

[image:]

Building Micro-Frontends

Second Edition

Distributed Systems for the Frontend

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Luca Mezzalira

 Building Micro-Frontends

 by
 Luca
 Mezzalira

 Copyright © 2026 Luca Mezzalira. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor: Louise Corrigan

 	
 Development Editor: Angela Rufino

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 November 2025:
 Second Edition

 Revision History for the Early Release

 	
 2024-04-15:
 First Release

 	
 2024-06-24:
 Second Release

 	
 2024-08-09:
 Third Release

 	
 2024-09-27:
 Fourth Release

 	
 2024-10-31:
 Fifth Release

 	
 2024-12-12:
 Sixth Release

 	
 2025-02-17:
 Seventh Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098170783
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Building Micro-Frontends, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-17078-3

Brief Table of Contents (Not Yet Final)

Chapter 1: Micro-Frontends Principles (available)

Chapter 2: Micro-Frontend Architectures and Challenges (available)

Chapter 3: Micro-Frontends Blueprints (unavailable)

Chapter 4: Discovering Micro-Frontend Architectures (unavailable)

Chapter 5: Micro-Frontend Technical Implementation (unavailable)

Chapter 6: Micro-Frontends and Server Side Rendering (unavailable)

Chapter 7: Micro-Frontends for Mobile (unavailable)

Chapter 8: Build And Deploy Micro-Frontends (unavailable)

Chapter 9: Micro-Frontends Discoverability (unavailable)

Chapter 10: Automation Pipeline For Micro-Frontends: A Case Study (available)

Chapter 11: Backend Patterns For Micro-Frontends (available)

Chapter 12: Migration to Micro-Frontends (unavailable)

Chapter 13: Common Anti-Patterns in Micro-Frontends (available)

Chapter 14: From Monolith to Micro-Frontends: A Case Study (available)

Chapter 15: Introducing Micro-Frontends In Your Organization (available)

 Chapter 1. Micro-Frontends Principles

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the first chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

 At the beginning of my career, I remember working on many software projects where small or medium-size teams were developing a monolithic application with all the functionalities of a platform available in a single artifact, the product produced during the development of a software, and deployed to a web server.

 When we have a monolith, we write a lot of code that should harmoniously work together. In my experience, we tend to pre-optimize or even over-engineer our application logic more often than not. Abstracting reusable parts of our code can create a more complex codebase and sometimes the effort of maintaining a complex logic doesn’t pay off in the long run. Unfortunately, something that looked straightforward at the time could look very unwieldy a few months later.

 In the past decades, public cloud providers like Amazon Web Services (AWS) or Google Cloud started to gain traction. Nowadays they are popular for delegating what is increasingly becoming a commodity, freeing up organizations to focus on what really matters in a business: the services offered to the final users.

 While cloud systems offer easier scalability compared to on-premise infrastructure, monolithic architectures require us to scale either horizontally adding more containers or virtual machines or vertically increasing the configuration of the machine where our application is running.

 Furthermore, working on a monolith codebase with distributed teams and co-located ones could be challenging as well. Particularly after reaching medium or large team sizes because of the communication overhead and centralized decisions where a few people decide for everyone.

 In the long run, companies with large monoliths usually slow down all the operations needed to release any new feature, losing the great momentum they had at the beginning of a project where everything was easier and smaller with few complications and risks. Also, with monolithic applications, we have to test and deploy the entire codebase every single time, which comes with a higher chance of breaking the APIs in production, introducing new bugs, and making more mistakes, especially when the codebase is not rock solid or extensively tested.

 Solving these and many other challenges its staff faces, a company might move from complex monolith codebases to multiple smaller codebases and scoped domains called microservices.

 Nowadays microservices architecture is a well-known, established and popular pattern used by many organizations across the world.

 Microservices split a unique codebase into smaller parts, each of them with a subset of functionalities compared to a monolith. This business logic is embraced by developers because the problem solved by a microservice is simpler than looking at thousands of lines of code. Moreover a developer can maintain a clear picture of the code base and related functionality implemented, considering the cognitive load is by far less than working on a monolithic system.

 Another significant advantage is that we can scale part of the application and use the right approach for a microservice instead of a one-size-fits-all approach similar to a monolith.

 There are also some pitfalls to working with microservices. The investment on automation, observability, and monitoring has to be completed to have a distributed system under control. Another pitfall is the wrong definition of a microservice’s boundary, for instance, having a microservice that is too small for completing an action inside a system relying on other microservices causing a strong coupling between services and forcing them to be deployed together every time. When this phenomenon is extended across multiple services we risk ending up with a big ball of mud or a system that is so complex that it is hard to extend.

 Microservices bring many benefits to the table but could bring many cons as well. In particular, when we are embracing them in a project, the complexity of having a microservice architecture could become more painful than beneficial. Considering the options available in software architecture, we should pick microservices only when needed and not choose them recklessly just because it is the latest and greatest approach.

 Micro-frontends have gained more traction in the frontend community and enterprise organizations thanks to the great fit they have when aligned to other distributed architectures like microservices. Keep in mind, however, that just like how microservices aren’t a universal answer to all software decomposition, neither are micro-frontends. To understand where they fit in and what they are, let’s look at some of the forces that are pushing us in this direction.

 Monolith to Distributed Systems

 When we start a new project or even a new business offering a service online, the first iteration should be used to understand if our project or business could succeed or not.

 Usually, we start by identifying a tech stack, a list of tech services used to build and run a single app, that is familiar to our team. By minimizing the bells and whistles around the system and concentrating on the bare minimum we’re able to quickly gather information about our business idea directly from our users. This is also called a minimum viable product (MVP).

 Often we design our API layer as a unique codebase (monolith) so we need to set up a single continuous integration or continuous delivery pipeline for the project. Integrating observability in a monolith application is quite easy; we just need to run an agent per virtual machine or container to retrieve the health status of our application servers. The deployment process is trivial, considering we need to handle one automation strategy for the entire APIs layer, one deployment and release strategy and when the traffic starts to increase we can scale our machine horizontally, having as many application servers as needed to fulfill the users’ requests.

 That’s also why monolithic architecture are often a good choice for new projects considering we can focus more on the business logic of an application instead of investing too much effort on other aspects such as automation for instance.

 Where are we going to store our data? We have to decide which database better suits our project needs—a graph, a NoSQL, or a SQL database? Another decision that must be made is whether we want to host our database on a cloud service or on-premises. We should select the database that will fit our business case better.

 Finally, we need to choose a technology for representing our data, such as within a desktop or mobile browser, or even a mobile application. We can pick the best-known JavaScript framework available or our favorite programming language; we can decide to use server-side rendering or a Single Page Application architecture; then we define our code conventions, linting, and CSS rules.

 At the end, we should end up with what you can see in Figure 1-1:

 [image: 3 tiers architecture composed by a presentation layer frontend an application layer APIs layer and a persistent layer database]
 Figure 1-1. 3-tiers architecture composed by a presentation layer (frontend), an application layer (APIs layer) and a persistent layer (database)

 Hopefully, the business ideas and goals behind our project will be validated and more users will subscribe to our online service or buy the products we sell.

 Moving to Microservices

 Now imagine that thanks to the success of our system, our business decides to scale up the tech team, hiring more engineers, QAs, scrum masters, and so on.

 While monitoring our logs and dashboards, we realize not all our APIs are scaling organically. Some of them are highly cacheable, so the content delivery networks (CDNs) are serving the vast majority of the clients. Our

 origin servers are under pressure only when our APIs are not cacheable. Luckily enough, they’re not all our APIs, just a small part of them.

 Splitting our monolith starts to make more sense at this point, considering the internal growth and our better understanding of how the system works.

 Embracing microservices also means reviewing our database strategy and, therefore, having multiple databases that are not shared across microservices; if needed, our data is partially replicated, so each microservice reduces the latency for returning the response.

 Suddenly we are moving toward a decentralized ecosystem with many moving parts that are providing more agility and less risk than before.

 Each team is responsible for its set of microservices. Team members can make decisions on the best database to choose, the best way to structure the schemas, how to cache some information for making the response even faster, and which programming language to pick for the job. Basically, we are moving to a world where each team is entitled to make decisions and be responsible for the services they are running in production, where a generic solution for the entire system is not needed besides the key decisions, like logging and monitoring, as we can see from Figure 1-2.

 [image: Microservices with Single Page Application]
 Figure 1-2. Microservices with Single Page Application

 However, we are still missing something here. We are able to scale our APIs layer and our persistent layers with well-defined patterns and best practices, but what happens when our business is growing and we need to scale our frontend teams, too?

 Introducing Micro-Frontends

 So far on the frontend, we didn’t have many options for scaling our applications, for several reasons. Up to a few years ago, there wasn’t a strong need to do so because having a fat server, where all the business logic runs, and a thin client, for displaying the result of the computation made available by the servers, was the standard approach.

 This has changed a lot in the past few years. Our users are looking for a better experience when they are navigating our web platforms, including more interactivity and better interactions.

 Companies have arisen providing services with a subscription model, and many people are embracing those services. Now it’s normal to watch videos on demand instead of on a linear channel, to listen to our favorite music inside an application instead of buying CDs, to order food from a mobile app instead of calling a restaurant.

 This shift of behaviors requires us to improve our users’ experience and provide a frictionless path to accomplish what a user wants without forgetting quality content or services.

 In the past we would have approached those problems by dividing parts of our application in a shared components library, abstracting some business logic in other libraries so they could be reused across different parts of the application. In general, we would have tried to reuse as much code as possible.

 I’m not advocating against solutions that are still valid and fit perfectly with many projects, but we might encounter quite a few challenges when embracing them.

 For instance, when we have multiple development teams, all the rules applied to the codebase are often decided once, and we stick with them for months or even years because changing a single decision would require a lot of effort across the entire codebase and be a large investment for the organization without providing any value for the customers or the company.

 Also, many decisions made during the development could result in trade-offs due to lack of time, ideal consistency, or simply laziness. We must consider that a business, like technology, evolves at a certain pace and it’s unavoidable.

 Code abstraction is not a silver bullet either; prematurely abstracting code for reuse often causes more problems than benefits. I have frequently seen abstractions make code thousands of times more complicated than necessary to be reused just twice inside the same project. Many developers are prone to over-engineering some solutions, thinking they will reuse them tens of times, but in reality, they use them far fewer times. Using libraries across multiple projects and teams could end up producing more complexity than benefits such as making the codebase more complex or requiring more effort on manual testing or adding overhead in communications.

 We also need to consider the monolith approach on the frontend. Such an approach won’t allow us to improve our architecture in the long run, particularly if we are working on platforms meant to be available for our users for many years or if we have distributed teams in different time zones.

 Asking any business to extensively revise the tech it uses will cause a large investment upfront before it gets any results.

 Now the question becomes quite obvious: Do we have the opportunity to use a well-known pattern or architecture that offers the possibility of adding new features quickly, evolving with the business, and delivering part of the application autonomously without big-bang releases?

 I picture something like Figure 1-3:

 [image: Micro architectures combined this is a high level diagram showing how Microservices and Micro frontends can live together]
 Figure 1-3. Micro-architectures combined, this is a high-level diagram showing how Microservices and Micro-frontends can live together

 The answer is YES!

 We can definitely do it and it’s where micro-frontends come to the rescue.

 This architecture makes more sense when we deal with mid-large companies and during the following chapters, we are going to explore how to successfully structure our micro-frontends architectures.

 However, first we need to understand what the main principles are behind micro-frontends to leverage as guidance during the development of our projects.

 Microservices Principles

 At the beginning of my journey into micro-frontends in 2016, there wasn’t any guidance on how to structure such architecture, therefore I had to take a step back from the technical implementation and look at the principles behind other architectures for scaling a software project. Would those principles be applicable to the frontend too?

 Microservices’ principles offer quite a few useful concepts. Sam Newman has highlighted these ideas in his book - Building Microservices (O’Reilly). I’ve summarized the theories in Figure 1-4:

 [image: Microservices principles]
 Figure 1-4. Microservices principles

 Let’s discuss the above principles and see how they apply to the frontend.

 Modeled Around Business Domains

 Modeling around business domains is a key principle brought up by domain-driven design (DDD). It starts from the assumption that each piece of software should reflect what the organization does and that we should design our architectures based on domains and subdomains, leveraging ubiquitous languages shared across the business.

 When working from a business point of view, this provides several benefits, including a better understanding of the system, an easier definition of a technical representation of a business domain, and clear boundaries on which a team should operate.

 Culture of Automation

 Considering that microservices are a multitude of services that should be autonomous, we need a robust culture of automating the deployment of independent units in different environments. In my experience, this is a key process for leveraging microservices architecture; having a strong automation culture allows us to move faster and provide a better feedback loop for developers that will relay to all the capabilities offered by the company in terms of security and performance guardrails that are part of the continuous integration process.

 Hide Implementation Details

 Hiding implementation details when releasing autonomously is crucial. If we are sharing a database between microservices, we won’t be able to change the database schema without affecting all the microservices relying on the original schema. DDD teaches us how to encapsulate services inside the same business domain, exposing only what is needed via APIs and hiding the rest of the implementation. This allows us to change internal logic at our own pace without impacting the rest of the system. Very often, we call this approach API-First. We begin by defining the APIs, which serve as the contract binding the producer and consumer(s) teams. This allows them to work in parallel, focusing on either producing or consuming the specified contract. By focusing on the API early in the development process, teams can enhance collaboration, scalability, and adaptability, making it easier to integrate and extend functionalities as the project evolves.

 Decentralize All the Things

 Decentralizing the governance empowers developers to make the right decision at the right stage to solve a problem. With a monolith, many key decisions are often made by the most experienced people in the organization. These decisions, however, frequently lead to trade-offs alongside the software lifecycle. Decentralizing these decisions could have a positive impact on the entire system by allowing a team to take a technical direction based on the problems they are facing, instead of creating compromises for the entire system. Bear in mind that in distributed systems a team has less cognitive load to carry, therefore each team member quickly becomes a domain expert in a portion of the system and can provide the best decision to evolve its own domain.

 Deploy Independently

 Independent deployment is key for microservices. With monoliths, we are used to deploying the entire system every time, with a greater risk of live issues and longer times for deploying and rolling back our artifacts. With microservices, however, we can deploy autonomously without increasing the possibility of breaking our entire API layer. Furthermore, we have solid techniques, like blue-green deployment or canary releases that allow us to release a new version of a microservice with even less risk, which clears the path for new or updated APIs.

 Isolate Failure

 Because we are splitting a monolith into tens, if not hundreds, of services, if one or more microservices becomes unreachable due to network issues or service failures, the rest of the system should be available for our users. There are several patterns for providing graceful failures with microservices and the fact that they are autonomous and independent just reinforces the concept of isolating failure.

 Highly Observable

 One reason that you would favor monolithic architecture in comparison to microservices is that it is easier to observe a single system than a system split in multiple services. Microservices provide a lot of freedom and flexibility, but this doesn’t come for free; we need to keep an eye on everything through logs, monitors, and so on. For example, we must be ready to follow a specific client request end to end inside our system. Keeping the system highly observable is one of the main challenges of microservices.

 Embracing these principles in a microservices environment will require a shift in mindset not only for your software architecture but also for how your company is organized. It involves moving from a centralized to a decentralized paradigm, enabling cross-functional teams to own their business domains end to end. This can be a particularly huge change for medium to large organizations.

 Applying Principles to Micro-frontends

 Now that we’ve grasped the principles behind microservices, let’s find out how to apply them to a frontend application.

 Modeled Around Business Domains

 Modeling micro-frontends to follow DDD principles is not only possible but also very valuable. Investing time at the beginning of a project to identify the different business domains and how to divide the application will be very useful when you add new functionalities or depart from the initial project vision in the future. DDD can provide a clear direction for managing backend projects, but we can also apply some of these techniques on the frontend. Granting teams full ownership of their business domain can be very powerful, especially when product teams are empowered to work with technology teams. The primary difference between a micro-frontend and a component lies in their modularization approach. A micro-frontend completely owns a business domain, whereas a component focuses on addressing a technical challenge, often characterized by code duplication or the creation of complex, configurable components used across multiple domains. The component approach exposes an API that is frequently coupled with its container. Therefore, any modification made to the component is likely to impact its containers as well, creating an unwanted coupling that prevents it from reaching the principles behind distributed systems. With micro-frontends, we streamline the API surface to the essential minimum required for comprehending the user’s context. Typically, micro-frontends require little beyond accessing a session token and other pertinent information such as a product ID. This approach effectively diminishes the coupling between elements of the frontend application and enhances team autonomy by reducing the need for coordination across teams, owing to the infrequent changes in the minimal API exposed.

 Culture of Automation

 As for the microservices architecture, we cannot afford to have a poor automation culture inside our organization; otherwise any micro-frontends approach we are going to take will end up a pure nightmare for all our teams. Considering that every project contains tens or hundreds of different parts, we must ensure that our continuous integration and deployment pipelines are solid and have a fast feedback loop for embracing this architecture. Investing time in getting our automation right will result in the smooth adoption of micro-frontends and will solve common challenges like aligning shared libraries to a specific version, enforcing budget size per micro-frontend or forcing to update every micro-frontend to the latest design system version. Moreover, automation is not important only for generating technical artifacts, more importantly it provides a fast feedback loop for developers. Creating fast and helpful feedback loops for developers will foster the righs behaviors inside the teams enforcing important architecture characteristics across the distributed system.

 Hide Implementation Details

 Hiding implementation details and working with contracts are two essential practices, especially when parts of our application need to communicate with each other. It’s crucial to define upfront an API contract that is shared across the teams who need to interact with different micro-frontends. Also, strong encapsulation is required to avoid domain leaks in other parts of the application. In this way each team will be able to change the implementation details without impacting other teams unless there is an API contract change. These practices allow a team to focus on the internal implementation details without disrupting the work of other teams. Each team can work at its own pace, drastically reducing external dependencies and creating more effective collaboration.

 Decentralization over Centralization

 Decentralizing a team’s decisions finally moves us away from a one-size-fits-all approach that often ends up being the lowest common denominator. Instead, the team will use the right approach or tool for the job. As with microservices, the team is in the best position to make certain decisions when it becomes an expert in the business domain. This doesn’t mean each team should take its own direction but rather that the tech leadership (architects, principal engineers, CTOs) in conjunction with the developers and practices applied in the field, should provide guardrails between which teams can operate without needing to wait for a central decision. This leads to a sharing culture inside the organization becoming essential for introducing successful practices across teams.

 Deploy Independently

 Micro-frontends allow teams to deploy independent artifacts at their own speed. They don’t need to wait for external dependencies to be resolved before deploying. Achieving independence in micro-frontends means not reducing the user interface to mere components. We need to reduce the external dependencies for a team, in this way we optimize for a fast flow that will enable a team to run their operations independently.

 When we combine this approach with microservices, a team can own a business domain end to end, with the ability to make technical decisions based on the challenges inside their business domain rather than finding a one-size-fits-all approach.

 Isolate Failure

 Isolating failure in SPAs, for instance, isn’t a huge problem due to their architecture, but it is with micro-frontends. In fact, micro-frontends require composing a user interface at runtime, which may result in network failures or 404 errors for one or more parts of the UI. To avoid impacting the user experience, we must provide alternative content or hide a specific part of the application. This might result in gracefully hiding non-essential micro-frontends from the interface if they fail or return a 500 error, in case the main micro-frontend of a page is not loaded.

 Highly Observable

 Frontend observability is becoming more prominent every day, with tools like Sentry, New Relic or LogRockets providing great visibility for every developer. Using these tools is essential to understanding where our application is failing and why. As Werner Vogels, Amazon’s CTO, used to say: “everything fails all the time”, therefore being able to resolve issues quickly is far more important than preventing problems. This moves us toward a paradigm where we can better invest our resources by remaining ready to address system failures rather than trying to prevent them completely. As with all microservices’ principles, this is applicable to the frontend, too.

 The exciting part of recognizing these principles on the frontend and backend is that, finally, we have a solution that will empower our development teams to own the entire range of a business domain, offering a simpler way to divide labor across the organization and iterate improvements swiftly into our system.

 When we start this journey into the micro-world we need to be conscious of the level of complexity we are adding to a project, which may not be required for any other projects.

 There are plenty of companies that prefer using a monolith over microservices because of the intrinsic complexity they bring to the table. For the same reason, we must understand when and how to use micro-frontends properly, as not all projects are suitable for them.

 Micro-frontends are not a silver bullet

 It’s very important that we use the right tool for the right job. I cannot stress this point enough. Too often I have seen projects failing or drastically delayed due to poor architectural decisions.

 We need to remember that:

 Note

 Micro-frontends are not appropriate for every application because of their nature and the potential complexity they add at the technical and organizational levels.

 Micro-frontends are a sensible option when we are working on software that requires an iterative approach and long-term maintenance, when we have projects that require a large development team, in multi-tenant applications, or when we want to replace a legacy project in an iterative way.

 However, they are not suitable for all frontend applications, they are an additional available option of frontend architecture for our projects. Micro-frontends architecture has plenty of benefits but also has plenty of drawbacks and challenges. If the latter exceed the former, micro-frontends are not the right approach for a project. As Neal Ford and Mark Andrew Richards have described in their book Software Architecture, “Don’t try to find the best design in software architecture, instead, strive for the least worst combination of trade-offs.” This should be your mantra from now on!

 Summary

 In this chapter we introduced what micro-frontends are, what their principles are, and how those principles are linked to an architecture like microservices that was created for solving similar challenges.

 Next, we will explore how to structure a micro-frontend project from an architectural point of view and the key technical challenges to understand when we design our frontend applications using them.

 Chapter 2. Micro-Frontend Architectures and Challenges

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the second chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

 A micro-frontend represents a business subdomain that is autonomous, independently deliverable, with same or different technology, with low degree of coupling and owned by a single team. We can summarize the key takeaways in this description with the following characteristics:

 	
 Business domain representation

 	
 Autonomous codebase

 	
 Independent deployment

 	
 Low coupling

 	
 Optimized for fast-flow

 	
 Single-team ownership

 Micro-frontends offer many opportunities. Choosing the right one depends on the project requirements, the organization structure, and the developer’s experience.

 In these architectures, we face some specific challenges to success bound by similar questions, such as how we want to communicate between micro-frontends, how we want to route the user from one view to another, and, most importantly, how we identify the size of a micro-frontend.

 In this chapter, we will cover the key decisions to make when we initiate a project with a micro-frontends architecture. We’ll then discuss some of the companies using micro-frontends in production and their approaches.

 Micro-frontends Decisions Framework

 There are different approaches for architecting a micro-frontends application. To choose the best approach for our project, we need to understand the context we’ll be operating in.

 Some architectural decisions will need to be made upfront because they will direct future decisions, like how to define a micro-frontend, how to orchestrate the different views, how to compose the final view for the user, and how micro-frontends will communicate and share data.

 These types of decisions are called the micro-frontends decisions framework. It is composed of four key areas:

 	
 defining what a micro-frontend is in your architecture

 	
 composing micro-frontends

 	
 routing micro-frontends

 	
 communicating between micro-frontends

 Define Micro-frontends

 Let’s start with the first key decision, which will have a heavy impact on the rest. We need to identify how we consider a micro-frontend from a technical point of view.

 We can decide to have multiple micro-frontends in the same view or having only one micro-frontend per view (Figure 2-1).

 [image: A diagram of a product AI-generated content may be incorrect.]
 Figure 2-1. Horizontal vs. vertical split

 With the horizontal split, multiple micro-frontends will be on the same view. Multiple teams will be responsible for parts of the view and will need to coordinate their efforts. This approach provides greater flexibility considering we can even reuse some micro-frontends in different views, although it also requires more discipline and governance for not ending up with hundreds of micro-frontends in the same project. Very often, higher granularity would end up with higher coupling and the risk of creating a distributed monolith.

 Distributed Monolith

 A distributed monolith in software architecture refers to a system that, despite being distributed across multiple servers or nodes, exhibits characteristics commonly associated with a monolithic architecture. In this context, the term “monolith” implies a single, tightly-coupled unit with interconnected components that lack clear separation of concerns. The distributed nature of the system may introduce complexities in terms of communication between components spread across different locations, but the overall structure remains monolithic in its design and interdependencies. This can hinder the independent nature of micro-frontends, risking having several external dependencies that will nullify the effort of building such architecture.

 In the vertical split scenario, each team is responsible for a business domain, like the authentication or the catalog experience. In this case, domain-driven design (DDD) comes to the rescue. It’s not often that we apply DDD principles on frontend architectures, but in this case, we have a good reason to explore it.

 DDD is an approach to software development that centers the development on programming a domain model that has a rich understanding of the processes and rules of a domain.

 Applying DDD to the frontend is slightly different from the approach taken on the backend. Certain concepts are not applicable, while others are fundamental for designing a successful micro-frontends architecture.

 When examining the system holistically, you might wonder how to identify different areas that are independent. Various techniques exist, and one of my favorites by far is event storming (Figure 2-2). Event storming is a workshop that brings together individuals from the same company with different backgrounds, including product managers, testers, and developers. The focus of the workshop is on the business side, rather than the technical side.

 By assembling people from various roles in the same room, you can create a timeline that describes the system end-to-end or, at least, a portion of it. This approach allows you to identify potential independent parts of the system by examining the vocabulary defined during the session.

 Figure 2-2. An example of Event Storming outcome for the on-boarding experience of a subscription service

 Thanks to this workshop, that works for a system end-to-end not only for the frontend side, you can visualize your system, having a better understanding, but more importantly recognising the different parts that compose it, or as DDD would call them: subdomains.

 In the context of DDD, subdomains refer to distinct and isolated components within a larger business domain. Each subdomain represents a specialized area with its own unique set of responsibilities, business logic, and models. The purpose of identifying subdomains is to facilitate a modular and organized approach to software development, allowing teams to focus on specific aspects of the overall business functionality. Subdomains are delineated based on clear and cohesive boundaries, enabling more effective management, development, and maintenance of complex systems by addressing individual business concerns in a targeted manner.

 Event Storming

 It’s out of the scope of this book teaching you Event Storming, however I highly encouraging you to read the chapter on this subject from Learning Domain Driven Design book by O’reilly.

 DDD provides three subdomain types, but I want to provide a concrete example for you to understand better what they refer to:

 	
 Core subdomains: These are the main reasons an application should exist. Core subdomains should be treated as a premium citizen in our organizations because they are the ones that deliver value above everything else. The video catalog would be a core subdomain for Netflix.

 	
 Supporting subdomains: These subdomains are related to the core ones but are not key differentiators. They could support the core subdomains but aren’t essential for delivering real value to users. One example would be the voting system on Netflix’s videos.

 	
 Generic subdomains: These subdomains are used for completing the platform. Often companies decide to go with off-the-shelf software because they’re not strictly related to their domain. With Netflix, for instance, the payments management is not related to the core subdomain (the catalog), but it is a key part of the platform because it has access to the authenticated section.

 Let’s break down Netflix into these categories (Table 2-1).

 Table 2-1. Subdomains examples

 	Subdomain type
 	Example

 	Core subdomain
 	Catalog

 	Supportive subdomain
 	Voting system

 	Generic subdomain
 	Sign in or sign up

 Why categorize subdomains, you may wonder? The answer is straightforward: you can apply different characteristics to each subdomain through this categorization.

 For instance, a core domain is the essence behind your system’s functionality. Therefore, investing in developer seniority, code quality, and a fast feedback loop will likely yield the best outcomes.

 On the contrary, a generic domain lacks a competitive advantage. In such cases, opting for an off-the-shelf solution with integration into your system may suffice for achieving its objectives, the changes on this part of the system won’t be as frequent as in other parts, and the complexity of the code to write might not be very high, therefore you can take another strategy for assembling a development team compared to other subdomains.

 In essence, DDD offers more than just a rich vocabulary for system description. It introduces heuristics and techniques that guide organizations in the right direction concerning both technology and organizational structure for the first time.

 Domain-Driven Design with Micro-Frontends

 After identifying subdomains, DDD introduces another concept: the bounded context. It’s a logical boundary that hides the implementation details, exposing an application programming interface (API) contract to consume data from the model present in it.

 Usually, the bounded context translates the business areas defined by domains and subdomains into logical areas where we define the model, our code structure, and potentially, our teams. Bounded context defines the way different contexts are communicating with each other by creating a contract between them, often represented by APIs. This allows teams to work simultaneously on different subdomains while respecting the contract defined upfront.

 Often in a new project, subdomains overlap bounded context because we have the freedom to design our system in the best way possible. Therefore, we can assign a specific subdomain to a team for delivering a certain business value defining the contract. However, in legacy software, these lines might be more blurred due to lack of analysis during the project lifecycle.

 Too often we identify early on a technical solution without gathering the architecture characteristics we have to optimize for.

 Think about this scenario: three teams, distributed in three different locations, working on the same codebase.

 These teams may go for a horizontal split using iframes or web components for their micro-frontends. After a while, they realize that micro-frontends in the same view must communicate somehow. One of those teams will then be responsible for aggregating the different parts inside the view. The team will spend more time aggregating different micro-frontends in the same view and debugging to ensure everything works properly.

 Obviously, this is an oversimplification. It could be worse when taking into con‐ consideration the different time zones, cross-dependencies between teams, knowledge sharing, or distributed team structure for example.

