page_content='\nname: Meningococcal meningitis'),0.813),
   (Document(metadata={...},page_content='\nname: Neonatal meningitis'),0.802),
   (Document(metadata={...},page_content='\nname: Staphylococcal meningitis'),0.80),
   (Document(metadata={...},page_content='\nname: Meningococcemia'),0.791),
   (Document(metadata={...},page_content='\nname: Streptococcal meningitis'), 0.791)
]



Notice that the results for “meningitis” contain the “Meningococcemia” node, which doesn’t include a full-text match of “meningitis.” This vector search across nodes might be very helpful, allowing the use of the benefits of both graph structure and vector store indexing capabilities.


Neo4j also supports relationship vector indexes, storing an embedding as a relationship property. While most nodes are different from one another and graphs often have more relations than nodes, there are usually a much lower number of types of relations compared to the number of nodes. In this case, we can embed all relations and add their property to the existing graph instead of embedding all relations one by one. A relationship vector index cannot be populated via LangChain, but we can connect it to existing relationship vector indexes, as shown in Example 9-9.


In order to create a relationship vector index, we’ll need to set a name and embedding property for all our relationships. As we have only a few of them, we’ll assign the same embedding value calculated once by our embedding_model for all the relationships of the same type. In Example 9-9 I’ve used Awesome Procedures On Cypher (APOC) to run the query in parallel batches.


Once we populate all relationships with embeddings, we can create a vector index based on our embedding. The specified vector.dimensions should be the same as per the size of the embedding_model. After we’ve ran the index creation query, we can set out Neo4jVector variable using from_existing_relationship_index method.


Example 6-11. Creating node vector index


for r_type in graph.query("""CALL db.relationshipTypes()"""):
   relations_embedding[r_type["relationshipType"]] = embedding_model.embed_query(
      relations_names[r_type["relationshipType"]]
   )

for r_type in relations_embedding:
   query_match = f"MATCH ()-[r:{r_type}]->() RETURN r"
   query_update = f"WITH r SET r.embedding = {relations_embedding[r_type]}"
   graph.query(
         f""" CALL apoc.periodic.iterate("{query_match}", "{query_update}",
         {{batchSize: 500, parallel: true}})
         """ )

graph.query(
   """CREATE VECTOR INDEX r_vector_cures IF NOT EXISTS
   FOR ()-[r:cures]-() ON (r.embedding)
   OPTIONS {indexConfig: {
   `vector.dimensions`: 3072,
   `vector.similarity_function`: 'cosine'}}
   """
)

r_cure_vector = Neo4jVector.from_existing_relationship_index(
   embedding_model,
   ...
   index_name="r_vector_cures", text_node_property= "name",
)



The index information does not contain the text node property information. If you use any property besides the text (default option), specify it using the text_node_property "parameter.
If we now call `SHOW INDEXES in our graph, specifying the vector type of our indexes, we’ll see both of them being created. Additionally, the provided configuration informs us that the vector embedding dimension is 3072 and uses the cosine similarity function.
Alternatively you can call SHOW VECTOR INDEXES or SHOW VECTOR INDEXES YIELD * to get similar information.


Example 6-12. 


> graph.query(
   """ SHOW INDEXES YIELD name, type, labelsOrTypes, properties, options
   WHERE type = 'VECTOR' """
)
>> [{ 'name': 'r_vector_cures',
      'type': 'VECTOR',
      'labelsOrTypes': ['cures'],
      'properties': ['embedding'],
      'options': {'indexProvider': 'vector-2.0',
      'indexConfig': {'vector.dimensions': 3072,
      'vector.similarity_function': 'COSINE'}}
   },
   {  'name': 'n_vector_diseases',
      'type': 'VECTOR',
      'labelsOrTypes': ['Disease'],
      'properties': ['embedding'],
      'options': {'indexProvider': 'vector-2.0',
      'indexConfig': {'vector.dimensions': 3072,
      'vector.similarity_function': 'cosine'}}
   }]



Now that we have the indexes, how can we dynamically use them? We can find and keep the most similar nodes and relations and pull them into the following query by calling a subquery. This may work, but it’s not a LangChain approach. Instead of stacking queries, we can call separate chains to retrieve relevant vector responses from the graph and use it in the main chain. We’ve discussed vector search and retrievers in Chapter 3 and throughout Chapter 4. In order to retrieve data from a vector store index, we’ll use LangChain as_retriever method for both created vector stores, as shown in Example 9-10.


After, we’ll design a query_analyzer chain, that will take the question and decompose to what retriver to select. In order to do so, we’ll implement a Search tool, that will take the name mapping of a retriever and set the descriptions of potential options (NODE_DISEASE and REL_CURES in Example 9-10). The Search tool will be LLM-powered, so the principles of the better the description and prompt - the better the output applies fully.


After the node and relationship retrievers are chosen, we shall collect their data and pass it to the main chain. The main_chain is very similar to the chain from Example 7, with few changes in the CYPHER_GENERATION_TEMPLATE and CYPHER_GENERATION_PROMPT to incorporate the retrieved relationships and nodes.


