

[image:]

Microsoft Power BI Data Analyst Associate Study Guide

Prepare for the PL-300 Exam and Apply Best Practice Design

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Paul Turley

 Microsoft Power BI Data Analyst Associate Study Guide

 by
 Paul
 Turley

 Copyright © 2026 Intelligent Business, LLC. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor: Michelle Smith

 	
 Development Editor: Sarah Grey

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 February 2026:
 First Edition

 Revision History for the Early Release

 	
 2024-11-08:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098175283
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Microsoft Power BI Data Analyst Associate Study Guide, the cover image,
 and related trade dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-17528-3

Brief Table of Contents (Not Yet Final)

 Preface (unavailable)

Chapter 1: Successful Test Taking (unavailable)

Chapter 2: Power BI and Exam Subject Areas (unavailable)

Chapter 3: Preparing Data (available)

Chapter 4: Modeling Data (available)

Chapter 5: Reports, Dashboards, and Apps (unavailable)

Chapter 6: Visualizing Data (unavailable)

Chapter 7: Deploying and Maintaining Assets (unavailable)

Chapter 8: Advanced Analysis and Insights (unavailable)

Chapter 9: Preparing Data Questions (unavailable)

Chapter 10: Modeling Data Questions (unavailable)

Chapter 11: Visualizing Data Questions (unavailable)

Chapter 12: Deploying and Managing Data Questions (unavailable)

Chapter 13: Solution Architecture (unavailable)

Chapter 14: Microsoft Fabric (unavailable)

Chapter 15: Semantic Model Development (unavailable)

Chapter 16: Paginated Reports (unavailable)

Chapter 17: Team Development and Collaboration (unavailable)

Chapter 18: CoPilot and AI Integrations (unavailable)

Chapter 19: Data Governance and Adoption (unavailable)

Chapter 20: Futureproofing Power BI Solutions (unavailable)

 Chapter 1. Preparing Data

A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the third chapter of the final book.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

			

 Very few sources of data are ready for analysis without some preparation. In most cases, data must be cleansed and shaped. The stages of iterative Business Intelligence design include preparing, modeling, calculating and visualizing data. It is important that you understand the dependencies between these stages, both in order and in reverse order. Why reverse order? A popular phrase says that if you really understand something, you “know it forward and backward.” This is especially true when working with data. I find that this approach helps me to create a mental map and to see the complete picture along with each constituent part.

 Understanding the required end result along with each dependency enables you to envision and design a complete solution. For example: to visualize and present accurate results, calculations and measures must be created atop an appropriately crafted data model consisting of tables prepared using queries that ingest, load and transform data. See? Reverse-order thinking is important and puts the entire process into perspective.

 With the “reverse order” approach in mind, I’ll describe the following chapters of this book in reverse order, in order of their dependencies. These chapters relate directly to topics covered by the exam:

 Chapter 7 is about deploying and maintaining Power BI report solutions after you’ve developed them. As far as business users are concerned, a Power BI solution consists of visual reports, dashboards, and apps that let them analyze and understand their business data. Behind the reports, out of users’ view, are semantic models, measures, queries, and transformations that load data for reporting.

 Chapter 6 addresses data visualization, data presentation, and the aesthetics of report design. Visual presentation is only possible when you’ve modeled the data and created measures used in reports to display results accurately and support visual interactions.

 Chapter 5 is about choosing and understanding visual reports, paginated reports, dashboards, and apps. These are different objects and mediums used to present and deliver information and visual reporting elements to users.

 Chapter 4 covers data modeling, which further explains the need to prepare your data for modeling and interactive analytic reporting.

 This brings us to this chapter. Chapter 1 is about preparing data to be loaded into the semantic model – to support the processes that follow. This includes connecting to, ingesting, cleansing and transforming data.

 We often think of the analytical data process as being a linear set of steps, depicted from left to right, like this (as shown in Figure 1-1):

 [image: A diagram of a model calculator Description automatically generated]
 Figure 1-1. The Business Intelligence process as commonly understood

 It is, ideally and most often, an iterative process, where developers perform steps in order and the process repeats. I’m not saying that it isn’t possible to “get it right the first time,” but I am saying that scenario is extremely uncommon. Analytic report solutions usually expand with use. After we gain an insight based on the results from one iteration, we add another data source and more data, create another measure and more report visuals. Following the same steps in the cycle, a new version of the data model and report is published as we add more functionality, as depicted in Figure 1-2:

 [image: A diagram of a pie chart Description automatically generated]
 Figure 1-2. The Business Intelligence process is iterative.

 Power BI includes all the tools needed to support the analytic reporting process, which begins with preparing tables for modeling.

 Power Query and Get Data

 Power Query is the part of Power BI used to ingest and transform data from various sources to be shaped and loaded into tables in a Power BI semantic model. Power Query is also integrated with Excel, Power BI Dataflows, Microsoft Fabric Dataflows (Gen2) and other Microsoft products in the Power Platform and Azure toolset. You are using Power Query when you choose the Get data and Transform data ribbon options in Power BI Desktop, which then opens the Power Query Editor.

 A query consists of query steps, which may perform transformations. The editor automatically names each step to describe the action or transformation being performed. You can rename steps to be more intuitive. You may also assign a description for each step in the properties to further document your transformation logic.

 In 2024, Microsoft created a new Power Query experience with advanced features that is consistent with the Dataflows experience in Microsoft Fabric. At the time of this writing in mid-2024, the New Power Query experience is a preview feature that you can enable from the Options dialog in Power BI Desktop. It may be the default experience by the time you read this.

 Power Query is typically a “no-code” or “low-code” experience that lets you create multiple queries using menu options and user interface (UI) features. Although it is represented visually in the query editor, a query is a block of transformation code stored in a query language called M, which is Microsoft’s data mashup language. You won’t be tested on your knowledge of M code, so you can hide or ignore the code unless you need to write complex and advanced-level queries. Each query has a source and, by default, outputs to a table in the Power BI semantic data model.

 New queries are added to the Queries list on the left pane of the Power Query Editor, where you can rename, organize, and manage them. Each time you use the Get Data ribbon button to select a data source and create the subsequent steps, you are creating a new query.

 The Power Query editor got a UI overhaul in 2024 to align Power BI Desktop with Fabric Dataflows Gen2. The new design experience is shown in Figure 1-3, with labels depicting the window panels and features.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-3. The Power Query editor.

 You can toggle and customize features using the options on the View ribbon. Notable improvements to the editor include the Diagram view, which depicts parameter and query dependencies and steps, and the Script view, which lets you see and edit all of the query definition’s M code.

 Data transformations

 Since the goal of creating queries and transforming data is to load tables into the semantic model, understanding the factors that affect data model storage size and performance will help you optimize the data model and your reporting experience.

 You can create cleansing transformations to resolve common data-quality issues. Many data-quality issues are caused by data-entry problems that you may not be able to resolve at the source, but you can clean these up in the transformation process before it gets to the report layer. Common data-quality issues are prevalent and take on different forms, including:

 	
 Misspellings and other variations introduced in data entry

 	
 Incorrect data types, such as numbers stored as text or mismatched date and time values

 	
 Numeric-precision anomalies caused by calculations and rounding errors

 	
 Empty values represented inconsistently, with nulls, spaces, and special characters

 Cleansing and simplifying column data can reduce storage size and improve performance. A column with fewer distinct values has a higher compression rate when data is stored in the semantic model. This means that if you can simplify values and reduce the number of unique values, data is compressed and retrieved from the model faster. The high compression rate also means that a column with a large number of null values will use little memory and storage space.

 The ideal data model structure for analytic reporting is a dimensional model or star schema. When possible, use relationships in the data model after transforming your data into fact and dimension tables with keys to interconnect them. This helps report designers and users to group and filter using dimension table columns more effectively.

 By default, Power Query returns the first 1,000 rows so you can preview the results of each query. You can use this preview to perform transformations to resolve errors.

 Validation is only performed on the records loaded into the preview set. If errors are present in other records, you might only discover them when you refresh the model, and all data is loaded. To load more records, use the Filter dropdown button on a column and click the Load More link, as shown in Figure 1-4.

 The query designer automatically generates transformation steps based on the preview data. For example, when data is loaded from a text file that doesn’t store values with strongly typed data types, the query designer will infer the columns’ data types based on the sample set of records. This is a convenient and useful feature, but it can cause problems when more records are loaded if they contain values that violate the data type. Validation errors occur when a value in the source data doesn’t conform to the column data type. You can anticipate and prevent data errors by loading more sample rows and checking for additional values that don’t conform to the assumed data type.

 Figure 1-4. Column filter options

 Data sources and connections

 When you connect to a data source, Power BI will present a data source connection dialog with. different connection properties, depending upon the data source type. The dialog shown in Figure 1-5 is for a SQL Server database connection. In this example, the Server and Database properties reference parameters that are used to manage this variable information. Like most relational database connections, SQL Server supports both Import mode and DirectQuery Connectivity mode.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-5. Data source connection settings

 Consider the size of the data and your latency requirements for data refreshes when choosing between Import and DirectQuery storage.

 Storage Modes

 Import mode is typically preferred because it most effectively utilizes the Analysis Service Tabular in-memory query engine, known as the Vertipaq Engine. It compresses and stores values for each column using different encoding methods. The compressed values are held in memory, where they can be retrieved quickly as users interact with the semantic model via report visuals.

 By contrast, DirectQuery mode doesn’t hold data in the in-memory model. As users interact with the report visual, it translates queries into native query language and retrieves results from the data source in real time. For example, if the data source were SQL Server, the native query would produce TSQL. If Oracle were the source, the native query would be in PL/SQL. In addition to real-time results, another advantage is that the semantic model’s size doesn’t increase. However, query performance is usually much slower.

 You can configure a variation of DirectQuery storage called Dual mode in the data model designer. Dual mode storage conditionally applies both Import mode storage and DirectQuery behavior in a composite model. This is an advanced feature we will explore in Chapter 4.

 Connection properties

 When connecting to a data source, you can set its location (file path, address or server name), the credentials used to authorize access to the source, and its privacy level.

 You don’t need to explore privacy levels and connection options deeply to prepare for the exam, but you should have a basic understanding, which I will provide here.

 You can access the Edit Permissions and Privacy Levels dialogs when you create a new data source. You can edit permissions for a data source using the Data Source Settings menu option under the Transform Data dropdown menu on the Home ribbon in Power BI Desktop. The Edit Permissions dialog is shown in Figure 1-6. Use the Edit… button to set a credential for the data source.

 The Privacy Level dropdown list contains the following options and policies:

 	Public

 	
 Data can be shared with external sources without any risk of exposing sensitive information. This option allows the Power BI service to send data to other sources for cross-database operations.

 	Organizational

 	
 Data sources with this privacy level can be shared within your organization. It allows for data to be combined with other data sources that have the same organizational privacy level.

 	Private

 	
 This setting is used when data should not leave the device and should not be shared. When a data source is set to private, Power BI doesn’t allow data to be combined with other data sources. Operations that require data from another source are processed locally on your computer or within the Power BI service.

 	None

 	
 No privacy provisions need to be applied.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-6. Connection permissions and privacy levels

 Credential options may be different for each data source. Figure 1-7 shows the options for a SQL Server database connection. Credential and authentication options might include authenticating the user who is currently signed in using Windows authentication, a Microsoft account, or the username and password for a user account that is securely held in encrypted storage.

 Figure 1-7. Data source connection credentials

 Data source parameters

 Parameters can be used to manage many variables. For example, if you need to switch the data source for a query or set of queries, you can use a parameter to switch the connection information, addresses, or file locations.

 Figure 1-8 shows an example of using parameters to enable the database server and database name to be updated without modifying the query. The Manage Parameters dialog lets you create parameters and set values in one simple interface. Figure 1-12 shows a parameter used to manage the file path for an Excel file containing school roster information. The parameter name in this example is SchoolRosterFilePath.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-8. The Manage Parameters dialog

 When you’re using a file-based data source, a simple Browse dialog is presented. After you browse to the file, the file path is displayed for the selected Excel file, as shown in Figure 1-9.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-9. Connection settings for an Excel workbook

 Figure 1-10 shows the Choose Data dialog and a data preview for the selected worksheet, Student History.

 [image: A white rectangular object with black text Description automatically generated]
 Figure 1-10. Choose Data dialog for an Excel workbook

 PowerBI generates a new query based on your file and worksheet selection. The M code for this query is shown in Figure 1-11. Note the complete file path shown on line 2, which is passed as a string in quotation marks to the File.Contents M function. When defining the SchoolRosterFilePath parameter, I copied and pasted the full file path into the Current Value field in the Manage Parameters dialog.

 [image: A close-up of a computer screen Description automatically generated]
 Figure 1-11. Query code editor with an explicit file path

 Making a simple code change, I replaced the file path and quotation marks with the name of the parameter: SchoolRosterFilePath. The modified code is shown in Figure 1-12.

 [image: A computer screen shot of a computer screen Description automatically generated]
 Figure 1-12. Query code editor with parameterized file path

 By using parameters, you can maintain variable information, like file paths and database connections, to make the Power BI solution more adaptive and flexible when the locations of source data change over time. This approach can also simplify promoting a project between your development, test, and production environments with corresponding data sources.

 Filtering and parameters

 There are a variety of reasons for removing unneeded records from a data set or limiting data volume for development purposes. Power Query employs a filtering experience similar to Excel’s to filter records based on column values. Use the dropdown button in the column heading to display filter options. Depending on your needs, filtering can be simple or complex. Use the Search box and checkboxes to filter by selected values. Advanced filter options are available for different data types. The Date filters options are shown in Figure 1-13.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-13. Date column filter options

 After selecting the Between option from the Date filters list, I can use specific filtering criteria and apply parameters for filter values, as shown in Figure 1-14.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-14. Filter rows options

 When you’re working with time-series data, the most effective way to control the volume of data loaded into the data model is to use query parameters to load records for a range of dates. For development purposes, you can use a date range or restrictive filter criteria to load a small set of data quickly. This reduces the project file size and minimizes refresh time. After you publish the semantic model to the Power BI service, you can update the parameters in the Settings page, shown in Figure 1-15. The updated parameter values will be used when the semantic model is refreshed.

 Figure 1-15. Semantic model settings in the Power BI service

 Organizing and reusing queries

 I encourage you to organize your queries by giving them logical and friendly names and placing them into groups, which appear like folders in the Queries list. To add a group, right-click a query and choose Move to Group. Choose New Group to start a new group containing the selected query.

 In Figure 1-16, I have created groups to organize my queries by type and purpose. I’ve also grouped parameters together to keep things tidy and easy to find.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-16. Query editor query groups

 Parameters, queries and groups are naturally listed in the order you create them. You can drag and drop to rearrange them and place objects into group containers.

 Queries and query logic can be repurposed and reused in Power Query. From the right-click menu, choose Duplicate to create an exact copy of the original query. If the original query has changed, this will not affect a duplicated copy of the query. (Changes to the original query will, however, affect a query that references it.) Create a reference query by choosing Reference from the menu to reuse an existing query, then add subsequent transformation steps to it (Figure 1-17).

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-17. Query duplicate and reference menu options

 Let’s compare these two options: Duplicate and Reference. Say you create a query called Dim Store that imports a database table containing your company’s complete store and sales-channel information, including inactive and active stores in all regions. The query excludes a few unneeded columns and renames another set of columns using friendly names.

 Now, suppose you were to duplicate the Dim Store query as Dim Store-Active US Stores, then add new steps to the Dim Store-Active US Stores query to filter records by status and region and include a subset of the columns. Both queries would load records from the same source. However, if you were to change the source location for the Dim Store query, the Dim Store-Active US Stores query would still load records from the original source. The resulting queries in the query editor would look like Figure 1-18, with no dependency between the two.

 Figure 1-18. Duplicated query in the diagram view

 Instead of duplicating Dim Store query, what if you reference it by creating a new query named Dim Store-Active US Stores that filters records and includes a subset of the columns? Changing the Dim Store query’s data source would result in the Dim Store-Active US Stores loading from the same source and inheriting its transformations.

 In summary, modifying a query that has been duplicated has no effect on the duplicated query. However, modifying a query that has been referenced causes the subsequent query to inherit any changes made to the referenced query. You can see, in the query editor shown in Figure 1-19, the second query has a dependency on the referenced query.