 All those challenges could escalate very easily to low morale and frustration on top of delivery delays. Therefore we need to be sure the path we are taking won’t let our teams down.

 Approaching the project from a business point of view, however, allows you to create an independent micro-frontend with less need to communicate across multiple subdomains.

 Let’s re-imagine our scenario. Instead of working with web components or iframes, we are working with single page applications (SPAs) and single pages.

 This approach allows a full team to design all the APIs needed to compose a view and to create the infrastructure needed to scale the services according to the traffic. The combination of micro-architectures, microservices, and micro-frontends provides independent delivery without high risks for compromising the entire system for release in production.

 The bounded context helps design our systems, but we need to have a good understanding of how the business works to identify the right boundaries inside our project.

 Developers, tech leads or architects have to come closer to the product teams, investing enough time with them and understanding the customers’ needs so they can identify the different domains and subdomains, working collaboratively with the product teams. Once again, event storming could be a natural fit in these cases.

 After defining all the bounded contexts, we will have a map of our system representing the different areas that our system is composed of. In Figure 2-3 we can see a representation of bounded context. In this example the bounded context contains the catalogue micro-frontends that consume APIs from a microservices architecture via a unique entry point, a backend for frontend, we will investigate more about the APIs integration in chapter 9.

 In DDD, the frontend is not taken into consideration but when we work with micro-frontends with a vertical split we can easily map the frontend and the backend together inside the same bounded context.

 [image: A diagram of a software development process AI-generated content may be incorrect.]
 Figure 2-3. This is a representation of bounded context

 I’ve often seen companies design systems based on their team’s structure (Conway’s Law states “organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizations.”). Instead, they needed their team structure to be flexible enough to adapt to the best possible solution for the organization in order to reduce friction and move faster toward the final goal: having a great product that satisfies customers (Inverse Conway’s Maneuver recommends evolving your team and organizational structure to promote your desired architecture.)!

 Both approaches to structure your teams and design the system architecture are fine, as long as it becomes clear the coupling between the organization structure and software architecture. Very often a change in one of these two areas will affect the other indirectly.

 How to define a bounded context

 Premature optimization is always around the corner, which can lead to our subdomains decomposing where we split our bounded contexts to accommodate future integrations. Instead, we need to wait until we have enough information to make an educated decision.

 Because our business evolves over time, we also need to review our decisions related to bounded contexts and subdomain type.

 Sometimes we start with a larger bounded context. Over time the business evolves and eventually, the bounded context becomes unmanageable or too complex. So we decided to split it. Deciding to split a bounded context could result in a large code refactor but could also simplify the codebase drastically, speeding up new functionalities and development in the future.

 To avoid premature decomposition, we will make the decision at the last possible moment. This way we have more information and clarity on which direction we need to follow. We must engage upfront with the product team or the domain experts inside our organization as we define the subdomains. They can provide you with the context of where the system operates. Always begin with data and metrics.

 For instance, we can easily find out how our users are interacting with our application and what the user journey is when a user is authenticated and when they’re not. Data provides powerful clarity when identifying a subdomain and can help create an initial baseline, from where we can see if we are improving the system or not.

 If there isn’t much observability inside our system, let’s invest time to create it. Doing so will pay off the moment we start identifying our micro-frontends.

 Without dashboards and metrics, we are blind to how our users operate inside our applications.

 Let’s assume we see a huge amount of traffic on the landing page, with 70% of those users moving to the authentication journey (sign in, sign up, payment, etc.). From here, only 40% of the traffic subscribes to a service or uses their credentials for accessing the service.

 These are good indications about our users’ behaviors on our platform. Following DDD, we would start from our application’s domain model, identifying the subdomains and their related bounded context and using behavioral data to guide us on how to slice the frontend applications.

 Allowing users to download only the code related to the landing page will give them a faster experience because they won’t have to download the entire application immediately, and the 40% of users who won’t move forward to the authentication area will have just enough code downloaded for understanding our service.

 Obviously, mobile devices with slow connections only benefit from this approach for multiple reasons: less data is downloaded, less memory is used, less JavaScript is parsed and executed, resulting in a faster first interaction of the page.

 It’s important to remember that not all user sessions contain all the URLs exposed by our platform. Therefore a bit of research upfront will help us provide a better user experience.

 Usually, the decision to pick a horizontal split instead of vertical split depends on the type of project we have to build. In the next chapter, we will deep dive into this topic. Bear in mind, they are not mutually exclusive. You might have part of the application where a vertical split is more appropriate than a horizontal and vice versa.

 Another thing to consider is the skills set of our teams, usually, a vertical split suits better teams that are new to micro-frontends, instead, the horizontal split requires an investment upfront for creating a solid and fast development experience to test their part as well as trying inside the overall view.

 Testing your micro-frontend boundaries

 Often, I’ve conducted meetings with teams that have implemented a micro-frontends architecture but treated a micro-frontend as if it were a component loaded at runtime. I have developed a mental model that can assist you in determining whether your boundaries are well-established.

 	
 To enhance the robustness of your architecture, consider reducing the API surface exposed to the containers. When you expose too many properties of a micro-frontend, the risk of coupling increases significantly. This is because you allow the container of the micro-frontend to own the context instead of the micro-frontend itself. This leads to accidental complexity that becomes evident when deploying a micro-frontend and constant coordination efforts across teams.

 	
 Micro-frontends are inherently context-aware. Typically, a micro-frontend requires a minimal amount of information to function properly. They are designed with awareness of the context. For example, passing a product ID or enabling the retrieval of a session token to consume an API are common characteristics of the horizontal split approach. More common properties shared from the micro-frontend container should lead you to question the implementation and revisit the API contract or the micro-frontends boundaries.

 	
 In contrast to components, micro-frontends are less extensible. In designing a component, the focus is on high reusability and code abstraction. Micro-frontends, however, are designed for independence and minimal external dependencies. Due to their context-aware nature, they are less likely to be extensible or composed with each other. A sign of wrong boundaries is a proliferation of micro-frontends per view or deep nesting between micro-frontends.

 	
 Furthermore, micro-frontends are more coarse-grained than components. While a classic component, such as a button, are small and highly flexible to be composed with other components, micro-frontends are highly specialized in their functionality. This specialization limits their reusability, and they are unlikely to be extensible for creating “larger micro-frontends”. It is recommended to avoid fine-grained micro-frontends, as they tend to result in a higher degree of coupling, external dependencies, and context leakage towards their containers.

 Having gained a comprehensive understanding of micro-frontends and their identification, let’s now delve into the robust mental models widely embraced within the frontend community – the Micro-Frontends Decisions Framework.

 Micro-frontends composition

 There are different approaches for composing a micro-frontends application (Figure 2-4).

 [image: A diagram of a diagram AI-generated content may be incorrect.]
 Figure 2-4. Micro-frontends composition diagram

 In this diagram we can see three different ways to compose a micro-frontends architecture:

 	
 Client-side composition

 	
 Edge-side composition

 	
 Server-side composition

 Starting from the left of our diagram, we have a client-side composition, where an application shell loads multiple micro-frontends directly from a content delivery network (CDN), or from the origin if the micro-frontend is not yet cached at the CDN level. This composition is beneficial either for horizontal or vertical split micro-frontends. In the middle of the diagram, we compose the final view at the CDN level, retrieving our micro-frontends from the origin and delivering the final result to the client. The right side of the diagram shows a micro-frontends composition at the origin level where our micro-frontends are composed inside a view, cached at the CDN level, and finally served to the client. For edge-side and server-side composition, we mainly use a horizontal split approach.

 Let’s now observe how we can technically implement this architecture.

 Client-Side Composition

 In the client-side composition case, where an application shell loads micro-frontends inside itself, the micro-frontends should have a JavaScript or HTML file as an entry point so the application shell can dynamically append the document object model (DOM) nodes in the case of an HTML file or initializing the JavaScript application with a JavaScript file or an EcmaScript module.

 In the beginning, we also used a combination of iframes to load different micro-frontends, or a transclusion mechanism on the client side via a technique called client-side include. Client-side include lazy-loads components, substituting empty placeholder tags with complex components. For example, a library called h-include uses placeholder tags that will create an AJAX request to a URL and replace the inner HTML of the element with the response of the request.

 This approach gives us many options, but using client side includes has a different effect than using iframes. From 2019 onwards, more micro-frontends solutions started to gain traction for building a successful client-side composition such as Module Federation or Single SPA. In the next chapters we will explore this part in detail.

 Note

 According to Wikipedia, in computer science, transclusion is the inclusion of part or all of an electronic document into one or more other documents by hypertext reference. Transclusion is usually performed when the referencing document is displayed and is normally automatic and transparent to the end user. The result of transclusion is a single integrated document made of parts assembled dynamically from separate sources, possibly stored on different computers in disparate places.

 An example of transclusion is the placement of images in HTML. The server asks the client to load a resource at a particular location and insert it into a particular part of the DOM.

 Edge-Side Composition

 With edge-side composition, we assemble the view at the CDN level. Many CDN providers give us the option of using an XML-based markup language called Edge Side Include (ESI). ESI is not a new language; it was proposed as a standard by Akamai and Oracle, among others, in 2001. ESI allows a web infrastructure to be scaled in order to exploit the large number of points of presence around the world provided by a CDN network, compared to the limited amount of data center capacity on which most software is normally hosted. One drawback to ESI is that it’s not implemented in the same way by each CDN provider; therefore, a multi-CDN strategy, as well as porting our code from one provider to another, could result in a lot of refactors and potentially new logic to implement. It’s important to highlight that this practice is not embraced massively by organizations world-wide. The recommendation is to use mainly client-side or server-side composition.

 Server-Side Composition

 The last possibility we have is the server-side composition. In this case, the origin server is composing the view by retrieving all the different micro-frontends and assembling the final page. If the page is highly cacheable, the CDN will then serve it with a long time-to-live policy. However, if the page is personalized per user, serious consideration will be required regarding the scalability of the eventual solution, when there are many requests coming from different clients. When we decide to use server-side composition we must deeply analyze the use cases we have in our application. If we decide to have a runtime composition, we must have a clear scalability strategy for our servers in order to avoid downtime for our users.

 From these possibilities, we need to choose the technique that is most suitable for our project and the teams’ knowledge. As we will learn later on in this journey, we also have the opportunity to deploy an architecture that exploits both client-side and server-side composition—that’s absolutely fine as long we understand how to structure our project.

 Routing micro-frontends

 The next important choice we have is how to route the application views.

 This decision is strictly linked to the micro-frontends composition mechanism we intend to use for the project.

 We can decide to route the page requests in the origin, on the edge, or at client-side (Figure 2-5).

 Figure 2-5. Micro-frontends routing diagram

 When we decide to compose micro-frontends at the origin, see the server-side composition on the right of Figure 2-5, we are forced to route the requests at origin considering the entire application logic lives in the application servers.

 However, we need to consider that scaling an infrastructure could be nontrivial, especially when we have to manage burst traffic with many requests per second (RPS). Our servers need to be able to keep up with all the requests and scale horizontally very rapidly. Each application server then must be able to retrieve the micro-frontends for the composing page to be served.

 We can mitigate this problem with the help of a CDN. The main downside is that when we have dynamic or personalized data, we won’t be able to rely extensively on the CDN serving our pages because the data would be outdated or not personalized.

 When we decide to use edge-side composition in our architecture, the routing is based on the page URL and the CDN serves the page requested by assembling the micro-frontends via transclusion at edge level.

 In this case, we won’t have much room for creating smart routing—something to remember when we pick this architecture.

 The final option is to use client-side routing. In this instance, we will load our micro-frontends according to the user state, such as loading the authenticated area of the application when the user is already authenticated or loading just a landing page if the user is accessing our application for the first time.

 If we use an application shell that loads a micro-frontend, the application shell is responsible for owning the routing logic, which means the application shell retrieves the routing configuration first and then decides which micro-frontend to load.

 This is a perfect approach when we have complex routing, such as when our micro-frontends are based on authentication, geo-localization, or any other sophisticated logic. When we are using a multipage website, micro-frontends may be loaded via client-side transclusion. There is almost no routing logic that applies to this kind of architecture because the client relies completely on the URL typed by the user in the browser or the hyperlink chosen on another page, similar to what we have when we use edge-side include approach. We won’t have any scalability issues in either case.

 Those routing approaches are not mutually exclusive, either. As we will see later in this book, we can combine those approaches using CDN and origin or client-side and CDN together.

 The important thing is determining how we want to route our application. This fundamental decision will affect how we develop our micro-frontends application.

 Micro-frontends communication

 When we have multiple micro-frontends on the same page, the complexity of managing a consistent, coherent user interface for our users may not be trivial. This is also true when we want communication between micro-frontends owned by different teams. Bear in mind that each micro-frontend should be decoupled from the others on the same page, otherwise we are breaking the principle of independent deployment.

 New teams approaching this paradigm might be tempted to use a “global state manager” for sharing the state across micro-frontends, however this is considered an anti-pattern in distributed systems. We will deep dive into this and other anti-patterns later in the book.

 In this case, we have a few options for notifying other micro-frontends that an event occurred. In general, we have to maintain the micro-frontends decoupled from each other, avoiding sharing a global state across them. We can inject an eventbus, a mechanism that allows decouple components to communicate with each other via events sent via a bus, in each micro-frontend and notify the event to every micro-frontend. If some of them are interested in the event dispatched, they can listen and react to it (Figure 2-6).

 [image: A diagram of a diagram AI-generated content may be incorrect.]
 Figure 2-6. Event emitter and custom events diagram

 To inject the eventbus, we need a micro-frontend container to instantiate the eventbus and inject it inside all of the page’s micro-frontends, alternatively is having the application shell applying this logic and injecting or exposing the event bus to every micro-frontend.

 Another solution is to use Custom Events. These are normal events but with a custom body, in this way, we can define the string that identifies the event and an optional object custom for the event. Here’s an example:

 new CustomEvent('myCustomEvent', {
 detail: {
 someData: 12345
 }
});

 The custom events should be dispatched via an object available to all the micro-frontends, such as the window object, the representation of a window in a browser. If you decide to implement your micro-frontends with iframes, using an eventbus would allow you to avoid challenges like which window object to use from inside the iframe, because each iframe has its own window object. No matter whether we have a horizontal or a vertical split of our micro-frontends, we need to decide how to pass data between views. Moreover, a custom event propagates to the window object traversing the elements tree expressed in the DOM. Imagine if a team accidentally stops the propagation of the custom event before reaching the DOM. This might cause more than a headache, so the recommendation is using an event emitter as the first choice.

 Now, imagine we have one micro-frontend for signing in a user and another for authenticating the user on our platform. After being successfully authenticated, the sign-in micro-frontend has to pass a token to the authenticated area of our platform. How can we pass the token from one micro-frontend to another? We have several options.

 We can use a web-storage-like session, local storage, or cookies (Figure 2-7). In this situation, we might use the local storage for storing and retrieving the token independently. The micro-frontend is loaded because the web storage is always available and accessible, as long as the micro-frontends live in the same subdomain.

 [image: A diagram of a web storage system AI-generated content may be incorrect.]
 Figure 2-7. Sharing data between micro-frontends in different views

 For ephemeral data however, you could pass some them via query strings - for example, www.acme.com/products/details?id=123 the text after the question mark represents the query string, in this case the ID 123 of a specific product selected by the user - and retrieves the full details to display via an API (Figure 2-8). Remember, using query strings is not the most secure way to pass sensitive data, such as passwords and user IDs, however.

 [image: A diagram of a shell application AI-generated content may be incorrect.]
 Figure 2-8. Micro-frontends communication via query strings or URL

 To summarize, the micro-frontends decisions framework is composed of four key decisions: identifying, composing, routing, and communicating.

 In Table 2-2 you can find all the combinations available based on how you identify a micro-frontend.

 Table 2-2. Micro-frontends decisions framework summary

 	Micro-frontends definition
 	Composition
 	Routing
 	Communication

 	Horizontal
 	Client side
 Server side
 Edge side
 	Client side
 Server side
 Edge side
 	Event emitter
 Custom events
 Web storage
 Query strings

 	Vertical
 	Client side
 Server side
 	Client side
 Server side
 Edge side
 	Web storage
 Query strings

 Micro-Frontends in Practice

 Although micro-frontends are a fairly new approach in the frontend architecture ecosystem, they have been used for a few years at medium and large organizations. and many well-known companies have made micro-frontends their main system for scaling their business to the next level.

 Zalando

 The first one worth mentioning is Zalando, a European fashion and e-commerce company. I attended a conference presentation made by their technical leads, and I have to admit I was very impressed by what they have created and released open source, considering it was still early days and not many companies were talking about microapps.

 More recently, Zalando has replaced the well-known OSS project called Tailor.js with Interface Framework. Interface Framework is based on concepts similar to Tailor.js but is more focused on components and GraphQL than on Fragments.

 Formula One

 Formula 1 Digital Technology, responsible for the Formula1.com website and apps, aimed to increase web traffic, content consumption, and subscriptions. Faced with user expectations for fast loading times, they turned to micro-frontends to improve website performance and scalability. By migrating from a monolithic architecture to a micro-frontend-based system, Formula 1 achieved a 34% increase in subscriptions and sign-ups, a 26% reduction in platform costs, and significant improvements in Lighthouse performance scores (30% on web, 56% on mobile web). This transformation allowed for independent testing and deployment, faster delivery of changes, full integration with their design system, and more granular caching policies, all contributing to a faster and more engaging user experience. They adopted a test-and-learn iterative approach using the strangler fig pattern, gradually migrating functionality to the new micro-frontend architecture while extracting reusable components into separate systems for use by other domains like F1 TV and Fantasy.

 Dunelm

 Dunelm is a well-known e-commerce company in the United Kingdom. They have embraced micro-frontends to allow multiple teams working together in a server-side rendering composition. They started with Next.js, but they are moving towards a simpler implementation with React.js due to the realization that Next.js was used mainly for routing and not much for all the features offered by the framework.

 They worked on their implementation using a serverless approach fully in AWS, I highly encourage you to hear more about their story on this episode of “Micro-frontends in the trenches”.

 Netflix

 In the Revenue and Growth department of Netflix, the engineers decided to embark in a micro-frontends approach creating an internal framework called Lattice.

 They discovered prevalent design patterns and architectures dispersed among different tools, with potential duplicating efforts among teams. Their goal was to streamline these tools in a manner that aligns with the scalability of the supported teams. The solution needed to embody the flexibility of a micro-frontend and the adaptability of a framework, enabling the stakeholders to enhance our tools effectively. They used Module Federation as well and this helped them to solve many challenges like dependencies management and runtime load of micro-frontends.

 PayPal

 If you are a PayPal user and you log into the web application, you are interacting with a micro-frontends architecture. Thanks to this approach, they have shifted their mindset on how to build their web application. Moreover, they have started to share their approaches at scale. We have to remember that to build the web interface, multiple teams work together to generate one of the best payment experiences out there. Finally, PayPal team members started to contribute to the community by sharing what they had learned while building their application. I recommend watching this fantastic talk on micro-frontends communication.

 BMW

 BMW implemented a B2B portal that collects several applications under the same umbrella. The main rationale was reducing the cognitive load of their users when they have to perform an action across multiple portals.

 Their approach is heavily based on maximum flexibility with a few constraints. In fact, any framework or JavaScript library can be loaded inside their Angular shell that uses Module Federation to manage the runtime loading of micro-frontends and the external dependencies. Here is a great demo made by one of their engineers

 SAP

 Another company that is using iframes for its applications is SAP. SAP released luigi framework, a micro-frontends framework used for creating an enterprise application that interacts with SAP. Luigi works with Angular, React, Vue, and SAPUI—basically the most modern and well-adopted frontend frameworks, plus a well-known one, like SAPUI, for delivering applications interacting with SAP. Since enterprise applications are B2B solutions, where SEO and bandwidth are not a problem, having the ability to choose the hardware and software specifications where an application runs makes iframes adoption easy. If we think of the memory management provided by the iframes is out of the box, the decision to use them makes a lot of sense for that specific context.

 OpenTable

 Another interesting approach is OpenTable’s Open Components project, embraced by Skyscanner and other large organizations and released open source.

 Open Components uses a really interesting approach to micro-frontends: a registry similar to the Docker registry gathers all the available components encapsulating the data and UI, exposing an HTML fragment that can then be encapsulated in any HTML template.

 A project using this technique receives many benefits, such as the team’s independence, the rapid composition of multiple pages by reusing components built by other teams, and the option of rendering a component on the server or on the client.

 When I have spoken with people who work at OpenTable, they told me that this project allowed them to scale their teams around the world without creating a large communication overhead. For instance, using micro-frontends allowed them to smooth the process by repurposing parts developed in the United States for use in Australia—definitely a huge competitive advantage.

 DAZN

 Last but not least is DAZN, a live and video-on-demand sports platform that uses a combination of SPAs and components orchestrated by a client-side agent called boot‐strap.

 DAZN’s approach focuses on targeting not only the web but also multiple smart TVs, set-top boxes, and consoles.

 Its approach is fully client side, with an orchestrator always available during the navigation of the video platform to load different SPAs at runtime when there is a change of business domain. Max Gallo, a distinguished engineer at DAZN, who followed the creation of the platform from day 1, shares his insights and the reason to embrace this approach in an episode of “Micro-Frontends in the trenches”.

 These are just some of the possibilities micro-frontends offer for scaling up our co-located and/or distributed teams. More and more companies are embracing this paradigm, including New Relic, Starbucks, Amazon, and Microsoft.

 Summary

 In this chapter, we discovered the different high-level architectures for designing micro-frontends applications. We dove deep into the key decisions to make: define, compose, orchestrate, and communicate.

 We also defined a heuristic to test micro-frontends boundaries after defining them.

 Finally, we discovered that many organizations are already embracing this architecture in production, with successful software not merely available inside the browsers but also in other end uses, like desktop applications, consoles, and smart TVs.

 It’s fascinating how quickly this architecture has spread across the globe. In the next chapter, I will discuss how to technically develop micro-frontends, providing real examples you can use within your own projects.

 Chapter 3. Automation Pipeline for Micro-Frontends: A Case Study

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 10th chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

 Now that we’ve discussed the theory of a micro-frontend automation pipeline, let’s review a use case example, including the different steps that should be taken into consideration based on the topics we covered. Let’s keep in mind that not all the steps or the configuration described in this example have to be present in every automation strategy, because companies and projects are different.

 Setting the Scene

 ACME Inc., a video-streaming service, empowers its developers and trusts them to know better than anyone else in the organization which tools they should use for building the micro-frontends needed for the project. Every team is responsible for setting up a micro-frontend build, so the developers are encouraged to choose the tools needed based on the technical needs of micro-frontends and on some boundaries, or guardrails, defined by the company.

 The company uses a custom cloud automation pipeline based on docker containers, and the cloud team provides the tools needed for running these pipelines. The project is structured using micro-frontends with a vertical-split architecture, where micro-frontends are technically represented by an HTML page, a JavaScript file, and a CSS file. Every development team in the organization works with unit, integration, and end-to-end testing, a decision made by the tech leaders and the head of engineering to ensure the quality and reliability of code deployed in production.

 The architecture team, which is the bridge between product and engineers, requests using fitness functions within the pipeline to ensure the artifacts delivered in the production environment contain the architecture characteristics they desire. The team will be responsible for translating product people’s business requirements to technical ones the techies can create.

 The development teams decide to use a monorepo strategy, so all the micro-frontends will be present in the same repository. The team will use trunk-based development for its branching strategy and release directly from the main branch instead of creating a release branch.

 The project won’t use feature flags. The team decides to defer this decision for having fewer moving parts to take care of, so manual and automated testing will be performed in existing environments already created by the DX team.

 Finally, for bug fixing, the teams will use a fix-forward strategy, where they will fix bugs in the trunk branch and then deploy. The environment strategy present in the company is composed of three environments: development (DEV), staging (STAGE), and production (PROD), as we can see in Figure 3-1.

 Figure 3-1. An example of an environments strategy

 The DEV environment is in continuous deployment so that the developers can see the results of their implementations as quickly as possible. When a team feels ready to move to the next step, it can promote the artifact to user acceptance testing (UAT). At this stage, the UAT team will make sure the artifact respects all the business requirements before promoting the artifact to production, where it will be consumed by the final user. Based on all this, Figure 3-2 illustrates the automation strategy for our use case project up to the DEV environment. It’s specifically designed for delivering the micro-frontends at the desired quality.

 Figure 3-2. High-level automation strategy design

 A dashboard built in-house will promote artifacts across environments. In this way, the developers and quality assurance have full control of the different steps for reviewing an artifact before it is presented to users. Such an automation strategy will create a constant, fast feedback loop for the developers, catching potential issues as soon as possible during the continuous integration phase instead of further down the line, making the bug fixing as cheap as possible.

 Defect Costs Rise over Time

 Remember, the cost of detecting and fixing defects in software increases exponentially over time in the software development workflow. That’s because when a developer is working on a feature, the code developed is fresh in their mind; a code change is fairly trivial. When a developer catches bugs in production, months may have passed since the developer worked on that code. In the meantime, the developer will have worked on several other projects or features, so remembering the team’s entire logic and approach will take time. Finding bugs in production costs you more than just time. It hurts the company’s credibility and costs more money than just investing in a fast feedback loop at the beginning. The National Institute of Standards and Technology estimates the cost of fixing bugs in production to be 25 times more expensive than catching them during the development phase.

 The automation strategy in this project is composed of six key areas, within which there are multiple steps:

 	
 Version control

 	
 Pipeline initialization

 	
 Code-quality review

 	
 Build

 	
 Post-build review

 	
 Deployment

 Let’s explore these areas in detail.

 Version Control

 The project will use monorepo for version control, so the developers decided to use Lerna, which enables them to manage all the different micro-frontend dependencies at the same time. Lerna also allows hoisting all the shared modules across projects in the same node_modules folder in the root directory, so that if a developer has to work on multiple projects, they can download a resource for multiple micro-frontends just once. Dependencies will be shared, so a unique bundle can be downloaded once by a user and will have a high time-to-live time at CDN level. Considering the vendors aren’t changing as often as the application’s business logic, we’ll avoid an increase of traffic to the origin.

 ACME Inc. uses GitHub as a version control system, partially because there are always interesting automation opportunities in a cloud-based system like GitHub. In fact, GitHub has a marketplace with many scripts available to be run at different branching life cycles. For instance, we may want to apply linting rules at every commit or when someone is opening a pull request. We can also decide to run our own scripts if we have particular tasks to apply in our codebase during an opening of a pull request, like scanning the code to avoid any library secrets being presented or for other security reasons. Moreover, the core team decided to configure Dependabot for managing shared libraries across micro-frontends.

 Dependabot is a critical automated dependency management tool that plays a vital role in maintaining the health and security of JavaScript applications, particularly within micro-frontend architectures. It streamlines the process of keeping dependencies up-to-date across multiple repositories or modules by regularly scanning package files to identify outdated or vulnerable dependencies. When it detects any issues, Dependabot automatically creates pull requests to update these dependencies, significantly reducing the manual effort required by developers. This automation not only enhances the security posture of the application by addressing vulnerabilities promptly but also allows development teams to focus on building features rather than getting bogged down in the tedious task of manual package updates.

 In a micro-frontend architecture, Dependabot is especially valuable for managing shared dependencies. For instance, when a team responsible for a design system releases updates, Dependabot can automatically generate pull requests in all micro-frontends that utilize this shared library. This eliminates the need for manual notifications and coordination between teams, allowing for a smoother workflow. Similarly, Dependabot can apply automated updates to other shared libraries, such as analytics or observability tools, ensuring that all micro-frontends benefit from the latest versions.

 Pipeline Initialization

 The pipeline initialization stage includes several common actions to perform for every micro-frontend, including:

 	
 Cloning the micro-frontend repository inside a container

 	
 Installing all the dependencies needed for the following steps

 In Figure 3-3, we can see the first part of our automation pipeline where we perform two key actions: cloning the micro-frontend repository and installing the dependencies via yarn or npm command, depending on each team’s preference.

 Figure 3-3. Pipeline initialization stage, showing two actions: cloning the repository and installing the dependencies

 The most important thing to remember is to make the repository cloning as fast as possible. We don’t need the entire repository history for a CI process, so it’s a good practice to use the command depth for retrieving just the last commit, especially when we use a monorepo approach, considering the repository may grow in size very quickly. The cloning operation will speed up in particular when we are dealing with repositories with years of history tracked in the version control system:

 git clone -–depth [depth] [remote-url]

 An example would be:

 git clone -–depth 1 https://github.com/account/repository

 Code-Quality Review

 During this phase, we are performing all the checks to make sure the code implemented respects the company standards. Figure 3-4 shows several stages, from static analysis to visual tests. For this project, the company decided not only to cover unit and integration testing but also to ensure that the code was maintainable in the long term, the user interface integration respects the design guidelines from the UX team, and the common libraries developed are present inside the micro-frontends and respect the minimum implementations.

 Figure 3-4. Code-quality checks like unit testing, static analysis, and visual regression tests

 For static analysis, ACME Inc. uses SonarQube with the JavaScript plug-in. SonarQube is a tool for static analysis, and it retrieves many metrics, including cyclomatic complexity (CYC), which tech leaders and architects who aren’t working every day in the codebase need in order to understand the code quality produced by a team. Often underestimated, CYC can provide a lot of useful information about how healthy your project is. It provides a score on the code complexity based on the number of branches inside every function, which is an objective way to understand if the micro-frontend is simple to read but harder to maintain in the long run.

