

[image:]

Leveling Up as a Tech Lead

Growing as a Technical, Project, and People Leader

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Anemari Fiser

 Leveling Up as a Tech Lead

 by
 Anemari
 Fiser

 Copyright © 2026 Anemari Fiser. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor: David Michelson

 	
 Development Editor: Shira Evans

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 Monica Kamsvaag

 	
 Illustrator:
 Kate Dullea

 	
 December 2025:
 First Edition

 Revision History for the Early Release

 	
 2025-01-07:
 First Release

 	
 2025-02-18:
 Second Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098177515
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Leveling Up as a Tech Lead, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-17751-5

Brief Table of Contents (Not Yet Final)

Preface (available)

Part I: Understanding the Tech Lead Role

Chapter 1: Role of a Tech Lead (available)

Chapter 2: Becoming a Tech Lead (available)

Part II: People Leadership

Chapter 3: Building Relationships (available)

Chapter 4: Running 1-1s with Your Team (unavailable)

Chapter 5: Dealing with Feedback (unavailable)

Chapter 6: Delegating (unavailable)

Chapter 7: Building and Leading Tech Teams (unavailable)

Part III: Technical Leadership

Chapter 8: Managing Technical Challenges (unavailable)

Chapter 9: Managing Technical Projects (unavailable)

Chapter 10: Bringing It All Together: Navigating Technical Leadership (unavailable)

Chapter 11: Beyond Tech Lead: Charting Your Career Path (unavailable)

Chapter 12: Conclusion (unavailable)

 Preface

 Early in my career, I realized I wanted to become a tech lead - though, at the time, my understanding of the role was limited. What motivated me most was the impact we could have as a team rather than individual contributions.

 While the engineers around me were diving deep into the latest technologies and tackling more complex technical challenges, I found myself questioning the value of the work we were doing. I was drawn to solving team-related problems and taking the initiative to move things forward. When the Scrum Master left the team, I stepped into the role, initially just to have more influence. While others were focused on building new features, I was busy documenting the existing ones.

 To make it happen, I moved to another country and joined Thoughtworks: a company that supported my growth into the tech lead role. I started working with my tech lead at the time to develop the necessary skills and I said yes to every training opportunity that came my way. When I learned that the team’s tech lead was leaving, I asked to take over. They said yes.

 Once I realized that the type of impact I wanted could only happen in the tech lead role, I began focusing on the skills I believed were necessary for the position. I worked hard to sharpen my technical abilities, thinking that to lead a technical team, I needed to be the most technical person in the team. I was wrong.

 So I started digging into the role but, the more I learned about the Tech lead role, the more I felt like I didn’t know. There are just so many opinions out there on what the role actually is. The more I talked to other tech leads about it, the more I realized they didn’t know either. Everyone seems to have their own definition but the tech industry cannot agree on what exactly the role is.

 This confusion isn’t unique to the tech lead role - it applies to most roles in tech, whether Junior Developer, CTO, or anything in between. But when it comes to the tech lead, things get even more fuzzy. As proof, I couldn’t find a single book out there focusing solely on the tech lead role. There are plenty of general engineering leadership books, but as a tech lead, it’s up to you to figure out what’s relevant to your specific situation. This can get overwhelming quickly, and I definitely felt that struggle when I was starting out.

 Why I Wrote This Book

 I wrote this book to save other tech leads, like you, from the painful process of going through countless resources, trying to figure out what applies to your specific role. You can think of it as your go-to guide for navigating the unique challenges of being a tech lead.

 This book draws from my personal experience as a tech lead at Thoughtworks, insights from other experienced and less experienced tech leads I’ve worked with, and my experience training and coaching over 300 tech leads across various companies, cultures, and environments over the past three years.

 How to Effectively Use This Book

 	Aspiring tech leads:

 	
 If you’re aiming to become a tech lead, I recommend starting with two key chapters:

 	
 Chapter 1 Role of a tech lead - this chapter gives you a high-level overview of what the job involves, how to get started, common pathways to the position, the crucial skills you’ll need, and some of the initial challenges you may face.

 	
 Chapter x Bringing it all together: Navigating Technical Leadership - this chapter addresses one of the biggest questions new tech leads ask: “How do I balance technical responsibilities with leading people?”

 It’s also worth scanning through the entire book to familiarize yourself with the common scenarios you’ll likely encounter in the role.

 	New tech leads:

 	
 If you’ve just stepped into the role, this book will be your go-to reference for troubleshooting and solving the daily challenges you’ll face. It’s packed with real-world scenarios, so you can easily find the relevant chapters and get practical advice and ideas for handling specific issues.

 	Experienced tech leads:

 	
 If you’ve been in the role for a while now, this book can help you refine your leadership skills by identifying areas for improvement and discover new strategies for dealing with the ongoing challenges of the role.

 The more I was learning about the role from training, observing my experienced tech lead, and talking with others in the role, the clearer it became: being a tech lead is less about tech and more about people. When I finally stepped into the role myself, it all clicked: the tech lead is 100% more about people than tech.

 Reaching this conclusion was a long and challenging journey of self-development and learning, a process I see tech leads go through every day. That’s why this book addresses both the technical aspects and the equally important people and business side of the role.

 Chapter 1. Role of a Tech Lead

A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the first chapter of the final book.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

			

 The tech lead role is one of the most misunderstood positions in the tech industry. It’s a role that exists at the intersection of people, technology, and business, and yet there’s little consensus on what it actually means. This lack of clarity often leaves new tech leads feeling unsure about what’s expected of them and how to approach the role effectively.

 Every company seems to have its own version of the tech lead role, shaped by their culture, processes, and priorities. Some see the role as deeply technical, while others focus heavily on team dynamics and processes. Understanding these differences and defining what it means within your specific context is the first step to succeeding as a tech lead.

 What is a Tech Lead

 When I ask tech leads, “What’s expected of you?” the responses are wildly different, covering a wide range of skills and responsibilities.

 At one extreme, some describe the tech lead as the most technical person on the team - someone with deep expertise in the tech stack who makes all the decisions and contributes code daily, often at the same level as any other engineer. The role is seen as highly hands-on, deeply technical, and rooted in direct contributions to the team’s output.

 At the other end of the spectrum, the tech lead is described as someone who avoids coding entirely, instead focusing on people, processes, and shielding the team from distractions. In this view, the tech lead is more of a facilitator, working closely with the product manager to manage the backlog and ensure smooth collaboration, essentially playing a role closer to that of a Scrum Master.

 These examples show just how varied the expectations can be, from being a hands-on technical expert to focusing entirely on people and processes. The reality is that the tech lead role sits somewhere in the middle, requiring a careful balance between technical leadership, team development, and stakeholder alignment.

 A tech lead is expected to guide the team through decision-making, ensuring that everyone’s input is heard and considered, rather than just making decisions unilaterally. This requires a breadth of knowledge, not just about technical areas like infrastructure, architecture, and the tech stack, but also about the business context and stakeholder management. At the same time, a tech lead must support the team’s delivery while helping individual team members grow. It’s a role that demands both technical expertise and people skills, combining them effectively to build alignment, encourage teamwork, and deliver impactful results.

 This wide range of interpretations of the role can be confusing, especially for new tech leads, but it also highlights why the role is so critical, and why defining it within your context is essential.

 Defining the Scope

 Drawing from my experience as a tech lead and insights gathered from training numerous tech leads over the years, here’s how I define the role:

 “The tech lead is a software engineer

 responsible for leading a development team

 and accountable for the technical deliverables of that team.”

 Being accountable for technical deliverables also means ensuring that the team’s work aligns with stakeholder expectations. This alignment places the tech lead role right at the intersection of people, business, and technology. It’s a balancing act that requires understanding both the technical and non-technical aspects of the role, as shown in Figure 1-1.

 Figure 1-1. What is a Tech Lead

 So, to be an effective tech lead, you need to successfully implement the following ideals.

 	Build a strong, high-performing team

 	
 To be an effective tech lead, you need to focus on building a strong, high-performing team. It took me a while to figure out what that really means, but here’s what I’ve learned: A strong team delivers value consistently. They work together like a well-oiled machine, complementing each other’s skills and continuously growing. They don’t wait to be told what to do, they take initiative, and responsibility is shared across the team.

 To build and maintain a team like this, you’ll need to invest time and energy into your people. That means mentoring and coaching them, creating opportunities for growth through delegation, and providing feedback that actually helps them improve. It also means supporting collaboration by addressing conflict, facilitating open conversations, and building strong relationships. It’s challenging work, but it’s worth it. Because without effective collaboration, you don’t have a team; you just have a group of individuals trying to work together.

 	Lead technical topics

 	
 As a tech lead, your primary responsibility is to ensure your team can deliver on expectations and handle any technical challenges thrown their way. But this doesn’t mean you need to be the most technical person on the team or take on every technical decision, code review, or pull request yourself.

 A strong technical background is certainly required, as is familiarity with the technologies your team uses. However, you don’t need to have deep expertise in every part of the tech stack. What’s important is having enough knowledge to code alongside your team when necessary, stay informed about code changes, and effectively troubleshoot issues that arise. This foundation allows you to guide your team in building a technical strategy, making informed decisions, and solving production problems.

 The good news is, you don’t need to carry the weight of technical expertise on your own. As a tech lead, you have tools at your disposal to share responsibility and create a balanced workflow. Delegation is key. Assigning tasks to team members who have deeper expertise in certain areas - or who are eager to learn - ensures the workload is distributed effectively while supporting their growth. This approach not only increases your team’s overall technical capabilities but also reinforces collaboration and trust.

 Equally important is ensuring commitment to the technical strategy and the results you aim to achieve. A great way to do this is by facilitating open, productive conversations within your team. Ensure that everyone has a chance to contribute, share their ideas, and be involved in decision-making.

 I’ve seen this approach work firsthand. I once led a team of six developers to deliver a feature in just three months, despite having limited knowledge of their tech stack or the business context. Instead of trying to become the technical expert, I leaned on team members with deeper expertise in the technology. My focus was on unblocking the team, addressing pain points like backlog alignment, consistent refinement, and knowledge sharing, and creating a process that enabled us to deliver value continuously. By fully utilizing everyone’s skills and providing clarity on what to work on and how to approach tasks, we achieved our goals together.

 Leading technical topics isn’t about knowing everything or doing everything; it’s about enabling your team to deliver efficiently on expectations.

 	Bridge tech and business

 	
 I’d argue this is one of the most important responsibilities you have as a tech lead because it’s something only you can do. You’re the go-to person for your stakeholders, and while other developers on your team can take the lead on technical strategy or mentoring, bridging tech and business isn’t something you can delegate. It’s your job to make your team’s successes visible and proactively communicate potential blockers, risks, or delivery impacts to stakeholders. To do this well, you need to constantly invest in building relationships with stakeholders, not just waiting for them to come to you. Set up regular one-on-ones, progress updates, or tracking processes to provide visibility into your team’s work. I have seen too many tech leads suffering because they overlooked this, forgetting how much these relationships can influence your team’s direction and your ability to lead effectively.

 Your role doesn’t stop there. You’re also responsible for bringing back any relevant information to your team, whether it’s feedback, shifting priorities, or risks. And when needed, you have to shield your team from external pressures that might disrupt their focus or morale. This balance between keeping stakeholders informed and protecting your team ensures everyone stays aligned and focused. It’s a fine line, but when done right, it can make a huge difference in how your team performs and how smoothly everything runs.