 [image: A diagram of a computer Description automatically generated]
 Figure 1-19. Referenced query in the diagram view

 By default, every query creates and loads data from a table into the semantic model for the Power BI report file. Uncheck the Enable Load option for a query to prevent it from creating a table and loading the results. This option can be particularly useful when you use a base query to load more than one table into the semantic model. Extending the previous example, you might reference the Dim Store query in multiple queries that you use to load separate tables containing store records for the US, Europe and Asia, respectively. You could then disable the base query, so it doesn’t load all store records into another table.

 Assessing and improving data quality

 It’s important to choose the appropriate column data type to improve your queries’ performance and minimize storage size.

 Figure 1-20 shows an example of a very common data-quality problem: some ZIP codes in the northeastern United States begin with a zero. If these values are stored as a numeric data type, the leading zeroes are dropped, as shown.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-20. Zip Code column as numeric type

 Figure 1-21 shows the Zip Code column after it has been corrected. To make this correction, start by changing the data type to Text. Append a string of zeros to the beginning of the column and then truncate it, leaving the five rightmost characters.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-21. The Zip Code column, corrected

 Data profiling

 The Power Query editor includes multiple tools to inspect columns’ properties and attributes. You can use these data statistics and column properties to improve and discover the completeness and accuracy of column values. The Column Profile option displays summary information in the heading of each column. Once you enable it, you can display statistics and distribution information.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-22. Data View menu options

 The Quality Details option displays the percentage of values in the column that meet the following criteria:

 	
 Valid values that conform to the column data type

 	
 Errors that violate data type and validation rules

 	
 Empty or null values

 Value Distribution displays a small bar chart showing the count of records that have the same column value. It also displays the numbers of distinct records and unique values in the column. This information can be especially useful with data sets that are too large to be inspected visually. It helps to validate a column when you expect its values to be unique or to contain only certain values. Choose the Enable Details pane to show distribution details for a selected column. Figure 1-23 shows the column statistics and details for the Zip Code column. You can see that there are 41 records with null values and a very high distribution of store records in just five ZIP codes. The highest percentage of stores falls in the 70001 ZIP code, with a record count of 24.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-23. Column statistics and value distribution

 Inconsistencies and data-quality issues come in many forms. Unexpected null or empty values can skew results when you’re expecting a required value. A null value indicates that a field was intentionally left blank during data entry. Under the right conditions, this is perfectly acceptable, but otherwise it can lead to unexpected results and confusion. For example, if a customer has left the City field blank, does that mean the customer does not have a residence, or that we simply don’t know? If it is a required field, how can you resolve the unknown value? Maybe the data-entry person pressed the spacebar or entered a period character to satisfy the field requirement if they didn’t have the information.

 If you can’t resolve quality issues before they reach the Power BI project, it’s often best to manage null values using Power Query data-transformation steps to cleanse and standardize the data.

 Combining data

 Power BI has several transformations you can use to combine data from two or more queries. The Append Queries transformation essentially stacks one query on top of another and returns the two result sets, combined. No common key is needed to append two queries, but the column data types should match.

 A Merge Queries transformation allows you to join the records from one query, using one or more common key column to match records in another query. This is similar to a join operation in SQL, where you specify the join type.

 The example shown in Figure 1-24 merges the Dim Store and Dim Geography queries using a left outer join type on the GeographyKey column in both queries. Since every row in the Dim Store query contains a corresponding GeographyKey, the selection matches geography values for every store record. This is effectively the same as an inner join. However, if a store record did not have a corresponding GeographyKey, that record would still be returned, but would be eliminated by an inner join.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-24. A merge transformation with matching records

 In the example in Figure 1-25, I am merging the Dim Store query with another query containing US ZIP codes. Because many of the stores are outside the US and have no value in the Zip Code column, there is no match for these records. The left outer join will return all 306 stores, but only 140 corresponding ZIP code records.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-25. A merge transformation with non-matching records

 The Combine Files transformation is unique to scenarios where you have a folder containing multiple files with records in the same format—that is, the same number of columns containing compatible data types. Like an Append transformation, Combine Files will return a single result, including the combination of all files in the folder.

 Query optimization

 Many Power Query data connectors can optimize queries by processing query steps at the source rather than within Power BI. Queries using these sources usually run faster and more efficiently by sending native queries to the data source. This involves a method called query folding, which translates the transformation steps from M code into the data provider’s native query language.

 Consider an example where a table in an Azure SQL database contains 40 columns and 20 million rows for orders occurring over 10 years. You want to load only one year of order records and you only need six columns. You connect to the database and select the table, remove all but the selected columns, and set a date range filter on the date type column. Figure 1-26 shows the query in the diagram view:

 [image: A screenshot of a computer Description automatically generated]
 Figure 1-26. Query in diagram view

 The M code for this query looks like this:

 let
 Source = Sql.Database(ServerName, DatabaseName),
 dataTable = Source{[Schema="workshop",Item="vwFactOnlineSales"]}[Data],
 #"Removed Other Columns" = Table.SelectColumns(dataTable,{"DateKey",
 "ProductKey", "CustomerKey", "SalesQuantity", "SalesAmount",
 "UpdateDate"}),
 #"Duplicate: DateKey" = Table.DuplicateColumn(#"Removed Other Columns",
 "DateKey", "DateKey - Copy"),
 #"Renamed: PartitionDate" = Table.RenameColumns(#"Duplicate: DateKey",
 {{"DateKey - Copy", "PartitionDateTime"}}),
 #"Changed Type: DateKey" =
 Table.TransformColumnTypes(#"Renamed: PartitionDate",
 {{"DateKey", type date}, {"UpdateDate", type date}}),
 #"Filtered: Partition Date Range" =
 Table.SelectRows(#"Changed Type: DateKey", each
 [PartitionDateTime] >= RangeStart and [PartitionDateTime] < RangeEnd)
in
 #"Filtered: Partition Date Range"

 Power Query generates a native query using T-SQL, with parameter values converted to date/time values. Here’s what that looks like:

 select convert(date, [_].[DateKey]) as [DateKey],
 [_].[ProductKey] as [ProductKey],
 [_].[CustomerKey] as [CustomerKey],
 [_].[SalesQuantity] as [SalesQuantity],
 [_].[SalesAmount] as [SalesAmount],
 convert(date, [_].[UpdateDate]) as [UpdateDate],
 [_].[DateKey] as [PartitionDateTime]
from
(
 select [_].[DateKey],
 [_].[ProductKey],
 [_].[CustomerKey],
 [_].[SalesQuantity],
 [_].[SalesAmount],
 [_].[UpdateDate]
 from
 (
 select [DateKey],
 [ProductKey],
 [CustomerKey],
 [SalesQuantity],
 [SalesAmount],
 [UpdateDate]
 from [workshop].[vwFactOnlineSales] as [$Table]
) as [_]
 where [_].[DateKey] >= convert(datetime2, '2022-01-01 00:00:00') and [_].[DateKey] < convert(datetime2, '2022-01-01 00:00:00')
) as [_]

 A few conditions will make or break query folding. It generally works for simple transformations, and relational databases—when the query source is a table or view and not a SQL query expression. Complex transformations like Pivot, Unpivot, and Transpose Columns, however, will break query folding and force Power Query to bring all the source data into Power BI for processing. If you need to perform complex transformations for a large table with data stored on a compatible data source, it will be more efficient to perform those transformations upstream from Power BI, in the ETL process before it gets to the database, or in a database view.

 Chapter summary

 The purpose of data preparation is to cleanse and transform source records for analytical reporting. Clean your data to resolve quality issues before they reach the report presentation layer by correcting erroneous records and filtering unneeded records from data sources. Transform your data to shape the tables you’ll load into the semantic data model, so that they’ll be in the optimal format for reporting and analysis.

 The Power Query editor is available in multiple Microsoft products, including Power BI Desktop, Microsoft Fabric Gen2 dataflows, and Microsoft Excel. In Power BI, queries prepare data to be loaded into the semantic model, which is the foundation for report visualization and data navigation. The Power Query feature to create queries is often called Get Data Experience in these tools.

 To load your query results into a semantic model table, leave the Enable Load setting enabled. To reuse an existing query, even if it is not loaded into the model, you can create a reference query to reuse its output and query logic.

 The data sources Power Query supports include files, services, APIs, data lakes, and databases. All these data sources support the native semantic model-storage mode, called Import mode. In Import mode, data is compressed and loaded into an in-memory table, optimized for analytic reporting. Many database products and services also support DirectQuery mode, which queries the source tables in real time when users interact with report visuals. Both storage modes have advantages and disadvantages, but Import mode is typically faster and is preferred in most scenarios.

 A query’s connection properties allow you to specify the location or address of a file, service, or database. These settings (and many others) can use parameters as variables to manage connectivity, making it convenient to switch data sources and locations. Parameters are also used for filtering records, to manage data volume and query-processing resources during development and after deployment.

 I recommend organizing your queries using groups as containers. Rename your queries and query steps using descriptive names and add descriptions and code annotations to document the query logic and simplify future development.

 Cleansing data involves ensuring that its values conform to the correct data types and format. It also includes unifying any records with mistakes, misspellings, variations, or other anomalies to streamline reporting. You can optimize queries by simplifying values, where possible, to achieve optimal compression and to reduce storage and memory size. Data profiling and Column statistics provide tools to find, analyze, and correct outliers and value distribution.

 For compatible data sources, choose transformation steps that support query folding. These are translated into the source’s native query language, allowing the source server or database engine to process data before you bring it into Power BI. This improves performance and eases the burden on the Power BI service.

 Chapter 2. Modeling Data

A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the fourth chapter of the final book.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sgrey@oreilly.com.

			

 Power BI is one of the most wonderfully flexible products ever created. It is simple and elegant by design, yet deep and complex in areas that defy explanation in simple terms. You can build a simple report very quickly.

 Some seasoned professionals argue that Power BI is frequently used incorrectly. It’s true that many users create simple reports and visualizations using techniques that will not work at scale; when they need to scale up, they find they must start over and use completely different design techniques. This is avoidable. The purpose of this chapter is to put you on track to use Power BI correctly. Specifically, it will show you how to design data models in accordance with the way Power BI was designed to work at scale.

 The Semantic Data Model

 When the Power BI service was introduced, the priority was to streamline the experience for self-service citizen report developers: business users who create reports for themselves and their colleagues. From a technical perspective, creating a “report” in Power BI Desktop actually means that you are creating both a semantic data model and a report. Prior to 2024, published models in the service were called datasets, and now, appropriately, they’re called semantic models.

 When you create a new report file (saved in .pbix or .pbip file format, which defines a Power BI Project) in Power BI Desktop, a semantic model is created. When you publish to the Power BI service, it deploys both a semantic model and a report to the workspace with the same name. This happens even if you don’t explicitly create report pages with visuals.

 After you publish a semantic model to a workspace, you can create a new report connected to that existing model, using either Power BI Desktop or the web report designer. To do this in Power BI Desktop, connect a new report to an existing model by selecting Power BI Semantic Models from the Home ribbon, then Get Data from the dropdown menu options in the Data group.

 Even if your report will be developed separately or by another team member, model developers usually use a few report visuals to test the semantic model for correct results. If your intention is to deploy only the semantic model, you can simply delete the new report from the workspace after it is deployed.

 You can also create reports created directly in the service from an existing semantic model. Using a web browser, in the workspace, select New Report from the model’s ellipsis menu.

 When you create a new report in Power BI Desktop and want to connect it to an existing published semantic model, choose Power BI Semantic Models from the Get Data options, and then select the published semantic model.

 The Vertipaq Engine

 The most significant difference between Power BI and other reporting tools is that, at its core – underneath the calculations and report visuals – Power BI has an impressive little engine capable of amazing things. Think of it as a small nuclear reactor that’s capable of powering anything from a lawnmower to an aircraft carrier.

 Power BI’s data-modeling engine is an in-memory analytic database called Vertipaq. It is the same database engine used in SQL Server Analysis Services (SSAS) Tabular, Azure Analysis Services (AAS), and Power Pivot for Excel. Vertipaq is also the underlying technology for Direct Lake storage mode in Microsoft Fabric.

 When you use default storage, Power BI optimizes the data in the tables using column-level compression. This means that, depending on the column’s data characteristics, it uses different encoding methods to store only unique values, along with the pointers and keys used to decompress and locate values within the table. This impressive technology can reduce the size of a table’s memory footprint by factors of 10 to 20 times (with certain data types) and provides blazing-fast performance for interactive reports.

 Vertipaq can handle moderate and large volumes of data (measured in gigabytes and hundreds of gigabytes, respectively) when using advanced partitioning techniques. However, there are limitations relative to the model size and refresh frequency.

 The engine uses a native query language called DAX (an acronym for Data Analysis Expressions) to query and interact with data in the semantic model. DAX is also the language used to define measures, calculated columns, and calculated tables within the model. When a user interacts with a report visual on a Power BI report page, the report generates a DAX query and presents it to the model engine, which uses it to produce a result set. DAX and Vertipaq are very fast because these values can be retrieved quickly from memory.

 Storage Modes

 Tables in a semantic model can utilize one of three different storage modes: Import, DirectQuery, and Dual modes. This section looks at each in turn:

 	Import mode

 	
 The default storage, called Import mode, is the simplest and is easiest for managing small to moderate volumes of data. Import mode offers the fastest performance and the greatest compatibility with complex calculation functions. For this reason, it is typically the best choice in most analytic reporting scenarios. Import mode is great for tables with many records (“tall” tables), but not tables that also have a lot of columns (“wide” tables). It also doesn’t do well with data that doesn’t compress or aggregate, like large text fields.

 	DirectQuery mode

 	
 DirectQuery mode has no storage limitations, because table data in this mode is not stored in the model. However, report interactions will not be as snappy as with an Import-mode table. With DirectQuery mode, as users interact with report visuals, the DAX query engine translates the report-generated query into the query language of the data source, which then processes the query and sends results back to Power BI. The Vertipaq engine cannot optimize these queries because it isn’t retrieving data from the model’s in-memory storage—it must be sent across a network between the database and Power BI service. DirectQuery is advantageous when you’re working with large and wide detail-level tables that don’t need to be grouped and summarized. However, it doesn’t perform nearly as well when slicing, grouping, or performing intense calculations.

 Since DirectQuery mode always reads data directly from the source tables, if the data changes frequently, the model doesn’t need to be refreshed to make new or updated records available in the report. In a workspace with Premium licensing, you can refresh a semantic model up to 48 times per day, but only 8 times per day using Power BI Pro licensing. Therefore, if it is imperative for users to see data changes that occur more frequently than every few hours, DirectQuery may be the only option.

 The trade-offs between Import and DirectQuery might seem to be a zero-sum game with clear advantages and disadvantages, but the two options can be complementary. In some cases, you can use Import model and DirectQuery mode together to deliver a solution.

 For example, imagine you work for an organization with a popular product, and you want to produce a dashboard-style report on sales orders, which can reach into the tens or hundreds of millions over a few years. Sales orders contain several values, like product cost, order quantity, and other costs and labor estimates, that can be aggregated and used in a variety of calculations. Many orders also contain long text fields for comments, delivery instructions, and other details that cannot be aggregated.

 In all, the sales-order detail table in your database contains over 200 fields. That’s too many fields for a fact table, and the large text fields serve no purpose in a dashboard-style report. To produce the aggregate results necessary to show trend and summaries in your dashboard, the order summary table might only need 20 columns. You decide to store the tall, narrow Sales Summary table using Import mode and relate it to the Sales Order Details table in DirectQuery mode. With a drill-through action, report users can look up the order details from a summary page, giving them the best of both worlds.

 	Dual mode

 	
 Dual mode storage allows you to manage large models without sacrificing performance when you are performing complex data analysis and can afford to load the entire table into the model. This option is not used as commonly as Import and DirectQuery mode, due to the model size limitation for large tables.

 Dual mode is a hybrid between Import mode and DirectQuery. It’s defined on the table in the model designer. When Dual mode is selected, the model engine stores the table like an Import mode table, but uses DirectQuery when needed. You must start with a DirectQuery-mode table and then switch the Storage mode to Dual in the model designer, as shown in Figure 2-1.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-1. Table storage mode

 Some DAX functions cannot be optimized to run with large data volumes using DirectQuery tables. Functions that perform calculations on each row in a large table, like iterator functions and time-series comparisons, are likely to be slow or fail when used with DirectQuery. Be sure to test any complex DAX measures with production-size workloads before releasing them to production. When you test with a small volume of data, there may only be a negligible performance difference between Import, DirectQuery and Dual modes, but performance problems will be noticeable when you begin working with more data. Consider alternatives cautiously when you are designing solutions using DirectQuery tables.

