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Preface



Distributed systems come in many shapes and sizes, and are increasingly a major part of how we build and deliver software. But distributed systems create challenges. On the face of it, they appear to offer the ability to create more stable software. No longer should a single machine dying take our system off line, right? Unfortunately the world is not that simple.








Who This Book Is For


This book is primarily for anyone in a technical role who is helping build a distributed system. Developers, architects, testers, operations folks and SREs alike will find a lot here that will help them in their day job.


For the non-technical folks reading, there is still a lot in here for you. There is a lot of coverage of cultural and social aspects and how they can positively impact the resiliency of your distributed systems, and the second half of the book is focused on these aspects.


Whether you are struggling with achieving acceptable resiliency for an existing system, hoping to avoid making too many mistakes as you start your own journey into microservices, or looking to understand what resilience even is, then this is the book for you.










What You Will Learn


This book explains how you can deliver resilient software whilst building distributed systems. We’ll look at the technical aspects, examining topics like timeouts, consensus algorithms and yes, even CAP theorem1. But we’ll also explore the non-technical side as well, looking at how teams work together, organizational culture, and how humankind’s ability to make mistakes shouldn’t automatically result in system outages. Behind it all, we’ll be looking at the systems we create in a broader context, seeing how it requires understanding a multitude of factors to help achieve resiliency.


We’ll look broadly at what resilience is - bringing together learnings from the world of human factors and system safety with established stability patterns to help you pick the right path through an ever more distributed future.


By the end of this book you will understand:



	
The importance of resilience in distributed systems



	
The fundamentals of system stability, and architectural patterns that can be used



	
The human elements that need to be considered






And you will be able to:



	
Put ideas into practice that will make your systems more resilient



	
Implement improved observability into the resiliency of your system



	
Handle failure much better, should the worst happen














Navigating The Book


Please note that this book is in early access form, so the exact chapter breakdown and what is in each chapter is subject to change prior to the book being finalized.










Part 1: Technical


The first half of this book focuses on the technical aspects of making systems more resilient.












Chapter 1: What Is Resilience?


Resiliency can mean different things to different people, so it’s important to start with a shared understanding. This chapter looks at resiliency from a number of angles, exploring concepts from the wider resilience engineering space, and also introducing the concept of sociotechnical systems.














Chapter 2: Fundamental Concepts Of Resilience (To follow)















Chapter 3: Timeouts


Networks and computers can be frustrating, and they can stop working (or go slow) at the worst time. Dealing with this fundamental truth starts with knowing when to give up - in this chapter you’ll learn all about timeouts, including how to set them correctly and the importance of randomness.














Chapter 4: Retries & Idempotency


If at first you don’t succeed, try again! Or maybe, give up? When computers or network calls start failing, trying again often makes sense, and that is the thrust of this chapter. However, trying again means we have to deal with what happens if we end up doing the same work more than once - so I’ll also take you on a deep dive into the topic of idempotency.














Chapter 5: Rate Limiting


This chapter explores how to reduce the amount of work your system is doing to keep it stable. It covers back pressure, load shedding, circuit breakers and more.














Chapter 6: Queueing (to follow)


Queueing can be an effective way to absorb work to be processed later, rather than overwhelming a system with large spikes of traffic. This chapter looks at how queues can be implemented to deal with larger loads, what happens when your queue fills up, the role of message brokers, and also how to balance your queue processing with Little’s Law














Chapter 7: Scaling For Resilience (to follow)


Often the answer to keeping a system stable when load is increasing is to make the system bigger. In this chapter, you’ll see how throwing computing resources at the problem can often help - but also see where it breaks down. This chapter will look at different forms of scaling, including dynamic autoscaling, and gives some concrete tips for when just getting a bigger box is the right answer.














Chapter 8: Observing Resilience (to follow)


Wanting your system to be resilient is one thing, knowing it’s resilient is something else. In this chapter I’ll take you through how to collect the information you need to ensure you’re meeting your targets. I’ll also cover how to define Service Level Objectives (SLOs), explore team vs system targets, and look at why error budgets can be useful.














Part 2: People, Process, and Culture


When considering the resiliency of a distributed system, we have to go beyond the technical and explore the behaviors, culture and processes of the people building and maintaining the system itself.












Chapter 9: The Sociotechnical System (to follow)


The concept of the sociotechnical system has been around for decades, but it has only been somewhat recently that this school of thinking has come to the fore in digital system resiliency. In this chapter, I’ll take you through the implications for approaching resiliency through a sociotechnical lens, along with some helpful models to make sure you’re taking an holistic view to resiliency.














Chapter 10: Incident Management (to follow)


When things go wrong, what do you do? In this chapter I’ll explore how to send good alerts, and how these can then be handled effectively. You’ll see how to avoid operator burnout, how to manage support rotas, and also the impact of sending too many alerts.














Chapter 11: Constant Learning (to follow)


To keep a system resilient, you need to continually improve. At the most basic level, this means making sure that you learn as much as possible in the wake of incidents. So in this chapter, I start by taking you through the importance of post mortems, and give you tips on how to make sure you translate this into action. Learning goes beyond this however, so you’ll see how nurturing the right culture in your organization is vital, as well as how activities like game days can be a useful part of building a learning organization.







1 Don’t worry, it’s not actually as complex as you might think.









Chapter 1. What Is Resiliency?


A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the first chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

			


I get knocked down

But I get up again

You are never going to keep me down

Tubthumping, Chumbawamba




This chapter covers the fundamental concepts of resiliency. I’ll define what resiliency is, and discuss the challenges of resiliency in the context of distributed systems. I will also look beyond just the technology side of things to show how behaviors, culture, organization and societal context can impact our ability to deliver resiliency.








What Is Resilience?


Resilience is the ability of a system to withstand problems, recover from issues that impact the system, and continue to evolve in order to maintain resilience even as the wider context of the system changes around it. A resilient system is one which is predictable, which can be relied upon - and, if needed, can get back up again if it does get knocked down.


Resilience is a desirable characteristic. When applied to a person, a mechanism, or a digital system, when did you ever think “I don’t want this to be resilient”?


As you’ll see throughout this chapter, you can approach the concept of resiliency from a number of different angles. Fundamentally, this book is about helping you to deliver systems. You can’t just look at software, or hardware in isolation - you need to look at the system as a whole. To get you started in terms of thinking more broadly about systems, let’s take a look at resiliency from the twin viewpoints of technology and society.










Technology


From a technology viewpoint, you can look at resiliency in terms of making sure that our program doesn’t crash. Ensuring that it can handle errors gracefully, and not fall over in a blaze of glory (and stack traces) leaving your users at best bewildered, and at worst in danger.
It can also encompass our hardware. Can you tolerate a single machine unexpectedly powering off? Or should you invest in servers with redundant power supplies and networking to ensure they are less likely to fail?


With the advent of the cloud, things have shifted. Aspects around managing individual machines may no longer be under your direct control, instead you’ll have to consider which of a myriad of cloud products will deliver what you need.


Later in this chapter I’ll show you the specific challenges that distributed systems introduce, which cause us to take into considerations concepts like timeouts and retries and more, topics which I will spend a lot of time on in this book. Before that though you have to expand our horizons somewhat. What about the people who actually build, operate and use the systems you create?












Social


As a software developer, it can be tempting to try and just focus on the act of coding, to the exclusion of other “noise”. Dedicating our focus to algorithms, data structures, network protocols or other technical implementation details takes focus, commitment, and time. Unfortunately, it takes only a cursory examination of how things fail to realize that this is not only a naive view, it can even be dangerous.


For example, an environment where the act of raising safety concerns is discouraged or even punished will lead to issues that could have been caught before impacting users. The country or industry sector you operate in might require that systems are built in certain ways to comply with local legislation or compliance.


Different types of users will have different expectations about the systems they use. The impact of failures can also be starkly different - an information display in a shopping mall crashing and serving up a stack trace isn’t great, but it’s not as bad as a self-driving car accelerating when it should brake.


This of course also deals very neatly with the refrain that you should “keep politics out of technology”. Once you understand that our systems are influenced by the people who build and use the software, the culture they operate in, and the wider societal context, you see that this statement doesn’t really make much sense. For example I worked with a Nordic government agency who were basing their technology on Kubernetes hosted on Azure. They were avoiding the use of Azure-specific technologies, which was creating some challenges as they ended up having to do more work themselves. But they were aware that the political winds could change, and that an earlier decision to allow them to use a public cloud vendor could be reversed by a change in government policy.


It can be difficult to get a grasp on what societal aspects are in play when considering resiliency, especially if you have spent most of your career focusing on technical concerns. Later in this chapter, I will introduce a couple of models that can help provide some structure around these ideas and help you understand where you need to focus your time if you are to deliver truly resilient systems.












Why Resilience Matters


The majority of people in the world have their own computer, in the form of a smart phone1, and many people may have more than that in the form of smart watches, smart TVs, tablets and laptops. As a result, we are surrounded with software-based systems, and they permeate both our professional and private lives in ways it would have been difficult to predict in the previous millennium.


Software is such a key part of the way most of us live our lives, and so pivotal to the work that you do. During the COVID pandemic, the resulting global lockdowns meant that there was a renewed focus on digital services as they became even more vital.


As a result the impact of software failures is all the more keenly felt. Towards the end of 2023, HSBC’s online banking system in the UK was offline for over 24 hours2, leaving tens of thousands of people unable to pay bills. Also in 2023, both content delivery network Cloudflare and Workday3 had major service interruptions related to data center issues, impacting thousands of companies around the world. More recently in 2024, Macdonalds suffered a major outage4 impacting multiple countries around the world, stopping people from being able to place orders.


During the past decade, the systems we are creating have become more and more distributed. As a result of the shift from mainframes to modern server infrastructure, the solutions delivered are increasingly running on ever-more complex computer topologies, creating new challenges.


Given that the genie can’t be put back into the bottle, and that digital, software-based systems are here to stay, the resiliency of these systems has never been more key.










What Is A Distributed System?


The growing importance of software in our lives has coincided with the increasing distribution and scale of the systems you create. As you will see throughout this book, a distributed system can help us improve the resiliency of our systems, but at the same time introduces new sources of complexity that need to be taken into consideration. Before I get into that however, let’s look at what a distributed system actually is.


A distributed system is one where two or more computers5 talk to each other over a network. Distributed systems come in many shapes and sizes. Even a simple web application as shown in Figure 1-1. The code running the web backend runs on one computer, the database on a different computer, and the browsers viewing the web frontend on yet another computer.



[image: A picture showing the architecture of a simple web application, with one computer running the code for the backend, with an arrow linking it to a database which runs on a second computer. The backend code sends the user interface to a browser, which is running on a third computer.]
Figure 1-1. A simple web application distributed across three machines




But distributed systems can get more complex than that. Consider a microservice architecture, as shown in Figure 1-2. The arrows between the microservices indicate logical dependencies, which represent some form of network-based communication6. An instance of a microservice would live on its own machine. Now you have multiple different services, each of which run on different computers, communicating with each other over networks. And this simplified diagram omits the fact that each of these microservices may well be talking to its own database, which will likely be on yet another machine, requiring another network hop. Oh, and each of these microservices might also be exposing their own frontends as well.



[image: 5 hexagons are shown each representing a different microservices, with arrows linking various microservices together. The microservices are named Returns, Shipping, Order, Inventory and Customer]
Figure 1-2. An example microservice architecture




To add further complexity, the diagrams shown so far are simplifications of what you might actually end up running in production. Many of the things shown on the previous two diagrams will often have multiple copies to provide redundancy or improve the ability to handle load, which can further complicate things.

Warning

In general, the more computers you have talking to each other in a distributed system, the more complicated things get.












How Distributed Systems Can Fail (Us)


But really, this is all a rather dry description of what a distributed system is. It doesn’t really communicate what it’s like to own and operate. As a result, I turn yet again to my favorite definition of what a distributed system is:


A distributed system is one in which the failure of a computer you didn’t even know existed can render your own computer unusable.

Leslie Lamport




This quote gets to the heart of the interesting ways in which distributed systems can fail. I’ve had machines vanish on me (in one case caused by the wrong servers being packed up and shipped from the east coast of the US to the west). Network cables can be served, by accident or on purpose7. DNS misconfiguration can stop whole swathes of websites from working, such as the recent outage of the .ru top level domain8.


Distributed systems may well be a necessity, but their nature as an interconnected system of independent machines often just exposes them to more sources of failure.


Essentially though, the vast array of failure modes that you can encounter with a distributed system - and the above list just scratches the surface - come down to two fundamental rules that apply to any distributed system.












Two Golden Rules Of Distributed Systems


I’ve found that there really are two fundamental rules that any distributed system is governed by. They are:


	
You cannot beam information instantaneously between two points



	
Sometimes you can’t reach the thing you want to talk to







These rules will influence so much of how you think about building more resilient systems, and you’ll encounter them in different forms throughout the book. Before that however, let’s briefly explore these two rules to better understand the problems they create.












You Cannot Beam Information Instantaneously Between Two Points


It takes time for information to move around a distributed system. Typically, as a developer, you’ll use some sort of abstraction to transmit this information. Perhaps you’re using an HTTP client library, an RPC framework or maybe making use of a message broker. Abstractions in computing are incredibly useful - they allow us to hide detail and focus our minds at a higher level of abstraction. But by their nature abstractions hide things, so you can end up forgetting what is happening behind the scenes.


When you send a piece of data from a program on one computer to another, a lot of things need to happen. The data to be sent needs to be converted into a form that can be transmitted, then it has to be broken down into a series of packets which are then sent to the destination. When the data arrives, the receiving computer has to reassemble the packets, then convert it into a format which the program on the receiving computer can understand.


All of this takes time. How long it takes can depend on a multitude of factors - the type of network being used, the distance between machines, the size of payload being sent, the speed of the computers at each end of this interaction. You may have the ability to change some of these factors, but likely not all.


It’s possible that you might see the data you are sending arrive at its destination so quickly as to appear to be instantaneous. This is often the case for very small amounts of data. However, instant transmission of data between two computers is not possible9.


What problems does this cause? Well, it can lead to you seeing inconsistent state. You might send the same data to two different computers at the same time, but it doesn’t mean that the two destinations will receive this data at the same time. In the worst cases, this inconsistency can be surfaced to the end user causing understandable confusion - but if you are aware of this there may be ways for you to resolve this inconsistency when it occurs.


In the context of distributed system design in general, the fact that you have to account for the time taken for data to move around your system will cause you a number of issues. When looked at specifically in the context of resiliency however, it’s the second of our two golden rules that gives us most headaches.














Sometimes You Can’t Reach The Thing You Want To Talk To


As software developers you are increasingly working at higher levels of abstraction. You deploy applications to the cloud, configure your infrastructure using code, and often delegate work to dedicated cloud services to handle the detail of specific tasks for you. As a result it can be all too easy to forget that under all of these layers of abstractions, you have real physical computers, network cables, switches, power supplies, cooling and everything else. Not to mention of course the fact that humans play a critical role in delivering this infrastructure, and you can’t expect them to be infallible.


Our computers are limited by the physical properties of the universe. That’s why your data can’t magically be transmitted instantaneously between two points. But this also means that you have to accept a host of scenarios in which computers you are trying to talk to can’t be reached.


First, the commonplace issues. You want to send data to a program on a computer, but that program has crashed and is not responding. Or perhaps the computer you are trying to reach has suffered some sort of hardware failure. Now, you might be able to reduce the chances of these things happening, but you can’t reduce that chance to zero. I’ll talk more about this in <<??>>.


Sometimes, the computer you want to talk to is there, but you just can’t reach it. Perhaps someone has unplugged the wrong network cable. Or, in one real-world scenario that happened to me, perhaps rabbits have made their home in the cable ducting between buildings, and developed a taste for network cables. Are these scenarios under your control? You might have luck in reducing the incidence of network cables being accidentally unplugged, but good luck controlling rabbits…​


But what about issues that might be even less under your control? What happens if a leak in your data center takes out the cooling systems, meaning you have to shut down a number of racks to avoid overheating? Or maybe someone drops an anchor out at sea and accidentally severs a major subsea network connection10, temporarily limiting access to one of your data centers?


The people who build the hardware you use and operate the data centers your code runs in will do their best to reduce the chances of the failures I’ve outlined above happening. When they do happen hopefully they’ll have mechanisms in place so that these problems are hidden from you. But this cannot be guaranteed.


Sometimes, the thing you want to talk to isn’t there. This is a fact of life, and a key part of building a resilient distributed system is recognizing this fact and developing strategies to handle this problem when it occurs.


So, I’ve explored what a distributed system is, and introduced the two golden rules. Now let’s expand things somewhat, and look at the most critical part of our system - the components which build, operate and use the system itself - humans.














The Human Factor


In 1979, there was a partial meltdown of a nuclear reactor at Three Mile Island in Pennsylvania, USA. One of the contributing factors to the incident was that alarms coming from the systems were confusing, resulting in the human operators not taking action which could have prevented the issue from escalating.


In 1986, a failure in the solid rocket boosters of the Challenger space shuttle caused the craft to fail shortly after launch, killing all 7 crew. It was later determined that the warning signs were there for all to see. Previous launches of the shuttle had shown damage to the O-ring system, something that wasn’t supposed to happen. Despite it being clear that no damage to this component was acceptable, launches continued. Nothing bad had happened when this damage was seen before, so surely the launches could continue?


In both cases, humans were critical to these incidents playing out the way they did. In the case of Three Mile Island the alarm systems left the operators confused and unable to carry out the right mitigating behavior. In the case of Challenger, what occurred became known as “Normalization Of Deviance”11. Despite the system behaving in a way which deviated from the norm, because nothing bad happened initially as humans we can easily be conditioned to ignore the deviance in the first place. The red light flashes, nothing exploded, so the light was ignored. Until it becomes too late.


I will look at both of these incidents again later in the book, but they both show first hand that when considering resiliency, to ignore humans’ involvement is naive at best and dangerous at worst.


The field of study that looks at how to build systems to make them both easier and safer to use is known as either Human Factors or Ergonomics. If you’ve heard the term ergonomics before, there is a good chance you’ve heard it in the context of office equipment, where the focus is in terms of the comfort and health of the office worker. This is part of ergonomics, but it covers much more than that.


Broadly speaking, the terms human factors and ergonomics can be used interchangeably - for the rest of the book I’ll talk about human factors.


So, for a system to achieve the levels of resilience you want, you have to understand how to address human factors not just to make working with these systems easier and more pleasurable, but to also work out how to reduce the likelihood and impact of human error.


In fact, you shouldn’t really think of humans as being separate to the system at all. When you think about our modern distributed systems, the human operators and users are just as much a part of the system as the computers are. In fact, seeing the humans and technology as two parts of the same system is critical.










The Sociotechnical System


Software created by and for a single individual is vanishingly rare. Even in the case where an individual is lauded as being “the creator” of a piece of important software, the reality is often very different. Take the example of the Linux kernel, initially created by Linus Torvalds in 1991. Whilst Linus wrote and released the first version, in less than a year contributions were being made from all over the world, with thousands involved now.


People build software for other people. They operate within a set of processes (formal or informal) using software and hardware, and the work they do is directly impacted by the culture they work in. You can take any complex system and make the same arguments - it’s not just the software industry. This applies equally to car manufacturing, extracting minerals, or constructing a building.


The term “Sociotechnical” was coined to describe any complex system where people and technology work together. In the software development industry we tend to view “technology” through the lens of software and hardware, but more broadly the term describes the structures and processes by which work is done.


When looking at our distributed systems as a sociotechnical system, you have to accept that interplay between the technical aspects and the societal aspects exists. They influence one another. If you are trying to understand why a system failed, or ensure that your system is made more resilient to avoid a future incident, it therefore becomes incumbent on you to look at both the social and technical elements.


Fundamentally, our software systems share a lot in common with other complex systems which humanity has been constructing for decades if not centuries
12.










The Hexagonal Model For Sociotechnical systems


A model I’ve found useful when trying to grasp the realities of the sociotechnical system breaks things down into a hexagonal model13 shown in Figure 1-3. Whilst this model is designed to help understand any generic sociotechnical system14, this book relates specifically to building and running a distributed system. Therefore I have interpreted the model through that lens.



[image: A model showing the 6 main concepts for a sociotechnical system (Processes, Infrastructure, Technology, People, Culture, and Goals) on the points of a hexagon, sitting within a circle showing the 3 sets of ecosystem influences (Stakeholders, Financial/Commercial Circumstances, Regulatory Frameworks)]
Figure 1-3. A hexagonal model for Sociotechnical Systems from Davis et al. (2014)




The hexagonal model breaks down the idea of a sociotechnical system into 6 discrete concepts:


	People

	
The people doing the work and using the software (developers and users).



	Culture

	
The social environment in which the work is done. For example some cultures might be more risk adverse than others, or might ignore the input from people in marginalized groups



	Goals

	
The incentives for the people creating, operating, and using the system



	Technology

	
The software being written and the supporting tools being used



	Infrastructure

	
Generically this relates to the physical infrastructure at play. This could extend to buildings and roads for example, but in this context will more likely cover computing hardware, networks, power generation etc.



	Processes

	
The mechanisms put in place which guide how the work is done - this could include your preferred style of software development, for example Scrum or Six Sigma.






People, culture and goals are the societal aspects, whereas technology, infrastructure and processes are on the technical side of things. All of this sits within a wider ecosystem of influences over which you will have limited to zero ability to control:


	Financial/Economic Circumstances

	
Your company could be flush from a cash injection from a new investor, or could be operating against the backdrop of a national recession. Or perhaps a global pandemic?



	Regulatory Frameworks

	
Rules and regulations that might apply to the industry you work in. For example adhering to the Payment Card Industry when handling credit cards, or regulations like General Data Protection Regulation (GDPR) for companies operating in the EU.