 By balancing these three core responsibilities: building a strong team, leading technical topics, and bridging tech with business, you’re setting your team up for success. Each of these areas demands attention and focus, but they are interconnected. A high-performing team requires a clear technical strategy and alignment with business goals so there is no way around it.

 Daily responsibilities

 Now that you have a better understanding of a tech lead’s responsibilities, let’s translate them into what a typical day for a tech lead might look like.

 	Meetings

 	
 Yes! You’ll be spending a lot of time in meetings. There’s no way around it. No matter how good your async communication skills are, meetings are essential for alignment (standups, plannings, retros, strategy sessions, discoveries), supporting your team (one-on-ones, feedback sessions, addressing conflicts), and staying informed about changes (all-hands meetings).

 But that doesn’t mean meetings should consume all your time. Over time, you’ll learn which ones truly require your presence, which can be delegated to others, and which can be cut altogether. This allows you to balance your time with two other equally important areas: coding and thinking time.

 	Coding

 	
 I made the mistake once of staying away from the code for too long, and one day, I jumped back in only to realize I didn’t even recognize it anymore. Trust me, you don’t want to get to that point.

 It’s easy as a tech lead to get swept up in meetings and high-level discussions, but staying hands-on, coding alongside your team weekly, makes all the difference. It keeps you connected to the work, helps you stay in tune with code quality, and ensures you’re better equipped to make technical decisions together with the team.

 	Thinking time

 	
 This is something many tech leads tend to overlook: stepping away from the team and giving yourself some quiet time to reflect. Taking this time to think lets you step back, look at how things are going, spot gaps, and plan the team’s strategy moving forward. It’s one of those things that can save you from being blindsided when things go off track.

 For me, Friday afternoons became my go-to time for this. The week was winding down, the chaos was usually settling, and I’d use the time to review my notes, reflect on the week, and figure out what I might be missing. It was also the perfect moment to plan for the next week. This practice was a game changer, it gave me clarity, helped me feel more in control, and stopped me from just getting swept up in the day-to-day flow.

 Of course, some days will be different than others. Some tech leads prefer saving days just for coding, while others might spend a full day planning. And then there are days where everything goes off track, and you’re just putting out fires. What’s important is that you’re aware of these various activities and ensure each gets the proper attention throughout the week.

 Understanding the expectations of your role

 With so many assumptions about what the tech lead role involves, ranging from being the most technical person on the team to focusing entirely on people and processes, it’s impossible to meet every expectation. Some view the role as highly hands-on, expecting the tech lead to contribute code daily and make all the decisions. Others view it as a facilitator’s role, focused on guiding processes, supporting the team, and encouraging collaboration.

 The key to being effective is understanding your specific context - your company, team, and stakeholders - and what they expect from you. This clarity will help you define your priorities as a tech lead and focus on what truly matters in your environment.

 Read the job description

 Most tech leads I talk to have never read the official company job description for their role. They just made their own assumptions on what is expected of them. No surprise they often ended up in conversations with their managers on how they “are not focusing on the right thing”.

 So, your first task when jumping into the tech lead role, is to read the job description and understand what are the expectations people around have on you.

 See what applies to you and how

 Job descriptions for tech lead roles are often vague, filled with phrases like “adaptability and openness to new ideas,” “grow team members,” or “come up with innovative solutions.” While these may sound inspiring, they leave a lot open to interpretation. To make these expectations meaningful, take the time to reflect on how they apply to your day-to-day work and the current stage of your team.

 Your gut feeling is not enough to assess whether you’re doing a good job as a tech lead. To truly understand your role and align with others, you need clarity and agreement from your team and stakeholders.

 Start by asking the right questions. In one-on-one with team members, ask, “What do you expect from me as a tech lead?” Juniors might say they want mentoring, guidance, and technical expertise. Seniors, on the other hand, may expect alignment, support, and help in removing blockers. Both perspectives are important, so note their inputs and adapt your approach.

 Don’t stop with your team. Extend the conversation to other stakeholders like clients, product managers, or department leads. Ask them the same question and listen closely to their answers. They may highlight areas you hadn’t considered, like managing external dependencies, aligning with broader business goals, or improving communication across teams.

 You can also make this process simpler by using a form to collect responses from multiple people at once. Adding prompts like “What’s one thing I can do to better support you?” or “What areas do you think I should focus on as a tech lead?” can help you get more specific and useful feedback.

 Once you’ve gathered input, it’s time to synthesize these expectations and share them with your team and manager. Define what’s realistic and clarify what’s not. For example, if you’re expected to “come up with new product ideas that increase revenue” but your focus for the next six months is migrating a monolith to microservices, make that clear. Similarly, if some team members expect you to code as much as they do, explain why that may not be feasible.

 The goal is to ensure everyone is aligned and understands your priorities. Setting clear expectations early on helps avoid misunderstandings, disappointment, and potential conflicts down the line.

 What if there is no job description?

 It’s rare, but it happens. I like to see this as an opportunity. If there’s no job description, create your own by applying the same principles:

 	
 Jot down what you think is expected from your role

 	
 Ask your stakeholders and team members about their expectations

 	
 Compile all inputs into a document

 	
 Share it with your manager and team to get agreement

 An added bonus: you can make this document visible across the company and ask for more input. It might just kick start the creation of an official job description.

 Is this role a good fit for me?

 Deciding if the tech lead role is right for you is deeply personal and unique to your situation. No one can answer this question but you. Start by exploring what the role entails and how it aligns with your goals.

 Here are some things that can help you decide:

 	
 Talk to other tech leads about their day-to-day experiences and see how you feel about what they are sharing. Do you like what you hear?

 	
 Read through your company’s expectations for the role. Keep in mind that it varies by company, so explore which environment aligns with your own definition.

 	
 Don’t let anyone fool you: no matter how technical the role looks on paper, there will always be a great “dealing with people” in the role. This does not mean you need to have the skills to jump into the role, I definitely didn’t. But it does mean you should be motivated by achieving things as a group rather than individually.

 	
 Get feedback: ask people around if they see you fit for the role or not and why.

 	
 Talk it over with someone objective: people often bring up this topic to me in coaching. Surprisingly, very often after an hour of deep diving into their reasoning and worries they get clarity on wanting to pursue the role or not.

 This being said, the only way to really know, is to try it out.

 Common pathways to becoming a Tech Lead

 There are three main pathways that can lead you into a tech lead role. In this section, I’ll break them down one by one, sharing insights into how each works, the pros and cons, and how they might align with your own journey.

 Taking over the Tech Lead role in your current team

 The tech lead of your team announces they’re leaving, and you realize this could be your chance. This is exactly how I became a tech lead at ThoughtWorks. When my current tech lead announced he was rolling off the project, I immediately offered to step in. It felt like the natural next step for both me and my team, aligning perfectly with my long-term goals and the timing.

 I had already been preparing to jump into a leadership role for a while. I took part in multiple leadership trainings, I was taking on more and more responsibilities in my current team and outside of the team that required leadership skills. I was leading big initiatives that involved direct and constant interaction with the clients, growing other people in the company, and becoming more and more visible inside and outside the company by presenting at different events.

 Having been in the team for nearly two years, I was the person with the longest longevity in the team (I was in a consultancy environment where people rotate teams way more often than in a product company) so I had the most context on our products and technical solutions. In addition, I was the most excited candidate and felt confident I could take on the role.

 Based on these reasons, it was no surprise when the leadership team said yes to my request with the condition that I prepare for a smooth transition. Together with my current tech lead, we built a plan that allowed me to step into the role gradually. I initially took on the position of secondary tech lead, allowing me to get a feel for the responsibilities while still having support.

 Here’s how the transition played out over the two months before my tech lead rolled off the project:

 We kicked things off by setting up a clear two-month timeline. I started attending meetings with stakeholders and other teams, shadowing my tech lead at first, then gradually taking over and leading them on my own. Each week, we held handover sessions where I got a behind-the-scenes look at the tasks my tech lead was handling and caught up on team initiatives I hadn’t been directly involved in before.

 I began stepping into decision-making conversations within the team, initially with my tech lead there to guide me. After each session, we’d debrief, and I’d get feedback on what to tweak or improve. I also took on the tough conversations with the client, knowing my tech lead would step in if things got tricky. On the internal side, I started handling progress updates and addressing potential issues with stakeholders, again with my tech lead as a safety net if I needed backup.

 The only thing I missed, and would have done differently, was setting clear expectations with leadership about how my team would be informed about the transition.

 	What I wish had happened

 	
 In retrospect, my plan should have included clear communication from my tech lead or someone in the leadership team to the team about the transition, explaining that I would be taking over the role, when it would happen, and outlining the plan for the transition.

 	What happened

 	
 When I transitioned into the tech lead role, there was no official communication from leadership to my team - only the stakeholders were informed. I assumed the team knew, as I became less involved in daily tasks and focused on the handover plan. After my tech lead left, I started leading meetings and setting up one-on-ones. This confused the team, making them feel like I was overstepping.

 During a one-on-one, someone finally said, “So, you’re the tech lead now? I assumed, but no one confirmed.” That’s when I realized there had been a lack of clarity. I asked leadership to officially announce my new role, and once they did, along with an apology for the oversight, things fell into place.

 This experience taught me the importance of clear communication. If you’re transitioning into a leadership role, ensure this step is part of the process. It saves confusion, builds trust, and sets the tone for your leadership journey.

 The benefits of this approach are as follows: the transition process into the role becomes smoother since you’re already familiar with the team, the technology, and the product and you have your current tech lead by your side to guide your first steps.

 The main downside of this approach is that your team members already know you as a fellow developer, and it can take time for them to start seeing you as a leader. I experienced this myself: because they knew me so well, it took longer for them to trust me in a leadership role. People became more hesitant to share everything with me, and at times, my authority wasn’t taken as seriously. However, these issues can be managed by setting clear expectations with the team and addressing any concerns early through honest conversations.

 Overall, this remains one of the smoothest ways to step into the tech lead role.

 Taking over the Tech Lead role in another team

 The tech lead of another team is leaving, and your manager asks you to step in because there’s no one else with the necessary skills. You agree.

 To make the transition smoother, jump in as soon as possible. The more overlap you have with the current tech lead, the better, because you’ll be able to create a transition plan together (like I did with my tech lead in 1.2.1 Taking Over the Tech Lead Role in Your Current Team).

 Transitioning to a leadership role in another team does come with a few extra challenges. Beyond just transitioning to tech lead, you also have to go through a full onboarding process with the new team. They’ve already established their own way of working, and as a new leader, you may face some friction as they adjust to you. If overlap with the outgoing tech lead isn’t possible, focus on relationship-building first, rather than diving into the technical or product side. Forming a few allies early on can help you access the knowledge you need.

 All this makes it a bit trickier than taking over a team you’re already familiar with, where you’d know the people, product, and technical solutions.

 The upside is you’re walking into a fresh start: new team, new people, new rules. This is a chance to define how you want to be seen as a leader right from the beginning.

 Building and leading a brand-new team

 As your company grows, a new team is formed, and it needs a tech lead. Whether you’re asked to take on the role or you volunteer, you’re starting from scratch. Everything is new, for you and the team. This gives you a unique opportunity to shape the team’s culture, processes, and technical direction right from the start.