 Compression and Encoding

 In a transactional database, storing additional data generally doesn’t affect query performance if that data isn’t included in queries. So developers often approach traditional database design by storing everything they imagine might have value to business users at some point in the future. The general consensus in the transactional database community is to error on the side of storing data of unknown value, even if it was not in the current scope of the business requirements: the rule is, when in doubt, include it.

 By contrast, today the rule of thumb in business intelligence projects is quite the opposite: when in doubt, leave it out! Generally, the best way to reduce the size and complexity of a semantic data model is to remove unnecessary rows and columns from its tables. If you don’t have a business reporting requirement for a column, leave it out. If source databases have some data that is in question, remember, you can always go back and add those columns when new requirements are introduced.

 When you have transaction-level source data, users might not need to see those granular details. If that’s the case, group and summarize the records to reduce data volume, and visualize the data to meet the reporting requirements. Remember, Power BI is designed primarily to be an analytic reporting solution. This doesn’t mean that you can’t store detail-level records in the model, but it does mean that if your purpose is to create a complex form or a multipage list, other reporting options may be better suited– for example, Paginated Reports.

 Store only the details you’ll need to meet the business’s reporting needs; you can use Power BI in combination with other tools to meet all of your users’ needs. Storing some data in summary form and other data in detailed form within the semantic model might also be a better approach than trying to create one big table that answers all business needs.

 Power BI can handle a lot of data. There are many techniques for handling complex situations using Premium features and complex designs, but our purpose here is to focus on the basics. Let’s look at a practical example to see how you might optimize a data model with a large volume of data.

 Imagine that you have a PBIX report file that contains five years of sales history. This file is becoming too large to maintain, and the Power BI service limits your ability to publish files larger than 1 GB. You could use query parameters to reduce the sales records to a short period of time, but unless you have Premium licensing, you cannot exceed the 1 BG size limit in the service. You could use date-range parameters to reduce the file size, but that won’t reduce the size of the published model.

 Optimizing a data model starts with some fundamental best practices:

 	
 Remove unnecessary columns from tables—especially those that contain large, unique values.

 	
 Different column data types consume more memory and storage space than others. Use the most conservative data type you can while still satisfying reporting requirements. For example, numeric values can be stored as whole numbers or as fixed decimals rather than as floating-point decimals. Date values should be stored as Date data types rather than Date/time. Likewise, time values should be designated as Time and not Date/time.

 	
 Group and store data at the least granular level that meets the reporting requirements. If source data records contain a deeper level of detail, apply grouping and aggregation to reduce the number of table rows in the semantic model.

 If you have a large table containing a column with free text comments, it may require a lot of memory and space to store this data. Nearly all of these comments are likely to be unique, but you can still group them into a few dozen categories for reporting purposes, rather than storing thousands of unique long text values. This compresses the category column, reduces the model size, and speeds up reports.

 Dimensional Modeling

 A data model is a collection of interconnected tables with relationships. Figure 2-2 shows a completed data model. This is a dimensional model, often called a star schema. There are six fact tables and eight dimension tables in this example.

 Facts and dimensions are typically connected using relational keys. The keys in the dimension tables are unique because they identify only one unique row per dimension item, such as a product or a customer. The corresponding keys in the fact tables are not necessarily unique, because one customer can order multiple products, and one product can be ordered multiple times by different customers.

 The pattern in this example is common in data warehouse design. If you were to browse the Dim Product table, for example, you would see that the ProductKey column contains sequential integer values that were assigned when the table was loaded. Corresponding ProductKey column values in a fact table have the same integer values. Power BI doesn’t require key columns to be sequential or to be a specific data type, so long as the values in the related tables match.

 You may notice that I’ve placed the fact tables in the middle of the relational diagram and the dimension tables around the outside. I’ve organized them as much as possible, but diagramming a perfect model layout can drive you crazy. When a model grows larger than a few tables, it can be difficult to manage in a single diagram view.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-2. All Tables layout showing a star schema

 In addition to the All Tables layout, which includes every table in the model, you can create individual layouts for each cluster of facts and dimensions. In Figure 2-3, I have added the Fact Online Sales table and all related dimensions. When I create a data model, I create all of the relationships in the All Tables layout, but I don’t put a lot of effort into organizing all the tables in that view. I then create one layout for each fact table. The easiest way to do this is to drag the fact table to the layout and then choose Add Related Tables from the ellipsis menu of the fact table.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-3. Model layout

 Note that additional relationships exist in the model that are not visible in this view, which only shows relationships between tables included in the layout.

 Relationship Cardinality

 Relationships in a truly dimensional model usually have one-to-many cardinality from each dimension table to each fact table. This means that only one unique value exists among all the key values on the “one” side of the relationship, and non-unique values are allowed only on the “many” side (see Table 2-1).

 Tip

 The “Many to many” cardinality option was introduced in more recent versions of Power BI to deal with unusual key matching conditions. Due to the lack of relational constraints, this option can produce unexpected results and is not generally recommended. Many-to-many relationship scenarios can be managed with more control using a bridging table with relationships enforced on both sides.

 Table 2-1. Cardinality types explained.

 	Cardinality option
 	Explanation

 	One to many
 	Only non-duplicate and non-blank values are allowed on the “one” side of the relationship. Duplicate values and empty values are allowed on the “many” side.

 	One to one
 	Only non-duplicate and non-blank values are allowed on the either side of the relationship.

 	Many to one
 	The reverse of “One to many”. Duplicate values and empty values are allowed on the “many” side but only non-duplicate, non-blank values are allowed on the “one” side.

 	Many to many
 	Allows duplicate and blank values on either side of the relationship.*

 The Power BI modeling engine validates cardinality when data is loaded into the model and the data refresh process will fail if a cardinality rule is violated in future data loads. Although one-to-many relationships are ideal, they cannot always meet every data-modeling requirement; expect some exceptions in complex data models.

 You can adjust the cardinality and cross-filter direction settings on a relationship between two tables in the data model designer. Figure 2-4 shows the relationship between the Fact Online Sales table and the Dim Customer table. From the perspective of the fact table, this is a many-to-one relationship. You can see that the CustomerKey values in the fact table are not unique. Note that the Cross-filter direction is Single.

 Figure 2-4. Edit Relationship dialog box showing the many-to-one relationship between the Fact Online Sales table and the Dim Customer table.

 The Cross-Filter Direction setting affects how queries are executed and how records are scanned and filtered in the Vertipaq storage engine, so it can significantly impact report performance. The Cross-Filter Direction can be set to Single or Both. The Single option creates a single-direction filter, and the Both option creates a bidirectional filter, with respect to the two tables in the relationship.

 Figure 2-5 shows two of the dimensions in this model in relation to one of the fact tables. This is a common scenario, where both the Customer and the Product dimensions are related to the Online Sales fact table through one-to-many relationships. What is the expected behavior for records filtered on either side of these relationships?

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-5. Single-direction relationships

 Filter Propagation

 The term filter propagation describes how selecting records and filtering one table causes a related table to be filtered. Think of a filter like electrons flowing through a circuit. A single-direction filter would be analogous to a diode that only allows current to flow in one direction.

 To help you understand the relative effects of single-direction and bidirectional relationships, I’ve created a simple test report, shown in Figure 2-6. A measure named Online Order Count returns the row count of the Fact Online Sales table as it is filtered through report interaction. The table visual on the left side of the report page shows every product from the Dim Product table, alongside the number of online orders. The product names are sorted by the number of orders, showing those with the fewest orders first. The second table visual, in the middle of Figure 2-6, shows every customer from the Dim Customer table. The multirow card visual on the right shows the count of the CustomerKey column from Dim Customer, which corresponds to the row count in that table; the count of the ProductKey column from Dim Product; and the Online Order Count (the same measure used in the table showing products on the left).

 All products and customers are currently shown. The row counts confirm that no tables are currently filtered. What will happen if I select a product that only has a few orders? Will it filter the customers?

 Figure 2-6. Page to test relationships

 The next image, Figure 2-7, shows the page after I select a product name in the leftmost table visual. The Count of ProductKey changes to 1, indicating that the Dim Product table has been filtered to only one record, as expected. The Online Order Count is 5, indicating that the Fact Online Sales table was filtered to only the five records matching the selected product. The table visual showing customers hasn’t changed (all customers are shown) and Count of CustomerKey is still the same. Clearly, the Dim Customer table is not being filtered. What’s going on here?

 Because this is a single-direction filter from the Dim Product table to the Fact Online Sales table, records are not filtered from the fact table to the dimension table. No customer records were filtered because I did not select a customer, which would filter the fact table. Conclusion: The filter doesn’t flow from the “many” side to the “one” side of the relationship.

 Figure 2-7. Testing a single-direction relationship

 Next, I will modify the relationship between Fact Online Sales and Dim Customer, changing it from “Single” to “Both,” making it a bidirectional filter. This change is shown in Figure 2-8.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-8. Bi-directional relationship

 The effect is immediate. With the same product selected, Figure 2-9 now shows that the customers have been filtered. Since the five orders were placed by separate customers, the Dim Customer table is now filtered to only five records.

 Figure 2-9. Testing a bidirectional relationship.

 Using bidirectional filters might seem at first to be good practice and a design pattern to follow in all semantic models. However, it can significantly decrease performance. Without using a resource-intensive measure on the report, cross-filtering seems to be quick, but complex calculations could take several seconds rather than milliseconds. Cardinality and cross-filter direction are important factors in model design. These options exist to meet business-reporting requirements, but try to avoid bidirectional relationships if they are not necessary.

 To understand why a bidirectional filter could make such a difference, think about the internal mechanics of filter propagation. In the first scenario (in which Dim Product filters the Fact Online Sales table), for each selected product record, Power BI must scan all 3.6 million records in the fact table to determine matches. That is a lot of records to scan, but only one operation, and all the work is performed in-memory with efficient, compiled programming code. In the second scenario (Dim Product filters Fact Online Sales, which filters Dim Customer), for each Fact Online Sales record returned by the first filter operation, all 18,000 customer records must subsequently be scanned to determine matches. In this simple example, the customer table would be scanned five separate times! Now imagine that the first filter produces 10 million order records, each of which requires a separate scan of the customer table. That would be a costly operation.

 Date Tables

 A date table, often called a date dimension table, is a fundamental pattern in dimensional modeling. Several time-intelligence DAX functions rely on a date table designed according to this pattern. Time-intelligence is a category of calculations and functions used to analyze data that varies over time. This table contains date records that match all the dates in a given fact-table column and includes additional columns for each date granularity period used for reporting, such as Year, Quarter, Month, and Week.

 A date dimension table has one record for every day in a series, typically starting at the beginning of the first year and ending on the last date of the last year in the series. The table should include every date in every year within the series. For example, if the Order Dates in Fact Online Sales start on July 3, 2020, and go up to October 15, 2024, the Order date table should include every date from January 1, 2020, through December 31, 2024. That’s 1,826 daily records in the date table.

 The Auto Date/Time setting in Power BI Desktop will generate hidden tables for every date column in the model, but this is not a viable pattern for most business-reporting solutions. Most experienced professionals turn this feature off and create their own date tables or import them from a reliable source.

 When importing a date table, you must mark it as a date table and specify a date type column to utilize time-intelligence functions. The date type column you designate will be used for performing time-intelligence. From the field list or the diagram view (shown in Figure 2-10), use the ellipsis menu on the table to select “Mark as date table.”

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-10. Mark as date table.

 This menu selection opens the dialog shown in Figure 2-11, titled “Mark as a date table.” Simply choose the date type column and click the Save button.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-11. The “Mark as a date table” dialog

 Next, create a relationship between the key column in the date dimension and the fact table or tables. You are not required to use a date type column as the key. It can be a unique whole number, but the date table must contain a date type column with unique and contiguous values. In other words, it cannot skip any dates in the series.

 Figure 2-12 shows a date dimension table related to four different fact tables. The advantage of using a common date table is that it lets you filter multiple tables in the model using one slicer or common report visuals. It also allows you to group dates using standard date-part values, such as Year, Quarter, and Month.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-12. Common date dimensions.

 Special Calendar and Accounting Periods

 Not all date reporting uses standard calendar granularity. Many organizations use their own reporting periods for things like financial analysis and planning. This is another advantage of creating a custom date dimension table: you can add columns that define nonstandard reporting periods and groupings for analysis, such as fiscal-calendar periods, manufacturing schedules, or seasonal workdays.

 Creating custom calendar-period definitions is a well-established pattern in database and data-warehouse design. A common technique is to add numeric columns to use for sorting, counting, and navigating periods. For example, fiscal calendar periods can begin and end on arbitrary calendar dates, but you can enumerate them in the calendar table using a sequential index. It would then be a simple matter to compare the sales for fiscal reporting period 93 to those from period 81,12 periods ago. (Chapter 11 will cover advanced modeling techniques in more detail.)

 Role-playing Dimensions

 Role-playing dimensions are a design concept in which you define a dimension table as a standard template and then implement that table multiple times within the semantic model. It was first included as a feature in multidimensional SQL Server Analysis Services. This is not a feature per se in Power BI, but can easily be implemented.

 I role-playing dimension enables one table to serve multiple purposes. For a common example, imagine that you need time intelligence reporting for multiple date columns related to different business functions, such as Order Date and Delivery Date. Two duplicate tables, Order Date and Delivery Date, would have the same design and structure. In such a case, you could design the standard date dimension query using Power Query, with Enable Load turned off. The query would be implemented as two separate tables, using reference queries in the query editor.

 Column Properties and Settings

 Power BI utilizes metadata to associate properties and settings with various semantic model objects like tables, columns, and measures. This metadata enables some important capabilities and visual behaviors; for example, formatting and automatic visual selection. Common metadata properties include:

 	Hierarchies

 	
 You can organize columns in a table into named hierarchies for grouping, and to form drilldown navigation within visuals. Hierarchies are defined in the field list in the model diagram view, table grid view, or report designer. Drag and drop or right-click a field to create a hierarchy or add it to an existing hierarchy.

 	Data type

 	
 It’s critically important to give each column the correct data type. Ensure that numeric keys and quantity fields are stored as whole numbers. Dates and times should be stored as specific data types, not as Date/Time types. Ensure that you don’t store date, time, or numeric fields as text. Use the most conservative numeric data type to store numeric values accurately; whole numbers use less storage and memory than decimals, while fixed decimals are more conservative than floating-point decimals. A binary or Boolean (that is, Yes/No, True/False) data type is often a better choice than text or numbers, although it is not imperative to convert values of this type as long as you are consistent across the model.

 	Format

 	
 Format numbers and dates to ensure that they are displayed appropriately in report visuals. Correct formatting improves readability and reduces the space required to show values in the report. Whole numbers should not display decimals and should always include a thousands separator.

 	Summarization

 	
 This property changes the default aggregation for a column when it is added to a report visual. Most numeric columns will be set to SUM values, but that might not be an appropriate behavior for certain fields, like Year or a numeric key. For these, you should set Summarization to “Do not summarize.” Enabling a numeric value to summarize is convenient for simple reporting but offers less control and consistency than using explicit measures. (Chapter 11 discusses implicit measures in more detail.)

 	Data category

 	
 You can enable certain column behaviors by setting the Data category to indicate special meanings, such as a geographic designation, web URL, or image URL. When the column is added to a report, the report designer will generate a default visualization experience and set appropriate visual properties for the category: for example, a column categorized as a Country, City, or Postal Code will generate a map visual, while a column categorized as a web URL will show a clickable link.

 	Sort by column

 	
 On the Column Tools ribbon, use the Sort by Column dropdown list to select an alternate column to sort by. A common example is to sort month names in numeric order by the month number of the year (January, February, March) rather than alphabetically by name (February, January, March).

 DAX Essentials

 Data Analysis Expressions, or DAX, is an expression and query language developed specifically for tabular semantic models. Its uses include:

 	Measures

 	
 Measures are calculation objects that encapsulate DAX expressions; they are the most common application of the DAX language. Measures are calculated dynamically, within the context of report visual groupings, filters, slicers, and user interactions.

 	Calculated columns

 	
 DAX expressions used to generate a column value for each row in a table. The expression is processed only when the table is loaded, and static values are persisted in the semantic model storage until the model is refreshed and the table is reloaded.