	Stakeholders

	
This would as a minimum include the people the system is being built for, but could include a wider range of interested parties.






A change to any one of these elements will have a knock-on impact elsewhere. For example, a culture where people are empowered to make local decisions might result in a proliferation of tools being used (technology). Targets which aim for low levels of bugs may result in the people building the software not wanting to report issues when they arise (goals).


I’ll explore this interplay throughout the book. For example I’ll look at culture in terms of the importance of establishing a blame-free environment to encourage information sharing, and how moving away from rigid processes can empower people to build more resilient systems. I will also take you on a deep dive into the technical side of things, looking at failure modes for our hardware (infrastructure), or stability patterns for our code to handle situations like timeouts or services being unreachable (technology).












The Four Concepts Of Resilience


So I’ve looked at a model to help us understand the broader nature of the systems you build. It’s not just about the hardware and software - it’s also about the people and environment in which you create and run our distributed systems.


When you look specifically at resiliency, you need to look beyond the obvious challenges that come to mind. Yes, it can be important to handle problems like a machine being unavailable, or a network being disconnected. But that is an overly narrow view around how to improve resilience.


Luckily, a model exists to help look at the broader aspects of resiliency. David Woods in his paper “Four concepts for resilience and the implications for the future of resilience engineering”15, outlined a model for resilience that focuses on four core concepts. Briefly, these concepts are:


	Robustness

	
The ability to absorb expected issues, such as handling a machine crashing



	Rebound

	
Recovering after a traumatic event



	Graceful Extensibility

	
How well you can handle the unexpected



	Sustained Adaptability

	
Continual learning and transformation






I will expand each of these concepts next, looking at how they might apply in the context of building and operating a distributed system.










Robustness


Robustness is the concept whereby you put mitigations in place to deal with expected problems. From the technical viewpoint, you have a whole host of issues that you might expect. A machine can fail, a network connection can timeout, a process might be unavailable. You can improve the robustness of your architecture in a number of ways to deal with these problems, such as automatically spinning up a replacement host, performing retries, or handling failure of a given microservice in a graceful manner.


Robustness goes beyond the technical though. It can apply to people. If you have a single person on call for your software, what happens if that person gets sick, or isn’t reachable at the time of an incident? Potential solutions to this problem might be to have a backup on-call person, or a well documented playbook.


Wood’s definition of robustness requires prior knowledge — you are putting measures into place to deal with things you expect to go wrong. This knowledge could be based on foresight — you could draw on your understanding of the computer system you are building, its supporting services, and your people to consider what might go wrong. But robustness can also come from hindsight—you may improve the robustness of your system after something you didn’t expect happens. Perhaps you never considered the fact that your global filesystem could become unavailable, or perhaps you underestimated the impact of your customer service representatives not being available outside working hours.


One of the challenges around improving the robustness of our system is that as you increase the robustness of our application, you introduce more complexity to our system which can be the source of new issues. Consider moving your microservice architecture to Kubernetes as you want it to make it easier to run your microservice workloads. You may have improved some aspects of the robustness of your application as a result, but you’ve also introduced new potential pain points such as the fact you’ll likely need more infrastructure to run Kubernetes itself, or that extensive training will likely be needed to understand how to manage and use it. As such, any attempt to improve the robustness of an application has to be considered, not just in terms of a simple cost/benefit analysis of the initial work being done, but also in terms of whether or not you are prepared for the more complex system you end up with.


A significant part of this book will be dedicated to putting into place various mitigations for the known issues that can occur with distributed systems.












Rebound


How well your system can recover — rebound — from disruption is a key part of building a resilient system. All too often I see people focusing their time and energy into trying to eliminate the possibility of an outage, only to be totally unprepared once an outage actually occurs. By all means do your best to protect against the bad things that you think might happen — improving your system’s robustness — but you also have to be honest and understand that as your system grows in scale and complexity, eliminating any potential problem becomes unsustainable.


You can improve our ability to rebound from an incident by putting processes into place in advance. For example:



	
Having backups in place to better recover in the aftermath of data loss (assuming your backups are tested of course!)



	
Write and maintain a playbook that you can run through in the wake of a system outage to help resolve known issues



	
Clearly define roles and responsibilities for what happens when an incident occurs, so everyone knows who the point person will be and how the incident response process will work






Trying to think clearly about how to handle an outage while the outage is going on is going to be problematic due to the inherent stress and chaos of the situation. Having an agreed plan of action in place in anticipation of this sort of problem occurring can help you better rebound.












Graceful Extensibility


No plan survives first contact with the enemy.

Helmuth von Moltke (heavily paraphrased)




With rebound and robustness, you are primarily dealing with the expected. You are putting mechanisms in place to deal with problems that you can foresee. But what happens when you are surprised? If you aren’t prepared for surprise, prepared for the fact that our expected view of the world might be wrong, you end up with a brittle system. As you approach the limits of what you expect our system to be able to handle, things fall apart. How many companies were ready for the implication of a global pandemic, and the lockdowns that followed?


Flatter organizations — where responsibility is distributed across the organization, rather than held centrally — will often be better prepared to deal with surprise. When the unexpected occurs, if people are restricted in what they have to do, if they have to adhere to a strict set of rules, their ability to deal with surprise will be critically curtailed.


Often, in a drive to optimize our system, you can as an unfortunate side effect increase the brittleness of our system. Take automation as an example. Automation is fantastic — it allows us to do more with the people you have, but it can also allow us to reduce the people you have, as more can be done with automation. This reduction in staff can be concerning, though. Automation can’t handle surprise — our ability to gracefully extend our system, to handle surprise, comes from having people in place with the right skills, experience, flexibility and responsibility, to handle these situations as they arise.












Sustained Adaptability


Sustained Adaptability speaks to the ability of the system to continually evolve and improve. Sustained adaptability requires us to not be complacent. As David Woods puts it in the aforementioned “Four concepts” paper:


“No matter how good we have done before, no matter how successful we’ve been, the future could be different, and we might not be well adapted. We might be precarious and fragile in the face of that new future.”

David Woods




That you haven’t yet suffered from a catastrophic outage doesn’t mean that it cannot happen. You need to challenge yourself to make sure that you are constantly adapting what you do as an organization to ensure future resiliency. Topics I’ll explore later in the book such as effective post-mortems and chaos engineering can be key tools in helping create a learning organization that can adapt as needed.


Sustained adaptability often requires a more holistic view of the system to see where changes need to be made. This is, paradoxically, where a drive towards smaller, autonomous teams with increased local, focused, responsibility can end up with you losing sight of the bigger picture. As I’ll explore in <<???>>, there is a balancing act between global and local optimization when it comes to organizational dynamics, and that balance isn’t static.


Creating a culture which prioritizes creating an environment where people can share information freely, without fear of retribution, is vital to encourage learning in the wake of an incident. Having the bandwidth to really examine these surprises, and extract the key learnings requires time, energy and people — all things that will reduce the resources available to you to deliver features in the short term. Deciding to embrace sustained adaptability is partly about finding the balancing point between short term delivery and longer term adaptability.


To work towards sustained adaptability means that you are looking to discover what you don’t know. This requires continuing investment, not one off transactional activities — the term “sustained” is vital here. It’s about making sustained adaptability a core part of your organizational strategy and culture.












How Resilient Do You Need To Be?


The reality is, that saying “I want my system to be resilient” is on the face of it both a perfectly sensible statement but also silly. Why do I say silly? Well, who would say that they don’t want their system to be resilient? Can you honestly, ever think of a situation like that? Where the lack of resiliency was desirable?


So really the question is likely not “Do you want resiliency?” but “How much resiliency do you want?”. Resiliency, as a quality attribute, is not binary.


Making your system more resilient comes at a cost. You might pay more for a better computer that has redundant power supplies. You may allow for more experienced people to be on call to react to a failure. You might invest to automate manual tasks to reduce the chance of human error. These might all be very sensible actions to take to improve the resiliency of your system, but they all cost.


That cost might be directly financial. A more expensive machine, a larger bill with your cloud provider. It could also be an opportunity cost - an engineer focusing on improving the resiliency of your system is one who isn’t delivering new features. Occasionally the cost can even be felt directly in terms of tradeoffs around usability - for example you might make a decision to require users in the field to use corporate mobile devices that might not be as nice to use as their own phones, but have capabilities that improve the resiliency of your system.


How much resiliency you want (or need) is therefore always a tradeoff. It’s a tradeoff about the cost to improve resiliency vs the likelihood and impact of an incident. Losing a customer’s order for an online shop isn’t great, but a medical device overdosing a patient is much worse16.


So the need for some degree of resiliency is understandable, but deciding how much needs careful thought. I’ll share this in more detail in [Link to Come].










Summary


I covered a lot of ground in this chapter, content which I will expand throughout the rest of the book. You looked at the nature of a distributed system and learned the two golden rules - that you can’t beam information instantaneously between two points, and sometimes the thing you want to talk to isn’t there.


You were introduced to Wood’s four concepts for resiliency, namely:


	Robustness

	
The ability to absorb expected issues, such as handling a machine crashing



	Rebound

	
Recovering after a traumatic event



	Graceful Extensibility

	
How well you can handle the unexpected



	Sustained Adaptability

	
Continual learning and transformation






You also saw how the distributed systems you create are by their nature a sociotechnical one. You need an appreciation for the technology used to build the system, together with understanding the people who created it. I also showed how all of this is influenced from outside by a variety of factors. As you’ve started to see already, understanding our systems in this broader context is key to unlocking ways to improve resiliency.


In our next chapter, you’ll start our journey into resiliency by focusing initially on the technical side of our sociotechnical system, when I introduce some fundamental technical concepts for system stability.



1 Around 4.6 billion as of 2023 according to Statista, “Number of smartphone users worldwide from 2013 to 2028”, https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world.
2 https://www.bbc.co.uk/news/technology-67514068
3 https://www.thousandeyes.com/blog/internet-report-pulse-update-workday-cloudflare-outages
4 https://www.bloomberg.com/news/articles/2024-03-15/mcdonald-s-system-outage-affects-stores-across-asia-and-australia
5 The concept of a “computer” can get a bit fuzzy - I will look at things like containers and virutal machines later in the book
6 Often microservice interactions are done at a level of abstraction where the network calls might be hidden from the developer - but the network calls are still there.
7 A recent example of subsea cables being damaged resulted in multiple countries in central and west africa losing the internet: https://www.theguardian.com/technology/2024/mar/14/much-of-west-and-central-africa-without-internet-after-undersea-cable-failures
8 In January 2024, the top level .ru domain suffered an outage, apparently due to a DNSSEC configuration issue https://therecord.media/russia-top-level-domain-internet-outage-dnssec. It’s always DNS
9 I’m aware that quantum entanglement appears to achieve this. However at the time of writing we have yet to leverage quantum entanglement as a workable networking protocol
10 This happens a surprising amount
11 Vaughan, Diane, The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA (Chicago: University of Chicago Press, 1996).
12 Arguably much longer than that - you could see the construction of the pyramids as a sociotechnical system
13 Readers of my previous books will know I love a hexagon
14 Davis, M. C., Challenger, R., Jayewardene, D. N. W., & Clegg, C. W. (2014). Advancing socio-technical systems thinking: A call for bravery. Applied Ergonomics, 45(2), 171–180. doi:10.1016/j.apergo.2013.02.009
15 Woods, David, “Four concepts for resilience and the implications for the future of resilience engineering.”  141. 10.1016/j.ress.2015.03.018
16 I will explore a real world example of this in [Link to Come] when I share the example of the Therac-25 x-ray machine.









Chapter 2. Timeouts


A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the third chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

			


In Chapter 1, I introduced the two golden rules of computing, namely:


	
You cannot beam information instantaneously between two points



	
Sometimes you can’t reach the thing you want to talk to







In this chapter, I’m going to address these points head on, looking at things primarily from the viewpoint of clients talking to remote services. Specifically, I’m going to look at what happens when a server takes too long to respond, and how timeouts can help. Along the way I’ll be sharing a real-world example of a system outage that I was involved with, and the role that timeouts played.


A Brief Note

This chapter will focus on scenarios where one computer is calling another. The scenarios outlined here will typically be outlined in terms of the types of communication that are common in a microservice architecture, but fundamentally these principles apply to any inter-process communication.


Throughout, I will make heavy use of the term “request”. This isn’t to mean that timeouts are only useful in the context of request-response based communication patterns. Here I am talking more generically about a client sending something to a server, and then requiring an acknowledgement. These concepts would apply equally when sending a message to a message broker and (hopefully) getting a response.










The Problem With Time


When one computer attempts to talk to another, and the other computer just doesn’t respond, how you deal with the situation is somewhat straightforward. In such a situation you either give up, or else try again (and I’ll get to retries in Chapter 3). Things become a bit more complex when a client manages to establish a connection with the service it wanted to talk to, but then things take way too long.


Sometimes the issue is that the service you are talking to is overloaded, and can’t respond quickly enough. Sometimes the issue is getting through to the service in the first place - the network might be highly congested, a proxy might be having an issue, or perhaps a network configuration change has resulted in all your network packets being sent via Luxembourg despite all your computers being in a data center in London
1.


Typically, you would apply a timeout in a situation like this. A timeout is a period of time that you are prepared to wait for something to happen. Once that timeout is reached, you terminate the call - at which point you need to decide if you try again or give up entirely. But do you need to timeout at all?










Why Timeout at all?


When sending a request to another server, why not just wait until you get the expected response?


Firstly, waiting for something that may never happen is unlikely to be desired system behavior. It’s better for an application to error than just hang in an unresponsive state. Secondly, sometimes just timing out and retrying the call might get the response much faster - consider a situation where the initial request hit a server which was running very slow due to load issues. If you timed out and retried the request it might be routed to a different server (perhaps via a load balancer) that isn’t suffering from these problems.


Finally, waiting forever (or too long for that matter), will mean you’ll hold on to more computing resources which in turn can put pressure on the system. This can result in a bad situation getting worse.


When one computer opens a network connection to another computer, various resources are tied up handling the connection at both ends. As the number of concurrent requests increase, the amount of load on the server increases, potentially to the point where the ability to handle existing requests degrades and perhaps even results in the server grinding to a halt with potentially far reaching ramifications.


The issue here is what is known as resource contention. A computer has a limited number of resources - CPU, memory, IO etc. As a computer tries to do more work, these resources become more contended, meaning work starts to take longer.


You can get into a vicious circle. A server is handling a lot of requests, and has fewer available resources to handle them as quickly as it would like due to resource contention. So handling the requests takes longer, resulting in the number of requests building up, further degrading processing time of the existing requests as resource contention worsens.


So, to protect both the server and client, it is sensible to set a threshold at which you should give up. Working out how to set the timeout correctly can be tricky though. So I’ll explore that next.










Finding The Sweet Spot


If you set a timeout that is too short, there is a possibility that you might terminate a connection which would have worked and returned a response. This isn’t ideal, as if the client times out the request, it has to assume the request failed - even if the server which originally received the request did end up eventually processing it. Timing out too quickly can be even more problematic if this also triggers a subsequent retry, as you are carrying out a second request for an operation that could have completed successfully the first time. If you’d waited long enough, you wouldn’t be generating a second request!


On the other hand, if you set a timeout that is too long, the duration for which resources are tied up handling the request (on the client, server, and any networking infrastructure being used to provide the connection) increases. This in turn might end up decreasing the stability of your system as it struggles to handle the load.


But there is a third element that you also need to take into account. How long do your users want to wait for things to happen? There may be no point waiting longer for a service to respond to a request than the human themselves will wait.


So you want a timeout which is long enough that you can wait for successful responses, but not so long as to cause undue stress on the system. At the same time, you need to make sure that you are responding quickly enough to satisfy the users of your software.


As you might guess, this is a tricky balancing act. So where do you start? Well, the first thing to look at is how long the service normally takes to respond.


Connection vs Request Timeouts

Some client libraries give you control over two different timeouts, often described as the connection and the request timeout. The connection timeout relates to how long you’ll wait to establish a connection to the destination server. Once connected, the request timeout determines how long you’ll wait for your request to be handled.


At first glance it might be odd that you have two variables here. You open a connection, then send a request, then close a connection, right? Well, not always. HTTP/2 for example is designed to allow multiple requests to be sent over the same connection. This allows for improved efficiency as you aren’t having to pay the cost to open and maintain lots of connections.


If however you only send one request per connection, then when working out your timeout you’ll need to consider the sum of both the connection and request timeouts.












Analyzing Existing Response Times


If you have a better understanding of how long it normally takes to process a request, you will be much better placed to make a sensible decision about where timeouts should be set. In general, when analyzing response times, displaying this information on a histogram tends to be the best way forward. A histogram is a type of chart that is commonly used to display frequency distributions. In this case, you’ll be looking at the frequencies of request durations.


In Figure 2-1, you see the frequency of all response times for a specific server presented in histogram form. The x-axis details the duration of the request, with the y axis representing the number of times a request took that long.



[image: A bar chart showing a bell curve distribution from 10 to 200ms, with the peak around the 70-90ms mark.]
Figure 2-1. An example histogram




Displaying your latencies like this gives us a better sense of how the different response times of the requests are distributed. In turn, you can make smarter decisions about things like where to set timeouts. You get to see at a glance how response times are distributed, and in turn help us spot patterns in response times.


You could start by setting the timeout at a point where all your analyzed requests could have completed. So coming back to the example above, you could set the timeout at 250 milliseconds, as there are no instances of successful responses after this point.


The potential problem here is that you are setting the timeout based on a small number of outliers. These outliers are often referred to as tail latencies, and dealing with them can be problematic.










Tail Latencies


Tail latencies represent the outliers in response times, the small number of requests (perhaps 1% or less) that for whatever reason take a long time to be handled. In Figure 2-2, you can see that 99% of the requests have completed at the 180ms mark (aka the 99th percentile) - but if you wanted to wait for all of these operations to complete, you’d have to wait another 70 milliseconds as you can still see requests completing out to 250ms.



[image: The same bell curve distribution shown earlier, now with the small number of columns for 130ms and beyond highlighted to show them as tail latencies.]
Figure 2-2. Highlighting the tail latencies




Tail latencies can occur for a number of reasons. It’s possible that there was something unique about the nature of these requests that gave them a very different latency profile - perhaps a very expensive operation. Or maybe there was a timeout deeper in the networking stack causing additional retries, a page fault, or a request that wasn’t able to benefit from cached data like the rest of the calls.


Now tail latencies shouldn’t just be ignored. Often slow outliers like this have a significant detrimental impact on the experience for your users for example. They might only represent a small portion of your traffic, but if a tail latency results in an unhappy customer it’s likely something that needs to be dealt with.


Ideally, you would wait for these responses to complete. However, when it comes to setting a timeout, you may need to set the timeout to exclude these rare tail latencies in order to keep the system stable - this allows you to free up resources faster that can then serve other requests. So you could decide to set or timeout at the 99th percentile latency of 180ms, or perhaps the even more aggressive timeout of 130ms, by which just over 95% of the calls have completed.


Once you have the right level of system stability, you can then work to address these tail latencies, investigating them further to understand why they occur, and what you can do to reduce the frequency that they occur.












Tight Latency Bounds


Although in general setting a timeout based on a percentile response time is an excellent place to start, in some niche situations it might not be appropriate. Consider a scenario where the distribution of response times is very narrow - for example the 99th percentile might be very close to the 50th percentile.


In such a situation, a very small change in response times could result in you timing out a large number of requests that would otherwise have succeeded. In such a situation, the answer is typically to add a bit of a buffer to the timeout to reduce the chances of this happening.












How Many Requests Can You Handle?


Working out a sensible timeout based on how long it takes to process requests is all well and good, but as a service handles more and more requests, you need to ensure that it remains stable whilst doing that work.


You might start by setting the timeout based on the 99th percentile, but realize that at that level the number of concurrent requests your server may be asked to handle is too great. Remember, as you give a request more time to be processed, this can mean you end up with more requests being handled at any given point in time. As a result, you may have to compromise your timeouts in an effort to maintain system stability.


Reducing a timeout to try and reduce the load on a server can have some unforeseen knock-on implications. For example, if you reduce the duration of a timeout, you may see an increased number of requests being timed out. If these timeouts result in retries, you might end up just increasing the number of requests coming into the system in the first place!


There is an interesting association between the number of requests coming in, how long they take to process, and the resulting concurrency of a system. For example if you can reduce how long it takes to process a request, this in turn can reduce how many requests you’re trying to handle in the first place. Requests can be processed more quickly, returning responses to the clients, and freeing up computing resources. I’ll explore this further when I introduce Little’s Law in [Link to Come].










Using User Expectations


By understanding latency distributions, and taking into account what load your system can handle, you can set a timeout threshold accordingly. But what happens if the end-user expectations don’t match?


Consider a scenario where you have a service which is rendering a complex HTML page that is going to be sent to the user’s browser. Just by looking at the normal response times and balancing this against acceptable load, you’ve decided that you can afford to wait up to 6 seconds for the request to complete, and set a timeout accordingly. However you know that your users won’t wait that long for a page to load - and in many cases will just give up or just retry a page before that 6 second threshold is reached.


In a situation like this, where the end user expectation for acceptable latency is less than what is needed to maintain system stability, it might make more sense to adopt a more aggressive timeout. If you are overly generous, and wait longer for the request to be processed, but the end-user has already given up and decided to retry, you can end up with two issues. Firstly, resources are tied up handling a request that is no longer needed. Secondly, the user has initiated a second request which you also have to process.


In this example, you might look at how long your users would wait for the page to render. You find that most of them will only wait up to four seconds, so can set the timeout for rendering the webpage at 4 seconds instead. There may of course be other solutions to this specific problem. For example you could break up the rendering of the page into multiple less expensive calls that could be processed in parallel, have part of the page loaded from a cache (like a CDN), or even start rendering some content while the rest loads behind the scenes. If something is taking too long, it’s still OK to look at making it faster!

