

High Performance Python

Third Edition

Practical Performant Programming for Humans

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Micha Gorelick and Ian Ozsvald

High Performance Python

by Micha Gorelick and Ian Oszvald

Copyright © 2025 Micha Gorelick and Ian Oszvald. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editors: Sara Hunter and Brian Guerin

		Production Editor: Clare Laylock

	
		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		May 2025: Third Edition

Revision History for the Early Release

		2024-07-26: First Release

		2024-11-06: Second Release

			2025-01-02: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098165963 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. High Performance Python, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-098-16590-1

[TO COME]

Brief Table of Contents (Not Yet Final)

 Chapter 1: Understanding Performant Python (available)

Chapter 2: Profiling to Find Bottlenecks (available)

Chapter 3: Lists and Tuples (available)

Chapter 4: Dictionaries and Sets (available)

Chapter 5: Iterators and Generators (available)

Chapter 6: Matrix and Vector Computation (unavailable)

Chapter 7: Pandas, Dask and Polars (available)

Chapter 8: Compiling to C (available)

Chapter 9: Asynchronous I/O (available)

Chapter 10: The multiprocessing Module (available)

Chapter 11: Clusters and Job Queues (available)

Chapter 12: Using Less RAM (unavailable)

Chapter 12: Lessons from the Field (unavailable)

Chapter 1. Understanding Performant Python

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
What are the elements of a computer’s architecture?

	
What are some common alternate computer architectures?

	
How does Python abstract the underlying computer architecture?

	
What are some of the hurdles to making performant Python code?

	
What strategies can help you become a highly performant programmer?

Programming computers can be thought of as moving bits of data and transforming
them in special ways to achieve a particular result. However, these
actions have a time cost. Consequently, high performance programming can be
thought of as the act of minimizing these operations either by reducing the
overhead (i.e., writing more efficient code) or by changing the way that we do
these operations to make each one more meaningful (i.e., finding a more
suitable algorithm).

Let’s focus on reducing the overhead in code in order to gain more insight into
the actual hardware on which we are moving these bits. This may seem like a
futile exercise, since Python works quite hard to abstract away direct
interactions with the hardware. However, by understanding both the best way
that bits can be moved in the real hardware and the ways that Python’s
abstractions force your bits to move, you can make progress toward writing high
performance programs in Python.

The Fundamental Computer System

The underlying components that make up a computer can be simplified into three
basic parts: the computing units, the memory units, and the connections between
them. In addition, each of these units has different properties that we can use
to understand them. The computational unit has the property of how many
computations it can do per second, the memory unit has the properties of how much
data it can hold and how fast we can read from and write to it, and finally, the
connections have the property of how fast they can move data from one place to
another.

Using these building blocks, we can talk about a standard workstation at
multiple levels of sophistication. For example, the standard workstation can be
thought of as having a central processing unit (CPU) as the computational unit,
connected to both the random access memory (RAM) and the hard drive as two
separate memory units (each having different capacities and read/write speeds),
and finally a bus that provides the connections between all of these parts.
However, we can also go into more detail and see that the CPU itself has several
memory units in it: the L1, L2, and sometimes even the L3 and L4 cache, which
have small capacities but very fast speeds (from several kilobytes to a dozen
megabytes). Furthermore, new computer architectures generally come with new
configurations (for example, Intel’s SkyLake CPUs replaced the frontside bus
with the Intel Ultra Path Interconnect and restructured many connections).
Finally, in both of these approximations of a workstation we have neglected the
network connection, which is effectively a very slow connection to potentially
many other computing and memory units!

To help untangle these various intricacies, let’s go over a brief description of
these fundamental blocks.

Computing Units

The computing unit of a computer is the centerpiece of its
usefulness—it provides the ability to transform any bits it receives into other
bits or to change the state of the current process. CPUs are the most commonly
used computing unit; however, graphics processing units (GPUs) are gaining popularity as
auxiliary computing units. They were originally used to speed up computer
graphics but are becoming more applicable for numerical applications and are
useful thanks to their intrinsically parallel nature, which allows many
calculations to happen simultaneously. Regardless of its type, a computing unit
takes in a series of bits (for example, bits representing numbers) and outputs
another set of bits (for example, bits representing the sum of those numbers). In
addition to the basic arithmetic operations on integers and real numbers and
bitwise operations on binary numbers, some computing units also provide very
specialized operations, such as the “fused multiply add” operation, which takes
in three numbers, A, B, and C, and returns the value A * B + C.

The main properties of interest in a computing unit are the number of operations
it can do in one cycle and the number of cycles it can do in one second. The first
value is measured by its instructions per cycle (IPC),1 while the latter value
is measured by its clock speed. These two measures are always competing with
each other when new computing units are being made. For example, the Intel Core
series has a very high IPC but a lower clock speed, while the Pentium 4 chip has
the reverse. GPUs, on the other hand, have a very high IPC and clock speed,
but they suffer from other problems like the slow communications that we discuss
in “Communications Layers”.

Furthermore, although increasing clock speed almost immediately speeds up all
programs running on that computational unit (because they are able to do more
calculations per second), having a higher IPC can also drastically affect
computing by changing the level of vectorization that is possible.
Vectorization occurs when a CPU is provided with multiple pieces of data at a time
and is able to operate on all of them at once. This sort of CPU instruction is
known as single instruction, multiple data (SIMD).

In general, computing units have advanced quite slowly over the past
decade (see Figure 1-1). Clock speeds and IPC have both
been stagnant because of the physical limitations of making transistors smaller
and smaller. As a result, chip manufacturers have been relying on other methods
to gain more speed, including simultaneous multithreading (where multiple
threads can run at once), more clever out-of-order execution, and multicore
architectures.

Hyperthreading presents a virtual second CPU to the host operating system (OS), and
clever hardware logic tries to interleave two threads of instructions into the
execution units on a single CPU. When successful, gains of up to 30% over a
single thread can be achieved. Typically, this works well when the units of work
across both threads use different types of execution units—for example, one performs
floating-point operations and the other performs integer operations.

Out-of-order execution enables a compiler to spot that some parts of a linear
program sequence do not depend on the results of a previous piece of work, and therefore that both pieces of work could occur in any order or at the
same time. As long as sequential results are presented at the right time, the
program continues to execute correctly, even though pieces of work are computed
out of their programmed order. This enables some instructions to execute when others
might be blocked (e.g., waiting for a memory access), allowing greater overall
utilization of the available
resources.

Finally, and most important for the higher-level programmer, there is the prevalence
of multicore architectures. These architectures include multiple CPUs
within the same chip, which increases the total capability without running into
barriers to making each individual unit faster. This is why it is currently
hard to find any machine with fewer than two cores—in this case, the computer
has two physical computing units that are connected to each other. While this
increases the total number of operations that can be done per second, it
can make writing code more difficult!

[image: Historical CPU Clock Speed]
Figure 1-1. Clock speed of CPUs over time (from CPU DB)

Simply adding more cores to a CPU does not always speed up a
program’s execution time. This is because of something known as Amdahl’s
law. Simply stated, Amdahl’s law is this: if a program designed to run on
multiple cores has some subroutines that must run on one core, this will be the
limitation for the maximum speedup that can be achieved by allocating more cores.

For example, if we had a survey we wanted one hundred people to fill out, and that
survey took 1 minute to complete, we could complete this task in 100 minutes if
we had one person asking the questions (i.e., this person goes to participant 1, asks
the questions, waits for the responses, and then moves to participant 2). This
method of having one person asking the questions and waiting for responses is
similar to a serial process. In serial processes, we have operations being
satisfied one at a time, each one waiting for the previous operation to
complete.

However, we could perform the survey in parallel if we had two people asking the
questions, which would let us finish the process in only 50 minutes. This can be
done because each individual person asking the questions does not need to know
anything about the other person asking questions. As a result, the task can
easily be split up without having any dependency between the question askers.

Adding more people asking the questions will give us more speedups,
until we have one hundred people asking questions. At this point, the process would
take 1 minute and would be limited simply by the time it takes a participant to
answer questions. Adding more people asking questions will not result in any further
speedups, because these extra people will have no tasks to perform—all the
participants are already being asked questions! At this point, the only way to
reduce the overall time to run the survey is to reduce the amount of time it
takes for an individual survey, the serial portion of the problem, to complete.
Similarly, with CPUs, we can add more cores that can perform various chunks of
the computation as necessary until we reach a point where the bottleneck is the
time it takes for a specific core to finish its task. In other words, the
bottleneck in any parallel calculation is always the smaller serial tasks that
are being spread out.

However, a major hurdle with utilizing
multiple cores in Python is Python’s use of a global interpreter lock (GIL).
The GIL makes sure that a Python process can run only one instruction at a time,
regardless of the number of cores it is currently using. This means that even
though some Python code has access to multiple cores at a time, only one core is
running a Python instruction at any given time. Using the previous example of a
survey, this would mean that even if we had 100 question askers, only one person could
ask a question and listen to a response at a time. This effectively removes any
sort of benefit from having multiple question askers! While this may seem like
quite a hurdle, especially if the current trend in computing is to have multiple
computing units rather than having faster ones, this problem can be avoided by
using other standard library tools, like multiprocessing
(Chapter 9), technologies like numpy or numexpr
([Link to Come]), Cython or Numba (Chapter 7), or distributed models
of computing (Chapter 10).

Note

Python 3.2 also saw a major rewrite of the GIL which
made the system much more nimble, alleviating many of the concerns around the
system for single-thread performance. Futhermore, there are proposals to make
the GIL itself optional (see “Where did the GIL go?”). Although it still locks Python into
running only one instruction at a time, the GIL now does better at switching
between those instructions and doing so with less overhead.

Memory Units

Memory units in computers are used to store bits. These could be bits
representing variables in your program or bits representing the pixels of an
image. Thus, the abstraction of a memory unit applies to the registers
in your motherboard as well as your RAM and hard drive. The one major
difference between all of these types of memory units is the speed at which they
can read/write data. To make things more complicated, the read/write speed is
heavily dependent on the way that data is being read.

For example, most memory units perform much better when they read one large
chunk of data as opposed to many small chunks (this is referred to as sequential
read versus random data). If the data in these memory units is thought of as pages
in a large book, this means that most memory units have better read/write speeds
when going through the book page by page rather than constantly flipping from
one random page to another. While this fact is generally true across all memory
units, the amount that this affects each type is drastically different.

In addition to the read/write speeds, memory units also have
latency, which can be characterized as the time it takes the device to find
the data that is being used. For a spinning hard drive, this latency can be high
because the disk needs to physically spin up to speed and the read head must
move to the right position. On the
other hand, for RAM, this latency can be quite small because everything is solid state.
Here is a short description of the various memory units that are commonly found
inside a standard workstation, in order of read/write speeds:2

	Spinning hard drive

	
Long-term storage that persists even when the computer
is shut down. Generally has slow read/write speeds because the disk must be
physically spun and moved. Degraded performance with random access patterns
but very large capacity (20 terabyte range).

	Solid-state hard drive

	
Similar to a spinning hard drive, with faster
read/write speeds but smaller capacity (1 terabyte range).

	RAM

	
Used to store application code and data (such as any variables being
used). Has fast read/write characteristics and performs well with random
access patterns, but is generally limited in capacity (64 gigabyte range).

	L1/L2 cache

	
Extremely fast read/write speeds. Data going to the CPU
must go through here. Very small capacity (dozens of megabytes range).

Figure 1-2 gives a graphic representation of the differences between these types of memory units by looking at the characteristics of currently available consumer hardware.

A clearly visible trend is that read/write speeds and
capacity are inversely proportional—as we try to increase speed, capacity gets
reduced. Because of this, many systems implement a tiered approach to memory:
data starts in its full state in the hard drive, part of it moves to RAM, and
then a much smaller subset moves to the L1/L2 cache. This method of tiering enables
programs to keep memory in different places depending on access speed
requirements. When trying to optimize the memory patterns of a program, we are
simply optimizing which data is placed where, how it is laid out (in order to
increase the number of sequential reads), and how many times it is moved among
the various locations. In addition, methods such as asynchronous I/O and
preemptive caching provide ways to make sure that data is always where it needs
to be without having to waste computing time waiting for the I/O to complete —most of these processes can
happen independently, while other calculations are being performed! We will discuss these methods in Chapter 8.

[image: Memory Characteristics]
Figure 1-2. Characteristic values for different types of memory units (values from February 2014)

Communications Layers

Finally, let’s look at how all of these fundamental blocks communicate with
each other. Many modes of communication exist, but all are
variants on a thing called a bus.

The frontside bus, for example, is the connection between the RAM and the L1/L2 cache. It moves data that is ready to be transformed by the processor into
the staging ground to get ready for calculation, and it moves finished calculations
out. There are other buses, too, such as the external bus that acts as
the main route from hardware devices (such as hard drives and networking cards)
to the CPU and system memory. This external bus is generally slower than the frontside bus.

In fact, many of the benefits of the L1/L2 cache are attributable to the faster
bus. Being able to queue up data necessary for computation in large chunks on a
slow bus (from RAM to cache) and then having it available at very fast speeds
from the cache lines (from cache to CPU) enables the CPU to do more calculations
without waiting such a long time.

Similarly, many of the drawbacks of using a GPU come from the bus it is
connected on: since the GPU is generally a peripheral device, it communicates
through the PCI bus, which is much slower than the frontside bus. As a result,
getting data into and out of the GPU can be quite a taxing operation. The advent of heterogeneous computing, or computing blocks that have both a
CPU and a GPU on the frontside bus, aims at reducing the data transfer cost and
making GPU computing more of an available option, even when a lot of data must
be transferred.

In addition to the communication blocks within the computer, the network can be
thought of as yet another communication block. This block, though, is much
more pliable than the ones discussed previously; a network device can be
connected to a memory device, such as a network attached storage (NAS) device or
another computing block, as in a computing node in a cluster. However, network
communications are generally much slower than the other types of communications
mentioned previously. While the frontside bus can transfer dozens of gigabits
per second, the network is limited to the order of several dozen megabits.

It is clear, then, that the main property of a bus is its speed: how much data
it can move in a given amount of time. This property is given by combining two
quantities: how much data can be moved in one transfer (bus width) and how many
transfers the bus can do per second (bus frequency). It is important to note that
the data moved in one transfer is always sequential: a chunk of data is read off
of the memory and moved to a different place. Thus, the speed of a bus is
broken into these two quantities because individually they can affect
different aspects of computation: a large bus width can help vectorized code (or
any code that sequentially reads through memory) by making it possible to move
all the relevant data in one transfer, while, on the other hand, having a small
bus width but a very high frequency of transfers can help code that must do many
reads from random parts of memory. Interestingly, one of the ways that these
properties are changed by computer designers is by the physical layout of the
motherboard: when chips are placed close to one another, the length of the
physical wires joining them is smaller, which can allow for faster transfer
speeds. In addition, the number of wires itself dictates the width of the bus
(giving real physical meaning to the term!).

Since interfaces can be tuned to give the right performance for a specific application, it is no surprise that there are hundreds of types. Figure 1-3 shows the bitrates for a sampling of common interfaces. Note that this doesn’t speak at all about the latency of the connections, which dictates how long it takes for a data request to be responded to (although latency is very computer-dependent, some basic limitations are inherent to the interfaces being used).

[image: Connection Speeds]
Figure 1-3. Connection speeds of various common interfaces3

Putting the Fundamental Elements Together

Understanding the basic components of a computer is not enough to fully
understand the problems of high performance programming. The interplay of all of
these components and how they work together to solve a problem introduces
extra levels of complexity. In this section we will
explore some toy problems, illustrating how the ideal solutions would work and
how Python approaches them.

A warning: this section may seem bleak—most of the remarks in this section seem
to say that Python is natively incapable of dealing with the problems of
performance. This is untrue, for two reasons. First, among all of the
“components of performant computing,” we have neglected one very important
component: the developer. What native Python may lack in performance, it gets
back right away with speed of development. Furthermore, throughout the book we
will introduce modules and philosophies that can help mitigate many of the
problems described here with relative ease. With both of these aspects combined,
we will keep the fast development mindset of Python while removing many of the
performance constraints.

Idealized Computing Versus the Python Virtual Machine

To better understand the components of high performance programming, let’s
look at a simple code sample that checks whether a number is prime:

import math

def check_prime(number):
 sqrt_number = math.sqrt(number)
 for i in range(2, int(sqrt_number) + 1):
 if (number / i).is_integer():
 return False
 return True

print(f"check_prime(10,000,000) = {check_prime(10_000_000)}")
check_prime(10,000,000) = False
print(f"check_prime(10,000,019) = {check_prime(10_000_019)}")
check_prime(10,000,019) = True

Let’s analyze this code using our abstract model of computation and then draw
comparisons to what happens when Python runs this code. As with any
abstraction, we will neglect many of the subtleties in both the idealized
computer and the way that Python runs the code. However, this is generally a
good exercise to perform before solving a problem: think about the general
components of the algorithm and what would be the best way for the computing
components to come together to find a solution. By understanding this
ideal situation and having knowledge of what is actually happening under the
hood in Python, we can iteratively bring our Python code closer to the optimal
code.

Idealized computing

When the code starts, we have the value of number stored in RAM. To
calculate sqrt_number, we need to send the value of number to the CPU.
Ideally, we could send the value once; it would get stored inside the CPU’s
L1/L2 cache, and the CPU would do the calculations and then send the values back
to RAM to get stored. This scenario is ideal because we have minimized the
number of reads of the value of number from RAM, instead opting for reads from
the L1/L2 cache, which are much faster. Furthermore, we have minimized the
number of data transfers through the frontside bus, by using the L1/L2 cache
which is connected directly to the CPU.

Tip

This theme of keeping data where it is needed and moving it as little as
possible is very important when it comes to optimization. The concept of “heavy data” refers
to the time and effort required to move data around, which is
something we would like to avoid.

For the loop in the code, rather than sending one value of i at a time to the
CPU, we would like to send both number and several values of i to the CPU to
check at the same time. This is possible because the CPU vectorizes operations
with no additional time cost, meaning it can do multiple independent
computations at the same time. So we want to send number to
the CPU cache, in addition to as many values of i as the cache can hold. For
each of the number/i pairs, we will divide them and check if the result is a whole
number; then we will send a signal back indicating whether any of the values was indeed an
integer. If so, the function ends. If not, we repeat. In this way, we need
to communicate back only one result for many values of i, rather than depending on
the slow bus for every value. This takes advantage of a CPU’s ability to
vectorize a calculation, or run one instruction on multiple data in one clock
cycle.

This concept of vectorization is illustrated by the following code:

import math

def check_prime(number, V=8):
 sqrt_number = math.sqrt(number)
 numbers = range(2, int(sqrt_number)+1)
 for i in range(0, len(numbers), V):
 # the following line is not valid Python code
 result = (number / numbers[i:(i + V)]).is_integer()
 if any(result):
 return False
 return True

Here, we set up the processing such that the division and the checking for
integers are done on a set of V values of i at a time. If properly vectorized,
the CPU can do this line in one step as opposed to doing a separate calculation
for every i. Ideally, the any(result) operation would also happen in the
CPU without having to transfer the results back to RAM. We will talk more
about vectorization, how it works, and when it benefits your code in
[Link to Come].

Python’s virtual machine

The Python interpreter does a lot of work to try to abstract away the underlying
computing elements that are being used. At no point does a programmer need to
worry about allocating memory for arrays, how to arrange that memory, or in what
sequence it is being sent to the CPU. This is a benefit of Python, since it lets
you focus on the algorithms that are being implemented. However, it comes at a
huge performance cost.

It is important to realize that at its core, Python is indeed running a set of
very optimized instructions. The trick, however, is getting Python to perform
them in the correct sequence to achieve better performance. For
example, it is quite easy to see that, in the following example, search_fast will
run faster than search_slow simply because it skips the unnecessary
computations that result from not terminating the loop early, even though both solutions have
runtime O(n). However, things can get complicated when dealing with derived
types, special Python methods, or third-party modules. For example, can you
immediately tell which function will be faster: search_unknown1 or
search_unknown2?

def search_fast(haystack, needle):
 for item in haystack:
 if item == needle:
 return True
 return False

def search_slow(haystack, needle):
 return_value = False
 for item in haystack:
 if item == needle:
 return_value = True
 return return_value

def search_unknown1(haystack, needle):
 return any(item == needle for item in haystack)

def search_unknown2(haystack, needle):
 return any([item == needle for item in haystack])

Identifying slow regions of code through profiling and finding more efficient
ways of doing the same calculations is similar to finding these useless
operations and removing them; the end result is the same, but the number of
computations and data transfers is reduced drastically.

Note

The above search_unknown1 and search_unknown2 is a particularly diabolical example. Do you know which one would be faster for a small haystack? How about a large, but sorted haystack? What if the haystack had no order? What if the needle was near the beginning or near the end? Each of these factors change which one is faster and for what reason. This is the reason why actively profiling your code is so important. We also hope that by the time you finishing reading this book, you’ll have some intuition about which cases affect the different functions, why and what the ramifications are.

One of the impacts of this abstraction layer is that vectorization is not
immediately achievable. Our initial prime number routine will run one
iteration of the loop per value of i instead of combining several iterations.
However, looking at the abstracted vectorization example, we see that it is not
valid Python code, since we cannot divide a float by a list. External libraries
such as numpy will help with this situation by adding the ability to do
vectorized mathematical operations.

Furthermore, Python’s abstraction hurts any optimizations that rely on keeping the
L1/L2 cache filled with the relevant data for the next computation. This comes
from many factors, the first being that Python objects are not laid out in the most
optimal way in memory. This is a consequence of Python being a garbage-collected language—memory is automatically allocated and freed when needed.
This creates memory fragmentation that can hurt the transfers to the CPU caches.
In addition, at no point is there an opportunity to change the layout of a data
structure directly in memory, which means that one transfer on the bus may not
contain all the relevant information for a computation, even though it might have
all fit within the bus width.4

A second, more fundamental problem comes from Python’s dynamic types and the
language not being compiled. As many C programmers have learned throughout the
years, the compiler is often smarter than you are. When compiling code that is
typed and static, the compiler can do many tricks to change the way things are laid out
and how the CPU will run certain instructions in order to optimize them.
Python, however, is not compiled: to make matters worse, it has dynamic types,
which means that inferring any possible opportunities for optimizations
algorithmically is drastically harder since code functionality can be changed
during runtime. There are many ways to mitigate this problem, foremost being the use
of Cython, which allows Python code to be compiled and allows the user to create
“hints” to the compiler as to how dynamic the code actually
is. Futhermore, Python is on track to having a Just In Time Compiler (JIT) which will allow the code to be compiled and optimized during runtime (more on this in “Does Python have a JIT?”).

Finally, the previously mentioned GIL can
hurt performance if trying to parallelize this code. For example, let’s assume
we change the code to use multiple CPU cores such that each core gets a chunk of
the numbers from 2 to sqrtN. Each core can do its calculation for its chunk
of numbers, and then, when the calculations are all done, the cores can compare their
calculations. Although we lose the early termination of the loop since each
core doesn’t know if a solution has been found, we can reduce the number of
checks each core has to do (if we had M cores, each core would have to do
sqrtN / M checks). However, because of the GIL, only one core can be used at
a time. This means that we would effectively be running the same code as the
unparalleled version, but we no longer have early termination. We can avoid
this problem by using multiple processes (with the multiprocessing module)
instead of multiple threads, or by using Cython or foreign
functions.

So Why Use Python?

Python is highly expressive and easy to learn—new programmers quickly discover
that they can do quite a lot in a short space of time. Many Python libraries
wrap tools written in other languages to make it easy to call other systems; for
example, the scikit-learn machine learning system wraps LIBLINEAR and LIBSVM
(both of which are written in C), and the numpy library includes BLAS and other
C and Fortran libraries. As a result, Python code that properly utilizes these
modules can indeed be as fast as comparable C code.

Python is described as “batteries included,” as many important tools and stable
libraries are built in. These include the following:

	io

	
All sorts of IO for bytes, strings and all the encodings you will have to deal with

	array

	
Memory-efficient arrays for primitive types

	math

	
Basic mathematical operations, including some simple statistics

	sqlite3

	
A wrapper around the prevalent SQL file-based storage engine SQLite3

	collections

	
A wide variety of objects, including a deque, counter, and dictionary variants

	asyncio

	
Concurrent support for I/O-bound tasks using async and await syntax

A huge variety of libraries can be found outside the core language, including these:

	numpy

	
A numerical Python library (a bedrock library for anything to do with matrices)

	scipy

	
A very large collection of trusted scientific libraries, often wrapping highly respected C and Fortran libraries

	pandas

	
A library for data analysis, similar to R’s data frames or an Excel spreadsheet, built on scipy and numpy

	polars

	
An alternative to pandas with a built-in query planner for faster and parallelized execution of queries

	scikit-learn

	
Rapidly turning into the default machine learning library, built on scipy

	PyTorch and TensorFlow

	
Deep learning frameworks from Facebook and Google with strong Python and GPU support

	NLTK, SpaCy, and Gensim

	
Natural language-processing libraries with deep Python support

	Database bindings

	
For communicating with virtually all databases, including Redis, ElasticSearch, HDF5, and SQL

	Web development frameworks

	
Performant systems for creating websites, such as aiohttp, django, pyramid, fastapi or flask

	OpenCV

	
Bindings for computer vision

	API bindings

	
For easy access to popular web APIs such as Google, Twitter, and LinkedIn

A large selection of managed environments and shells is available to fit
various deployment scenarios, including the following:

	
The standard distribution, available at http://python.org

	
pipenv, pyenv, and virtualenv for simple, lightweight, and portable
Python environments

	
Docker for simple-to-start-and-reproduce environments for development or
production

	
Anaconda Inc.’s Anaconda, a scientifically focused environment

	
IPython, an interactive Python shell heavily used by scientists and developers

	
Jupyter Notebook, a browser-based extension to IPython, heavily used for teaching and demonstrations

One of Python’s main strengths is that it enables fast prototyping of an idea.
Because of the wide variety of supporting libraries, it is easy to test whether an idea is
feasible, even if the first implementation might be rather flaky.

If you want to make your mathematical routines faster, look to numpy. If
you want to experiment with machine learning, try scikit-learn. If you are
cleaning and manipulating data, then pandas is a good choice.

In general, it is sensible to raise the question, “If our system runs faster,
will we as a team run slower in the long run?” It is always possible to squeeze
more performance out of a system if enough work-hours are invested, but this
might lead to brittle and poorly understood optimizations that ultimately trip up
the team.

One example might be the introduction of Cython (see “Cython”), a
compiler-based approach to annotating Python code with C-like types so the
transformed code can be compiled using a C compiler. While the speed gains can
be impressive (often achieving C-like speeds with relatively little effort), the
cost of supporting this code will increase. In particular, it might be harder to
support this new module, as team members will need a certain maturity in their
programming ability to understand some of the trade-offs that have occurred when
leaving the Python virtual machine that introduced the performance increase.

How to Be a Highly Performant Programmer

Writing high performance code is only one part of being highly performant with
successful projects over the longer term. Overall team velocity is far more
important than speedups and complicated solutions. Several factors are key to
this—good structure, documentation, debuggability, and shared standards.

Let’s say you create a prototype. You didn’t test it thoroughly, and it didn’t get reviewed by your team. It does seem to be “good enough,” and it gets pushed to production. Since it was never written in a structured way, it lacks tests and is undocumented. All of a sudden there’s
an inertia-causing piece of code for someone else to support, and often
management can’t quantify the cost to the team.

As this solution is hard to maintain, it tends to stay unloved—it never gets
restructured, it doesn’t get the tests that’d help the team refactor it, and nobody
else likes to touch it, so it falls to one developer to keep it running. This can
cause an awful bottleneck at times of stress and raises a significant risk: what would happen if that developer left the project?

Typically, this development style occurs when the management team doesn’t understand the ongoing inertia that’s caused by hard-to-maintain code. Demonstrating that in the longer-term tests and documentation can help a team stay highly productive and can help convince managers to allocate time to “cleaning up” this prototype code.

In a research environment, it is common to create many Jupyter Notebooks using
poor coding practices while iterating through ideas and different datasets.
The
intention is always to “write it up properly” at a later stage, but that
later stage never occurs. In the end, a working result is obtained, but the
infrastructure to reproduce it, test it, and trust the result is missing. Once
again the risk factors are high, and the trust in the result will be low.

There’s a general approach that will serve you well:

	Make it work

	
First you build a good-enough solution. It is very sensible to “build one to throw away” that acts as a prototype solution, enabling a better structure to be used for the second version. It is always sensible to do some up-front planning before coding; otherwise, you’ll come to reflect that “We saved an hour’s thinking by coding all afternoon.” In some fields this is better known as “Measure twice, cut once.”

	Make it right

	
Next, you add a strong test suite backed by documentation and clear reproducibility instructions so that another team member can take it on. This is also a good place to talk about the intention of the code, the challenges that were faced while coming up with the solution, and any notes about the process of building the working version. This will help any future team members when this code needs to be refactored, fixed or rebuilt.

	Make it fast

	
Finally, we can focus on profiling and compiling or parallelization and using the existing test suite to confirm that the new, faster solution still works as expected.

Good Working Practices

There are a few “must haves”—documentation, good structure, and testing are key.

Some project-level documentation will help you stick to a clean structure. It’ll
also help you and your colleagues in the future. Nobody will thank you (yourself
included) if you skip this part. Writing this up in a README file at the
top level is a sensible starting point; it can always be expanded into a docs/
folder later if required.

Explain the purpose of the project, what’s in the folders, where the data comes
from, which files are critical, and how to run it all, including how to run the
tests.

A NOTES file is also a good solution for temporarily storing useful commands, function defaults or other wisdom, tips or tricks for using the code. While this should ideally be put in the documentation, having a scratchpad to keep this information in before it (hopefully) gets into the documentation can be invaluable in not forgetting the important little bits. 5

Micha recommends also using Docker. A top-level Dockerfile will explain to
your future-self exactly which libraries you need from the operating system
to make this project run successfully. It also removes the difficulty of running
this code on other machines or deploying it to a cloud environment. Often when inheriting new code, simply getting it up and running to play with can be a major hurdle. A Dockerfile removes this hurdle and lets other developers start interacting with your code immediately.

Add a tests/ folder and add some unit tests. We prefer pytest as a modern
test runner, as it builds on Python’s built-in unittest module. Start with just a
couple of tests and then build them up. Progress to using the coverage tool,
which will report how many lines of your code are actually covered by the tests—it’ll help avoid nasty surprises.

If you’re inheriting legacy code and it lacks tests, a high-value activity is
to add some tests up front. Some “integration tests” that check the overall flow
of the project and confirm that with certain input data you get specific output
results will help your sanity as you subsequently make modifications.

Every time something in the code bites you, add a test. There’s no value to
being bitten twice by the same problem.

Docstrings in your code for each function, class, and module will always help
you. Aim to provide a useful description of what’s achieved by the function,
and where possible include a short example to demonstrate the expected output.
Look at the docstrings inside numpy and scikit-learn if you’d like
inspiration.

Whenever your code becomes too long—such as functions longer than one screen—be comfortable with refactoring the code to make it shorter. Shorter code is easier
to test and easier to support.

Tip

When you’re developing your tests, think about following a test-driven
development methodology. When you know exactly what you need to
develop and you have testable examples at hand—this method becomes very
efficient.

You write your tests, run them, watch them fail, and then add
the functions and the necessary minimum logic to support the tests that you’ve
written. When your tests all work, you’re done. By figuring out the expected input and output of a function ahead of time, you’ll find implementing the logic of the function relatively straightforward.

If you can’t define your tests ahead of time, it naturally raises the question, do you really
understand what your function needs to do? If not, can you write it correctly in an
efficient manner? This method doesn’t work so well if you’re in a creative process and researching data that you don’t
yet understand well.

Always use source control—you’ll only thank yourself when you overwrite
something critical at an inconvenient moment. Get used to committing frequently
(daily, or even every 10 minutes) and pushing to your repository every day.

Keep to the standard PEP8 coding standard. Even better, adopt black (the
opinionated code formatter) on a pre-commit source control hook so it just
rewrites your code to the standard for you. Use flake8 to lint your code to
avoid other mistakes.

Creating environments that are isolated from the operating system will make your
life easier. Ian prefers Anaconda, while Micha prefers pyenv coupled with virtualenv or just using Docker.
Both are sensible solutions and are significantly better than using the operating
system’s global Python environment!

Remember that automation is your friend. Doing less manual work means there’s less
chance of errors creeping in. Automated build systems, continuous integration with
automated test suite runners, and automated deployment systems turn tedious and error-prone
tasks into standard processes that anyone can run and support. It is never a
waste of time to build out your continuous integration toolkit (like running
tests automatically when code is checked into your code repository) as it will
speed up and streamline future development.

Tip

Remember that “doing things the hard way” is the way we learn - if we outsource our thinking to a GenAI system then we’ll always get an answer and sometimes it might even be right. By creatively figuring out your own solutions you’ll continue to build new patterns in your head, rather than reinforcing those that already exist in the wider world. This is to your benefit.
As a simple example GitHub CoPilot wrote a simple regular expression for Ian - but it wasn’t how Ian would write a regular expression, so it took a while to figure out it. In hindsight it would have been faster to think for a bit longer and write a solution that “fitted how Ian thought about this problem”, rather than introducing a solution from a random Internet typist.

Building libraries is a great way to save on copy-and-paste solutions between early stage projects. It is tempting to copy-and-paste snippets of code because it is quick, but over time you’ll have a set of slightly-different but basically the same solutions, each with few or no tests so allowing more bugs and edge cases to impact your work. Sometimes stepping back and identifying opportunities to write a first library can be yield a significant win for a team.

Finally, remember that readability is far more important than being clever.
Short snippets of complex and hard-to-read code will be hard for you and your
colleagues to maintain, so people will be scared of touching this code. Instead, write a longer, easier-to-read function and back it with useful
documentation showing what it’ll return, and complement this with tests to
confirm that it does work as you expect.

Optimizing for the Team Rather than the Code Block

There are many ways to lose time when building a solution. At worst maybe you’re working on the wrong problem or with the wrong approach, maybe you’re on the right track but there are taxes in your development process that slow you down, maybe you haven’t estimated the true costs and uncertainties that might get in your way. Or maybe you misunderstand the needs of the stakeholders and spending time building a feature or solving a problem that doesn’t actually exist.6

Making sure you’re solving a useful problem is critical. Finding a cool project with cutting edge technology and lots of neat acronyms can be wonderfully fun - but it is unlikely to deliver the value that other project members will appreciate. If you’re in an organisation that is trying to cause a positive change, you have to focus on problems that block and can solve that positive change.

Having found potentially-useful problems to solve it is worth reflecting - can we make a meaningful change? Just fixing “the tech” behind a problem won’t change the real world. The solution needs to be deployed and maintained and needs to be adopted by human users. If there’s resistance or blockage to the technical solution then your work will go nowhere.

Having decided that those blockers aren’t a worry - have you estimated the potential impact you can realistically have? If you find a part of your problem space where you can have a 100x impact - great! Does that part of the problem represent a meaningful chunk of work for the day to day of your organisation? If you make a 100x impact on a problem that’s seen just a few hours a year then the work is (probably) without use. If you can make a 1% improvement on something that hurts the team every single day then you’ll be a hero.

One way to estimate the value you provide is to think about the cost of the current-state and the potential gain of the future-state (when you’ve written your solution). How do you quantify the cost and improvement? Tieing estimates down to money (as “time is money” and all of us people burn time) is a great way to figure out what kind of impact you’ll have and to be able to communicate it to colleagues. This is also a great way of prioritising potential project options.

When you’ve found useful and valuable problems to solve next you need to make sure you’re solving them in sensible ways. Taking a hard problem and deciding immediately to use a hard solution might be sensible, but starting with a simple solution and learning why it does and doesn’t work can quickly yield valuable insights that inform subsequent iterations of your solution. What’s the quickest and simplest way you can learn something useful?

Ian has worked with clients with near-release complex NLP pipelines but low confidence that they actually work. After a review it was revealed that a team had built a complex system, but missed the upstream poor-data-annotation problem that was confounding the NLP ML process. By switching to a far simpler solution (without deep neural networks, using old fashion NLP tooling) the issues were identified, the data consistently relabeled, and only then could we build up towards more sophisticated solutions now that up-stream issues had sensibly been removed.

Is your team communicating its results clearly to stakeholders? Are you communicating clearly within your team? A lack of communication is an easy way to add an frustrating cost to your team’s progress.

Review your collaborative practices to check that processes such as frequent code reviews are in place. It is so easy to “save some time” by ignoring a code review and forgetting that you’re letting colleagues (and yourself) get away with unreviewed code that might be solving the wrong problem or may contain errors that a fresh set of eyes could see before they have a worse and later impact.

The Remote Performant Programmer

Since the COVID-19 Pandemic we’ve witnessed a switch to fully-remote and hybrid practices. Whilst some organisations have tried to bring teams back on-site, most have adopted hybrid or fully remote practices now that best practices are reasonably well understood.

Remote practices mean we can live anywhere and the hiring and collaborator pool can be far wider - either limited by similar time zones or not limited at all. Some organisations have noticed that open source projects such as Python, Pandas, scikit-learn and plenty more are working wonderfully successfully with a globally distributed team who rarely ever meet in person.

Increased communication is critical and often a “documentation first” culture has to be developed. Some teams go as far to say that “if it isn’t documented on our chat tool (like Slack) then it never happened” - this means that every decision ends up being written down so it is communicated and can be searched for.

It is also easy to feel isolated when working fully remotely for a long time. Having regular checkins with team members, even if you are not working on the same project, and unstructured time where you can talk at a higher level (or just about life!) is important in feeling connected and part of a team.

Some Thoughts on Good Notebook Practice

If you’re using Jupyter Notebooks, they’re great for visual communication, but
they facilitate laziness. If you find yourself leaving long functions inside
your Notebooks, be comfortable extracting them out to a Python module and then
adding tests.

Consider prototyping your code in IPython or the QTConsole; turn lines of code into
functions in a Notebook and then promote them out of the Notebook and into a module complemented by
tests. Finally, consider wrapping the code in a class if encapsulation and data
hiding are useful.

Liberally spread assert statements throughout a Notebook to check that your functions are behaving as expected.
You can’t easily test code inside a Notebook, and until you’ve refactored your functions into separate modules, assert checks
are a simple way to add some level of validation. You shouldn’t trust this code until you’ve extracted it to a module
and written sensible unit tests.

Using assert statements to check data in your code should be frowned upon. It is an easy way to assert that certain conditions are
being met, but it isn’t idiomatic Python. To make your code easier to read by other developers, check your expected data state
and then raise an appropriate exception if the check fails. A common exception would be ValueError if a function encounters
an unexpected value. The Pandera library is an example
of a testing framework focused on Pandas and Polars to check that your data meets the specified constraints.

You may also want to add some sanity checks at the end of your Notebook—a
mixture of logic checks and raise and print statements that demonstrate that you’ve just
generated exactly what you needed. When you return to this code in six months,
you’ll thank yourself for making it easy to see that it worked correctly all the
way through!

One difficulty with Notebooks is sharing code with source control systems.
nbdime is one of a growing set of new tools that let you diff your Notebooks.
It is a lifesaver and enables collaboration with colleagues.

Getting the Joy Back into Your Work

Life can be complicated. In the ten years since your authors wrote the first
edition of this book, we’ve jointly experienced through friends and family a number of life
situations, including new children, depression, cancer, home relocations, successful business
exits and failures, and career direction shifts. Inevitably, these external events
will have an impact on anyone’s work and outlook on life.

Remember to keep looking for the joy in new activities. There are always interesting
details or requirements once you start poking around. You might ask, “why did they make that decision?”
and “how would I do it differently?” and all of a sudden you’re ready to start a conversation
about how things might be changed or improved.

Keep a log of things that are worth celebrating. It is so easy to forget about
accomplishments and to get caught up in the day-to-day. People get burned out
because they’re always running to keep up, and they forget how much progress
they’ve made.

We suggest that you build a list of items worth celebrating and note how you
celebrate them. Ian keeps such a list—he’s happily surprised when he
goes to update the list and sees just how many cool things have happened (and
might otherwise have been forgotten!) in the last year. These shouldn’t just be
work milestones; include hobbies and sports, and celebrate the milestones you’ve
achieved. Micha makes sure to prioritize her personal life and spend days
away from the computer to work on nontechnical projects or to prioritise rest, relaxation and slowness. It is critical to keep
developing your skill set, but it is not necessary to burn out!

Programming, particularly when performance focused, thrives on a sense of
curiosity and a willingness to always delve deeper into the technical details.
Unfortunately, this curiosity is the first thing to go when you burn out; so take
your time and make sure you enjoy the journey, and keep the joy and the
curiosity.

The future of Python

Where did the GIL go?

As discussed “Memory Units” the Global Interpreter Lock (GIL) is the standard memory locking mechanism that can unfortunately make multi-threaded code run - at worst - at single-thread speeds. The GIL’s job is to make sure that only one thread can modify a Python object at a time, so if multiple threads in one program try to modify the same object, they effectively each get to make their modifications one-at-a-time.

This massively simplified the early design of Python but as the processor count has increased, it has added a growing tax to writing multi-core code. The GIL is a core part of Python’s reference counting garbage collection machinery.

In 2023 a decision was made to investigate building a GIL-free version of Python which would still support threads in addition to the long-standing GIL build. Since third party libraries (e.g. NumPy, Pandas, scikit-learn) have compiled C code which relies upon the current GIL implementation, some code gymnastics will be required for external libraries to support both builds of Python and to move to a GIL-less build in the longer term. Nobody wants a repeat of the 10 year Python 2 to Python 3 transition again!

Python Enhancement Proposal PEP-703 7 describes the proposal with a focus on scientific and AI applications. The main issue in this domain is that with CPU-intensive code and 10-100 threads the overhead of the GIL can significantly reduce the parallelization opportunity. By switching to the standard solutions (e.g. multiprocessing) described in this book, a significant developer overhead and communications overhead can be introduced. None of these options enable the best use of the machine’s resources without significant effort.

This PEP notes the issues with non-atomic object modifications which need to be controlled for along with a new small-object memory allocator that is thread-safe.

We might expect a GIL-less version of Python to be generally available from 2028 - if no significant blockers are discovered during this journey.

Does Python have a JIT?

Starting with Python 3.13 we expect that a just-in-time compiler (JIT) will be built into the main CPython that almost everyone uses.

This JIT follows a 2021 design called “copy and patch” which was first used in the Lua language. As a contrast in technologies such as PyPy and Numba an analyser discovers slow code sections (AKA hot-spots), then compiles a machine-code version that matches this code block with whatever specialisations are available to the CPU on that machine. You get really fast code, but the compilation process can be expensive on the early passes.

The “copy and patch” process is a little different to the contrasting approach. When the python executable is built (normally by the Python Software Foundation) the LLVM compiler toolchain is used to build a set of pre-defined “stencils”. These stencils are semi-compiled versions of critical op-codes from the Python virtual machine. They’re called “stencils” because they have “holes” which are filled in later.

At run time when a hot-spot is identified - typically a loop where the datatypes don’t change - you can take a matching set of stencils that match the op-codes, fill in the “holes” by pasting in the memory addresses of the relevant variables, then the op-codes no longer need to be interpreted as the machine code equivalent is available. This promises to be much faster than compiling each hot spot that’s identified, it may not be as optimal but is hoped to provide significant gains without a slow analysis and compilation pass.

Getting to the point where a JIT is possible has taken a couple of evolutionary stages in major Python releases:

	
3.11 introduced an adaptive type specializing interpreter which provided 10-25% speed-ups

	
3.12 introduced internal clean-ups and a domain specific language for the creation of the interpreter enabling modification at build-time

	
3.13 introduced a hot-spot detector to build on the specialized types with the copy-and-patch JIT

It is worth noting that whilst the introduction of a JIT in Python 3.13 is a great step, it is unlikely to impact any of our Pandas, NumPy and SciPy code as internally these libraries often use C and Cython to pre-compile faster solutions. The JIT will have an impact on anyone writing native Python, particularly numeric Python.

1 Not to be confused with interprocess communication, which shares the same acronym—we’ll look at that topic in Chapter 9.
2 Speeds in this section are from https://oreil.ly/pToi7.
3 Data is from https://oreil.ly/7SC8d.
4 In [Link to Come], we’ll see how we can regain this control and tune our code all the way down to the memory utilization patterns.
5 Micha generally keeps a notes files open while developing a solution and once things are working, she spends time clearing out the notes file into proper documentation and auxiliary tests and benchmarks.
6 Micha has, in several occasions, shadowed stakeholders throughout their day to better understand how they work, how they approach problems and what their day to day was like. This “take a developer to work day” approach helped her better adapt her technical solutions to their needs.
7 https://peps.python.org/pep-0703/

Chapter 2. Profiling to Find Bottlenecks

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
How can I identify speed and RAM bottlenecks in my code?

	
How do I profile CPU and memory usage?

	
What depth of profiling should I use?

	
How can I profile a long-running application?

	
What’s happening under the hood with CPython?

	
How do I keep my code correct while tuning performance?

Profiling lets us find bottlenecks so we can do the least amount of work to get the biggest practical performance gain. While we’d like to get huge gains in speed and reductions in resource usage with little work, practically you’ll aim for your code to run “fast enough” and “lean enough” to fit your needs. Profiling will let you make the most pragmatic decisions for the least overall effort.

Any measurable resource can be profiled (not just the CPU!). In this chapter we look at both CPU time and memory usage. You could apply similar techniques to measure network bandwidth and disk I/O too.

If a program is running too slowly or using too much RAM, you’ll want to fix whichever parts of your code are responsible. You could, of course, skip profiling and fix what you believe might be the problem—but be wary, as you’ll often end up “fixing” the wrong thing. Rather than using your intuition, it is far more sensible to first profile, having defined a
hypothesis, before making changes to the structure of your code.

Sometimes it’s good to be lazy. By profiling first, you can quickly identify the bottlenecks that need to be solved, and then you can solve just enough of these to achieve the performance you need. If you avoid profiling and jump to optimization, you’ll quite likely do more work in the long run. Always be driven by the results of
profiling.

Profiling Efficiently

The first aim of profiling is to test a representative system to identify what’s slow (or using too much RAM, or causing too much disk I/O or network I/O). Profiling typically adds an overhead (10× to 100× slowdowns can be typical), and you still want your code to be used in as similar to a real-world situation as possible. Extract a test case and isolate the piece of the system that you need to test. Preferably, it’ll have been written to be in its own set of modules already.

The basic techniques that are introduced first in this chapter include the %timeit magic in IPython, time.time(), and a timing decorator. You can use these techniques to understand the behavior of statements and functions.

Then we will cover cProfile (“Using the cProfile Module”), showing you how to use this built-in tool to understand which functions in your code take the longest to run. This will give you a high-level view of the problem so you can direct your attention to the critical functions.

Next, we’ll look at line_profiler (“Using line_profiler for Line-by-Line Measurements”), which will profile your chosen functions on a line-by-line basis. The result will include a count of the number of times each line is called and the percentage of time spent on each line. This is exactly the information you need to understand what’s running slowly and why.

Armed with the results of line_profiler, you’ll have the information you need to move on to using a compiler (Chapter 7).

In [Link to Come], you’ll learn how to use perf stat to understand the number of instructions that are ultimately executed on a CPU and how efficiently the CPU’s caches are utilized. This allows for advanced-level tuning of matrix operations. You should take a look at [Link to Come] when you’re done with this chapter.

After line_profiler, if you’re working with long-running systems, then you’ll be interested in py-spy to peek into already-running Python processes.

To help you understand why your RAM usage is high, we’ll show you memory_profiler (“Using memory_profiler to Diagnose Memory Usage”). It is particularly useful for tracking RAM usage over time on a labeled chart, so you can explain to colleagues why certain functions use more RAM than expected.

If you’d like to combine CPU and RAM profiling you’ll want to read about Scalene (“Combining CPU and Memory Profiling with Scalene”), this combines the jobs of line_profiler and memory_profiler with a novel low-impact memory allocator and also contains experimental GPU profiling support.

VizTracer (“VizTracer for an interactive time-based call stack”) will let you see a time-based view on your code’s execution, it presents a call stack down the page with time running from left-to-right. You can click into the call stack and even annotate custom messages and behaviour.

Warning

Whatever approach you take to profiling your code, you must remember to have adequate unit test coverage in your code. Unit tests help you to avoid silly mistakes and to keep your results reproducible. Avoid them at your peril.

Always profile your code before compiling or rewriting your algorithms. You need evidence to determine the most efficient ways to make your code run faster.

Next, we’ll give you an introduction to the Python bytecode inside CPython (“Using the dis Module to Examine CPython Bytecode”), so you can understand what’s happening “under the hood.” In particular, having an understanding of how Python’s stack-based virtual machine operates will help you understand why certain coding styles run more slowly than others. Specialist (“Digging into bytecode specialisation with Specialist”) will then helps us see which parts of the bytecode can be identified for performance improvements from Python 3.11 and above.

Before the end of the chapter, we’ll review how to integrate unit tests while profiling (“Unit Testing During Optimization to Maintain Correctness”) to preserve the correctness of your code while you make it run more efficiently.

Warning

When using GenAI solutions such at GitHub CoPilot remember that they’ll always give you an answer - and sometimes they might be right. When it comes to profiling there are a million out of date examples in the training data which will inform the answers that a GenAI system might give you. Your authors have been confused, distracted and occasionally amused by the suggestions from CoPilot whilst working on this book. Always be skeptical.

We’ll finish with a discussion of profiling strategies (“Strategies to Profile Your Code Successfully”) so you can reliably profile your code and gather the correct data to test your hypotheses. Here you’ll learn how dynamic CPU frequency scaling and features like Turbo Boost can skew your profiling results, and you’ll learn how they can be disabled.

To walk through all of these steps, we need an easy-to-analyze function. The next section introduces the Julia set. It is a CPU-bound function that’s a little hungry for RAM; it also exhibits nonlinear behavior (so we can’t easily predict the outcomes), which means we need to profile it at runtime rather than analyzing it offline.

Introducing the Julia Set

The Julia set is an interesting CPU-bound problem for us to begin with. It is a fractal sequence that generates a complex output image, named after Gaston Julia.

The code that follows is a little longer than a version you might write yourself. It has a CPU-bound component and a very explicit set of inputs. This configuration allows us to profile both the CPU usage and the RAM usage so we can understand which parts of our code are consuming two of our scarce computing resources. This implementation is deliberately suboptimal, so we can identify memory-consuming operations and slow statements. Later in this chapter we’ll fix a slow logic statement and a memory-consuming statement, and in Chapter 7 we’ll significantly speed up the overall execution time of this function.

We will analyze a block of code that produces both a false grayscale plot (Figure 2-1) and a pure grayscale variant of the Julia set (Figure 2-3), at the complex point c=-0.62772-0.42193j (try this line yourself - it is legitimate Python!). A Julia set is produced by calculating each pixel in isolation; this is an “embarrassingly parallel problem,” as no data is shared between points.

[image: Julia set at -0.62772-0.42193i]
Figure 2-1. Julia set plot with a false gray scale to highlight detail

If we chose a different c, we’d get a different image. The location we have chosen has regions that are quick to calculate and others that are slow to calculate; this is useful for our analysis.

The problem is interesting because we calculate each pixel by applying a loop that could be applied an indeterminate number of times. On each iteration we test to see if this coordinate’s value escapes toward infinity, or if it seems to be held by an attractor. Coordinates that cause few iterations are colored darkly in Figure 2-1, and those that cause a high number of iterations are colored white. White regions are more complex to calculate and so take longer to generate.

We define a set of z coordinates that we’ll test. The function that we calculate squares the complex number z and adds c:

 f

 (
 z
)

 =
 z 2
 +
 c

We iterate on this function while testing to see if the escape condition holds using abs. If the escape function is False, we break out of the loop and record the number of iterations we performed at this coordinate. If the escape function is never False, we stop after maxiter iterations. We will later turn this z’s result into a colored pixel representing this complex location.

In pseudocode, it might look like this:

for z in coordinates:
 for iteration in range(maxiter): # limited iterations per point
 if abs(z) < 2.0: # has the escape condition been broken?
 z = z*z + c
 else:
 break
 # store the iteration count for each z and draw later

To explain this function, let’s try two coordinates.

We’ll use the coordinate that we draw in the top-left corner of the plot at -1.8-1.8j. We must test abs(z) < 2 before we can try the update rule:

z = -1.8-1.8j
print(abs(z))

2.54558441227

We can see that for the top-left coordinate, the abs(z) test will be False on the zeroth iteration as 2.54 >= 2.0, so we do not perform the update rule. The output value for this coordinate is 0.

Now let’s jump to the center of the plot at z = 0 + 0j and try a few iterations:

c = -0.62772-0.42193j
z = 0+0j
for n in range(9):
 z = z*z + c
 print(f"{n}: z={z: .5f}, abs(z)={abs(z):0.3f}, c={c: .5f}")

0: z=-0.62772-0.42193j, abs(z)=0.756, c=-0.62772-0.42193j
1: z=-0.41171+0.10778j, abs(z)=0.426, c=-0.62772-0.42193j
2: z=-0.46983-0.51068j, abs(z)=0.694, c=-0.62772-0.42193j
3: z=-0.66777+0.05793j, abs(z)=0.670, c=-0.62772-0.42193j
4: z=-0.18516-0.49930j, abs(z)=0.533, c=-0.62772-0.42193j
5: z=-0.84274-0.23703j, abs(z)=0.875, c=-0.62772-0.42193j
6: z= 0.02630-0.02242j, abs(z)=0.035, c=-0.62772-0.42193j
7: z=-0.62753-0.42311j, abs(z)=0.757, c=-0.62772-0.42193j
8: z=-0.41295+0.10910j, abs(z)=0.427, c=-0.62772-0.42193j

We can see that each update to z for these first iterations leaves it with a value where abs(z) < 2 is True. For this coordinate we can iterate 300 times, and still the test will be True. We cannot tell how many iterations we must perform before the condition becomes False, and this may be an infinite sequence. The maximum iteration (maxiter) break clause will stop us from iterating potentially forever.

In Figure 2-2, we see the first 50 iterations of the preceding sequence. For 0+0j (the solid line with circle markers), the sequence appears to repeat every eighth iteration, but each sequence of seven calculations has a minor deviation from the previous sequence—we can’t tell if this point will iterate forever within the boundary condition, or for a long time, or maybe for just a few more iterations. The dashed cutoff line shows the boundary at +2.

[image: julia non convergence]
Figure 2-2. Two coordinate examples evolving for the Julia set

For -0.82+0j (the dashed line with diamond markers), we can see that after the ninth update, the absolute result has exceeded the +2 cutoff, so we stop updating this value.

Calculating the Full Julia Set

In this section we break down the code that generates the Julia set. We’ll analyze it in various ways throughout this chapter. As shown in Example 2-1, at the start of our module we import the time module for our first profiling approach and define some coordinate constants.

Example 2-1. Defining global constants for the coordinate space

"""Julia set generator without optional PIL-based image drawing"""
import time

area of complex space to investigate
x1, x2, y1, y2 = -1.8, 1.8, -1.8, 1.8
c_real, c_imag = -0.62772, -.42193

To generate the plot, we create two lists of input data. The first is zs (complex z coordinates), and the second is cs (a complex initial condition). Neither list varies, and we could optimize cs to a single c value as a constant. The rationale for building two input lists is so that we have some reasonable-looking data to profile when we profile RAM usage later in this chapter.

To build the zs and cs lists, we need to know the coordinates for each z. In Example 2-2, we build up these coordinates using xcoord and ycoord and a specified x_step and y_step. The somewhat verbose nature of this setup is useful when porting the code to other tools (such as numpy) and to other Python environments, as it helps to have everything very clearly defined for debugging.

Example 2-2. Establishing the coordinate lists as inputs to our calculation function

def calc_pure_python(desired_width, max_iterations):
 """Create a list of complex coordinates (zs) and complex parameters (cs),
 build Julia set"""
 x_step = (x2 - x1) / desired_width
 y_step = (y1 - y2) / desired_width
 x = []
 y = []
 ycoord = y2
 while ycoord > y1:
 y.append(ycoord)
 ycoord += y_step
 xcoord = x1
 while xcoord < x2:
 x.append(xcoord)
 xcoord += x_step
 # build a list of coordinates and the initial condition for each cell.
 # Note that our initial condition is a constant and could easily be removed,
 # we use it to simulate a real-world scenario with several inputs to our
 # function
 zs = []
 cs = []
 for ycoord in y:
 for xcoord in x:
 zs.append(complex(xcoord, ycoord))
 cs.append(complex(c_real, c_imag))

 print("Length of x:", len(x))
 print("Total elements:", len(zs))
 start_time = time.time()
 output = calculate_z_serial_purepython(max_iterations, zs, cs)
 end_time = time.time()
 secs = end_time - start_time
 print(f"{calculate_z_serial_purepython.__name__} took {secs:0.2f} seconds")

 # This sum is expected for a 1000^2 grid with 300 iterations
 # It ensures that our code evolves exactly as we'd intended
 assert sum(output) == 33219980

Having built the zs and cs lists, we output some information about the size of the lists and calculate the output list via calculate_z_serial_purepython. Finally, we sum the contents of output and assert that it matches the expected output value. Ian uses it here to confirm that no errors creep into the book.