 Pros: Everything is new - not just for you, but for everyone involved. This gives you the opportunity to start fresh, define your role as a leader, improve on your previous experiences and bring people in the team that are aligned with the culture you want to create. Your team members are also likely to be more engaged and curious, eager to contribute and take initiative at this stage.

 Cons: Everything is new, and you don’t have someone daily in the team to guide your first steps. Leading a new team is a different challenge than leading an existing team as it requires different skills. A new team has different needs, such as:

 	A discovery period

 	
 The discovery period is the time it takes to understand what your team will build, why and how.

 	A team definition period

 	
 The team definition period is the time it takes to shape the team’s culture and establish ways of working.

 	A settling in period

 	
 The settling in period is the time it takes people to get to know each other and adjust to working together.

 	A hiring period

 	
 Chances are, you’ll have to bring new people on board as needs evolve. The hiring period is the time it takes to balance team dynamics, evaluate skills, and actively shape how each hire fits into the team’s long-term goals.

 Required Skills and Mindset Shifts

 As a tech lead, you’ll need more than just technical expertise or leadership skills, it’s about embracing a new way of thinking.

 In this section, I’ll first explore the technical skills you’ll need, focusing on the importance of understanding the software development lifecycle and how it shapes your team’s work. Then, I’ll dive into the leadership skills and mindset shifts that will help you empower your team, align with stakeholders, and adapt to the complexities of this role.

 Technical skills

 In the Defining the Scope section, I explained why having technical breadth as a tech lead often matters more than being an expert in every technology your team uses. Your goal is to ensure that your team collectively has the capabilities to meet the expectations of the work. Of course, this doesn’t mean you can skip technical knowledge entirely - you still need to understand enough to guide your team effectively.

 Let’s start with an overview of all the different stages in your team’s development cycle. I’m a big fan of teams having autonomy over what they build, which is why I embrace the “you build it, you run it” methodology. This approach requires your team to handle every stage of the software development lifecycle (Figure 1-2. SDLC) - from planning and analysis to design, implementation, testing, deployment, and maintenance.

 Figure 1-2. SDLC

 When your team owns the full lifecycle, there’s no way around it: you need to understand your product at every stage. This requires a solid high-level understanding of:

 	Planning, Analysis, and Design

 	
 For these early stages, skills like architecture design and understanding how services are designed and scaled are key. The system architecture your team chooses - whether it’s microservices, a monolithic structure, or a hybrid model - will have a significant impact on every phase of development. Knowing the benefits and trade-offs of different architectures enables you to guide your team in making informed decisions about scalability, performance, and maintainability.

 For example, working with Microservices Architecture may require a deeper understanding of distributed systems, inter-service communication, and managing dependencies. Meanwhile, Monolithic Architecture focuses on internal cohesion and the impact of changes on the entire system. As a tech lead, you should be comfortable discussing these trade-offs with both your team and product stakeholders.

 	Implementation

 	
 During the implementation phase, your focus shifts to development. Depending on your product and the problem your team is solving, you might need stronger backend development skills, such as working with APIs, backend frameworks, database interactions, or database management. For frontend-heavy projects, familiarity with modern frontend technologies, performance optimization, and how the UI interacts with the backend will be needed. You might even need both if your project is full-stack. Of course, you’ll also need to understand the programming languages your team uses daily to contribute meaningfully.

 	Testing

 	
 Quality is your responsibility. While you won’t write every test, you need to ensure proper strategies are in place - unit, integration, and end-to-end testing - and encourage a quality-first mindset. Testing isn’t just about catching bugs; it’s about avoiding regressions and keeping technical debt in check. You’ll also need to understand how your system interacts with others. Techniques like contract testing and CFRs can help avoid ugly surprises when systems integrate.

 	Deployment

 	
 Your team’s deployment process says a lot about its efficiency and reliability. You need to understand your deployment pipeline, the infrastructure involved, and which parts your team owns. Whether working with cloud services or on-premise solutions, you’ll need to troubleshoot slow delivery pipelines and ensure releases are smooth. Familiarity with concepts like CI/CD (Continuous Integration/Continuous Deployment) is non-negotiable these days for ensuring fast, automated releases and quick resolution of production issues.

 Even if your company has a separate team handling deployment, you still need to understand the process at a high level. This knowledge helps you anticipate how deployment considerations might affect your product and ensures your team delivers a reliable solution.

 	Maintenance

 	
 Building the product is just the start - keeping it running is the real test. In my experience, maintenance often takes up at least half of a team’s time, and ironically, these products are usually the biggest revenue drivers. Poor decisions made earlier in development show up here, and fixing them can cost a fortune. Observability skills - monitoring, troubleshooting, and debugging - are critical to ensure the system runs smoothly and your team isn’t flying blind. You can’t improve a system if you don’t know what’s wrong with it.

 Even if your team doesn’t directly handle all these stages (e.g., separate QA or deployment teams), understanding how they apply to your product is crucial. Too many teams focus solely on the implementation phase, which can cause serious problems. Every phase plays a role in the final result, and as a tech lead, you’re accountable for that. It doesn’t matter how good your code is if it takes three days to deploy.

 This might feel overwhelming, but you don’t need to master all these skills upfront. Much of the learning happens on the job, and different areas will demand focus depending on your project’s type and stage. For example, a frontend-heavy project will emphasize UI technologies, while a backend-focused one might require expertise in APIs and databases. Projects also vary - Greenfield Projects are about new architectures and innovation, Brownfield Projects involve navigating legacy systems, and Scaling Projects focus on reliability and performance.

 No tech lead knows everything, and that’s fine. The key is to focus on what matters now and learn as you go. Work with your team to create growth opportunities - run experiments, host hackathons, or set up learning days. Side projects can help, but I prefer learning on the job. If your current role doesn’t offer the chance to grow, you can propose a new project or even consider moving to one that aligns with your goals.

 Leadership skills

 Most tech leads think they only need strong technical skills in order to be effective as tech leads. I definitely believed so, and I was quickly proven wrong once I stepped into the role because the daily challenges that I constantly encountered required soft skills to be addressed.

 Here are some examples:

 Two developers fighting for hours over what JSON parsing library to use: my first instinct, like most tech leads, was to dive into the technical options myself and pick the “best” solution. I definitely made this mistake early on. But over time, I learned to ask questions before jumping into action. By listening to both sides, I realized that, surprisingly, the conflict was not about the parsing library but actually these two people had a recurring underlying conflict between them so they could not agree on pretty much everything. So, instead of diving into the JSON libraries, I helped them resolve their personal conflict.

 The team wasn’t addressing tech debt: despite having the knowledge, the time, and the product buy-in to tackle it, nothing was progressing. The root issue wasn’t a lack of technical capability but the absence of someone willing to take ownership and drive the process forward. As a tech lead, you could easily step in and take charge, but that’s not sustainable long-term. The more effective solution is to enable and empower a senior team member to take on this responsibility and lead the initiative.

 All these situations, along with countless others I’ve encountered or seen other tech leads face daily, have led me to the same conclusion:

 Note

 Most tech problems are people problems.

 And solving these people problems requires strong soft skills.

 I dive deep into all the soft skills you’ll need as a tech lead in the Soft Skills for Tech Leads O’Reilly online course and Part II of this book, but for now, here’s what you need to know:

 There are seven soft skills every tech lead needs:

 	
 Listening: everything starts with listening more

 	
 Building relationships: building strong relationships will help you set the foundation for collaboration, alignment, and commitment

 	
 Feedback: is your best tool for growing your team members and yourself

 	
 Delegation: is the secret to effective leadership and team empowerment

 	
 Facilitation: will help you bring all voices to the table and help your team reach decisions collaboratively

 	
 Conflict resolution: disagreements are not just inevitable but actually a sign of a healthy team: you just have to learn how to navigate them effectively

 	
 Mentoring and Coaching: by making use if mentoring and coaching tools you can help your team grow without telling them what to do

 Investing in your soft skills is always a wise decision. They never become outdated and are universally applicable. After all, no matter how much tech develops, you will always have to work with people so you might as well get better at it.

 Mindset changes

 As a tech lead, you need to shift from an individual contributor mindset to a leadership mindset as your success is now directly tied to the success of your team, not just your individual performance. This transition involves three key mindset changes, as shown in Figure 1-3.

 Figure 1-3. Mindset changes

 The first shift - from individual to team focus - means understanding that:

 	
 Your technical expertise is irrelevant if your team is constantly struggling.

 	
 The number of tasks you complete doesn’t matter if your team isn’t delivering at the same pace.

 	
 Finishing your tasks quickly doesn’t help if your team is slow to deliver.

 	
 Your self-assessment of doing a great job as a tech lead is meaningless if your team disagrees.

 	
 Personal results don’t count if your team isn’t achieving success.

 	
 How well you work on your own does not matter if you can’t collaborate with your team.

 	
 Talented team members alone aren’t enough if they can’t collaborate effectively.

 As a tech lead, it’s about ensuring the whole team moves forward and succeeds together.

 Equally important is transitioning from coding-centric thinking to value-driven decisions. Being a tech lead isn’t about the amount of code you write but the value your team delivers. Instead of always pushing for the latest technology, prioritize what works best for your goals and gains team buy-in. Before jumping into coding, ensure assumptions are clarified and strategies aligned. And instead of dismissing meetings as useless, challenge their purpose to make them more effective for everyone.

 Then there’s the need to step into long-term planning. The decisions you make today will affect your team tomorrow so you need to understand to balance immediate tasks with the long-term health of the project. Decisions made for short-term gains should not come at the expense of long-term maintainability or technical debt.

 Empowering others becomes a core principle. Instead of defaulting to “I’ll handle this,” shift to “How can I enable someone else to take ownership of this task?” as the first approach it’s not scalable anymore. (More on this in Chapter 5 Delegating)

 Lastly, letting go of control is essential. As an individual contributor, you had a clear focus: your tasks moved from To Do to Done, often with little interference. But as a tech lead, you’re juggling multiple team members’ progress and tackling issues that might not even be on the board. Trying to micromanage it all is a one-way ticket to burnout (trust me, I’ve been there). Learning to trust your team and step back is essential. For more insights, see Chapter 2, “Avoiding the ‘Therapist’ Trap.”

 To help with your mindset shift, write this down and keep it somewhere visible as a daily reminder:

 Note

 As a tech lead you are as successful as your team.

 Chapter 2. Becoming a Tech Lead

A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the second chapter of the final book.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

			

 Becoming a tech lead is an exciting but challenging transition. This chapter will guide you through the journey of stepping into the role, building the skills you need, and overcoming common obstacles along the way.

 We’ll start by focusing on developing a personal growth plan. First, we’ll explore how to set a strong foundation for your growth by adopting the right mindset and understanding the importance of intentional development. Then, we’ll walk through creating and implementing a growth plan tailored to your unique context and goals. Finally, we’ll emphasize the importance of reflecting on your progress and making adjustments to stay aligned with your objectives.

 Once your growth strategy is in place, we’ll address common challenges that new tech leads face. Time management often becomes difficult to balance, so we’ll explore how to effectively plan and manage your new responsibilities. We’ll also cover strategies for avoiding the ‘therapist trap,’ where you might feel pressured to solve everyone’s problems, and how to steer clear of micromanaging your team. Finally, we’ll dive into finding the right balance between hands-on coding and providing technical oversight, a delicate but essential aspect of the tech lead role.

