

Generative AI for Software Development

Building Software Faster and More Effectively

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Sergio Pereira

Generative AI for Software Development

by Sergio Pereira

Copyright © 2025 Goalstat Lda. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Acquisitions Editor: Louise Corrigan

		Development Editor: Sarah Grey

		Production Editor: Elizabeth Faerm

		Copyeditor: To come

		Proofreader: To come

		Indexer: To come

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		July 2025: First Edition

Revision History for the Early Release

		2024-05-16: First Release

		2024-07-25: Second Release

		2024-10-15: Third Release

		2024-11-13: Fourth Release

		2025-03-06: Fifth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098162276 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Generative AI for Software Development, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-098-16221-4

[LSI]

Brief Table of Contents (Not Yet Final)

Chapter 1: The Impact of Generative AI on Software Development (unavailable)

Chapter 2: Code Generation (available)

Chapter 3: Bug Detection and Code Review (available)

Chapter 4: Automated Testing and Quality Assurance (available)

Chapter 5: User Interface and User Experience Design (available)

Chapter 6: Data Analysis and Business Intelligence (available)

Chapter 7: Documentation and Tech Writing (available)

Chapter 8: Chatbots and Virtual Assistants (available)

Chapter 9: Implementation Success Stories (unavailable)

Chapter 10: The Future of Generative AI in Software Development (unavailable)

 Chapter 1. Code Generation

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

 Artificial intelligence can significantly amplify productivity and creativity in code generation and autocompletion. This chapter explores how AI-driven tools are redefining the coding experience, transforming a time-intensive manual process into an interactive, efficient, and error-reducing endeavor.

 The advent of AI in code generation is not merely about accelerating developers’ typing speed; it’s about understanding the context of their work, suggesting relevant code snippets, and even generating complex code blocks with minimal inputs. These tools, powered by sophisticated machine-learning algorithms, have the ability to learn from vast repositories of code available in public and private databases to continuously improve their suggestions and accuracy.

 I will examine how a software engineer can go from doing 100% of the work in a given software-development task to becoming a reviewer of the contributions provided by AI tools. This entails ensuring proper input about you require from these tools and thoroughly revising the outputs to make sure the deliverable fulfills the requirements.

 These AI tools are powerful and impressive, and it’s easy to fall into the trap of using their output without proper precautions–for instance, opening a pull request or pushing code to production without validating how and why the code works. That careless approach carries two important risks:

 	Outdated code

 	
 Most AI tools are trained on dated training data, which means they may suggest outdated frameworks or functionalities.

 	Wrong answers

 	
 LLMs, the technology underlying all these tools, sometimes generate what are commonly described as “hallucinations.” That means their output may include false statements, bugs, or code functions or API endpoints that don’t exist.

 Software engineers and developers must use AI tools to help them work better and faster, but not to replace their own judgment, much as we do with the autocomplete functionality that has become popular in most integrated development environments (IDEs). It helps a lot to simply hit the tab key instead of typing every character, of course–but autocomplete suggestions range from perfectly relevant to useless. It’s up to your judgment whether to use or discard them.

 The AI tools I cover in this chapter require the same constant assessment. Many times, the code these tools generate will work and fit the task requirements flawlessly. In other cases, it will be only partially complete or will contain bugs, performance issues, or some other flaw that must be revised. It’s your job to use, discard, or revise it.

 Types of Code Generation Tools

 The AI tools reviewed for this chapter fall into two main categories, whose usage in software development differs slightly:

 	Browser-based tools

 	
 With these tools, such as ChatGPT, you can log in and interact with the model right there in your browser. There’s no activity happening on your local computer, just an interaction with a website over the internet. These tools are easy to use and adapt well to more use cases, but their biggest con is the limited context window. You must manually type or copy/paste context into the prompt for each interaction, which is limiting when you’re dealing with large codebases or pieces of documentation.

 	IDE-based tools

 	
 These tools, such as GitHub Copilot, work as plugins installed in the IDE you use to write code on your local computer. Once installed, they become embedded in your software development experience, in the actual environment where you write code. Their biggest pro is the large context window: these tools can ingest a whole codebase as context for each interaction.

 Use Cases

 Millions of software engineers are adopting AI tools to support their daily tasks. Perhaps the five most prominent use cases where these tools influence development are:

 	Generating code snippets

 	
 Instead of typing in every single word and function in a codebase, you provide the AI tool with specific requirements that the code should fulfill. It outputs ready-to-use code in any of the most popular programming languages (such as Java, Python, PHP, or Javascript). This can speed up prototyping as well as the development process. The tools described in this chapter can generate code for a wide range of applications, including web development, data analysis, automation scripts or mobile applications. In general, this use case is one where AI helps bridge the gap between conceptualization and implementation and makes technology development more accessible and efficient.

 	Debugging

 	
 This use case is especially valuable because debugging can often be a time-consuming and frustrating part of software development. These AI tools analyze error messages and problematic code snippets and suggest specific changes or improvements. This not only saves time but also serves as an educational tool, enhancing your debugging skills over time. Furthermore, some tools (like ChatGPT) can explain why certain errors occur and sometimes even the architectural tradeoffs implied in avoiding them. This deeper understanding of common pitfalls in software development is a key reason why so many developers use this tool as their coding assistant.

 	Accelerating learning

 	
 AI tools can serve as instructors if you’re trying to get up to speed in a technology stack you aren’t proficient in, learn a new programming language or framework, or understand specific implementation details, like adding indexes to a table in a MySQL database or pulling last month’s transactions from the Stripe API. They can provide tutorials, examples, and concise summaries of documentation for a wide range of technologies. This educational interaction with AI tools can speed your learning progress regardless of the specific technology or the scope of what you’re learning.

 	Optimizing code

 	
 Many software engineers use AI tools to review code and make it more efficient, readable, and maintainable. This includes recommendations for refactoring code, using more efficient algorithms, or applying best practices for performance or security. Code optimization is an ongoing challenge and can be easy to forget about. Eventually, though, all that suboptimal code piles up into huge technical debt that eventually will need to be refactored across the codebase on a large and thus very costly scope. Using AI tools to review code on a task level can make a significant impact on the quality of the overall codebase.

 	Automating documentation

 	
 Documentation is essential for maintaining and understanding software projects, yet developers often overlook or underprioritize it. Some AI tools can generate documentation, including in-line comments and details about functions, classes, and modules. This saves time and also ensures that documentation is consistently updated alongside the codebase. By providing clear, comprehensive documentation, AI tools helps improve code readability and makes it easier for teams to collaborate. This use case is particularly beneficial when used in large teams or on open-source projects, where clear documentation is crucial for enabling other developers to contribute effectively. Automating documentation also enhances projects’ maintainability and facilitates better knowledge transfer within development teams.

 Evaluation Process

 I evaluated more than 50 AI tools in order to shortlist the ones I highlight in this chapter. Every tool covered here meets the following criteria:

 	
 It is a professional project with a competent team behind it

 	
 The code it generates has a high quality threshold

 	
 It offers some level of functionality for free or on a trial basis

 	
 It has a high level of adoption at the time of writing (early 2024)

 My process in this chapter was as follows: I submitted a brief code challenge to each of the selected code tools, ran the same challenge several times on each tool, and compared their output. I then gave each tool a rating on a scale from 1 to 10, with 1 being the worst– a solution that errors out and doesn’t run at all– and 10 being a flawless solution. A 5 would be a solution that runs but solves only part of the problem. I look closely at the top product in each category, detailing its pros and cons, then provide some more concise information on the runner-up.

 It’s also important to note that all tests described in this chapter were run in March 2024. Given the fast pace of evolution of each of these tools and underlying models, it’s likely that you could get a different result at a later time for the same prompt.

 Browser-based Tools

 This chapter will look first at browser-based AI tools, then at IDE-based tools.

 ChatGPT

 ChatGPT is an artificial intelligence developed by OpenAI and powered by its GPT-3.5 architecture. Imagine it as a multitool for software engineers, offering a broad range of functions from conversational engagement to intricate problem-solving, way beyond the specific scope I discuss in this particular chapter (generating software code).

 As described in OpenAI’s website, ChatGPT is like a highly intelligent virtual assistant that understands the nuances of human language and can generate text that feels as if it were written by a human. It’s an example of modern natural language processing (NLP) technology. It has been meticulously trained on a wide array of internet text, giving it a broad knowledge base that developers and non-developers alike can tap into.

 ChatGPT has gained massive adoption, having reached 100 million users in just 2 months after its launch November 30, 2022, making it the fastest-growing product ever. Of course, this large user base includes many software engineers. But before we dive in, it’s important to mention data security, which caused 14 prominent tech companies and even 15 countries’ governments to ban ChatGPT in its early days. Their concerns were that it wasn’t compliant with the EU’s General Data Protection Regulation (GDPR). Most of these bans have since been revoked, and at the time of writing (early 2024) several public authorities are officially starting to use ChatGPT, including the government of Pennsylvania in the US and the UK Judicial Office.

 Pros

 Let’s look at the pros and cons of ChatGPT, starting with the positive. Note that these also largely apply to most similar tools.

 	The 24/7 pair programmer

 	
 Given the wide range of use cases, from research to code generation to documentation, ChatGPT can be an always-on peer to brainstorm ideas, review code, generate comments, tests, documentation, and more.

 	Versatility

 	
 ChatGPT can generate code in any popular programming language and understand any technical topic included in its training dataset, such as databases, cloud infrastructure, API documentation, and so on.

 	Browsing

 	
 Whenever ChatGPT receives prompts that include recent events, products, or framework updates that happened after its 2022 training-data cutoff date, it automatically browses for the answer online and includes close-to-real-time knowledge as part of its reply. At the time of writing in early 2024, this feature is only available for premium users (see the Cons section below).

 	Structured thinking

 	
 One of the best aspects of ChatGPT is that it structures the code it generates in a very logical and holistic manner, often including the packages to be installed and the environment variables to set up. It uses numbered bullets, as in a how-to tutorial, which makes it easy to transfer those answers to a codebase.

 Cons

 Now let’s look at some of the drawbacks of ChatGPT and tools like it:

 	Security risks

 	
 For high-security applications, code provided by ChatGPT may not always adhere to best security practices. It’s also unclear whether its suggestions include copyrighted materials from other companies or publicly available sources. Always apply a high level of critical thinking when reviewing its outputs and considering whether to add them to your codebase. Many companies are publishing their own rules for employees’ ChatGPT use, which range from outright bans to training materials to no rules at all. If you’re using ChatGPT for professional purposes, abide by your company’s policy.

 	Limited knowledge base

 	
 ChatGPT works on a model that is pretrained on a certain knowledge base that has an end date (at the time of writing, this date is January 2022 for GPT 3.5, the model available in the free plan). This is a moving window, and the date gets pushed forward with each new update, but there will always be limitations when you ask ChatGPT to generate code that depends on recent events, such as product launches, framework updates, or security patches. For premium users, ChatGPT includes browsing, which significantly reduces this drawback.

 	Reduced scope

 	
 ChatGPT has a limited context window, which means that the amount of text you can include in the prompt is often equivalent to one file’s worth of software code. Many bugs and issues span across a whole repository, and sometimes the root cause lies even beyond the codebase itself. ChatGPT is not very helpful for tackling challenges of such a broad scope, so it’s not well suited for repository-wide solutions. Its replies are text-based, not file-based, and its context window is limited both for input and for output.

 	Hallucinations

 	
 Despite its accuracy, ChatGPT is not infallible. It sometimes generates “hallucinations” such as incorrect code, inaccurate explanations of programming concepts, or false claims about software functionality. Again, approach ChatGPT’s output with a critical mindset. Verify the accuracy of the code and any other information it provides against trusted sources, like official documentation, reputable forums, or peer review. Think of ChatGPT as a brainstorming tool rather than an absolute authority.

 Practical example

 I asked each of the AI tools covered in this chapter to generate code to solve the exact same challenge, a classic 2-D array I’ve used in many technical interviews over my career as a CTO. Here is the prompt as I provided it to ChatGPT GPT-3.5 model (in March 2024):

 Generate code in javascript to solve the following challenge.

Context:
- We have one 2D array, filled with zeros and ones.
- We have to find the starting point and ending point of all rectangles filled with 0.
- It is given that rectangles are separated and do not touch each other however they can touch the boundary of the array.
- A rectangle might contain only one element.

Desired output:
- You should return an array, each element representing one rectangle.
- Each of those array elements contains an array with 4 elements that compose the rectangle (top left X, top left Y, bottom right X, bottom right Y).

Example arrays:
input1 = [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]

input2 = [[0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 1, 1, 1, 1], [1, 0, 0, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 0]]

 In less than 10 seconds, ChatGPT generated the code shown in Example 1-2.

 Example 1-2. ChatGPT-generated code to solve the challenge.

 function findRectangles(input) {
 const rectangles = [];
 const numRows = input.length;
 const numCols = input[0].length;
 // Helper function to check if a cell is within bounds and contains a zero
 function isValidCell(row, col) {
 return row >= 0 && row < numRows && col >= 0 && col < numCols && input[row][col] === 0;
 }
 // Helper function to perform depth-first search to find all cells in a rectangle
 function dfs(row, col, rect) {
 if (!isValidCell(row, col)) return;
 input[row][col] = 1; // Marking cell as visited
 rect[0] = Math.min(rect[0], col); // Update top left X
 rect[1] = Math.min(rect[1], row); // Update top left Y
 rect[2] = Math.max(rect[2], col); // Update bottom right X
 rect[3] = Math.max(rect[3], row); // Update bottom right Y
 // Check adjacent cells
 dfs(row + 1, col, rect); // Down
 dfs(row - 1, col, rect); // Up
 dfs(row, col + 1, rect); // Right
 dfs(row, col - 1, rect); // Left
 }
 // Iterate through each cell
 for (let i = 0; i < numRows; i++) {
 for (let j = 0; j < numCols; j++) {
 if (input[i][j] === 0) {
 const rectangle = [j, i, j, i]; // Initialize rectangle [top left X, top left Y, bottom right X, bottom right Y]
 dfs(i, j, rectangle); // Perform depth-first search to find all cells in the rectangle
 rectangles.push(rectangle);
 }
 }
 }
 return rectangles;
}
// Example arrays
const input1 = [
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 0, 0, 0, 1],
 [1, 1, 1, 0, 0, 0, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1]
];
const input2 = [
 [0, 1, 1, 1, 1, 1, 0],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 0, 0, 0, 1],
 [1, 1, 1, 0, 0, 0, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 0, 0, 1, 1, 1, 1],
 [1, 0, 0, 1, 1, 0, 0],
 [1, 0, 0, 1, 1, 0, 0]
];
console.log(findRectangles(input1));
console.log(findRectangles(input2));

 I copied this code snippet into a local file in my computer, named it chatgpt.js, and ran it in the terminal. The result was as shown in Example 1-3.

 Example 1-3. Output of ChatGPT’s solution for the code challenge.

 sergiopereira@Sergios-MacBook-Pro oreilly_book % node chatgpt.js
[[3, 2, 5, 3]]
[
 [0, 0, 0, 0],
 [6, 0, 6, 0],
 [3, 2, 5, 3],
 [1, 5, 2, 7],
 [5, 6, 6, 7]
]

 This output is absolutely correct! Furthermore, the code generated is well structured, ingranular, well defined functions with relevant comments.

 To fully explore the boundaries of each tool, I tried this exact same prompt about 10 times per tool. ChatGPT generated a new and original reply every time–even for the exact same prompt. Not only did the actual code generated change, it didn’t always work correctly. Here’s how its answers break down:

 	
 In most instnaces, it generated the correct result (as shown above), though with some variations in variable names and code organization.

 	
 Twice, it generated partial results (for example, finding only the top left but not the bottom right of each rectangle).

 	
 Once, it “hallucinated” by outputting the “X” and “Y” strings in each position of the array literally instead of making the necessary calculations.

 For all these reasons, I rate ChatGPT a 9 out of 10 for this code challenge. While it generated the correct result most of the times, it can’t be a 10 of10, because it did generate very discrepant solutions which, in some cases, didn’t correctly solve the problem.

 Google Gemini

 Gemini is Google’s direct competitor to ChatGPT, its latest and most advanced AI model, succeeding previous models like LaMDA and PaLM 2. Its pros and cons for code generation are very much in line with those of ChatGPT. So let’s compare their performance in the same practical example and see how Google Gemini solved the 2D array challenge.

 First, it took significantly longer to reply. Geminidoesn’t have ChatGPT’s throttling user experience, where you can see the reply building up as if someone was typing it). It felt like it was just processing for almost a full minute, until it finally produced the result, which you can see in full in the google_gemini.js file in the book’s Github repository. This result, shown in Example 1-4, is partially correct.

 Example 1-4. Console output after running Google Gemini’s solution for the code challenge.

 sergiopereira@Sergios-MacBook-Pro oreilly_book % node google_gemini.js
[[3, 2, 5, 3]]
[[3, 2, 5, 3], [1, 5, 2, 7], [5, 6, 6, 7]]

 Gemini returned the correct solution for the first input array (with only one rectangle, a simpler problem scope), but it only found 3 out of 5 rectangles in the second input array. I repeated the experiment a few times, just like with ChatGPT, but Gemini produced fewer variations than ChatGPT in the code it generated. Every solution it gave returned this exact same output.

 The reason for Google Gemini’s partial failure appears to be that it misunderstood the requirements, which read in part, “A rectangle might contain only one element.” Gemini’s solution included a validation to exclude single elements in the output array, as shown in Example 1-5. The two missing rectangles in Gemini’s output were the two with only one element.

 Example 1-5. Part of the code that caused Google Gemini’s partially failed solution.

 // Check if it's a rectangle (not a single 0)
 if (bottomRightX > topLeftX && bottomRightY > topLeftY) {
 rectangles.push([topLeftX, topLeftY, bottomRightX, bottomRightY]);
 }

 I rate Google Gemini’s solution an 8 out of 10. While it didn’t exactly generate code that correctly solves the challenge, it did produce the correct algorithm– it just added a silly validation that violated one of the guidelines in the brief. This was more of a scope misunderstanding than a genuinely wrong code solution. It generated consistently similar code snippets, and it never generated any hallucinations.

 The other tools I tried were unable to solve the challenge or sometimes even to generate code that would run.

 IDE-based Tools

 Next, let’s review the top IDE-based tools, beginning with the top contender: GitHub Copilot.

 GitHub Copilot

 GitHub Copilot is a collaborative creation by GitHub, OpenAI, and Microsoft. As its documentation states: “GitHub Copilot is an AI pair programmer that helps you write code faster and with less work. It draws context from comments and code to suggest individual lines and whole functions instantly.”

 In fact, GitHub Copilot launched before any of the other tools reviewed in this chapter: in June 2022, roughly 5 months before ChatGPT’s launch. Soon after launch, GitHub claimed that 20,000 organizations were using Copilot. That number has grown to 37,000 at the time of writing (early 2024). In October 2023, Microsoft CEO Satya Nadella claimed that more than a million people were paying to use Copilot. This perhaps paints the most accurate picture of the tool’s usage: users pay at least US$10 per month for access. (Copilot’s free tier, as of early 2024, is reserved for “verified students, teachers, and maintainers of popular open source projects.” Others can sign up for a 30-day free trial.)

 While GitHub Copilot uses OpenAI’s GPT models, it does use GPT-4 (the one available in ChatGPT premium), also, the training data is focused on public GitHub code repositories, documentation, and code comments. This has generated some controversy so far, with critics alleging that its output often copies code snippets verbatim from the training data. Since some of those repositories are copyrighted, it’s no surprise that copyright-infringement lawsuits have already been filed against GitHub for this exact reason.

 When you install GitHub Copilot, you’ll be asked some questions about what type of code you want it to include in the code it generates. You can allow any code from the training data or place restrictions around copyright and publicly available code. I’d expect many developments on this legal front for Copilot (and most other tools, too), especially as regulators delineate what’s acceptable for AI generation and what constitutes an unacceptable copyright violation.

 Pros

 Now that you have some context, let’s look at the advantages of GitHub Copilot:

 	Maximum convenience

 	
 Like other IDE-based tools, Copilot lives inside your IDE and generates code directly in the file in which you’re already coding. This allows for a higher level of integration into the software development flow.

 	Context window includes the entire codebase

 	
 As opposed to browser-based tools, which require you to write or copy context into the browser window, in Copilot and other IDE-based tools, the context is already there. It uses the whole codebase as context whenever a user asks it to generate any code. This makes it especially suitable to generate code with dependencies on functions or variables that are declared in different files in the same repository.

 Cons

 So what are Copilot’s drawbacks?

 	It can generate copyrighted code

 	
 As mentioned above, GitHub Copilot has been seen generating code that was copied verbatim from repositories in it training data, which in some cases could be copyrighted. Using such code could cause trouble for you.

 	Lack of depth

 	
 Most browser-based tools have many general-purpose applications that go way beyond just generating code. With those, you can have a broader discussion about research, brainstorm implementation options, and assess tradeoffs. In GitHub Copilot and other IDE-based tools, however, this is not as feasible. Copilot has recently rolled out a chat function that aims to provide a comparable user experience to the browser-based tools.

 Practical example

 I used GitHub Copilot to solve the exact same code challenge I gave to all the other tools. But its user experience was quite different from the browser-based tools covered earlier. Let me walk you through that experience.

 I installed the GitHub Copilot extension in my IDE (Visual Studio Code, VSC), so where the action is happening. In any empty file, Copilot prompts me to press a command that opens its widget, as shown in Figure 1-1.

 [image: GitHub Copilot s UX inside my IDE Visual Studio Code .]
 Figure 1-1. GitHub Copilot’s UX inside my IDE (Visual Studio Code).

 When I press ⌘ I as instructed, the widget opens (Figure 1-2) and I paste in the exact same prompt I used with ChatGPT.

 [image: GitHub Copilot s prompt widget shows up when I press the shortcut.]
 Figure 1-2. GitHub Copilot’s prompt widget shows up when I press the shortcut.

 As I hit the Enter key, GitHub Copilot starts generating code right there in the code file inside the IDE. The user experience is very much in line with ChatGPT’s, in that it starts writing the code immediately when I submit the prompt and renders the code as if someone’s typing it very fast, line by line. Both tools take about 10 seconds to generate the full solution.

 Now, there’s one big difference: GitHub Copilot’s solution is incorrect. Example 1-6 shows the console output when I run the code it generated.