As the code is deterministic, we can verify that the function works as we expect by summing all the calculated values. This is useful as a sanity check—when we make changes to numerical code, it is very sensible to check that we haven’t broken the algorithm. Ideally, we would use unit tests and test more than one configuration of the problem.

Next, in Example 2-3, we define the calculate_z_serial_purepython function, which expands on the algorithm we discussed earlier. Notably, we also define an output list at the start that has the same length as the input zs and cs lists.

Example 2-3. Our CPU-bound calculation function

def calculate_z_serial_purepython(maxiter, zs, cs):
 """Calculate output list using Julia update rule"""
 output = [0] * len(zs)
 for i in range(len(zs)):
 n = 0
 z = zs[i]
 c = cs[i]
 while abs(z) < 2 and n < maxiter:
 z = z * z + c
 n += 1
 output[i] = n
 return output

Now we call the calculation routine in Example 2-4. By wrapping it in a __main__ check, we can safely import the module without starting the calculations for some of the profiling methods. Here, we’re not showing the method used to plot the output.

Example 2-4. __main__ for our code

if __name__ == "__main__":
 # Calculate the Julia set using a pure Python solution with
 # reasonable defaults for a laptop
 calc_pure_python(desired_width=1000, max_iterations=300)

Once we run the code, we see some output about the complexity of the problem:

running the above produces:
Length of x: 1,000
Total elements: 1,000,000
calculate_z_serial_purepython took 5.80 seconds

In the false-grayscale plot (Figure 2-1), the high-contrast color changes gave us an idea of where the cost of the function was slow changing or fast changing. Here, in Figure 2-3, we have a linear color map: black is quick to calculate, and white is expensive to calculate.

By showing two representations of the same data, we can see that lots of detail is lost in the linear mapping. Sometimes it can be useful to have various representations in mind when investigating the cost of a function.

[image: Julia set at -0.62772-0.42193i]
Figure 2-3. Julia plot example using a pure gray scale

Simple Approaches to Timing—print and a Decorator

After Example 2-4, we saw the output generated by several print statements in our code. On Ian’s laptop, this code takes approximately 5 seconds to run using CPython 3.12. It is useful to note that execution time always varies. You must observe the normal variation when you’re timing your code, or you might incorrectly attribute an improvement in your code to what is simply a random variation in execution time.

Your computer will be performing other tasks while running your code, such as accessing the network, disk, or RAM, and these factors can cause variations in the execution time of your program.

Ian’s laptop is a Dell XPS 15 9510 with an Intel Core I7-11800H (2.3 GHz, 24MB Level 3 cache, Eight physical Cores with Hyperthreading) with 64 GB system RAM running Linux Minx 21.2 (based on Ubuntu 22.04).

In calc_pure_python (Example 2-2), we can see several print statements. This is the simplest way to measure the execution time of a piece of code inside a function. It is a basic approach, but despite being quick and dirty, it can be very useful when you’re first looking at a piece of code.

Using print statements is commonplace when debugging and profiling code. It quickly becomes unmanageable but is useful for short investigations. Try to tidy up the print statements when you’re done with them, or they will clutter your stdout.

A slightly cleaner approach is to use a decorator—here, we add one line of code above the function that we care about. Our decorator can be very simple and just replicate the effect of the print statements. Later, we can make it more advanced.

In Example 2-5, we define a new function, timefn, which takes a function as an argument: the inner function, measure_time, takes *args (a variable number of positional arguments) and **kwargs (a variable number of key/value arguments) and passes them through to fn for execution.

Around the execution of fn, we capture time.time() and then print the result along with fn.__name__. The overhead of using this decorator is small, but if you’re calling fn millions of times, the overhead might become noticeable. We use @wraps(fn) to expose the function name and docstring to the caller of the decorated function (otherwise, we would see the function name and docstring for the decorator, not the function it decorates).

Example 2-5. Defining a decorator to automate timing measurements

from functools import wraps

def timefn(fn):
 @wraps(fn)
 def measure_time(*args, **kwargs):
 t1 = time.time()
 result = fn(*args, **kwargs)
 t2 = time.time()
 print(f"@timefn: {fn.__name__} took {(t2 - t1):0.2f} seconds")
 return result
 return measure_time

@timefn
def calculate_z_serial_purepython(maxiter, zs, cs):
 ...

When we run this version (we keep the print statements from before), we can see that the execution time in the decorated version is ever-so-slightly quicker than the call from calc_pure_python. This is due to the overhead of calling a function (the difference is very tiny):

Length of x: 1,000
Total elements: 1,000,000
@timefn: calculate_z_serial_purepython took 5.78 seconds
calculate_z_serial_purepython took 5.78 seconds

Note

The addition of profiling information will inevitably slow down your code—some profiling options are very informative and induce a heavy speed penalty. The trade-off between profiling detail and speed will be something you have to consider.

We can use the timeit module as another way to get a coarse measurement of the execution speed of our CPU-bound function. More typically, you would use this when timing different types of simple expressions as you experiment with ways to solve a problem.

Warning

The timeit module temporarily disables the garbage collector. This might impact the speed you’ll see with real-world operations if the garbage collector would normally be invoked by your operations. See the Python documentation for help on this.

From the command line, you can run timeit as follows:

python -m timeit -n 5 -r 1 -s "import julia1_nopil" \
 "julia1_nopil.calc_pure_python(desired_width=1000, max_iterations=300)"

Note that you have to import the module as a setup step using -s, as calc_pure_python is inside that module. timeit has some sensible defaults for short sections of code, but for longer-running functions it can be sensible to specify the number of loops (-n 5) and the number of repetitions (-r 5) to repeat the experiments. The best result of all the repetitions is given as the answer. Adding the verbose flag (-v) shows the cumulative time of all the loops by each repetition, which can help your variability in the results.

By default, if we run timeit on this function without specifying -n and -r, it runs 10 loops with 5 repetitions, and this takes six minutes to complete. Overriding the defaults can make sense if you want to get your results a little faster.

We’re interested only in the best-case results, as other results will probably have been impacted by other processes:

Length of x: 1,000
Total elements: 1,000,000
calculate_z_serial_purepython took 5.78 seconds
...
5 loops, best of 1: 6.1 sec per loop

Try running the benchmark several times to check if you get varying results—you may need more repetitions to settle on a stable fastest-result time. There is no “correct” configuration, so if you see a wide variation in your timing results, do more repetitions until your final result is stable.

Our results show that the overall cost of calling calc_pure_python is 6.1 seconds (as the best case), while single calls to calc_pure_python take approximately 5.8 seconds as measured by the @timefn decorator. The difference is mainly the time taken to create the zs and cs lists before start_time is recorded.

Inside IPython, we can use the magic %timeit in the same way. If you are developing your code interactively in IPython or in a Jupyter Notebook, you can use this:

In [1]: import julia1_nopil
In [2]: %timeit julia1_nopil.calc_pure_python(desired_width=1000,
 max_iterations=300)

Warning

Be aware that “best” is calculated differently by the timeit.py approach and the %timeit approach in Jupyter and IPython. timeit.py uses the minimum value seen. IPython in 2016 switched to using the mean and standard deviation. Both methods have their flaws, but generally they’re both “reasonably good”; you can’t compare between them, though. Use one method or the other; don’t mix them.

It is worth considering the variation in load that you get on a normal computer. Many background tasks are running (e.g., Dropbox, backups) that could impact the CPU and disk resources at random. Scripts in web pages can also cause unpredictable resource usage. Figure 2-4 shows the single CPU being used at 100% for some of the timing steps we just performed; the other cores on this machine are each lightly working on other tasks.

[image: System Monitor (Ubuntu) showing background CPU usage during timings]
Figure 2-4. System Monitor on Ubuntu showing variation in background CPU usage while we time our function

Occasionally, the System Monitor shows spikes of activity on this machine. It is sensible to watch your System Monitor to check that nothing else is interfering with your critical resources (CPU, disk, network).

Simple Timing Using the Unix time Command

We can step outside of Python for a moment to use a standard system utility on Unix-like systems. The following will record various views on the execution time of your program, and it won’t care about the internal structure of your code:

$ /usr/bin/time -p python julia1_nopil.py
Length of x: 1,000
Total elements: 1,000,000
calculate_z_serial_purepython took 5.71 seconds
real 6.02
user 5.96
sys 0.05

Note that we specifically use /usr/bin/time rather than time so we get the system’s time and not the simpler (and less useful) version built into our shell. If you try time --verbose and you get an error, you’re probably looking at the shell’s built-in time command and not the system command.

Using the -p portability flag, we get three results:

	
real records the wall clock or elapsed time.

	
user records the amount of time the CPU spent on your task outside of kernel functions.

	
sys records the time spent in kernel-level functions.

By adding user and sys, you get a sense of how much time was spent in the CPU. The difference between this and real might tell you about the amount of time spent waiting for I/O; it might also suggest that your system is busy running other tasks that are distorting your measurements.

time is useful because it isn’t specific to Python. It includes the time taken to start the python executable, which might be significant if you start lots of fresh processes (rather than having a long-running single process). If you often have short-running scripts where the startup time is a significant part of the overall runtime, then time can be a more useful measure.

We can add the --verbose flag to get even more output:

Length of x: 1,000
Total elements: 1,000,000
calculate_z_serial_purepython took 5.76 seconds
	Command being timed: "python julia1_nopil.py"
	User time (seconds): 6.01
	System time (seconds): 0.05
	Percent of CPU this job got: 99%
	Elapsed (wall clock) time (h:mm:ss or m:ss): 0:06.07
	Average shared text size (kbytes): 0
	Average unshared data size (kbytes): 0
	Average stack size (kbytes): 0
	Average total size (kbytes): 0
	Maximum resident set size (kbytes): 98432
	Average resident set size (kbytes): 0
	Major (requiring I/O) page faults: 0
	Minor (reclaiming a frame) page faults: 23334
	Voluntary context switches: 1
	Involuntary context switches: 37
	Swaps: 0
	File system inputs: 0
	File system outputs: 0
	Socket messages sent: 0
	Socket messages received: 0
	Signals delivered: 0
	Page size (bytes): 4096
	Exit status: 0

One useful indicator is Maximum resident set size, this indicates the maximum amount of RAM used during execution - if it nears the phsical RAM you have available, you’ll be close to either running out of RAM or using disk-swap which is very slow. This execution cost 98 MB at its worst.

Another useful indicator here is Major (requiring I/O) page faults, this indicates whether the operating system is having to load pages of data from the disk because the data no longer resides in RAM. This will cause a speed penalty, here it doesn’t as it records 0 page faults.

In our example, the code and data requirements are small, so no page faults occur. If you have a memory-bound process, or several programs that use variable and large amounts of RAM, you might find that this gives you a clue as to which program is being slowed down by disk accesses at the operating system level because parts of it have been swapped out of RAM to disk.

Using the cProfile Module

cProfile is a built-in profiling tool in the standard library. It hooks into the virtual machine in CPython to measure the time taken to run every function that it sees. This introduces a greater overhead, but you get correspondingly more information. Sometimes the additional information can lead to surprising insights into your code.

cProfile is one of two profilers in the standard library, alongside profile. profile is the original and slower pure Python profiler; cProfile has the same interface as profile and is written in C for a lower overhead. If you’re curious about the history of these libraries, see Armin Rigo’s 2005 request to include cProfile in the standard library.

A good practice when profiling is to generate a hypothesis about the speed of parts of your code before you profile it. Ian likes to print out the code snippet in question and annotate it. Forming a hypothesis ahead of time means you can measure how wrong you are (and you will be!) and improve your intuition about certain coding styles.

Warning

You should never avoid profiling in favor of a gut instinct (we warn you—you will get it wrong!). It is definitely worth forming a hypothesis ahead of profiling to help you learn to spot possible slow choices in your code, and you should always back up your choices with evidence.

Always be driven by results that you have measured, and always start with some quick-and-dirty profiling to make sure you’re addressing the right area. There’s nothing more humbling than cleverly optimizing a section of code only to realize (hours or days later) that you missed the slowest part of the process and haven’t really addressed the underlying problem at all.

Let’s hypothesize that calculate_z_serial_purepython is the slowest part of the code. In that function, we do a lot of dereferencing and make many calls to basic arithmetic operators and the abs function. These will probably show up as consumers of CPU resources.

Here, we’ll use the cProfile module to run a variant of the code. The output is spartan but helps us figure out where to analyze further.

The -s cumulative flag tells cProfile to sort by cumulative time spent inside each function; this gives us a view into the slowest parts of a section of code. The cProfile output is written to screen directly after our usual print results:

$ python -m cProfile -s cumulative julia1_nopil.py
Length of x: 1,000
Total elements: 1,000,000
calculate_z_serial_purepython took 13.15 seconds
 36221995 function calls in 14.301 seconds

 Ordered by: cumulative time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 14.301 14.301 {built-in method builtins.exec}
 1 0.035 0.035 14.301 14.301 julia1_nopil.py:1(<module>)
 1 0.803 0.803 14.267 14.267 julia1_nopil.py:23
 (calc_pure_python)
 1 8.420 8.420 13.150 13.150 julia1_nopil.py:9
 (calculate_z_serial_purepython)
 34219980 4.730 0.000 4.730 0.000 {built-in method builtins.abs}
 2002000 0.306 0.000 0.306 0.000 {method 'append' of 'list'
 objects}
 1 0.007 0.007 0.007 0.007 {built-in method builtins.sum}
 3 0.000 0.000 0.000 0.000 {built-in method builtins.print}
 1 0.000 0.000 0.000 0.000 {method 'disable' of
 '_lsprof.Profiler' objects}
 2 0.000 0.000 0.000 0.000 {built-in method time.time}
 4 0.000 0.000 0.000 0.000 {built-in method builtins.len}

Sorting by cumulative time gives us an idea about where the majority of execution time is spent. This result shows us that 36,221,995 function calls occurred in just over 13 seconds (this time includes the overhead of using cProfile). Previously, our code took around 5 seconds to execute—we’ve just added a 8-second penalty by measuring how long each function takes to execute.

We can see that the entry point to the code julia1_nopil.py on line 1 takes a total of 14 seconds. This is just the __main__ call to calc_pure_python. ncalls is 1, indicating that this line is executed only once.

Inside calc_pure_python, the call to calculate_z_serial_purepython consumes 13 seconds. Both functions are called only once. We can derive that approximately 1 second is spent on lines of code inside calc_pure_python, separate to calling the CPU-intensive calculate_z_serial_purepython function. However, we can’t derive which lines take the time inside the function using cProfile.

Inside calculate_z_serial_purepython, the time spent on lines of code (without calling other functions) is 8 seconds. This function makes 34,219,980 calls to abs, which take a total of 4 seconds, along with other calls that do not cost much time.

What about the {abs} call? This line is measuring the individual calls to the abs function inside calculate_z_serial_purepython. While the per-call cost is negligible (it is recorded as 0.000 seconds), the total time for 34,219,980 calls is 4 seconds. We couldn’t predict in advance exactly how many calls would be made to abs, as the Julia function has unpredictable dynamics (that’s why it is so interesting to look at).

At best we could have said that it will be called a minimum of 1 million times, as we’re calculating 1000*1000 pixels. At most it will be called 300 million times, as we calculate 1,000,000 pixels with a maximum of 300 iterations. So 34 million calls is roughly 10% of the worst case.

If we look at the original grayscale image (Figure 2-3) and, in our mind’s eye, squash the white parts together and into a corner, we can estimate that the expensive white region accounts for roughly 10% of the rest of the image.

The next line in the profiled output, {method 'append' of 'list' objects}, details the creation of 2,002,000 list items.

Tip

Why 2,002,000 items? Before you read on, think about how many list items are being constructed.

This creation of 2,002,000 items is occurring in calc_pure_python during the setup phase.

The zs and cs lists will be 1000*1000 items each (generating 1,000,000 * 2 calls), and these are built from a list of 1,000 x and 1,000 y coordinates. In total, this is 2,002,000 calls to append.

It is important to note that this cProfile output is not ordered by parent functions; it is summarizing the expense of all functions in the executed block of code. Figuring out what is happening on a line-by-line basis is very hard with cProfile, as we get profile information only for the function calls themselves, not for each line within the functions.

Inside calculate_z_serial_purepython, we can account for {abs}, and in total this function costs approximately 4.7 seconds. We know that calculate_z_serial_purepython costs 13.1 seconds in total.

Near the end the profiling output refers to lsprof; this is the original name of the tool that evolved into cProfile and can be ignored.

To get more control over the results of cProfile, we can write a statistics file and then analyze it in Python:

$ python -m cProfile -o profile.stats julia1_nopil.py

We can load this into Python as follows, and it will give us the same cumulative time report as before:

In [1]: import pstats
In [2]: p = pstats.Stats("profile.stats")
In [3]: p.sort_stats("cumulative")
Out[3]: <pstats.Stats at 0x7fe8747e8470>

In [4]: p.print_stats()
Thu Feb 22 20:38:55 2024 profile.stats

 36221995 function calls in 14.398 seconds

 Ordered by: cumulative time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 14.398 14.398 {built-in method builtins.exec}
 1 0.036 0.036 14.398 14.398 julia1_nopil.py:1(<module>)
 1 0.799 0.799 14.363 14.363 julia1_nopil.py:23
 (calc_pure_python)
 1 8.453 8.453 13.252 13.252 julia1_nopil.py:9
 (calculate_z_serial_purepython)
 34219980 4.799 0.000 4.799 0.000 {built-in method builtins.abs}
 2002000 0.304 0.000 0.304 0.000 {method 'append' of 'list'
 objects}
 1 0.008 0.008 0.008 0.008 {built-in method builtins.sum}
 3 0.000 0.000 0.000 0.000 {built-in method builtins.print}
 1 0.000 0.000 0.000 0.000 {method 'disable' of
 '_lsprof.Profiler' objects}
 2 0.000 0.000 0.000 0.000 {built-in method time.time}
 4 0.000 0.000 0.000 0.000 {built-in method builtins.len}

To trace which functions we’re profiling, we can print the caller information. In the following two listings we can see that calculate_z_serial_purepython is the most expensive function, and it is called from one place. If it were called from many places, these listings might help us narrow down the locations of the most expensive parents:

In [5]: p.print_callers()
 Ordered by: cumulative time

Function was called by...
 ncalls tottime cumtime
{built-in method builtins.exec} <-
julia1_nopil.py:1(<module>) <- 1 0.036 14.398
 {built-in method builtins.exec}
julia1_nopil.py:23(calc_pure_python) <- 1 0.799 14.363
 :1(<module>)
julia1_nopil.py:9(...) <- 1 8.453 13.252
 :23(calc_pure_python)
{built-in method builtins.abs} <- 34219980 4.799 4.799
 :9(calculate_z_serial_purepython)
{method 'append' of 'list' objects} <- 2002000 0.304 0.304
 :23(calc_pure_python)
{built-in method builtins.sum} <- 1 0.008 0.008
 :23(calc_pure_python)
{built-in method builtins.print} <- 3 0.000 0.000
 :23(calc_pure_python)
{built-in method time.time} <- 2 0.000 0.000
 :23(calc_pure_python)
{built-in method builtins.len} <- 2 0.000 0.000
 :9(calculate_z_serial_purepython)

We can flip this around the other way to show which functions call other functions:

In [6]: p.print_callees()
 Ordered by: cumulative time

Function called...
 ncalls tottime cumtime
{built-in method builtins.exec} -> 1 0.036 14.398
 julia1_nopil.py:1(<module>)
julia1_nopil.py:1(<module>) -> 1 0.799 14.363
 julia1_nopil.py:23(calc..._python)
julia1_nopil.py:23(calc_pure_python) -> 1 8.453 13.252
 julia1_nopil.py:9(...)
 2 0.000 0.000
 {built-in method builtins.len}
 3 0.000 0.000
 {built-in method builtins.print}
 1 0.008 0.008
 {built-in method builtins.sum}
 2 0.000 0.000
 {built-in method time.time}
 2002000 0.304 0.304
 {method 'append' of 'list' objects}
julia1_nopil.py:9(...) -> 34219980 4.799 4.799
 {built-in method builtins.abs}
 2 0.000 0.000
 {built-in method builtins.len}
{built-in method builtins.abs} ->
{method 'append' of 'list' objects} ->
{built-in method builtins.sum} ->
{built-in method builtins.print} ->
{built-in method time.time} ->
{built-in method builtins.len} ->

cProfile is rather verbose, and you need a side screen to see it without lots of word wrapping. Since it is built in, though, it is a convenient tool for quickly identifying bottlenecks. Tools like line_profiler and memory_profiler, which we discuss later in this chapter, will then help you to drill down to the specific lines that you should pay attention to.

Visualizing cProfile Output with SnakeViz

snakeviz is a visualizer that draws the output of cProfile as a diagram in which larger boxes are areas of code that take longer to run. It replaces the older runsnake tool.

Use snakeviz to get a high-level understanding of a cProfile statistics file, particularly if you’re investigating a new project for which you have little intuition. The diagram will help you visualize the CPU-usage behavior of the system, and it may highlight areas that you hadn’t expected to be expensive.

To install SnakeViz, use pip install snakeviz.

In Figure 2-5 we have the visual output of the profile.stats file we’ve just generated. The entry point for the program is shown at the top of the diagram. Each layer down is a function called from the function above.

The width of the diagram represents the entire time taken by the program’s execution. The fourth layer shows that the majority of the time is spent in calculate_z_serial_purepython. The fifth layer breaks this down some more—the unannotated block to the right occupying approximately 33% of that layer represents the time spent in the abs function. Seeing these larger blocks quickly brings home how the time is spent inside your program.

Figure 2-5. snakeviz visualizing profile.stats

The next section down shows a table that is a pretty-printed version of the statistics we’ve just been looking at, which you can sort by cumtime (cumulative time), percall (cost per call), or ncalls (number of calls altogether), among other categories. Starting with cumtime will tell you which functions cost the most overall. They’re a pretty good place to start your investigations.

If you’re comfortable looking at tables, the console output for cProfile may be adequate for you. To communicate to others, we strongly suggest you use diagrams—such as this output from snakeviz—to help others quickly understand the point you’re making.

Using line_profiler for Line-by-Line Measurements

In Ian’s opinion, Robert Kern’s line_profiler is the strongest tool for identifying the cause of CPU-bound problems in Python code. It works by profiling individual functions on a line-by-line basis, so you should start with cProfile and use the high-level view to guide which functions to profile with line_profiler.

It is worthwhile printing and annotating versions of the output from this tool as you modify your code, so you have a record of changes (successful or not) that you can quickly refer to. Don’t rely on your memory when you’re working on line-by-line changes.

To install line_profiler, issue the command pip install line_profiler.

A decorator (@profile) is used to mark the chosen function. The kernprof script is used to execute your code, and the CPU time and other statistics for each line of the chosen function are recorded.

The arguments are -l for line-by-line (rather than function-level) profiling and -v for verbose output. Without -v, you receive an .lprof output that you can later analyze with the line_profiler module. In Example 2-6, we’ll do a full run on our CPU-bound function.

Example 2-6. Running kernprof with line-by-line output on a decorated function to record the CPU cost of each line’s execution

$ kernprof -l -v julia1_lineprofiler.py
...
Wrote profile results to julia1_lineprofiler.py.lprof
Timer unit: 1e-06 s

Total time: 31.0996 s
File: julia1_lineprofiler.py
Function: calculate_z_serial_purepython at line 16

Line # Hits Per Hit % Time Line Contents
==
 16 @profile
 17 def calculate_z_serial_purepython(maxiter,
 zs, cs):
 18 """Calculate output list using
 Julia update rule"""
 19 1 3720.4 0.0 output = [0] * len(zs)
 20 1000001 0.3 0.8 for i in range(len(zs)):
 21 1000000 0.2 0.6 n = 0
 22 1000000 0.2 0.7 z = zs[i]
 23 1000000 0.2 0.7 c = cs[i]
 24 34219980 0.4 44.7 while abs(z) < 2 and n < maxiter:
 25 33219980 0.3 29.2 z = z * z + c
 26 33219980 0.2 22.5 n += 1
 27 1000000 0.2 0.7 output[i] = n
 28 1 3.6 0.0 return output

Introducing kernprof.py adds a substantial amount to the runtime. In this example, calculate_z_serial_purepython takes 31 seconds; this is up from 5 seconds using simple print statements and 13 seconds using cProfile. The gain is that we get a line-by-line breakdown of where the time is spent inside the function.

The % Time column is the most helpful—we can see that 44% of the time is spent on the while testing. We don’t know whether the first statement (abs(z) < 2) is more expensive than the second (n < maxiter), though. Inside the loop, we see that the update to z is also fairly expensive. Even n += 1 is expensive! Python’s dynamic lookup machinery is at work for every loop, even though we’re using the same types for each variable in each loop—this is where compiling and type specialization (Chapter 7) give us a massive win. The creation of the output list and the updates on line 19 are relatively cheap compared to the cost of the while loop.

If you haven’t thought about the complexity of Python’s dynamic machinery before, do think about what happens in that n += 1 operation. Python has to check that the n object has an __add__ function (and if it didn’t, it’d walk up any inherited classes to see if they provided this functionality), and then the other object (1 in this case) is passed in so that the __add__ function can decide how to handle the operation. Remember that the second argument might be a float or other object that may or may not be compatible. This all happens dynamically.

The obvious way to further analyze the while statement is to break it up. While there has been some discussion in the Python community around the idea of rewriting the .pyc files with more detailed information for multipart, single-line statements, we are unaware of any production tools that offer a more fine-grained analysis than line_profiler.

In Example 2-7, we break the while logic into several statements. This additional complexity will increase the runtime of the function, as we have more lines of code to execute, but it might also help us understand the costs incurred in this part of the code.

Tip

Before you look at the code, do you think we’ll learn about the costs of the fundamental operations this way? Might other factors complicate the analysis?

Example 2-7. Breaking the compound while statement into individual statements to record the cost of each part of the original statement

$ kernprof -l -v julia1_lineprofiler2.py
...
Wrote profile results to julia1_lineprofiler2.py.lprof
Timer unit: 1e-06 s

Total time: 63.3558 s
File: julia1_lineprofiler2.py
Function: calculate_z_serial_purepython at line 15

Line # Hits Per Hit % Time Line Contents
==
 15 @profile
 16 def calculate_z_serial_purepython(maxiter,
 zs, cs):
 17 """Calculate output list using
 Julia update rule"""
 18 1 3862.9 0.0 output = [0] * len(zs)
 19 1000001 0.3 0.5 for i in range(len(zs)):
 20 1000000 0.3 0.4 n = 0
 21 1000000 0.3 0.5 z = zs[i]
 22 1000000 0.3 0.4 c = cs[i]
 23 34219980 0.2 12.3 while True:
 24 34219980 0.4 21.4 not_yet_escaped = abs(z) < 2
 25 34219980 0.3 14.8 iterations_left = n < maxiter
 26 34219980 0.3 18.6 if not_yet_escaped and iterations_left:
 27 33219980 0.3 15.7 z = z * z + c
 28 33219980 0.3 14.6 n += 1
 29 else:
 30 1000000 0.2 0.4 break
 31 1000000 0.3 0.4 output[i] = n
 32 1 3.0 0.0 return output

This version takes 63 seconds to execute, while the previous version took 31 seconds. Other factors did complicate the analysis. In this case, having extra statements that have to be executed 34,219,980 times each slows down the code. If we hadn’t used kernprof.py to investigate the line-by-line effect of this change, we might have drawn other conclusions about the reason for the slowdown, as we’d have lacked the necessary evidence.

At this point it makes sense to step back to the earlier timeit technique to test the cost of individual expressions:

Python 3.12.0 | packaged by Anaconda, Inc. | (main, Oct 2 2023, 17:29:18)
Type 'copyright', 'credits' or 'license' for more information
IPython 8.21.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: z = 0+0j
In [2]: %timeit abs(z) < 2
66.8 ns ± 2.07 ns per loop (mean ± std. dev. of 7 runs, 10,000,000 loops each)
In [3]: n = 1
In [4]: maxiter = 300
In [5]: %timeit n < maxiter
20.7 ns ± 0.0611 ns per loop (mean ± std. dev. of 7 runs, 10,000,000 loops each)

From this simple analysis, it looks as though the logic test on n is more than three times faster than the call to abs. Since the order of evaluation for Python statements is both left to right and opportunistic, it makes sense to put the cheapest test on the left side of the equation. On 1 in every 301 tests for each coordinate, the n < maxiter test will be False, so Python wouldn’t need to evaluate the other side of the and
operator.

We never know whether abs(z) < 2 will be False until we evaluate it, and our earlier observations for this region of the complex plane suggest it is True around 10% of the time for all 300 iterations. If we wanted to have a strong understanding of the time complexity of this part of the code, it would make sense to continue the numerical analysis. In this situation, however, we want an easy check to see if we can get a quick win.

We can form a new hypothesis stating, “By swapping the order of the operators in the while statement, we will achieve a reliable speedup.” We can test this hypothesis using kernprof, but the additional overheads of profiling this way might add too much noise. Instead, we can use an earlier version of the code, running a test comparing while abs(z) < 2 and n < maxiter: against while n < maxiter and abs(z) < 2:, which we see in Example 2-8.

Running the two variants outside of line_profiler means they run at similar speeds, on the same problem size that we’ve been using (with x==1000).

The overheads of line_profiler also confuse the result, and the results on line 23 for both versions are similar and the timing for this final result is a little slower at 33s. We might reject the hypothesis that in Python 3.12 changing the order of the logic results in a consistent speedup—there’s no clear evidence for this.

However if the problem is made harder by setting x==5000, the version with the swapped if statement is consistently slightly faster. Ian measures 143s for the original order and 142s for the swapped order of operations.

Using a more suitable approach to solve this problem (e.g., swapping to using Cython or PyPy, as described in Chapter 7) would yield greater gains.

We can be confident in our result because of the following:

	
We stated a hypothesis that was easy to test.

	
We changed our code so that only the hypothesis would be tested (never test two things at once!).

	
We gathered enough evidence to support our conclusion.

For completeness, we can run a final kernprof on the two main functions including our optimization to confirm that we have a full picture of the overall complexity of our code.

Example 2-8. Swapping the order of the compound while statement makes the function fractionally faster

$ kernprof -l -v julia1_lineprofiler3.py
...
Wrote profile results to julia1_lineprofiler3.py.lprof
Timer unit: 1e-06 s

Total time: 33.9135 s
File: julia1_lineprofiler3.py
Function: calculate_z_serial_purepython at line 15

Line # Hits Per Hit % Time Line Contents
==
 15 @profile
 16 def calculate_z_serial_purepython(maxiter,
 zs, cs):
 17 """Calculate output list using Julia
 update rule"""
 18 1 4015.8 0.0 output = [0] * len(zs)
 19 1000001 0.3 1.0 for i in range(len(zs)):
 20 1000000 0.2 0.7 n = 0
 21 1000000 0.3 0.8 z = zs[i]
 22 1000000 0.2 0.7 c = cs[i]
 23 34219980 0.4 44.1 while n < maxiter and abs(z) < 2:
 24 33219980 0.3 29.0 z = z * z + c
 25 33219980 0.2 22.9 n += 1
 26 1000000 0.3 0.8 output[i] = n
 27 1 2.1 0.0 return output

As expected, we can see from the output in Example 2-9 that calculate_z_serial_purepython takes most (98%) of the time of its parent function. The list-creation steps are minor in comparison.

Example 2-9. Testing the line-by-line costs of the setup routine

Total time: 64.0333 s
File: julia1_lineprofiler3.py
Function: calc_pure_python at line 30

Line # Hits Per Hit % Time Line Contents
==
 30 @profile
 31 def calc_pure_python(draw_output,
 desired_width,
 max_iterations):
...
 52 1001 0.3 0.0 for ycoord in y:
 53 1001000 0.3 0.5 for xcoord in x:
 54 1000000 0.4 0.6 zs.append(complex(xcoord, ycoord))
 55 1000000 0.4 0.6 cs.append(complex(c_real, c_imag))
 56
 57 1 56.2 0.0 print(f"Length of x: {len(x):,}")
 58 1 7.4 0.0 print(f"Total elements: {len(zs):,}")
 59 1 5.1 0.0 start_time = time.time()
 60 1 6e+07 98.3 output = calculate_z_serial_purepython(
 max_iterations, zs, cs)
 61 1 6.0 0.0 end_time = time.time()
 62 1 1.3 0.0 secs = end_time - start_time
 63 1 48.6 0.0 print(f"{calculate_z_serial_purepython.__name__}
 took {secs:0.2f} seconds")
 64
 65 1 7129.7 0.0 assert sum(output) == 33219980 # this sum
 is expected for 1000^2 grid with 300 iterations

line_profiler gives us a great insight into the cost of lines inside loops and expensive functions; even though profiling adds a speed penalty, it is a great boon to scientific developers. Remember to use representative data to make sure you’re focusing on the lines of code that’ll give you the biggest win.

Using memory_profiler to Diagnose Memory Usage

Just as Robert Kern’s line_profiler package measures CPU usage, the memory_profiler module by Fabian Pedregosa and Philippe Gervais measures memory usage on a line-by-line basis. Understanding the memory usage characteristics of your code allows you to ask yourself two questions:

	
Could we use less RAM by rewriting this function to work more efficiently?

	
Could we use more RAM and save CPU cycles by caching?

memory_profiler operates in a very similar way to line_profiler but runs far more slowly. If you install the psutil package (optional but recommended), memory_profiler will run faster. Memory profiling may easily make your code run 10 to 100 times slower. In practice, you will probably use memory_profiler occasionally and line_profiler (for CPU profiling) more frequently.

Install memory_profiler with the command pip install memory_profiler (and optionally with pip install psutil).

As mentioned, the implementation of memory_profiler is not as performant as the implementation of line_profiler. It may therefore make sense to run your tests on a smaller problem that completes in a useful amount of time. Overnight runs might be sensible for validation, but you need quick and reasonable iterations to diagnose problems and hypothesize solutions. The code in Example 2-10 uses the full 1,000 × 1,000 grid, and the statistics took about two hours to collect on Ian’s laptop.

Note

The requirement to modify the source code is a minor annoyance. As with line_profiler, a decorator (@profile) is used to mark the chosen function. This will break your unit tests unless you make a dummy decorator—see “No-op @profile Decorator”.

When dealing with memory allocation, you must be aware that the situation is not as clear-cut as it is with CPU usage. Generally, it is more efficient to overallocate memory in a process that can be used at leisure, as memory allocation operations are relatively expensive. Furthermore, garbage collection is not instantaneous, so objects may be unavailable but still in the garbage collection pool for some time.

The outcome of this is that it is hard to really understand what is happening with memory usage and release inside a Python program, as a line of code may not allocate a deterministic amount of memory as observed from outside the process. Observing the gross trend over a set of lines is likely to lead to better insight than would be gained by observing the behavior of just one line.

Let’s take a look at the output from memory_profiler in Example 2-10. Inside calculate_z_serial_purepython on line 18, we see that the allocation of 1,000,000 items causes approximately 7 MB of RAM to be added to this process.1 This does not mean that the output list is definitely 7 MB in size, just that the process grew by approximately 7 MB during the internal allocation of the list.

In the parent function on line 52, we see that the allocation of the zs and cs lists changes the Mem usage column from 47 MB to 123 MB (a change of +76 MB). Again, it is worth noting that this is not necessarily the true size of the arrays, just the size that the process grew by after these lists had been created.

At the time of writing, the memory_usage module exhibits a bug—the Increment column does not always match the change in the Mem usage column. During the first edition of this book, these columns were correctly tracked; you might want to check the status of this bug on GitHub. We recommend you use the Mem usage column, as this correctly tracks the change in process size per line of code.

Example 2-10. memory_profiler’s result on both of our main functions, showing an unexpected memory use in calculate_z_serial_purepython

$ python -m memory_profiler julia1_memoryprofiler.py
...

Line # Mem usage Increment Line Contents
==
 15 123.086 MiB 123.086 MiB @profile
 16 def calculate_z_serial_purepython(maxiter,
 zs, cs):
 17 """Calculate output list...
 18 130.711 MiB 7.625 MiB output = [0] * len(zs)
 19 133.461 MiB 0.000 MiB for i in range(len(zs)):
 20 133.461 MiB 0.000 MiB n = 0
 21 133.461 MiB 0.000 MiB z = zs[i]
 22 133.461 MiB 0.000 MiB c = cs[i]
 23 133.461 MiB 2.750 MiB while n < maxiter and abs(z) < 2:
 24 133.461 MiB 0.000 MiB z = z * z + c
 25 133.461 MiB 0.000 MiB n += 1
 26 133.461 MiB 0.000 MiB output[i] = n
 27 133.461 MiB 0.000 MiB return output
...

Line # Mem usage Increment Line Contents
==
 30 47.137 MiB 47.137 MiB @profile
 31 def calc_pure_python(draw_output,
 desired_width,
 max_iterations):
 32 """Create a list of...
 33 47.137 MiB 0.000 MiB x_step = (x2 - x1) / desired_width
 34 47.137 MiB 0.000 MiB y_step = (y1 - y2) / desired_width
 35 47.137 MiB 0.000 MiB x = []
 36 47.137 MiB 0.000 MiB y = []
 37 47.137 MiB 0.000 MiB ycoord = y2
 38 47.137 MiB 0.000 MiB while ycoord > y1:
 39 47.137 MiB 0.000 MiB y.append(ycoord)
 40 47.137 MiB 0.000 MiB ycoord += y_step
 41 47.137 MiB 0.000 MiB xcoord = x1
 42 47.137 MiB 0.000 MiB while xcoord < x2:
 43 47.137 MiB 0.000 MiB x.append(xcoord)
 44 47.137 MiB 0.000 MiB xcoord += x_step
 50 47.137 MiB 0.000 MiB zs = []
 51 47.137 MiB 0.000 MiB cs = []
 52 123.086 MiB -1.055 MiB for ycoord in y:
 53 123.086 MiB -893.922 MiB for xcoord in x:
 54 123.086 MiB -900.219 MiB zs.append(complex(xcoord, ycoord))
 55 123.086 MiB -853.844 MiB cs.append(complex(c_real, c_imag))
 56
 57 123.086 MiB 0.000 MiB print("Length of x:", len(x))
 58 123.086 MiB 0.000 MiB print("Total elements:", len(zs))
 59 123.086 MiB 0.000 MiB start_time = time.time()
 60 133.461 MiB 133.461 MiB output = calculate_z_serial...
 61 133.461 MiB 0.000 MiB end_time = time.time()
 62 133.461 MiB 0.000 MiB secs = end_time - start_time
 63 133.461 MiB 0.000 MiB print(calculate_z_serial_purepython.__name__
 + " took", secs, "seconds")
 64
 66 133.461 MiB 0.000 MiB assert sum(output) == 33219980

Another way to visualize the change in memory use is to sample over time and plot the result. memory_profiler has a utility called mprof, used once to sample the memory usage and a second time to visualize the samples. It samples by time and not by line, so it barely impacts the runtime of the code.

Figure 2-6 is created using mprof run julia1_memoryprofiler.py. This writes a statistics file that is then visualized using mprof plot. Our two functions are bracketed: this shows where in time they are entered, and we can see the growth in RAM as they run. Inside calculate_z_serial_purepython, we can see the steady increase in RAM usage throughout the execution of the function; this is caused by all the small objects (int and float types) that are created.

Figure 2-6. memory_profiler report using mprof

In addition to observing the behavior at the function level, we can add labels using a context manager. The snippet in Example 2-11 is used to generate the graph in Figure 2-7. We can see the create_output_list label: it appears momentarily at around 1.5 seconds after calculate_z_serial_purepython and results in the process being allocated more RAM. We then pause for a second; time.sleep(1) is an artificial addition to make the graph easier to understand.

Example 2-11. Using a context manager to add labels to the mprof graph

@profile
def calculate_z_serial_purepython(maxiter, zs, cs):
 """Calculate output list using Julia update rule"""
 with profile.timestamp("create_output_list"):
 output = [0] * len(zs)
 time.sleep(1)
 with profile.timestamp("calculate_output"):
 for i in range(len(zs)):
 n = 0
 z = zs[i]
 c = cs[i]
 while n < maxiter and abs(z) < 2:
 z = z * z + c
 n += 1
 output[i] = n
 return output

In the calculate_output block that runs for most of the graph, we see a very slow, linear increase in RAM usage. This will be from all of the temporary numbers used in the inner loops. Using the labels really helps us to understand at a fine-grained level where memory is being consumed. Interestingly, we see the “peak RAM usage” line—a dashed vertical line just before the 10-second mark—occurring before the termination of the program. Potentially this is due to the garbage collector recovering some RAM from the temporary objects used during calculate_output.

What happens if we simplify our code and remove the creation of the zs and cs lists? We then have to calculate these coordinates inside calculate_z_serial_purepython (so the same work is performed), but we’ll save RAM by not storing them in lists. You can see the code in Example 2-12.

In Figure 2-8, we see a major change in behavior—the overall envelope of RAM usage drops from 140 MB to 60 MB, reducing our RAM usage by half!

Figure 2-7. memory_profiler report using mprof with labels

Figure 2-8. memory_profiler after removing two large lists

Example 2-12. Creating complex coordinates on the fly to save RAM

@profile
def calculate_z_serial_purepython(maxiter, x, y):
 """Calculate output list using Julia update rule"""
 output = []
 for ycoord in y:
 for xcoord in x:
 z = complex(xcoord, ycoord)
 c = complex(c_real, c_imag)
 n = 0
 while n < maxiter and abs(z) < 2:
 z = z * z + c
 n += 1
 output.append(n)
 return output

If we want to measure the RAM used by several statements, we can use the IPython magic %memit, which works just like %timeit. In [Link to Come], we will look at using %memit to measure the memory cost of lists and discuss various ways of using RAM more efficiently.

memory_profiler offers an interesting aid to debugging a large process via the
--pdb-mmem=XXX flag. The pdb debugger will be activated after the process exceeds XXX MB. This will drop you in directly at the point in your code where too many allocations are occurring, if you’re in a space-constrained environment.

Combining CPU and Memory Profiling with Scalene

Scalene combines both CPU and memory profiling and adds GPU profiling, into one easy-to-run package. It runs on all platforms and is installed with pip install scalene.

Scalene uses its own lightweight profiler library so it has very little impact on execution speed (unlike both memory_profiler and line_profiler). We can invoke it with scalene julia1_memoryprofiler.py and it will profile the whole program without needing any modification.

It has options to restrict profiling with an @profile decorator (similar to line_profiler and memory_profiler) and to filter in or out certain filenames. A magic extension is provided for use in Jupyter Notebooks with %%scalene to profile a whole cell.

In the screenshot in Figure 2-9, looking at the left-most “TIME” column we see that the while loop occupies 85% of the execution time, shown using a large horizontal bar. This bar has three blue colour components, the longest (and darkest) shows native Python time, two smaller blue chunks on the right edge (both with lighter shades) represent native and system execution time.

Native Python time refers to the time spent executing Python instructions, native time refers to libraries (i.e. libraries writtin in C++ and compiled) which the developer is unlikely to optimise. System times refers to operating system calls such as I/O which again probably can’t be optimised by the developer, but may highlight I/O bottlenecks which can be approached in a different way.

The second “MEMORY” column shows the peak memory allocation per line. We can see that zs.append(complex(xcoord, ycoord)) uses 40MB whilst cs.append(complex(c_real, c_imag)) uses 31MB. Different runs on this produce different peak-allocation numbers and sometimes cs takes more than zs, so be cautious about forming a strong opinion without making multiple runs.

[image: Combined CPU and Memory Profiler output with Scalene]
Figure 2-9. Combined CPU and Memory Profiler output with Scalene

Many of the lines have either an “explosion icon” or a “lightning icon”, Scalene creates calls to ChatGPT if you provide an API key so that optimisations can be automatically proposed.

Warning

Be cautious when taking tips from a GenAI system - it’ll write something that’s convincing but it could easily be working from out of date suggestions that have been well-voted and well-cited due to age. Always be skeptical and run your own benchmarks.

Scalene can generate both a console-only (text) output as well as an interactive HTML report. The snippet below shows the console report with two extra lines added making NumPy arrays from the pure-Python list containers.

Both cause a duplication in the underlying data into complex128 (8 byte float * 2) 16 byte dtype. With 1,000,000 elements in each, these lines cause a 16MB copy of each array to be constructed. A user might not realise this as they code (or during a code review may not appreciate what’s happening) whilst a profiler clearly brings out the memory dupliation that’s occurring.

Example 2-13. Console output from Scalene with two NumPy arrays added

Line ... Python │peak │timeline/%
...
49 │... 20% │ 19M │▁ 15% │ zs_np = np.array(zs)
50 │... | 15M │▁ 12% │ cs_np = np.array(cs)

You should expect to see different results to any you record with line_profiler or memory_profiler. Each profiling tools has a different impact and typically looks at CPU and memory usage in slightly different ways and with different resolutions - the big-scale picture will be similar but the details will be different.

Scalene’s lightweight profiling library should add an overhead of under 20% to your execution speed and it should also reasonably measure the actual time and memory cost - the authors claim that it is potentially far more accurate than other profilers.

Introspecting an Existing Process with PySpy

py-spy is an intriguing new sampling profiler—rather than requiring any code changes, it introspects an already-running Python process and reports in the console with a top-like display. Being a sampling profiler, it has almost no runtime impact on your code. It is written in Rust and requires elevated privileges to introspect another process. It can also profile subprocesses and native compiled extensions.

Note that at the time of writing PySpy only runs up to Python 3.11, Python 3.12 support is forthcoming 2.

This tool could be very useful in a production environment with long-running processes or complicated installation requirements. It supports Windows, Mac, and Linux. Install it using pip install py-spy (note the dash in the name—there’s a separate pyspy project that isn’t related).

If your process is already running, you’ll want to use ps to get its process identifier (the PID); then this can be passed into py-spy as shown in Example 2-14. py-spy needs sudo privileges which would run it in the superuser’s environment, so we pass in our login’s PATH using sudo env "PATH=$PATH" when calling py-spy along with the process identifier to monitor.

Example 2-14. Running PySpy at the command line

$ ps -A -o pid,rss,cmd | ack python
...
95671 94984 python julia1_nopil.py
...
$ sudo env "PATH=$PATH" py-spy top --pid 95671

In Figure 2-10, you’ll see a static picture of a top-like display in the console; this updates every second to show which functions are currently taking most of the time.

[image: Introspecting a Python process using PySpy]
Figure 2-10. Introspecting a Python process using PySpy

PySpy can also export a flame chart. Here, we’ll run that option while asking PySpy to run our code directly without requiring a PID using $ py-spy record -o profile.svg -- python julia1_nopil.py. The -- tells py-spy to take the command that follows (python julia1_nopil.py), which might have its own command line arguments, and ignore any command line switches - it’ll execute that command from inside py-spy.

You’ll see in Figure 2-11 that the width of the display represents the entire program’s runtime, and each layer moving down the image represents functions called from above.

[image: Part of a flame chart for PySpy]
Figure 2-11. Part of a flame chart for PySpy

PySpy also has the useful ability to hook into an already-running Python process so if you have a web server or a long-running extract-transform-load process, you can connect to that process and introspect where in the program the time seems to be being spent. This allows for in-situ profiling when something unexpected has occurred, without having to setup a new profiling run.

VizTracer for an interactive time-based call stack

VizTracer is a two-part tool to profile and then view a time-based view of Python code execution. This tool is very powerful, but can be a little tricky to learn. The fact that it displays time left-to-right and enables you to zoom in on a flame-like chart gives you a birds-eye view of the entire process, so you can get a feel for how long parts of the execution path take.

It can track the execution, arguments and return values and time of every function call. It allows custom logging information, it supports multiprocesses and threads, it doesn’t require source code changes, it has an API and it provides an interactive graphical tool.

We install it with pip install viztracer and then we can run the same code we’ve used previously with viztracer julia1_memoryprofiler.py.

Having profiled code using viztracer a results.json file is output. We next visualise this with vizviewer results.json, for our Julia code we get a result like that shown in Figure 2-12. The screen has the following sections:

	
The very top is an interactive timeline with grab bars to slide and zoom the view to a specific point in time

	
“MainProcess” shows a horizontal timeline of the code’s execution and the function calls hanging down the screen in bars

	
“Current Selection” gives details of anything that’s clicked in “MainProcess”

VizTracer can track the execution of multiple threads and multiple processes, these would be displayed alongside “MainProcess”. VizTracer can also log other time-based events such a print statements and calls to the garbage collector, enabling you to annotate specific events that you’d like to observe.

The two long bars in the centre of the screenshot under “MainProcess” detail the time based view on calc_pure_python and its call into calcualte_z_serial_purepython, below this are many tiny spikes - these are some of the individual calls to abs.

Having clicked calculate_z_serial_purepython the “Details” section in the bottom-left shows the function name and a start-time and duration, plus thread-based details. To the right of this is a view of the source code that was executed.

Figure 2-12. Overview of the Julia execution laid out through time

Due to the high level of detail it can track it can potentially generate unfeasibly large information dumps which can’t be viewed, this can generate a “Circular buffer is full” error.

VizTracer provides various tools to filter the information that’s collected, for the Julia example we had to:

	
reduce the calc_pure_python argument from 1000 to a desired_width=200

	
filter shorter calls when profiling with viztracer --min_duration 0.1 julia1_viztracer.py

Other filtering options can include --ignore_c_function which includes all built-in functions (which would ignore every abs call) or limiting the stack depth with --max_stack_depth 10. In this case we aren’t witnessing a deep stack but instead a large number of calls to the fast abs function.

In order to get enough detail, but not overload the circular buffer, here we limited the profiling to functions taking longer than 0.1ms - interestingly the calls to abs could sometimes take longer (but frequently were much faster), so we caught some in this trace. Without this filter we’d have millions to track and that was the cause of this particular “Circular buffer is full” error.

Author Ian has found this tool very useful to dig into the execution path in libraries like Pandas, so we can see how long certain parts of the functions take and how many other functions are called behind the scenes.

Bytecode: Under the Hood

So far we’ve reviewed various ways to measure the cost of Python code (for both CPU and RAM usage). We haven’t yet looked at the underlying bytecode used by the virtual machine, though. Understanding what’s going on “under the hood” helps to build a mental model of what’s happening in slow functions, and it’ll help when you come to compile your code. So let’s introduce some bytecode.

Using the dis Module to Examine CPython Bytecode

The dis module lets us inspect the underlying bytecode that we run inside the stack-based CPython virtual machine. Having an understanding of what’s happening in the virtual machine that runs your higher-level Python code will help you to understand why some styles of coding are faster than others. It will also help when you come to use a tool like Cython, which steps outside of Python and generates C code.

The dis module is built in. You can pass it code or a module, and it will print out a disassembly. In Example 2-15, we disassemble the outer loop of our CPU-bound function.

Tip

You should try to disassemble one of your own functions and to follow exactly how the disassembled code matches to the disassembled output. Can you match the following dis output to the original function?

Example 2-15. Using the built-in dis to understand the underlying stack-based virtual machine that runs our Python code

In [1]: import dis
In [2]: import julia1_nopil
In [3]: dis.dis(julia1_nopil.calculate_z_serial_purepython)
 9 0 RESUME 0

 11 2 LOAD_CONST 1 (0)
 4 BUILD_LIST 1
 6 LOAD_GLOBAL 1 (NULL + len)
 16 LOAD_FAST 1 (zs)
 18 CALL 1
 26 BINARY_OP 5 (*)
 30 STORE_FAST 3 (output)

 12 32 LOAD_GLOBAL 3 (NULL + range)
 42 LOAD_GLOBAL 1 (NULL + len)
 52 LOAD_FAST 1 (zs)
 54 CALL 1
 62 CALL 1
 70 GET_ITER
 >> 72 FOR_ITER 71 (to 218)
 76 STORE_FAST 4 (i)

 13 78 LOAD_CONST 1 (0)
 80 STORE_FAST 5 (n)

...

 16 166 LOAD_GLOBAL 5 (NULL + abs)
 176 LOAD_FAST 6 (z)
 178 CALL 1
 186 LOAD_CONST 2 (2)
 188 COMPARE_OP 2 (<)
 192 POP_JUMP_IF_FALSE 6 (to 206)
 194 LOAD_FAST 5 (n)
 196 LOAD_FAST 0 (maxiter)
 198 COMPARE_OP 2 (<)
 202 POP_JUMP_IF_FALSE 1 (to 206)
 204 JUMP_BACKWARD 33 (to 140)

 19 >> 206 LOAD_FAST 5 (n)
 208 LOAD_FAST 3 (output)
 210 LOAD_FAST 4 (i)
 212 STORE_SUBSCR
 216 JUMP_BACKWARD 73 (to 72)

 12 >> 218 END_FOR

 20 220 LOAD_FAST 3 (output)
 222 RETURN_VALUE

The output is fairly straightforward, if terse. The first column contains line numbers that relate to our original file. The second column contains several >> symbols; these are the destinations for jump points elsewhere in the code. The third column is the operation address; the fourth has the operation name. The fifth column contains the parameters for the operation. The sixth column contains annotations to help line up the bytecode with the original Python parameters.

Refer back to Example 2-3 to match the bytecode to the corresponding Python code. The bytecode starts on Python line 11 by putting the constant value 0 onto the stack, and then it builds a single-element list. Next, it searches the namespaces to find the len function, puts it on the stack, searches the namespaces again to find zs, and then puts that onto the stack. Now a multiply can be performed, consuming the stack items, which are then stored in output. That’s the first line of our Python function now dealt with. Follow the next block of bytecode to understand the behavior of the second line of Python code (the outer for loop).

Tip

The jump points (>>) match to instructions like JUMP_BACKWARD and POP_JUMP_IF_FALSE. Go through your own disassembled function and match the jump points to the jump instructions.

Digging into bytecode specialisation with Specialist

When Python 3.11 runs your code it attempts to identify “hot” code which is run frequently enough to warrant optimization. When possible it will use “specialised” bytecode instructions to replace the more general bytecode that has been used up to Python 3.10. The specialised bytecode can run faster by doing less work (perhaps avoiding redundant checks or via other optimisations). It can be installed with pip install specialist.

Specialisations hold true as long as the same types are encountered - if an addition is performed on two integers in a loop, that operation can be specialised (and would be coloured green). If however the addition sees different types (maybe integers or floating point types depending on the iteration) then it’ll stay in an “adaptive” state which is coloured red.

Specialist colour codes the “hot” regions of code which Python 3.11+ identifies during execution, allowing us to review if our code is running as fast as might be possible. Using the Julia example Figure 2-13 we can see:

	
lines in white - no specialisation has been attempted

	
lines in green - successfully specialised, they’re running fast

	
sections in orange - part specialised which sometimes fail and revert to being adaptive (notably < 2 and z * z + c)

	
in our example none are colour red (indicating a lack of specialisation)

The abs(z) < 2 can be made “more green” (i.e. more specialised) by changing it to abs(z) < 2.0, as Python 3.12 currently prefers identical numerical types for certain primitive operations. The complex-type operation z * z + c refused to be improved.

[image: Viewing coloured output from Specialist]
Figure 2-13. Viewing coloured output from Specialist

In this case making the 2.0 change did improve performance a little. In the current version of Python the Specialist tool is more for education about what’s happening behind the scenes, but experiments may reveal opportunity to improve execution speed.

Having introduced bytecode, we can now ask: what’s the bytecode and time cost of writing a function out explicitly versus using built-ins to perform the same task?

Different Approaches, Different Complexity

There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.3

Tim Peters, The Zen of Python

There will be various ways to express your ideas using Python. Generally, the most sensible option should be clear, but if your experience is primarily with an older version of Python or another programming language, you may have other methods in mind. Some of these ways of expressing an idea may be slower than others.

You probably care more about readability than speed for most of your code, so your team can code efficiently without being puzzled by performant but opaque code. Sometimes you will want performance, though (without sacrificing readability). Some speed testing might be what you need.

Take a look at the two code snippets in Example 2-16. Both do the same job, but the first generates a lot of additional Python bytecode, which will cause more overhead.

Example 2-16. A naive and a more efficient way to solve the same summation problem

def fn_expressive(upper=1_000_000):
 total = 0
 for n in range(upper):
 total += n
 return total

def fn_terse(upper=1_000_000):
 return sum(range(upper))

assert fn_expressive() == fn_terse(), "Expect identical results from both functions"

Both functions calculate the sum of a range of integers. A simple rule of thumb (but one you must back up using profiling!) is that more lines of bytecode will execute more slowly than fewer equivalent lines of bytecode that use built-in functions. In Example 2-17, we use IPython’s %timeit magic function to measure the best execution time from a set of runs. fn_terse runs over twice as fast as fn_expressive!

Example 2-17. Using %timeit to test our hypothesis that using built-in functions should be faster than writing our own functions

In [2]: %timeit fn_expressive()
45.6 ms ± 963 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [3]: %timeit fn_terse()
16.4 ms ± 226 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

If we use the dis module to investigate the code for each function, as shown in Example 2-18, we can see that the virtual machine has 17 lines to execute with the more expressive function and only 7 to execute with the very readable but terser second function.

