

[image:]

Building Applications with AI Agents

Designing and Implementing Multi-Agent Systems

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Michael Albada

 Building Applications with AI Agents

 by
 Michael
 Albada

 Copyright © 2026 Advance AI LLC. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor: Nicole Butterfield

 	
 Development Editor: Shira Evans

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 October 2025:
 First Edition

 Revision History for the Early Release

 	
 2024-10-18:
 First Release

 	
 2024-11-05:
 Second Release

 	
 2024-12-13:
 Third Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098176501
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Building Applications with AI Agents, the cover image, and related trade
 dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-17650-1

Brief Table of Contents (Not Yet Final)

Chapter 1: Introduction to Agents (available)

Chapter 2: Overview of Designing Agent Systems (unavailable)

Chapter 3: Skills (available)

Chapter 4: Orchestration (available)

Chapter 5: Knowledge and Memory (available)

Chapter 6: Learning from Experience (unavailable)

Chapter 7: From One Agent to Many (unavailable)

Chapter 8: Measurement and Validation (unavailable)

Chapter 9: Monitoring in Production (unavailable)

Chapter 10: Protecting Agent Systems (unavailable)

Chapter 11: Your New Teammate (unavailable)

Chapter 12: Humans and Agent (unavailable)

 Chapter 1. Introduction to Agents

 A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the first chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

			

 In recent years, the field of artificial intelligence (AI) has seen remarkable advancements, particularly in the development and deployment of autonomous agents. These agents promise to revolutionize various industries by automating complex tasks, making intelligent decisions, and interacting seamlessly with both humans and other systems. This chapter provides an overview of autonomous agents, their unique capabilities, and the context in which they operate, setting the stage for a deeper exploration of their design and implementation.

 What are Agents?

 Autonomous agents represent a significant leap forward in AI, offering the potential to enhance productivity, improve decision-making, and tackle problems that were previously beyond the reach of traditional software. These agents combine the power of large language models with sophisticated planning, execution skills, and the ability to adapt to dynamic environments.

 Agents are software entities that perform tasks autonomously on behalf of users or other programs. Unlike traditional programs that require explicit instructions for each action, agents can make decisions and take actions independently based on their understanding of the environment and their objectives. This autonomy allows agents to handle complex tasks that involve multiple steps, varying conditions, and interaction with other systems or humans.

 Similarities and Differences from Traditional Machine Learning

 Traditional machine learning (ML) systems are designed to process specific tasks, such as image recognition, language translation, or predictive analytics. These systems are trained on large datasets to identify patterns and make predictions. While ML models can be powerful, they typically operate within predefined boundaries and lack the flexibility to adapt to new, unforeseen scenarios without additional retraining.

 In contrast, agents extend the capabilities of traditional ML by incorporating decision-making and planning abilities. They use ML models, particularly large language models, as a foundation but go beyond static predictions. Agents can interpret the context, plan sequences of actions, execute skills, and respond to changes in real time. This makes them suitable for more dynamic and complex environments where flexibility and adaptability are crucial.

 Recent Advancements

 The development of large language models, such as OpenAI’s GPT-4, has been a major driving force behind the recent surge in autonomous agent capabilities. These models provide a deep understanding of language, enabling agents to interpret and generate human-like text. Combined with advancements in reinforcement learning, planning algorithms, and real-time data processing, agents are now able to perform sophisticated tasks with minimal human intervention.

 Recent advancements also include improvements in the robustness and scalability of agents. Enhanced training techniques, more efficient algorithms, and the integration of diverse data sources have contributed to the development of agents that are not only smarter but also more reliable and efficient.

 From Synchronous to Asynchronous

 Traditional software systems often operate in a synchronous manner, where tasks are performed in a linear sequence, waiting for each step to complete before proceeding to the next. While this approach is straightforward, it can be inefficient, especially for tasks that involve waiting for external inputs or processing large amounts of data.

 Autonomous agents, however, are designed to operate asynchronously. This means they can perform multiple tasks concurrently, react to new information as it becomes available, and prioritize actions based on changing conditions. Asynchronous operation enables agents to handle more complex scenarios and improve their overall efficiency by minimizing idle times and making better use of available resources. It also enables them to begin handling tasks as they occur. Imagine that emails you need to respond to already have drafts ready for you by the time you read them, or accountants that receive an invoice already are presented with a pre-drafted payment template, or software engineers that receive a ticket already have a first draft of code that they can review and modify to address the issue. This is gradually changing each of us from workers to managers, as we move to reviewing drafts of work generated for us, and focusing our efforts on the most important and challenging aspects of the task.

 When Are Agents Useful?

 Agents are particularly useful in scenarios that require complex decision-making, real-time responsiveness, and the ability to operate in dynamic environments. While traditional machine learning models excel in specific, well-defined tasks such as risk prediction or churn prediction, agents shine in areas where summarizing large amounts of information, operating over unstructured text or information, and handling repetitive processes are critical.

 For instance, traditional ML models are excellent at predicting customer churn based on historical data or assessing financial risks by analyzing structured datasets. These models are purpose-built and highly optimized for these tasks, offering precise and reliable predictions. However, their utility diminishes in scenarios where the problem is less structured or requires continuous adaptation and reasoning over varied data types.

 Agents, leveraging the power of large language models and advanced AI techniques, are particularly effective in scenarios such as:

 	Summarizing Large Amounts of Information

 	
 Agents can process vast volumes of text, extracting key insights and summarizing information in a coherent and concise manner. This is invaluable in fields like research, legal analysis, and content curation, where sifting through large documents is a common task.

 	Operating Over Unstructured Text or Information

 	
 Agents can interpret and generate human-like text, making them suitable for tasks involving unstructured data such as emails, reports, and social media content. They can identify relevant information, answer queries, and provide context-aware responses.

 	Handling Repetitive Processes

 	
 In industries like customer service, agents can automate repetitive tasks such as answering common inquiries, processing routine transactions, and managing simple workflows. This automation frees up human workers to focus on more complex and creative tasks.

 	Reasoning Over Text or Images

 	
 Agents can perform tasks that require reasoning and interpretation of textual or visual information. For example, they can analyze customer feedback, provide diagnostic support in healthcare by interpreting symptoms described in text, or even generate creative content.

 These capabilities open up a class of problems that were almost impossible to address or automate with traditional ML. However, agents also have their limitations. Complex multi-step reasoning, where a task involves intricate dependencies and long chains of logic, remains a challenge. While agents are proficient at processing and generating information, ensuring accurate and consistent outcomes across complex reasoning tasks often requires further advancements and integration with specialized systems.

 In summary, agents are most useful in environments where flexibility, adaptability, and the ability to handle unstructured or large-scale information are paramount. They complement traditional ML models by extending the range of problems that AI can tackle, but they also require careful consideration of their limitations and the specific needs of each application. As we explore the capabilities of autonomous agents in this book, we will highlight how frameworks like Autogen enhance their utility and address some of these challenges, providing practical solutions for real-world scenarios.

 Managing Expectations

 While the promise of autonomous agents is vast, it is essential to manage expectations regarding their capabilities. Agents are powerful tools but are not infallible. They rely on the quality of their underlying models and the data they are trained on. Moreover, the complexity of real-world environments means that agents can encounter situations that challenge their decision-making abilities.

 It is important for stakeholders to understand that agents may require continuous monitoring, updates, and human oversight to ensure they operate effectively and ethically. Setting realistic expectations helps in leveraging the strengths of agents while being prepared to address their limitations. Now that we’ve considered when agents can be useful, let’s look at some example scenarios.

 Use Cases for Agents

 The versatility of autonomous agents opens up a myriad of applications across different industries. By leveraging large language models and sophisticated planning and execution frameworks, these agents can perform a wide array of tasks, providing significant value in various contexts. This section explores some prominent use cases for agents, illustrating their potential impact and benefits.

 Customer Support Agent

 Customer support is one of the most prevalent applications for autonomous agents. These agents can handle a vast number of customer inquiries efficiently and effectively, providing 24/7 support without the need for human intervention. Key functionalities of customer support agents include:

 	Automated Responses

 	
 Agents can answer frequently asked questions, provide information about products and services, and guide customers through troubleshooting processes.

 	Personalized Assistance

 	
 By analyzing customer data and interaction history, agents can offer tailored recommendations and solutions, enhancing the customer experience.

 	Escalation Management

 	
 For complex issues, agents can seamlessly escalate the query to human support representatives, ensuring that customers receive the necessary attention without long wait times.

 	Sentiment Analysis

 	
 Agents can monitor customer sentiment during interactions and adjust their responses accordingly to maintain a positive customer experience.

 These capabilities not only improve customer satisfaction but also reduce operational costs and free up human agents to focus on more complex and value-added tasks.

 Personal Assistant Agent

 Personal assistant agents are designed to help individuals manage their daily tasks and routines more efficiently. These agents leverage natural language processing to interact with users, understand their preferences, and provide timely and relevant assistance. Some key functions include:

 	Scheduling and Reminders

 	
 Personal assistant agents can manage calendars, schedule meetings, set reminders, and send notifications about important events.

 	Information Retrieval

 	
 Agents can quickly access and present information on various topics, such as news updates, weather forecasts, and travel information.

 	Task Automation

 	
 Agents can automate repetitive tasks, such as sending emails, managing to-do lists, and ordering supplies, thus saving users time and effort.

 	Integration with Smart Devices

 	
 Personal assistants can control smart home devices, such as lights, thermostats, and security systems, providing a seamless and integrated user experience.

 By simplifying routine activities and offering proactive assistance, personal assistant agents enhance productivity and convenience for users.

 Legal Agent

 In the legal domain, agents can assist lawyers and legal professionals by automating routine tasks, providing research support, and enhancing decision-making processes. Legal agents offer several key benefits:

 	Document Analysis

 	
 Agents can review and analyze legal documents, contracts, and case files, identifying relevant information and potential issues.

 	Legal Research

 	
 Agents can conduct comprehensive legal research, gathering information from case law, statutes, and legal precedents to support legal arguments.

 	Compliance Monitoring

 	
 Agents can monitor changes in regulations and ensure that legal practices comply with the latest laws and standards.

 	Case Management

 	
 Legal agents can assist in managing case workflows, tracking deadlines, and organizing documentation to streamline legal processes.

 These functionalities help legal professionals increase their efficiency, reduce the risk of errors, and focus on higher-level strategic tasks.

 Advertising Agent

 In the advertising industry, agents can optimize campaign management, targeting, and performance analysis, driving better results and higher return on investment. Advertising agents can perform various critical tasks, including:

 	Audience Targeting

 	
 Agents can analyze demographic and behavioral data to identify and target specific audience segments, ensuring that ads reach the most relevant viewers.

 	Content Creation

 	
 Using natural language generation, agents can create compelling ad copy, social media posts, and other marketing materials tailored to different platforms and audiences.

 	Performance Analysis

 	
 Agents can monitor and analyze the performance of advertising campaigns in real time, providing insights and recommendations for optimization.

 	Budget Management:

 	
 Agents can allocate and adjust advertising budgets across different channels based on performance metrics and strategic goals.

 By leveraging these capabilities, advertising agents enhance the effectiveness of marketing efforts, maximize engagement, and improve overall campaign outcomes.

 In conclusion, autonomous agents offer significant potential across various use cases, from customer support and personal assistance to legal services and advertising. By integrating these agents into their operations, organizations can achieve greater efficiency, improve service quality, and unlock new opportunities for innovation and growth. As we continue to explore the capabilities and applications of autonomous agents in this book, it becomes evident that their impact will be profound and far-reaching across multiple industries. Now that we’ve looked at some example agents, in the next section, we’ll discuss some of the key considerations when designing our agentic systems.

 Building with Change in Mind

 The rapid pace of technological advancement and the dynamic nature of real-world environments necessitate designing autonomous agents with adaptability and flexibility at their core. Building agents that can not only perform their current tasks effectively but also evolve in response to new challenges and opportunities is crucial for long-term success. This section explores key considerations for creating adaptive agents, emphasizing the importance of scalability, modularity, continuous learning, and robust architecture.

 Scalability

 Scalability is essential for ensuring that agents can handle increasing workloads and expanding tasks as their deployment grows. To build scalable agents, developers should focus on:

 	Distributed Architecture

 	
 Implementing a distributed system allows agents to leverage multiple processing nodes, ensuring that they can handle large volumes of data and complex computations efficiently. This approach also provides redundancy, enhancing the system’s reliability.

 	Cloud Integration

 	
 Utilizing cloud services offers virtually unlimited resources for storage and computation, enabling agents to scale seamlessly. Cloud platforms provide the flexibility to dynamically allocate resources based on demand, ensuring optimal performance.

 	Efficient Algorithms

 	
 Designing algorithms that can efficiently process data and perform tasks is critical for scalability. Optimization techniques, such as parallel processing and load balancing, help distribute the workload evenly across the system.