 Example 1-6. Console output for the solution generated by GitHub Copilot.

 sergiopereira@Sergios-MacBook-Pro oreilly_book % node github_copilot.js
[
 [3, 2, 5, 3],
 [4, 2, 5, 3],
 [5, 2, 5, 3],
 [3, 3, 5, 3],
 [4, 3, 5, 3],
 [5, 3, 5, 3]
]
[
 [0, 0, 0, 0], [6, 0, 6, 0],
 [3, 2, 5, 3], [4, 2, 5, 3],
 [5, 2, 5, 3], [3, 3, 5, 3],
 [4, 3, 5, 3], [5, 3, 5, 3],
 [1, 5, 2, 7], [2, 5, 2, 7],
 [1, 6, 2, 7], [2, 6, 2, 7],
 [5, 6, 6, 7], [6, 6, 6, 7],
 [1, 7, 2, 7], [2, 7, 2, 7],
 [5, 7, 6, 7], [6, 7, 6, 7]
]

 While Copilot’s solution correctly found the top lefts and bottom rights of all rectangles, it also added each of those to the “rectangles” array, as if each individual element would be a rectangle in itself. There’s also missing logic in the section of code that flags elements as top left and then checks if the element is already inside an existing rectangle before flagging it as the start of a new rectangle.

 So GitHub Copilot’s algorithm is mostly correct, but misses a key part of the logic. Example 1-7 shows the code it generated, which you can also find in the file github_copilot.js in the book’s GitHub repository.

 Example 1-7. Code generated by GitHub Copilot to solve the challenge.

 function findRectangles(matrix) {
 const rectangles = [];
 const rows = matrix.length;
 const cols = matrix[0].length;
 for (let i = 0; i < rows; i++) {
 for (let j = 0; j < cols; j++) {
 if (matrix[i][j] === 0) {
 let topLeftX = j;
 let topLeftY = i;
 let bottomRightX = j;
 let bottomRightY = i;
 // Find the bottom right corner of the rectangle
 while (bottomRightX + 1 < cols && matrix[i][bottomRightX + 1] === 0) {
 bottomRightX++;
 }
 while (bottomRightY + 1 < rows && matrix[bottomRightY + 1][j] === 0) {
 bottomRightY++;
 }
 rectangles.push([topLeftX, topLeftY, bottomRightX, bottomRightY]);
 }
 }
 }
 return rectangles;
}
const input1 = [
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 0, 0, 0, 1],
 [1, 1, 1, 0, 0, 0, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1]
];
const input2 = [
 [0, 1, 1, 1, 1, 1, 0],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 0, 0, 0, 1],
 [1, 1, 1, 0, 0, 0, 1],
 [1, 1, 1, 1, 1, 1, 1],
 [1, 0, 0, 1, 1, 1, 1],
 [1, 0, 0, 1, 1, 0, 0],
 [1, 0, 0, 1, 1, 0, 0]
];
const rectangles1 = findRectangles(input1);
const rectangles2 = findRectangles(input2);
console.log(rectangles1);
console.log(rectangles2);

 For these reasons, I rate GitHub Copilot a 6 out of 10 on this task. While its solution partially solved the problem, the solutions it generated were quite consistent over multiple attempts and never included any hallucinations.

 Amazon Code Whisperer

 In this race for the AI code-generation market share, CodeWhisperer is Amazon’s contender. It was released after most of the other tools covered in this chapter, but has gained some momentum, especially among the very large user base of Amazon Web Services (AWS). Let’s see how it handles our code challenge.

 Example 1-8. Console output for the code generated by Amazon Code Whisperer.

 sergiopereira@Sergios-MacBook-Pro oreilly_book % node amazon_code_whisperer.js
[[3, 2, 5, 3]]
[
 [0, 0, 0, 0],
 [6, 0, 6, 0],
 [3, 2, 5, 3],
 [1, 5, 2, 7],
 [5, 6, 6, 7]
]

 As shown in Example 1-8, Amazon’s solution returned the correct result–on my sixth try. However, I must tell you that Code Whisperer has the clunkiest user experience of all the tools in this chapter.

 First, it took me some time to figure out the exact comment syntax I needed to use to generate the code. Second, Code Whisperer generated more hallucinations than any other tool. Before it generated this correct result, I tried five times, during which it generated simple code comments without any actual code; code that would throw console errors based on undeclared variables; and solutions that partially solved the challenge. Amazon’s tool had the widest range of discrepancies among attempts to solve the same problem.

 For these reasons, I rate Amazon Code Whisperer a 7 of 10. This correct output feels like a lucky strike, given the range of useless hallucinations it generated for the exact same prompt right before generating the correct solution.

 Tool Comparison

 If I were to select a single tool to solve algorithmic functions like this 2D array challenge, ChatGPT would be my go-to choice: it returned the correct result in most instances. Table 1-1 provides an overview of the tools reviewed here.

 Table 1-1. Code generation tools overview.

 	Tool
 	UX
 	Test performance

 	ChatGPT
 	Browser
 	9/10

 	Google Gemini
 	Browser
 	8/10

 	GitHub Copilot
 	IDE
 	6/10

 	Amazon Code Whisperer
 	IDE
 	7/10

 However, for more general-purpose software development, which usually involves a much broader scope and more nuanced requests, I’d probably use GitHub Copilot, for the convenience of having it in my IDE at a code comment’s distance.

 Conclusion

 I’ve used the 2D array code challenge from this example dozens of times in interviews over the years. Usually, I start an hour long live coding interview by giving the candidate the challenge brief pretty much exactly as I’ve given it here. The candidates then code the solution, thinking out loud as they work, occasionally searching Google for help.

 In that hour-long interview, only a very few candidates have ever managed to solve the full scope of the challenge (multiple rectangles). Most write partial solutions that find only one rectangle, or only the top left corners, or some other variation.

 It’s incredible that a free tool like ChatGPT (GPT 3.5, in this case) can produce the same outcomes as those top performers in only 10 seconds. However, it’s also important to stress that it didn’t always produce the correct answer. Even with this objective, straightforward prompt, it produced partial solutions and even hallucinated once.

 While every tool reviewed in this chapter was considered best-in-class for code generation at the time of writing (early 2024), none performed better than ChatGPT. The only other tool that generated a correct solution was AWS Code Whisperer, and that was a one-off among the wild hallucinations it generated in all my other attempts. The remaining tools generated either partial solutions or solutions that didn’t run.

 None of the tools reviewed here produced a correct result for this challenge on all attempts, and most failed to produce a correct solution at all. Even for those that did produce a correct result, I have no way to know if the code they generated is copyrighted. Again, you must exercise caution.

 Most of the prompts a software engineer would use on a daily basis are way more complex or subjective than this challenge, which would increase the likelihood of these tools generating wrong or misleading results. Again, critical thinking is key when using these tools.

 Most software engineers view the most important part of reviewing ChatGPT’s reply to their prompt as confirming if it actually solves their problem. While that is of course important, I recommend a few rules of thumb.

 First, always review AI-generated code before pushing it to production or opening a pull request. Make the code yours, regardless of how much of it was generated by your tool. Second, test your code. Runit against a test suite that covers a wide range of cases, from the happy path to edge cases and error states. Getting all tests green is a solid confirmation that the code fulfills your requirements. And finally, while I’ve said it before, be sure to revisit your company’s guidelines for any AI tools you use for professional purposes.

 Chapter 2. Bug Detection and Code Review

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

 Imagine paying the highest salaries in a company to software engineers to develop a product that will be responsible for the company’s revenue, only to lose that revenue due to costly bugs in production. This is any business owner’s worst nightmare, and sadly it happens every day. Software has automated whole industries, replacing lengthy manual processes and creating new ways to do previously impossible things. However, automation can’t be effective when bugs detract from the underlying products’ key functionalities.

 To mitigate this fundamental concern, several job titles have been created over the years to guarantee proper quality assurance (QA), such as QA Engineer, QA Analyst, and Test Engineer, etc. Processes, too, have been developed to detect bugs before they get deployed to production. Those processes boil down to two main categories:

 	Code reviews

 	
 This process is done during development, and consists of team members reviewing each other’s code before it is deemed ready to go live. Some teams mandate a minimum number of team members who must review and approve a pull request (PR) before it can be merged.

 	Quality assurance (QA)

 	
 This process is done after development as the last “gatekeeper” before code gets pushed to production. It consists of manual or automated tests done in an environment that closely matches production. These tests aim to mimic users’ behavior to catch any bug that could have escaped a code review.

 When either process finds any bugs, performance issues, security vulnerabilities, or other t malfunctions, the code can be regressed: that is, it goes back to the software engineer who developed it, along with a comment containing the specific deficiencies that must be corrected.

 These processes are critical to any software development team, yet they are often very lengthy and nondeterministic, introducing bottlenecks while not fully delivering on the vision of avoiding bugs ever showing up in production. As such, as AI tools have come into existence, the industry has seen big focus on automating code reviews and making the process of detecting bugs much faster and more deterministic. Thousands of software engineering teams are already using AI-based automated code-review tools.

 Types of AI code-review tools

 The AI tools reviewed for this chapter fall into three main categories, whose usage in software development differs slightly. Some of the tools reviewed offer more than one type of usage.

 	IDE-based tools

 	
 Integrated Development Environment (IDE)-based tools integrate directly into the software development environment that engineers use to write code, such as Visual Studio Code, IntelliJ IDEA, or Eclipse. These tools provide real-time feedback as they write code: highlighting errors, suggesting improvements, and providing documentation links directly in the IDE. Of the three types of tools described here, this is the only one that provides feedback when the code is saved locally. This immediate feedback loop helps developers identify and fix issues on the spot, improving code quality and reducing the need for extensive reviews later.

 	Git-based tools

 	
 Git-based tools integrate with version-control systems, such as GitHub, GitLab, or Bitbucket, and operate within the Git workflow. Unlike IDE-based tools, Git-based tools can’t be triggered by local saves of a file, only by actions in the Git workflow. You can set them up to review code automatically whenever you push changes to a repository or created or merge a PR. These tools check the code against predefined rules and guidelines and can enforce coding standards across all branches of the codebase. They typically provide feedback in the form of comments in PRs or reports in a continuous integration pipeline, helping ensure code quality before merging changes into the main branch.

 	Browser-based tools

 	
 These tools are accessible through web browsers and typically integrate with online version-control platforms like GitHub, GitLab, and Bitbucket. Like Git-based tools they can only be triggered by changes in the Git workflow, not local changes. You can use these browser-based tools to get automatic reviews of your pull requests or code merges online. When you submit a PR, the tool reviews the code for errors, style violations, and security vulnerabilities, then provides feedback on that PR via the web interface in the browser. I find this the least convenient of the three presented here, since it requires you to use another platform besides the IDE and version-control tools you are already familiar with.For the scope of this book and chapter, I’ll be covering only this last type of tool, the AI-powered code analysis.

 Use cases

 The millions of software engineers who are already using AI tools for automated code reviews and bug detection find that it brings obvious benefits across a range of daily use cases. These include:

 	Educating software engineers

 	
 Automated code-review tools provide software engineers, especially junior ones, with a 24/7 pair programmer that points out bugs, provides suggestions, and above all gives context and reasoning for its suggestions. This is a great tool to use to hone your skills. Feedback loops are much more frequent with an automated tool than with normal code reviews by team members, which increases exposure to learning opportunities about the specific language, framework, or algorithm in question. This can be especially beneficial for junior developers and for engineers switching to new tech stacks or working with a framework for the first time, since juniority makes mistakes more common. In code reviews, they can be regressed with a message that helps the developer understand the mistake and avoid it the next time.

 	Increasing software development velocity

 	
 Automating code review reduces the number of PR regressions. It also tremendously reduces the amount of time between the code being written and the review identifying issues to be fixed. Automatic code reviews at every change can point out vulnerabilities and improvements so that developers can fix them immediately. This eliminates the cycle of pushing faulty code only for other team members to be find and regress it– a cycle of multiple regression loops that cost individual developers time and delay shipping features to production.

 	Reducing tech debt

 	
 Many times, security vulnerabilities and performance issues are missed in code reviews because they don’t often impact functionality, which is objectively the biggest focus of any code review. Even when they are detected, they aren’t often treated a cause for regression. Instead, they often go into a “nice to have” note, effectively adding the vulnerability or issue to the pile of tech debt. That pile usually accumulates for a long time, until it becomes unsustainable and requires extensive refactoring of the code base.

 	Adding depth to code reviews

 	
 Most of the code-review tools mentioned in this chapter focus on security vulnerabilities, and often point out occurrences of OWASP top-10 vulnerabilities in code, along with suggestions for resolving them. Team code reviews rarely reach this level of depth; such vulnerabilities are often only detected much later (if ever), during professional security audits or penetration-testing reports. Using these tools allows teams to detect security vulnerabilities much earlier.

 Keeping the human review

 A common criticism of automated code-review tools is that they discourage (human) team members from performing code reviews in a timely manner. To be fair, code reviews were a dreaded activity in many teams long before AI tools came into existence. Software engineers frequently forget to review their peers’ pull requests or leave a positive review message of “lgtm” (short for “looks good to me”) just to unblock some feature deployment.

 AI tools add tremendous immediacy to the code-review process. This reassures software engineers that their code has a high quality standard, but it also leaves them feeling less urgency to review their peers’ code, believing the AI tool has already done that job for them.

 This is a very fair criticism, in my opinion. AI code reviews don’t replace human code reviews, especially those performed by senior engineers who know both a feature’s technology and the business and use cases for it. This is the angle that is manifestly missing in AI code reviews. The AI tool misses the context behind the code being reviewed and the intent behind certain code segments. This can lead it to make irrelevant suggestions or fail to identify context-specific issues that might be obvious to a human reviewer. This is a key reason why you should never skip human code reviews, even if you’re also using automated code reviews.

 It’s also worth noting that the language used to market these automated code review tools is quite different from that used for the code-generation tools reviewed in the previous chapter. Few of the tools in this chapter mention AI in their marketing copy much (or at all), despite the fact that the products do use AI algorithms (eg: Codacy).

 There are two reasons for this. Several of these tools existed in the market for years before the recent popularity of AI. However, many position themselves as a backstop to issues found in AI-generated code. Sonar, for example, promises to minimize risk, ensure code quality, and derive more value from code created by both AI and humans. As the website copy states: “To maximize the advantages of generative AI in coding, developer teams need robust DevOps processes, reporting, and metrics that focus on code quality, security, and reliability.”

 Tool evaluation

 I evaluated more than 20 automated code-review tools in order to shortlist the ones I highlight in this chapter. Every tool covered here meets the following criteria:

 	
 It is a professional project with a competent team behind it.

 	
 The code it generates has a high quality threshold.

 	
 It offers some level of functionality for free or on a trial basis.

 	
 It has a high level of adoption at the time of writing (early 2024).

 In order to select and compare AI tools for this chapter, I created a simple Javascript program and introduced four issues into the code. You can review the full code in the book’s Github repository, inside the folder named “Chapter 3”. Example 3-1 provides the most relevant snippet, with each of the four issues commented for clarity. I ran the exact same code through each of the tools reviewed in this chapter, which comments on the results each tool provided.

 Example 2-1. Code snippet for the tests in Chapter 3.

 app.post('/submit', (req, res) => {
 const requestData = req.body;
 // 1. SQL Injection vulnerability
 const sqlQuery = `SELECT * FROM users WHERE username = '${requestData.username}'`;
 db.all(sqlQuery, [], (err, rows) => {
 if (err) {
 console.error('Error executing SQL query:', err.message);
 res.status(500).send('Error in database operation');
 } else {
 console.log('Query result:', rows);
 res.send('Data processed with SQL query results: ' + JSON.stringify(rows));
 }
 });
 // 2. Cross-Site Scripting (XSS) vulnerability
 const responseHtml = `
 <html>
 <body>
 <h1>User Profile</h1>
 <div>${requestData.userInput}</div> <!-- User input is directly rendered into HTML -->
 </body>
 </html>
 `;
 console.log('Generated HTML for user:', responseHtml);
 // 3. Potential memory leak in event listeners
 const listeners = [];
 for (let i = 0; i < 100; i++) {
 listeners.push(() => console.log('Event listener', i));
 }
 console.log('Number of listeners created:', listeners.length);
 // 4. Inefficient loop
 let sum = 0;
 for (let i = 0; i < 100000; i++) {
 sum += i;
 }
 console.log('Sum of 0 to 99999:', sum);
});

 Before we dive in, here is a brief explanation of each of the errors I introduced and why it would be important to catch them in a code review:

 	SQL injection vulnerability

 	
 This vulnerability arises from incorporating user input directly into an SQL query without any form of validation or sanitization. In the provided code, the variable requestData.username is directly concatenated into the SQL query string. This approach allows attackers to craft user inputs that manipulate the SQL query to perform unauthorized actions, such as accessing, modifying, or deleting data. For instance, an attacker could provide a username input like ' OR '1'='1, which could potentially alter the query logic to return all users in the system, thereby breaching data privacy.

 	Cross-site scripting

 	
 Cross-site scripting (XSS) occurs when an application includes untrusted data, typically from user inputs, within the content of its web pages without proper validation or escaping. In the script, requestData.userInput is directly included in an HTML response structure sent back to the client. If this user input includes malicious JavaScript code, the browser could execute that unauthorized script, leading to session hijacking, personal data theft, or malicious redirection.

 	Memory leak

 	
 Memory leaks in web applications can occur when memory that is no longer needed is not released back to the system. In the example, a large number of event listeners are created within a loop but are never removed. Each listener retains a closure scope that may consume more memory. Over time, especially in long-running applications like servers, these listeners accumulate, occupying an increasing amount of memory. This can potentially exhaust available resources and lead to performance degradation or crashes.

 	Inefficient loop

 	
 The loop in the example code inefficiently performs a large number of iterations to compute the sum of all integers from 0 to 99,999. Each iteration involves performing arithmetic operations and updating a local variable. Although these actions are relatively simple, they are unnecessarily repeated many times. This not only consumes CPU cycles, it could also block the event loop in a Node.js environment, leading to delays in processing other incoming requests or operations.

 Now let’s dive into the top-performing AI code-review tools I tried.

 Codacy

 Codacy is a startup based in Portugal that launched an automated code review tool in 2012. The product has evolved significantly over the years and is now a market-leading solution that leverages AI to “help developers identify and fix issues within their code, improving code quality and reducing technical debt, with support for more than 40 programming languages and seamless integrations with GitHub, Bitbucket, and GitLab.”, as per the copy on their website.

 Codacy’s AI analyzes code for potential errors, style violations, security vulnerabilities, and performance issues, and it provides software engineers with suggestions for improvement. The tool is designed to learn from past reviews, adapting to the specific standards and practices of each development team.

 By automating the code review process, Codacy helps developers focus more on building features rather than fixing issues, ultimately speeding up the development cycle and enhancing code maintainability.

 Practical example

 I created an account with Codacy using my Github account and ran it on the code showed earlier in this chapter (which you can review in full in the book’s Github repository).

 Codacy correctly identified issue number 1, the SQL Injection vulnerability, and labeled its severity as “Critical,” the highest level in its ranking, as seen in Figure 2-1.

 [image: Codacy identified the SQL Injection vulnerability.]
 Figure 2-1. Codacy identified the SQL Injection vulnerability.

 Codacy provides an expandable section with an explanation of what the error is, why it’s dangerous, and how to solve it (Figure 2-2).

 [image: Codacy explained the SQL Injection vulnerability.]
 Figure 2-2. Codacy explained the SQL Injection vulnerability.

 Codacy also correctly identified issue 2, the XSS vulnerability, and labeled it as “Medium” severity (Figures 3-3 and 3-4).

 [image: Codacy identified the cross site scripting vulnerability.]
 Figure 2-3. Codacy identified the cross-site-scripting vulnerability.

 As seen in Figure 2-3, Codacy clearly identified this XSS vulnerability.

 [image: Codacy explained the cross site scriptingvulnerability.]
 Figure 2-4. Codacy explained the cross-site-scriptingvulnerability.

 Codacy’s analysis didn’t identify issues number 3 and 4, which are more related to performance than to security.

 All the above feedback was provided on Codacy’s website immediately after I connected my Github account and selected the repository I’d like to have analyzed. However, after I opened a PR on that same repository, Codacy performed a second level of analysis directly in the repository.

 Most of the errors it identified reiterate those it found in the previous analysis, which I expected, since the code is the same. However, on Github, Codacy also offers a “commit suggestion” to fix each issue along with a brief explanation. This makes it very convenient for software engineers to simply accept the suggestion and merge the PR with one click (Figure 2-5).

 [image: Codacy provides a suggested fix for the issue it found.]
 Figure 2-5. Codacy provides a suggested fix for the issue it found.

 For all these reasons, I rate Codacy’s tool an 8/10. It found two of two security issues, but didn’t find either of the two performance issues. For the issues it did find, it offered very comprehensive explanations and proposed fixes that could be accepted with one click on the actual repository.

 DeepCode (by Snyk)

 DeepCode began as an independent startup based in Zurich, Switzerland, as a spinoff from ETH Zurich University.1 It was acquired by the Cybersecurity behemoth Snyk in October 2020. Since then, the product was marketed first as “DeepCode by Snyk” and more recently as “DeepCode AI,” and has been integrated into the Snyk’s broader suite of products and services.

 As Snyk described it in 2020, DeepCode includes “sophisticated interpretable machine learning semantic code analysis. The technology scans code 10-50x faster than alternatives, enabling real-time workflows within the development process, and dramatically reduces both false negatives and false positives using a custom machine learning platform that is able to quickly learn from huge volumes of code.”

 DeepCode uses machine-learning algorithms to learn from millions of publicly available open source software-development repositories. This large dataset allows DeepCode to provide highly accurate suggestions and find potential issues that human reviewers might overlook.

 DeepCode can be used on an IDE or directly in a Git repository. It points out security vulnerabilities on the spot, as alerts in the IDE tooltip or as comments to the pull request in the repository. As stated on the company’s website, “it combines symbolic and generative AI, multiple machine learning methods, and the expertise of top security researchers to offer accurate vulnerability detection and tech debt management. DeepCode AI is purpose-built for security, supporting 11 languages and over 25 million data flow cases to find and fix vulnerabilities efficiently. This AI technology enhances developer productivity by offering one-click security fixes and comprehensive app coverage while ensuring the trustworthiness of the AI through training data from millions of open-source projects. DeepCode AI stands out for its hybrid approach using multiple models and security-specific training sets to secure applications effectively.”