 	Calculated tables

 	
 Table-producing expressions that result in a new table being persisted into the semantic model. Data for a calculation table can be obtained from other tables in the model and/or from DAX functions. Like calculated columns, calculated tables are processed at data load time and are repopulated when the model is refreshed.

 	Auto-generated DAX queries

 	
 Produced when navigating report visuals in a Power BI report. Each visual internally generates a DAX query that is used to process and retrieve results from the report’s connected semantic model. These queries are hidden from users and processed in the background. While users interact with a report, Power BI is generating and processing dozens of DAX queries. You can use tools like Performance Analyzer and DAX Studio to view and capture these queries.

 	DAX queries

 	
 DAX queries can be hand-typed or generated using query-authoring tools like Paginated Report Builder, DAX Studio, or SQL Server Management Studio.

 	Row-level security filters

 	
 Row-level security (RLS) filters are DAX expressions that filter dynamically a table in the model and calculate values based on a user’s role membership, entity mappings, and other conditional logic.

 	Special-purpose objects

 	
 Variations of other DAX applications. For example, calculation groups and field parameters are special-purpose objects that leverage calculated tables and measures to produce advanced functionality in the semantic model.

 Measures

 Power BI is purposefully designed to behave like familiar business tools wherever possible, which is why many features in the query, model, and report designers resemble other Microsoft products like Excel. But designing more advanced analytic solutions often requires a different approach. Such is the case with implicit and explicit measures.

 The term implicit measure refers to a numeric column that naturally aggregates values when added to a report visual. Although columns with default summarization are often sufficient for simple reporting, they can produce incorrectly aggregated results under certain conditions. This default summarization behavior is convenient and requires less development effort than creating explicit measures for every calculation. However, implicit measures are less flexible than explicit measures and are incompatible with certain advanced features, like calculation groups.

 Explicit measures use DAX expressions purposely created to apply calculation rules. The DAX code for a measure could simply aggregate a numeric column value, or apply more complex and specific business rules and conditional logic.

 Although implicit and explicit measure behavior are usually the same in a Power BI report, there are some differences in behavior and capability. Some reporting tools don’t support implicit measures. For example, Excel pivot tables do not support implicit measures under most conditions.

 There are two schools of thought regarding implicit and explicit measures. Some people believe that you should create an explicit measure for every calculation and hide all the numeric columns in the model, to avoid confusion and provide report designers and business users with a consistent experience. This is considered the best practice for enterprise-class semantic model design. Others believe that if an implicit measure works for the task at hand, you should just use it and then create explicit measures when they are needed. This is common practice in ad hoc and self-service model design.

 Measures apply DAX expressions to aggregate values and apply calculation rules. Like Excel, DAX is a function-based language where functions aggregate, filter, and navigate through columns and in-memory tables. Simple aggregator functions include SUM(), MIN(), MAX(), and AVERAGE(), which evaluate a range of values and return the aggregate result. Iterator functions like SUMX(), MINX(), MAXX() and AVERAGEX() evaluate each row of a table, apply expressions and row-level logic, and then perform aggregations.

 Measures are written in the formula bar in the model or report editor of Power BI Desktop. Figure 2-13 shows a very simple measure that calculates the sum of the SalesQuantity column in the Fact Online Sales table. Note the measure properties in the ribbon, which shows the Home table and Formatting options. I have set the Format option to Whole number, with a thousand separator and zero decimal places.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-13. Simple measure and formatting options

 DAX Function Types

 DAX functions are used to aggregate, iterate, and filter; apply filter context; and create in-memory data tables that other DAX functions can use in measure definitions.

 Aggregations

 Aggregate or statistical calculations are applied to the values in a table column. Core functions like SUM(), AVERAGE(), MIN(), MAX(), MEDIAN(), STDEV(), and COUNT() return a single value from a range of column values. Additional functions perform similar operations over different value types and specific use cases. Examples of specialized statistical functions include: SUMX(), SUMA(), FIRSTNONBLANK(), PERCENTILE(), DISTINCTCOUNT(), and COUNTROWS().

 Filters and Context

 The CALCULATE() function in DAX modifies the filter context of an aggregate expression in a measure. It applies the calculation based on a table or the in-memory table returned by a table-type or filter-type function. Figure 2-14 builds on the first example for a measure named “Online Cell phone Sales Qty.” This measure uses the CALCULATE() function to modify the filter context of the SUM() expression. No matter how data is grouped or filtered in the report, this measure will only show the sum of sales quantity for products that have a Category Name of “Cell phone.”

 [image: A white background with black text Description automatically generated]
 Figure 2-14. Measure using CALCULATE() function

 Time Intelligence

 Time intelligence functions are used to create measures that analyze values over a designated range of time. They perform dynamic filtering over a table relative to a selected date. To create time intelligence measures, the model must contain a standard Date dimension table that contains one row per calendar date, whether produced by the auto date/time feature or explicitly added to the model.

 Before I show you how to use time intelligence functions, here’s a simple example. Figure 2-15 shows a line chart visualizing two measures and dates on the horizontal axis. The tooltip shows the values of the two measures as of August 27, 2022. The Online Sales Qty on this date is 1,209 units. The accumulated month-to date value of the sales quantity is 28,053 units. If you were to go back to the first day of August, you would see that the sales quantity and the MTD sales quantity are exactly the same, where the MTD would be an accumulation of one day. Add that to the quantity on the 2nd, and then the 3rd and so on, up to the 27th day of the month, and there would be an accumulated total of just over 28,00 units. As you can see from the sawtooth shape of the charted values, the MTD totals accumulate and then reset on the first of each month.

 Each of these two measures is recalculated on each date and then plotted on the chart.

 [image: A graph with blue lines Description automatically generated]
 Figure 2-15. Online Sales Qty and MTD measure

 Figure 2-16 shows the same set of data in a table visual. As you see, the values on August 27 are the same as the values shown in the tooltip. For each row in this table, each of these two measures are calculated within the context of that row. For the Online Sales Qty measure, the calculation is simply the sum of values for that date. For the Online Sales Qty MTD measure, it is the accumulated sum of values for the range of dates from the 1st through the date on that row.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-16. Online Sales Qty and MTD in table

 Now that you have seen the expected outcome, we will look at the measure code.

 Functions like DATESMTD(), DATESYTD(), and PARALLELPERIOD() produce a filtered table containing rows relative to the current row in a date dimension table. The resulting in-memory table returned by these functions is then used to calculate and aggregate values to be returned by the measure. Additional time-intelligence functions like TOTALMTD() and TOTALYTD() perform both the dynamic date range filtering and the aggregate calculation logic.

 The next series of three figures provides examples of measures that produce the same results. The first example in Figure 2-17 uses the same pattern as the Online Cell phone Sales Qty measure. The CALCULATE() function modifies the calculation scope of the SUM() function to a range of date records returned by the DATESMTD() time intelligence function.

 [image: A white background with black text Description automatically generated]
 Figure 2-17. Time intelligence measure using DATESMTD()

 In Figure 2-18, I am using the TOTALMTD() function, which, in effect, performs the functions of both CALCULATE() and DATESMTD() together. This is known as a wrapper function because it essentially calls the other two functions within its internal code.

 [image: A white background with black text Description automatically generated]
 Figure 2-18. Time intelligence measure using TOTALMTD()

 Finally, Figure 2-19 shows one more variation. This time, rather than repeating the expression: SUM('Fact Online Sales'[SalesQuantity]), I just reference the base measure: Online Sales Qty. Rather than repeat measure expressions, you can reference one measure within the code of another measure.

 [image: A white background with black text Description automatically generated]
 Figure 2-19. Time intelligence measure using a base measure and TOTALMTD()

 Measure Properties and Settings

 A few important properties that should commonly be set for measures:

 	Home table

 	
 Even through measures have model-wide scope, each measure must “live” within a table which then serves as the measure group. Any measure can be rehomed by simply changing the Home table.

 	Format

 	
 A measure should be assigned a format, appropriate for the data type and values returned by the calculation. Set the number of decimal places to align with reporting requirements and readability. Dates can be formatted for brevity and will be formatted appropriately for the user’s language and region.

 	Thousand separator

 	
 Large numbers should have a thousand separator to aid readability. Values with a thousand separator will be formatted appropriately for the user’s language and region.

 	Data category

 	
 Like columns, measures can have behaviors enabled by setting the Data category to indicate special meanings such as a Web URL or Image URL. When the measure is added to a report, the report designer will generate a default visualization experience and set visual properties appropriate for the category. Measures can return special categorized values and rendered as an image, barcode, geographic designation or map coordinate.

 	Display folders

 	
 Using folders to organize and find objects is an intuitive experience for computer users. The Display folder property is commonly used to organize measures within a measure group table. Measures that have a common Display folder name will appear in the same folder or nested subfolder.

 Calculated Columns

 Because calculated columns expressions are limited to the scope of a single row, there are often more effective alternatives to perform calculations, such as in Power Query, a database view or upstream transformation logic. Calculated columns use DAX expressions to render a scalar value for the column, typically referencing other columns in the same row of the table. Always consider all options for performing row-level calculations—but there are several viable use cases where a calculated column can enhance the reporting experience. Examples include segmenting and binning column values, creating indicators and flags, parsing name fields, and creating date-based aging buckets. Calculated columns cannot be added to tables that use DirectQuery mode or semantic models using Direct Lake storage. Those calculations must be performed prior to the semantic model definition.

 Here is an example of an expression that populates a new calculated column named Age when the table is refreshed:

 Age = ROUNDDOWN(DIVIDE(TODAY() - [Birth Date] , 365), 0)

 Calculated Tables

 A calculated table uses DAX to produce a new table in the semantic model. Any DAX function that returns an in-memory table can be used to generate the table. Following is an example of a calculated table expression that produces a table named Sales Dates, with a column of dates between January 1, 2023, and December 31, 2025:

 Sales Dates = CALENDAR(DATE(2023, 1, 1), DATE(2025, 12, 31))

 The Sales Dates table code can be enhanced, adding columns for the year, month, and month number, like this:

 Sales Dates =
ADDCOLUMNS(
 CALENDAR(DATE(2023, 1, 1), DATE(2025, 12, 31)),
 "Year", YEAR([Date]),
 "Month Name", FORMAT([Date], "MMMM"),
 "Month Number of Year", MONTH([Date])
)

 Always consider that there are multiple options for producing tables in your solution, just like there are for calculated columns—including the lakehouse, warehouse or source database, transformation logic, or Power Query. Consider the most appropriate option for efficiency and maintainability.

 DAX Queries

 To return the results of a DAX expression as a result set, use the EVALUATE statement. A table-type function will return a set of values as rows and columns. Common functions used to group and summarize results are SUMMARIZE() and SUMMARIZECOLUMNS().

 The following example returns one row per date, along with the Online_Sales_Qty and Online_Sales_Qty_MTD measure values. Alias column names, in double quotes, are used to label the output columns.

 EVALUATE
 SUMMARIZECOLUMNS(
 'Dim Date'[Date],
 "Online_Sales_Qty", 'Fact Online Sales'[Online Sales Qty],
 "Online_Sales_Qty_MTD", 'Fact Online Sales'[Online Sales Qty MTD]
)

 Filters can be added to manage the output. Adding the TREATAS() function to the following query passes a filtered table that includes only the year 2022, causing the Dim Date table to be filtered:

 EVALUATE
 SUMMARIZECOLUMNS(
 'Dim Date'[Date],
 TREATAS({2022}, 'Dim Date'[Year]),
 "Online_Sales_Qty", 'Fact Online Sales'[Online Sales Qty],
 "Online_Sales_Qty_MTD", 'Fact Online Sales'[Online Sales Qty MTD]
)

 Rather than literal expressions, you can also use variables to pass filtered in-memory tables, again filtering the output. In this example, the variable __DS0FilterTable contains a table of year values consisting of only the year 2022:

 DEFINE
VAR __DS0FilterTable =
 TREATAS({2022}, 'Dim Date'[Year])

EVALUATE
 SUMMARIZECOLUMNS(
 'Dim Date'[Date],
 __DS0FilterTable,
 "Online_Sales_Qty_MTD", 'Fact Online Sales'[Online Sales Qty MTD],
 "Online_Sales_Qty", 'Fact Online Sales'[Online Sales Qty]
)

 Performance Analyzer and DAX Query View

 You can use Performance Analyzer to capture the queries produced by report visuals in Power BI Desktop. Enable Performance Analyzer from the View ribbon in the report designer. Then, start recording and use the Refresh visuals link on the page. This will capture the queries for each visual and show their durations in milliseconds. You can then copy the query to the clipboard or choose Run in DAX Query View to open the query in Power BI Desktop (Figure 2-20).

 Figure 2-20. Performance Analyzer

 Performance Analyzer is an excellent tool for diagnosing poorly performing measures and report visuals. Watch for large duration values in the query timings to find report visuals that take longer to run. This can help you identify measures that need to be optimized or overly complex visuals that can be optimized or moved to a separate report page. Since every visual produces an individual query, reducing the number of visuals on a page can improve overall page performance. However, it’s better to optimize measure performance than to work around performance problems by reducing page content.

 If the visuals on a report page are performing poorly, there are a few possible culprits. Typically, the most effective method to diagnose and improve performance will be to capture the queries for the worst-performing visuals and then narrow down the factors to get to the root cause. Start by looking for a single visual or measure that takes longer to run than others.

 Before the DAX Query View was added to Power BI Desktop in 2024, it was necessary to use third-party tools to create and test queries. This new integrated query editor has features similar to query-authoring tools like SQL Server Management Studio and DAX Studio. Figure X s4-21ows the DAX Query View after opening the query generated by the previous line chart from Performance Analyzer.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-21. DAX Query View

 You can edit multiple queries, highlight individual queries, and run DAX query code using the Run button. Query results are displayed in the Results pane below the editor.

 Advanced Model Features

 The sheer depth of advanced functionality and options afforded by the Analysis Service Tabular model within Power BI is vast. There are many advanced-level features that are not critical for most Power BI developers to understand or use on a regular basis. However, some features are common in more advanced solutions and can save you considerable time and effort when requirements call for more complex capabilities. Specific design and implementation steps for these and more features are covered in chapter 11. In this section, I introduce these advanced features’ purposes and criteria for using them, which may be included on the exam.

 Calculation Groups

 You have seen how to implement time intelligence calculations using DAX functions that utilize a date dimension table. You can use several time variation functions with any business metric to observe how it performs over time.

 A semantic model may contain many measures that business users may want to use in time series reports. Given all the potential combinations of measures and time-series functions, however, creating a time-series variation for each one would be an enormous undertaking that would produce hundreds of individual measures. For example, let’s say that business users wanted to see the following time-series variations for all their business metrics:

 	
 Previous month

 	
 Month-to-date accumulation

 	
 Month-over-month difference

 	
 Percentage of month-over-month change

 	
 Previous quarter

 	
 Quarter-to-date accumulation

 	
 Quarter-over-quarter difference

 	
 Percentage of quarter-over- quarter change

 	
 Previous year

 	
 Year-to-date accumulation

 	
 Year-over-year difference

 	
 Percentage of year-over- year change

 If you needed to create measures applying the logic for each of these time-series calculations to ten different business metrics, that would require you to create and maintain 120 new measures. The alternative is using a calculation group.

 A calculation group allows you to design the time intelligence measure logic only once, then use it with any measure in the model. Calculated rules are reduced to consolidated code that can be applied to any measure added to a visual, along with the calculation group item. The associated measure is known as the selected measure.

 Prior to a 2024 update to Power BI Desktop, only third-party tools like Tabular Editor could create calculation groups. Since the update, this can be done from the Model View in Power BI Desktop.

 Figure 2-22 shows a calculation group named Order Date Intelligence and the code for a calculation item named MTD, which calculates the month-to-date total for the selected measure. The SELECTEDMEASURE() DAX function is used to pass the selected measure into the calculation item expression; the SELECTEDMEASUREFORMATSTRING() function is used to apply the same formatting as the selected measure.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-22. Calculation group item expressions for MTD

 The Prev Month % Diff calculation item code is a little more involved (Figure 2-23). This code uses variables to compartmentalize the logic. It effectively compares the selected measure value to the value for the previous month and then calculates the difference as a percentage. Rather than formatting the output like the selected measure, Format String specifies the percentage format: 0.0%.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-23. Calculation group item expressions for Prev Month % Diff

 Using a calculation group involves selecting a measure and then visualizing it in the context of a calculation-group item. This can be done by filtering the calculation group table by a single item, or grouping a visual, so each grouped value is effectively sliced by a single calculation-group item. The report example in Figure 2-24 shows the Online_Sales_Amt measure in a matrix, grouped by five different calculation-group items. Each item causes the measure to be calculated according to that item’s calculation expression and formatted appropriately.