Fast is generally better than slow

If you can process requests faster, will have fewer concurrent requests. This in turn, will likely reduce resource contention, and allow you to handle more traffic. So in general, finding ways to process requests quickly is a good idea. Just do be aware that some techniques to speed up request processing (like caching) can have other tradeoffs that need to be considered.












Fault Injection and Testing Timeouts


This will follow in a later version of the book.










Timeouts and Call Chains


In a distributed system where operations consist of chains of calls between services, the question of timeouts becomes a bit more murky. Consider Figure 2-3. The Enrollment service sends a request to Subscription with a 500ms timeout. To handle this request, the Subscription service in turn needs to send a request to the Media Library, but here Subscription has specified a 750ms timeout. Interactions like this aren’t uncommon in microservice architectures.



[image: The Enrollment service is sending a call to Subscription with a 500ms timeout specified. Subscription in turn sends a call to Media Library with a longer 750ms timeout]
Figure 2-3. An example of mismatched timeouts in a chain of calls between services




You might already spot the potential problem here. Subscription might wait up to 750ms for the Media Library to respond. However, Enrollment will only wait 500ms for Subscription. This means that Enrollment could give up and timeout its request, but Subscription will still be trying to process the call. You can see this scenario play out in Figure 2-4.



[image: A sequence diagram showing Enrollment calling Subscription, and waiting 500ms before timing out. Subscription in turn sends a call to Media Library, and gets a response after 600ms, but the response from Subscription to Enrollment will be ignored as Enrollment has already timed out]
Figure 2-4. An early timeout leaves work still happening in services further down in the call chain




Even if the call from Subscription to Media Library did succeed after 500ms, Enrollment has already given up. You know there is no point waiting 750ms to carry out some work if your consumer is giving up after 500ms. A fix here could be to reduce the timeout for the call from Subscription to Media Library. In this way it’s similar to the scenario of timing out a call based on user expectations - you shouldn’t keep trying to render a web page long after the user requesting it has already given up.


Working out exactly what timeout to set from Subscription to Media Library would require a bit of thought. In this scenario it would certainly want to be sub-500ms, but how low you want to set it may depend on what other work Subscription is doing as part of serving the request to Enrollment in the first place - and you’d also have to take into account the other clients that might also be calling Subscription.










Timeout Propagation


With call chains being more prevalent in finer-grained distributed systems like microservice architectures, having a single timeout which is propagated across calls is worthy of some consideration.


Let’s reexamine the scenario in Figure 2-3. The problem you encountered originally was that the Subscription service was waiting so long for Media Library to respond that the initial call from Enrollment to Subscription might have already timed out. If instead you set a single timeout and propagate this across the calls, this can be avoided.


In Figure 2-5, at the start of the operation you have a timeout that starts counting down until the timeout limit of 500ms is reached. When Enrollment calls Subscription, you have 475ms left, and this countdown is passed along as part of the request. When Subscription starts its work, it knows that it only has 475ms left at most. It might under other circumstances be happy to wait up to 750ms for Media Library, but in this case it can override this normal timeout with the one passed to it - there is no point in it waiting any longer. You also have to consider that when Enrollment gets a response from Subscription that the response itself needs to be processed - so that time may need to be taken into account as well.


Timeout propagation like this can also neatly deal with the situation where Subscription might have multiple different clients with different timeouts - each client just needs to pass its timeout as part of the request, and Subscription can dynamically adjust to the needs of each client.



[image: Enrollment sends a 'Create Subscription' call to subscription, indicating that there is 475ms left before the request should be timed out. Subscription then sends an 'enable access' request to Media Library, showing that there is now only 375ms left before the timeout occurs]
Figure 2-5. A timeout being propagated across a set of calls




Maintaining a single timeout for the entire operation like this also allows us to handle retry situations. Each retry removes time from the overall countdown. I’ll look at retries in more detail later in Chapter 3.


One of the challenges here is that the various client-server protocols will need to allow for the timeout to be propagated. If sending HTTP requests for example, the timeout could be sent in a custom header, or if sending messages over a broker, the timeout could be sent as a piece of metadata. Sending the information is only part of it though - you need to ensure that the servers receiving this information know what to do with it.


One consideration here is what information you need to send to propagate the timeout. You could just send the remaining milliseconds, as the example above shows. This might be OK in a situation where you expect the request to be handled pretty quickly, but in a situation where there could be a delay between the client sending a call and the server handling it, this might be problematic. Consider sending a request over a message broker for example. The message might be delivered into a queue, but it could take a while before the message gets picked up by the recipient. If you just pass along a number of remaining milliseconds in the message, then it’s like the countdown stops until the message is picked up, whereas you’d actually want any delay in processing the message to be accounted for.


A potential fix here is to instead send a time by which the operation should have been completed. So send a timestamp as part of the message payload instead. This then allows us to take the timeout deadline from the current clock time, and determine how much time you have left - although if the response is also going back on a queue, you’d somehow need to account for the time taken for the response to be picked up and processed.


Whilst I can see the value of timeout propagation, it’s something I’ve not seen implemented in the wild. I suspect the main issue here is that setting up the required plumbing to propagate this timeout through a chain of calls is something that requires a lot of work to get right and maintain. Consider the fact that a lot of timeouts are set on a connection pool level - to implement timeout propagation, you’ll need some way to override those default timeouts.  There is also one nasty problem that can cause issues with this concept. It turns out that clocks in different computers don’t agree.


In practice, it can be more beneficial to just track and monitor server response times. For example, you might specify that the Subscription service has a 99th percentile latency response time of 300ms, knowing that this should be fast enough for it’s consumers (Enrollment included). You would then collect actual response times, and track these against the target to make sure that the server is operating within acceptable bounds. This is an example of what is called a service level objective (or SLO), and I’ll explore it in more detail in [Link to Come].










Clock Skew And Timeouts


Two clocks, even if they are set at the same time, will drift apart over time. Otherwise known as clock drift, this variation between the clocks in different computers causes a number of challenges around distributed systems. Clock drift is not limited to computers, you’ve likely seen it in your home - two clocks set at the same time over a period of days and months will end up drifting apart.


This clock drift causes a major issue with the concept of timeout propagation. Consider a simple scenario where Service A is calling Service B. The local clock time in Service A is 13:34:00.100. It sends a request to service B, and wants the request to timeout in 75 milliseconds from now, so it sends along a timeout timestamp of 13:34:00.175 - a time which is, from Service’s A’s point of view, 75 milliseconds in the future. Unfortunately, service B’s local clock is 150 milliseconds ahead of Service A. When the request was sent from Service A, with a timeout of 13:34:00.175, Service B already thought it was 13:34:00.250. So the moment the request is received, Service B thinks it should be timed out immediately.


Another issue with clock skew in respect of timeouts are the attempts to fix it. The Network Time Protocol (NTP) exists to try and reduce the variation in clocks between different computers. When a computer updates its time based on this protocol, the local clock time can jump forward or back a number of milliseconds. When working with tight latency bounds, this variation can make a big difference.


Atomic clocks have extremely small amounts of skew when compared to electrical clocks like those found in normal computers, and this is partly why atomic clocks are often used to reduce the skew to more tolerable levels. Some cloud vendors actually provide access to the use of atomic clocks to improve the accuracy of NTP within their ecosystems. That these solutions often end up relying on atomic clocks inside satellites in geo-synchronous orbit might help explain how big a deal clock skew can be.












Other Considerations


In “Understanding Real-World Timeout Problems in Cloud Server Systems”2 by Dai et al, the authors looked at a number of timeout-related bugs in Cloud software. One of the things that the paper shared was that in many cases error messages were lacking when timeouts occurred, leading to problems in diagnosing the issue - this was something that happened in 83 of the 159 bugs they examined. Now this did include some bugs where there were no timeouts set when there should have been. It’s tricky to imagine having an error message that reports a missing timeout - if you knew enough to write such an error message, you would probably have just put the timeout in place! However, Dai et al did cite examples where timeouts were set, but not reported on. In the case of one bug cited in Cassandra, if a timeout occurred when writing data to storage, no error was reported to the client.


If timeouts do occur, make sure these are logged appropriately, and if sensible this information should be exposed to the clients. This can help greatly in situations where timeouts are set too short - which can be just as much of an issue as timeouts that are too long.










Case Study: AdvertCorp


To help illustrate the role that timeouts can play with respect to system resiliency, I want to introduce a real-world project which I worked on. AdvertCorp (the company name and details are changed to protect the innocent!) provided online classified ads through a very popular website.


The project I was working on was tasked with consolidating a number of existing services which were used to deliver similar functionality for different types of adverts. Existing functionality for the different types of adverts were slowly being migrated into the new system we were building, codenamed Sauron, with a number of different types of adverts still served up from older legacy applications that hadn’t yet been migrated. To make this transition transparent to the end customer, we intercepted all calls to the different types of adverts in Sauron, as outlined in Figure 2-6. This allowed us to perform some transformation of the pages that were coming from the legacy application. Sauron in effect served the entirety of AdvertCorp’s website, even if a lot of the content came from other sources3.



[image: Calls to the legacy applications with the codenames Turnip, Cherry and Pear, are routed via Sauron]
Figure 2-6. A strangler fig pattern being used to direct calls to older legacy systems




We had just moved over the highest volume and biggest earning product to the new system, but many of the ads were still being served by a number of older applications. In terms of both the number of requests and the money made by these legacy applications, there was a very long tail—many of these older applications received small amounts of traffic, and generated small amounts of revenue. The new system had been live for a while and was behaving very well, handling a not insignificant load. At that time we must have been handling around 6,000–7,000 requests per second during peak, and although most of that was very heavily cached by reverse proxies sitting in front of our application servers, the searches for products (the most important aspect of the site) were mostly uncached and required a full server round-trip.


One morning, just before we hit our daily lunchtime peak, the system started behaving slowly, then started failing. We had some level of monitoring on our new core application, enough to tell us that each of our application nodes was hitting a 100% CPU spike, well above the normal levels even at peak. In a short period of time, Sauron become unresponsive and the entire AdvertCorp website went down.










Overload


In the wake of the outage, we realized that the CPU spike we observed was caused directly by a drastic increase in the number of requests that the Sauron service was handling. Typically, each instance of Sauron would expect to have around 40 concurrent requests at peak. This is a relatively small number given the overall site traffic, but the majority of the inbound requests were handled effectively in a caching layer. In the lead up to the outage however, the number of concurrent requests we were handling went from around 40 to over 800. Sauron was a Java based application, and each request that was being handled was mapped to an operating system thread. This meant that the underlying machines were suddenly trying to handle a vast number of threads, which ultimately led to the high CPU rates we saw. I couldn’t appreciate it at the time, but in reality this was a great example of the perils of resource contention.












Customer-driven Denial Of Service


Initially, we were concerned that the drastic increase of requests coming into Sauron were caused by a malicious attacker - in other words, we were worried we were the victim of a denial of service (DOS) attack. But then we found that the source of the “attack” was in fact our own customers. We were seeing repeated retries coming from our customers, and we soon realized why. When requesting certain pages from our website, the pages appeared to hang. The customers got bored of waiting, so decided to refresh the page, in turn increasing the number of requests we were trying to handle.












Page Load Times


So why were some pages taking so long to load? Well, remember those downstream legacy applications? When a customer requested pages served by the older legacy application, the Sauron application worked as a proxy. Sauron served the request from the customer’s browser, and then created its own request to the legacy application. This allowed Sauron to modify the page being rendered.


The way this worked is that Sauron made use of an HTTP Client which managed a pool of workers that could be used for making requests to the legacy applications. This pool worked effectively as a throttling mechanism, capping the number of calls we could make. So when a request came in to Sauron which needed to be routed to one of the legacy applications, a worker from the connection pool was used to make the subsequent request to the legacy application, as we can see in Figure 2-7.



[image: Inside Sauron there is a collection of workers managed in a pool. When a connection comes into Sauron for one of the legacy applications, it causes a worker to be assigned from the pool, and it is the worker that then makes the call to either Turnip, Cherry or Pear]
Figure 2-7. A connection pool used for making calls to legacy applications




It seemed that one of the downstream applications - codenamed Turnip - had started responding very slowly. In fact it would allow a connection to be established, then not respond. The HTTP client we were using had a default timeout of 30 seconds. This meant we would wait for up to 30 seconds for Turnip to respond, before timing out - as shown in Figure 2-8. This was for a system where our target render time to the browser was in the region of 4-6 seconds, and most customers wouldn’t wait longer than 10 seconds. So the customers would give up waiting for the page to load before our timeouts expired. They would then either refresh the page, generating more load, or else give up altogether.



[image: The customer sends a request for Turnip, and would give up after around 10 seconds. The request to Turnip is routed via Sauron's connection pool, the workers of which timeout after 30 seconds]
Figure 2-8. Timeout being reached due to unresponse Turnip application




This example of a default timeout being inappropriate is not uncommon. In Dai et al, one of the bugs they highlighted occurred in HBase (a distributed database). The default timeout for HBase clients was set to 24 days4, meaning that clients would hang for this period of time if the server failed. In reality, when a HBase server failed, you could normally expect recovery within 10 minutes, so the default timeout was changed to 20 minutes.


In our case, we realized that this default timeout was inappropriate on two levels. Firstly, it was way too long based on what the customer would wait for. More importantly though, the long timeouts were contributing to resource contention that was a significant factor in the system collapsing. By reducing the timeouts for requests sent to the legacy application our hope was that if we had issues with one of our legacy applications again, we would time out more quickly, reducing resource contention.


But we weren’t done there. The purpose Sauron’s connection pool was to throttle the number of concurrent requests. This pool size was set to 20 - significantly smaller than the 800 concurrent requests we were seeing. Even if all the workers were blocked waiting for a timeout, we shouldn’t have seen anything like the number of requests blocked in Sauron itself - surely if there were no workers available, we should have given up trying to handle the excess requests. We were clearly missing something - so what was going on?












Missing Timeouts


After some more digging, it became apparent that the bulk of the requests that were blocked were actually waiting for a worker to be available in the connection pool. With a pool size of 20, once all workers were occupied, inbound calls that wanted another worker would end up blocking until one became available. Once a worker was actually made available, it was only at that point that the worker’s own 30 second timeout started to apply. Given the long timeout for workers to be made available, these inbound requests would be waiting a long time for a worker to become available. In effect, the HTTP Client library connection pool became a bottleneck, as we see in Figure 2-9. A classic case of resource contention.



[image: Requests coming in to Sauron are building up, waiting for a worker to be available. They'll wait as long as it takes to get a worker. Meanwhile, all available workers are already blocked waiting up to 30 seconds for Turnip to respond]
Figure 2-9. The worker pool for Sauron became a bottleneck and caused requests to pile up




Now, it turns out the HTTP client library we were using did allow you to specify a different timeout, namely for how long you’d wait for a worker to become available from the pool. The problem? By default, this wasn’t set, meaning calls would block potentially forever waiting for a worker.


As we’d already established, our customers would end up refreshing their browsers after a while. But the original requests that they had sent were still being processed by the system, and wouldn’t go away until a worker became available. So a request would come in from a customer, it would block, the customer would retry sending in another request, whilst the original request was blocked potentially forever. The number of requests Sauron was handling skyrocketed in a very short space of time. Net result? Sauron collapsed under the weight.


Coming back to the paper by T Dai et al, of the 156 real-world bugs they examined, nearly 48% of them were caused by wrongly set or missing timeouts - the single biggest cause of timeout related bugs they looked at. So it’s good to know that at AdvertCorp we were at least in good company.


The fix here was obvious. We needed to apply a timeout for workers to become available. With two timeouts now in the mix - one for a worker to become available, and another for the worker itself to do the job - we had to reason about them as a whole. If we set each timeout at 5 seconds, an inbound request could wait up to 10 seconds. In the end, we decided to be quite aggressive with the timeouts we set. These legacy applications weren’t as critical as other parts of our system, and therefore the risk of timing out requests that might have worked was tolerable, if the tradeoff was increased certainty that the system as a whole would keep running. I don’t recall the exact timeouts we used, but I think it was a second for each, meaning that inbound requests for legacy applications should at worst case block for 2 seconds in total before the timeouts kicked in.












A Confluence Of Events


It can be tempting to look for a single cause of a system failing. As we’ll explore across this book, this is an overly simplistic way of looking at failure, and in fact can be actively dangerous. It would be easy to say that the root cause of AdvertCorp’s website outage was the Turnip legacy application taking a long time to respond. The reasoning being that if it had responded more quickly, the long timeouts wouldn’t have been an issue. But, if the timeouts had been shorter, then even if Turnip started misbehaving, we would likely have protected the system. Likewise, the missing timeout on the connection pool was the real kicker - it’s possible that if we’d just had that timeout in place, the system would perhaps have remained more stable, or at least taken long enough to crash that we might have had a chance to resolve the issue without the system going down.


When looking at failures, it’s always worth digging deeper. It’s nearly always a number of factors that result in a failure. So if you want to reduce the chances of that type of failure happening again, then you may need to make multiple changes. In our case with AdvertCorp, we changed the timeout for the legacy applications, and set a default timeout for the connection pool. But we weren’t done there. We’ll come back to AdvertCorp later in the book to look at other things we could have done, and other things we actually did, to try and improve the resiliency of our system.












Conclusion


On the face of it, timeouts are a conceptually simple idea. But as you’ve seen, there is still a lot of nuance here. I’m aware that I’ve covered a lot of different aspects of timeouts, and chances are if you are just dipping your toe into the water here you may feel a bit lost. So, where should you start if right now you are unsure what your timeouts should be?


Well, firstly, make sure you have some. Eventually giving up is better than never giving up. So if you have no timeouts specified for your calls to other services, set one now even if it’s much higher than you think you need.


Next, take a look at your response times using real data from production. Understand how your system behaves over time (footnote: If your system load doesn’t change much from day to day, you may not need to gather too much data to work out what “normal” looks like. If your system can be more “peaky”, such as a retail site having to cope with black friday traffic, you may need to gather information over a longer period of time). If the system right now is able to handle the current load you are putting it under, then setting a response time at a point where 100% of your calls finish may be fine. But if you have a number of tail latencies you might feel happier setting it around the 99th percentile area. Once that is done, compare your new timeout with end-user expectation. If the user will have given up already when your threshold was reached, you could potentially afford to reduce it further.


For something like timeout propagation, I consider this to very much be a niche concept which I have rarely seen implemented, so I think most people can ignore this.


Now, I haven’t really spoken much about what you should do when a timeout occurs. Often, the sensible thing to do is just try again. So let’s look at that next.



1 Yes, this really happened to me.
2 T. Dai, J. He, X. Gu and S. Lu, “Understanding Real-World Timeout Problems in Cloud Server Systems,” 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 2018, pp. 1-11, doi: 10.1109/IC2E.2018.00022.
3 This is actually an example of a strangler fig pattern, something I discuss in more detail in my book Monolith To Microservices
4 The timeout was specified in seconds, but the default value was set to Integer.MAX_VALUE, which in Java ended up being 24 days!









Chapter 3. Retries and Idempotency


A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the fourth chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

			


‘Tis a lesson you should heed:

Try, try, try again.

If at first you don’t succeed,

Try, try, try again

W. E. Hickson




When a call fails, trying again makes a lot of sense. When you fail to establish a connection, it’s possible your request just happened to be routed to a machine that was overloaded, or a machine that just got shut down for maintenance. Perhaps you hit a gateway at a point it was congested, or your request was routed to a server that was slow to start up. In many of these cases, simply trying again may well see the subsequent request routed to a machine that can serve the request promptly.


If you do decide to retry, there are still a host of questions to answer. How many times should you retry? Should you wait between retries? And are there situations where carrying out a retry can cause issues?


Before I answer those questions though, let’s start at the beginning. Does it always make sense to retry?








Should You Always Retry?


When a call from one computer to another errors, a naive approach would be to assume that attempting the call again is the right thing to do. The problem with this approach is that not all errors are equal.


Imagine you’ve sent a call to a server asking for a piece of data, only for the server to respond that the piece of data doesn’t exist. When doing this using the HTTP protocol, you’d expect the server to respond with a 404 Not Found response code in the header. This is an error. But does it make sense to retry in this case? Probably not. A 404 is telling you that the resource you asked for is not present. Do you really expect it to suddenly appear if you try again? Likewise, a server might reject a request as the client didn’t have suitable permissions. Again, an error case, but not an error that you would expect retrying to fix.


On the other hand, what if your initial attempt to establish a connection to a server fails because a timeout is reached? Or perhaps a server hangs after you establish the initial connection? In these cases it’s possible that the error is transient. Perhaps your initial connection hit a machine that was being restarted, and a subsequent might cause your request to be routed to a different machine (perhaps via a load balancer) which would happily be able to serve the request. Maybe the server responds telling you that it is currently overloaded, and cannot handle any more requests at this time. In this case, a retry may well be in order after a suitable delay.


It therefore becomes important to ensure that a client knows when a retry is, and isn’t, sensible.










A Better Type Of Error


Our client should be able to differentiate errors that may be sensible to retry, from those that do not. For that to happen though, our clients need additional information around the nature of an error to make better considered decisions. HTTP in my opinion does an excellent job of this.


A HTTP response contains a status code. The 4xx & 5xx status codes are for errors - with 4xx status codes indicating that the client has made a mistake in some way, and 5xx indicating that the server is unable to process the request.


By and large, 4xx status codes are not things you should retry. As mentioned above, retrying a 404 doesn’t seem to make sense. Likewise the 403 Forbidden tells us that the request was unauthorized - unless the logic around how the request is authorized is changed between retries, you could likely expect exactly the same response when a retry is sent.