 Practical example

 Just like I did for Codacy, I created an account with Snyk/DeepCode using my Github account and ran it on the code in Example 3-1 within the book’s repository.

 DeepCode correctly identified issue number 1, the SQL injection vulnerability, and labeled it with “H” (High), the highest level in its ranking system. It even provides a score (Figure 2-6), though I could not find specific information about what this score means. This issue’s score of 830 is the highest score my code got.

 [image: DeepCode identifies the SQL injection vulnerability.]
 Figure 2-6. DeepCode identifies the SQL injection vulnerability.

 Snyk/DeepCode provides two expandable sections for each error. One provides a deeper explanation of the issue, resembling a stack trace rendered in the browser UI (Figure 2-7).

 [image: DeepCode explains the SQL injection vulnerability.]
 Figure 2-7. DeepCode explains the SQL injection vulnerability.

 The second expandable section suggests a fix for the issue (Figure 2-8), and points to avoid using concatenated SQL statements as strings stored directly from user-entered parameters. A best practice in defensive programming.

 [image: DeepCode suggests a fix for the SQL injection vulnerability.]
 Figure 2-8. DeepCode suggests a fix for the SQL injection vulnerability.

 These suggestions are provided “as is” from an open source repository in the training dataset. This is very nice in terms of transparency, as a software engineer should always want to know where the code comes from. However, it adds some extra cognitive load in terms of actually fixing the issue, since this is just a proposed solution to help the software developer fix the issue, not an actual proposed solution to be adopted by the click of a button.

 Despite this deep level of detail for issue number 1, DeepCode didn’t find issues 2, 3, or 4. It did find some lower-severity issues in some libraries I used (inside node_modules), which were irrelevant to this book’s exercise.

 I rate DeepCode a 6/10. It found one of two security issues and didn’t find either of the performance issues. For those issues it found, it provided very comprehensive explanations; however, the help it offers for each issue is lacking in comparison to that offered by Codacy and CodeRabbit. Snyk provides information about the issue, but doesn’t offer proposed solutions that are easy to adopt with one click.

 CodeRabbit

 CodeRabbit is an automated code-review platform launched in September 2023, amid the generative AI buzz. It gained significant popularity very fast, especially on Twitter/X as some tech influencers did thorough reviews of the product and promoted it in their networks (example). Official numbers of users had not been publicly disclosed at the time of writing (early 2024).

 CodeRabbit leverages AI capabilities to enhance the quality, performance, and efficiency of code reviews. It delivers its code recommendations through comments in the repository.

 Practical example

 Like I did for the other tools, I created an account with CodeRabbit, allowed it access to my Github account, and selected the repository I wanted to give it access to. Unlike Codacy and DeepCode, CodeRabbit won’t statically analyze code that’s already in a repository. Instead, I needed to open a pull request; CodeRabbit then posted comments to that PR with its code-review items and suggestions. CodeRabbit promotes this as a much more interactive tool that aims to mimic a team member commenting on a PR seconds after it’s opened on Github. However, my experience on CodeRabbit’s website was way inferior to my experiences with the competitors analyzed here.

 CodeRabbit correctly identified issue number 1, the SQL Injection vulnerability (Figure 2-9). It doesn’t provide any sort of indication of severity level: all issues it reports look alike in that regard. It did a good job pointing out the faulty code snippet, and offered a brief explanation about why it contains a vulnerability. I believe most software engineers will enjoy this simple UI, since it’s exactly the type of interaction they get from human colleagues who review their PR.

 [image: CodeRabbit identifies the SQL injection vulnerability.]
 Figure 2-9. CodeRabbit identifies the SQL injection vulnerability.

 Along with the explanation, CodeRabbit offers an expandable section called “Committable suggestion” that contains a suggested fix for the issue (Figure 2-10). While CodeRabbit displays a noticeable warning to review the offered solution thoroughly, committing it is only one convenient click away.

 [image: CodeRabbit suggests a fix to the SQL injection vulnerability.]
 Figure 2-10. CodeRabbit suggests a fix to the SQL injection vulnerability.

 CodeRabbit also found issue number 2, the XSS vulnerability. It offered a very simple explanation as to why this is an issue, but didn’t suggest a solution, as you can see in Figure 2-11.

 [image: CodeRabbit identifies the SQL Injection vulnerability.]
 Figure 2-11. CodeRabbit identifies the SQL Injection vulnerability.

 Just like the other tools analyzed, CodeRabbit didn’t find performance issues number 3 and 4.

 Thus, I rate CodeRabbit a 7/10. It found both security issues but neither of the performance issues. It also proposed a solution for one of the issues it found, but not the other one. However, its explanation for the issues was very superficial compared to the other two tools. Finally, it lacks a website interface that would let users check issue in more depth and provide some historical perspective of changes and improvements made on the code base, which the other tools have.

 Tool comparison

 All three of these AI code-review tools take different approaches to blocking my pull request from being merged, as shown in Figure 2-12:

 	
 Codacy blocks the PR merge until I fix the issues they identified (which, to be fair, I can do using their suggested fixes).

 	
 Snyk/Deepcode doesn’t block the PR merge, despite the issues found.

 	
 CodeRabbit only posts comments; it doesn’t run actual checks, and thus would never block a PR merge regardless of any issues it finds.

 [image: Codacy and Snyk show up in the checks section for the PR merge.]
 Figure 2-12. Codacy and Snyk show up in the checks section for the PR merge.

 If I were to select a single tool, Codacy would be my go-to tool. As Table 3-1 indicates, it had the highest score.

 Table 2-1. AI Code Review tools overview.

 	Tool
 	UX
 	Test performance

 	Codacy
 	Browser + Repository
 	8/10

 	Snyk/DeepCode
 	Browser + Repository
 	6/10

 	CodeRabbit
 	Repository
 	7/10

 Conclusion

 Code reviews have been one of the biggest frustrations in my software development teams over the years. People are naturally more inclined to pick up new tasks assigned to them than to stop their own thread of work to review a colleague’s PR. This default behavior has delayed features being moved to QA and ultimately going live. It has also created situations where we fast-track some urgent features even with a less-than-ideal level of code review, resulting in bugs showing up in production.

 In general, the biggest casualty of these common code-review frustrations is team morale, with team members feeling like they’re constantly switching context and losing focus.

 I began using several forms of automated code review in my teams, like linters, static code analysis, and test coverage dashboards, long before the recent generative AI hype. Any team with robust engineering standards has probably done likewise.

 However, after 15 years in the industry, I can tell that the recent wave of evolution adds more depth to these tools–especially the seamless way they integrate with your software development workflow, and the option to accept suggested fixes with one click. Having a very capable code reviewer who’s available 24/7 to provide thoughtful feedback on issues in your code is a massive help to anyone. It’s something I could only have dreamed of when I started out as a software engineer myself.

 However, I believe that software engineers should leverage these tools as learning opportunities before anything else. They can and do make mistakes, as the tools note themselves in very visible warnings, and I can only underline that. Always have a human being review and test the suggested fixes. As with code-generation tools, I recommend a high level of diligence when reviewing any code or fixes suggested by these tools. Make it yours before you open a PR or merge to master.

 1 This book’s author was part of the DeepCode team prior to the company’s acquisition by Snyk, but has no contractual relationship, equity, or any other vested interest in DeepCode at the time of writing.

 Chapter 3. Automated Testing and Quality Assurance

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

 Testing and quality assurance (QA) are usually the last gates that new software code must pass through before it gets deployed in production. Their ultimate goal is to find costly bugs or other standout issues that may have made it through code review (as covered in the previous chapter) to avoid putting them into production.

 The QA process happens after code has been developed, reviewed, and accepted to merge into the codebase. There is occasional confusion between Testing and QA as concepts, perhaps because the stakeholders traditionally involved are called either testing engineers or QA engineers at different companies. Whatever the title, though, they are usually in charge of the process covered in this chapter.

 Usually, the QA process consists of conducting manual and/or automated tests in an environment that closely matches production and mimics user behavior, to catch any bugs that escaped the code review process.

 When such bugs are found during testing/QA, the feature is regressed back to development status. The original software engineer in charge of implementation must fix the issues before pushing the feature to review and QA again. These regression loops aim to guarantee that the code that ultimately gets deployed to production is indeed bug-free.

 These processes are critical to any software development team. We can break into two big categories: automated and manual.

 	Automated tests

 	
 Automated testing employs specialized software tools to execute pre-scripted tests on the application. This method is highly efficient for repetitive and regression tests, because it reduces the time needed to validate new code changes. Automation ensures consistency and precision, minimizes the risk of human error, and enables extensive test coverage. Automated tests can run around the clock, providing rapid feedback and allowing for continuous integration and continuous delivery (CI/CD) pipelines. Although initially setting up automated tests requires effort, as does maintaining them, the long-term benefits include faster release cycles, improved accuracy, and the ability to quickly detect and address defects.

 	Manual tests

 	
 In manual testing, human testers meticulously execute test cases without the assistance of automated tools. They simulate end-user behavior to identify defects, ensuring that the software behaves as expected in real-world scenarios. This approach allows for nuanced understanding and adaptability, often catching issues that automated scripts might miss, such as user-interface glitches and usability concerns. While manual testing can be time-consuming and labor-intensive, it remains essential for exploratory testing, where creativity and intuition are crucial in uncovering unexpected bugs and ensuring a seamless user experience.

 QA is a meticulous, careful process by its nature, which often makes it a bottleneck that delays features going live. As such, there’s a market for AI tools that propose to accelerate different parts of this process. This chapter will focus on two of those tools in particular.

 AI is changing every aspect of automated testing. For example, until very recently, automating testing involved writing complex scripts. Now, however, many automated testing tools provide ways to create tests without writing a single line of code. With simple, plain English, you can create automated tests that check every component and functionality in your software application. Visual testing has also been simplified with AI-powered tools that automatically detect visual bugs, ensuring that your user interface looks and works as intended. These improvements make the testing process more effective and efficient, allowing testers to focus on improving the overall quality of the software.

 Types of AI Testing Tools

 In addition to the automated/manual divide, we can also classify AI tools for software testing and quality assurance as functional and non-functional, based on the specific areas they target within the testing lifecycle.

 	Functional AI testing tools

 	
 As the name implies, functional testing tools verify that a software application performs all of its intended functions accurately. These tools focus on what the system does. Their goal is to test whether the application’s internal components deliver the expected output. Functional testing tools handle unit tests, integration tests, visual tests, regression tests, and smoke tests, for example.

 	Non-Functional AI Testing Tools

 	
 Non-functional AI testing tools assess aspects of software that go beyond its functional behavior, such as its performance, compatibility, usability, security, and reliability. These tools focus on evaluating the software’s performance rather than its behavior. They measure speed, response time, and resource utilization, to name a few.

 Tools in both categories aim to identify potential performance issues and security vulnerabilities. They use deep learning models trained on customer usage data, internal company documents, or even industry regulatory norms or standards. These algorithms can learn to identify patterns that may indicate performance bottlenecks or security risks. That underlying “intelligence” makes these AI tools important peers of humans in the QA stage of the software development lifecycle. The biggest gain to be reaped from using these tools is that they can apply their intrinsic testing acumen on large codebases in near-real time.

 The common frustration is that QA takes a long time, since complex products and extensive codebases usually have hundreds of different user journeys to test, which takes a long time to do that manually. Automated tools do NOT reduce the value of having a human in the loop, but they can certainly automate a good part of the repetitive work, freeing human QA professionals to focus on the critical flows, ones that were changed in the last pull request, or whatever makes up the 20% of work that has 80% of the impact (as per the Pareto principle, so often used in software development).

 Many of the prominent tools I evaluate in this chapter combine functional and non-functional testing abilities, as they aim to integrate into various development environments. These tools can be used in different ways, depending on each team’s context and preferences.

 For instance, testing is one of the most significant aspects of the CI/CD process. Thanks to CI/CD integrated testing tools, we now conduct tests continuously during development rather than waiting until after development. This continuous integration approach provides real-time feedback about your software’s performance and internal functioning.

 CI/CD-integrated AI testing tools automatically test changes made to your code after every build. Continuous testing ensures that issues are identified and addressed early in the development cycle, reducing the risk of defects in production. This approach promotes a culture of quality and allows for faster, more reliable software releases.

 In contrast, browser and cloud-based tools run tests in web browsers or the cloud, providing flexibility and accessibility. They allow testing on different devices and environments, without complex setups like IDEs and CI/CD integrated tools.

 Use cases

 Software developers and engineering teams across various industries are integrating AI testing and QA tools into their processes. Here are some of the prominent use cases that we’ve seen:

 	
 Automating test creation

 	
 Building test automations used to be very slow and time-consuming. It takes a lot of time and mental bandwidth to design and write test scripts, run regression tests, and do everything in between. This is what many AI-driven testing tools aim to help with, by generating comprehensive test scripts from plain English prompts within seconds. This natural language processing (NLP) method of scripting makes it easy to automate complex workflows. This, in turn, makes testing accessible to both technical and non-technical stakeholders. AI-generated test scripts are usually based on user behavior and existing patterns in previous test data, which makes the tests more relevant and closer to what a human QA tester would create.

 	
 Improved test accuracy

 	
 Improving accuracy means fewer code bugs slip through the QA stage to production. AI algorithms’ superpower is that, unlike manual testers, they can capture patterns and anomalies at scale. Beingtrained on extensive code bases and past testing data helps them better spot the nuances that can indicate an issue that could require the feature to be regressed.

 	
 Self-healing capabilities after encountering errors

 	
 AI testing tools with self-healing capabilities automatically detect and fix issues in test scripts when changes in the application’s UI or code cause tests to fail. This ensures that all tests remain functional and up-to-date without manual intervention. Historically, updates are one of the biggest challenges for QA teams, since a change in the UI causes the need to change many tests written in the past. These AI tools can significantly reduce the maintenance burden on QA teams and make the QA process faster and more reliable.

 	
 Faster software-release cycles

 	
 By automating repetitive tasks using AI testing tools, we can speed the release cycle of software applications tenfold. Developers can concentrate more of their time on innovating new features and enhancing the product instead of spending the entire day trying to catch bugs or write test scripts. Companies can also respond faster to market demands and user feedback.

 The Need for Human Testers

 It is important to remember that while these AI tools can do a great job catching issues and bugs that would eventually break production, the human instinct is still crucial during testing. This is not just about the limitations of the tools reviewed here, nor their underlying AI algorithms. It’s beyond that. Software development teams don’t write 100% of their requirements and edge cases in an absolutely perfect way.

 I can speak from my own experience leading software teams for more than a decade: there are always changes and caveats based on last-minute user feedback, an ad hoc request from sales, or even a phone call from the CEO with a specific exception. While teams try hard to properly document all requirements and capture edge cases and test plans in the software development task descriptions, it’s never a perfect outcome. There are gaps. And these are the written materials on which AI tools are trained, and they take project requirements as the ultimate instructions to test against, they’ll eventually miss some nuances of those requirements or ad hoc exceptions.

 Even beyond that, frankly, there’s often specific context awareness that only humans can have. Weneed humans to adapt to industry-wide events or sensitive user concerns. Software development is a complex matter, and the more extensive a product and code base are, the more likely it is that a pure AI-driven QA process will show its limitations and gaps.

 AI algorithms are only as good as the data used in training them. They can absolutely help a lot, as this chapter shows–especially with the repetitive grunt work, like testing an extensive list of user journeys and application flows. But human monitoring, review, and intervention are still needed for the critical parts of the process.

 Evaluation Process

 Most companies in the QA automation space cater to enterprise clients. This makes sense, given that enterprise companies tend to have larger teams, more extensive products, and much higher quality-control standards. While this is totally fine and expected, it affected my selection process for tools to showcase here, since I gave preference to tools that can be accessed via a simple self-service sign-up process and that offer a free trial. This is a deliberate choice to make it easier for readers to act on what they read here, though it certainly leaves out some tools that required me to speak with their sales teams to negotiate a price package. I decided those tools were out of scope for this book.

 Even with that limitation, as I researched this chapter, I reviewed more than 20 automated testing tools (many of which fell into that enterprise sales category). I shortlisted the two tools highlighted below.

 To evaluate and compare AI-powered testing tools for this chapter, I applied each tool to write and run test cases for a simple, straightforward test site: a simple web application for booking appointments with a medical doctor. Since developing a comprehensive, end-to-end automated testing framework is a substantial undertaking, I focused on evaluating the specific AI features these testing tools offer, to demonstrate their potential for integrating AI into software testing.

 The examples in this book are not intended to represent a complete testing framework, but to demonstrate how to use AI-integrated features in automated testing tools. The primary objective of this chapter is to showcase AI’s possibilities and simplicity in the software testing domain, not to provide a production-ready solution.

 I evaluated how the AI features in these tools enhance various aspects of the testing process, such as generating test cases, creating test data, executing tests, and analyzing results.

 	Test site:

 	

 https://katalon-demo-cura.herokuapp.com/

 	App description

 	
 Web app with a login page for booking appointments with a medical doctor.

 	Test description

 	
 Automate a series of actions on a healthcare service website. This test ensures that a patient can navigate and successfully book an appointment to meet with the doctor from the application. We want to see if everything works as it should on the app.

 	Steps

 	
 We intend to generate/create test cases that evaluate whether automatically

 	
 The login page works perfectly

 	
 Users can successfully book appointments if all the required fields are updated

 	
 The booking history records every booking made

 	Test case 1

 	
 	
 Navigate to https://katalon-demo-cura.herokuapp.com/.

 	
 Click on the Make Appointment button.

 	
 Set the text John Doe in the username field.

 	
 Set encrypted text in the password field.

 	
 Click on the login button.

 	
 Check if the user can successfully login when the correct details are entered

 	Test case 2

 	
 On the book appointment page

 	
 Select a visit date.

 	
 Select the Medicare option.

 	
 Select the hospital readmission option.

 	
 Enter a comment in the text area.

 	
 Book an appointment.

 	
 Check that the user can successfully book an appointment 10 seconds after submitting the booking form with all the right details.

 	Test case 3

 	
 	
 Toggle the menu.

 	
 Access the history page by clicking on History.

 	
 Confirm that the appointment just booked appears in the history.

 Now, let’s examine the top-performing AI testing tools I found and see how they followed these instructions and evaluated the website using their artificial intelligence features.

 Katalon Studio

 Kalaton Studio, launched by Katalon Inc. in 2015, is an automated software QA tool that supports testing for mobile applications, web apps, desktop apps, and APIs. The company’s website highlights that it has “embedded AI across our entire platform to test faster, see clearer, and streamline test automation with fewer bottlenecks.”

 Katalon Studio was the first tool in Katalon’s ecosystem. Since then, two additional tools have been added. Katalon Recorder is a browser automation extension for creating and running Firefox, Edge, and Chrome tests. Katalon TestOps is a test-orchestration platform that centralizes test planning and management activities, streamlining DevOps processes and enhancing cross-team collaboration.

 The AI-augmented testing features in Kalaton include:

 	
 Generating Groovy code from plain English instructions (Groovy is the scripting language used for writing test cases in Katalon)

 	
 Automatically generating test scripts based on prompts

 	
 A Virtual Data Analyst feature that analyzes all your TestOps data and generates reports

 	
 Self-healing capabilities

 Katalon’s self-healing AI, as noted above, automatically helps you fix tests that break during runs. You don’t have to manually maintain existing test scripts when you ship a new feature or change a component. Regression test plans are also handled automatically: the AI engine instantly reruns your existing functional and non-functional tests to ensure that your software’s previously developed and tested components still perform correctly even after you’ve added new changes.

 Traditionally, to create test cases in Katalon, you either record tests and playback or write test scripts with Groovy.

 Practical example

 In this example, I used StudioAssist AI, Katalon’s generative AI, which helps programmers write test cases from plain-text prompts. I used it to write test cases for the website above. For the sake of this test, I acted as a stakeholder who doesn’t know the Groovy syntax. I used the StudioAssist AI feature in Katalon to generate Groovy scripts, which set up my tests. I wrote the test I wanted in the prompt, and it created a test script for me in Groovy, which I then ran to evaluate the software. StudioAssist also helps explain what each line of code it generates does.

 I created a new test project, set up a test folder, and navigated to the script tab to begin writing my tests. Here is the prompt I gave StudioAssist AI:

 Prompt:

 I want to write a test case performing the following steps:
1. Open the browser to https://katalon-demo-cura.herokuapp.com/
2. Click the make appointment button named 'Page_CuraHomepage/btn_MakeAppointment'
3. Fill username in the 'Page_Login/txt_Username' object with the value in the 'Username' variable
4. Fill the password in the Page_Login/txt_Password' object with the value in the 'Password' variable
5. Verify that the appointment div 'Page_CuraAppointment/div_Appointment' exists within 10 seconds.
6. Close the browser

 Katalon StudioAssist generated test cases written in correct Groovy syntax (see in full in Example 4-1) that executed the test script when it was run (see Figures 4-1 and 4-2).

 [image: Fig 4.1 Generating tests with Katalon it intuitive by following the StudioAssist option in the UI]
 Figure 3-1. Generating tests with Katalon it intuitive by following the StudioAssist option in the UI

 [image: Fig 4.2 Generating tests with Katalon takes a few seconds.]
 Figure 3-2. Generating tests with Katalon takes a few seconds.

 [image: Fig 4.3 Tests generated by Katalon and executed on the StudioAssist UI]
 Figure 3-3. Tests generated by Katalon and executed on the StudioAssist UI

 Example 3-1. Full code of the tests generated by Katalon.

 /* I want to write a Katalon Studio test case to perform the following steps.
* 1. Open browser to the URL 'https://katalon-demo-cura.herokuapp.com/'
* 2. Click the make appointment button
* 3. Fill in the username and password fields based on the variables
* 4. Click the login button
* 5. Verify that the appointment div exists
* 6. Close the browser
* */
// Open browser to the URL 'https://katalon-demo-cura.herokuapp.com/'
WebUI.openBrowser('https://katalon-demo-cura.herokuapp.com/')
// Click the make appointment button
WebUI.click(findTestObject('Page_CURA Healthcare Service/a_Make Appointment'))
// Fill in the username and password fields based on the variables
WebUI.setText(findTestObject('Page_CURA Healthcare Service/input_Username_username'), 'John Doe')
WebUI.setText(findTestObject('Page_CURA Healthcare Service/input_Password_password'), 'ThisIsNotAPassword')
// Click the login button
WebUI.click(findTestObject('Page_CURA Healthcare Service/button_Login'))
// Verify that the appointment div exists
WebUI.verifyElementPresent(findTestObject('Page_CURA Healthcare Service/div_Appointment'))
// Close the browser
WebUI.closeBrowser()

 As you can see, the test generated fulfills the instructions I provided, and the code is written in the correct syntax.