 Let’s consider this example:

 const myFunc = (someValue) =>{
 // variable definitions

 if(someValue === "1234-5678"){ //CYC: 1 - first branch
// do something
} else if(someValue === "9876-5432"){ //CYC: 2 - second branch
 // do something else
} else { //CYC: 3 - third branch
 // default case
}

// return something
}

 This function has a CYC score of 3, which means we will need at least three unit tests for this function. It may also indicate that the logic managed inside the function starts to become complex and harder to maintain.

 By comparison, a CYC score of 10 means a function definitely requires some refactoring and simplification; we want to keep our CYC score as low as possible so that any change to the code will be easier for us but also for other developers inside or outside our team.

 Unit and integration testing are becoming more important every day, and the tools for JavaScript are becoming better. Developers, as well as their companies, must recognize the importance of automated testing before deploying in production. With micro-frontends, we should invest in these practices mainly because the area to test per team is far smaller than a normal single-page application and the related complexity should be lower. Considering the size of the business logic as well, testing micro-frontends should be very quick. There aren’t any excuses for avoiding this step.

 ACME Inc. decided to use Jest for unit and integration testing, which is standard within the company. Since there isn’t a specific tool for testing micro-frontends, the company’s standard tool will be fine for unit and integration tests.

 The final step is specific to a micro-frontend architecture: checking on implementing specific libraries, like logging or observability, across all the micro-frontends inside a project. When we develop a micro-frontend application, there are some parts we want to write once and put in all our micro-frontends. A check on the libraries present in every micro-frontend will help enforce these controls, making sure that all the micro-frontends respect the company’s guidelines and we aren’t reinventing the wheel. Controlling the presence inside the package.json file present in every JavaScript project is a simple way to do this; however, we can go a step further by implementing more complex reviews, like library versions, analysis on the implementation, and so on. It’s very important to customize an automation pipeline introducing these kinds of fitness functions to ensure the architectural decisions are respected despite the nature of this architecture. Moreover, with micro-frontends where sharing code across them may result in way more coordination than a monolithic codebase, these kinds of steps are fundamental for having a positive end result.

 Build

 The artifact is created during the build stage. For this project, the teams are using webpack for performing any code optimizations (like minification and dead code elimination). Micro-frontends allow us to use different tools for building our code; in fact, it may be normal to use webpack for building and optimizing certain micro-frontends and using another tool for others. The important thing to remember is to provide freedom to the teams inside certain boundaries. If you have any particular requirements that should be applied at build time, raise them with the teams and make sure when a new tool is introduced inside the build phase—and generally inside the automation pipeline—it has the capabilities required for maintaining the boundaries. Introducing a new build tool is not a problem per se, because we can experiment and compare the results from the teams. We may even discover new capabilities and techniques we wouldn’t find otherwise. Yet we don’t have to use different tools. It’s perfectly fine if all the teams agree on a set of tools to use across the entire automation pipeline; however, don’t block innovation. Sometimes we discover interesting results from an approach different from the one agreed to at the beginning of the project.

 Post-Build Review

 The post-build stage (shown in Figure 3-5) is the last opportunity to confirm our artifact has all the performance characteristics and requirements ready to be deployed in production.

 Figure 3-5. In the post-build review, we perform additional checks before deploying an artifact to an environment

 A key step is storing the artifact in an artifacts repository, like Nexus or Artifactory. You may also decide to use a simpler storage solution, like an Amazon Web Services (AWS) S3 bucket. The important thing is to have a unique source of truth where all your artifacts are stored.

 ACME Inc. decided to introduce additional checks during this stage: end-to-end testing and performance review. Whether these two checks are performed at this stage depends on the automation strategy we have in place and the capability of the system. In this example, we are assuming that the company can spin up a static environment for running end-to-end testing and performance checks and then tear it down when these tests are completed.

 End-to-end testing is critical for micro-frontends. In this case where we have a vertical split and the entire user experience is inside the same artifact, testing the entire micro-frontend like we usually do for single-page applications is natural. However, if we have multiple micro-frontends in the same view with a horizontal split, we should postpone end-to-end testing to a later stage in order to test the entire view.

 When we cannot afford to create and maintain on-demand environments, we might use web servers that are proxying the parts not related to a micro-frontend. For instance, webpack’s dev server plug-in can be configured to fetch all the resources requested by an application during end-to-end tests locally or remotely, specifying from which environment to pull the resources when not related to the build artifact. If a micro-frontend is used in multiple views, we should check whether the code will work end to end in every view the micro-frontend is used.

 Although end-to-end testing is becoming more popular in frontend development, there are several schools of thought about when to perform the test. You may decide to test in production—as long as all the features needed to sustain testing in that environment are present. Therefore, be sure to include feature flags, potential mock data, and coordination when integrating with third parties to avoid unexpected and undesirable side effects.

 Performance checks have become far easier to perform within an automation pipeline, thanks to command-line interface (CLI) tools now being available to be wrapped inside a docker container and being easy to integrate into any automation pipeline. There are many alternatives, however. I recommend starting with Lighthouse CLI or webhint CLI. The former is a well-known tool created by Google and present even in Chrome browser, while the latter allows us to create additional performance tests for enhancing the list of tests already available by default.

 With one of these two solutions implemented in our automation strategy, we can make sure our artifact respects key metrics, like performance, accessibility, and best practices. Ideally, we should be able to gather these metrics for every artifact in order to compare them during the lifespan of the project. In this way, we can review the improvements and regressions of our micro-frontends and organize meetings with the tech leadership for analyzing the results and determining potential improvements, creating a continuous learning environment inside our organization.

 With these steps implemented, we make sure our micro-frontends deployed in production are functioning (through end-to-end testing) and performing as expected when the architectural characteristics are identified.

 Deployment

 The last step in our example is the deployment of a micro-frontend. An AWS S3 bucket will serve as the final platform to the user, and Cloudfront will be our CDN. As a result, the CDN layer will take the traffic hit, and there won’t be any scalability issues to take care of in production, despite the shape of user traffic that may hit the web platform. An AWS Lambda—an event-driven serverless computing platform provided by Amazon as a part of Amazon Web Services—will be triggered to decompress the tar.gz file present in the artifacts repository, and then the content will be deployed inside the dev environment bucket. Remember that the company built a deployment dashboard for promoting the artifacts through different environments. In this case, for every promotion, the dashboard triggers an AWS Lambda for copying the files from one environment to another.

 ACME Inc. decided to create a very simple infrastructure for hosting its micro-frontends, neatly avoiding additional investments in order to understand how to scale the additional infrastructure needed for serving micro-frontends. Obviously, this is not always the case. But I encourage you to find the cheapest, easiest way for hosting and maintaining your micro-frontends. You’ll remove some complexities to be handled in production and have fewer moving parts that may fail.

 To mitigate risks associated with large-scale deployments and potential bugs in new artifacts, ACME teams implemented a micro-frontends discovery pattern. This strategic move, as discussed in Capter 9, provides a robust mechanism for managing the rollout of new micro-frontends. After installing the Frontend Discovery Service, the teams began utilizing its API to create, update, and delete micro-frontend deployments. This service is designed to incrementally increase traffic to new versions based on a predefined deployment strategy, typically over a specified time interval.

 The gradual rollout facilitated by the Frontend Discovery Service allows for a controlled and monitored deployment process. Developers can observe their dashboards to quickly identify any issues arising from the new version in production. If problems are detected, the system enables rapid rollback capabilities, allowing traffic to be swiftly redirected to the previous stable version. Additionally, the teams implemented automated safety measures that trigger a traffic switch if error rates exceed predefined thresholds during the initial deployment hours. This creates a safety net for developers, encouraging them to deploy more frequently in production without the fear of widespread impact in case of issues.

 The positive impact of this automation has also resonated with the technical leadership at ACME. They have begun to reduce deployment gates, recognizing that this system inherently improves the quality of artifacts shipped to production. The ability to quickly identify and mitigate issues has led to a more agile and responsive development environment. By adopting this micro-frontends discovery pattern, ACME has not only enhanced its deployment safety but also fostered a culture of continuous improvement and frequent, low-risk releases. This approach aligns well with modern DevOps practices, emphasizing rapid iteration and feedback loops while maintaining high standards of reliability and performance.

 Automation Strategy Summary

 Every area of this automation strategy (shown in Figure 3-6) is composed of one or more steps to provide a feedback loop to the development teams for different aspects of the development process from different testing strategies, like unit testing or end-to-end testing, visual regression, bundle-size check, and many others. All of these controls create confidence in the delivery of high-quality content. This strategy also provides developers with a useful and constant reminder of the best practices leveraged inside the organization, guiding them to delivering what the business wants.

 Figure 3-6. The end-to-end automation strategy diagram

 The automation strategy shared in this chapter is one of many a company may decide to use. Different micro-frontend architectures will require additional or fewer steps than the ones described here. However, this automation strategy covers the main stages for ensuring a good result for a micro-frontend architecture.

 Remember that the automation strategy evolves with the business and the architecture; therefore, after the first implementation, review it often with the development teams and the tech leadership. When automation serves the purpose of your micro-frontends well, implementation has a greater chance to be successful.

 As we have seen, an automation strategy for micro-frontends doesn’t differ too much from a traditional one used for an SPA. I recommend organizing some retrospectives every other month with architects, tech leaders, and representatives of every team to review and enhance such an essential cog in the software development process. And since every micro-frontend should have its own pipeline, the DX team is perfectly positioned to automate the infrastructure configurations as much as possible in order to have a frictionless experience when new micro-frontends arise. Using containers allows a DX team to focus on the infrastructure, providing the boundaries needed for a team implementing its automation pipeline.

 Summary

 In this chapter, we have reviewed a possible automation strategy for micro-frontends based on many concepts from the previous chapter. Your organization may benefit from some of these stages, but bear in mind that you need to constantly review the goals you want to achieve in your automation strategy. This is a fundamental step for succeeding with micro-frontends. Avoid it, and you may risk the entire project. The nature of micro-frontends requires an investment in creating a frictionless automation pipeline and enhancing it constantly. When a company starts to struggle to build and deploy regularly, that’s a warning that the automation strategy probably needs to be reviewed and reassessed. Don’t underestimate the importance of a good automation strategy; it may change the final outcome of your projects.

 Chapter 4. Backend Patterns for Micro-Frontends

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 11th chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

 You may think that micro-frontends are a possible architecture only when you combine them with microservices because we can have end-to-end technology autonomy.

 Maybe you’re thinking that your monolith architecture would never support micro-frontends, or even that having a monolith on the API layer would mean mirroring the architecture on the frontend as well.

 However, that’s not the case. There are several nuances to take into consideration and micro-frontends can definitely be used in combination with microservices and monolith.

 In this chapter, we review some possible integrations between the frontend and backend layers, in particular, we analyze how micro-frontends can work in combination with a monolith, with microservices, and even with the backend for frontend (BFF) pattern.

 Also, we will discuss the best patterns to integrate with different micro-frontends implementations, such as the vertical split, the horizontal split with a client-side composition, and the horizontal split with server-side composition.

 Finally, we will explore how GraphQL can be a valid solution for micro-frontends as a single entry point for our APIs.

 APIs integration and micro-frontends

 Let’s start by defining the different APIs approaches we may have in a web application. As shown in Figure 4-1, we focus our journey on the most used and well-known patterns.

 This doesn’t mean micro-frontends work only with these implementations. You can devise the right approach for a WebSocket (a two-way computer communication protocol over a single TCP) or hypermedia (REST can be used with hypermedia links in the response contents, the client that consumes the API can dynamically navigate to the appropriate resources by traversing the hypermedia links), for instance, by learning how to deal with BFF, API gateway, or service dictionary patterns.

 Figure 4-1. Micro-frontends and API layers

 The patterns we analyze in this chapter are:

 	
 Service dictionary. The service dictionary is just a list of services available for the client to consume. It’s used mainly when we are developing an API layer with a monolith or modular monolith architecture; however, it can also be implemented with a microservices architecture with an API gateway, among other architectures. A service dictionary avoids the need to create shared libraries, environment variables, or configurations injected during the CI process or to have all the endpoints hardcoded inside the frontend codebase.

 The dictionary is loaded for the first time when the micro-frontend loads, allowing the client to retrieve the URLs to consume directly from the service dictionary.

 	
 API gateway. Well known in the microservices community, an API gateway is a single entry point for a microservices architecture. The clients can consume the APIs developed inside microservices through one gateway.

 The API gateway also allows centralizing a set of capabilities, like:

 	
 Token validation: validating the signature of a token before passing the request to a microservice

 	
 Visibility and reporting: we have a centralized way to verify all the inbound and outbound traffic

 	
 Rate-limiting: API Gateway rejects the request after exceeding a specific threshold, for instance we can set 100 requests per second as limit from a client when the limit is exceeded the API gateway returns errors instead calling the microservice to fulfill the request.

 	
 BFF. The BFF is an extension of the API gateway pattern, creating a single entry point per client type. For instance, we may have a BFF for the web application, another for mobile, and a third for the Internet of Things (IoT) devices we are commercializing.

 BFF reduces the chattiness between client and server aggregating the API responses and returning an easy data structure for the client to be parsed and render inside a user interface, allowing a great degree of freedom to shape APIs dedicated to a client and reducing the round trips between a client and the backend layer.

 These patterns are not mutually exclusive, either; they can be combined to work together.

 An additional possibility worth mentioning is writing an API endpoints library for the client side. However, I discourage this practice with micro-frontends because we risk embedding an older library version in some of them and, therefore, the user interface may have some issues like outdated information or even APIs errors due to dismissal of some APIs. Without strong governance and discipline around this library, we risk having certain micro-frontends using the wrong version of an API. It is way better to rely on the service discovery pattern or similar mechanisms that provide a list of endpoints at runtime.

 Domain-driven design (DDD) also influences architecture and infrastructure decisions. Especially with end-to-end distributed systems, we can divide an application into multiple business domains, using the right approach for each business domain.

 This level of flexibility provides architects and developers with a variety of choices not possible before. At the same time, however, we need to be careful not to fragment the client-server communication too much, instead introducing a new pattern when it provides a real benefit for our application. A beneficial approach I’ve observed over the years is to start by developing independent solutions for each team and then gradually consolidate them into unified entry points. As teams deploy multiple micro-frontends into production, the necessity to consolidate the API layer becomes apparent, and governance naturally emerges from practical experience. Platform teams that attempt to design everything upfront run a higher risk of overcomplicating the entire process, leading to friction and hindering the swift flow that a distributed system requires, particularly at the onset of the journey.

 Working with a Service Dictionary

 A service dictionary is nothing more than a list of endpoints available in the API layer provided to a micro-frontend. This allows the API to be consumed without the need to bake the endpoints inside the client-side code to inject them during a continuous integration pipeline or in a shared library.

 Usually, a service dictionary is provided via a static JSON file or an API that should be consumed as the first request for a micro-frontend (in the case of a vertical-split architecture) or an application shell (in the case of a horizontal split).

 A service dictionary may also be integrated into existing configuration files or APIs to reduce the round trips to the server and optimize the client startup.

 In this case, we can have a JSON object containing a list of configurations needed for our clients, where one of the elements is the service dictionary.

 An example of service dictionary structure would be:

 {
 “my_amazing_api”: {
 “v1”: "https://api.acme.com/v1/my_amazing_api",
 “v2”: "https://api.acme.com/v2/my_amazing_api",
 “v3”: "https://api.acme.com/v3/my_amazing_api"
 },
 “my_super_awesome_api”: {
 “v1”: "https://api.acme.com/v1/my_super_awesome_api"
 }
}

 As you can see, we are listing all the APIs supported by the backend. Thanks to API versioning, we can handle cross-platform applications without introducing breaking changes because each client can use the API version that suits it better.

 One thing we can’t control in such scenarios is the presence of a new version in every mobile device. When we release a new version of a mobile application, updating may take several days, if not weeks, and in some situations, it may take even longer.

 Therefore, versioning the APIs is important to ensure we don’t harm our user experience.

 Reviewing the cadence of when to dismiss an API version, then, is important.

 One of the main reasons is that potential attacks may harm our platform’s stability.

 Usually, when we upgrade an API to a new version, we are improving not only the business logic but also the security. But unless this change can be applicable to all the versions of a specific API, it would be better to assess whether the APIs are still valid for legitimate users and then decide whether to dismiss the support of an API.

 To create a frictionless experience for our users, implementing a forced upgrade in every application released via an executable (think about React Native applications for instance) may be a solution, preventing the user from accessing older applications due to drastic updates in our APIs or even in our business model.

 Therefore, we must think about how to mitigate these scenarios in order to create a smooth user experience for our customers.

 Endpoint discoverability is another reason to use a service dictionary.

 Not all companies work with cross-functional teams; many still work with components teams, with some teams fully responsible for the frontend of an application and others for the backend.

 Using a service dictionary allows every frontend team to be aware of what’s happening in other teams. If a new version of an API is available or a brand-new API is exposed in the service dictionary, the frontend team will be aware.

 This is also a valid argument for cross-functional teams when we develop a cross-functional application.

 In fact, it’s very unlikely that inside a “two-pizza team” we would be able to have all the knowledge needed for developing web, backend, mobile (iOS and Android), and maybe even smart TVs and console applications considering many of these devices are supporting HTML and JavaScript.

 A two-pizza team

 According to Jeff Bezos, CEO of Amazon, if a team can’t be fed with two pizzas, it’s too big.

 The introduction of the two-pizza rule in Amazon meant every team should be no larger than eight or nine people, which two pizzas would be enough to feed them!

 The reasoning behind this rule isn’t to save money on pizzas. It’s based on the number of links between people inside a team.

 There is a formula for calculating the links between members in a group: n(n-1)/2 where n corresponds to the number of people.

 For instance, if a team has six people, there will be 15 links between everyone. Double the team to 12 members, and there will be 66 links.

 Complexity grows exponentially, not linearly, creating a higher risk of missing information across all the team’s members.

 Using a service dictionary allows every team to have a list of available APIs in every environment just by checking the dictionary.

 We often think the problem is just a communication issue that can be resolved with better communication. However, look again at the number of links in a 12-person team. Forgetting to update a team regarding a new API version may happen more often than not.

 A service dictionary aids in initiating discussions with the team responsible for the API, particularly in large organizations with distributed teams.

 Last but not least, a service dictionary is also helpful for testing micro-frontends with new endpoint versions while in production.

 A company that uses a testing-in-production strategy can expand that to its micro-frontends architecture, thanks to the service dictionary, all without affecting the standard user experience.

 We can test new endpoints in production by providing a specific header recognized by our service dictionary service. The service will interpret the header value and respond with a custom service dictionary used for testing new endpoints directly in production.

 We would choose to use a header instead of a token or any other type of authentication, because it covers authenticated and unauthenticated use cases. Let’s see a high-level design on what the implementation would look like (Figure 4-2).

 Figure 4-2. A high-level architecture on how to use a service dictionary for testing in production

 In Figure 4-2 we can see that the application shell consumes the service dictionary API as the first step. But this time, the application shell passes a header with an ID related to the configuration that needs to be loaded.

 In this example, the ID was generated at runtime by the application shell.

 When the service dictionary receives the call, it will check for a header in the request. If present, it will load the associated configuration from the database

 It then returns the response to the application shell with the specific service dictionary requested. The application shell is now ready to load the micro-frontends to compose the page.

 Finally, the custom endpoint configuration associated with the client ID is produced via a dashboard (top right corner of the diagram) used only by the company’s employees.

 In this way we may even extend this mechanism for other use cases inside our backend, providing a great level of flexibility for micro-frontends and beyond.

 The service dictionary can be implemented with either a monolith or a modular monolith. The important thing to remember is to allow categorization of the endpoints list based on the micro-frontend that requests the endpoints.

 For instance we can group the endpoints related to a business subdomain or a bounded context. This is the strategic goal we should aim for.

 A service dictionary makes more sense with micro-frontends composed on the client side rather than on the server side. BFFs and API gateways are better suited for the server-side composition, considering the coupling between a micro-frontend and its data layer.

 Modular monolith

 A modular monolith is a concept from the 1960s where the code is actually compartmentalized into separate modules. Moving to a modular monolith may be enough for some companies to continue evolving the API layer instead of doing a full migration to microservices. In his book Monolith to Microservices, Sam Newman provides many insights into migrating a monolithic backend to microservices and discusses the concept of the modular monolith as a potential first step for our migration journey.

 Let’s now explore how to implement the service dictionary in a micro-frontend architecture.

 Implementing a Service Dictionary in a Vertical-Split Architecture

 The service dictionary pattern can easily be implemented in a vertical-split micro-frontends architecture, where every micro-frontend requests the dictionary related to its business domain.

 However, it’s not always possible to implement a service dictionary per domain, such as when we are transitioning from an existing SPA to micro-frontends, where the SPA requires the full list of endpoints because it won’t reload the JavaScript logic until the next user session.

 In this case, we may decide to implement a tactical solution, providing the full list of endpoints to the application shell instead of a business domain endpoints list to every single micro-frontend. With this tactical solution, we assume the application shell exposes or injects the list of endpoints for every micro-frontend.

 When we are in a position to divide the services list by domain, there will be a minimum effort for removing the logic from the application shell and then moving into every micro-frontend as displayed in Figure 4-3.

 Figure 4-3. With vertical-split architecture we can retrieve the service dictionary directly inside a micro-frontend from an endpoint, in this case Configurations. Dividing the endpoints list by business domain allows us to structure our teams accordingly.

 The service dictionary approach may also be used with a monolith backend. If we determine that our API layer will never move to microservices, we can still implement a service dictionary divided by domain per every micro-frontend, especially if we implement a modular monolith.

 Taking into account Figure 4-3, we can derive a sample of sequence diagrams like the one in Figure 4-4. Bear in mind there may be additional steps to perform either in the application shell or in the micro-frontend loaded, depending on the context we operate in. Take the following sequence diagram just as an example.

 Figure 4-4. Sequence diagram to implement a service dictionary with a vertical-split architecture

 As the first step, the application shell loads the micro-frontend requested, in this example the catalogue micro-frontend.

 After mounting the micro-frontend, the catalogue initializes and consumes the service dictionary API for rendering the view. It can consume any additional APIs, as necessary.

 From this moment on, the catalogue micro-frontend has access to the list of endpoints available and uses the dictionary to retrieve the endpoints to call.

 In this way we are loading only the endpoints needed for a micro-frontend, reducing the payload of our configuration and maintaining control of our business domain.

 Implementing a Service Dictionary in a Horizontal-Split Architecture

 To implement the service dictionary pattern with a micro-frontends architecture using a horizontal split, we have to pay attention to where the service dictionary API is consumed and how to expose it for the micro-frontends inside a single view.

 When the composition is managed client side, the recommended way to consume a service dictionary API is inside the application shell or host page. Because the container has visibility into every micro-frontend to load, we can perform just one round trip to the API layer to retrieve the APIs available for a given view and expose or inject the endpoints list to every loaded micro-frontend.

 Consuming the service dictionary APIs from every micro-frontend would negatively impact our applications’ performance, so it’s strongly recommended to stick the logic in the micro-frontends container as shown in Figure 4-5.

 Figure 4-5. The service dictionary should always be loaded from the micro-frontends container in a horizontal-split architecture

 The application shell should expose the endpoints list via the window object, making it accessible to all the micro-frontends when the technical implementation allows us to do it. Another option is injecting the service dictionary, alongside other configurations, after loading every micro-frontend.

 For example, using module federation in a React application requires sharing the data using React context APIs. The context API allows you to expose a context, in our case the service dictionary, to the component tree without having to pass props down manually at every level.

 The decision to inject or expose our configurations is driven by the technical implementation.

 Let’s see how we can express this use case with the sequence diagram in Figure 4-6.

 Figure 4-6. This sequence diagram shows how a horizontal-split architecture with client-side composition may consume the service dictionary API.

 In this sequence diagram, the request from the host application, or application shell, to the service dictionary is at the very top of the diagram.

 The host application then exposes the endpoints list via the window object and starts loading the micro-frontends that compose the view.

 Again, in real scenarios we may have a more complex situation. Adapt the technical implementation and business logic to your project needs accordingly.

 Working with an API gateway

 An API gateway pattern represents a unique entry point for the outside world to consume APIs in a microservices architecture.

 Not only does an API gateway simplify access for any frontend to consume APIs by providing a unique entry point, but it’s also responsible for requests routing, API composition and validation, and other edge functions, namely authorization, logging, rate limiting and any other centralized functionality we need to have before the API gateway send the request to a specific microservice.

 An API gateway also allows us to keep the same communication protocol between clients and the backend, while the gateway routes a request in the background in the format requested by a microservice (see Figure 4-7).

 Figure 4-7. An API gateway pattern simplifies the communication between clients and server and centralizes functionalities like authentication and authorization via edge functions.

 Imagine a microservice architecture composed with HTTP and gRPC protocols. Without implementing an API gateway, the client won’t be aware of every API or all the communication protocol details. Instead of using the API gateway pattern, we can hide the communication protocols behind the API gateway and leave the client’s implementation dealing with the API contracts and implementing the business logic needed on the user interface.

 Other capabilities of edge functions are rate limiting, caching, metrics collection, and log requests.

 Without an API gateway, all these functionalities will need to be replicated in every microservice instead of centralized as we can do with a single entry point.

 Still, the API gateway also has some downsides.

 As a unique entry point, it could be a single point of failure, so we need to have a cluster of API gateways to add resilience to our application. Cloud providers typically offer services that easily address this resilience challenge, providing solutions designed to handle high traffic and well-architected for resilience.

 Another challenge is more operational. In a large organization, where we have hundreds of developers working on the same project, we may have many services behind a single API gateway. We’ll need to provide solid governance for adding, changing or removing APIs in the API gateway to prevent teams being frustrated with a cumbersome flow.

 Finally, we’ll add some latency to the system if we implement an additional layer between the client and the microservice consumed.

 The process for updating the API gateway must be as lightweight as possible, making investing in the governance around this process a mandatory step. Otherwise, developers will be forced to wait in line to update the gateway with a new version of their endpoint.

 The API gateway can work in combination with a service dictionary, adding the benefits of a service dictionary to those of the API gateway pattern.

 Finally, with micro-architectures, we are opening a new scenario, where it may be possible and easier to manage and control because we are splitting our APIs by domain, having multiple API gateways to gather a group of APIs for instance.

 One API entry point per business domain

 Another opportunity to consider is creating one API entry point per business domain instead of having one entry point for all the APIs, as with an API gateway.

 Multiple API gateways enable you to partition your APIs and policies by solution type and business domain.

 In this way, we avoid having a single point of failure in our infrastructure. Part of the application can fail without impacting the rest of the infrastructure. Another important characteristic of this approach is that we can use the best entry point strategy per bounded context based on the requirements needed, as shown in Figure 4-8.

 Figure 4-8. On the left is a unique entry point for the API layer; on the right are multiple entry points, one per subdomain.

 So let’s say we have a bounded context that needs to aggregate multiple APIs from different microservices and return a subset of the body response of every microservice. In this case, a BFF would be a better fit for being consumed by a micro-frontend rather than handing over to the client doing multiple round trips to the server and filtering the APIs body responses for displaying the final result to the user.

 But in the same application, we may have a bounded context that doesn’t need a BFF.

 Let’s go one step further and say that in this subdomain, we have to validate the user token in every call to the API layer to check whether the user is entitled to access the data.

 In this case, using an API gateway pattern with validation at the API gateway level will allow you to fulfill the requirements in a simple way.

 With infrastructure ownership, choosing different entry points for our API layer means every team is responsible for building and maintaining the entry point chosen, reducing potential external dependencies across teams, and allowing them to own end-to-end the subdomain they are responsible for. Therefore, potentially we can have a one-to-one relationship between subdomain and entry point.

 This approach may require more work to build, but it allows a fine-grained control of identifying the right tool for the job instead of experiencing a trade-off between flexibility and functionalities. It also allows the team to really be independent end to end, allowing engineers to change the frontend, backend, and infrastructure without affecting any other business domain.

 A client-side composition, with an API gateway and a service dictionary

 Using an API gateway with a client-side micro-frontends composition (either vertical or horizontal split) is not that different from implementing the service dictionary in a monolith backend.

 In fact, we can use the service dictionary to provide our micro-frontends with the endpoints to consume, with the same suggestions we provided previously.

 The main difference, in this case, will be that the endpoints list will be provided by a microservice responsible for serving the service dictionary or a more generic client-side configuration, depending on our use case.

 Another interesting option is that with an API gateway, authorization may happen at the API-gateway level, removing the risk of introducing libraries at the API level, as we can see in Figure 4-9.

 Figure 4-9. A vertical-split architecture with a client-side composition requesting data to a microservice architecture with an API gateway as entry point.

 Based on the concepts shared with the service dictionary, the backend infrastructure has changes but not the implementation side. As a result, the same implementations applicable to the service dictionary are also applicable in this scenario with the API gateway.

 Let’s look at one more interesting use case for the API gateway.

 Some applications allow us to use a micro-frontends architecture to provide different flavors of the same product to multiple customers, such as customizing certain micro-frontends on a customer-by-customer basis.