 By the end of this chapter, you’ll have a practical framework for growing into the role of a tech lead and strategies for navigating the challenges that come with it.

 Developing a Personal Growth Plan

 Before diving into the specifics of how to grow as a Tech Lead, it’s important to understand why having a growth plan matters. Growth doesn’t happen by accident but it’s the result of intentional effort and direction. A clear plan helps you focus on where you want to go, identify opportunities to develop key skills, and make deliberate career moves instead of just going with the flow. It also serves as a guide for evaluating progress, keeping you motivated, and ensuring that your efforts align with both your aspirations and your team’s needs.

 Setting the foundation for growth

 With the importance of a growth plan established, the next step is to lay the groundwork for your journey. This section focuses on three essential elements to help you start strong.

 First, we’ll discuss the importance of developing a growth mindset, seeing challenges as opportunities and recognizing that mistakes are learning experiences rather than failures.

 Next, we’ll focus on assessing where you currently stand. By evaluating your strengths and areas for improvement, you’ll gain a clearer picture of your starting point.

 Finally, we’ll look at the value of seeking clarity from those around you. Understanding the expectations of your team, stakeholders, and manager is essential for setting realistic goals and ensuring you’re focusing on the right areas.

 Together, these steps will set the stage for your growth journey and help you align your efforts with the needs of your team and your role. Let’s start building that foundation.

 Building a growth mindset

 Having a growth plan is only effective if you pair it with the right mindset. To grow as a Tech Lead, you need to embrace a growth mindset which is the belief that your abilities can be developed through effort, learning, and perseverance. It’s about seeing challenges as opportunities and mistakes as learning experiences, rather than failures.

 When I first stepped into the Tech Lead role, I believed I had to have all the answers and get everything right. I felt like every mistake or moment of uncertainty would undermine my capability in the eyes of others. I would hide my mistakes, thinking it made me appear more competent. I’d prepare technical solutions in advance, rushing to respond to every client question as if hesitation would make me seem less qualified. My anxiety drove me to over prepare for every situation, leaving me constantly stressed and exhausted.

 When others didn’t have answers, I felt it was my responsibility to step in and “fix it all,” often taking on tasks that weren’t mine to handle. Instead of asking for clarification, I’d spend hours figuring things out alone, convinced that admitting I didn’t know something would damage my credibility.

 Looking back, I realize how limiting this mindset was because growth requires a fundamental belief: you don’t need to have all the answers right away, but you do need to believe in your ability to learn, adapt, and improve.

 In order to grow, you need to believe you need to.

 The good news is, a growth mindset can be developed just like any other skill. Two strategies helped me transform my approach to challenges and uncertainty.

 The first is embracing the phrase “I don’t know.” Admitting when you don’t have all the answers can be a game-changer. It allows you to learn faster by seeking information instead of pretending, reduces the stress of trying to appear all-knowing, and supports a culture of collaboration by making it safe for others to admit what they don’t know as well. At first, saying “I don’t know” felt uncomfortable - I even got strange looks from others - but over time, it became easier, and I began to see how it strengthened my interactions and trust within the team.

 The second strategy is shifting from “I don’t know” to “I don’t know yet.” Reflecting on past challenges often reveals a pattern: you didn’t always know the answers, but you figured them out. Think back to moments when you started without clarity or certainty. What steps did you take to move forward? How did you overcome the fear of not succeeding? Over time, what initially felt impossible became second nature. This mindset shift focuses on the journey of learning and emphasizes that progress takes time and effort.

 It’s easy to feel the pressure to know everything, but real growth happens when you trust your ability to learn and adapt. Confidence doesn’t come from always having the answers - it comes from recognizing what you know now and believing you’ll figure out the rest. Growth starts with this belief. You won’t know everything right away, but with time and effort, you will. For a deeper exploration of the growth mindset, I highly recommend Mindset: The New Psychology of Success by Carol Dweck.

 Assessing your starting point

 The second requirement for growth is to know where you are starting. To assess where you are, use the 1-to-10 scaling system:

 	
 Rate yourself: review the tech lead expectations in your company and rate yourself on each from 1 to 10. Use specific examples to justify your rating. For an 8, ask yourself, “Why not a 10?” If nothing’s missing, maybe you’re already a 10.

 	
 Seek feedback: ask colleagues and managers to rate you on the same scale. Request examples and advice to reach a 10.

 	
 Compare and align: Identify gaps between your ratings and others’ feedback. Use this to uncover blind spots or strengths for your growth plan.

 Clarifying expectations for your role

 The third requirement for growth is understanding what’s expected of you. The tech lead role can vary widely between companies, so it’s important to clarify expectations in your specific environment. Refer to Chapter 1: Understanding the expectations of your role to learn how to align with your organization’s demands. This process will help you identify your strengths, pinpoint areas for improvement, and tailor your growth plan to meet those expectations effectively.

 Developing a growth plan

 People often get trapped in the cycle of “doing” without a clear destination, which can drain motivation. I’ve been there, focusing on tasks without knowing exactly where they’re leading. A growth plan changes that by being intentional about where you want to go. It gives you control over your career path, helping you recognize opportunities as they come and make decisions more easily because you know your “why.” It’s about moving with purpose rather than drifting on someone else’s agenda.

 Steps for building a growth plan:

 	
 Define a clear goal:

 Ask yourself, “How will I know I’ve reached my goal?” or “What specific signs or outcomes will tell you you’re there?”

 In this case, the goal is clear: becoming a tech lead.

 	
 Define the steps to get there

 Define key milestones: “What are the key steps I need to take to become a tech lead?” Even if the path shifts, having an initial map helps.

 	
 Build a timeline

 Once you have those steps, sketch out a rough timeline:

 	
 “What are the milestones along the way?”

 	
 “How long will each phase take?”

 While this will likely evolve, a high-level timeline keeps you moving forward.

 	
 Build a support network

 “Who can help me?” Surrounding yourself with the right people is essential for growth. This could include your current tech lead, manager, mentors, other tech leads, or even a coach. These individuals can guide you, share their experiences, and provide valuable insights.

 Let them know about your growth aspirations and plans. By sharing your goals, you enable them to offer targeted opportunities, give specific feedback, and help you refine your approach. This is also a chance to ensure your plan is realistic and aligned with both their expectations and the broader goals of your role. A strong support network makes the journey smoother and more achievable.

 	
 Identify opportunities & resources

 Ask yourself, “What opportunities are around me that can help me develop the skills I need?” Maybe there’s extra responsibility you can take on in your current role or people you can shadow.

 Also, seek resources like leadership programs, books, courses, and coaching (great way to use your personal development budget).

 The plan may not always go as expected, but it will get you to your goal faster than just going with the flow. Keep adjusting as you progress.

 Implement, Reflect and Adjust

 Once you’ve outlined your growth plan, it’s time to put it into action. Implementation begins with defining your long-term goal. But here’s the twist: define it, then set it aside for now.

 Define your long-term goal.

 And then forget about it.

 Big goals like becoming a tech lead can feel overwhelming, so break them into smaller, actionable steps. The question you need to answer isn’t “How do I achieve this giant goal?” but rather, “What’s the first small move I can take today to get closer?”

 Track your progress

 With your steps outlined, it’s time to focus on one at a time and, most importantly, track your progress. It sounds so simple, but this critical step is often dismissed as “obvious” and skipped entirely. The result? You lose sight of how far you’ve come and the progress you’ve made.

 Many people avoid tracking for reasons that might seem valid at first. They tell themselves, “I’ll just keep it in my head,” trusting their memory to handle the details. But why overburden your brain when writing things down is far easier and more effective? Others hesitate, asking, “What counts as progress?” The answer is straightforward: anything, big or small, that moves you forward is worth recording. Then there’s the classic excuse, “I’ll remember it.” The reality is, you probably won’t - just like many tech leads I talk to daily.

 Writing things down activates a different part of your brain, making your progress feel tangible and keeping you connected to the steps you’ve taken. These small habits, simple as they may seem, can fundamentally shift how you perceive and maintain your growth.

 Tracking offers two significant benefits. First, it boosts your self-confidence. On tough days, looking back at the challenges you’ve overcome reminds you of how capable you are. Second, it provides motivation. Progress can feel painfully slow when you’re focused only on the long road ahead but reflecting on how far you’ve come can restart your drive to keep going.

 Note

 Don’t skip this step. It helps you stay motivated and on track.

 Reflect

 Tracking is just one half of the equation, reflection completes the growth loop. While tracking gives you a clear record of your journey, reflection helps you evaluate what’s working and what needs to change.

 Here’s how to approach it:

 	Reflect on milestones

 	
 Take time to reflect on your milestones. Use them as checkpoints to assess whether you’re aligned with your growth plan. Ask yourself: “Am I making progress?” and “What adjustments are necessary?”

 	Get constant feedback

 	
 Your gut feeling isn’t enough to know if you’re on track or going off course - you need input from others. Regularly check in with your manager, team, and stakeholders through one-on-ones, feedback sessions, or even anonymous forms. These insights can validate your progress or highlight areas needing improvement.

 	Assess skill development with the 1 to 10 scaling system

 	
 Create a form listing the key skills needed for the tech lead role and use a one-on-one scale to rate yourself and gather feedback from others. The focus isn’t on the numbers but on the discussions they spark. Ask for examples that explain the ratings, and use these conversations to understand your strengths and areas for improvement. If you rate yourself or others as an 8, ask: "Why not a 10?"

 Through consistent reflection and adaptation, you’ll remain aligned with your goals while staying flexible enough to pivot when needed.

 Adjust

 Growth isn’t static, it’s a continuous process of learning and adapting. Use the feedback and insights you’ve gathered to constantly refine your approach.

 Start by leveraging your current environment. If you can choose your projects, be strategic in diversifying your experience. However, even within your existing role, there are countless opportunities to grow. For example, if you’re working on a monolith, dive deep into that architecture. Don’t overwhelm yourself trying to master microservices at the same time.

 As you progress, explore new challenges in future projects. Whether it’s greenfield development, legacy migration, or scaling projects, each offers unique lessons. Seek out experiences that broaden your technical expertise across various stages of development.

 By implementing, reflecting, and adjusting, you’ll turn your growth plan into a dynamic tool that evolves alongside your goals and challenges, keeping you on track to becoming an effective tech lead.

 Overcoming common initial challenges

 When I talk to tech leads, I see the same struggles coming up time and time again. Some feel overwhelmed trying to manage their time effectively and balance their focus between technical responsibilities, team dynamics, and stakeholder needs. Others fall into the trap of trying to solve everyone’s problems or micromanaging their team. These challenges are not just common, they’re expected. But they don’t have to derail you.

 In the sections below, I’ll walk you through these recurring challenges one by one and share strategies for navigating them effectively, starting with time management.

 Time management

 In Chapter 1: “Daily responsibilities” I outlined the core daily tasks for a tech lead: meetings, coding, and thinking time. However, no matter how well you plan, disruptions are inevitable - whether it’s production incidents, strategy changes, or team conflicts. You need to be prepared to switch lanes and adapt.

 While flexibility is key, it’s still important to have a time management system in place. Time management is a major challenge for most tech leads, and this section will help you build a process to gain control over your time and handle disruptions effectively.