 For organizations to unlock the potential for agentic systems, building for scale is essential, which requires a robust and cost-efficient architecture.

 Modularity

 Modularity involves designing agents with interchangeable and independent components, allowing for easy updates and modifications. This design philosophy enhances the agent’s ability to adapt to new requirements and integrate with different systems. Key strategies include:

 	Component-Based Design

 	
 Breaking down the agent’s functionality into discrete, self-contained modules allows developers to update or replace individual components without affecting the entire system. This approach simplifies maintenance and enhances flexibility.

 	Clear Interfaces

 	
 Establishing well-defined interfaces between modules ensures smooth communication and integration. By adhering to standardized protocols and data formats, agents can easily interact with other systems and components.

 	Plug-and-Play Capabilities

 	
 Designing modules that can be added or removed with minimal configuration enables rapid adaptation to changing needs. This capability allows agents to incorporate new skills or functionalities as they become available.

 Modularity enables agents to adapt easily to new requirements by using interchangeable, independent components. Key strategies include component-based design, clear interfaces, and plug-and-play capabilities, which together support flexibility, seamless integration, and easy updates.

 Continuous Learning

 Continuous learning is vital for agents to remain effective in dynamic environments. By constantly acquiring new knowledge and refining their skills, agents can improve their performance and adapt to evolving tasks. Strategies for fostering continuous learning include:

 	Reinforcement Learning

 	
 Implementing reinforcement learning algorithms allows agents to learn from their experiences, adapting their behavior based on feedback and rewards. This approach enables agents to optimize their actions over time and improve their decision-making processes.

 	Incremental Updates

 	
 Regularly updating the agent’s knowledge base and models with new data ensures that they remain current and relevant. Incremental learning techniques enable agents to incorporate new information without retraining from scratch.

 	User Feedback Integration

 	
 Leveraging feedback from users helps agents refine their interactions and responses. By analyzing user input and adapting accordingly, agents can enhance their effectiveness and user satisfaction.

 One of the key limitations of previous generations of automation is that manual updates have generally been required, making them brittle and less useful over time. This new generation of autonomous agents are capable of continuous learning from implicit and explicit feedback, enabling them to improve performance and adjust to evolving tasks.

 Resilience

 A resilient architecture ensures that agents can operate reliably under various conditions and handle unexpected challenges gracefully. Key elements of a resilient architecture include:

 	Error Handling

 	
 Implementing comprehensive error handling mechanisms allows agents to detect and recover from failures, ensuring continuous operation. This includes anticipating potential issues and designing fallback strategies.

 	Security Measures

 	
 Ensuring the security of the agent and its data is paramount. Implementing encryption, access controls, and regular security audits protects against unauthorized access and data breaches.

 	Redundancy

 	
 Building redundancy into the system provides backup resources that can take over in case of component failures. This enhances the overall reliability and availability of the agent.

 A resilient architecture enables agents to function reliably across diverse conditions and manage unexpected challenges effectively. Essential components include error handling, security measures, and redundancy, which together enhance resilience, security, and system reliability.

 Future-Proofing

 Future-proofing involves designing agents that can easily adapt to emerging technologies and trends. This requires a forward-thinking approach, considering potential developments in AI, data processing, and user expectations. Strategies for future-proofing include:

 	Open Standards

 	
 Adopting open standards and protocols ensures that agents can integrate with future systems and technologies. This approach minimizes the risk of obsolescence and enhances compatibility.

 	Scalable Infrastructure

 	
 Investing in scalable infrastructure from the outset allows agents to accommodate future growth and technological advancements without significant overhauls.

 	Continuous Innovation

 	
 Encouraging a culture of continuous innovation ensures that agents remain at the cutting edge of technology. Regularly exploring new tools, techniques, and methodologies helps maintain the agent’s relevance and effectiveness.

 Building autonomous agents with change in mind is essential for their long-term success and adaptability. By focusing on scalability, modularity, continuous learning, robust architecture, and future-proofing, developers can create agents that are not only effective in their current tasks but also capable of evolving with the ever-changing technological landscape. This approach ensures that agents remain valuable assets, capable of meeting new challenges and seizing emerging opportunities. In the next section, we’ll discuss when and why we would use multi-agent systems, and discuss the relationship between foundation models and autonomous agents.

 Towards Multi-Agent Systems

 Multi-agent systems involve multiple autonomous agents working together to achieve common goals or perform distributed tasks. While these systems are more complex to develop, configure, and maintain, they open up additional capabilities and can often improve performance on specific tasks. These systems are designed to leverage the collective intelligence and capabilities of individual agents, allowing for more complex and scalable solutions. Multi-agent systems are particularly useful in environments where tasks are distributed, dynamic, or require collective problem-solving, such as code-generation, cybersecurity monitoring, supply chain management, customer support automation, sales automation, or healthcare coordination.

 Foundation Models and Autonomous Agents

 Recent advancements in large language models, such as GPT-4, Anthropic’s Claude, and Meta’s Llama have significantly impacted the design of autonomous agents. These models provide a deep understanding of language, enabling agents to process natural language input, generate coherent responses, and perform complex linguistic tasks. Incorporating large language models into autonomous agents offers several advantages:

 	Natural Language Understanding

 	
 Agents can understand and interpret user queries, commands, and conversations, enabling more natural and intuitive interactions.

 	Context-Aware Responses

 	
 By maintaining context over longer interactions, agents can provide more relevant and accurate responses.

 	Content Generation

 	
 Agents can generate text, code, and other content, enhancing their ability to assist with creative and analytical tasks.

 The integration of large language models with planning and execution frameworks allows for the development of highly sophisticated agents capable of performing a wide range of tasks autonomously. By leveraging monitoring and feedback systems, developers can ensure that autonomous agents remain reliable, efficient, and aligned with their intended goals.

 Conclusion

 Autonomous agents represent a transformative development in AI, capable of performing complex, dynamic tasks with a high degree of autonomy. This chapter has outlined the foundational concepts of agents, highlighted their advancements over traditional machine learning systems, and discussed their practical applications and limitations. As we delve deeper into the design and implementation of these systems, it becomes clear that the thoughtful integration of agents into various domains holds the potential to drive significant innovation and efficiency.

 While the various approaches to designing autonomous agents discussed in this chapter have demonstrated significant capabilities and potential, they also highlight the complexity and challenges involved in creating effective and adaptable systems. Each method, from rule-based systems to advanced cognitive architectures, offers unique strengths but also comes with inherent limitations. In this book, I aim to bridge these gaps.

 There is currently a wide variety of frameworks for developing agents, skills, memory, planning, orchestration, learning, and multi-agent coordination. While each of these frameworks has its own pros and cons, I choose to focus on the fundamentals. The code examples in this book focus on LangGraph, a leading framework. By focusing on LangGraph, we will explore how this innovative framework simplifies the design and implementation of autonomous agents, enabling them to better meet the demands of dynamic and complex environments. Through detailed explanations, practical examples, and real-world applications, I will demonstrate why LangGraph stands out as a superior approach for building the next generation of intelligent agents. In the next chapter, we’ll provide a bird’s-eye view of the key components in designing an effective agentic system.

 Chapter 2. Skills

A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the third chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

			

 Skills are the building blocks that empower AI agents to perform tasks, make decisions, and interact with the environment in meaningful ways. In the context of AI, a skill can be defined as a specific capability or a set of actions that an agent can perform to achieve a desired outcome. These skills range from simple, single-step tasks to complex, multi-step operations that require advanced reasoning and problem-solving abilities. Especially if you want your agent to make actual changes, instead of just searching for and providing information, skills will be how those changes are executed.

 The significance of skills in AI agents parallels the importance of competencies in human professionals. Just as a doctor needs a diverse set of skills to diagnose and treat patients, an AI agent requires a repertoire of skills to handle various tasks effectively. This chapter aims to provide a comprehensive understanding of skills in AI agents, exploring their design, development, and deployment.

 AI agents, at their core, are sophisticated systems designed to interact with their environment, process information, and execute tasks autonomously. To do this efficiently, they rely on a structured set of skills. These skills are modular components that can be developed, tested, and optimized independently, then integrated to form a cohesive system capable of complex behavior.

 In practical terms, a skill could be as simple as recognizing an object in an image or as complex as managing a customer support ticket from initial contact to resolution. The design and implementation of these skills are critical to the overall functionality and effectiveness of the AI agent. There are several types of skills that can be provided to an autonomous agent, which we will cover in sequence: hand-crafted skills,

 Local Skills

 These skills are manually designed and programmed by developers to run locally. They are often based on predefined rules and logic, tailored to specific tasks. Hand-crafted skills are typically used for well-defined problems where the requirements and outcomes are clear. The process involves defining the logic, rules, and decision-making pathways that the AI agent will follow. These manually-crafted skills offer precision, predictability, and simplicity. Hand-crafted local skills allow developers to have complete control over the behavior of the AI agent. Since the logic is explicitly defined, hand-crafted skills tend to be predictable and reliable. This is beneficial in scenarios where consistency and accuracy are paramount.

 The challenges of hand-crafted skills include:

 	Scalability

 	
 Designing hand-crafted skills for complex or dynamic tasks can be time-consuming and challenging. As the complexity of the task increases, the effort required to program and maintain these skills grows exponentially.

 	Flexibility

 	
 Hand-crafted skills are often rigid and may struggle to adapt to new or unforeseen situations. This lack of flexibility can limit the AI agent’s ability to handle diverse or evolving tasks.

 	Maintenance

 	
 As the environment or requirements change, hand-crafted skills may need frequent updates and adjustments. This ongoing maintenance can be resource-intensive.

 Despite these drawbacks, manually-crafted skills are especially useful in addressing areas of traditional weakness for foundation models. Simple mathematical operations are a great example of this. Unit conversions, calculator operations, calendar changes, operations over maps and graphs, for example, are all areas where hand-crafted skills can substantially improve the efficacy of agentic systems.

 Let’s look at an example of registering a calculator skill. First, we define our simple calculator function:

 from langchain_core.runnables import ConfigurableField
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI

Define tools using concise function definitions
@tool
def multiply(x: float, y: float) -> float:
 """Multiply 'x' times 'y'."""
 return x * y

@tool
def exponentiate(x: float, y: float) -> float:
 """Raise 'x' to the 'y'."""
 return x**y

@tool
def add(x: float, y: float) -> float:
 """Add 'x' and 'y'."""
 return x + y

 Then, we register it here as an LLM with tools class from LangChain.

 tools = [multiply, exponentiate, add]

Initialize the LLM with GPT-4o and bind the tools
llm = ChatOpenAI(model_name="gpt-4o", temperature=0)
llm_with_tools = llm.bind_tools(tools)

 Now that we’ve bound the tool, we can ask the LLM questions, and if the tool is helpful for answering the question, the LLM will choose the tools, select the parameters for those tools, and invoke those functions.

 query = "What is 393 * 12.25? Also, what is 11 + 49?"
messages = [HumanMessage(query)]

ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)
for tool_call in ai_msg.tool_calls:
 selected_tool = {"add": add, "multiply": multiply, "exponentiate": exponentiate}[tool_call["name"].lower()]
 tool_msg = selected_tool.invoke(tool_call)

 print(f’{tool_msg.name} {tool_call['args']} {tool_msg.content}’)
 messages.append(tool_msg)

 With those added print statements for visibility, we can see that the LLM invokes two function calls: one each for multiple and add.

 multiply {'x': 393, 'y': 12.25} Result: 4814.25
add {'x': 11, 'y': 49} 60.0

 It then considers the output from both when composing the final response.

 final_response = llm_with_tools.invoke(messages)
print(final_response.content)

(393 times 12.25 = 4814.25)
(11 + 49 = 60)

 Maybe you want to enable your agent to browse the open web for additional information. Doing so is as simple as registering a web surfing agent:

 from langchain_openai import ChatOpenAI
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.messages import HumanMessage

api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=300)
tool = WikipediaQueryRun(api_wrapper=api_wrapper)

Initialize the LLM with GPT-4o and bind the tools
llm = ChatOpenAI(model_name="gpt-4o", temperature=0)
llm_with_tools = llm.bind_tools([tool])

messages = [HumanMessage("What was the most impressive thing about Buzz Aldrin?")]

ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)

for tool_call in ai_msg.tool_calls:
 tool_msg = tool.invoke(tool_call)

 print(tool_msg.name)
 print(tool_call['args'])
 print(tool_msg.content)
 messages.append(tool_msg)
 print()

final_response = llm_with_tools.invoke(messages)
print(final_response.content)

 The LLM identifies the object of interest in the query, and searches Wikipedia for the term. It then uses this additional information to generate its final answer when addressing the question.

 wikipedia
{'query': 'Buzz Aldrin'}
Page: Buzz Aldrin
Summary: Buzz Aldrin (; born Edwin Eugene Aldrin Jr.; January 20, 1930) is an American former astronaut, engineer and fighter pilot. He made three spacewalks as pilot of the 1966 Gemini 12 mission, and was the Lunar Module Eagle pilot on the 1969 Apollo 11 mission.