 In such cases, we tend to reuse the API layer for all the customers, using part or all of the microservices based on the user entitlement. But in a shared infrastructure we can risk having some customers consuming more of our backend resources than others.

 In such scenarios, using API throttling at the API gateway will mitigate this problem by assigning the right limits per customer or per product.

 At the micro-frontends level we won’t need to do much more than handle the errors triggered by the API gateway for this use case.

 A server-side composition with an API gateway

 A microservices architecture opens up the possibility of using a micro-frontends architecture with a server-side composition as explained in chapter 6.

 As we can see in Figure 4-10, after the browser’s request to the API gateway, the gateway handles the user authentication/authorization first, then allows the client request to be processed by the UI composition service responsible for calling the microservices needed to aggregate multiple micro-frontends inside a template, with their relative content fetched from the microservices layer.

 Figure 4-10. An example of a server-side composition with a microservices architecture

 For the microservices layer, we use a second API gateway to expose the API for internal services, in this case, used by the micro-frontends services for fetching the related API.

 Figure 4-11 illustrates a hypothetical implementation with the sequence diagram related to this scenario.

 Figure 4-11. An example of server-side composition with API gateway

 After the API gateway token validation, the client-side request lands at the UI composition service, which calls the micro-frontend to load. The micro-frontend service is then responsible for fetching the data from the API layer and the relative template for the UI and serving a fragment to the UI composition layer that will compose the final result for the user.

 This diagram presents an example with a micro-frontend, but it’s applicable for all the others that should be retrieved for composing a user interface.

 Usually, the microservice used for fetching the data from the API layer should have a one-to-one relation with the API it consumes, which allows an end-to-end team’s ownership of a specific micro-frontend and microservice.

 Working with the BFF pattern

 Although the API gateway pattern is a very powerful solution for providing a unique entry point to our APIs, in some situations we have views that require aggregating several APIs to compose the user interface, such as a financial dashboard that may require several endpoints for gathering the data to display inside a unique view.

 Sometimes, we aggregate this data on the client side, consuming multiple endpoints and interpolating data for updating our view with the diagrams, tables, and useful information that our application should display. Can we do something better than that? BFF comes to the rescue.

 Another interesting scenario where an API gateway may not be suitable is in a cross-platform application where our API layer is consumed by web and mobile applications.

 Moreover, the mobile platforms often require displaying the data in a completely different way from the web application, especially taking into consideration screen size.

 In this case, many visual components and relative data may be hidden on mobile in favor of providing a more general high-level overview and allowing a user to drill down to a specific metric or information that interests them instead of waiting for all the data to download.

 Finally, mobile applications often require a different method for aggregating data and exposing them in a meaningful way to the user. APIs on the backend are the same for all clients, so for mobile applications, we need to consume different endpoints and compute the final result on the device instead of changing the API responses based on the device that consumes the endpoint.

 In all these cases, BFF, as described by Phil Calçado (former employee of SoundCloud), comes to the rescue.

 The BFF pattern develops niche backends for each user experience.

 This pattern will only make sense if and when you have a significant amount of data coming from different endpoints that must be aggregated for improving the client’s performance or when you have a cross-platform application that requires different experiences for the user based on the device used.

 This pattern can also help solve the challenge of introducing a layer between the API and the clients, as we can see in Figure 4-12.

 Figure 4-12. On the left a microservices architecture consumed by different clients; on the right a BBF layer exposing only the APIs needed for a given group of devices, in this case, mobile and web BFF.

 Thanks to BFF we can create a unique entry point for a given device group, such as one for mobile and another for a web application.

 However, this time we also have the option of aggregating API responses before serving them to the client and, therefore, generating less chatter between clients and the backend because the BFF aggregates the data and serves only what is needed for a client with a structure reflecting the view to populate.

 Interestingly, the microservices architecture’s complexity sits behind the BFF, creating a unique entry point for the client to consume the APIs without needing to understand the complexity of a microservices architecture.

 BFF can also be used when we want to migrate a monolith to microservices. In fact, thanks to the separation between clients and APIs, we can use the strangler pattern for killing the monolith in an iterative way, as illustrated in Figure 4-13. This technique is also applicable to the API gateway pattern.

 Figure 4-13. The red boxes represent services extracted from the monolith and converted to microservices. The BFF layer allows the client to be unaware of the change happening in the backend, maintaining the same contract at the BFF level.

 Another use case that often comes to mind when we combine BFF and micro-frontends, is aggregating APIs by domain, similar to what we have seen for the API gateway.

 Following our subdomain decomposition, we can identify a unique entry point for each subdomain, grouping all the microservices for a specific domain together instead of taking into consideration the type of device that should consume the APIs.

 This would allow us to control the response to the clients in a more cohesive way, and allow the application to fail more gracefully than having a single layer responsible for serving all the APIs, as in the previous examples.

 Figure 4-14 illustrates how we can have two BFFs, one for the catalogue and one for the Account section, for aggregating and exposing these APIs to different clients. In this way, we can scale the BFFs based on their traffic.

 Figure 4-14. This diagram shows how to separate different domain-driven design subdomains.

 Gathering all the APIs behind a unique layer, however, may lead to an application’s popular subdomains requiring a different treatment compared to less-accessed subdomains.

 Dividing by subdomain, then, allows us to apply different infrastructure requirements based on the traffic and characteristics of each domain.

 Sometimes BFF raises some concerns due to some inherent pitfalls such as reusability, code duplication and cross boundaries APIs.

 In fact, we may need to duplicate some code for implementing similar functionalities across different BFF, especially when we create one per device family. In these cases, we need to assess whether the burden of having teams implementing similar code twice is greater than abstracting (and maintaining) the code.

 It is no surprise that identifying domain boundaries for completely self-sufficient APIs is difficult.. Think about a service that is needed for multiple domains, for instance. Imagine an e-commerce where a product’s service is used in multiple domains. In this case, we need to be careful to make sure that every BFF implements the latest API version of the products service. Moreover, every time a new version of the products service is released, we will need to coordinate the release of the BFF layers. Alternatively, we can support multiple versions of the products API for a period of time, allowing each BFF to update independently at its own pace.

 A client-side composition, with a BFF and a service dictionary

 Because a BFF is an evolution of the API gateway, many of the implementation details for an API gateway are valid for a BFF layer as well, plus we can aggregate multiple endpoints, reducing client chatter with the server.

 It’s important to iterate this capability because it can drastically improve application performance.

 Yet there are some caveats when we implement either a vertical split or a horizontal one.

 For instance, in Figure 4-15, we have a product details page that has to fetch the data for composing the view.

 Figure 4-15. A wireframe of a product page

 When we want to implement a vertical-split architecture, we may design the BFF to fetch all the data needed for composing this view, as we can see in Figure 4-16.

 Figure 4-16. Sequence diagram showing the benefits of the BFF pattern used in combination with a vertical split composed on the client side

 In this example, we assume the micro-frontend has already retrieved the endpoint for performing the request via a service dictionary and that it consumes the endpoints, leaving the BFF layer to compose the final response.

 In this use case we can also easily use a service dictionary for exposing the endpoints available in our BFF to our micro-frontends similar to the way we do it for the API gateway solution.

 However, when we have a horizontal split composed on the client side, things become trickier because we need to maintain the micro-frontends’ independence, as well as having the host page domain as unaware as possible.

 In this case, we need to combine the APIs in a different way, delegating each micro-frontend to consume the related API, otherwise, we will need to make the host page responsible for fetching the data for all the micro-frontends, which could create a coupling that would force us to deploy the host page with the micro-frontends, breaking the intrinsic characteristic of independence between micro-frontends.

 Considering that these micro-frontends and the host page may be developed by different teams, this setup would slow down feature development rather than leveraging the benefits of this architecture.

 Moreover, this might lead to creating a global state, implemented at the micro-frontends’ container for simplifying the access for all the micro-frontends present in the view, creating unnecessary coupling.

 BFF with a horizontal split composed on the client side could create more challenges than benefits in this case. It’s wise to analyze whether this pattern’s benefits will outweigh the challenges.

 A server-side composition, with a BFF and service dictionary

 When we implement a horizontal-split architecture with server-side composition and we have a BFF layer, our micro-frontends implementation resembles the API gateway one.

 The BFF exposes all the APIs available for every micro-frontend, so using the service dictionary pattern will allow us to retrieve the endpoints for rendering our micro-frontends ready to be composed by a UI composition layer.

 Using GraphQL with micro-frontends

 In a chapter about APIs and micro-frontends, we couldn’t avoid mentioning GraphQL.

 GraphQL is a query language for APIs and a server-side runtime for executing queries by using a type system you define for your data.

 GraphQL was created by Facebook and released in 2015. Since then it has gained a lot of traction inside the developers’ community.

 Especially for frontend developers, GraphQL represents a great way to retrieve the data needed for rendering a view, decoupling the complexity of an API layer, rationalizing the API response in a graph, and allowing any client to reduce the number of round trips to the server for composing the UI.

 The paradigm for designing an API schema with GrapQL should be based on how the view we need to render looks instead of looking at the data exposed by the API layer.

 This is a very key distinction compared to how we design our database schemas or our REST APIs.

 Two projects in the GraphQL community stand out as providing great support and productivity with the open source tools available, such as Apollo and Rely.

 Both projects leverage GraphQL, adding an opinionated view on how to implement this layer inside our application, increasing our productivity thanks to the features available in one or both, like authentication, rate limiting, caching, and schema federations.

 GraphQL can be used as a proxy for microservices, orchestrating the requests to multiple endpoints and aggregating the final response for the client.

 Remember that GraphQL acts as a unique entry point for your entire API layer. By design GraphQL exposes a unique endpoint where the clients can perform queries against the GraphQL server. Because of this, we tend to not version our GraphQL entry point, although if the project requires a versioning because we don’t have full control of the clients that consume our data, we can version the GraphQL endpoint. Shopify does this by adding the date in the URL and supporting all the versions up to a certain period.

 It’s important to highlight that GraphQL works best when it’s created as a unique entry point for the client and not split by domains as seen with BFF. The graph implementation allows every client to query whatever part of the graph is exposed. Splitting it up in multiple domains would just make life harder for developers integrating with multiple graphs that now have to compose the different responses on the client-side. You might wonder how to scale the development of GraphQL across multiple teams, the answer is schema federation.

 The schema federation

 Schema federation is a feature that allows multiple GraphQL schemas to be composed declaratively into a single data graph.

 When we work with GraphQL in a midsize to large organization, we risk creating a bottleneck because all the teams are contributing to the same schema.

 But with schema federation, we can have individual teams working on their own schemas and exposing them to the client as unique entry points, just like a traditional data graph.

 Apollo Server exposes a gateway with all associated schemas from other services, allowing each team to be independent and not change the way the frontend consumes the data graph.

 This technique comes in handy when we work with microservices, though it comes with a caveat.

 A GraphQL schema should be designed with the UI in mind, so it’s essential to avoid silos inside the organization. We must facilitate the initial analysis engaging with multiple teams and follow all improvements in order to have the best implementation possible.

 Figure 4-17 shows how a schema federation works using the gateway as an entry point for all the implementing services and providing a unique entry point and data graph to query for the clients.

 Figure 4-17. A sequence diagram showing how schema federation exposes all the schemas from multiple services

 Schema federation represents the evolution of schema stitching, which has been used by many large organizations for similar purposes. It wasn’t well designed, however, which led Apollo to deprecate schema stitching in favor of schema federation.

 More information regarding the schema federation is available on Apollo’s documentation website.

 Using GraphQL with micro-frontends and client-side composition

 Integrating GraphQL with micro-frontends is a trivial task, especially after reviewing the implementation of the API gateway and BFF.

 With schema federations, we can have the teams who are responsible for a specific domain’s APIs create and maintain the schema for their domain and then merge all the schemas into a unique data graph for our client applications.

 This approach allows the team to be independent, maintaining their schema and exposing what the clients would need to consume.

 When we integrate GraphQL with a vertical split and a client-side composition, the integration resembles the others described above: the micro-frontend is responsible for consuming the GraphQL endpoint and rendering the content inside every component present in a view.

 Applying such scenarios with microservices become easier thanks to schema federation, as shown in Figure 4-18.

 Figure 4-18. A high-level architecture for composing a microservice backend with schema federation. The catalogue micro-frontend consumes the graph composed by all the schemas inside the GraphQL server.

 In this case, thanks to the schema federation, we can compose the graph with all the schemas needed and expose a supergraph for a micro-frontend to consume.

 Interestingly, with this approach, every micro-frontend will be responsible for consuming the same endpoint. Optionally, we may want to split the BFF into different domains, creating a one-to-one relation with the micro-frontend. This would reduce the scope of work and make our application easier to manage, considering the domain scope is smaller than having a unique data graph for all the applications.

 Applying a similar backend architecture to horizontal-split micro-frontends with a client-side composition isn’t too different from other implementations we have discussed in this chapter.

 As we see in Figure 4-19, the application shell exposes or injects the GraphQL endpoint to all the micro-frontends and all the queries related to a micro-frontend will be performed by every micro-frontend.

 Figure 4-19. A high-level architecture of GraphQL with schema federation. When we implement it with a micro-frontends architecture with horizontal split and a client-side composition, all micro-frontends query the graph layer.

 When we have multiple micro-frontends in the same or different view performing the same query, it’s wise to look at the query and response cacheability at different levels, like the CDN used, and otherwise leverage the GraphQL server-client cache.

 Caching is a very important concept that has to be leveraged properly; doing so could protect your origin from burst traffic so spend the time. Even when we have dynamic data, caching data for tens of seconds or a few minutes, helps reduce the strain on the origin and the risk of failures.

 Using GraphQL with micro-frontends and a server-side composition

 The final approach involves using a GraphQL server with a micro-frontends architecture featuring a horizontal split and server-side composition.

 When the UI composition requests multiple micro-frontends to their relative microservices, every microservice queries the graph and prepares the view for the final page composition (see Figure 4-20).

 Figure 4-20. A high-level architecture for a micro-frontends architecture with a server-side composition where every micro-frontend consumes the graph exposed by the GraphQL server

 In this scenario, every microservice that will query the GraphQL server requires having the unique entry point accessible, authenticating itself, and retrieving the data needed for rendering the micro-frontend requested by the UI composition layer.

 This implementation overlaps quite nicely with the others we have seen so far on API gateway and BFF patterns.

 Best practices

 After discussing how micro-frontends can fit with multiple backend architectures, we must address some topics that are architecture-agnostic but could help with the successful integration of a micro-frontends architecture.

 Multiple micro-frontends consuming the same API

 When working with a horizontal-split architecture, we might encounter situations where similar micro-frontends exist within the same view, consuming identical APIs with the same payload. This scenario could lead to an increase in backend traffic, necessitating more complex solutions for managing the traffic and its associated costs.

 In such instances, it’s crucial to question whether maintaining separate micro-frontends truly adds value to our system. Is grouping them into a single, unified micro-frontend a more effective approach?

 A possible solution is transforming the micro-frontends into components and consolidating them within a single micro-frontend, as depicted in Figure 4-21.

 Figure 4-21. When multiple micro-frontends are consuming the same API with identical payloads, a solution could involve leveraging a single micro-frontend to inject the API response into newly created components, thereby reducing the application’s chattiness towards the server.

 In this scenario, the micro-frontends will execute a single request to the API, which will then inject the response into the components within the page, as we are accustomed to implementing with other architectures. These components can be easily imported by the micro-frontends as an NPM library, maintaining clear boundaries and reducing redundant API calls.

 Additionally, consider reassessing team ownership. Implementing this solution may increase the team’s cognitive load because of the new micro-frontends containing additional components and handling more business requirements.

 Typically, such situations should prompt consideration for architectural enhancement. Do not overlook this signal; instead, reassess the decisions made at the project’s outset with the available information and context, ensuring that making duplicate API requests within the same view is acceptable. If not, be prepared to reevaluate the boundaries of the micro-frontends.

 APIs come first, then the implementation

 Independently of the architecture we will implement in our projects, we should apply API-first principles to ensure all teams are working with the same understanding of the desired result.

 An API-first approach means that for any given development project, your APIs are treated as “first-class citizens.”

 As discussed at the beginning of this book, we need to make sure the API identified for communicating between micro-frontends or for client-server communication are defined up front to enable our teams to work in parallel and generate more value in a shorter time.

 In fact, investing time at the beginning for analyzing the API contract with different teams will reduce the risk of developing a solution not suitable for achieving the business goals or a smooth integration within the system.

 Gathering all the teams involved in the creation and consumption of new APIs can save a lot of time further down the line when the integration starts.

 At the end of these meetings, producing an API spec with mock data will allow teams to work in parallel.

 The team that has to develop the business logic will have clarity on what to produce and can create tests for making sure they will produce the expected result, and the teams that consume this API will be able to start the integration, evolving or developing the business logic using the mocks defined during the initial meeting.

 Moreover, when we have to introduce a breaking change in an API, sharing a request for comments (RFC) with the teams consuming the API may help to update the contract in a collaborative way. This will provide visibility on the business requirements to everyone and allow them to share their thoughts and collaborate on the solution using a standard document for gathering comments.

 RFCs are very popular in the software industry. Using them for documenting API changes will allow us to scale the knowledge and reasoning behind certain decisions, especially with distributed teams where it is not always possible to schedule a face-to-face meeting in front of a whiteboard.

 RFCs are also used when we want to change part of the architecture, introduce new patterns, or change part of the infrastructure.

 API consistency

 Another challenge we need to overcome when we work with multiple teams on the same project is creating consistent APIs, standardizing several aspects of an API, such as error handling.

 API standardization allows developers to easily grasp the core concepts of new APIs, minimizes the learning curve, and makes the integration of APIs from other domains easier.

 A clear example would be standardizing error handling so that every API returns a similar error code and description for common issues like wrong body requests, service not available, or API throttling.

 This is true not only for client-server communication but for micro-frontends too. Let’s think about the communication between a component and a micro-fronted or between micro-frontends in the same view. Identifying the events schema and the possibility we grant inside our system is fundamental for the consistency of our application and for speeding up the development of new features.

 There are very interesting insights available online for client-server communication, some of which may also be applicable to micro-frontends. Google and Microsoft API guidelines share a well-documented section on this topic, with many details on how to structure a consistent API inside their ecosystems.

 Web socket and micro-frontends

 In some projects, we need to implement a WebSocket connection for notifying the frontend that something is happening, like a video chat application or an online game.

 Using WebSockets with micro-frontends requires a bit of attention because we may be tempted to create multiple socket connections, one per micro-frontend. Instead, we should create a unique connection for the entire application and inject or make available the WebSocket instance to all the micro-frontends loaded during a user session.

 When working with horizontal-split architectures, create the socket connection in the application shell and communicate any message or status change (error, exit, and so on) to the micro-frontends in the same view via an event emitter or custom events for managing their visual update.

 In this way, the socket connection is managed once instead of multiple times during a user session. There are some challenges to take into consideration, however.

 Imagine that some messages are communicated to the client while a micro-frontend is loaded inside the application shell. In this case, creating a message buffer may help to replay the last few messages and allow the micro-frontend to catch up once fully loaded.

 Finally, if only one micro-frontend has to listen to a WebSocket connection, encapsulating this logic inside the micro-frontend would not cause any harm because the connection will leave naturally inside its subdomain.

 For vertical-split architectures, the approach is less definitive. We may want to load inside every micro-frontend instead of at the application shell, simplifying the lifecycle management of the socket connection.

 The right approach for the right subdomain

 Working with micro-frontends and microservices provides a level of flexibility we didn’t have before.

 To leverage this new quality inside our architecture we need to identify the right approach for the job.

 For instance, in some parts of an application, we may want to have some micro-frontends communicating with a BFF instead of a regular service dictionary because that specific domain requires an aggregation of data retrievable by existing microservices but the data should be aggregated in a completely different way.

 Using micro-architectures, these decisions are easier to embrace due to the architecture’s intrinsic characteristic. To grant this flexibility, we must invest time at the beginning of the project analyzing the boundaries of every business domain and then refine them every time we see complications in API implementation.

 In this way, every team will be entitled to use the right approach for the job instead of following a standard approach that may not be applicable for the solution they are developing.

 This is not a one-off decision but it has to evolve and revise with a regular cadence to support the business evolution.

 Summary

 We have covered how micro-frontends can be integrated with multiple API layers.

 Micro-frontends are suitable for not only microservices but also monolith architecture.

 There may be strong reasons why we cannot change the monolithic architecture on the backend but we want to create a new interface with multiple teams. Micro-frontends may be the solution to this challenge.

 We discussed the service dictionary approach that could help with cross-platform applications and with the previous layer for reducing the need for a shared client-side library that gathers all the endpoints. We also discussed how BBF can be implemented with micro-frontends and a different twist on BFF using API gateways.

 In the last part of this chapter, we reviewed how to implement GraphQL with micro-frontends, discovering that the implementation overlaps quite nicely with the one described in the API gateway and BFF patterns.

 Finally, we closed the chapter with some best practices, like approaching API design with an API-first approach and leveraging DDD at the infrastructure level for using the right technical approach for a subdomain.

 As we have seen, micro-frontends have different implementation models based on the backend architecture we choose.

 The quickest approach for starting the integration in a new micro-frontends project is the service dictionary that can evolve overtime to more sophisticated solutions like BFF or GraphQL.

 Remember that every solution shared in this chapter brings a fair amount of complexity if not analyzed and contextualized inside the organization structure and communication flow. Don’t focus your attention only on the technical implementation but move a step further by looking into the governance for future APIs integration or breaking changes of an API.

 Chapter 5. Common Anti-Patterns in Micro-Frontend Implementations

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 13th chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

 Over the past ten years, I’ve had the privilege of guiding hundreds of teams worldwide through their micro-frontend journeys, witnessing both triumphs and pitfalls firsthand. These experiences, coupled with insights from discussions with industry experts, have shed light on crucial aspects often overlooked - organizational capabilities, platform considerations, and the socio-technical aspects of distributed systems in general.

 While many teams eagerly dive into micro-frontend implementations, looking to the newest framework or the latest library to incorporate into their projects, a hard truth emerges: the technical implementation is merely the tip of the iceberg (Figure 5-1). The real challenges lie beneath the surface, in the realms of organizational dynamics, communication patterns, and architectural decision-making.

 Figure 5-1. The technical implementation is just one aspect to take into account when embracing micro-frontend architectures

 Let’s delve into the most common micro-frontend anti-patterns, focusing on the technical pitfalls that can derail even the most promising projects. These anti-patterns are the ones I’ve encountered most frequently with teams embracing this approach for the first time or struggling to progress with implementation due to constant friction created by them. You may have encountered some of these anti-patterns in previous chapters, but this collection will offer a more in-depth exploration of each one.

 We’ll examine common mistakes that have emerged across different projects and industries. Understanding these pitfalls will help you navigate the complexities of micro-frontend architectures more effectively. While we’ll focus mainly on technical aspects here, remember that organizational and strategic factors, which we’ll discuss in later chapters, are just as crucial for success.

 Please remember that culture, organizational structure, and software architecture are tightly coupled. When one of these dimensions shifts in a different direction, the other two will inevitably be impacted. The effects might not be immediate, but they will eventually surface. Therefore, always consider these three dimensions before making any foundational decision.

 In this chapter, we’ll explore specific anti-patterns and provide guidance on how to avoid them, ensuring a more successful micro-frontends implementation.

 Micro-frontend or component?

 Picture this: you’ve decided to embrace micro-frontends for your next project, and now you’re faced with the crucial task of defining the boundaries of your independent units. Where do you begin? How “micro” should a micro-frontend really be?

 This is a common challenge that every organization transitioning to a micro-frontend architecture encounters. I completely understand the complexity of this problem, but rest assured, there are effective strategies for identifying and testing appropriate boundaries for micro-frontends without confusing them with mere components.

 We explored some helpful heuristics in Chapter 2, “Testing Your Micro-Frontend Boundaries,” but I’d like to provide a more concrete example here. This is because determining the right granularity for micro-frontends is, by far, the most common pitfall in their design and implementation.

 Take a look at the homepage of an e-commerce in Figure 5-2.

 Figure 5-2. An e-commerce homepage that wants to move from a monolithic approach to micro-frontends.

 An e-commerce homepage is a quintessential example of a user interface that typically encompasses multiple domains within an organization. The complexity of these domains can vary, but let’s explore how we might divide this interface into micro-frontends.

 In this scenario, the team has opted for a horizontal split approach for the homepage. This decision was driven by the need to involve multiple teams in the delivery of this page, allowing for parallel development and domain-specific expertise.

 To begin, let’s identify the distinct business domains that present within this view. This exercise will not only help us define our micro-frontend boundaries but also clarify which team will be responsible for each domain (Figure 5-3).

 Figure 5-3. There are 3 domains in this diagram plus the application shell for composing the final view

 The application shell contains the header and footer, elements that remain consistent across the entire website. After analyzing the GitHub history, the team discovered that these components have a low rate of change—typically once or twice a year. The changes are generally straightforward to implement, and extracting them as a shared library or loading them at runtime would introduce unnecessary complexity. Given their stability, the team decided to keep these components within the application shell, avoiding the need for additional governance and automation pipelines for rarely changing elements.

 Beyond the shell, three primary domains emerge in this view: catalog, experience, and support.The catalog domain is represented by components showcasing the latest available products. While these could technically be encapsulated as individual micro-frontends, doing so might lead to over-segmentation without clear benefits. Consider the three product displays beneath the hero product component. Although they’re replicas with consistent behavior and aesthetics, separating them into independent, runtime-deployed micro-frontends would likely introduce more complexity than advantages (different automation pipelines, coordination across team members, and so on).

 These catalog components are best assigned to a single team responsible for catalog pages. This approach leverages domain expertise, allowing the team to align closely with product and business requirements for optimal product display.

 A similar approach applies to the experience and support domains. As these components typically redirect users to their respective domain areas, it’s logical to have domain experts create and maintain the associated micro-frontends that contain the components. This example illustrates how identifying domains within a view aids in understanding ownership and distinguishing between micro-frontends and components. The decision-making process is informed by business requirements, change frequency, and domain ownership.

 It should be clear that a page with multiple components often translates to fewer micro-frontends than one might initially assume. When using a horizontal split approach, having more than 5-7 micro-frontends on a single page often indicates overly fine-grained division. This can lead to domain leakage between micro-frontends, creating deployment coupling and external dependencies across teams.

 Remember, these boundaries should evolve with your application. When friction arises, review whether the identified boundaries still suit your application’s needs, or if aggregation or further splitting is necessary. Distributed systems are living entities that require nurturing and attention, much like children learning to manage their emotions.

 Sharing state between micro-frontends

 This issue frequently arises when new teams adopt micro-frontends. While we’re used to designing single-page applications (SPAs) by first selecting a UI library and then choosing a suitable state management library, this approach may not be optimal for distributed systems. This anti-pattern typically emerges in horizontal splits where micro-frontends within the same view need to communicate in response to user actions or external API signals via sockets or server-sent events.

 Sharing, in this context, is a form of coupling akin to design-time coupling in microservices. In microservices, design-time coupling refers to the extent to which one service must change due to alterations in another service. This coupling occurs when one service directly or indirectly depends on concepts owned by another service.

 Similarly, in micro-frontends, we may encounter situations where modifying a data type in the shared state necessitates retesting multiple micro-frontends on the same page to ensure functionality. This scenario also introduces coordination challenges between teams when implementing breaking changes in the shared state. Consider a deployment scenario where other teams rely on the data structure of the state manager. A breaking change by one team would require coordination with all affected teams to ensure compatibility with both current production versions and future iterations of their micro-frontends. If incompatibilities arise with the current production version, it may necessitate adding tasks to other teams’ backlogs and waiting for them to incorporate the changes, potentially causing delays and complications.

 A more efficient approach would be to implement a mechanism that keeps micro-frontends aligned, allowing them to react to user interactions or state changes in other micro-frontends (Figure 5-4). This method could potentially mitigate the challenges associated with shared state management in micro-frontend architectures.

 Figure 5-4. In this example there are two micro-frontends communicating via events and maintaining their internal state for reaching low-coupling and independence

 The publish-subscribe pattern, commonly abbreviated as pub-sub, embodies this concept. This messaging pattern is widely implemented in software architecture to facilitate asynchronous communication between various system components.

 To maintain the independence of micro-frontends within the same view, it’s highly recommended to encapsulate the state manager within each micro-frontend, in this way the micro-frontend can be evolved independently without the need to coordinate the changes across multiple teams. Communication between these micro-frontends can then be established using mechanisms such as event emitters or custom events for instance. Event emitters are generally preferable to custom events due to their DOM-agnostic nature. This characteristic offers significant advantages in micro-frontend architectures. Custom events, by design, bubble through DOM elements up to the window object. This behavior can lead to complications if event propagation is inadvertently prevented at any point in the DOM tree. In such cases, identifying and debugging the issue can become a challenging and time-consuming task.

 In contrast, event emitters operate on a subscription model, where components directly subscribe to and notify subscribers. This approach is independent of the DOM structure, providing greater flexibility and reliability. As a result, you can freely move your micro-frontend within the DOM tree without risking event loss or necessitating code refactoring.