 	Pros

 	
 	
 StudioAssist is easy for non-technical users to use and debug , since it transforms natural language prompts into correct Groovy testing syntax.

 	
 Built-in keywords and templates speed up the test-creation process and reduce the need for extensive coding.

 	
 Its self-healing capabilities automatically update test scripts when there are changes to the application’s UI.

 	
 StudioAssist integrates with popular CI/CD tools and testing frameworks like Jenkins, Git, and JIRA.

 	Cons

 	
 	
 Katalon requires you to download and install StudioAssist (from the screenshots above). This adds some additional setup work.

 	
 Katalon can sometimes be slow, particularly when dealing with large test suites or complex test scenarios.

 	
 There is a bit of a learning curve with the Katalon StudioAssist UI. Some options are buried inside the cascade options from the top bar, and you’ll need to learn keyboard shortcuts.

 I rate Katalon a 9 out of 10. Ithelps a lot with writing tests from plain English text prompts and executing them against the application I want to test, within the same UI. The only reason I won’t rate it 10/10 is the learning curve pointed out in the cons above. It could certainly be more intuitive, although this is quite a typical UX for complex enterprise products, which Katalon already is.

 Let’s turn now to the second tool.

 TestRigor

 TestRigor is an AI-driven automated tool designed to streamline software testing. Unlike traditional testing tools, TestRigor allows developers to create and execute tests without writing code. Its NLP capabilities allow you to describe your application functionality in plain English. The AI then generates, executes, and reports on test cases, significantly reducing the time and technical expertise required for comprehensive software testing.

 Practical example

 In my evaluation of TestRigor, one feature that really stood out was its completely codeless test-creation process. I did not have to write a single line of test code. Instead, I provided my test site URL and a brief description of my application and how it should behave. I also provided my test goals and specified the number of test cases to generate. The AI handled everything, from generating tests to executing them to generating a detailed test report.

 [image: Fig 4.4 Prompt and description to generate test case]
 Figure 3-4. Prompt and description to generate test case

 [image: Fig 4.5 Test were executed against the testing app and passed successfully.]
 Figure 3-5. Test were executed against the testing app and passed successfully.

 The goal of the testing, as you may recall, was to check whether a user can log in in less than 10 seconds and successfully book an appointment.

 	Pros:

 	

 	
 TestRigor uses Behavior-Driven Test Case Creation, which allows for the creation of tests based on how users interact with the application. This bypasses the technicalities of testing syntax, which can remove attrition for nontechnical users or smaller teams.

 	
 TestRigor’s testing product is very accessible, which makes it stand out from the crowd. It’s fully cloud-based, which eliminates the need to install additional software (unlike Katalon). This makes it easy to accessible and use from anywhere.

 	
 It integrates with popular CI/CD pipelines like Jenkins and CircleCI and supports bug-tracking tools like JIRA, which make it seamless to integrate with the tools that teams are already using.

 	
 The self-healing functionality, just like Katalon’s, reduces the maintenance burden on the testing team whenever existing application workflows are changed.

 	Cons:

 	

 	
 Bypassing actual test writing is great for smaller teams and occasional users, but I doubt it would be practical for larger teams that already have a large testing infrastructure in place. For those software teams (which are a majority, the value of automated testing is to generate the tests in correct syntax.

 	
 A cascade con of this bypass is that TestRigor doesn’t offer the same flexibility and control as traditional testing languages and frameworks. It would not work well for complex test scenarios or extensive application workflows.

 For these limitations, I rate TestRigor a 7 out of 10. Beyond that, it’s a great UX that “just works,” and it’s a perfect fit for smaller teams that don’t have a complex testing infrastructure in place already, or teams whose testing needs are occasional and who just want to check that the product is working as per the requirements.

 Tool comparison

 Katalon and TestRigorhave strengths that cater to different testing needs, though both leverage AI and machine learning to enhance their functionalities. Table 3-1 provides a comparison.

 	
 Katalon

 	
 Katalon offers a robust suite of features designed to handle complex test scenarios. It is particularly useful for large-scale testing projects where comprehensive test coverage is critical, and in most software development teams there’s already a testing infrastructure, team, and processes in place. While the learning curve is steeper than with TestRigor, Katalon’s depth of features and flexibility in handling diverse testing requirements make it a powerful tool for a broader number of software development teams, especially larger ones or those working on complex products.

 	
 TestRigor

 	
 TestRigor impressed me with its simplicity and ease of use. The learning curve is notably short, and I found it remarkable how fast I went from signup to actual test results. This tool excels in environments where product features change frequently, requiring rapid and continuous testing. I’d say TestRigor is best suited for startup teams or occasional one-off users who don’t have an existing testing infrastructure in place and whose product requirements may change too often to let them even set up such a robust testing environment. On the other hand, TestRigor poses limitations for those teams where Katalon excels: that is, larger teams and more complex product workflows.

 Table 3-1. AI Code Review tools overview.

 	Tool
 	UX
 	Test performance

 	Katalon
 	Repository
 	9/10

 	testRigor
 	Browser
 	7/10

 Conclusion

 Of the tools analyzed in this chapter, Katalon emerged as a good pick for larger teams and enterprise products, while TestRigor proved to be a winner for startups and side products. That covers the software-development market nicely, and showcases how teams with different types of products and levels of maturity can benefit from using AI testing tools.

 If you’ve ever worked in software testing or QA, or if you’ve simply written unit tests for any code you wrote, you’ll know how laborious it is to write tests and keep them updated as an application evolves and gets extended.

 I’ve often been a part of conversations about budget planning and roadmap discussions where robust testing was postponed, or outdated tests were simply framed as technical debt that should be phased out. It’s very common for both technical and non-technical stakeholders to have biases against proper testing practices, and one of the key reasons for that is how significant of an investment it has been, historically, to have them.

 That brings us to the bulk of the value that AI testing tools can bring to the table. In software development, we’re constantly looking for occurrences of the Pareto principle: “What’s the 20% of effort that will return 80% of this roadmap item’s value?” As a CTO, I’ve been in the center of these discussions many times. In QA, the 20% of effort that creates 80% of value is about defining the application workflow properly; talking with users and clients about the issues and edge cases; going the extra mile to map out nuances for the software developers who will implement the requirements; and, ultimately, doing user acceptance testing as a final gatekeeper before going live.

 The other 80% of effort, which creates 20% of value, is the actual grunt work of writing and executing each test to verify if the code fulfills the requirements. AI tools excel at this art. Being able to provide instructions in natural language and get back tests written in proper syntax, ready to execute, is a huge time-saving use case. Having those self-healing capabilities to update tests whenever application code is changed is a great backstop for when tests become deprecated and are simply commented out, as pressing priorities emerge to get some release to production.

 These are the day-to-day decisions that so often relegate proper software testing to a second-order priority.AI tools can help alleviate those concerns and contribute to ensuring that software running in production is properly tested and bug-free. This can’t be done by AI tools alone, since these tools won’t replace humans. Quite the opposite: the human tasks in QA are critical, as they define the scope of testing and serve as key guidelines for the AI tools to do the grunt work at a high quality standard.

 Once again, “AI + human” is a combination that leads an often frustrating process that has existed for decades to produce a higher-quality output..

 Chapter 4. User Interface and User Experience Design

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

 The world of software applications depends on beautiful user interfaces (UI) and intuitive user experiences (UX). UI design is about how a product looks and how users interact with it visually, it focuses on layout, colors, buttons, typography, and everything that shapes the visual experience of a software product. UX design, on the other hand, is about how a product feels to the user and if it is intuitive and efficient to use, UX is about usability, navigation flow, and making sure the overall experience is smooth and user-friendly. Both work hand in hand to create great software products.

 Producing those interfaces and experiences has been the job of UI/UX Designers for the last few decades. Those usually pair with Software Engineers to implement the functionality and the backend workflows that bring those designs to life as an integrated experience for users around the world. The transformation of such UI/UX designs into functional front-end code is a labor-intensive process, though. Traditionally, designers and engineers work closely to ensure that the visual aesthetics of a design are accurately translated into a responsive and interactive user interface. This process often involves multiple iterations, meticulous attention to detail, and a deep understanding of both design principles and coding standards.

 Since the emergence of text-to-image generative models in 2022 and 2023, UI/UX design has witnessed an enormous transformation. As I write this in 2024, recent AI tools now generate UI designs from ideas described in natural language, and generate functional frontend code from UI designs. These tools are revolutionizing the design-to-code workflow by automating significant portions of the process. This has immense potential to reduce the time and effort required to bring designs to life and make design professionals much more efficient. AI tools can significantly reduce the gap between concept and implementation.

 For example, the first iteration of wireframing and sketching designs for a new application can take more than a week to complete–sometimes more than a month, depending on the complexity of the project. The new AI design generators can cut wireframing time to less than a day and make each feedback loop faster as well. These tools’ ability to transform designs into functional frontend code means one person or team can go from describing an idea in natural language to generating functional frontend code within minutes (or hours, counting iterations), as opposed to weeks or months.

 This chapter will examine some of the leading tools in both the domains of UI design and UX design, aiming to cover the wide range of activities in between.

 Types of AI tools for design and frontend development

 Throughout this chapter I’ll focus on two types of AI tools: those that transform ideas into designs and those that transform designs into code.

 	Tools that transform ideas into designs

 	
 This sounds like a UI/UX designer’s job, but think about it: if creating designs becomes easier, faster, and more accessible to people without professional design skills, the average frontend developer will probably be able to create designs and code, as opposed to the current scope of work, which entails only writing code. That translates to massive empowerment for software engineers, especially those working on the frontend, who’ll be able to create simple designs independently.

 	Tools that transform designs into code

 	
 This segment complements the tools covered in Chapter 2, which generate code from a natural-language prompt. The tools here generate code from image-based mockups or Figma design files. (If you aren’t familiar with it, Figma is for UI/UX designers what VS Code is for software developers.)

 Most available UI/UX design generator tools are fully browser/cloud-based. They are simple to use without complex software installation and are easily accessible with a browser and a URL. Some tools, like qoqo.ai, come as plugins for design platforms like Figma.

 Most of the products this chapter covers have been launched very recently (as of mid-2024) and are in the early stages of product development. They’ll undergo continuous development, rolling out new features and improved functionality in the months and years ahead. As I write this, such design tools are a year or two behind software development tools like Github Copilot in terms of maturity.

 I expect that in the UI/UX space we’ll also see more browser-based tools, more add-ons or plugins to popular design platforms, and more integration into collaboration tools used between designers and frontend development teams (the analogous to Git might still be Figma for many teams, but for others might be plugins to popular collaboration tools like JIRA or Notion, we’ll see).

 Pros and cons of using UI tools for UI/UX

 Like any tools, the tools in this chapter present advantages and disadvantages. Some of the advantages include:

 	Efficiency and Speed

 	
 AI tools can process design files and components and generate corresponding code in a fraction of the time it would take a human developer. This rapid turnaround can accelerate project timelines and reduce costs.

 	Consistency

 	
 By automating the conversion process, AI tools help maintain consistent implementation of design elements across a project.

 	Accessibility

 	
 Individuals without technical or design expertise can pick up these tools and create functional interfaces, a shift that helps to democratize UI/UX design.

 	Prototyping and Iteration

 	
 AI-generated code allows for faster prototyping. Designers and engineers can quickly test and iterate on their ideas to bring new products to market much faster than ever before.

 The drawbacks of the tools in this chapter include:

 	Code quality

 	
 Code produced by AI tools does not always meet the standards of human-generated code. It can be less efficient and harder to read and maintain, so–as I’ve emphasized throughout this book–developers must look through and revise generated code thoroughly before releasing it into production.1

 	Device compatibility

 	
 AI-generated code may not be fully optimized for all browsers, operating systems and screen sizes. This can lead to issues with responsiveness and cross-device compatibility that require additional effort to troubleshoot and fix.

 	Customization and flexibility

 	
 While AI tools can handle standard design patterns well, they may struggle with more complex, custom design elements. This greatly limits creativity and the ability to tailor the design to specific needs. For this reason, human creativity is still needed.

 	Lack of originality and uniqueness

 	
 AI tools tend to produce designs that resemble existing ones. These tools are trained on current designs and prevailing trends, which can lead to a lack of originality and distinctiveness, with some designs appearing generic or repetitive, failing to stand out. Although AI tools can offer a useful starting point or inspiration, they’re far from matching the creative capabilities of a talented human designer.

 Striking the right balance between leveraging AI for automation and relying on human talent for quality and creativity is key to successfully integrating these tools into the design workflow.

 Use cases for UI/UX AI tools

 UI/UX design-assistant tools aid different parts of the design process. They can be categorized as follows:

 	
 Design ideation assistants

 	
 User research and analysis tools

 	
 Color palette and style generators

 	
 Layout and component generators

 	
 Accessibility checkers

 	
 Personalization engines

 	
 Voice user interface (VUI) designers

 	
 Gesture and motion design tools

 	
 Wireframing and prototyping tools

 	
 Design-to-code converters

 In this chapter, I’m focusing only on the last two items, which lie at the intersection of UI and frontend code and are thus of most interest to software engineers. Other tools that target specific parts of the UX and product research workflows are usually more specific to designers and other functions that collaborate more loosely with software developers, like product managers, product analysts, and UX researchers.

 Thus, I evaluate the tools in this chapter using the following use cases:

 	Rapid prototyping

 	
 AI tools can quickly generate wireframes and prototypes based on initial inputs and design descriptions. This is a major chunk of the design process, where designers spend hours in back and forth iterations. With these tools, creating prototypes is much faster and designers can iterate multiple design options quickly. This flexibility can also make sophisticated flows such as A/B testing much more accessible.

 	Designing from templates

 	
 AI tools can be trained on design principles like components, colors, and styles, to ensure consistency across different parts of a product by generating designs that adhere to established design systems, branding, and guidelines. This results in a cohesive user experience with uniform design elements and styles throughout the application. While this “factory” approach doesn’t foster creativity, it does bring significant value for use cases where all you need is to create new screens that look like the existing ones but fulfill new functionality. (In all honesty, for better or worse, most software development consists of this “factory” approach, as proved by the growing popularity of low-code and no-code tools.

 	Accessibility assessments

 	
 AI tools can automatically check and improve the accessibility of UI designs to people with disabilities, ensuring compliance with standards like WCAG and inclusive design practices–much as the tools covered in Chapter 3 do for software code. Such features can identify accessibility issues and suggest fixes, reducing the manual effort required.

 	User research and personalization

 	
 AI UI/UX design tools analyze user data about behavior, needs, and preferences to tailor their output to specific user groups or individuals, improving engagement, retention, and satisfaction. By leveraging data-driven insights, these tools ensure user-centered design. This can massively extend existing use cases. For example, if the goal is creating new landing pages for specific customer demographics, with these tools you could create full product variations according to specific parameters. Without them, each product variation would require heavy software development cycles.

 	Content generation

 	
 AI tools assist in generating content for UI elements, such as placeholder text, images, and icons. This quickly populates designs with realistic content, making prototypes more lifelike for testing and ensuring consistency with the design’s style and tone. This frees designers to focus on the more creative aspects of the process.

 Evaluation process

 My process in this chapter was as follows: I submitted a brief design prompt to each of the selected UI design tools, ran the same challenge on each tool, and compared their output. I also evaluated their ability to convert the designs they generate into frontend HTML CSS, Next.js, and React code. I reviewed 20+ tools available in the market, which as expected follow this long tail distribution where a few of them work as they advertise, while others have different issues that prevent me from running the test, or simply deliver poor output. As it happened in other chapters, many tools in the AI space are very early stage startups, whose product is in a very early stage of development.

 As such, I selected the best 4 tools that provided actual value for the use cases tested. I then rated each tool on a scale from 1 to 10, with 1 being the worst–a solution that errors out and doesn’t run at all – 10 being flawless, and 5 being a design that didn’t exactly fit the requirements. I look closely at the top product in each category, detailing its pros and cons, then provide some more concise information on the runner-up.

 It’s also important to note that all tests described in this chapter were run in June 2024. Given the fast pace of evolution of each of these tools and underlying models, it’s likely that you could get a different result at a later time for the same prompt.

 UI Tools

 I asked each of the AI tools covered in this chapter to generate screen designs for a mobile food-delivery application. Here is the detailed prompt I provided:

 Create a user-friendly food delivery app that allows customers to browse local restaurants, view menus, place orders, and track delivery status in real-time. The app should include screens- Login, Restaurant and Menu Browsing, Order Placement and Tracking.

Style: App should be modern and minimalist, focusing on ease of use and visual appeal. The design should incorporate a clean layout. Add in mouth-watering food images.

 Uizard

 Uizard has a marketing slogan that I believe sets the standard for most other players in this space: “Forget no-code, here comes no-design.” The analogy between code automation and design automation makes a lot of sense. Just as no-code has promised the same functionality in a fraction of the time and budget, no-design could have an equal impact on the design process.

 The Uizard product started as a machine-learning research project called pix2code in 2017 in Copenhagen, Denmark. As per Uizard’s marketing collateral: “It allows developers to visualize product ideas quickly and easily with AI. This helps to fast-track the workflow of designers and software developers. Its mission is to democratize design and empower non-designers everywhere to build digital, interactive products. ”

 With the free plan, you can generate and design up to 5 screens per project, and that’s what I used for this test. Specifically, I used Uizard’s most advanced AI design engine, Autodesigner 2.0, released in June 2024. The company describes Autodesigner 2.0 as a “text-to-UI generator product” that “generates mockups and wireframes from text.” It “takes the intuitive conversational flow of ChatGPT and merges it with Uizard’s generative UI capabilities and a drag-and-drop editor to provide you with an intuitive UI design generator.”

 Uizard provides tips to guide users through the entire design process. A nonprofessional could pick up this tool and create reasonable designs within minutes; a professional designer will have even more leverage.

 Practical example

 At the prompt screen (Figure 4-1), I asked Autodesigner to generate screens for a food-delivery app using the prompt from the practical section above.

 Figure 4-1. The Autodesigner prompt screen.

 Figure 4-2 shows the designs it generated.

 Figure 4-2. Screens generated. 11 in total

 You can see all of the screens it generated, along with the interactions, here: https://app.uizard.io/p/97cf063f/preview

 	Modify selection

 	
 Allows you to select a particular section of your design for modification. It is Ideal for tweaking existing designs to perfection. Use this when you want to refine or alter specific elements on your canvas, such as changing colors, adjusting layouts, or modifying content. As a developer, the best use case here is those little adjustments I’d otherwise need to ask a designer, and now I’m independent to do them myself.

 	Generate an image

 	
 Use this to add custom images to your design. UIzard uses an image generation model that can generate photos, illustrations, and other visuals from a prompt. This is great to generate mockups that don’t feel constrained by some stock photo library.

 	Generate a screen

 	
 Perfect for creating full interfaces from scratch. Choose this when starting a new project or when you need to expand your application with additional screens. Ideal for both high-fidelity prototypes and initial concept explorations.

 	Generate a theme

 	
 Select this to create a cohesive style across your project. Define your colors, typography, and UI elements to ensure consistency. It’s a simple way to set a consistent design system across your project right from the start or revamp it with a new aesthetic.

 All of the above are very typical work flows for any designer, so it’s not surprising that they were included in this product. The implementation is very intuitive and easy to use, as the chat interface in Figure 4-3 shows.

 Figure 4-3. Asking Autodesigner to generate an image and add it to a section of the welcome screen.

 I rate Uizard an 8 out of 10. The text-to-UI design feature works pretty well. Its designs come with an interactive demo, dynamic transitions, and an external link to share. I didn’t rate it higher due to design inconsistencies, some of them pretty hard to ignore. The most obvious one is the inconsistency in the app name: it is “FoodieDash” in most of the design screens, but “EasyEats” in the tracking screen. Similar inconsistencies can be found in input fields and color palette.

 Autodesigner 2.0 is very promising; I expect a lot of iteration in the months to come. Uizard also recently launched a design-to-code feature, which wasn’t available in the plan I used at the time of writing. A Figma plugin is in the beta stage of launch as I write this. Both of these features could be game-changers when fully available to the public, both for end to and product completeness, and could facilitate these tools’ adoption into existing team workflows.

 Galileo AI

 Galileo AI is a prompt-to-UI generative AI tool for designers and builders. Its creators write that the product emerged from their core belief that “AI will augment the creativity and productivity of designers, rather than replace them.” They explain that its goal is to build capabilities beyond basic automation and delve into the creative process to actually make the user a better designer. They aim to decentralize design and make it more accessible to a broader range of people.

 Galileo AI stands out as the most versatile of the design tools I evaluated. Not only does it transform natural-language ideas into UI designs within minutes, it also allows designers to upload images for inspiration or redesign. With the user providing concise prompts, it transforms uploaded images into designs that closely and accurately match the designer’s vision. It offers a comprehensive suite of features that designers need, including prompt-to-UI, image-to-UI, and UI-to-code capabilities. These features are uniquely combined in one platform, unlike other tools.

 Think of Galileo as ChatGPT for interface design. The prompt can be “a fun, friendly app design for dog walkers” or “a dashboard UI for an e-commerce site” and you’ll be presented with multiple options for a visual layout in under a minute, with appropriate UI elements, images, and product copy. You can pull these full UI screens into Figma to edit them. The design-to-code feature was available for free users when I evaluated this tool, which also makes it stand out.

 Practical example: Prompt-to-UI feature

 I provided Galileo AI with the exact same food-delivery-app prompt I gave Uizard AI, as seen in Figure 4-4, and the results were very interesting. The generated designs (see Figure 4-5 and Figure 4-6) came out clean and comparable to what a human designer might produce.

 Figure 4-4. Prompt screen in Galileo

 Figure 4-5. Designs for a food-delivery app generated by Galileo

 Practical example: UI-to-code feature

 The screens generated by Galileo come out with the corresponding HTML code, as shown in Figure 4-6, which can be downloaded.