 A calculation group behaves like any table. This example uses item values for the column group in the matrix and for item selection in the slicer.

 [image: A screenshot of a computer screen Description automatically generated]
 Figure 2-24. Calculation group test page

 As you can see, the calculation group reduces the number of measures needed in a semantic model by applying predefined calculation logic over any selected measure.

 Calculation-group support comes with a trade-off: to enable it, you must change the semantic model configuration in a way that will disable your ability to use implicit measures. When a calculation group is created in Power BI Desktop, the message in Figure 2-25 is shown, prompting you to update the model. Once this change is applied, you can begin using calculation groups, but implicit measures will be disabled.

 Figure 2-25. Calculation group prompt

 Row-Level Security

 Row-level security (RLS) is a feature that filters data in the semantic model based on user roles. When you filter a table in the model using RLS, the filter is propagated to all related tables, causing sensitive data to be hidden from view and measures to be calculated only in the context of records available to the user. This method is reliable and secure when implemented correctly. Any report or query the user runs against the model will exhibit the same behavior. Even users who connect to the model using Analyze in Excel, a Paginated report, or any third-party reporting tool will see only the data that is visible to them through RLS filtering.

 Users must have Viewer access to the semantic model for row-level security to work. Users with elevated access (through Member, Contributor or Admin access assignments) will not be affected by RLS filters. Records and corresponding totals are filtered based on a user’s role membership, so in some report visuals, different users might not see the same values.

 There are two possible implementations of RLS, with one being an extension of the other. Standard role-based row-level security applies the same filters to all members of a defined role. Dynamic row-level security applies conditional logic in the RLS filter using a data-driven approach, based on a table that maps a list of users to key values in the filtered table. I’ll briefly discuss the mechanics of RLS, then show examples of each implementation.

 Figure 2-26 shows two report visuals grouping store sales measures by store geography, with continent and country on the left, and continent on the right. The goal is to allow certain users to see only the sales totals for a specific continent. Users should not be able to see aggregate values for stores in any other continent, regardless of how they slice or group the store sales data.

 [image: A screenshot of a graph Description automatically generated]
 Figure 2-26. Store sales visuals by geography

 Filter Propagation and RLS

 Figure 2-27 shows a branch of the data model where the Dim Geography table is related to the Dim Store. Dim Store is in turn related to Fact Store Sales. This is a snowflake schema ,where one dimension is related to another dimension.

 Pay attention to the relationship directions depicted in the diagram. If we were to filter the Dim Geography table, it would cause the Dim Store table to be filtered, which would then cause Fact Store Sales to be filtered. In business terms: if you were to select any geographic unit, such as continent, from the Dim Geography table, it would filter the related Dim Store table to include only the stores for that geography. Likewise, only store sales values from the fact table would be included, resulting from the propagated filter between Dim Store and Fact Store Sales.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-27. Relationships for Dim Geography

 Role-Based Row-Level Security

 Role-based implementations of RLS apply filters to all members of a defined role. In the following example, the goal is to filter continents based on a user role. Figure 2-28 shows the “Manage security roles” dialog, which is opened from the model designer using the Manage roles button.

 Two roles are defined: Europe Sales and NA Sales. The NA Sales role is shown with the filter logic for the Dim Geography table. When a member of the NA Sales role uses the Dim Geography table, the table will be filtered to include only records where the ContinentName is “North America.”

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-28. Manage security roles dialog

 For testing, use the View As button and select the NA Sales role. This simulates running the report as a member of that role. Figure 2-29 shows that the report is filtered to include only sales for stores in North America.

 Figure 2-29. View as NA Sales

 Now to apply the RLS enabled semantic model in the Power BI service. For testing purposes, I added two measures to show the USERNAME() and USERPRINCIPALNAME() function values on my RLS test page. The new measures are defined as follows:

 User Name = USERNAME()

User Principal Name = USERPRINCIPALNAME()

 Adding the two new measures to a card visual to the test page, I can see who is running the report, shown in Figure 2-30.

 [image: A screenshot of a computer screen Description automatically generated]
 Figure 2-30. RLS test page with user information

 A minor complication is that as the author of the report, I have admin rights to the model in the Power BI service. To test that RLS is working correctly, I need to sign in as a less privileged user. After deploying the report and semantic model to the Power BI service, I use the security settings for the semantic model to assign a test user to one of the RLS roles. I add a user named Student to the NA Sales role and giving them Viewer access to the semantic model and report.

 After you add roles to the semantic model in Power BI Desktop and deploy it, you can add users and groups to the roles in the service. Using the ellipsis menu of the published model, choose Security and then Add users or groups. (Figure 2-31 shows the report running in the service, using the credentials of the test user.) After you grant Viewer access to the semantic model and add the user to the NA Sales role, only North America sales will be visible to this user.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-31. Testing row-level security with a test user in the service

 Standard RLS works well when there are a limited number of role-based filtering conditions, such as users having access to sales for stores in a few different continents. However, this approach may not be viable when filtering must be performed at a more granular level or when the rules are more complex.

 Dynamic Row-level Security

 Dynamic implementations of row-level security add a data-driven element to the equation. Rather than hard-coding the filter criteria to each specific role, you can use a mapping table to relate the username or user principal name to key values in a table. You can apply dynamic RLS to a security role for a dimension table with a filter expression that uses the USERNAME or USERPRINCIPALNAME DAX function.

 Figure 2-32 shows a simplified RLS mapping table, associating users to the continents for which they are allowed to see store sales information.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-32. Simple RLS user mapping table

 In a more advanced scenario, the mapping table could associate each username with a store key or customer key and might contain hundreds of key-mapping records. Because neither UserName nor ContinentName is a unique value, the mapping table cannot participate in a relationship that supports the RLS filter. The dynamic filtering logic must thus be performed in DAX programmatically. Figure 2-33 shows the role filter for a generic role to which all applicable users will be added. The filter expression on the Dim Geography table performs a lookup to see if the mapping table contains a row with the UserName matching the ContinentName. If it does, geography records for that continent are allowed through the filter, and the same filter propagation occurs as before.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-33. Dynamic RLS filter expression

 Since the test user was mapped to Europe in the mapping table, the test report in the service includes only store sales data for Europe (Figure 2-34).

 [image: A screenshot of a computer screen Description automatically generated]
 Figure 2-34. Dynamic RLS test report in the service

 Dynamic row-level security is flexible, reliable, and secure. However, it does negatively impact report performance, because the RLS filtering expression must be performed for every row in the affected table.

 Incremental Refresh

 As data volume grows, managing a semantic model with large tables can become challenging. Incremental Refresh is a feature that automatically creates and maintains table partitions and lets you to refresh only the data that has changed or been added since the last refresh, instead of reloading the entire model. Particularly beneficial for large models, it can reduce refresh times, minimize resource consumption, and ensure that the most current data is available.

 Many previous versions of SQL Server Analysis Service, which is the basis for Power BI semantic models, have afforded the ability to partition tables, but it has always been a complex and cumbersome process – both to design and maintain. Incremental Refresh manages the process in the Power BI service.

 Requirements

 You can apply Incremental Refresh to any semantic model deployed to the Power BI service using Pro or Premium capacity licensing. Power BI Pro licensing limits the model size to 1 GB. Certain features of Incremental Refresh are available only in Premium capacities, but the core features are supported with Pro licensing.

 The query must include a Date/time type column used for partitioning. If a date type column exists, it can be duplicated or changed to a Date/time type.

 You’ll need to add two parameters and use them to filter the partition column according to specific date-range filtering criteria. Figure 2-35 shows the date-range criteria and parameters used to filter the partitioning column. You may set these parameters to any range of date values.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-35. Date range parameter filter

 If the preceding criteria are met, an Incremental Refresh policy can be added to the table. I strongly recommend that you make your queries foldable. Make sure that your data source supports query folding and that you don’t use any query-transformation steps that will break query folding. This will dramatically improve refresh performance.

 Conversely, implementing Incremental Refresh on nonfoldable queries will have a significant negative impact on data refresh performance and capacity use. Figure 2-36 is an example that partitions the Fact Online Sales table by year and by month. When the model is refreshed, records with a date in the past two months will be stored in monthly partitions; earlier records for the previous five years will be stored in yearly partitions. Only records that have been added since the last data refresh will cause the individual partition queries to be processed. The service runs a separate query for each partition, using the RangeStart and RangeEnd partitions to substitute the appropriate dates.

 [image: A screenshot of a computer Description automatically generated]
 Figure 2-36. Incremental Refresh policy

 Optionally, if the table contains a column to track when existing records have been updated, you can use it to maintain partitions that need to be refreshed. When an update date is newer than the last refresh date, those partitions will be reprocessed.

 Chapter Summary

 The semantic model is the foundation of analytic reporting with Power BI, built on a mature technology that is feature-rich and enterprise-ready. Based on the Vertipaq engine, the tabular, in-memory data model technology was developed within SQL Server Analysis Services and then incorporated into Power Pivot for Excel, Power BI, Azure Analysis Services and Microsoft Fabric. Tables within a semantic model (previously called a dataset) can utilize fast import storage mode, real-time DirectQuery, or Direct Lake in the Microsoft Fabric OneLake ecosystem.

 Analytic data models are most effectively designed according to dimensional modeling best practices, applying star and snowflake schemas, with dimension and fact tables. Relationships between tables are based on key columns that define record cardinality and filter direction. Relationships cause filter propagation that filters tables in the model when you se columns from different tables in report visuals.

 When you use a standard date dimension table that contains one record per day in a contiguous series of dates, you can work with time-series reporting and time-intelligence analysis. Time intelligence calculations apply special DAX functions that navigate and filter dates in the date dimension related to a fact table.

 Measures perform calculations within the context of a report visual as it is filtered, grouped, or sliced on a report page. Use explicit measures, which are defined using DAX expressions, rather than summable numeric columns (often referred to as implicit measures) in a report when possible. You won’t be able to use implicit measures when certain advanced features, like calculation groups, are enabled in a semantic model. Measure logic can be as simple as using aggregate functions like SUM() or AVERAGE(), or they can apply complex business rules to perform advanced calculations.

 Calculated columns and calculated tables are defined using DAX but populated during model refresh and are not recalculated in the context of a report visual.

 Role-playing dimensions are dimension queries with the same structure and column definitions that are materialized as separate tables in a model. They often serve similar but different purposes, since they are related to tables in the model.

 You can use Performance Analyzer to diagnose the performance and results of queries produced by visuals on a report page. DAX Query View, a new addition to Power BI Desktop, is a query editor used to view, run, and author DAX queries.

 Calculation groups are an advanced feature that define standard calculation logic, which can then be applied to a selected measure in a report. Calculation groups are often used to apply standard time-intelligence calculations to selected measures, as well as to optimize model development and minimize the need for redundant calculation code.

 Row-level security manages user access to sensitive data and allows reports connected to a central data model to be filtered specifically by a user’s role. Dynamic RLS allies filter logic according to calculation logic that can be table-driven, enabling different users to see only the appropriate data and calculated values for their assignments or areas of responsibility.

 Incremental Refresh automatically manages large tables, reducing data refresh overhead and query processing resources by partition large tables using data ranges. Once implemented, only partitions containing new and updated records are processed.

toc01.html
		Brief Table of Contents (Not Yet Final)

		1. Preparing Data

 		Power Query and Get Data

 		Data transformations

 		Data sources and connections

 		Storage Modes

 		Connection properties

 		Data source parameters

 		Filtering and parameters

 		Organizing and reusing queries

 		
 Assessing and improving data quality

 		Data profiling

 		Combining data

 		Query optimization

 		Chapter summary

		2. Modeling Data

 		The Semantic Data Model

 		The Vertipaq Engine

 		Storage Modes

 		Compression and Encoding

 		Dimensional Modeling

 		Relationship Cardinality

 		Filter Propagation

 		Date Tables

 		Role-playing Dimensions

 		Column Properties and Settings

 		DAX Essentials

 		Advanced Model Features

 		Chapter Summary

assets/ch04_figure_34_1729531736424442.png
User Name User Principal Name

student@intelligentbiz.net student@intelligentbiz.net
ContinentName Store Sales Qty Store Sales Amt Store Sales Qty and Store Sales Amt by ContinentN: 1@ 2 = &
© Europe 325.454 $76,030,761.95 @Store Sales Qty @Store Sales Amt

Denmark 2513 598,992.47
France 87,665 §21,909,993.15
Germany 149,095 $32,672,154.92
Greece 2,267 521,906.85
Ireland 1,986 497,943.64
Italy 9263 $2398349.05
Malta 1,729 466,561.84
Poland 2,283 622,136.59
Portugal 2276 559,008.87
Romania 2,104 642,627.29 e N
Russia 14657 $3,001,83539 s
Slovenia 3232 704,626.17 £ curope
Spain 2,156 506,711.42 £
Sweden 1,983 623,929.66 =
Switzerland 3,043 753,276.09 ©
the Netherlands 2,181 537,337.60
United Kingdom 37,021 $9,013,370.95

Total 325,454 $76,030,761.95

oM 20M 40M 60M 80M
Store Sales Qty and Store Sales Amt

assets/ch04_figure_25_1729531736424289.png
This change will discourage implicit X

measures

When you add a calculation group, implicit measures will be discouraged
in this model. This means you'll need to create explicit measures to
aggregate data columns.

Yes Cancel

assets/ch04_figure_24_1729531736424266.png
Year

Selected Item

MTD

Prev Month

Prev Month Diff

Prev Month % Diff

January
February
March
April

May

June

July
August
September
October
November

December
2023

$376,999.65
$116,353,891.35
$ 60,603,524.47
$508,796,266.24
$116,353,891.35

3,607,846.86
4,478,426.04
5,128,734.39
6,001,746.21
6,357,343.02
6,101,455.56
5,143,739.51
5,043,313.88
4,680,595.23
4,735,998.35
3,724,257.14
3,765,486.25

$6,490,057.53
$ 5,600,068.27
$27,900,878.03
$6,490,057.53

3,607,846.86
4,478,426.04
5,128,734.39
6,001,746.21
6,357,343.02
6,101,455.56
5,143,739.51
5,043,313.88
4,680,595.23
4,735,998.35
3,724,257.14
3,765,486.25

$6,490,057.53
$5,600,068.27
$27,900,878.03

6,490,057.53
3,607,846.86
4,478,426.04
5,128,734.39
6,001,746.21
6,357,343.02
6,101,455.56
5,143,739.51
5043,313.88
4,680,595.23
4,735,998.35
3,724,257.14
$ 3,765,486.25

$376,999.65
$116,353,891.35
$54,113,466.94
$503,196,197.97
$ 88,453,013.32

-$2,882,210.67
$870,579.18
$650,308.36
$873,011.82
$355,596.81

-$ 255,887.46
-$957,716.05
-$100,425.63
-$362,718.65

$55,403.13

-$1,011,741.21

$41,229.11
-$ 3,765,486.25

833.8%
8985.5%
317.0%

-44.4%
24.1%
14.5%
17.0%

5.9%
-4.0%

-15.7%
-2.0%
-7.2%

1.2%
-21.4%
1.1%
-100.0%

Calculation

W Selected Item

B mTD

YTD

W Prev Month

W Prev Month Diff
B Prev Month % Diff
Prev Year

Prev Year Diff
Prev Year % Diff

assets/ch04_figure_27_1729531736424330.png
B Fact Store Sales

4

ChannelKey
CurrencyKey
DateKey

DiscountQuantity

ProductKey
PromotionKey
SalesKey

SalesQuantity

StoreKey

Collapse ™

]
[

E] Dim Geography E] Dim Store
CityName CityName
ContinentName &) CloseDate
GeographyKey GeographyKey
GeographyType L —¢) OpenDate
RegionCountryName E— Status
StateProvinceName StoreKey
7] UpdateDate StoreManager
Collapse StoreName
StorePhone

Collapse ™

assets/ch04_figure_26_1729531736424312.png
Store Sales Qty and Store Sales Amt by ContinentName

ContinentName Store Sales Qty Store Sales Amt
Asia 429,103 $90,619,328.53 @ Store Sales Qty @ Store Sales Amt
E Europe 325,454 $76,030,761.95