An interesting exception is a 408 Request Timeout, where you are being told that the client didn’t respond to the server quickly enough. In such a situation a retry from the client might be appropriate, however if things are going so badly for a client that it wasn’t responding quickly enough to a server, it’s likely that it isn’t in a position to do a retry anyway. Another status code of interest is the 429 Too Many Requests header, and I’ll explore more later when we look at back pressure in chapter Chapter 5


On the 5xx side of things, you’ll see more status codes that indicate a retry is acceptable. For example a 503 Service Unavailable indicates the server is temporarily unable to handle the request. In such a situation, a retry seems reasonable.


Knowing which status codes you need to support in the client will depend on knowledge of what HTTP status codes you can expect to be sent. The number of 4xx and 5xx status codes is large (nearly 40 in total), and not all of them may be appropriate in your use case.


All of this assumes you are using HTTP directly. If you are using HTTP underneath a higher level abstraction, the HTTP status codes may not do what you expect. For example with gRPC, if a server needs to send an error, HTTP status code is set to 200 (which translates as OK). The rationale for this is that it’s not the HTTP connection itself that has errored, it is the endpoint. Personally, I think this is a questionable approach as a lot of HTTP intermediaries are kept in the dark1. To be fair, gRPC does have it’s own list of status codes, and whilst it is not as rich as HTTP’s, many of the commonly used error cases are covered off, allowing your clients to be more targeted about how these cases are handled.


So, whatever protocol you use, do make sure you are providing clients with enough information so that they can programmatically do the right thing. And if for some reason you’ve decided to implement your own error protocol, please at least take a look at what HTTP does here, because there is some excellent prior art on which to base your own work.












How Many Retries Are Appropriate?


If at first you don’t succeed, try, try again. Then quit. There’s no point in being a damn fool about it.

Derived from a quote by Stephen Leacock




Assuming you’ve decided that a retry is acceptable, how many retries should a client perform? This is essentially a topic we’ve already explored in a few ways in Chapter 2, but is worth revisiting here. You’ll want to retry as often as you can to provide the information required, within an acceptable timeout. If you keep retrying, not only are you generating more load on the system (often at a time when it might least be able to handle it), but you may also be taking too long to respond to a real user.


Retrying too often can actually bring systems down. In 2017 Square suffered a large scale outage2, caused in large part by one of the key systems hammering its own database. Multipass, which handled multi-factor authentication, had retry logic in place when performing transactions against Redis. Unfortunately, the retry logic had a hard-coded limit of 500 retries that would be attempted when calls to redis failed, along with no delay between the retries. This caused a nasty spiral - if a call failed (perhaps due to Redis being overloaded at that particular time), clients would rapidly keep retrying the calls with a very high upper bound, ensuring that redis remained overloaded - Redis was not given a chance to recover.


So a limit on the number of retries makes sense, but you want to make sure the number of retries being allowed won’t cause the server to be overloaded. You’ll also want a bit of a delay between the retries, something we’ll get to shortly.










Fixed Retry Count


One of the easiest ways to cap the number of retries that will be carried out is to simply have a fixed number of retry attempts, and typically the number of retries is small. For example, you might set a retry limit of three, meaning that after the initial request fails, the client can attempt to make three more attempts to get a successful response (for four attempts in total).


This approach has the major benefit of being very simple to implement. If you were hand rolling the code, this is likely just going to be a loop around the calls being sent, with an appropriate break condition. Retry limits are also widely supported in libraries like Polly and Resilience4j.


Whether you decide to hand-roll your retry limit, or use an existing library that does this for you, I’d strongly recommend that you allow for the retry limit to be changed without needing the code to be rebuilt - for example having the retry limit in a configuration file. This gives you some ability to tweak retries in a production system quickly, without requiring a rebuild and redeploy of the code in question.


A simple retry limit like this can be highly effective in dealing with “dangerous” work in a system. Back in 2005 I helped work on a banking system that performed calculations on a pool of over a hundred machines. Requests to perform calculations were placed into a queue, and when a machine from the pool became available it would pick up the job and perform the calculation. Unfortunately, due to a bug in the program running the calculations, a specific request that appeared to be totally valid would in fact cause the machine to crash. On crashing, the work request went back into the queue, the next available machine picked it up, and the cycle was repeated. In short order every single machine in the pool crashed as a result of the request.


In our situation, we needed to add some metadata to the work item in the queue, specifying how many times that piece of work had been attempted. After 3 attempts, the work item in the queue was assumed to be “dangerous”, and it was placed into a separate queue (often called a dead letter queue), where it could be inspected by an operator. This kept the dangerous work item out of the system, and kept the rest of the system working. Sometimes trying to process every request you are sent is the wrong thing to do!


One of the downsides of specifying a total number of retries is that you need to make sure the total sum of the call times taken for each call is less than the total amount of time the client is happy to wait for the server’s response. Let’s revisit our example from Chapter 2 in Figure 3-1, where the Enrollment service sends a request to Subscription with a 400ms timeout. To serve that request, Subscription in turn calls Media Library. If each call from Subscription to Media Library has a timeout of 200ms, and you set two as our maximum number of retries, then we have an issue.



[image: The Enrollment service is sending a call to Subscription with a 400ms timeout specified. Subscription in turn sends three calls to Media Library, all of which timeout at 200ms. Enrollment gives up waiting for Subscription at the 400ms mark, but Subscription is still trying to get an answer from Media Library, and makes 3 calls in total, only eventually giving up at the 600ms mark.]
Figure 3-1. Subscription can end up exceeding the the target timeout from Enrollment due to making too many retries




Subscription could now wait up to 600ms for Media Library - 200ms for the initial call that fails, plus 400ms for the two subsequent retries. However Enrollment will only wait 400ms for Subscription. So after Subscription’s first call and initial retry, we’ve already hit Enrollment’s 400ms limit. Despite that, Subscription decides to send another retry.


This means that even after Enrollment might have given up on Subscription, Subscription might still be doing work. Even if Subscription does finally get a response from Media Library, then the work is wasted as Enrollment has moved on. We’ve tied up computing resources for nothing.


Now an obvious answer here is to make sure that the maximum retry limit you set is still inline with any overarching timeout that might be in operation. So in this case, if you know that Enrollment will only wait 400ms, you either have to reduce the individual timeout for calls from Subscription to Media Library, or reduce the overall number of timeouts you might carry out.


This gets more complicated when you consider that a delay may be needed between retries, a topic I’ll explore in more detail later in this chapter. Another wrinkle is that the overarching timeout you’re dealing with might vary. Enrollment might be happy to wait up to 400ms for Subscription, but a different service calling Subscription might have different expectations.


So although this method of limiting timeouts is easy to implement, it’s not without its downsides. But could you solve these problems using an alternative approach?












Dynamic Retry Limit


Coming back to our scenario in Figure 3-1, the issue you face with a simple maximum number of retries being applied is that Subscription might end up making calls even after Enrollment has given up. Ideally, Subscription would be aware of how long Enrollment was willing to wait, and use this to drive how many retries are attempted.


As I showed in Chapter 2, you can make use of timeout propagation to have a client send to a server information regarding how long the client is going to wait. You can then use this propagated timeout to dynamically limit how many retries are attempted.


Let’s revisit our example, and now give Enrollment the ability to tell Subscription how long it will wait. In  Figure 3-2 you can see that Enrollment is telling Subscription that it needs to complete within 400ms. Now, Subscription can stop attempting to call Media Library when this limit is reached. Aside from avoiding wasted work, this also means that you can adapt dynamically to the different needs of clients.



[image: The Enrollment service is sending a call to Subscription with a 500ms timeout specified. Subscription in turn sends three calls to Media Library, all of which timeout at 200ms]
Figure 3-2. Using timeout propagation to limit retry attempts




It’s important to note that each call from Subscription to Media Library has its own timeout. So in effect you have two timeouts to consider. The first is the timeout propagated from Enrollment (the “parent” timeout), and the second timeout in this situation is the time you will wait for Media Library to respond.


Combining timeout propagation with retry limits can end up allowing us to make an arbitrary number of calls to supporting services. If the initial call and subsequent retry from Subscription to Media Library both error after 50ms, you still have 300ms left on our overarching timeout, so you could end up making several more attempts to get a successful response from Media Library.


This can be good and bad. The good side of this is that the number of retries being sent will adapt dynamically - hopefully maximizing our chances of getting a successful response. However, you could end up hammering an unhealthy server in the situation where our calls are failing quickly. If each call to Media Library fails after 50ms, you could make 8 attempts within 400ms! Does that make sense? At a certain point you might want to take the hint that Media Library is likely having a bad day (or at the very least that something is wrong with your network path to Media Library).


There are a few ways to deal with the concerns of making too many retries when using an overarching timeout. The first is to combine a dynamic retry policy with a hard upper limit of retries that will be attempted - effectively combining both approaches. You could also make use of either a circuit breaker or a back pressure mechanism, two topics I’ll look at in detail in Chapter 5.


As I discussed when I introduced timeout propagation previously, the added complexity of implementing the timeout propagation means this is not a common approach. Fundamentally the communication protocol needs to allow for the timeout to be propagated, and that takes work, especially if you are retrofitting it into an existing system. So that will be a challenge you need to deal with if you want to be more dynamic in setting your retry limit.












Delays Between Retries


When performing a retry, it is sensible to leave a time gap - referred to as a back-off - between the attempts. If you retried immediately, there is a good chance that the situation that caused the original failure could still exist. If anything, an immediate retry could make the situation worse. Imagine if the server you sent the original request to timed out due to being unable to handle the load. Sending an almost immediate retry will just increase that load further.


You could decide to have a fixed duration between attempts - perhaps specifying a 100ms back-off before you send a retry. In practice though, it’s much more common to use an exponential back-off.










Exponential Back-off


With an exponential back-off, the back-off duration increases after each retry, typically doubling. So if you wait 100ms before retrying your first request, the second retry would follow 200ms  later, with the third retry happening 400ms after that. But why are exponential back-offs preferred to simply waiting a fixed amount between attempts?


One of the main benefits of an exponential back-off is that it works as a type of rate limiting. When a server is overloaded, finding ways to reduce the load is sensible to try and maintain system stability. Having clients wait longer and longer between retries will reduce the number of calls being made by clients in a given time period, effectively reducing the rate of calls. In  Chapter 5 I’ll look at some more sophisticated rate limiting techniques, but some of the ideas I’ll discuss there require information to be sent from client to server for this to happen. But with exponential back-off, you create some rate-limiting in a very simple and easy to implement way.


As is the nature of any exponential sequence, the durations between retries can end up getting very big. This makes it even more important that you have some way of limiting the number of retries, or else you may find that the clients can be hanging around for a very long time indeed. Due to how quickly the delay between retries can be using exponential back-offs, it’s common to change the multiplier - so rather than doubling the back-off after each failure, you might instead multiply the delay by 1.5 for example.












Jitter


Even with exponential backoff, problems can still occur. If multiple clients are sending requests to a server, and are retrying using the same deterministic exponential backoff, it’s possible that the client retries can all line up and arrive very close together. You see an exaggerated example of that in Figure 3-3.



[image: ch04 exponential retry histogram]
Figure 3-3. With a fixed backoff between retries, multiple retries can arrive at once swamping a server




As the load on the server increases, calls start to timeout. These calls then get retried later on, all the while new requests are coming in. When the retries arrive, these retries cause even more load, which could in turn increase the number of retries that could be expected.


Here you can see clear clusters where the server would be getting a lot of requests at once, followed by long gaps where the server would have less work to do. This is far from ideal, as you can switch between the server being potentially overwhelmed with calls to the server not having much work to do.


The other issue with lots of calls arriving at the same time is that this can make collisions more likely. Imagine two people talking to each other on a telephone call. If both people spoke at the same time, they wouldn’t be able to hear the other. If both parties then waited the same amount of time before speaking again, the same problem would occur. This sounds like a pretty terrible telephone conversation, but these types of collisions happen in systems all the time.


Consider a situation where multiple clients want to edit the same piece of data. Typically, if using a transactional datastore, only one client would be allowed to edit the piece of data at once. While the edit is taking place, requests from other clients to edit the same piece of data would be rejected. If all the client edits that got rejected all waited for the same duration before retrying, you’d repeat the collision.


To resolve this, you can add some randomness - known as jitter - to the back-off that each client is using. The goal of using jitter is to hopefully space out the retries from the clients, reducing the peaks whilst also reducing the idle periods for the server. You can see the smoothing effect this can have in Figure 3-4.



[image: ch04 exponential retry jitter histogram]
Figure 3-4. Applying jitter to retry backoffs can space out retries, evening out server load




With the jitter, the retries hopefully arrived more spaced out. This aims to keep the server operating within normal bounds, therefore improving the chances that the retries will be successful. In the example here, this results in far fewer calls being retried for the second time, and also reduces the number of timeouts in general.












Is Retrying Safe?


As we’ve seen so far, retries can really help in situations where an error appears to be transient. If something doesn’t work the first time, try again! Until you hit your retry limit, then stop. Sometimes however, trying something more than once can cause some nasty problems.


When you send a request to a service, if you don’t receive an acknowledgement that the request was received, there are two possibilities. The first is that the request got through to the other service, but your acknowledgement got lost. The second possibility is that your request didn’t get through in the first place.


This then causes a problem when it comes to retrying. Consider Figure 3-5, where a client is trying to send me £100 (very generous of them!). The initial request from the client to Payment is successfully received and processed, so I have my £100. Unfortunately, for whatever reason, the response is not received by the client. The client really wants to make sure that the payment gets processed (clearly a big fan of my work), so they decide to retry the payment. As a result, I ended up receiving £200 rather than the expected £100.



[image: A sequence diagram showing the initial call from Client is received and being processed by Payment, causing Sam's account to now have £100 in it, but the response is not received by the Client. Subsequently the Client retries the payment attempt, which is also successfully processed, and Sam's account now has £200 in it]
Figure 3-5. Retrying when you don’t get a response can cause unforeseen situations




Now, paying twice is clearly undesirable behavior. In this situation, although the client wants to retry because that gives it a better chance of ensuring that this operation completes, the act of retrying isn’t safe as you cannot be certain about the outcome.


When faced with an operation that cannot be safely retried, you deny yourself one of the most useful mechanisms for dealing with a common class of problems. So what’s the answer? Make retrying safe.










Idempotency


To make retrying safe, you want certain operations to give the same result no matter how often they are called. In Figure 3-5 above, the clear intent is that I was supposed to be paid £100. The retries were required to ensure that this happens, but you didn’t want them to potentially result in multiple £100 payments being made to me3.


What you want to do is make the payment operation in this case idempotent. An idempotent operation is one that will give you the same result if you execute it once, or multiple times.


Before I look at idempotency in our software, it might be worth considering idempotent operations that you might yourself have experienced. I suspect many of you have used a lift (aka elevator in the US) before 4. Aside from some very fancy exceptions, most lifts have buttons that allow you to call a lift, either for going up, or for going down. When you press the “up” button, the lift is told you want to go up, and will (hopefully) arrive for this purpose. Once the “up” button has been pressed, subsequent presses of the up button don’t change the outcome - the lift has been called, and is on its way. So you can say that lift buttons are idempotent.


For another real-world operation that is non-idempotent, most light switches act as a toggle. If the lights are currently off, and I flick the light switch, the lights come on. If I flick the light switch again, the lights go off. A light switch is not therefore idempotent (which should be made obvious due to it being a toggle rather than a button).










Making Operations Idempotent


Coming back to our payment example, how could you make your payment process idempotent? Well, there are two options I’ll explore. First, I’ll explore generating a fingerprint for the request when it’s received, then I’ll look at the option of having the client provide a unique ID. Both techniques have their merits, and they can in fact be used together.












Request Fingerprinting


When a server receives a request, it can generate a fingerprint based on the request to determine whether or not that request has been seen before. One of the simplest mechanisms to generate a fingerprint would be to create a checksum of the request itself, as you see in Figure 3-6.



[image: ch04 fingerprint example]
Figure 3-6. An example of a fingerprint generated from request parameters




Here you are generating an MD5 hash from the request - the string that starts 3fb91…​. If one of the parameters of the request changed, the generated hash would also change. A subsequent request coming in with the same parameters would generate the same hash, allowing us to detect a duplicate request that you can then ignore.


One of the benefits of this approach is that the clients aren’t required to do anything new. This makes this technique useful in situations where you are retrofitting idempotency into an existing API where you don’t want to (or can’t) change the client in any way.


There is an issue with this approach though. It is possible that you can produce false negatives - that is, you might think a request that comes through is a duplicate that should be ignored, when in fact it shouldn’t be.


All request fingerprinting can do is determine if the two requests are the same. It can’t determine whether or not it was the client’s intent to perform the operation only once.
Now, the likelihood of a client wanting to pay the exact same person the same amount seems remote. But consider a regular payment. What if you want to send £100 to the same person every week? If the request parameters look the same as the previous payment, you could think that payment has already been processed.


A protection against this would be to specify some time limit. For example, if you see two identical payments within a few seconds, you might assume that the subsequent requests in the same time period with the same fingerprint are in fact duplicates and should be ignored. But if a duplicate request was received much later, you might assume that this is intended to be processed a second time. In this way, you consider that the fingerprint has a period of validity - the exact duration for this would have to be determined based on the nature of the operation.


Even if you have a defined period of validity, is that certain to fix the problem of false negatives? Let’s consider a different type of interaction. You have an API that allows you to spin up a virtual machine. How likely is it that a client would actually want to provision more than one identical VM in a short period of time? Actually, it’s a pretty common situation - imagine spinning up a bunch of infrastructure to run a set of services for example5.


So whilst request fingerprinting can work in many situations, it’s not foolproof. How could you improve the situation?














Client Request IDs


One of the issues with server-side request fingerprinting is that it’s difficult to know the client’s intent when you receive two identical requests. Did they mean to send the request once, or twice? A simple fix is to have the client provide a unique ID for the request, so that you can differentiate between these two use cases.


When receiving a request, the server then just needs to check the request ID provided against the IDs received for previous requests. The second of two requests with the same ID can be interpreted as a retry and can therefore be ignored. However two requests that are otherwise identical aside from having different client request IDs would both be processed.


The main difficulty with request IDs is that the client needs to send them. This can be specified when designing a service interface in the first place. However when retrofitting this into an existing API, you may have to start with the request ID being an optional parameter unless you want to introduce a breaking change.


There is the open question of how to generate the ID of the request. A sensible starting point would be to use a UUID, which can reasonably be considered to be unique and is easy to generate. If this request is being done as part of a larger trace of calls across a set of services, you might be tempted to reuse an existing trace ID for those calls - I’d advise against this though as it could cause issues if you need to legitimately perform the same request twice as part of the same trace.


When a server receives a request and checks the request ID, it needs to check it against a list of previously processed requests. Initially you might think to keep this list of previously handled requests in memory. The problem with that is twofold. Firstly, if the server is restarted, the list of processed IDs is lost. Secondly, it’s common for you to have multiple instances of a service, and the list of processed IDs should be shared across all instances if you want to avoid repeating work. An obvious fix is to store the list of processed IDs in a shared data store which all instances of a service can share from, but this can introduce latency due to contention on the shared data store.














Edge Cases


There are a couple of edge cases when it comes to implementing idempotent operations that are worth considering.


The first is what happens if the client changes part of the request when sending a retry. There can be situations where this is legitimate. For example, if you were propagating a timeout, you would send the remaining timeout budget to the server as part of the request (as I discussed in “Timeout Propagation”). After each retry, the remaining time would reduce.
In such a situation, when using server side fingerprinting, the server would need to know that part of the request would need to be ignored when generating the hash. In HTTP, you have a clear separation between the header and the body of a request. The header contains all sorts of metadata that may well change between retries - so putting timeout propagation fields there would be appropriate. Then you could limit yourself to using the request body when generating the server side fingerprint.


Alternatively, you might just assume that client request IDs are good enough in this situation. This could result in nasty bugs occurring though. If the client is (erroneously) changing fields in the request body for a retry, and the server is sending back confirmation that the request was successfully handled, it might not be clear to the client which version of their request actually got processed. The AWS APIs for example take the blanket decision that a repeated request with the same ID but different parameters in the body is an error case, and a validation error is thrown back to the client accordingly. I think this is generally a sensible solution - the goal in this situation is to tell the client they were doing something silly.


With the AWS APIs, the desire to catch scenarios like this is why they use both request IDs and server side fingerprinting. It allows them to go beyond documenting what they expect clients to do (don’t change request body parameters for retries), and instead is able to make sure they actually are doing the right thing.


Another edge case which is a little less clear cut is what happens if the resource being operated on is changed or even deleted between the original request being sent and a subsequent retry. Consider Figure 3-7, where you are upgrading the subscription for a customer. Client A sends an update request, which is accepted and processed by Subscription, but the response sent back confirming the payment never reaches Client A. Before Client A can retry the operation (remember we’ll likely have some sort of back-off in place), Client B comes in and deletes the same subscription that you just upgraded. Then, Client A retries the original upgrade request.



[image: A sequence diagram showing Client A asking for subscription 123 to be updated. The original request succeeds]
Figure 3-7. What happens when you retry an operation that already succeeded if the thing you changed got deleted in the meantime?




What should the server do in this situation? It might at first seem odd, but the server should acknowledge the second request and state that it completed successfully. The subscription was updated. The fact that it was subsequently deleted doesn’t change the fact that the original request was applied.


Think of it a different way. If Client A had received the original response, it wouldn’t have had to retry. It would have received the success response before the deletion by Client B - the fact that it was subsequently deleted is a separate issue.


The thorny issue here is that the original request may not have actually been applied in the first place. In Figure 3-8, the original request never made it through. Before the retry is sent, the subscription is deleted. In this situation, an error would be appropriate - the request was not applied, and so telling the client that the subscription is no longer there is the appropriate response.