 Step 1: Visualize your workload

 By organizing your tasks into categories, you can quickly identify what requires your immediate attention and what can be postponed, delegated, or eliminated. The Eisenhower Matrix is an excellent tool for this purpose. It divides tasks into four quadrants based on their urgency and importance, helping you prioritize effectively. In Figure 2-1, you’ll find examples of what types of tasks fit into each quadrant.

 Figure 2-1. The Eisenhower Matrix - task types example

 Let’s take a practical example: a typical first attempt by a tech lead to populate the Eisenhower Matrix, as shown in Figure 2-2.

 Figure 2-2. The Eisenhower Matrix - filled in

 Step 2: Analyze your task distribution and adjust your workload

 When you look at your task list, there are a few things to keep in mind. First, take a moment to step back and ask yourself: do you have tasks in all four quadrants? One of the most common struggles for tech leads during this exercise is that they only fill in the top two quadrants as you can see in Figure 2-1. When asked why, the answer is almost always the same: “Everything is important, that’s why it’s on my list.” But is it really? Let’s take a closer look at the board and see what might be moved to the lower quadrants.

 Think about the tasks that truly require your unique expertise as a tech lead. Are they things that only you can handle? Some tasks clearly fall into this category - things like resolving critical production issues or making decisions that require your technical authority. But then there are others. Preparing a demo for a client meeting next week or setting up a demo environment might initially feel like your responsibility, but these are tasks that someone else on your team could take over. By delegating them, you free yourself to focus on what only you can do.

 Now consider another type of task: the ones you’re doing just because it would be nice to have them done. For example, updating the system architecture documentation with more detail. Sure, you could argue that this is important. But why? Is another team depending on it? Will the product stop working if it’s not done? Or is it just that you want everything to be perfectly up-to-date? If the answer to the first two questions is no, and the third one resonates a bit too much, then this is exactly the type of task you can let go of. Move it to the delete quadrant. Let someone else handle it, or let it go altogether.

 What happens if I don’t do this? This is the key question to ask when looking at tasks like “Color coding emails,” “Tinkering with low-priority code refactoring that has no current impact,” or “Replacing your current JSON library with a shiny new one.” The honest answer is: probably nothing. These are “nice-to-haves” that often sit on your to-do list but don’t add real value. They don’t significantly impact your work or your team, and holding onto them just takes up mental space. Move them to delete. If one of these tasks turns out to be truly important, it will come back when needed. Until then, let it go and focus on what matters most.

 Not having all the quadrants filled in might also be a sign that you’re stuck in one type of activity, losing track of others, or overlooking blind spots. These blind spots can manifest as areas where you’re wasting effort, missing opportunities, or spreading yourself too thin.

 If you’re spending most of your time in Q1 (Important & Urgent), it’s a clear indicator that you’re in constant firefighting mode. Things keep popping up unexpectedly, leaving you feeling off guard and reactive. This often means you’re not investing enough time in Q2 (Important & Not Urgent) planning and focusing on long-term goals. If you’re unsure what to include in Q2, ask your team: “What should I be focusing on that I’m not?” Their perspective can help uncover opportunities you’ve overlooked.

 On the other hand, spending too much time in Q3 (Urgent & Not Important) suggests you’re being distracted by tasks that don’t need your direct involvement. These tasks often feel pressing but offer little value. Instead, consider delegating them to your team.

 Finally, if you find yourself stuck in Q4 (Not Urgent & Not Important), it’s time to reassess. Low-impact tasks might be your way of avoiding more significant challenges. Ask yourself: are you procrastinating on something more meaningful? If so, don’t hesitate to reach out for support, whether from your team or peers, and redirect your focus to what’s most important.

 By confronting these tendencies, you can move past distractions and focus your energy where it truly counts.

 Based on this analysis, the board in Figure 2-3 is now much more balanced.

 Figure 2-3. The Eisenhower Matrix - all quadrants filled in

 While it’s not necessary to have tasks in all quadrants, the exercise of filling them all, forces you to evaluate the true value of each task and prioritize more effectively. The reality is that you’ll likely never finish everything on your to-do list, so making peace with that and learning to delete or let go of less important tasks can help you feel more productive. By clearing away the unnecessary, you’ll free yourself from the weight of an overwhelming to-do list and gain the focus needed to concentrate on what truly matters.

 Step 3: Plan your week

 Once your matrix is filled in, the next step is to extract your key tasks for the upcoming week and map them to specific time slots in your calendar. This is where the magic happens - turning your priorities into a realistic, actionable plan.

 Start by asking yourself: does everything fit within your schedule? If not, it’s time to reevaluate. Is there something that can be removed or delegated? Be honest about what truly needs your attention and what doesn’t. Don’t forget to include breaks and some realistic buffer time to account for the inevitable unplanned disruptions that creep in.

 Planning your week this way gives you a structured approach to your time. It allows you to focus on what matters most and avoid falling into the trap of prioritizing based on “who screams the loudest.” Instead of feeling overwhelmed, you’ll feel in control, with a clear plan to tackle the week ahead.

 Step 4: Review and Adjust

 Reviewing and adjusting your process might feel like just another task on your already overwhelming to-do list, but it’s one worth prioritizing. Taking this step helps you uncover patterns, avoid repeating mistakes, and refine a system that becomes more effective over time.

 At the end of the week, set aside a few moments to reflect. Consider what urgent issues derailed your plans and whether they were truly unavoidable. Look at what got deprioritized and ask yourself why. Was it because it wasn’t important, or did something else take precedence? Most importantly, think about what you can improve for next week.

 Time management tips:

 There are many different time management strategies out there that can help you to manage your time as a tech lead but here are three that I found most effective:

 The first one is time blocking, a simple yet powerful time management method where you allocate specific blocks of time on your calendar for particular tasks or activities. It’s about being intentional with your time, ensuring you create space for what matters most, instead of letting your day get hijacked by unplanned distractions. For instance, if you’re pairing with team members daily, you can block dedicated hours for pair programming to keep a consistent routine. The same goes for planning: setting aside focus blocks ensures you have uninterrupted time to step back and think strategically. As a tech lead, your team looks to you for direction and long-term planning - not just hands-on coding - so it’s crucial to block out time for this.

 Another effective technique is task batching that works hand-in-hand with time blocking. Grouping similar tasks, like meetings or feedback sessions, into one block reduces context switching and helps you stay focused.

 And here’s one of my golden rules that helps me protect my schedule: never say yes on the spot. Instead, respond with, “Let me think about it,” check your calendar, and make sure it fits.

 Avoiding the ‘therapist’ trap

 One of the most common traps tech leads fall into is trying to solve everyone’s problems. Many get into leadership roles because they genuinely want to help others, but this can quickly turn into taking on too much responsibility. What starts with, “How can I help?” often turns into, “Don’t worry, I’ll do it for you.”

 It’s not your job as a tech lead,

 to solve everyone’s problems!

 It’s okay to feel overwhelmed or not agree with someone’s issue. And it’s absolutely okay to say, "I can’t deal with this today, can it wait until tomorrow?" Setting healthy boundaries is crucial for both your well-being and for enabling team independence.

 The pitfalls of over-involvement are hard to ignore. Burnout is inevitable if you’re constantly stepping in to handle everything (been there, done that). You’ll exhaust yourself trying to manage tasks the team should own. Frustration builds quickly too together with resentment towards the team for not stepping up, stakeholders for endless demands, and yourself for not setting boundaries.

 And then there’s the blame. If you’re always the fixer, you become the first to blame when things go wrong. Instead of encouraging shared accountability, you’ve positioned yourself as the only point of failure.

 Early in my career, I fell into this trap when a team member, new to the city, shared his frustrations during a one-on-one. He was struggling to sort out his paperwork, and it was affecting his focus at work. Without even being asked, I jumped in, eager to help. “Don’t worry, I’ll handle it” I said, even though I wasn’t an expert in the process myself. I took full responsibility: researching the steps, preparing his documents, asking others for advice, and even sitting with him to book his appointments. I even skipped standups to accompany him to appointments.

 It didn’t go as planned. We hit roadblocks, and he became increasingly frustrated with me because I hadn’t solved it as promised. Meanwhile, I was overwhelmed, my work was suffering, and I felt unappreciated for my efforts. A colleague finally asked me, “Why are you trying so hard to fix his problem? It’s not yours to solve.” That moment was a wake-up call. I stepped back, pointed him to someone better suited to help, and let him take over the process. But the damage was done - our professional relationship had soured, and both of us were left feeling frustrated.

 In hindsight, there were countless moments when I could have handled it differently. Here’s how I wish I had approached the situation, and how I now tackle similar challenges:

 	Set proper boundaries:

 	
 Before diving into any problem, I take a moment to analyze. In this case, I could’ve simply said, “I’m sorry to hear that,” and taken time to reflect. Was it my problem to solve? No - he hadn’t even explicitly asked for my help. Even if someone does, I now ask myself, “What happens if I say no?” Often, the answer is nothing catastrophic, and the person can handle it with some guidance.

 	Keep yourself in check:

 	
 Reflection is key. Talking it through with a mentor or colleague can offer valuable perspective. Had I done this earlier, I would’ve realized I was overextending and could’ve stepped back. I now routinely ask myself: “Are there certain people or tasks draining more of my energy?” or “Am I stepping in when I should be encouraging ownership?”

 	Shift Your Support:

 	
 Helping doesn’t always mean solving. Sometimes it’s enough to simply listen: “I’m sorry you’re dealing with this.” In other cases, the best move is to point them to someone else. When I finally realized the paperwork wasn’t my problem, I identified someone better equipped to help him and sent him their way.

 This lesson also applies to day-to-day work-specific situations, like when a team member says, “I can’t deal with this task - can you take it over?” or “I’m having issues with this person.” Instead of stepping in and solving it myself, I now guide them to handle it directly. For interpersonal conflicts, for example, I might say, “I understand this is frustrating, but I expect you to work it out together. Let me know how I can support your conversation.” Jumping in too quickly not only drains your energy but also robs others of the opportunity to grow.

 You’re part of a team, not a solo problem-solver. Set clear boundaries, let others own their responsibilities, and focus on guiding rather than fixing everything yourself. This empowers your team, prevents burnout, and keeps you from being overwhelmed.

 Avoiding micromanaging

 When I first became a tech lead, I believed micromanagement was the only way to ensure things were done perfectly. I had a to-do list for every person, verified everything they did, and struggled to delegate. I felt constantly angry, frustrated, and ultimately, burnt out.

 I learned the hard way that micromanagement isn’t sustainable. It limits both the leader and the team, leading to frustration, burnout, and a lack of trust. Micromanaging might feel like control, but it’s actually driven by fear, fear that things will go wrong and a lack of trust in both yourself and others.

 The turning point came when I learned to let go. I started by reflecting on my actions, getting feedback, and practicing delegation every day. By doing so, I shifted from trying to control everything to focusing on people and their growth.

 If you recognize yourself in this, it’s time to start letting go. Here’s how:

 	
 Start with small tasks: delegate small, non-critical tasks first, and trust your team to handle them. Gradually increase responsibility as trust grows.

 	
 Give clear expectations, not step-by-step instructions: focus on the “what” and “why” of tasks rather than the “how.” Let your team figure out the best way to get things done. Allow yourself to be surprised by their approach.

 	
 Co-create a tracking system: instead of constantly checking in, ask your team to develop a visible tracking process for their progress. Schedule regular check-ins where they report back - this keeps you informed without hovering.