Example 2-18. Using dis to view the number of bytecode instructions involved in our two functions

In [4]: import dis

In [5]: dis.dis(fn_expressive)
 1 0 RESUME 0

 2 2 LOAD_CONST 1 (0)
 4 STORE_FAST 1 (total)

 3 6 LOAD_GLOBAL 1 (NULL + range)
 16 LOAD_FAST 0 (upper)
 18 CALL 1
 26 GET_ITER
 >> 28 FOR_ITER 7 (to 46)
 32 STORE_FAST 2 (n)

 4 34 LOAD_FAST 1 (total)
 36 LOAD_FAST 2 (n)
 38 BINARY_OP 13 (+=)
 42 STORE_FAST 1 (total)
 44 JUMP_BACKWARD 9 (to 28)

 3 >> 46 END_FOR

 5 48 LOAD_FAST 1 (total)
 50 RETURN_VALUE

In [6]: dis.dis(fn_terse)
 7 0 RESUME 0

 8 2 LOAD_GLOBAL 1 (NULL + sum)
 12 LOAD_GLOBAL 3 (NULL + range)
 22 LOAD_FAST 0 (upper)
 24 CALL 1
 32 CALL 1
 40 RETURN_VALUE

The difference between the two code blocks is striking. Inside fn_expressive(), we maintain two local variables and iterate over a list using a for statement. The for loop will be checking to see if a StopIteration exception has been raised on each loop. Each iteration applies the total.__add__ function, which will check the type of the second variable (n) on each iteration. These checks all add a little expense.

Inside fn_terse(), we call out to an optimized C list comprehension function that knows how to generate the final result without creating intermediate Python objects. This is much faster, although each iteration must still check for the types of the objects that are being added together (in Chapter 4, we look at ways of fixing the type so we don’t need to check it on each iteration).

As noted previously, you must profile your code—if you just rely on this heuristic, you will inevitably write slower code at some point. It is definitely worth learning whether a shorter and still readable way to solve your problem is built into Python. If so, it is more likely to be easily readable by another programmer, and it will probably run faster.

Unit Testing During Optimization to Maintain Correctness

If you aren’t already unit testing your code, you are probably hurting your longer-term productivity. Ian (blushing) is embarrassed to note that he once spent a day optimizing his code, having disabled unit tests because they were inconvenient, only to discover that his significant speedup result was due to breaking a part of the algorithm he was improving. You do not need to make this mistake even once.

Tip

Add unit tests to your code for a saner life. You’ll be giving your current self and your colleagues faith that your code works, and you’ll be giving a present to your future-self who has to maintain this code later. You really will save a lot of time in the long term by adding tests to your code.

In addition to unit testing, you should also strongly consider using coverage.py. It checks to see which lines of code are exercised by your tests and identifies the sections that have no coverage. This quickly lets you figure out whether you’re testing the code that you’re about to optimize, such that any mistakes that might creep in during the optimization process are quickly caught.

No-op @profile Decorator

Your unit tests will fail with a NameError exception if your code uses @profile from line_profiler or memory_profiler. The reason is that the unit test framework will not be injecting the @profile decorator into the local namespace. The no-op decorator shown here solves this problem. It is easiest to add it to the block of code that you’re testing and remove it when you’re done.

With the no-op decorator, you can run your tests without modifying the code that you’re testing. This means you can run your tests after every profile-led optimization you make so you’ll never be caught out by a bad optimization step.

Let’s say we have the trivial ex.py module shown in Example 2-19. It has a test (for pytest) and a function that we’ve been profiling with either line_profiler or memory_profiler.

Example 2-19. Simple function and test case where we wish to use @profile

import time

def test_some_fn():
 """Check basic behaviors for our function"""
 assert some_fn(2) == 4
 assert some_fn(1) == 1
 assert some_fn(-1) == 1

@profile
def some_fn(useful_input):
 """An expensive function that we wish to both test and profile"""
 # artificial "we're doing something clever and expensive" delay
 time.sleep(1)
 return useful_input ** 2

if __name__ == "__main__":
 print(f"Example call `some_fn(2)` == {some_fn(2)}")

If we run pytest on our code, we’ll get a NameError, as shown in Example 2-20.

Example 2-20. A missing decorator during testing breaks out tests in an unhelpful way!

$ pytest test_utility.py
== test session starts ==
platform linux -- Python 3.12.0, pytest-8.0.1, pluggy-1.4.0
rootdir: .../ch02/noop_profile_decorator
collected 0 items / 1 error

== ERRORS ==
__ ERROR collecting test_utility.py __
test_utility.py:1: in <module>
 from utility import some_fn
utility.py:20: in <module>
 @profile
E NameError: name 'profile' is not defined. Did you forget to import 'profile'
== short test summary info ==
ERROR test_utility.py - NameError: name 'profile' is not defined.
Did you forget to import 'profile'
!! Interrupted: 1 error during collection !!
== 1 error in 0.12s ==

The solution is to add a no-op decorator at the start of our module (you can remove it after you’re done with profiling). If the @profile decorator is not found in one of the namespaces (because line_profiler or memory_profiler is not being used), the no-op version we’ve written is added. If line_profiler or memory_profiler has injected the new function into the namespace, our no-op version is ignored.

For both line_profiler and memory_profiler, we can add the code in Example 2-21.

Example 2-21. Add a no-op @profile decorator to the namespace while unit testing

check for line_profiler or memory_profiler in the local scope, both
are injected by their respective tools or they're absent
if these tools aren't being used (in which case we need to substitute
a dummy @profile decorator)
if 'line_profiler' not in dir() and 'profile' not in dir():
 def profile(func):
 def inner(*args, **kwargs):
 return func(*args, **kwargs)
 return inner

Having added the no-op decorator, we can now run our pytest successfully, as shown in Example 2-22, along with our profilers—with no additional code changes.

Example 2-22. With the no-op decorator, we have working tests, and both of our profilers work correctly

$ pytest utility.py
== test session starts ==
platform linux -- Python 3.12.0, pytest-8.0.1, pluggy-1.4.0
rootdir: ...
collected 1 item

utility.py . [100%]

== 1 passed in 3.01s ==

$ kernprof -l -v utility.py
Example call `some_fn(2)` == 4
Wrote profile results to utility.py.lprof
Timer unit: 1e-06 s

Total time: 1.00018 s
File: utility.py
Function: some_fn at line 20

Line # Hits Per Hit % Time Line Contents
===
 20 @profile
 21 def some_fn(useful_input):
 22 """An expensive function that we wish
 to both test and profile"""
 23 # artificial 'we're doing something
 clever and expensive' delay
 24 1 1e+06 100.0 time.sleep(1)
 25 1 6.5 0.0 return useful_input ** 2

$ python -m memory_profiler utility.py
Example call `some_fn(2)` == 4
Filename: utility.py

Line # Mem usage Increment Line Contents
===
 20 46.898 MiB 46.898 MiB @profile
 21 def some_fn(useful_input):
 22 """An expensive function that we wish
 to both test and profile"""
 23 # artificial 'we're doing something
 clever and expensive' delay
 24 46.898 MiB 0.000 MiB time.sleep(1)
 25 46.898 MiB 0.000 MiB return useful_input ** 2

You can save yourself a few minutes by avoiding the use of these decorators, but once you’ve lost hours making a false optimization that breaks your code, you’ll want to integrate this into your workflow.

Strategies to Profile Your Code Successfully

Profiling requires some time and concentration. You will stand a better chance of understanding your code if you separate the section you want to test from the main body of your code. You can then unit test the code to preserve correctness, and you can pass in realistic fabricated data to exercise the inefficiencies you want to address.

Do remember to disable any BIOS-based accelerators, as they will only confuse your results. On Ian’s laptop, the Intel Turbo Boost feature can temporarily accelerate a CPU above its normal maximum speed if it is cool enough. Running the Julia demo code from this chapter with Turbo Boost enabled on a cold CPU took 3.3 seconds and the CPU would temporarily have become hotter, if the code had been run repeatedly then as the CPU heated the execution time would have slowed. With Turbo Boost disabled that same piece of code took 5.6 seconds. In this example with Turbo Boost enabled a single run took 60% of the time compared to disabling it, and that gap would have closed as the CPU heated. Your operating system may also control the clock speed—a laptop on battery power is likely to more aggressively control CPU speed than a laptop on AC power.

You can imagine that this could confuse your bechmarking as you repeatedly run complex code! AMD has Turbo Boost, a similar technology. This applies to laptops, server machines may simply run at a maximum fixed speed (trading off complexity for increased power consumption) so this might not apply to servers.

To create a more stable benchmarking configuration, we do the following:

	
Disable Turbo Boost in the BIOS.

	
Disable the operating system’s ability to override the SpeedStep (you will find this in your BIOS if you’re allowed to control it).

	
Use only AC power (never battery power).

	
Disable background tools like backups and Dropbox while running experiments.

	
Run the experiments many times to obtain a stable measurement.

	
Possibly drop to run level 1 (Unix) so that no other tasks are running.

	
Reboot and rerun the experiments to double-confirm the results.

Try to hypothesize the expected behavior of your code and then validate (or disprove!) the hypothesis with the result of a profiling step. Your choices will not change (you should only drive your decisions by using the profiled results), but your intuitive understanding of the code will improve, and this will pay off in future projects as you will be more likely to make performant decisions. Of course, you will verify these performant decisions by profiling as you go.

Do not skimp on the preparation. If you try to performance test code deep inside a larger project without separating it from the larger project, you are likely to witness side effects that will sidetrack your efforts. It is likely to be harder to unit test a larger project when you’re making fine-grained changes, and this may further hamper your efforts. Side effects could include other threads and processes impacting CPU and memory usage and network and disk activity, which will skew your results.

Naturally, you’re already using source code control (e.g., Git or Mercurial), so you’ll be able to run multiple experiments in different branches without ever losing “the versions that work well.” If you’re not using source code control, do yourself a huge favor and start to do so!

For web servers, investigate dowser and dozer; you can use these to visualize in real time the behavior of objects in the namespace. Definitely consider separating the code you want to test out of the main web application if possible, as this will make profiling significantly easier.

Make sure your unit tests exercise all the code paths in the code that you’re analyzing. Anything you don’t test that is used in your benchmarking may cause subtle errors that will slow down your progress. Use coverage.py to confirm that your tests are covering all the code paths.

Unit testing a complicated section of code that generates a large numerical output may be difficult. Do not be afraid to output a text file of results to run through diff or to use a pickled object. For numeric optimization problems, Ian likes to create long text files of floating-point numbers and use diff—minor rounding errors show up immediately, even if they’re rare in the output.

If your code might be subject to numerical rounding issues due to subtle changes, you are better off with a large output that can be used for a before-and-after comparison. One cause of rounding errors is the difference in floating-point precision between CPU registers and main memory. Running your code through a different code path can cause subtle rounding errors that might later confound you—it is better to be aware of this as soon as they occur.

Obviously, it makes sense to use a source code control tool while you are profiling and optimizing. Branching is cheap, and it will preserve your sanity.

Wrap-Up

Having looked at profiling techniques, you should have all the tools you need to identify bottlenecks around CPU and RAM usage in your code. Next, we’ll look at how Python implements the most common containers, so you can make sensible decisions about representing larger collections of data.

1 memory_profiler measures memory usage according to the International Electrotechnical Commission’s MiB (mebibyte) of 220 bytes. This is slightly different from the more common but also more ambiguous MB (megabyte has two commonly accepted definitions!). 1 MiB is equal to 1.048576 (or approximately 1.05) MB. For our discussion, unless we’re dealing with very specific amounts, we’ll consider the two equivalent.
2 Python 3.12 release information: https://github.com/benfred/py-spy/issues/633
3 The language creator Guido van Rossum is Dutch, and not everyone has agreed with his “obvious” choices, but on the whole we like the choices that Guido makes!

Chapter 3. Lists and Tuples

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
What are lists and tuples good for?

	
What is the complexity of a lookup in a list/tuple?

	
How is that complexity achieved?

	
What are the differences between lists and tuples?

	
How does appending to a list work?

	
When should I use lists and tuples?

One of the most important things in writing efficient programs is understanding
the guarantees of the data structures you use. In fact, a large part of
performant programming is knowing what questions you are trying to ask of
your data and picking a data structure that can answer these questions quickly.
In this chapter we will talk about the kinds of questions that lists and tuples
can answer quickly, and how they do it.

Lists and tuples are a
class of data structures called arrays. An array is a flat list of data with
some intrinsic ordering. Usually in these sorts of data structures, the relative
ordering of the elements is as important as the elements themselves! In
addition, this a priori knowledge of the ordering is incredibly valuable: by
knowing that data in our array is at a specific position, we can retrieve it in
O(1)!1 There are
also many ways to implement arrays, and each solution has its own
useful features and guarantees. This is why in Python we have two
types of arrays: lists and tuples. Lists are dynamic arrays that let us modify
and resize the data we are storing, while tuples are static arrays whose contents
are fixed and immutable.

Let’s unpack these previous statements a bit. System memory on a computer can be
thought of as a series of numbered buckets, each capable of holding a number.
Python stores data in these buckets by reference, which means the number itself
simply points to, or refers to, the data we actually care about. As a result,
these buckets can store any type of data we want (as opposed to numpy arrays,
which have a static type and can store only that type of data).2

When we want to create an array (and thus a list or tuple), we first have to
allocate a block of system memory (where every section of this block will be
used as an integer-sized pointer to actual data). This involves going to the system
kernel and requesting the use of N consecutive buckets.
Figure 3-1 shows an example of the system memory layout for an
array (in this case, a list) of size 6.

Note

In Python, lists also store how large they are, so of the six allocated blocks, only five are usable—the zeroth element is the length.

[image: Array Allocation]
Figure 3-1. Example of system memory layout for an array of size 6

In order to look up any specific element in our
list, we simply need to know which element we want and remember which bucket our
data started in. Since all of the data will occupy the same amount of space
(one “bucket,” or, more specifically, one integer-sized pointer to the actual
data), we don’t need to know anything about the type of data that is being
stored to do this calculation.

Tip

If you knew where in memory your list of N elements started, how would you
find an arbitrary element in the list?

If, for example, we needed to retrieve the zeroth element in our array, we would simply
go to the first bucket in our sequence, M, and read out the value inside it.
If, on the other hand, we needed the fifth element in our array, we would
go to the bucket at position M + 5 and read its content. In general, if we want to
retrieve element i from our array, we go to bucket M + i. So, by having our
data stored in consecutive buckets, and having knowledge of the ordering of our
data, we can locate our data by knowing which bucket to look at in one step (or
O(1)), regardless of how big our array is (Example 3-1).

Example 3-1. Timings for lookups in lists of different sizes

>>> %%timeit l = list(range(10))
 ...: l[5]
 ...:
14 ns ± 0.182 ns per loop (mean ± std. dev. of 7 runs, 100,000,000 loops each)

>>> %%timeit l = list(range(10_000_000))
 ...: l[100_000]
 ...:
13.9 ns ± 0.123 ns per loop (mean ± std. dev. of 7 runs, 100,000,000 loops each)

What if we were given an array with an unknown order and wanted to retrieve a
particular element? If the ordering were known, we could simply look up that
particular value. However, in this case, we must do a search operation. The
most basic approach to this problem is called a linear search, where we iterate
over every element in the array and check if it is the value we want, as seen in
Example 3-2.

Example 3-2. A linear search through a list

def linear_search(needle, array):
 for i, item in enumerate(array):
 if item == needle:
 return i
 return -1

This algorithm has a worst-case performance of O(n). This case occurs when we
search for something that isn’t in the array. In order to know that the element
we are searching for isn’t in the array, we must first check it against every other
element. Eventually, we will reach the final return -1 statement. In fact, this
algorithm is exactly the algorithm that list.index() uses.

The only way to increase the speed is by having some other
understanding of how the data is placed in memory, or of the arrangement of the
buckets of data we are holding. For example, hash tables
(“How Do Dictionaries and Sets Work?”), which are a fundamental data structure
powering dictionaries and sets, solve this problem
in O(1) by adding extra overhead to insertions/retrievals and enforcing a
strict and peculiar sorting of the item. Alternatively, if your data is sorted
so that every item is larger (or smaller) than its neighbor to the left
(or right), then specialized search algorithms can be used that can bring your
lookup time down to O(log n). This may seem like a huge performance penalty
compared to the constant time lookups of lists and tuples, however sometimes
using these search algorithms are the best solution (especially since search
algorithms are flexible and allow you to define searches in creative ways).

Exercise

Given the following data, write an algorithm to find the index of the value
61:

[9, 18, 18, 19, 29, 42, 56, 61, 88, 95]

Since you know the data is ordered, how can you do this faster?

Hint: If you split the array in half, you know all the values on the left are
smaller than the smallest element in the right set. You can use this!

A More Efficient Search

As alluded to previously, we can achieve better search performance if we first
sort our data so that all elements to the left of a particular item are smaller (or larger) than that item. The comparison is done through the __eq__ and __lt__
magic functions of the object and can be user-defined if using custom objects.

Note

Without the __eq__ and __lt__ methods, a custom object will compare only to
objects of the same type, and the comparison will be done using the instance’s
placement in memory. With those two magic functions defined, you can use the
functools.total_ordering decorator from the standard library to automatically
define all the other ordering functions, albeit at a small performance penalty.

The two ingredients necessary are the sorting algorithm and the searching
algorithm. Python lists have a built-in sorting algorithm that uses Tim sort.
Tim sort can sort through a list in O(n) in the best case (and in O(n log n) in
the worst case). It achieves this performance by utilizing multiple types of
sorting algorithms and using heuristics to guess which algorithm will perform the
best, given the data (more specifically, it hybridizes insertion and merge sort
algorithms).

Once a list has been sorted, we can find our desired element using a binary search
(Example 3-3), which has an average case
complexity of O(log n). It achieves this by first looking at the middle of the
list and comparing this value with the desired value. If this midpoint’s value
is less than our desired value, we consider the right half of the list, and
we continue halving the list like this until the value is found, or until the value is known not to occur in the sorted list. As a result, we
do not need to read all values in the list, as was necessary for the
linear search; instead, we read only a small subset of
them.

Example 3-3. Efficient searching through a sorted list—binary search

def binary_search(needle, haystack):
 imin, imax = 0, len(haystack)
 while True:
 if imin > imax:
 return -1
 midpoint = (imin + imax) // 2
 if haystack[midpoint] > needle:
 imax = midpoint
 elif haystack[midpoint] < needle:
 imin = midpoint+1
 else:
 return midpoint

This method allows us to find elements in a list without resorting to the
potentially heavyweight solution of a dictionary. This is especially true when
the list of data that is being operated on is intrinsically sorted. It is more
efficient to do a binary search on the list to find an object rather than
first converting your data to a dictionary and then doing a single lookup on
it. Although a dictionary lookup takes only O(1), converting the data to a
dictionary takes O(n) (and a dictionary’s restriction of no repeating keys
may be undesirable). On the other hand, the binary search will take O(log n).

In addition, the
bisect module from Python’s standard library simplifies much of this process
by giving easy methods to add elements into a list while maintaining its
sorting, in addition to finding elements using a heavily optimized binary
search. It does this by providing alternative functions that add the element
into the correct sorted placement. With the list always being sorted, we can
easily find the elements we are looking for (examples of this can be found in
the documentation for the
bisect module). In addition, we can use bisect to find the closest element
to what we are looking for very quickly (Example 3-4). This can be
extremely useful for comparing two datasets that are similar but not identical.

Example 3-4. Finding close values in a list with the bisect module

import bisect
import random

def find_closest(haystack, needle):
 # bisect.bisect_left will return the first value in the haystack
 # that is greater than the needle
 i = bisect.bisect_left(haystack, needle)
 if i == len(haystack):
 return i - 1
 elif haystack[i] == needle:
 return i
 elif i > 0:
 j = i - 1
 # since we know the value is larger than needle (and vice versa for the
 # value at j), we don't need to use absolute values here
 if haystack[i] - needle > needle - haystack[j]:
 return j
 return i

important_numbers = []
for i in range(10):
 new_number = random.randint(0, 1000)
 bisect.insort(important_numbers, new_number)

important_numbers will already be in order because we inserted new elements
with bisect.insort
print(important_numbers)
> [14, 265, 496, 661, 683, 734, 881, 892, 973, 992]

closest_index = find_closest(important_numbers, -250)
print(f"Closest value to -250: {important_numbers[closest_index]}")
> Closest value to -250: 14

closest_index = find_closest(important_numbers, 500)
print(f"Closest value to 500: {important_numbers[closest_index]}")
> Closest value to 500: 496

closest_index = find_closest(important_numbers, 1100)
print(f"Closest value to 1100: {important_numbers[closest_index]}")
> Closest value to 1100: 992

In general, this touches on a fundamental rule of writing efficient code: pick
the right data structure and stick with it! Although there may be more
efficient data structures for particular operations, the cost of converting to those data structures may negate any efficiency boost.

Lists Versus Tuples

If lists and tuples both use the same underlying data structure, what are the
differences between the two? Summarized, the main differences are as follows:

	
Lists are dynamic arrays; they are mutable
and allow for resizing (changing the number of elements that are held).

	
Tuples are static arrays; they are immutable,
and the data they reference cannot change once the tuple has been created. 3

	
Tuples are cached by the Python runtime, which means that we don’t need to talk to
the kernel to reserve memory every time we want to use one.

These differences outline the philosophical difference between the two: tuples
are for describing multiple properties of one unchanging thing, and lists can be
used to store collections of data about completely disparate objects. For
example, the parts of a telephone number are perfect for a tuple: they won’t change, and
if they do, they represent a new object or a different phone number. Similarly,
the coefficients of a polynomial fit a tuple, since different coefficients
represent a different polynomial. On the other hand, the names of the people
currently reading this book are better suited for a list: the data is constantly
changing both in content and in size but is still always representing the same
idea.

It is important to note that both lists and tuples can take mixed types. This
can, as you will see, introduce quite a bit of overhead and reduce some potential
optimizations. This overhead can be removed if we force all our data to be
of the same type. In [Link to Come], we will talk about reducing both the
memory used and the computational overhead by using numpy. In addition, tools
like the standard library module array can reduce these overheads for
other, nonnumerical situations. This alludes to a major point in performant programming that we will touch on in
later chapters: generic code will be much slower than code specifically designed
to solve a particular problem.

In addition, the immutability of a tuple as opposed to a list, which can be resized
and changed, makes it a lightweight data structure. This means that there
isn’t much overhead in memory when storing tuples, and operations with them are
quite straightforward. With lists, as you will learn, their mutability comes at the price of extra memory needed to store them and extra computations needed when using them.

Exercise

For the following example datasets, would you use a tuple or a list? Why?

	
First 20 prime numbers

	
Names of programming languages

	
A person’s age, weight, and height

	
A person’s birthday and birthplace

	
The result of a particular game of pool

	
The results of a continuing series of pool games

Solution:

	
Tuple, since the data is static and will not change.

	
List, since this dataset is constantly growing.

	
List, since the values will need to be updated.

	
Tuple, since that information is static and will not change.

	
Tuple, since the data is static.

	
List, since more games will be played. (In fact, we could use a list of tuples since each individual game’s results will not change, but we will need to add more results as more games are played.)

Lists as Dynamic Arrays

Once we create a list, we are free to change its contents as needed:

>>> numbers = [5, 8, 1, 3, 2, 6]
>>> numbers[2] = 2 * numbers[0] [image: 1]
>>> numbers
[5, 8, 10, 3, 2, 6]

	[image: 1]

	As described previously, this operation is O(1) because we can find the data
stored within the zeroth and second elements immediately.

In addition, we can append new data to a list and grow its size:

>>> len(numbers)
6
>>> numbers.append(42)
>>> numbers
[5, 8, 10, 3, 2, 6, 42]
>>> len(numbers)
7

This is possible because dynamic arrays support a resize operation that
increases the capacity of the array. When a list of size N is first
appended to, Python must create a new list that is big enough to hold the
original N items in addition to the extra one that is being appended.
However, instead of allocating exactly N + 1 items, M items are actually
allocated, where M > N, in order to provide extra headroom for future
appends. Then the data from the old list is copied to the new list, and the old
list is destroyed.

The philosophy is that one append is probably the beginning of many appends, and
by requesting extra space, we can reduce the number of total times this
allocation must happen and thus the total number of memory copies that are
necessary. This is important since memory copies can be quite expensive,
especially when list sizes start growing. Figure 3-2 shows
what this overallocation looks like in Python 3.7. The formula dictating this
growth is given in Example 3-5.4

[image: Graph showing list overallocation]
Figure 3-2. Graph showing how many extra elements are being allocated to a list of a particular size. For example, if you create a list with 1,000,000 elements using appends, Python will allocate space for 1,056,084 elements, overallocating 56,084 elements!

Example 3-5. List allocation equation in Python 3.12.2

M = (N + (N >> 3) + 6) & ~3

As we append data, we utilize the extra space and increase the effective size of
the list, N. As a result, N grows as we append new data, until N == M. At this
point, there is no extra space to insert new data into, and we must create a
new list with more extra space. This new list has extra headroom as given by the equation in
Example 3-5, and we copy the old data into the new space. In using this method, python generally overallocates about 12.5% of the list space in order to reduce the time of list appends. However, for small lists this can be much higher — for a list with 1 item, 4 are allocated and for 9 items, 16 is allocated!

[image: hpp2 0303]
Figure 3-3. Example of how list in Example 3-6 is being mutated on multiple appends

Example 3-6. Resizing a list

l = [1, 2]
for i in range(3, 7):
 l.append(i)

This sequence of events is shown visually in Figure 3-3. The figure follows the various operations being performed on list l in Example 3-6.

Note

This extra allocation happens on the first append or when created via list
comprehension. When a list is directly created, as in the preceding example,
only the number of elements needed is allocated.

While the amount of extra headroom allocated is generally quite small, it can
add up. In Example 3-7, we can see that for cases where we have many
small lists, each with an overhead, this can quickly balloon into a
considerable usage of resources.

Example 3-7. Memory consequences of overallocation

import sys
import random

def total_size(obj):
 """
 Recursively calculates the total size of a Python object in memory,
 including its contents.

 Returns:
 int: The total size of the object in bytes.
 """
 children = 0
 try:
 children = sum(total_size(item) for item in obj)
 except TypeError:
 pass
 return sys.getsizeof(obj) + children

def sample_comp(a, b, N):
 return [random.randint(a, b) for _ in range(N)] [image: 1]

def sample_list(a, b, N):
 return list([random.randint(a, b) for _ in range(N)]) [image: 2]

N_samples = 1_000_000
sample_size = 9
data_comp = [sample_comp(0, 100, sample_size) for _ in range(N_samples)]
data_list = [sample_list(0, 100, sample_size) for _ in range(N_samples)]

size_comp = max_size = total_size(data_comp) / 1e6
size_list = total_size(data_list) / 1e6

print(f"Creating {N_samples:,d} samples of {sample_size} items each")
print(f"Data Comprehension size: {size_comp:0.2f} Mb")
print(f"Data List size: {size_list:0.2f} Mb ({max_size/size_list:0.2f}x smaller)")

Outputs:
Creating 1,000,000 samples of 9 items each
Data Comprehension size: 444.45 Mb
Data List size: 396.45 Mb (1.12x smaller)

	[image: 1]

	We create N random integers from a to b. This “sample” of data can be anything in the real world — the last 5 links a user clicked on or the names of files in a directory. Since it is created via list comprehension however, it has been overallocated.

	[image: 2]

	Here we do the same as before, however once the data has been created we pass it to list in order to recreate the list but without any overallocation.

We can see in the previous example how quickly this overallocation overhead can
add up. In this fairly common example of having many small lists, we incured a
1.12x increase in memory which corresponds to 48Mb of memory wasted. When doing
data processing, memory can be your most valuable resource and this simple
change can greatly help your overall memory use. We’ll soon see how we can
bring this number down even more with tuples (and in [Link to Come] we’ll
go even further into this topic).

Tuples as Static Arrays

Tuples are fixed and immutable. This means that once a tuple is created, unlike
a list, it cannot be modified or resized:

>>> t = (1, 2, 3, 4)
>>> t[0] = 5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

However, although they don’t support resizing, we can concatenate two tuples
together and form a new tuple. The operation is similar to the resize operation
on lists, but we do not over-allocate space for the resulting tuple:

>>> t1 = (1, 2, 3, 4)
>>> t2 = (5, 6, 7, 8)
>>> t1 + t2
(1, 2, 3, 4, 5, 6, 7, 8)

If we consider this to be comparable to the append operation on lists, we see
that it performs in O(n) as opposed to the O(1) speed of lists. This is
because we must allocate and copy the entire tuple every time something is
added to it, as opposed to only when our extra headroom ran out for lists. As
a result of this, there is no in-place append-like operation; adding two
tuples always returns a new tuple that is in a new location in memory.

Not storing the extra headroom for resizing has the advantage of using fewer
resources. A list of size 100,000,000 created with any append operation
actually uses 104,391,068 elements’ worth of memory, while a tuple holding the
same data will only ever use exactly 100,000,000 elements’ worth of memory (a
4.4% savings in memory). This makes tuples lightweight and preferable when data
becomes static.

Furthermore, even if we create a list without append (and thus we don’t have
the extra headroom introduced by an append operation), it will still be larger in
memory than a tuple with the same data. This is because lists have to
keep track of more information about their current state in order to efficiently
resize. While this extra information is quite small (the equivalent of one
extra element), it can add up if several million lists are in use.

We can see this by adding tuples to the Example 3-7 example. In
Example 3-8, we add the corresponding code and see that our memory
use is 1.19x smaller than the original list comprehension route. This is a
total of a 72Mb savings simply by casting our data to a tuple at the cost of
the data being immutable.

Example 3-8. Memory consequences of overallocation

def sample_tuple(a, b, N):
 return tuple([random.randint(a, b) for _ in range(N)])

data_tuple = [sample_tuple(0, 100, sample_size) for _ in range(N_samples)]

print(f"Data Tuple size: {size_tuple:0.2f} Mb ({max_size/size_tuple:0.2f}x smaller)")

Outputs:
Creating 1,000,000 samples of 9 items each
Data Comprehension size: 444.45 Mb
Data List size: 396.45 Mb (1.12x smaller)
Data Tuple size: 372.45 Mb (1.19x smaller)

Another benefit of the static nature of tuples is something Python does in the
background: resource caching. Python is garbage collected, which means that when
a variable isn’t used anymore, Python frees the memory used by that variable,
giving it back to the operating system for use in other applications (or for
other variables). For tuples of sizes 0–20, however, when they are no longer in
use, the space isn’t immediately given back to the system: up to 2,000 of each
size are saved for future use. This means that when a new tuple of that size is
needed in the future, we don’t need to communicate with the operating system to
find a region in memory to put the data into, since we have a reserve of free
memory already. However, this also means that the Python process will have some
extra memory overhead.

Note

Other objects also are cached by Python (a mechanism called a “freelist”),
however the use case is different. When an object is destroyed in your Python
code and set to be garbage collected, Python keeps it around in the freelist so
that new objects can be instantiated and allocated faster. However, for
non-tuple objects these freelists are considerably smaller than the tuple
freelist and the performance benefits are mainly geared towards the inner
workings of the Python interpreter. For CPython 3.12.2, the size of the
freelist for various objects is,

	
Generators: 80

	
Contexts: 255

	
Dictionaries: 80

	
Floats: 100

	
Lists: 80

	
Tuples: 40,000 (2,000 for each sized tuple from 0-20)

While this may seem like a small benefit, it is one of the fantastic things
about tuples: they can be created easily and quickly since they can avoid communications with
the operating system, which can cost your program quite a bit of time.
Example 3-9 shows that instantiating a list can be 7.6x slower
than instantiating a tuple—which can add up quickly if this is done in a
fast loop!

Example 3-9. Instantiation timings for lists versus tuples

>>> %timeit l = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
77.6 ns ± 0.53 ns per loop (mean ± std. dev. of 7 runs, 10,000,000 loops each)

>>> %timeit t = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
9.47 ns ± 0.0681 ns per loop (mean ± std. dev. of 7 runs, 100,000,000 loops each)

Wrap-Up

Lists and tuples are fast and low-overhead objects to use when your data already
has an intrinsic ordering to it. This intrinsic ordering allows you to sidestep
the search problem in these structures: if the ordering is known beforehand,
lookups are O(1), and searches can be done in O(log n). If no order is
known beforehand, we must do an expensive O(n) linear search. While lists
can be resized, you must take care to properly understand how much
overallocation is happening to ensure that the dataset can still fit in memory.
On the other hand, tuples can be created quickly and without the added overhead
of lists, at the cost of not being modifiable. In
[Link to Come], we discuss how to preallocate lists
to alleviate some of the burden regarding frequent appends to Python lists, and we
look at other optimizations that can help manage these problems.

In the next chapter, we go over the computational properties of dictionaries,
which solve the search/lookup problems with unordered data at the cost of
overhead.

1 O(1) uses Big-Oh Notation to denote how efficient an algorithm is. A good introduction to the topic can be found in this dev.to post by Sarah Chima or in the introductory chapters of Introduction to Algorithms by Thomas H. Cormen et al. (MIT Press).
2 In 64-bit computers, having 12 KB of memory gives you 725 buckets, and having 52 GB of memory gives you 3,250,000,000 buckets!
3 Note that it is the reference that cannot change, however we can still do in-place operations on the object that change its content without changing the reference.
4 The code responsible for this overallocation can be seen in the Python source code in Objects/listobject.c:list_resize.

Chapter 4. Dictionaries and Sets

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
What are dictionaries and sets good for?

	
How are dictionaries and sets the same?

	
What is the overhead when using a dictionary?

	
How can I optimize the performance of a dictionary?

	
How does Python use dictionaries to keep track of namespaces?

Sets and dictionaries are ideal
data structures to be used when your data has no intrinsic order (except for
insertion order) but does have a unique object that can be used to reference it
(the reference object is normally a string, but it can be any hashable type). This
reference object is called the key, while the data is the value.
Dictionaries and sets are almost identical, except that sets do not actually
contain values: a set is simply a collection of unique keys. As the name
implies, sets are very useful for doing set operations (such as union,
intersection and difference).

Note

A hashable type is one that implements both the __hash__ magic function and
either __eq__ or __cmp__. All native types in Python already implement
these, and any user classes have default values. See
“Hash Functions and Entropy” for more details.

We saw in the previous chapter that for lists with no intrinsic order we are
limited to O(n) lookup time. Dictionaries and sets give us O(1) lookups
based on the arbitrary index. In addition, like lists/tuples, dictionaries and
sets have O(1)
insertion time.1 As we will see in “How Do Dictionaries and Sets Work?”, this speed is
accomplished through the use of an open address hash table as the underlying
data structure.

However, there is a cost to using dictionaries and sets. First, they generally
take up a larger footprint in memory. Also, although the complexity for
insertions/lookups is O(1), the actual speed depends greatly on the hashing
function that is in use. If the hash function is slow to evaluate, any
operations on dictionaries or sets will be similarly slow.

Let’s look at an example. Say we want to store contact information for everyone
in the phone book. We would like to store this in a form that will make it
simple to answer the question “What is Ada Lovelace’s phone number?” in the future.
With lists, we would store the phone numbers and names sequentially and scan
through the entire list to find the phone number we required, as shown in
Example 4-1.

Example 4-1. Phone book lookup with a list

def find_phonenumber(phonebook, name):
 for n, p in phonebook:
 if n == name:
 return p
 return None

phonebook = [
 ("Ada Lovelace", "555-555-5555"),
 ("Sophie Wilson", "212-555-5555"),
]

ada = find_phonenumber(phonebook, 'Ada Lovelace')
print(f"Ada Lovelace's phone number is {ada}")

Note

We could also do this by sorting the list (at a O(n log n) penalty) and using
the bisect module (from Example 3-4) in order to get O(log n)
performance on subsequent lookups.

With a dictionary, however, we can simply have the “index” be the names and the
“values” be the phone numbers, as shown in Example 4-2. This
allows us to simply look up the value we need and get a direct reference to it,
instead of having to read every value in our dataset.

Example 4-2. Phone book lookup with a dictionary

phonebook = {
 "Ada Lovelace": "555-555-5555",
 "Sophie Wilson" : "212-555-5555",
}
print(f"Ada Lovelace's phone number is {phonebook['Ada Lovelace']}")

For large phone books, the difference between the O(1) lookup of the dictionary
and the O(n) time for linear search over the list (or, at best, the O(log n) complexity
with the bisect module) is quite substantial.

Tip

Create a script that times the performance of the list-bisect method versus a
dictionary for finding a number in a phone book. How does the timing scale as
the size of the phone book grows?

If, on the other hand, we wanted to answer the question “How many unique first
names are there in my phone book?” we could use the power of sets. Recall that
a set is simply a collection of unique keys—this is the exact property we
would like to enforce in our data. This is in stark contrast to a list-based
approach, where that property needs to be enforced separately from the
data structure by comparing all names with all other names. Example 4-3 illustrates.

Example 4-3. Finding unique names with lists and sets

def list_unique_first_names(phonebook):
 unique_first_names = []
 for name, phonenumber in phonebook: [image: 1]
 first_name, last_name = name.split(" ", 1)
 for unique in unique_first_names: [image: 2]
 if unique == first_name:
 break
 else:
 unique_first_names.append(first_name)
 return len(unique_first_names)

def set_unique_first_names(phonebook):
 unique_first_names = set()
 for name, phonenumber in phonebook: [image: 3]
 first_name, last_name = name.split(" ", 1)
 unique_first_names.add(first_name) [image: 4]
 return len(unique_first_names)

phonebook = [
 ("Ada Lovelace", "555-555-5555"),
 ("Sophie Wilson", "212-555-5555"),
 ("Grace Hopper", "647-555-5555"),
 ("Emmy Noether", "202-555-5555"),
 ("Guido van Rossum", "301-555-5555"),
]

print("Number of unique names from set method:", set_unique_first_names(phonebook))
print("Number of unique names from list method:", list_unique_first_names(phonebook))

	[image: 1], [image: 3]

	    We must go over all the items in our phone book, and thus this loop costs O(n).

	[image: 2]

	Here, we must check the current name against all the unique names we have already seen. If it is a new unique name, we add it to our list of unique names. We then continue through the list, performing this step for every item in the phone book.

	[image: 4]

	For the set method, instead of iterating over all unique names we have already seen, we can simply add the current name to our set of unique names. Because sets guarantee the uniqueness of the keys they contain, if you try to add an item that is already in the set, that item simply won’t be added. Furthermore, this operation costs O(1).

The list algorithm’s inner loop iterates over unique_first_names, which starts out
as empty and then grows, in the worst case, when all names are unique, to be the
size of phonebook. This can be seen as performing a
linear search for each name in the phone book over a list
that is constantly growing. Thus, the complete algorithm performs as O(n log n).

On the other hand, the set algorithm has no inner loop; the set.add operation
is an O(1) process that completes in a fixed number of operations regardless
of how large the phone book is (there are some minor caveats to this, which we
will cover while discussing the implementation of dictionaries and sets). Thus,
the only nonconstant contribution to the complexity of this algorithm is the
loop over the phone book, making this algorithm perform in O(n).

When timing these two algorithms using a phonebook with 10,000 entries and
all unique first names, we see how drastic the difference between O(n) and
O(n log n) can be:

>>> %timeit list_unique_first_names(large_phonebook)
1.3 s ± 8.83 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

>>> %timeit set_unique_first_names(large_phonebook)
2.32 ms ± 55.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In other words, the set algorithm gave us a 560x speedup! In addition, as the
size of the phonebook grows, the speed gains increase (we get a 4,300x speedup
with a phonebook with 100,000 entries).

How Do Dictionaries and Sets Work?

Dictionaries and sets use hash tables to achieve their
O(1) lookups and insertions. This efficiency is the result of a very clever
usage of a hash function to turn an arbitrary
key (i.e., a string or object) into an index for a list. The hash function and
list can later be used to determine where any particular piece of data is right
away, without a search. By turning the data’s key into something that can be
used like a list index, we can get the same performance as with a list. In
addition, instead of having to refer to data by a numerical index, which itself
implies some ordering to the data, we can refer to it by this arbitrary key.

Warning

In this chapter we will focus on the implementation details of dictionaries,
however sets are very similar. Algorithmically they work in the same way,
however several small details are different (for example, the exact growth
pattern is different, the existence of an ordered list of keys, etc). We will
focus on dictionaries and point out differences to set objects when necessary.

Inserting and Retrieving

To create a hash table from scratch, we start with some allocated
memory, similar to what we started with for arrays. For an array, if we want
to insert data, we simply find the first unused bucket and insert our data
there (and resize if necessary). For hash tables, we must first figure out the
placement of the data in this contiguous chunk of memory.

The placement of the new data is contingent on two properties of the data we are
inserting: the hashed value of the key and how the value compares to other
objects. This is because when we insert data, the key is first hashed and masked
so that it turns into an effective index in an array.2 The mask makes sure that the hash value,
which can take the value of any integer, fits within the allocated number of
buckets. So if we have allocated 8 blocks of memory and our hash value is
28975, we consider the bucket at index 28975 & 0b111 = 7. If, however, our
dictionary has grown to require 512 blocks of memory, the mask becomes
0b111111111 (and in this case, we would consider the bucket at index 28975 &
0b11111111).

Now we must check if this bucket is already in use. If it is
empty, we can insert the key and the value into this block of memory. We store
the key so that we can make sure we are retrieving the correct value on lookups.
If it is in use and the value of the bucket is equal to the value we wish to
insert (a comparison done with the cmp built-in), then the key/value pair is
already in the hash table and we can return. However, if the values don’t match,
we must find a new place to put the data.

Note

As an extra optimization for dictionaries, Python appends the key/value data
into a standard array and then stores only the index into this array in the
hash table. This allows us to reduce the amount of memory used by
30–95%.3 In addition, this gives us the interesting property
that we keep a record of the order which new items were added into the
dictionary (which, since Python 3.7, is a guarantee that all dictionaries
give).

To find the new index, we compute it using a simple
linear function, a method called probing. Python’s probing mechanism adds a
contribution from the higher-order bits of the original hash (recall that for a
table of length 8 we considered only the last three bits of the hash for the initial
index, through the use of a mask value of mask = 0b111 = bin(8 - 1)). Using
these higher-order bits gives each hash a different sequence of next possible
hashes, which helps to avoid future collisions.

There is a lot of freedom when
picking the algorithm to generate a new index; however, it is quite important
that the scheme visits every possible index in order to evenly distribute the
data in the table. How well distributed the data is throughout the hash table is
called the load factor and is related to the
entropy of the hash function. The pseudocode
in Example 4-4 illustrates the calculation of hash indices used
in CPython 3.7. This also points towards an interesting
fact about hash tables: most of the storage space they have is empty!

Example 4-4. Dictionary lookup sequence

def index_sequence(key, mask=0b111, PERTURB_SHIFT=5):
 perturb = hash(key) [image: 1]
 i = perturb & mask
 yield i
 while True:
 perturb >>= PERTURB_SHIFT
 i = (i * 5 + perturb + 1) & mask
 yield i

	[image: 1]

	hash returns an integer, while the actual C code in CPython uses an unsigned integer. Because of that, this pseudocode doesn’t replicate exactly the behavior in CPython; however, it is a good approximation.

This probing is a modification of the naive method of
linear probing. In linear probing, we simply yield the values
i = (i * 5 + perturb + 1) & mask, where i is initialized to the hash value of the
key.4 An
important thing to note is that linear probing deals only with the last several
bits of the hash and disregards the rest (i.e., for a dictionary with eight
elements, we look only at the last three bits since at that point the mask is
0x111). This means that if hashing two items gives the same last three
binary digits, we will not only have a collision, but also the sequence of probed
indices will be the same. The perturbed scheme that Python uses will start
taking into consideration more bits from the items’ hashes to resolve
this problem.

A similar procedure is done when we are performing lookups on a specific key:
the given key is transformed into an index, and that index is examined. If the
key in that index matches (recall that we also store the original key when doing
insert operations), then we can return that value. If it doesn’t, we keep
creating new indices using the same scheme, until we either find the
data or hit an empty bucket. If we hit an empty bucket, we can conclude that
the data does not exist in the table.

Figure 4-1 illustrates the process of adding data
into a hash table. Here, we chose to create a hash function that simply uses the
first letter of the input. We accomplish this by using Python’s ord function
on the first letter of the input to get the integer representation of that
letter (recall that hash functions must return integers). As we’ll see in
“Hash Functions and Entropy”, Python provides hashing functions for most of
its types, so typically you won’t have to provide one yourself except in extreme
situations.

[image: hpp2 0401]
Figure 4-1. The resulting hash table from inserting with collisions

Insertion of the key Barcelona causes a collision, and a
new index is calculated using the scheme in
Example 4-4. This dictionary can also be created in Python
using the code in Example 4-5.

Example 4-5. Custom hashing function

class City(str):
 def __hash__(self):
 return ord(self[0])

We create a dictionary where we assign arbitrary values to cities
data = {
 City("Rome"): 'Italy',
 City("San Francisco"): 'USA',
 City("New York"): 'USA',
 City("Barcelona"): 'Spain',
}

In this case, Barcelona and Rome cause the hash collision
(Figure 4-1 shows the outcome of this insertion). We see
this because, for a dictionary with four elements, we have a mask value of 0b111.
As a result, Barcelona and Rome will try to use the same index:

hash("Barcelona") = ord("B") & 0b111
 = 66 & 0b111
 = 0b1000010 & 0b111
 = 0b010 = 2

hash("Rome") = ord("R") & 0b111
 = 82 & 0b111
 = 0b1010010 & 0b111
 = 0b010 = 2

Exercise

Work through the following problems. A discussion of hash collisions follows:

	
Finding an element—Using the dictionary created in Example 4-5, what would a lookup
on the key Johannesburg look like? What indices would be checked?

	
Deleting an element—Using the dictionary created in Example 4-5, how would you
handle the deletion of the key Rome? How would subsequent lookups for the keys
Rome and Barcelona be handled?

	
Hash collisions—Considering the dictionary created in Example 4-5, how many hash
collisions could you expect if 500 cities, with names all starting with an uppercase
letter, were added into a hash table? How about 1,000 cities? Can you think of
a way of lowering the number of collisions?

For 500 cities, there would be approximately 474 dictionary elements that
collided with a previous value (500 – 26), with each hash having 500 / 26 = 19.2
cities associated with it. For 1,000 cities, 974 elements would collide, and each
hash would have 1,000 / 26 = 38.4 cities associated with it. This is because the
hash is based simply on the numerical value of the first letter, which can
take only a value from A–Z, allowing for only 26 independent hash values. This means
that a lookup in this table could require as many as 38 subsequent lookups to
find the correct value. To fix this, we must increase the number of
possible hash values by considering other aspects of the city in the hash. The
default hash function on a string considers every character in order to maximize
the number of possible values. See “Hash Functions and Entropy” for more
explanation.

Deletion

When a value is deleted from a hash table, we cannot simply write a NULL to
that bucket of memory. This is because we have used NULLs as a sentinel
value while probing for hash collisions. As a result, we must write a special
value that signifies that the bucket is empty, but there still may be values
after it to consider when resolving a hash collision. So if “Rome” was deleted
from the dictionary, subsequent lookups for “Barcelona” will first see this
sentinel value where “Rome” used to be and instead of stopping, continue
to check the next indices given by the index_sequence. These empty slots can
be written to in the future and are removed when the hash table is resized.

Resizing

As more items are inserted into the hash table, the table itself must be resized
to accommodate them. It can be shown that a table that is no more than two-thirds
full will have optimal space savings while still having a good bound on the
number of collisions to expect. Thus, when a table reaches this critical point,
it is grown. To do this, a larger table is allocated (i.e., more
buckets in memory are reserved), the mask is adjusted to fit the new table, and
all elements of the old table are reinserted into the new one. This requires
recomputing indices, since the changed mask will change the resulting index. As
a result, resizing large hash tables can be quite expensive! However, since we
do this resizing operation only when the table is too small, as opposed to doing it on
every insert, the amortized cost of an insert is still
O(1).5

The general sizing rules for dictionaries (and sets) is that,

	
The dictionary is always less that 2/3rds full (3/5ths full for sets)

	
The size of the dictionary is always a power of 2

By default, the smallest size of a dictionary or set is 8 (that is, if you are
storing only three values, Python will still allocate eight buckets), and it
will resize by 3x if the dictionary is more than two-thirds full
6. So when trying
to insert a sixth element, the dictionary will first realize that this will
cause it to be overallocated (more than 2/3rds full). To calculate it’s new
size, it finds the smallest power of two that will accomodate 3x it’s
current size. So in order to hold 15 items we should resize the dictionary to
hold 16 items. resized to accommodate 18 elements. At this point, the old data
can be copied into the new dictionary and the new element can be added as well.

[image: dict overallocation]
Figure 4-2. Graph showing how many extra elements are being allocated to accommodate a dictionary of a given size. Dictionaries will always be at least 1/3rd empty but will also have even more space allocated to make sure the total size is a power of 2. The graph looks similar for sets, however the rate of increase changes at the 50,000 element mark.

On the 11th insertion, this process happens again. We try resizing to 32
elements (the smallest power of 2 that holds 3x10 elements). This gives
the following possible sizes:

8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072

It is important to note that resizing can happen to make a hash table larger or
smaller. That is, if sufficiently many elements of a hash table are deleted,
the table can be scaled down in size. However, resizing happens only during an
insert. So, counterintuitively, if you have a dictionary that you dict.pop()
many items out of, you can trigger a resize (and thus save memory!) by adding a
new element to the dictionary.

Hash Functions and Entropy

Objects in Python are generally hashable, since they already have built-in
__hash__ and __cmp__ functions associated with them. For numerical types
(int and float), the hash is based simply on the bit value of the number
they represent. Tuples and strings have a hash value that is based on their
contents. Lists, on the other hand, do not support hashing because their values
can change. Since a list’s values can change, so could the hash that represents
the list, which would change the relative placement of that key in the hash
table.7

User-defined classes also have default hash and comparison
functions. The default __hash__ function simply returns the object’s placement
in memory as given by the built-in id function. Similarly, the __cmp__
operator compares the numerical value of the object’s placement in memory.

This is generally acceptable, since two instances of a class are generally
different and should not collide in a hash table. However, in some cases we
would like to use set or dict objects to disambiguate between items. Take
the following class definition:

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

If we were to instantiate multiple Point objects with the same values for x
and y, they would all be independent objects in memory and thus have different
placements in memory, which would give them all different hash values. This
means that putting them all into a set would result in all of them having
individual entries:

>>> p1 = Point(1,1)
>>> p2 = Point(1,1)
>>> set([p1, p2])
set([<__main__.Point at 0x1099bfc90>, <__main__.Point at 0x1099bfbd0>])
>>> Point(1,1) in set([p1, p2])
False

We can remedy this by forming a custom hash function that is based on the actual
contents of the object as opposed to the object’s placement in memory. The hash
function can be any function as long as it consistently gives the same result
for the same object (there are also considerations regarding the entropy of the
hashing function, which we will discuss later.) The following redefinition of
the Point class will yield the results we expect:

class Point(object):
 def __init__(self, x, y):
 self.x, self.y = x, y

 def __hash__(self):
 return hash((self.x, self.y))

 def __eq__(self, other):
 return self.x == other.x and self.y == other.y

This allows us to create entries in a set or dictionary indexed by the
properties of the Point object rather than the memory address of the
instantiated object:

Example 4-6. Point object with a custom hash function

>>> p1 = Point(1,1)
>>> p2 = Point(1,1)
>>> set([p1, p2]) [image: 1]
set([<__main__.Point at 0x109b95910>])
>>> Point(1, 1) in set([p1, p2])
True

	[image: 1]

	Note that specifically only the first element, p1, gets inserted into the set object. So, if you are using this set object to keep track of existing point objects, p2 will get lost.

As alluded to when we discussed hash collisions, a custom-selected hash
function should be careful to evenly distribute hash values in order to avoid
collisions. Having many collisions will degrade the performance of a
hash table: if most keys have collisions, we need to constantly “probe” the
other values, effectively walking a potentially large portion of the dictionary
to find the key in question. In the worst case, when all keys in a
dictionary collide, the performance of lookups in the dictionary is O(n) and
thus the same as if we were searching through a list.

If we know that we are storing 5,000 values with a custom hash function in a
dictionary and we need to create a hashing function for the object we wish to
use as a key, we must be aware that the dictionary will be stored in a hash
table of size 16,3848 and thus only the last 14 bits of our hash are being used to create an
index (for a hash table of this size, the mask is bin(16_384 - 1) =
0b11111111111111).

This idea of “how well distributed my hash function is” is called the entropy of
the hash function. Entropy is defined as

 S
 =
 –
 ∑ i
 p

 (
 i
)

 ·
 log

 p
 (
 i
)

where p(i) is the probability that the hash function
gives hash i. It is maximized when every hash value has equal probability of
being chosen. A hash function that maximizes entropy is called an ideal
hash function since it guarantees the minimal number of collisions.

Note

For the most part, creating your own custom hash function is unnecessary. Generally, you can use the python hash function but indicating specifically which parts of the object needs to be hashed (like what we did in Example 4-6). If more complex hashing is needed, there are many pre-built algorithms that provide different guarantees depending on their inputs. The hash function specifically uses the Siphash 1-3 algorithm for hashing things other than integers. 9

For an infinitely large dictionary, the hash function used for integers is
ideal. This is because the hash value for an integer is simply the integer
itself! For an infinitely large dictionary, the mask value is infinite, and thus
we consider all bits in the hash value. Therefore, given any two numbers, we can
guarantee that their hash values will not be the same.

However, if we made this dictionary finite, we could no longer have this
guarantee. For example, for a dictionary with four elements, the mask we use is
0b111. Thus the hash value for the number 5 is 5 & 0b111 = 5, and the hash
value for 501 is 501 & 0b111 = 5, and so their entries will collide.

Note

To find the mask for a dictionary with an arbitrary number of elements, N, we first find the minimum number
of buckets that dictionary must have to still be two-thirds full (N * (2 / 3
+ 1)). Then we find the smallest dictionary size that will hold this number
of elements (8; 32; 128; 512; 2,048; etc.) and find the number of bits
necessary to hold this number. For example, if N=1039, then we must have at
least 1,731 buckets, which means we need a dictionary with 2,048 buckets. Thus
the mask is bin(2048 - 1) = 0b11111111111.

There is no single best hash function to use when using a finite dictionary.
However, knowing up front what range of values will be used and how large the
dictionary will be helps in making a good selection. For example, if we
are storing all 676 combinations of two lowercase letters as keys in a
dictionary (aa, ab, ac, etc.), a good hashing function for this specific
case would be the one shown in Example 4-7.

Example 4-7. Optimal two-letter hashing function

def twoletter_hash(key):
 offset = ord('a')
 k1, k2 = key
 return (ord(k2) - offset) + 26 * (ord(k1) - offset)

This gives no hash collisions for any combination of two lowercase letters,
considering a mask of 0b1111111111 (a dictionary of 676 values will be held
in a hash table of length 2,048, which has a mask of bin(2048 - 1) =
0b11111111111).

Example 4-8 very explicitly shows the
ramifications of having a bad hashing function for a user-defined class—here,
the cost of a bad hash function (in fact, it is the worst possible hash
function!) is a 54x slowdown of lookups. This case of a bad hash function
even makes the dictionary slower than using a list, which is 13% faster in this
case.

Example 4-8. Timing differences between good and bad hashing functions

import string
import timeit

class BadHash(str):
 def __hash__(self):
 return 42

class GoodHash(str):
 def __hash__(self):
 """
 This is a slightly optimized version of twoletter_hash
 """
 return ord(self[1]) + 26 * ord(self[0]) - 2619

bad_dict = set()
good_dict = set()
list_control = list()
for i in string.ascii_lowercase:
 for j in string.ascii_lowercase:
 key = i + j
 bad_dict.add(BadHash(key))
 good_dict.add(GoodHash(key))
 list_control.append(key)

bad_time = timeit.repeat(
 "key in bad_dict",
 setup = "from __main__ import bad_dict, BadHash; key = BadHash('zz')",
 repeat = 3,
 number = 1_000_000,
)
good_time = timeit.repeat(
 "key in good_dict",
 setup = "from __main__ import good_dict, GoodHash; key = GoodHash('zz')",
 repeat = 3,
 number = 1_000_000,
)
list_time = timeit.repeat(
 "key in list_control",
 setup = "from __main__ import list_control; key = 'zz'",
 repeat = 3,
 number = 1_000_000,
)

print(f"Min lookup time for bad_dict: {min(bad_time)}")
print(f"Min lookup time for good_dict: {min(good_time)}")
print(f"Min lookup time for list_control: {min(list_time)}")

Results:
Min lookup time for bad_dict: 10.160735580000619
Min lookup time for good_dict: 0.18675472999893827
Min lookup time for list_control: 8.958332514994254

Exercise

	
Show that for an infinite dictionary (and thus an infinite mask), using an
integer’s value as its hash gives no collisions.

	
Show that the hashing function given in
Example 4-7 is ideal for a hash table of size
1,024. Why is it not ideal for smaller hash tables?

Note

Readers of previous editions of this book may have realized that the section on
scoping in namespaces is suspicciously missing from this version of the book.
Recent changes to how cpython does namespace lookups brings the benchmarks so
close to one-another that the conclusions simply no longer hold. However, we
still feel it is important to point out that this has changed as yet another
reminder to always and continually profile your code. If you can, add profiling
metrics to your unit tests to encode performance assumptions so as projects
live past cpython changes, or library changes, or hardware changes, the
performance characteristics you depend on are still valid.