[image: A sequence diagram showing Client A asking for subscription 123 to be updated]
Figure 3-8. If the original upgrade request was not processed before the deletion, an error is the appropriate response




This might seem confusing at first. Just remember, that if a server is seeing a retried request that was previously successfully handled, all you need to do is give the same response again.














Real World Examples


For a concrete example of idempotent APIs in the wild, specifically in the area of online payments, Stripe6, Adyen and WorldPay all make use of an Idempotency-Key header in their APIs to allow for safe retries. Outside of the world of payments, the AWS APIs make use of a ClientRequestIdentifier 7 and also use server side fingerprinting to check for changes to the request. There is also a draft update to the HTTP specification proposing the creation of a new Idempotency-Key as a standard header8, with the use of server side fingerprinting being considered optional.


Declarative Programming

Declarative programming is a style of programming that avoids the use of control flow logic (such as if…​else), and instead has you focus on making statements about what you want to achieve - rather than how you should do it. The details around mechanics of how this is done is hidden away.


Examples where you will see declarative programming include infrastructure as code toolchains like Ansible or Puppet, or build systems like make or Maven.


A core tenant of declarative programming is that it is supposed to be by definition idempotent. When you have an Ansible script that defines how a machine is to be set up, and you run that script a second time, if the machine is already in the expected state then nothing happens - the machine isn’t set up another time.


Thinking in a declarative style can be one way to help you focus on idempotency, even if it’s not feasible to create your own declarative abstraction for your otherwise imperative code.














Conclusion


So, when at first you don’t succeed, try, try again! Unless you shouldn’t retry in the first place. And if you do decide to try again, you may want to limit how often you do it. So I get that this can be confusing, but let’s try to bring it all together.


Firstly, when you try something and it doesn’t work, try and find out from the nature of the failure if a retry is appropriate. If it looks like a transient error, a retry may be in order. If it’s the equivalent of a HTTP 404 Not Found status code, then perhaps a retry doesn’t make sense.


If you decide to retry, make sure you have an upper limit, and set it conservatively to ensure you aren’t bombarding the server.  Just make sure you consider the complexity of what happens with retries in call chains, as this might make you consider propagating timeouts.
Between retries, have a simple exponential back-off policy with some jitter. Client libraries like Resilience4J or Polly can do this for you.


Finally, retrying calls is often the best thing for a client to do to make sure something happens. But for that to work, it’s essential the server implements the operation in an idempotent manner. Otherwise you might end up with some unexpected behavior!


In both this and the previous chapter I discussed the need for clients to be wary of overloading servers. In the next chapter, I’ll explore this in more detail, looking not only at some more sophisticated client behavior, but also looking at what you can do at the server side to ensure your systems don’t get too overloaded.










Further Reading


For a deeper dive into the benefits of exponential back-off and jitter, Marc Brooker has a great explanation using simulated traffic patterns over at the AWS Architecture Blog. For something more interactive, Sam Rose has an exceptional visual simulation of the impact of different retry mechanisms which runs entirely in the browser.



1 Also at this point I’d like to send out a plea for you damn kids to keep off my lawn
2 https://medium.com/square-corner-blog/incident-summary-2017-03-16-2f65be39297
3 Although as a struggling technical author, I’d be pretty happy with the situation. I do have a mortgage to pay for
4 We could start discussing which of these terms is correct, but the term “lift” is preferred in the international standard ISO 8100-20:2018 which governs “Lifts for the transport of persons and goods”. If it’s good enough for the ISO, it’s good enough for me.
5 This is a real-world example and a situation that public cloud vendors need to deal with
6 https://stripe.com/blog/idempotency
7 https://aws.amazon.com/builders-library/making-retries-safe-with-idempotent-APIs/
8 https://www.ietf.org/id/draft-ietf-httpapi-idempotency-key-header-03.html









Chapter 4. Thundering Herds


A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the fifth chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

			


You glimpse it first on the horizon. Is that smoke? No, something worse - it’s dust, kicked up by a thundering herd. And it’s heading your way. Any moment now, the herd will arrive, sweeping all before it, leaving everything in its wake broken and destroyed.


Now, obviously, as metaphors for system problems, this might be a bit over the top, but I think you get the idea. When it comes to keeping systems up and running, few things worry us more than some thundering herd unexpectedly arriving, taking the system down. Be it a sudden interest in a new product, a denial of service attack launched by some nefarious ne’er-do-well, or even a sudden spike in load that your own system accidentally inflicted upon itself, the thundering herd is a potentially catastrophic event that may seem outside of your control.


In this chapter, I’ll take you through several examples of the thundering herd. Some are examples I’ve taken directly from real stories, others slightly more contrived examples of challenges that are commonly faced with distributed systems. As I take you through each example, I’ll also share with you some concrete tips on how the damage from these herds can be mitigated, and perhaps even how the herds themselves can be avoided altogether.. Before we get there though, I want to go into a little bit more detail about what thundering herds are, and why they are so problematic.








What Is A Thundering Herd?


In computing, when a lot of work arrives all trying to access a constrained resource, this is commonly referred to as a thundering herd. The causes are manifold, as are the potential ways to deal with them. Fundamentally though, some part of your system is being asked to do way too much work, which in turn risks that component failing with some nasty knock-on effects.


One of the challenges with thundering herds is that they are nearly always unannounced, and can often appear suddenly. This means that machines and networks that were previously working well within acceptable tolerances become saturated at short notice. Available network bandwidth vanishes, CPUs are suddenly maxed out without any ability to take on more work. Memory gets filled up and starts getting swapped to disk, tanking performance. If these things started happening gradually, over time, you would hopefully pick up the general trends and adapt. But when everything goes from being OK to being bad in a very short space of time, you’re in a situation where you’re having to fix a problem without the benefit of time.


Some herds come from outside your system, whilst others are generated internally. External sources include things such as denial of service attacks, or significant (and perhaps unexpected) increases in user traffic. Denial of service attacks are specifically intended to make your system unavailable, and as such can be especially problematic. The intent (and often capabilities) of such an attack are such that this is worthy of special focus, and later in this chapter we’ll explore this in more depth. But many thundering herds are generated internally, and in the aftermath can often feel like they were self inflicted. They often occur in the wake of a failure elsewhere in the system, leading to unexpected consequences. Let’s start there, looking at some examples of internal thundering herds, and see what we can do to mitigate them.


Definitions and metaphors

In the context of computing, the term “thundering herd” has often been used in fairly narrow circumstances, most often used to describe what happens when multiple threads or processes on a single computer are competing for the same resource. Fundamentally though, the use of the “thundering herd” is a metaphor - it’s drawing a parallel with a herd of animals charging forward in an unstoppable stampede. Personally, I think it’s odd to limit the use of a metaphor to a very narrow set of circumstances, so I am using the term more broadly.












Load Balancer Domino


As we’ll explore in more detail in the [Link to Come], we typically think of load balancers as something that can help make our systems more robust. A load balancer distributes requests across multiple servers. If one of those servers starts misbehaving, requests will be distributed across the remaining servers, hopefully ensuring that a problem with one server won’t be too impactful for the system as a whole.


However, things can still go wrong. In the face of a thundering herd, a load balancer can only do so much. And a service which was just about holding up to the amount of work being sent its way may well find itself in trouble if a server goes down.










Example: Pet Service


Let’s look at an example of this type of failure mode in the context of the Pet service. In Figure 4-1, we see four instances of the Pet service, each of which is currently handling 120 requests. Requests sent to these instances are routed via a load balancer which attempts to ensure that the work is evenly distributed across each instance.



[image: Four boxes representing instances of the Pet service. Calls to the Pet service are represented as arrows]
Figure 4-1. Four instances of the Pet service being load balanced




Each of these instances is very close to their limit - their computing resources are close to being saturated. If nothing goes wrong, the service can continue to handle this load. However, if one of these instances fails as in Figure 4-2, then initially the requests the instance is handling would all be dropped, with the clients having to decide if they want to retry them. If we assume that work is still arriving at a consistent rate, we’d expect the 120 requests that the failed node was handling to end up being redistributed across the remaining instances. We could then expect the remaining three instances to end up having to handle 160 concurrent requests each - which if our instances were already on the limit handling just 120 concurrent requests, could be a major problem.



[image: One of the Pet service instances is unavailable]
Figure 4-2. An instance failure means incoming work is distributed across the remaining three instances




Each of the remaining instances is in effect dealing with its own thundering herd. A sudden, unexpected spike in the amount of work. If you are unlucky, then this additional load pushes the remaining instances over their limit, potentially causing them to fail, creating a nasty domino effect as each one stops responding. Another instance fails, so more work is distributed across the remaining instances, which in turn are way over capacity, so they too fail.












Mitigations


The nature of this failure is particularly unpleasant. A single failure causes a subsequent cascade of failures, resulting in the service being taken offline in a fairly short space of time. Luckily, there are several potential mitigations to this type of issue.












Over Provision


The easiest solution to avoid the Pet service’s cascading failure is to have excess capacity on hand to ensure that even if a single instance of the Pet service fails, the remaining instances can handle the expected number of requests.


In the original scenario, the Pet service had four instances, each of which were handling 120 concurrent requests. If we increase the number of instances to five, as in Figure 4-3,  each instance of our service is now doing less work (handling 96 concurrent requests each, down from 120) and therefore has more headroom to handle more work in the future.



[image: On the left hand side we see four instances of the Pet service underneath a load balancer with 120 requests each. On the right hand side]
Figure 4-3. Adding an additional instance reduces the number of requests each instance handles




If a single node fails, we go from five instances to four, and each of the remaining instances are now expected to handle 120 concurrent requests, which is still within the capabilities of each instance. The excess capacity we had available is able to absorb the additional work, avoiding the cascading failure.


Now of course the question comes down to how much to over provision. If we’re trying to cover off the failure of a single instance, having a single extra instance to cover that failure in our scenario would be sufficient. But what if we were worried about multiple instances failing at once? This could be a concern if you had a number of instances running in a data center (or public cloud availability zone) and you wanted to hedge against the risk of all instances in that data center failing. The more you over provision though, the more it costs - and if you are trying to hedge against multiple instances failing at once, then the costs of having to run multiple extra copies of your service could add up quickly.


Concerns around cost aside, over provisioning should probably be your initial go-to to hedge against this type of failure. That said, some of the other mitigations we’ll look at next could easily be used in conjunction with some degree of over provisioning.

A Note On Load Balancers

In the Pet example, I’m assuming that the load balancer is able to perfectly balance work across each instance. In reality, whilst load balancers will do their best to achieve this, it’s not always possible to get a perfect distribution of work.














Reduce Work


Once the Pet instance fails, the remaining instances become crushed under the thundering herd that the now defunct instance is no longer handling. What if you could just make that extra work go away?


A viable approach to keeping systems stable is to limit the number of calls that a service will accept - a concept called rate limiting But in a nutshell, with rate limiting, you specify a limit above which additional work would be rejected.


The idea is that it is better to process some work and remain stable, rather than running the risk of the system failing due to trying to handle all the work. If each instance of the Pet service was able to reject traffic over and above its limit, then the service as a whole would keep running, albeit at a reduced capacity.


There are different ways to implement rate limiting, and we’ll be exploring that topic in detail in Chapter 5.












Desired State Management


Many tools exist to allow you to specify how you want your infrastructure to be configured. Tools like Terraform, Pulumi, Crossplane et al, allow you to specify how you want your infrastructure to look, and then they sort out the details. Kubernetes and public cloud autoscaling groups for virtual machines allow you to do similar things, albeit for a more narrow set of circumstances.


Some of these tools can go further, and if at some point after defining your desired state something changes in the actual system, then the tool can detect this and carry out actions to bring the system back into line with your desired state. This is what is known as desired state management - the tool is continually ensuring that your system is matching your desired state as closely as possible.


For example, let’s imagine that we’ve deployed the Pet service on to Kubernetes. When you deploy a service, you specify how many copies of the service you want1. If, after deployment, one of those instances goes offline (perhaps because the underlying physical machine had an issue), Kubernetes would realize you had one fewer instance than desired, and automatically spin up a replacement.


On the face of it, a tool managing the desired state of our Pet service instances seems to be a great solution. When deployed on Kubernetes, if one of our instances dies, Kubernetes will spin up a replacement! In addition, this could save us money if we’re renting our computing resources - we don’t need to pay extra money to have spare capacity sitting around.


The issue here is speed of replacement. There is going to be a period of time between our instance going offline, Kubernetes (for example) noticing, and a replacement instance being provisioned. Some of this is under your control - you could for example make sure that an instance of the Pet service can be launched and fully functional as quickly as possible (and this is one area where container-based deployments typically do better than virtual machines). However, whilst you are waiting for the replacement to be available, if the work keeps coming in, you might find that other instances of the Pet service start failing before new instances are available to take the load.


One potential solution to the delay in provisioning a replacement would be to use desired state management in conjunction with some form of rate limiting. The overall rate limit of a service will be determined by sum of the rate limits of all instances that deliver that service (assuming even distribution of work). So if each instance could handle 20 concurrent requests, and you had five instances, the service as a whole would have a rate limit of 100 concurrent requests. If an instance goes offline, then the overall rate limit of the service would reduce to 80 concurrent requests. Reducing the rate limit being applied when an instance fails would protect the service until the replacement instance is available, at which point the rate limit would return to it’s previous level.


Tools that provide desired state management are excellent, for a multitude of reasons. They solve many problems very well. If you’d like to explore the space of infrastructure automation in more detail, I can recommend the 3rd edition of Infrastructure Of Code2.

Warning

If spinning up new or replacement infrastructure takes too long, it may not arrive quickly enough to help.














Reduce Failure Rate


The cascading failure here is caused by one of the Pet instances failing. So, why not just stop that failure from happening?


In the case of the Pet service, we’re worried about a computer going offline. So what could we do to reduce the chances of that happening? With a physical machine, ensuring the storage is redundant so a single hard drive failure doesn’t take the machine down is one thing to consider. In some cases, redundant power supplies can make sense, especially as power supply failure is not unheard of. Ensuring that the location where your machine is running has an uninterrupted power supply could help further.


I could go on. The key thing to understand is that whilst many of these approaches to reducing the failure rate of an individual machine may help, they all cost money, and none of them will result in a cast iron guarantee that the machine will not fail in some other way.


You might have a redundant power supply, but does that protect you from water leaking into the data center rack? Your machine’s OS might be running from a massively redundant and reliable storage area network (SAN), but what happens when the SAN catches fire? These examples aren’t hyperbole, they are both real-world examples3.


Don’t get me wrong, reducing the failure rate of a component in a system is often a sensible and cost effective thing to do, but you cannot eliminate the chance that a specific component could fail, as we covered back in Chapter 1. Remember the example of the Google racks, where relatively cheap hardware was used, with components with a high failure rate attached via velcro? Rather than expensive servers, early on Google just accepted that servers could fail, and built their systems with that failure in mind. Hoping a component won’t fail is not a sensible approach if you are unprepared for when the worst does happen.

Warning

Hope is not a strategy.














Cache Collapse


Caches are a widely used mechanism to help improve system scale and speed. By taking a value that has been already calculated, and storing that in a way that means it is much faster to access in the future, the value can be retrieved more quickly, and pressure can be taken off parts of the system.


In the context of distributed systems, caches are often used to store data locally, rather than fetching it from the origin. For example, when requesting a view of an order from a database, you would need to send a query over the network to the database to retrieve the data, wait for the query to be executed, then sent back. You could then keep hold of that view of the order, storing it in memory. The upside of caching in this example is that subsequent requests to view the order will be returned much more quickly than requiring a roundtrip to the database, and in addition you may end up reducing load on the database itself. The downside is that the cached view of the order might be out of date - an update to change the order in the database doesn’t magically update your in-memory copy.


However, when caches fail, they can result in another type of thundering herd. Requests previously dealt with at a cache now instead head to the origin - potentially taking components not used to dealing with that degree of load offline.










Example: ShopCorp Catalog Cache Failure


In Figure 4-4, you can see three instances of an order service, part of a wider ecommerce system for ShopCorp. One of the prime sources of information for the order service is information about the items for sale, which is provided by the catalog service. To speed up order processing, the order instances make use of a cache to store the catalog information.



[image: ch05 cache example]
Figure 4-4. Order instances store information from the Catalog service in a dedicated cache




This cache is running as a separate process, and for the sake of this example you could assume it is running Redis, memcache or some other similar dedicated caching software. Given that this cache is there to support the order service itself, you could logically think of it as part of the order service itself. Retrieving information from the cache should be faster than retrieving the same information from the catalog service itself, with the added benefit that it reduces the number of calls to the catalog service.


When needing to retrieve Catalog information, the Order instances will first check the cache. If the information is not available there, the Order instance will then fetch the required information from the Catalog service, and put it into the cache. This is an example of what is known as a cache-aside pattern.


As ShopCorp grew, and the order volume increased, the Catalog service was still able to support the increased order volume, as the majority of the calls to fetch catalog-related data are served by the cache. One day however, a problem occurs. A hardware failure results in the caching node being brought down. It is quickly restarted. However one of the problems with storing data in memory is that in the vast majority of computer systems, memory contents are not persisted between restarts. So this newly relaunched caching node has nothing in its cache. Suddenly, the requests that were previously being served from the cache are now instead thundering towards the Catalog service.












Mitigations


Perhaps ShopCorp is lucky, and when the cache fails, the Catalog service has enough capacity to serve the sudden spike in traffic. However we know that the Catalog service won’t be able to respond as quickly as the cache could. So ShopCorp could expect the order processing to be slowed even if it does withstand the initial herd. It’s worth noting that if order processing speed degrades, assuming the same amount of work is coming in, then each order instance would be handling more concurrent requests - the relationship between concurrency and the speed of processing is something I’ll come back to when we look at Little’s law in <<scaling-chapter>.


But what if ShopCorp isn’t lucky? What if this thundering herd is sufficient to ove












Cache In Service Instances


One option ShopCorp has is to remove the use of a separate caching node, and have each instance of Order store its own cache of catalog information in-memory. On the face of it, this has some nice benefits. ShopCorp would have removed the need for a separate caching node, simplifying their topology. Also, if the goal is speed, then fetching data from memory on the order instance itself should be faster than fetching data from the caching node, as you avoid paying the penalty for the network calls.


There are a few issues with this approach though. Firstly, if each instance of Order service stores its own cache, each of those caches will need to be filled up - this would increase the traffic on the catalog service however, as each order instance has to fill up its own cache, resorting to making calls to the Catalog service when the Order instance experiences a cache miss. Additionally, one of the benefits of having a dedicated caching node is that the machine it runs on can be tuned for caching purposes - having lots more high speed memory for example. Ensuring that each instance of the Catalog service has the same ability to store as much data in memory as the dedicated caching node could get expensive.


Fundamentally though, to what extent does this solve the problem? You no longer depend on the caching node, but what happens if an Order instance is restarted? At that point, its in-memory cache is emptied, and it would need to fill it up. From a release process point of view this can be mitigated by only releasing changes to the Order service via rolling updates - this would involve gradually shutting down old versions of an instance, and spinning up new ones in a managed way. This could reduce the flood of calls to the Catalog service, but would still be an added complication. And even if a rolling update process did work, that doesn’t help in the case of an unplanned outage.












A More Resilient Cache


Instead of accepting the premise that the cache can fail entirely, how about we make the cache more robust? Some caching software provides the ability for you to run a cluster of nodes. The idea being that if one machine fails, other cache nodes can still provide access to the required data. We’ll explore some of the implications of cluster-based software like this in more detail in [Link to Come], but the idea is that you are reducing the impact of a single machine failing.


Generally, machines can fail and go offline for a variety of reasons. At a fundamental level, even if this is abstracted from you, a computer runs on hardware. And hardware can fail. Power supplies can stop working, network cables can get severed, and floods can take out servers. For this reason, it is often highly sensible to have solutions that mean a single machine failing doesn’t cause the entire service (in this case a caching node) to fail.


This creates a new headache. We now need caching software that supports this sort of setup, which might limit your software options. In some cases it might involve more expensive license fees to vendors, and even if that isn’t the case you will need more hardware, which is an increased cost. Plus, our system as a whole is getting more complex once again.


On the other hand, you may be able to take advantage of a managed service that supports a clustered model. AWS, Azure and Google Cloud can provide caching services that can tolerate single machine failovers, and in some cases (such as with Google Cloud’s memory store or AWS ElastiCache) can replicate cache data across regions. Of course whilst the public cloud vendors will no doubt do an excellent job of providing this for you, they’ll also charge you for the privilege!












Improve Recovery Time


When bad things happen, recovering quickly is normally a good idea. In this scenario, the cache has failed, and the system as a result will be under more load until the cache is once again filled up. So, how about getting the cache back up and running more quickly, even in a situation where we are only running a single caching instance?


Both redis and memcache, popular open source caching solutions, provide the ability to periodically flush snapshots of the cache to disk. When the caching node is shut down and restarted, this snapshot can then be read, populating the in-memory cache, so it can start serving data more quickly. In our scenario, this would help greatly if the caching node was quickly restarted - there may be a small window in which requests would be hitting the origin (the catalog service in our example), but once the caching node is relaunched and the snapshot file read, the cache could once again start helping remove load from the origin and speeding up request handling.


There are a couple of downsides here. With both memcache and redis, data is not typically written to disk the moment it is updated in the cache. This is by design. Caches are designed to be fast - if you waited for the updated data to also be written to disk, this would slow down cache writes. As a result, the flushing of updated data to a file is done periodically - by default redis does this every 5-15mins, depending on how much has been updated. This means that there is a potential for the data that has been written into the cache to not be persisted across restarts, which could increase cache misses in the wake of an outage. As long as you know how much data could potentially be lost in this scenario, this is still very manageable in most scenarios.