 	
 Say, “I don’t know” once: in a one-on-one with someone you trust, admit to not knowing something. See how it feels and how people react.

 	
 Admit a mistake: pick a comfortable setting, perhaps in a one-on-one, to share a mistake you made. It’s a small but powerful step toward letting go of control.

 	
 Reflect on your control tendencies: take time to think about how your need for control impacts your well-being and the people around you. Working with a coach or mentor can offer valuable outside perspective.

 	
 Ask for help (this requires an extra dose of vulnerability): let your team in on your journey by admitting, “I’ve realized I tend to control too much, and I want to work on it. Where do you think I should start?”

 When you focus on guiding rather than controlling, your role as a leader becomes about empowering others. This shift doesn’t just benefit your team; it also positively impacts your own well-being. You’ll have more mental space, less frustration, and greater trust in your team’s capabilities.

 Micromanagement is one of the main reasons why people leave jobs. No one likes to be watched all the time, living with the constant fear of making a mistake and having no autonomy in making their own decisions - as the saying goes “people leave managers, not jobs”.

 If you want your team to thrive and stay engaged, invest in building trust. Let them own their tasks and allow for mistakes because that’s how people learn and grow (eg. some of the best learnings come from postmortems). You might be surprised at how capable and motivated your team becomes when they feel genuinely trusted and empowered.

 Moving away from micromanagement doesn’t mean losing control of outcomes - it’s about gaining trust and respect. You’ll see results not by doing everything yourself, but by leveraging the full potential of your team. It’s a shift from “I must do everything to make sure it’s perfect” to “I trust my team to succeed, and together we’ll grow.”

 Hands-on coding vs. technical oversight

 A common challenge for tech leads is deciding how much time to spend coding versus overseeing technical decisions.

 When I first became a tech lead, I found myself naturally drawn to high-level strategy and discussions, leaving less time for hands-on coding. I enjoyed meetings, brainstorming solutions, and setting direction for the team, but I soon realized I was losing touch with the actual technical work.

 At the same time, I’ve also met tech leads who remain deeply immersed in coding, losing sight of the bigger picture because transitioning to a leadership role feels unfamiliar and uncomfortable. Both approaches come with their own set of challenges.

 Determining where you fall on the spectrum between technical and organizational focus starts with honest self-reflection. Imagine a day where you could choose to do only one thing. Would you rather spend it immersed in code, building and debugging, or would you lean toward conversations, planning, and driving strategic direction for your team? Your answers to these questions can reveal where your strengths and interests naturally lie, helping you align your focus as a tech lead.

 Recognizing your natural tendencies is important, but to be a successful tech lead, you need the ability to switch gears between hands-on coding and strategic oversight based on what your team and project need most.

 If you’re too focused on coding, it might show up in a few ways. Maybe you’re the first to jump on every pull request or technical challenge, leaving little room for others to step in. You might know the codebase inside out while the rest of the team feels left out of key decisions. If you’re skipping meetings or high-level planning, chances are the team is missing the clear direction they need to move forward.

 On the flip side, being too focused on oversight can leave you feeling disconnected from the code. You might find yourself zoning out in stand-ups or struggling to understand the technical details the team is discussing. This can frustrate your team when they need help solving technical problems, and you’re either unavailable or too out of touch to step in.

 The key to being an effective tech lead is adaptability. You’ll need to adjust your focus based on the project phase and your team’s needs. For example:

 	
 When deadlines are tight, you might need to dive into the code and work alongside your team.

 	
 When there’s a new feature to plan, you might spend more time away from coding, working with stakeholders and aligning the team on the strategy.

 Practical tips for finding balance:

 	
 Block time for both: schedule coding blocks into your calendar while keeping time open for meetings, reviews, and strategy sessions. This ensures you’re hands-on without losing sight of the bigger picture.

 	
 Delegate, but stay informed: you don’t need to be the one writing every line of code, but stay involved enough to guide technical discussions and ensure the code quality is up to standards.

 	
 Engage in code reviews: even if you can’t contribute code regularly, reviewing PRs is a great way to stay connected to the technical aspects without being fully hands-on. If you work with Trunk Based Development and have no PRs: block core pair programming hours on your calendar

 	
 Ask for feedback: check with your team and your stakeholders if they feel you’re striking the right balance. They’ll let you know if they need more of your technical input or if they feel you’re too involved.

 The key to overcoming this challenge is to remain flexible. Some phases of a project will demand more hands-on coding, while others require you to step back and focus on guiding your team. The goal isn’t to be perfect in both areas but to adapt to what the situation calls for and ensure you’re meeting both the technical and leadership needs of your team.

 Chapter 3. Building Relationships

A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the third chapter of the final book.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

			

 Everyone in tech understands the value of networking when it comes to advancing their career. It’s how you hear about job openings before they’re public, skip the application line with referrals, or even land promotions by building trust with managers. Networking gets you insider knowledge about companies, helps you decide if they’re the right fit, and gives you a direct line to opportunities that might otherwise take years to stumble upon. The right relationships can fast-track your career and save you from a lot of wasted time and effort.

 As a tech lead, the stakes are even higher. Building strong relationships isn’t just about you anymore; it directly impacts your team and the teams you collaborate with. The benefits multiply 10x, from creating smoother workflows to opening doors to new opportunities for your team. Yet, I’ve noticed many tech leads roll their eyes when I bring this up. They see building relationships as time wasted, a distraction from coding, and often fail to connect the dots between stronger relationships and fewer headaches for themselves and their team.

 This chapter is here to change that. I’ll show you the value of investing in the right relationships as a tech lead and how these connections can unlock opportunities, prevent unnecessary problems, and make life easier for everyone involved. We’ll dive into the relationships you need to focus on, strategies for building and maintaining them, and ways to overcome common struggles like breaking the ice with someone new, keeping relationships strong over time, and connecting with non-technical people in other departments.

 The value of building strong relationships

 One of the biggest reasons for my team’s success was the relationships we built with each other, stakeholders, and clients. These relationships didn’t just happen on their own. As a tech lead, I made them a deliberate focus. I didn’t wait and hope connections would form naturally; I put consistent effort into building and nurturing them every step of the way.

 Within the team, we created a space where tough conversations could happen without hesitation. When something came up, we addressed it head-on, tackling issues quickly instead of letting them grow into bigger problems. We challenged each other constructively, not to prove someone wrong but to help everyone grow. Feedback became a daily improvement tool for us. Decision-making wasn’t just up to me; we debated ideas openly, came to agreements together, and took collective ownership. It wasn’t always easy, but it set us apart as a cohesive and high-performing team.

 Building strong relationships with stakeholders, especially on the client side, gave my team a huge advantage. I invested in these relationships consistently, showing up for them in ways that mattered: whether it was being transparent about potential issues, helping them prepare for tough conversations, or stepping up to support initiatives outside my immediate responsibilities, like writing stories or contributing to their ideas.

 A great example is advocating for tech debt. Many tech leads struggle to convince stakeholders to prioritize it because they see it as wasted time. But thanks to the trust I built with our product manager, he didn’t need convincing. He trusted our judgment because of the foundation we had laid, and when I asked for time to clean up a feature toggle or address technical debt, he didn’t hesitate to say yes, even if he didn’t fully understand the technical details. That trust came from consistent effort.

 Another example is how our visibility paid off. When an exciting opportunity came up, like leading a high-profile product launch, we were the first team considered and offered the chance to develop the project because we had consistently stayed visible and well-connected.

 With other teams, building relationships allowed us to share knowledge and collaborate more effectively. Knowing what they were working on helped us avoid duplicating effort and saved us a lot of time. At the same time, we made sure our work was visible by offering solutions we’d already implemented to others, which built our reputation across the company.

 To make this work, I didn’t shoulder everything myself. I encouraged my team to get involved too. They visited the client on-site, connected with other teams, and prioritized collaboration. We set up easy communication channels, like Slack, and made ourselves available to help whenever needed. One of our guiding principles was over-communicating. Even if it felt redundant, we repeated ourselves to ensure clarity and kept conversations going both within the team and with others.

 Investing in relationships takes time and energy, not just from you but from your whole team. However, the benefits are immense. Strong relationships lead to better collaboration, fewer conflicts, and a more motivated team that contributes ideas and works together to achieve incredible results (Figure 3-1).

 Figure 3-1. Why building relationships is key

 As a tech lead, you are accountable for these results, and they reflect directly on your effectiveness as a leader. The truth is, you may not always know exactly how or when these relationships will help, but they always do. It’s an investment that pays off in ways you can’t predict but will definitely feel.

 Now that we’ve explored the impact of strong relationships on a team’s success, it’s time to focus on the who and how. In the next section, we’ll break down exactly who you need to connect with and provide actionable strategies to build and sustain these key relationships.

 How to build relationships

 It’s important to know who to build relationships with and how to go about it. In the next section, I’ll walk you through different team roles and ways to achieve success within each relationship.

 Team members

 These are the people who shape your daily experience. The strength of your bond with your team members directly impacts not only how well you work together but also the quality of your outcomes. Building these relationships requires deliberate effort and consistency beyond occasional conversations.

 Here are actionable strategies to build strong relationships within your team:

 	Make feedback routine

 	
 Treat feedback as a natural and regular part of daily interactions rather than a formal event. Consistently sharing both positive and constructive feedback builds trust and shows your genuine commitment to your team’s development. Addressing areas for improvement may require courage, but combining encouragement with actionable insights makes team members feel supported and motivated to improve. Encouraging your team to exchange feedback among themselves amplifies this effect, strengthening connections and collaboration across the group.

 	Say more “I don’t know”

 	
 One of the most effective ways to connect with your team and build trust is to show that you don’t have all the answers, and that’s okay. Saying something as simple as “I don’t know” creates an environment where others feel safe to admit when they’re unsure, instead of pretending otherwise.

 	Give your team more autonomy

 	
 Fear of losing control is common for tech leads, often leading them to micromanage: tracking everyone’s progress, constantly checking in, or reacting negatively when things don’t go as planned. This behavior creates discomfort and causes team members to avoid you, harming your relationship with them.

 Strike a balance between being available and overbearing. Be approachable for questions and problems, but also give your team the space to work independently, make mistakes, and learn without fear of your reaction.

 A powerful way to build autonomy is through delegation. Identify a task (you can get ideas in Chapter 6: Delegating), select the right person, and set clear expectations. Offer support but then step aside. This shows your team you trust their skills: “I trust you to take care of this.” When team members feel trusted, they’re more likely to trust you, strengthening your relationship. Plus, prioritizing their growth shows you value their development which they’ll deeply appreciate, building even stronger connections.

 	Focus on solutions, not blame

 	
 When things go wrong, don’t make it about pointing fingers but focus on fixing the problem. A team that knows they won’t be blamed for mistakes will feel safer to share challenges and work together to solve them. Mistakes are inevitable, but how you handle them can either strengthen or break your team.

 Take a production incident as an example. If your response is, “Whose fault is this?” you’re setting a tone of fear and mistrust. People will start hiding their mistakes, avoiding accountability, and holding back potential issues because they’re afraid of how you’ll react. But if you shift the focus to, “How can we solve this?” or, “What ideas do you have to fix this?” you send the message that it’s okay to fail and the team will work together to address it.