 Figure 4-6. HTML Code snippet for one of the screens generated.

 The code is about 205 lines and this is only a snippet. The complete code can be found in the GitHub Repository for Chapter 4.

 I rate Galileo AI a 10/10 because it truly stands out. You can easily transfer designs to Figma for further customization and refinement. Even if the HTML code generated is clunky at times, the AI produces better designs and code than the other tools I evaluated. Remarkably, all these features are available in the free version.

 As a possible future improvement, when Galileo generates code for the designs, it should use the actual libraries and frameworks that most frontend developers use, such as React components, Tailwind CSS, and Bootstrap. Adding compatibility to those would make the generated code easier to use and less prone to needing a big refactor when merged into a productive repository.

 UX Tools

 In this short section, I cover tools for the UX part of the UI/UX design workflow. This means the user research, product workflows and usability.

 Here is I used for evaluating UX tools:

 Create a user persona for an 18-25 year old university student trying to order food online from a restaurant using our application.

Description: 18-34, Female, Male, Teen university undergraduate Adult from Los Angeles, California, single, and no children. Looking for a user-friendly platform to order food very fast, track orders and make payments

 QoQo.ai

 QoQo.ai (pronounced “cocoa”) is an AI for UX design Figma plug-in that helps designers in the early stage of design. With qoqo.ai designers can generate UX personas, journey mapping, sitemap, and UX copywriting. UI/UX Designers, product managers, and product researchers, who usually do these tasks, will save time with this tool; it can also make these tasks more accessible to software engineers, helping them better engage with users.

 You provide a prompt that includes demographics (Figure 4-7), and within seconds the AI generates a persona (Figure 4-8).

 Figure 4-7. Prompting fields in QoQo.ai, with demographics, scenarios and attributes.

 Figure 4-8. A persona generated by QoQo.ai

 I rate Qoqo an 8 out of 10. It gets the job done and there is really no learning curve involved. It does feel like a GPT wrapper, in the sense that it’s generating text and placing it into predefined brackets, which can provide tremendous value to start designing the UI/UX of a software product.

 Research Studio

 Research Studio is an AI-powered application designed to automate the customer and user research analysis process. This tool is particularly useful for researchers and designers who need to quickly transform user interviews into actionable insights, analyze satisfaction effortlessly, and generate branded reports swiftly. Traditionally, UX researchers spend hours combing through vast amounts of data to extract insights. Research Studio streamlines this process, making it faster and more efficient.

 Research Studio’s platform allows you to choose between three open-source LLMs: ClaudeAI, Mistral or OpenAI ChatGPT 4o. You upload your user interviews and it extracts insights into a report. It can also take this information it has garnered from the interviews and data to write a report. Several report types are available as an output, such as user flows, feature map, question analysis, etc.

 To evaluate this tool, I used Claude AI separately to generate some raw input. I asked it to generate 50 survey responses of users to our dummy food-delivery app from above, using the following prompt:

 Generate 50 survey responses from users of a food delivery app, reflecting their thoughts after using the app for some time. The responses should highlight both positive and negative views, including any problems they faced and suggestions for features that could improve the app’s efficiency and user experience.

 These responses include both positive and negative feedback, as well as suggestions for improvements. Here are a few examples from its output:

 1. "The app is fast and easy to use. Love the variety of restaurants!"

2. "Delivery times are often longer than estimated. Please improve accuracy."

3. "I wish there was an option to schedule orders in advance."

4. "The customer service is excellent, always helpful when I have issues."

 I passed the responses into Research studio to extract insights from the survey responses and asked it to write a comprehensive report based on its inbuilt report types.

 Figure 4-9: Research Studio transformed raw user reviews into a map of “insights”.

 Figure 4-9. An insight map generated by Research Studio from survey responses.

 Figure 4-10. A user persona generated by Research Studio.

 I rate Research Studio an 8 out of 10, for the same reasons as the previous tool. While it feels like an LLM wrapper, it does a good job with the workflow, and it does deliver value for anyone who wants to crunch massive amounts of data into structured product insights to use in their next software-development iteration.

 Tool Comparison

 Galileo AI emerged from my evaluation as the best text-to-UI tool amongst the 20+ tools I evaluated here, including the four featured in this test. Its ability to take an image and remake it into a beautiful design also makes it stand out. As I noted, this space is still in its very early days, so I can only imagine how far these tools will evolve in the coming years.

 The UX tools I evaluated are less complex in terms of underlying technology, but that’s not a critique: they worked well enough for their use cases.

 Table 4-1. AI UI/UX tools overview.

 	Tool
 	Purpose
 	Test performance

 	Uizard Autodesigner 2.0
 	UI generation
 	8/10

 	Galileo AI
 	UI and code generation
 	10/10

 	QoQo.ai
 	UX automation
 	8/10

 	Research Studio
 	UX automation
 	8/10

 Conclusion

 I began writing this chapter with the wrong expectations. I expected the tools in this space to be less useful in their current state, given their newness. I was wrong. I’m now very excited about this space and the evolution in software development processes we’ll see in the coming months and years.

 Generating frontend code from designs, the exact use case covered by Galileo and soon by other players in the field, is certainly the angle that best speaks to software engineers, especially those working on the frontend. It is a game-changer that will save software engineers around the world millions of hours.

 The other use cases seem to cater less to software engineers: they are a designer’s work. But think about it: our tools are becoming more powerful, and if it takes less time to do the same work, software engineers can manage a larger portion of design workflows. Indeed, our employers and team leads will likely ask us to do so more and more. It’s not just about being full stack rather than frontend or backend–it’s also about touching tasks that would otherwise be handled by a dedicated designer or design team.

 Never before have software engineers been so empowered to collect feedback from the users of their products, structure that feedback into actionable insights, generate improved designs, transform them into code, and push a new iteration to production. Product iteration cycles will shorten significantly thanks to these tools. Professionals who master them will be closer to fitting the proverbial “10x developer” persona than those who dismiss them.

 1 This is yet another occurrence of the tradeoff between saving time writing code and spending more time debugging, fixing, and improving code. It’s not much different, conceptually, from the tradeoffs of the HTML code generated by Dreamweaver in the early 2000s, or the more recent advent of low-code tools that generate templated code, which is often hard to customize and adapt to one’s specific needs.

 Chapter 5. Data Analysis and Business Intelligence

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

 In today’s software-driven world, businesses generate vast amounts of data from their applications, users, and operations. This data holds valuable insights that can be used to make decisions, predict trends, and improve system performance. The ability to analyze and act on this data has become a critical skill for software engineers.

 In this chapter, I tap into data analytics and business intelligence, and I’ll test how state-of-the-art AI tools can help businesses understand their data and improve their results. Whether it’s predicting future user behavior or optimizing resource usage, data analytics opens up new possibilities. Here are three key angles this chapter will cover:

 	Analyzing data

 	
 The first promise these tools make is that users can query large datasets by asking questions in natural language, and it seems attractive, given how costly it is for companies to build visualization dashboards on top of their databases.

 	Distilling advanced insights

 	
 Often companies want to correlate data points and find patterns in order to understand user behavior or spot some malfunction in their processes, in ways that go well beyond simply querying the data to count and sum fields. Again, the costs of such projects prevent many companies from even stepping into this territory, so the promise of AI tools removing this barrier is a big one.

 	Predicting future behavior

 	
 The ultimate promise of data science and business intelligence is to pick up data about what happened in the past and use it to draw conclusions about what will happen in the near future. This forecasting can be a game-changer for businesses that do it well, and the companies that develop and use it as a key part of their decision-making processes treat these projects and algorithms as sensitive intellectual property.

 These angles show how software engineers and data analysts can turn raw data into actionable insights to help teams make smarter decisions. They also show how expensive and time-consuming these projects have been, historically. High costs and complexity have limited sophisticated projects in these fields to companies that have the funds and the technically capable teams to drive them. Most small to medium businesses, startups, and non-tech businesses face high barriers to developing such tools, which hinders their ability to compete in this global market. The promise of AI tools in this sector is to democratize access to such tools among all market participants, regardless of their size, their sector, or the technical abilities of their teams.

 Before we look at the tools themselves, let’s quickly review a few basics about data analysis.

 Data collection and sources

 At the heart of data analytics is the data itself. In software engineering, this data comes from many sources, such as:

 	User Activity

 	
 Information about how users interact with software, including page views, click paths, and session lengths.

 	System Logs

 	
 Detailed records of system and application performance, which help engineers monitor health and performance.

 	Tracking tools

 	
 Automatically collected real-time data on application performance, such as response times and error rates.

 	Customer Feedback

 	
 Insights from user reviews, support tickets, and surveys, providing a qualitative perspective on user satisfaction.

 	Market Research

 	
 Competitive analysis, the news, market reports and all relevant information that’s published every day.

 There’s a long tail of other possible sources of valuable data that businesses can use to shape their decisions about the future. These data sources form the foundation of data analysis.They also shape the quality of the data and determine how much data cleaning is required. For example, if a dataset contains lots of empty fields or inconsistent field types, etc, it requires significant specialized work to clean the dataset for analysis, as well as advanced techniques like data normalization and clustering. I’ll be exploring these techniques in the tools analyzed in this chapter.

 Use cases for data analytics

 With valuable data in hand, data analysts can tackle a variety of challenges. We’ll tap into some of these key use cases for data analysis and business intelligence in the tool evaluation part of this chapter.

 	Performance Insights

 	
 By analyzing system metrics and logs, engineers can identify performance bottlenecks and inefficiencies early on. This helps in optimizing resource usage, improving response times, and ensuring the application remains scalable as demand grows. For example, tracking CPU and memory usage over time can reveal patterns that signal when a system needs scaling or optimization.

 	User Behavior Prediction

 	
 Data analytics can uncover patterns in user behavior, helping teams anticipate future user needs and preferences. By analyzing user activity data, such as click paths and session lengths, engineers can predict which features users will likely use more and tailor their product development efforts accordingly. This allows teams to focus on enhancements that will have the most impact on user satisfaction and engagement.

 	Capacity Planning

 	
 Analyzing historical usage data can help teams predict future resource needs and scale infrastructure appropriately to meet demand. By understanding traffic patterns, engineers can forecast peak usage periods and prepare systems to handle higher loads without compromising performance.

 	Anomaly Detection

 	
 Automated systems can analyze operational data to detect unusual patterns that could signal potential security breaches, system failures, or fraudulent activity. This proactive approach allows engineers to address issues before they escalate, minimizing downtime and protecting user data.

 	Business Intelligence

 	
 Beyond performance and system optimization, data analytics can offer broader insights into business performance. This includes tracking product adoption, analyzing market trends, and evaluating key business metrics. These insights help guide strategic decisions, such as which new features to prioritize or how to allocate resources more effectively.

 Each of these use cases highlights how data analytics allows teams to make informed decisions, optimize processes, and improve both software performance and the overall business strategy. The sections that follow look at how to approach these use cases with the right tools, models, and techniques. We’ll also explore how AI and machine learning can further enhance data analytics, helping engineers automate processes and uncover insights faster.

 Types of AI tools for data analysis

 AI tools have been emerging in data analysis, like in many other industries and verticals. Just using many enterprise tools requires complex sales and onboarding processes; I’ve left those out of the scope of this book, with the goal of steering you toward the most accessible options.

 I’ve also found some tools that offer infrastructure-level support for data analysis. While many of them are valuable, this chapter’s use case is about a business owner who wants to extract business-worthy insights from a dataset, and such tools are overkill for such cases.

 I ended up with tools that offer self-service onboarding and that have a free tier that allows readers to test the software. Almost all of these tools contain a chatbot UX that lets you upload a data file and ask analytical questions about the data. This seems to be the winning UX pattern for data-analysis use cases.

 Evaluation process

 I evaluated more than 20 AI tools in the data analysis and business intelligence space in order to shortlist the ones I highlighted in this chapter. Every tool covered here meets the following criteria:

 	
 It is a professional project with a competent team behind it.

 	
 It generates high-quality results.

 	
 It offers some level of functionality for free or on a trial basis.

 	
 It has a high level of adoption at the time of writing (mid-2024).

 For this test I’m using a public dataset of one year of online retail transactions from the Machine Learning Repository at the University of California at Irvine. It contains over 500,000 transactions, with eight data columns for each transaction:

 	
 InvoiceNo

 	
 StockCode

 	
 Description

 	
 Quantity

 	
 InvoiceDate

 	
 UnitPrice

 	
 CustomerID

 	
 Country

 You can see a sample in Figure 5-1.

 Figure 5-1. Sample of the online retail transactions dataset.

 Tools comparison

 For this comparison test, I’ll act as if I’m the owner of an online retailer and attempt to use the AI tools to draw business-worthy insights from this data. I’ll ask questions like:

 	
 What are my top-selling products?

 	
 Which of my customer segments have the highest lifetime value?

 	
 What is my sales forecast for the following year?

 In this test, I’m importing the raw dataset into each tool, working through the UX to get insights, and taking note of the results I get, how easy it is to get them, and how the tools compare against each other.

 Julius.ai

 Julius AI automates complex data analysis processes and provides interpretations, visualizations, and predictive analytics. It uses a combination of OpenAI’s GPT-4 and Anthropic’s Claude as its underlying data-processing models.

 Julius’s instant-messaging UI (Figure 5-2) resembles those of ChatGPT and other popular AI tools. I used it to upload my dataset, then asked my first question, in natural language:

 What are the top selling products, both by number of units and by revenue generated?

 Figure 5-2. My file upload and first prompt to Julius.

 Julius took just over a minute to run several Python scripts, then returned the tables shown in Figures 6-3 and 6-4, which list the 10 top-selling products by number of units sold and by revenue generated.

 Figure 5-3. Part of Julius’s reply to the first prompt, showing top-selling products by quantity.

 Figure 5-4. Part of Julius’s reply to the first prompt, showing top-selling products by revenue.

 Along with the hard data, Julius offered some contextual explanation about high-value products (Figure 5-5), highlighting some interesting aspects of the data.

 Figure 5-5. Some of Julius’s observations about the data in response to the first prompt.

 Next, I asked Julius to identify which customer segments were generating the highest value for this online retail store:

 From the same dataset, do customer segmentation and calculate lifetime value of each client segment. I want to identify the highest value customer segments.

 Julius decided to follow the Recency, Frequency, Monetary (RFM) method and ran some Python scripts again for almost 2 minutes, then presented the customer clusters and their lifetime value (Figure 5-6).

 Figure 5-6. Julius’s reply to the second prompt, with its analysis of high-value customers.

 Julius figured that clients that make an average 5,914 purchases and generate £64k per year are likely to be resellers, and gave me pointers on how to use that information for my marketing efforts. This is a unique and very good insight; however, key information is still missing, such as how large this cluster is and how representative these figures are. Is it an outlier case of an extremely high-value client, or does it include hundreds or even thousands of clients that I can market towards to grow the business?

 Also, Julius clearly hallucinated on its lifetime value (LTV) calculation: by no means would any client be worth £13 billion. It’s not clear what went wrong, but my hunch is that Julius used the wrong field in this calculation.

 My third question about this dataset asked Julius to do some forecasting:

 Assume I do a marketing investment of £500k to grow this customer segment that you’ve identified as high-LTV. Forecast my total sales volume for the next 12 months, both in units sold and in revenue. I want to provision inventory based on your forecast. Generate a table for the 20 top selling products in the forecast, with product name and quantity to provision for next year.

 In this forecast (Figure 5-7), Julius first made the fair assumption that these marketing efforts would generate a 20% sales increase. However, note that its total revenue forecast is off: the current year’s revenue is around £9.7 million, so this £565k forecast would be a massive decrease.

 Figure 5-7. Part of Julius’s reply to the third prompt, with sales forecast.

 Second, the table it created with the number of items to provision for next year, shown in Figure 5-8, is also off (probably a cascade from the wrong revenue estimation above). The quantities listed are way below the current year’s sales volume for those items. So, while Julius’s forecast indicates a 20% sales increase, its stock provisioning figures suggest a decrease of 60% or more.

 Figure 5-8. Part of Julius reply to the third prompt, with its stock-provisioning forecast.

 Julius did well in the objective data analysis in the first prompt and showed promise in customer segmentation, where it offered an insightful analysis despite the error in its calculation. However, its forecasting was far off the mark. While this could perhaps be mitigated with some prompt engineering, I believe my question was specific enough that I could reasonably expect a better answer.

 As such, I’m rating Julius a 7/10 in this test.

 Akkio

 Akkio provides AI-driven data analysis and predictive modeling aimed at digital-marketing and ad-targeting clients. Akkio uses its own model, called AD LLM, which it claims to have trained on advertising-specific data to understand data structures, business requirements, and other context specific to ad targeting.

 Akkio’s polished UI starts with a file upload, prompting users to select from a number of file formats. Once I uploaded my file, Akkio took some 2 minutes to fully ingest it and make the product functionality available to me. While the file renders as a spreadsheet table in the UI’s “Prepare” tab, the product offers several different features (Figure 5-9): Prepare, Explore, Predict, Deployments, and Reports.

 Figure 5-9. Akkio’s toolbar.

 The Explore tab displays an instant-messaging UI similar to the one in Julius. As such, I began with the same prompt, asking about the top-selling products:

 What are the top selling products, both by number of units and by revenue generated?

 Akkio took just a few seconds to reply to my prompts. However, the output was quite raw and lacked context, often being just a data table, with no accompanying text to provide context. For instance, in response to my first question, it simply returned charts and tables (Figures 6-10 and 6-11) with the top-selling products by quantity and by revenue generated, respectively.

 Figure 5-10. Part of Akkio’s reply to my first prompt, with top-selling products by quantity.

 I used the “AI interpretation” widget above each chart, but it didn’t help much, since the explanation was very technical, it simply describes in natural language the technicalities of the query performed against the data, no functional context about what’s the analysis being made or what are we seeing the visualization rendered.

 Figure 5-11. Part of Akkio’s reply to my first prompt, with top-selling products by revenue.

 Akki’s response to the first question was correct, so I proceeded to the second question:

 From the same dataset, do customer segmentation and calculate lifetime value of each client segment. I want to identify the highest value customer segments.

 Akkio’s reply is good (see Figure 5-12). It tells me that the highest-value customer segment is composed of 2,539 clients, who generated an average of about £3,000 each. This is good, but the cluster is too large. I’d expect such a cluster to be perhaps 10 to 20% of the total number of customers, but this one encompasses more than half of the 4,372 unique customers in the whole dataset.

 Figure 5-12. Part of Akkio’s reply to my second prompt, with customer segmentation and value calculations.

 Working with such a broad cluster of customers produces generic recommendations that aren’t very actionable, as seen in Figure 6-13. These recommendations would apply to any business; none of them are specific to high-value customers in a way that I can use for marketing purposes.

 Figure 5-13. Part of Akkio’s reply to my second prompt, with an explanation about the clients with the highest lifetime value.

 I proceeded to the third question:

 Assume I do a marketing investment of £500k to grow this customer segment that you’ve identified as high-LTV. Forecast my total sales volume for the next 12 months, both in units sold and in revenue. I want to provision inventory based on your forecast. Generate a table for the 20 top selling products in the forecast, with product name and quantity to provision for next year.

 Akkio’s reply is so deprived of context that it’s hard to understand the rationale behind the numbers. The revenue figure of £9.8 million (Figure 5-14) is a slight increase over the current year’s £9.7 million revenue, which seems too low given the marketing investment I mentioned in my prompt–but, again, no context is provided for that forecast.

 [image: A close up of a number Description automatically generated]
 Figure 5-14. Part of Akkio’s reply to my third prompt, with sales forecast.

 Also, there seems to be some hallucination in the stock provision forecast (Figure 5-15). These numbers are way below the current year’s sales for those products, by an order of magnitude. For example, Akkio forecasts 1,918 sales for the first item in the list, even though the current year’s sales for that item total 53,847. This, too, suggests some confusion in the calculations, but without any visibility into the scripts or functional explanations of context, it’s hard to understand the process that led to those predictions.

 Figure 5-15. Part of Akkio’s reply to my third prompt, with product provisioning forecast.

 Here, too, using the “AI interpretation” tab (Figure 5-16) doesn’t help much. It provides a technical description of the query used to feed the chart, but doesn’t explain the broader thought process that led to that query.

 Figure 5-16. Part of Akkio’s reply to my third prompt, with the AI interpretation of the results.

 Akkio did well in the objective data analysis with the first prompt, and did some decent customer segmentation work with the second prompt. However, its forecasting was off. I think the most underwhelming aspect of using Akkio is how little context it provides for its replies. It comes across as a tool best used for simple dataset queries and charts that don’t require much analysis or contextualisation.

 As such, I’m rating Akkio a 5/10.

 ChatGPT

 Since the top products that emerged in this category offer a chatbot-type experience, I decided to add ChatGPT for comparison, since it’s most people’s go-to AI tool. I’ll quickly review its replies for each of the same three questions.

 As seen in Figure 5-17, in reply to my first question, ChatGPT correctly counted the product sales and summed the revenue.

 Figure 5-17. ChatGPT’s reply to my first prompt.

 The second question is more nuanced. ChatGPT found a customer segment of 498 generating an LTV of £403,000. That value is higher than the revenue generated by any client in the current year. However, ChatGPT could be assuming that clients will be purchasing for many years into the future, which would inflate the LTV calculations.

 When I asked ChatGPT for more details about that highest LTV client, its reply (Figure 5-18) was underwhelming and generic enough to apply to any business, rather than being specific to this dataset and the underlying business.

 Figure 5-18. Part of ChatGPT’s reply to my second prompt, with its explanation for the customer segmentation.

 ChatGPT’s reply to my third question, asking it to forecast revenue and stock provisioning based on a significant marketing investment, started quite well. ChatGPT estimated that the marketing investment would produce a sales increase of 20 to 40% in this customer segment.

 However, its product stock provisioning forecasts are off (Figure 5-19): again, the sales numbers it predicts are lower than the current year’s. To me, this suggests that ChatGPT calculated the number of items to be sold only to this high-value customer segment and “forgot” to include the items sold to all other clients.

 Figure 5-19. Part of ChatGPT’s reply to my third prompt, with product stock provisioning forecast.