Example 6-13. Creating neo4j vector chain


from langchain_core.runnables import chain
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import RunnablePassthrough
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate

n_disease_retriever = n_disease_vector.as_retriever()
r_cure_retriever = r_cure_vector.as_retriever()

retrievers = {
    "NODE_DISEASE": n_disease_retriever,
    "REL_CURES": r_cure_retriever,
}

class Search(BaseModel):
   """ Search for information related to drugs in a graph database."""
   query: str = Field(
      ..., description= "Query to look up",
   )
   node: str = Field(
      ..., description= "Node index to look for. Should be `NODE_DISEASE` if
      related to diseases",
   )
   rel: str = Field(
      ..., description= "Relations index to look for. Should be `REL_CURES` if
      related to curing or healing",
   )

system ="""You have the ability to issue search queries to get information to help
answer user information."""
prompt = ChatPromptTemplate.from_messages(
   [
      ("system", system),
      ("human", "{question}"),
   ]
)
structured_llm = chat_model.with_structured_output(Search)
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm

@chain
def retriever_chain(question):
   response = query_analyzer.invoke(question)
   retriever_n, retriever_r = retrievers[response.node], retrievers[response.rel]
   return retriever_n.invoke(response.query), retriever_r.invoke(response.query)

CYPHER_GENERATION_TEMPLATE =""" Task:Generate Cypher statement to query a graph db.
...
Schema:
{schema}
...
Create a query using the following nodes: {nodes} and relations: {rels}
The question is:
{question}"  ""

CYPHER_GENERATION_PROMPT = PromptTemplate(
    input_variables=["schema", "question", "nodes", "rels"],
    template=CYPHER_GENERATION_TEMPLATE,
)

main_chain = GraphCypherQAChain.from_llm(
 chat_model, graph=graph, verbose=True,
    return_intermediate_steps=True, return_direct=True,
    validate_cypher=True, cypher_prompt=CYPHER_GENERATION_PROMPT,
)"""



Example 9-11 shows the results of running our chain across several questions:



	
What can heal meningitis?



	
What can help with arthritis?






Notice, that none of the questions mention “cure”, as our relationship is named. LIMIT_RESPONSES is set to 3 to limit the number of unique nodes and relationships used in the main chain. It can be seen in intermediate_steps that the created Cypher requests contain correct nodes and relationships, leading to more advanced graph data retrieval using only natural language as input.


Example 6-14. Neo4j vector chain results


def format_page_content(page_content):
   return page_content.replace("\nname: ", "")

> LIMIT_RESPONSES = 3
> query = "What can heal meningitis?"
> nodes, rels = retriever_chain.invoke({"query": query})[:LIMIT_RESPONSES]
> main_chain.invoke({
        "query": query,
        "nodes": {format_page_content(x.page_content) for x in nodes},
        "rels": {format_page_content(x.page_content) for x in rels},
})
>> {'query': 'What can heal meningitis?',
 'nodes': {'Meningococcal meningitis', 'Neonatal meningitis',
  'Staphylococcal meningitis', 'Streptococcal meningitis'},
 'rels': {'cures'},
 'result': [{'Cure': 'Meropenem'},   {'Cure': 'Chloramphenicol'},
...
 {'Cure': 'Benzylpenicillin'},   {'Cure': 'Cefotaxime'}],
 'intermediate_steps': [{'query': "MATCH (d:Drug)-[:cures]->(disease:Disease)
 \nWHERE disease.name IN ['Meningococcal meningitis', 'Staphylococcal meningitis',
 'Neonatal meningitis', 'Streptococcal meningitis']\nRETURN d.name as Cure;"}]}

#------------------------------------------

> query = "What can help with arthritis?"
> nodes, rels = retriever_chain.invoke({"query": query})[:LIMIT_RESPONSES]
> main_chain.invoke({
        "query": query,
        "nodes": {format_page_content(x.page_content) for x in nodes},
        "rels": {format_page_content(x.page_content) for x in rels},
})
>> {'query': 'What can help with arthritis?',
 'nodes': {'Arthritic pains', 'Arthritis, Bacterial',
  'Degenerative polyarthritis', 'Juvenile arthritis'},
 'rels': {'cures'},
 'result': [{'d.name': 'Salsalate'},   {'d.name': 'Etofenamate'},
...
 {'d.name': 'Dexibuprofen'},   {'d.name': 'Salicylic acid'}],
 'intermediate_steps': [{'query': "MATCH (d:Drug)-[:cures]->(disease:Disease)
 \nWHERE disease.name IN ['Arthritis, Bacterial', 'Juvenile arthritis', 'Arthritic
 pains', 'Degenerative polyarthritis']\nRETURN d.name"}]}



Using vector approaches inherits other benefits of using vector similarities so that case sensitivity, typos, or exact matches aren’t a problem, which makes our chain rigid. Also, our chain can support languages other than English.












Summary


This chapter discusses autoencoders and their ability to generate new data. The chapter explains the difference between various types of encoders and provides a step-by-step guide to build a CVAE neural network specifically for molecule generation. The chapter also covers knowledge graphs, particularly Neo4j, explaining how to upload data and create LangChain chains to query this data using natural language. Finally, we looked at ways to combine Neo4j data with vector store indexes, highlighting its potential in research.
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