Wrap-Up

Dictionaries and sets provide a fantastic way to store data that can be indexed
by a key. The way this key is used, through the hashing function, can greatly
affect the resulting performance of the data structure. Furthermore,
understanding how dictionaries work gives you a better understanding not only of
how to organize your data but also of how to organize your code, since dictionaries
are an intrinsic part of Python’s internal functionality.

In the next chapter we will explore generators, which allow us to provide data
to code with more control over ordering and without having to store full datasets in
memory beforehand. This lets us sidestep many of the possible hurdles that we might encounter when
using any of Python’s intrinsic data structures.

1 As we will discuss in “Hash Functions and Entropy”, dictionaries and sets are very dependent on their hash functions. If the hash function for a particular datatype is not O(1), any dictionary or set containing that type will no longer have its O(1) guarantee.
2 A mask is a binary number that truncates the value of a number. So 0b1111101 & 0b111 =
0b101 = 5 represents the operation of 0b111 masking the number 0b1111101. This operation can also be thought of as taking a certain number of the least-significant digits of a number.
3 The discussion that led to this improvement can be found at https://oreil.ly/Pq7Lm.
4 The value of 5 comes from the properties of a linear congruential generator (LCG), which is used in generating random numbers.
5 Amortized analysis looks at the average complexity of an algorithm. This means that some inserts will be much more expensive, but on average, inserts will be O(1).
6 For sets, the limit is 3/5ths full and the resize factor is reduced to 2x once the set has grown to at least 50,000 elements
7 More information about this can be found at https://oreil.ly/g4I5-.
8 5,000 values need a dictionary that has at least 8,333 buckets. The first available size that can fit this many elements is 16,384.
9 https://en.wikipedia.org/wiki/SipHash

Chapter 5. Iterators and Generators

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
How do generators save memory?

	
When is the best time to use a generator?

	
How can I use itertools to create complex generator workflows?

	
When is lazy evaluation beneficial, and when is it not?

When many people with experience in another language start learning Python, they are taken
aback by the difference in for loop notation. That is to say, instead of
writing

Other languages
for (i=0; i<N; i++) {
 do_work(i);
}

they are introduced to a new function called range:

Python
for i in range(N):
 do_work(i)

It seems that in the Python code sample we are calling a function, range,
which creates all of the data we need for the for loop to continue. Intuitively,
this can be quite a time-consuming process—if we are trying to loop over the
numbers 1 through 100,000,000, then we need to spend a lot of time creating that
array! However, this is where generators come into play: they essentially allow us to
lazily evaluate these sorts of functions so we can have the
code-readability of these special-purpose functions without the performance
impacts.

To understand this concept, let’s implement a function that
calculates several Fibonacci numbers both by filling a list and by using a
generator:

def fibonacci_list(num_items):
 numbers = []
 a, b = 0, 1
 while len(numbers) < num_items:
 numbers.append(a)
 a, b = b, a+b
 return numbers

def fibonacci_gen(num_items):
 a, b = 0, 1
 while num_items:
 yield a [image: 1]
 a, b = b, a+b
 num_items -= 1

	[image: 1]

	This function will yield many values instead of returning one value. This turns this regular-looking function into a generator that can be polled repeatedly for the next available value.

The first thing to note is that the fibonacci_list implementation must create
and store the list of all the relevant Fibonacci numbers. So if we want to
have 10,000 numbers of the sequence, the function will do 10,000 appends to the
numbers list (which, as we discussed in Chapter 3, has overhead
associated with it) and then return it.

On the other hand, the generator is able to “return” many values. Every time
the code gets to the yield, the function emits its value, and when another
value is requested, the function resumes running (maintaining its previous state)
and emits the new value. When the function reaches its end, a StopIteration
exception is thrown, indicating that the given generator has no more values. As
a result, even though both functions must, in the end, do the same number of
calculations, the fibonacci_list version of the preceding loop uses 10,000×
more memory (or num_items times more memory).

With this code in mind, we can decompose the for
loops that use our implementations of fibonacci_list and fibonacci_gen. In
Python, for loops require that the object we are looping over supports
iteration. This means that we must be able to create an iterator out of the
object we want to loop over. To create an iterator from almost any object, we
can use Python’s built-in iter function. This function, for lists, tuples,
dictionaries, and sets, returns an iterator over the items or keys in the
object. For more complex objects, iter returns the result of the __iter__
property of the object. Since fibonacci_gen already returns an iterator,
calling iter on it is a trivial operation, and it returns the original object
(so type(fibonacci_gen(10)) == type(iter(fibonacci_gen(10)))). However, since
fibonacci_list returns a list, we must create a new object, a list iterator,
that will iterate over all values in the list. In general, once an iterator is
created, we call the next() function with it, retrieving new values until a
StopIteration exception is thrown. This gives us a good deconstructed view of
for loops, as illustrated in Example 5-1.

Example 5-1. Python for loop deconstructed

The Python loop
for i in object:
 do_work(i)

Is equivalent to
object_iterator = iter(object)
while True:
 try:
 i = next(object_iterator)
 except StopIteration:
 break
 else:
 do_work(i)

The for loop code shows that we are doing extra work calling iter when using
fibonacci_list instead of fibonacci_gen. When using fibonacci_gen, we
create a generator that is trivially transformed into an iterator (since it is
already an iterator!); however, for fibonacci_list we need to allocate a new list and
precompute its values, and then we still must create an iterator.

More importantly, precomputing the fibonacci_list list requires allocating
enough space for the full dataset and setting each element to the correct value,
even though we always require only one value at a time. This also makes the list
allocation useless. In fact, it may even make the loop unrunnable, because it
may be trying to allocate more memory than is available (fibonacci_list(100_000_000)
would create a list 3.1 GB large!). By timing the results, we can see this very
explicitly:

def test_fibonacci_list():
 """
 >>> %timeit test_fibonacci_list()
 227 ms ± 4.18 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

 >>> %memit test_fibonacci_list()
 peak memory: 485.30 MiB, increment: 418.48 MiB
 """
 for i in fibonacci_list(100_000):
 pass

def test_fibonacci_gen():
 """
 >>> %timeit test_fibonacci_gen()
 81.9 ms ± 25.1 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

 >>> %memit test_fibonacci_gen()
 peak memory: 72.34 MiB, increment: 0.00 MiB
 """
 for i in fibonacci_gen(100_000):
 pass

As we can see, the generator version is 2.7x faster and requires no
measurable memory as compared to the fibonacci_list’s 418.48 MB. It may seem at
this point that you should use generators everywhere in place of creating lists,
but that would create many complications.

What if, for example, you needed to reference the list of Fibonacci numbers
multiple times? In this case, fibonacci_list would provide a precomputed list
of these digits, while fibonacci_gen would have to recompute them over and
over again. In general, changing to using generators instead of precomputed
arrays requires algorithmic changes that are sometimes not so easy to
understand.1

Note

An important choice that must be made when architecting your code is
whether you are going to optimize CPU speed or memory efficiency.
In some cases, using extra memory so that you have values precalculated and
ready for future reference will save in overall speed. Other times, memory may
be so constrained that the only solution is to recalculate values as opposed to
saving them in memory. Every problem has its own considerations for this
CPU/memory trade-off.

One simple example of this that is often seen in source code is using a
generator to create a sequence of numbers, only to use list comprehension to calculate the length of the result:

divisible_by_three = len([n for n in fibonacci_gen(100_000) if n % 3 == 0])

While we are still using fibonacci_gen to generate the Fibonacci sequence as a
generator, we are then saving all values divisible by 3 into an array, only to
take the length of that array and then throw away the data. In the process,
we’re consuming 98 MB of data for no reason.2 In fact, if we were
doing this for a long enough
Fibonacci sequence, the preceding code wouldn’t be able
to run because of memory issues, even though the calculation itself is quite
simple!

Recall that we can create a list comprehension using a statement of the form
[<value> for <item> in <sequence> if <condition>]. This will create a list of
all the <value> items. Alternatively, we can use similar syntax to create a
generator of the <value> items instead of a list with (<value> for <item>
in <sequence> if <condition>).

Using this subtle difference between list comprehension and generator
comprehension, we can optimize the preceding code for divisible_by_three.
However, generators do not have a length property. As a result, we will have to
be a bit clever:

divisible_by_three = sum(1 for n in fibonacci_gen(100_000) if n % 3 == 0)

Here, we have a generator that emits a value of 1 whenever it encounters a
number divisible by 3, and nothing otherwise. By summing all elements in this
generator, we are essentially doing the same as the list comprehension version
and consuming no significant memory.

Note

Many of Python’s built-in functions that operate on sequences are generators
themselves (albeit sometimes a special type of generator). For example, range
returns a generator of values as opposed to the actual list of numbers within
the specified range. Similarly, map, zip, filter, reversed, and
enumerate all perform the calculation as needed and don’t store the full
result. This means that the operation zip(range(100_000), range(100_000)) will
always have only two numbers in memory in order to return its corresponding
values, instead of precalculating the result for the entire range beforehand.

The performance of the two versions of this code is almost equivalent for these
smaller sequence lengths, but the memory impact of the generator version is far
less than that of the list comprehension. Furthermore, we transform the list
version into a generator, because all that matters for each element of the list
is its current value—either the number is divisible by 3 or it is not; it
doesn’t matter where its placement is in the list of numbers or what the
previous/next values are. More complex functions can also be transformed into
generators, but depending on their reliance on state, this can become a
difficult thing to do.

Iterators for Infinite Series

Instead of calculating a known number of Fibonacci numbers, what if we instead
attempted to calculate all of them?

def fibonacci():
 i, j = 0, 1
 while True:
 yield i
 i, j = j, i + j

In this code we are doing something that wouldn’t be possible with the previous
fibonacci_list code: we are encapsulating an infinite series of numbers into a
function. This allows us to take as many values as we’d like from this stream
and terminate when our code thinks it has had enough.

One reason generators aren’t used as much as they could be is that a lot of
the logic within them can be encapsulated in your logic code. Generators are really a way of organizing your code and having smarter loops.
For example, we could answer the question “How many Fibonacci numbers below 5,000
are odd?” in multiple ways:

def fibonacci_naive():
 i, j = 0, 1
 count = 0
 while i <= 5000:
 if i % 2:
 count += 1
 i, j = j, i + j
 return count

def fibonacci_transform():
 count = 0
 for f in fibonacci():
 if f >= 5000:
 break
 if f % 2:
 count += 1
 return count

from itertools import takewhile
def fibonacci_succinct():
 first_5000 = takewhile(lambda x: x < 5000,
 fibonacci())
 return sum(1 for x in first_5000
 if x % 2)

All of these methods have similar runtime properties (as measured by their
memory footprint and runtime performance), but the fibonacci_transform
function benefits from several things. First, it is much more verbose than
fibonacci_succinct, which means it will be easy for another developer to debug
and understand. The latter mainly stands as a warning for the next section,
where we cover some common workflows using itertools—while the module
greatly simplifies many simple actions with iterators, it can also quickly make
Python code very un-Pythonic. Conversely, fibonacci_naive is doing multiple
things at a time, which hides the actual calculation it is doing! While it is
obvious in the generator function that we are iterating over the Fibonacci
numbers, we are not overencumbered by the actual calculation. Last,
fibonacci_transform is more generalizable. This function could be renamed
num_odd_under_5000 and take in the generator by argument, and thus work over
any series.

One additional benefit of the fibonacci_transform and fibonacci_succinct functions
is that they support the notion that in computation there are two phases:
generating data and transforming data. These functions are very clearly
performing a transformation on data, while the fibonacci function generates
it. This demarcation adds extra clarity and functionality: we can move a
transformative function to work on a new set of data, or perform multiple
transformations on existing data. This paradigm has always been important when
creating complex programs; however, generators facilitate this clearly by making
generators responsible for creating the data and normal functions responsible
for acting on the generated data.

Lazy Generator Evaluation

As touched on previously, the way we get the memory
benefits with a generator is by dealing only with the current values of
interest. At any point in our calculation with a generator, we have only the
current value and cannot reference any other items in the sequence (algorithms
that perform this way are generally called single pass or online). This
can sometimes make generators more difficult to use, but many modules
and functions can help.

The main library of interest is itertools, in the standard library. It supplies
many other useful functions, including these:

	islice

	
Allows slicing a potentially infinite generator

	chain

	
Chains together multiple generators

	takewhile

	
Adds a condition that will end a generator

	cycle

	
Makes a finite generator infinite by constantly repeating it

The documentation also provides some fantastic recipes for other use-cases
which are always useful to have in the back of your head.

Let’s build up an example of using generators to analyze a large
dataset. Let’s say we’ve had an analysis routine going over temporal data, one
piece of data per second, for the last 20 years—that’s 631,152,000 data points! The
data is stored in a file, one second per line, and we cannot load the entire
dataset into memory. As a result, if we wanted to do some simple anomaly
detection, we’d have to use generators to save memory!

The problem will be: Given a datafile of the form “timestamp, value,” find days
whose values differ from normal distribution. We start by writing the code that
will read the file, line by line, and output each line’s value as a Python
object. We will also create a read_fake_data generator to generate fake data that
we can test our algorithms with. For this function we still take the argument
filename, so as to have the same function signature as read_data; however,
we will simply disregard it. These two functions, shown in Example 5-2,
are indeed lazily evaluated—we read the next line in the file, or generate
new fake data, only when the next() function is called.

Example 5-2. Lazily reading data

from random import normalvariate, randint
from dataclasses import dataclass
from itertools import count
from datetime import datetime

@dataclass
class Datum:
 date: datetime
 value: float

def read_data(filename):
 with open(filename) as fd:
 for line in fd:
 data = line.strip().split(',')
 timestamp, value = map(int, data)
 yield Datum(datetime.fromtimestamp(timestamp), value)

def read_fake_data(filename):
 for timestamp in count():
 # We insert an anomalous data point approximately once a week
 if randint(0, 7 * 60 * 60 * 24 - 1) == 1:
 value = 100
 else:
 value = normalvariate(0, 1)
 yield Datum(datetime.fromtimestamp(timestamp), value)

Now we’d like to create a function that outputs groups of data that occur in
the same day. For this, we can use the groupby function in itertools
(Example 5-3). This function works by taking in a sequence of items
and a key used to group these items. The output is a generator that produces
tuples whose items are the key for the group and a generator for the items in
the group. As our key function, we will output the calendar day that the data
was recorded. This “key” function could be anything—we could group our data by
hour, by year, or by some property in the actual value. The only limitation is
that groups will be formed only for data that is sequential. So if we had the
input A A A A B B A A and had groupby group by the letter, we would get
three groups: (A, [A, A, A, A]), (B, [B, B]), and (A, [A, A]).

Example 5-3. Grouping our data

from itertools import groupby

def groupby_day(iterable):
 key = lambda row: row.date.day
 for day, data_group in groupby(iterable, key):
 yield list(data_group)

Now to do the actual anomaly detection. We do this in Example 5-4 by creating a function that, given one group of data, returns whether it
follows the normal distribution (using scipy.stats.normaltest). We can use
this check with itertools.filterfalse to filter down the full dataset only to
inputs that don’t pass the test. These inputs are what we consider to be
anomalous.

Note

In Example 5-3, we cast data_group into a list, even though it is
provided to us as an iterator. This is because the normaltest function
requires an array-like object. We could, however, write our own normaltest
function that is “one-pass” and could operate on a single view of the data. This
could be done without too much trouble by using
Welford’s
online averaging algorithm to calculate the skew and kurtosis of the numbers.
This would save us even more memory by always storing only a single value of the
dataset in memory at once instead of storing a full day at a time. However,
performance time regressions and development time should be taken into
consideration: is storing one day of data in memory at a time sufficient for
this problem, or does it need to be further
optimized?

Example 5-4. Generator-based anomaly detection

from scipy.stats import normaltest
from itertools import filterfalse
from operator import attrgetter

def is_normal(data, threshold=1e-3):
 values = map(attrgetter("value"), data)
 k2, p_value = normaltest(tuple(values))
 if p_value < threshold:
 return False
 return True

def filter_anomalous_groups(data):
 yield from filterfalse(is_normal, data)

Finally, we can put together the chain of generators to get the days that had
anomalous data (Example 5-5).

Example 5-5. Chaining together our generators

from itertools import islice

def filter_anomalous_data(data):
 data_group = groupby_day(data)
 yield from filter_anomalous_groups(data_group)

data = read_fake_data("fake_filename")
anomaly_generator = filter_anomalous_data(data)
first_five_anomalies = islice(anomaly_generator, 5)

for data_anomaly in first_five_anomalies:
 start_date = data_anomaly[0].date
 end_date = data_anomaly[-1].date
 print(f"Anomaly from {start_date} - {end_date}")

Output of above code using "read_fake_data"
Anomaly from 1970-01-10 00:00:00 - 1970-01-10 23:59:59
Anomaly from 1970-01-17 00:00:00 - 1970-01-17 23:59:59
Anomaly from 1970-01-18 00:00:00 - 1970-01-18 23:59:59
Anomaly from 1970-01-23 00:00:00 - 1970-01-23 23:59:59
Anomaly from 1970-01-29 00:00:00 - 1970-01-29 23:59:59

This method allows us to get the list of days that are anomalous without
having to load the entire dataset. Only enough data is read to generate
the first five anomalies. Additionally, the anomaly_generator object can be
read further to continue retrieving anomalous data. This is called lazy
evaluation—only the calculations that are explicitly requested are performed,
which can drastically reduce overall runtime if there is an early termination
condition.

Another nicety about organizing analysis this way is it allows us to do more
expansive calculations easily, without having to rework large parts of the code.
For example, if we want to have a moving window of one day instead of chunking
up by days, we can replace the groupby_day in Example 5-3 with
something like this:

from datetime import datetime

def groupby_window(data, window_size=3600):
 window = tuple(islice(data, window_size))
 for item in data:
 yield window
 window = window[1:] + (item,)

In this version, we also see very explicitly the memory guarantee of this and the
previous method—it will store only the window’s worth of data as state (in both
cases, one day, or 3,600 data points). Note that the first item retrieved by the
for loop is the window_size-th value. This is because data is an iterator, and
in the previous line we consumed the first window_size values.

A final note: in the groupby_window function, we are constantly creating new
tuples, filling them with data, and yielding them to the caller. We can greatly
optimize this by using the deque object in the collections module. This
object gives us O(1) appends and removals to and from the beginning or end of
a list (while normal lists are O(1) for appends or removals to/from the end of
the list and O(n) for the same operations at the beginning of the list).
Using the deque object, we can append the new data to the right (or end)
of the list and use deque.popleft() to delete data from the left (or
beginning) of the list without having to allocate more space or perform long
O(n) operations. However, we would have to work on the deque object in-place
and destroy previous views to the rolling window (see [Link to Come] for
more about in-place operations). The only way around this would be to copy the
data into a tuple before yielding it back to the caller, which gets rid of any
benefit of the change!

Wrap-Up

By formulating our anomaly-finding algorithm with iterators, we can
process much more data than could fit into memory. What’s more, we can
do it faster than if we had used lists, since we avoid all the costly append
operations.

Since iterators are a primitive type in Python, this should always be a go-to
method for trying to reduce the memory footprint of an application. The
benefits are that results are lazily evaluated, so you process only the
data you need, and memory is saved since we don’t store previous results unless
explicitly required to. In [Link to Come], we will talk about other
methods that can be used for more specific problems and introduce some new ways
of looking at problems when RAM is an issue.

Another benefit of solving problems using iterators is that it prepares your
code to be used on multiple CPUs or multiple computers, as we will see in
Chapters 9 and 10. As we discussed in
“Iterators for Infinite Series”, when working with iterators, you must always think about the
various states that are necessary for your algorithm to work. Once you figure
out how to package the state necessary for the algorithm to run, it doesn’t
matter where it runs. We can see this sort of paradigm, for example, with the
multiprocessing and ipython modules, both of which use a map-like
function to launch parallel tasks.

1 In general, algorithms that are online or single pass are a great fit for generators. However, when making the switch you have to ensure your algorithm can still function without being able to reference the data more than once.
2 Calculated with %memit
len([n for n in fibonacci_gen(100_000) if n % 3 == 0]).

Chapter 6. Pandas, Dask and Polars

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 7th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
What’s the fastest way to apply a function to a Pandas DataFrame?

	
What’s the quickest way to build a DataFrame from partial results?

	
Can we use Numba to compile for more performance inside Pandas?

	
Can Dask be used for distributed CPU computation?

	
How can Polars execute similar queries faster than Pandas?

Many scientific and data science projects use tabular-shaped data which fits into a dataframe. A dataframe typically collects a heterogeneous (i.e. mixed) collection of datatypes where the datatypes are assigned to columns. Each entry in the dataframe is a row - generally they look like a spreadsheet that you might see in Excel.

Pandas was released in 2008 and quickly became the main dataframe library in the Python ecosystem. As it evolved a lot of shortcomings were discussed and later documented in Wes McKinney’s infamous 2017 blog post on “Apache Arrow and the “10 Things I Hate About pandas”” 1 ! At the time of writing 7 years after this blog post - Pandas is still the most popular Python dataframe library. In the following sections we discuss some of the common ways of either writing slow - or fast - Pandas solutions.

Dask, first introduced in 2014, is more than a dataframe library. It is a distributed computing framework for scientific applications - and perhaps the most famous component is the distributed dataframe which wraps the Pandas API and enables multi-CPU and multi-machine execution for high compute and big data applications.

It also works brilliantly on a single machine and your author has used it to process very large datasets just on a laptop, using code that’s 99% “normal Pandas”, but where the dataset could never easily fit into Pandas. As such for a Pandas user the Dask library offers a relatively easy path to scaling to larger problems.

Polars is a strong competitor dataframe library released in 2020. Due to its rapid evolution we’ll discuss some results and architectural decisions later, but we’ll leave out code samples. Anything we write is likely to be out of date shortly after publication.

This project is very interesting, the API is still evolving (perhaps making it better suited for now to research roles or smaller pipelines), the execution speed is typically much faster than if Pandas is used and your author has found it easier to learn than Pandas.

Pandas

First we’ll take a look at the Pandas library, which builds upon numpy and arrow by
taking columns of homogeneous data and storing them in a table of heterogeneous
types. Whilst Pandas is incredibly
popular with scientific developers and data scientists, there’s a lot of
misinformation about ways to make it run quickly; we address some of these
issues and give you tips for writing performant and supportable analysis code.

Note

For this edition we’re using Pandas v2.2.0 (2024). When Pandas 3.0 releases we’ll expect to see some performance changes, you’ll want to run your own benchmarks

Sometimes, however, your numerical algorithms also require quite a lot of data
wrangling and manipulation that aren’t just clear-cut mathematical operations. In
these cases, Pandas is a very popular solution, and it has its own performance
characteristics. We’ll now do a deep dive into Pandas and understand how to
better use it to write performant numerical code.

Warning

GenAI tools that have consumed old advice for Pandas are likely to mix poor and good optimization suggestions - you’ll need to be diligent and run your benchmarks to avoid propagating popular-but-old approaches that might negatively impact performance.

Pandas is the de facto data manipulation tool in the scientific Python ecosystem
for tabular data. It enables easy manipulation with Excel-like tables of
heterogeneous datatypes, known as DataFrames, and has strong support for
time-series operations. Both the public interface and the internal machinery
have evolved a lot since 2008, and there’s a lot of conflicting information in
public forums on “fast ways to solve problems.” In this section, we’ll fix some
misconceptions about common use cases of Pandas.

We’ll review the internal model for Pandas, find out how to apply a function
efficiently across a DataFrame, see why concatenating to a DataFrame repeatedly
is a poor way to build up a result, and look at faster ways of handling strings.

Pandas’s Internal Model

Pandas uses an in-memory, 2D, table-like data structure—if you have in mind an
Excel sheet, you have a good initial mental model. Originally, Pandas focused
on NumPy’s dtype objects such as signed and unsigned numbers for each column.
As the library evolved, it expanded beyond NumPy types and can now handle both Python
strings and extension types (including nullable Int64 objects—note the
capital “I”—and IP addresses).

Operations on a DataFrame apply to all cells in a column (or all cells in a row
if the axis=1 parameter is used), all operations are executed eagerly, and
there’s no support for query planning. Operations on columns often generate
temporary intermediate arrays, which consume RAM. The general advice is to expect
a temporary memory usage envelope of up to three to five times your current usage when you’re

manipulating your DataFrames. Typically, Pandas works well for datasets under
10 GB in size, assuming you have sufficient RAM for temporary results.

Note

Pandas 3.0 introduces a Copy on Write mode which is expected to be enabled by default. This mode can be enabled in Pandas 2.1+. This mode reduces or elimates many of the background copies which can significantly reduce memory pressure. Some API changes occur as a consequence so your code may require some modification. The benefits of the reduced memory pressure include improved execution speed - the changes are well worth your time.

Operations can be single-threaded and may be limited by Python’s global interpreter lock (GIL).
Increasingly, improved internal implementations are allowing the GIL to be
disabled automatically, enabling parallelized operations. We’ll explore an
approach to parallelization with Dask in “Dask for Distributed Data Structures and DataFrames”.

Behind the scenes, columns of the same dtype are grouped together by a
BlockManager. This piece of hidden machinery works to make row-wise operations
on columns of the same datatype faster. It is one of the many hidden technical details
that make the Pandas code base complex but
make the high-level user-facing operations faster.2

Performing operations on a subset of data from a single common block typically
generates a view, while taking a slice of rows that cross blocks of different
dtypes can cause a copy, which may be slower. One consequence is that while
numeric columns directly reference their NumPy data, string columns reference a
list of Python strings, and these individual strings are scattered in memory—this
can lead to unexpected speed differences for numeric and string operations.

Behind the scenes, Pandas uses a mix of NumPy datatypes and its own extension
datatypes. Examples from NumPy include int8 (1 byte), int64 (8 bytes—and note
the lowercase “i”), float16 (2 bytes), float64 (8 bytes), and bool (1 byte).
Additional types provided by Pandas include categorical and datetimetz.
Externally, they appear to work similarly, but behind the scenes in the Pandas
code base they cause a lot of type-specific Pandas code and duplication.

Note

Whilst Pandas originally used only numpy datatypes, it has evolved its own set
of additional Pandas datatypes that understand missing data (NaN) behavior
with three-valued logic. You must distinguish the numpy int64, which is not
NaN-aware, from the Pandas Int64, which uses two columns of data behind the
scenes for the integers and for the NaN bit mask. Note that the numpy
float64 is naturally NaN-aware.

One side effect of using NumPy’s datatypes has been that, while a float has a
NaN (missing value) state, the same is not true for int and bool objects. If
you introduce a NaN value into an int or bool Series in Pandas, your Series
will be promoted to a float. Promoting int types to a float may reduce the
numeric accuracy that can be represented in the same bits, and the smallest
float is float16, which takes twice as many bytes as a bool.

The nullable Int64 (note the capitalized “I”) was introduced in version 0.24
as an extension type in Pandas. Internally, it uses a NumPy int64 and a second
Boolean array as a NaN-mask. Equivalents exist for Int32 and Int8. As of
Pandas version 1.0, there is also an equivalent nullable Boolean (with dtype
boolean as opposed to the numpy bool, which isn’t NaN-aware). A
StringDType has been introduced that may in the future offer higher
performance and less memory usage than the standard Python str, which is stored
in a column of object dtype.

Arrow and NumPy

Pandas 2.x introduced PyArrow as a new storage backend to complement the default NumPy array storage. Both backends have different strengths and weaknesses, their behaviours also change with each release of Pandas.

By default when loading data NumPy was always used in RAM. For floating point and integer numbers this was reasonably sensible. For strings this was often awful - the string representation used in NumPy is very expensive on RAM (each string is repeated regardless of whether it is unique) and very slow to operate on.

When the Arrow represenation was introduced we had a new way to store floating point, integer, string, boolean and date objects. The biggest wins are with either strings (which use a compressed represenation and save a huge amount of RAM) or with integers where you want to have missing data without converting the integers to floating point (as happens with NumPy).

In benchmarks for conference talks your author can say that Arrow is almost always a better choice for string data. For numeric data the RAM usage may not vary much compared to NumPy storage and execution times may be faster or slower depending on the operation.

It would be quite reasonable to use the common NumPy arrays for numeric data and to only use PyArrow for string data. If your data is large and you’re loading from a Parquet source (as opposed to pickle or csv files), loading from Parquet and converting to NumPy would be slow - you’d probably be better off overall by staying with PyArrow as behind the scenes Arrow is used as the data format inside Parquet files.

One performance consideration to remember is that the “Numba” compiler does not support Arrow data, so only NumPy columns will have faster Numba-backed computation if you’re using the engine argument.

Applying a Function to Many Rows of Data

It is very common to apply functions to rows of data in Pandas. There’s a
selection of approaches, and the idiomatic Python approaches using loops are
generally the slowest. We’ll work through an example based on a real-world
challenge, showing different ways of solving this problem and ending with a
reflection on the trade-off between speed and maintainability.

Ordinary Least Squares (OLS) is a bread-and-butter method in data science for fitting
a line to data. It solves for the slope and intercept in the
m * x + c equation, given some data. This can be incredibly useful when trying to
understand the trend of the data: is it generally increasing, or is it
decreasing?

An example of its use from our work is a research project for a
telecommunications company where we want to analyze a set of potential
user-behavior signals (e.g., marketing campaigns, demographics, and geographic
behavior). The company has the number of hours a person spends on
their cell phone every day, and its question is: is this person increasing or
decreasing their usage, and how does this change over time?

One way to approach this problem is to take the company’s large dataset of millions of
users over years of data and break it into smaller windows of data (each
window, for example, representing 14 days out of the years of data). For
each window, we model the users’ use through OLS and record whether they
are increasing or decreasing their usage.

In the end, we have a sequence for each user showing
whether, for a given 14-day period, their use was generally increasing or
decreasing. However, to get there, we have to run OLS a massive number of
times!

For one million users and two years of data, we might have 730 windows,3 and thus 730,000,000 calls to OLS! To
solve this problem practically, our OLS implementation should be fairly well tuned.

In order to understand the performance of various OLS implementations, we will
generate some smaller but representative synthetic data to give us
good indications of what to expect on the larger dataset. We’ll generate data
for 100,000 rows, each representing a synthetic user, and each containing 14
columns representing “hours used per day” for 14 days, as a continuous
variable.

We’ll draw from a Poisson distribution (with lambda==60 as minutes) and divide
by 60 to give us simulated hours of usage as continuous values. The true nature
of the random data doesn’t matter for this experiment; it is convenient to use a
distribution that has a minimum value of 0 as this represents the real-world
minimum. You can see a sample in Example 6-1.

Example 6-1. A snippet of our data

 0 1 2 ... 12 13
0 1.016667 0.883333 1.033333 ... 1.016667 0.833333
1 1.033333 1.016667 0.833333 ... 1.133333 0.883333
2 0.966667 1.083333 1.183333 ... 1.000000 0.950000

In Figure 6-1, we see three rows of 14 days
of synthetic data.

[image: Pandas memory grouped into dtype-specific blocks]
Figure 6-1. Synthetic data for the first three simulated users showing 14 days of cell phone usage

A bonus of generating 100,000 rows of data is that some rows will, by random
variation alone, exhibit “increasing counts,” and some will exhibit “decreasing
counts.” Note that there is no signal behind this in our synthetic data since
the points are drawn independently; simply because we generate many rows of data,
we’re going to see a variance in the ultimate slopes of the lines we calculate.

This is convenient, as we can identify the “most growing” and “most declining”
lines and draw them as a validation that we’re identifying the sort of signal we
hope to export on the real-world problem.
Figure 6-2 shows two of our random traces
with maximal and minimal slopes (m).

[image: Pandas memory grouped into dtype-specific blocks]
Figure 6-2. The “most increasing” and “most decreasing” usage in our randomly generated dataset

We’ll start with scikit-learn’s LinearRegression estimator to calculate each m. While this method is correct, we’ll see
in the following section that it incurs a surprising overhead against another approach.

Which OLS implementation should we use?

Example 6-2 shows three implementations that we’d like to try.
We’ll evaluate the scikit-learn implementation against the direct linear algebra
implementation using NumPy. Both methods ultimately perform the same job and
calculate the slopes (m) and intercept (c) of the target data from each
Pandas row given an increasing x range (with values [0, 1, …​, 13]).

scikit-learn will be a default choice for many machine learning practitioners, while
a linear algebra solution may be preferred by those coming from other
disciplines.

Example 6-2. Solving Ordinary Least Squares with NumPy and scikit-learn

def ols_sklearn(row):
 """Solve OLS using scikit-learn's LinearRegression"""
 est = LinearRegression()
 X = np.arange(row.shape[0]).reshape(-1, 1) # shape (14, 1)
 # note that the intercept is built inside LinearRegression
 est.fit(X, row.values)
 m = est.coef_[0] # note c is in est.intercept_
 return m

def ols_lstsq(row):
 """Solve OLS using numpy.linalg.lstsq"""
 # build X values for [0, 13]
 X = np.arange(row.shape[0]) # shape (14,)
 ones = np.ones(row.shape[0]) # constant used to build intercept
 A = np.vstack((X, ones)).T # shape(14, 2)
 # lstsq returns the coefficient and intercept as the first result
 # followed by the residuals and other items
 m, c = np.linalg.lstsq(A, row.values, rcond=-1)[0]
 return m

def ols_lstsq_raw(row):
 """Variant of `ols_lstsq` where row is a numpy array (not a Series)"""
 X = np.arange(row.shape[0])
 ones = np.ones(row.shape[0])
 A = np.vstack((X, ones)).T
 m, c = np.linalg.lstsq(A, row, rcond=-1)[0]
 return m

Surprisingly, if we call ols_sklearn 10,000 times with the timeit module, we
find that it takes at least 0.515 microseconds to execute, while ols_lstsq on
the same data takes 0.072 microseconds. The popular scikit-learn solution takes
more than seven times as long as the terse NumPy variant!

Building on the profiling from “Using line_profiler for Line-by-Line Measurements”, we can use the object
interface (rather than the command line or Jupyter magic interfaces) to learn
why the scikit-learn implementation is slower.

Note

Be aware that sklearn makes extensive use of decorators and LineProfiler will profile the decorator, not the underlying __wrapped__ function, so it is necessary to follow the advice in this section to look inside the wrapped function to profile the desired (and somewhat hidden) function!

In
Example 6-3, we tell LineProfiler to profile est.fit
(that’s the scikit-learn fit method on our LinearRegression estimator) and
then call run with arguments based on the DataFrame we used before.

Example 6-3. Digging into scikit-learn’s LinearRegression.fit call and finding the wrapper

...
lp = LineProfiler(est.fit)
print("Run on a single row")
lp.run("est.fit(X, row.values)")
lp.print_stats()

Line # ... % Time Contents
====== ... ===============
 1456 ... @functools.wraps(fit_method)
 1457 ... def wrapper(estimator, *args, **kwargs):
 1458 ... 0.2 global_skip_validation = \
 get_config()["skip_parameter_validation"]
 1459 ...
 1460 ... # we don't want to validate again for each
 call to partial_fit
 1461 ... 0.0 partial_fit_and_fitted = (
 1462 ... 0.0 fit_method.__name__ == "partial_fit" and \
 _is_fitted(estimator)
 1463 ...)
 1464 ...
 1465 ... 0.0 if not global_skip_validation and not \
 partial_fit_and_fitted:
 1466 ... 13.1 estimator._validate_params()
 1467 ...
 1468 ... 2.8 with config_context(
 1469 ... skip_parameter_validation=(
 1470 ... 0.0 prefer_skip_nested_validation or \
 global_skip_validation
 1471 ...)
 1472 ...):
 1473 ... 83.9 return fit_method(estimator, *args, **kwargs)

The obvious suprise is that we don’t profile .fit but instead a wrapper function! With scikit-learn’s growth more the greater complexity makes profiling a bit harder. Reading up on decorators reveals that they contain a __wrapped__ attribute. We can see that over 80% of the execution is within the fit_method - if instead we profile est.fit.__wrapped_ then we get what we need in Example 6-4.

Example 6-4. Digging into scikit-learn’s LinearRegression.fit call behind the wrapper

...
lp = LineProfiler(est.fit.__wrapped__) # hook behind the decorator
print("Run on a single row")
lp.run("est.fit(X, row.values)")
lp.print_stats()

Line # ... % Time Line Contents
====== ... ======================
 581 ... @_fit_context(prefer_skip_nested_validation=True)
 582 ... def fit(self, X, y, sample_weight=None):
 583 ... """
 584 ... Fit linear model.
...
 604 ... """
...
 609 ... 40.2 X, y = self._validate_data(
 610 ... 0.0 X,
 611 ... 0.0 y,
 612 ... 0.0 accept_sparse=accept_sparse,
 613 ... 0.0 y_numeric=True,
 614 ... 0.0 multi_output=True,
 615 ... 0.0 force_writeable=True,
 616 ...)
...
 629 ... 43.8 X, y, X_offset, y_offset, X_scale =
 _preprocess_data(
 630 ... 0.0 X,
 631 ... 0.0 y,
 632 ... 0.0 fit_intercept=self.fit_intercept,
 633 ... 0.0 copy=copy_X_in_preprocess_data,
 634 ... 0.0 sample_weight=sample_weight)
...
 687 ... 13.1 self.coef_, _, self.rank_, self.singular_ =
 linalg.lstsq(X, y)

We see a couple of surprises. The very last line of fit calls the same
linalg.lstsq that we’ve called in ols_lstsq—so what else is going on to
cause our slowdown? LineProfiler reveals that scikit-learn is calling two
other expensive methods, namely _validate_data and _preprocess_data.

In total the two checker lines take over 85% of the execution time! 13% of our execution is on the linalg.lstsq call which is roughly 1/7th of the time in the fuction, this explains the seven-time difference to a straight linalg.lstsq call noted earlier.

Both of these functions are designed to help us avoid making mistakes—indeed, your author
Ian has been saved repeatedly from passing in inappropriate data such as a
wrongly shaped array or one containing NaNs to scikit-learn estimators. A
consequence of this checking is that it takes more time—more safety makes
things run slower! We’re trading developer time (and sanity) against execution
time.

Inside Example 6-5 we add three more functions for profiling (one in the class, one in the module, one in another module). These allow me to see exactly which checks are taking time on this dataset. This required some iteration, digging into the source code of each function and deciding which additional functions needed to be monitored.

Example 6-5. Digging into scikit-learn’s LinearRegression.fit call and the underlying functions

lp = LineProfiler(est.fit.__wrapped__)
lp.add_function(est._validate_data) # _validate_data is a part of the class
from sklearn.linear_model import _base
lp.add_function(_base._preprocess_data) # _preprocess_data is a module function
from sklearn.utils import check_X_y
lp.add_function(check_X_y)
print("Run on a single row with __wrapped__")
lp.run("est.fit(X, row.values)")
lp.print_stats()

Behind the scenes, these two methods are performing various checks, including these:

	
Checking for appropriate sparse NumPy arrays (even though we’re using dense arrays in this example)

	
Offsetting the input array to a mean of 0 to improve numerical stability on wider data ranges than we’re using

	
Checking that we’re providing a 2D X array

	
Checking that we’re not providing NaN or Inf values

	
Checking that we’re providing non-empty arrays of data

Generally, we prefer to have all of these checks enabled—they’re here to help
us avoid painful debugging sessions, which kill developer productivity. If we
know that our data is of the correct form for our chosen algorithm, these
checks will add a penalty. It is up to you to decide when the safety of these
methods is hurting your overall productivity.

scikit-learn has a global parameter system and using sklearn.set_config(skip_parameter_validation=True) we can disable some of the checks at the wrapper level, but not the more expensive checks inside fit.

As a general rule—stay with the safer implementations (scikit-learn, in this
case) unless you’re confident that your data is in the right form and you’re
optimizing for performance. We’re after increased performance, so we’ll continue
with the ols_lstsq approach.

Applying lstsq to our rows of data

We’ll start with an approach that many Python developers who come from other
programming languages may try. This is not idiomatic Python, nor is it common
or even efficient for Pandas. It does have the advantage of being very easy to
understand. In Example 6-6, we’ll iterate over the index of the
DataFrame from row 0 to row 99,999; on each iteration we’ll use iloc to
retrieve a row, and then we’ll calculate OLS on that row.

The calculation is common to each of the following methods—what’s different is
how we iterate over the rows. This method takes 7.3 seconds.

Behind the scenes, each dereference is expensive—iloc does a lot of work to
get to the row using a fresh row_idx, which is then converted into a new Series
object, which is returned and assigned to row.

Example 6-6. Our worst implementation—counting and fetching rows one at a time with iloc

ms = []
for row_idx in range(df.shape[0]):
 row = df.iloc[row_idx]
 m = ols_lstsq(row)
 ms.append(m)
results = pd.Series(ms)

Next, we’ll take a more idiomatic Python approach: in
Example 6-7, we iterate over the rows using iterrows, which
looks similar to how we might iterate over a Python iterable (e.g., a list or
set) with a for loop. This method looks sensible and is a little slower—it
takes 7.9 seconds. row is still
created as a fresh Series on each iteration of the loop.

Example 6-7. iterrows for more efficient and “Python-like” row operations

ms = []
for row_idx, row in df.iterrows():
 m = ols_lstsq(row)
 ms.append(m)
results = pd.Series(ms)

Example 6-8 skips a lot of the Pandas machinery, so a lot of
overhead is avoided. apply passes the function ols_lstsq a new row of data
directly (again, a fresh Series is constructed behind the scenes for each row)
without creating Python intermediate references. This costs 3.9 seconds—this
is a significant improvement, and the code is more compact and readable!

Example 6-8. apply for idiomatic Pandas function application

ms = df.apply(ols_lstsq, axis=1)
results = pd.Series(ms)

Our final variant in Example 6-9 uses the same apply call
with an additional raw=True argument. Using raw=True stops the creation of an intermediate
Series object. As we don’t have a Series object, we have to use our third OLS function, ols_lstsq_raw; this variant has direct access to the underlying NumPy array.

By avoiding the creation and dereferencing of an intermediate Series
object, we shave our execution time a little more, down to 3.1 seconds.

Example 6-9. Avoiding intermediate Series creation using raw=True

ms = df.apply(ols_lstsq_raw, axis=1, raw=True)
results = pd.Series(ms)

The use of raw=True gives us the option to compile with Numba
(“Numba to Compile NumPy for Pandas”) or with Cython as it removes the complication
of compiling Pandas layers that currently aren’t supported.

We’ll summarize the execution times in Table 6-1 for
100,000 rows of data on a single window of 14 columns of simulated data. New Pandas users often use
iloc and iterrows (or the similar itertuples) when apply would be preferred.

By performing our analysis and considering our potential need to perform OLS on
1,000,000 rows by up to 730 windows of data, we can see that a first naive
approach combining iloc with ols_sklearn might cost 10 (our larger dataset
factor) * 730 * 7 seconds * 7 (our slowdown factor against ols_lstsq) == 99
hours.

If we used ols_lstsq_raw and our fastest approach, the same calculations might take 10 * 730 * 3 seconds == 6 hours. This is a significant saving for a task that represents what might be a suite of similar operations. We’ll see even faster solutions if we compile and run on multiple cores.

Table 6-1. Cost for using lstsq with various Pandas row-wise approaches

	Method
	Time in seconds

	iloc

	7.3

	iterrows

	7.9

	apply

	3.9

	apply raw=True

	3.1

Earlier we discovered that the scikit-learn approach adds significant overhead
to our execution time by covering our data with a safety net of checks. We can
remove this safety net but with a potential cost on developer debugging time.
Your authors strongly urge you to consider adding unit-tests to your code that
would verify that a well-known and well-debugged method is used to test any
optimized method you settle on.

If you added a unit test to compare the
scikit-learn LinearRegression approach against ols_lstsq, you’d be giving
yourself and other colleagues a future hint about why you developed a less
obvious solution to what appeared to be a standard problem.

Having experimented, you may also conclude that the heavily tested scikit-learn approach is more than fast enough for your application and that you’re more comfortable using a library that is well known by other developers. This could be a very sane conclusion.

Later in “Dask for Distributed Data Structures and DataFrames”, we’ll look at running Pandas operations across
multiple cores by dividing data into groups of rows using Dask and Swifter.

Next we look at compiling the raw=True variant of
apply to achieve an order of magnitude speedup. Compilation and
parallelization can be combined for a really significant final speedup, dropping
our expected runtime from around 10 hours to just 30 minutes.

Numba to Compile NumPy for Pandas

In “Pandas”, we looked at solving the slope calculation task for 100,000 rows of data in a Pandas DataFrame using Ordinary Least Squares. We can make that approach an order of magnitude faster by using Numba.

Note

Be aware that Numba cannot compile PyArray arrays, only NumPy arrays, so the compiled speed-ups only work (at the time of writing) if you’re using NumPy for your storage.

We can take the ols_lstsq_raw function that we used before and, decorated with numba.jit as shown in Example 6-10, can generate a compiled variant. In this edition, Numba can compile only NumPy datatypes, not Pandas types like Series.

Example 6-10. Solving Ordinary Least Squares with numpy on a Pandas DataFrame

def ols_lstsq_raw(row):
 """Variant of `ols_lstsq` where row is a numpy array (not a Series)"""
 X = np.arange(row.shape[0])
 ones = np.ones(row.shape[0])
 A = np.vstack((X, ones)).T
 m, c = np.linalg.lstsq(A, row, rcond=-1)[0]
 return m

generate a Numba compiled variant
ols_lstsq_raw_values_numba = jit(ols_lstsq_raw, nopython=True)

results = df.apply(ols_lstsq_raw_values_numba, axis=1, raw=True)

The first time we call this function in, we get the expected short delay while the function is compiled; processing 100,000 rows takes 4.9 seconds including compilation time. Subsequent calls to process 100,000 rows are very fast—the noncompiled ols_lstsq_raw takes 3.1 seconds per 100,000 rows, whereas after using Numba it takes 0.66 seconds. That’s nearly a tenfold speedup!

More recently a fast-path for Numba compilation has been added, if instead we supply the function to be compiled (rather than pre-compiling it) and ask apply to use engine="numba" we’ll get a faster outcome. The call will be results = df.apply(ols_lstsq_raw, axis=1, raw=True, engine="numba") and execution drops from 0.66 seconds to 0.40 seconds.

Tip

Many Pandas functions have the optional engine argument which lets you enable either the Cython compiler (for small gains) or the Numba compiler (typically for much better gains) - after you’ve profiled and found your bottlenecks you’ll want to check the documentation to see if this gives you an easy win

Going one final step we can ask Numba to use the automated parallelization system to split the task across multiple cores. results = df.apply(ols_lstsq_raw, axis=1, raw=True, engine="numba", engine_kwargs={'parallel':True}) takes longer to compile (circa 10 seconds) on the first run, then drops to 0.13 seconds for each subsequent execution.

By moving from raw=True with no compilation to Numba with parallelized execution we’ve reduced our calculation time from 3.1 seconds to 0.13 - a clear 23x speed-up!

Building DataFrames and Series from Partial Results Rather than Concatenating

You may have wondered in Example 6-6 why we built up a list of
partial results that we then turned into a Series, rather than incrementally
building up the Series as we went. Our earlier approach required building up a
list (which has a memory overhead) and then building a second structure for
the Series, giving us two objects in memory. This brings us to another
common mistake when using Pandas and NumPy.

As a general rule, you should avoid repeated calls to concat in Pandas (and to
the equivalent concatenate in NumPy). In Example 6-11,
we see a similar solution to the preceding one but without the intermediate ms
list. This solution takes 14 seconds, as opposed to the solution using a list at
7 seconds!

Example 6-11. Concatenating each result incurs a significant overhead—avoid this!

results = None
for row_idx in range(df.shape[0]):
 row = df.iloc[row_idx]
 m = ols_lstsq(row)
 if results is None:
 results = pd.Series([m])
 else:
 results = pd.concat((results, pd.Series([m])))

Each concatenation creates an entirely new Series object in a new section of
memory that is one row longer than the previous item. In addition, we have to
make a temporary Series object for each new m on each iteration.

In Figure 6-3 we capture the time taken to do each 10% of the concatenations, we can see that each subsequent concat operation is slower than the previous. The overall cost of concatenating 100,000 rows ends up being almost twice as slow by concat than when it started.

[image: Iterative concatenation to a Series becomes increasingly slow]
Figure 6-3. Iterative concatenation to a Series becomes increasingly slow

We strongly recommend building up lists of intermediate results and then constructing a Series
or DataFrame from this list, rather than concatenating to an existing object.

This same advice applies to building up results in NumPy.

There’s More Than One (and Possibly a Faster) Way to Do a Job

Because of the evolution of Pandas, there are typically a couple of approaches to
solving the same task, some of which incur more overhead than others. Let’s take the OLS
DataFrame and convert one column into a string; we’ll then time some string
operations. With string-based columns containing names, product identifiers, or
codes, it is common to have to preprocess the data to turn it into something we
can analyze.

Let’s say that we need to find the location, if it exists, of the number
9 in the digits from one of the columns. While this operation serves no real
purpose, it is very similar to checking for the presence of a code-bearing symbol
in an identifier’s sequence or checking for an honorific in a name. Typically
for these operations, we’d use strip to remove extraneous whitespace, lower
and replace to normalize the string, and find to locate something of
interest.

In Example 6-12, we first build a new Series named
0_as_str, which is the zeroth Series of random numbers converted into a printable
string form. We’ll then run two variants of string manipulation code—both
will remove the leading digit and decimal point and then use Python’s find to
locate the first 9 if it exists, returning –1
otherwise.

Example 6-12. str Series operations versus apply for string processing

In [10]: df['0_as_str'] = df[0].apply(lambda v: str(v))
Out[10]:
 0 0_as_str
0 1.016667 1.0166666666666666
1 1.033333 1.0333333333333334
2 0.966667 0.9666666666666667
...

def find_9(s):
 """Return -1 if '9' not found else its location at position >= 0"""
 return s.split('.')[1].find('9')

In [11]: df['0_as_str'].str.split('.', expand=True)[1].str.find('9')
Out[11]:
0 -1
1 -1
2 0

In [12]: %timeit df['0_as_str'].str.split('.', expand=True)[1].str.find('9')
146 ms ± 8.34 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [13]: %timeit df['0_as_str'].apply(find_9)
51.7 ms ± 222 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

The one-line approach uses Pandas’s str operations to access Python’s string
methods for a Series. For split, we expand the returned result into two columns
(the first column contains the leading digit, and the second contains everything after the
decimal place), and we select column 1. We then apply find to locate the digit
9. The second approach uses apply and the function find_9, which reads like a
regular Python string-processing function.

We can use %timeit to check the runtime—this shows us that there’s a 3× speed difference between the two methods, even though they both produce the same result! In the former one-line case, Pandas has to make several new intermediate Series objects, which adds overhead; in the find_9 case, all of the string-processing work occurs one line at a time without creating new intermediate Pandas objects.

Further benefits of the apply approach are that we could parallelize this
operation (see “Dask for Distributed Data Structures and DataFrames” for an example with Dask
and Swifter), and we can write a unit test that succinctly confirms the
operations performed by find_9, which will aid in readability and maintenance.

Advice for Effective Pandas Development

Install the optional dependencies numexpr and bottleneck for additional
performance improvements. These don’t get installed by default, and you won’t be
told if they’re missing. numexpr will give significant speedups in some situations when you use exec.
You can test for the presence of both in your environment with import
bottleneck and import numexpr.

Don’t write your code too tersely; remember to make your code easy to read and
debug to help your future self. While the “method chaining” style is supported,
your authors would caution against chaining too many rows of Pandas operations
in sequence. It typically becomes difficult to figure out which line has
problems when debugging, and then you have to split up the lines—you’re better
off chaining only a couple of operations together at most to simplify your
maintenance.

Avoid doing more work than necessary: it is preferable to filter your data
before calculating on the remaining rows rather than filtering after
calculating, if possible. For high performance in general, we want to ask the
machine to do as little computation as possible; if you can filter out or mask
away portions of your data, you’re probably winning.

If you’re consuming from a
SQL source and later joining or filtering in Pandas, you might want to try to
filter first at the SQL level, to avoid pulling more data than necessary into
Pandas. You may not want to do this at first if you’re investigating data
quality, as having a simplified view on the variety of datatypes you have might
be more beneficial.

Check the schema of your DataFrames as they evolve; with a tool like pandera,
you guarantee at runtime that your schema is being met, and you can visually
confirm when you’re reviewing code that your expectations are being met.

Keep
renaming your columns as you generate new results so that your DataFrame’s
contents make sense to you; sometimes groupby and other operations give you
silly default names, which can later be confusing. Drop columns that you no
longer need with .drop() to reduce bloat and memory usage.

For large Series containing strings with low cardinality (“yes” and “no,” for example, or
“type_a,” “type_b,” and “type_c”), try converting the Series to a Category dtype
with df['series_of_strings'].astype('category'); you may find that operations like
value_counts and groupby run faster, and the Series is likely to consume less
RAM.

Similarly, you may want to convert 8-byte float64 and int64 columns to
smaller datatypes—perhaps the 2-byte float16 or 1-byte int8 if you need a
smaller range to further save RAM.

As you evolve DataFrames and generate new copies, remember that you can use the
del keyword to delete earlier references and clear them from memory, if they’re
large and wasting space. You can also use the Pandas drop method to delete
unused
columns.

If you’re manipulating large DataFrames while you prepare your data for
processing, it may make sense to do these operations once in a function or a
separate script and then persist the prepared version to disk by using
to_pickle. You can subsequently work on the prepared DataFrame without having
to process it each time.

Avoid the inplace=True operator—in-place operations are scheduled to be
removed from the library over time.

Finally, always add unit tests to any processing code, as it will quickly become
more complex and harder to debug. Developing your tests up front guarantees that
your code meets your expectations and helps you to avoid silly mistakes
creeping in later that cost developer time to debug.

Existing tools for making Pandas go faster include
Modin and the GPU-focused
cuDF. Modin and cuDF take different
approaches to parallelizing common data operations on a Pandas DataFrame–like
object.

Dask for Distributed Data Structures and DataFrames

Dask aims to provide a suite of parallelization solutions that scales from a single core on a laptop to multicore machines to thousands of cores in a cluster. Think of it as “Apache Spark lite.” If you don’t need all of Apache Spark’s functionality (which includes replicated writes and multimachine failover) and you don’t want to support a second computation and storage environment, then Dask may provide the parallelized and bigger-than-RAM solution you’re after.

Dask is a tried and tested library, commonly used in financial services and scientific organisations where large (often Parquet-based) datasets and CPU-intense computations occur in productionized pipelines.

A task graph is constructed for the lazy evaluation of a number of computation scenarios, including pure Python, scientific Python, and machine learning with small, medium, and big datasets:

	Bag

	
bag enables parallelized computation on unstructured and semistructured data, including text files, JSON or user-defined objects. map, filter, and groupby are supported on generic Python objects, including lists and sets.

	Array

	
array enables distributed and larger-than-RAM numpy operations. Many common operations are supported, including some linear algebra functions. Operations that are inefficient across cores (sorting, for example, and many linear algebra operations) are not supported. Threads are used, as NumPy has good thread support, so data doesn’t have to be copied during parallelized operations.

	Distributed DataFrame

	
dataframe enables distributed and larger-than-RAM Pandas operations; behind the scenes, Pandas is used to represent partial DataFrames that have been partitioned using their index. Operations are lazily computed using .compute() and otherwise look very similar to their Pandas counterparts. Supported functions include groupby-aggregate, groupby-apply, value_counts, drop_duplicates, and merge. By default, threads are used, but as Pandas is more GIL-bound than NumPy, you may want to look at the Process or Distributed scheduler options.

	Delayed

	
delayed extends the idea we introduced with Joblib in “Replacing multiprocessing with Joblib” to parallelize chains of arbitrary Python functions in a lazy fashion. A visualize() function will draw the task graph to assist in diagnosing issues.

	Futures

	
The Client interface enables immediate execution and evolution of tasks, unlike delayed, which is lazy and doesn’t allow operations like adding or destroying tasks. The Future interface includes Queue and Lock to support task
collaboration.

	Dask-ML

	
A scikit-learn-like interface is provided for scalable machine learning. Dask-ML provides cluster support to some scikit-learn algorithms, and it reimplements some algorithms (e.g., the linear_model set) using Dask to enable learning on big data. It closes some of the gap to the Apache Spark distributed machine learning toolkit. It also provides support for XGBoost and TensorFlow to be used in a Dask cluster.

Diagnostics

One of the difficulties with any distributed system is diagnosing errors, failures and performance issues. Over multiple conversations with end users your author has learned that people who learn Dask are pleasantly surprised by the richness of the Dask diagnostic environment compared to a tool like PySpark which they’ve otherwise been using.

One of the upsides of Dask for a Python team is that all the tracebacks are in Python (unlike perhaps Java for PySpark users).

The main Dask diagnostic dashboard lists:

	
Bytes stored per worker (to help identify if workers are running out of RAM)

	
Task stream (a live view of color-coded types of work running on each worker)

	
Task occupancy (broken down by CPU, Data Transfer and more)

	
Overall progress (a Gantt-chart like display)

The above diagnostics alone are very useful to determine if a cluster is under-utilized or either CPU-bound or RAM-bound. Up to date diagrams and tutorials can be found on the Dashboards 4 web page.