 This DOM-agnostic quality of event emitters enhances the modularity and maintainability of your micro-frontend architecture. It allows for more robust communication between components, reducing the likelihood of unforeseen issues related to DOM structure changes. Ultimately, using event emitters can lead to a more resilient and easier-to-maintain system, particularly in complex micro-frontend environments where component placement and interaction are critical considerations. This approach preserves the autonomy of individual micro-frontends while allowing for necessary interactions.

 However, it’s crucial to exercise caution regarding the frequency and volume of communication across micro-frontends. Excessive inter-micro-frontend communication often indicates improperly defined boundaries within the view. Striking the right balance is essential for maintaining a clean and efficient architecture. When implementing this pattern, carefully consider the appropriate level of interaction to ensure optimal system design and functionality.

 Micro-frontends anarchy

 This anti-pattern typically manifests when organizations embrace the idea of independent development without establishing proper guidelines, standards, or governance structures. Sometimes organizations want to optimize their architecture for a multi-framework approach without realizing the long-term impact in this decision.

 Let me ask you a question, would you use a multi-framework approach for an SPA?

 Your answer is probably, but technically you could do that!

 In a micro-frontends anarchy scenario, different teams within an organization start developing their parts of the application with complete autonomy. While this autonomy can foster innovation and allow teams to move quickly, it can also lead to a fragmented and inconsistent application architecture.

 In the absence of clear guidelines, teams may adopt a wide array of technologies, frameworks, and libraries. While this diversity can be beneficial in some cases, it often leads to a chaotic tech stack. You might find one team using React, another using Vue.js, and yet another opting for Angular – all within the same application. This proliferation of technologies can result in an increased bundle size due to multiple framework libraries being loaded and an inconsistent user experience across different parts of the application.

 As the application grows and evolves, the maintenance challenges posed by an anarchic micro-frontends approach become increasingly apparent. The fragmented nature of the architecture introduces significant hurdles in managing and updating the system as a whole. Implementing application-wide changes or upgrades becomes a daunting task, requiring coordination across multiple teams and potentially incompatible technologies. Debugging issues that span multiple micro-frontends grows in complexity, often requiring developers to navigate through disparate codebases and technologies to identify and resolve problems.

 Maintaining consistent security practices across all micro-frontends becomes a concern, as each team may implement security measures differently, potentially creating vulnerabilities in the overall application. The integration and testing of micro-frontends developed with different technologies introduce additional complications, requiring sophisticated testing strategies and potentially custom integration solutions.

 One of the often-overlooked consequences of the micro-frontends anarchy anti-pattern is its impact on knowledge sharing and developer mobility within an organization.

 As teams become deeply entrenched in their chosen technologies, knowledge silos begin to form. This fragmentation leads to several significant challenges in the development process. Sharing best practices across teams becomes increasingly difficult due to the differing technological contexts, limiting the spread of valuable insights and innovations.

 The ability to move developers between teams is greatly reduced, as each micro-frontend requires a unique skill set, hampering organizational flexibility and career growth opportunities. This fragmentation of knowledge not only impacts the efficiency of the development process but can also lead to a sense of isolation among teams. The resulting silos can potentially affect morale and hinder collaboration, as developers may feel disconnected from the broader organizational goals and their peers working on other parts of the application. Finally, this knowledge fragmentation can undermine the very benefits that micro-frontends were intended to provide, such as increased agility and improved team autonomy.

 However, a multi-framework approach in micro-frontends can be a valuable strategy in specific scenarios, particularly during transitional phases in an organization’s technical evolution. This approach, while not ideal for long-term implementation, offers significant benefits in certain contexts. One prime scenario for leveraging a multi-framework approach is during the migration of a monolithic system to a micro-frontends architecture. In this case, organizations can gradually transition different parts of their application to micro-frontends while maintaining the existing system, as described in chapter 12. This incremental approach allows for continuous delivery of value to customers without the need for a complete system overhaul, which could potentially take months or even years.

 Similarly, when an organization decides to migrate from one UI framework to another, like from a version of Angular to a new one for instance, a multi-framework approach can be instrumental. It enables teams to begin developing new features or refactoring existing ones using the new framework while keeping the rest of the application functional in the original framework. This strategy allows for a smoother transition, minimizing disruption to the user experience and maintaining business continuity.

 Moreover, this approach provides a safety net during the transition period. If critical issues arise in the newly developed micro-frontends, teams can quickly revert to the original implementation. This fallback option reduces risk and provides peace of mind during the migration process, allowing teams to be more adventurous in their approach to new technologies and architectures.

 However, it’s crucial to view the multi-framework approach as a temporary solution rather than a long-term architectural strategy. Organizations should have a clear plan to eventually converge on a more standardized approach to avoid the pitfalls associated with long-term maintenance of diverse technologies within the same application.

 In conclusion, while a multi-framework approach in micro-frontends comes with its challenges, it can be a powerful tool for organizations undergoing significant technological transitions. By enabling gradual migration, continuous delivery, skill development, and risk mitigation, this approach can bridge the gap between legacy systems and modern architectures, ensuring that businesses can evolve their technology stacks without compromising their ability to deliver value to customers.

 Anti-corruption layer to the rescue

 You are tasked to integrate an existing application into your brand new micro-frontends architecture. The main problem is that you have to integrate it in just a month.

 The application shell is framework agnostic; however, the decision was to use an event emitter for communicating across micro-frontends, and the existing web application is not designed with micro-frontends in mind. Therefore, due to the time constraints and lack of understanding of the impact of loading the application from the application shell, the decision is to use an iframe to isolate the code and avoid potential runtime errors while using the micro-frontends system.

 In this case, the challenge is deciding if the application shell should support the iframe communication via postMessage API or continue to work with the event emitter but refactor the existing application, the complexity of which the team is not aware of.

 Another factor to take into account is that at some point in the future, the existing application will be refactored to micro-frontends, so the code to support the iframe in the application shell will eventually be thrown away.

 This approach might open the door to multiple ways to compose micro-frontends and create complexity in the long term because the application shell, which should be the most stable part of the system, is constantly subject to changes and new implementations, causing it to test all the integration points on every single change. Moreover, multiple teams could ask to introduce other ways to compose micro-frontends considering there isn’t a single one. As you can imagine, this simple decision could open difficult discussions in the future for evolving the architecture.

 This problem is more common than you think. It happens when a company acquires another one or when the C-suite wants to create a more consistent experience for their customers or for internal systems. teams usually jump straight away to the solution, without evaluating the trade-offs they will need to live with in the long run.

 The question is, do we have any alternative?

 Luckily, the answer is yes, we do. The alternative is called the anti-corruption layer.

 The Anti-Corruption Layer (ACL) pattern is a fantastic architectural strategy that helps keep your systems clean and manageable, especially when integrating different technologies or legacy systems. Traditionally associated with backend architectures, the ACL acts as a translator and mediator, ensuring that the complexities and potential inconsistencies of one system do not “corrupt” the integrity of another. This pattern is especially valuable when dealing with legacy systems that cannot be easily modified or replaced, allowing new systems to evolve independently while maintaining necessary interactions.

 In micro-frontends, we can use the ACL by creating a wrapper around the iframe that contains the existing application and leverage the postMessage communication between the anti-corruption layer and the iframe, while using the event emitter for the communication between micro-frontends and the shell (Figure 5-5).

 Figure 5-5. The application shell codebase remains the same across all the micro-frontends and the legacy system is well isolated in an iframe that communicates with its wrapper via the postmessage API.

 In this way, the application shell codebase will remain the same for all micro-frontends. The wrapper around the legacy system will sanitize the communication between the application shell, other micro-frontends, and the iframe without leaking implementation details. Finally, when the legacy application is refactored, the only change needed will be to load a new micro-frontend endpoint instead of the anti-corruption layer. This is a very neat approach that is evolutionary by design.

 One of the biggest perks of adopting an ACL in your frontend architecture is the consistency it brings to your application. By establishing a clear interface for all external interactions, you create a stable foundation that makes it easier to maintain and evolve your code over time. Plus, if you ever need to update or replace an external service, you can do so without disrupting the rest of your application. This flexibility is invaluable in today’s fast-paced development environment, where change is the only constant.

 Unidirectional sharing

 The next anti-pattern is common when we treat micro-frontends and properties like components, ready to be shared everywhere. Even when you want to reuse components in real-time and share across other micro-frontends, we always have to bear in mind how we are sharing our data and resources.

 Bi-directional or omni-directional sharing across micro-frontends can quickly become a double-edged sword. While it might seem convenient at first, it often leads to a tangled web of dependencies that can stifle development speed and introduce unexpected bugs. The core issue lies in the increased communication and coordination burden placed on development teams. When multiple micro-frontends share data and functionality in multiple directions, changes in one component can have far-reaching and often unforeseen consequences on others. This scenario necessitates constant communication between teams, potentially leading to bottlenecks in the development process.

 The challenges of bi-directional sharing extend beyond mere inconvenience. They can fundamentally undermine the very benefits that micro-frontend architecture aims to provide. One of the primary goals of adopting micro-frontends is to enable teams to work independently, allowing for faster development cycles and easier maintenance. However, when components are tightly coupled through bi-directional dependencies, this independence is compromised.

 Moreover, consider the impact on testing and deployment. In a system with extensive bi-directional sharing, a change in one micro-frontend might require comprehensive testing across all interconnected components. This not only slows down the development process but also increases the risk of introducing bugs that are difficult to isolate and fix. Furthermore, it complicates the deployment process, as teams must coordinate their release schedules to ensure compatibility across all shared interfaces (Figure 5-6).

 Figure 5-6. Omnidirectional sharing will harm your deployment and rollback strategies due to shared dependencies.

 Another significant drawback is the potential for circular dependencies. When micro-frontends share data and functionality in both directions, it’s easy to inadvertently create loops where component A depends on B, which in turn depends on C, which then depends back on A. Such circular dependencies are notoriously difficult to manage and can lead to runtime errors, performance issues, and debugging nightmares.

 In contrast, a unidirectional flow of data from a parent component to its children would localize the impact of every change. The application shell will pass, through dependency injection, only the necessary data to each micro-frontends.

 Moreover, unidirectional data flow promotes a clearer mental model of the application’s structure. Developers can more easily reason about data changes and their effects when they know that information flows in only one direction. This clarity not only aids in development but also simplifies debugging and maintenance tasks.

 Bear in mind that events with a pub-sub approach, like an event emitter, won’t follow this rule because they are hierarchy unaware. The pattern removes the idea of relations and lets micro-frontends subscribe and be notified to events.

 It’s worth noting that adopting a unidirectional sharing approach doesn’t mean completely isolating micro-frontends from each other. Instead, it encourages thoughtful design of component interfaces and promotes the use of well-defined APIs for necessary inter-component communication. This strategy strikes a balance between component independence and system cohesion, allowing teams to work autonomously while still creating a unified user experience.

 By embracing unidirectional sharing from parent, the application shell, to child components, every micro-frontend, development teams can maintain the independence and flexibility that make micro-frontends so powerful, while still creating cohesive and feature-rich applications.

 Premature abstraction

 Sharing or not sharing, this is the dilemma. When developing micro-frontends, it’s crucial to approach abstraction with caution, particularly when considering whether to encapsulate specific functionality or utilities in a shared library. While abstraction can promote code reuse and maintainability, premature or restless abstraction can lead to unforeseen challenges. The real test isn’t in the initial implementation, but in the long-term maintenance and evolution of these shared dependencies.

 Kent C. Dodds, full time educator very well known for his contribution on React and Remix, captures this concept with his AHA programming principle, which stands for “Avoid Hasty Abstractions”. This approach encourages developers to resist the urge to abstract code too quickly, instead allowing patterns to emerge naturally over time. By doing so, teams can create more robust and flexible abstractions that truly serve their needs.

 In the context of micro-frontends, hasty abstractions in shared libraries can create a ripple effect of compatibility issues across multiple teams and components. For instance, consider a scenario where a team creates a shared date formatting utility. Initially, it might seem like a straightforward abstraction that could benefit multiple micro-frontends. However, as different teams begin to rely on this utility, they may discover edge cases or require slight variations in formatting. Suddenly, what started as a simple utility becomes a complex, over-engineered solution trying to accommodate every possible use case. When this library is used in multiple micro-frontends, you risk forcing other teams to update it quickly due to critical bugs or enhancements, without knowing how busy their backlogs are or if they can accommodate the update.

 By embracing the AHA principle, teams can avoid these pitfalls. Instead of rushing to create shared libraries, they might start by duplicating code across micro-frontends where necessary. This approach allows each team to tailor the functionality to their specific needs while providing the opportunity to observe common patterns over time. Once clear, repeated use cases emerge across multiple micro-frontends, teams can then create thoughtful, well-designed abstractions that truly serve the project’s needs.

 Remember, these decisions must be taken into consideration the trade-offs and the intention you want to express sharing the library. The goal is to strike a balance between code reuse and flexibility. By being mindful of when and how to abstract shared functionality in micro-frontends, teams can create more maintainable, evolvable systems that stand the test of time and changing requirements.

 Summary

 When embarking on a micro-frontend journey, it’s essential to ensure that your architectural choices align seamlessly with your business objectives and system requirements.

 This alignment involves a thoughtful evaluation of several critical factors. You’ll want to consider your application’s scalability needs, assessing whether the projected growth justifies the added complexity that micro-frontends introduce. Equally important is your organization’s ability to support autonomous teams for each micro-frontend, as this structure is fundamental to realizing the full benefits of this architecture.

 By carefully weighing these aspects and understanding the associated trade-offs, you’ll be well-equipped to make an informed decision about implementing micro-frontends in your system. Remember, there’s no universal solution in architecture – the key lies in tailoring your approach to your specific business needs and technical constraints.

 Chapter 6. From Monolith to Micro-Frontends: A Case Study

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 14th chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

 Let’s say that in the last few weeks, you’ve researched and reviewed articles, books, and case studies and completed several proofs of concept. You’ve spoken with your managers to find the best people for the project, and you’ve even prepared a presentation for the CTO explaining the benefits you can get from introducing micro-frontends in your platform. At last, you’ve received confirmation that you have been granted the resources to prepare a plan and start migrating your legacy platform to micro-frontends. Great job! It’s been a long few weeks, and you’ve done an amazing job, but this is only the start of a large project.

 Next, you will need to prepare an overall strategy, one that’s not too detailed but not too loose. Too detailed, and you’ll spend months just trying to nail everything down. Too loose, and you won’t have enough guidance. You need enough of a strategy to get started and a North Star to follow during the journey whenever you discover—and, trust me, you will—new challenges and details you didn’t think about until that point. Meanwhile, you also have a platform to maintain in production, which the product team would like to evolve because the replatforming to micro-frontends shouldn’t block the business. The situation is not the simplest ever, but you can mitigate these challenges and find the right trade-off to make everyone happy and the business successful while the tech teams are migrating to the new architecture.

 We have learned a lot about how to design and implement micro-frontends, but I feel this book would not be complete without looking at migration from a monolithic application to a micro-frontend one—by far, the most common use case of this architecture. I believe any project should start simple. Then, over the course of months or years, when the business and the organization are growing, the architecture should evolve accordingly to support the evolving needs of the business. There may be some scenarios where starting a new application with micro-frontends may help the business move in the right direction, such as when you have an application that is composed of several modules that you can ship all together along with some customization for every customer. But the classic use case of micro-frontends is the migration from a legacy frontend application to this new approach. In this chapter, I will share a case study example that stitches together all the information we have discussed in this book.

 The Context

 ACME Inc. is a fairly new organization that, in only a few years, has gained popularity for its video-streaming service across several countries around the world. The company is growing fast. In the last couple of years, it has moved from hundreds of employees to thousands, located all across the globe, and the tech department is no exception.

 The streaming platform is currently available on desktop and mobile browsers, and on some living-room devices such as smart TVs and consoles. Currently the company is onboarding many developers in different locations across Europe. Having all the developers in Europe was a strategic decision to avoid slowing down the development across distributed teams while having some hours of overlap for meetings and coordination.

 Due to the tech department’s incredible growth from tens to hundreds of people, tech leadership reviewed and analyzed the work done so far, finally embracing a plan to adapt their architecture to the new phase of the business. Leadership acknowledged that maintaining the current architecture would slow down the entire department and wouldn’t allow the agility required for the current expansion the business is going through.

 Technology Stack

 The current platform uses a three-tier application deployed in the cloud, composed of a single database with read replicas (they have more reads than writes in their platform), a monolithic API layer with auto-scaling for the backend that scales horizontally when traffic increases, and a single-page application (SPA) for the frontend, as shown in Figure 6-1.

 Figure 6-1. The ACME platform is a three-tier web application

 A three-tier application allows the layers to be independently scaled and developed. However, ACME is scaling and increasing in complexity, as well as increasing the teams working on the same project. This architecture is now impacting the day-to-day throughput and generating communications overhead across teams that may lead to more complexity and coordination despite not being necessary in other solutions.

 As the tech leadership team rightly points out, in this new phase of the business, the tech department needs to scale with more developers and with more features than before. A task force with different skill sets reviews how the architectures—frontend and backend—should evolve in order to unblock the teams and allow the company to scale in relation to business needs.

 After several weeks, the task force proposed migrating the backend layer to microservices and the frontend to micro-frontends. This decision was based on the capabilities and principles of these architectures. They will allow teams to be independent, moving at their own speed, scaling the organization as requested by the business, drifting towards the direction the business needs, choosing the right solution for each domain, and scaling the platform according to the traffic on a service-by-service basis by leveraging the power of cloud vendors.

 From here, we’ll focus our discussion on the frontend part. There will be some references on how the frontend layer is decoupled from the backend using the service dictionary approach discussed in Chapter 11.

 Platform and Main User Flows

 The frontend is composed of the following views:

 	
 Landing page

 	
 Sign-in

 	
 Sign-up

 	
 Payment

 	
 Forgot email

 	
 Forgot password

 	
 Redeem gift code

 	
 Catalog (with video player)

 	
 Schedule

 	
 Search

 	
 Help

 	
 My account

 To provide us enough information to understand how the migration to micro-frontends will work, we will analyze the authentication flow for existing customers, the creation of a subscription flow for new customers, and the experience inside the platform for authenticated customers. Many of these suggestions can be replicated for other areas of the application or applied with small tweaks.

 When a new user wants to subscribe to the video-streaming platform, they follow these steps (see also Figure 6-2):

 	
 The user arrives on the landing page, which explains the value proposition.

 	
 The user then moves to the sign-up page, where they create an account.

 	
 On the next page, the user adds their payment information.

 	
 The user can then access the video platform.

 Figure 6-2. New user subscription flow

 When an existing user wants to sign in on a new platform (browser or mobile device, for instance) to watch some content, they will do the following (see also Figure 6-3):

 	
 Access the platform in the landing page view

 	
 Select the sign-in button, which redirects them to the sign-in view

 	
 Insert their credentials

 	
 Access the authenticated area and explore the catalog

 Figure 6-3. Existing user authenticating on a new platform (browser or mobile device, for instance)

 Once a user is authenticated, they can watch video content and explore the catalog following these steps (see also Figure 6-4):

 	
 They start at the catalog to choose the content to view.

 	
 When content is selected, the user sees more details related to the content and the possibility to search for similar content or just play the content.

 	
 When the user chooses to play the content, they are redirected to a view with only the video player.

 	
 When the user wants to search for specific content not available in the catalog view, they can choose to use the search functionality.

 Figure 6-4. Existing users can navigate content via the catalog or search functionality and then play any content after discovering the details of what they are about to watch

 These are the main flows, which should be enough to explore how to migrate to micro-frontends. Obviously, there are always more edge cases to cover, especially when we implement errors management, but we won’t cover those in this chapter.

 The application is written with Angular, with a continuous integration pipeline and a deployment that happens twice a month because it is strictly coupled with the backend layer. In fact, the static files are served by the application servers where the APIs live, so therefore, every time there is a new frontend version, the teams have to wait for the release of a new application server version. The release doesn’t happen very often due to the organization’s slow release cycle process.

 The final artifact produced by the automation pipeline is a series of JavaScript and CSS files with an HTML entry point. In the continuous integration process, the application has some unit testing, but the code coverage is fairly low (roughly 30%), and the automation process takes about 15 minutes to execute end to end to create an artifact ready to be deployed in production.

 The organization is using a three-environment strategy: testing, staging, and production. As a result, the final manual testing happens in the staging environment before being pushed into production, another reason why deployments can’t happen too often. The user acceptance testing department (UAT) does not have enough resources, compared to the developers who handle platform enhancement. Due to the simple automation process put in place, some developers on different teams are responsible for maintaining the automation pipelines; however, it’s more of an additional task to shoehorn into their busy schedules than an official role assigned to them. This sometimes causes problems because resolving issues or adding new functionalities in the continuous integration process may require weeks instead of days or hours.

 Finally, the platform was developed with observability in mind, not only on the backend but also on the frontend. In fact, both the product team and the developers have access to different metrics to understand how users interact with the platform so they can make better decisions for enhancing the platform’s capabilities. They are also using an observability tool for tracking JavaScript runtime errors inside their frontend stack.

 Technical Goals

 After deciding to move their frontend platform to micro-frontends, the tech leadership identified the goals they should aim for with this investment.

 The first goal is maintaining a seamless experience for developers despite the architectural changes. Degrading a frictionless developer experience, available with the SPA, could lead to a slower feedback loop and decrease the software quality. Moreover, the leadership decided that it doesn’t want to reinvent the wheel either, so it will be acceptable to create some tools for filling certain gaps but not a complete custom developer experience that may prevent new tools from being embraced in the future. It’s important to fix the automation strategy for reducing the feedback loop that now takes too long.

 Another key project goal is to decouple the micro-frontends and allow independent evolution and deployment. Micro-frontends that are tightly coupled together must be released all together. Every micro-frontend should be an independent artifact deployable in any environment. It needs to optimize for fast flow, reducing the external dependencies for each team.

 Moreover, tech leadership wants to reduce the risk of introducing bugs or defects in production, easing the traffic toward new micro-frontend versions. This way, developers can test with real data in production but not affect the entire user base.

 An additional goal is to generate value as soon as possible to demonstrate to the business the return of value of their investment. Therefore, a strategy for transitioning the SPA to micro-frontends has to be defined in a way that when a micro-frontend is available, it will initially work alongside the monolith.

 The tech leadership has also requested tracking the onboarding time for new joiners in order to understand whether this approach extends developer onboarding time. The team will need to figure out a way to reduce this period, perhaps by creating more documentation or using different approaches.

 The last goal for this project is finding the right organization setup for reducing external dependencies between teams and reducing the communication overhead that could increase due to the company’s massive growth.

 Migration Strategy

 Based on tech leadership’s requirements and goals, the ACME teams started to work on a plan for migrating the entire platform to micro-frontends. The first step is embracing the micro-frontends decisions framework as a guideline to define the foundation of the new architecture. The first four decisions—defining what a micro-frontend is in your architecture, composing micro-frontends, routing micro-frontends, and communicating between micro-frontends—will lead the entire migration toward the right architecture for the context.

 As discussed in several chapters of this book, the micro-frontend decisions framework gives us a skeleton to architect a micro-frontend project onto. All the other decisions will build on top of this frame, creating a reliable structure.

 Micro-Frontend Decisions Framework Applied

 The first decision of the framework is how a micro-frontend will look. The ACME teams decided on a vertical split, where micro-frontends represent a subdomain of the entire application (see Figure 6-5).

 Figure 6-5. A vertical-split micro-frontend, where the application shell loads only one micro-frontend at a time

 A vertical-split is the approach chosen by several other organizations worldwide for kicking off their new micro-frontends architecture. It has fewer sharp edges to consider and can always be combined with a horizontal split when needed.

 The teams took into account the following characteristics for their context before deciding to use a vertical split:

 	Similar developer experience

 	
 Because the current platform is an SPA, a vertical split allows developers to work like they have so far but with a smaller context and less code to be responsible for.

 	Low component reusability

 	
 The teams have identified that not many components are similar across the different subdomains. This clearly indicates that the reusability of micro-frontends, a plus of a horizontal-split approach, is not needed. A light design system will ensure consistency across micro-frontends and reduce overhead.

 	Better integration with current automation strategy

 	
 The vertical split fits very well with the current automation strategy, considering right now ACME is building an SPA. The teams have enhanced their automation pipelines for building multiple SPAs without the need to create custom tools for embracing this architecture style. They will need to use infrastructure as code for automating the process of building their pipelines and replicating them without human intervention.

 	No risk of dependency clashes

 	
 In a vertical split, the application shell always loads one micro-frontend at a time, due to its nature. As a result, the teams won’t have to deal with dependency clashes, like different versions of the same library, because there will be dependencies of just one micro-frontend, reducing the possibility of runtime errors and bugs in production. There also won’t be any CSS style clash because only one stylesheet per micro-frontend will load.

 	A consistent user experience

 	
 Creating a consistent user experience is easier with a vertical split because the same team is working on one or multiple views inside the same SPA. Obviously, a level of coordination is required for maintaining consistency across micro-frontends, but it’s definitely less prone to errors than having multiple micro-frontends in the same view developed by multiple teams.

 	Reduction of cognitive load

 	
 For ACME, a vertical split will decrease its developers’ cognitive load, because they’ll only have to master and maintain a part of the platform. This choice also won’t dilute the decisions made by developers inside their business subdomain. However, every developer should have an overall understanding of the platform architecture so that when they’re on call, they can understand the touch points of their business domain and recognize where a bug may appear despite not being inside their domain.

 	Faster onboarding process

 	
 As the tech leadership requested, using this approach will lead to a faster onboarding process because the teams can use well-known, standard tools and won’t need to create their own to build, test, and deploy micro-frontends. Also, because teams will be responsible for only a part of the platform, less coordination with other teams will be required. New joiners can hit the ground faster, with less information needed to start. Finally, every team will be encouraged to create a starter kit and induction for every new joiner to speed up the learning process and make a person capable of contributing to the base code in the fastest way possible.

 The second decision of the framework is related to the composition of the micro-frontends. In this case, the best approach is composing them on the client side considering they are using a vertical-split approach. This means that the teams will have to create an application shell that is responsible for mounting and unmounting micro-frontends, exposing some APIs to allow communication between micro-frontends and ensuring it will always be available during the user session (see Figure 6-6). A server-side composition was rejected immediately due to the traffic spikes, which required more effort to support and maintain than the simple infrastructure they would like to use for this project. Moreover, since the majority of the application is behind authentication, it can’t benefit from the organic SEO offered by the server-side rendering architecture.

 Figure 6-6. Client-side composition, where the application shell is responsible for loading and unloading one micro-frontend at a time

 The third decision is the routing of micro-frontends, that is, how to map the different application paths to micro-frontends. Because ACME will use a vertical split and is composed on the client side, the routing must happen on the client side, where the application shell knows which micro-frontend to load based on the path selected by the user. This mechanism also has to handle the deep-linking functionality; if a user shares a movie’s URL with someone else, the application shell should load the application in exactly that state (see Figure 6-7).

 Figure 6-7. When the user signs in from the /account path, they are redirected to the authenticated area (/catalog). The application shell owns the logic for unloading the current micro-frontend and loading the next one based on the URL.

 When an unauthorized user tries to access an authenticated part of the system via deep linking, the application shell should validate only if the user has a valid token. If the user doesn’t have a valid token, it should load the landing page so the user can decide to sign in or subscribe to the service.

 Last but not least, ACME teams have to decide how micro-frontends communicate with each other. With a vertical split, communication can happen only via a query string or using web storage, eliminating the need for other techniques like event emitters or custom events which are required for a horizontal split. ACME decided to mainly leverage the web storage and use the application shell as a proxy for storing the data. In this way, the application shell can verify the space available and make sure data won’t be overridden by other micro-frontends (see Figure 6-8).

 Figure 6-8. The application shell is responsible for storing data in the local storage and exposing several APIs to the micro-frontends for storing and retrieving data

 Let’s summarize the decisions made by the teams in Table 6-1.

 Table 6-1. Summary of ACME architectural decisions

 	Micro-frontend decisions framework

 	
 Defining micro-frontends

 	Vertical split

 	
 Composing micro-frontends

 	Client side via application shell

 	
 Routing micro-frontends

 	Client side via application shell

 	
 Communication between micro-frontends

 	Using web storage via application shell

 Splitting the SPA in Multiple Subdomains

 After creating their micro-frontend framework, the ACME tech teams analyzed the current application’s user data to understand how the users were interacting with the platform. This is another fundamental step that provides a reality check to the teams. Often what tech and product people envision for platform usage is very different from what users actually do.

 The SPA was released with a Google Analytics integration, and the teams were able to gather several custom data points on user behavior for developing or tweaking features inside the platform. These data are extremely valuable in the context ACME operates because they help identify how to slice the monolith into micro-frontends.

 Looking at user behaviors, the teams discover the following:

 	New users

 	
 Users who are discovering the platform for the first time follow the sign-up journey as expected. However, there are significant drops in visualization from one view to the next. As we can see in Table 6-2, all the new users access the landing page, but only 70% of that traffic moves to the next step, where the account is created. At the third step (payment), there is a drop of an additional 10%. At the last step, only 30% of the initial traffic has converted to customers.