One of the most impressive things about Buzz Aldrin is that he was the Lunar Module Eagle pilot on the 1969 Apollo 11 mission, making him one of the first two humans to land on the Moon. This historic event marked a significant achievement in space exploration and human history. Additionally, Aldrin made three spacewalks as pilot of the 1966 Gemini 12 mission, showcasing his skills and contributions to advancing space travel.

 Similar skills can be created to search across team- or company-specific information. By providing your agent with the skills necessary to access the information it needs to handle a task, and the specific skills to operate over that information, you can significantly expand the scope and complexity of tasks that can be automated.

 Skill Design Considerations

 Designing effective skills involves several key considerations:

 	Generalization vs. Specialization

 	
 Skills can be designed to be highly specialized for a specific task or generalized to handle a range of related tasks. The choice between generalization and specialization depends on the intended use case and the desired flexibility of the AI agent.

 	Robustness

 	
 Skills should be robust enough to handle variations in input and unexpected scenarios. This requires thorough testing and refinement to ensure reliability in real-world applications.

 	Efficiency

 	
 Efficient skills minimize computational resources and execution time, enhancing the overall performance of the AI agent. Optimization techniques, such as algorithmic improvements and hardware acceleration, play a vital role in achieving efficiency.

 	Scalability

 	
 As the complexity of tasks increases, skills should scale seamlessly to meet the demands. This involves designing skills that can be easily expanded or combined with other skills to address more sophisticated challenges.

 API-Based Skills

 API-based skills enable autonomous agents to interact with external services, enhancing their capabilities by accessing additional information, processing data, and executing actions that are not feasible to perform locally. These skills leverage Application Programming Interfaces (APIs) to communicate with public or private services, providing a dynamic and scalable way to extend the functionality of an agent.

 API-based skills are particularly valuable in scenarios where the agent needs to integrate with various external systems, retrieve real-time data, or perform complex computations that would be too resource-intensive to handle internally. By connecting to APIs, agents can access a vast array of services, such as weather information, stock market data, translation services, and more, enabling them to provide richer and more accurate responses to user queries. These API-based skills have multiple benefits.

 By leveraging external services, these skills can dramatically expand the range of tasks an agent can perform. For instance, an agent can use a weather API to provide current weather conditions and forecasts, a financial API to fetch stock prices, or a translation API to offer multilingual support. This ability to integrate diverse external services greatly broadens the agent’s functionality, all without having to retrain a model.

 Real-time data access is another major benefit of API-based skills. APIs enable agents to access the most current information from external sources, ensuring that their responses and actions are based on up-to-date data. This is particularly crucial for applications that depend on timely and accurate information, such as financial trading or emergency response systems, where decisions must be made quickly based on the latest available data.

 To illustrate the implementation of API-based skills, consider an example where an agent is designed to fetch and display stock market data. This process involves defining the API interaction, handling the response, and integrating the skill into the agent’s workflow. By following this approach, agents can seamlessly integrate external data sources, enhancing their overall functionality and effectiveness.

 First, we define the function that interacts with the stock market API. Then, we register this function as a skill for our agent, and we can then invoke it just like the previous skills.

 from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.messages import HumanMessage
import requests

@tool
def get_stock_price(ticker: str) -> float:
 """Get the stock price for the stock exchange ticker for the company."""
 api_url = f"https://api.example.com/stocks/{ticker}"
 response = requests.get(api_url)
 if response.status_code == 200:
 data = response.json()
 return data["price"]
 else:
 raise ValueError(f"Failed to fetch stock price for {ticker}")

Initialize the LLM with GPT-4o and bind the tools
llm = ChatOpenAI(model_name="gpt-4o", temperature=0)
llm_with_tools = llm.bind_tools([get_stock_price])

messages = [HumanMessage("What is the stock price of Apple?")]

ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)

for tool_call in ai_msg.tool_calls:
 tool_msg = get_stock_price.invoke(tool_call)

 print(tool_msg.name)
 print(tool_call['args'])
 print(tool_msg.content)
 messages.append(tool_msg)
 print()

final_response = llm_with_tools.invoke(messages)
print(final_response.content)

 This shows how an API-based skill can be integrated into an autonomous agent, allowing it to fetch and provide real-time stock prices.

 When designing API-based skills for autonomous agents, several key considerations must be addressed to ensure effective and reliable performance. First and foremost, the reliability of external services is crucial. Agents must be able to handle potential failures gracefully, incorporating fallback mechanisms or providing informative error messages to users when services are unavailable.

 Security is another critical aspect. Secure communication with external APIs, especially when dealing with sensitive information, is essential. Implementing HTTPS for data transmission and robust authentication and authorization mechanisms helps protect against unauthorized access and ensures data integrity.

 We need to also be mindful of API rate limits imposed by external services. Designing the agent to respect these limits prevents service disruptions and maintains continuous access to necessary data. Additionally, data privacy must be a priority. When interacting with external services, it’s important to ensure that all shared and retrieved data complies with relevant data privacy regulations. Sensitive data should be anonymized or obfuscated as needed to protect user privacy.

 Effective error handling is also important for managing various failure scenarios, such as network issues, invalid API responses, or service outages. The agent should be capable of recovering from errors and continuing to function without significant interruptions, ensuring a seamless user experience.

 API-based skills significantly enhance the capabilities of autonomous agents by leveraging external services. These skills enable agents to access real-time data, perform complex computations, and execute tasks that are beyond their local capabilities, thereby improving their overall functionality and effectiveness.

 Plug-in Skills

 These skills are modular and can be integrated into the AI agent’s framework with minimal customization. They leverage existing libraries, APIs, and third-party services to extend the agent’s capabilities without extensive development effort. Plug-in skills enable rapid deployment and scaling of the agent’s functionalities. These skills are pre-designed modules that can be integrated into an AI system with minimal effort, leveraging existing libraries, APIs, and third-party services. The integration of plug-in skills has become a standard offering from leading platforms such as OpenAI, Anthropic’s Claude, Google’s Gemini, and Microsoft’s Phi, providing powerful tools to expand the capabilities of AI agents without extensive custom development, as well as within a growing open-source community.

 OpenAI offers a suite of plug-in skills that enable functionalities like natural language understanding, code generation, and data analysis. These plug-ins are designed to be incorporated at the model execution layer, allowing seamless integration into existing workflows. This approach makes it straightforward to add advanced capabilities to AI applications without the need for deep customization. Similarly, Anthropic’s Claude focuses on ethical AI and robust performance, providing skills for content moderation, bias detection, and robust decision-making. These ensure that AI systems operate within safe and ethical boundaries, aligning with societal norms.

 Google’s Gemini platform provides a diverse range of plug-in skills for applications such as natural language processing and computer vision. Leveraging Google’s extensive AI research and infrastructure, these plug-ins enable functionalities like image recognition, speech synthesis, and language translation. Microsoft’s Phi platform integrates plug-in skills seamlessly with its suite of productivity tools, enabling tasks such as document processing, data visualization, and workflow automation. This deep integration allows developers to create AI solutions that fit neatly into existing business processes and tools.

 One of the significant advantages of plug-in skills is their integration at the model execution layer. This means these skills can be added to AI models with minimal disruption to existing workflows. Developers can simply plug these modules into their AI systems, instantly enhancing their capabilities without extensive customization or development effort. This ease of integration makes plug-in skills an attractive option for rapidly deploying new functionalities in AI applications. However, this ease of use comes with certain limitations. Plug-in skills, while powerful, do not offer the same level of customizability and adaptability as custom-developed solutions. They are designed to be general-purpose tools that can address a broad range of tasks, but they may not be tailored to the specific needs and nuances of every application. This trade-off between ease of integration and customizability is an important consideration for developers when choosing between plug-in skills and bespoke development.

 Despite the current limitations, the catalogs of plug-in skills offered by leading platforms are rapidly growing. As these catalogs expand, the breadth of capabilities available through plug-in skills will increase, providing developers with even more tools to enhance their AI agents. This growth is driven by continuous advancements in AI research and the development of new techniques and technologies. In the near future, we can expect these plug-in skill catalogs to include more specialized and advanced functionalities, catering to a wider range of applications and industries. This expansion will facilitate agent development by providing developers with readily available tools to address complex and diverse tasks. The growing ecosystem of plug-in skills will enable AI agents to perform increasingly sophisticated functions, making them more versatile and effective in various domains.

 In addition to the offerings from major platforms, there is a rapidly growing ecosystem of tools and plug-in skills that can be incorporated into open-source foundation models. This ecosystem provides a wealth of resources for developers looking to enhance their AI agents with advanced capabilities. Open-source communities are actively contributing to the development of plug-in skills, creating a collaborative environment that fosters innovation and knowledge sharing. One notable example is the Hugging Face Transformers library, which offers a wide range of pre-trained models and plug-in skills for natural language processing tasks. These skills can be easily integrated into open-source foundation models, enabling functionalities such as text generation, sentiment analysis, and language translation. The open-source nature of this library allows developers to customize and extend these skills to suit their specific needs. Both TensorFlow and PyTorch, two leading deep learning frameworks, have extensive ecosystems of plug-in skills and tools. These ecosystems include pre-trained models, data processing pipelines, and optimization tools that can be integrated into AI applications. The flexibility of these frameworks allows developers to combine plug-in skills with custom development, creating powerful and adaptable AI systems. The open-source AI community is continuously contributing new plug-in skills and enhancements, driven by the collective efforts of researchers, developers, and enthusiasts. Platforms like GitHub host numerous repositories of plug-in skills, ranging from simple utilities to complex models. These contributions enrich the ecosystem and provide valuable resources for developers looking to leverage the latest advancements in AI.

 The practical applications of plug-in skills are vast and varied, spanning multiple industries and use cases. By integrating plug-in skills, developers can create AI agents that perform a wide range of tasks efficiently and effectively. In customer support, plug-in skills can enable AI agents to handle queries, provide solutions, and manage support tickets. Skills like natural language understanding and sentiment analysis can help AI agents understand customer issues and respond appropriately, improving customer satisfaction and reducing response times. In healthcare, plug-in skills can assist AI agents in tasks such as medical image analysis, patient triage, and data management. Skills that leverage computer vision can help identify abnormalities in medical images, while natural language processing skills can assist in managing patient records and extracting relevant information from medical literature. In the finance industry, plug-in skills can enhance AI agents’ abilities to analyze market trends, detect fraudulent activities, and manage financial portfolios. Skills like anomaly detection and predictive analytics can provide valuable insights and improve decision-making processes. In education, plug-in skills can support AI agents in personalized learning, automated grading, and content recommendation. Natural language processing skills can help analyze student responses, while recommendation algorithms can suggest relevant study materials based on individual learning needs.

 The future of plug-in skills in AI development looks promising, with continuous advancements and growing adoption across various industries. As the capabilities of plug-in skills expand, we can expect AI agents to become even more capable and versatile. The ongoing research and development efforts by leading platforms and the open-source community will drive innovation, resulting in more powerful and sophisticated tools for AI development. One important area of focus for the future is the interoperability and standardization of plug-in skills. Establishing common standards and protocols for plug-in skills will facilitate seamless integration and interoperability across different AI platforms and systems. This will enable developers to leverage plug-in skills from various sources, creating more flexible and adaptable AI solutions. Efforts are also being made to enhance the customization and adaptability of plug-in skills. Future plug-in skills may offer more configurable options, allowing developers to tailor them to specific use cases and requirements. This will bridge the gap between the ease of integration and the need for customized solutions, providing the best of both worlds.

 Skill Hierarchies

 Though not necessary for smaller projects or early on in the development of an agentic application, skills can also be organized hierarchically, where complex skills are composed of simpler sub-skills. Skill hierarchies involve organizing skills in a structured manner where complex tasks are decomposed into simpler sub-skills. Grouping related skills into hierarchies can streamline skill selection and execution, minimizing the risk of semantic collisions—situations where multiple skills overlap in functionality or purpose, leading to conflicts or ambiguities.

 By categorizing skills into well-defined groups, developers can ensure that the AI agent selects the appropriate skill for a given task, improving both efficiency and accuracy. This structured approach allows for better management of the agent’s capabilities, as each group can be designed to handle specific types of tasks, making the overall system more robust and easier to maintain.

 For example, in a customer support AI, skills related to account management, technical support, and billing can be grouped separately. When a user query is processed, the AI can quickly identify the relevant skill group and select the most appropriate skill within that group, avoiding confusion and ensuring a smooth user experience.

 The detailed process of skill selection and managing these hierarchies falls under the broader topic of orchestration, which will be covered comprehensively in the subsequent chapter. Orchestration involves coordinating multiple skills and ensuring they work together seamlessly to achieve the desired outcomes, making it a critical aspect of advanced AI agent development.