If CPU-bound then all of the workers sit at 100% CPU usage, you’ll soon wonder what happens if you made more CPUs available.

If RAM-bound then you’d typically see workers being repeatedly killed due to hitting their RAM limit and that’ll make you wonder about either adding RAM, increasing the RAM limit per worker if RAM is available, or reducing the number of workers to make more RAM available to those that remain. Another route is to think about the underlying task graph and to think about whether it can be simplified - perhaps by breaking larger operations into smaller steps which introduce less RAM pressure.

Each of the distributed dataframes is a Pandas dataframe - one of the easiest ways to reduce RAM pressure is to split these dataframes into smaller units with fewer rows in each.

The task stream can be useful for at-a-glance diagnostics. If you see lots of white-space between tasks, then for some reason your CPUs are idle - often because the right data hasn’t yet been provided. This gives you a clue to think about your task graph and how you might experiment with changing your code.

Each task graph can be vizualised using ddf.visualize(filename="graph.png"), this uses dot to write out the task graph. Whilst these can be complex to follow, they’ll typically comprise repeated blocks of work which you can reasonably easily tie back to each line of code.

In the Dashboard the task graph can be interactively visualized - your author has found this useful when looking at a live system to think about where the graph seems to be stalling. This has led to hypotheses that could be tested until a solution is found.

Parallel Pandas with Dask

For Pandas users, Dask can help in two use cases: larger-than-RAM datasets and a desire for multicore parallelization.

If your dataset is larger than Pandas can fit into RAM, Dask can split the dataset by rows into a set of partitioned DataFrames called a Distributed DataFrame. These DataFrames are split by their index; a subset of operations can be performed across each partition. As an example, if you have a set of multi-GB CSV files and want to calculate value_counts across all the files, Dask will perform partial value_counts on each DataFrame (one per file) and then combine the results into a single set of counts.

A large subset of Pandas’ common functionality is available with little or no code change, once you’re using a distributed dataframe. Some operations have limits - an apply only works with axis=1 (across-the-row) whilst the column-wise variant axis=0 won’t work through Dask - due to the data being split in row chunks.

A second use case is to take advantage of the multiple cores on your laptop (and just as easily across a cluster); we’ll examine this use case here. Recall that in Example 6-2, we calculated the slope of the line across rows of values in a DataFrame with various approaches. Let’s use the two fastest approaches and parallelize them with Dask.

Tip

You can use Dask (and Swifter, discussed in the next section) to parallelize any side-effect-free function that you’d usually use in an apply call. Ian has done this for numeric calculations and for calculating text metrics on multiple columns of text in a large DataFrame.

Dask Expressions

The dask-expr library was added to the Dask library in 2024 - it introduces a query optimization framework that’s mostly invisible to the developer. This library can compress operations to remove duplication or redundancy and so reduce the need to manually tune a set of Dask operations.

An example of inefficiency prior to this would be to read all rows from a Parquet dataframe, then inside Dask to filter away many rows, then to choose several columns for a set of operations. We could manually request that only a subset of rows that match a predicte filter would be loaded and that only a subset of columns would be loaded - this significantly reduces the amount of bytes being pulled from storage, but requires intervention by the developer.

One of the goals of dask-expr is to identify the subsets of data you need and to only pull in this data - transparently.

As of 2024 this library is a required dependency and it works transparently in the background on distributed dataframes. If you previously had tried Dask and found that optimizing the query for good performance consumed a lot of your time - you may want to go back and revisit your benchmarks.

Parallelized computations

With Dask, we have to specify the number of partitions to make from our DataFrame; a good rule of thumb is to use at least as many partitions as cores so that each core can be used. In Example 6-13, we ask for eight partitions. We use dd.from_pandas to convert our regular Pandas DataFrame into a Dask Distributed DataFrame split into eight equal-sized sections.

We call our familiar ddf.apply on the Distributed DataFrame, specifying our function ols_lstsq and the optional expected return type via the meta argument. Dask requires us to specify when we should apply the computation with the compute() call; here, we specify the use of processes rather than the default threads to spread our work over multiple cores, avoiding Python’s GIL.

Example 6-13. Calculating line slopes with multiple cores using Dask

import dask.dataframe as dd

df = pd.concat([df] * 40) # fake a 40x larger dataframe

N_PARTITIONS = 8
ddf = dd.from_pandas(df, npartitions=N_PARTITIONS, sort=False)
SCHEDULER = "processes"

results = ddf.apply(ols_lstsq, axis=1, meta=(None, 'float64',)). \
 compute(scheduler=SCHEDULER)

Running ols_lstsq_raw in Example 6-14 with the same eight partitions (on eight physical cores) in Ian’s laptop, we go from the previous single-threaded apply on 40x the original data in 80 seconds to 65 seconds using Dask.

The results are not huge, but demonstrate that with a CPU bound function and enough distribution, you could expect to see larger gains, especially on large and slow embarrassingly parallel problems.

Example 6-14. Calculating line slopes with multiple cores using Dask

results = ddf.apply(ols_lstsq_raw, axis=1, meta=(None, 'float64',), raw=True). \
 compute(scheduler=SCHEDULER)

Running ols_lstsq_raw with the same eight partitions takes us from the previous single-threaded apply result of 52 seconds. If we also use the compiled Numba function from “Numba to Compile NumPy for Pandas” with raw=True, our runtime can drop further.

Parallelized apply with Swifter on Dask

Swifter builds on Dask to provide three parallelized options with very simple calls—apply, resample, and rolling. Behind the scenes, it takes a subsample of your DataFrame and attempts to vectorize your function call. If that works, Swifter will apply it; if it works but it is slow, Swifter will run it on multiple cores using Dask.

Since Swifter uses heuristics to determine how to run your code, it could run slower than if you didn’t use it at all—but the “cost” of trying it is one line of effort. It is well worth evaluating.

Swifter makes its own decisions about how many cores to use with Dask and how many rows to sample for its evaluation; as a result, in Example 6-15 we see the call to df.swifter...apply() looks just like a regular call to df.apply. In this case, we’ve disabled the progress bar; the progress bar works fine in a Jupyter Notebook using the excellent tqdm library.

Example 6-15. Calculating line slopes with multiple cores using Dask

import swifter

results = df.swifter.progress_bar(False).apply(ols_lstsq_raw, axis=1, raw=True)

Swifter with ols_lstsq_raw and no partitioning choices takes our previous single-threaded result of 80 seconds to 65 seconds (similar to the Dask result). For this particular function and dataset it doesn’t offer much gain - the but speedup comes for only one line of code. For different functions and datasets, you’ll see different results; it is definitely worth an experiment to see whether you can achieve a very easy win.

Polars for Fast DataFrames

Polars is a young and rapidly evolving competitor to Pandas. Early in its life the API changed rapidly making it hard to depend upon for production systems. Your author has spoken to hedge fund teams who now routinely use Polars for both research and some production processes, suggesting that it is proving its stability.

In comparision to Pandas it has some clear advantages:

	
It has a cleaner API which is easier to learn

	
It uses Arrow, rather than both Arrow & NumPy (simplifying the code base)

	
It has a query optimizer baked in

	
It supports both greedy and delayed computation

Your author has found it easier to think about a problem when using Polars as typically there’s one more obvious way to express a solution to a problem. In Pandas there are many ways to solve each problem, leading to complex and non-obvious solutions.

Warning

Since Polars is young there are few public examples for GenAI solutions to learn from - be aware that you could well receive suggestions which are hallucinations from related tools like Pandas which might cause you confusion!

Polars can accept data that’s stored in NumPy (e.g. when constructing a dataframe) but internally it only uses Arrow. By ignoring support for NumPy on the inside the codebase does not have to double-up logic around how some operations work, as happens in Pandas.

The built-in query optimizer is very interesting - a lot of work has gone into both the query optimizer to reorder and simplify steps and to then make them execute efficiently. This includes automated parallelization where possible, without requiring intervention from the developer.

A consequence of these design decisions is that in your authors benchmarking for conference talks Polars is typically faster - sometimes 2x-10x - than Pandas for an equivalent set of lines of code when the data is held in RAM.

If the data is larger than RAM then an experimental streaming mode can allow a Dask-like processing mode where only some of the data is loaded into RAM as needed in a way that’s transparent to the developer. In this case hand-optimized Dask code and non-tuned Polars code can have similar performance. Also remember that all benchmarks are wrong - run your own benchmarks on your own data.

Wrap-Up

In the next chapter, we will talk about how to create your own external modules
that can be finely tuned to solve specific problems with much greater
efficiencies. This allows us to follow the rapid prototyping method of making
our programs—first solve the problem with slow code, then identify the elements
that are slow, and finally, find ways to make those elements faster. By
profiling often and trying to optimize only the sections of code we know are slow,
we can save ourselves time while still making our programs run as fast as
possible.

1 https://wesmckinney.com/blog/apache-arrow-pandas-internals/
2 See the DataQuest blog post “Tutorial: Using Pandas with Large Data Sets in Python” for more details.
3 If we’re going to use a sliding window, it might be possible to apply rolling window optimized functions such as RollingOLS from statsmodels.
4 https://docs.dask.org/en/latest/dashboard.html

Chapter 7. Compiling to C

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 8th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
How can I have my Python code run as lower-level code?

	
What is the difference between a JIT compiler and an AOT compiler?

	
What tasks can compiled Python code perform faster than native Python?

	
Why do type annotations speed up compiled Python code?

	
How can I write modules for Python using C or Fortran?

	
How can I use libraries from C or Fortran in Python?

The easiest way to get your code to run faster is to make it do less work.
Assuming you’ve already chosen good algorithms and you’ve reduced the amount of
data you’re processing, the easiest way to execute fewer instructions is to
compile your code down to machine code.

Python offers a number of options for this, including pure C-based compiling approaches
like Cython; LLVM-based compiling via Numba; and the
replacement virtual machine PyPy, which includes a built-in just-in-time (JIT)
compiler. You need to balance the requirements of code adaptability and team
velocity when deciding which route to take.

Each of these tools adds a new dependency to your toolchain, and Cython requires you to write in a new language type (a hybrid of Python and C), which means you need a new skill. Cython’s new language may hurt your team’s velocity, as team members without knowledge of C may have trouble supporting this code; in practice, though, this is probably a minor concern, as you’ll use Cython only in well-chosen, small regions of your code.

It is worth noting that performing CPU and memory profiling on your code will probably start you thinking about higher-level algorithmic optimizations that you might apply. These algorithmic changes (such as additional logic to avoid computations or caching to avoid recalculation) could help you avoid doing unnecessary work in your code, and Python’s expressivity helps you to spot these algorithmic opportunities. Radim Řehůřek discusses how a Python implementation can beat a pure C implementation in [Link to Come].

In this chapter we’ll review the following:

	
Cython, the most commonly used tool for compiling to C, covering both numpy and normal Python code (requires some knowledge of C)

	
Numba, a compiler specialized for numpy code

	
PyPy, a stable just-in-time compiler generally for non-numpy code that is a replacement for the normal Python executable

Later in the chapter we’ll look at foreign function interfaces, which allow C code to be compiled into extension modules for Python. Python’s native API is used with ctypes or with cffi (from the authors of PyPy), along with the f2py Fortran-to-Python converter.

What Sort of Speed Gains Are Possible?

Gains of an order of magnitude or more are quite possible if your problem yields
to a compiled approach. Here, we’ll look at various ways to achieve speedups of one to two orders of
magnitude on a single core, along with using multiple cores through
OpenMP.

Python code that tends to run faster after compiling is mathematical,
and it has lots of loops that repeat the same operations many times. Inside these loops, you’re probably making lots of temporary objects.

Code that calls out to external libraries (such as regular expressions, string
operations, and calls to database libraries) is unlikely to show any speedup after
compiling. Programs that are I/O-bound are also unlikely to show significant speedups.

Similarly, if your Python code focuses on calling vectorized numpy routines, it may not run any faster after compilation—it’ll run faster only if the code being compiled is mainly Python (and probably if it is mainly looping). We looked at numpy
operations in [Link to Come]; compiling doesn’t really help because there aren’t many intermediate objects.

Overall, it is very unlikely that your compiled code will run any faster than a handcrafted C routine, but it is also unlikely to run much slower. It is quite possible that the generated C code from your Python will run as fast as a handwritten C routine, unless the C coder has particularly good knowledge of ways to tune the C code to the target machine’s architecture.

For math-focused code, it is possible that a handcoded Fortran routine will beat an equivalent C routine, but again, this probably requires expert-level knowledge. Overall, a compiled result (probably using Cython) will be as close to a handcoded-in-C result as most programmers will need.

Keep the diagram in Figure 7-1 in mind when you profile and work on your algorithm. A small amount of work understanding your code through profiling should enable you to make smarter choices at an algorithmic level. After this, some focused work with a compiler should buy you an additional speedup. It will probably be possible to keep tweaking your algorithm, but don’t be surprised to see increasingly small improvements coming from increasingly large amounts of work on your part. Know when additional effort isn’t useful.

[image:]
Figure 7-1. Some effort profiling and compiling brings a lot of reward, but continued effort tends to pay increasingly less

If you’re dealing with Python code and batteries-included libraries without
numpy, Cython and PyPy are your main choices. If you’re working
with numpy, Cython and Numba are the right choices. Cython and Numba support Python 3.11+, PyPy is written to Python 3.10 at the time of publication.

Some of the following examples require a little understanding of C compilers and
C code. If you lack this knowledge, you should learn a little C and compile
a working C program before diving in too deeply.

JIT Versus AOT Compilers

The tools we’ll look at split roughly into two sets: tools for compiling ahead of time, or AOT
(Cython), and tools for compiling “just in time,” or JIT (Numba, PyPy).

By compiling AOT, you create a static library that’s specialized to
your machine. If you download numpy, scipy, or scikit-learn, it will compile parts of the library using Cython on your machine (or you’ll use
a prebuilt compiled library, if you’re using a distribution like Continuum’s
Anaconda). By compiling ahead of use, you’ll have a library that can instantly be
used to work on solving your problem.

By compiling JIT, you don’t have to do much (if any) work up front; you
let the compiler step in to compile just the right parts of the code at the time
of use. This means you have a “cold start” problem—if most of your program
could be compiled and currently none of it is, when you start running your
code, it’ll run very slowly while it compiles. If this happens every time you
run a script and you run the script many times, this cost can become
significant. PyPy suffers from this problem, so you may not want to use it for short but
frequently running scripts.

The current state of affairs shows us that compiling ahead of time buys us the
best speedups, but often this requires the most manual effort. Just-in-time
compiling offers some impressive speedups with very little manual intervention, but it can also run into the problem just described.
You’ll have to consider these trade-offs when choosing the right technology for
your problem.

Why Does Type Information Help the Code Run Faster?

Python is dynamically typed—a variable can refer to an object of any type,
and any line of code can change the type of the object that is referred to.
This makes it difficult for the virtual machine to optimize how the code is
executed at the machine code level, as it doesn’t know which fundamental datatype
will be used for future operations. Keeping the code generic makes it run more
slowly.

In the following example, v is either a floating-point number or a pair of
floating-point numbers that represent a complex number. Both conditions could occur in
the same loop at different points in time, or in related serial sections of code:

v = -1.0
print(type(v), abs(v))

<class 'float'> 1.0

v = 1-1j
print(type(v), abs(v))

<class 'complex'> 1.4142135623730951

The abs function works differently depending on the underlying datatype. Using abs
for an integer or a floating-point number turns a negative
 value into a positive value. Using abs for a complex number involves taking the
 square root of the sum of the squared components:

 a
 b
 s

 (
 c
)

 =

 c
 .
 r
 e
 a
 l 2
 +
 c
 .
 i
 m
 a
 g 2

The machine code for the complex example involves more instructions and will
take longer to run. Before calling abs on a variable, Python first has to
look up the type of the variable and then decide which version of a function to
call—this overhead adds up when you make a lot of repeated calls.

Inside Python, every fundamental object, such as an integer, will be wrapped up in a
higher-level Python object (e.g., an int for an integer). The higher-level
object has extra functions like __hash__ to assist with storage and __str__
for printing.

Inside a section of code that is CPU-bound, it is often the case that the types
of variables do not change. This gives us an opportunity for static compilation
and faster code execution.

If all we want are a lot of intermediate mathematical operations, we don’t
need the higher-level functions, and we may not need the machinery for reference
counting either. We can drop down to the machine code level and do our
calculations quickly using machine code and bytes, rather than manipulating the
higher-level Python objects, which involves greater overhead. To do this, we
determine the types of our objects ahead of time so we can generate the correct
C code.

Using a C Compiler

In the following examples, we’ll use gcc and g++ from the GNU C Compiler
toolset. You could use an alternative compiler (e.g., Intel’s icc or
Microsoft’s cl) if you configure your environment correctly. Cython uses
gcc.

gcc is a very good choice for most platforms; it is well supported and quite
advanced. It is often possible to squeeze out more performance by using a tuned
compiler (e.g., Intel’s icc may produce faster code than gcc on Intel
devices), but the cost is that you have to gain more domain knowledge and learn
how to tune the flags on the alternative compiler.

C and C++ are often used for static compilation rather than other languages like
Fortran because of their ubiquity and the wide range of supporting libraries. The
compiler and the converter, such as Cython, can study the annotated code to determine whether static optimization
steps (like inlining functions and unrolling loops) can be applied.

Aggressive
analysis of the intermediate abstract syntax tree (performed by Numba and PyPy)
provides opportunities to combine knowledge of Python’s way of
expressing things to inform the underlying compiler how best to take advantage
of the patterns that have been seen.

Reviewing the Julia Set Example

Back in Chapter 2 we profiled the Julia set generator.
This code uses integers and complex numbers to produce an output image. The
calculation of the image is CPU-bound.

The main cost in the code was the CPU-bound nature of the inner loop that
calculates the output list. This list can be drawn as a square pixel array,
where each value represents the cost to generate that pixel.

The code for the inner function is shown in Example 7-1.

Example 7-1. Reviewing the Julia function’s CPU-bound code

def calculate_z_serial_purepython(maxiter, zs, cs):
 """Calculate output list using Julia update rule"""
 output = [0] * len(zs)
 for i in range(len(zs)):
 n = 0
 z = zs[i]
 c = cs[i]
 while n < maxiter and abs(z) < 2:
 z = z * z + c
 n += 1
 output[i] = n
 return output

On Ian’s laptop, the original Julia set calculation on a 1,000 × 1,000 grid with
maxiter=300 takes approximately 6 seconds using a pure Python implementation
running on CPython 3.12.

Cython

Cython is a compiler that converts type-annotated
Python into a compiled extension module. The type annotations are C-like. This
extension can be imported as a regular Python module using import. Getting
started is simple, but a learning curve must be climbed with each
additional level of complexity and optimization. For Ian, this alongside Numba are the tools of
choice for turning calculation-bound functions into faster code. Cython stands out because of its maturity and its more flexible OpenMP support.

With the OpenMP standard, it is possible to convert parallel problems into
multiprocessing-aware modules that run on multiple CPUs on one machine. The
threads are hidden from your Python code; they operate via the generated C code.

Cython (announced in 2007) is a fork of Pyrex (announced in 2002) that expands the
capabilities beyond the original aims of Pyrex. Libraries that use Cython
include SciPy, scikit-learn, lxml, and ZeroMQ.

Cython can be used via a setup.py script to compile a module. It can also be
used interactively in IPython via a “magic” command and inside Jupyter Notebooks.

Typically, the types are annotated by the developer, although some automated annotation is possible. Normally it takes more work to get fast Cython code compared to using Numba.

With the recent Cython 3.0 release it is possible to annotate both a pure-Python .py file and the more usual .pyx file. For pure Python code either can be used, for NumPy compilation it is expected that .pyx files are used so that’s the style we focus on here.

Compiling a Pure Python Version Using Cython

The easy way to begin writing a compiled extension module involves three files.
Using our Julia set as an example, they are as follows:

	
The calling Python code (the bulk of our Julia code from earlier)

	
The function to be compiled in a new .pyx file

	
A setup.py that contains the instructions for calling Cython to make
the extension module

Using this approach, the setup.py script is called to use Cython to
compile the .pyx file into a compiled module. On Unix-like systems, the
compiled module will probably be a .so file; on Windows it should be a .pyd
(DLL-like Python library).

For the Julia example, we’ll use the following:

	
julia1.py to build the input lists and call the calculation function

	
cythonfn.pyx, which contains the CPU-bound function that we can annotate

	
setup.py, which contains the build instructions

The result of running setup.py is a module that can be imported. In our
julia1.py script in Example 7-2, we need only to make some tiny changes to import the new
module and call our function.

Example 7-2. Importing the newly compiled module into our main code

...
import cythonfn # as defined in setup.py
...
def calc_pure_python(desired_width, max_iterations):
 # ...
 start_time = time.time()
 output = cythonfn.calculate_z(max_iterations, zs, cs)
 end_time = time.time()
 secs = end_time - start_time
 print(f"Took {secs:0.2f} seconds")
...

In Example 7-3, we will start with a pure Python version without type annotations.

Example 7-3. Unmodified pure Python code in cythonfn.pyx (renamed from .py) for Cython’s setup.py

cythonfn.pyx
def calculate_z(maxiter, zs, cs):
 """Calculate output list using Julia update rule"""
 output = [0] * len(zs)
 for i in range(len(zs)):
 n = 0
 z = zs[i]
 c = cs[i]
 while n < maxiter and abs(z) < 2:
 z = z * z + c
 n += 1
 output[i] = n
 return output

The setup.py script shown in Example 7-4 is short; it defines how to convert cythonfn.pyx into
calculate.so.

Example 7-4. setup.py, which converts cythonfn.pyx into C code for compilation by Cython

from setuptools import setup

from Cython.Build import cythonize
setup(ext_modules=cythonize("cythonfn.pyx"))

When we run the setup.py script in Example 7-5 with the argument build_ext, Cython will look
for cythonfn.pyx and build cythonfn[…​].so.

Note

Remember that this is a manual step—if you update your .pyx or setup.py and forget to rerun the build command, you won’t have an updated .so module to import. If you’re unsure whether you compiled the code, check the timestamp for the .so file. If in doubt, delete the generated C files and the .so file and build them again.

Example 7-5. Running setup.py to build a new compiled module

$ python setup.py build_ext --inplace
Compiling cythonfn.pyx because it changed.
[1/1] Cythonizing cythonfn.pyx
running build_ext
building 'cythonfn' extension
gcc -pthread -B ...

The --inplace argument tells Cython to build the compiled module into the
current directory rather than into a separate build directory. After the build
has completed, we’ll have the intermediate cythonfn.c, which is rather hard to
read, along with cythonfn[…​].so.

Now when the julia1.py code is run, the compiled module is imported, and the
Julia set is calculated on Ian’s laptop in 4.2 seconds, rather than the more
usual 6 seconds. This is a useful improvement for very little effort.

pyximport

A simplified build system has been introduced via pyximport. If your code has a simple setup and doesn’t require third-party modules, you may be able to do away with setup.py completely.

By importing pyximport as seen in Example 7-6 and calling install, any subsequently imported .pyx file will be automatically compiled. This .pyx file can include annotations, or in this case, it can be the unannotated code. The result runs in 4.2 seconds, as before; the only difference is that we didn’t have to write a setup.py file.

Example 7-6. Using pyximport to replace setup.py

import pyximport
pyximport.install()
import cythonfn
followed by the usual code
...
 output = cythonfn.calculate_z(max_iterations, zs, cs)
...

This approach has limitations but can be an easy way to start writing Cython.

Cython Annotations to Analyze a Block of Code

The preceding example shows that we can quickly build a compiled module. For tight
loops and mathematical operations, this alone often leads to a speedup.
Obviously, though, we should not optimize blindly—we need to know which lines of code take a lot of time so we can
decide where to focus our efforts.

Cython has an annotation option that will output an HTML file we can view
in a browser. We use the command cython -a cythonfn.pyx, and
the output file cythonfn.html is generated. Viewed in a browser, it looks
something like Figure 7-2. A similar image is available in the Cython documentation.

[image:]
Figure 7-2. Colored Cython output of unannotated function

Each line can be expanded with a double-click to show the generated C code. More yellow
means “more calls into the Python virtual machine,” while more white means “more non-Python C code.”
The goal is to remove as many of the yellow lines as possible and end up with
as much white as possible.

Although “more yellow lines” means more calls into the virtual machine, this won’t necessarily cause your code to run slower. Each call into the virtual machine has a cost, but the cost of those calls will be significant only if the calls occur inside large loops. Calls outside large loops (for example, the line used to create output at the start of the function) are not expensive relative to the cost of the inner calculation loop. Don’t waste your time on the lines that don’t cause a slowdown.

In our example, the lines with the most calls back into the Python virtual machine (the “most yellow”) are lines 8 and 9. From our previous profiling work, we know that line 8 is likely to be called over 30 million times, so that’s a great candidate to focus on.

Line 9 is inside the tight inner loop and is in part responsible for the bulk of the execution time of this function, so we need to focus on these first. Refer back to “Using line_profiler for Line-by-Line Measurements” if you need to remind yourself of how much time is spent in this section.

Lines 6 and 7 are less yellow, and since they’re called only 1 million times, they’ll have a much smaller effect on the final speed, so we can focus on them later. In fact, since they are list objects, there’s actually nothing we can do to speed up their access except, as you’ll see in “Cython and numpy”, to replace the list objects with numpy arrays, which will buy a small speed advantage.

To better understand the yellow regions, you can expand each line.
In Figure 7-3, we can see that to create the output list, we iterate over
the length of zs, building new Python objects that are reference-counted by
the Python virtual machine. Even though these calls are expensive, they won’t really affect the execution time of this function.

To improve the execution time of our function, we need to start declaring the types of objects that are involved in the expensive inner loops. These loops can then make fewer of the relatively expensive calls back into the Python virtual machine, saving us time.

In general, the lines that probably cost the most CPU time are those:

	
Inside tight inner loops

	
Dereferencing list, array, or np.array items

	
Performing mathematical operations

[image:]
Figure 7-3. C code behind a line of Python code

Tip

If you don’t know which lines are most frequently executed, using a profiling tool—line_profiler, discussed in “Using line_profiler for Line-by-Line Measurements”, would be the most appropriate. You’ll learn which lines are executed most frequently and which lines cost the most inside the Python virtual machine, so you’ll have clear evidence of which lines you need to focus on to get the best speed gain.

Adding Some Type Annotations

Figure 7-2 shows that almost every line of our function is calling back into the
Python virtual machine. All of our numeric work is also calling back into Python
as we are using the higher-level Python objects. We need to convert these into
local C objects, and then, after doing our numerical coding, we need to convert the
result back to a Python object.

In Example 7-7, we see how to add some primitive types by using the cdef syntax.

Note

It is important to note that these types will be understood only by Cython and
not by Python. Cython uses these types to convert the Python code to C objects,
which do not have to call back into the Python stack; this means the operations run at a
faster speed, but they lose flexibility and development speed.

The types we add are as follows:

	
int for a signed integer

	
unsigned int for an integer that can only be positive

	
double complex for double-precision complex numbers

The cdef keyword lets us declare variables inside the function body. These must be
declared at the top of the function, as that’s a requirement from the C language specification.

Example 7-7. Adding primitive C types to start making our compiled function run faster by doing more work in C and less via the Python virtual machine

def calculate_z(int maxiter, zs, cs):
 """Calculate output list using Julia update rule"""
 cdef unsigned int i, n
 cdef double complex z, c
 output = [0] * len(zs)
 for i in range(len(zs)):
 n = 0
 z = zs[i]
 c = cs[i]
 while n < maxiter and abs(z) < 2:
 z = z * z + c
 n += 1
 output[i] = n
 return output

Note

When adding Cython annotations, you’re adding non-Python code to the .pyx file. This means you lose the interactive nature of developing Python in the interpreter. For those of you familiar with coding in C, we go back to the code-compile-run-debug cycle.

You might wonder if we could add a type annotation to the lists that we pass in.
We can use the list keyword, but this has no practical effect for this
example. The list objects still have to be interrogated at the Python level to
pull out their contents, and this is very slow.

The act of giving types to some of the primitive objects is reflected in the annotated output in Figure 7-4. Critically, lines 11 and 12—two of our most frequently called lines—have now turned from yellow to white, indicating that they no longer call back to the Python virtual machine. We can anticipate a great speedup compared to the previous version.

[image:]
Figure 7-4. Our first type annotations

After compiling, this version takes 0.43 seconds to complete. With only a few
changes to the function, we are running at 13 times the speed of the original Python
version.

It is important to note that the reason we are gaining speed is that more of
the frequently performed operations are being pushed down to the C level—in
this case, the updates to z and n. This means that the C compiler can
optimize the way the lower-level functions are operating on the bytes that represent
these variables, without calling into the relatively slow Python virtual
machine.

As noted earlier in this chapter, abs for a complex number involves taking the square root of
the sum of the squares of the real and imaginary components. In our test, we want
to see if the square root of the result is less than 2. Rather than taking the
square root, we can instead square the other side of the comparison, so we turn
< 2 into < 4. This avoids having to calculate the square root as the
final part of the abs function.

In essence, we started with

 c
 .
 r
 e
 a
 l 2
 +
 c
 .
 i
 m
 a
 g 2

 <

 4

and we have simplified the operation to

 c
 .
 r
 e
 a
 l 2
 +
 c
 .
 i
 m
 a
 g 2
 <
 4

If we retained the sqrt operation in the following code, we would still see an
improvement in execution speed. One of the secrets to optimizing code is to make
it do as little work as possible. Removing a relatively expensive operation by
considering the ultimate aim of a function means that the C compiler can focus
on what it is good at, rather than trying to intuit the programmer’s ultimate
needs.

Writing equivalent but more specialized code to solve the same problem is known as strength reduction. You trade worse flexibility (and possibly worse readability) for faster execution.

This mathematical unwinding leads to
Example 7-8, in which we have replaced the
relatively expensive abs function with a simplified line of expanded
mathematics.

Example 7-8. Expanding the abs function by using Cython

def calculate_z(int maxiter, zs, cs):
 """Calculate output list using Julia update rule"""
 cdef unsigned int i, n
 cdef double complex z, c
 output = [0] * len(zs)
 for i in range(len(zs)):
 n = 0
 z = zs[i]
 c = cs[i]
 while n < maxiter and (z.real * z.real + z.imag * z.imag) < 4:
 z = z * z + c
 n += 1
 output[i] = n
 return output

By annotating the code, we see that the while on line 10 (Figure 7-5) has become a little more yellow—it looks as though it might be doing more work rather than less. It isn’t immediately obvious how much of a speed gain we’ll get, but we know that this line is called over 30 million times, so we anticipate a good improvement.

This change has a dramatic effect—by reducing the number of Python calls in
the innermost loop, we greatly reduce the calculation time of the function. This new version completes in just 0.23 seconds,
an amazing 26× speedup over the original version. As ever, take a guide from what you see, but measure to test all of your changes!

[image:]
Figure 7-5. Expanded math to get a final win

Note

Cython supports several methods of compiling to C, some easier than the full-type-annotation method described here. You should familiarize yourself with the pure Python mode if you’d like an easier start to using Cython, and look at pyximport to ease the introduction of Cython to colleagues.

For a final possible improvement on this piece of code, we can disable bounds
checking for each dereference in the list. The goal of the bounds checking is to
ensure that the program does not access data outside the allocated array—in
C it is easy to accidentally access memory outside the bounds of an array, and this will give
unexpected results (and probably a segmentation fault!).

By default, Cython protects the developer from accidentally addressing outside
the list’s limits. This protection costs a little bit of CPU time, but it occurs in
the outer loop of our function, so in total it won’t account for much time. Disabling bounds checking is usually safe unless you are performing your own
calculations for array addressing, in which case you will have to be careful to
stay within the bounds of the list.

Cython has a set of flags that can be expressed in various ways. The easiest is
to add them as single-line comments at the start of the .pyx file. It is also
possible to use a decorator or compile-time flag to change these settings. To
disable bounds checking, we add a directive for Cython inside a comment at the
start of the .pyx file:

#cython: boundscheck=False
def calculate_z(int maxiter, zs, cs):

As noted, disabling the bounds checking will save only a little bit of time as it
occurs in the outer loop, not in the inner loop, which is more expensive. For
this example, it doesn’t save us any more time.

Tip

Try disabling bounds checking and wraparound checking if your CPU-bound code is in a loop that is dereferencing items frequently.

Cython and numpy

list objects (for background, see Chapter 3) have an overhead for each dereference, as the objects they reference
can occur anywhere in memory. In contrast, array objects store primitive types in contiguous blocks of RAM, which enables faster
addressing.

Python has the array module, which offers 1D storage for basic primitives
(including integers, floating-point numbers, characters, and Unicode strings).
NumPy’s numpy.array module allows multidimensional storage and a wider range
of primitive types, including complex numbers.

When iterating over an array object in a predictable fashion, the compiler can be
instructed to avoid asking Python to calculate the appropriate address and
instead to move to the next primitive item in the sequence by going directly to its memory
address. Since the data is laid out in a contiguous block, it is trivial to
calculate the address of the next item in C by using an offset, rather than asking
CPython to calculate the same result, which would involve a slow call back into
the virtual machine.

You should note that if you run the following numpy version without any
Cython annotations (that is, if you just run it as a plain Python script), it’ll take about
8 seconds to run—slower than the plain Python list version, which takes
around 6 seconds. The slowdown is because of the overhead of dereferencing
individual elements in the numpy lists—it was never designed to be used this
way, even though to a beginner this might feel like the intuitive way of handling
operations. By compiling the code, we remove this overhead.

Cython has two special syntax forms for this. Older versions of Cython had a
special access type for numpy arrays, but more recently the generalized buffer
interface protocol has been introduced through the memoryview—this allows
the same low-level access to any object that implements the buffer interface,
including numpy arrays and Python arrays.

An added bonus of the buffer interface is that blocks of memory can easily be
shared with other C libraries, without any need to convert them from Python
objects into another form.

The code block in Example 7-9 looks a little
like the original implementation, except that we have added memoryview
annotations. The function’s second argument is double complex[:] zs, which
means we have a double-precision complex object using the buffer protocol
 as specified using [], which contains a one-dimensional data block specified by
the single colon :.

Example 7-9. Annotated numpy version of the Julia calculation function

cythonfn.pyx
import numpy as np
cimport numpy as np

def calculate_z(int maxiter, double complex[:] zs, double complex[:] cs):
 """Calculate output list using Julia update rule"""
 cdef unsigned int i, n
 cdef double complex z, c
 cdef int[:] output = np.empty(len(zs), dtype=np.int32)
 for i in range(len(zs)):
 n = 0
 z = zs[i]
 c = cs[i]
 while n < maxiter and (z.real * z.real + z.imag * z.imag) < 4:
 z = z * z + c
 n += 1
 output[i] = n
 return output

In addition to specifying the input arguments by using the buffer annotation syntax,
we also annotate the output variable, assigning a 1D numpy array to it via
empty. The call to empty will allocate a block of memory but will not
initialize the memory with sane values, so it could contain anything. We will
overwrite the contents of this array in the inner loop so we don’t need to
reassign it with a default value. This is slightly faster than allocating and
setting the contents of the array with a default value.

We also expanded the call to abs by using the faster, more explicit math
version. This version runs in 0.20 seconds—a slightly faster result
than the original Cythonized version of the pure Python Julia example in
Example 7-8. In Figure 7-6 we see the cython -a output for our NumPy variant.

[image:]
Figure 7-6. Expanded math to get a final win

The pure Python version has an
overhead every time it dereferences a Python complex object, but these
dereferences occur in the outer loop and so don’t account for much of the
execution time. After the outer loop, we make native versions of these variables,
and they operate at “C speed.” The inner loop for both this numpy example and
the former pure Python example are doing the same work on the same data, so the
time difference is accounted for by the outer loop dereferences and the creation
of the output arrays.

For reference, if we use the preceding code but don’t expand the abs math, then the Cythonized result takes 0.41 seconds. This result makes it identical to the earlier equivalent pure Python version’s runtime.

Parallelizing the Solution with OpenMP on One Machine

As a final step in the evolution of this version of the code, let’s look at the
use of the OpenMP C++ extensions to parallelize our embarrassingly parallel
problem. If your problem fits this pattern, you can quickly take advantage
of multiple cores in your computer.

Open Multi-Processing (OpenMP is a well-defined cross-platform API that
supports parallel execution and memory sharing for C, C++, and Fortran. It is
built into most modern C compilers, and if the C code is written appropriately, the parallelization occurs at the compiler level, so it comes with
relatively little effort to the developer through Cython.

With Cython, OpenMP can be added by using the prange (parallel range) operator and
adding the -fopenmp compiler directive to setup.py. Work in a prange loop
can be performed in parallel because we disable the (GIL). The GIL protects access to Python objects, preventing multiple threads or processes from accessing the same memory simultaneously, which might lead to corruption. By manually disabling the GIL, we’re asserting that we won’t corrupt our own memory. Be careful when you do this, and keep your code as simple as possible to avoid subtle bugs.

A modified version of the code with prange support is shown in Example 7-10.
with nogil: specifies the block, where the GIL is disabled; inside this block, we use prange to enable an OpenMP parallel for loop to independently calculate each i.

Warning

When disabling the GIL, we must not operate on regular Python objects (such as
lists); we must operate only on primitive objects and objects that support the
memoryview interface. If we operated on normal Python objects in parallel, we’d have to solve the associated memory-management problems that the GIL
deliberately avoids. Cython doesn’t prevent us from manipulating Python objects,
and only pain and confusion can result if you do this!

Example 7-10. Adding prange to enable parallelization using OpenMP

cythonfn.pyx
from cython.parallel import prange
import numpy as np
cimport numpy as np

def calculate_z(int maxiter, double complex[:] zs, double complex[:] cs):
 """Calculate output list using Julia update rule"""
 cdef unsigned int i, length
 cdef double complex z, c
 cdef int[:] output = np.empty(len(zs), dtype=np.int32)
 length = len(zs)
 with nogil:
 for i in prange(length, schedule="guided"):
 z = zs[i]
 c = cs[i]
 output[i] = 0
 while output[i] < maxiter and (z.real * z.real + z.imag * z.imag) < 4:
 z = z * z + c
 output[i] += 1
 return output

To compile cythonfn.pyx, we have to modify the setup.py script as shown in Example 7-11. We tell it
to inform the C compiler to use -fopenmp as an argument during compilation to
enable OpenMP and to link with the OpenMP libraries.

Example 7-11. Adding the OpenMP compiler and linker flags to setup.py for Cython

#setup.py
from setuptools import setup
from distutils.extension import Extension
import numpy as np

ext_modules = [
 Extension(
 "cythonfn",
 ["cythonfn.pyx"],
 extra_compile_args=["-fopenmp"],
 extra_link_args=["-fopenmp"],
)
]

from Cython.Build import cythonize

setup(ext_modules=cythonize(ext_modules), include_dirs=[np.get_include()])

With Cython’s prange, we can choose different scheduling approaches. With
static, the workload is distributed evenly across the available CPUs. Some of
our calculation regions are expensive in time, and some are cheap. If we ask Cython
to schedule the work chunks equally using static across the CPUs, the
results for some regions will complete faster than others, and those threads will
then sit idle.

Both the dynamic and guided schedule options attempt to mitigate this
problem by allocating work in smaller chunks dynamically at runtime, so that
the CPUs are more evenly distributed when the workload’s calculation time is
variable. The correct choice will vary depending on the nature of
your workload.

By introducing OpenMP and using schedule="guided", we drop our execution time to
approximately 0.03 seconds—the guided schedule will dynamically assign work, so
fewer threads will wait for new work.

We also could have disabled the bounds checking for this example by using #cython:
boundscheck=False, but it wouldn’t improve our runtime.

Numba

Numba from Continuum Analytics is a just-in-time compiler that specializes in numpy code, which it compiles via the LLVM compiler (not via
g++ or gcc++, as used by our earlier examples) at runtime. It doesn’t require a
precompilation pass, so when you run it against new code, it compiles each annotated function
for your hardware. The beauty is that you provide a decorator telling it which functions to focus on and then you let Numba take over. It aims to run on all standard numpy code.

Numba has been rapidly evolving since the first edition of this book. It is now fairly stable, so if you use numpy arrays and have nonvectorized code that iterates
over many items, Numba should give you a quick and very painless win. Numba does not bind to external C libraries (which Cython can do), but it can automatically generate code for GPUs (which Cython cannot).

One drawback when using Numba is the toolchain—it uses LLVM, and
this has many dependencies. We recommend that you use Continuum’s Anaconda
distribution, as everything is provided; otherwise, getting Numba installed in a fresh
environment can be a very time-consuming task.

Example 7-12 shows the addition of the @jit decorator to
our core Julia function. This is all that’s required; the fact that numba has
been imported means that the LLVM machinery kicks in at execution time to
compile this function behind the scenes.

Example 7-12. Applying the @jit decorator to a function

from numba import jit
...
@jit
def calculate_z_serial_purepython(maxiter, zs, cs, output):

If the @jit decorator is removed, this is just the numpy version of
the Julia demo running with Python 3.12, and it takes 8 seconds. Adding the
@jit decorator drops the execution time to 0.89 seconds. This is close
to the result we achieved with Cython, but without all of the annotation effort.

If we run the same function a second time in the same Python session, it runs even faster at 0.39 seconds—there’s no need to compile the target function on the second pass if the argument types are the same, so the overall execution speed is faster. On the second run, the Numba result is equivalent to the Cython with numpy result we obtained before (so it came out as fast as Cython for very little work!). PyPy has the same warm-up requirement.

If we use the expanded-math variant we drop down to 0.19 seconds for the 2nd and subsequent runs, equal to the equivalent Cython code for hardly any developer effort.

If you’d like to read another view on what Numba offers, see [Link to Come], where core developer Valentin Haenel talks about the @jit decorator, viewing the original Python source, and going further with parallel options and the typed List and typed Dict for pure Python compiled interoperability.

Just as with Cython, we can add OpenMP parallelization support with prange. Example 7-13 expands the decorator to require parallel. Adding parallel enables support for prange. This version drops the general runtime from 0.39 seconds to 0.05 seconds. Currently Numba lacks support for OpenMP scheduling options (and with Cython, the guided scheduler runs slightly faster for this problem), but we expect support will be added in a future version.

Example 7-13. Using prange to add parallelization

@jit(parallel=True)
def calculate_z(maxiter, zs, cs, output):
 """Calculate output list using Julia update rule"""
 for i in prange(len(zs)):
 n = 0
 z = zs[i]
 c = cs[i]
 while n < maxiter and (z.real*z.real + z.imag*z.imag) < 4:
 z = z * z + c
 n += 1
 output[i] = n

When debugging with Numba, it is useful to note that you can ask Numba to show both the intermediate representation and the types for the function call.
 In Example 7-14, we can see that calculate_z takes an int64 and three array types.

Example 7-14. Debugging inferred types

print(calculate_z.inspect_types())
calculate_z (int64,
Array(complex128, 1, 'C', False, aligned=True),
Array(complex128, 1, 'C', False, aligned=True),
Array(int32, 1, 'C', False, aligned=True))

Example 7-15 shows the continued output from the call to inspect_types(), where each line of compiled code is shown augmented by type information. This gives you a view on the low-level code decisions that have been made.

Example 7-15. Viewing the intermediate representation from Numba

...
def calculate_z(maxiter, zs, cs, output):

 # --- LINE 14 ---

 """Calculate output list using Julia update rule"""

 # --- LINE 15 ---
 # $4load_global.0 = global(range: <class 'range'>)
 :: Function(<class 'range'>)
 # $14load_global.2 = global(len: <built-in function len>)
 :: Function(<built-in function len>)
 # $26call.5 = call $14load_global.2(zs, func=$14load_global.2,
 args=[Var(zs, julia1_numba_expandedmath_inspection.py:12)],
 kws=(), vararg=None, varkwarg=None, target=None)
 :: (Array(complex128, 1, 'C', False, aligned=True),) -> int64
...

Numba is a powerful JIT compiler that is now maturing. Whilst you may have to introspect the generated code to figure out how to make your code compile, generally shorter pure-NumPy functions work fine and some of SciPy is supported too. Your best approach will be to break your current code into small (<10 line) and discrete functions and to tackle these one at a time. Do not try to throw a large function into Numba; you can debug the process far more quickly if you have only small, discrete chunks to review individually.

PyPy

PyPy is an alternative implementation of the Python
language that includes a tracing just-in-time compiler; it is compatible with Python 3.5+. Typically, it lags behind the most recent version of Python; at the time of writing this third edition Python 3.12 is standard, and PyPy supports up to Python 3.10.

PyPy is a drop-in
replacement for CPython and offers all the built-in modules. The project
comprises the RPython Translation Toolchain, which is used to build PyPy (and
could be used to build other interpreters). The JIT compiler in PyPy is
very effective, and good speedups can be seen with little or no work on your part. See
[Link to Come] for a large PyPy deployment success story.

PyPy runs our pure Python Julia demo without any modifications. With CPython it
takes 5.8 seconds, and with PyPy it takes 0.9 seconds. This means that PyPy
achieves a result that’s very close to the Cython example in
Example 7-8, without any effort at all—that’s pretty impressive! As we observed in our discussion of Numba, if the calculations are run again in the same session, then the second and subsequent runs are faster than the first one, as they are already compiled.

By expanding the math and removing the call to abs, the PyPy runtime drops to 0.2 seconds. This is equivalent to the Cython versions using pure Python and numpy without any work! Note that this result is true only if you’re not using numpy with PyPy.

The fact that PyPy supports all the built-in modules is interesting—this means
that multiprocessing works as it does in CPython. If you have a problem that
runs with the batteries-included modules and can run in parallel with
multiprocessing, you can expect that all the speed gains you might hope to get will be
available.

PyPy’s speed has evolved over time. The older chart in Figure 7-7 (from speed.pypy.org) will give you an idea about PyPy’s maturity. These speed tests reflect a wide range of use cases, not just mathematical operations. It is clear that PyPy offers a faster experience than CPython.

[image:]
Figure 7-7. Each new version of PyPy offers speed improvements

Garbage Collection Differences

PyPy uses a different type of garbage collector than CPython, and this can cause some nonobvious behavior changes to your code. Whereas CPython uses reference counting, PyPy uses a modified mark-and-sweep approach that may clean up an unused object much later. Both are correct implementations of the Python specification; you just have to be aware that code modifications might be required when swapping.

Some coding approaches seen in CPython depend on the behavior of the reference counter—particularly the flushing of files, if you open and write to them without an explicit file close. With PyPy the same code will run, but the updates to the file might get flushed to disk later, when the garbage collector next runs. An alternative form that works in both PyPy and Python is to use a context manager using with to open and automatically close files. The Differences Between PyPy and CPython page on the PyPy website lists the details.

Running PyPy and Installing Modules

If you’ve never run an alternative Python interpreter, you might benefit from a
short example. Assuming you’ve downloaded and extracted PyPy, you’ll now have
a folder structure containing a bin directory. Run it as shown in Example 7-16 to start PyPy.

Example 7-16. Running PyPy to see that it implements Python 3.10

...
$ pypy3
Python 3.10.14 (75b3de9d9035, Apr 21 2024, 10:54:48)
[PyPy 7.3.16 with GCC 10.2.1 20210130 (Red Hat 10.2.1-11)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>>
...

Note that PyPy 7.3 runs as Python 3.10. Now we need to set up pip, and we’ll want to install IPython. The steps shown in
Example 7-17 are the same as you might have performed with CPython if you’ve installed pip without the help
of an existing distribution or package manager. Note that when running IPython, we get the same build number as we see when running pypy in the preceding example.

You can see that IPython runs with PyPy just the same as with CPython, and using the %run syntax, we execute the Julia script inside IPython to achieve 0.2-second
runtimes.

Example 7-17. Installing pip for PyPy to install third-party modules like IPython

...
$ pypy3 -m ensurepip
Looking in links: /tmp/tmpz5okh3uw
Processing /tmp/tmpz5okh3uw/setuptools-65.5.0-py3-none-any.whl
Processing /tmp/tmpz5okh3uw/pip-23.0.1-py3-none-any.whl
Installing collected packages: setuptools, pip
Successfully installed pip-23.0.1 setuptools-65.5.0

$ pip3 install ipython
Collecting ipython
...

$ ipython
Python 3.10.14 (75b3de9d9035, Apr 21 2024, 10:54:48)
Type 'copyright', 'credits' or 'license' for more information
IPython 8.26.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %run julia1_nopil_expanded_math.py
Length of x: 1,000
Total elements: 1,000,000
calculate_z_serial_purepython took 0.26 seconds
...

Note that PyPy supports projects like numpy that require C bindings through the CPython extension compatibility layer cpyext, but it has
an overhead of 4–6×, which generally makes numpy too slow. If your code is mostly pure Python with only a few calls to numpy, you may still see significant overall gains. If your code, like the Julia example, makes many calls to numpy, then it’ll run significantly slower. The Julia benchmark here with numpy arrays runs 6× slower than when it is run with CPython.

HPy (formerly PyHandle) aims to remove the overhead of calling into the C interfaces by providing a higher-level object handle—one not tied to CPython’s implementation—which can be shared with other projects like Cython. Essentially it is PyPy’s python.h header file. Typically this overhead costs 4-6 times the same overhead of calling from CPython and this often negates the advantages of using an external tool like numpy.

If you want to understand PyPy’s performance characteristics, look at the vmprof lightweight sampling profiler. It is thread-safe and supports a web-based user
interface.

Another downside of PyPy is that it can use a lot of RAM. Each release is
better in this respect, but in practice it may use more RAM than CPython. RAM is
fairly cheap, though, so it makes sense to try to trade it for enhanced performance. Some
users have also reported lower RAM usage when using PyPy. As ever, perform an
experiment using representative data if this is important to you.

A Summary of Speed Improvements

To summarize the previous results, in Table 7-1 we see that PyPy on a pure Python math-based code sample is approximately 6× faster than CPython with no code changes, and it’s even faster if the abs line is simplified. Cython runs faster than PyPy in both instances but requires annotated code, which increases development and support effort.

Table 7-1. Julia (no numpy) results

	
	Speed

	CPython

	5.80s

	Cython

	0.43s

	Cython on expanded math

	0.23s

	PyPy

	0.90s

	PyPy on expanded math

	0.20s

The Julia solver with numpy enables the investigation of OpenMP. In Table 7-2, we see that both Cython and Numba run faster than the non-numpy versions with expanded math. When we add OpenMP, both Cython and Numba provide further speedups for very little additional coding.

Table 7-2. Julia (with numpy and expanded math) results

	
	Speed

	CPython

	8.00s

	Cython

	0.20s

	Cython and OpenMP “guided”

	0.03s

	Numba (2nd & subsequent runs)

	0.19s

	Numba and OpenMP

	0.05s

For pure Python code, PyPy is an obvious first choice. For numpy code, Numba is a great first choice.

When to Use Each Technology

If you’re working on a numeric project, then each of these technologies
could be useful to you. Table 7-3 summarizes the main options.

Table 7-3. Compiler options

	
	Cython
	Numba
	PyPy

	Mature

	Y

	Y

	Y

	Widespread

	Y

	–

	–

	numpy support

	Y

	Y

	Y

	Nonbreaking code changes

	–

	Y

	Y

	Needs C knowledge

	Y

	–

	–

	Supports OpenMP

	Y

	Y

	–

Numba may offer quick wins for little effort, but it too has limitations that might stop it working well on your code. It is also a relatively young project.

Cython probably offers the best results for the widest set of problems, but it does require more effort and has
an additional “support tax” due to mixing Python with C annotations.

PyPy is a strong option if you’re not using numpy or other hard-to-port C extensions.

If you’re deploying a production tool, you probably want to stick with well-understood tools—Cython should be your main choice, and you may want to check out [Link to Come]. PyPy is also being used in production settings (see [Link to Come]).

If you’re working with light numeric requirements, note that Cython’s buffer
interface accepts array.array matrices—this is an easy way to pass a block
of data to Cython for fast numeric processing without having to add numpy as a
project
dependency.

Overall, Numba is maturing and is a promising project, whereas Cython is
mature. PyPy is regarded as being fairly mature now and should definitely be
evaluated for long-running processes.

In a class run by Ian, a capable student implemented a C version of the Julia algorithm and was disappointed to see it execute more slowly than his Cython version. It transpired that he was using 32-bit floats on a 64-bit machine—these run more slowly than 64-bit doubles on a 64-bit machine. The student, despite being a good C programmer, didn’t know that this could involve a speed cost. He changed his code, and the C version, despite being significantly shorter than the autogenerated Cython version, ran at roughly the same speed. The act of writing the raw C version, comparing its speed, and figuring out how to fix it took longer than using Cython in the first place.

This is just an anecdote; we’re not suggesting that Cython will generate the best code, and competent C programmers can probably figure out how to make their code run faster than the version generated by Cython. It is worth noting, though, that the assumption that handwritten C will be faster than converted Python is not a safe assumption. You must always benchmark and make decisions using evidence. C compilers are pretty good at converting code into fairly efficient machine code, and Python is pretty good at letting you express your problem in an easy-to-understand language—combine these two powers sensibly.

Other Upcoming Projects

The PyData compilers page lists a set of
high performance and compiler tools.

Pythran is an AOT compiler aimed at scientists who are using numpy. Using few annotations, it will compile Python numeric code to a faster binary—it produces speedups that are very similar to Cython but for much less work. Among other features, it always releases the GIL and can use both SIMD instructions and OpenMP. Like Numba, it doesn’t support classes. If you have tight, locally bound loops in Numpy, Pythran is certainly worth evaluating. The associated FluidPython project aims to make Pythran even easier to write and provides JIT capability.

Transonic attempts to unify Cython, Pythran, and Numba, and potentially other compilers, behind one interface to enable quick evaluation of multiple compilers without having to rewrite code.

ShedSkin is an AOT compiler aimed at nonscientific, pure Python code. It has no numpy support, but if your code is pure Python, ShedSkin produces speedups similar to those seen by PyPy (without using numpy).

PyCUDA and PyOpenCL offer CUDA and OpenCL bindings into Python for direct access to GPUs.

Nuitka is a Python compiler
that aims to be an alternative to the usual CPython interpreter, with the option
of creating compiled executables.

Our community is rather blessed with a wide array of compilation options.
While they all have trade-offs, they also offer a lot of power so that complex
projects can take advantage of the full power of CPUs and multicore
architectures.

Foreign Function Interfaces

Sometimes the automatic solutions just don’t cut it, and you need to write
custom C or Fortran code yourself. This could be because the compilation
methods don’t find some potential optimizations, or because you want to take
advantage of libraries or language features that aren’t available in Python. In
all of these cases, you’ll need to use foreign function interfaces, which give
you access to code written and compiled in another language.

For the rest of this chapter, we will attempt to use an external library to
solve the 2D diffusion equation in the same way we did in
[Link to Come].1 The code for this library, shown in Example 7-18, could be
representative of a library you’ve installed or code that you have written.
The methods we’ll look at serve as great ways to take small parts of your code
and move them to another language in order to do very targeted language-based
optimizations.

Example 7-18. Sample C code for solving the 2D diffusion problem

void evolve(double in[][512], double out[][512], double D, double dt) {
 int i, j;
 double laplacian;
 for (i=1; i<511; i++) {
 for (j=1; j<511; j++) {
 laplacian = in[i+1][j] + in[i-1][j] + in[i][j+1] + in[i][j-1] \
 - 4 * in[i][j];
 out[i][j] = in[i][j] + D * dt * laplacian;
 }
 }
}

Note

We fix the grid size to be 512 × 512 in order to simplify the example code. To accept an arbitrarily sized grid, you must pass in the in and out
parameters as double pointers and include function arguments for the actual
size of the grid.

To use this code, we must compile it into a shared module that
creates a .so file. We can do this using gcc (or any other C compiler) by
following these steps:

$ gcc -O3 -std=gnu11 -c diffusion.c
$ gcc -shared -o diffusion.so diffusion.o

We can place this final shared library file, diffusion.so, anywhere
that is accessible to our Python code, but standard *nix organization stores
shared libraries in /usr/lib and /usr/local/lib.

ctypes

The
most basic foreign function interface in CPython is through the ctypes module.2 The bare-bones nature of this module can be quite inhibitive at times—you are in
charge of doing everything, and it can take quite a while to make sure that you
have everything in order. This extra level of complexity is evident in our
ctypes diffusion code, shown in Example 7-19.

Example 7-19. ctypes 2D diffusion code

import ctypes

grid_shape = (512, 512)
_diffusion = ctypes.CDLL("diffusion.so") [image: 1]

Create references to the C types that we will need to simplify future code
TYPE_INT = ctypes.c_int
TYPE_DOUBLE = ctypes.c_double
TYPE_DOUBLE_SS = ctypes.POINTER(ctypes.POINTER(ctypes.c_double))

Initialize the signature of the evolve function to:
void evolve(int, int, double**, double**, double, double)
_diffusion.evolve.argtypes = [TYPE_DOUBLE_SS, TYPE_DOUBLE_SS, TYPE_DOUBLE,
 TYPE_DOUBLE]
_diffusion.evolve.restype = None

def evolve(grid, out, dt, D=1.0):
 # First we convert the Python types into the relevant C types
 assert grid.shape == (512, 512)
 cdt = TYPE_DOUBLE(dt)
 cD = TYPE_DOUBLE(D)
 pointer_grid = grid.ctypes.data_as(TYPE_DOUBLE_SS) [image: 2]
 pointer_out = out.ctypes.data_as(TYPE_DOUBLE_SS)

 # Now we can call the function
 _diffusion.evolve(pointer_grid, pointer_out, cD, cdt) [image: 3]

	[image: 1]

	This is similar to importing the diffusion.so library. Either this file is in one of the standard system paths for library files or we can enter an absolute path.