Another issue here is the fact that the data is persisted to disk. If the machine the cache was on caught fire, the data might be lost too. So, in the scenario where the caching node might need to be brought up on a different machine you’d need to have some way for the snapshot file to be shared with other machines. Using a data volume that can be “attached” to different machines (such as Kubernetes volumes or AWS’ Elastic Block Store devices) might be one option, or else persisting the file to a distributed file system like ZFS or similar could help.


Finally, you need to ensure that a replacement caching node can be brought up swiftly. If it takes you minutes or hours for the cache node to be brought back up, then your DB is going to be at risk of a thundering herd for the duration. If the caching node was being run on a platform like Kubernetes, a replacement may well be spun up automatically for you - so running your cache in an environment where a desired state management solution can do the heavy lifting for you could be incredibly helpful.


These challenges aside, if your caching solution supports storing snapshots to disk, in the case of ShopCorp at least this seems like a somewhat straightforward thing to implement. It won’t solve all problems, but it will at the very least help recovery time should the worst happen.












Disable The Service


Coming back to a topic we’ve already covered previously, it is better to fail fast than to fail slow. And it is better to fail in a managed way, than to fail in a catastrophic way. If, when the cache fails, the resulting calls to catalog would cause the system to grind to a halt, then it might make sense to stop taking orders until the cache has been repopulated.


A less extreme version of this may be to implement some rate limiting at the catalog service - perhaps reducing the amount of requests that will be processed until the cache is back up and running. This would allow us to still process some orders, which is almost certainly better than processing zero orders!












Mismatched Capacities


Sometimes you can end up generating your own thundering herd when trying to scale parts of the system up. This can especially be the case if you scale up one part of your system without taking other parts into account. It can be like forcing more and more water into a pipe that doesn’t have the capacity to handle it - eventually, something is going to burst.










Example: BankCo Pricing Grid


You may recall the story I told in Chapter 3, where I was working for BankCo building a system to perform calculations across a large number of machines back in the mid-2000s. One of the goals of the project was to be able to provide these calculations faster, and as a result we had selected technology called DataSynapse which allowed us to scale up the number of machines available for the calculations. Unfortunately, simply spinning up more machines didn’t go to plan.


In Figure 4-5 you can see a heavily simplified version of the architecture we had built. Requests for calculations came into the queue, and were in turn picked up once a calculation agent, which was running as part of a DataSynapse cluster, became available. Once the agent completed its calculation, this information was put into another queue, so the results could be picked up by the persistence service and written to a database. There was one key component that we relied upon which wasn’t under our control. One of the key inputs to the calculations came from the risk service, which was managed by a separate team. This service provided a lot of factual information, such as details about bonds, interest rates and the like.



[image: The calculation system]
Figure 4-5. The calculation system




BankCo made use of a standby office, located outside of London. This was to ensure that if for some reason the central London location could not be used, then essential bank employees would be able to move to the standby site to carry on their work. Due to the important nature of the work (or should I say the amount of money the bank hoped this work would generate), it was essential that the standby site was operational at all times to ensure that it was always ready in the event of an emergency. As a result, it was full of desktop computers which were switched on, but otherwise idle.












Scaling Up


At this point, our system had been running well with around 25 servers acting as calculation agents, but we wanted to push it up a notch. One of the things DataSynapse allowed us to do was to run agents as screen savers. When the screen saver triggered, after a period of time it was assumed that machine was idle, at which point the machine would be added to the pool of workers that could be used to carry out work. It didn’t take us long to connect the dots between the availability of the DataSynapse screen saver agent, and the large number of desktop machines sitting idle in the standby office location. After what proved to be an all too short chat, it was agreed to roll out the screen saver agent to all of these terminals. We went very quickly from having 25 calculation agents, to over a hundred, as shown in Figure 4-6. This did not go well.



[image: Increasing the number of calculation agents overwhelmed the risk service]
Figure 4-6. Increasing the number of calculation agents overwhelmed the risk service




The problem was that we had increased the number of agents able to carry out calculations, but we hadn’t scaled up any other part of the system. This meant that we created our own thundering herd of requests to the poor risk service, which was not expecting this call volume. As a result, it was effectively taken offline due to our barrage of calls. This was bad for us, as it meant we couldn’t perform any calculations, but it was also bad for the other systems across the bank who also made use of the risk service.


Too Much Of A Good Thing

Sometimes a technical improvement can cause more headaches. Java 19 (re)introduced the concept of virtual threads. Previously, for much of Java’s life, a thread in Java mapped to an operating system thread. This provided an upper bound to how many threads a Java Virtual Machine (JVM) could handle in many situations, in turn reducing how many concurrent requests a JVM could manage. With Java 19, it was once again possible to create virtual threads (something that had previously been possible very early on with Java, although the earlier virtual thread implementation was a very different beast). An existing Java client switching from native to new virtual threads could end up being able to generate much more traffic, and from anecdotal reports I’m already hearing of situations where this is resulting in thundering herds.


In general, the option to run virtual threads seems to be a good thing, and in many cases should benefit the amount of work a JVM-based system can process. However you probably want to do some testing first to ensure you don’t cause system instability. Starting with server rather than client processes is probably the right place to start, and all clients should be able to make use of connection pools to limit the number of calls an individual client process can make.














A Lucky Break


We did catch one lucky break. The service that picked up the results of the calculations wasn’t crushed under the surge of results. Partly this was due to the fact that once the risk service went offline, the calculations stopped being performed. But even as the load built up to breaking point, the persistence service survived due to how work was funneled to it. When calculations were completed, the results were sent into a queue. Luckily (and it was luck!), the message broker we were using was able to handle the increased number of calculations being sent to it. The queue then in effect worked as a rate limiting mechanism. The persistence service only had so many threads that could consume from the queue at any point in time. The depth of the queue didn’t increase the upper bound of how much work the persistence service was able to pick up.


We theorized at the time that if we had also scaled up the number of persistence service nodes that we could likely have created a different problem. Having more instances of the persistence service may have allowed us to handle more of the work in the queue in parallel, but this would then have just increased the amount of writes being sent to the database, and we could well have unleashed another thundering herd onto our poor, unsuspecting database server. Our database server infrastructure was shared with other teams, and so a problem there could have had a knock-on effect to other applications.












Mitigations


Although our attempts in scaling up our system did end in failure, it was an excellent learning experience, as is often the case with such things. Looking back, there were a number of things that I took from this experience, although I know that only one or two of these things actually occurred to me at the time. Hindsight is a wonderful thing - but at the same time if I hadn’t learned something in the nearly 20 years since the incident itself then I would have to question what I’ve been doing with my time!


I should also highlight that there was no post mortem after this incident, so it’s likely that some of these things might have come up back then if we’d got together and really dug into what happened and how things could have been improved. I’ll come back to the topic of post mortems and the role they can play in
 Chapter 5.


So, with all the benefits of hindsight, it turns out that there were a number of things we could have done better.












Better Load Testing


Whilst we had done some load testing of our pricing grid, it did not get close to the scale we planned to run at in production. In some cases, recreating a load test environment identical or even close to the real production environment may not be practical. In our case, we didn’t have access to enough infrastructure in the test environment to recreate the production environment exactly, but at the very least we should have acknowledged that from the start.














Gradual Ramp Up


If we had ramped up the number of pricing agents more gradually, observing system behavior as we went, then we may well have spotted the problem we were causing for the risk service before things went too far. Given that we didn’t have the ability to create a production-like environment for our load testing, having a plan to gradually ramp up the number of agents would have been even more important.


When ramping up, understanding what signals you will be observing during the ramp up is vital. What parts of the system do you think will be stressed? Do you have visibility into those parts of the system? In our case, we only had the ability to get information from our own services, and so had no direct insight as to what was happening for the risk service. Ideally we would have had access to that information, but even without that we could have involved the risk team in the ramp up exercise, with them letting us know if we were pushing things too far.














Rate Limiting


The risk service kept trying to handle more and more traffic until it essentially stopped working. Ideally, as the risk service got close to capacity it should have started rate limiting, dropping calls that would otherwise have made the service unstable.


You can do your best to ensure that clients are well behaved, and don’t send in a flood of calls that can’t be handled, but as a service owner you can’t guarantee that clients will always do the right thing, Additionally here may be a number of factors outside of either the control of the service owner or clients which can cause problems. For example both DDoS attacks or network misconfiguration could result in unexpected spikes in the load. For this reason service owners should prioritise having some defences in place to protect against unexpected spikes in traffic.














Improve Communication


Looking back though, the biggest failure was the lack of communication. As we explored in depth in Chapter 1,, the systems we are building bring both technology and people together. In our obsession playing with the cool technology in front of us4, we’d forgotten about the other people in the system. If we’d stepped back and thought a bit more holistically about the other teams involved, it would have been obvious that working more closely with the team who looked after the risk service would have resulted in a much better outcome.


Better communication between teams before the event would also have been helpful. The risk team never thought that they would need to handle the level of traffic we sent them. They had done their own testing, and had a set of expectations about what “normal” load looked like. But that information was internal to the team, and not communicated (or agreed) with their consumers. In [Link to Come] we’ll look into Service Level Objectives (SLOs). When a team defines an SLO, it is often used as commitment to a level of service that consumers of that service could expect. Normally, consumer-facing SLOs would be defined in agreement with the consumers themselves - SLOs are a measurable result of a conversation. They represent an artifact of an agreement that can be tracked and changed if required.


If the risk team had defined SLOs (not that people talked about such things back in the mid 2000s), we could have used that as a target to work against. If we found that the SLO the risk team offered didn’t match what we needed to handle the growing size of our pricing grid, then that would have been a great trigger to have another conversation.














Roaring Success


“Twitter is doing us a service, with its lack of stability, in illustrating the dangers of centralized systems. We do need to figure out how to build a Twitter-like system with all the advantages of centralization and none of the disadvantages.”

Dave Winer 2008




Sites suffering from initial surges in popularity were not uncommon during the various .com booms. While as an industry we seem to be a bit better at understanding how to scale systems up, spikes in popularity can still result in a thundering herd that can bring our systems down.


In fact, the cycle of “grow quick” isn’t just an obsession of the 2000s. Until recently, the relative abundance of “cheap” money (caused by ultra low interest rates) resulted in many VC-backed startups throwing money into scaling quickly, in the hope of one day being an actual proper profitable company. For many of these organizations, we can summarize their business model as:


	
Grow Users



	
?



	
Profit!







A focus on growing the user base means that startups were frequently looking to incentivize as many users signing up as possible. At the same time, the success of acquiring these new users can bring instability that makes getting to step 3 in the business plan seem unlikely.


The rush of users to your new product may be welcome, but it can also manifest itself as an example of an external thundering herd. And whilst as an industry we have gotten better at dealing with user growth (largely due to the lessons learned during the various dotcom successes and failures), it is still all too possible for you to create a system so attractive to potential new users that you end up inciting your own thundering herd.


Compared to some of the other thundering herds we’ve looked at so far in this chapter, the load generated by this type of overnight success is a little different. Firstly, you often get a bit more notice about it coming, and this means that measures like securing extra hardware can often be done ahead of time. The types of calamity caused by a cache failing or a denial of service attack are often hard to see coming, and those particular thundering herds can be on you before you have time to react.


On the other hand, a sudden increase of new users may take longer to dissipate. And whilst with other herds the goal may be to ride it out, and perhaps even degrade functionality or shut things down entirely to ensure you survive, that could be catastrophic if you were an early stage startup aiming to grow a customer base.


Examples of public systems being taken down by unexpected demand are commonplace, even if the underlying lessons to be learned from each may differ.










Example: Twitter


Back in 2007 I was fortunate enough to be invited to speak at a conference called XTech, which that year was in Paris. It was a conference focused on the technologies around Web 2.0 (which at this point was in full flight), and I had somehow slipped through the net to talk about database change management5. During the conference, I went to a talk by some of the lead engineers at an up and coming new type of social network called Twitter. It was starting to get a bit of interest at the time. I actually remember signing up during the talk just to see what all the fuss was about.


I forget the exact title of the talk, but the gist of it was that the engineers were outlining how they had decided to essentially build their own message broker. In a moment of extreme smugness on my part, it appeared to me that the presenters seemed unaware that other message brokers existed or what would be involved in building one. The talk was unfortunately interrupted, as at least one of the presenters had to rush off stage due to the fact that Twitter had gone down. My smugness only increased.


During Twitter’s early days, the system outages were so common that the error page showing a whale being lifted up by a flock of orange birds became an all too familiar sight for users of the growing platform. The fail whale, as the image became known, came to represent Twitter’s inability to keep up with demand. It took a reasonable amount of time before the system stabilized to the point where, at least until the recent change in ownership, it could be considered a reliable service - Twitter’s ability to survive the US election night in 2012 five years after that conference talk was considered a watershed moment in the system’s ability to cope with its popularity.












Example: Healthcare.gov


For another real-world example of a product being too popular, we can look to Healthcare.gov. In 2010, a new bill was signed into law in the US, called the Affordable Care Act. The goal of the bill was, as the name suggests, to make healthcare more affordable. As a result of the act a new online service, Heathcare.gov, was created, with the Centers for Medicare & Medicaid Services (CMS) overseeing its creation.


The need for Healthcare.gov was real. Healthcare in the US is very expensive. As of 2010, when Healthcare.gov initially went live, OECD figures show that average healthcare spend in the US far exceeds all other countries, with most countries spending less than half of their US counterparts per person6. Whilst the reasons for the differences are far too complex to explore in this book, what is clear is that the opportunity for people to access more affordable healthcare insurance was always going to be popular.


Healthcare.gov initially went live in 2010 with a simple system to provide visibility into the costs of public and private healthcare options available to them. This initial launch appeared to go well, but this was ahead of a much more fully-fledged system that was to follow, and would provide a marketplace where Americans could purchase health cover from a variety of options directly through Healthcare.gov itself. To say that the rollout of the marketplace in 2013 didn’t go well is an understatement.


At the start of October 2013, the Healthcare.gov marketplace was made available to users in 36 states. Whilst the goal of making the system available to as many people as possible was laudable, it was clear early on that the system was not able to cope with the actual loads. Demand in the early hours after launch was 5 times greater than expected, causing the website to crash within 2 hours. On the first day of its launch, as a result of the crashes and other bugs, only 6 users were actually able to sign up for a health insurance plan.


A significant amount of work was done in the wake of the initial launch issues. As of 2024, 21.3 million Americans are covered by insurance provided through healthcare.gov. So whilst the initial rollout may not have gone to plan, it appears to have fared well since. That said, there is a lot to be learned from what happened, and the work required to fix it.


Further Reading On Healthcare.gov

The full story behind Healthcare.gov is much more detailed than I am able to go into in this book, and as with any complex system failure, there are many factors at play in terms of why things didn’t go to plan, and what kinds of mitigations were required to fix things going forward. Whilst there are many helpful overviews of what happened at Healthcare.gov available, I’d recommend some caution against taking them at face value. Many of the commentators who covered the failed rollout did so from an external perspective with their own bias coloring their assessment, all whilst often not being in a position to assess all available information. That said, I found the case study of the Healthcare.gov rollout by Henrico Dolfing to be a good jumping off point for my own research, and the full report into the launch by the US Inspector General is great if you want to dive into more details.














Mitigations


As the case studies from both Healthcare.gov and Twitter show, whilst the nature of the failures can appear similar, the causes and impacts of a thundering herd based on a stampede of prospective users can differ wildly. In the case of Healthcare.gov, the nature of the system meant that its launch failure was the subject of a detailed analysis. Aside from case studies done by independent observers, the official report by the US Inspector General provides a number of great insights.


As such, we have a number of different mitigation strategies to consider.












More realistic Load Testing


During development of Healthcare.gov, the system had been tested to expect 2000 concurrent users, which was well short of the actual demand. Only a few months after launch, significant effort had to be undertaken to rework the system to handle a more realistic 25000 concurrent users - showing that the original estimates were off by a factor of over 12. It was clear that the expected loads used during testing were completely unrealistic.


In Twitter’s case, given it’s relatively unique nature at the time, it was difficult to predict how it would actually get used. Originally positioned as a microblogging site with limited interaction between users, initially at least it would have been easy to compare how it would be used with existing blogging solutions, and any load testing would have been based on that. However when users started using twitter, a lot of the more interactive elements emerged organically - this pushed the system into unexpected directions.














Scaling Your Way Out Of Trouble


If your product becomes successful (or at least interesting enough) to generate a surge of new users, then an obvious answer is to scale up to handle the load. Typically, when time is short, the easiest way to scale up is to throw more computing resources at the problem. We’ll talk more about scaling for resiliency in <<??>>, but assuming your system has been built with this in mind, sometimes just adding more machines can be the answer.


You can think of this type of thundering herd very much as a wave. It builds and builds, then it crashes, and subsides. Often the early onset of success causes a flood of interest, but perhaps only a small portion of those early users stick around to become long-term customers. This means that you need to be cautious about spending money to ride out this initial wave, if it means you’re locked in to an ongoing spend that may not be justifiable, or you have sunk a significant portion of your cash into infrastructure or services that you can’t get back.


This is where the public cloud really shines. If your system is on the public cloud, it is significantly more viable to spin up additional resources to ride out this initial wave of traffic, and then shut those resources down when the user traffic slows to more reasonable levels.


The issue is that even if you do feel that the public cloud is the best way to help you scale your way out of trouble, moving there can be a complex undertaking if you aren’t already running there. As such a public cloud migration tends to be a longer-term play, rather than something you can do quickly whilst dealing with scaling headaches.  Healthcare.gov did eventually decide to move to AWS, but the process took years to complete. Twitter also started to make use of AWS in 20207.


The public cloud also makes vertical scaling more viable. Rather than just adding more copies of your software (something referred to as horizontal duplication), it can be even easier to just swap out smaller machines for bigger, more powerful ones. The public cloud providers make it easy to change the instance types of your machine, perhaps swapping in a more powerful version which has more memory or CPU. If you were purchasing your own physical machine, this would be a sunk cost - if the load reduced to the point where a more powerful machine was now sitting largely idle, it’s difficult to recoup the money spent purchasing and installing it in the first place. On the public cloud though, I could just switch back to an earlier instance type and start saving money straight away.


You might think it odd that I talk about the sensible use of money here. But, this book is about resiliency in the whole. If you make technical choices that result in you wasting money, then you may well have less money to spend in the future, which could easily impact your ability to maintain (or improve) the resiliency of your software. Coming back to the themes we discussed in <<???>>, if you look at your software as a broader system, including people and technology, you start to see how everything is related.


It is worth noting that a system typically has to be designed to allow for dynamic scaling. Aside from vertical scaling, systems can often have constraints that mean that throwing additional computers at the problem may not help. As a simple example, if a relational database is bottlenecked on writes, additional computers are only going to help if the data can be broken into shards, with writes distributed across multiple machines. This is a complex undertaking, and providing more hardware is often the simplest part of it. It seems likely that both Twitter and Healthcare.gov may well have had similar internal system design challenges. Netflix designed their cloud architectures specifically to take advantage of the ability to scale horizontally - doing so required building this concept into a lot of the design principles that guided both technology choice and implementation.














Limiting Signups


To perhaps a greater extent than any of the other scenarios we look at in this chapter, generating your own thundering herd due to building something people want is at the very least a situation over which you have some form of control. This means you can put things into place that can help reduce the chances of being overwhelmed with load.


A common technique to reduce the pace of growth to an acceptable level is to gradually roll out your product to your users. Starting with a small closed beta can be useful to iron out any egregious issues that could derail a more widespread launch.


Invite codes are a clever way of creating and managing a closed beta. You issue a number of codes to people, which they can in turn hand out to their friends. You can control how many invite codes are available, and by extension you can control how many people can sign up in the first place. As you get a handle on what load your system can handle, you can increase the number of invite codes that are available, before removing them entirely once you are happy to throw open your doors to the whole world.


Invite codes also have another potential benefit - they create an air of exclusivity. Queues outside popular venues create more buzz around that venue8. So you might find that the use of invite codes can actually increase the demand for your product, without actually increasing load. The use of a waiting list for invite codes can then help you get some concrete data around your potential user growth, giving you time to plan accordingly.


Whilst I find the idea of handing out invite codes for people desperate for cheap healthcare to be distasteful in the extreme, a more controlled rollout for healthcare.gov may well have resulted in a more stable system, meaning people being able to access the healthcare they needed more quickly. Rolling out the marketplace on a state by state level may have been a way forward (rather than launching it in 32 states simultaneously), even though I appreciate there could well have been some significant political ramifications of a decision like this.














Better Alignment


In the immediate aftermath of the launch itself, another key change was made to break down the barriers between CMS (the federal agency tasked with creating the website) and contractors hired to help them. Prior to this coordination between CMS and its vendors had been poor, leading to miscommunication, and delays in making decisions. From the aformentioned official report by the US Inspector General:


Following the launch, first with the technological team and then more broadly, CMS promoted a horizontal culture that was “badgeless” and “titleless,” meaning all of those on the Federal Marketplace project were encouraged to collaborate as a single team, regardless of employer or job title. CMS leadership promoted a culture wherein all team members could speak out about problems and develop creative solutions. In interviews, CMS leaders and staff later reflected that this change in culture fostered a greater sense of mission and teamwork that further improved daily operations.

US Inspector General Report into Healthcare.gov




Whilst I can’t speak to the culture inside Twitter during those early days, I have seen first hand what can happen in startups when people aren’t aligned. When things are stressful, it’s vital that people are pulling in the same direction.


The Vital Component

People are you most valuable asset. They are the people who design, build, test, secure, operate and use your software.