 Automated Skill Development

 Code generation is a technique where AI agents write code autonomously, significantly reducing the time and effort required to create and maintain software applications. This process involves training models on vast amounts of code data, enabling them to understand programming languages, coding patterns, and best practices. This approach has three main

 Code generation represents a transformative leap in AI capabilities, particularly when an agent writes its own skills in real-time to solve tasks or interact with new APIs. This dynamic approach enables AI agents to adapt and expand their functionality on-the-fly, significantly enhancing their versatility and problem-solving capacity.

 Real-Time Code Generation

 Real-time code generation involves an AI agent writing and executing code as needed during its operation. This capability allows the agent to create new skills or modify existing ones to address specific tasks, making it highly adaptable. For instance, if an AI agent encounters a novel API or an unfamiliar problem, it can generate code to interface with the API or develop a solution to the problem in real-time.

 The process begins with the agent analyzing the task at hand and determining the necessary steps to accomplish it. Based on its understanding, the agent writes code snippets, which it then attempts to execute. If the code does not perform as expected, the agent iteratively revises it, learning from each attempt until it achieves the desired outcome. This iterative process of trial-and-error allows the agent to refine its skills continuously, improving its performance and expanding its capabilities autonomously.

 Real-time code generation offers several compelling advantages, particularly in terms of adaptability and efficiency. The ability to generate code on-the-fly allows AI agents to quickly adapt to new tasks and environments. This adaptability is crucial for applications requiring dynamic problem-solving and flexibility, such as real-time data analysis, autonomous systems, and complex software integration tasks. By generating code in real-time, AI agents can address immediate needs without waiting for human intervention, significantly speeding up processes, reducing downtime, and enhancing overall efficiency.

 However, real-time code generation also presents several challenges and risks. Quality control is a major concern, as ensuring the quality and security of autonomously generated code is critical. The AI must adhere to best practices and coding standards to prevent bugs, vulnerabilities, and unintended behaviors. Poor quality code can lead to system failures, security breaches, and other significant issues. Security risks are another major challenge, as allowing AI agents to execute self-generated code introduces the potential for malicious actors to exploit this capability to inject harmful code, leading to data breaches, unauthorized access, or system damage. Implementing robust security measures and oversight is essential to mitigate these risks.

 Resource consumption is also a critical consideration, as real-time code generation and execution can be resource-intensive, requiring substantial computational power and memory. Ensuring that the AI agent operates efficiently without overloading system resources is crucial. Finally, the autonomous nature of real-time code generation raises ethical and regulatory concerns. Ensuring that the AI agent operates within legal and ethical boundaries is critical, particularly in sensitive areas such as healthcare, finance, and autonomous vehicles. Addressing these concerns involves careful consideration of the implications of autonomous code generation and implementing appropriate safeguards to ensure responsible and compliant operation.

 Imitation Learning

 Imitation learning is a technique where AI agents learn to perform tasks by observing and mimicking human behavior. This approach is inspired by how humans and animals learn through imitation and demonstration. Imitation learning is particularly effective for tasks that are difficult to define with explicit rules or for which large datasets of labeled examples are not available.

 Imitation learning offers several notable advantages for training AI agents. By mimicking the process of human learning, imitation learning allows AI agents to acquire skills in a manner that resembles how humans learn, making it particularly effective for complex and nuanced tasks. This human-like learning approach simplifies the training process for agents, enabling them to grasp intricate behaviors more naturally.

 One of the primary benefits of imitation learning is its efficiency. AI agents can quickly learn new skills by observing demonstrations, bypassing the need for extensive trial-and-error methods or manually labeled data. This rapid acquisition of skills accelerates the training process and reduces the resources required to develop proficient AI systems. Furthermore, imitation learning is highly versatile, applicable to a broad spectrum of tasks ranging from robotic manipulation to natural language understanding. This versatility makes it a valuable tool in the AI development toolkit, suitable for a wide array of applications.

 However, imitation learning also presents several challenges. First, not all teams, companies, or scenarios have the data necessary to attempt imitation learning. The quality of demonstrations is critical; poor or incomplete demonstrations can significantly impair the effectiveness of the learning process, leading to suboptimal performance. Another challenge is ensuring that AI agents can generalize from the observed behavior to new, unseen situations. The ability to adapt learned skills to various contexts and environments is essential for the practical deployment of AI agents. Additionally, scaling imitation learning to handle complex tasks with numerous variations demands substantial computational resources and sophisticated algorithms, posing a significant challenge for developers.

 Several techniques and approaches are employed in imitation learning to address these challenges. Behavior cloning involves training the AI agent to directly mimic the actions of a human demonstrator using supervised learning to map observations to actions based on the demonstrated behavior. Inverse Reinforcement Learning (IRL) aims to infer the underlying reward function that the human demonstrator is optimizing. The AI agent then uses this inferred reward function to guide its own behavior, allowing it to generalize beyond specific demonstrations. Generative Adversarial Imitation Learning (GAIL) combines the principles of generative adversarial networks (GANs) with imitation learning. In this approach, the AI agent learns to generate behavior that is indistinguishable from human demonstrations, while a discriminator model evaluates the quality of the generated behavior.

 Skill Learning from Rewards

 Skill learning from rewards, also known as reinforcement learning (RL), involves training AI agents to perform tasks by maximizing a reward signal. Unlike imitation learning, where the agent learns from demonstrations, reinforcement learning agents learn through trial-and-error, receiving feedback in the form of rewards or penalties based on their actions.

 Skill learning from rewards, also known as reinforcement learning (RL), provides several significant advantages for developing autonomous AI agents. One of the primary benefits is autonomy, as RL allows AI agents to learn independently without the need for extensive human intervention or labeled data. This capability makes RL particularly valuable for applications where continuous human supervision is impractical. Additionally, RL agents engage in exploration, navigating their environment to discover optimal strategies for achieving their goals. This exploratory nature makes them well-suited for tasks in complex and dynamic environments, where predefined rules may be insufficient.

 Optimality is another critical advantage of skill learning from rewards. By focusing on maximizing rewards, RL agents can achieve high levels of performance and efficiency, often surpassing human capabilities in specific tasks. This optimization enables AI agents to perform at peak levels, adapting and improving their strategies based on their experiences and the feedback they receive from their environment.

 Despite these advantages, skill learning from rewards also presents several challenges. First is having a high-quality environment with rewards. Some scenarios, such as customer service or finance, can use past data to create a realistic environment with rewards, but this is not possible in all cases. Sample efficiency is a notable issue, as RL algorithms typically require a large number of interactions with the environment to learn effectively. This process can be time-consuming and computationally expensive, posing a significant hurdle for practical applications. Stability is another challenge, as ensuring the stability and convergence of RL algorithms can be difficult, particularly in environments with high variability or noise. Finally, reward design is crucial; creating appropriate reward functions that accurately reflect the desired outcomes is essential for the success of RL agents. Poorly designed rewards can lead to unintended behaviors, undermining the effectiveness of the learning process.

 To address these challenges, various techniques and approaches have been developed in skill learning from rewards. Value-based methods, such as Q-learning and Deep Q-Networks (DQNs), involve estimating the value of actions in different states and selecting actions that maximize the expected value. These methods are particularly effective for discrete action spaces. Policy-based methods, including REINFORCE and Proximal Policy Optimization (PPO), directly optimize the agent’s policy by adjusting the parameters of a policy network. These methods are well-suited for continuous action spaces and provide a more direct approach to policy improvement. Actor-critic methods combine the strengths of value-based and policy-based approaches. In this framework, the actor component selects actions, while the critic component evaluates the actions’ value, providing feedback to improve the policy. This combination allows for more stable and efficient learning, leveraging the benefits of both approaches.

 By utilizing these techniques, reinforcement learning enables the development of autonomous AI agents capable of learning complex skills and adapting to a wide range of environments. The ability to explore, optimize, and operate independently makes RL a powerful tool for advancing AI capabilities and achieving high levels of performance in various applications.

 Conclusion

 Skills enable AI agents to perform tasks, make decisions, and interact with their environment effectively. These range from simple to complex tasks requiring advanced reasoning. Hand-crafted skills, manually designed by developers, offer precision but can be time-consuming to maintain. Plug-in skills, provided by platforms like OpenAI and Google’s Gemini, allow rapid integration and scalability but lack customizability. Skill hierarchies organize skills into structured groups, enhancing efficiency and reducing conflicts.

 Automated skill development, including real-time code generation, imitation learning, and reinforcement learning, allows AI agents to dynamically adapt and refine their abilities. This enhances their versatility and problem-solving capabilities, enabling continuous improvement and autonomous expansion of skills. Building and maintaining the skillset for your agent is one of the most critical ways to give your agent the capabilities to succeed in the task at hand. Now that we know how to build and curate a set of skills that we provide to our agent, we’ll move on to consider how we’ll enable the agent to make plans, select and parameterize skills, and put these pieces together in order to perform useful work.

 Chapter 3. Orchestration

A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the fourth chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

			

 Now that your agent has a set of skills that can be used, it’s time to start using them to solve real tasks. While simple tasks can be handled by relying on the intrinsic information contained within the models’ weights, and some tasks can be handled with a single skill, more complex tasks will often require multiple skills, with the potential for dependencies between these skills. To handle more complex tasks, agents need to perform more than one action and do so in a reasonable order, appropriately managing dependencies between the tasks. This chapter will cover orchestration, including skill selection, execution, skill topologies, and planning.

 Skill Selection

 Before we get to planning, we will consider the critical task of skill selection, because it is the foundation for more advanced planning. Different approaches to skill selection offer unique advantages and considerations, meeting different requirements and environments. We assume a set of skills have already been developed, so if you need a refresher, go back to Chapter 3.

 Generative Skill Selection

 The simplest approach is Generative Skill Selection. In this case, the skill, its definition, and its description are provided to a foundation model, and the model is asked to select the most appropriate skill for the given context. The output from the foundation model is then compared to the skillset, and the closest one is chosen. This approach is easy to implement, and requires no additional training, embedding, or a skillset hierarchy to use. The main drawback is latency, as it requires another foundation model call, which can add seconds to the overall response time. It can also benefit from in-context learning, where few-shot examples can be provided to boost predictive accuracy for your problem without the challenge of training or fine-tuning a model.

 from langchain_core.tools import tool
import requests

@tool def query_wolfram_alpha(expression: str) -> str:
 """ Query Wolfram Alpha to compute mathematical expressions or retrieve information.
 Args: expression (str): The mathematical expression or query to evaluate.
 Returns: str: The result of the computation or the retrieved information.
 api_url = f"https://api.wolframalpha.com/v1/result?i={requests.utils.quote(expression)}&appid=YOUR_WOLFRAM_ALPHA_APP_ID" try: response = requests.get(api_url)if response.status_code == 200: return response.text else: raise ValueError(f"Wolfram Alpha API Error: {response.status_code} - {response.text}") except requests.exceptions.RequestException as e: raise ValueError(f"Failed to query Wolfram Alpha: {e}")

@tool def trigger_zapier_webhook(zap_id: str, payload: dict) -> str:
 """ Trigger a Zapier webhook to execute a predefined Zap. Args:
 zap_id (str): The unique identifier for the Zap to be triggered.
 payload (dict): The data to send to the Zapier webhook. Returns:
 str: Confirmation message upon successful triggering of the Zap.
 Raises: ValueError: If the API request fails or returns an error.
 """

 f"https://hooks.zapier.com/hooks/catch/{zap_id}/"
 try:
 response = requests.post(zapier_webhook_url, json=payload)
 if response.status_code == 200:
 return f"Zapier webhook '{zap_id}' successfully triggered."

 else:
 raise ValueError(f"Zapier API Error: {response.status_code} - {response.text}")
 except
 requests.exceptions.RequestException as e:
 raise ValueError(f"Failed to trigger Zapier webhook '{zap_id}': {e}") #

@tool def send_slack_message(channel: str, message: str) -> str:
 """ Send a message to a specified Slack channel. Args: channel (str): The Slack channel ID or name where the message will be sent. message (str): The content of the message to send. Returns: str: Confirmation message upon successful sending of the Slack message. Raises: ValueError: If the API request fails or returns an error. """

 api_url = "https://slack.com/api/chat.postMessage" headers = { "Authorization": "Bearer YOUR_SLACK_BOT_TOKEN","Content-Type": "application/json" }
 payload = { "channel": channel, "text": message }
 try:
 response = requests.post(api_url, headers=headers, json=payload)
 response_data = response.json()
 if response.status_code == 200 and response_data.get("ok"):
 return f"Message successfully sent to Slack channel '{channel}'."
 else:
 error_msg = response_data.get("error", "Unknown error")
 raise ValueError(f"Slack API Error: {error_msg}")
 except requests.exceptions.RequestException as e:
 raise ValueError(f"Failed to send message to Slack channel '{channel}': {e}")

 # Initialize the LLM with GPT-4o and bind the tools
 llm = ChatOpenAI(model_name="gpt-4o", temperature=0)
 llm_with_tools = llm.bind_tools([get_stock_price])

 messages = [HumanMessage("What is the stock price of Apple?")]

 ai_msg = llm_with_tools.invoke(messages)
 messages.append(ai_msg)

 for tool_call in ai_msg.tool_calls:
 tool_msg = get_stock_price.invoke(tool_call)

 print(tool_msg.name)
 print(tool_call['args'])
 print(tool_msg.content)
 messages.append(tool_msg)
 print()

 final_response = llm_with_tools.invoke(messages)
 print(final_response.content)

 Semantic Skill Selection

 Another approach, Semantic Skill Selection, uses semantic representations to identify and select the relevant skill based on their semantic similarity to the task requirements. Ahead of time, each skill definition and description is embedded using an encoder-only model, such as OpenAI’s ada model, Amazon’s Titan model, Cohere’s Embed model, BERT, or others. These skills are then indexed in a lightweight vector database. At runtime, the current context is then embedded using the same embedding model, a search is performed on the database, and the top skill is selected. The skill is then parameterized with a text completion model, invoked, and the response is used to compose the response for the user. This is the most common pattern, and is recommended for most use cases. It’s typically faster than Generative Skill Selection, performant, and reasonably scalable.