	[image: 2]

	grid and out are both numpy arrays.

	[image: 3]

	We finally have all the setup necessary and can call the C function directly.

This first thing we do is “import” our shared library. This is done with
the ctypes.CDLL call. In this line, we can specify any shared library that
Python can access (for example, the ctypes-opencv module loads the libcv.so
library). From this, we get a _diffusion object that contains all the members
that the shared library contains. In this example, diffusion.so contains only
one function, evolve, which is now made available to us as a property of the
_diffusion object. If diffusion.so had many functions and properties, we
could access them all through the _diffusion object.

However, even though the _diffusion object has the evolve function
available within it, Python doesn’t know how to use it. C is statically typed,
and the function has a very specific signature. To properly work with
the evolve function, we must explicitly set the input argument types and the
return type. This can become quite tedious when developing libraries in tandem
with the Python interface, or when dealing with a quickly changing library.
Furthermore, since ctypes can’t check if you have given it the correct types, your code may silently fail or segfault if you make a mistake!

Furthermore, in addition to setting the arguments and return type of the
function object, we also need to convert any data we care to use with it (this
is called casting). Every argument we send to the function must be carefully
casted into a native C type. Sometimes this can get quite tricky, since
Python is very relaxed about its variable types. For example, if we had num1 =
1e5, we would have to know that this is a Python float, and thus we should use a
ctype.c_float. On the other hand, for num2 = 1e300, we would have to use
ctype.c_double, because it would overflow a standard C float.

That being said, numpy provides a .ctypes property to its arrays that
makes it easily compatible with ctypes. If numpy didn’t provide this
functionality, we would have had to initialize a ctypes array of the correct
type and then find the location of our original data and have our new ctypes
object point there.

Warning

Unless the object you are turning into a ctype object implements a buffer
(as do the array module, numpy arrays, io.StringIO, etc.), your data will
be copied into the new object. In the case of casting an int to a float, this
doesn’t mean much for the performance of your code. However, if you are casting
a very long Python list, this can incur quite a penalty! In these cases,
using the array module or a numpy array, or even building up your own buffered
object using the struct module, would help. This does, however, hurt
the readability of your code, since these objects are generally less flexible than
their native Python counterparts.

This memory management can get even more complicated if you have to send the
library a complicated data structure. For example, if your library expects a C
struct representing a point in space with the properties x and y, you
would have to define the following:

from ctypes import Structure

class cPoint(Structure):
 fields = ("x", c_int), ("y", c_int)

At this point you could start creating C-compatible objects by initializing a
cPoint object (i.e., point = cPoint(10, 5)). This isn’t a terrible amount of
work, but it can become tedious and results in some fragile code. What happens
if a new version of the library is released that slightly changes the structure?
This will make your code very hard to maintain and generally results in
stagnant code, where the developers simply decide never to upgrade the underlying
libraries that are being used.

For these reasons, using the ctypes module is great if you already have a good
understanding of C and want to be able to tune every aspect of the interface.
It has great portability since it is part of the standard library, and if your
task is simple, it provides simple solutions. Just be careful because the
complexity of ctypes solutions (and similar low-level solutions) quickly becomes unmanageable.

cffi

Realizing that ctypes can be quite cumbersome to use at times, cffi attempts
to simplify many of the standard operations that programmers use. It does this
by having an internal C parser that can understand function and structure
definitions.

As a result, we can simply write the C code that defines the structure of the
library we wish to use, and then cffi will do all the heavy work for us: it
imports the module and makes sure we specify the correct types to the resulting
functions. In fact, this work can be almost trivial if the source for the
library is available, since the header files (the files ending in .h) will include all the relevant definitions we need.3
Example 7-20 shows the cffi version of the 2D diffusion code.

Example 7-20. cffi 2D diffusion code

from cffi import FFI, verifier

grid_shape = (512, 512)

ffi = FFI()
ffi.cdef(
 "void evolve(double **in, double **out, double D, double dt);" [image: 1]
)
lib = ffi.dlopen("../diffusion.so")

def evolve(grid, dt, out, D=1.0):
 pointer_grid = ffi.cast("double**", grid.ctypes.data) [image: 2]
 pointer_out = ffi.cast("double**", out.ctypes.data)
 lib.evolve(pointer_grid, pointer_out, D, dt)

	[image: 1]

	The contents of this definition can normally be acquired from the manual of the library that you are using or by looking at the library’s header files.

	[image: 2]

	While we still need to cast nonnative Python objects for use with our C module, the syntax is very familiar to those with experience in C.

In the preceding code, we can think of the cffi initialization as being
two-stepped. First, we create an FFI object and give it all the global C
declarations we need. This can include datatypes in addition to function
signatures. These signatures don’t necessarily contain any code; they simply
need to define what the code will look like. Then we can import a shared
library containing the actual implementation of the functions by using dlopen.
This means we could have told FFI about the function signature for the
evolve function and then loaded up two different implantations and stored
them in different objects (which is fantastic for debugging and profiling!).

In addition to easily importing a shared C library, cffi allows you to write C
code and have it be dynamically compiled using the verify function. This has
many immediate benefits—for example, you can easily rewrite small portions of your code to be
in C without invoking the large machinery of a separate C library.
Alternatively, if there is a library you wish to use, but some glue code in C is
required to have the interface work perfectly, you can inline it into
your cffi code, as shown in Example 7-21, to have
everything be in a centralized location. In addition, since the code is being
dynamically compiled, you can specify compile instructions to every chunk of
code you need to compile. Note, however, that this compilation has a one-time
penalty every time the verify function is run to actually perform the

compilation.

Example 7-21. cffi with inline 2D diffusion code

ffi = FFI()
ffi.cdef(
 "void evolve(double **in, double **out, double D, double dt);"
)
lib = ffi.verify(
 r"""
void evolve(double in[][512], double out[][512], double D, double dt) {
 int i, j;
 double laplacian;
 for (i=1; i<511; i++) {
 for (j=1; j<511; j++) {
 laplacian = in[i+1][j] + in[i-1][j] + in[i][j+1] + in[i][j-1] \
 - 4 * in[i][j];
 out[i][j] = in[i][j] + D * dt * laplacian;
 }
 }
}
""",
 extra_compile_args=["-O3"], [image: 1]
)

	[image: 1]

	Since we are just-in-time compiling this code, we can also provide relevant compilation flags.

Another benefit of the verify functionality is that it plays nicely with
complicated cdef statements. For example, if we were using a library with a complicated structure but wanted to use only a part of it, we could use the partial struct definition. To do
this, we add a ... in the struct definition in ffi.cdef and #include the
relevant header file in a later verify.

For example, suppose we were working with a library with header complicated.h that
included a structure that looked like this:

struct Point {
 double x;
 double y;
 bool isActive;
 char *id;
 int num_times_visited;
}

If we cared only about the x and y properties, we could write some simple
cffi code that cares only about those values:

from cffi import FFI

ffi = FFI()
ffi.cdef(r"""
 struct Point {
 double x;
 double y;
 ...;
 };
 struct Point do_calculation();
""")
lib = ffi.verify(r"""
 #include <complicated.h>
""")

We could then run the do_calculation function from the complicated.h library
and have returned to us a Point object with its x and y properties
accessible. This is amazing for portability, since this code will run just fine
on systems with a different implementation of Point or when new versions of
complicated.h come out, as long as they all have the x and y properties.

All of these niceties really make cffi an amazing tool to have when you’re working
with C code in Python. It is much simpler than ctypes, while still giving you
the same amount of fine-grained control you may want when working directly with
a foreign function interface.

f2py

For many scientific applications, Fortran
is still the gold standard. While its days of being a general-purpose language
are over, it still has many niceties that make vector operations easy to write
and quite quick. In addition, many performance math libraries are written
in Fortran (LAPACK,
BLAS, etc.), all of which are fundamental in
libraries such as SciPy, and being able to use them in your performance Python
code may be critical.

For such situations, f2py, which is a part of your
standard numpy installation, provides a dead-simple way of importing
Fortran code into Python. This module is able to be so simple because of the
explicitness of types in Fortran. Since the types can be easily parsed and
understood, f2py can easily make a CPython module that uses the native
foreign function support within C to use the Fortran code. This means that
when you are using f2py, you are actually autogenerating a C module that
knows how to use Fortran code! As a result, a lot of the confusion inherent in
the ctypes and cffi solutions simply doesn’t exist.

In Example 7-22, we can see some simple f2py-compatible code for solving
the diffusion equation. In fact, all native Fortran code is f2py-compatible;
however, the annotations to the function arguments (the statements prefaced by
!f2py) simplify the resulting Python module and make for an easier-to-use
interface. The annotations implicitly tell f2py whether we intend for an argument
to be only an output or only an input, or to be something we want to modify in place
or hidden completely. The hidden type is particularly useful for the sizes of
vectors: while Fortran may need those numbers explicitly, our Python code
already has this information on hand. When we set the type as “hidden,” f2py
can automatically fill those values for us, essentially keeping them hidden from
us in the final Python interface.

Example 7-22. Fortran 2D diffusion code with f2py annotations

SUBROUTINE evolve(grid, next_grid, D, dt, N, M)
 !f2py threadsafe
 !f2py intent(in) grid
 !f2py intent(inplace) next_grid
 !f2py intent(in) D
 !f2py intent(in) dt
 !f2py intent(hide) N
 !f2py intent(hide) M
 INTEGER :: N, M
 DOUBLE PRECISION, DIMENSION(N,M) :: grid, next_grid
 DOUBLE PRECISION, DIMENSION(N-2, M-2) :: laplacian
 DOUBLE PRECISION :: D, dt

 laplacian = grid(3:N, 2:M-1) + grid(1:N-2, 2:M-1) + &
 grid(2:N-1, 3:M) + grid(2:N-1, 1:M-2) - 4 * grid(2:N-1, 2:M-1)
 next_grid(2:N-1, 2:M-1) = grid(2:N-1, 2:M-1) + D * dt * laplacian
END SUBROUTINE evolve

Once installing the numpy and meson pip libraries, we can build the code into a Python module by running the followng command:

$ f2py -c -m diffusion --fcompiler=gfortran --opt='-O3' diffusion.f90

Tip

We specifically use gfortran in the preceding call to f2py. Make sure it is
installed on your system or that you change the corresponding argument to use
the Fortran compiler you have installed.

This will create a library file pinned to your Python version and operating
system (diffusion.cpython-312-x86_64-linux-gnu.so, in our case) that can be
imported directly into Python.

If we play around with the resulting module interactively, we can see the
niceties that f2py has given us, thanks to our annotations and its ability to
parse the Fortran code:

>>> import diffusion

>>> diffusion?
Type: module
String form: <module 'diffusion' from '[..]cpython-312m-x86_64-linux-gnu.so'>
File: [..cut..]/diffusion.cpython-312m-x86_64-linux-gnu.so
Docstring:
This module 'diffusion' is auto-generated with f2py (version:2).
Functions:
 evolve(grid,scratch,d,dt)
.

>>> diffusion.evolve?
Call signature: diffusion.evolve(*args, **kwargs)
Type: fortran
String form: <fortran object>
Docstring:
evolve(grid,scratch,d,dt)

Wrapper for ``evolve``.

Parameters
grid : input rank-2 array('d') with bounds (n,m)
scratch : rank-2 array('d') with bounds (n,m)
d : input float
dt : input float

This code shows that the result from the f2py generation is automatically
documented, and the interface is quite simplified. For example, instead of us
having to extract the sizes of the vectors, f2py has figured out how to
automatically find this information and simply hides it in the resulting
interface. In fact, the resulting evolve function looks exactly the same in
its signature as the pure Python version we wrote in [Link to Come].

The only thing we must be careful of is the ordering of the numpy arrays in
memory. Since most of what we do with numpy and Python focuses on code
derived from C, we always use the C convention for ordering data in memory
(called row-major ordering). Fortran uses a different convention
(column-major ordering) that we must make sure our vectors abide by. These
orderings simply state whether, for a 2D array, columns or rows are contiguous
in memory.4 Luckily, this simply means we specify the order='F'
parameter to numpy when declaring our vectors.

Caution

The difference in ordering basically changes which is the outer loop when
iterating over a multidimensional array. In Python and C, if you define an
array as array[X][Y], your outer loop will be over X and your inner loop
will be over Y. In fortran, your outer loop will be over Y and your inner loop
will be over X. If you use the wrong loop ordering, you will at best suffer a
major performance penalty because of an increase in cache-misses (see
[Link to Come]) and at worst access the wrong
data!

This results in the following code to use our Fortran subroutine. This code
looks exactly the same as what we used in [Link to Come], except for
the import from the f2py-derived library and the explicit Fortran ordering of
our data:

from diffusion import evolve

def run_experiment(num_iterations):
 scratch = np.zeros(grid_shape, dtype=np.double, order="F") [image: 1]
 grid = np.zeros(grid_shape, dtype=np.double, order="F")

 initialize_grid(grid)

 for i in range(num_iterations):
 evolve(grid, scratch, 1.0, 0.1)
 grid, scratch = scratch, grid

	[image: 1]

	Fortran orders numbers differently in memory, so we must remember to set our numpy arrays to use that standard.

CPython Extensions: C

We can always go right down to the CPython API level and write a
CPython module. This requires us to write code in the same way that CPython is
developed and take care of all of the interactions between our code and
the implementation of CPython.

This has the advantage that it is incredibly portable, depending on the Python version.
We don’t require any external modules or libraries, just a C compiler and
Python! However, this doesn’t necessarily scale well to new versions of Python.
For example, CPython modules written for Python 2.7 won’t work with Python 3, and
vice versa.

Note

In fact, much of the slowdown in the Python 3 rollout was rooted in
the difficulty in making this change. When creating a CPython module, you are
coupled very closely to the actual Python implementation, and large changes in
the language (such as the change from 2.7 to 3) require large modifications to
your module.

That portability comes at a big cost — you are responsible for every
aspect of the interface between your Python code and the module. This can make
even the simplest tasks take dozens of lines of code. For example, to interface
with the diffusion library from Example 7-18, we must write 28 lines of
code simply to read the arguments to a function and parse them
(Example 7-23). Of course, this does mean that you have
incredibly fine-grained control over what is happening. This goes all the way
down to being able to manually change the reference counts for Python’s garbage
collection (which can be the cause of a lot of pain when creating CPython
modules that deal with native Python types). Because of this, the resulting
code tends to be minutely faster than other interface methods.

Warning

All in all, this method should be left as a last resort. While it is quite
informative to write a CPython module, the resulting code is not as reusable or
maintainable as other potential methods. Making subtle changes in the module
can often require completely reworking it. In fact, we include the
module code and the required setup.py to compile it
(Example 7-24) as a cautionary tale.

Example 7-23. CPython module to interface to the 2D diffusion library

// python_interface.c
// - cpython module interface for diffusion.c

#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION

#include <Python.h>
#include <numpy/arrayobject.h>
#include "diffusion.h"

/* Docstrings */
static char module_docstring[] =
 "Provides optimized method to solve the diffusion equation";
static char cdiffusion_evolve_docstring[] =
 "Evolve a 2D grid using the diffusion equation";

PyArrayObject *py_evolve(PyObject *, PyObject *);

/* Module specification */
static PyMethodDef module_methods[] =
{
 /* { method name , C function , argument types , docstring } */
 { "evolve", (PyCFunction)py_evolve, METH_VARARGS, cdiffusion_evolve_docstring },
 { NULL, NULL, 0, NULL }
};

static struct PyModuleDef cdiffusionmodule =
{
 PyModuleDef_HEAD_INIT,
 "cdiffusion", /* name of module */
 module_docstring, /* module documentation, may be NULL */
 -1, /* size of per-interpreter state of the module,
 * or -1 if the module keeps state in global variables. */
 module_methods
};

PyArrayObject *py_evolve(PyObject *self, PyObject *args)
{
 PyArrayObject *data;
 PyArrayObject *next_grid;
 double dt, D = 1.0;

 /* The "evolve" function will have the signature:
 * evolve(data, next_grid, dt, D=1)
 */
 if (!PyArg_ParseTuple(args, "OOd|d", &data, &next_grid, &dt, &D))
 {
 PyErr_SetString(PyExc_RuntimeError, "Invalid arguments");
 return(NULL);
 }

 /* Make sure that the numpy arrays are contiguous in memory */
 if (!PyArray_Check(data) || !PyArray_ISCONTIGUOUS(data))
 {
 PyErr_SetString(PyExc_RuntimeError, "data is not a contiguous array.");
 return(NULL);
 }
 if (!PyArray_Check(next_grid) || !PyArray_ISCONTIGUOUS(next_grid))
 {
 PyErr_SetString(PyExc_RuntimeError, "next_grid is not a contiguous array.");
 return(NULL);
 }

 /* Make sure that grid and next_grid are of the same type and have the same
 * dimensions
 */
 if (PyArray_TYPE(data) != PyArray_TYPE(next_grid))
 {
 PyErr_SetString(PyExc_RuntimeError,
 "next_grid and data should have same type.");
 return(NULL);
 }
 if (PyArray_NDIM(data) != 2)
 {
 PyErr_SetString(PyExc_RuntimeError, "data should be two dimensional");
 return(NULL);
 }
 if (PyArray_NDIM(next_grid) != 2)
 {
 PyErr_SetString(PyExc_RuntimeError, "next_grid should be two dimensional");
 return(NULL);
 }
 if ((PyArray_DIM(data, 0) != PyArray_DIM(next_grid, 0)) ||
 (PyArray_DIM(data, 1) != PyArray_DIM(next_grid, 1)))
 {
 PyErr_SetString(PyExc_RuntimeError,
 "data and next_grid must have the same dimensions");
 return(NULL);
 }

 evolve(
 PyArray_DATA(data),
 PyArray_DATA(next_grid),
 D,
 dt
);

 Py_XINCREF(next_grid);
 return(next_grid);
}

/* Initialize the module */
PyMODINIT_FUNC
PyInit_cdiffusion(void)
{
 PyObject *m;

 m = PyModule_Create(&cdiffusionmodule);
 if (m == NULL)
 {
 return(NULL);
 }

 /* Load `numpy` functionality. */
 import_array();

 return(m);
}

To build this code, we need to create a setup.py script that
uses the distutils module to figure out how to build the code such that it is
Python-compatible (Example 7-24). In addition to the standard distutils module, numpy
provides its own module to help with adding numpy integration in your CPython
modules.

Example 7-24. Setup file for the CPython module diffusion interface

"""
setup.py for cpython diffusion module. The extension can be built by running

 $ python setup.py build_ext --inplace

which will create the __cdiffusion.so__ file, which can be directly imported into
Python.
"""

from distutils.core import setup, Extension
import numpy as np

__version__ = "0.1"

cdiffusion = Extension(
 'cdiffusion',
 sources = ['cdiffusion/cdiffusion.c', 'cdiffusion/python_interface.c'],
 extra_compile_args = ["-O3", "-std=c11", "-Wall", "-p", "-pg",],
 extra_link_args = ["-lc"],
)

setup (
 name = 'diffusion',
 version = __version__,
 ext_modules = [cdiffusion,],
 packages = ["diffusion",],
 include_dirs = np.get_include(),
)

The result from this is a cdiffusion.cpython-312-x86_64-linux-gnu.so file that can be imported directly
from Python and used quite easily. Since we had complete control over the
signature of the resulting function and exactly how our C code interacted with
the library, we were able to (with some hard work) create a module that is
easy to use:

from cdiffusion import evolve

def run_experiment(num_iterations):
 next_grid = np.zeros(grid_shape, dtype=np.double)
 grid = np.zeros(grid_shape, dtype=np.double)

 # ... standard initialization ...

 for i in range(num_iterations):
 evolve(grid, next_grid, 1.0, 0.1)
 grid, next_grid = next_grid, grid

CPython Extensions: Rust

The following section is a contribution from Itamar Turner-Trauring. In it, he shows the ease of making a Rust extension to CPython. This is an amazing counterpoint to the complex python extension written in C from “CPython Extensions: C”.

Introduction

Rust is modern compiled language, which aims at the same niche as C++, combining of a high level of abstraction with compilation to very fast code.
However, it has a number of fundamental benefits over the C++ language:

	
A built-in, modern packaging and build toolchain: like Python’s PyPI/pip and Conda, Rust comes with an online package repository and corresponding command-line tool to manage your project’s dependencies, also known as “crates”.
It also includes a single, standardized, built-in build system called Cargo.

	
Memory-safety by default: No more worries about buffer overflows, use-after-free, and the rest of the problems with C and C++ that can result in corrupted data or crashes.

	
Thread-safety by default, aka “fearless concurrency”: The same language features that provide memory safety also ensure that the memory safety problems caused by threading in C++ (and most other languages, really) aren’t a problem in Rust.
That means scaling to multiple CPUs can often be done very simply and safely.

In order to write Python extensions with Rust you can use a crate (Rust library) called PyO3.
At the time of writing PyO3 has not hit 1.0 yet, which is an example of one of the downsides of using Rust: while it’s used extensively in industry and increasingly in science, it’s still a newer language with fewer libraries.

Creating a Python extension with Rust

If you have an existing Python project using setuptools, you can add support for building Rust extensions in your project using the setuptools-rust package.

However, since we’re creating a standalone extension, we’ll use maturin, which is an all-in-one packaging tool specifically for Python/Rust extensions.
We can install Maturin using pip, in a new virtualenv:

$ python3 -m venv ./venv
$. venv/bin/activate
$ pip install maturin

Now that we’ve installed Maturin, we can use its command-line tool to create a all the boilerplate files we need to create a Rust-based Python extension:

$ maturin new diffusion -b pyo3
$ cd diffusion/

We now have all the files we need to build a Rust extension for Python, which means we can pip install our new package:

$ pip install .
...
Successfully installed diffusion-0.1.0
$ python -c "import diffusion; print(diffusion)"
<module 'diffusion' from 'venv/lib/python3.10/site-packages/diffusion/__init__.py'>

Here’s what the tree of files generated by Maturin looks like (not shown, but also included, are a .gitignore file and a minimal GitHub Actions configuration):

├── Cargo.toml # Configuration for Rust's build system
├── pyproject.toml # Enables pip installing the package
└── src
 └── lib.rs # A Rust library, pre-configured to use PyO3

Rust packages are called crates, and cargo, the command-line Rust build tool, can be used to add crates as dependencies for our project.
In this case, we’re going to want to use the numpy crate so we can access NumPy arrays from Rust.
We can add it as a dependency like so:

$ cargo add numpy

It will then get added to Cargo.toml as a dependency; PyO3 was added automatically by Maturin when it first created the Cargo.toml:

[dependencies]
numpy = "0.21.0"
pyo3 = "0.21.0"

Writing the extension

When we ran maturin new, that created a minimal Rust module for us in a file called src/lib.rs, with just enough boilerplate to compile a full-fledged Python extension.
Next we want to update this file to run our own code.

We’ll start by implementing the same diffusion algorithm we’ve seen in other languages, only this time in Rust.
The numpy Rust crate exposes the NumPy arrays to Rust using the functionality of a less Python-specific crate called ndarray.
Here’s how we’d write a function implementing the diffusion algorithm using ndarray arrays, with no reference to Python:

// Import the structs we'll use in our API:
use numpy::ndarray::{ArrayView2, ArrayViewMut2};

// Calculate the evolution of a grid, operating on ndarray arrays:
fn evolve(
 grid: ArrayView2<f64>,
 mut out_write: ArrayViewMut2<f64>,
 D: f64,
 dt: f64
) {
 let shape = grid.shape();
 assert_eq!(shape, out_write.shape());
 // 1..n is equivalent to range(1, n) in Python:
 for i in 1..(shape[0] - 1) {
 for j in 1..(shape[1] - 1) {
 let laplacian =
 grid[(i + 1, j)] + grid[(i - 1, j)]
 + grid[(i, j + 1)] + grid[(i, j - 1)]
 - 4.0 * grid[(i, j)];
 out_write[(i, j)] = grid[(i, j)] + D * dt * laplacian;
 }
 }
}

This is not much different than any other compiled language, though some underlying differences are less visible:

	
Rust enforces a strict rule that if you have a mutable, i.e. writable, reference to some data, you cannot have any other references to it, whether writable or read-only.
That’s how it enforces memory-safety.
The ndarray crate exposes this in its type system by having two kinds of views for arrays, read-only and mutable.

	
Rust will do bounds checking on all array lookups, so if you have an off-by-one bug and read entry N+1 from an array that only has N entries, you will get an explicit error, rather than memory corruption or mysterious crashes.

Now that we have a generic implementation of the algorithm, we can expose it as Python function:

use numpy::{
 PyArray2, PyArrayMethods, PyReadonlyArray2, PyUntypedArrayMethods,
};
use pyo3::prelude::*;

// Wrap the evolve() function so it can be used from Python:
#[pyfunction(name = "evolve")]
#[pyo3(signature = (grid, dt, D=1.0))]
fn evolve_py<'py>(
 py: Python<'py>,
 grid: PyReadonlyArray2<'py, f64>,
 dt: f64,
 D: f64,
) -> PyResult<Bound<'py, PyArray2<f64>>> {
 let shape = grid.shape();
 // Create a new 2D float64 array filled with zeroes with the same shape as
 // the grid:
 let out_arr = PyArray2::<f64>::zeros_bound(py, [shape[0], shape[1]], false);

 evolve(
 // Pass in a read-only view of the grid:
 grid.as_array(),
 // Pass in a writable view of the output array:
 out_arr.readwrite().as_array_mut(),
 D,
 dt
);
 Ok(out_arr)
}

Finally, we register the function with the module our extension will expose to Python:

// Expose a Python module called "diffusion", with our new function:
#[pymodule]
fn diffusion(_py: Python, m: &Bound<'_, PyModule>) -> PyResult<()> {
 m.add_function(wrap_pyfunction!(evolve_py, m)?)?;
 Ok(())
}

Installing and using the extension

We can now install the extension:

$ pip install .

And now we can use it from Python:

import numpy as np
from diffusion import evolve

arr = np.random.random((512, 512))
result = evolve(arr, 0.1, D=0.5)
print(result)

Conclusion

Rust is a general-purpose compiled programming language, with modern tooling, the ability to write both fast code and high-level abstractions, and memory safety and thread safety by default.
It also has excellent Python integration.
As such, Rust excels at building larger-scale complex libraries; for example, the Polars dataframe library is mostly written in Rust.
But because of its excellent tooling, it also scales down to smaller extensions, as we’ve seen in this section.

The main downsides to Rust are complexity—some of its concepts are quite different from other compiled languages—and the limited number of specialized computational libraries.
The latter will be solved with time.
The former may or may not be a problem depending on your goals; if you expect to write large amounts of compiled code, Rust is likely to be the ideal choice.

Wrap-Up

The various strategies introduced in this chapter allow you to specialize your
code to different degrees in order to reduce the number of instructions the CPU
must execute and to increase the efficiency of your programs. Sometimes this can be
done algorithmically, although often it must be done manually
(see “JIT Versus AOT Compilers”). Furthermore, sometimes these methods must be employed
simply to use libraries that have already been written in other languages.
Regardless of the motivation, Python allows us to benefit from the speedups that
other languages can offer on some problems, while still maintaining
verbosity and flexibility when needed.

It is important to note, though, that these optimizations are done to
optimize the efficiency of compute instructions only. If you have I/O-bound
processes coupled to a compute-bound problem, simply compiling your code may not
provide any reasonable speedups. For these problems, we must rethink our
solutions and potentially use parallelism to run different tasks at the same time.

1 For simplicity, we will not implement the boundary conditions.
2 This is CPython-dependent. Other versions of Python may have their own versions of ctypes, which may work differently.
3 In Unix systems, header files for system libraries can be found in /usr/include.
4 For more information, see the Wikipedia page on row-major and column-major ordering.

Chapter 8. Asynchronous I/O

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 9th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
What is concurrency, and how is it helpful?

	
What is the difference between concurrency and parallelism?

	
Which tasks can be done concurrently, and which can’t?

	
What are the various paradigms for concurrency?

	
When is the right time to take advantage of concurrency?

	
How can concurrency speed up my programs?

So far we have focused on speeding up code by increasing the number of compute
cycles that a program can complete in a given time. However, in the days of big
data, getting the relevant data to your code can be the bottleneck, as opposed to
the actual code itself. When this is the case, your program is called I/O bound; in
other words, the speed is bounded by the efficiency of the input/output.

I/O can be quite burdensome to the flow of a program. Every time your code
reads from a file or writes to a network socket, it must pause to contact the
kernel, request that the actual read happens, and then wait for it to complete.
This is because it is not your program but the kernel that does the actual read operation, since the kernel is responsible for managing any interaction with hardware.
The additional layer may not seem like the end of the world, especially once
you realize that a similar operation happens every time memory is allocated;
however, if we look back at Figure 1-3, we see that most
of the I/O operations we perform are on devices that are orders of magnitude
slower than the CPU. So even if the communication with the kernel is fast, we’ll
be waiting quite some time for the kernel to get the result from the device and return it to us.

For example, in the time it takes to write to a network socket, an operation
that typically takes about 1 millisecond, we could have completed 2,400,000 instructions
on a 2.4 GHz computer. Worst of all, our program is halted for much of this 1
millisecond of time—​our execution is paused, and then we wait for a signal that the
write operation has completed. This time spent in a paused state is called I/O
wait.

Asynchronous I/O helps us utilize this wasted time by allowing us to perform
other operations while we are in the I/O wait state. For example, in
Figure 8-1 we see a depiction of a program that must run
three tasks, all of which have periods of I/O wait within them. If we run them
serially, we suffer the I/O wait penalty three times. However, if we run
these tasks concurrently, we can essentially hide the wait time by running
other tasks while waiting for the I/O result. It is important to note that
this is all still happening on a single thread and still uses only one CPU at a
time!

This is possible because while a program is in I/O wait, our program is waiting
for the kernel to respond with data from whichever device we’ve requested to
read from (hard drive, network adapter, GPU, etc.). Instead of waiting, we can
do other tasks and check back on the status of the I/O operation later in order
to finish that portion of the program (this mechanism is the (the event loop). This is in stark
contrast to the multiprocessing/multithreading (Chapter 9) paradigm,
where a new process is launched that does experience I/O wait but uses the
multi-tasking nature of modern CPUs to allow the main process to continue.
However, the two mechanisms are often used in tandem, where we launch multiple
processes, each of which is efficient at asynchronous I/O, in order to fully
take advantage of our compute resources.

Note

Since concurrent programs run on a single thread, they are generally easier to
write and manage than standard multithreaded programs. All concurrent functions
share the same memory space, so sharing data between them works in
the normal ways you would expect. However, you still need to be careful about
race conditions since you can’t be sure which lines of code get run when.

By modeling a program in this way where portions of code can be paused and then
resumed when the resources they need are available, we are able to take
advantage of I/O wait to perform more operations on a single thread than would
otherwise be possible.

[image: hpp2 0801]
Figure 8-1. Comparison of serial and concurrent programs

Introduction to Asynchronous Programming

Typically, when a program enters I/O wait, the execution is paused so that the
kernel can perform the low-level operations associated with the I/O request
(this is called a context switch), and it is not resumed until the I/O operation
is completed. Context switching is quite a heavy operation. It requires us to
save the state of our program (losing any sort of caching we had at the CPU
level) and give up the use of the CPU. Later, when we are allowed to run again,
we must spend time reinitializing our program on the motherboard and getting
ready to resume (of course, all this happens behind the scenes).

With concurrency, on the other hand, we typically have an event
loop running that manages what gets to run in our program, and when. In
essence, an event loop is simply a list of functions that need to be run. The
function at the top of the list gets run, then the next, etc.
Example 8-1 shows a simple example of an event loop.

Example 8-1. Toy event loop

from queue import Queue
from functools import partial

eventloop = None

class EventLoop(Queue):
 def start(self):
 while True:
 function = self.get()
 function()

def do_hello():
 global eventloop
 print("Hello")
 eventloop.put(do_world)

def do_world():
 global eventloop
 print("world")
 eventloop.put(do_hello)

if __name__ == "__main__":
 eventloop = EventLoop()
 eventloop.put(do_hello)
 eventloop.start()

This may not seem like a big change; however, we can couple event loops with
asynchronous (async) I/O operations for massive gains when performing I/O tasks.
In this example, the call eventloop.put(do_world) approximates an asynchronous
call to the do_world function. This operation is called nonblocking,
meaning it will return immediately but guarantee that do_world is called at
some point later. Similarly, if this were a network write with an async
function, it will return right away even though the write has not happened yet.
When the write has completed, an event fires so our program knows about it and can respond accordintly.

Putting these two concepts together, we can have a program that, when an I/O
operation is requested, runs other functions while waiting for the original I/O
operation to complete. This essentially allows us to still do meaningful
calculations when we otherwise would have been in I/O wait.

Note

Switching from function to function does have a cost. The kernel must take the
time to set up the function to be called in memory, and the state of our caches
won’t be as predictable. It is because of this that concurrency gives the best
results when your program has a lot of I/O wait—​the cost associated with switching can be much less than what is gained by making use of I/O wait
time.

Generally, programming using event loops can take two forms: callbacks or
futures. In the callback paradigm, functions are called with an argument that is
generally called the callback. Instead of the function returning its value,
it calls the callback function with the value instead. This sets up long chains
of functions that are called, with each function getting the result of the previous
function in the chain (these chains are sometimes referred to as “callback
hell” because it can become incredibly difficult to trace the actual runtime
flow of a program). Example 8-2 is a simple example of the callback
paradigm.

Example 8-2. Example with callbacks

from functools import partial
from some_database_library import save_results_to_db

def save_value(value, callback):
 print(f"Saving {value} to database")
 save_result_to_db(result, callback) [image: 1]

def print_response(db_response):
 print("Response from database: {db_response}")

if __name__ == "__main__":
 task = partial(save_value, "Hello World", print_response) [image: 2]
 eventloop.put(task)

	[image: 1]

	save_result_to_db is an asynchronous function; it will return immediately, and the function will end and allow other code to run. However, once the data is ready, print_response will be called.

	[image: 2]

	Partial functions are often used in asynchronous programming. The funcools.partial function allows to copy a function but with fixed arguments. This is useful for facilitating calling a function in the future by simplifying it’s call signature. Most tasks and callbacks are assumed to take no parameters, so partial functions are a way of accomplishing this.

Before Python 3.4, the callback paradigm was quite popular. However, the
asyncio standard library module and PEP 492 made the future’s mechanism native
to Python. This was done by creating a standard API for dealing with
asynchronous I/O and the new await and async keywords, which define an
asynchronous function and a way to wait for a result.

In this paradigm, an asynchronous function returns a Future object, which is a
promise of a future result. Because of this, if we want the result at some
point we must wait for the future that is returned by this sort of asynchronous
function to complete and be filled with the value we desire (either by doing an
await on it or by running a function that explicitly waits for a value to be
ready). However, this also means that the result can be available in the
callers context, while in the callback paradigm the result is available only in
the callback function. While waiting for the Future object to be filled with the
data we requested, we can do other calculations. If we couple this with the
concept of generators—functions that can be paused and whose execution can later
be resumed—we can write asynchronous code that looks very close to serial code
in form:

from some_async_database_library import save_results_to_db

async def save_value(value):
 print(f"Saving {value} to database")
 db_response = await save_result_to_db(result) [image: 1]
 print("Response from database: {db_response}")

if __name__ == "__main__":
 eventloop.put(
 partial(save_value, "Hello World")
)

	[image: 1]

	In this case, save_result_to_db returns a Future type. By awaiting it, we ensure that save_value gets paused until the value is ready and then resumes and completes its operations.

It’s important to realize that the Future object returned by
save_result_to_db holds the promise of a Future result and doesn’t hold the
result itself or even call any of the save_result_to_db code. If we
simply did db_response_future = save_result_to_db(result), the statement would
complete immediately and we could do other things with the Future object. In fact, none of the save_value function would actually run until the event loop schedules time for it. This is often done when we want to collect a list of futures and wait for all of them at the same
time.

How Does async/await Work?

An async function (defined with async def) is called a coroutine. In
Python, coroutines are implemented with the same philosophies as generators.
This is convenient because generators already have the machinery to pause their
execution and resume later. Using this paradigm, an await statement is
similar in function to a yield statement; the execution of the current
function gets paused while other code is run. Once the await or yield
resolves with data, the function is resumed with potentially some extra data. So in the preceding example, our
save_result_to_db will return a Future object, and the await statement
pauses the function until that Future contains a result. The event loop is
responsible for scheduling the resumption of save_value after the Future is
ready to return a result.

Note

The asyncio library was first introduced into as a standard library in Python
3.4 as unstable and in Python 3.8 graduated to a stable API. In that period of
evolution, many large things have changed and even more small things and
library nuances have taken shape. If you had some experience with the asyncio
library before Python 3.8, it would be a good idea to spend some time with the
documentation to learn about the new features and potentially some new nuances
of the library.

It is critical to realize our reliance on an event loop when running concurrent
code. In general, this leads to most fully concurrent code’s main code
entry point consisting mainly of setting up and starting the event loop.
However, this assumes that your entire program is concurrent. In other cases, a
set of futures is created within the program, and then a temporary event loop is
started simply to manage the existing futures, before the event loop exits and
the code can resume normally. This is generally done with either the
asyncio.run(coro).

In this chapter we will analyze a web crawler that fetches data from an HTTP
server that has latency built into it. This represents the general
response-time latency that will occur whenever dealing with I/O. We will first
create a serial crawler that looks at the naive Python solution to this
problem. Then we will build up to a full aiohttp solution to see how we
can benefit from asynchronous IO. Finally, we will look at combining async I/O
tasks with CPU tasks in order to effectively hide any time spent doing I/O.

Note

The web server we implemented can support multiple connections at a time. This
will be true for most services that you will be performing I/O with—most
databases can support multiple requests at a time, and most web servers support
10,000+ simultaneous connections. However, when interacting with a service that
cannot handle multiple connections at a time, we will always have the same
performance as the serial case.

Serial Crawler

As a baseline to understand asynchronous IO, we will write a serial web
scraper that takes a list of URLs, fetches them, and sums the total length of
the content from the pages. We will use a custom HTTP server that takes two
parameters, name and delay. The delay field will tell the server how
long, in milliseconds, to pause before responding. The name field is
for logging purposes.

By controlling the delay parameter, we can simulate the time it takes a server
to respond to our query. In the real world, this could correspond to a slow web
server, a strenuous database call, or any I/O call that takes a long time to
perform. For the serial case, this leads to more time that our program
is stuck in I/O wait, but in the concurrent example it will provide an
opportunity to spend the I/O wait time doing other tasks such as launching more I/O requests.

In Example 8-3, we chose to use the requests module to perform the HTTP call.
We made this choice because of the ubiquity of the module. We use HTTP for this
section because it is a simple example of I/O and can be performed easily and is used frequently in data science for some of the most I/O intensive tasks.
In general, any call to a HTTP library can be replaced with any I/O.

Example 8-3. Serial HTTP scraper

import random
import string

import requests

def generate_urls(base_url, num_urls):
 """
 We add random characters to the end of the URL to break any caching
 mechanisms in the requests library or the server
 """
 for i in range(num_urls):
 yield base_url + "".join(random.sample(string.ascii_lowercase, 10))

def process(session, url)
 response = session.get(url)
 return len(response.text)

def run_experiment(base_url, num_iter=1000):
 response_size = 0
 with requests.Session() as session:
 for url in generate_urls(base_url, num_iter):
 response_size += process(session, url)
 return response_size

if __name__ == "__main__":
 import time

 delay = 100
 num_iter = 1000
 base_url = f"http://127.0.0.1:8080/add?name=serial&delay={delay}&"

 start = time.time()
 result = run_experiment(base_url, num_iter)
 end = time.time()
 print(f"Result: {result}, Time: {end - start}")

When running this code, an interesting metric to look at is the start and stop
time of each request as seen by the HTTP server. This tells us how efficient
our code was during I/O wait—​since our task is to launch HTTP requests
and then sum the number of characters that were returned, we should be able to
launch more HTTP requests, and process any responses, while waiting for other
requests to complete.

We can see in Figure 8-2 that, as expected, there is no
interleaving of our requests. We do one request at a time and wait for the
previous request to happen before we move to the next request. In fact, the
total runtime of the serial process makes perfect sense knowing this. Since
each request takes 0.1 seconds (because of our delay parameter) and we are doing 1000
requests, we expect this runtime to be about 100
seconds. Looking at Figure 8-2 we see that because of various overheads, the actual runtime was 101.89 seconds.

[image: Request times for serial scraper]
Figure 8-2. Request time for Example 8-3

Asynchronous Crawler

There are entire ecosystems in Python around asynchronous IO. There are many
asynchronous versions of common libraries (such as asyncpg for async
postgres, or anyio for generalized async networking). For this chapter we
chose to focus on aiohttp, which is part of the aio-libs project. This is meant to expose the asyncio module in a more user-friendly way.

Especially since we are focusing on HTTP requests, there are many different
libraries to chose from, but they generally follow the same paradigm and
learning one will help you understand the others. A good choice for all around
HTTP applications (clients and servers) is aiohttp or httpx if either HTTP/2
support is critial or you want to use the same module for both synchronous and asynchronous portions of your code.

The big difficulty with asynchronous code is that either you refactor your
entire codebase to be asynchronous or you need to explicitly switch between the
two behavrious. Switching between the two can be done easily enough using the asyncio.run function, however any code written in an asynchronous function (or coroutine) can only be used while the code is running asyncrhonously.

Example 8-4. asyncio HTTP scraper

import asyncio
import random
import string

import aiohttp

def generate_urls(base_url, num_urls):
 """
 We add random characters to the end of the URL to break any caching
 mechanisms in the requests library or the server
 """
 for _ in range(num_urls):
 yield base_url + "".join(random.sample(string.ascii_lowercase, 10))

async def process(session, url):
 async with session.get(url) as response:
 return len(await response.text())

async def run_experiment(base_url, num_iter=1000):
 tasks = []
 async with aiohttp.ClientSession() as session:
 async with asyncio.TaskGroup() as tg: [image: 1]
 for url in generate_urls(base_url, num_iter):
 coro = process(session, url)
 task = tg.create_task(coro)
 tasks.append(task)
 response_size = sum(task.result() for task in tasks) [image: 2]
 return response_size

if __name__ == "__main__":
 import time

 delay = 100
 num_iter = 1000
 base_url = f"http://127.0.0.1:8080/add?name=aiohttp&delay={delay}&"
 experiment = run_experiment(base_url, num_iter)

 start = time.time()
 result = asyncio.run(experiment)
 end = time.time()
 print(f"Result: limit: {result}, Time: {end - start}")

<1>: Task Groups were added in Python 3.11 and are an amazing way to simplify the management of many tasks running at once
<2>: Since all of our processing tasks are running concurrently, we can either process the results from each one as they come in or we can do it all at once when everything is ready. If the post-processing was intensive, doing it as the results come in is a better use of compute resources, but in this case we don’t lose anything doing it all at once.

This code seems quite different but it also shares many similarities to the
serial code. The biggest difference is instead of simply calling the process
function, we are converting it into tasks that are managed by our TaskGroup
and the processing all the results at once. A key thing in understanding the
asynchronous nature of this code though is realizing at what point the first
request is launched. Take a second and try to see what your intuition says.

It is important to realize that no part of the process function gets called
when we create the coro object. Instead, we create the promise of a future
result. By adding it to our list of tasks we are able to retrieve this result.
But when is the result actually calculated?

Coroutines get exclusive use of the event loop until they await. This await
gives back execution control to the event loop so that it can deal with other
pending tasks. This is something we can control by having “no-op” statements
(like, as we’ll see later in this chapter, the famose await asyncio.sleep(0)
statement). In this case, we have no await statement within the loop creating
all of our tasks and it isn’t until the TaskGroup context manager enters it’s
“exit” state that an await happens, allowing other tasks to run. Furthermore,
the main purpose of the TaskGroup object is to ensure that not only do the
tasks have time to run, but that when the context manager exits all of the
tasks are finished (or canceled in the case of error).

Note

In the default execution, tasks are not immediately run on creation (unlike
generators whose code gets run until the first yield when the generator is
called). Instead they only start running once the event loop gives that task
time in the schedule. This behaviour can be changed using
asyncio.eager_task_factory which can immensely help optimize resource use
when a task has the chance of not having any asynchronous behaviour (as is the
case for caching). In the above case, the first print would happen
immediately and the save_result_to_db would wait until the event loop gave us
time on the schedule.

So, very non-intuitively, the first request gets processed after all tasks have
been created and in-between the response_size = ... line and the code before
it. We can verify this by having a print statement at the end of our for loop
but before the end of the TaskGroup context, and one within our process
function.

We can go further and understand better how the asynchronous requests are processeed by looking at the chronology of the HTTP requests made while running this program.

[image: Request times for AsyncIO scraper]
Figure 8-3. Chronology of HTTP requests for Example 8-4

A first thing to notice is the change in runtime. While the serial version of
the crawler in Example 8-3 took 101.89s to run this async version took
only 1.33s, a 76.6x speedup. Looking at the callgraph we can understand that
this is happening because we are processing multiple requests at the same time.
So instead of waiting the full 100ms for a request to complete before doing
another one, we are stacking them in order to reduce the overall effect.

Looking deeper at the callgraph, we can see that the system seems to have
issued the first 100 requests pretty steadily before taking a small pause to
issue new requests. In fact, we can see that the next set of requests only
started once the first ones completed. This comes from a configuration within
the aiohttp.ClientSession object where only 100 simultaneous requests will be
active at once. When more come in, they will be queued until one of the 100
slots open up.

With this better understanding, we can predict the behaviour of this async
approach. If 100 requests can be processed at once, this mean each block of 100
requests feel the 100ms delay all at once. As such, we would expect 1000
requests to take ~1 second which is what we see!

What if we tune this 100 request limit? Logic says we should be able to get our
time down to 0.1s if we run all requests at the same time! However, this is
when we start hitting up against the limitations of our event-loop, the network
device, the upstream server or one of the other hundred of complex machinery
involved in high-level I/O.

[image: Experimenting with different numbers of concurrent requests for various request times]
Figure 8-4. Experimenting with different numbers of concurrent requests for various request times

We can experiment with this and look at the total runtime for our task as we
change the number of concurrent requests and also the response time from the
server. We can see several interesting things going on. Firstly, counter to our
expectation, increasing the number of concurrent requests gives us diminishing
returns and seems to taper off in benefit after about 250 concurrent requests.
We also see that this behaviour seems to be different dependent on the request
timing, with short requests seeing their highest benefit from concurrency much
sooner.

Both of these things come from the fact that with these higher rates of
concurrent requests, we always have a completed request available for
processing when we launch a new request. So once the first request completes,
we always have more data to process and we become completely CPU bound.
However, we aren’t simply doing an optimized CPU operation where we are looping
through well structured and laid out data. Instead, we are context switching
between each coroutine and invoking all of the overhead associated with this.

As a result, it’s best to either stick with a reasonable default of the number
of concurrent tasks you perform (with modern computers, 100-200 is generally a
good bet), or you should perform tests on your application to see what nuances
there are. Remember, there are even more potential factors associated with the
performance characteristics of the downstream service you are making requests
to!

In many domains of high performance computing, especially those discussed in
this book, the goal is to simplify your application or the code or the
algorithm. You are trying to reduce the complexity in order to reduce the
amount of time spent doing calculations. On the other hand, with asynchronous
code we are introducing more complexity with the goal of using it to
carefully manage and orchestrate the strenuous needs of heavy I/O. This
especially comes from the fact that most of the overhead from I/O reside outside
the control of your code! Because of this, experimentation for your particular
application is key in order to understand how the tools provided to you with by
the asyncio module can be best deployed for your particular situation.

Shared CPU–I/O Workload

To make the preceding examples more concrete, we will create another toy problem
in which we have a CPU-bound problem that needs to communicate frequently with a
database to save results. The CPU workload can be anything; in this case, we are
taking the bcrypt hash of a random string with larger and larger workload
factors to increase the amount of CPU-bound work (see Table 8-1 to
understand how the “difficulty” parameter affects runtime). This problem is representative of any sort of problem in which your program has
heavy calculations to do, and the results of those calculations must be stored
into a database, potentially incurring a heavy I/O penalty. The only
restrictions we are putting on our database are as follows:

	
It has an HTTP API so we can use code like that in the earlier examples.1

	
Response times are on the order of 100 milliseconds.

	
The database can satisfy many requests at a time.2

The response time of this “database” was chosen to be higher than usual in order
to exaggerate the turning point in the problem, where the time to do one of the
CPU tasks is longer than one of the I/O tasks. For a database that is being used
only to store simple values, a response time greater than 10 milliseconds should be considered
slow!

Table 8-1. Time to calculate a single hash

	Difficulty parameter
	8
	10
	12
	14

	Miliseconds per iteration

	17

	67.9

	271

	1,090

Serial

We start with some simple code that calculates the bcrypt hash of a string and
makes a request to the database’s HTTP API every time a result is calculated:

import random
import string

import bcrypt
import requests

def do_task(difficulty):
 """
 Hash a random 10 character string using bcrypt with a specified difficulty
 rating.
 """
 passwd = ("".join(random.sample(string.ascii_lowercase, 10)) [image: 1]
 .encode("utf8"))
 salt = bcrypt.gensalt(difficulty) [image: 2]
 result = bcrypt.hashpw(passwd, salt)
 return result.decode("utf8")

def save_result_serial(result):
 url = f"http://127.0.0.1:8080/add"
 response = requests.post(url, data=result)
 return response.json()

def calculate_task_serial(num_iter, task_difficulty):
 for i in range(num_iter):
 result = do_task(task_difficulty)
 save_number_serial(result)

	[image: 1]

	We generate a random 10-character byte array.

	[image: 2]

	The difficulty parameter sets how hard it is to generate the password by increasing the CPU and memory requirements of the hashing algorithm.

Just as in our serial example (Example 8-3), the request times for each
database save (100 milliseconds) do not stack, and we must pay this penalty for each
result. As a result, iterating six hundred times with a task difficulty of 8 takes 70.6 seconds.
We know, however, that because of the way our serial requests work, we are
spending 60 seconds at minimum doing I/O! 85% of our program’s runtime is being
spent doing I/O and, moreover, just sitting around in “I/O wait,” when it could
be doing something else!

Of course, as the CPU problem takes more and more time, the relative slowdown of
doing this serial I/O decreases. This is simply because the cost of having a
100-millisecond pause after each task pales in comparison to the long amount of time
needed to do this computation (as we can see in Figure 8-5). This fact highlights how important it is to understand
your workload before considering which optimizations to make. If you have a CPU
task that takes hours and an I/O task that takes only seconds, work done to speed up
the I/O task will not bring the huge speedups you may be looking for!

[image: Comparison of the serial code to the CPU task with no I/O]
Figure 8-5. Comparison of the serial code to the CPU task with no I/O

Batched Results

Instead of immediately going to a full asynchronous solution, let’s try an
intermediate solution. If we don’t need to know the results in our database
right away, we can batch up the results and send them to the
database asynchronously. To do this, we create an object, AsyncBatcher, that
will take care of queuing results to be sent to the database in small
asynchronous bursts. This will still pause the program and put it into I/O wait
with no CPU tasks; however, during this time we can issue many concurrent
requests instead of issuing them one at a time:

import asyncio
import aiohttp

class AsyncBatcher(object):
 def __init__(self, batch_size):
 self.batch_size = batch_size
 self.batch = []
 self.client_session = None
 self.url = f"http://127.0.0.1:8080/add"

 def __enter__(self):
 return self

 def __exit__(self, *args, **kwargs):
 self.flush()

 def save(self, result):
 self.batch.append(result)
 if len(self.batch) == self.batch_size:
 self.flush()

 def flush(self):
 """
 Synchronous flush function which starts an eventloop for the purposes of
 running our async flushing function
 """
 asyncio.run(self.__aflush()) [image: 1]

 async def __aflush(self): [image: 2]
 async with aiohttp.ClientSession() as session:
 tasks = [self.fetch(result, session) for result in self.batch]
 asyncio.gather(*tasks) [image: 3]
 self.batch.clear()

 async def fetch(self, result, session):
 async with session.post(self.url, data=result) as response:
 return await response.json()

	[image: 1]

	We are able to start up an event loop just to run a single asynchronous function. The event loop will run until the asynchronous function is complete, and then the code will resume as normal.

	[image: 2]

	This function is nearly identical to that of Example 8-4.

	[image: 3]

	Here we use asyncio.gather rather than asyncio.TaskGroup to provide an alternative to running a set of tasks. Both have their use case with asyncio.TaskGroup being more useful for fine-grained exception handling. In addition, asyncio.gather doesn’t cancel pending tasks when one of them raises an exception which is useful in cases when each task is independant and one failure shouldn’t stop other tasks from completing.

Now we can proceed almost in the same way as we did before. The main
difference is that we add our results to our AsyncBatcher and let it take care
of when to send the requests. Note that we chose to make this object into a
context manager so that once we are done batching, the final flush() gets
called. If we didn’t do this, there would be a chance that we still have some
results queued that didn’t trigger a flush:

def calculate_task_batch(num_iter, task_difficulty):
 with AsyncBatcher(100) as batcher: [image: 1]
 for i in range(num_iter):
 result = do_task(i, task_difficulty)
 batcher.save(result)

	[image: 1]

	We choose to batch at 100 requests, for reasons similar to those illustrated in Figure 8-4.

With this change, we are able to bring our runtime for a difficulty of 8 down to
10.21 seconds. This represents a 6.95x speedup without our having to do much work or changing the general structure of the larger project this code may be a part of. In
a constrained environment such as a real-time data pipeline, this extra speed
could mean the difference between a system being able to keep up with demand and that system
falling behind (in which case a queue will be required; you’ll learn about these
in Chapter 10).

To understand what is happening in this timing, let’s consider the
variables that could affect the timings of this batched method. If our database
had infinite throughput (i.e., if we could send an infinite number of requests at the
same time without penalty), we could take advantage of the fact that we get only
the 100-millisecond penalty when our AsyncBatcher is full and does a flush. In
this case, we’d get the best performance by just saving all of our
requests to the database and doing them all at once when the calculation was
finished.

However, in the real world, our databases have a maximum throughput that limits
the number of concurrent requests they can process. In this case, our server is
limited at 100 requests a second, which means we must flush our batcher every one hundred
results and take the 100-millisecond penalty then. This is because the batcher still
pauses the execution of the program, just as the serial code did; however, in
that paused time it performs many requests instead of just one.

If we tried to save all our results to the end and then issued them all at once,
the server would only process one hundred at a time, and we’d have an extra penalty in
terms of the overhead to making all those requests at the same time in addition
to overloading our database, which can cause all sorts of unpredictable
slowdowns.

On the other hand, if our server had terrible throughput and could deal with only
one request at a time, we may as well run our code in serial! Even if we kept
our batching at one hundred results per batch, when we actually go to make the requests,
only one would get responded to at a time, effectively invalidating any batching
we made.

This mechanism of batching results, also known as pipelining, can help
tremendously when trying to lower the burden of an I/O task (as seen in Figure 8-6). It offers a good
compromise between the speeds of asynchronous I/O and the ease
of writing serial
programs. However, a determination of how much to pipeline at a time is very
case-dependent and requires some profiling and tuning to get the best

performance.

[image: Comparison of batching requests versus not doing any I/O]
Figure 8-6. Comparison of batching requests versus not doing any I/O

Full Async

In some cases, we may need to implement a full asynchronous solution. This may
happen if the CPU task is part of a larger I/O-bound program, such as an HTTP
server. Imagine that you have an API service that, in response to some
of its endpoints, has to perform heavy computational tasks. We still want the
API to be able to handle concurrent requests and be performant in its tasks, but
we also want the CPU task to run quickly.

The implementation of this solution in Example 8-5 uses code very similar to that of
Example 8-4.

Example 8-5. Async CPU workload

def save_result_aiohttp(session, url):
 async with session.post(url, data=result) as response:
 return await response.json()

async def calculate_task_aiohttp(num_iter, task_difficulty):
 async with asyncio.TaskGroup() as tg:
 async with aiohttp.ClientSession() as client_session:
 for i in range(num_iter):
 result = do_task(i, task_difficulty)
 task = save_result_aiohttp(session, result) [image: 1]
 tg.create_task(task)
 await asyncio.sleep(0) [image: 2]

	[image: 1]

	Instead of awaiting our database save immediately, we create the Future and add it to a task group for it to run when there is time. The asyncio.TaskGroup is a convenient way of creating many tasks and ensuring that they will all be awaited when the context manager exists.

	[image: 2]

	This is arguably the most important line in the function. Here, we pause the main function to allow the event loop to take care of any pending tasks. Without this, none of our queued tasks would run until the end of the function when the TaskGroup exists.