 ChatGPT did well in the objective data analysis with the first prompt, and offered a good amount of context and reasoning in response to the other questions, despite some obvious issues with the calculations. I believe some of these might be mitigated with prompt engineering. It’s also worth noting that ChatGPT isn’t really a native data-analysis tool: unlike the other tools analyzed here, it renders clunky tables and has no ability to render charts.

 As such, I’m rating ChatGPT a 6/10.

 Tool comparison

 My first challenge with this comparison is that all three of the tools I analyzed were subject to a black-box effect. I input a large volume of data, and within seconds these tools output good-looking tables, charts, and writeups with conclusions and insights that appear to make sense. It would be easy to assume that these tools are right, given their impressive speed and output.

 However, I double-checked the results by running a script on my local machine against the reference dataset (Figure 5-20; this script is available in the book’s Github repository).

 Figure 5-20. Console log of my local tests to double-check the tools’ calculations and reference figures for items sold and revenue generated.

 Comparing the tools’ results against my local tests, I first observed that all tools missed the product with most units sold (“Small Popcorn Holder”). I dug a bit into this quirk, but couldn’t figure out why. I can speculate that, since this item has a very low unit price, perhaps a rounding-to-zero type error could have caused it to be missed.

 Besides that, all tools performed quite similarly, both in the value they provided and in their pitfalls. From a UX perspective, Akkio stands out from the other tools. It sets a higher expectation by offering what seems like a very robust process with multiple steps and tools. However, it ends up standing out negatively, because the level of contextualisation it provides for each interaction is way below what the other tools offer.

 Julius and ChatGPT are simpler chatbot experiences that take longer to reply, but offer insights into what’s happening and how my data is being processed. Both of those tools include text in their replies alongside the tables and charts, to provide context and reasoning for its operations and to show users how to read the data and interpret the results.

 If I were to choose one of these tools, I’d select Julius. While its UX is very similar to ChatGPT’s, and even the underlying model is in part the same (GPT-4, as I write this in mid-2024), its data-analysis capabilities, such as rendering charts in the chat conversation, are not available in ChatGPT.

 I rated all three tools between 5 and 7 (Table 5-1), given these shortcomings. I expect these tools to evolve a lot in the coming years, but my opinion is that they are not yet reliable enough that you can simply drop a large volume of data, ask questions, and trust the results. If you use them, I recommend running scripts locally to double check the numbers. (It’s OK if your scripts are generated by AI tools, since you can review and modify the code and have full visibility and control over the data analysis, as you saw in Chapters 2 and 3.)

 Table 5-1. AI data-analysis tools overview

 	Tool
 	UX
 	Test performance

 	
 Jullius

 	
 Chatbot

 	
 7/10

 	
 Akkio

 	
 Chatbot

 	
 5/10

 	
 ChatGPT

 	
 Chatbot

 	
 6/10

 Conclusion

 After more than 15 years working with software-development and data-science teams, I can confidently say that AI tools have the potential to become game-changers in how we handle data analysis and business intelligence. Their ability to clean and analyze massive datasets in seconds, rather than days, will transform what’s possible for businesses of all sizes.

 Furthermore, from my experience working with a wide range of business stakeholders, from early-stage startup founders to business teams at Fortune 500 companies, I can easily imagine these AI tools empowering non-technical stakeholders to extract insights from their data. The effects of that empowerment could be immense. In some cases it might mean skipping costly data-engineering projects; in other cases it just makes those projects faster and less expensive.

 With that, here’s my word of caution: The tools are not there yet. While the results can be very impressive on the surface, they come with significant flaws, calculation errors, and generic explanations. A distracted user might be easily fooled by the instant reward of good-looking charts and insights, but overlooking such shortcomings can result in serious negative consequences. Business stakeholders could make decisions that reduce the value of their business; data analysts who delegate their work to these tools might end up performing poorly in their jobs.

 These tools are already powerful and useful. But they have limitations, and the “black box” effect can make it really hard to identify those limitations. Always be specific in your prompts, and always double-check the results by doing manual analysis or running local scripts. I always tell my teams to treat AI-generated insights like advice from a colleague: while it’s valuable input, always validate it and do your own critical thinking before making any big decisions.

Chapter 6. Documentation and Technical Writing

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 7th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

Documentation is vital for clarity, consistency, and knowledge transfer in software development. It ensures that team members understand the code when onboarding and reduces the learning curve during day-to-day work, leaving less room for lost context and consequent errors and refactorings.

Documentation is also important for nontechnical stakeholders such as product managers, marketing, sales, operations, and customer-support representatives. Clear documentation fosters collaboration across teams and creates a single source of truth that prevents miscommunication. As software evolves, proper documentation simplifies codebase maintenance and onboarding for new developers, bolstering the longevity of the project.

Outside the company, documenting how to use a software product can help sales and marketing efforts, prevent difficulties during customer onboarding, and foster user engagement with the product. Writing features and workflows down for external stakeholders is also a great starting point for collecting their feedback on how to improve the product.

Despite its importance, documentation often doesn’t get written at all. Software engineers don’t usually enjoy writing for humans, so they often skip it if they can. But they are almost always under deadline pressure, and when they have to make compromises, documentation is often one of the things left behind. Even when it does get written, heavy workloads and time pressure often lead to rushed or incomplete content. Writing high-quality documentation takes time.

Additional challenges include finding the right level of detail and keeping documentation up to date as systems evolve.

AI tools were helping generate written content for many years before the recent LLM-driven AI wave. Writing tools such as Grammarly, which helps find the correct words and fix mistakes, are especially helpful for those writing in a foreign language. In software development, tools such as Swagger and Javadoc also use AI to automatically generate API documentation in tandem with code updates.

The tools I review in this chapter were launched more recently, mostly since the generative AI wave started in 2022, and all aim to extend the simplicity of generating documentation from code beyond simple modules (like APIs) and helpers (like Grammarly). Some aim to be competent enough to replace the need for human action in writing documentation.

Types of Documentation

There are four key types of documentation commonly found in software development:

When business stakeholders define a new product or feature to be developed in order to fulfill some business objective, they write feature specifications to let software engineers know what functionalities to implement. The engineers’ role is to extend those specifications with technical system designs, architectural decisions, and workflows that document not just what was implemented, but also how it was implemented. This type of documentation is vital for maintaining and evolving software projects over time, especially when the original engineers are no longer around.

These documents help nontechnical users understand how to use the software. They include everything from installation instructions to troubleshooting tips. They’re useful during the sales process as a support material for sales and marketing colleagues, and as customers use the product. The challenge here lies in writing documentation for users who don’t have a technical background.

		API/SDK documentation

		
	A critical resource for developers, documentation of APIs and software development kits (SDKs), this type of documentation provides clear, structured details about the functions, methods, and services available within a software system. These documentation interfaces serve as a bridge between different software components, ensuring that developers can integrate and use the system efficiently.

	

		Internal documentation and feature specifications

		When business stakeholders define a new product or feature to be developed in order to fulfill some business objective, they write feature specifications to let software engineers know what functionalities to implement. The engineers’ role is to extend those specifications with technical system designs, architectural decisions, and workflows that document not just what was implemented, but also how it was implemented. This type of documentation is vital for maintaining and evolving software projects over time, especially when the original engineers are no longer around.

		User guides and manuals

		These documents help nontechnical users understand how to use the software. They include everything from installation instructions to troubleshooting tips. They’re useful during the sales process as a support material for sales and marketing colleagues, and as customers use the product. The challenge here lies in writing documentation for users who don’t have a technical background.

		Release notes and changelogs

		
	These documents are used to communicate changes to the software, such as bug fixes, new features, or performance improvements. More than just keeping everyone informed, effective release notes inform both internal and external stakeholders of the need to update integrations and workflows to accommodate the changes.

	

Evaluation Process

In this chapter, I evaluated more than 20 AI tools in the documentation and technical writing space in order to shortlist the four highlighted in this chapter. Every tool covered here meets the following criteria:

		
	It is a professional project with a competent team behind it.

	

		
	It generates high-quality results.

	

		
	It offers some level of functionality for free or on a trial basis.

	

		
	It has a high level of adoption at the time of writing (late 2024).

	

For this test, I created a very simple authentication flow, with both frontend and backend. The full code, which is available in this book’s Github repository, contains flows for signup, login, and logout. I’ve used the AI tools in this chapter to document my code. My main point of comparison is whether the documentation produced can be useful for any of the four documentation use cases explained above.

Again, for this test I preferred tools that can be used with a simple signup and free trial, so I stayed away from enterprise tools.

Tools Comparison

The full documentation generated for each test can be found in the book’s Github repository.

Swimm

Swimm is an AI-powered documentation tool designed specifically for software engineers. It automates the creation and maintenance of code documentation. To ensure that it stays current with every code change, Swimm integrates directly into the code repository. Engineers can create documentation for a certain code file or snippet, or create/update documentation with each new pull request. The latter option is a great fit for most software development teams’ processes, since a pull request (PR) represents the most granular level of iteration to the code base. Each such iteration needs to be documented, and each has the potential to render the existing documentation outdated.

I think this flow is comparable to the automated code reviews in Chapter 3. I can see how embedding these tools into a repo can provide a seamless integration into existing software development processes.

While Swimm can be blended into the repo and create or update documentation upon each PR, for the sake of this comparison test, I haven’t used that exact flow. I’ve simply used Swimm’s browser-based UI, which allows me to connect the repo, select specific files to be documented, and prompt for what to include in the documentation, as shown in Figure 6-1.

[image: A screenshot of a computer AI-generated content may be incorrect.]
Figure 6-1. Swimm’s widget to create a piece of documentation.

In this flow, I’ve asked Swimm to document the backend part of my authentication flow with a simple prompt:

Describe the functionality and technical implementation.

The desired output is a document that can be used for internal visibility on ongoing initiatives and for onboarding future team members. You can see a sample of the result in Figure 6-2.

[image: A screenshot of a computer AI-generated content may be incorrect.] [image: A screenshot of a computer AI-generated content may be incorrect.]
Figure 6-2. Sample of Swimm’s output for the backend documentation.

This output is quite good. I like the structure of the document as well as its content. However, my authentication flow is probably too simple to showcase Swimm’s full potential. So I tested a second case for a more complex document:

Describe the frontend code and create a test plan for each flow.

The result was again very good. It generated a full document (whose table of contents can be found in Figure 6-3), including a high-level introduction and then a deep dive into specific code components that impact the flow and thus should be documented.

[image: A screenshot of a phone AI-generated content may be incorrect.]
Figure 6-3. Table of contents of the document generated by Swimm for the frontend code

The last section of the document, as I asked, identifies the main flows of my code and provides test plans for each. The actual test plans are quite simplistic, but that’s probably a byproduct of the simplicity of the underlying flow, as copied below:

		Test login flow

	

		
	Verify the login form is visible by default.

	

		
	Enter valid credentials and submit; expect a success message.

	

		
	Enter invalid credentials and submit; expect an error alert.

	

		
	Click “Register here” and ensure the registration form appears.

	

		Test registration flow

	

		
	Click “Register here” to switch to the registration form.

	

		
	Enter valid details and submit; expect a success message.

	

		
	Enter invalid details and submit; expect an error alert.

	

		
	Click “Login here” and ensure the login form reappears.

	

		Test success and logout

	

		
	After successful login or registration, verify the success message is displayed.

	

		
	Click the logout button and ensure the login form is shown again.

	

Swimm did well in this test. It was easy to get started with this tool, and it generated relevant documentation for my requests in correct Markdown format, which is the standard in technical documentation. However, I found it quite limiting that Swimm can only document one file of code at a time. This produces very fragmented pieces of documentation that are closer to a read.me file than a higher-level code base and flow documentation.

I see working with a larger scope of source material as a natural evolution for Swimm, which could leverage its superior integration flow to create documentation for the whole code base, or at least groups of files. It could work horizontally, documenting the structure of frontend code by using all frontend files as the object of a document, or vertically, documenting a feature flow by using all files related to that feature.

As such, I’m rating Swimm a 6/10. While the UX is good, the output is still far from the quality of documentation that I would accept in my teams.

ChatGPT

ChatGPT is most software engineers’ go-to LLM tool for creating documentation, so I’m including it in this chapter, specifically the GPT-4o model, the most advanced available at the time of writing (late 2024).

I started by prompting ChatGPT to generate the documentation for my code. I included in the prompt all six code files, a screenshot of the repository structure (so it understands the relationships between the code files), and instructions for what the documentation should include, as seen in Figure 6-4.

[image: A screenshot of a computer program AI-generated content may be incorrect.]
Figure 6-4. Instructions to ChatGPT to document my code

ChatGPT generated very comprehensive documentation, as seen in the table of contents in Figure 6-5.

[image: A screen shot of a computer AI-generated content may be incorrect.]
Figure 6-5. Table of contents of the documentation generated by ChatGPT

This is a really good output, very complete documentation with sections for all of the expected main components, from high level context (such as repository structure) to detailed deep dive in each specific component, such as the API, visible in Figure 6-6.

[image: A screenshot of a computer AI-generated content may be incorrect.]
Figure 6-6. ChatGPT’s documentation of the API module

You can ask ChatGPT to output the documentation directly into a Markdown file. I committed its final documentation generated by ChatGPT (as well as the other tools in this chapter) into the book’s Github repository.

As expected, ChatGPT performs very well in this limited-scope test. It will work with up to 20 files at a time, and the file size limit varies by file type. While that’s totally okay for small projects like my authentication application, it is insufficient for most production-level applications. On top of those limits, ChatGPT also offers an inconvenient UI, compared to tools that connect to the repository. The need to upload files manually and give ChatGPT contextual information about their structure and relationships makes it more challenging to use, especially in large projects.

As such, I’m rating ChatGPT a 7/10 for this use case. The quality of the documentation is very good, with the caveat of the limits and inconvenient UI. It would take a software engineer some creativity to either document clusters of an application (by functionality or part of the stack, or module) within that limit of 20 files per piece of documentation.

Cursor

Cursor is a relatively new player in the AI coding tool space. It was launched in 2023 and has captured massive market share in the specific use case of IDEs with AI code-assistance capabilities, which has been led by Github Copilot. As of August 2024, Cursor had 40,000 customers.

Cursor’s product is an AI-native IDE that started as a fork from the popular Visual Studio Code. It allows software engineers to select which LLM model should power the tool; I’ve used Anthropic’s Claude Sonnet 3.5. As an actual IDE, Cursor has visibility into all code files in my repository, regardless of their number or size. You enter prompts through a chat feature, as seen in Figure 6-7.

Figure 6-7. Prompt to Cursor to generate documentation

The document Cursor generated was good, with sections for the expected main components, as seen in the table of contents in Figure 6-8.

[image: A screenshot of a computer AI-generated content may be incorrect.]
Figure 6-8. Table of contents of the documentation generated by ChatGPT

Despite the very comprehensive outline and the relevancy of its content, Cursor has a significant pitfall when it comes to generating Markdown documents. For some reason (perhaps a bug), the generated content is only partially formatted as a Markdown file. It outputs some sections as raw text, such as the snippet in Figure 6-9. This makes it much harder to read.

[image: A screenshot of a computer code AI-generated content may be incorrect.]
Figure 6-9. Formatting issue in Cursor’s generated markdown document

Despite these formatting issues, the documentation generated is extensive, covers the write topics and the content has a correct level of technical depth. Definitely in line with what I would consider acceptable documentation in my teams. As such, I rate Cursor 8/10.

Scribe

Scribe is quite a different tool from the others reviewed in this chapter. This tool is best suited for creating user guides, standard operating procedures (SOPs), or bug reports in a visual way. While my use of Swimm, ChatGPT, and Cursor focused very much on creating written documentation about the technical implementation of a certain product or functionality, I used Scribe to produce a guide about the product’s functionality.

While Scribe was created in 2019 as a basic screen capture tool, the functionality I used for this test, called Scribe AI, was only launched in 2023. It leverages that original functionality that allows a user to record a browser session, but instead of simply storing the video of the recording, it also creates a whole workflow with annotations, based on the screen transitions in the recording. That’s why it caters to UI-related use cases, like bug reports and product guides.

To start the test, I installed Scribe’s Chrome extension, and used it to record a simple session of myself registering a new account and logging into that account. My goal was that Scribe would generate a user guide that I could share with external nontechnical stakeholders, like users of the product.

The experience of recording my first session was quite seamless; I got the recording I needed easily on my first try. It’s called a Scribe, the name for the video recording and the annotated workflow that’s generated, and it’s available in this public link. I’d say this output is good, since it identifies the screen transitions in my workflow and captures the screenshots of each screen, highlighting the action that the user did on the screen to cause the transition. The result in in line with user shadowing tools like Hotjar or FullStory, which are commonly used for user research and bug tracking.

Scribe offers a feature that converts that raw HTML document in the public link above into an AI-generated document. I used this flow here, it allows the user to write a prompt with the desired documentation piece to be generated from the screen recording captured. My instructions were simple, as visible in Figure 6-7.

[image: A screenshot of a computer AI-generated content may be incorrect.]
Figure 6-10. Instructions to Scribe to generate document from raw tracking of website actions

The resulting document is publicly available here. I found this output underwhelming. It’s generic, and feels like it could have been written about any application, not specifically about mine. It generated a document and embedded Scribes (specific flows) into it, as opposed to generating a document based on the flow I recorded, which was my intention, this makes infer that the tool might be a better fit to larger pieces of documentation that involve several different Scribes merged together in a larger document (eg: product guide). The content of the document generated is not very relevant to the use case. As such, I’m rating Scribe a 5/10.

Tool comparison

	Table 6-1. AI Documentation tools overview.
	
		
				Tool
				UX
				Test performance
		

	
	
		
				
			Swimm

			
				
			Repository extension

			
				
			6/10

			
		

		
				
			ChatGPT

			
				
			Website

			
				
			7/10

			
		

		
				
			Cursor

			
				
			IDE

			
				
			8/10

			
		

		
				
			Scribe

			
				
			Chrome extension

			
				
			5/10

			
		

	

Conclusion

As a CTO for over a decade, I’ve found that documentation is one of those things that’s always lacking, but never to the point where it’s worth pausing ongoing work to fix it. In fact, bad documentation is a form of technical debt, but one that doesn’t break systems or degrade performance. It does degrade the team’s performance, however, which is a less visible and perhaps more damaging form of debt in a software development team.

I’ve always found it hard to push software engineers in my teams to write documentation in the first place, and even harder to keep that documentation organized, accessible, and updated. I think that AI tools like the ones I reviewed in this chapter can play a fundamental role in making that process easier. With a simple prompt, they can generate documentation within seconds. It would take a human at least an hour or two to generate a similar document. And that time commitment compounds with complexity: the larger a system is, the more challenging and time-consuming it is to document it properly and keep that documentation up to date.. In a team of a few dozen people, that work could easily come to thousands of collective hours of work a year.

While AI tools can create documentation instantly, they can also create bad documentation (just like humans can). I recommend that teams take the same approach to documentation as to setting coding guidelines: create a template for prompts or even for documents, with pre-defined sections and subsections. This serves as a backstop to avoid unnecessarily long documents, and facilitates readability by making content easier to find.

With all that said, documentation created by AI tools must always be thoroughly reviewed and edited by team members. While it takes seconds to produce 90% of the deliverable, the final revisions and quality control must be performed by human beings, since the output does not always fulfill the objective. See the case with Scribe, where the document generated is generic, a human reviewer would have caught that flaw and improved the documentation manually.

 Chapter 7. Chatbots and Virtual Assistants

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 8th chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

 Chatbots have been a staple of digital customer service and automation for over a decade. Initially built as simple rule-based programs, traditional chatbots followed predefined logic trees to handle repetitive tasks, such as answering frequently asked questions, providing automated responses in customer support, or collecting user information in structured workflows. We may say these chatbots weren’t very powerful, compared to today’s LLM-based bots, but they became a very popular way to automate high-volume, low-complexity interactions. However, their technical implementations struggled with unstructured conversations, ambiguity, or user inputs that deviated from expected patterns. The experience usually felt rigid and unnatural–people clearly understood they were talking to a machine, and those user interactions would frequently end with frustrating statements like, “I don’t understand. Please try again.”

 Now that people are used to chatting with LLM-based tools like ChatGPT, the rule-based approach to chatbots seems like a distant memory. Today’s “AI-powered” chatbots no longer rely solely on predefined scripts and rules. Instead, they leverage sophisticated natural language processing (NLP), contextual understanding, and generative AI to deliver dynamic, human-like interactions.

 These advancements have drastically expanded the role of chatbots to include tasks like:

 	
 Understanding complex queries and responding with relevant, well-formed answers.

 	
 Maintaining memory across conversations, providing continuity and context.

 	
 Taking actions on behalf of users, such as booking appointments or retrieving personalized data.

 	
 Learning and adapting over time, improving based on real-world interactions.

 	
 Integrating with external APIs and databases to fetch real-time information.

 This transformation means that software engineers now have a broad spectrum of tools and frameworks available to help us build intelligent chatbots, ranging from no-code workflow builders to fully customizable AI-powered assistants that leverage agentic reasoning and training data. Whether you want to build a simple automated helpdesk bot or a sophisticated AI agent capable of complex decision-making, the technology is now more accessible than ever.

 Types of Chatbot Implementations

 There are three main options for implementing a chatbot:

 	No-code AI chatbots

 	
 These tools promise that users without any programming knowledge will be able to deploy AI-powered assistants. They usually have easy-to-use interfaces where users can upload datasets, define workflows, and select the underlying AI models. While these tools are promoted for a nontechnical audience, I’m including them in the book because, in my experience, certain technical knowledge is often required to integrate these tools with other parts of a company’s workflow, which end up being part of software engineers’ scope of work.

 These no-code chatbots are a natural evolution of the rule-based chatbots mentioned above and cater to the same use cases: customer support, e-commerce, and FAQ automation.

 	Drag-and-drop chatbot builders

 	
 These tools aim to bridge the gap between simplicity and flexibility to adapt to the needs of different clients. They are usually easy to set up and allow users to build conversation flows visually by connecting boxes with predefined functionalities, while integrating AI-powered features for dynamic interactions. Developers can automate workflows and use more complex logic in the backend for the chatbot.

 These chatbot builders cater to use cases such as customer service, lead generation, and internal workflow automation.

 	Code-based AI frameworks

 	
 These are usually SDKs, APIs, or open source repositories that allow software engineers to fully control the chatbot’s behavior, which they’ll then use as boilerplate to implement customised chatbot experiences. They tend to have higher standards for training data. Use cases include agentic reasoning, integration with other tools and workflows, and even data security (since these chatbots can be self-hosted on a company’s cloud infrastructure).