Denmark 2,513 598,992.47

France 87,665 $21,909,993.15

Germany 149,095 §32,672,154.92

Greece 2,267 521,906.85

Ireland 1,986 497,943.64 North America

Italy 9,263 $2,398,349.05

Malta 1,729 466,561.84

Poland 2,283 622,136.59 °

Portugal 2276 559,008.87 £

Romania 2,104 642,627.29 Z)

Russia 14,657 $3,001,83539 g Asia

Slovenia 3232 704,626.17 z

Spain 2,156 506,711.42 8

Sweden 1,983 623,929.66

Switzerland 3,043 753,276.09

the Netherlands 2,181 537,337.60

United Kingdom 37,021 $9,013,370.95 Europe
E North America 963,703 $ 223,093,767.97

Canada 33,419 §7,467,144.36

United States 930,284 $215626,623.61

Total 1,718,260 $ 389,743,858.45
0.0bn 0.1bn 0.2bn

Store Sales Qty and Store Sales Amt

assets/ch03_figure_11_1729531721577589.png
-

let

Source = Excel.Workbook(File.Contents("C:\Users\PaulTurley\OneDrive - Intelligent Business LLC\Projects\School Roster POC\School Roster POC.
x1sx"), null, true),

#"Navigation 1" = Source{[Item = "Student History", Kind = "Sheet"]}[Data],

#"Promoted headers" = Table.PromoteHeaders (#"Navigation 1", [PromoteAllScalars = truel),

#"Changed column type" = Table.TransformColumnTypes(#"Promoted headers", {{"Student ID", Int64.Type}, {"Student Last", type text}, {"Student
First", type text}, {"Grade", Int64.Type}, {"Home School", type text}, {"School”, type text}, {"Teacher", type text}, {"Program", type text},
{"Notes", type text}, {"As Of", type date}})

in
| #"changed column type"

assets/ch04_figure_29_1729531736424362.png
@ Now viewing as: NA Sales Stop viewing

I
-
o
o @
Continent Store Sales Qty Store Sales Amt Store Sales Qty and Store Sales Amt by Continent UserName
© North America 963,703 § 223,093,767.97 @store Sales Qty @Store Sales Amt bob@intelligentbiznet
Canada 33419 $7467,14436 sally@intelligentbiz.net
United States 930284 21562662361 student@intelligentbiz.
Total 963,703 §223,003,767.97 net
vinni@intelligentbiznet
X
View as roles
None
Other user H
£ North America
5
Europe Sales 3
NA Sales
00bn otbn 026n
Store Sales Gty and Store Sales Amt
& 7%

assets/ch03_figure_10_1729531721577573.png
Get data
Choose data

123 Student ID A Student Last A% Student First 123 Grade A% Home School A% School

Display options

4 7] Excel workbook

Student_Current_Status

thiStudentHistory

EH student Current status

B00DO

E student History

O

14l

123456789 Smith
123456789 Smith
123456789 Smith
234567890 Johnson
23456/890 Johnson
123456789 Smith

Johnny
Johnny
Johnny
Sally
sally
Johnny

4/ Roosevelt
4/ Roosevelt
4| Roosevelt
5| Frankiin
6/ Frankiin

4| Roosevelt

Walnut Grove

Felida
it Valey
Chinook
Al

null

i Teacher | A Program A Notes

Murray
Prutch
Smith
Brown

James

null

1ac
1ac
scp
sic
sic

Ton1
Ton1
nul
nall
null
null Expeled to Idaho 6/3

Asof
6/3/2022
6/4/2022

8/30/2022.
6/3/2022
11112022

91572022

g
123 A/l

null
null
il
null
null
null

s
42 Column12
nul
nul
ul
il
nul
nul

assets/ch04_figure_28_1729531736424346.png
Manage security roles

Create new security roles and use filters to define row-level data restrictions.

Roles Select tables

-+ New

Dim Account

Dim Currency

B Europe Sales

B NA Sales Dim Customer

Dim Date

Dim Geography Y -

Dim Product

Dim Scenario

Dim Store

Fact Exchange ...

Fact Online Sal...

Fact Sales

Filter data
—+ New (@ Deselectall @ Delete
Show data if | All V| of these rules are true
Column Condition

Value

Switch to DAX editor

ContinentName VvV Equals

North America

=+ New

Save Close

assets/ch03_figure_13_1729531721577617.png
0 N oA W -

il
12
13
14
15
16
17

® Valid 100 Ql Sort ascending
: E::;rty 8 Z] sort descending
Remove empty
||||| ||| v Date filters
90 distinct, 0 ur | A Search I
1/19/2(a
1/19/2((Select all) .
17472 1/1/2022
1/8/2 1/2/2022
/92 1/3/2022
g 1/4/2022
1/10/2
e 1/5/2022
1/12/2(1/7/2022 =
g A\ List may be incomplete. Load more
1/14/2(
1/14/2(
/152 . . .
1/16/2022 1666 8055 0
1/18/2022 185 5602 0
1/19/2022 262 10087 0
1/20/2022 1706 1622 0

DateKey F| 123 ProductKey F‘ 123 CustomerKey F‘ 123 SalesQuantity F‘ {2

i
\
I
I

Equals...

Before...

After...

Between... @

In the next...

In the previous...

Is earliest

Is latest

Is not earliest

Is not latest

Year
Quarter
Month
Week

N NN NS W

Day

In...

Not in...

assets/ch04_figure_31_1729531736424396.png
Create

B

Browse

©

Onelake
data hub

B8

Apps

=)
Workspaces
[eX¢)
(*)
CO7

Book
Demos

(]

OReilly
PL300...

Power BI

-

OReilly PL300 PTurley Examples | Data updated 8/11/24 v

Pages

Filter propagation
Time intelligence
Calc Group

| RLS Test

«

3 File v

= Export v

|2 Share

Q_ Search

WP Chat in Teams

User Name

student@intelligentbiz.net

R

0 Q= &

Q Getinsights

Q) Setalert

User Principal Name

student@intelligentbiz.net

@ Copilot

ContinentName

Store Sales Qty Store Sales Amt

© North America
Canada
United States
Total

963,703 $ 223,093,767.97

33,419 $7,467,144.36
930,284 §215,626,623.61
963,703 $ 223,093,767.97

ContinentName

@ Store Sales Qty @ Store Sales Amt

North America

0.0bn

Store Sales Qty and Store Sales Amt

Store Sales Qty and Store Sales Amt by ContinentName

-+ 4%

A

siay14

assets/ch03_figure_12_1729531721577603.png
ORIV

le

in

t

Source = Excel.Workbook(File.Contents(SchoolRosterFilePath), null, true),

#"Navigation 1" = Source{[Item = "Student History”, Kind = "Sheet"]}[Data],

#"Promoted headers" = Table.PromoteHeaders(#"Navigation 1", [PromoteAllscalars = true]),

#"Changed column type" = Table.TransformColumnTypes(#"Promoted headers", {{"Student ID", Int64.Type}, {"Student Last", type text}, {"Student
First”, type text}, {"Grade", Int64.Type}, {"Home School”, type text}, {"School", type text}, {"Teacher”, type text}, {"Program”, type text},
{"Notes", type text}, {"As Of", type date}})

#"Changed column type"

assets/ch04_figure_30_1729531736424379.png
User Name User Principal Name
AzureAD\PaulTurley paul@intelligentbiz.net
ContinentName Store Sales Qty Store Sales Amt Store Sales Qty and Store Sales Amt by ContinentName
Asia 229103 $90,619,328.53 ®Store Sales Qty @Store Sales Amt
B Europe 325454 $76,030,761.95
Denmark 2513 598,992.47
France 87,665 §$21,909,993.15
Germany 149,095 §32,672,154.92
Greece 2,267 521,906.85
Ireland 1986 49794364 North America
Italy 9263 §2398349.05
Malta 1,729 466,561.84
poland 2283 622,136.59 °
Portugal 2276 559,008.87 £
Romania 2,104 642,627.29 Z)
Russia 14657 $3,001,83539 e Asta
Slovenia 3232 704,626.17 z -
Spain 2,156 506,711.42 ©
Sweden 1,983 623,929.66
Switzerland 3,043 753,276.09
the Netherlands 2,181 537,337.60
United Kingdom 37,021 $9,013,370.95 Europe
B North America 963,703 § 223,093,767.97 -
Canada 33419 $7467,14436
United States 930,284 $215,626,623.61
Total 1,718,260 $ 389,743,858.45
0.0bn 0.1bn 0.2bn
Store Sales Qty and Store Sales Amt

assets/ch03_figure_15_1729531721577645.png
> Gateway and cloud connections
> Data source credentials

4 Parameters

ServerName

kalwvg5capkefegg5d6gkpgeza-gbi63ywo5nnulmi2héhreilk

DatabaseName

ContosoDW

RangeStart

1/1/2018 12:00:00 AM

RangeEnd

1/1/2024 12:00:00 AM

DimDateStart

1/1/2018

DimDateEnd

12/31/2023

Apply Discard

assets/ch04_figure_33_1729531736424427.png
Manage security roles X

Create new security roles and use filters to define row-level data restrictions.

@ Successfully applied role changes. X
Roles Select tables Filter data Switch to default editor
+ New X
B Dim Account 8
1 "Din Geography’ [Continentllame] = LOOKUPVALUE("RLSStoreContinenttiap’
B Europe Sales - B Dim Currency - [Continentiiame], ‘RLSStoreContinenthap® [Userfiame], USERNAME()) L
2
5 NaSoes . 5 Dim Customer

B Store Continent Dyn. 85 Dim Date
B8 Dim Geography ¥

B Dim Product

B Dim Scenario

B Dim Store

B Fact Bxchange - @ Filter the data that this role can see by entering 3 DAX filter expression that retums 3 True/False
value. For example: Entity ID] = "Value"

B Fact Online Sal...
B Fact Sales

Close

assets/ch03_figure_14_1729531721577630.png
Filter rows @

Apply one or more filter conditions to the rows in this table.

®Basic (OAdvanced

Keep rows where "PartitionDateTime"

is after or equal to i | E v | | [® RangeStart i |
®@and Qor
| is before 4 | | E v | | [® RangeEnd 4 |

assets/ch04_figure_32_1729531736424411.png
1
2
3
4

Student@intelligentiz net
bob@inteligentiznet
sally@inteligentiz net
vinni@intelligentbiz net

P Continentame |~
ose
North America

North America

nin

assets/ch03_figure_17_1729531721577675.png
Dim Store

Fact Tables

Fact Excha

Fact Online

Fact Store

Fact Sales

_Measures

Dim Scenario

@

=

NI

<>0 0w

P e

i

Copy
Paste

Delete

Rename

Enable load

Include in report refresh

Duplicate

Reference @

Move to group >

Move up

Move down

Create function...
Convert to parameter
Advanced editor

Properties...

i

assets/ch03_figure_16_1729531721577660.png
Queries

[18] <

I 4 - Parameters 6]

=
=l
E=l

E=|
=l
-5

=
=l
E=l

E=|
=l
-5

=
=l
E=l

E=|
=l
-5

ServerName (kalwvg5capkefeg...
DatabaseName (ContosoDW)
RangeStart (1/1/2022, 12:00:0...
RangeEnd (4/1/2022, 12:00:00 ...
DimDateStart (1/1/2021)

DimDateEnd (12/31/2022)

4 [T7] Dimension Tables [7]

[N
=

Dim Currency

Dim Customer

Dim Date

Dim Product

Dim Scenario

Dim Store

Dim Store-Active US Stores

act Tables [4]
Fact Exchange Rate

Fact Online Sales

Fact Store Sales

Fact Sales Quota

4 - Other Queries 1]

_Measures

assets/ch03_figure_19_1729531721577703.png
[Dimension Tables [Dimension Tables

\ I E Dim Store | E Dim Store-Active US Stores |
o

|

B 5] =h o ° @ Y% +—0
Source workshop_vwDi... Renamed Col... ® Source Filtered rows ~ Removed other c...

@2

assets/ch03_figure_18_1729531721577689.png
7] Dimension Tables

| Dim Store

B =p o
Source workshop_vwDi... Renamed Col... ®
@2
7] Dimension Tables
| Dim Store-Active US Stores
8 =p @)T 2
Source ® workshop_vwDi... Renamed Col... ® Source2 Filtered rows Removed other c...

@2

assets/ch04_figure_36_1729531736424472.png
Incremental refresh and real-time data X

Refresh large tables faster with incremental refresh. Plus, get the latest data in real
time with DirectQuery (Premium only). Learn more

(© These settings will pply when you publish the dataset to the Power Bl service. Once you
do that, you won't be able to download it back to Power Bl Desktop. Learn more.

1. Select table

Fact Online Sales

2. Setimport and refresh ranges

@D ncrementally refresh this table

S
oo 1201910517204 e
Incrementally refresh data before refresh

starting date
Data il be incrementally refreshed from 6/1/2024 to 7/31/2024 (inclusive)

Archive data starting

3. Choose optional settings

Get the Iatest data i real time with DirectQuery (Premium only) Learn more

elected table cann

bef

for DirectQu

[& Only refresh complete months Learn more
[] Detect data changes Learn more

4. Review and apply

Archived

5 years betors
rerecn aste

assets/ch04_figure_35_1729531736424457.png
Filter Rows

‘Apply one or more fitter conditions to the rows i this table.

@Basic O Advanced

Keep rows where ‘PartitionDateTme’

iafterorequite < | |[1]+|| Rengestat
@and OOr
isbefore | (1 - | Rangetnd

oK

cancel

assets/ch03_figure_20_1729531721577724.png
£

47
48
49
50
51
52
53
54
55

123 zip code |1

l
1
l

1062
1201
1453
1608
1608
1701
1832
1852
1904

ABC Store Phone

806-555-0136
173-555-0179
678-555-0110
118-555-0110
441-555-0195
182-555-0134
368-555-0113
181-555-0124
869-555-0119

v

ABC City Name | ¥

1Sy URe
Northampton
Pittsfield
Leominster
Worcester
Worcester
Framingham
Haverhill
Lowell

Lynn

ABC State Province Name

Massac|
Massac|
Massac|
Massac
Massac|
Massac|
Massac|
Massac

Massac|

usetts
usetts
usetts
usetts
usetts
usetts
usetts
usetts

usetts

v

ABC Region Country Name

Unite
Unite
United
Unite
Unite
Unite
United

Unite

Unite

States
States
States
States
States
States
States
States

States

assets/cover.png
OREILLY"

Microsoft Power Bl
Data Analyst
Associate

Study Guide

Prepare for the PL-300 Exam and
Apply Best Practice Design

Earl
Releaz‘.e

RAW &
UNEDITED

Paul Turley

assets/ch03_figure_22_1729531721577765.png
Home Transform Add column

LJ g= |2

Data Schema Script Diagram| Query

viewv view v view v [setting
| Enable column profile
/| Show column quality details
| Show column value distribution
v/| Show column profile in details pane
V| Enable details pane
Monospaced
/| Show whitespace

assets/ch03_figure_21_1729531721577745.png
47
48
49
50
51
52
53
54
55

BC Zip Code

01062
01201
01453
01608
01608
01701
01832
01852
01904

v

ABC Store Phone

806-555-0136
173-555-0179
678-555-0110
118-555-0110
441-555-0195
182-555-0134
368-555-0113
181-555-0124
869-555-0119

v

ABC City Name | ¥

el
Northampton
Pittsfield
Leominster
Worcester
Worcester
Framingham
Haverhill
Lowell

Lynn

BC State Province Name

Massac|
Massac|
Massac|
Massac|
Massac|
Massac|
Massac|
Massac|

Massac|

usetts
usetts
usetts
usetts
usetts
usetts
usetts
usetts

usetts

v

B

Unite
Unite
Unite
Unite
Unite
Unite
Unite
Unite

Unite

¢ Region Country Name

States
States
States
States
States
States
States
States

States

assets/ch03_figure_24_1729531721577803.png
Merge @ @

Select a table and matching columns to crezte 2 merged table.