It is people who build software, and they need to build software together. As Kent Beck puts it, in his book Tidy First:


Software design is an exercise in human relationships.

Kent Beck




If people cannot work together effectively, the system they are trying to create will suffer, and any attempt to build a resilient system will fail. One of the biggest improvements made in the aftermath of the Healthcare.gov rollout was to have vendors and federal employees working together as a team.


From a resiliency standpoint, massively increasing the number of users/customers doesn’t just put strain on the computing resources available to you, but also to the human operators as well. In the same way that our computing resources can become saturated with work to the point where they become unusable, so too can people. Humans of course are not computers. One of the main ways in which humans and computers differ is that if you restart a machine, it doesn’t suffer the after effects of being totally overloaded sometime before. The effect of overwork on people though can be long lasting.


Working crunch time shouldn’t be normal, or normalized. If your business model relies on people working so much that they break, then your business model won’t be long for this world. I am a fan of the concept of sustainable pace, which Extreme Programmingpopularized early on:


Working overtime sucks the spirit and motivation out of your team. When your team becomes tired and demoralized they will get less work done, not more, no matter how many hours are worked. Becoming over worked today steals development progress from the future. You can’t make realistic plans when your team does more work this month and less next month.

Don Wells




Remember, in the wake of a thundering herd people will be tired and burnt out. It is therefore when times become calmer, that you take the chance to give people a break if needed. It’s also vital when the energy levels are topped up that you take the chance to learn from what happened and decide on improvements that could be made in the future - a topic we’ll explore in more depth in <<??>>.
















Distributed Denial Of Service Attacks


A distributed denial of service attack (DDOS) consists of a coordinated attack on your site from a large number of machines. The goal of the attack is to interrupt service in some way to the point where normal operations are no longer possible. They are often targeted attacks which may be launched as an attempt to extort money.


Far from an accidental thundering herd, these are maliciously conceived attacks. The generated herd weaponised to achieve the aims of the attacker.










Examples


Depressingly, DDOS attacks are so commonplace that there are many examples to pick from. F5’s DOSS Attack Trends report shows that 2023 saw the number of DDOS attacks more than double compared to 2022. It’s not just the number of attacks that are on the increase, but attackers continue to go after high-profile targets. August 2024 saw attacks against both Seattle-Tacoma airport and the Seattle port itself, notable as important infrastructure targets. Earlier in 2024, Microsoft’s Azure public cloud was targeted by a DDOS attack which affected services for some customers over a ten hour period. The fact that a large scale public cloud vendor was impacted by such an attack is notable - one of the reasons some people feel safer with a public cloud service is because it is assumed the vendor is better able to defend themselves from attacks like this.












Mitigations


The nature of DDOS can vary. Broadly speaking, there are three types of DDOS attacks.


	Volumetric

	
Overwhelming your system with traffic, causing your computing resources (such as network bandwidth) to be exhausted



	Protocol

	
Exploiting vulnerabilities to cause general disruption



	Application-Layer

	
Exploiting vulnerabilities in the application itself






Depending on the nature of the attack, different mitigations may help.












Keeping Things Patched


Vulnerabilities in commonly used networking protocols are often used for DDOS attacks. Examples would include the ping of death, where outsized packets could be sent as part of a network ping. Many of these types of attacks have since been neutralized through improvements made to the implementations of these protocols, but older devices could still be vulnerable. Making sure that your system is updated to take advantage of newer implementations of these protocols will help reduce the impact of protocol-driven DDOS.


In 2023, an exploit of the rapid reset capability of HTTP/2 emerged. This allowed a small number of bots to cause significant amounts of damage. Essentially by constantly opening and closing HTTP streams, an attacker’s bot would aim to exhaust the server’s resources. Technically speaking, this attack isn’t making use of an exploit in the HTTP/2 specification - it’s working as designed. In the case of the Apache mod_http2 project, recent fixes aim to reduce the impact of such an attack.












Scale Up


The goal of volumetric and some application-layer DDOS attacks is to overwhelm your computing resources. This opens up the possibility of increasing the amount of computing resources you have available to you, in an attempt to provision more infrastructure than the attacker can saturate.


The problem with scaling up in the face of a DDOS is that it either requires an investment in hardware you keep lying around for such purposes, or the ability to dynamically scale up resources. In both cases this is costing you more money, and there is no guarantee that you’d be able to scale up enough to handle the load that the DDOS attacker can bring to bear.


It’s also worth noting that one of the most common computing resources that a DDOS attacker will look to saturate will be network bandwidth. Provisioning additional network bandwidth is typically more time-consuming than something like firing up another virtual machine on your public cloud.












Multiple Networks


Rather than having all your services in the same network segment, instead you can run different parts of your system on different networks. This could be done by breaking up your network into a series of virtual local area networks (VLANs). Doing this typically requires a networking layer that supports such configuration, although this is very common nowadays and is widely supported.


By separating out the various services into different networks, a DDOS attack against one part of your system may leave other parts of your system untouched, thereby reducing the impact of the attack.


A more aggressive approach may be to distribute your system across multiple cloud vendors or private data centers, further complicating the task of the DDOS attacker and giving you more separation.


Splitting out networks in this context is an example of creating a bulkhead. In shipping, a bulkhead is a part of the ship that can be sealed off to protect the rest of the ship. So if the ship springs a leak, you can close the bulkhead doors. You lose part of the ship, but the rest of it remains intact.


The idea with a bulkhead is that you reduce the blast radius of a failure. In the case of a DDOS attack, you are attempting to limit the damage a DDOS can cause - the bulkhead ensures the impact is only felt within the bulkhead itself. We’ll look at other examples of bulkheads throughout the book.












Degrade Functionality & Blackhole Routing


Another potential option would be to degrade the functionality of your system so that it needs fewer computing resources to run in the first place. This might include turning off features that aren’t as critical, or perhaps even switching the system into a read-only state.


When I worked at the Guardian for example, we had a standby version of the website that was a set of static HTML pages generated by crawling the normal site. Serving a simple static website is much easier to do (computationally speaking) than a website that relies on backend processing to generate the content. So switching over to the statically generated website would have allowed the content to be much more efficiently served and may have helped it survive a DDOS attack.


However even if you are able to reduce the amount of computing resources it takes to run your system during the attack, there is still the possibility of course that this won’t be enough.


A more aggressive approach is to carry out blackhole routing, where traffic is silently dropped. This can be used to target the malicious traffic, but could also impact legitimate traffic as well, especially if the attack is targeting your application directly, as it may be hard or impossible to differentiate legitimate and non-legitimate traffic.












Rate Limiting


If the DDOS attacker is attempting to overload your system with work, limiting the rate of work can help. In <<???>> we’ll look at how to reduce the rate at which work is allowed. That chapter will focus more on rate limiting from normal traffic patterns, but one of the topics we cover in that chapter, load shedding, could be useful here. With load shedding, you throw away work above a certain threshold to keep the system stable. This can be especially useful if an attacker is performing an application-level DDOS attack, attempting to overwhelm part of your system.


In a way, load shedding is doing something similar to blackhole routing. The main difference being that blackhole routing tends to just drop all traffic, whereas with load shedding we drop work once a certain threshold is reached. There is still an attempt to do some work with load shedding. Both load shedding and blackhole routing share the same problem though that they can impact both legitimate traffic and that from the DDOS attack indiscriminately.












CDNs & Web Application Firewalls


The reality is, DDOS attacks can vary greatly. Not just in terms of the sophistication of the attacker, but also the amount of resources a malicious party might bring to bear. It’s possible you work in an organization that is large enough to have the expertise in place to deal with the wide variety of DDOS attacks you might face yourself, but in my experience it’s unlikely. So one of the best ways to mitigate DDOS attacks is to make use of software and services created by experts in this space.


Web Application Firewalls (WAFs) can be installed on the perimeter of your system, and can help mitigate against some forms of DDOS attacks. The exact capabilities of these types of products can vary significantly, and if you decide to make use of one you are going to be adding another piece of complexity to your system. Some public cloud vendors provide WAFs as a service, which can reduce the cost of managing them, although note that public cloud vendors rarely give you things for free.


Content Delivery Networks (CDNs) like Fastly, Cloudflare or Akamai, provide the ability to deliver your website’s content efficiently through a network of geographically close caches. Your website might be served from a computer in Mumbai, India, but the right CDN can ensure that a user in Wellington, New Zealand, actually loads your website from a set of servers local to them.


CDNs both allow you to decrease the load on your own servers by acting as a cache on your behalf, and further speed up the end user experience by ensuring that requests are routed to caches that are local to the user.


Due to their nature, CDNs are in a position to provide significant DDOS mitigation. Aside from the expertise that these companies have internally, most CDN vendors provide services which can help mitigate a DDOS. They can filter out malicious looking requests at different layers of the networking stack, provide rate limiting at the edge, and in many cases will waive the excess CDN charges you might otherwise accrue during an attack9.


Coming back to the example of the HTTP/2 rapid reset attack I covered earlier, both Cloudflare and Fastly were able to quickly rollout mitigations for the attack, far more quickly than could be expected of the average corporate networking team.

Warning

Your system won’t remain resilient for long if you’ve got no money left.




In a nutshell, if the DDOS is small in scope or limited in sophistication, you might be able to scale your way out of trouble - or shut down some functionality to try and outscale the attacker. For anything more than that, you probably want a CDN.












Summary


The thundering herd scenarios I’ve shown you in this chapter are varied, but this is far from an exhaustive list. I could detail a dozen more examples of where a thundering herd problem has laid waste to a system, and I suspect you could think of a few that you’ve experienced as well.


Despite the varied types of thundering herds we looked at though, hopefully you saw how the same mitigations came up again and again, including:


	Degrading Functionality

	
By shutting down some features of the system critical functionality can continue to operate.



	Provisioning Redundant Computing Resources

	
Extra computing resources can absorb the impact of a thundering herd.



	Improving Recovery Time

	
Thundering herds caused by component failures can be mitigated if the failed components can be replaced quickly.



	Reducing Blast Radius

	
Ensuring that component failure has a limited impact, to avoid cascading failures.



	Clearer Requirements

	
Many thundering herds are caused by a lack of clarity about what is expected - with systems only designed to handle a fraction of what they will actually face.



	Throttle System Usage

	
Reducing the amount of work being done, either through reducing signups or more general rate limiting can keep the herds down to manageable levels.






The scenarios in this chapter are far from exhaustive, but as you’ve seen not only can the impact of thundering herds be mitigated, it might be possible to stop them altogether.


Many of the mitigations I shared in this chapter warrant further exploration, and with that in mind in our next chapter we’ll be doing a deep dive into the topic of rate limiting.



1 I’m simplifying here - you actually specify how many instances of a pod you want, separately state how pods map to your service definition
2 Morris, Kief. Infrastructure As Code, 3nd Edition. Sebastopol: O’Reilly, 2025.
3 In the case of the SAN failure, for complex (internal political) reasons it took us almost a week before we were actually told that the reason our system was failing was due to part of the SAN catching fire.
4 And don’t get me wrong, back in the mid 2000s software like DataSynapse was very cool, especially for those of us who had yet to learn about map reduce.
5 Yes, I’m that cool
6 Unfortunately although the gap isn’t quite as large as it was back in 2010, the US still spends more than 50% more per person than the next closest OECD country https://www.oecd.org/en/data/indicators/health-spending.html?oecdcontrol-00b22b2429-var3=2022
7 witter signed a 5 year deal with AWS in 2020, and also made use of Google cloud. For some reason,  shortly after Twitter went private, they stopped paying some of their bills to both vendors.
8 Berlin techno club Berghain is legendary for its huge queues and its hard to fathom door policy, to the point where the internet is littered with articles on how long the queues can be, and how to increase your chances of getting in
9 This is the case for Fastly at least, although I am unsure if this is commonplace https://www.fastly.com/resources/datasheets/security/fastly-ddos-mitigation-datasheet/









Chapter 5. Rate Limiting


A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the sixth chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

			


Much of what I’ve covered so far looks at the things you can do on the client side to deal with problems getting an appropriate response from a server. Often, when a client is struggling to get a response it’s because the server it’s talking to has too much work to do, and is overwhelmed.


In this chapter, I’ll be looking at approaches to reduce the amount of work being processed, a technique called rate limiting. You’ll see two main types of rate limiting, along with some practical tips for how to choose the right type of rate limiting.


Before I get into the details though, let’s step back a bit and consider what your options are when a server has too much work.


Terminology

It’s probably worth clearing up some of the terminology I use in this chapter. When I talk about a server, I am referring to a single machine which serves up functionality over a network connection. If you are working on a service-oriented architecture (like a microservices architecture), then you are more likely used to thinking in terms of services. A service is going to have one or more instances, each of which run on their own single server.










Ways To Handle Having Too Much Work


When a server has so much work to do that it is in danger of falling over as a result, you have five options to consider:


	
Just fall over



	
Throw away some of the work - load shedding



	
Reduce the amount of work being sent - back pressure



	
Queue up the work



	
Provision more computing resources dynamically







I’m going to explore each of these ideas briefly, before drilling down into more detail on load shedding and back pressure.










Just Fall Over


If a server is being hammered with requests, you could just let the server fall over. Now, I suspect this is unlikely to be desirable behavior for you, dear reader. You’ve made a decision to read this book likely because you don’t want this sort of thing to happen.


The problem with just allowing a server to fall over is that it is uncontrolled. Requests will be terminated half way through being processed, clients will be left confused about what state their work is in. In the worst cases it’s possible that an uncontrolled failure can result in data loss, and perhaps a lengthy time to recover.


In fact, if you were in a situation where you thought a server was about to die, it might actually be better to shut it down yourself in a controlled fashion rather than let it fall over in an uncontrolled state.


But, we can of course do better than this.












Throw Away Some Of The Work (Load Shedding)


If you have too much work coming in, one answer is to just throw away some of the work - this is known as load shedding. Some work will get rejected, but some other work will be done, and the system remains up. The tradeoff here is about prioritizing the health of a system over attempting to serve an individual request. By throwing away some work, you may reduce contention on the server where the server has a better chance of surviving some sort of onslaught.


I’ll explore the mechanics of load shedding later in this chapter.












Reduce The Work Being Sent (Back Pressure)


If the server is aware it has too much work, it would be ideal if it could tell the clients to reduce the work being to the server, and if possible redirect the work to an alternative deployment of the service. This concept, called back pressure, allows us to limit the work flowing through a system to keep the system stable. So if a server is being overwhelmed by a large number of requests, if these requests can be “pushed back”, it reduces pressure on the server itself.


Back pressure can be implemented in a number of ways. Later in this chapter you’ll see how circuit breakers can be used on the client side to stop requests being sent, and I’ll also show how adding information to the client-server protocol can make back pressure even smarter.












Queue Up The Work


Rather than throwing work away, or reducing the amount of work you can accept, a server can decide to queue up the work with the aim to work through the queue of work as quickly as possible whilst keeping the server stable.


The queue can be thought of as a throttling mechanism. Clients can keep sending work in, and this builds up in the queue. The server can limit how much work it can process. The tradeoff here is that when this queue is building up, the latency of the work will increase.


I’ll come back to queuing in [Link to Come] where you’ll see different ways queueing can be implemented.












Dynamically Provision More Resources


Often the issue with having too much work to do is that the amount of computing resources available is constrained. Your server has run out of CPU, memory, IO, storage or something else. I’m sure many of you are running on infrastructure that allows for computing resources to be dynamically launched, which then opens the possibility of spinning up more computing resources to handle the increased amount of work.


I’ll share more details around dynamic provisioning of resources, and the wider topic of scaling for improved resiliency in more detail in [Link to Come].


Now that you’ve seen some of the options for dealing with too much work, let’s focus for the rest of this chapter on two of them - load shedding and back pressure.












Load Shedding


If a server attempts to handle everything, it can collapse under the load, and end up serving nothing. A sensible alternative is to throw away some of the work - this is known as load shedding.


If you can drop some of the work you are being asked to do, you may still be able to get the rest of the work done. If there is a choice between processing zero work items or processing some work items, the answer starts looking pretty clear.


There are a few moving parts to consider here. Firstly, how does a server know when to trigger load shedding? Secondly, how is the fact that a service is shedding load communicated to the client? Finally, should all work be considered equal when load shedding kicks in?










Triggering Load Shedding


With load shedding you will track one or more metrics, and set a “safe” threshold, above which load shedding kicks in. One of the simplest mechanisms is to track the number of work items the server is currently processing. For example, if your service exposed an HTTP API, you would track the number of concurrent requests. You would then set an upper boundary, and any requests received beyond that limit would be rejected.

Connections vs Requests

It can be easier to monitor a number of active connections rather than the number of requests. The problem with that is some protocols will keep connections between client and server open even if they’re idle. Secondly, protocols like HTTP/2 can send multiple requests over a single connection.




Once you’ve decided what you are going to use to track the current amount of work being processed, the tricky part is knowing what the upper bound is. Is the limit for a server 100 concurrent requests? 50? 25? Typically working out what the acceptable level is for your server will involve observing it under different load patterns. Gathering information from production can be helpful, but a load test for a service could be even more useful to better simulate different conditions to understand how your service behaves under load.












Inconsistent Load


Just tracking the amount of work, such as the number of concurrent requests, can be problematic if the load generated by each item of work varies significantly. Consider a situation where a client can send two different calls to a Customer service instance. One of these calls is to create a new customer, which represents a pretty key piece of functionality in the system. The Customer service also handles Subject Access Requests (SAR), which are required for systems that operate under the auspices of the General Data Protection Regulation (GDPR).


A SAR represents a request from a user for the information we hold on them. Creating a new customer doesn’t generate too much load, but processing a SAR might be more intensive, especially if it involves gathering information from lots of other data sources, such as other services. In such a situation, an instance of your Customer service might be quite happy handling 100 customer creations, but might struggle handling 50 SAR requests.














Server vs Service


In some situations you may mostly be concerned with clients speaking to a single server. I suspect many (if not most) of you though are working in a services environment, where a client talks to a logical service, which could in fact be deployed on to multiple servers. In Figure 5-1 you can see a service with multiple instances, with the client making calls to the service’s API via a load balancer.



[image: A client is sending HTTP requests to a load balancer]
Figure 5-1. In a services environment, a service is often deployed on multiple instances




This then raises the question about where you should be tracking your thresholds for load shedding. Do you set limits for the service as a whole? For example, you might say that the entire service can only handle 300 concurrent requests, at which point load shedding should commence. This creates the opportunity for load shedding to be handled by the mechanism that distributes load in the first place. Many load balancers allow you to set an upper limit on a maximum number of requests that can be allowed. If you were using a message broker for load distribution, setting a maximum queue size would have a similar effect.


The downside with this model is that if the work cannot be evenly distributed then a single instance could still be suffering even if the overall service-level work thresholds look fine. Imagine that in our three instances of the Customer service example, more SAR requests went to one node, as shown in Figure 5-2.



[image: The Customer service is handling 300 requests overall. Each instance has 100 requests]
Figure 5-2. The number of requests might be evenly balanced, but some requests are more expensive than others




Here, we can see that although each instance is handling the same number of requests, one of the instances is suffering more as it just happens to have more SAR work items to process.


If you do try to manage load shedding on a single instance level of a service, then you need to understand the implications. For example in a load balancer setup, if one of the instances starts load shedding, these errors will be detected by the load balancer itself which will likely result in the instance being removed from the load balancer pool. This could result in a significant loss of capacity for the service as a whole, and could even lead to a cascading failure. I’ll explore this in more detail in [Link to Come].














Tracking Computing Resources


Arguably, tracking concurrent requests is in part a proxy measure for the underlying contention on resources. The thinking goes, as a server does more work, more computing resources are being tied up, so you get closer to the point where the server is overwhelmed.


But if the state of the computing resources is really what you care about, then why not track the underlying resources instead? This would help in situations where the load generated by different types of requests can vary, as in the case of the Customer service example.


So there may be value in tracking the underlying computing resources like CPU, memory etc., instead and setting acceptable thresholds for those.


The challenge of using more sophisticated metrics for triggering load shedding is that it can be difficult to obtain the underlying metrics of the server within the context of handling a request Inside the process running your service, getting a connection count isn’t too difficult. But are you able to access the underlying machine’s CPU or memory use?


If you are configuring load shedding at a proxy layer like a load balancer, does the proxy have access to the load characteristics of the machines it is talking to?


Secondly, you go from having one simple measure to use as a trigger for your load shedding - number of items of work - to now having multiple potential metrics to track. Do you set a threshold for memory, CPU, network IO? If you change the type of server you run your code on (which is easy to do with virtualized compute), all of these thresholds would likely need to change. But with tracking the number of requests, switching to a bigger underlying machine would just require changing a single threshold.


So whilst I have seen the state of underlying computing resources used to trigger load shedding, it’s not common. It’s important to note that you will still want to capture metrics associated with the underlying computing resources, as this can be vital in understanding failure modes, capacity planning and more. I’ll explore this topic in more detail in [Link to Come].














Communicating Load Shedding To Clients


Once the server has decided to shed load, the question becomes what you should tell the client. As I discussed in Chapter 3, when a client gets an error from a server, it’s important that the client is able to distinguish between errors which should or should not be retried.


If using HTTP for example, you might be tempted to respond with a generic 503 Service Unavailable response. However, this is a somewhat generic error, and it may not be clear that you want the client to back off. It would be detrimental for us to reject a request as we are load shedding, only to have the client just retry the request.


In fact a dedicated HTTP status code, 429 Too Many Requests, was added explicitly as an indicator that the service was load shedding. The use of a 4XX error code for this is interesting - remember that these response codes are broadly considered client-side errors, and are used in situations when an HTTP server is telling a client that the client has done something wrong. In this situation, it seems to make sense - the client is being admonished that too many requests are being sent to the server. Additionally, as with other 4XX error codes, the server wouldn’t expect the client to retry the request (although actually you might - I’ll come back to the use of the 429 later in this chapter when we look at back pressure).