 Skill database setup:

 import os
import requests
import logging
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.vectorstores import FAISS
import faiss
import numpy as np

Initialize OpenAI embeddings and LLM
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
llm = ChatOpenAI(api_key=OPENAI_API_KEY)

Tool descriptions
tool_descriptions = {
 "query_wolfram_alpha": "Use Wolfram Alpha to compute mathematical expressions or retrieve information.",
 "trigger_zapier_webhook": "Trigger a Zapier webhook to execute predefined automated workflows.",
 "send_slack_message": "Send messages to specific Slack channels to communicate with team members."
}

Create embeddings for each tool description
tool_embeddings = []
tool_names = []

for tool_name, description in tool_descriptions.items():
 embedding = embeddings.embed_text(description)
 tool_embeddings.append(embedding)
 tool_names.append(tool_name)

Initialize FAISS vector store
dimension = len(tool_embeddings[0]) # Assuming all embeddings have the same dimension
index = faiss.IndexFlatL2(dimension)

Normalize embeddings for cosine similarity
faiss.normalize_L2(np.array(tool_embeddings).astype('float32'))

Convert list to FAISS-compatible format
tool_embeddings_np = np.array(tool_embeddings).astype('float32')
index.add(tool_embeddings_np)

Map index to tool functions
index_to_tool = {
 0: "query_wolfram_alpha",
 1: "trigger_zapier_webhook",
 2: "send_slack_message"
}

def select_tool(query: str, top_k: int = 1) -> list:
 """
 Select the most relevant tool(s) based on the user's query using vector-based retrieval.

 Args:
 query (str): The user's input query.
 top_k (int): Number of top tools to retrieve.

 Returns:
 list: List of selected tool functions.
 """
 query_embedding = embeddings.embed_text(query).astype('float32')
 faiss.normalize_L2(query_embedding.reshape(1, -1))
 D, I = index.search(query_embedding.reshape(1, -1), top_k)
 selected_tools = [index_to_tool[idx] for idx in I[0] if idx in index_to_tool]
 return selected_tools

def determine_parameters(query: str, tool_name: str) -> dict:
 """
 Use the LLM to analyze the query and determine the parameters for the tool to be invoked.

 Args:
 query (str): The user's input query.
 tool_name (str): The selected tool name.

 Returns:
 dict: Parameters for the tool.
 """
 messages = [
 HumanMessage(content=f"Based on the user's query: '{query}', what parameters should be used for the tool '{tool_name}'?")
]

 # Call the LLM to extract parameters
 response = llm(messages)

 # Example logic to parse response from LLM
 parameters = {}
 if tool_name == "query_wolfram_alpha":
 parameters["expression"] = response['expression'] # Extract mathematical expression
 elif tool_name == "trigger_zapier_webhook":
 parameters["zap_id"] = response.get('zap_id', "123456") # Default Zap ID if not provided
 parameters["payload"] = response.get('payload', {"data": query})
 elif tool_name == "send_slack_message":
 parameters["channel"] = response.get('channel', "#general")
 parameters["message"] = response.get('message', query)

 return parameters

Example user query
user_query = "Solve this equation: 2x + 3 = 7"

Select the top tool
selected_tools = select_tool(user_query, top_k=1)
tool_name = selected_tools[0] if selected_tools else None

if tool_name:
 # Use LLM to determine the parameters based on the query and the selected tool
 args = determine_parameters(user_query, tool_name)

 # Invoke the selected tool
 try:
 # Assuming each tool has an `invoke` method to execute it
 tool_result = globals()[tool_name].invoke(args)
 print(f"Tool '{tool_name}' Result: {tool_result}")
 except ValueError as e:
 print(f"Error invoking tool '{tool_name}': {e}")
else:
 print("No tool was selected.")

 If your scenario involves a large number of skills, however, you might need to consider Hierarchical Skill Selection. This is especially true if many of those skills are semantically similar, and you are looking to improve skill selection accuracy at the price of higher latency and complexity. In this pattern, you organize your skills into groups, and provide a description for each group. Your skill selection (either Generative or Semantic) first selects a group, and then performs a secondary search only among the skills in that group. While this is slower and would be expensive to parallelize, it reduces the complexity of the skill selection task into two smaller chunks, and frequently results in higher overall skill selection accuracy. Crafting and maintaining these skill groups takes time and effort, so this is not recommended as a technique to begin with.

 import os
import requests
import logging
import numpy as np

from langchain_core.tools import tool
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.vectorstores import FAISS
import faiss

embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
Define tool groups with descriptions
tool_groups = {
 "Computation": {
 "description": "Tools related to mathematical computations and data analysis.",
 "tools": []
 },
 "Automation": {
 "description": "Tools that automate workflows and integrate different services.",
 "tools": []
 },
 "Communication": {
 "description": "Tools that facilitate communication and messaging.",
 "tools": []
 }
}

Define Tools
@tool
def query_wolfram_alpha(expression: str) -> str:
 api_url = f"https://api.wolframalpha.com/v1/result?i={requests.utils.quote(expression)}&appid={WOLFRAM_ALPHA_APP_ID}"
 try:
 response = requests.get(api_url)
 if response.status_code == 200:
 return response.text
 else:
 raise ValueError(f"Wolfram Alpha API Error: {response.status_code} - {response.text}")
 except requests.exceptions.RequestException as e:
 raise ValueError(f"Failed to query Wolfram Alpha: {e}")

@tool
def trigger_zapier_webhook(zap_id: str, payload: dict) -> str:
 """
 Trigger a Zapier webhook to execute a predefined Zap.

 Args:
 zap_id (str): The unique identifier for the Zap to be triggered.
 payload (dict): The data to send to the Zapier webhook.

 Returns:
 str: Confirmation message upon successful triggering of the Zap.

 Raises:
 ValueError: If the API request fails or returns an error.
 """
 zapier_webhook_url = f"https://hooks.zapier.com/hooks/catch/{zap_id}/"
 try:
 response = requests.post(zapier_webhook_url, json=payload)
 if response.status_code == 200:
 return f"Zapier webhook '{zap_id}' successfully triggered."
 else:
 raise ValueError(f"Zapier API Error: {response.status_code} - {response.text}")
 except requests.exceptions.RequestException as e:
 raise ValueError(f"Failed to trigger Zapier webhook '{zap_id}': {e}")

@tool
def send_slack_message(channel: str, message: str) -> str:
 """
 Send a message to a specified Slack channel.

 Args:
 channel (str): The Slack channel ID or name where the message will be sent.
 message (str): The content of the message to send.

 Returns:
 str: Confirmation message upon successful sending of the Slack message.

 Raises:
 ValueError: If the API request fails or returns an error.
 """
 api_url = "https://slack.com/api/chat.postMessage"
 headers = {
 "Authorization": f"Bearer {SLACK_BOT_TOKEN}",
 "Content-Type": "application/json"
 }
 payload = {
 "channel": channel,
 "text": message
 }
 try:
 response = requests.post(api_url, headers=headers, json=payload)
 response_data = response.json()
 if response.status_code == 200 and response_data.get("ok"):
 return f"Message successfully sent to Slack channel '{channel}'."
 else:
 error_msg = response_data.get("error", "Unknown error")
 raise ValueError(f"Slack API Error: {error_msg}")
 except requests.exceptions.RequestException as e:
 raise ValueError(f"Failed to send message to Slack channel '{channel}': {e}")

Assign tools to their respective groups
tool_groups["Computation"]["tools"].append(query_wolfram_alpha)
tool_groups["Automation"]["tools"].append(trigger_zapier_webhook)
tool_groups["Communication"]["tools"].append(send_slack_message)

Embed Group and Tool Descriptions

Embed group descriptions
group_names = []
group_embeddings = []
for group_name, group_info in tool_groups.items():
 group_names.append(group_name)
 group_embeddings.append(embeddings.embed_text(group_info["description"]))

Create FAISS index for groups
group_embeddings_np = np.array(group_embeddings).astype('float32')
faiss.normalize_L2(group_embeddings_np)
group_index = faiss.IndexFlatL2(len(group_embeddings_np[0]))
group_index.add(group_embeddings_np)

Embed tool descriptions within each group
tool_indices = {} # Maps group name to its FAISS index and tool functions
for group_name, group_info in tool_groups.items():
 tools = group_info["tools"]
 tool_descriptions = []
 tool_functions = []
 for tool_func in tools:
 description = tool_func.__doc__.strip().split('\n')[0] # First line of docstring
 tool_descriptions.append(description)
 tool_functions.append(tool_func)
 if tool_descriptions:
 tool_embeddings = embeddings.embed_texts(tool_descriptions)
 tool_embeddings_np = np.array(tool_embeddings).astype('float32')
 faiss.normalize_L2(tool_embeddings_np)
 tool_index = faiss.IndexFlatL2(len(tool_embeddings_np[0]))
 tool_index.add(tool_embeddings_np)
 tool_indices[group_name] = {
 "index": tool_index,
 "functions": tool_functions,
 "embeddings": tool_embeddings_np
 }

Hierarchical Skill Selection

def select_group(query: str, top_k: int = 1) -> list:
 query_embedding = embeddings.embed_text(query).astype('float32')
 faiss.normalize_L2(query_embedding.reshape(1, -1))
 D, I = group_index.search(query_embedding.reshape(1, -1), top_k)
 selected_groups = [group_names[idx] for idx in I[0]]
 return selected_groups

def select_tool(query: str, group_name: str, top_k: int = 1) -> list:
 tool_info = tool_indices[group_name]
 query_embedding = embeddings.embed_text(query).astype('float32')
 faiss.normalize_L2(query_embedding.reshape(1, -1))
 D, I = tool_info["index"].search(query_embedding.reshape(1, -1), top_k)
 selected_tools = [tool_info["functions"][idx] for idx in I[0] if idx < len(tool_info["functions"])]
 return selected_tools

Initialize the LLM with GPT-4 and set temperature to 0 for deterministic responses
llm = ChatOpenAI(model_name="gpt-4", temperature=0)

 selected_groups = select_group(user_query, top_k=1)
 if not selected_groups:
 print("No relevant skill group found for your query.")
 return

 selected_group = selected_groups[0]
 logging.info(f"Selected Group: {selected_group}")
 print(f"Selected Skill Group: {selected_group}")

 # Step 2: Select the most relevant tool within the group
 selected_tools = select_tool(user_query, selected_group, top_k=1)

 if not selected_tools:
 print("No relevant tool found within the selected group.")
 return

 selected_tool = selected_tools[0]
 logging.info(f"Selected Tool: {selected_tool.__name__}")
 print(f"Selected Tool: {selected_tool.__name__}")

 # Prepare arguments based on the tool
 args = {}
 if selected_tool == query_wolfram_alpha:
 # Assume the entire query is the expression
 args["expression"] = user_query
 elif selected_tool == trigger_zapier_webhook:
 # For demonstration, use placeholders
 args["zap_id"] = "123456" # Replace with actual Zap ID
 args["payload"] = {"message": user_query}
 elif selected_tool == send_slack_message:
 # For demonstration, use placeholders
 args["channel"] = "#general" # Replace with actual Slack channel
 args["message"] = user_query
 else:
 print("Selected tool is not recognized.")
 return

 # Invoke the selected tool
 try:
 tool_result = selected_tool.invoke(args)
 print(f"Tool '{selected_tool.__name__}' Result: {tool_result}")
 except ValueError as e:
 print(f"Error: {e}")

 Machine Learned Skill Selection

 Machine Learned Skill Selection employs machine learning techniques to automatically learn and select skills based on past experiences and task feedback. Generic generative and embedding models are often larger, slower, and more expensive than is necessary for skill selection, so by training specific models on task-skill pairs, you can potentially reduce the cost and latency of this part of your agent-based solution. Both historical data and data samples generated by a foundation model can be used to train your skill selection model. Similarly, you could fine-tune a smaller model to improve the classification performance on your skill selection task. The key drawback is it introduces a new model that your team will need to maintain. Carefully consider the costs before choosing to proceed down this path, as it may require extensive training data and computational resources to achieve optimal performance.