Before we go into the performance characteristics of this code, we should first
talk about the importance of the asyncio.sleep(0) statement. It may seem
strange to be sleeping for zero seconds, but this statement is a way to force
the function to defer execution to the event loop and allow other tasks to
run. In general in asynchronous code, this deferring happens every time an
await statement is run. Since we generally don’t await in CPU-bound code,
it’s important to force this deferment, or else no other task will run until the
CPU-bound code is complete. In this case, if we didn’t have the sleep statement,
all the HTTP requests would be paused until the asyncio.wait statement,
and then all the requests would be issued at once, which is definitely not what
we want!

Note

We didn’t need the asyncio.sleep(0) statement in Example 8-4
because the process of creating all of our tasks was very quick. In this case,
however, creating each task requires running through our complicated bcrypt
calculation, so giving the event-loop a chance to give priority to other tasks
becomes quite important.

One nice thing about having this control is that we can choose the best times to
defer back to the event loop. There are many considerations when doing
this. Since the run state of the program changes when we defer, we don’t want to
do it in the middle of a calculation and potentially change our CPU cache. In
addition, deferring to the event loop has an overhead cost, so we don’t
want to do it too frequently. However, while we are bound up doing the CPU task,
we cannot do any I/O tasks. So if our full application is an API, no requests
can be handled during the CPU time!

Our general rule of thumb is to try to issue an asyncio.sleep(0) at any loop
that we expect to iterate every 50 to 100 milliseconds or so. Some applications use
time.perf_counter and allow the CPU task to have a specific amount of runtime
before forcing a sleep. For a situation such as this, though, since we have
control of the number of CPU and I/O tasks, we just need to make sure that the
time between sleeps coincides with the time needed for pending I/O tasks to
complete.

One major performance benefit to the full asynchronous solution is that we can
perform all of our I/O while we are doing our CPU work, effectively hiding it
from our total runtime (as we can see from the overlapping lines in Figure 8-7). While it will never be completely hidden because of the
overhead costs of the event loop, we can get very close. In fact, for a
difficulty of 8 with 600 iterations, our code runs 7.3x faster than the serial
code and performs its total I/O workload 2x times; faster than the batched code (and
this benefit over the batched code would only get better as we do more
iterations, since the batched code loses time versus the asynchronous code every
time it has to pause the CPU task to flush a batch).

[image: Call graph for 25 difficulty-8 CPU tasks using the aiohttp solution. The red lines represents time working on a CPU task while blue lines represent time sending a result to the server]
Figure 8-7. Call graph for 25 difficulty-8 CPU tasks using the aiohttp solution—the red lines represent time working on a CPU task, while blue lines represent time sending a result to the server

In the call timeline, we can really see what is going on. What we’ve done is
to mark the beginning and end of each CPU and I/O task for a short run of 25 CPU tasks
with difficulty 8. The first several I/O tasks are the slowest, taking a while to
make the initial connection to our server. Because of our use of aiohttp’s
ClientSession, these connections are cached, and all subsequent connections to
the same server are much faster.

After this, if we just focus on the blue lines, they seem to happen very
regularly without much of a pause between CPU tasks. Indeed, we don’t see the
100-millisecond delay from the HTTP request between tasks. Instead, we see the
HTTP request being issued quickly at the end of each CPU task and later being
marked as completed at the end of another CPU task.

We do see, though, that each individual I/O task takes longer than the 100-millisecond
response time from the server. This longer wait time is given by the frequency
of our asyncio.sleep(0) statements (since each CPU task has one await, while
each I/O task has three) and the way the event loop decides which tasks come next. For
the I/O task, this extra wait time is OK because it doesn’t interrupt the CPU
task at hand. In fact, at the end of the run we can see the I/O runtimes shorten
until the final I/O task is run. This final blue line is triggered by the
asyncio.wait statement and runs incredibly quickly since it is the only
remaining task and never needs to switch to other tasks.

In Figures 8-10 and 8-11, we can see a summary of how
these changes affect the runtime of our code for different workloads. The
speedup in the async code over the serial code is significant, although we are
still a ways away from the speeds achieved in the raw CPU problem. For this to
be completely remedied, we would need to use modules like multiprocessing to
have a completely separate process that can deal with the I/O burden of our
program without slowing down the CPU portion of the problem.

[image: Processing time difference between serial I/O, batched async I/O, full async I/O, and a control case where I/O is completely disabled]
Figure 8-8. Processing time difference between serial I/O, batched async I/O, full async I/O, and a control case where I/O is completely disabled

[image: Processing time difference between batched async, full async I/O, and I/O disabled]
Figure 8-9. Processing time difference between batched async, full async I/O, and I/O disabled

Wrap-Up

When solving problems in real-world and production systems, it is often
necessary to communicate with an outside source. This outside source could be a
database running on another server, another worker computer, or a data service
that is providing the raw data that must be processed. Whenever this is the
case, your problem can quickly become I/O-bound, meaning that most of the runtime
is dominated by dealing with input/output.

Concurrency helps with I/O-bound problems by allowing you to interleave computation
with potentially multiple I/O operations. This allows you to exploit the
fundamental difference between I/O and CPU operations in order to speed up
overall runtime.

We investigated the runtime dynamics of asynchronous programs and looked at how
to better understand performance characteristics as we push these processes to
their limits.

We also saw how to mesh CPU and I/O tasks together and how to consider the
various performance characteristics of each to come up with a good solution to
the problem. While it may be appealing to go to a full asynchronous code
immediately, sometimes intermediate solutions work almost as well without having
quite the engineering burden.

In the next chapter, we will take this concept of interleaving computation from
I/O-bound problems and apply it to CPU-bound problems. With this new ability,
we will be able to perform not only multiple I/O operations at once but also
many computational operations. This capability will allow us to start to make
fully scalable programs where we can achieve more speed by simply adding more
computer resources that can each handle a chunk of the
problem.

1 This is not necessary; it just serves to simplify our code.
2 This is true for all distributed databases and other popular databases, such as Postgres, MongoDB, and so on.

Chapter 9. The multiprocessing Module

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 10th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
What does the multiprocessing module offer?

	
What’s the difference between processes and threads?

	
How do I choose the right size for a process pool?

	
How do I use nonpersistent queues for work processing?

	
What are the costs and benefits of interprocess communication?

	
How can I process numpy data with many CPUs?

	
How would I use Joblib to simplify parallelized and cached scientific work?

	
Why do I need locking to avoid data loss?

CPython doesn’t use multiple CPUs by default. This is partly because Python was
designed back in a single-core era, and partly because parallelizing can actually
be quite difficult to do efficiently. Python gives us the tools to do it but
leaves us to make our own choices. It is painful to see your multicore machine
using just one CPU on a long-running process, though, so in this chapter we’ll review ways
of using all the machine’s cores at once.

Note

We just mentioned CPython—the common implementation that we all use. Nothing in the Python language stops it from using multicore systems. CPython’s implementation cannot efficiently use multiple cores, but future implementations may not be bound by this restriction.

We live in a multicore world—​6 cores are common in laptops, and 96-core
desktop configurations are available. If your job can be split to run on multiple CPUs without too
much engineering effort, this is a wise direction to consider.

When Python is used to parallelize a problem over a set of CPUs, you can expect up to an
n-times (n×) speedup with n cores. If you have a quad-core machine and you can use
all four cores for your task, it might run in a quarter of the original runtime. You
are unlikely to see a greater than 4× speedup; in practice, you’ll probably see gains of 3–4×.

Each additional process will increase the
communication overhead and decrease the available RAM, so you rarely get a full n-times
speedup. Depending on which problem you are solving, the communication
overhead can even get so large that you can see very significant slowdowns.
These sorts of problems are often where the complexity lies for any sort of parallel
programming and normally require a change in algorithm. This is why
parallel programming is often considered an art.

If you’re not familiar with Amdahl’s law, it is worth doing some background reading. The law shows that if only a small part of your code can be parallelized, it doesn’t matter how many CPUs you throw at it; it still won’t run much faster overall. Even if a large fraction of your runtime could be parallelized, there’s a finite number of CPUs that can be used efficiently to make the overall process run faster before you get to a point of diminishing returns.

The multiprocessing module lets you use process- and thread-based parallel
processing, share work over queues, and share data among processes. It is
mostly focused on single-machine multicore parallelism (there are better
options for multimachine parallelism). A very common use is to parallelize a
task over a set of processes for a CPU-bound problem. You might also use OpenMP to
parallelize an I/O-bound problem, but as we saw in Chapter 8, there are better tools for this (e.g., the
new asyncio module in Python 3).

Note

OpenMP is a low-level interface to multiple cores—you might wonder whether to focus on it rather than multiprocessing. We introduced it with Cython back in Chapter 7, but we don’t cover it in this chapter. multiprocessing works at a higher level, sharing Python data structures, while OpenMP works with C primitive objects (e.g., integers and floats) once you’ve compiled to C. Using it makes sense only if you’re compiling your code; if you’re not compiling (e.g., if you’re using efficient numpy code and you want to run on many cores), then sticking with multiprocessing is probably the right approach.

To parallelize your task, you have to think a little differently from the normal
way of writing a serial process. You must also accept that debugging a
parallelized task is harder—often, it can be very frustrating. We’d recommend
keeping the parallelism as simple as possible (even if you’re not squeezing
every last drop of power from your machine) so that your development velocity is
kept high.

One particularly difficult topic is the sharing of state in a parallel system—​it feels like it should be easy, but it incurs lots of overhead and can be hard
to get right. There are many use cases, each with different trade-offs, so
there’s definitely no one solution for everyone. In
“Verifying Primes Using Interprocess Communication”, we’ll go
through state sharing with an eye on the synchronization costs. Avoiding shared
state will make your life far easier.

In fact, an algorithm can be analyzed to see how well it’ll perform in a
parallel environment almost entirely by how much state must be shared. For
example, if we can have multiple Python processes all solving the same problem
without communicating with one another (a situation known as embarrassingly
parallel), not much of a penalty will be incurred as we add more and
more Python processes.

On the other hand, if each process needs to communicate with every other Python
process, the communication overhead will slowly overwhelm the processing and slow
things down. This means that as we add more and more Python processes, we can
actually slow down our overall performance.

As a result, sometimes some counterintuitive algorithmic changes must be made to
efficiently solve a problem in parallel. For example, when solving the diffusion
equation ([Link to Come]) in parallel, each process actually does some
redundant work that another process also does. This redundancy reduces the
amount of communication required and speeds up the overall calculation!

Here are some typical jobs for the multiprocessing module:

	
Parallelize a CPU-bound task with Process or Pool objects

	
Parallelize an I/O-bound task in a Pool with threads using the (oddly named) dummy module

	
Share pickled work via a Queue

	
Share state between parallelized workers, including bytes, primitive datatypes, dictionaries, and lists

If you come from a language where threads are used for CPU-bound tasks (e.g., C++
or Java), you should know that while threads in Python are OS-native
(they’re not simulated—they are actual operating system threads), they are bound
by the GIL, so only one thread may interact with Python objects at a time.

By using processes, we run a number of Python interpreters in
parallel, each with a private memory space with its own GIL, and each runs in
series (so there’s no competition for each GIL). This is the easiest way to
speed up a CPU-bound task in Python. If we need to share state, we need to
add some communication overhead; we’ll explore that in
“Verifying Primes Using Interprocess Communication”.

If you work with numpy arrays, you might wonder if you can create a larger
array (e.g., a large 2D matrix) and ask processes to work on segments of the
array in parallel. You can, but it is hard to discover how by trial and error, so in
“Sharing numpy Data with multiprocessing” we’ll work through
sharing a 30.5 GB numpy array across eight CPUs. Rather than sending partial
copies of the data (which would at least double the working size required in
RAM and create a massive communication overhead), we share the underlying bytes
of the array among the processes. This is an ideal approach to sharing a large
array among local workers on one machine.

In this chapter we also introduce the Joblib library—this builds on the multiprocessing library
and offers improved cross-platform compatibility, a simple API for parallelization, and
convenient persistence of cached results. Joblib is designed for scientific use, and we urge you to
check it out.

Note

Here, we discuss multiprocessing on *nix-based machines (this chapter is
written using Ubuntu; the code should run unchanged on a Mac). Since Python 3.4, the quirks that appeared on Windows have been dealt with. Joblib has stronger cross-platform support than multiprocessing, and we recommend you review it ahead of multiprocessing.

In this chapter we’ll hardcode the number of processes
(NUM_PROCESSES=8) to match the eight physical cores on Ian’s laptop. By default,
multiprocessing will use as many cores as it can see (the machine presents
sixteen—​eight CPUs and eight hyperthreads). Normally you’d avoid hardcoding the
number of processes to create unless you were specifically managing your
resources.

An Overview of the multiprocessing Module

The multiprocessing module provides a low-level interface to process- and thread-based parallelism. Its
main components are as follows:

	Process

	
A forked copy of the current process; this creates a new process identifier, and the task runs as an independent child process in the operating system. You can start and query the state of the Process and provide it with a target method to run.

	Pool

	
Wraps the Process or threading.Thread API into a convenient pool of workers that share a chunk of work and return an aggregated result.

	Queue

	
A FIFO queue allowing multiple producers and consumers.

	Pipe

	
A uni- or bidirectional communication channel between two processes.

	Manager

	
A high-level managed interface to share Python objects between processes.

	ctypes

	
Allows sharing of primitive datatypes (e.g., integers, floats, and bytes) between processes after they have forked.

	Synchronization primitives

	
Locks and semaphores to synchronize control flow between processes.

Note

In Python 3.2, the concurrent.futures module was introduced (via PEP 3148); this provides the core behavior of multiprocessing, with a simpler interface based on Java’s java.util.concurrent. It is available as a backport to earlier versions of Python. We expect multiprocessing to continue to be preferred for CPU-intensive work and won’t be surprised if concurrent.futures becomes more popular for I/O-bound tasks.

In the rest of the chapter, we’ll introduce a set of examples to demonstrate common ways of using the multiprocessing module.

We’ll estimate pi using a Monte Carlo approach with a Pool of processes or threads, using normal Python and numpy. This is a simple problem with well-understood complexity, so it parallelizes easily; we can also see an unexpected result from using threads with numpy. Next, we’ll search for primes using the same Pool approach; we’ll investigate the nonpredictable complexity of searching for primes and look at how we can efficiently (and inefficiently!) split the workload to best use our computing resources. We’ll finish the primes search by switching to queues, where we introduce Process objects in place of a Pool and use a list of work and poison pills to control the lifetime of workers.

Next, we’ll tackle interprocess communication (IPC) to validate a small set of possible primes. By splitting each number’s workload across multiple CPUs, we use IPC to end the search early if a factor is found so that we can significantly beat the speed of a single-CPU search process. We’ll cover shared Python objects, OS primitives, and a Redis server to investigate the complexity and capability trade-offs of each approach.

We can share a 25 GB numpy array across four CPUs to split a large workload
without copying data. If you have large arrays with parallelizable operations, this technique should buy you a great speedup, since you have to allocate
less space in RAM and copy less data. Finally, we’ll look at synchronizing access
to a file and a variable (as a Value) between processes without
corrupting data to illustrate how to correctly lock shared state.

Note

PyPy (discussed in Chapter 7) has full support for the multiprocessing library, and the following CPython examples (though not the numpy examples, at the time of this writing) all run far quicker using PyPy. If you’re using only CPython code (no C extensions or more complex libraries) for parallel processing, PyPy might be a quick win for you.

Estimating Pi Using the Monte Carlo Method

We can estimate pi by throwing thousands of imaginary darts into a “dartboard” represented by a unit circle with a Monte Carlo method. The relationship between the number of darts falling inside the circle’s edge and the number falling outside it will allow us to approximate pi.

This is an ideal first problem, as we can split the total workload evenly across a number of processes, each one running on a separate CPU. Each process will end at the same time since the workload for each is equal, so we can investigate the speedups available as we add new CPUs and hyperthreads to the problem.

With the Monte Carlo method, we use the Pythagorean theorem to test if a dart has landed inside our circle, on each iteration we generate a random x and y coordinate and test:

 e
 s
 t
 i
 m
 a
 t
 e
 =
 ∑ 1 N

 (

 x 2
 +
 y 2

 ≤
 1 2
)

We then multiply by 4 as if we’d thrown darts into a full unit circle and divide by the number of iterations we’ve run. Note the 1^2 will always equal 1 so in code we can trivially simplify this to remove the square operation.

In Figure 9-1, we throw N=10,000 darts into the unit square, and a percentage of them fall into the quarter of the unit circle that’s drawn. This estimate is rather bad—​10,000 dart throws does not reliably give us a three-decimal-place result. If you ran your own code, you’d see this estimate vary between 3.0 and 3.2 on each run.

To be confident of the first three decimal places, we need to generate 10,000,000 random dart throws.1 This is massively inefficient (and better methods for pi’s estimation exist), but it is rather convenient to demonstrate the benefits of parallelization using multiprocessing.

[image: Estimating Pi using the Monte Carlo method]
Figure 9-1. Estimating pi using the Monte Carlo method

We’ll look at a loop version of this in Example 9-1. We’ll implement both a normal Python version and, later, a numpy version, and we’ll use both threads and processes to parallelize the problem.

Estimating Pi Using Processes and Threads

It is easier to understand a normal Python implementation, so we’ll start with that in this section, using float objects in a loop. We’ll parallelize this using processes to use all of our available CPUs, and we’ll visualize the state of the machine as we use more CPUs.

Using Python Objects

The Python implementation is easy to follow, but it carries an overhead, as each Python float object has to be managed, referenced, and synchronized in turn. This overhead slows down our runtime, but it has bought us thinking time, as the implementation was quick to put together. By parallelizing this version, we get additional speedups for very little extra work.

Figure 9-2 shows three implementations of the Python example:

	
No use of multiprocessing (named “Serial”)—one for loop in the main process

	
Using threads

	
Using processes

[image: not set]
Figure 9-2. Working in series, with threads, and with processes

When we use more than one thread or process, we’re asking Python to calculate the same total number of dart throws and to divide the work evenly between workers. If we want 400,000,000 dart throws in total using our Python implementation and we use two workers, we’ll be asking both threads or both processes to generate 200,000,000 dart throws per worker.

Using one thread takes approximately 182 seconds, with no speedup when using more threads. Notably with 2 or more threads there’s a consistent albeit tiny slow-down relative to using no threads.

By using two or more processes, we make the runtime shorter. The cost of using no processes or threads (the series implementation) is the same as running with one process.

By using processes, we get a linear speedup when using two to eight cores on Ian’s laptop. For the sixteen-worker case, we’re using Intel’s Hyper-Threading Technology—the laptop has eight physical cores, so we get barely any change in speedup by running sixteen processes.

Example 9-1 shows the Python version of our pi estimator. If we’re using threads, each instruction is bound by the GIL, so although each thread could run on a separate CPU, it will execute only when no other threads are running. The process version is not bound by this restriction, as each forked process has a private Python interpreter running as a single thread—​there’s no GIL contention, as no objects are shared. We use Python’s built-in random number generator, but see “Random Numbers in Parallel Systems” for some notes about the dangers of parallelized random number sequences.

Example 9-1. Estimating pi using a loop in Python

def estimate_nbr_points_in_quarter_circle(nbr_estimates):
 """Monte Carlo estimate of the number of points in a
 quarter circle using pure Python"""
 print(f"Executing estimate_nbr_points_in_quarter_circle \
 with {nbr_estimates:,} on pid {os.getpid()}")
 nbr_trials_in_quarter_unit_circle = 0
 for step in range(int(nbr_estimates)):
 x = random.uniform(0, 1)
 y = random.uniform(0, 1)
 is_in_unit_circle = x * x + y * y <= 1.0
 nbr_trials_in_quarter_unit_circle += is_in_unit_circle

 return nbr_trials_in_quarter_unit_circle

Example 9-2 shows the __main__ block. Note that we build the Pool before we start the timer. Spawning threads is relatively instant; spawning processes involves a fork, and this takes a measurable fraction of a second. We ignore this overhead in Figure 9-2, as this cost will be a tiny fraction of the overall execution time.

Example 9-2. main for estimating pi using a loop

from multiprocessing import Pool
...

if __name__ == "__main__":
 nbr_samples_in_total = 4e8
 nbr_parallel_blocks = 4
 pool = Pool(processes=nbr_parallel_blocks)
 nbr_samples_per_worker = nbr_samples_in_total / nbr_parallel_blocks
 print("Making {:,} samples per {} worker".format(nbr_samples_per_worker,
 nbr_parallel_blocks))
 nbr_trials_per_process = [nbr_samples_per_worker] * nbr_parallel_blocks
 t1 = time.time()
 nbr_in_quarter_unit_circles = pool.map(estimate_nbr_points_in_quarter_circle,
 nbr_trials_per_process)
 pi_estimate = sum(nbr_in_quarter_unit_circles) * 4 / float(nbr_samples_in_total)
 print("Estimated pi", pi_estimate)
 print("Delta:", time.time() - t1)

We create a list containing nbr_samples_in_total divided by the number of workers. This new argument will be sent to each worker. After execution, we’ll receive the same number of results back; we’ll sum these to estimate the number of darts in the unit circle.

We import the process-based Pool from multiprocessing. We also could have used from multiprocessing.dummy import Pool to get a threaded version. The “dummy” name is rather misleading (we confess to not understanding why it is named this way); it is simply a light wrapper around the threading module to present the same interface as the process-based Pool.

Warning

Each process we create consumes some RAM from the system. You can expect a forked process using the standard libraries to take on the order of 10–20 MB of RAM; if you’re using many libraries and lots of data, you might expect each forked copy to take hundreds of megabytes. On a system with a RAM constraint, this might be a significant issue—​if you run out of RAM and the system reverts to using the disk’s swap space, any parallelization advantage will be massively lost to the slow paging of RAM back and forth to disk!

The following figures plot the average CPU utilization of Ian’s laptop’s four physical cores and their four associated hyperthreads (each hyperthread runs on unutilized silicon in a physical core). The data gathered for these figures includes the startup time of the first Python process and the cost of starting subprocesses. The CPU sampler records the entire state of the laptop, not just the CPU time used by this task.

Note that the following diagrams are created using a different timing method with a slower sampling rate than Figure 9-2, so the overall runtime is a little longer.

The execution behavior in Figure 9-3 with one process in the Pool (along with the parent process) shows some overhead in the first seconds as the Pool is created, and then a consistent close-to-100% CPU utilization throughout the run. With one process, we’re efficiently using one core.

[image: Estimating pi using lists and 1 process]
Figure 9-3. Estimating pi using Python objects and one process

Next we’ll add a second process, effectively saying Pool(processes=2). As you can see in Figure 9-4, adding a second process roughly halves the execution time to 92 seconds, and two CPUs are fully occupied. This is the best result we can expect—​we’ve efficiently used all the new computing resources, and we’re not losing any speed to other overheads like communication, paging to disk, or contention with competing processes that want to use the same CPUs.

[image: Estimating Pi using lists and 2 processes]
Figure 9-4. Estimating pi using Python objects and two processes

Figure 9-5 shows the results when using four physical CPUs—​now we are using half of the raw power of this laptop. Execution time is roughly a quarter that of the single-process version, at 46 seconds.

[image: Estimating Pi using lists and 4 processes]
Figure 9-5. Estimating pi using Python objects and four processes

By switching to eight processes, as seen in Figure 9-6, we roughly halve the processing time again.

[image: Estimating Pi using lists and 8 processes]
Figure 9-6. Estimating pi using Python objects and eight processes, with little additional gain

By switching to sixteen processes, as seen in Figure 9-7, we execute in approximately the same time as the eight-process version. That is because the eight hyperthreads are able to squeeze only a little extra processing power out of the spare silicon on the CPUs, and the eight CPUs are already maximally utilized.

[image: Estimating Pi using lists and 16 processes]
Figure 9-7. Estimating pi using Python objects and eight processes, with little additional gain

These diagrams show that we’re efficiently using more of the available CPU resources at each step, and that the hyperthread resources are a poor addition. The biggest problem when using hyperthreads is that CPython is using a lot of RAM—hyperthreading is not cache friendly, so the spare resources on each chip are very poorly utilized. As we’ll see in the next section, numpy makes better use of these resources.

Note

In our experience, hyperthreading can give up to a 30% performance gain if there are enough spare computing resources. This works if, for example, you have a mix of floating-point and integer arithmetic rather than just the floating-point operations we have here. By mixing the resource requirements, the hyperthreads can schedule more of the CPU’s silicon to be working concurrently. Generally, we see hyperthreads as an added bonus and not a resource to be optimized against, as adding more CPUs is probably more economical than tuning your code (which adds a support overhead).

Now we’ll switch to using threads in one process, rather than multiple processes.

Figure 9-8 shows the results of running the same code that we used in Figure 9-5, but with threads in place of processes. Although eight CPUs are being used, they each share the workload very lightly. If each thread was running without the GIL, then we’d see 100% CPU utilization on the eight CPUs. Instead, each CPU is partially utilized (because of the GIL). The overall execution time is comparable to when we used 1 process.

[image: Estimating Pi using lists and 8 threads]
Figure 9-8. Estimating pi using Python objects and eight threads

Replacing multiprocessing with Joblib

Joblib is an improvement on multiprocessing that enables lightweight pipelining with a focus on easy parallel computing and transparent disk-based caching of results. It focuses on NumPy arrays for scientific computing. It may offer a quick win for you if you’re

	
Using pure Python, with or without NumPy, to process a loop that could be embarrassingly parallel

	
Calling expensive functions that have no side effects, where the output could be cached to disk between sessions

	
Able to share NumPy data between processes but don’t know how (and you haven’t yet read “Sharing numpy Data with multiprocessing”)

Joblib builds on the Loky library (itself an improvement over Python’s concurrent.futures) and uses cloudpickle to enable the pickling of functions defined in the interactive scope. This solves a couple of common issues that are encountered with the built-in multiprocessing library.

For parallel computing, we need the Parallel class and the delayed decorator. The Parallel class sets up a process pool, similar to the multiprocessing pool we used in the previous section. The delayed decorator wraps our target function so it can be applied to the instantiated Parallel object via an iterator.

The syntax is a little confusing to read—take a look at Example 9-3. The call is written on one line; this includes our target function estimate_nbr_points_in_quarter_circle and the iterator (delayed(...)(nbr_samples_per_worker) for sample_idx in range(nbr_parallel_blocks)). Let’s break this down.

Example 9-3. Using Joblib to parallelize pi estimation

...
from joblib import Parallel, delayed

if __name__ == "__main__":
 ...
 nbr_in_quarter_unit_circles = Parallel(n_jobs=nbr_parallel_blocks, verbose=1) \
 (delayed(estimate_nbr_points_in_quarter_circle)(nbr_samples_per_worker) \
 for sample_idx in range(nbr_parallel_blocks))
 ...

Parallel is a class; we can set parameters such as n_jobs to dictate how many processes will run, along with optional arguments like verbose for debugging information. Other arguments can set time-outs, change between threads or processes, change the backends (which can help speed up certain edge cases), and configure memory mapping.

Parallel has a __call__ callable method that takes an iterable. We supply the iterable in the following round brackets (... for sample_idx in range(...)). The callable iterates over each delayed(estimate_nbr_points_in_quarter_circle) function, batching the execution of these functions to their arguments (in this case, nbr_samples_per_worker). Ian has found it helpful to build up a parallelized call one step at a time, starting from a function with no arguments and building up arguments as needed. This makes diagnosing missteps much easier.

nbr_in_quarter_unit_circles will be a list containing the count of positive cases for each call as before. Example 9-4 shows the console output for eight parallel blocks; each process ID (PID) is freshly created, and a summary is printed in a progress bar at the end of the output. In total this takes 24 seconds, the same amount of time as when we created our own Pool in the previous section.

Tip

Avoid passing large structures; passing large pickled objects to each process may be expensive. Ian had a case with a prebuilt cache of Pandas DataFrames in a dictionary object; the cost of serializing these via the Pickle module negated the gains from parallelization, and the serial version actually worked faster overall. The solution in this case was to build the DataFrame cache using Python’s built-in shelve module, storing the dictionary to a file. A single DataFrame was loaded with shelve on each call to the target function; hardly anything had to be passed to the functions, and then the parallelized benefit of
Joblib was clear.

Example 9-4. Output of Joblib calls

$ python pi_lists_parallel_joblib.py
Making 50,000,000 samples per 8 worker
[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.
Executing estimate_nbr_points_in_quarter_circle w. 50,000,000 on pid 78227
Executing estimate_nbr_points_in_quarter_circle w. 50,000,000 on pid 78228
Executing estimate_nbr_points_in_quarter_circle w. 50,000,000 on pid 78231
Executing estimate_nbr_points_in_quarter_circle w. 50,000,000 on pid 78229
Executing estimate_nbr_points_in_quarter_circle w. 50,000,000 on pid 78230
Executing estimate_nbr_points_in_quarter_circle w. 50,000,000 on pid 78233
Executing estimate_nbr_points_in_quarter_circle w. 50,000,000 on pid 78232
Executing estimate_nbr_points_in_quarter_circle w. 50,000,000 on pid 78234
[Parallel(n_jobs=8)]: Done 2 out of 8 | elapsed: 24.0s remaining: 1.2min
[Parallel(n_jobs=8)]: Done 8 out of 8 | elapsed: 24.9s finished
Estimated pi 3.14156077
Delta: 24.930650234222412

Tip

To simplify debugging, we can set n_jobs=1, and the parallelized code is dropped. You don’t have to modify your code any further, and you can drop a call to breakpoint() in your function to ease your debugging.

Intelligent caching of function call results

A useful feature in Joblib is the Memory cache; this is a decorator that caches function results based on the input arguments to a disk cache. This cache persists between Python sessions, so if you turn off your machine and then run the same code the next day, the cached results will be used.

For our pi estimation, this presents a small problem. We don’t pass in unique arguments to estimate_nbr_points_in_quarter_circle; for each call we pass in nbr_estimates, so the call signature is the same, but we’re after different results.

In this situation, once the first call has completed (taking around 24 seconds), any subsequent call with the same argument will get the cached result. This means that if we rerun our code a second time, it completes instantly, but it uses only one of the eight sample results as the result for each call—this obviously breaks our Monte Carlo sampling! If the last process to complete resulted in 39271178 points in the quarter circle, the cache for the function call would always answer this. Repeating the call eight times would generate [39271178, 39271178, 39271178, 39271178, 39271178, 39271178, 39271178, 39271178] rather than eight unique estimates.

The solution in Example 9-5 is to pass in a second argument, idx, which takes on a value between 0 and nbr_parallel_blocks-1. This unique combination of arguments will let the cache store each positive count, so that on the second run we get the same result as on the first run, but without the wait.

This is configured using Memory, which takes a folder for persisting the function results. This persistence is kept between Python sessions; it is refreshed if you change the function that is being called, or if you empty the files in the cache folder.

Note that this refresh applies only to a change to the function that’s been decorated (in this case, estimate_nbr_points_in_quarter_circle_with_idx), not to any sub-functions that are called from inside that function.

Example 9-5. Caching results with Joblib

...
from joblib import Memory

memory = Memory("/tmp/joblib_cache", verbose=0)

@memory.cache
def estimate_nbr_points_in_quarter_circle_with_idx(nbr_estimates, idx):
 print(f"Executing estimate_nbr_points_in_quarter_circle with \
 {nbr_estimates} on sample {idx} on pid {os.getpid()}")
 ...

if __name__ == "__main__":
 ...
 nbr_in_quarter_unit_circles = Parallel(n_jobs=nbr_parallel_blocks) \
 (delayed(
	 estimate_nbr_points_in_quarter_circle_with_idx) \
 (nbr_samples_per_worker, idx) for idx in range(nbr_parallel_blocks))
 ...

In Example 9-6, we can see that while the first call costs 24 seconds, the second call takes only a fraction of a second and has the same estimated pi. In this run, the estimates were [39269171, 39271290, 39267758, 39269557, 39273421, 39272052, 39269960, 39271178].

Example 9-6. The zero-cost second call to the code thanks to cached results

$ python pi_lists_parallel_joblib_cache.py
Making 50,000,000 samples per 8 worker
Executing estimate_nbr_points_in_quarter_circle w. 50000000 on sample 0 on pid 80549
Executing estimate_nbr_points_in_quarter_circle w. 50000000 on sample 1 on pid 80550
Executing estimate_nbr_points_in_quarter_circle w. 50000000 on sample 2 on pid 80554
Executing estimate_nbr_points_in_quarter_circle w. 50000000 on sample 3 on pid 80553
Executing estimate_nbr_points_in_quarter_circle w. 50000000 on sample 4 on pid 80551
Executing estimate_nbr_points_in_quarter_circle w. 50000000 on sample 5 on pid 80555
Executing estimate_nbr_points_in_quarter_circle w. 50000000 on sample 6 on pid 80552
Executing estimate_nbr_points_in_quarter_circle w. 50000000 on sample 7 on pid 80556
Results collected:
[39269171, 39271290, 39267758, 39269557, 39273421, 39272052, 39269960, 39271178]
Estimated pi 3.14164387
Delta: 24.317535877227783

$ python pi_lists_parallel_joblib_cache.py
Making 50,000,000 samples per 8 worker
Results collected:
[39269171, 39271290, 39267758, 39269557, 39273421, 39272052, 39269960, 39271178]
Estimated pi 3.14164387
Delta: 0.5606045722961426

Joblib wraps up a lot of multiprocessing functionality with a simple (if slightly hard to read) interface. Ian has moved to using Joblib in favor of multiprocessing; he recommends you try it too.

Random Numbers in Parallel Systems

Generating good random number sequences is a hard problem, and it is easy to get it wrong if you try to do it yourself. Getting a good sequence quickly in parallel is even harder—​suddenly you have to worry about whether you’ll get repeating or correlated sequences in the parallel processes.

We used Python’s built-in random number generator in Example 9-1, and we’ll use the numpy random number generator in Example 9-7 in the next section. In both cases, the random number generators are seeded in their forked process. For the Python random example, the seeding is handled internally by multiprocessing—if during a fork it sees that random is in the namespace, it will force a call to seed the generators in each of the new processes.

Tip

Set the numpy seed when parallelizing your function calls. In the forthcoming numpy example, we have to explicitly set the random number seed. If you forget to seed the random number sequence with numpy, each of your forked processes will generate an identical sequence of random numbers—it’ll appear to be working as you wanted it to, but behind the scenes each parallel process will evolve with identical results!

If you care about the quality of the random numbers used in the parallel processes, we urge you to research this topic. Probably the numpy and Python random number generators are good enough, but if significant outcomes depend on the quality of the random sequences (e.g., for medical or financial systems), then you must read up on this area.

In Python 3, the Mersenne Twister algorithm is used—it has a long period, so the sequence won’t repeat for a long time. It is heavily tested, as it is used in other languages, and it is thread-safe. It is probably not suitable for cryptographic purposes.

Using numpy

In this section, we switch to using numpy. Our dart-throwing problem is ideal for numpy vectorized operations—​we generate the same estimate 16 times faster than the previous Python examples.

The main reason that numpy is faster than pure Python when solving the same problem is that numpy is creating and manipulating the same object types at a very low level in contiguous blocks of RAM, rather than creating many higher-level Python objects that each require individual management and addressing.

As numpy is far more cache friendly, we’ll also get a small speed boost when using the four hyperthreads. We didn’t get this in the pure Python version, as caches aren’t used efficiently by larger Python objects.

In Figure 9-9, we see three scenarios:

	
No use of multiprocessing (named “Serial”)

	
Using threads

	
Using processes

The serial and single-worker versions execute at the same speed—​there’s no overhead to using threads with numpy (and with only one worker, there’s also no gain).

When using multiple processes, we see a classic 100% utilization of each additional CPU. The result mirrors the plots shown in Figures 9-3, 9-4, 9-5, and 9-6, but the code is much faster using numpy.

Interestingly, the threaded version runs faster with more threads. As discussed on the SciPy wiki, by working outside the GIL, numpy can achieve some level of additional speedup around threads.

[image: Working in series, with threads, and with processes]
Figure 9-9. Working in series, with threads, and with processes using numpy

Using processes gives us a predictable speedup, just as it did in the pure Python example. A second CPU nearly doubles the speed, and when using four CPUs the speed is nearly quadrupled. We rarely achieve a pure doubling or quadrupling of execution speeds due to other overheads. Using 8 physical cores gives a further improvement, though with diminishing returns, and trying to squeeze extra calculations using HyperThreads, when no spare floating point silicon is available, results in no improvement with 16 processes.

Example 9-7 shows the vectorized form of our code. Note that the random number generator is seeded when this function is called. For the threaded version, this isn’t necessary, as each thread shares the same random number generator and they access it in series. For the process version, as each new process is a fork, all the forked
versions will share the same state. This means the random number calls in each will return the same sequence!

Tip

Remember to call seed() per process with numpy to ensure that each of the forked processes generates a unique sequence of random numbers, as a random source is used to set the seed for each call. Look back at “Random Numbers in Parallel Systems” for some notes about the dangers of parallelized random number sequences.

Example 9-7. Estimating pi using numpy

def estimate_nbr_points_in_quarter_circle(nbr_samples):
 """Estimate pi using vectorized numpy arrays"""
 np.random.seed() # remember to set the seed per process
 xs = np.random.uniform(0, 1, nbr_samples)
 ys = np.random.uniform(0, 1, nbr_samples)
 estimate_inside_quarter_unit_circle = (xs * xs + ys * ys) <= 1
 nbr_trials_in_quarter_unit_circle = np.sum(estimate_inside_quarter_unit_circle)
 return nbr_trials_in_quarter_unit_circle

A short code analysis shows that the calls to random run a little slower on this machine when executed with multiple threads, and the call to (xs * xs + ys * ys) <= 1 parallelizes well. Calls to the random number generator are GIL-bound, as the internal state variable is a Python object.

The process to understand this was basic but reliable:

	
Comment out all of the numpy lines, and run with no threads using the serial version. Run several times and record the execution times using time.time() in __main__.

	
Add a line back (we added xs = np.random.uniform(...) first) and run several times, again recording completion times.

	
Add the next line back (now adding ys = ...), run again, and record completion time.

	
Repeat, including the nbr_trials_in_quarter_unit_circle = np.sum(...) line.

	
Repeat this process again, but this time with four threads. Repeat line by line.

	
Compare the difference in runtime at each step for no threads and four threads.

Because we’re running code in parallel, it becomes harder to use tools like line_profiler or cProfile. Recording the raw runtimes and observing the differences in behavior with different configurations takes patience but gives solid evidence from which to draw conclusions.

Note

If you want to understand the serial behavior of the uniform call, take a look at the mtrand code in the numpy source and follow the call to def uniform in mtrand.pyx. This is a useful exercise if you haven’t looked at the numpy source code before.

The libraries used when building numpy are important for some of the parallelization opportunities. Depending on the underlying libraries used when building numpy (e.g., whether Intel’s Math Kernel Library or OpenBLAS were included or not), you’ll see different speedup behavior.

You can check your numpy configuration using numpy.show_config(). Stack Overflow has some example timings if you’re curious about the possibilities. Only some numpy calls will benefit from parallelization by external libraries.

Finding Prime Numbers

Next, we’ll look at testing for prime numbers over a large number range. This is
a different problem from estimating pi, as the workload varies depending on your
location in the number range, and each individual number’s check has an
unpredictable complexity. We can create a serial routine that checks for
primality and then pass sets of possible factors to each process for checking.
This problem is embarrassingly parallel, which means there is no state that needs
to be shared.

The multiprocessing module makes it easy to control the workload, so we shall investigate how we can tune the work queue to use (and misuse!) our computing resources, and we will explore an easy way to use our resources slightly more efficiently. This means we’ll be looking at load balancing to try to efficiently distribute our varying-complexity tasks to our fixed set of resources.

We’ll use an algorithm that is slightly removed from the one earlier in the book (see “Idealized Computing Versus the Python Virtual Machine”); it exits early if we have an even number—see Example 9-8.

Example 9-8. Finding prime numbers using Python

def check_prime(n):
 if n % 2 == 0:
 return False
 for i in range(3, int(math.sqrt(n)) + 1, 2):
 if n % i == 0:
 return False
 return True

How much variety in the workload do we see when testing for a prime with this approach? Figure 9-10 shows the increasing time cost to check for primality as the possibly prime n increases from 10,000 to 1,000,000.

Most numbers are nonprime; they’re drawn with a dot. Some can be cheap to check for, while others require the checking of many factors. Primes are drawn with an x and form the thick darker band; they’re the most expensive to check for. The time cost of checking a number increases as n increases, as the range of possible factors to check increases with the square root of n. The sequence of primes is not predictable, so we can’t determine the expected cost of a range of numbers (we could estimate it, but we can’t be sure of its complexity).

For the figure, we test each n two hundred times and take the fastest result to remove jitter from the results. If we took only one result, we’d see wide variance in timing that would be caused by system load from other processes; by taking many readings and keeping the fastest, we get to see the expected best-case timing.

[image: Time to check primality]
Figure 9-10. Time required to check primality as n increases

When we distribute work to a Pool of processes, we can specify how much work is passed to each worker. We could divide all of the work evenly and aim for one pass, or we could make many chunks of work and pass them out whenever a CPU is free. This is controlled using the chunksize parameter. Larger chunks of work mean less communication overhead, while smaller chunks of work mean more control over how resources are allocated.

For our prime finder, a single piece of work is a number n that is checked by check_prime. A chunksize of 10 would mean that each process handles a list of 10 integers, one list at a time.

In Figure 9-11, we can see the effect of varying the chunksize from 1 (every job is a single piece of work) to 64 (every job is a list of 64 numbers). Although having many tiny jobs gives us the greatest flexibility, it also imposes the greatest communication overhead. All eight CPUs will be utilized efficiently, but the communication pipe will become a bottleneck as each job and result is passed through this single channel.

If we double the chunksize to 2, our task gets solved twice as quickly, as we have less contention on the communication pipe. We might naively assume that by increasing the chunksize, we will continue to improve the execution time. However, as you can see in the figure, we will again come to a point of diminishing returns.

[image: notset]
Figure 9-11. Choosing a sensible chunksize value

We can continue to increase the chunksize until we start to see a worsening of behavior. In Figure 9-12, we expand the range of chunksizes, making them not just tiny but also huge. At the larger end of the scale, the worst result shown is 0.79 seconds, where we’ve asked for chunksize to be 50000—this means our 100,000 items are divided into two work chunks, leaving most CPUs idle for that entire pass. With a chunksize of 10000 items, we are creating ten chunks of work; this means that eight chunks of work will run in parallel, followed by the two remaining chunks. This leaves mosts CPUs idle in the last round of work, which is an inefficient usage of resources.

An optimal solution in this case is to divide the total number of jobs by the number of CPUs. This is the default behavior in multiprocessing, shown as the “default” blue dot in the figure.

As a general rule, the default behavior is sensible; tune it only if you expect to see a real gain, and definitely confirm your hypothesis against the default behavior.

Unlike the Monte Carlo pi problem, our prime testing calculation has varying complexity—​sometimes a job exits quickly (an even number is detected the fastest), and sometimes the number is large and a prime (this takes a much longer time to check).

[image: notset]
Figure 9-12. Choosing a sensible chunksize value (continued)

What happens if we randomize our job sequence? In earlier editions of this book with slower CPUs we could reliably make a tiny gain - in this edition with i7 chips there’s no gain, as you can see in Figure 9-13. By randomizing, we reduce the likelihood of the final job in the sequence taking longer than the others, leaving all but one CPU active, but since this occurs rarely it barely offers us an improvement.

As our earlier example using a chunksize of 10000 demonstrated, misaligning the workload with the number of available resources leads to inefficiency. With 10000 items of work per chunk and 100,000 items to process, with 8 cores, 8 chunks run in parallel and then the last 2 chunks are run. 50000 items takes 0.81s, here only 2 CPUs are running.

[image: notset]
Figure 9-13. Randomizing the job sequence

Figure 9-14 shows the odd effect that occurs when we misalign the number of chunks of work against the number of processors. Mismatches will underutilize the available resources. The slowest overall runtime occurs when only one chunk of work is created: this leaves seven unutilized.

Two work chunks leave six CPUs unutilized, and so on; only when we have eight work chunks or multiples of eight are we using all of our resources. But if we add a nineth work chunk, we’re underutilizing our resources again—​eight CPUs will work on their chunks, and then one CPU will run to calculate the nineth chunk.

As we increase the number of chunks of work, we see that the inefficiencies decrease—the difference in runtime between 8 and 9 chunks is .13 seconds whilst between 24 and 25 work chunks it is approximately 0.04 seconds. The general rule is to make lots of small jobs for efficient resource utilization if your jobs have varying runtimes.

[image: notset]
Figure 9-14. The danger of choosing an inappropriate number of chunks

Here are some strategies for efficiently using multiprocessing for embarrassingly parallel problems:

	
Split your jobs into independent units of work.

	
If your workers take varying amounts of time, consider randomizing the sequence of work (another example would be for processing variable-sized files).

	
Sorting your work queue so that the slowest jobs go first may be an equally useful strategy.

	
Use the default chunksize unless you have verified reasons for adjusting it.

	
Align the number of jobs with the number of physical CPUs. (Again, the default chunksize takes care of this for you, although it will use any hyperthreads by default, which may not offer any additional gain.)

Note that by default multiprocessing will see hyperthreads as additional CPUs. This means that on Ian’s laptop, it will allocate sixteen processes when only eight will really be running at 100% speed. The additional eight processes could be taking up valuable RAM while barely offering any additional speed gain.

With a Pool, we can split up a chunk of predefined work up front among the available CPUs. This is less helpful if we have dynamic workloads, though, and particularly if we have workloads that arrive over time. For this sort of workload, we might want to use a Queue, introduced in the next section.

Queues of Work

multiprocessing.Queue objects give us nonpersistent queues that can send any pickleable Python objects between processes. They carry an overhead, as each object must be pickled to be sent and then unpickled in the consumer (along with some locking operations). In the following example, we’ll see that this cost is not negligible. However, if your workers are processing larger jobs, the communication overhead is probably acceptable.

Working with the queues is fairly easy. In this example, we’ll check for primes by consuming a list of candidate numbers and posting confirmed primes back to a definite_primes_queue. We’ll run this with one, two, four, and eight processes and confirm that the latter three approaches all take longer than just running a single process that checks the same range.

A Queue gives us the ability to perform lots of interprocess communication using native Python objects. This can be useful if you’re passing around objects with lots of state. Since the Queue lacks persistence, though, you probably don’t want to use queues for jobs that might require robustness in the face of failure (e.g., if you lose power or a hard drive gets corrupted).

Example 9-9 shows the check_prime function. We’re already familiar with the basic primality test. We run in an infinite loop, blocking (waiting until work is available) on possible_primes_queue.get() to consume an item from the queue. Only one process can get an item at a time, as the Queue object takes care of synchronizing the accesses. If there’s no work in the queue, the .get() blocks until a task is available. When primes are found, they are put back on the definite_primes_queue for consumption by the parent process.

Example 9-9. Using two queues for interprocess communication (IPC)

FLAG_ALL_DONE = b"WORK_FINISHED"
FLAG_WORKER_FINISHED_PROCESSING = b"WORKER_FINISHED_PROCESSING"

def check_prime(possible_primes_queue, definite_primes_queue):
 while True:
 n = possible_primes_queue.get()
 if n == FLAG_ALL_DONE:
 # flag that our results have all been pushed to the results queue
 definite_primes_queue.put(FLAG_WORKER_FINISHED_PROCESSING)
 break
 else:
 if n % 2 == 0:
 continue
 for i in range(3, int(math.sqrt(n)) + 1, 2):
 if n % i == 0:
 break
 else:
 definite_primes_queue.put(n)

We define two flags: one is fed by the parent process as a poison pill to indicate that no more work is available, while the second is fed by the worker to confirm that it has seen the poison pill and has closed itself down. The first poison pill is also known as a sentinel, as it guarantees the termination of the processing loop.

When dealing with queues of work and remote workers, it can be helpful to use flags like these to record that the poison pills were sent and to check that responses were sent from the children in a sensible time window, indicating that they are shutting down. We don’t handle that process here, but adding some timekeeping is a fairly simple addition to the code. The receipt of these flags can be logged or printed during debugging.

The Queue objects are created out of a Manager in Example 9-10. We’ll use the familiar process of building a list of Process objects that each contain a forked process. The two queues are sent as arguments, and multiprocessing handles their synchronization. Having started the new processes, we hand a list of jobs to the possible_primes_queue and end with one poison pill per process. The jobs will be consumed in FIFO order, leaving the poison pills for last. In check_prime we use a blocking .get(), as the new processes will have to wait for work to appear in the queue. Since we use flags, we could add some work, deal with the results, and then iterate by adding more work, and signal the end of life of the workers by adding the poison pills later.

Example 9-10. Building two queues for IPC

if __name__ == "__main__":
 parser = argparse.ArgumentParser(description="Project description")
 parser.add_argument(
 "nbr_workers", type=int, help="Number of workers e.g. 1, 2, 4, 8"
)
 args = parser.parse_args()
 primes = []

 manager = multiprocessing.Manager()
 possible_primes_queue = manager.Queue()
 definite_primes_queue = manager.Queue()

 pool = Pool(processes=args.nbr_workers)
 processes = []
 for _ in range(args.nbr_workers):
 p = multiprocessing.Process(
 target=check_prime, args=(possible_primes_queue,
 definite_primes_queue)
)
 processes.append(p)
 p.start()

 t1 = time.time()
 number_range = range(100_000_000, 101_000_000)

 # add jobs to the inbound work queue
 for possible_prime in number_range:
 possible_primes_queue.put(possible_prime)

 # add poison pills to stop the remote workers
 for n in range(args.nbr_workers):
 possible_primes_queue.put(FLAG_ALL_DONE)

To consume the results, we start another infinite loop in Example 9-11, using a blocking .get() on the definite_primes_queue. If the finished-processing flag is found, we take a count of the number of processes that have signaled their exit. If not, we have a new prime, and we add this to the primes list. We exit the infinite loop when all of our processes have signaled their exit.

Example 9-11. Using two queues for IPC

 processors_indicating_they_have_finished = 0
 while True:
 new_result = definite_primes_queue.get() # block while waiting for results
 if new_result == FLAG_WORKER_FINISHED_PROCESSING:
 processors_indicating_they_have_finished += 1
 if processors_indicating_they_have_finished == args.nbr_workers:
 break
 else:
 primes.append(new_result)
 assert processors_indicating_they_have_finished == args.nbr_workers

 print("Took:", time.time() - t1)
 print(len(primes), primes[:10], primes[-10:])

There is quite an overhead to using a Queue, due to the pickling and synchronization. As you can see in Figure 9-15, using a Queue-less single-process solution is significantly faster than using two or more processes. The reason in this case is because our workload is very light—​the communication cost dominates the overall time for this task. With Queues, two processes complete this example a little slower than one process, while four and eight processes are both slower still.

[image: notset]
Figure 9-15. Cost of using Queue objects

If your task has a long completion time (at least a sizable fraction of a second) with a small amount of communication, a Queue approach might be the right answer. You will have to verify whether the communication cost makes this approach useful enough.

You might wonder what happens if we remove the redundant half of the job queue (all the even numbers—​these are rejected very quickly in check_prime). Halving the size of the input queue halves our execution time in each case, but it still doesn’t beat the single-process non-Queue example! This helps to illustrate that the communication cost is the dominating factor in this problem.

Asynchronously adding jobs to the Queue

By adding a Thread into the main process, we can feed jobs asynchronously into the possible_primes_queue. In Example 9-12, we define a feed_new_jobs function: it performs the same job as the job setup routine that we had in __main__ before, but it does it in a separate thread.

Example 9-12. Asynchronous job-feeding function

def feed_new_jobs(number_range, possible_primes_queue, nbr_poison_pills):
 for possible_prime in number_range:
 possible_primes_queue.put(possible_prime)
 # add poison pills to stop the remote workers
 for n in range(nbr_poison_pills):
 possible_primes_queue.put(FLAG_ALL_DONE)

Now, in Example 9-13, our __main__ will set up the Thread using the possible_primes_queue and then move on to the result-collection phase before any work has been issued. The asynchronous job feeder could consume work from external sources (e.g., from a database or I/O-bound communication) while the __main__ thread handles each processed result. This means that the input sequence and output sequence do not need to be created in advance; they can both be handled on the fly.

Example 9-13. Using a thread to set up an asynchronous job feeder

if __name__ == "__main__":
 primes = []
 manager = multiprocessing.Manager()
 possible_primes_queue = manager.Queue()

 ...

 import threading
 thrd = threading.Thread(target=feed_new_jobs,
 args=(number_range,
 possible_primes_queue,
 NBR_PROCESSES))
 thrd.start()

 # deal with the results

If you want robust asynchronous systems, you should almost
certainly look to using asyncio or an external library such as aiohttp.
For a full discussion of these approaches, check out Chapter 8.
The examples we’ve looked at here will get you started, but pragmatically they
are more useful for very simple systems and education than for production
systems.

Be very aware that asynchronous systems require a special level of patience—​you will end up tearing out your hair while you are debugging. We suggest the following:

	
Applying the “Keep It Simple, Stupid” principle

	
Avoiding asynchronous self-contained systems (like our example) if possible, as they will grow in complexity and quickly become hard to maintain

	
Using mature libraries like gevent (described in the previous chapter) that give you tried-and-tested approaches to dealing with certain problem sets

Furthermore, we strongly suggest using an external queue system that gives you external visibility on the state of the queues (e.g., NSQ,
discussed in “NSQ for Robust Production Clustering”; ZeroMQ; or Celery). This requires more thought but is likely to save you
time because of increased debug efficiency and better system visibility for
production systems.

Tip

Consider using a task graph for resilience. Data science tasks requiring long-running queues are frequently served well by specifying pipelines of work in acyclic graphs. Two strong libraries are Airflow and Luigi. These are very frequently used in industrial settings and enable arbitrary task chaining, online monitoring, and flexible
scaling.

Verifying Primes Using Interprocess Communication

Prime numbers are numbers that have no factor other than themselves and 1. It stands to reason that the most common factor is 2 (every even number cannot be a prime). After that, the low prime numbers (e.g., 3, 5, 7) become common factors of larger nonprimes (e.g., 9, 15, and 21, respectively).

Let’s say that we are given a large number and are asked to verify if it is prime. We will probably have a large space of factors to search. Figure 9-16 shows the frequency of each factor for nonprimes up to 10,000,000. Low factors are far more likely to occur than high factors, but there’s no predictable pattern.

[image: notset]
Figure 9-16. The frequency of factors of nonprimes

Let’s define a new problem—​suppose we have a small set of numbers, and our task is to efficiently use our CPU resources to figure out if each number is a prime, one number at a time. Possibly we’ll have just one large number to test. It no longer makes sense to use one CPU to do the check; we want to coordinate the work across many CPUs.

For this section we’ll look at some larger numbers, one with 15 digits and four with 18 digits:

	
Small nonprime: 112,272,535,095,295

	
Large nonprime 1: 100,109,100,129,100,369

	
Large nonprime 2: 100,109,100,129,101,027

	
Prime 1: 100,109,100,129,100,151

	
Prime 2: 100,109,100,129,162,907

By using a smaller nonprime and some larger nonprimes, we get to verify that our chosen process not only is faster at checking for primes but also is not getting slower at checking nonprimes. We’ll assume that we don’t know the size or type of numbers that we’re being given, so we want the fastest possible result for all our use cases.

Cooperation comes at a cost—the cost of synchronizing data and checking the shared data can be quite high. We’ll work through several approaches here that can be used in different ways for task coordination.

Note that we’re not covering the somewhat specialized message passing interface (MPI) here; we’re looking at batteries-included modules and Redis (which is very common). If you want to use MPI, we assume you already know what you’re doing. The MPI4PY project would be a good place to start. It is an ideal technology if you want to control latency when lots of processes are collaborating, whether you have one or many machines.

For the following runs, each test is performed 20 times, and the minimum time is taken to show the fastest speed that is possible for that method. In these examples we’re using various techniques to share a flag (often as 1 byte). We could use a basic object like a Lock, but then we’d be able to share only 1 bit of state. We’re choosing to show you how to share a primitive type so that more expressive state sharing is possible (even though we don’t need a more expressive state for this example).

We must emphasize that sharing state tends to make things complicated—you can easily end up in another hair-pulling state. Be careful and try to keep things as simple as they can be. It might be the case that less efficient resource usage is trumped by developer time spent on other challenges.

First we’ll discuss the results and then we’ll work through the code.

Figure 9-17 shows the first approaches to trying to use interprocess communication to test for primality faster. The benchmark is the serial version, which does not use any interprocess communication; each attempt to speed up our code must at least be faster than this.

[image: notset]
Figure 9-17. The slower ways to use IPC to validate primality

The Less Naive Pool version has a predictable (and good) speed. It is good enough to be rather hard to beat. Don’t overlook the obvious in your search for high-speed solutions—​sometimes a dumb and good-enough solution is all you need.

The approach for the Less Naive Pool solution is to take our number under test, divide its possible-factor range evenly among the available CPUs, and then push the work out to each CPU. If any CPU finds a factor, it will exit early, but it won’t communicate this fact; the other CPUs will continue to work through their part of the range. This means for an 18-digit number (our four larger examples), the search time is the same whether it is prime or nonprime.

The Redis and Manager solutions are slower when it comes to testing a larger number of factors for primality because of the communication overhead. They use a shared flag to indicate that a factor has been found and the search should be called off.