 Evaluation Process

 To compare chatbot-building tools, I created a chatbot that interacts with this Online Retail Dataset, created by Lucas Soares, a fellow O’Reilly author in the field of Machine Learning. It consists of transactional data from an e-commerce shop, which I’ve used to test chatbots’ capabilities to retrieve factual data and answer complex user queries.

 Each chatbot was tested using a set of predefined queries, evaluating its:

 	
 Ease of setup and deployment

 	
 Ability to retrieve factual information

 	
 Context retention across multiple interactions

 	
 Ability to handle complex queries

 I tested multiple tools, but have included one from each of the categories outlined in the previous section.

 Tools Comparison

 Let’s begin with a no-code option: Chatbase.

 Chatbase

 Chatbase was launched in 2022 as a no-code AI chatbot builder that allows users to create and train chatbots by uploading documents or datasets. It gained popularity due to its simple interface and integration with OpenAI’s GPT models, which made it an accessible solution for businesses looking to automate their support and customer interactions without requiring technical expertise. While the product is still relatively young, Chatbase has seen adoption among small businesses, solopreneurs, and startups, particularly for handling customer support and FAQ automation. The tool offers a free-tier option and a paid plan for scaling your chatbot’s capabilities.

 For this test, I created a free account on the Chatbase website and looked for a way to create my chatbot. I quickly found the section to add the training data: my spreadsheet with the ecommerce product catalog. In a matter of two or three minutes, I was interacting with my chatbot.

 [image: A screenshot of a computer AI-generated content may be incorrect.]
 Figure 7-1. Chatbase’s Sources UI, where users can add training data.

 Once the chatbot was ready, I started asking questions, as if I was a real client:

 I see there are some Android phones in your catalog. Compare the features and prices, and tell me the best budget Android phones?

 [image: A screenshot of a phone AI-generated content may be incorrect.]
 Figure 7-2. First question to my Chatbase chatbot (truncated to the visible area)

 It did well in the first question, fetching correct results and displaying them in a well-formatted response.

 [image: A screenshot of a phone AI-generated content may be incorrect.]
 Figure 7-3. Second question to my Chatbase chatbot

 In the second question, I purposefully asked about a product that doesn’t exist:

 I’m looking for a laptop below $10. What’s the best option?

 This is a common source of hallucinations, and once again, my Chatbase bot did well, stating the fact that no product matches my query.

 [image: A screenshot of a phone AI-generated content may be incorrect.]
 [image: A screenshot of a phone AI-generated content may be incorrect.]
 Figure 7-4. Third question to my Chatbase chatbot

 For the third question, I asked something more complex, which not only inquired about specific products in the catalog, but also a comparison between their attributes and ultimately a recommendation:

 You have mobile phones and digital cameras. I’m interested in photography, should I buy the Sony Xperia XA2 Ultra or the Pentax K-1 camera? Why?

 Again, my Chatbase bot did well, stating the attributes of each option and making recommendations about when to buy one or the other option.

 Chatbase also makes it very easy to publish a Chatbot using its Connect section. With a couple clicks, I get some code to embed my chatbot in a website via a chat bubble or iframe. I was impressed by how easy it was to upload training data, test the bot, and publish it.

 Chatbase did very well in the test, and it’s probably one of the easiest ways to integrate a chatbot in a website, if you have specific training data and make some changes to the prompt to grant the desired functionality, tone, and so on. As such, I rate it a 9/10. The reason I did not rate it 10/10 is because the end product’s behavior significantly resembles the default behavior of the underlying LLM (gpt-4o-mini, in this test). In other words,if a user were to upload the same training data to ChatGPT and ask these questions, the answers would have been very similar. Still, the ease of doing all this and publishing the bot with a few clicks is impressive.

 Botpress

 Drag-and-drop option Botpress was founded as an open-source chatbot-development platform back in 2017, when that meant rules-based chatbots. The current version of the product offers a visual builder that enables users to create complex conversational logic and to integrate the resulting bot with third-party APIs and other applications. In recent years, Botpress’s adoption has grown, especially among mid-sized enterprises and organizations looking for an alternative to closed-source chatbot platforms. With a modular architecture and self-hosting options, it appeals to businesses that need to comply with data-privacy regulations while maintaining scalability.

 To test Botpress, I followed the same playbook as for Chatbase. I created a free account on the Botpress website and went through its widget to build an agent (that’s what they call a chatbot). It took me some time to figure out how to add the training data, since I first needed to create a table (their name for training data in csv format) on a separate page, then add that as a knowledge base to my bot.

 [image: A screenshot of a computer AI-generated content may be incorrect.]
 Figure 7-5. Botpress’s Agent Builder UI, where users can add training data and configure their workflow.

 Botpress offers more options beyond a simple chatbot feature. Users can add different agents and tools, and compose a workflow with them that serves as the backend reasoning under the bot’s hood. It’s more powerful than Chatbase, but getting a simple bot up and running took me 30 to 40 minutes of trial and error.

 [image: A screenshot of a computer AI-generated content may be incorrect.]
 Figure 7-6. Botpress’s workflow builder. I selected a very simple flow for my test.

 With the chatbot finally ready, I started interacting with it and asking the exact same questions I asked the Chatbase bot.

 [image: A screenshot of a phone AI-generated content may be incorrect.]
 Figure 7-7. First question to my Botpress chatbot (truncated to the visible area).

 For the first question, the bot correctly fetched a couple of Android phones, but not budget phones, as I’d asked: the prices started at $500. It also provided only two options, which was quite limiting. I’d be a bit frustrated with this reply if I were a real client.

 [image: A screenshot of a computer AI-generated content may be incorrect.]
 Figure 7-8. Second question to my Botpress chatbot.

 Again, in the second question I purposefully asked about a product that doesn’t exist, and my Botpress bot did well, correctly stating that no product matched my query.

 [image: A screenshot of a cell phone AI-generated content may be incorrect.]
 Figure 7-9. Third question to my Botpress chatbot

 Third, I once again asked the complex question about comparing the phone with the camera. My Botpress bot did well, stating the attributes of each option and when it recommended buying one or the other. The format wasn’t great, however, since each product’s attributes were packed into a single bullet point.

 Botpress also features a one-click Publish feature that creates a standalone URL for your chatbot, and simple guidelines for the most popular use cases (implementing chat bubbles, embedding into a website, and so on).

 Botpress did well in the test. The lack of polish in some answers might be due to it using an older model by default on the date of this test (gpt-4o-2024-08-06). It has much more comprehensive workflow features than Chatbase does, However, the UI is quite challenging for a new user to navigate. I rate it an 8/10.

 Langchain

 Code-based framework LangChain emerged in 2022 in response to the increasing demand for developer-friendly frameworks to build AI-driven applications. It’s designed to integrate with popular LLMs like GPT-4, Claude, and open-source alternatives, and to allow software engineers to create custom AI-powered assistants with advanced reasoning capabilities, memory, and dynamic API integrations. The framework has gained rapid adoption among AI engineers and startups looking to build agent-based systems that go beyond basic chatbot interactions, and has become the go-to framework for LLM-powered applications and AI agents.

 For this test, I coded my own chatbot using the Langchain framework. It’s a very well-documented framework, so it was rather easy to get started. It took me about 30 to 40 minutes to get from an empty repository to the chatbot in the images below (with help from Cursor for boilerplate, the verbose chunks of the code, and some formatting adjustments at the end). The resulting code is available in the book’s Github repository. I ran it on my local machine, and used the model gpt-4o-mini for this test.

 [image: A white text on a white background AI-generated content may be incorrect.]
 Figure 7-10. The beginning and end of my first question and the response from the chatbot I coded with Langchain (the verbose middle section is not displayed)

 For the first question, the bot correctly fetched three Android phones,suggested one that’s actually a good budget phone, and explained its reasoning, which was good as well.

 [image: A screenshot of a phone AI-generated content may be incorrect.]
 Figure 7-11. Second question to my Langchain chatbot.

 For the second question, about the product that doesn’t exist, the bot indeed realised that no such product existed. The reply “I don’t know” results from a literal interpretation of the section of the prompt that says, “If you don’t know the answer, just say you don’t know.” This is quirky, but actually correct.

 [image: A screenshot of a chat AI-generated content may be incorrect.]
 Figure 7-12. …

 [image: A white text on a white background AI-generated content may be incorrect.]
 Figure 7-13. Beginning and end of my third question and my Langchain chatbot’s response (verbose middle section not displayed).

 On the complex question comparing the phone with the camera, my Langchain chatbot did well, stating the attributes of each option and the tradeoffs of choosing one or the other. Its answer is very much in line with those of the bots I created with the other tools, which illustrates how much of the output can be attributed to the underlying models.

 Langchain doesn’t offer a one-click publish option. I ran this code on my local machine, but to make the bot publicly accessible, I would need to deploy it on a cloud server. Also, Langchain offers no off-the-shelf guidelines for integrating my chatbot as a bubble chat or embedding it in other people’s websites; that would need to be developed as desired.

 I’ve implemented several real-world chatbot solutions with Langchain, and I like it a lot. It allows you to build simple chatbots or more complex ones, as well as multiagent workflows using LangGraph. It’s a powerful solution, but it certainly requires software development skills. It’s also very well documented, with a great developer community. With assistance from other AI tools, like Cursor and Github Copilot, these implementations take a fraction of the time they’d have taken just a few years ago. As such, I rate Langchain a 10/10.

 Tool Comparison

 All of the tools in this test performed very well, which is why they’re included here. However, Langchain will continue being my go-to tool for building any kind of chatbot.

 Table 7-1. AI Documentation tools overview.

 	Tool
 	UX
 	Test performance

 	
 Chatbase

 	
 No-code AI chatbot

 	
 9/10

 	
 Botpress

 	
 Drag/drop chatbot builder

 	
 8/10

 	
 Langchain

 	
 AI code framework

 	
 10/10

 Conclusion

 As a CTO, I’ve built many chatbots over the years, mostly before the recent generative AI wave, with functionality limited to predefined logic trees and very niche use cases.

 The tests for this chapter highlight that it’s now possible to build a highly capable chatbot with minimal effort. These chatbots are capable in terms of being trained on specific data, but also in terms of their tone, range of inference, and ability to follow the specifics of the desired use case . It should be no surprise that thousands of businesses are integrating these capabilities on their products. It’s also curious to observe the massive shift in UI patterns, away from the traditional list->search->detail approach and towards chatbot UIs that allow the user to “talk with the data” in a less structured way.

 It’s worth noting that this shift towards chatbot UI creates room for hallucinations, partial responses, and other well-known quirks of LLM technology. Indeed, my main takeaway from writing this chapter is that the outputs from all the tools in this test were highly dependent on the underlying LLMs they used–for better and for worse. It’s great that, with minimal action, a user can set up an impressive chatbot that fetches information, structures it correctly, and draws complex conclusions. But the chatbot’s output is still very much subject to the limitations of the underlying LLM, such as hallucinations.

 About the Author

Sergio Pereira has been a Software Engineer and CTO for 13 years. Sergio has built products for several fast growing startups, such as Bulk MRO, StudentFinance or FutureFuel. For the last 7 years Sergio has built innovative software products for the Fintech industry, complying with strict compliance requirements.

As part of his work, Sergio is responsible for crafting the software development processes that allow his teams to deliver high quality software in a timely manner for his clients. As such, Sergio was an early adopter of ChatGPT, and has been a thought leader on the topic creating internal documentation for his teams, and sharing most of it in public for the benefit of the community.

Sergio is a public speaker on the topics of technology, startups and remote work.

assets/ch07_figure_10_1741275422537256.png
Authentication flow

Ao Tog

1 Compose a user guide for clients of my application, expla
useit, based on the flow captured in this Scribe|

ing how to

Ener

Scribe Al can embed selected Scribes based on context:

= Register and Login tothe Applic.. X -+ Search Scribes

© How To Start Capture in Scribe ..+
X Cancel

~ Done

assets/ch07_figure_2_1741275422537073_1.png
Table creation and route integration

To store user credentials, we create a users' table if it doesn't already exist. This ensures that our
application can handle user data persistently.

The authentication routes are then integrated with the server, allowing us to handle
authentication-related requests;

O chapter7/backendiserverjs ¢ Up to date

20 // Create Users table if it doesn't exist
21 db.run("CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY AUTOINCREMENT,

23 // Use the routes for authentication
24 app.use(*/api/auth’, authRoutes(db));

26 // Start the server

27 app.listen(port, () => {

28 console.log('Server running at http://localhost:${port});
29 13

assets/ch07_figure_1_1741275422537024.png
O chapter7/backendiserverjs ¢ Up to date

1
2

const express

require("express');

canst cars = ren

ralicarst)s // Tmoort the CORS nackane
+ 1

(B Addfie) v
Pick topic/title

Authentication flow.

Instructions / doc outline

Well consider these when generating your drat

Describe the functionality and technicol implementatior

@ Allow Al to split up large snippets

assets/ch07_figure_3_1741275422537103.png
Table of contents v

Introduction
Form structure
Login form
Registration form
Form switching logic
Show register form
Show login form
Form submission handling
Handle login
Handle registration
Success and logout functionality
Show success page
Handle logout
| Test plan
Test login flow
Test registration flow

Test success and logout

assets/ch07_figure_2_1741275422537073_2.png
(u]

1

+

chapter7/frontend/index html 2 Up to date

<IDOCTYPE html>

<html Lanaztents

© Add file

ithAl 1
Pick topictitle "

Frontend test plan
Instructions / doc outline

Wellconsider these when generating your draft

flow]

@ Allow Al to split up large snippets

assets/ch07_figure_5_1741275422537148.png
Table of Contents

. Overview

N

. Repository Structure
+ Backend

« Frontend

w

. Functional Workflow
* 1. User Registration

e 2.User Login

* 3. Frontend Behavior

IS

. Technical Implementation
« Backend

+ Frontend

o

. APIs

* Register User

* Login User

o

. Future Improvements

~N

. How to Run Locally

3

. Conclusion

assets/ch07_figure_4_1741275422537126.png
Generate documentation for the code base attached, which
contains:

- An image with the repository structure

- The files from the repository

The documentation aims to be used in a software develpoment

team, by both technical and non-technical stakeholders. This
must include i iptions of the

workflows, as well as technical descriptions of the implementation.

assets/ch07_figure_7_1741275422537190.png
code in thi

tobe usedina team, by both technical and non-
technical stakeholders. This must include functional
well as technical descriptions of the implementation.

assets/ch07_figure_6_1741275422537170.png
APIs
Register User

« Endpoint: POST /api/auth/register
« Request Body:

Json

“email”: “usergexample.con”,
“password
¥

assword123"
Response:

« Success: 201 Created
Json

© Copy code.

<

“message”

¥

user”: { "id": 1,

User registered successfully",
‘ema.
son

Error: 400 Bad Request

“email": “usergexample.con" }

& copy code

{ "message": “Error registering user", “errol

& copy code
error details>" }

assets/ch07_figure_9_1741275422537234.png
Technical Implementation:

Frontend form handling: // Handle Register

document. addEventLi it, async (event) => {
nt. tDefault(); const email = document. ; const
password = document. await

fetch('http:/flocalhost:3000/api/authregister’, { method: ‘Posr headers: ‘Content-Type
“applicationfjson' }, body: JSON.stringify({ email, password })); const result = await
json(); if K ‘Registration successfull); } else {

alert(result message); } });

Backend registration endpoint: const register = (db) => async (req, res) => { const { email,
password } = req.body; const stmt = db.prepare('INSERT INTO users (email, password)
VALUES (2, 2));
res.status(400) json({ message: 'Error registering user, error: err.message });
res.status(201) json({ message: ‘User registered successfully, user: { id: this.lastiD, email });
Y

stmt.run(email, password, function (err) { if (err) { return

assets/ch07_figure_8_1741275422537211.png
Table of Contents

* Overview
o Key Features
« System Architecture
o Technology Stack
« Functional Workflows
o 1. User Registration Flow
o 2. User Login Flow
« Technical Implementation Details
o Database Schema
o API Endpoints
= 1. Register User
= 2. Login User
o Frontend Components
= Form Management
= Success Page Handling
o Backend Components
= Server Configuration
= Route Management
« Security Considerations
« Development Setup
o Prerequisites
o Installation Steps
« Testing Guidelines
o Frontend Testing
o API Testing

« Future Improvements

assets/ch08_figure_10_1741275423851589_1.png
Product Catalog Assistant

best budget Android phones?

#4## Best Budget Android Phones Comparison

catalog,
features and prices.

#4441, Allcall Bro

Price:
7990

Display:

5.0 inches HD screen

+ Procassor MTKRSANA auar-corn 1 AGH?

their

sk aboutour products.

assets/ch08_figure_9_1741275423851565.png
‘You have mobile phones and digital cameras.
I'm interested in photography, should | buy the

Sony Xperia XA2 Ultra or the Pentax K-1
camera? Why?

If you're interested in photography, the choice
between the Sony Xperia XA2 Ultra and the
Pentax K-1depends on your needs and
budget.

« Sony Xperia XA2 Ultra: This is a mobile
phone with a 6-inch Full HD display and
a 4.7 rating. It's priced at $599.99 and
offers decent photography capabilities
for a smartphone. However, it may not
match the quality of dedicated cameras.

« Pentax K-1: This is a digital single-lens
reflex camera with a full-frame CMOS
sensor, offering high-quality stills and
video capture. It's priced at $999.99
and is designed for more serious
photography.

If your primary focus is on photography and
you want high-quality images, the Pentax K-1
would be the better choice. However, if you
need a device that combines phone

with decent the Sony
Xperia XA2 Ultra could be suitable.

assets/ch08_figure_2_1741275423851420.png
| see there are some Android phones in your cata-

log. Compare the features and prices, and tell me
the best budget Android phones?

Sure! Here are a few budget Android phones
from the catalog along with their features and
prices:
1. Samsung Galaxy A3 (2016)
Display: 4.7 inches
Storage: 16GB
Connectivity: 4G
Price: £149.99
Rating: 2.4
2. Huawei Ascend P2
Display: 4.7 inches
Processor: 1.2 GHz dual-core
Camera: 8 MP rear camera
Price: £299.99
Rating: 3.5
3. Motorola Moto G4 Plus

Display: 5.5 inches

assets/ch08_figure_1_1741275423851385.png
Sources

Files

r

Drag & crop s here, o click 0 select s

assets/ch08_figure_4_1741275423851461_1.png
You have mobile phones and digital cameras. I'm

interested in photography, should | buy the Sony
Xperia XA2 Ultra or the Pentax K-1 camera? Why?

When deciding between the Sony Xperia XA2
Ultra and the Pentax K-1, it really depends on
your photography needs and preferences:

1. Sony Xperia XA2 Ultra
Type: Smartphone
Camera: 23 MP rear camera

Features: Compact and portable, easy
to use for everyday photography, and
great for social media sharing. It also
has a decent display for viewing
photos.

Price: £599.99

Best For: Casual photography, conve-
nience, and those who want a multi-
functional device (phone + camera).

2. Pentax K-1
Type: Digital SLR Camera

Camera: Full-frame sensor, high-quali- v
ty image capture, and advanced fea-

assets/cover_ER.png
OREILLY"

Early
ll Release

EEEEEEEE

Generative Al
for Software
Development

Building Software Faster and More Effectively

Sergio Pereira

assets/ch08_figure_3_1741275423851442.png
I'm looking for a laptop below $10. What's the best

option?

Unfortunately, there are no laptops listed in the
catalog for under $10. In fact, laptops typically
start at a higher price point. If you're looking
for budget-friendly options, | recommend con-
sidering a slightly higher budget to find a suit-
able laptop.

If you have any other questions or need as-
sistance with something else, feel free to let
me know!

assets/ch08_figure_5_1741275423851486.png
& ccommerce-tes

»

AgontSuctre
i ——

nsrctons ©
You e sn Aanemoss Ao, You st oo for saswrs e ncwidge e,

0 Knowiodgeases

Owessts Doccmen BTbe | Qebsch TR oM

Producsabl e
B cetzmintmom

21 Channals ©
= obenat v
% Agets ©

o Summary Agot 4 Knowledge Agon

emunrion

as

nsa

assets/ch08_figure_4_1741275423851461_2.png
ty image capture, and advanced fea-
tures for professional photography.

Features: Offers more control over
settings, interchangeable lenses, and
superior image quality, especially in
low light.

Price: £999.99

Best For: Serious photographers look-
ing for high-quality images, versatility,
and the ability to use different lenses
for various photography styles.

Recommendation:

If you're looking for a camera primarily for
casual use and convenience, the Sony
Xperia XA2 Ultra is a great choice.

If you're serious about photography and
want to invest in a high-quality camera
with advanced features, the Pentax K-1
would be the better option.

Consider your photography goals and how you
plan to use the camera when making your de-
cision. If you have any more questions or need
further assistance, feel free to ask!

assets/ch08_figure_7_1741275423851529.png
| see there are some Android phones in your
catalog. Compare the features and prices, and
tell me the best budget Android phones?

Based on the available data, here are some
budget Android phones you might consider:

« Sony Xperia XA2 Ultra: This phone
features a 6-inch Full HD display, 32GB
of internal storage, and supports 4G
connectivity. It is priced at $599.99 and
has a rating of 4.7.

LG K8 2017: This is a compact Android
smartphone with a 5-inch display,
featuring a 5SMP front camera and
running on Android 7.0. It is priced at
$500 and has a rating of 2.6.

These options provide a balance between
features and price, making them suitable for
budget-conscious buyers.

assets/ch08_figure_6_1741275423851508.png
£ Autonomous
AutonomousNode =]
Instructions
You are an Autonomous Agent. You
must look for answers in the knowiedge
base.
[0 search Knowledge 1

Add Card

assets/ch08_figure_8_1741275423851548.png
I'm looking for a laptop below $10. What's the
best option?