 Skill Execution

 Parametrization is the process of defining and setting the parameters that will guide the execution of a skill in a language model. This process is crucial as it determines how the model interprets the task and tailors its response to meet the specific requirements. Parameters are defined by the skill definition as discussed in more detail in Chapter 3. The current state of the agent, including progress so far, is included as additional context in the prompt window, and the foundation model is instructed to fill the parameters with appropriate data types to match the expected inputs for the function call. Additional context, such as the current time or the user’s location, can be injected into the context window to provide additional guidance for functions that require this type of information. It is recommended to use a basic parser to validate that the inputs meet the basic criteria for the data types, and to instruct the foundation model to correct the pattern if it does not pass this check.

 Once the parameters are set, the skill execution phase begins. This involves the actual execution of the skill. Some of these skills can easily be executed locally, while others will be executed remotely by API. During execution, the model might interact with various APIs, databases, or other tools to gather information, perform calculations, or execute actions that are necessary to complete the task. The integration of external data sources and tools can significantly enhance the utility and accuracy of the agent’s outputs. Timeout and retry logic will need to be adjusted to the latency and performance requirements for the use case.

 Skill Topologies

 Today, the majority of chatbot systems rely on Single Skill Execution without planning. This makes sense: it is easier to implement, and has lower latency. If your team is developing its first agent-based system, or if that is sufficient to meet the needs for your scenario, then you can stop there after the following section, Single Skill Execution. For many cases, however, we want our agents to be able to perform complex tasks that require multiple skills. By providing an agent with a sufficient range of skills, you can then enable your agent to flexibly arrange those skills and apply them in correct order to solve a wider variety of problems. In traditional software engineering, the designers had to implement the exact control flow and order in which steps should be taken. Now, we can implement the skills, and define the skills topology in which the agent can operate, then allow the exact composition to be designed dynamically in response to the context and task at hand. This section considers this range of skill topologies and discusses their tradeoffs.

 Single Skill Execution

 We’ll begin with tasks that require precisely one skill. In this case, planning consists of choosing the one skill most appropriate to address the task. Once the skill is selected, it must be correctly parameterized based on the skill definition. The skill is then executed, and its output is used as an input when composing the final response for the user. This can be seen in Figure 4-1 below (TODO: draft). While this is a minimal definition of a plan, it is the foundation from which we will build more complex patterns.

 Parallel Skill Execution

 The first increase in complexity comes with skill parallelism. In some cases, it might be worth taking multiple actions on the input. For example, consider you need to look up a record for a patient. If your skillset includes multiple skills that access multiple sources of data, then it will be necessary to execute multiple actions to retrieve data from each of the sources. This increases the complexity of the problem because it is unclear how many skills need to be executed. A common approach is to retrieve a maximum number of skills that might be executed, say 5, using Semantic Skill Selection. Next, make a second call to a foundation model with each of these five skills, and ask it to select the five or fewer skills that are necessary to the problem, filtering down to the skills necessary for the task. Similarly, the foundation model can be called repeatedly with the additional context of which skills have already been selected until it chooses to add no fewer skills. Once selected, these skills are independently parameterized and executed. After all skills have been completed, their results are passed to the foundation model to draft a final response for the user. Figure 4-2 (TODO) illustrates this pattern.

 Chains

 The next increase in complexity brings us to chains. Chains refer to sequences of actions that are executed one after another, with each action depending on the successful completion of the previous one. Planning chains involves determining the order in which actions should be performed to achieve a specific goal while ensuring that each action leads to the next without interruption. Chains are common in tasks that involve step-by-step processes or linear workflows.

 The planning of chains requires careful consideration of the dependencies between actions, aiming to orchestrate a coherent flow of activity towards the desired outcome. It is highly recommended that a maximum length be set to the skill chains, as errors can compound down the length of the chain. So long as the task is not expected to fan out to multiple branching subtasks, chains provide an excellent tradeoff between adding planning for multiple skills with dependencies, while keeping the complexity relatively low.

 Trees

 In more complex scenarios, tasks may require branching sequences of actions, where the agent must choose between multiple possible paths at each decision point. Planning trees involve exploring different branches of action possibilities, evaluating the consequences of each choice, and selecting the most promising path towards the goal. Trees are useful for tasks with multiple options or alternative courses of action. This structure enables the natural expansion that is involved in certain tasks, especially when a prior skill returns multiple outputs that need to be considered.

 By increasing the skill topology from a chain to a tree, the skill structure contains the state of the execution. Compared to the chain structure, the agent has more options to choose from. In addition to selecting and executing a skill from its current position, the agent can determine that the task has been completed, decide that it is unable to complete the task, or it can traverse to another leaf node on the tree, and proceed from there. This structure reduces the likelihood that subtasks are forgotten by the agent. In this structure, key parameters to tune for your use case include the maximum number of skills per execution and the maximum depth of the tree.

 Graphs

 Graphs represent interconnected networks of actions, where dependencies between tasks can be more complex and nonlinear. Graphs are an extension of trees, and while they enable the same expansion to multiple items as trees, they also enable topologies that consolidate multiple nodes together. This structure allows for an expressive representation that tracks the flow of information across multiple skill executions.

 In addition to the tree structure, the graph structure adds a new action: consolidate. This new action enables the agent to connect the results from multiple previously completed skills. This is invaluable when especially complex reasoning is desirable, and the agent is expected to stitch together findings from multiple previous skills. While graphs are a more flexible and expressive structure, they are more complex to manage and traverse, and open up a new class of errors that the agent can make.

 Choosing a Topology

 Selecting the appropriate topology is crucial for effectively organizing and executing actions. Linear topologies, such as chains, are suitable for tasks with a sequential flow of actions where each step leads directly to the next. This topology simplifies the planning process, as actions are executed in a straightforward order without branching or decision points.

 Hierarchical topologies, such as trees, are useful for organizing actions into nested levels of abstraction. This topology allows for both high-level strategic planning and detailed, fine-grained control over individual actions. Hierarchical topologies are well-suited for tasks with multiple layers of complexity or tasks that can be decomposed into subtasks with distinct goals. For example, in project management, tasks can be organized hierarchically based on their dependencies and relationships.

 Graph topologies offer the most flexibility and expressiveness in representing complex relationships between actions. In this type of graph, actions are interconnected, allowing for nonlinear dependencies and dynamic decision-making. This topology is ideal for tasks with interconnected components, where actions can affect each other in unpredictable ways. Graph topologies are commonly used in tasks such as resource allocation, where the allocation of resources depends on multiple factors and constraints.

 Choosing the appropriate topology depends on factors such as the complexity of the task, the degree of interdependence between actions, and the level of flexibility required in the planning process. By selecting the right topology, autonomous agents can effectively organize their plans, navigate complex environments, and achieve their goals with efficiency and adaptability. As a principle, start simple, and only add complexity to address specific needs in your use case.

 Planning

 Now that we have discussed a range of skill topologies, it’s time to consider how to use them. We’ll begin with the simplest approach, then move through several more complex approaches. Note that any skill topology can be used with any planning approach.

 Iterative Planning

 We begin with a discussion of the simplest type of plan, which is iterative planning. In this approach, the agent chooses an action and executes it. You can think of this as the “unplanned” or “greedy” approach to planning. This has multiple advantages, including simplicity, lower latency, and easier maintainability. This approach can handle many use cases and is the recommended starting point. For tasks that require a small number of skills, this is probably sufficient.

 Zero-Shot Planning

 For more complex tasks, it will be necessary to draft a plan before beginning. The more complex the task, the more subtasks it will require. By simply executing one action at a time in a greedy approach, agents will sometimes get caught in loops and fail to make progress toward completion. Taking the time to create a plan, and then to choose actions toward that plan, can increase the overall performance on these tasks that require multiple steps.

 The simplest place to start with planning is zero-shot planning, which refers to the ability of an agent to generate plans for tasks it has never encountered before, based solely on its understanding of the task and its environment. This approach requires the agent to possess a robust representation of the task space, including possible actions, their effects, and the relationships between different components. By leveraging this knowledge, the agent can generate plans on the fly, even for novel tasks, without requiring explicit training data or pre-defined solutions. Zero-shot planning is particularly useful in dynamic environments where tasks may vary over time or where the agent needs to adapt quickly to new challenges.

 In-Context Learning with Hand-Crafted Examples

 This brings us to hand-crafted examples, where developers design plans for specific tasks manually, based on domain expertise or predefined rules. In this approach, human designers analyze the task requirements, identify relevant actions, and determine the sequence in which these actions should be executed to achieve the desired outcome. Hand-crafted plans are often used for tasks with well-defined structures or known solutions, where human intuition or expertise can guide the planning process effectively. While hand-crafted plans offer precision and reliability, they may lack flexibility and scalability, as they rely heavily on human intervention and may not generalize well to new scenarios. By scoping core, high-value scenarios, developers can provide clear examples. By embedding and indexing these into a few-shot database, the relevant examples can be pulled to guide future plans based on semantically-similar examples.

 Plan Adaptation

 In scenarios where subsequent skills depend on the output of previous skills, the ability to adapt a plan will be necessary. Plan adaptation enables agents to respond to new information, unexpected events, or deviations from the original plan, ensuring continued progress towards their goals. The leading approach to this type of plan reaction, Reason-Act, or ReAct1 for short, provides a simple but effective framework for approaching the task of plan adaptation. As the name suggests, the agent alternates between reasoning steps and acting steps. In the reasoning step, the agent is asked to consider what it needs to do to answer the question. The foundation model is then invoked to choose the action, one of which is to complete the execution flow. This enables the agent to repeatedly take actions, such as looking up data, and checking to see if the results from the search are sufficient to meet the task. If not, the agent can choose to continue to search or take additional actions. A further extension of this work is PlanReAct, which adds an additional self-think flow, which includes Chain of Thought reasoning. This combines planning, reasoning, and acting into a cohesive process.

 Summary

 The success of agents relies heavily on the approach to orchestration, making it important for organizations interested in building agentic systems to invest time and energy into designing the appropriate planning strategy for the use case.

 Here are some best practices for designing a planning system:

 	
 Carefully consider the requirements for latency and accuracy for your system, as there is a clear tradeoff between these two factors.

 	
 Determine the typical number of actions required for your scenario’s use case. The greater this number, the more complex an approach to planning you are likely to need.

 	
 Assess how much the plan needs to change based on the results from priori actions. If significant adaptation is necessary, consider a technique that allows for incremental plan adjustments.

 	
 Design a representative set of test cases to evaluate different planning approaches and identify the best fit for your use case.

 	
 Choose the simplest planning approach that will meet your use case requirements.

 With an orchestration approach that will work well for your scenario, we’ll now move onto the next part of the workflow: memory. It is worth noting that it is worth starting small with well-designed scenarios and simpler approaches to orchestration, and to then gradually move up the scale of complexity as necessary based on the use case.

 1 Shunyu Yao et al.: ReAct: Synergizing Reasoning and Acting in Language Models. Published as a conference paper at ICLR 2023. https://arxiv.org/pdf/2210.03629

 Chapter 4. Knowledge and Memory

A Note for Early Release Readers

			With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the fifth chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

			

 Now that your agent has skills and orchestration, it is more than capable of taking actions to do real work. In most cases, though, you will want your agents to know more about your specific problem area than the foundation model would alone, and be able to store knowledge and information over time. You might even want your agent to use this memory to accomplish tasks more effectively. In this chapter, we’ll discuss how memory can be added to agentic systems to add external knowledge, maintain state across sessions, and perform complex tasks more effectively. Memory can also be an excellent way to get your AI-powered application to better meet the needs of the specific context. Let’s dive in.

 Memory plays multiple roles in applications with AI Agents. In this context, we are not referring to computer system memory, such as RAM, but to information that is dynamically injected into the prompt to complement the parametric memory of the model. It maintains the state of the interaction, the previous tasks performed and their previous results, and is critical for learning. These approaches are useful for the interactions between humans and LLM-powered applications, the interactions between AI agents, and for domain-specific or organization-specific information. We’ll discuss specific architectures soon, but first, we’ll focus on the fundamentals of memory for agentic systems.