 Table 6-2. New user traffic per view on ACME platform

 	View
 	Traffic

 	Landing page
 	100%

 	Sign-up
 	70%

 	Payment
 	60%

 	Catalog
 	30%

 	Unauthenticated existing users

 	
 Existing users who want to authenticate on a new browser or another platform, such as a mobile device, usually skip the landing page, going straight to the sign-in URL. After signing in, they have full access to the video catalog, as seen in Table 6-3.

 Table 6-3. Unauthenticated existing user traffic per view for accessing ACME platform

 	View
 	Traffic

 	Landing page (as entry point)
 	25%

 	Sign-in (as entry point)
 	70%

 	Authenticated existing users

 	
 Probably the most interesting result is that authenticated users are not signing out. As a result, they won’t see the landing page or sign-in/sign-up flows anymore. They occasionally explore their account page or the help page. But a vast majority of the time, authenticated users are staying in the authenticated area and not navigating outside of it (see Table 6-4).

 Table 6-4. Authenticated existing user traffic per view for accessing ACME platform

 	View
 	Traffic

 	Landing page
 	0%

 	Sign-in
 	1%

 	Sign-up
 	0%

 	Catalog
 	92%

 	My account
 	4%

 	Help
 	2%

 This is extremely valuable information for identifying micro-frontends. In fact, ACME developers can assert the following:

 	
 The landing page should immediately load for new users, giving them the opportunity to understand the value proposition.

 	
 Landing page, sign-in, and sign-up flows should be decoupled from the catalog since authenticated users only occasionally navigate to other parts of the application.

 	
 “My account” and “Help” don’t receive much traffic.

 	
 There is a considerable drop of new users between landing page and sign-up flows, and we can expect the product team would like to make multiple changes to reduce this drop.

 Another important aspect is understanding how the current architecture can be split into multiple subdomains following domain-driven design practices. Taking into consideration the whole platform—not only the client-side part—the teams identified some subdomains and relative bounded context.

 For the frontend part, the subdomains that the teams took into consideration for their final decisions are:

 	Value proposition

 	
 A subdomain for sharing all the information needed to make a decision for subscribing to the platform.

 	Onboarding

 	
 A subdomain focused on subscribing new users and granting access to the platform for existing users. In the future, should complexities arise, this may be split into smaller subdomains, such as payment methods, user creation, and user authentication, but for now they will be one subdomain.

 	Catalog

 	
 A core subdomain where ACME gathers the essential part of its business proposition, such as the catalog, video player, and all the controls for allowing users to consume content respecting the rights holders’ agreements.

 	User management

 	
 A subdomain where the user can change account preferences, payment methods, and other personal information.

 	Customer support

 	
 A subdomain for helping new and existing users to solve their problems in any part of the platform.

 With this information in mind and the decisions made for approaching this project using the micro-frontend decisions framework, the teams identified the migration path with the following micro-frontends (see also Figure 6-9):

 	Landing page

 	
 Considering that the landing page is viewed by all new users, the teams want to have a super-fast experience where the page is rendered in a blink of an eye. It needs its own micro-frontend so all the technical best practices for a highly cacheable micro-frontend with a small size to download can be applied.

 	Authentication

 	
 This micro-frontend is composed of all the actions an unauthenticated user should perform before accessing the catalog, such as moving from sign-in to sign-up view, retrieving their credentials, and so on.

 	Catalog

 	
 This is an authenticated area frequently viewed by authenticated users. The teams want to expedite the experience for these users when they return to the platform, so they encapsulate it in a single micro-frontend.

 	My account

 	
 This micro-frontend is a combination of information available in different domains of the backend, allowing users to manage their account preferences. It is available only for authenticated users. Because of the small traffic and the cross-cutting nature of this domain, ACME decided to encapsulate it in a micro-frontend.

 	Help

 	
 Like the “My account” micro-frontends, Help has low traffic, a different use case from other micro-frontends, and highly cacheable content (because Help pages are not updated very often). Encapsulating this subdomain in a micro-frontend allows ACME to use the right infrastructure for optimizing this part of the platform.

 	Application shell

 	
 This is the micro-frontend orchestrator. Because ACME decided to use a vertical split with a client composition, this element is mandatory to build. The main caveat is trying to keep it light and as decoupled as possible from the rest of the application so that all the other micro-frontends can be independent and evolve without any dependency on the application shell.

 Figure 6-9. Migration path: from SPA to micro-frontends

 Technology Choice

 Because the Angular SPA was developed some years ago with patterns and assumptions that were best practices at that time, ACME tech teams investigated their relevance, as well as new practices that might make developers’ lives easier and more productive. The teams agreed to use React, and they have discovered in the reactive programming paradigm a development boost during their proof of concepts.

 Although Redux allows them to embrace this paradigm using libraries such as redux-observable, they found in MobX-State-Tree an opinionated and well-documented reactive state management that works perfectly with React and allows state composition so they can reuse states across multiple views of the same micro-frontend. This will enhance the reusability of their code inside the same bounded context.

 Thanks to the nature of the vertical-split micro-frontends, which loads only one micro-frontend at a time, there is no need to coordinate naming conventions or similar agreements across multiple teams. The teams will mainly share best development practices and approaches to make the micro-frontends similar and allow team members to understand the codebase of other micro-frontends or even join a different team.

 The micro-frontends will be static artifacts and therefore highly cacheable through a content delivery network (CDN), so there’s no need for runtime composition on the server side. The delivery strategy will need to change, however, because of this aspect. Currently, ACME is serving all the static assets directly from the application server layer. Because the API integrations are happening on the client side, there will be no need to continue maintaining the application servers for serving static contents but only for exposing the backend API.

 ACME decided to use object storage like AWS S3, storing all the artifacts to serve in production in a regional bucket and enhancing the distribution across all the countries they need to serve using a CDN such as Amazon CloudFront. This will simplify the infrastructure layer, reducing the possible issues happening in production due to misconfiguration or scalability. Additionally, the frontend has a different infrastructure than the API layer, allowing the frontend developers to evolve their infrastructure as needed. This new infrastructure allows every team to independently deploy their micro-frontend artifacts (HTML, CSS, JS files) in a S3 bucket and have them automatically available for the application shell to load them.

 Another goal for this migration is to reduce the risk of bugs in production when a new micro-frontend version is deployed while immediately creating value for the users and the company without waiting for the entire application to be rewritten with the new architecture. Considering the simple frontend infrastructure adopted for the project, the ACME teams decided to leverage Lambda@Edge, a serverless computation layer offered by AWS (see Chapters 10 and 11), for analyzing the incoming traffic and serving a specific artifact to the application shell, implementing a de facto frontend canary release mechanism at the infrastructure level that won’t impact the application code but will run in the cloud (see Figure 6-10).

 Figure 6-10. Simple infrastructure based on S3 bucket, Lambda@Edge, and a CDN like Amazon CloudFront distribution, with point of presence (PoP) available all over the world

 Thanks to this implementation, ACME can also apply the strangler pattern (see Chapter 10) for gradually moving to micro-frontends while maintaining the legacy application. In fact, they can use the application URL to trigger the Lambda@Edge that will serve the legacy or application shell to the user (see Figure 6-11).

 Figure 6-11. Strangler pattern applied at the infrastructure level using Lambda@Edge for funneling the traffic toward either the legacy or micro-frontend application

 In the configuration file loaded by the Lambda@Edge at the initialization phase, developers mapped the URLs belonging to the legacy application and the ones to the micro-frontend application. Let’s clarify this with an example. Imagine that the catalog micro-frontend is released first, because at this stage you want all or part of the traffic going toward the micro-frontend branch (see Figure 6-11). The authentication remains inside the legacy application, so after the user signs in or signs up, the SPA will load the absolute URL for the catalog (e.g., www.acme.com/catalog). This request will be picked up by Amazon CloudFront, which will trigger the Lambda@Edge and serve the application shell instead of the SPA artifact.

 This plan acknowledges that during the transition phase, a user will download more library code than before because they’re downloading two applications at the end. However, this won’t happen for existing users; they will always download the micro-frontend implementation, not the legacy one.

 As you can see, there is always a trade-off to make. Because ACME’s goal was finding a way to mitigate bugs in production and generate value immediately, these were the points they have to optimize for, especially if this is just a temporary phase until the entire application is switched to the new architecture. At this stage, ACME teams have made enough decisions to start the project. They decided to create a new team to take care of the catalog micro-frontend, which will be the first to be deployed into production when ready.

 The teams know that the first micro-frontend will take longer to be ready because on top of migrating the business logic toward this new architecture style, the new team has to define the best practices for developing a micro-frontend that other teams will follow. For this reason, the catalog team starts with some proofs of concept to nail down a few details, such as how to share the authentication token between the SPA and the micro-frontend initially and then between micro-frontends when the application is fully ported to this pattern, or how to integrate with the backend APIs with consideration for the migration on that side as well as the potential impact to API endpoints, contracts, and so on.

 Initially, the team splits the work in two parts. Half of the team works on the automation pipeline for the application shell and the catalog micro-frontends. The other half focuses on building the application shell. The shell should be a simple layer that initializes the application retrieving the configuration for a specific country and orchestrates the micro-frontend life cycle, such as loading and unloading micro-frontends or exposing some functions for notifying when a micro-frontend is fully loaded or about to be unloaded.

 The first iteration of this process will be reviewed and optimized when more teams join the project. The automation and application shell will be enhanced as new requirements arise or new ideas to improve the application are applied.

 Implementation Details

 After identifying the next steps for the architecture migration, ACME has to solve a few additional challenges along the migration journey. These challenges, such as authentication and dependencies management, are common in any frontend project. Implementing the following features in a micro-frontend architecture may have some caveats that are not similar in other architectures. The topics we’ll dive deeply into include:

 	
 Application shell responsibilities

 	
 Integration with the APIs that takes into account the migration to microservices happening in parallel

 	
 Implementation of an authentication mechanism

 	
 Dependencies management between micro-frontends

 	
 Components sharing across multiple micro-frontends

 	
 Introduction of design consistency in the user experience

 	
 Canary releases for frontend

 	
 Localization

 In this way, we cover the most critical aspects of a migration from SPA to micro-frontends. This doesn’t mean there aren’t other important considerations, but these topics are usually the most common ones for a frontend application, and applying them at scale is not always as easy as we think.

 Application Shell Responsibilities

 The application shell is a key part of this architecture. It’s responsible for mounting and unmounting micro-frontends, initializing the application. It’s also responsible for sharing an API layer for the micro-frontends to store and retrieve data from the web storage and triggering life cycle methods. Finally, the application shell knows how to route between micro-frontends based on a given URL.

 Application Initialization

 The first thing the application shell does is consume an API for retrieving the platform configuration stored in the cloud. It consumes an API and returns feature flags, a services dictionary with a few endpoints used for validating tokens before granting the access to an authenticated area, and a list of micro-frontends available to mount.

 After consuming the configuration from the backend, the application shell performs several actions:

 	
 Exposes the relevant part of the configuration to any micro-frontends and appends it to a window object so that every mounted micro-frontend will have access to it.

 	
 Checks business logic: if there is a token in web storage, validates it with the API layer. Routes the user to the authenticated area if they’re entitled or to the landing page if they’re not.

 	
 Mounts the right micro-frontend based on the user’s state (whether they’re authenticated).

 Communication Bridge

 The application shell offers a tiny set of APIs that every micro-frontend will find useful for storing or retrieving data or for dealing with life cycle methods. There are three important goals addressed by the application shell exposing these APIs:

 	
 Exposing the life cycle methods for micro-frontends frees up memory before it is unmounted or removes listeners and starts the micro-frontend initialization when all the resources are loaded.

 	
 Being the gatekeeper for managing access for the web storage in this way, the underlying storage for a micro-frontend won’t matter. The application shell will decide the best way to store data based on the device or browser it is running on. Remember that this application runs on web, mobile, and living room devices, so there is a huge fragmentation of storage to take care of. It can also perform checks on memory availability and return consistent messages to the user in case all the permissions aren’t available in a browser.

 	
 Allow micro-frontends to share tokens or other data using in-memory or web storage APIs.

 All the APIs exposed to micro-frontends will be available at the window object in conjunction with the configurations retrieved consuming the related API.

 Mounting and unmounting micro-frontends

 Since ACME’s micro-frontends will have HTML files as an entry point, the application shell needs to parse the HTML file and append inside itself the related tags. For instance, any tag available in the body element of the HTML file will be appended inside the application shell body. In this way, the moment an external file tag is appended inside the application shell Document Object Model (DOM), such as JavaScript or a CSS file, the browser fetches it in the background. There is no need to create custom code for handling something that is already available at the browser level.

 To facilitate this mechanism, the teams decided to add an attribute in the HTML elements of every micro-frontend for signaling which tags should be appended and which should be ignored by the application shell.

 Sharing state

 A key decision made by ACME was that the sharing state between micro-frontends has to be as lightweight as possible. Thus, no domain logic should be shared with the application shell that should be only used for storing and retrieving data from web storage. Because the vertical split architecture means only one micro-frontend can load at a time in the application shell, the state is very well encapsulated inside the micro-frontend. Only a few things are shared with other micro-frontends, such as access tokens and temporary settings that should expire after a user ends the session. Some components will be shared across multiple micro-frontends, but in this case there won’t be any shared states, just well-defined APIs for the integration and a strong encapsulation for hiding the implementation details behind the contract.

 Global and local routing

 Last but not least, the application shell knows which micro-frontend to load based on the configuration loaded at runtime, where a list of micro-frontends and their associated paths is available. In this configuration, every micro-frontend has a global path that should be linked to it. For example, the authentication micro-frontend is associated with acme.com/account, which will load when a user types the exact URL or selects a link to that URL.

 When a micro-frontend is an SPA, it can manage a local route for navigating through different views. For instance, in the authentication micro-frontend, the user can retrieve a password or sign up to the service. These actions have different URLs available, so that the logic will be handled at the micro-frontend level. The application shell is completely unaware, then, of how many URLs are handled inside the micro-frontend logic. The only important URL part handled by the application shell is the first level URL (e.g.: acme.com/first-level-url).

 In fact, the micro-frontend appends a parameter belonging to a view to the path. The sign-up view, for instance, will have the following URL: acme.com/account/signup. The first part of the URL is owned by the application shell (global routing), while the signup part is owned by the micro-frontend. In this way, the application shell will have a high-level logic for handling a global routing for the application, and the micro-frontend will be responsible for knowing how to manage the local routing and evolving, avoiding the need to change anything in the application shell codebase.

 Migration strategy

 During the migration period, the application shell will live alongside the SPA. In this way, ACME can deliver incremental value to their user, testing that everything works as expected and redirecting traffic to the SPA if it finds some bugs or unexpected behavior in the new codebase. The trade-off will be in the platform performances because the user will download more code than formerly. However, this method will enable one of the key business requirements: reduce the risk of introducing the micro-frontend architecture. In combination with the canary release, this will make the migration bulletproof to massive issues, thanks to several levers the teams can pull if any inconveniences are found during the migration journey.

 Backend Integration

 Because ACME is migrating the backend layer from a monolith to microservices, the first step will be a lift and shift, in which they will migrate endpoint after endpoint from the monolith to microservices. Using a strangler fig pattern, they will redirect traffic to either the monolith or a new microservice. This means the API contract between frontend and backend will remain the same in the first release. There may be some changes, but they will be the exception rather than the rule.

 This approach allows ACME to work in parallel at different speeds between the two layers. However, it may also create a suboptimal solution for data modeling. The drastic changes required to accommodate microservices’ distributed nature means some services may not be as well designed as they can be. For the ACME teams, though, this is an acceptable trade-off, considering there are a lot of moving parts to define and learn on this journey. The tech teams agreed to revisit their decisions and design after the first releases to improve the data modeling and APIs’ contracts.

 Based on this context, the development and platform teams agreed to use load balancers to funnel the traffic to the monolithic or microservices layer, so that the client won’t need to change much. Every change will remain at the infrastructure level. Deciding the best way to roll out a new API version can be done without making the client aware of all these changes. The client will fetch the list of endpoints at runtime via the configuration retrieved initially by the application shell, eliminating the need to hardcode the endpoints in the JavaScript codebase.

 Integrating Authentication in Micro-Frontends

 One of the main challenges of implementing micro-frontend architecture is dealing with authentication, especially with a shared state across multiple micro-frontends. The ACME teams decided to ensure that the application shell is not involved in the domain logic, keeping every micro-frontend as independent as possible. Thanks to the vertical-split approach, sharing data between micro-frontends is a trivial action because they can use web storage or query string for passing persistent data (e.g., simple user preferences) or volatile data (e.g., product ID).

 ACME uses the local storage in its monolithic SPA for storing basic user preferences that don’t require synchronization across devices, such as the video player’s volume level and the JSON web token (JWT) used for authenticating the user. Because the developers want to generate immediate value for their users and company, they decided to stick with this model and deliver the authenticated area of the catalog alongside the SPA. When a user signs up or signs in within the SPA, the JWT will be placed in the local storage. When the application shell loads the catalog micro-frontend, the micro-frontend will then request the token through the application shell and validate it against the backend (see Figure 6-12).

 Figure 6-12. During the migration, the SPA authenticates a user and stores the token in the local storage, which the authenticated micro-frontend retrieves once loaded

 Due to the local storage security model, the SPA, the application shell, and all the micro-frontends have to live in the same subdomain because the local storage is accessible only from the same subdomain. Therefore, the SPA will have to be moved from being served by an application server to the S3 bucket, where the new architecture will be served from.

 Local Storage Security Model

 The data processed using the local storage object persists through browser shutdowns, while data created using the session storage object will be cleared after the current browsing session. It’s important to note that this storage is origin specific. This means that a site from a different origin cannot access the data stored in an application’s local database. For instance, if we store some website data in the local storage on the main domain www.mysite.com, the data stored won’t be accessible by any other subdomain of mysite.com (e.g., auth.mysite.com).

 Thanks to this approach, ACME can treat the SPA as another micro-frontend with some caveats. When it finally replaces the authentication part and finishes porting to this new architecture, every micro-frontend will have its own responsibility to store or fetch from the local storage via the application shell (see Figure 6-13).

 Figure 6-13. When the frontend platform is fully migrated to micro-frontends, every micro-frontend will be responsible for managing part of the users’ authentication

 After the architecture migration, ACME will revisit where to store the JWT. The usage of local storage exposes the application to cross-site scripting (XSS) attacks, which may become a risk in the long run when the business becomes more popular and more hackers would be interested in attacking the platform.

 Cross-Site Scripting

 Cross-site scripting (XSS) attacks are a type of injection in which malicious scripts are injected into otherwise benign and trusted websites. XSS attacks occur when an attacker uses a web application to send malicious code, generally in the form of a browser-side script, to a different end user. Flaws that allow these attacks to succeed are widespread and occur anywhere a web application uses input from a user within the output it generates without validating or encoding it.

 An attacker can use XSS to send a malicious script to an unsuspecting user. The end user’s browser has no way of knowing that the script should not be trusted and will execute it. Because the browser thinks the script came from a trusted source, the malicious script can access any cookies, session tokens, or other sensitive information the browser retains and uses with that site. These scripts can even rewrite the content of the HTML page.

 Dependencies Management

 ACME decided to share the same versions of React and MobX with all the micro-frontends, reducing the code the user has to download. However, the teams want to be able to test new versions on limited areas of the application so they can test new functionalities before applying them to the entire project. They decided to bundle the common libraries and deploy to the S3 bucket used for all the artifacts. This bundle doesn’t change often and therefore is highly cacheable at the CDN level (see Figure 6-14).

 Figure 6-14. Every micro-frontend builds and deploys its own JavaScript dependencies, apart from the common libraries, which have a separate automation strategy

 Other teams that want to experiment with new common library versions can easily deploy a custom bundle for their micro-frontend alongside the other final artifact files and use that version instead of the common one.

 In the future, ACME’s teams are planning to enforce bundle size budgets in the automation pipelines for every micro-frontend to ensure there won’t be an exploit of libraries bundled together, which increases the bundle size and the time to render the whole application. This way, ACME aims to keep the application size under control while keeping an eye on the platform evolution, allowing the tech teams to innovate in a frictionless manner.

 Integrating a Design System

 To maintain UI consistency across all micro-frontends, the tech teams and the UX department decided to revamp the design system available for the SPA using web components instead of Angular. Migrating to web components allows ACME to use the design system during the transition from monolith to distributed architecture, maintaining the same look and feel for the users. The first iteration would just migrate the components from Angular to web components maintaining the same UI. Once the transition is completed, there will be a second iteration where the web components will evolve with the new guidelines chosen by the UX department.

 The initial design system was extremely modular, so developers can pick basic components to create more complex ones. The modularity also means the design system library will not be a huge effort to migrate and the implementation will be as quick as it was before.

 Due to the distributed nature of the new architecture, ACME decided to enforce at the automation pipeline level using a fitness function for checking that every micro-frontend should use the latest version of the design system library. In this way, they will avoid potential discrepancies across micro-frontends and force all the teams to be up to date with the latest version of the design system. The fitness function will control the existence of the design system in every micro-frontend’s package.json and then validate the version against the most up-to-date version in case the design system version is older than the current one. The build automation will be blocked and return a message in the logs, so the team responsible for the micro-frontend will know the reason why their artifact wasn’t created.

 Sharing Components

 ACME wants a fast turnaround on new features and technical improvements to reduce external dependencies between teams. At the same time, it wants to maintain design consistency and application performance, so it will share some components across micro-frontends. The guidelines for deciding whether a component may be shared is based on complexity and the evolution, or enhancement, of a component.

 For example, the footer and header formerly changed once a year. Now, however, these components will change based on user status and the area a user is navigating. The solution applied for the header and footer will be created with the different modular elements exposed by the design system library. These two elements won’t be abstracted inside a component, since the effort to maintain this duplication is negligible and there are only a few micro-frontends to deal with. These decisions may be reverted quickly, however, if the context changes and there are strong reasons for abstracting duplicated parts into a components library.

 To avoid external dependencies for releasing a new version or bug fix inside a component, the teams decided to load components owned by a single specialized team, like the video player components, at runtime. A key component of this platform, the video player evolves and improves constantly, so it’s assigned to a single team that specializes in video players for different platforms. The team optimizes the end-to-end solution, from encoders and packagers to the playback experience. Because the header and footer will load at runtime, they won’t need to wait until every micro-frontend updates the video player library. The video player team will be responsible for avoiding contract-breaking changes without the need to notify all the teams consuming the component.

 ACME will make an exception for the design system. Although it’s built by a team focused only on the consistency of the user experience, the design system will be integrated at development time to allow developers to control the use of different basic components and to create something more sophisticated inside their micro-frontends. All the other components will be embedded inside a micro-frontend at development time, like any other library such as React or MobX (see Figure 6-15).

 Figure 6-15. In a micro-frontend, complex components owned by a single team are loaded at runtime, while all the others are embedded at compile time. The only exception is the design system due to its modular nature.

 None of the components created inside each team will be shared among multiple micro-frontends. If there are components that might simplify multiple teams’ work if shared, a committee of senior developers, tech leads, and architects will review the request and challenge the proposal according to the principle defined at the beginning of the project. These principles will be reviewed every quarter to make sure they are still aligned with the platform evolution and business road map.

 Implementing Canary Releases

 Another goal of this project is being able to release often in production and gather real data directly from the users. It’s a great target to aim for, but it’s not as easy to reach as we may think.

 Based on its infrastructure for serving frontend artifacts, ACME decided to implement a canary release mechanism at the edge, so that it can extend the logic of its Lambda@Edge once the migration is completed, adding logic to manage the micro-frontend releases.

 ACME will also need to modify the application shell to request specific micro-frontend versions and delegate retrieving the exact artifact version to Lambda@Edge. The tech teams decided to identify every micro-frontend release using semantic versioning (semver). This allows them to create unique artifacts, appending the semver in the filename and easily avoid caching problems when they release new versions.

 Semantic Versioning

 Given a version number MAJOR.MINOR.PATCH like 1.1.0, increment the:

 	
 MAJOR version when you make incompatible API changes

 	
 MINOR version when you add functionality in a backward-compatible manner

 	
 PATCH version when you make backward-compatible bug fixes

 Additional labels for prerelease and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

 As we can see in Figure 6-16, first the application shell retrieves a configuration from the APIs. The configuration contains a map of available micro-frontends versions where only the major version is specified (e.g., 1.x.x). This allows the teams to upgrade the application while maintaining backward compatibility. They also only need to upgrade the major version when an API breaking change updates the configuration file served by the backend.

 Figure 6-16. Sequence diagram describing how ACME implements canary releases for micro-frontends

 When the artifact request hits Amazon CloudFront, a Lambda@Edge that retrieves a list of versions available for the micro-frontends is triggered; the traffic should then be redirected to a specific version. The logic inside the Lambda will associate a random number—from 1 to 100—to every user. If a user is associated with 20% and 30% of the traffic should be redirected to a new version of the requested micro-frontend, that user will see the new version. All the users with a value higher than 30 will see the previous version.

 The Lambda returns the selected artifact and generates a cookie where the random value associated with the user is stored. If the user comes back to the platform, the logic running in the Lambda will validate just the rule applied to the micro-frontend requested and evaluate whether the user should be served the same version or a different one based on the traffic patterns defined in the configuration. As a result, both authenticated and unauthenticated traffic will have a seamless experience during the canary exploration of an artifact.

 Using this mechanism, ACME can reduce the risk of new releases without compromising fast deployment because they can easily move users from newer versions to an older one simply by modifying the configuration retrieved by the Lambda@Edge.

 The team plans to introduce a frontend discovery service to facilitate canary releases once the system has fully migrated to micro-frontends (as discussed in Chapter 9). This approach will allow seamless integration with the initial call made by the application shell, ensuring that the number of API requests made at the start of the application remains consistent, while also supporting the canary release process.

 Localization

 The ACME application has to render in different languages based on the user’s country. By default, the application will render in English, but the product team wants the user to be able to change the language in the application and have the choice to persist for authenticated users inside their profile settings, creating a seamless experience for the user across all their devices.

 In this new architecture, ACME tech teams have to consider two forces:

 	
 Every micro-frontend has a set of labels to display in the UI, some of which may overlap with other micro-frontends, such as common error messages.

 	
 Every micro-frontend represents a business subdomain, so the service has to return just enough labels to display for that specific subdomain and not much more; otherwise, resources will be wasted.

 ACME tech teams decided to modify the dictionary API available in the monolith to return only the labels needed inside a micro-frontend. In this way, the SPA can still receive all the labels available for a given language, and the micro-frontend will only receive the label needed for its subdomain during the transition (see Figure 6-17). At migration completion, all the micro-frontends will consume the microservices API instead of the legacy backend, and there won’t be a way to retrieve all the labels available in the application through the legacy backend.

 When a micro-frontend consumes the dictionary API, it has to pass the subdomain as well as the language and country related to the labels in the request body in order to display them in the user interface. When it receives the request, the microservice will fetch the labels from a database based on the user’s country, favorite language, and the micro-frontend subdomain.

 Because micro-frontends are not infinite and the platform supports less than a dozen languages, having a CDN distribution in front of the microservice will allow it to cache the response and absorb the requests coming from the same geographical area.

 Being able to rely on the monolith via a different endpoint during micro-frontend development creates a potential fallback, if needed. It allows older versions of native applications on mobile devices to continue working without any hiccups.

 Figure 6-17. The micro-frontend consumes a new API for fetching the labels to display in the interface through a new microservice. The SPA will consume the API from the legacy backend.

 Summary

 In this chapter, we have gathered all the insights and suggestions shared across the book and demonstrated how they play out in a real-world example. Sharing the reasoning behind certain decisions—the why—is fundamental for finding the right trade-off in architecture and, really, in any software project. When you don’t know the reasons for certain decisions inside your organization, I encourage you to find someone who can explain them to you. You will be amazed to discover how much effort is spent before finding the right trade-offs between architecture, business outcomes, and timing.

 You will see in your career that what works in one context won’t work in another because there are so many factors stitching the success of the project together, such as people skills, environment, and culture. Common obstacles include the seniority of the engineers, company culture, communication flows not mapping team interactions, dysfunctional teams, and many more.

 When we develop any software project at scale, there are several aspects we need to take into consideration as architects and tech leaders. With this chapter, I wanted to highlight the thought process that moved ACME from an SPA to micro-frontends because these are decisions and challenges you may face in the real world. Some of the reasoning shared in these pages may help you to take the right direction to project success.

 One thing that I deeply like about micro-frontends is that we finally have a strong say about how to architect our frontend applications. With SPAs, we followed well-known frameworks that provided us speed of development and delivery because they solved many architectural decisions for us. Now we can leverage these frameworks and contextualize them using their strengths in relevant parts of our projects.

 Now’s our chance to shape this space with new tools, practices, and patterns. Imagine a world where micro-frontends empower teams to work independently, yet seamlessly integrate their components into a cohesive whole. Consider the agility and speed we can achieve by breaking down monolithic structures and embracing a modular approach. With micro-frontends, we’re not just building applications; we’re crafting experiences that can evolve and scale with ease.

 The only thing holding us back is our imagination. So let’s dive in, experiment, and push the boundaries of what’s possible.

 Chapter 7. Introducing Micro-Frontends in Your Organization

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the 15th chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at building.microfrontends@gmail.com.

 You’ve arrived at the last chapter of this book and have learned a lot about how to create micro-frontends, the best architectural approach for your project, and all the best practices to follow to make your project successful. It’s time to start your project and write a few lines of code, right?