Dim Store O
123 Storekey 123 GeographyKey 123 StoreManager A StoreType A StoreName. &
156 P 171 store Contoso Cambrisge siore |
2 501 232 s Contoso Leeds sore 0
201 506 213 st Contoso London Store 3
204 576 22| Contoso York tore 23
« —————— >
Right table for merge *

im Geography &)
s Geonapiykey A Geogrpype A Contnentome A Citame s SseProinceName

a3y curope sssingstore Harts | Engiand -
425y curope sercs ergiers]
9ty curope sracne ergiers
w7y curope sy ergiara v
 ————— >

Join kind

®
@ @ @ @ @ @

Left outer Right Full outer Inner Left anti Right anti
outer

() Use fuzzy matching to perform the merge

> Fuzzy matching options

(@ The selection matches 306 of 306 rows from the first table

ok

assets/ch03_figure_23_1729531721577784.png
[| A zipcode |~ A& Store Phone |~ | AB- City Name [~
e
® Vald 87% | ® Vald 100% | ® Valid 100%
®Eror 0% | ® Error 0% | ® Emor 0%
e Empty 13% ® Empty 0% @ Empty 0%

A state Province Name

| ® valid 100%
® Error 0%
| ® Empty 0%

A& Region Country Name | ¥ | A% Address |
® Valid 100% | ® Valid

® Error 0% | ® Error

® Empty 0% | Empty

164 distinct, 14... | 295 distinct, 287 ... | 263 distinct, 22... | 79 distinct, 42 unique 35 distinct, 16 unique 297 distinct, 293 unique
391 O num 23U-555-U144 Amsterdam | Noora-Holland the Netnerianas “Citycenter Snopping mall, Amsterdam (Noi o
40 ;l null 7680-555-0118 Warsaw Warszawa Poland VCitycenter War’srzav;a, Poland o
T’l null| 210-555-0193 Ottawa Ontario Canada Carling Avenue, Ottawa, Canada .
42 l/00010 919-555-0140 Yerevan Armenia Armenia Amiryan Street Yerevan, Armenia
43 !l 00057 370-555-0163 Seoul Seoul-jikhalsi South Korea Seoul west district
44 1 00192 927-555-0150 [Roma |Roma Italy |
45 101000 129-555-0199 Ljubljana | ubljana Slovenia [Citycenter Ljubljana, Slovenia
46 11 nioan R10.885.0108 Holunka Macearhiieatte |initar Statac Old Ianic Aua v
4 L] >
Table column profile details x

Column statistics

Count

Error count

Null count

Distinct count
Unique count
Empty string count
Min

Max

eted (0.57 5)

306

41
164
146

00007
98556

Columns: 16 Rows: 299+

Value distribution

70001
54001
97001
87001
75201
01800
21234
07102
01608

33126 [

Column profiling based on top 1,000 rows

L}

Off

sbumes Aianp A

assets/ch03_figure_26_1729531721577834.png
| 7] Fact Online Sales of ¢

¢

> B i =] = b Y|—+—o
Source dataTable Removed Other .. Duplicate: DateKey Renamed: Partit.. Changed Type: D... Fitered: Partiion...
@2 @2

assets/ch03_figure_25_1729531721577819.png
Merge @ @

Select a table and matching columns to creste 2 merged table.

Dim Store o
we [openoute Fcoseosie Mezipcose i siorethone s Giytame
2072008, 20000 00 2138 sersss010 | combrige
52772004 120000 A1, i o015 eeas
117272004, 2000000 i 5275550168 |London
52772004 120000 A1 i s 555016 vork -
« ——
Right table for merge *

o

M Zipcode Acty Mcsute M County

00601 sgunas eR Adjuntas Municipio a
oos02 Aguada B Aguada Muriciio]
00603 e ‘Aguadila Municipio

00606 Maricao R Maricao Municipio

ons1n RS £ Anscen M]
Join kind

®
@ @ @ @ @ @

Left outer Right Full outer Inner Left anti Right anti
outer

() Use fuzzy matching to perform the merge

> Fuzzy matching options

(@ The selection matches 140 of 306 rows from the first table

assets/ch04_figure_2_1729531736423873.png
File Home
" n
Get
datav
Clipboard
(ool
(&) oim Geosrasiy

i)

Help External tools

Excel workbook i
© Onelake data hub v (& Da
[® sat server B rRe

Data

(& o

) o coomer .
® :
D ompear
s
s
All tables Online Sales

Enter data

T |_|§
s
L L
Transform Refresh
datav

taverse
cent sources v

Queries

[C—
o

o

I

[Cpeem—

(&) omcurny

Store Sales Sales Quota

Manage New

relationships

Relationships

(&) omsn

[Cre—

[CLee——

New New

measure column table

Calculations

[Cree——

v

[E]

Calculation
group

At A

Language Linguistic

e

Manage View

roles as v schemav
Security QA
~
[Cep———
(O
z
v
>

b+ 40%

o
@t

Publish

Sensitivity Share A
« Data |
27
o Tables Model
k]
0
=+
ok Q_ search
@

Dim Account

H Dim Currency

B Dim Customer

Dim Date

Dim Geography

B Dim Product

B Dim Scenario

Dim Store

Fact Exchange Rate

v

B Fact Online Sales

B Fact Sales

Fact Sales Quota

Fact Store Sales

> 8
> B
) Zip Codes

Fact Strategy Plan

Inventory Details

O

assets/ch04_figure_1_1729531736423834.png
<>

'M Inventory Details

Aging
BrandName
CityName
CloseDate
CloseReason
ColorName
Continent Name
Curency Name

Currenckey

Collapse ~

Key column

Select a column with unique values

Is hidden

@D No

Is featured table.

@D No

v Advanced

Storage mode
DirectQuery
Import
DirectQuery

Dual

2 s

assets/ch04_figure_3_1729531736423895.png
File Home Help External tools
[al Excel workbook {FH enter data T LI; _E I I:]
© Onelake data hub v (@) Dataverse v Lo = !
Get Transform Refresh Manage New New New Calculation
datav [BSQL Server [® Recent sources v | datav relationships measure column table group
Clipboard Data Queries Relationships Calculations
(ool
Dim Customer
() pim Date [
& Date customerGender
T Month Customerkey
Month name customerName
ek ¥ Quarter (8] Fact online sales
2 Year CurrencyKey
Collapse ~ Customerkey
4 DateKey
> * % DiscountQuantity *
> % 3 OnlineSalesKey *
ProductKey
% PromotionKey
2 ReturnAmount
1 % RetumnQuantity
(&) pim currency Collapse ™
CurrencyDescription
CurrencyKey
CurrencyName
Collapse ~
All tables Online Sales | Store Sales Sales Quota

GeographyKey

MaritalStatus

Collapse ~

T

1

(2] pim Product

BrandName
CategoryName
ClassName
Manufacturer

¥ ProductCategoryKey
ProductDescription
ProductKey
ProductName

Collapse ~

23

&

Publish

At A

Language Linguistic
schemav

e

Manage View
roles as -

Q&A Share

Security Sensitivity

Data

A

Tables Model

Q_ search

saljiedold

BB Dim Account

) Dim Currency

Dim Customer

Dim Date

5 Dim Geography

Dim Product

BB Dim Scenario

Dim Store

H Fact Exchange Rate

Fact Online Sales

Fact Sales

H Fact Sales Quota

Fact Store Sales

5 Fact Strategy Plan

5 Inventory Details

VOV OV VY VYV VYV VYV VYV VY VYV

H Zip Codes

»

-—+———+ 80% ()

assets/ch03_figure_5_1729531721577499.png
Get data
Connect to data source

SQL Server database Connection settings
Database
*
Learn more Server* ©
| ERg | | A& ServerName ~ |
Database
| ERg | | A& DatabaseName St |

Connectivity mode ©

@ Import

O DirectQuery

> Advanced options

Connection credentials

Authentication kind

| Organizational account v

You are not signed in. Please sign in.

Use encrypted connection

assets/ch03_figure_6_1729531721577515.png
Edit Permissions

I kalwvgScapkefegg5d6gkpgeza-

gbi...edicated.windows.net;ContosoDW

Credentials
Type: Organizational account

Edit... Delete

Encryption

Encrypt connections

Privacy Level

Organizational v

None
Public

Organizational

(

" iQueries for this
| Private
source:

Revoke Approvals

assets/ch03_figure_7_1729531721577530.png
SQL Server database

© kalwvg5capkefegg5dbgkpgeza-gbi63ywo5nnulmi2...

Windows
Use your Windows credentials to access this database.

Database

Microsoft account O Use alternate credentials

User name

Password

Save Cancel

assets/ch03_figure_8_1729531721577544.png
Manage parameters @

Ne Name

A ServerName | SchoolRosterFilePath
8- DatabaseName

% RangeStart
=]
LO

Description

RangeEnd

%] DimDateStart
DimDateEnd
8- SchoolRosterFilePath X

Required

Type
Text M

Suggested values

| Any value v ’

£ Current value

| C:\Users\PaulTurley\OneDrive - Intelligent Busin... |

assets/ch03_figure_9_1729531721577559.png
Get data
Connect to data source

. Excel workbook Connection settings

Select local file:

School Roster POC.xlsx
Browse.
C:\Users\PaulTurley\OneDrive - Intelligent Business LLC\Projects\School Roster POC\School Roster POC xlsx

Learn more

UbuntuMono-BoldItalic.otf

UbuntuMono-Italic.otf

UbuntuMono-Regular.otf

assets/ch04_figure_5_1729531736423934.png
2] Fact Online Sales

CurrencyKey
Customerkey
DateKey

3 DiscountAmount

T Dis

Productkey

ntQuantity

£ RetumAmount
£ ReturQuantity

3 SalesAmount

Collapse ~

K4

RN NN

Product

Brand Name
Category Name

Clss Name
Manufacturer

Product Descripton
Product Name
ProductCategonyey
Productkey
Productsubcateaonkey

Collapse ~
1

- 8

—

1

2] Dim Customer

CityName
Customer Code
Customer Name
Customerkey

Region Country Name.

State Province Name

Collapse ~

Y

»

Y

css_assets/titlepage_footer_ebook.png
OREILLY®

assets/ch04_figure_4_1729531736423918.png
Edit relationship X

Select tables and columns that are related.

From table
Fact Online Sales v
Currencykey Customerkey Datekey DiscountQua.. Productkey RetumQuantity ~ SalesQuarl
1 385 Thursday, lan... 1 16 o 1.
1 3% Thursday, lan... 1 176 o 1
1 435 Thursday, lan... 1 176 o 1
To table
Dim Customer v
City Name Region Count... State Provinc..
Concord 11024 Xie, Russell [25 United States Califomnia
Concord 11081 Baker, Savann... |82 United States Califomnia
Concord 11160 Tang, Maurice | 161 United States Califomnia
Cardinality Cross-filter direction
Many to one (1) v _single v

Make this relationship active

Save Cancel

assets/ch04_figure_7_1729531736423967.png
Product Name

Online Order Count

M customer Name

WWI Screen 113in M1610 White
WWI Screen 125in M1611 Black
M1611 Silver
WWI Screen 125in M1611 White
WWI Wireless Transmitter and Bluetooth Headphones X250 Red
WWI Wireless Transmitter and Bluetooth Headphones X250 Silver
WWI Wireless Transmitter and Bluetooth Headphones X250 White
Proseware Professional Quality Plain-Paper Fax and Copier X100 White
lcontoso Generl Carying Case 304 Biack
Proseware Wall Lamp E0215 Grey
Proseware Wall Lamp E0215
WWI Wall Lamp E215 Black
WWI Wall Lamp E215 Silver
WWI Wall Lamp E215 White
Fabrikam Home and Vacation Moviemaker 1" 25mm M400 White
Fabrikam Business Videographer 1\ 25mm M600 Blue”
A Datum Allin One Digital Camera M200 Orange
A Datum Full Frame Digital Camera X300 Grey
Contoso General Carrying Case £304 White
Fabrikam Business Videographer 1/2\ 3mm M500 Orange"
Litware Mobile Fan External USB Cooling Fan E601 Black
Litware Wall Lamp E2015 Silver
Proseware Wall Lamp E0215 Black
Contoso General Carrying Case £304 Blue
Fabrikam Business Videographer 1" 25mm M600 Grey
Fabrikam Social Videographer 2/3\ 17mm E100 Blue”
Proseware Duplex Scanner M200 Green
Contoso Desktop Alternative Bundle E200 Black
Adventure Works Wall Lamp E2150 Black
Adventure Works Wall Lamp E2150 White
Contoso Coffee Maker Auto 10C M1000 Black
_Contas Water Heater 4 3GPM M1250 Blu

Total

4

Adams, Aaron
Adams, Adam
Adams, Alex
Adams, Alexandra
Adams, Allson
Adams, Amanda
Adams, Amber
Adams, Andrea
Adams, Angel
Adams, Bailey
Adams, Ben
Adams, Blake
Adams, Carlos
Adams, Charles
Adams, Chioe
‘Adams, Connor
Adams, Courtney
Adams, Dalton
Adams, Devin
Adams, Eduardo
Adams, Edward
Adams, Eljah
Adams, Eric
Adams, Evan
Adams, Fernando
Adams, Gabriel
Adams, Gabriella
Adams, Gabrielle
Adams, Hailey
Adams, Haley
‘Adams, Hunter

Bedame tan

Count of CustomerKey

18484

Count of ProductKey

1

Online Order Count

5

assets/ch04_figure_6_1729531736423950.png
Product Name

Online Order Count

Customer Name

WWI Screen 113in M1610 White
WWI Screen 125in M1611 Black

WWI Screen 125in M1611 Silver

WWI Screen 125in M1611 White

WWI Wireless Transmitter and Bluetooth Headphones X250 Red
WWI Wireless Transmitter and Bluetooth Headphones X250 Silver
WWI Wireless Transmitter and Bluetooth Headphones X250 White

Proseware Professional Quality Plain-Paper Fax and Copier X100 White 1
Contoso General Carrying Case E304 Black 5
Proseware Wall Lamp E0215 Grey. 6
Proseware Wall Lamp E0215 Silver 6
WWI Wall Lamp E215 Black 6
WWI Wall Lamp E215 Silver 3
WWI Wall Lamp E215 White 6
Fabrikam Home and Vacation Moviemaker 1" 25mm M400 White 7
Fabrikam Business Videographer 1\ 25mm M600 Blue” 8
A Datum Allin One Digital Camera M200 Orange 10
A Datum Full Frame Digital Camera X300 Grey 10
Contoso General Carrying Case E304 White 10
Fabrikam Business Videographer 1/2\ 3mm M500 Orange" n
Litware Mobile Fan External USB Cooling Fan E601 Black 12
Litware Wall Lamp E2015 Silver 12
Proseware Wall Lamp E0215 Black 13
Contoso General Carrying Case E304 Blue 15
Fabrikam Business Videographer 1" 25mm M600 Grey 15
Fabrikam Social Videographer 2/3\ 17mm E100 Blue” 15
Proseware Duplex Scanner M200 Green 16
Contoso Desktop Alternative Bundle E200 Black 7
Adventure Works Wall Lamp E2150 Black 18
Adventure Works Wall Lamp E2150 White 18
Contoso Coffee Maker Auto 10C M1000 Black 18
Cantosa Water Heater 4 3GPM M1250 Rl 18
Total 3,685,444

Adams, Aaron
Adams, Adam
Adams, Alex
Adams, Alexandra
Adams, Allson
Adams, Amanda
Adams, Amber
Adams, Andrea
Adams, Angel
Adams, Bailey
Adams, Ben
Adams, Blake
Adams, Carlos
Adams, Charles
Adams, Chioe
Adams, Connor
Adams, Courtney
Adams, Dalton
Adams, Devin
Adams, Eduardo
Adams, Edward
Adams, Eljah
Adams, Eric
Adams, Evan
Adams, Ferando
Adams, Gabriel
Adams, Gabriella
Adams, Gabrielle
Adams, Hailey
Adams, Haley
Adams, Hunter

Actame 1an

Count of CustomerKey

18484

Count of ProductKey

2517

Online Order Count

3,685,444

assets/ch04_figure_9_1729531736423999.png
Ta-

Product Name Online Order Count

D customer Name

WWI Screen 125in M1611 Black
WWI Screen 125in M1611 Silver

WWI Wireless Transmitter and Bluetooth Headphones X250 Red

WWI Wireless Transmitter and Bluetooth Headphones X250 Silver
WWI Wireless Transmitter and Bluetooth Headphones X250 White
Plain-Paper Fax and Copier X100 White

Proseware Professional Qual

Proseware Wall Lamp E0215 Grey. 6
Proseware Wall Lamp E0215 Silver 6
WWI Wall Lamp E215 Black 6
WWI Wall Lamp E215 Silver 6
WWI Wall Lamp E215 White 3
Fabrikam Home and Vacation Moviemaker 1" 25mm M400 White 7

Fabrikam Business Videographer 1\ 25mm M600 Blue™ 8
A Datum Allin One Digital Camera M200 Orange 10
A Datum Full Frame Digital Camera X300 Grey 10
Contoso General Carrying Case E304 White 10
Fabrikam Business Videographer 1/2\ 3mm M500 Orange” n
Litware Mobile Fan External USB Cooling Fan E601 Black 12
Litware Wall Lamp E2015 Silver 12
Proseware Wall Lamp E0215 Black 3
Contoso General Carrying Case E304 Blue 15
Fabrikam Business Videographer 1" 25mm M600 Grey 15
Fabrikam Social Videographer 2/3\ 17mm E100 Blue” 15
Proseware Duplex Scanner M200 Green 16
Contoso Desktop Alternative Bundle E200 Black 7
Adventure Works Wall Lamp E2150 Black 18
Adventure Works Wall Lamp E2150 White: 18
Contoso Coffee Maker Auto 10C M1000 Black 18

Contoso Water Heater 4.3GPM M1250 Blue 18

Total 3,685,444

Torres, Raquel
Wang, Franklin

Count of CustomerKey

5

Count of ProductKey

1

Online Order Count

5

assets/ch04_figure_8_1729531736423982.png
8] Fact Online Sales

CumencyKey
Customerkey
Datekey

T DiscountAmount

T DiscountQuantity
Productkey

T RetumAmount

T ReturQuantity

T Salesamount
Collapse ~

7

RN NN

) %

8] Dim Product

Brand Name
Category Name

Class Name

Manufacturer

Product Descripton

Product Name
ProductCategorkey R
Productkey
Froductsubcateaonker R

Collapse ~

1
(.