 Foundational Approaches to Memory

 We begin by discussing the simplest approaches to memory: relying on a rolling context window for the foundation model, and keyword-based memory. Despite their simplicity, they are more than sufficient for a wide range of use cases.

 Managing Context Windows

 We start with the simplest approach to memory: relying on the context window. The context window is a critical resource for developers to use effectively. We want to provide the foundation model with all the information it needs to complex the task, but no more. The context window is all of the information that is provided to the foundation model when the model is called. In the simplest approach, in addition to the current question, all of the remaining context window that is available is filled with the previous interactions in the current session. When that window fills up, only the most recent interactions are included. In some circumstances, we will have more information to provide than we can fit into the context window. When this happens, we need to be careful with how we allocate our limited budget of tokens.

 For simple use cases, you can use a rolling context window. In this case, as the interaction with the foundation model progresses, the full interaction is passed into the context window. At a certain point, the context window fills up, the oldest parts of the context are ejected, and replaced with the most recent context, in a first-in, first-out fashion. This is easy to implement, low in complexity, and will work for many use cases. The primary drawback to this approach is information will be lost, regardless of how relevant or important it is, as soon as enough interaction has occurred to eject it from the current context. With large prompts or verbose foundation model responses, this can happen quickly. Foundation models can also miss important information in large prompts, so highlighting the most relevant context, and placing it close to the end of the prompt can increase the likelihood that it will be used. This standard approach to memory can be incorporated into our LangGraph agent as follows:

 from typing import Annotated
from typing_extensions import TypedDict

from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, MessagesState, START

llm = ChatOpenAI(model="gpt-4o")

def call_model(state: MessagesState):
 response = llm.invoke(state["messages"])
 return {"messages": response}

builder = StateGraph(MessagesState)
builder.add_node("call_model", call_model)
builder.add_edge(START, "call_model")
graph = builder.compile()

Fails to maintain state across the conversation
input_message = {"type": "user", "content": "hi! I'm bob"}
for chunk in graph.stream({"messages": [input_message]}, stream_mode="values"):
 chunk["messages"][-1].pretty_print()

input_message = {"type": "user", "content": "what's my name?"}
for chunk in graph.stream({"messages": [input_message]}, stream_mode="values"):
 chunk["messages"][-1].pretty_print()

 Keyword-Based Memory

 The simplest way to begin extracting and organizing larger sessions as they go is through keyword extraction. One task that foundation models have performed very well at is keyword extraction. Given an input block of text, a foundation model can identify the key words and phrases in it. As the interaction occurs, send each response to a foundation model with a keyword extraction prompt. Maintain storage for each response, as well as a map from the keywords to their original document. When new prompts are received, keywords are extracted from it, and the lookup is consulted. If there are matches, the previous occurrences are included in the prompt. This simple approach can preserve the broader context of interactions that address specific topics over time. An advantage to this approach is its simplicity, while still enabling the preservation of information over time. Some important parameters to choose for this type of memory are

 Integrating Keyword-Based Memory with Rolling Context Windows

 While both rolling context windows and keyword-based memory have their own advantages, we can also take a hybrid approach that splits the context window between keyword retrieval and rolling context window. Include the j most recent occurrences from the keyword retrieval, then fill the rest of the context window with the k most recent interactions that fit into the context window. But what if we want to include relevant interactions, even if they don’t have a keyword match, or occurred far enough back that it wouldn’t be in the context window? We’ll address that in the next section.

 Semantic Memory and Vector Stores

 Semantic memory, a type of long-term memory that involves the storage and retrieval of general knowledge, concepts and past experiences, plays a critical role in enhancing the cognitive capabilities of these systems. This allows information and past experiences to be stored and then efficiently retrieved when it is needed to improve performance later on. The leading way to do this is by using vector databases, which enable rapid indexing and retrieval at large scale, enabling agentic systems to understand and respond to queries with greater depth and relevance.

 Introduction to Semantic Search

 Unlike traditional keyword-based search, semantic search aims to understand the context and intent behind a query, leading to more accurate and meaningful retrieval results. At its core, semantic search focuses on the meaning of words and phrases rather than their exact match. It leverages machine learning techniques to interpret the context, synonyms, and relationships between words. This allows the retrieval system to comprehend the intention and deliver results that are contextually relevant, even if they don’t contain the exact search terms.

 The foundation for these approaches are embeddings. These are vector representations of words that capture their meanings based on their usage in large text corpora. By projecting large bodies of text into a dense numeric representation, we can create rich representations that have proven to be very useful for storage and retrieval. Popular models like Word2Vec, GloVe, and BERT have revolutionized how machines understand language by placing semantically similar words closer together in a high-dimensional space. Large language models have further improved the performance of these embedding models across a wide range of types of text by increasing the size of the embedding model and the quantity and variety of data on which they are trained. Semantic search has proven to be an invaluable technique to improve the performance of memory within agentic systems, particularly in retrieving semantically relevant information across documents that do not share exact keywords.

 Implementing Semantic Memory with Vector Stores

 We begin by generating semantic embeddings for the concepts and knowledge to be stored. These embeddings are typically produced by large language models or other NLP techniques that encode textual information into dense vector representations. These vector representations, or embeddings, capture the semantic properties and relationships of data points in a continuous vector space. For example, a sentence describing a historical event can be converted into a vector that captures its semantic meaning. Once we have this vector representation, we need a place to efficiently store it. That palace is a vector database, which are designed specifically to efficiently handle high-dimensional vector representations of data.

 Vector stores, such as vectordb, FAISS (Facebook AI Similarity Search) or Annoy (Approximate Nearest Neighbors Oh Yeah), are optimized for storing and searching high-dimensional vectors. These stores allow for fast similarity searches, enabling the retrieval of embeddings that are semantically similar to a given query.

 When an agent receives a query or needs to retrieve information, it can use the vector store to perform similarity searches based on the query’s embedding. By finding and retrieving the most relevant embeddings from the vector store, the agent can access the stored semantic memory and provide informed, contextually appropriate responses. These lookups can be performed quickly, providing an efficient way to rapidly search over large volumes of information to improve the quality of actions and responses. This can be implemented as follows:

 from typing import Annotated
from typing_extensions import TypedDict

from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, MessagesState, START

llm = ChatOpenAI(model="gpt-4o")

def call_model(state: MessagesState):
 response = llm.invoke(state["messages"])
 return {"messages": response}

from vectordb import Memory

memory = Memory(chunking_strategy={'mode':'sliding_window', 'window_size': 128, 'overlap': 16})

text = """
Machine learning is a method of data analysis that automates analytical model building.

It is a branch of artificial intelligence based on the idea that systems can learn from data,
identify patterns and make decisions with minimal human intervention.

Machine learning algorithms are trained on data sets that contain examples of the desired output. For example, a machine learning algorithm that is used to classify images might be trained on a data set that contains images of cats and dogs.
Once an algorithm is trained, it can be used to make predictions on new data. For example, the machine learning algorithm that is used to classify images could be used to predict whether a new image contains a cat or a dog.
"""

metadata = {"title": "Introduction to Machine Learning", "url": "https://example.com/introduction-to-machine-learning"}

memory.save(text, metadata)

text2 = """
Artificial intelligence (AI) is the simulation of human intelligence in machines
that are programmed to think like humans and mimic their actions.

The term may also be applied to any machine that exhibits traits associated with
a human mind such as learning and problem-solving.

AI research has been highly successful in developing effective techniques for solving a wide range of problems, from game playing to medical diagnosis.
"""

metadata2 = {"title": "Introduction to Artificial Intelligence", "url": "https://example.com/introduction-to-artificial-intelligence"}

memory.save(text2, metadata2)

query = "What is the relationship between AI and machine learning?"

results = memory.search(query, top_n=3)

builder = StateGraph(MessagesState)
builder.add_node("call_model", call_model)
builder.add_edge(START, "call_model")
graph = builder.compile()

input_message = {"type": "user", "content": "hi! I'm bob"}
for chunk in graph.stream({"messages": [input_message]}, {}, stream_mode="values"):
 chunk["messages"][-1].pretty_print()

print(results)

 Retrieval Augmented Generation

 Incorporating memory into agentic systems not only involves storing and managing knowledge but also enhancing the system’s ability to generate contextually relevant and accurate responses. Retrieval Augmented Generation (RAG) is a powerful technique that combines the strengths of retrieval-based methods and generative models to achieve this goal. By integrating retrieval mechanisms with large language models, RAG allows agentic systems to generate more informed and contextually enriched responses, improving their performance in a wide range of applications.

 During retrieval, the system searches a large corpus of documents or a vector store of embeddings to find pieces of information that are relevant to the given query or context. This phase relies on efficient retrieval mechanisms to quickly identify and extract pertinent information.

 During generation, the retrieved information is then fed into a generative foundation model, which uses this context to produce a coherent and contextually appropriate response. The generative model synthesizes the retrieved data with its own learned knowledge, enhancing the relevance and accuracy of the generated text.

 Retrieval Augmented Generation represents a powerful approach for enhancing the capabilities of agentic systems by combining retrieval-based methods with generative models. By leveraging external knowledge and integrating it into the generation process, RAG enables the creation of more informed, accurate, and contextually relevant responses. As technology continues to evolve, RAG will play a crucial role in advancing the performance and versatility of LLM-powered applications across various domains. This is especially valuable for incorporating domain- or company- specific information or policies to influence the output.

 Semantic Experience Memory

 While incorporating an external knowledge base with a semantic store is an effective way to incorporate external knowledge into our agent, our agent will start every session from a blank slate, and the context of long-running or complex tasks will gradually drop out of the context window. Both of these issues can be addressed by semantic experience memory.

 With each user input, the text is turned into a vector representation using an embedding model. The embedding is then used as the query in a vector search across all of the previous interactions in the memory store. Part of the context window is reserved for the best matches from the semantic experience memory, then the rest of the space is allocated to the system message, latest user input, and the most recent interactions. Semantic experience memory allows agentic systems to not only draw upon a broad base of knowledge but also tailor their responses and actions based on accumulated experience, leading to more adaptive and personalized behavior.

 Graph RAG

 We now turn to an advanced version of RAG that is more complex to incorporate into your solution, but that is capable of correctly handling a wider variety of questions. Graph Retrieval Augmented Generation (Graph RAG) is an advanced extension of the Retrieval Augmented Generation (RAG) model, incorporating graph-based data structures to enhance the retrieval process. By utilizing graphs, Graph RAG can manage and utilize complex interrelationships and dependencies between pieces of information, significantly enhancing the richness and accuracy of the generated content. This chapter will delve into how Graph RAG works, its implementation, and its applications in various domains.

 Using Knowledge Graphs

 Graph RAG extends the basic RAG framework by integrating a graph-based retrieval system. This system leverages the power of graph databases or knowledge graphs to store and query interconnected data. In Graph RAG, the retrieval phase doesn’t just pull relevant documents or snippets; it analyzes and retrieves nodes and edges from a graph that represent complex relationships and contexts within the data. GraphRAG consists of the following three components:

 	Knowledge Graph

 	
 This component stores data in a graph format, where entities (nodes) and their relationships (edges) are explicitly defined. Graph databases are highly efficient at managing connected data and supporting complex queries that involve multiple hops or relationships.

 	Retrieval System

 	
 The retrieval system in Graph RAG is designed to query the graph database efficiently, extracting subgraphs or clusters of nodes that are most relevant to the input query or context.

 	Generative Model

 	
 Once relevant data is retrieved in the form of a graph, the generative model synthesizes this information to create coherent and contextually rich responses.

 Graph Retrieval-Augmented Generation represents a significant leap forward in the capabilities of agentic systems, offering sophisticated tools to handle and generate responses based on complex interconnected data. As this technology evolves, it promises to open new frontiers in AI applications, making systems smarter, more context-aware, and capable of handling increasingly complex tasks. Using knowledge graphs in Graph RAG systems transforms the way information is retrieved and utilized for generation, enabling more intelligent, contextual, and accurate responses across various applications. We will not cover the details of the algorithm here, but multiple open-source implementations of GraphRAG are now available, and setting them up on your dataset is easier to do. If you have a large set of data you need to reason over, and standard chunking with a vector retrieval is running into limitations, GraphRAG is a more expensive and complex approach that frequently produces better results in practice.

 Building Knowledge Graphs

 Knowledge graphs are fundamental in providing structured and semantically rich information that enhances the capabilities of intelligent systems, including Graph Retrieval-Augmented Generation (Graph RAG) systems. Building an effective knowledge graph involves a series of steps, from data collection and processing to integration and maintenance. This section will cover the methodology for constructing knowledge graphs that can significantly impact the performance of Graph RAG systems. This process consists of several steps:

 	
 Data Collection: The first step in building a knowledge graph is gathering the necessary data. This data can come from various sources, including databases, text documents, websites, and even user-generated content. It’s crucial to ensure the diversity and quality of sources to cover a broad spectrum of knowledge. For an organization, this may consist of a set of core policies or documents that contain core information to influence the agent.