 Handling things this way creates opportunities for your team to bond. There’s no better team-building exercise than solving a tough problem together. By consistently approaching issues with a solutions mindset, you’ll build a culture of shared responsibility, where the whole team feels accountable for both successes and failures. Over time, your team will follow your lead and stop looking for someone to blame, focusing instead on how to move forward together.

 How you lead when things go wrong says a lot about you as a tech lead. Those moments show your true character, and they’re where trust is built, or lost. Choose wisely.

 These strategies, when applied consistently, will strengthen the connections within your team, creating an environment built on trust, collaboration, and continuous growth. With these relationships in place, your team will feel supported, empowered, and equipped to deliver better results.

 Next, we’ll focus on extending these principles to stakeholders. Building strong, strategic relationships with stakeholders is just as critical and can significantly impact your team’s success. Let’s dive into who these stakeholders are and how you can effectively connect with them.

 Managers

 Your first stakeholders are your managers and they can either help you or be a real roadblock; it usually depends on your relationship with them, not just on having good arguments. When you’ve already established a connection, your suggestions and decisions tend to land better.

 	Highlight your team’s work

 	
 For all the effort your team puts into their work, you should match that by finding ways to make it visible to stakeholders.

 A great starting point is investing in your showcases. Treat them like value-delivering tasks, not just routine meetings. Add them to your team board, set time aside to define what you want to highlight, prepare the presentation thoroughly, and rehearse your delivery. When done right, showcases can bring tremendous visibility and trust from stakeholders. For example, my team’s well-prepared showcases made us the first choice when a high-profile product opportunity appeared.

 The key to building trust during these showcases is transparency. Don’t just celebrate wins but also share the challenges your team faced and the lessons learned. This openness reassures stakeholders that they can trust you to deliver while being honest about what didn’t work. Ending with a feedback session is a cherry on top, encouraging conversation and engaging stakeholders who might not otherwise get involved.

 This process doesn’t rest solely on you. Rotate team members to lead showcases, it gives them visibility, strengthens their skills, and boosts their pride in the work.

 Outside of showcases, one-on-ones with stakeholders can be just as impactful, building personal connections. Even something as simple as sharing progress updates in public Slack channels can make a difference as you never know who might notice.

 	Make one-on-ones a priority

 	
 If your manager or stakeholders don’t initiate one-on-ones, take the lead and set them up yourself. These meetings don’t need to be as frequent as the ones with your team, every two weeks or even monthly can work, depending on the stakeholder. The important part is consistency.

 Show up prepared and organized to make their job easier. Bring notes, ask thoughtful questions, and show genuine interest in their work. Often, tech leads hesitate to request these meetings, assuming stakeholders have “more important things to do” but the truth is they also benefit from these conversations. one-on-ones are an opportunity to address potential issues early, align on priorities, and gain valuable insight into broader organizational goals. If they’re too busy, they can decline. All you have to do is ask.

 	Ask for mentorship

 	
 If there’s a manager you admire, ask them to mentor you. Most people are happy to share their knowledge and experience when approached genuinely. This not only helps you grow but creates a valuable ally invested in your success.

 	Show up at events and use casual moments to build connections

 	
 All-hands meetings, leadership events, or casual gatherings like coffee breaks and holiday parties are perfect chances to connect with stakeholders and managers. Even if you find these events boring, they’re a great way to build relationships. A quick comment like, “I really enjoyed your talk on [topic],” can leave a positive impression and make follow-ups easier.

 If a manager offers an informal coffee chat or an “Ask me anything” session, jump on it. Showing up, even when others shy away, sets you apart and opens doors for more meaningful conversations.

 By investing in these relationships, you’ll find that managers are more likely to support your initiatives, making things smoother for both you and your team. But managers aren’t your only stakeholders. Any other teams you collaborate with or individuals impacted by your team’s work are also stakeholders. This could include other development teams, product managers, design teams, architects, or even clients. In the next section, we’ll explore who these stakeholders are and provide strategies for building strong relationships with them to maximize your team’s impact and success.

 Other stakeholders

 Your team doesn’t work in isolation; every move you make will impact other teams and roles: product managers, designers, cross-functional departments like sales and customer service, and, of course, your users or clients (if applicable). These stakeholders also influence your work and can directly affect how effectively your team achieves its goals.

 A few ways to make these connections work for you and your team:

 	Open cross-team communication channels

 	
 Let’s take a common example: your team depends on another team to deliver part of a project. Their progress directly impacts your timeline, and vice versa.

 The easiest way to ensure smooth communication is by setting up a dedicated Slack channel or space for both teams. This becomes a central hub for updates, questions, and discussions.

 Recurring check-ins are another great way to keep everyone aligned. These don’t need to be long or formal, just a quick sync to share progress and address potential blockers.

 Of course, you don’t have to manage this relationship alone. You can pair up with someone from your team who has an interest in the topic or assign them to take ownership of the communication.

 This not only keeps updates flowing smoothly but also gives your team a chance to build relationships with the other team, a win for everyone involved.

 	Ask for help, and offer it

 	
 Asking for help is one of the easiest and most underused strategies to build relationships. Instead of wasting days stuck on a problem, tap into the collective knowledge of your organization. Post questions in general or team-specific Slack channels like, “Has anyone worked on this before?” or “Can someone help with this?” You’d be surprised how often people are willing to assist.

 Similarly, take the initiative to help others. Answer unanswered questions in Slack or reach out to teams facing challenges you’ve already solved.

 	Build cross-team collaboration spaces

 	
 Host monthly tech lead chats: set up recurring sessions where tech leads from different teams come together to share updates, troubleshoot challenges, and brainstorm ideas.

 Create company guilds: establish groups around topics like architecture, front-end development, or cloud migration. Open these guilds to anyone interested, whether engineers, architects, or other stakeholders, to encourage knowledge sharing, alignment and innovation across teams.

 Donut Slack coffee chats are an underrated way to connect with colleagues across your organization. While many companies offer these, few people take full advantage of the opportunity. Yet, I’ve never met a developer who participated and regretted it. These informal chats can spark unexpected connections, open doors to collaboration, and help you build a network that might come in handy when you least expect it. You never know when the person you chat with could be the key to solving a future challenge or opportunity.

 Support other teams’ initiatives: encourage your team to participate in hackathons, brainstorming sessions, or workshops led by other teams.

 	Invite diverse perspectives to brainstorming

 	
 For product kick-offs or major planning sessions, bring in voices from other departments like customer service, sales, or marketing. Instead of only the PM talking to them separately, we found it more effective to bring everyone together for their take on potential product challenges and solutions upfront. Just ask! They can always say no, but the payoff can be significant when they say yes.

 These strategies can help you start building connections with your team and different types of stakeholders. In the next chapters, I will dig deeper into what makes a relationship truly strong and how to build one that lasts. I’ll also tackle three of the most common challenges tech leads face when building relationships and share practical ways to overcome them.

 How to build strong relationships

 The strategies mentioned in With WHO and HOW to build relationships chapter can help you start building connections with your team and stakeholders, but this is just the foundation. In this chapter, we’ll take it a step further, diving into what makes a relationship truly strong and how to make it last. At the heart of every strong relationship lies trust, built through two key elements: constant communication and transparency. Here, I’ll share actionable strategies to cultivate these elements.

 Constant communication

 Constant communication is about staying connected and ensuring a steady flow of information between you, your team, and stakeholders. It’s not just about being available, it’s about building a culture where sharing, listening, and collaboration become a regular part of your work.

 Here’s how to make this work in your role:

 	Regular check-ins

 	
 One of my first moves as a tech lead on a new team is to set up recurring one-on-ones with each team member. Sure, frequency might adjust, or we might skip one occasionally, but the point is: they’re there. This gives the team the confidence that you’re invested and will continuously show up for them.

 	Communicate progress continuously

 	
 Keep stakeholders in the loop not only when you’ve hit milestones or overcome challenges but throughout the journey. Share updates on blockers, mistakes, or shifts in strategy, both the good and the bad. Consistent updates build credibility.

 	Avoid being a knowledge silo

 	
 If you’re the only one who knows something, it’s a problem. Proactively share information with your team and stakeholders to ensure everyone is aligned and informed. By passing along insights, even small ones, you’re showing trust and earning it in return.

 Staying connected through constant communication is how trust starts to grow. Showing up regularly, keeping people in the loop, and sharing information openly builds a solid foundation for your relationships. But being in touch isn’t enough, it’s also about how open and honest you are.

 Up next, we’ll talk about transparent communication: how to strike the balance between openness and oversharing, and how to use it to build credibility and trust with your team and stakeholders.

 Transparent communication

 Transparency can be complicated for tech leads. Deciding what to share, when, and how much depends heavily on the situation and your team’s context.

 Many tech leads, myself included, fall into the habit of keeping things to themselves. The reasoning often stems from trying to “protect the team,” not knowing how to frame the information, or simply wanting to maintain control of the narrative. This can extend to stakeholders, where fears of repercussions or “they don’t need to know yet” lead to delays in sharing issues, hoping they’ll resolve before anyone notices. But here’s the problem: information flows. When people discover something from someone else, the situation often feels worse than if it had come directly from you. Transparency builds trust; trying to hide things undermines it.

 Breaking out of the habit of withholding information isn’t easy, but you can work on it gradually, one step at a time. Here are practical strategies to help you integrate transparency into your daily routine.

 	Follow through

 	
 The simplest way to build trust is to say what you’ll do, and then do it. Transparent communication means that, if something prevents that, you will let your team and stakeholders know as early as possible so they can plan accordingly.

 	Provide balanced feedback

 	
 Another way to build trust is by giving both positive and constructive feedback. It takes courage to be open about areas for growth, but this balanced approach shows genuine investment in others’ development. Offering feedback this way helps people know you’re honest with them and truly interested in their growth, not just in keeping things positive. It’s the combination of encouragement and constructive insight that reinforces trust and strengthens your relationship.

 	Lead with vulnerability

 	
 A lot of tech leads go out of their way to hide their mistakes, fearing it might make them seem weak or cause them to lose their team’s respect. The truth is, admitting when you don’t have all the answers or when you’ve made a mistake often has the opposite effect: it makes you relatable and authentic. People already know no one is perfect, and acknowledging this builds trust.

 For example, if a technical decision you advocated for led to delays or issues, admit it to your team and stakeholders: “This approach didn’t work as I hoped, and it’s caused these delays. Here’s what I’ve learned, and this is how we’re addressing it.” This kind of openness builds stronger connections, creating a culture where your team feels safe to own their mistakes too.

 If you find yourself holding back, these strategies can push you out of your comfort zone and help you confront the fear of sharing. Over time, you’ll develop new ways to handle interactions and manage challenges directly, instead of staying in the “safe zone” and risking bigger issues. Reflect on your reasons for withholding information. If it’s simply “I’m unsure how my team will react,” share it anyway. The real challenge isn’t whether they should know but it’s learning to navigate their reactions effectively.

 On the flip side, there’s oversharing. Let’s say your Engineering Manager shares news of a potential company restructuring, and you’re one of the first to know. You don’t yet have concrete details, and a big product launch is two weeks away. If you share this prematurely, you risk creating unnecessary anxiety and distraction, especially since you can’t provide clarity or answer questions yet. Sharing too much too soon can harm focus and productivity.

 So how do you find the balance? Start by asking yourself a few key questions:

 	
 Is it okay to share? Check with your EM if this is something that can be shared with the team. If not, the decision is clear. If it’s up to you, ask for their perspective to help guide your choice.