Unfortunately, there are no laptops available
under $10 in the current catalog. If you have
any other price range or specific requirements,
feel free to let me know, and | can assist you
further.

assets/untitled_052342_03.png

assets/untitled_052342_04.png
[e

[rIne————

R -

oot

assets/untitled_052342_05.png
£ comormmmsseton s roiones o s o se—

crapters/omp.is

<nnstser profitec/hi>

<atums(reqsestoots.userlnpuh</divs <io- User put 1 directly rendered into
16 minutes g0

N asta

s 05S) winerabity

textContent. propery or funcion that saely encodes the user nput.

codelAL()

< vserimpue

» . < (eRcOBaURT{requestData.userToput))</t <1 Encoded user iput 10

Commitsoggesion ~ s suggesion o b

encoselRIO)

b ghls
function,or use a ibrary designed to sanitize HTML content.

assets/untitled_052342_06.png
SQL Injection &

n
17 50 Igection winersmaisty
Conet alluery - SELECT » FRON users WERE usernams = {requestbot.sernane)
e b 1, Gere, rou) = {

830

Injcton verabity.

© chapterdopps ©

91 Leam bout sy o inerabiltyand how o i 1.

]

assets/untitled_052342_07.png
QL njecton # @ -

nsntan b TP rest sy fors topl whre 3 i

«n

assets/ch06_figure_2_1731506673927916.png
@

Online_Re
spreadshoet - 424 M8

| uploaded the file: Onine_Retail.csv

What are the top seling products, both by number of units sold and by revenue generated?
s e

assets/ch06_figure_1_1731506673927880.png
StockCode
123

|Dascription
WHITE HANGING HEART FIGHT HOLDER
WHITE METAL LA

2632 HAND WARMER RED POLKA DOT

Quanti

H
o1
58

H

1271110828

assets/ch06_figure_4_1731506673927968.png
Top 10 Products by Revenue:

Optionst Cick on columns o rowsto focus o specfc dota Lepon @
Dorcow posTAGE 20624548

REGENCY CAKESTAND 3 TIER eare2n

WHITE HANGING HEART T-LIGHT HOLDER 99668.47

PARTY BUNTING. a830298

JUMBO BAG RED RETROSPOT saaseos

RABBIT NIGHT LIGHT aeseso

PosTAGE as2a06e

PAPER CHAN KIT S0 CHRSTMAS. e

~ASSORTED COLOUR BIRD ORNAMEENT sassara

cHLLI UGHTS. sw080

assets/ch06_figure_3_1731506673927945.png
‘Top 10 Products by Units Sold:

Optiont Gl on calumns o rows o focus onspecic cata

WORLD WAR 2 GLIDERS ASSTD DESIGNS
JUMBO BAG RED RETROSPOT
ASSORTED COLOUR BIRD ORNAMENT.
POPCORN HOLDER

PACK OF 72 RETROSPOT CAKE CASES.
WHITE HANGING HEART T-UGHT HOLDER
MINIPAINT SET VINTAGE

PACK OF 12 LONDON TISSUES.

PACK OF 60 PINK PAISLEY CAKE CASES.

sa7
s
asamn
3334
35030
s

47

s

assets/ch06_figure_6_1731506673928009.png
‘segment is Cluster 3. Thi

Very recent purchases (Recency: 1day)
Extremely high purchase frequency (5,914 purchases)
High monetary value (£64,776.60 spent)
Exceptionally high LTV (£13,982,742,192.25)

Key Insights:

1. Cluster 3 represents the most valuable customers. These are likely large bus
resellers who make very frequent, high-value purchases.

ess customers or
2. Cluster 21is the second most valuable segment, with very recent, frequent, and high-value
purchases.

3

frequency, and
4. Cluster 1is

d the longest time
since their last purchase.

assets/ch06_figure_5_1731506673927989.png
(ey observations:
1

Units Sold: The top-seling product by quantity is "WORLD WAR 2 GLIDERS ASSTD DESIGNS" with
53,847 units sold, followed by "JUMBO BAG RED RETROSPOT" with 47,363 units
2

is "DOTCOM
£206,245.48, followed by "REGENCY CAKESTAND 3 TIER" with £164,762.19.
3
a in both lists, ing they are popular in terms of
o . For example, "WHITE T-LIGHT HOLDER" and "JUMBO BAG
RED RETROSPOT" are in both top 10 ists.
4

Interesting Notes:

“DOTCOM POSTAGE" is the highest revenue T but doesn't appear in the top 10 by
units sold, suggesting it's a high-value, low-volume
Some low-cost, high-volume tems like "PACK OF 72 RETROSPOT CAKE CASES" appear in the.
top units sold but not in the top revenue lst.
This anal wides insights.
can be valuable for inventory management and marketing strategies.

and which are which,

assets/ch06_figure_8_1731506673928047.png
PACK OF 72 RETROSPOT CAKE CASES
RABBIT NIGHT LGHT.

SPAGEROY LUNCH BOX

DOLLY GIRL LUNGH 80X

JUMBO BAG RED RETROSPOT

ROUND SNACK BOXES SET OF4 WOODLAND.
WOODLAND CHARLOTTE 8AG

RED TOADSTOOL LED NIGHT LIGHT

RED RETROSPOT CHARLOTTE BAG.

JUMEO BAG WOODLAND ANIMALS

09

a6

60

3103

2500

2686

Forecast Quantty

assets/ch06_figure_7_1731506673928027.png
Based on the analysis of the high-LTV customer segment and the assumed £500k marketing investment,
here's the forecast for the next 12 months:

Forecast for the next 12 months:
Total units sold: 373,943

Total revenue: £565,77718

high-LTV customer segment.

assets/ch06_figure_10_1731506673928087.png
% Top Selling Products by Units Sold @ Copy & Download (4 Edit

@Chart % Allnterpretation @ Code

by units sold, with the x-axis and the number of
units sold on the y-axis.

gy 45, Pon, Py, Wiy Py, M 4
“on ”“’Oe O, 5&/)4/ M% SN
©hes,. Dty o, i, . %, 0y,
%, ”*@r NN “; o V’f "%, 4,:(
" e
e, o, e
oo,
oy, > S "% Siseg
Product Déscription
Hide table ~

Product Description y1
WORLD WAR 2 GLIDE 53847

> JUMBO BAG RED RE1 47363

© ASSORTED COLOUR 36381

POPCORN HOLDER 36334
 PACK OF 72 RETROS! 36039
& WHITE HANGING HE/ 35317
7 RABBIT NIGHT LIGHT 30680

assets/ch06_figure_9_1731506673928065.png
OExplore & Predict @ Reports

assets/code_generation_333155_01.png
35 github_copilotjs @

T
55 (=)(T) to ask GitHub Copilot Chat to do something. Start typing to dismiss.

assets/code_generation_333155_02.png
35 github_copilotjs.

Conte:
- We have one 20 array,flled with zeros and ones.

- Itis giv y
touch the boundary of the array.

- Arectangle might contain only one element.

Desired outpu:

rectangle (top lft X, top left Y, bottom right X, bottom right Y).

Example arrays:
inputt =[01,4,1,%,4,1,1, [1,1,4,1,1,4,1,1,1,1,0,0,0,1,[1,4,1,0,0,0,1,11,1,,1,
0,001 00,4100 1,001,1,41,1,1]

input2=[[0,1,,1,4,4,0, [1,1,4,1,1,, 1, 1,1,1,0,0,0,1, 1,1,1,0,0,0, 1, 11,1,,1,
1,1,1,11,0,0,1,1,,11,1,0,0,1,1,0,0},[1,0,0,1,1,0,0]]

8 You can aiso type for commands

assets/untitled_052342_01.png

assets/untitled_052342_02.png
[SR ——
P p—

assets/ch06_figure_11_1731506673928105.png
Top Selling Products by Revenue
Coy & Download (] Edit
Generated L) E

@Chart % Allnterpretation @ Code

“Top selling products by revenue generated, with product descriptions on the x-axis and
revenue amounts on the y-axis

E. 7DDk
' N e s o s
H 25, v Py Pog,, Pheg, 485,
= "0 G“Vc,%’% e %%4 "% :%5 e, :"MD e,
o e %/4, % gy, 7, W 0, s
05y s tn
o 05 bty O,
e g, %0 s o4
” B, 4 Stgg,. My
0, s ey,
Product Description %%

Product Description y1
© DOTCOM POSTAGE 206245.48
» REGENCY CAKESTAN 16476210
WHITE HANGING HE/ 99668.47
PARTY BUNTING 9830298
© JUMBO BAG RED RE1 92356.03

© RABBIT NIGHT LIGHT 6675659
POSTAGE 66230.64

assets/ch06_figure_13_1731506673928149.png
© Axkio Al 600pm
The High Value customer segment consists of clients who spend a lot of money on your
products. They are your best customers, contributing significantly to your revenue.

Characteristics of High Value Customers:

1. Frequent Buyers: They tend to make multiple purchases, indicating they enjoy your
products and come back for more.
2. Loyalty: These customers are i

Iy loyal to your brand, as they have already
invested a considerable amount of money.

3. Variety in Purchases: They may buy a range of products, which shows they are
interested in what you offer.

Targeting Strategies for Marketing Campaigns:

1. Personalized Offers: Send them special discounts or exclusive offers based on their
past purchases to encourage them to buy again.

2. Loyalty Programs: Implement a rewards program where they can earn points with
each purchase, which can be redeemed for future discounts or gifts.

3. Feedback and Engagement: Reach out to them for feedback on new products or
services. Engaging them can strengthen their loyalty and make them feel valued.

4. Exclusive Previews: Offer them early access to new products or collections, making
them feel like VIPs.

assets/ch06_figure_12_1731506673928127.png
© Akkio Al

559pm
The customer segmentation based on Lifetime Value (LTV) has been analyzed, and here
are the results:

Customer Segmentation Summary:

« Low Value Segment

Total Customers: 165

+ Medium Value Segment
© Average LTV: $278.21
© Total Customers: 1618

« High Value Segment
© Average LT

3,092.64
© Total Customers: 2,539

assets/ch06_figure_15_1731506673928185.png
% Top Selling Products Forecast @)Copy & Download
@Table 3 Allnterpretation @ Code

index Description ForecastedQuantty

3998 WORLDWAR 2 GLIDERS ASSTD DESIGNS 19183731

1855 JUMBO BAG RED RETROSPOT 1687.3717

230 ASSORTED COLOUR BIRD ORNAMENT 12961229

2728 POPCORN HOLDER 1294.4485

2386 PACK OF 72 RETROSPOT CAKE CASES 1283 9387

3907 WHITE HANGING HEART T-LIGHT HOLDER 1258.2165

2791 RABBIT NIGHT LIGHT 1093.017

2150 MINIPAINT SET VINTAGE s418543

2352 PACK OF 12 LONDON TISSUES 9375079

2384 PACK OF 60 PINK PAISLEY CAKE CASES 8818505

373 VICTORIAN GLASS HANGING T-LIGHT 8498314

262 ASSORTED COLOURS SILK FAN 8223278

576 BROCADE RING PURSE 8212047

2815 RED HARMONICAIN BOX 770.0062

1853 JUMBO BAG PINK POLKADOT 7a8.4744

345 SMALLPOPCORN HOLDER 71666

assets/ch06_figure_14_1731506673928167.png
© Akkio Al 600pm

Projected Total Revenue for the Next 2 Months: £9815281.35 Projected Total Units Sold
for the Next 12 Months: 19958

assets/ch06_figure_17_1731506673928221.png
Top Selling Products

StockCode Description total_units_

WORLD WAR 2
13617 84077 GLIDERS ASSTD 53847
DESIGNS

JUMBO BAG RED
2 4197 850998 RETROSPOT 47363

ASSORTED
3 3956 84879 COLOUR BIRD 36381
ORNAMENT
4 1333 22197 POPCORN 36334
HOLDER
PACK OF 72

Top Revenue Generating Products

StockCode Description total_units_sold total_revenu

1 Dot DOTCOM 707 206245.48
POSTAGE
REGENCY

2 22423 CAKESTAND 3 13033 164762.19
TIER

3 47566 PARTY BUNTING 18022 98302.98
'WHITE HANGING

4 851234 HEART T-LIGHT 35025 97715.99
HOLDER

5 850998 JUMBOBAGRED 47363 9235603

RETROSPOT

assets/ch06_figure_16_1731506673928204.png
> Top Selling Products Forecast @ Copy

ETable % Allnterpretation @ Code

First, the data were Then, total
of unit price. A summary of
customer D information,
e e s e, aé o R pr s Tho

including totalspen, unique orders,
recency of purchases was determined by calculating the number of days since the last purchase.
total High-value

. Projected
ucts were

identified, and averag a
iges. Finally,

growth and]
total units sold.

analyzed, i

sed
quantiies.

assets/ch06_figure_19_1731506673928259.png
Top 20 Products Forecast For Next Year

Descripti Forecasted_Quantity

WORLD WAR 2
GLIDERSASSTD ~ 39092.3
DESIGNS

JUMBO BAG RED

RETROSPOT 41978

WHITEHANGING 57166,100000000

HEART T-LIGHT
002

HOLDER

POPCORN 260204

HOLDER

PACK OF 72

S

I have provided a table with the top 20 products and their forecasted quantities based on the.
projected growth from your marketing investment. This forecast accounts for a 30% increase in
sales volume and reflects the quantity you should provision for the next year. Let me know if you'd
like to adjust any parameters or dive deeper into specific details! (-

assets/ch06_figure_18_1731506673928240.png
The highest LTV customer segment, labeled 444, represents the most valuable clients for your
business. Here's what their RFM score means in layman terms:

Recency (4): These customers have purchased from you very recently, meaning they are stil
actively engaged with your brand.
Frequency (4): They buy frequently, showing they have a strong relationship with your

products and trust your offerings.

Monetary (4): These customers spend the most, making high-value purchases, which
contributes significantly to your revenue.

assets/ch06_figure_20_1731506673928281.png
167 SiuBo 86 PINK POLKADOT - 21689 units.so1d
16. mailout

17, LUNCH BAG RED RETROSPOT - 18979 units sol:

18] ANTIQUE SILVER TEA GLASS ETCHED - 18911 units sold
19. PAPER CHAIN KIT 50'S CHRISTMAS - 18962 units sold
201 65 TENTIME FATRY OAKE GASES — 18840 units sold

20 PARTY BUNTINC

72 CHARLOTTE 45 SUKE DESToN - 18863 unics sold
23. HEART OF Wi - 179 wnics sold-
24. RED RETROSPOT CHARLY = uni

5 CHARLOTTE BAG - 17548 u
55. Coroum OLASS ToLIGHT HOLDER FANGING - 16386 enics so1d
26. GROW A FLYTRAP OR SUNFLOWER IN TIN - 16172 units sold

49 in revenue
7 in revenue

assets/untitled_052342_09.png
6 © cosormmia ooz s a0 [r—
[—
JR—

()

ensprers/ono. s

T+ /s injection winerabitity
2+ const salluery = 'SELECT + FRON users WHERE usernaee = *S{requestOata usernane)
T qauery, 1], (err, row) = ¢

= . i tern €

. et arrrror scrtio 5. ey’ ol

z . e status (590).sendError operation’);

.) etse

» . consote.log(“Query resuls, rous);

E e e e kS s s 4 S5t
=

EIR

5 coderabbital bor 2 miutes 590
ThesaL

+ Const sql0very = "SELECT « FRON users WIERE usernane = 7'
L Gorataalauery, (rscuestbaa-usermnel (e, roe) = (

assets/untitled_052342_08.png
[sat injection &
J

- s st e st e e

S e s e 4/
st csoearosoe e

S

g st o

assets/untitled_052342_11.png
chapter3/app.is

Commentoniines +34 t0 42
M . Cross-Site Scripting (X55) vulnerability
35+ const responseltal =
. heat>
2 <oty
e <suser Profilec/hi>
e <div>$ {requestData. userInput}</div> <\ User input is directly rendered into
@ . </bosy>
a . <>
2 .

5 coderabbital ot 3 minutes ago

putinto HTML ' or escaping user nput
before rendering.

(]

assets/untitled_052342_10.png
v Comittable suggestion
11 IMPORTANT

Ensure ths p

Er——

B

lines, and has.

/1 SQL Tnjection vulnerability.

const sqlQuery = “SELECT x FROM users WHERE usernane = '${réquestDatausernane}"
db.ali(sqlquery, [1, (err, rows)

»i

[

it (ere)
console.error(*Error executing SOL quers

err.nessage);
res. status(500)..send("Error in database operation’);

¥ etse {
console.log("Query result:’, rows);
res. send(*Data processed with SOL query results: ' + JSON.

/1 SQL Tnjection vulnerability.

const sqlQuery = "SELECT « FROM users WHERE usernane

db.al1(sqlQuery, [requestData usernase]

(err, rows) = {

if (ern) €
console.error(‘Error executing SQL query:", err.nessage);
res. status(500) . send("Error in database operation');

¥ etse ¢

console.log("Query result:', rows);

stringiy(rows));

res. send("Data processed with SQL query results: ' + JSON.stringify(rows));

(Commitsuggestion ~

‘Add suggeston to batch

assets/automated_testing_and_quality_assurance_856652_01.png
e Acate Windows

AmE v

assets/untitled_052342_12.png
book.

[Ty e— -

Tacion oauied and 1 succosstlchecks

FE-) oot

) securtylsnyk (srgioperia-e) o et changes cetcted i projct

(@) This branch has o conflcs with the base branch.

assets/automated_testing_and_quality_assurance_856652_03.png
SRR ey,
B —

-y
e ———————

assets/automated_testing_and_quality_assurance_856652_02.png
RS SR RORINAA A taw Tk Case X

@ oo s

O e T T L T L)

assets/automated_testing_and_quality_assurance_856652_05.png
{3 testrigor

e 04z mu-kwtw

assets/automated_testing_and_quality_assurance_856652_04.png

assets/ch05_figure_1_1728662776337695.png
Use simpletext o generate your project
using Uizard's Al-powered Autodosignor

[EOE—
Ques Ome Qows
vt . B

T
TR Re

assets/ch05_figure_3_1728662776337746.png
e e fo 1 o 03 [0 Jo [@ C

o
&

[Jprereres— e
(==}
L e

o
-

e ——————

e T

sjelele v 1@

assets/ch05_figure_2_1728662776337731.png

assets/ch05_figure_5_1728662776337785.png

assets/ch05_figure_4_1728662776337766.png

assets/ch05_figure_7_1728662776337820.png
° @ -

Userpersona

o G

assets/ch05_figure_6_1728662776337803.png

assets/ch05_figure_9_1728662776337853.png
Insights

assets/ch05_figure_8_1728662776337836.png

assets/ch05_figure_10_1728662776337868.png
Presentation: User interview

Emily Background
Davis

Pain Points Insight

UbuntuMono-BoldItalic.otf

assets/ch08_figure_11_1741275423851607.png
11m looking for aptop below $10. What' the best option?

1 don't know.

UbuntuMono-Italic.otf

assets/ch08_figure_10_1741275423851589_2.png
Summary of Features
« Allcall Bro offer it 'd a high user rating, making it a
good choice if you prefer a smartphone with dual cameras and moden features.

LG KB 2017 is the butlacks detailed specifications, which may limit
. The lower rating i L

+ Doogee BL7000 stands out with large battery capacity good RAM (4GB), providing
excellent endurance but lacks detailed information on camera quality and other features.

#4# Conclusic
Considering price and features, the Doogee BL7000 is the best budget option at 299.99, especially for
those priortizing battery life and decent 9. However, if

phone with higher user satisfaction, the Allcall Bro at 799.0 is a strong contender.

UbuntuMono-Regular.otf

assets/ch08_figure_13_1741275423851647.png
Price Comparison

- Sony Xperia XA2 Ulra: $599.99
« Pentax K-1: Approximately $1,799.95

Conclusion

If your primary interest is photography, the Pentax K-1 camera is undoubtedly the better choice due to.
ge qualiy, lenses, and for seriou

e
photographers.

anmvev ifyou ae looking for a devie that combines mobile functionalty with decent photography
jes, the Sony Xperia XA2 y . P media
phomgraphy

Uttimately, choose based on your commitment to photography: go for the Pentax K-1 if youre serious
‘about the craft; opt for the Xperia XA2 Ultra if you prioritize convenience and mobile usage.

css_assets/titlepage_footer_ebook.png
OREILLY®

assets/ch08_figure_12_1741275423851622.png
You have mable phonss and dal cameras,{m trested i phologaphy,shoud | buy the Sony
(peria XA2 Ultra or the Pentax K-1 camera? Why?

Product Overview

#i### Sony Xperia XA2 Ultra

toc01.html
		Brief Table of Contents (Not Yet Final)

		1. Code Generation

 		Types of Code Generation Tools

 		Use Cases

 		Evaluation Process

 		Browser-based Tools

 		ChatGPT

 		Google Gemini

 		IDE-based Tools

 		GitHub Copilot

 		Amazon Code Whisperer

 		Tool Comparison

 		Conclusion

		2. Bug Detection and Code Review

 		
 Types of AI code-review tools

 		
 Use cases

 		
 Keeping the human review

 		Tool evaluation

 		
 Codacy

 		
 DeepCode (by Snyk)

 		
 CodeRabbit

 		
 Tool comparison

 		
 Conclusion

		3. Automated Testing and Quality Assurance

 		
 Types of AI Testing Tools

 		
 Use cases

 		
 The Need for Human Testers

 		
 Evaluation Process

 		
 Katalon Studio

 		
 TestRigor

 		
 Tool comparison

 		
 Conclusion

		4. User Interface and User Experience Design

 		Types of AI tools for design and frontend development

 		Pros and cons of using UI tools for UI/UX

 		Use cases for UI/UX AI tools

 		Evaluation process

 		UI Tools

 		Uizard

 		Galileo AI

 		UX Tools

 		QoQo.ai

 		Research Studio

 		Tool Comparison

 		Conclusion

		5. Data Analysis and Business Intelligence

 		Data collection and sources

 		Use cases for data analytics

 		Types of AI tools for data analysis

 		Evaluation process

 		Tools comparison

 		Julius.ai

 		Akkio

 		ChatGPT

 		Tool comparison

 		Conclusion

		6. Documentation and Technical Writing

		Types of Documentation

		Evaluation Process

		Tools Comparison

		Swimm

		ChatGPT

		Cursor

		Scribe

		Tool comparison

		Conclusion

		7. Chatbots and Virtual Assistants

 		Types of Chatbot Implementations

 		Evaluation Process

 		Tools Comparison

 		Chatbase

 		Botpress

 		Langchain

 		Tool Comparison

 		Conclusion

		About the Author

DejaVuSans-Bold.otf

DejaVuSerif.otf

UbuntuMono-Bold.otf