 	
 Data Preprocessing: Once data is collected, it needs to be cleaned and preprocessed. This step involves removing irrelevant or redundant information, correcting errors, and standardizing data formats. Preprocessing is vital for reducing noise in the data and improving the accuracy of the subsequent entity extraction process.

 	
 Entity Recognition and Extraction: This process involves identifying key elements (entities) from the data that will serve as nodes in the knowledge graph. Common entities include people, places, organizations, and concepts. Techniques such as Named Entity Recognition (NER) are typically used, which may involve machine learning models trained on large datasets to recognize and categorize entities accurately.

 	
 Relationship Extraction: After identifying entities, the next step is to determine the relationships between them. This involves parsing data to extract predicates that connect entities, forming the edges of the graph. Relationship extraction can be challenging, especially in unstructured data, though foundation models have shown improving efficacy over time.

 	
 Ontology Design: An ontology defines the categories and relationships within the knowledge graph, serving as its backbone. Designing an ontology involves defining a schema that encapsulates the types of entities and the possible types of relationships between them. This schema helps in organizing the knowledge graph systematically and supports more effective querying and data retrieval.

 	
 Graph Population: With the ontology in place, the next step is to populate the graph with the extracted entities and their relationships. This involves creating nodes and edges in the graph database according to the ontology’s structure. Databases like Neo4j, OrientDB, or Amazon Neptune can be used to manage these data structures efficiently.

 	
 Integration and Validation: Once the graph is populated, it must be integrated with existing systems and validated to ensure accuracy and utility. This can involve linking data from other databases, resolving entity duplication (entity resolution), and verifying that the graph accurately represents the knowledge domain. Validation might involve user testing or automated checks to ensure the integrity and usability of the graph.

 	
 Maintenance and Updates: A knowledge graph is not a static entity; it needs regular updates and maintenance to stay relevant. This involves adding new data, updating existing information, and refining the ontology as new types of entities or relationships are identified. Automation and machine learning models can be instrumental in maintaining and updating the knowledge graph efficiently.

 Building a knowledge graph is a complex but rewarding endeavor that can significantly enhance the capabilities of Graph RAG systems. By structuring information into an interconnected web of knowledge, these graphs enable intelligent systems to perform sophisticated reasoning, provide contextual responses, and deliver personalized services. These structures make it easy to discover underlying relationships in the data. For instance, it is now possible to search for elements on the graph, then retrieve all the elements that are one or more links away from that node. This provides an efficient way to retrieve relevant context for addressing a task. As AI technology progresses, the methodologies for building, integrating, and maintaining knowledge graphs will continue to evolve, further enhancing their utility in various domains.

 Promise and Peril of Dynamic Knowledge Graphs

 Dynamic knowledge graphs represent an evolutionary leap in managing and utilizing knowledge in real-time applications. These graphs are continuously updated with new information, adapting to changes in knowledge and context, which can significantly enhance Graph Retrieval-Augmented Generation (Graph RAG) systems. However, the dynamic nature of these graphs also introduces specific challenges that need careful consideration. This section explores the potential benefits and risks associated with dynamic knowledge graphs. As the developer, it is important to apply careful consideration to what should be included in the knowledge graph. Official documentation, publicly available content, and past interactions could all be considered for knowledge graph construction, but it is important to remember that the graph construction process is imperfect, and poor quality or security vulnerabilities in the underlying data can undermine the system.

 Dynamic Real-time information processing is greatly enhanced by dynamic knowledge graphs, which can integrate real-time data. This capability is particularly useful in environments where information is constantly changing, such as news, social media, and live monitoring systems. By ensuring that the system’s responses are always based on the most current and relevant information, dynamic knowledge graphs provide a significant advantage.

 Adaptive learning is another key feature of dynamic knowledge graphs. They continuously update themselves, learning from new data without the need for periodic retraining or manual updates. This adaptability is crucial for applications in fast-evolving fields like medicine, technology, and finance, where staying updated with the latest knowledge is critical. This helps organizations make informed decisions quickly, which is invaluable in scenarios where decisions have significant implications and depend heavily on the latest information. Knowledge graphs also provide critical information in a structured format that can be effectively operated across and reasoned over, and provide far greater flexibility than vector stores, and are especially valuable for understanding the rich context of an entity. Unfortunately, these benefits come with some important drawbacks:

 	Complexity in Maintenance

 	
 Maintaining the accuracy and reliability of a dynamic knowledge graph is significantly more challenging than managing a static one. The continuous influx of new data can introduce errors and inconsistencies, which may propagate through the graph if not identified and corrected promptly.

 	Resource Intensity

 	
 The processes of updating, validating, and maintaining dynamic knowledge graphs require substantial computational resources. These processes can become resource-intensive, especially as the size and complexity of the graph grow, potentially limiting scalability.

 	Security and Privacy Concerns

 	
 Dynamic knowledge graphs that incorporate user data or sensitive information must be managed with strict adherence to security and privacy standards. The real-time aspect of these graphs can complicate compliance with data protection regulations, as any oversight might lead to significant breaches.

 	Dependency and Overreliance

 	
 There is a risk of overreliance on dynamic knowledge graphs for decision-making, potentially leading to a lack of critical oversight. Decisions driven solely by automated insights from a graph might overlook external factors that the graph does not capture.

 To harness the benefits of dynamic knowledge graphs while mitigating their risks, several strategies can be employed. Implementing robust validation mechanisms with automated tools and processes is essential for continuously ensuring the accuracy and reliability of data within the graph. Designing a scalable architecture using technologies such as distributed databases and cloud computing helps manage the computational demands of dynamic graphs. Strong security measures, including encryption, access controls, and anonymization techniques, are crucial to ensure that all data inputs and integrations comply with current security and privacy regulations. Additionally, maintaining human oversight in critical decision-making processes mitigates the risks of errors and overreliance on automated systems.

 Dynamic knowledge graphs offer substantial promise for enhancing the intelligence and responsiveness of Graph RAG systems, providing significant benefits across various applications. However, the complexities and risks associated with their dynamic nature necessitate careful management and oversight. By addressing these challenges proactively, the potential of dynamic knowledge graphs can be fully realized, driving forward the capabilities of intelligent systems in an ever-evolving digital landscape.

 Working Memory

 Working memory plays a crucial role similar to short-term memory in human cognition. It enables agents to hold and manipulate information temporarily for the execution of complex tasks and interactions. This chapter explores the concept of working memory in agentic systems, discussing its functions, implementations, and the challenges associated with integrating it into large language models and other intelligent systems.

 Working memory in agentic systems refers to the temporary storage and processing space used to hold immediate data and contextual information needed for task execution. This type of memory is dynamic, rapidly updateable, and crucial for tasks that require comprehension, reasoning, and immediate response, such as conversational understanding, problem-solving, and dynamic decision-making.

 Whiteboards

 Just as for humans, it is not always possible to solve problems directly. Sometimes, we need to work through a problem step by step, and save our notes as we go. This is exactly what a “whiteboard” is for a foundation model - it serves as a dynamic form of working memory.1 Conceptually similar to the physical whiteboards used in brainstorming sessions, digital whiteboards in agentic systems provide a flexible, interactive canvas where temporary data can be stored, manipulated, and used collaboratively. This section explores how whiteboards function as an integral part of working memory in intelligent agents, their implementations, and their applications in enhancing system performance.

 Whiteboards in agentic systems function as a short-term storage, where multiple streams of data and processes can be dynamically displayed and managed. Agents can interact with and manipulate the data on whiteboards, allowing for dynamic changes based on new inputs or decisions. These systems have also been called scratchpads2. This feature is crucial for tasks that require real-time adjustments or updates. It also allows for important information to be extracted and made readily available for reference, which can be incredibly useful when operating over large amounts of data. These have been shown to be especially useful for complex and multi-step computations, as well as predicting outputs from arbitrary programs.

 Note Taking

 While closely related to whiteboards, note taking is a distinct approach that can also improve performance for complex tasks. With this technique, the foundation model is prompted to specifically inject notes on the input context without trying to answer the question.3 This mimics the way that we might fill in the margins or summarize a paragraph or section. This note-taking is performed before the question is presented, and then interleaves these notes with the original context when attempting to address the current task. Experiments show good results on multiple reasoning and evaluation tasks, with potential for adaptation to a wider range of scenarios. As we can see in the figure below, in a traditional, vanilla approach, the model is provided with the context and a question, and produces an answer. In chain of thought, it has time to reason about the problem, and only subsequently generate its answer to the question. With the self-note approach, the model generates notes on multiple parts of the context, and then generates a note on the question, before finally moving to generate the final answer.

 Figure 4-1. Taking Notes on the Context and Question to Improving Answer Quality (Source: https://arxiv.org/pdf/2305.00833)

 Conclusion

 Memory is critical to the successful operation of agentic systems, and while the standard approach of relying on the context window of recent interactions is sufficient for many use cases, more challenging scenarios can benefit substantially from the investment into a more robust approach. We have explored several approaches here, including semantic memory, GraphRAG, and working memory.

 This chapter on memory in agentic systems has delved into various aspects of how memory can be structured and utilized to enhance the capabilities of intelligent agents. From the basic concepts of managing context windows, through the advanced applications of semantic memory and vector stores, to the innovative practices of dynamic knowledge graphs and working memory, we have explored a comprehensive range of techniques and technologies that play crucial roles in the development of agentic systems.

 Memory systems in agentic applications are not just about storing data but about transforming how agents interact with their environment and end-users. By continually improving these systems, we can create more intelligent, responsive, and capable agents that can perform a wide range of tasks more effectively. In the next chapter, we will explore how agents can learn from experience to improve automatically over time.

 1 Whiteboard of Thought: Thinking Step-by-Step Across Modalities, https://arxiv.org/pdf/2406.14562
2 Show Your Work: Scratchpads for Intermediate Computation with Language Models, https://arxiv.org/pdf/2112.00114
3 Learning to Reason with Self-Notes, https://arxiv.org/abs/2305.00833

UbuntuMono-BoldItalic.otf

UbuntuMono-Italic.otf

toc01.html
		Brief Table of Contents (Not Yet Final)

		1. Introduction to Agents

 		What are Agents?

 		Similarities and Differences from Traditional Machine Learning

 		Recent Advancements

 		From Synchronous to Asynchronous

 		When Are Agents Useful?

 		Managing Expectations

 		Use Cases for Agents

 		Customer Support Agent

 		Personal Assistant Agent

 		Legal Agent

 		Advertising Agent

 		Building with Change in Mind

 		Scalability

 		Modularity

 		Continuous Learning

 		Resilience

 		Future-Proofing

 		Towards Multi-Agent Systems

 		Foundation Models and Autonomous Agents

 		Conclusion

		2. Skills

 		Local Skills

 		Skill Design Considerations

 		API-Based Skills

 		Plug-in Skills

 		Skill Hierarchies

 		Automated Skill Development

 		Real-Time Code Generation

 		Imitation Learning

 		Skill Learning from Rewards

 		Conclusion

		3. Orchestration

 		Skill Selection

 		Generative Skill Selection

 		Semantic Skill Selection

 		Machine Learned Skill Selection

 		Skill Execution

 		Skill Topologies

 		Single Skill Execution

 		Parallel Skill Execution

 		Chains

 		Trees

 		Graphs

 		Choosing a Topology

 		Planning

 		Iterative Planning

 		Zero-Shot Planning

 		In-Context Learning with Hand-Crafted Examples

 		Plan Adaptation

 		Summary

		4. Knowledge and Memory

 		Foundational Approaches to Memory

 		Managing Context Windows

 		Keyword-Based Memory

 		Integrating Keyword-Based Memory with Rolling Context Windows

 		Semantic Memory and Vector Stores

 		Introduction to Semantic Search

 		Implementing Semantic Memory with Vector Stores

 		Retrieval Augmented Generation

 		Semantic Experience Memory

 		Graph RAG

 		Using Knowledge Graphs

 		Building Knowledge Graphs

 		Promise and Peril of Dynamic Knowledge Graphs

 		Working Memory

 		Whiteboards

 		Note Taking

 		Conclusion

UbuntuMono-Regular.otf

css_assets/titlepage_footer_ebook.png
OREILLY®

assets/cover.png
OREILLY"

Building
Applications
with Al Agents

Designing and Implementing
Multi-Agent Systems

Early
Release

RAW &
UNEDITED

Michael Albada

assets/ch05_figure_1_1730820650301105.png
Vanilla

Scratchpad or
Chain-of-Thought

Self-Notes

Context Context Q reasoning A
Context Con.. | Self-Note| .te.. | Self-Note| .xt | Q [Self-Note

DejaVuSans-Bold.otf

DejaVuSerif.otf

UbuntuMono-Bold.otf