1

8] Dim Customer

CityName
Customer Code

Customer Name

Customerkey PN
Region Country Name

State Province Name.

Collapse ~

Edit relationship

Select tables and columns that are related.

From table

Fact Online Sales

Currencykey Customerkey Datekey DiscountQua.. Productkey RetumQuantity ~ SalesQuarl
1 385 Thursday, lan... 1 176 o T
1 435 Thursday, Jen... | 1 176 o 1

To table
Dim Customer v
CtyNeme Customer Code CustomerNa.. Customerkey Region Count.. State Provinc
Concord 11024 Xie, Russell [25 United States Califomnia
Concord 11081 Baker, Savann... |82 United States Calfornia
Concord 11160 Tang, Maurice | 161 United States Calfornia

Cardinality Cross-filter direction
Many to one (1) v | | Both v

Make this relationship active [Apply security filter in both directions

O Cancel

assets/ch04_figure_11_1729531736424045.png
Mark as a date table X
To enable the creation of date-related visuals, tables and quick measures using this table’s date data, mark it as a date table.

Keep in mind any built-in date tables that are already associated with this table will be removed. Visuals or DAX expressions
referring to them may break. Learn more

Mark as a date table

© o

Choose a date column

Date ~

Save Cancel

assets/ch04_figure_10_1729531736424014.png
D Date
T Month

Month name
T Quarter
T Year

Collapse ~

Add reted tablez
New messure

New colurmn

Refresh data

it query

Mansge relstionships
Increments! refresh

Manage aggregations

Select columns

Deletefrom modiel
Hide n report view
Mark as date table
Remve from diagram
Ui all

Collapse il

Expand al

{ 2 Mark as date table.

assets/ch04_figure_13_1729531736424078.png
@ Name

ﬁ Home table

X

Online Sales Qty $% Format | Whole number b =] Data category | Uncategorized v
Fact Online Sales v $ v % 9 4% 0 :
Structure Formatting Properties

1 Online Sales Qty = SUM('Fact Online Sales'[SalesQuantity])

assets/ch04_figure_12_1729531736424062.png
(=) Fact Online Sales

Currencykey
Customerkey
Datekey

% T DiscountAmount

3 DiscountQuantity
Productiey
T ReturnAmount

R —

Collapse ~

YIIIII I YT

(8] Fact sales Quota

Currencykey
Datekey
Productiey
Scensriokey
Storekey

T TotalGrossarginQuota

T TotalSalesAmountQuota.
3 TotalSalesOuantinGunts
Collapse ~

(=) Fact store sales

T Channeey
Cumencykey
Datekey

T DiscountQuant

* ity

Productiey
T Promotionkey
T Saleskey

T SalesQuantity

Collapse ~

T ProductCategorykey

Scenariokey
UpdateDate

Collapse ~

assets/ch03_figure_1_1729531721577415.png
Plan

B (k

Get Data

Calculate

Visualize

Publish

Manage

DejaVuSans-Bold.otf

assets/ch03_figure_2_1729531721577449.png
Publish Get data

Visualize Transform

Calculate Model

DejaVuSerif.otf

assets/ch03_figure_3_1729531721577468.png
A Power Query Editor

Home Transform Add column

0ae|la
Data Schema Scrpt Diagram| Query
vew- view v view |settings
Queries [18] <

4] Parameters ©

Servertiame (katwgScaphefe.

ery- kist

Rongestafe /172022, 12000

5 rongetra 4172023, 120000
OimOmesiart (1712027

Dimbateend (12/31/2022)
+ B Dimension Tabls
R oim curency
B oim Customer
R omoste
BT oimProdut
R oim scenario
Eomsre
| [oim store-ctve Us stores
4 [Foct Tables
R Fac xchange ate
R Factonine ks
] oct cre saes
R Fact s ot

BB vessures

m

“

Columne:9 Rows: 99+

View

=2

Goto
column

Help

Aviays llow

[atabasehiame

| ¥ hamoved sther column

125 Sren (=13 Gogratyes (=] 2 S Mansgr = St tame
5

.

B

e

5 Measures
av|[1 e
2
3
a
5
e
1
2
3
4
s
6
7
s
a
10
n

2

J

Advanced
adtor

I@mm Store
(s} B
Soure varshop i
@2
et
[T —r—
jem 25
o A mne
L1 3 poct onine stes
: V1B E - 57 e
il W
20 ot e
VI B Foct Store sotes:
.
Source = #in stare",

"Fltered raus”
#"Ramoved other column:
Phone”, "city Nane",

Table.selectRons(Source, each ([Status]

State Province Name”, "Address"})

=k

Renamed Col

©

[] i 2n Code =] . tore Phone] . iy Name =] . Sse rvine Name[] Addes

I (T O Stre-Actve Us Stres)

s v
E
@1

Remoned atrr <.

Diagram View

and ([Region Country Nane
able. SelectColusms(#"Filtered rows”, {*Storakey”

‘Seographykey”, "Store Manager”, "

Ser

nited States®) and ([Store Type]
tore Hane”, "2ip Code”,

pt View

(M code)

- T T T
o =Tt Qr acner
= e r—— = A

9% + A

+r0

store™)),

Store

Keanen &

Surmy
Snaqus
aw0ss
Versdile
Gand
[
Bebu
shappin
Appisto
st

o X
©
~

Query settings >

~ Properties

Name

Dim Store.Active US Stores
~ Applied steps
@ Source &

|
Vriteedions B |
X B Removed other co.. & |

Query
Settings:

Properties &

Daey 2= E @O

UbuntuMono-Bold.otf

assets/ch03_figure_4_1729531721577485.png
W 0 N O A W

el I [[
w N |= o

Date F| 123 Year F‘ 123 Quarter

e Valid 100 Ql Sort ascending
(Error 0 2] sort descending

©® Empty

730 distinct, 73.
1/1/2(
1/2/2(
1/3/2(
1/4/2(
1/5/2(
1/6/2(
1/7/2(
1/8/2(
1/9/2(

1/10/2(
1/11/2(
1/12/2(
1/13/2(

Remove empty

v Date filters

F‘ 123 Month Number F‘ ABC M

£ Search

(<]

(Select all)

(<]

1/1/2021

(<]

1/2/2021

(<]

1/3/2021

(<]

1/4/2021

(<]

1/5/2021

(<]

1/6/2021

A\ List may be incomplete.

a
0

assets/ch04_figure_14_1729531736424094.png
1 Online Cell phone Sales Qty =

2 CALCULATE(

3 SUM('Fact Online Sales'[SalesQuantity]),

4 'Dim Product'[Category Name] = "Cell phones"
5)

assets/ch04_figure_16_1729531736424126.png
Date
a

Online Sales Qty MTD Online Sales Qty

Monday, August 01, 2022
Tuesday, August 02, 2022
Wednesday, August 03, 2022
Thursday, August 04, 2022
Friday, August 05, 2022
Saturday, August 06, 2022
Sunday, August 07, 2022
Monday, August 08, 2022
Tuesday, August 09, 2022
Wednesday, August 10, 2022
Thursday, August 11, 2022
Friday, August 12, 2022
Saturday, August 13, 2022
Sunday, August 14, 2022
Monday, August 15, 2022
Tuesday, August 16, 2022
Wednesday, August 17, 2022
Thursday, August 18, 2022
Friday, August 19, 2022
Saturday, August 20, 2022
Sunday, August 21, 2022
Monday, August 22, 2022
Tuesday, August 23, 2022
Wednesday, August 24, 2022
Thursday, August 25, 2022
Friday, August 26, 2022
Saturday, August 27, 2022
Sunday, August 28, 2022
Monday, August 29, 2022
Tuesday, August 30, 2022
Wednesday, August 31, 2022
Thursday, September 01, 2022
Friday, September 02, 2022

990
1,971
3,409
4,573
5,543
6,258
7,147
8,595
9,888
0,533
1,468
2,660
3,349
4,278
5384
6,424
7,594
8,682
9,501
20,547
21,355
22,702
23,508
24,945
25,950
26,844
28,053
28,653
29,731
31,045
32,240

1,042

2,083

990
981

1,438
1,164
970
715
889
448
293
645
935
1192
689
929
,106
,040
,170
,088
819
,046
808
347
806
437
,005
894
209
600
078
314
,195
,042
,041

assets/ch04_figure_15_1729531736424109.png
N

w
<}
=

Online Sales Qty MTng Online Sales Qty
2 3
R =

0K
Jan 2022

Qﬁ]] Sales Qty MTD and Online Sales Qty by Date

Online Sales Qty MTD @Online Sales Qty

Mar 2022

May 2022

Jul 2022

date

Sep 2022

14

Saturday, August 27, 2022

® Online Sales Qty MTD 28,053
L] Online Sales Qty 1,209

Nov 2022

©:

assets/ch04_figure_18_1729531736424156.png
1 Online Sales Qty MTD 2 =

2 TOTALMTD(

3 SUM('Fact Online Sales'[SalesQuantity]),
4 'Dim Date'[Date]

5

assets/ch04_figure_17_1729531736424141.png
1 Online Sales Qty MTD =

2 CALCULATE(

3 SUM('Fact Online Sales'[SalesQuantity]),
4 DATESMTD('Dim Date'[Date])

5

assets/ch04_figure_20_1729531736424187.png
File Home Insert Modeling View Optimize Help External tools Format Data / Drill

Gridlines ? ﬁ B Data] Bookmarks %?:' Sync slicers
P Aa P I - d B Build TN sel
v . Snap to gri . ui election
hlusnal ol (Dukuatnll| [Industal Page Mobile prognd (fiters| pane LOD Cx :
view v layout Lock objects manager~ | ({7 Format || [Performance analyzer
Themes Scale to fit Mobile Page options Show panes : e
Year
(1} &« Performance analyzer —» O
-- 2018 2019 2020 2021 2022 g\ () Refresh visuals ~ ® Stop E[E
-
- R ¥
5 a & Clear [2 Export
O(ﬁ]] e Sales Qty MTD and Online Sales Qty by Date o o Eé
m o - - Name Duration (ms) 1
i @ Online Sal ty MTD @Online Sal it -
o) 4 . Online Sales Qty nline Sales Qty ® Recording started (8/6/2024gk00:56 PM) & +
O Refreshed visual -
-] Online Sales Qty MTD, Online Sales Qty by... 588
DAX query 30
Visual display 339
Other 218
=
S K 1) Copy query
il
2 o) Run in DAX Query View
[
@ +] Year 752
£ 7] Table 1395
2 [2 Changed the model -
Og 20K Q #] Online Sales Qty MTD and Online Sales Qty by... 1513660
=
= 5 Year 1514112
>
<] Table 1514844
]
©
[
o
=
E 10K
<)
0K
Jan 2022 Mar 2022 May 2022 Jul 2022 Sep 2022 Nov 2022
Date

assets/ch04_figure_19_1729531736424173.png
1 Online Sales Qty MTD 3 =

2 TOTALMTD(

3 [Online Sales Qty],
4 'Dim Date'[Date]

5

assets/ch04_figure_22_1729531736424220.png
MTD

ui ph w N R

TOTALMTD(
SELECTEDMEASURE(),
'Dim Date'[Date]

Properties

v General

Name

MTD

v Formatting

Dynamic format string

@ ves

Format String

SELECTEDMEASUREFORMATSTRING()

» Data

/0 Edit

Tables Model

0 View and organize all of the items
in your semantic model. Learn how

&

Q_ Search

X

V' Semantic model
Vv Calculation groups (1)

\/[53] Order Date Intelligence

[Calculation

\ Calculation items (9)

D
)

Selected Item
MTD

YTD

Prev Month

Prev Month Diff
Prev Month % Diff
Prev Year

Prev Year Diff

Ve e e ey e e Ml
06 & & & & & & &

Prev Year % Diff

Ir
L

assets/ch04_figure_21_1729531736424201.png
File Home Help External tools

?Z Uncomment

"= Comment

£ Find

0 DAX queries will be saved to your model They won't be visible when published in the Power Bl service. Learn more (7

|_e" v % Format query g)bc Replace [abl] Command palette

1 DEFINE

2 VAR __DSeFilterTable =

3 TREATAS({2022}, 'Dim Date'[Year])

w4

5 EVALUATE

6 SUMMARIZECOLUMNS (

7 'Dim Date'[Date],

8 _ DseFilterTable,

9 "Online_Sales_Qty_MTD", 'Fact Online Sales'[Online Sales Qty MTD],
10 "Online_Sales_Qty", 'Fact Online Sales'[Online Sales Qty]
11)

12
13 VAR __DseIntersectionCount = CALCULATE(COUNTROWS(__DS@Core))
14
15 VAR __DseBodyBinnedSample =
16 SAMPLEAXISWITHLOCALMINMAX(
1 | scan
Results Result 1 of 1 v Copy Vv
Dim Date[Date] [Online_Sales_Qty] [Online_Sales_Qty_MTD]
1 1/1/2022 12:00:00 AM 1610 1610;
2 1/2/2022 12:00:00 AM 1391 3001
3 1/3/2022 12:00:00 AM 581 3582
4 1/4/2022 12:00:00 AM 774 4356
5 1/5/2022 12:00:00 AM 1159 5515
6 1/6/2022 12:00:00 AM 807 6322
7 1/7/2022 12:00:00 AM 905 7227
8 1/8/2022 12:00:00 AM 1036 8263
v
Ll >
‘ Query 1 @ Query 2 I I

° Success (323.6 ms) Query2of2 Result1of 1 3 columns, 365 rows

o Copilot (preview)

X«

(7 Share feedback g
o

by

»

-————fF—+ 100%

assets/ch04_figure_23_1729531736424244.png
1
2
3
4
5
6
7
8
9

Prev Month % Diff =
VAR _ThisValue

| |sELECTEDMEASURE()

VAR _PrevMo
CALCULATE(

SELECTEDMEASURE (),
PREVIOUSMONTH('Dim Date'[Date])

)
VAR _PrevMoDiff

VAR _PrevMoPctDiff
RETURN
_PrevMoPctDiff

_ThisValue - _PrevMo
DIVIDE(_PrevMoDiff, _PrevMo)

Properties

v General

Name

Prev Month % Diff

v Formatting

Dynamic format string

@ ves

Format String

"0.0%"

»

/0 Edit

Data

Tables Model

0 View and organize all of the items
in your semantic model. Learn how

&

Q_ Search

V' Semantic model
Vv Calculation groups (1)

\/[53] Order Date Intelligence

[Calculation

\ Calculation items (9)
Selected Item
MTD

YTD

Prev Month

Prev Month Diff
Prev Month % Diff
Prev Year

Prev Year Diff

0 e oo Bl e o e
0O & & & & & & &

Prev Year % Diff

Ir
L