 Not quite. There are still some key topics related to the human aspect that we must take into consideration when we introduce this architecture, just as we do whenever we revisit our architecture or introduce a new one. When making significant changes to architecture, we need to think about how to organize the communication flows, how to avoid siloed groups, and how to empower the developers to make the right decisions inside a business domain. These are just some of many important considerations related to the human side of the project we need to think about at the beginning and during the entire life cycle. Micro-frontends may help you mitigate some of these considerations, but they can make others more complex if not approached properly. Therefore, it’s crucial for you to invest the time needed to analyze your current organization structure and see how it would fit inside your new architecture.

 Why Should We Use Micro-Frontends?

 Tech leaders and CTOs often ask this question when someone introduces the idea of micro-frontends inside an organization. It’s a valid question, and the best way to answer it is to use a common language to evaluate the benefits of this architecture paradigm. Micro-frontends bring several benefits to the table, such as team independence, riskless deployment, reduction of cognitive load for developers, fast iterations, and innovation. Despite all of that, they also bring challenges, such as a risk of creating silos inside the organization, higher investment in automation pipelines, and risk of user interface discrepancies. When you introduce the idea of micro-frontends to your organization, focus your presentation on not only the technical benefits but also the organizational benefits. Let me provide some food for thought to help you prepare an impactful presentation for your stakeholders:

 	
 Point out that micro-frontends allow faster feature iterations and reduce the risk of introducing bugs into the entire application.

 	
 Research and describe the context you operate in daily and why micro-frontends may help you to achieve business goals.

 	
 List the problems you are trying to solve with this paradigm.

 	
 Ponder the best way to implement micro-frontends in your context.

 	
 Analyze the impact this architecture may have on team communication.

 	
 Identify the ideal governance for managing such an architecture.

 	
 Retrieve metrics from your automation pipeline, like time to deployment and testing, and think how you would be able to improve them.

 These are just some topics that are relevant to your organization’s tech leaders or clients.

 Remember to present not just a technical solution, which can leave many organizational challenges to overcome. Instead, think about an end-to-end transformation that brings value to the company as well as to your customers. To discover the best technical solution for your context, I strongly encourage you to first run a proof of concept (PoC) to understand the challenges and benefits of this approach better; what works for one team or organization doesn’t always work for another. Be mindful and share the insights that will work best for your organization with your peers and tech leaders. Try to involve the right people up front, because understanding the context in which you operate may result in a nontrivial activity, especially in midsize to large organizations, where you may be dealing with distributed teams whose culture and context change office by office. In the following sections, you’ll discover some insights on how to manage the governance, documentation, organization setup, and communication flows for a micro-frontend project.

 Data to the rescue

 In recent years, I’ve spoken with numerous companies in the industry, from tech leaders to VPs worldwide. A common strategy for raising awareness about the necessity of a distributed system in frontend development involves establishing a baseline and setting goals to facilitate significant improvements.

 Let me explain with an anecdote. In 2024, I started a video podcast where I interviewed engineers, architects, and micro-frontends practitioners. During an interview with Warren Fitzpatrick, Principal Engineer at Dunelm, he shared how he convinced management to embrace this model. I had a similar experience at my previous company, using the same approach to gain development approval. In both cases, the strategy involved identifying existing problems that hindered innovation and new feature development, establishing a baseline, and presenting potential improvements with data relevant to the business.

 Warren shared that their key problem was the slow deployment of features to production due to convoluted automation pipelines and a high number of tests. Interestingly, Warren didn’t emphasize technical improvements to his stakeholders. Instead, he focused on the slow pace of deploying new features and how a more modular strategy, like micro-frontends, could increase deployment frequency. Although their first attempt didn’t achieve the desired results, they adjusted practices and revisited decisions. Now, they are fully committed to a server-side rendering micro-frontends architecture powered by serverless services in the cloud.

 The main takeaway from this story is that identifying a problem slowing down the business can be an effective strategy for encouraging investment in a new approach. This method is not limited to micro-frontends but applies to any organizational improvement. Gathering data and proving with a proof of concept (PoC) that the company could improve its current situation is a technique I’ve used extensively in the past and continue to use. It might not always work, but it will certainly spark discussions within your tech leadership, guaranteed!

 Note

 If you are interested in learning more about Dunelm’s journey and the insights from other companies who embraced micro-frontends, I highly encourage you to listen to the “micro-frontends in the trenches” show on Spotify, Apple Podcast or YouTube.

 Create a trade-off analysis

 A methodical way to work with data when making architectural and design decisions is to conduct a trade-off analysis. This analysis typically involves considering three key dimensions:

 	
 Business requirements

 	
 Architecture characteristics

 	
 Organizational capabilities

 Note

 I strongly recommend documenting these findings to allow for revalidation of your decisions at any time. This practice will help your team make informed decisions and provide future team members with a clear understanding of the rationale behind the chosen architectural approach.

 Business requirements

 Always start with what the business aims to achieve. Engage with key stakeholders to understand why a particular characteristic is important, what they want to attain, and why it matters. It is even better if you can gather some baseline metrics from which to work backwards.

 For example, if the business wants to achieve a faster time to market for new features, investigate the current time frame from ideation to successful deployment of your workload and identify the bottlenecks. Visualizing these findings will help communicate the potential solutions more effectively and improve the current process.

 Architecture characteristics

 The next step is to gather the architectural characteristics defined in collaboration with your tech leadership for implementation within the system. For instance, if you need to build a latency-sensitive solution in the cloud, a multi-region server-side approach could help reduce response times and improve the core web vitals of your application.

 If you need to integrate a design system into a micro-frontends implementation, consider automating this process to accelerate the feedback loop for developers, such as when they open a pull request.

 Organization capabilities

 Finally, you need to understand your specific context. This is crucial for selecting the right approach. Too often, companies adopt a mechanism or practice simply because a large company did, but this does not necessarily lead to success for your organization.

 I recommend identifying the bottlenecks your developers face, reviewing the current feedback loop, and planning improvements through automation. Additionally, assess the skills you have in-house and consider providing training to enhance your team’s capabilities. Every context is different, and it is essential to take this into account.

 This is a valuable exercise to invest time in before starting your journey with micro-frontends. It will provide clarity of intent, set expectations, and ensure alignment across teams.

 The Link Between Organizations and Software Architecture

 What sort of software architecture should you be implementing? You’d be forgiven for wanting to copy others’ success. But there is no such thing like the “best architecture”. Your job is finding the best trade-off for your context. Perfection is unavailable, unfortunately. What we need to create is an architecture that fits our organization’s needs and, especially, the context we operate in.

 We often hear conference talks that explain a specific use case. The ideas and solutions the speaker brings up feel like a perfect fit for what we are trying to solve in our organization. Unfortunately, it’s not always the case. In any talk or book, the solution to a problem is given from the perspective of just one person, who may represent only part of the organization. Often the speaker or writer focuses more on the how and less on the context where their specific solution was successful. There’s little on why this solution worked for this context. But that context provides us with the information we need to make the right trade-offs for our architectures.

 What software architecture should you be implementing? Which business and architectural characteristics should you take into account? How would you express them in your design decisions? These are the initial questions everyone should start with. There is no single architecture that works well in all cases and at all times. You have to customize your architecture for your needs, applying the patterns that solve your problems and fit your situation best. Bear in mind that the business evolves over time and, therefore, a good trade-off today may not be a good one tomorrow.

 Modularity is the key for moving in the direction the business wants to go, allowing it to arrive faster and with minimal complexity. At the same time, modularity is far from a trivial task. It requires discipline, analysis, and a lot of work from everyone involved in the project. Micro-frontends are no exception to this. They’re not suitable for all projects. But they may be useful when you work in a mid-sized to large environment, with three or more teams working exclusively on the frontend side of a project. If you have cross-functional teams working already with microservices, it’s very likely micro-frontends are a suitable approach for your client-side application. Even with mobile applications, many organizations started to use micro-frontends in conjunction with React Native, for instance. They may also be really helpful when scaling the organization is a requirement, when an application’s success depends on time to market, when we are transitioning from a legacy application to a new one and want to generate immediate value for our users instead of waiting several months before the application is finished, and in many other scenarios.

 You may want to embrace a micro-frontends implementation different from the approaches described in this book or even try new approaches for solving specific problems inside your organization. This is absolutely fine, as long as there are strong reasons for doing so and the new trade-off will benefit a team, the entire organization, or a process. Remember, we are writing code for our customers or users, and this should be at the forefronttop of mind for every developer’s mind whendeveloper working on a software project.

 How Do Committees Invent?

 In the first chapter, I briefly introduced Conway’s law: “Any organization that designs a system (defined more broadly here than just information systems) will inevitably produce a design whose structure is a copy of the organization’s communication structure.” This law is from the 1968 paper “How Do Committees Invent?” by Melvin Conway. In his paper, Conway explains how software architecture is usually designed alongside the company structure. But this is not always the case. Sometimes we want to focus on a high-level architecture that is the best trade-off for designing a platform and then restructure our teams around that architecture. In these situations, we are applying the opposite technique, called the “inverse Conway maneuver.” In the “Stages of Design” section of the paper where he describes the steps for designing software architectures, Conway recommends the following:

 	
 Understanding of the boundaries, both on the design activity and on the system to be designed, placed by the sponsor and by the world’s realities

 	
 Achievement of a preliminary notion of the system’s organization so that design task groups can be meaningfully assigned

 Though these principles are half a century old, they feel more relevant than ever. In the book Accelerate, authors Nicole Forsgren, Jez Humble, and Gene Kim share incredible research on the best practices of high-performance organizations from across multiple industries. The inverse Conway maneuver plays an important part in the social-technical aspect of every high-performance organization the authors study.

 Architecture and team communication are strongly linked. It’s crucial to understand and internalize this, because it will greatly influence which micro-frontend architecture we decide to use. Ideally, we would design the best architecture possible for a given context and then assign teams to fulfill the design, but that’s not always possible. In fact, in my experience, it’s rarely possible, but it could happen sometimes. In cases where we need to respect the current organization structure, we need to take into consideration teams’ current communication flows, daily interactions, and the organization structure during our architecture design process in order to design an architecture suitable for our teams. Realizing that communication flow and architecture are linked together allows you to aim for the best architecture for the context you operate within.

 When considering communication flows, we need to distinguish between collocated and distributed teams. Sam Newman shared a very valid point in an article about Conway’s law: “The communication pathways that Conway refers to are in contrast to the code itself, where a single codebase requires fine-grained communication, but a distributed team is only capable of coarse-grained communication. Where such tensions emerge, looking for opportunities to split monolithic systems up around organizational boundaries will often yield significant advantages” (my emphasis).

 The communication type, coarse or fine, is another essential consideration when we design our architecture. In a distributed company, the best way to achieve fine-grained communication across teams is to have a fully remote organization so that there isn’t any difference between teams. However, the moment an organization has multiple developer centers in multiple locations, the communication flow changes again, and having multiple teams working on the same area of the codebase in different offices may be more of an issue than a benefit. A good way to mitigate this problem is by assigning all the subdomains that intersect and share similarities to a colocated team instead of distributing them. For example, imagine a video-streaming platform composed of the following areas:

 	
 Landing page

 	
 Movies catalog

 	
 Playback

 	
 Search

 	
 Personalization

 	
 Sign-in

 	
 Sign-up

 	
 Payment

 	
 Remember email

 	
 Remember password

 	
 Help

 	
 My account

 When we group subdomains that intersect and share similarities, we can group subdomains related to new-user onboarding:

 	
 Landing page

 	
 Sign-up

 	
 Payment

 Then we can group subdomains related to existing users who may or may not already have authenticated inside our platform:

 	
 Sign-in

 	
 Remember email

 	
 Remember password

 	
 My account

 Finally, we can group subdomains related to existing users who have authenticated:

 	
 Movies catalog

 	
 Playback

 	
 Search

 	
 Personalization

 What we’ve done is group subdomains by user journey, that is, subdomains that intersect. The playback experience, for instance, certainly has more in common with the movies catalog than with the Help pages. Did you notice that the Help domain wasn’t in any of the previous groups? That’s because the Help section may be useful for authenticated and nonauthenticated users alike.

 It’s very hard to have a perfect split between the user journeys. This is also true when we identify the different subdomains available in these user journeys. In this example, we ended up with several buckets of user journeys, with one or more subdomains within each bucket. However, the moment we are able to identify these subdomains, we can determine how to map the development of our micro-frontends inside a company. This exercise may force us to swap some domains from one office to another one, although it provides great long-term benefits reducing external dependencies across offices and keeping them in the same one, maintaining a fine-grained communication where subdomains work together and a coarse-grained communication across offices where the need of synchronization happens less often and with fewer touching points. Yet, as stated before, it’s very unlikely to have this perfect split, so don’t be surprised if you end up with some subdomains developed by different offices. Just be sure to constantly review the performance and bottlenecks created inside the organization and adjust your decisions accordingly. When done right, microarchitectures are great because they can follow a business’s evolution and, thanks to their modular nature, provide the tech department a great degree of flexibility.

 Features Versus Components Teams

 Nowadays, many companies are debating which team structure they should use to enable developers to work on their tasks without impediments or external dependencies. Usually agile methodologies suggest one of two structures: features teams and components teams. Features teams, also known as cross-functional teams, are organized with all the skills needed for delivering a specific feature. When we are developing a web application, for instance, a cross-functional team is organized to deliver user value around a specific feature. Let’s imagine that we have a cross-functional team that will create the credit card payment feature inside an ecommerce store. The team will have both frontend and backend (a.k.a. full-stack) developers who will develop, test, and deploy the feature end to end. Figure 7-1 depicts this example with Team Burrito, which is responsible for delivering the product details micro-frontend.

 In this case, Team Burrito will be composed of full-stack developers working on the APIs, as well as the frontend that will consume these APIs.

 Figure 7-1. This diagram depicts the responsibilities of the features teams working on a horizontal-split architecture, where every team is responsible end to end for a micro-frontend and the APIs that it consumes

 Features teams are recommended when you can organize the architecture using a horizontal split, and every team is responsible for one or more micro-frontends. With this approach, the teams can focus solely on their features with an end-to-end approach, taking care of the entire feature life cycle. The cognitive load of a features team is more manageable than any other team’s structure because every person responsible for generating value for the user is part of the same team. Usually, features teams are highly focused on the user, iterating constantly to enhance the user experience and the value created by their development effort. This approach allows feature teams to become domain experts in specific parts of the system, contributing not only to the technical aspects but also to product decisions. Providing valuable trade-offs accelerates the deployment of micro-frontends and reduces complexity upfront.

 One challenge with this approach is that we will need to assign page composition to an external team or, more likely, to one of the teams developing a feature. The team responsible for composing the page must ensure the final result for the user is the one expected, without any logical or cosmetic bugs. We can mitigate this challenge by standardizing the page composition with templates and conventions. In this case, it would be easier to manage but will offer a lot less flexibility across page layouts. Another option would be working with component teams, where every team is responsible for a specific component of a platform (a vertical split), as we can see in Figure 7-2.

 Figure 7-2. In this example, components teams are each responsible for a specific part of a platform

 With a vertical-split architecture, Teams Burrito and Enchiladas are responsible for the backend services, and Teams Nachos and Tacos are responsible for the frontend. This way of organizing teams works better when we are dealing with cross-platform applications in midsize to large organizations, where we usually develop at least a web application in conjunction with a native mobile application each for Android and iOS. In this instance, when the APIs are consumed by several client applications (mobile, web, and maybe other devices), a backend team responsible for creating an API takes into consideration all the needs of the consumer (frontend teams) instead of features teams optimizing the APIs for just one platform and treating the other clients’ teams as second-class citizens. When we are working with cross-platform applications and hybrid technologies like Flutter, Ionic, or React Native, cross-platform teams are a more viable option than component teams. The codebase between frontend projects may be shared across targets, so organizing teams around features becomes the better choice. If you want to pursue the native option, however, think twice about how to organize your teams because switching from one native language to another and finally to web and backend languages is challenging and increases the cognitive load.

 It’s important to recognize that different stages of the business life cycle require different team structures. In the case of growth, you will encounter a moment where the organization requires some structural changes. These changes will lead you to reassess the teams around the architecture in order to reduce the friction for delivering a feature or any other stream of work. Invest time analyzing the communication flows and potential patterns established across teams, like constant external dependencies or slow stories throughput due to distributed teams in multiple time zones.

 Domain-driven design (DDD) is helpful when we are organizing our team structure, because it helps to consider the direct connection between architecture and team structure. Not only does DDD help identify the boundaries between subdomains, but we can follow these boundaries for structuring our teams as well. For instance, with a small company, it’s very likely that a team would be responsible for a specific business subdomain end to end; however, within a larger organization, a multitude of teams create a subdomain, working together due to the work’s inherent complexity and scope. It’s not always possible to create the perfect structure, and often we need to make some trade-offs to create a model that almost fits everywhere. This is not necessarily a roadblock for your strategy, but do understand that trade-offs could happen. When trade-offs become a constant across the entire organization, we need to step back and review our team structure and architecture.

 The structure of our teams—whether organized around features or components—and how we structure our micro-frontend applications will impact the communication flow inside the organization. There are certain practices that may help us achieve an efficient spread of information across teams, enhancing the governance for developing new features and capabilities inside our platform. Let’s analyze some of them in the next section.

 Implementing Governance for Easing the Communication Flows

 Working for midsize to large organizations means defining communication flows that work; otherwise, we risk slowing down development or creating too many external dependencies across teams. An investment worth making is governance. This is not just an upfront investment; it has to be a constant review and optimization of the practices and documents needed for scaling an organization. There are some simple wins for allowing our developers to scale their communication, especially for the future. We should remember that there will always be new employees at our company; the best way for them to fill their knowledge gaps would be to understand the context in which certain decisions were made. Without that context, they won’t have enough information to fully understand the situation. Architecturally speaking, there are two practices that can spread the information and track why certain decisions were or were not made: the request for comments (RFC) and the architecture decision record (ADR). Remember that asynchronous communication can greatly benefit introverts or those who don’t perform well in meetings, allowing their voices and ideas to be heard. Don’t underestimate the power of this approach—you might be surprised by the valuable insights from less vocal members of your organization.

 Requests for Comments

 RFCs are an established way to gauge the interest in a change in a technical approach or a new technology or practice inside an organization. Usually RFCs are kicked off by developers or tech leads who see some gaps or potential improvement in the organization and want to understand if there is room for a change. RFCs are often available in the version control system (GitHub, for example), so every technical person has access to them. RFCs are timeboxed and are a short markdown document composed of the following sections:1

 	Feature name

 	
 The name of the feature or practice to introduce or change

 	Summary

 	
 One-paragraph explanation of the feature or practice

 	Motivation

 	
 Usually the why of making a change

 	Description of the change

 	
 Detailed analysis of the change or new feature

 	Drawbacks

 	
 All the potential issues identified by the proposal submitter

 	Alternatives

 	
 Potential alternatives to achieve the goals with pros and cons

 	Unresolved questions

 	
 Any blind spots in the proposal

 	Additional resources

 	
 A list of resources related to the RFC

 After filing an RFC, the submitter shares the link with the interested parties inside the organization. Then the dialogue starts to flow, with people sharing ideas, asking questions, and trying to understand whether the proposal has any potential for being introduced inside the company. Despite its simplicity, this document is important in the present because it may improve current software development or practices. Moreover, the RFC has a fundamental benefit for the future as well. In fact, this document tracks the discussion happening among all the developers, architects, and tech leads, recording the full discussion and approaches. This history will give new employees a clear context that describes the reasons behind certain decisions. RFCs are great for proposing not only new features but also changes. For instance, when we need to update an API contract, using an RFC allows us to gather our consumers’ thoughts, ideas, and concerns, allowing us to shape the best way to achieve the goal. This scenario often happens when we work with component teams, and the backend team comprises multiple teams that consume their APIs.

 With an RFC, the team that owns the API contract can propose changes and collect the feedback from the other teams, gathering the evolution of the API and the reasons behind them. This practice becomes even more important when we work with distributed teams across multiple time zones, because we can share all the information needed without remote meetings, closing the feedback loop in a reasonable time.

 Architectural Decision Records

 Another useful document for sharing decision context for current and future developers is the ADR, in which architects or tech leads gather the decisions behind a specific architecture implementation. ADRs are focused solely on architecture, but they are still useful for providing for future readers a context and a snapshot in time of your organization. In fact, an ADR specifically describes the company context when the ADR is first written. ADRs also differ from RFCs in that they provide the context of why an architecture change is needed and explain why a specific decision was made. Architecture is always about finding the balance between long-term and short-term wins. These trade-offs are defined in the company context we operate within. With ADR, we want to create a snapshot of the company context and provide a description about why we pick one direction over another. An ADR structure is composed of the following sections:

 	Status

 	
 The status of an ADR (e.g., draft, agreed)

 	Stakeholders

 	
 People behind the ADR, usually architects and tech leads

 	Outcome

 	
 The final decision made

 	Due date

 	
 The date for when the decision has to be made

 	Owners

 	
 Document’s owners

 	Introduction

 	
 A paragraph describing the company context and the problem the ADR is trying to solve

 	Forces

 	
 The parallel or overlapping streams of work that are pushing toward an architecture change

 	Options

 	
 List of potential solutions with business and technical details and the pros and cons for every proposal

 	Final decision and rationale

 	
 A summary of the final decision explaining the reasons behind choosing a proposal listed in the options paragraph

 	Appendix

 	
 Additional resources needed for providing more context to the readers

 As with RFCs, not all these parts are mandatory, but they are highly recommended. Remember, ADRs have to provide the context for everyone interested in why an architectural decision was made, so the reader needs to have clarity on the technical and business context when the ADR was created. When we design our micro-frontends, we may change the framework or design patterns implemented inside the architecture. By using ADRs, we can provide the context that existed before the architecture decision and why we now want to change it. This way, everyone will be on the same page, despite not being physically present in the meetings.

 Techniques for Enhancing the Communication Flow

 When first approaching micro-frontends, many people think this architectural pattern may result in organizational silos due to its intrinsic characteristics, such as independency and decentralization. Although micro-frontends enable teams to work in parallel and release artifacts independently, there is no excuse for not creating a collaborative environment inside the tech department. We cannot embrace distributed systems without establishing mechanisms for teams to come together on a regular basis for sharing knowledge, solutions, and challenges. It’s essential to curate the technical as well as the social aspect for guaranteeing the right flow of information inside an organization. Everything should start from the feature’s specifications.

 Working Backward

 Famous for its customer-centric approach, Amazon often works backward when considering product ideas. Simply put, they start with the customer and work backward to the product rather than starting with a product idea and bolting customers onto it. It’s a method for creating a customer-focused vision of your product. A working-backward document, called a PR/FAQ, is up to six pages long: a one-page press release (PR) and up to five pages of frequently asked questions (FAQs). An appendix section is also included. While working backward can be applied to any specific product decision, using this approach is especially important when developing new products or features.

 Because it starts with where you want to be 12 months in the future, the working-backward method forces you to think big, focusing on big goals and the changes you need to achieve. A well-crafted press release is a great use of storytelling. It gets the team excited and focused before any lines of code are written.

 The FAQ section is composed of two subsections. The first one is based on the public questions a customer might have about the product or feature, written as if it is public product documentation that is released at the same time as the press release. The second subsection consists of questions internal stakeholders might have asked during the product development process.

 The PR/FAQs focus effort on how a specific feature benefits the customer and why the company should invest in a product or feature like that in its system. After a PR/FAQs is written, a meeting is scheduled with the main stakeholders, including developers, QAs, tech leads, architects, and other product people. In general, though, any stakeholder who may help improve the decision process is invited. This may seem like overkill, but one hour of socializing requirements can allow techies to raise questions and become familiar with the feature. It’s a first step for having multiple teams understand the initial requirements of a new feature and aligning it with the business goals to reach. When we work with micro-frontends, a PR/FAQs can bridge the teams that will collaborate in the implementation phase.

 Two extremely valuable benefits of the PR/FAQs process are the resulting concise documentation and initial collaboration phase before the implementation phase. Usually a PR/FAQs document is a good starting point for architects to think about the high-level design, including the challenges and the architecture characteristics needed for implementing a feature.

 This is also true for micro-frontends when a new requirement arises and it has to be implemented across multiple domains. Having this kind of document can facilitate the discussion between teams via the requirements socialization between engineers and product teams.

 If you are interested in knowing more, I recommend reading Chris Vander Mey’s Shipping Greatness (O’Reilly), a book that provides more information on how to write PR/FAQs, following Amazon learnings and suggestions. If you prefer a short document about PR/FAQs instead, check out “PR FAQs for Product Documents”, a blog post by Robert (Munro) Monarch that offers a great summary of this topic.

 Community of Practice and Town Halls

 The community of practice and town halls are two more important practices for facilitating the communication flows across the organization. With both cross-functional and components teams, there is a need to spread knowledge among developers of the same discipline (frontend developers in the micro-frontend world). Usually communities of practice are biweekly or monthly meetings scheduled by engineer managers or tech leads to facilitate discussions across team members responsible for the same discipline. In these meetings, the developers share best practices, how they have solved specific problems, new findings, or topics they’ve recently been exposed to inside their domain. Communities of practice are useful for introducing new practices across the organization, discussing automation pipelines improvements, or even hosting mob programming events, which has engineers collaboratively implementing a new feature or discussing a specific programming approach all together. While usually restricted to a team, I’ve experienced some mob programming sessions during a community of practice that have worked well.

 Mob Programming

 Mob programming is a software development approach in which a whole team works on the same project as a group, working on the same computer at the same time. This is similar to pair programming, in which two people work on the same code together at one computer. Mob programming just extends the collaboration to everyone on the team. This technique is typically used when a team is implementing an important but complex feature or during a community of practice where a vertical inside an organization wants to introduce new practices across the tech department.

 Town halls are events organized across the tech department that provide a general knowledge of what’s happening across teams, such as a team’s recent achievements or new practices to introduce inside the organization. Town halls work especially well when an organization works with distributed teams and developers cannot engage with all the teams on a daily basis. During these events, the tech leadership facilitates the knowledge to be shared through short presentations covering the key initiatives brought up by different teams. Considering the large audience attending these events, any questions or deep dives should be taken up at a separate time by the interested people and the team or person involved in a given initiative.

 Town halls are very useful when a team would like to share a new library they have developed that may be used by different teams, new practices introduced by a team and the results after embracing it, or more general topics like new joiners or shared goals across the department.

 Depending on the company’s size, town halls may not be the right choice for some companies. A good alternative for spreading these initiatives and communications could be an internal newsletter for the tech department. We may decide to split the newsletter by topics and allow developers to pick their favorite information, but this will depend on the organization’s size and structure.

 Managing External Dependencies

 Sometimes during a sprint, external dependencies may impede the delivery of a task or story. While this is not usually a problem, when distributed teams work on microarchitectures, it can slow down feature delivery, creating frustration and frictions across teams. When a team is hampered by too many external dependencies, it may be time to revisit our decisions and review the boundaries of a micro-frontend. Frequently occurring external dependencies is one of the strongest signs that something is not working as expected. But fear not: it’s a fixable problem! As long as the information bubbles up from the teams to the tech leadership, leadership may decide to rearrange the organization, reducing communication friction and improving the throughput.

 With micro-frontends, this situation can occur when we share libraries across micro-frontends or when we compose multiple micro-frontends in the same view, if we don’t pay enough attention to how to decouple them.

 Note

 “Reusability represents a form of coupling!”, as Neal Ford, Director of Architecture at ThoughtWorks

 With a horizontal-split architecture, we need to invest time reviewing the communication flows, especially at the beginning of the project. A classic example is when we are porting a frontend project from a monolith, single-page application or from a server-side-rendering one to micro-frontends. When we embrace the horizontal-split architecture, we need to assign ownership of the view composition process. In fact, despite having multiple teams contributing with their micro-frontends to the final result, we need to identify the owner of the composition stage (either client or server side). This team should be responsible for not only composing the view but also understanding potential scenarios where a micro-frontend could cause other micro-frontends problems due to CSS style issues or events dispatched but not properly handled by other micro-frontends.

 It’s true that this architecture style provides more flexibility on reusing micro-frontends across a project, but at the same time, we need to make sure the final result is what the user expects to have. Another challenge in the communication flow for the horizontal split architecture may happen when a micro-frontend is reused in different views of one or more applications. In this case, the team responsible for the micro-frontend should create strong relationships with all the other teams that may asynchronously interact with the micro-frontend and have regular catchups to make sure the touching points within a view are respected.

 The problem of too many external dependencies may happen in very limited cases with a vertical-split architecture, especially if we are using an application shell that orchestrates the micro-frontend life cycle. For example, let’s say we want to add a new route inside our application. The application shell will need to be aware that a new micro-frontend needs to be loaded and that it will have to manage the new route. When well designed, the application shell loads an external configuration retrieved from a static file served by a content delivery network (CDN) or as a response of an endpoint. In this case, the effort to coordinate with the team that owns the application shell would be minimal because all that’s required is changing the configuration, adding new automation tests, and following the testing life cycle implemented inside the organization.