Of course, telling a client “this work was dropped - please don’t retry it!” is problematic for things that really do need to happen. Some work is important, and needs to be carried out. For example the GDPR-related Subject Access Request that the Customer service has to fulfill is actually a regulatory requirement! In situations where we just reject the work, we then leave the client with a puzzle about how to make forward progress.


If you can take the concept of better client communication one step further, and give more information to the client, then it’s possible to help in situations like this. Later in this chapter I’ll cover the concept of accord-based back pressure, which requires the client and server to work together.












Is All Work Equal?


So far, I’ve looked at load shedding as being pretty indiscriminate. A threshold is hit, above which all subsequent requests will be rejected. However the impact of rejecting some work might be greater than others.


Coming back to our scenario with the Customer service, I showed you that there are two types of requests that need to be dealt with - creating a new customer, and dealing with subject access requests (SAR). Creating a new customer is a key business process that is critical to the system. Getting a new customer created is important to grow the business, and you’d want to do this quickly, so that your new customer can actually start using your software (and maybe paying you money). Just rejecting new customer signups might not be a good first impression.


On the other hand, whilst you might have a regulatory requirement to process an SAR, you have a long timescale to do this in - in fact, you have up to a month. So in a situation where Customer is under load, having a client still allow new customer creations whilst throttling SARs may make a lot of sense, assuming you have a mechanism to ensure that those SARs get processed later.


In Figure 5-3  we see the Customer service with two REST resources exposed over HTTP for the different operations. To create a new customer, a client sends an HTTP POST to /customer/. When a SAR is required, they POST a request to /sar/. In this case, you can clearly trace the entry points of the two types of requests, and this could allow you to tune different load shedding for each entry point.



[image: The customer service has two entry points]
Figure 5-3. Setting different load shedding thresholds for different endpoints




In practice though, I see this as working around a more fundamental problem which may need to be addressed. Is it OK for one service to be doing two very different types of work?












Splitting Services?


When you have a service carrying out a mix of work with different types of load profile and complexity, this could be a sign to consider splitting the service apart.


For example if you split out the SAR functionality from the Customer service, you’d end up with two services with different load profiles and differing levels of criticality. This could simplify a number of things - for example our availability SLOs for the new Subject Access Request service might be much lower than the Customer service.


The existing Customer service could remain focused on dealing quickly with new customer requests over HTTP. On the other hand, the Subject Access Request could switch to a model where the SARs are sent to a queue, which is then processed in order at a defined rate, as we see in Figure 5-4 (I’ll explore why queues might be a good fit for this type of problem space more in [Link to Come]).



[image: Customer creation requests get routed to the Customer service as before. SAR work is now put into a queue]
Figure 5-4. Splitting the Customer service due to differing load profiles




Once split, you also have the ability to run the different services on different infrastructure most appropriate to their requirements.


The decision to create a new service comes with a cost of course. This is another component that needs to be maintained, and it adds some further complexity to the system. This brings us back to the paradox we explored in Chapter 1 - sometimes, the solutions we use to improve the resiliency of a system can increase complexity. However increased complexity can lead to new sources of failure.


The decision about when to split a service isn’t always clear cut, but if you want to explore this in more detail I have a book on the topic1.














Back Pressure


If a service is overloaded to the point where it is shedding load, does it make sense for the clients to keep sending work? Now a client with retry limits will stop trying to get the service to process a specific request, but even if the client eventually gives up with one request, it doesn’t mean it won’t try and send others.


In a situation where a client is constantly sending calls that fail, at a certain point it makes sense to just decide that the destination server is having a problem, and that perhaps the client should stop sending work for a period of time. This would give the server more of a chance to recover, and also allow the client to fail fast rather than failing slow.


Even better, rather than the client working this out for itself, wouldn’t it be better if the service could tell the client to back off?


Back pressure describes a client reducing or eliminating the calls it is sending to a server in reaction to the server being overloaded. A client can decide to trigger back pressure arbitrarily, in reaction to increased error rates - I’ll refer to this as client-only back pressure. It can also choose to implement back pressure as a result of information being received from the server itself - this can be more effective, but must be built into the protocol used for the client and server to communicate. I describe this as accord-based back pressure. Let’s look at client-only back pressure first.










Client-Only Back Pressure


With client-only back pressure, a client decides to apply back pressure based on its own information. This could be based on a manual operator’s intervention, or based on observation of the success (or failure) of calls the client has been sending to the server. A threshold is reached, and the client stops sending traffic. A circuit breaker is a common pattern used to implement client-only back pressure - and I’ll explore that more shortly.


Aside from the generic benefits that back pressure brings in terms of improving system stability, client-only back pressure is often a popular choice because it can be somewhat easily retrofitted into existing inter-process communication. The protocol between client and server doesn’t need to change.


The main downside of client-only back pressure is that the decision to apply back pressure is being applied locally. In a service-based architecture, it’s common for each server to have multiple clients. If one client decides to stop sending calls to apply back pressure, then it doesn’t mean that another client will have reached the same decision - unless you have some mechanism for the clients to share this information. As a result, you may not end up relieving as much pressure on the server as you would have hoped.


Another issue with client-only back pressure is that you lack information on how much back pressure to apply. Decisions like how much to reduce calls by, or how long a circuit breaker should remain open, are ones the client is reaching by itself. The client is relying on local information, rather than any wider understanding about what is happening at the server. This of course is where accord-based back pressure comes in.












Accord-based Back Pressure


With accord-based back pressure, the server provides additional information about the back pressure that is required, which the client then acts on. Put another way, the server is agreeing to send some information asking the client to back off, and the client is agreeing to listen.


For accord-based back pressure to work, we need to build this information into the client-server communication protocol. A good example of a real-world use case would be the HTTP 429 Too Many Requests status code I touched on previously. When sending back a 429, the server can include a Retry-After header which tells the client how long it should wait before sending additional requests.


gRPC’s equivalent error code would be GRPC_STATUS_RESOURCE_EXHAUSTED. Unlike in the case of HTTP, there is no defined equivalent of the Retry-After field in the gRPC specification. As a result, you’d need to define for yourself what information needs to be relayed back to the client to trigger the back pressure. In addition, gRPC also supports custom back-end metrics - this does allow for more detailed information to be sent either within the context of the call, or out of band, and is primarily used to help gRPC clients laid balancing decisions. I’ll look at load balancing in more detail in [Link to Come].


In situations where multiple clients are involved, a server’s ability to provide back pressure guidance means that we are more likely to reduce back pressure more quickly - we’re not waiting for all the clients to reach their own thresholds.


Note that with accord-based back pressure, a server could decide to start applying back pressure for some types of work but not others. So in our previous example of the Customer service, if you were to prioritize creation of new customers over SAR-related work, Customer might start sending back +429+s for SARs first, before it considers doing the same for customer creation work.


Quota Limits vs Load Shedding/Back Pressure

Both gRPC and HTTP define standard error codes to be used when load shedding or back pressure is applied (GRPC_STATUS_RESOURCE_EXHAUSTED+ and 429 Too Many Requests respectively). However these codes can also be used when an individual client has reached a quota limit as well.


Especially when exposing APIs to third parties it is common to limit the amount of calls that a specific client can make. This ensures that each client is getting a fair share of the server’s time, or in situations where API access is monetized, that the client is allowed to make the number of calls they paid for and no more.


From a client point of view, at the moment the error is received there isn’t much difference as to why the error was sent back - if you get a 429, you’re being told you sent too many requests, and that you should stop.


From a service’s point of view, a single client being rate limited due to exceeding their quota is quite different from a service being overloaded. If one client breaches their quota, then that client gets rate limited. But if a service is close to its breaking point, then all clients will end up getting rate limited.


Because of this, one client getting a 429 cannot be extrapolated to the service itself having an issue. This means if you were trying to diagnose a failure on the client side, it might be difficult to understand why a specific client got rate limited. A simple message in the 429 response body could help make things clearer to a human operator wanting to understand what has happened. If you wanted a client to programmatically handle a generic load shedding scenario vs a quota issue differently, then having an easily parsable field in the response (perhaps a custom header) could also be an option.














Circuit Breakers


In your own home, circuit breakers exist to protect your electrical devices from spikes in the power. If a spike occurs, the circuit breaker switches into an open state, breaking the circuit, and therefore protecting your expensive home appliances. You can also manually disable a circuit breaker to cut the power to part of your home, allowing you to work safely on the electrics. In a pattern I first learned about from Mike Nygard’s book Release It!2, we can implement a similar mechanism in our client-side software as a way of implementing client-only back pressure.










Implementation Overview


With a circuit breaker, after a certain number of requests to the downstream resource have failed (either due to error or timeout), the circuit breaker is switched into an “open” state. Any requests routed to a circuit breaker that are in an open state will fail fast, as shown in Figure 5-5. The terminology of an “open” breaker, meaning requests can’t flow, can be confusing, but it comes from electrical circuits. When the breaker is “open,” then the circuit is broken and current cannot flow. Closing the breaker allows the circuit to be completed, and current to flow once again.



[image: An overview of circuit breakers]
Figure 5-5. An overview of circuit breakers




Once a circuit breaker has switched into an open state, we need a way to “close” it again, so that work can start flowing again. This can be done in a variety of ways, but on common approach is to still allow a few requests through even if the circuit breaker is open, and close it if those requests succeed at an acceptable rate. Another option is to monitor some sort of health check endpoint on the remote server. When the server is considered healthy again, the circuit breaker is reset.


Getting the settings right can be a little tricky. You don’t want to open the circuit breaker too readily, nor do you want to take too long for it to switch open. Likewise, you really want to make sure that the service is healthy again before sending traffic.


Once you have a circuit breaker mechanism in place (as with the circuit breakers in your home), you can use them manually to make it safer to carry out maintenance work. For example, if you had to shut down a service for a period of time, you could manually open all the circuit breakers of the service’s consumers so they fail fast while the service is offline. Once the service is back, you can close the circuit breakers and everything should go back to normal. This could all be automated as part of a deployment process - although in general moving to a model where services can be updated without causing a loss of availability is preferable.












Case Study: AdvertCorp


In Chapter 2, I introduced the real world example of AdvertCorp, which had suffered a major outage. As you may recall on that project, we had an issue with the Turnip system responding very slowly, before eventually returning an error. One of the issues we had was that the timeouts were too generous, leading to resource contention, so fixing those was a priority. Once we did that though, we realized we still had an issue. Even if we got the timeouts right, we’d be waiting for the timeout threshold to be reached before we received the error. During the failure mode we saw, the Turnip service had a fundamental issue - but we kept sending requests.


To deal with this issue, we decided to wrap calls to all the legacy systems with circuit breakers, as Figure 5-6 shows. When these circuit breakers blew into the open state, we programmatically updated the website to show that we couldn’t currently show adverts for, say, turnips. We kept the rest of the website working, and clearly communicated to the customers that there was an issue restricted to one part of our product, all in a fully automated way.



[image: Adding circuit breakers to AdvertCorp]
Figure 5-6. Adding circuit breakers to AdvertCorp




We were able to scope our circuit breakers so that we had one for each of the downstream legacy systems—this lined up well with the fact that we had decided to have different request worker pools for each service we were talking to.












For Client-only or Accord-based Back Pressure


A typical circuit breaker implementation would provide client-only back pressure. A client, on observing a certain number of call failures, would decide to open the breaker. This is the typical implementation of a circuit breaker you’ll see in connection libraries.


Theoretically though, you can put a circuit breaker into an open state based on information from the server. Rather than waiting for a certain number of failures, you could implement a circuit breaker to trigger on a single 429, using the Retry-After field to determine when the circuit breaker would reset to its “closed” state.












Issues With Circuit Breakers


On the face of it, the circuit breaker pattern seems like a straightforward and relatively simple way of implementing client-only back pressure. If you currently don’t have any back pressure in your system, it’s certainly a good place to start. However, there are some downsides that you need to be aware of.












Too Late To The Party


When relying entirely on locally available information to set a circuit breaker state, circuit breakers have the same downside as any client-only back pressure mechanism - by the time the back pressure is triggered and the circuit breaker is opened, the server we’re talking to is already having a problem. As such, our back pressure may not trigger quickly enough to maintain an acceptable degree of system stability.














Boom & Bust


Each circuit breaker is an all or nothing affair. It’s either letting requests flow, or it isn’t. This can create something of a boom and bust pattern. Consider Figure 5-7, which shows the number of requests being sent to a server over a period of time. As the requests build up, the server is struggling to deal with them, causing the failure rate of requests to increase (perhaps via client-side timeouts and/or load shedding). This then causes the circuit breakers in the clients to trigger, resulting in no requests being sent.



[image: A chart showing load over time. The load starts to increase]
Figure 5-7. Curcuit breakers opening and closing together can create a boom & bust cycle




After a period of time, the server recovers, the circuit breakers close, and the calls come flooding back in. In this example, the peaks are too great for the server, but the server is then idle during the troughs - not a great use of our computing resources.


Circuit breakers give us a great way to fail fast, which is always preferable to failing slowly. It means you free up computing resources more quickly, helps reduce load on potentially stressed components, and allows the system to carry out mitigating actions as soon as possible. But there is no nuance with the circuit breaker - a client either sends no traffic, or all the traffic.














Partial Failure


Another problem is how well circuit breakers deal with a server that is partially failing, resulting in a situation where some types of work seem to be processed without issue, but other types of work are getting rejected. Coming back to our example of the Customer service, imagine that you’ve decided to prioritize customer creation requests over SAR requests. The SAR limit is reached, so you start load shedding those requests.


In Figure 5-8 we see that a client sending calls to both customer creation and SAR requests is likely to have a single circuit breaker for the Customer service as a whole. If enough SAR requests fail, this could cause our circuit breaker to open–even if all the calls to create customers are working fine. In effect, the circuit breaker has made a partial failure worse.



[image: A client is sending both SAR and customer creation requests to the Customer service via a load balancer. The SAR submissions start getting rejected]
Figure 5-8. A partial failure of a service can cause the circuit breaker to trigger




There are a couple of ways to solve this. The first is to allow each initial request to go straight to the server, and only route retries to the circuit breaker. This means you are always sending some requests to the server, and you can use the success (or failure) of the initial attempt as a way to determine the state of the circuit breaker itself. This is more of a partial mitigation than a total fix - this approach ensures that at least some customer creation calls get through, but if one of them needs to be retried and the circuit breaker is open, then the retry will be rejected.


Coming back to the original analogy, in an electrical circuit a circuit breaker reacts to an issue in a specific circuit, and breaks that circuit. In the situation where some types of work are being processed successfully, but different types of work are not, it’s worth considering if we actually have two circuits in a situation like this.


This leads to the second solution, which would be for your client to have two circuit breakers for talking to the same service - one for creation requests, the other for SAR requests, as we see in Figure 5-9.



[image: The client is sending customer creation events via one circuit breaker]
Figure 5-9. Splitting the different types of requests across two circuit breakers




If this solution looks appealing for you, I’d urge you to check what the underlying issues are here. Why are one set of requests failing, with others working fine? It’s possible that the types of work are so divergent that splitting the service apart might be a more sensible approach.














Reducing vs Stopping Traffic


So far, we’ve mostly looked at traffic from the client being stopped entirely when the back pressure is applied - and this is exactly what a circuit breaker does for us.


Just stopping all work being sent from the client is a simple, and perhaps overly simplistic reaction to back pressure being applied. Let’s look at some of the downsides of this next, and also explore some alternatives.










Boom & Bust Cycle


If all clients simply stop all calls in relation to back pressure, this will have an immediate impact, but we have the issue I discussed previously with respect to circuit breakers. In Figure 5-10 we revisit our previous example showing the load over time for a service. When the load hits its threshold, back pressure is applied, which in this case results in clients ceasing all work.



[image: A chart showing load over time. The load starts to increase]
Figure 5-10. Totally stopping calls from clients can lead to large idle periods, followed by peaks when the back pressure is removed and the calls can flow easily again




Once back pressure is applied, you can see the load plummet. The service is then idle until the clients decide to start sending calls again. At this point, it’s possible that there is still a lot of work the clients want to get done, so the calls come back, and the cycle is repeated.


In such a situation, throttling rather than stopping client-generated work could be beneficial. Rather than all work stopping, resulting in idle time for the server, if you continue to get some work done, when the back pressure starts reducing then there might actually be less work left to be handled.


Prioritizing some work over other work can help resolve the issue of large peaks and troughs when back pressure is applied. For example stopping all SAR requests might reduce the load on the server enough that normal customer creation can continue, as we see in Figure 5-11.



[image: A chart showing load over time]
Figure 5-11. Dropping SAR calls may allow Customer creation calls to continue to be processed














A Delicate Balance


One of the problems with reducing vs stopping traffic is that if you still allow some work through, then in high load situations you may not be reducing traffic enough to make a difference. Imagine that you have dropped the SAR-related work, but are still allowing new customer creation. If at that point you are still over capacity, you’ll have to start rate limiting customer creation calls as well.


The issue then is that it takes more time for the service to get to the point of equilibrium - more aggressively rate limiting earlier would have made the service healthier earlier.


As you can see, it’s not always clear which approach makes sense, so this is why understanding your traffic patterns is so key to working out which rate limiting technique is most appropriate.












Leaky And Token Bucket Rate Limiting


Rather than the boom and bust cycle we saw earlier in [Link to Come], it would have been preferable to reduce the service’s traffic to the point where it was within healthy bounds, whilst also reducing or eliminating periods when the server sat idle. A smarter client can help here, with the help of a bucket.


Picture a bucket with a hole in the bottom. At a regular, predictable rate, water drips out of the bottom of the bucket. From time to time, you need to add water to the bucket. If the bucket has room, you can add more water. If it doesn’t have room, you have to wait until enough water drains out of the bucket to make space for the new water you want to add.


If you increase the rate at which water is draining from the bucket, you increase the rate at which water can be added - and vice versa.


Lets take this concept and apply it to our client talking to a service, as shown in Figure 5-12. When a client wants to make a request, it needs to add a token to the bucket. The bucket has a fixed amount of space for tokens, and these tokens leave the bucket at a steady rate. If there is room in the bucket, you can add the token. If there is no room, you have to either wait till there is, or else just reject the request.



[image: On the left is a bucket with space for a new token to be added - this allows the call to proceed. On the right]
Figure 5-12. A client using leaky bucket rate limiting




This ensures that requests being made from your client will be set at a steady rate. By controlling the rate at which tokens drain from the bucket, you control the rate at which calls can be made.


A related algorithm is the token bucket, which is like the mirror image of the leaky bucket. To make a request, you have to remove a token from the bucket, and tokens are added at a regular rate. If a token isn’t available, you can’t make a call.


Both the standard leaky bucket and token bucket algorithms provide static rate limiting from the client. The net result of this approach is a predictable upper bound in terms of the calls that can be made, with a simple mechanism to dial that number of requests up or down as appropriate.












Variations & Implementations


There are a number of variations of the the token/leaky bucket to be found. Resilience4j implements a version of the token bucket in its RateLimiter+3, and .NET 7 provides an implementation in +TokenBucketRateLimiter. Variations in this algorithms are also found in TCP and in message brokers as well4.


You could also consider adding a circuit breaker to a leaky bucket. If the server is healthy, water flows out of the bucket at the normal rate. If it is unhealthy, then the circuit breaker stops the flow. The circuit breaker here is being used in a different way - rather than stopping the calls, it’s plugging the hole in the bucket—although the end result is very similar to normal circuit breaker use.


Marc Brooker5 from AWS has proposed an adaptive retry mechanism using a token bucket. When a client makes the initial request, it is sent as normal. If the request succeeds, a partial token (e.g. 0.1 of a token) is added to the bucket. If a retry is required, that needs a full token from the bucket.


Marc’s simulations seem to show that this mechanism performs better at lower failure rates than a circuit breaker approach, with the potential downside of still creating some load when failure rates are high.














Conclusion


Everything starts with knowing what the limits of your server are. At what point do you start having issues? How many items of work can you try and handle at once before the quality of service starts degrading? Without this information, it becomes difficult to know where to set the thresholds for things like load shedding or back pressure.


Your goal is almost always going to be about protecting the system as a whole, rather than trying to handle every bit of work. With that in mind, load shedding is an excellent technique to protect servers. Even if you are more interested in back pressure, it makes sense to start with load shedding first.


In situations where you can’t control the client, or the clients cannot be given the smarts to apply back pressure, load shedding will be vital. Consider a public facing website where you’re exposed to traffic from the wider internet. Or a situation where your clients are actually IOT devices where rolling out changes to how they work is not practical.


If you already have simple server side load shedding in place, and also have the ability to change the behavior of both client and server, a sensible next step is to change clients to implement proper accord-based back pressure to allow the clients to apply smarter back pressure in concert with information coming from the server.


On the other hand, if you are unable to change the server, but can change the client, then implementing a client-only back pressure either via a circuit breaker or leaky/token bucket approach would be the way to go.


This chapter has focused on how to reduce the amount of work being sent to a server. Sometimes though rate limiting may not be enough, and back pressure may not be possible. In the next chapter, I’ll take you through a variety of situations where spikes in load may threaten the resiliency of your system, and give you some more ideas on how to deal with them.





1 Newman, Sam. Monolith to Microservices. Sebastopol: O’Reilly, 2019.
2 Nygard, Michael. Release It!, 2nd Edition. Pragmatic Programmers, 2018
3 https://resilience4j.readme.io/docs/ratelimiter
4 RabbitMQ calls this “Credit Based Flow Control”. It’s an interesting variation as the “credits” actually propagate across multiple parties
5 https://brooker.co.za/blog/2022/02/28/retries.html
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