 	
 What additional context do I need? Gather more details about the timeline and potential impacts from your EM or other tech leads. More information helps you decide what’s worth sharing.

 	
 What’s the team’s maturity level? Teams with more junior members may react more emotionally to uncertainty, while senior teams might handle ambiguity better. Tailor your approach based on their capacity to process and stay focused.

 Neither extreme, keeping information or oversharing, is the answer. Finding the middle ground is about intentional experimentation. Start by recognizing your default tendency. If you lean toward withholding, challenge yourself to share earlier than usual and track what happens. Did the reaction align with your fears, or was it better than expected? Gather feedback and adjust based on the results.

 For me, my instinct has always been to keep things to myself. It felt safer and gave me a sense of control. But over time, I realized that sharing, even when it made me uncomfortable, almost always led to better outcomes. When I was upfront about issues or potential delays, my team and stakeholders felt included and trusted me more.

 Transparency helps your team align better, work with less confusion, and feel valued. It creates credibility with stakeholders and strengthens relationships across the board. It’s a skill you refine with practice and feedback.

 Through consistent communication, transparency, and vulnerability, you create a foundation for collaboration and connection. But relationships aren’t without their challenges. In the next section, we’ll dive into common struggles tech leads face when building relationships and strategies to tackle them.

 Common challenges and how to overcome them

 Building relationships comes with its fair share of challenges, especially as a tech lead. The three most common ones you’ll likely face are breaking the ice with new connections, maintaining strong relationships over time, and effectively bridging the gap with non-technical stakeholders. In this section, I’ll dive into these and share actionable strategies to help you navigate and overcome them.

 It feels awkward to start conversations

 Breaking the ice can feel daunting, but without that initial moment of connection, relationships can’t begin. Many tech leads overthink the first step: “What should I say? How do I start?” Instead of waiting for opportunities to come to you, take the initiative.

 A presentation is one of the easiest ways to start a conversation. Speakers expect interaction, so after their talk, show appreciation and highlight a specific point you liked: “I really enjoyed your take on…” Asking a thoughtful question about their content can make the interaction more meaningful, and they’ll remember your genuine interest.

 If you’re working on a shared project, use that as common ground. Reaching out with, “I heard you’re tackling a similar challenge, how did you approach <x>?” opens doors naturally.

 Similarly, asking for help is an underrated strategy. Most people love sharing their expertise. Be specific: instead of a vague “hello,” start with, “I heard you’re the go-to for this issue. Can you help?” This clarity increases the chances of a response.

 Also, don’t miss opportunities to help others. Answer Slack questions no one has addressed, tag someone who might know, or offer your insight. People notice this effort.

 Finally, create spaces where others can approach you (one of my favorites). Host showcases, lead meetings, or run Q&A sessions. It’s an easy way to start building connections without having to reach out yourself as you’re creating a space where they can approach you.

 The more intentional effort you put into breaking the ice, the easier it becomes, and more and more ideas will come up.

 Breaking the ice is just the start. Maintaining relationships takes ongoing effort as priorities and contexts shift. Next, we’ll explore how to keep connections strong and meaningful over time.

 How do I keep relationships strong over time?

 Building relationships is only the first step, maintaining them requires consistent effort. Over time, people’s priorities shift, and so does the context of your interactions. To keep relationships strong and meaningful, you need to stay intentional and adaptable.

 Here are actionable strategies for nurturing these connections over time:

 	Keep track of people

 	
 Make it a habit to jot down memorable details from conversations, such as personal interests or key points they’ve shared. Whether it’s a note about their favorite hobby, a challenge they mentioned or a skill they want to improve, referencing these details in future conversations shows that you care and strengthens the connection.

 	Follow up

 	
 When someone helps you, take the time to circle back and share the results—it shows appreciation and keeps the connection alive. Even small updates matter. For example, you could say, “Thanks again for the tip on <topic>. I tried it, and here’s what happened: <result>.”

 If someone asks you a question you couldn’t answer right away or you left a conversation open-ended, always follow up. Even if it’s just to say, “I’m still working on this” or “I couldn’t find an answer,” it shows reliability and keeps the dialogue flowing.

 	Create recurring touchpoints

 	
 Consistency is everything when it comes to maintaining relationships. Never skip one-on-ones with your team or stakeholders, even if it feels like there’s nothing urgent to discuss. These moments aren’t just about updates; they’re about building rapport and staying connected.

 Make it easy for others by coming prepared: bring updates, questions, or potential issues, and leave space for them to share their own thoughts.

 	Prioritize and choose battles wisely

 	
 Not every relationship or conflict requires the same level of attention. For instance, if you’re collaborating with another team to deliver a critical feature, it makes sense to focus on building a strong connection with that team and the stakeholders impacted by the feature. Meanwhile, relationships that aren’t immediately relevant can temporarily take a backseat. Regularly reassess your priorities as projects and goals shift to ensure your energy is directed where it matters most.

 Similarly, not every disagreement is worth pursuing. Focus on common ground rather than being right. For example, agreeing with your Product Manager to move retrospectives from Friday to Monday, even if it’s always been Friday, is less impactful than advocating for prioritizing a crucial technical debt task that could directly affect your product’s quality.

 Relationships are like living things, they thrive with care and effort but can endure beyond immediate interactions. Once trust and reliability are established, they become self-sustaining. For example, if you’ve built a strong connection with a stakeholder during a project and reconnect months later, that trust still holds and you can pick up where you left off. This was clear to me when transitioning to a solopreneur: past clients, coworkers, and managers reached out with opportunities years later.

 Investing in lasting relationships isn’t just about your role as a tech lead but it’s about building a foundation for your long-term career: there is a high chance you will run into the same people in the future.

 We just don’t speak the same language

 Usually, this means struggling to get on the same page, like you’re both talking but not fully understanding each other’s perspective. Often, it’s because they’re deep in business lingo while you’re explaining things technically.

 Here’s how to bridge that gap:

 	Step into their world

 	
 Start by mentioning how important it is for you to figure this out together and why. This will set the ground for conversation showing them that you are not going for a fight. Learn what they care about. Everyone’s viewpoint comes from their role’s priorities, so start by understanding what drives their decisions. Instead of trying to prove the other person you are right, start by deep diving into their reasoning and arguments. One strategy that I use in these cases is starting from the presumption that the other person is 10% right and building up from there.

 	Ask clarifying questions

 	
 Don’t assume their intentions or goals. Ask, “What’s the main priority here?” or “What’s the outcome you’re aiming for?”. Reflect back their answers: “So if I understand correctly, you mean…?”. This creates clarity and avoids misunderstandings.

 	Find shared goals

 	
 Once you understand their goals, look for common ground. For example, if they’re focused on deadlines and you’re focused on code quality, point out how both efforts contribute to a successful product launch. Shared goals help align your efforts.

 	Use their language

 	
 Explain your points in terms that resonate with their priorities. Instead of saying, “We need to refactor,” frame it as, “This will reduce risks and save time later.” Adapting your language shows effort to meet them halfway, making your ideas more relatable.

 Once tech leads see the clear benefits of investing in relationships, for their team and their own leadership growth, a common question usually follows:

 “If I do all of these, when do I do my job?”

 First, let’s reframe this: building relationships isn’t separate from your job; it is your job.

 Second, you’re not expected to handle every interaction yourself. Delegate. Part of building a connected team is empowering others to step into roles. You could have a staff engineer lead guild meetings or ask other team members to join cross-team discussions on your behalf.

 Finally, remember that building relationships is a shared effort. It’s a two-way street. Use these strategies to connect, but also recognize that the other person has to meet you halfway. All you can do is give it your best.

assets/ch02_figure_2_1736187884085188.png
Important

Q1: Do Q2: Schedule

Plan sprint goals and roadmap for the next quarter

1:15 with team members for performance feedback

Deal with production incident Prepare demo for next week client meeting
Prepare for an upcoming stakeholder meeting today Update documentation for system architecture adding more details
Verify checklist for end of day release Setting up a demo environment

Color coding emails

Tinkering with low-

ity code refactoring that has no current impact

Replacing your current JSON library with a shiny new one

Urgent Not urgent

Q3: Delegate Q4: Delete
Not Important

assets/ch02_figure_3_1736187884085212.png
Important

Q1: Do Q2: Schedule

Deal with production incident
Plan sprint goals and roadmap for the next quarter
Prepare for an upcoming stakeholder meeting today
1:15 with team members for performance feedback
Verify checklist for end of day release

Urgent Not urgent

Update documentation for system architecture adding more details

Prepare demo for next week client meeting. Color coding emails

Setting up a demo environment Tinkering with low-priority code refactoring that has no current impact

Replacing your current JSON library with a shiny new one

Q3: Delegate Q4: Delete
Not Important

assets/ch03_figure_1_1739890866778327.png
Strong Better Better

relationships collaboration outcomes

UbuntuMono-BoldItalic.otf

UbuntuMono-Italic.otf

UbuntuMono-Regular.otf

css_assets/titlepage_footer_ebook.png
OREILLY®

assets/ch01_figure_1_1736187883448998.png
v
28

=,

DejaVuSans-Bold.otf

assets/ch01_figure_2_1736187883449038.png
development,
lifecycle

DejaVuSerif.otf

assets/ch01_figure_3_1736187883449079.png
Mindset changes

Coding-centric thinking Value-driven decisions

UbuntuMono-Bold.otf

assets/ch02_figure_1_1736187884085155.png
Important

Q1: Do Q2: Schedule

Incidents Planning
Unforeseen events Prevention
Emergency meetings Creative thinking
Last minute deadlines Relationship building

Urgent Not urgent

Attending non-essential meetings Time-wasters
Performing routine maintenance tasks Minor stylistic preferences in code
Responding to routine emails or status updates Tasks you know will never get done

Q3: Delegate Q4: Delete
Not Important

toc01.html
		Brief Table of Contents (Not Yet Final)

		Preface

 		Why I Wrote This Book

 		How to Effectively Use This Book

		1. Role of a Tech Lead

 		What is a Tech Lead

 		Defining the Scope

 		Daily responsibilities

 		Understanding the expectations of your role

 		Is this role a good fit for me?

 		Common pathways to becoming a Tech Lead

 		Taking over the Tech Lead role in your current team

 		Taking over the Tech Lead role in another team

 		Building and leading a brand-new team

 		Required Skills and Mindset Shifts

 		Technical skills

 		Leadership skills

 		Mindset changes

		2. Becoming a Tech Lead

 		Developing a Personal Growth Plan

 		Setting the foundation for growth

 		Developing a growth plan

 		Implement, Reflect and Adjust

 		Overcoming common initial challenges

 		Time management

 		Avoiding the ‘therapist’ trap

 		Avoiding micromanaging

 		Hands-on coding vs. technical oversight

		3. Building Relationships

 		The value of building strong relationships

 		How to build relationships

 		Team members

 		Managers

 		Other stakeholders

 		How to build strong relationships

 		Constant communication

 		Transparent communication

 		Common challenges and how to overcome them

 		It feels awkward to start conversations

 		How do I keep relationships strong over time?

 		We just don’t speak the same language

assets/cover.png
OREILLY"

Leveling Up
as a Tech Lead

GROWING AS A TECHNICAL,
PROJECT, AND PEOPLE LEADER

Early

Release

RAW &
UNEDITED

ANEMARI FISER