 Another potential activity slowdown can occur when you need to make changes across multiple micro-frontends. This usually happens once or twice a year; if it occurs more often, that’s another sign we should review the division of our micro-frontends. However, with a vertical split, teams have more autonomy. If we are able to review the communication flows iteratively, we shouldn’t have many surprises or external issues.

 For all these situations, reviewing the communication flows with the right cadence (every quarter, for instance), and making sure the assumptions made during the architecture design process are still valid, are good practices. Remember that friction between teams should be seen as a signal of a problem within the organization, not necessarily as an architectural issue. Often, the root cause lies elsewhere, such as in organizational structure, micro-frontends boundaries, or a lack of practices to encourage collaboration within the developer community.

 Another way to ensure the communication is flowing across teams is by having ad hoc meetings for the teams that have to work together for the final-view result, especially for a horizontal-split architecture. Using agile ceremonies like Scrum of Scrums or less informal catch-ups on a regular cadence result in a better understanding of the overall system, as well as better bounding between team members.

 Finally, agile practices provide some tools that may be used either ad hoc or on a case-by-case basis to solve specific challenges we face with our teams. One tool that I have personally experienced in multiple companies I’ve worked for is big room planning, where we gather an entire department for one or two days inside a room and we map the activities for the next few months. In this way, we can immediately spot external dependencies and potential bottlenecks due to a wrong sequence of deliverables. There are many techniques available for solving specific challenges. I recommend first gaining an understanding of the problem you need to solve and then finding the right approach for that problem.

 A Decentralized Organization

 A key advantage of working with micro-frontends specifically, and with microarchitectures in general, is the possibility of empowering the teams to own a business domain end to end. As we have seen throughout this book, micro-frontends are not for all organizations. They work well for midsize to large ones, where insight on the intrinsic complexity the company is working on is needed. Complexity is not necessarily a negative attribute; it can allow us to move from a centralized approach to a decentralized one.

 Every company moves through different phases. In the startup phase, a company usually has a small tech team capable of working on a project end to end. The communication flow in the startup phase is straightforward because all the developers are aware of the goals to achieve, and the number of connections needed for a correct communication flow is manageable. When the startup grows larger, it’s usually structured around business function hierarchies, introducing roles like head of engineering, engineer manager, tech leader, and many other well-known titles in the tech ecosystem. Usually these organization layers provide directions to coordinate teams, defining the communication flows. In an ideal scenario, the teams may have the level of autonomy needed to do their jobs and to experiment with new practices and technologies at the same time, but this doesn’t always happen. The reality will depend on the company culture, as well the leadership style of every individual.

 When the organization moves from hundreds to thousands of employees, we need to look again at how to organize our teams. A natural evolution from the hierarchical structure would be aligning teams around value streams instead of following a centralizing hierarchy. Decentralizing the decision-making and allowing an independent path for the teams inside a value stream will empower the technical teams to express themselves in the best way in the large, complex context where they operate. These three types of structure are visually represented in Figure 7-3.

 Figure 7-3. Different organizational structures are usually implemented in different stages of a company life cycle

 An interesting point highlighted in Figure 7-3 is that, with the decentralized structure, teams must coordinate among themselves when needed. Empowering these teams means giving not only technical freedom but also organizational duties. Technical leaders then become a support function that should facilitate the streams of work inside the teams, providing context or technical direction when a team requests it and driving and aligning the technical boundaries with the business results so that the team knows how to achieve these goals.

 Another great achievement of decentralization is error mitigation. In this structure, it’s unlikely that only one or a few people are capable of making every decision for every team, especially because the leadership is not always involved in the day-to-day conversations. Therefore, the role of an architect or a tech lead would include posing the right questions and becoming a servant-leader for the team, creating solutions hand in hand with the team rather than in isolation.

 Organize for Complexity

 Many of the concepts of decentralization that I’ve described are part of a great book called Organize for Complexity by Niels Pflaeging (BetaCodex Publishing). This short, straightforward book provides many insights on how to decentralize an organization handling complexity. I was lucky enough to meet Niels during an agile retreat and received a complimentary copy of his book. It changed the way I thought about tech organizations, opening several doors in my mind. The book doesn’t focus on tech organizations but more generally on any organization. That’s the reason I shared these insights, contextualizing the core concepts in the tech context. I found these concepts extremely valid for microarchitectures.

 Since 2019, the DDD community has increasingly emphasized the social-technical aspect of software architecture, drawing numerous insights from the remarkable book Team Topologies by Manuel Pais and Matthew Skelton. This book is eye-opening and a must-read for any tech leader seeking to organize their organization for fast flow and distributed systems.

 Decentralization Implications with Micro-Frontends

 The first step in decentralizing decision making and empowering the teams that are closer to the business domain is identifying the subdomains available in an application. As we have seen so far, DDD helps us identify the business subdomains where we create a common language (ubiquitous language), we introduce patterns for communicating across subdomains for decoupling them, and we allow them to evolve at their own pace. Another important aspect to take into consideration is user behavior, especially when we are porting an existing application to micro-frontends. These two metrics allow us to identify the different pieces of a complex puzzle and assign every piece to a specific team.

 I highly recommend basing the micro-frontends split on data, because this can really save you a lot of aggravation in the long run. Starting with incorrect assumptions creates friction across teams and release cycles. Data can help prevent those incorrect assumptions.

 Another important thing to consider is balancing complexity when we assign a team to a subdomain. When a team is assigned to multiple complex subdomains, there is a high risk of resource burnout and intrinsic maintenance complexity. There are several situations we need to be aware of:

 	High-complexity subdomain

 	
 This type of subdomain usually doesn’t manifest at the beginning of the project. They’re created when we underestimate a subdomain’s complexity in terms of the business logic and permutations that a micro-frontend needs. Usually a micro-frontend becomes complex over time because new features are added to it. A good practice, therefore, is to understand the cognitive load of every team member working on that subdomain and determine whether they can handle the situation properly. Are there enough team members equipped to handle the demands of the subdomain? Do they possess the requisite knowledge to implement all requested features effectively? Should we further decompose or consolidate micro-frontends? Are there any sources of friction that need addressing? These are excellent starting questions.

 The main struggle is often in maintenance and support, especially when the team deals with projects that have to be live 24/7 and where bugs have to be fixed as quickly as possible. High complexity is difficult to handle in general, and it’s even more difficult when a developer is under pressure because a live bug is found in the middle of the night and requires a quick fix.

 In these cases, remember to review the boundaries of your subdomain and see if it can be split in a more sensible manner, especially when you work with a vertical-split architecture. Consider, for instance, when you have an authentication micro-frontend containing the sign-in and sign-up flows in a vertical-split architecture. If you are working on a global platform, you may have to support multiple payment methods, which adds a lot of information to remember and own. Splitting the authentication micro-frontends into sign-in and sign-up micro-frontends would maintain a frictionless user experience while reducing the cognitive load on the team, as described in Figure 7-4.

 Figure 7-4. Another option is to split the micro-frontend to reduce the team’s cognitive load without impacting the user’s experience

 Now we have a team dedicated to new users who want to sign up and another dedicated to existing users who have to sign in or retrieve their email or password. In this way, we simplify the logic and code and can have quicker fixes when bugs are discovered.

 	High initial-effort subdomain

 	
 Sometimes we may have micro-frontends that require a high effort to create them, but then they don’t evolve very often in the application life cycle. In this case, we can afford to have a team with multiple micro-frontends, bearing in mind we need to balance the micro-frontends’ complexity to avoid drowning the team in work.

 	Normal-complexity subdomain

 	
 When considering a single team, these are the subdomains we should aim for. Sometimes when we have high-complexity subdomains, we may decide that splitting the micro-frontend representing that subdomain would not help much. However, we can componentize a specific complex part of the micro-frontend and assign the component to another team, as we can see in Figure 7-5.

 Figure 7-5. This example shows a project with high complexity but the possibility of extracting a component to another team to spread the cognitive load

 In this case, we have a vertical-split architecture with a micro-frontend with multiple views and a complex business logic to implement for the video player that should play video, advertising, and so on. The video player can be peeled off from the micro-frontend. This self-contained component may be reused in other micro-frontends and has an intrinsic complexity, making it a good choice to be handled by a different team, reducing the cognitive load of both the micro-frontend and the video player. The teams can collaborate when new versions of the video players version are available. In this case, working with an API contract and scheduling regular touch points between teams is sufficient to coordinate the integration, new releases, and breaking changes.

 	Low-complexity subdomain

 	
 Finally, some micro-frontends are easy to build and maintain so one team can own a multitude of them. As with the previous cases, make sure to regularly rebalance the complexity assigned to these teams because, while the complexity may be low in this case, having dozens of low-complexity micro-frontends may cause high-context switching, reducing the team’s productivity.

 Decentralizing decision-making and empowering teams doesn’t mean we need to create chaos inside the organization. In fact, some decisions should remain centralized and made by the teams across all of an organization’s domains, such as a platform or developer experience team, or by tech leadership, like head or vice president of engineering, providing a framework for the teams to operate with. We mentioned such decisions in previous chapters, like the platform to run the automation strategy; programming languages or frameworks available for the teams to use guidelines on when to abstract and when to duplicate code; and architecture characteristics, such as performance metrics, code coverage and complexity, setting up the observability of the entire platform (frontend and backend), and support governance when the application fails in production. All these decisions provide a concrete framework for the teams to operate on. They don’t affect the teams’ freedom, and they align the company behind some guidelines that should allow your technical teams to achieve business goals.

 Summary

 In this chapter, we learned that we cannot design a software architecture without taking into consideration the human factor. Architecture, company culture, and organizational structure are interdependent factors crucial for the success of any project. We need to be aware that these two forces are part of a project’s success and they cannot be decoupled. They must be looked at together and revised often. Any business can evolve over time, and the same is true for software architecture and communication flows inside a company. The communication flow can be enhanced by spreading information across the teams, but it has to be thought through and designed carefully, and we need to iterate to find the right balance. What works in one company will not necessarily work in others, so carefully analyze your context and apply the best practices for your organization.

 Finally, we looked at how decentralization helps the implementation of any microarchitecture, whether microservices or micro-frontends. It’s important to highlight that the micro-frontends architecture we chose should influence the way we structure our teams. It’s very unlikely that when we move from a monolith architecture to a microarchitecture the organization can remain the same. The communication flow changes with the new architecture, and we need to at least review the flow so that we don’t create bottlenecks inside the teams due to the wrong setup.

 1 This list is just a suggestion. Not all of the items may be present in your RFC template, but it’s a good starting point.

assets/ch14_figure_15_1727448915185601.png
Catalog | Runtime | Video player
MFE component
Design system
component
React or
MobX

Compile time

Compile time

assets/ch14_figure_6_1727448915185407.png
Load/unload
(MFEs composition)

assets/ch14_figure_5_1727448915185385.png
Content

Footer

Micro-frontend

Application shell

assets/ch14_figure_8_1727448915185452.png
MFE MFE

 appshell set(token) appshell get(tolen) :

Application

shell

i Saveand
: retrieve token
v

LocalStorage

assets/ch14_figure_7_1727448915185431.png
acme.com/landing acme.com/account acme.com/catalog

EUnIoad

Application
shell

assets/ch02_figure_7_1739542772791041.png
Shell Application

Authentication
micro-frontend

1
storing token
Y

Web
Storage

Shell Application

Catalog

storfng token retrieving-token
, b ,

retrieving token
1

assets/ch14_figure_10_1727448915185489.png
S3 bucket

CloudFront CloudFront

US West US East
PoP PoP

Userin Userin Userin
San Francisco New York Milan

Userin
London

assets/ch02_figure_6_1739542772791021.png
o=

{ L Events Emitter, PubSub
\ _ s+ orCustom Events

=
] [
N
Component B
or iframe
-=r
1 (B}
N
Component A
or iframe -—-r
] [
N
Component C
or iframe

assets/ch14_figure_9_1727448915185468.png
Landing page
Sign-in
Sign-up
Payment
Catalog
Search
Schedule

My account
Help

Al Single-v—

Landing page Catalog
MFE MFE

My account Authentication
MFE MFE
I-l\l,leFIE Application shell

Catalog
Search
Schedule

Sign-in
Sign-up
Payment

assets/ch10_figure_1_1730392767257847.png
Continuous deployment User acceptance testing Artifact available

(UAT) to all users
. Promotion to Promotion to
Continuous Deploy to DEV
integration environment STAGE PROD

environment

environment

assets/ch14_figure_12_1727448915185528.png
Authenticate

Store token after
authentication

Auth

API

SPA

Refresh
access
token

Al Al
old New
JWT JWT

Catalog
MFE

Refresh tokenand
use for consuming
other APIs

assets/ch02_figure_8_1739542772791062.png
Backend API

Shell Application Shell Application

A
1
1
1
1
1
1
1
1

request to API
for article details
1

Y

/catalog catalog/article/:id

assets/ch14_figure_11_1727448915185508.png
Catalog
MFE

A

Single-page
application

assets/ch10_figure_3_1730392767257935.png
Version control

Pipeline initialization

Clone MFE
repository

QO—O—0

repositories

Install
dependencies

assets/ch14_figure_14_1727448915185577.png
Catalog libraries
(JavaScript)

Catalog business
logic AWS S3

(JavaScript) bucket

My account libraries
(JavaScript)

My account
business logic
(JavaScript)

assets/ch10_figure_2_1730392767257903.png
Version R Pipeline R Code quality - Post-build
control initialization review Build review Deployment

assets/ch14_figure_13_1727448915185557.png
Refresh

AAuglh access
token
A A
i old New
Authentllcjggi WT W
S kGl Authentication Catalog
authentication MFE MFE

1/0 manager using session
and local storage

LocalStorage

Refresh tokenand
use for consuming
other APIs

assets/ch10_figure_5_1730392767257983.png
Build Post-build review

. Run .

. end-to-end Save |
¢ tests artifact Q
Build Check : Deploy
artifact ' performance ' artifact

assets/ch10_figure_4_1730392767257959.png
Pipeline initialization

Clone MFE
repository

Install
dependencies

Static
analysis

Code-quality review

Run
integration tests

unit tests

Visual
tests

Check
mandatory
modules

Build

O—0

Build
artifact

assets/ch11_figure_1_1719232495093541.png
Monolith or

Backend For Frontend API Gateway Service Dictionary Microservices

MFE MFE MFE
'y Server Side
Aggregation
Layer
Server Side
Composition
A
MFE
Micro-Frontend MFE MFE
MFE i .
Client Side
Page Result
Application Shell Application Shell

Horizontal Split
Server Side
Composition

Horizontal Split
Client Side
Composition

Vertical Split

assets/ch10_figure_6_1730392767258006.png
Version Pipeline Code-quality Build Post-build Deployment

control |n|t|a||zat|on ., review ., ., review .,
1 1 1 1 Run I
' ' Run Check . ' end-to-

: Clone MFE + Static |ntegrat|on mandatory; : Save

. repository +analysis tests modules ' ' tests artifact |
MFE Install ~ : Visual + Build : Check * Deploy
repositories : dependencies : unlt tests tests ! artifact | performance . artifact

N N N

assets/ch14_figure_17_1727448915185641.png
Legacy
backend
Load
balancer

Dictionary
service

Load
balancer

T

msapi.acme.com/dictionary

Catalog
MFE

monolithapi.acme.com/dictionary

Single-page Application shell
application

assets/ch14_figure_16_1727448915185618.png
ApF;I,i]ﬁltiO" Refntagagﬁcess CloudFront Lambda@Edge

' App shell requests app config, !
\—N

I
I
:‘Return app config I i
I
I

I
1Verify user entitlement !

.<Conf|rm user entitlement and.return new token
Pttt e

I I
I I
I I
I I
I I
I I
I I
I I
I I
| |
I Request catalog micro-frontend version 1.X.X 1 | :

\CloudFront triggers | L oad a config file
\alambda@Edge | with the ¢
> micro-frontend
' versions available
I
I

.Modlfy the request
rasking for catalog

I
I
I
I
:
I
! version1.1.3

' Return the catalog
micro-frontend

App shell loads the catalog miro-frontend

Ap;;hcgtlon - Reffgghglfcess CloudFront Lambda@Edge

assets/ch11_figure_2_1719232495093586.png
- Testing in Production
Dashboard

2. service dictionary retrieves the
testing configuration based on
the ID passed via the header

testing configuration

Service Dictionary

1. request to service dictionary 3. response with testing
passing header for testing in production endpoints

Suggested products

Products details

L]

4. load micro-frontends

—i Application Shell }(—

assets/ch15_figure_2_1723133299009689.png
e

Team Enchlladas Team Burrlto
Slgn in Products
APIs APIs

Product Payment
details options

Sign-inform

Product reviews

Team Nachos Team Tacos

assets/cover.png
OREILLY"
Building
Micro-Frontends

Distributed Systems for the Frontend

Early
Release

RAW &
UNEDITED

Luca Mezzalira

assets/ch15_figure_1_1723133299009616.png
Team Tacos

Product
details

Team Burrito Team Enchiladas

Product reviews

Team Nachos

assets/ch11_figure_4_1719232495093643.png
Application Shell Catalogue I Service Dictionary I

| request catalogue micro-frontend _|
fequest cataiogue Micro-Tonten 5.

icro-frontend |

1 render view

~
Application Shell Catalogue I Service Dictionary I

assets/ch15_figure_4_1723133299009789.png
Sign-in
Retrieve email
Retrieve password

Sign-up
Payment
Subscription summary

Authentication
micro-frontend

Sign-in
Retrieve email
Retrieve password

Authentication
micro-frontend

Sign-up
Payment
Subscription summary

Subscription
micro-frontend

assets/ch11_figure_3_1719232495093620.png
APIs Layer

Authentication Payments Catalogue Configurations
Strategic Solution
Tactical
Signin Products
9 Products Details Customers Support
Sign up Search
Application Shell S —

Solution

assets/ch15_figure_3_1723133299009734.png
Startup structure

Decentralized structure

Value stream
A

Value stream
B

Value stream

assets/ch11_figure_6_1719232495093687.png
Host Application

| request product detai
| micro-frontend

Service Dictionary

request service dictionary for product details _ |
Lequest service dictionay Jor product detals |

response product details
icro-frontend

Host Application

Service Dictionary

assets/ch11_figure_5_1719232495093664.png
APIs Layer

Authentication

Payments Catalogue

Configurations

Anti-pattern

Strategic Solution

Product Details

Available Payments

Cart

Related Products

Application Shell

assets/ch15_figure_5_1723133299009838.png
Catalog with
video player

Catalog Video player

component micro-frontend component

Final result TeamA

assets/ch11_figure_8_1719232495093733.png
MS

MS

MS

MS

MS

API Gateway/BFF

API Gateway/BFF

MFE

MFE

API Gateway/BFF

MS

Subdomain B

Subdomain A

assets/ch11_figure_7_1719232495093711.png
authentication

MFE

catalogue
MFE

my account
MFE

sign in API

sign up API

products API

products details API

payments API

user details AP|

authentication
MFE

catalogue
MFE

my account
MFE

Authentication
Authorization

API
Gateway

GRPC—»|

GRPC—»|

HTTP—>|

HTTP->|

HTTP->|

GRPC»|

sign in API

sign up API

products API

products details API

payments API

user details AP|

assets/ch11_figure_10_1719232495093774.png
__—__——_—_—_—,—,——_—_—

-

Microservices with AP| Gateway

Catalogue

Reviews >

ecommandation:

it

Micro-Frontends

Users Reviews
MFE

Recommended
Products MFE

AP| Gateway €T——;

Payments available
MFE

Product Details
MFE

USRI
R——

Ul Composition Layer

A

API Gateway

Authentication

Authorization

Browser

e

assets/ch11_figure_9_1719232495093754.png
Payments Catalogue Configurations
\ 4
API Gateway
A
Signin Products
9 Products Details Customers Support
Sign up Search

Application Shell

Authentication
Authorization

assets/ch11_figure_11_1719232495093792.png
Ul Composition

Tror evely MFET

Product Details

Catalogue API

- | request Product Details MFE |
fequest Product Details MFE____ !

<

Ul Composition

| request product details

1 from APIs layer

Product Details

Catalogue API

assets/ch02_figure_1_1739542772790888.png
HEADER (Team C)

PRODUCT PRODUCTS
DETAILS CAROUSEL
(Team A) (Team B)

FOOTER (Team C)

leam A

leam B

HEADER HEADER
VIDEO PLAYER
PRODUCT PRODUCTS
DETALLS CAROUSEL
CATALOG
FOOTER FOOTER

HORIZONTAL SPLIT

VERTICAL SPLIT

assets/ch02_figure_2_1739542772790933.png
Fxample.

Gift Code bounded context

assets/ch02_figure_3_1739542772790959.png
Personalised
microservice

Trending

microservice

o

Images
microservice

Catalogue API Search API
€
Backend For
Frontend
A
Catalogue Frontend
g
~

Catalogue Subdomain

assets/ch02_figure_4_1739542772790981.png
Ol JOO JOO

assets/ch02_figure_5_1739542772791001.png
- OO0 OO0 WK

e T 5
- OO0 pilie 68

A G

Client \‘;’ Qg Qg

UbuntuMono-BoldItalic.otf

UbuntuMono-Italic.otf

UbuntuMono-Regular.otf

assets/ch11_figure_13_1719232495093844.png
Images
microservice

Users Reviews
microservice

BFF

css_assets/titlepage_footer_ebook.png
OREILLY®

assets/ch11_figure_12_1719232495093818.png
Users Reviews

Recommandations

Catalogue

Catalogue Details

Users Reviews

Web

Recommandations Catalogue
A A
Catalogue Details
R
BFF Mobile BFF

assets/ch11_figure_15_1719232495093880.png
logo ’

menu

product details

users reviews

4 N

payment options

—
Y

related products

footer

assets/ch11_figure_14_1719232495093863.png
Recommandations Catalogue User Details Invoice History

Account Preferences

Users Reviews Catalogue Details Authentication

Catalogue BFF My Account BFF

assets/ch11_figure_17_1719232495093921.png
Client

| query the data graph

<

Client

Gateway

send the operation response

| prepare the query plan for oper:

Tror every operation]
send the operation to a service

Implementing Services

_adds server ID to the shared context

—

Gateway

adds all the server ID to the response header

>

the result and the server ID header |

Implementing Services

assets/ch11_figure_16_1719232495093901.png
PmductDetaiIsAPlI Pavmentuptinnsl Users Reviewsl Suggested Pmductsl

| request Product Details __|
request Product Detalls |

| request product details with ProductiD
<

! request payment options for the product selected

>

request users reviews for the product selécted |

-

| request suggested product based on product selected |
<

! aggregate the responses

>

response with all the data

to render in the |

PmductDetaiIsAPlI Pavmentuptinnsl Users Reviewsl Suggested Pmductsl

<

assets/ch11_figure_19_1719232495093968.png
Users Review Catalogue Product Details Offers Sign up

GraphQL

Payment Options

Product Details

Users
\ Review

Application Shell

assets/ch11_figure_18_1719232495093944.png
Users Review Catalogue Product Details Offers Sign up

GraphQL

Catalogue
MFE

Application Shell

assets/ch11_figure_21_1719232495094073.png
Componen‘t A Componen‘t B

double single
request request

assets/ch11_figure_20_1719232495093989.png
Users Review

Catalogue Product Details

GraphQL

Offers

Sign up

Users Reviews
MFE

Sign up MFE

Payments available
MFE

Product Details
MFE

e

Ul Composition

API Gateway

T

Browser

assets/untitled_403192_01.png
Persistent layer

APIs Iayeri

backend backend
monolith L monolith
backend
\ monolith

Frontend layer

DejaVuSans-Bold.otf

assets/untitled_403192_02.png
APIs layer:
with microservices:

Frontend layer

\ Single Page Application

DejaVuSerif.otf

assets/untitled_403192_03.png
APIs layer:
with microservices:

Frontend layer

UbuntuMono-Bold.otf

assets/untitled_403192_04.png
Culture of

automation Hide
implementations
details
Modelled around
business domains
Principles of
M|croserv|Ces Decentralise
all the things
Highly
observable
Deploy
independently
Isolate

failure

toc01.html
		Brief Table of Contents (Not Yet Final)

		1. Micro-Frontends Principles

 		Monolith to Distributed Systems

 		Moving to Microservices

 		Introducing Micro-Frontends

 		Microservices Principles

 		Modeled Around Business Domains

 		Culture of Automation

 		Hide Implementation Details

 		Decentralize All the Things

 		Deploy Independently

 		Isolate Failure

 		Highly Observable

 		Applying Principles to Micro-frontends

 		Modeled Around Business Domains

 		Culture of Automation

 		Hide Implementation Details

 		Decentralization over Centralization

 		Deploy Independently

 		Isolate Failure

 		Highly Observable

 		Micro-frontends are not a silver bullet

 		Summary

		2. Micro-Frontend Architectures and Challenges

 		Micro-frontends Decisions Framework

 		Define Micro-frontends

 		Domain-Driven Design with Micro-Frontends

 		How to define a bounded context

 		Testing your micro-frontend boundaries

 		Micro-frontends composition

 		Routing micro-frontends

 		Micro-frontends communication

 		Micro-Frontends in Practice

 		Zalando

 		Formula One

 		Dunelm

 		Netflix

 		PayPal

 		BMW

 		SAP

 		OpenTable

 		DAZN

 		Summary

		3. Automation Pipeline for Micro-Frontends: A Case Study

 		Setting the Scene

 		Version Control

 		Pipeline Initialization

 		Code-Quality Review

 		Build

 		Post-Build Review

 		Deployment

 		Automation Strategy Summary

 		Summary

		4. Backend Patterns for Micro-Frontends

 		APIs integration and micro-frontends

 		Working with a Service Dictionary

 		Implementing a Service Dictionary in a Vertical-Split Architecture

 		Implementing a Service Dictionary in a Horizontal-Split Architecture

 		Working with an API gateway

 		One API entry point per business domain

 		A client-side composition, with an API gateway and a service dictionary

 		A server-side composition with an API gateway

 		Working with the BFF pattern

 		A client-side composition, with a BFF and a service dictionary

 		A server-side composition, with a BFF and service dictionary

 		Using GraphQL with micro-frontends

 		The schema federation

 		Using GraphQL with micro-frontends and client-side composition

 		Using GraphQL with micro-frontends and a server-side composition

 		Best practices

 		Multiple micro-frontends consuming the same API

 		APIs come first, then the implementation

 		API consistency

 		Web socket and micro-frontends

 		The right approach for the right subdomain

 		Summary

		5. Common Anti-Patterns in Micro-Frontend Implementations

 		Micro-frontend or component?

 		Sharing state between micro-frontends

 		Micro-frontends anarchy

 		Anti-corruption layer to the rescue

 		Unidirectional sharing

 		Premature abstraction

 		Summary

		6. From Monolith to Micro-Frontends: A Case Study

 		The Context

 		Technology Stack

 		Platform and Main User Flows

 		Technical Goals

 		Migration Strategy

 		Micro-Frontend Decisions Framework Applied

 		Splitting the SPA in Multiple Subdomains

 		Technology Choice

 		Implementation Details

 		Application Shell Responsibilities

 		Application Initialization

 		Communication Bridge

 		Backend Integration

 		Integrating Authentication in Micro-Frontends

 		Dependencies Management

 		Integrating a Design System

 		Sharing Components

 		Implementing Canary Releases

 		Localization

 		Summary

		7. Introducing Micro-Frontends in Your Organization

 		Why Should We Use Micro-Frontends?

 		Data to the rescue

 		Create a trade-off analysis

 		Business requirements

 		Architecture characteristics

 		Organization capabilities

 		The Link Between Organizations and Software Architecture

 		How Do Committees Invent?

 		Features Versus Components Teams

 		Implementing Governance for Easing the Communication Flows

 		Requests for Comments

 		Architectural Decision Records

 		Techniques for Enhancing the Communication Flow

 		Working Backward

 		Community of Practice and Town Halls

 		Managing External Dependencies

 		A Decentralized Organization

 		Decentralization Implications with Micro-Frontends

 		Summary

assets/ch13_figure_1_1733923854322114.png
Offers Best Sellers

Marketing Message
New Products

assets/ch13_figure_3_1733923854322189.png
Hero Product

———

Product ¢

Catalog
Team

Product 4 Product B

Application
shell

Experience
Team

Experience carousel

90 days return policy banner

Support
Team

assets/ch13_figure_2_1733923854322159.png
Hero Product

Product 4 Product B Product ¢

Experience carousel

a0 o(at/s return Pohcy banner

Where to buy Support

Footer

assets/ch13_figure_5_1733923854322245.png
Legacy
Applica‘tion

/]\ \I/POStM gssage

o.nti—corru(ation
lo.t/er

Micro-

Frontend

/]\ event

Applica‘tion shell

assets/ch13_figure_4_1733923854322216.png
event

state mo.no.gement

state mo.no.gement

Hero Product

Product A4 Product B u

assets/ch14_figure_1_1727448915185284.png
Backend
monolith

Single-page application

assets/ch13_figure_6_1733923854322268.png
MFE A4 |—>| MFEB || WMFEC

assets/ch14_figure_3_1727448915185340.png
Landing page Sign-in Catalog

sttt

assets/ch14_figure_2_1727448915185317.png
Landing page Sign-up Payment Catalog

assets/ch14_figure_4_1727448915185364.png
Selected video
details

Catalog Video player Search