Redis lets you share state not just with other Python processes but also with other tools and other machines, and even to expose that state over a web-browser interface (which might be useful for remote monitoring). The Manager is a part of multiprocessing; it provides a high-level synchronized set of Python objects (including primitives, the list, and the dict).

For the larger nonprime cases, although there is a cost to checking the shared flag, this is dwarfed by the savings in search time gained by signaling early that a factor has been found.

For the prime cases, though, there is no way to exit early, as no factor will be found, so the cost of checking the shared flag will become the dominating cost.

Tip

A little bit of thought is often enough. Here we explore various IPC-based solutions to making the prime-validation task faster. In terms of “minutes of typing” versus “gains made,” the first step—introducing naive parallel processing—​gave us the largest win for the smallest effort. Subsequent gains took a lot of extra experimentation. Always think about the ultimate run-time, especially for ad hoc tasks. Sometimes it is just easier to let a loop run all weekend for a one-off task than to optimize the code so it runs quicker.

Figure 9-18 shows that we can get a considerably faster result with a bit of effort. The Less Naive Pool result is still our benchmark, but the RawValue and MMap (memory map) results are much faster than the previous Redis and Manager results. The real magic comes from taking the fastest solution and performing some less-obvious code manipulations to make a near-optimal MMap solution—this final version is faster than the Less Naive Pool solution for nonprimes and almost as fast for primes.

In the following sections, we’ll work through various ways of using IPC in Python to solve our cooperative search problem. We hope you’ll see that IPC is fairly easy but generally comes with a cost.

[image: notset]
Figure 9-18. The faster ways to use IPC to validate primality

Serial Solution

We’ll start with the same serial factor-checking code that we used before, shown again in Example 9-14. As noted earlier, for any nonprime with a large factor, we could more efficiently search the space of factors in parallel. Still, a serial sweep will give us a sensible baseline to work from.

Example 9-14. Serial verification

def check_prime(n):
 if n % 2 == 0:
 return False
 from_i = 3
 to_i = math.sqrt(n) + 1
 for i in range(from_i, int(to_i), 2):
 if n % i == 0:
 return False
 return True

Naive Pool Solution

The Naive Pool solution works with a multiprocessing.Pool, similar to what we saw in “Finding Prime Numbers” and “Estimating Pi Using Processes and Threads” with eight forked processes. We have a number to test for primality, and we divide the range of possible factors into eight tuples of subranges and send these into the Pool.

In Example 9-15, we use a new method, create_range.create
(which we won’t show—it’s quite boring), that splits the work space into
equal-sized regions. Each item in ranges_to_check is a pair of lower and
upper bounds to search between. For the first 18-digit nonprime
(100,109,100,129,100,369), with eight processes we’ll have the factor ranges
 ranges_to_check == [(3, 39_550_031), (39_550_031, 79_100_057), (79_100_057, 118_650_085), (118_650_085, 158_200_111), (158_200_111, 197_750_139), (197_750_139, 237_300_165), (237_300_165, 276_850_193), (276_850_193, 316_400_222)] (where 316,400,222 is the square root of
100,109,100,129,100,369 plus 1). In __main__ we first establish a Pool;
check_prime then splits the ranges_to_check for each possibly prime number
n via a map. If the result is False, we have found a factor and we do
not have a prime.

Example 9-15. Naive Pool solution

def check_prime(n, pool, nbr_processes):
 from_i = 3
 to_i = int(math.sqrt(n)) + 1
 ranges_to_check = create_range.create(from_i, to_i, nbr_processes)
 ranges_to_check = zip(len(ranges_to_check) * [n], ranges_to_check)
 assert len(ranges_to_check) == nbr_processes
 results = pool.map(check_prime_in_range, ranges_to_check)
 if False in results:
 return False
 return True

if __name__ == "__main__":
 NBR_PROCESSES = 8
 pool = Pool(processes=NBR_PROCESSES)
 ...

We modify the previous check_prime in Example 9-16 to take a lower and upper bound for the range to check. There’s no value in passing a complete list of possible factors to check, so we save time and memory by passing just two numbers that define our range.

Example 9-16. check_prime_in_range

def check_prime_in_range(n_from_i_to_i):
 (n, (from_i, to_i)) = n_from_i_to_i
 if n % 2 == 0:
 return False
 assert from_i % 2 != 0
 for i in range(from_i, int(to_i), 2):
 if n % i == 0:
 return False
 return True

This Naive Pool solution takes 0.03 seconds to solve the trivial non-prime check vs 0.000001 seconds for the Serial version. The overhead of setting up workers and distributing the work swamps the time to actually check the trivial non-prime. Otherwise the verification time via the Pool gives a speedup across the board (for the other test items it has the same speed as “Less naive Pool”) compared to the Serial version.

We could perhaps accept that one slower result isn’t a problem—​but what if we might get lots of smaller nonprimes to check? It turns out we can avoid this slowdown; we’ll see that next with the Less Naive Pool solution.

A Less Naive Pool Solution

The previous solution was inefficient at validating the smaller nonprime. For any smaller (fewer than 18 digits) nonprime, it is likely to be slower than the serial method, because of the overhead of sending out partitioned work and not knowing if a very small factor (which is a more likely factor) will be found. If a small factor is found, the process will still have to wait for the other larger factor searches to
complete.

We could start to signal between the processes that a small factor has been found, but since this happens so frequently, it will add a lot of communication overhead. The solution presented in Example 9-17 is a more pragmatic approach—​a serial check is performed quickly for likely small factors, and if none are found, then a parallel search is started. Combining a serial precheck before launching a relatively more expensive parallel operation is a common approach to avoiding some of the costs of parallel computing.

Example 9-17. Improving the Naive Pool solution for the small-nonprime case

def check_prime(n, pool, nbr_processes):
 # cheaply check high-probability set of possible factors
 from_i = 3
 to_i = 21
 if not check_prime_in_range((n, (from_i, to_i))):
 return False

 # continue to check for larger factors in parallel
 from_i = to_i
 to_i = int(math.sqrt(n)) + 1
 ranges_to_check = create_range.create(from_i, to_i, nbr_processes)
 ranges_to_check = zip(len(ranges_to_check) * [n], ranges_to_check)
 assert len(ranges_to_check) == nbr_processes
 results = pool.map(check_prime_in_range, ranges_to_check)
 if False in results:
 return False
 return True

The speed of this solution is equal to or better than that of the original serial search for each of our test numbers. This is our new benchmark.

Importantly, this Pool approach gives us an optimal case for the prime-checking situation. If we have a prime, there’s no way to exit early; we have to manually check all possible factors before we can exit.

There’s no faster way to check though these factors: any approach that adds complexity will have more instructions, so the check-all-factors case will cause the most instructions to be executed. See the various mmap solutions covered in “Using mmap as a Flag” for a discussion on how to get as close to this current result for primes as possible.

Using Manager.Value as a Flag

The multiprocessing.Manager() lets us share higher-level Python objects between processes as managed shared objects; the lower-level objects are wrapped in proxy objects. The wrapping and safety have a speed cost but also offer great flexibility. You can share both lower-level objects (e.g., integers and floats) and lists and dictionaries.

In Example 9-18, we create a Manager and then create a 1-byte (character) manager.Value(b"c", FLAG_CLEAR) flag. You could create any of the ctypes primitives (which are the same as the array.array primitives) if you wanted to share strings or numbers.

Note that FLAG_CLEAR and FLAG_SET are assigned a byte (b'0' and b'1', respectively). We chose to use the leading b to be very explicit (it might default to a Unicode or string object if left as an implicit string, depending on your environment and Python version).

Now we can flag across all of our processes that a factor has been found, so the search can be called off early. The difficulty is balancing the cost of reading the flag against the speed savings that is possible. Because the flag is synchronized, we don’t want to check it too frequently—this adds more overhead.

Example 9-18. Passing a Manager.Value object as a flag

SERIAL_CHECK_CUTOFF = 21
CHECK_EVERY = 1000
FLAG_CLEAR = b'0'
FLAG_SET = b'1'
print("CHECK_EVERY", CHECK_EVERY)

if __name__ == "__main__":
 NBR_PROCESSES = 8
 manager = multiprocessing.Manager()
 value = manager.Value(b'c', FLAG_CLEAR) # 1-byte character
 ...

check_prime_in_range will now be aware of the shared flag, and the routine will be checking to see if a prime has been spotted by another process. Even though we’ve yet to begin the parallel search, we must clear the flag as shown in Example 9-19 before we start the serial check. Having completed the serial check, if we haven’t found a factor, we know that the flag must still be false.

Example 9-19. Clearing the flag with a Manager.Value

def check_prime(n, pool, nbr_processes, value):
 # cheaply check high-probability set of possible factors
 from_i = 3
 to_i = SERIAL_CHECK_CUTOFF
 value.value = FLAG_CLEAR
 if not check_prime_in_range((n, (from_i, to_i), value)):
 return False

 from_i = to_i
 ...

How frequently should we check the shared flag? Each check has a cost, both because we’re adding more instructions to our tight inner loop and because checking requires a lock to be made on the shared variable, which adds more cost. The solution we’ve chosen is to check the flag every one thousand iterations. Every time we check, we look to see if value.value has been set to FLAG_SET, and if so, we exit the search. If in the search the process finds a factor, then it sets value.value = FLAG_SET and exits (see Example 9-20).

Example 9-20. Passing a Manager.Value object as a flag

def check_prime_in_range(n_from_i_to_i):
 (n, (from_i, to_i), value) = n_from_i_to_i
 if n % 2 == 0:
 return False
 assert from_i % 2 != 0
 check_every = CHECK_EVERY
 for i in range(from_i, int(to_i), 2):
 check_every -= 1
 if not check_every:
 if value.value == FLAG_SET:
 return False
 check_every = CHECK_EVERY

 if n % i == 0:
 value.value = FLAG_SET
 return False
 return True

The thousand-iteration check in this code is performed using a check_every local counter. It turns out that this approach, although readable, is suboptimal for speed. By the end of this section, we’ll replace it with a less readable but significantly faster approach.

You might be curious about the total number of times we check for the shared flag. In the case of either of the two large primes, with eight processes we check for the flag 158,200 times per prime (we check it this many times in all of the following examples). The checks don’t depend on the number of processes as there are many checks in any large chunk of work. Since each check has an overhead due to locking, this cost really adds up.

Using Redis as a Flag

Redis is a key/value in-memory storage engine. It provides its own locking and each operation is atomic, so we don’t have to worry about using locks from inside Python (or from any other interfacing language).

By using Redis, we make the data storage language-agnostic—any language or tool with an interface to Redis can share data in a compatible way. You could share data between Python, Ruby, C++, and PHP equally easily. You can share data on the local machine or over a network; to share to other machines, all you need to do is change the Redis default of sharing only on localhost.

Redis lets you store the following:

	
Lists of strings

	
Sets of strings

	
Sorted sets of strings

	
Hashes of strings

Redis stores everything in RAM and snapshots to disk (optionally using journaling) and supports master/slave replication to a cluster of instances. One possibility with Redis is to use it to share a workload across a cluster, where other machines read and write state and Redis acts as a fast centralized data repository.

We can read and write a flag as a text string (all values in Redis are strings) in just the same way as we have been using Python flags previously. We create a StrictRedis interface as a global object, which talks to the external Redis server. We could create a new connection inside check_prime_in_range, but this is slower and can exhaust the limited number of Redis handles that are available.

We talk to the Redis server using a dictionary-like access. We can set a value using rds[SOME_KEY] = SOME_VALUE and read the string back using rds[SOME_KEY].

Example 9-21 is very similar to the previous Manager example—​we’re using Redis as a substitute for the local Manager. It comes with a similar access cost. You should note that Redis supports other (more complex) data structures; it is a powerful storage engine that we’re using just to share a flag for this example. We encourage you to familiarize yourself with its features.

Example 9-21. Using an external Redis server for our flag

FLAG_NAME = b'redis_primes_flag'
FLAG_CLEAR = b'0'
FLAG_SET = b'1'

rds = redis.StrictRedis()

def check_prime_in_range(n_from_i_to_i):
 (n, (from_i, to_i)) = n_from_i_to_i
 if n % 2 == 0:
 return False
 assert from_i % 2 != 0
 check_every = CHECK_EVERY
 for i in range(from_i, int(to_i), 2):
 check_every -= 1
 if not check_every:
 flag = rds[FLAG_NAME]
 if flag == FLAG_SET:
 return False
 check_every = CHECK_EVERY

 if n % i == 0:
 rds[FLAG_NAME] = FLAG_SET
 return False
 return True

def check_prime(n, pool, nbr_processes):
 # cheaply check high-probability set of possible factors
 from_i = 3
 to_i = SERIAL_CHECK_CUTOFF
 rds[FLAG_NAME] = FLAG_CLEAR
 if not check_prime_in_range((n, (from_i, to_i))):
 return False

 ...
 if False in results:
 return False
 return True

To confirm that the data is stored outside these Python instances, we can invoke redis-cli at the command line, as in Example 9-22, and get the value stored in the key redis_primes_flag. You’ll note that the returned item is a string (not an integer). All values returned from Redis are strings, so if you want to manipulate them in Python, you’ll have to convert them to an appropriate datatype first.

Example 9-22. redis-cli

$ redis-cli
redis 127.0.0.1:6379> GET "redis_primes_flag"
"0"

One powerful argument in favor of the use of Redis for data sharing is that it lives outside the Python world—​non-Python developers on your team will understand it, and many tools exist for it. They’ll be able to look at its state while reading (but not necessarily running and debugging) your code and follow what’s happening. From a team-velocity perspective, this might be a big win for you, despite the communication overhead of using Redis. While Redis is an additional dependency on your project, you should note that it is a very commonly deployed tool, and one that is well debugged and well understood. Consider it a powerful tool to add to your armory.

Redis has many configuration options. By default it uses a TCP interface (that’s what we’re using), although the benchmark documentation notes that sockets might be much faster. It also states that while TCP/IP lets you share data over a network between different types of OS, other configuration options are likely to be faster (but also are likely to limit your communication options):

When the server and client benchmark programs run on the same box, both the TCP/IP loopback and unix domain sockets can be used. It depends on the platform, but unix domain sockets can achieve around 50% more throughput than the TCP/IP loopback (on Linux for instance). The default behavior of redis-benchmark is to use the TCP/IP loopback.
The performance benefit of unix domain sockets compared to TCP/IP loopback tends to decrease when pipelining is heavily used (i.e., long
pipelines).

Redis documentation

Redis is widely used in industry and is mature and well trusted. If you’re not familiar with the tool, we strongly suggest you take a look at it; it has a place in your high performance toolkit.

Using RawValue as a Flag

multiprocessing.RawValue is a thin wrapper around a ctypes block of bytes. It lacks synchronization primitives, so there’s little to get in our way in our search for the fastest way to set a flag between processes. It will be almost as fast as the following mmap example (it is slower only because a few more instructions get in the way).

Again, we could use any ctypes primitive; there’s also a RawArray option for sharing an array of primitive objects (which will behave similarly to array.array). RawValue avoids any locking—​it is faster to use, but you don’t get atomic operations.

Generally, if you avoid the synchronization that Python provides during IPC, you’ll come unstuck (once again, back to that pulling-your-hair-out situation). However, in this problem it doesn’t matter if one or more processes set the flag at the same time—​the flag gets switched in only one direction, and every other time it is read, it is just to learn if the search can be called off.

Because we never reset the state of the flag during the parallel search, we don’t need synchronization. Be aware that this may not apply to your problem. If you avoid synchronization, please make sure you are doing it for the right reasons.

If you want to do things like update a shared counter, look at the documentation for the Value and use a context manager with value.get_lock(), as the implicit locking on a Value doesn’t allow for atomic operations.

This example looks very similar to the previous Manager example. The only difference is that in Example 9-23 we create the RawValue as a one-character (byte) flag.

Example 9-23. Creating and passing a RawValue

if __name__ == "__main__":
 NBR_PROCESSES = 8
 value = multiprocessing.RawValue('b', FLAG_CLEAR) # 1-byte character
 pool = Pool(processes=NBR_PROCESSES)
 ...

The flexibility to use managed and raw values is a benefit of the clean design for data sharing in multiprocessing.

Using mmap as a Flag

Finally, we get to the fastest way of sharing bytes. Example 9-24 shows a memory-mapped (shared memory) solution using the mmap module. The bytes in a shared memory block are not synchronized, and they come with very little overhead. They act like a file—in this case, they are a block of memory with a file-like interface. We have to seek to a location and read or write sequentially. Typically, mmap is used to give a short (memory-mapped) view into a larger file, but in our case, rather than specifying a file number as the first argument, we instead pass -1 to indicate that we want an anonymous block of memory. We could also specify whether we want read-only or write-only access (we want both, which is the default).

Example 9-24. Using a shared memory flag via mmap

sh_mem = mmap.mmap(-1, 1) # memory map 1 byte as a flag

def check_prime_in_range(n_from_i_to_i):
 (n, (from_i, to_i)) = n_from_i_to_i
 if n % 2 == 0:
 return False
 assert from_i % 2 != 0
 check_every = CHECK_EVERY
 for i in range(from_i, int(to_i), 2):
 check_every -= 1
 if not check_every:
 sh_mem.seek(0)
 flag = sh_mem.read_byte()
 if flag == FLAG_SET:
 return False
 check_every = CHECK_EVERY

 if n % i == 0:
 sh_mem.seek(0)
 sh_mem.write_byte(FLAG_SET)
 return False
 return True

def check_prime(n, pool, nbr_processes):
 # cheaply check high-probability set of possible factors
 from_i = 3
 to_i = SERIAL_CHECK_CUTOFF
 sh_mem.seek(0)
 sh_mem.write_byte(FLAG_CLEAR)
 if not check_prime_in_range((n, (from_i, to_i))):
 return False

 ...
 if False in results:
 return False
 return True

mmap supports a number of methods that can be used to move around in the file that it represents (including find, readline, and write). We are using it in the most basic way—we seek to the start of the memory block before each read or write, and since we’re sharing just 1 byte, we use read_byte and write_byte to be explicit.

There is no Python overhead for locking and no interpretation of the data; we’re dealing with bytes directly with the operating system, so this is our fastest communication method.

Using mmap as a Flag Redux

While the previous mmap result was the best overall, we couldn’t help but think that we should be able to get back to the Naive Pool result for the most expensive case of having primes. The goal is to accept that there is no early exit from the inner loop and to minimize the cost of anything extraneous.

This section presents a slightly more complex solution. The same changes can be made to the other flag-based approaches we’ve seen, although this mmap result will still be fastest.

In our previous examples, we’ve used CHECK_EVERY. This means we have the check_next local variable to track, decrement, and use in Boolean tests—and each operation adds a bit of extra time to every iteration. In the case of validating a large prime, this extra management overhead occurs over 150,000 times.

The first optimization, shown in Example 9-25, is to realize that we can replace the decremented counter with a look-ahead value, and then we only have to do a Boolean comparison on the inner loop. This removes a decrement, which, because of Python’s interpreted style, is quite slow.

Example 9-25. Starting to optimize away our expensive logic

def check_prime_in_range(n_from_i_to_i):
 (n, (from_i, to_i)) = n_from_i_to_i
 if n % 2 == 0:
 return False
 assert from_i % 2 != 0
 check_next = from_i + CHECK_EVERY
 for i in range(from_i, int(to_i), 2):
 if check_next == i:
 sh_mem.seek(0)
 flag = sh_mem.read_byte()
 if flag == FLAG_SET:
 return False
 check_next += CHECK_EVERY

 if n % i == 0:
 sh_mem.seek(0)
 sh_mem.write_byte(FLAG_SET)
 return False
 return True

We can also entirely replace the logic that the counter represents, as shown in Example 9-26, by unrolling our loop into a two-stage process. First, the outer loop covers the expected range, but in steps, on CHECK_EVERY. Second, a new inner loop replaces the check_every logic—​it checks the local range of factors and then finishes. This is equivalent to the if not check_every: test. We follow this with the previous sh_mem logic to check the early-exit flag.

Example 9-26. Optimizing away our expensive logic

def check_prime_in_range(n_from_i_to_i):
 (n, (from_i, to_i)) = n_from_i_to_i
 if n % 2 == 0:
 return False
 assert from_i % 2 != 0
 for outer_counter in range(from_i, int(to_i), CHECK_EVERY):
 upper_bound = min(int(to_i), outer_counter + CHECK_EVERY)
 for i in range(outer_counter, upper_bound, 2):
 if n % i == 0:
 sh_mem.seek(0)
 sh_mem.write_byte(FLAG_SET)
 return False
 sh_mem.seek(0)
 flag = sh_mem.read_byte()
 if flag == FLAG_SET:
 return False
 return True

The speed impact is dramatic. Our nonprime case improves even further, but more importantly, our prime-checking case is nearly as fast as the Less Naive Pool version (it is now just 0.1 seconds slower). Given that we’re doing a lot of extra work with interprocess communication, this is an interesting result. Do note, though, that it is specific to CPython and unlikely to offer any gains when run through a compiler.

In the first edition of the book we went even further with a final example that used loop unrolling and local references to global objects and eked out a further performance gain at the expense of readability. This example in Python 3 yields a minor slowdown, so we’ve removed it. We’re happy about this—​fewer hoops needed jumping through to get the most performant example, and the preceding code is more likely to be supported correctly in a team than one that makes implementation-specific code changes.

Tip

These examples work just fine with PyPy, where they run around seven times faster than in CPython. Sometimes the better solution will be to investigate other runtimes rather than to go down rabbit holes with CPython.

Sharing numpy Data with multiprocessing

When working with large numpy arrays, you’re bound to wonder if you can share the data for read and write access, without a copy, between processes. It is possible, though a little fiddly. We’d like to acknowledge Stack Overflow user pv for the inspiration for this demo.2

Warning

Do not use this method to re-create the behaviors of BLAS, MKL, Accelerate, and ATLAS. These libraries all have multithreading support in their primitives, and they likely are better-debugged than any new routine that you create. They can require some configuration to enable multithreading support, but it would be wise to see if these libraries can give you free speedups before you invest time (and lose time to debugging!) writing your own.

Sharing a large matrix between processes has several benefits:

	
Only one copy means no wasted RAM.

	
No time is wasted copying large blocks of RAM.

	
You gain the possibility of sharing partial results between the processes.

Thinking back to the pi estimation demo using numpy in “Using numpy”, we had the problem that the random number generation was a serial process. Here, we can imagine forking processes that share one large array, each one using a differently seeded random number generator to fill in a section of the array with random numbers, and therefore completing the generation of a large random block faster than is possible with a single process.

To verify this, we modified the forthcoming demo to create a large random matrix (10,000 × 400,000 elements) as a serial process and by splitting the matrix into eight segments where random is called in parallel (in both cases, one row at a time). The serial process took 31 seconds, and the parallel version took 5 seconds. Refer back to “Random Numbers in Parallel Systems” to understand some of the dangers of parallelized random number generation.

For the rest of this section, we’ll use a simplified demo that illustrates the point while remaining easy to verify.

In Figure 9-19, you can see the output from htop on Ian’s laptop. It shows no child processes yet, shortly all nine processes will share a single 10,000-by-400,000-element numpy array of doubles. One copy of this array costs 30.5 GB, and the laptop has 64 GB with circa 7GB used by other processes—you can see in htop by the process meters that the Mem reading shows a maximum of 62.5 GB RAM. You can see that if the subprocesses duplicated any of the RAM they’d access, we’d quickly run out of RAM on this laptop.

[image: notset]
Figure 9-19. htop showing RAM and swap usage

Tip

During development of the 3rd edition Ian was surprised to see 15 threads below the output of np_shared in the htop example. np.show_config() showed that OpenBLAS is used for linear algebra and OpenBLAS allocates a default number of threads to make some linear algebra operations faster. This gets in the way of this demo so we disabled this with export OPENBLAS_NUM_THREADS=1. Digging with tools like htop teaches us more about what’s happening “on the inside”.

To understand this demo, we’ll first walk through the console output, and then we’ll look at the code. In Example 9-27, we start the parent process: it allocates a 30.5 GB (circa 32GB depending on how it is reported) double array of dimensions 10,000 × 400,000, filled with the value zero. The 10,000 rows will be passed out as indices to the worker function, and the worker will operate on each column of 400,000 items in turn.

Having allocated the array, we fill it with the answer to life, the universe, and everything (42!). We can test in the worker function that we’re receiving this modified array and not a filled-with-0s version to confirm that this code is behaving as expected.

Example 9-27. Setting up the shared array

$ python np_shared.py
$ python np_shared.py
Creating array of SIZE_A=10000 by SIZE_B=400000
Created shared array with 32,000,000,000 nbytes
Shared array id is 129846909785488 in PID 1981926
Starting with an array of 0 values:
[[0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]]

Original array filled with value 42:
[[42. 42. 42. ... 42. 42. 42.]
 ...
 [42. 42. 42. ... 42. 42. 42.]]
Press a key to start workers using multiprocessing with NBR_OF_PROCESSES=8...

Tip

For this 3rd edition Ian learned that his Linux distribution has a 50% RAM cap on shared memory usage which can be diagnosed using findmnt -o AVAIL,USED /dev/shm. This limit can be raised. You may need to investigate similar limits if you’re using large arrays, the clue that this related to configuration was that up to 32GB worked fine, and after this it always exited with Bus Error (core dumped).

In Example 9-28, we’ve started eight processes working on this shared array. No copy of the array was made; each process is looking at the same large block of memory, and each process has a different set of indices to work from. Every few thousand lines, the worker outputs the current index and its PID, so we can observe its behavior.

The worker’s job is trivial—​it will check that the current element is still set to the default (so we know that no other process has modified it already), and then it will overwrite this value with the current PID. Once the workers have completed, we return to the parent process and print the array again. This time, we see that it is filled with PIDs rather than 42.

Example 9-28. Running worker_fn on the shared array

 worker_fn: with idx 0
 id of local_nparray_in_process is 129846909785488 in PID 1986279
 worker_fn: with idx 1000
 id of local_nparray_in_process is 129846909785488 in PID 1986282
 worker_fn: with idx 2000
 id of local_nparray_in_process is 129846909785488 in PID 1986285
 worker_fn: with idx 3000
 id of local_nparray_in_process is 129846909785488 in PID 1986284
...
 worker_fn: with idx 8000
 id of local_nparray_in_process is 129846909785488 in PID 1986283
 worker_fn: with idx 9000
 id of local_nparray_in_process is 129846909785488 in PID 1986284

The default value has been over-written with worker_fn's result:
[[1986279. 1986279. 1986279. ... 1986279. 1986279. 1986279.]
 ...
 [1986279. 1986279. 1986279. ... 1986279. 1986279. 1986279.]]

Finally, in Example 9-29 we use a Counter to confirm the frequency of each PID in the array. As the work was evenly divided, we expect to see each of the eight PIDs represented an equal number of times. In our 4,000,000,000-element array, we see eight sets of circa 500,000,000 PIDs split almost equally amongst the workers. The table output is presented using PrettyTable.

Example 9-29. Verifying the result on the shared array

Verification - extracting unique values from 4,000,000,000 items
in the numpy array (this might be slow)...
Press return to start verifying
Unique values in main_nparray:
+-----------+-----------+
| PID | Count |
+-----------+-----------+
1986279.0	494400000
1986280.0	500800000
1986281.0	500800000
1986282.0	500800000
1986283.0	500800000
1986284.0	500800000
1986285.0	500800000
1986286.0	500800000
+-----------+-----------+
Press a key to exit...

Having completed, the program now exits, and the array is deleted.

We can take a peek inside each process under Linux by using ps and pmap. Example 9-30 shows the result of calling ps. Breaking apart this command line:

	
ps tells us about the process.

	
-A lists all processes.

	
-o pid,size,vsize,cmd outputs the PID, size information, and the command name.

	
grep is used to filter all other results and leave only the lines for our demo.

The parent process (PID 1981926) and its eight forked children are shown in the output. The result is similar to what we saw in htop. We can use pmap to look at the memory map of each process, requesting extended output with -x. We grep for the pattern s- to list blocks of memory that are marked as being shared. In the parent process and the child processes, we see a 31,250,000 KB (circa 32 GB) block that is shared between them.

Example 9-30. Using pmap and ps to investigate the operating system’s view of the processes

$ ps -A -o pid,size,vsize,cmd | grep np_shared
1981926 45572 31560424 python np_shared.py
1986279 20552 31339180 python np_shared.py
1986280 20552 31339180 python np_shared.py
1986281 20552 31339180 python np_shared.py
1986282 20552 31339180 python np_shared.py
1986283 20552 31339180 python np_shared.py
1986284 20552 31339180 python np_shared.py
1986285 20552 31339180 python np_shared.py
1986286 20552 31339180 python np_shared.py

ian@ian-Latitude-E6420 $ pmap -x 1981926 | grep s-
Address Kbytes RSS Dirty Mode Mapping
00007610e36e9000 31250000 31250000 31250000 rw-s- pym-1981926-o1kxcg0q (deleted)
...
ian@ian-Latitude-E6420 $ pmap -x 1986279 | grep s-
Address Kbytes RSS Dirty Mode Mapping
00007610e36e9000 31250000 3862640 3862640 rw-s- pym-1981926-o1kxcg0q (deleted)
...

We’ll use a multprocessing.Array to allocate a shared block of memory as a 1D array and then instantiate a numpy array from this object and reshape it to a 2D array. Now we have a numpy-wrapped block of memory that can be shared between processes and addressed as though it were a normal numpy array. numpy is not managing the RAM; multiprocessing.Array is managing it.

In Example 9-31, you can see that each forked process has access to a global main_nparray. While the forked process has a copy of the numpy object, the underlying bytes that the object accesses are stored as shared memory. Our worker_fn will overwrite a chosen row (via idx) with the current process identifier.

Example 9-31. worker_fn for sharing numpy arrays using multiprocessing

import os
import multiprocessing
from collections import Counter
import ctypes
import numpy as np
from prettytable import PrettyTable

SIZE_A, SIZE_B = 10_000, 400_000 # 32GB

def worker_fn(idx):
 """Do some work on the shared np array on row idx"""
 # confirm that no other process has modified this value already
 assert main_nparray[idx, 0] == DEFAULT_VALUE
 # inside the subprocess print the PID and ID of the array
 # to check we don't have a copy
 if idx % 1000 == 0:
 print(" {}: with idx {}\n id of local_nparray_in_process is {} in PID {}"\
 .format(worker_fn.__name__, idx, id(main_nparray), os.getpid()))
 # we can do any work on the array; here we set every item in this row to
 # have the value of the process ID for this process
 main_nparray[idx, :] = os.getpid()

In our __main__ in Example 9-32, we’ll work through three major stages:

	
Build a shared multiprocessing.Array and convert it into a numpy array.

	
Set a default value into the array, and spawn eight processes to work on the array in parallel.

	
Verify the array’s contents after the processes return.

Typically, you’d set up a numpy array and work on it in a single process, probably doing something like arr = np.array((100, 5), dtype=np.float_). This is fine in a single process, but you can’t share this data across processes for both reading and writing.

The trick is to make a shared block of bytes. One way is to create a multiprocessing.Array. By default the Array is wrapped in a lock to prevent concurrent edits, but we don’t need this lock as we’ll be careful about our access patterns. To communicate this clearly to other team members, it is worth being explicit and setting lock=False.

If you don’t set lock=False, you’ll have an object rather than a reference to the bytes, and you’ll need to call .get_obj() to get to the bytes. By calling .get_obj(), you bypass the lock, so there’s no value in not being explicit about this in the first place.

Next, we take this block of shareable bytes and wrap a numpy array around them using frombuffer. The dtype is optional, but since we’re passing bytes around, it is always sensible to be explicit. We reshape so we can address the bytes as a 2D array. By default the array values are set to 0. Example 9-32 shows our __main__ in full.

Example 9-32. __main__ to set up numpy arrays for sharing

if __name__ == '__main__':
 DEFAULT_VALUE = 42
 NBR_OF_PROCESSES = 8

 # create a block of bytes, reshape into a local numpy array
 print(f"Creating array of {SIZE_A=} by {SIZE_B=}")
 NBR_ITEMS_IN_ARRAY = SIZE_A * SIZE_B
 shared_array_base = multiprocessing.Array(ctypes.c_double,
 NBR_ITEMS_IN_ARRAY, lock=False)
 main_nparray = np.frombuffer(shared_array_base, dtype=ctypes.c_double)
 main_nparray = main_nparray.reshape(SIZE_A, SIZE_B)
 # assert no copy was made
 assert main_nparray.base.base is shared_array_base
 print("Created shared array with {:,} nbytes".format(main_nparray.nbytes))
 print("Shared array id is {} in PID {}".format(id(main_nparray), os.getpid()))
 print("Starting with an array of 0 values:")
 print(main_nparray)
 print()

To confirm that our processes are operating on the same block of data that we started with, we set each item to a new DEFAULT_VALUE (we again use 42, the answer to life, the universe, and everything)—you’ll see that at the top of Example 9-33. Next, we build a Pool of processes (eight in this case) and then send batches of row indices via the call to map.

Example 9-33. __main__ for sharing numpy arrays using multiprocessing

 # Modify the data via our local numpy array
 main_nparray.fill(DEFAULT_VALUE)
 print("Original array filled with value {}:".format(DEFAULT_VALUE))
 print(main_nparray)

 input(f"Press a key to start workers using multiprocessing with
 {NBR_OF_PROCESSES=}...")
 print()

 # create a pool of processes that will share the memory block
 # of the global numpy array, share the reference to the underlying
 # block of data so we can build a numpy array wrapper in the new processes
 pool = multiprocessing.Pool(processes=NBR_OF_PROCESSES)
 # perform a map where each row index is passed as a parameter to the
 # worker_fn
 pool.map(worker_fn, range(SIZE_A))

Once we’ve completed the parallel processing, we return to the parent process to verify the result (Example 9-34). The verification step runs through a flattened view on the array (note that the view does not make a copy; it just creates a 1D iterable view on the 2D array), counting the frequency of each PID. Finally, we perform some assert checks to make sure we have the expected counts.

Example 9-34. __main__ to verify the shared result

 print("Verification - extracting unique values from {:,} items\n
 in the numpy \
 array (this might be slow)...".format(NBR_ITEMS_IN_ARRAY))
 # main_nparray.flat iterates over the contents of the array, it doesn't
 # make a copy
 counter = Counter(main_nparray.flat)
 print("Unique values in main_nparray:")
 tbl = PrettyTable(["PID", "Count"])
 for pid, count in list(counter.items()):
 tbl.add_row([pid, count])
 print(tbl)

 total_items_set_in_array = sum(counter.values())

 # check that we have set every item in the array away from DEFAULT_VALUE
 assert DEFAULT_VALUE not in list(counter.keys())
 # check that we have accounted for every item in the array
 assert total_items_set_in_array == NBR_ITEMS_IN_ARRAY
 # check that we have NBR_OF_PROCESSES of unique keys to confirm that every
 # process did some of the work
 assert len(counter) == NBR_OF_PROCESSES

 input("Press return to exit...")

We’ve just created a 1D array of bytes, converted it into a 2D array, shared the array among eight processes, and allowed them to process concurrently on the same block of memory. This recipe will help you parallelize over many cores. Be careful with concurrent access to the same data points, though—you’ll have to use the locks in multiprocessing if you want to avoid synchronization problems, and this will slow down your code.

Synchronizing File and Variable Access

In the following examples, we’ll look at multiple processes sharing and manipulating a state—in this case, four processes incrementing a shared counter a set number of times. Without a synchronization process, the counting is incorrect. If you’re sharing data in a coherent way you’ll always need a method to synchronize the reading and writing of data, or you’ll end up with errors.

Typically, the synchronization methods are specific to the OS you’re using, and they’re often specific to the language you use. Here, we look at file-based synchronization using a Python library and sharing an integer object between Python
processes.

File Locking

Reading and writing to a file will be the slowest example of data sharing in this
section.

You can see our first work function in Example 9-35. The function iterates over a local counter. In each iteration it opens a file and reads the existing value, increments it by one, and then writes the new value over the old one. On the first iteration the file will be empty or won’t exist, so it will catch an exception and assume the value should be zero.

Tip

The examples given here are simplified—in practice it is safer to use a context manager to open a file using with open(filename, "r") as f:. If an exception is raised inside the context, the file f will correctly be closed.

Example 9-35. work function without a lock

def work(filename, max_count):
 for n in range(max_count):
 f = open(filename, "r")
 try:
 nbr = int(f.read())
 except ValueError as err:
 print("File is empty, starting to count from 0, error: " + str(err))
 nbr = 0
 f = open(filename, "w")
 f.write(str(nbr + 1) + '\n')
 f.close()

Let’s run this example with one process. You can see the output in Example 9-36. work is called one thousand times, and as expected it counts correctly without losing any data. On the first read, it sees an empty file. This raises the invalid literal for int() error for int() (as int() is called on an empty string). This error occurs only once; afterward, we always have a valid value to read and convert into an integer.

Example 9-36. Timing of file-based counting without a lock and with one process

$ python ex1_nolock1.py
Starting 1 process(es) to count to 1000
File is empty, starting to count from 0,
error: invalid literal for int() with base 10: ''
Expecting to see a count of 1000
count.txt contains:
1000

Now we’ll run the same work function with four concurrent processes. We don’t have any locking code, so we’ll expect some odd results.

Tip

Before you look at the following code, what two types of error can you expect to see when two processes simultaneously read from or write to the same file? Think about the two main states of the code (the start of execution for each process and the normal running state of each process).

Take a look at Example 9-37 to see the problems. First, when each process starts, the file is empty, so each tries to start counting from zero. Second, as one process writes, the other can read a partially written result that can’t be parsed. This causes an exception, and a zero will be written back. This, in turn, causes our counter to keep getting reset! Can you see how \n and two values have been written by two concurrent processes to the same open file, causing an invalid entry to be read by a third process?

Example 9-37. Timing of file-based counting without a lock and with four processes

$ python ex1_nolock4.py
Starting 4 process(es) to count to 4000
File is empty, starting to count from 0,
error: invalid literal for int() with base 10: ''
many errors like these
File is empty, starting to count from 0,
File is empty, starting to count from 0, error: invalid literal for int()
 with base 10: '\x00\x00'
Expecting to see a count of 4000
count.txt contains:
16

$ python -m timeit -s "import ex1_nolock4" "ex1_nolock4.run_workers()"
5 loops, best of 5: 87.3 msec per loop

Example 9-38 shows the multiprocessing code that calls work with four processes. Note that rather than using a map, we’re building a list of Process objects. Although we don’t use the functionality here, the Process object gives us the power to introspect the state of each Process. We encourage you to read the documentation to learn about why you might want to use a Process.

Example 9-38. run_workers setting up four processes

import multiprocessing
import os

...
MAX_COUNT_PER_PROCESS = 1000
FILENAME = "count.txt"
...

def run_workers():
 NBR_PROCESSES = 4
 total_expected_count = NBR_PROCESSES * MAX_COUNT_PER_PROCESS
 print("Starting {} process(es) to count to {}".format(NBR_PROCESSES,

														 total_expected_count))
 # reset counter
 f = open(FILENAME, "w")
 f.close()

 processes = []
 for process_nbr in range(NBR_PROCESSES):
 p = multiprocessing.Process(target=work, args=(FILENAME,

													 MAX_COUNT_PER_PROCESS))
 p.start()
 processes.append(p)

 for p in processes:
 p.join()

 print("Expecting to see a count of {}".format(total_expected_count))
 print("{} contains:".format(FILENAME))
 os.system('more ' + FILENAME)

if __name__ == "__main__":
 run_workers()

Using the fasteners module, we can introduce a synchronization method so only one process gets to write at a time and the others each await their turn. The overall process therefore runs more slowly, but it doesn’t make mistakes. You can see the correct output in Example 9-39. Be aware that the locking mechanism is specific to Python, so other processes that are looking at this file will not care about the “locked” nature of this file.

Example 9-39. Timing of file-based counting with a lock and four processes

$ python ex1_lock.py
Starting 4 process(es) to count to 4000
File is empty, starting to count from 0,
error: invalid literal for int() with base 10: ''
Expecting to see a count of 4000
count.txt contains:
4000
$ python -m timeit -s "import ex1_lock" "ex1_lock.run_workers()"
1 loop, best of 5: 349 msec per loop

Using fasteners adds a single line of code in Example 9-40 with the @fasteners.interprocess_locked decorator; the filename can be anything, but using a similar name as the file you want to lock probably makes debugging from the command line easier. Note that we haven’t had to change the inner function; the decorator gets the lock on each call, and it will wait until it can get the lock before the call into work proceeds.

Example 9-40. work function with a lock

@fasteners.interprocess_locked('/tmp/tmp_lock')
def work(filename, max_count):
 for n in range(max_count):
 f = open(filename, "r")
 try:
 nbr = int(f.read())
 except ValueError as err:
 print("File is empty, starting to count from 0, error: " + str(err))
 nbr = 0
 f = open(filename, "w")
 f.write(str(nbr + 1) + '\n')
 f.close()

Locking a Value

The multiprocessing module offers several options for sharing Python objects between processes. We can share primitive objects with a low communication overhead, and we can also share higher-level Python objects (e.g., dictionaries and lists) using a Manager (but note that the synchronization cost will significantly slow down the data sharing).

Here, we’ll use a multiprocessing.Value object to share an integer between processes. While a Value has a lock, the lock doesn’t do quite what you might expect—​it prevents simultaneous reads or writes but does not provide an atomic increment. Example 9-41 illustrates this. You can see that we end up with an incorrect count; this is similar to the file-based unsynchronized example we looked at earlier.

Example 9-41. No locking leads to an incorrect count

$ python ex2_nolock.py
Expecting to see a count of 4000
We have counted to 2340
$ python -m timeit -s "import ex2_nolock" "ex2_nolock.run_workers()"
20 loops, best of 5: 5.2 msec per loop

No corruption occurs to the data, but we do miss some of the updates. This approach might be suitable if you’re writing to a Value from one process and consuming (but not modifying) that Value in other processes.

Note that in Ian’s experiments using a limit of 4000 with Python 3.12 rarely shows the error (you have to try many iterations to get the error) - in the previous edition of the book the error showed up reliably on every run. However if we try to count 40000 items - a ten times larger operation, then the operation reliably mis-counts. Fundamentally not using a lock would be a bad idea, even with a faster machine and a more advanced interpreter.

The code to share the Value is shown in Example 9-42. We have to specify a datatype and an initialization value—​using Value("i", 0), we request a signed integer with a default value of 0. This is passed as a regular argument to our Process object, which takes care of sharing the same block of bytes between processes behind the scenes. To access the primitive object held by our Value, we use .value. Note that we’re asking for an in-place addition—​we’d expect this to be an atomic operation, but that’s not supported by Value, so our final count is lower than expected.

Example 9-42. The counting code without a Lock

import multiprocessing

def work(value, max_count):
 for n in range(max_count):
 value.value += 1

def run_workers():
...
 value = multiprocessing.Value('i', 0)
 for process_nbr in range(NBR_PROCESSES):
 p = multiprocessing.Process(target=work, args=(value, MAX_COUNT_PER_PROCESS))
 p.start()
 processes.append(p)
...

You can see the correctly synchronized count in Example 9-43 using a multiprocessing.Lock.

Example 9-43. Using a Lock to synchronize writes to a Value

lock on the update, but this isn't atomic
$ python ex2_lock.py
Expecting to see a count of 4000
We have counted to 4000
$ python -m timeit -s "import ex2_lock" "ex2_lock.run_workers()"
20 loops, best of 5: 8.18 msec per loop

In Example 9-44, we’ve used a context manager (with Lock) to acquire the lock.

Example 9-44. Acquiring a Lock using a context manager

import multiprocessing

def work(value, max_count, lock):
 for n in range(max_count):
 with lock:
 value.value += 1

def run_workers():
...
 processes = []
 lock = multiprocessing.Lock()
 value = multiprocessing.Value('i', 0)
 for process_nbr in range(NBR_PROCESSES):
 p = multiprocessing.Process(target=work,
 args=(value, MAX_COUNT_PER_PROCESS, lock))
 p.start()
 processes.append(p)
...

If we avoid the context manager and directly wrap our increment with acquire and release, we can go a little faster, but the code is less readable compared to using the context manager. We suggest sticking to the context manager to improve readability. The snippet in Example 9-45 shows how to acquire and release the Lock object.

Example 9-45. Inline locking rather than using a context manager

lock.acquire()
value.value += 1
lock.release()

Since a Lock doesn’t give us the level of granularity that we’re after, the basic locking that it provides wastes a bit of time unnecessarily. We can replace the Value with a RawValue, as in Example 9-46, and achieve an incremental speedup. If you’re interested in seeing the bytecode behind this change, read Eli Bendersky’s blog post on the subject.

Example 9-46. Console output showing the faster RawValue and Lock approach

RawValue has no lock on it
$ python ex2_lock_rawvalue.py
Expecting to see a count of 4000
We have counted to 4000
$ python -m timeit -s "import ex2_lock_rawvalue" "ex2_lock_rawvalue.run_workers()"
50 loops, best of 5: 5.18 msec per loop

To use a RawValue, just swap it for a Value, as shown in Example 9-47.

Example 9-47. Example of using a <code>RawValue</code> integer

...
def run_workers():
...
 lock = multiprocessing.Lock()
 value = multiprocessing.RawValue('i', 0)
 for process_nbr in range(NBR_PROCESSES):
 p = multiprocessing.Process(target=work,
 args=(value, MAX_COUNT_PER_PROCESS, lock))
 p.start()
 processes.append(p)

We could also use a RawArray in place of a multiprocessing.Array if we were sharing an array of primitive objects.

We’ve looked at various ways of dividing up work on a single machine between multiple processes, along with sharing a flag and synchronizing data sharing between these processes. Remember, though, that sharing data can lead to headaches—​try to avoid it if possible. Making a machine deal with all the edge cases of state sharing is hard; the first time you have to debug the interactions of multiple processes, you’ll realize why the accepted wisdom is to avoid this situation if possible.

Do consider writing code that runs a bit slower but is more likely to be understood by your team. Using an external tool like Redis to share state leads to a system that can be inspected at runtime by people other than the developers—​this is a powerful way to enable your team to keep on top of what’s happening in your parallel systems.

Definitely bear in mind that tweaked performant Python code is less likely to be understood by more junior members of your team—​they’ll either be scared of it or break it. Avoid this problem (and accept a sacrifice in speed) to keep team velocity high.

Wrap-Up

We’ve covered a lot in this chapter. First, we looked at two embarrassingly parallel problems, one with predictable complexity and the other with nonpredictable complexity. We’ll use these examples again on multiple machines when we discuss clustering in Chapter 10.

Next, we looked at Queue support in multiprocessing and its overheads. In general, we recommend using an external queue library so that the state of the queue is more transparent. Preferably, you should use an easy-to-read job format so that it is easy to debug, rather than pickled data.

The IPC discussion should have impressed upon you how difficult it is to use IPC efficiently, and that it can make sense just to use a naive parallel solution (without IPC). Buying a faster computer with more cores might be a far more pragmatic solution than trying to use IPC to exploit an existing machine.

Sharing numpy matrices in parallel without making copies is important for only a small set of problems, but when it counts, it’ll really count. It takes a few extra lines of code and requires some sanity checking to make sure that you’re really not copying the data between processes.

Finally, we looked at using file and memory locks to avoid corrupting data—​this is a source of subtle and hard-to-track errors, and this section showed you some robust and lightweight solutions.

In the next chapter we’ll look at clustering using Python. With a cluster, we can move beyond single-machine parallelism and utilize the CPUs on a group of machines. This introduces a new world of debugging pain—​not only can your code have errors, but the other machines can also have errors (either from bad configuration or from failing hardware). We’ll show how to parallelize the pi estimation demo using the Parallel Python module and how to run research code inside IPython using an
IPython cluster.

1 See Brett Foster’s PowerPoint presentation on using the Monte Carlo method to estimate pi.
2 See the Stack Overflow topic.

Chapter 10. Clusters and Job Queues

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 11th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at shunter@oreilly.com.

Questions You’ll Be Able to Answer After This Chapter

	
Why are clusters useful?

	
What are the costs of clustering?

	
How can I convert a multiprocessing solution into a clustered solution?

	
How does an IPython cluster work?

	
How can I parallelize Pandas using Dask and Swifter?

	
How does NSQ help with making robust production systems?

A cluster is commonly recognized to be a collection of computers working
together to solve a common task. It could be viewed from the outside as a larger
single system.

In the 1990s, the notion
of using a cluster of commodity PCs on a local area network for clustered
processing—known as a Beowulf cluster—became popular. Google later gave the practice a boost by using clusters of commodity PCs in its own data centers, particularly for
running MapReduce tasks. At the other end of the scale, the TOP500 project ranks the most powerful
computer systems each year; these typically have a clustered design, and the
fastest machines all use Linux.

Amazon Web Services (AWS) is commonly used both for engineering production clusters in the cloud and for building on-demand clusters for short-lived tasks like machine learning. With AWS you can rent tiny to huge machines with 10s of CPUs and up to 768 GB of RAM for $1 to $15 an hour. Multiple GPUs can be rented at extra cost. Look at “Using IPython Parallel to Support Research” and the ElastiCluster package if you’d like to explore AWS or other providers for ad hoc clusters on compute-heavy or RAM-heavy tasks.

Different computing tasks require different configurations, sizes, and
capabilities in a cluster. We’ll define some common scenarios in this chapter.

Before you move to a clustered solution, do make sure that you have done the
following:

	
Profiled your system so you understand the bottlenecks

	
Exploited compiler solutions like Numba and Cython

	
Exploited multiple cores on a single machine (possibly a big machine with many cores) with Joblib or multiprocessing

	
Exploited techniques for using less RAM

Keeping your system to one machine will make your life easier (even if the “one machine” is a really beefy computer with lots of RAM and many CPUs). Move to a cluster if you really need a lot of CPUs or the ability to process data from disks in parallel, or if you have production needs like high resiliency and rapid speed of response. Most research scenarios do not need resilience or scalability and are limited to few people, so the simplest solution is often the most sensible.

A benefit of staying on one large machine is that a tool like Dask can quickly parallelize your Pandas or plain Python code with no networking complications. Dask can also control a cluster of machines to parallelize Pandas, NumPy, and pure Python problems. Swifter automatically parallelizes some multicore single-machine cases by piggybacking on Dask. We introduce both Dask and Swifter later in this chapter.

Benefits of Clustering

The most obvious benefit of a cluster is that you can easily
scale computing requirements—if you need to process more data or to get an
answer faster, you just add more machines (or nodes).

By adding machines, you can also improve reliability. Each machine’s components have a certain likelihood of
failing, but with a good design, the failure of a number of components will
not stop the operation of the cluster.

Clusters are also used to create systems that scale dynamically. A common use
case is to cluster a set of servers that process web requests or associated
data (e.g., resizing user photos, transcoding video, or transcribing speech) and
to activate more servers as demand increases at certain times of the day.

Dynamic scaling is a very cost-effective way of dealing with nonuniform usage
patterns, as long as the machine activation time is fast enough to deal with the
speed of changing demand.

Tip

Consider the effort versus the reward of building a cluster. Whilst the parallelization gains of a cluster can feel attractive, do consider
the costs associated with constructing and maintaining a cluster. They fit well for
long-running processes in a production environment or for well-defined and oft-repeated
R&D tasks. They are less attractive for variable and short-lived R&D
tasks.

A subtler benefit of clustering is that clusters can be separated geographically
but still centrally controlled. If one geographic area suffers an outage (due to a
flood or power loss, for example), the other cluster can continue to work, perhaps with
more processing units being added to handle the demand. Clusters also allow you
to run heterogeneous software environments (e.g., different versions of operating
systems and processing software), which might improve the robustness of the overall
system—note, though, that this is definitely an expert-level topic!

Drawbacks of Clustering

Moving to a clustered solution requires a change in thinking. This is an
evolution of the change in thinking required when you move from serial to
parallel code, as we introduced back in Chapter 9. Suddenly you
have to consider what happens when you have more than one machine—you have
latency between machines, you need to know if your other machines are working, and you need to
keep all the machines running the same version of your software. System administration is probably your biggest challenge.

In addition,
you normally have to think hard about the algorithms you are implementing and
what happens once you have all these additional moving parts that may need to
stay in sync. This additional planning can impose a heavy mental tax; it is
likely to distract you from your core task, and once a system grows large enough,
you’ll probably need to add a dedicated engineer to your team.

Note

We’ve tried to focus on using one machine efficiently in this book
because we believe that life is easier if you’re dealing
with only one computer rather than a collection (though we confess it can be way more
fun to play with a cluster—until it breaks). If you can scale vertically (by
buying more RAM or more CPUs), it is worth investigating this approach in
favor of clustering. Of course, your processing needs may exceed what’s possible
with vertical scaling, or the robustness of a cluster may be more important than
having a single machine. If you’re a single person working on this task, though, bear in mind also that running a cluster will suck up some of your time.

When designing a clustered solution, you’ll need to remember that each machine’s
configuration might be different (each machine will have a different load and
different local data). How will you get all the right data onto the machine
that’s processing your job? Does the latency involved in moving the job and the data
amount to a problem? Do your jobs need to communicate partial results to one
another? What happens if a process fails or a machine dies or some hardware wipes
itself when several jobs are running? Failures can be introduced if you don’t
consider these
questions.

You should also consider that failures can be acceptable. For example, you probably don’t
need 99.999% reliability when you’re running a content-based web service—if on
occasion a job fails (e.g., a picture doesn’t get resized quickly enough) and the
user is required to reload a page, that’s something that everyone is already
used to. It might not be the solution you want to give to the user, but accepting
a little bit of failure typically reduces your engineering and management costs
by a worthwhile margin. On the flip side, if a high-frequency trading system
experiences failures, the cost of bad stock market trades could be
considerable!

Maintaining a fixed infrastructure can become expensive. Machines are relatively
cheap to purchase, but they have an awful habit of going wrong—automatic
software upgrades can glitch, network cards fail, disks have write errors,
power supplies can give spikey power that disrupts data, cosmic rays can flip a
bit in a RAM module. The more computers you have, the more time will be lost to
dealing with these issues. Sooner or later you’ll want to bring in a system engineer
who can deal with these problems, so add another $100,000 to the budget. Using a
cloud-based cluster can mitigate a lot of these problems (it costs more, but you
don’t have to deal with the hardware maintenance), and some cloud providers also
offer a spot-priced market for
cheap but temporary computing resources.

An insidious problem with a cluster that grows organically over time is that
it’s possible no one has documented how to restart it safely if everything gets
turned off. If you don’t have a documented restart plan, you should assume
you’ll have to write one at the worst possible time (one of your authors has been involved in
debugging this sort of problem on Christmas Eve—this is not the Christmas
present you want!). At this point you’ll also learn just how long it can take
each part of a system to get up to speed—it might take minutes for each part
of a cluster to boot and to start to process jobs, so if you have 10 parts that
operate in succession, it might take an hour to get the whole system running
from cold. The consequence is that you might have an hour’s worth of backlogged
data. Do you then have the necessary capacity to deal with this backlog in a
timely fashion?

Slack behavior can be a cause of expensive mistakes, and complex and hard-to-anticipate behavior can cause unexpected and expensive outcomes. Let’s look at
two high-profile cluster failures and see what lessons we can learn.

$462 Million Wall Street Loss Through Poor Cluster Upgrade Strategy

In 2012, the high-frequency trading firm Knight Capital lost $462 million after a
bug was introduced during a software upgrade in a cluster.
The software made orders for more shares than customers had requested.

In the trading software, an older flag was repurposed for a new function. The
upgrade was rolled out to seven of the eight live machines, but the eighth machine used
older code to handle the flag, which resulted in the wrong trades being made. The
Securities and Exchange Commission (SEC) noted that Knight Capital didn’t have a second technician review the upgrade
and in fact had no established process for reviewing such an upgrade.

The underlying mistake seems to have had two causes. The first was that the software
development process hadn’t removed an obsolete feature, so the stale code stayed
around. The second was that no manual review process was in place to confirm
that the upgrade was completed successfully.

Technical debt adds a cost that eventually has to be paid—preferably by taking
time when not under pressure to remove the debt. Always use unit tests, both when
building and when refactoring code. The lack of a written checklist to run through during
system upgrades, along with a second pair of eyes, could cost you an expensive
failure. There’s a reason that airplane pilots have to work through a takeoff
checklist: it means that nobody ever skips the important steps, no matter how
many times they might have done them before!

Skype’s 24-Hour Global Outage

Skype suffered a 24-hour planetwide failure in 2010.
Behind the scenes, Skype is supported by a peer-to-peer network. An overload in
one part of the system (used to process offline instant messages) caused
delayed responses from Windows clients; some versions of the Windows client
didn’t properly handle the delayed responses and crashed. In all, approximately 40%
of the live clients crashed, including 25% of the public supernodes. Supernodes
are critical to routing data in the network.

With 25% of the routing offline (it came back on, but
slowly), the network overall was under great strain. The crashed Windows client
nodes were also restarting and attempting to rejoin the network, adding a new
volume of traffic on the already overloaded system. The supernodes have a
back-off procedure if they experience too much load, so they started to
shut down in response to the waves of traffic.

Skype became largely unavailable for 24 hours. The recovery process
involved first setting up hundreds of new “mega-supernodes” configured to deal with
the increased traffic, and then following up with thousands more. Over the coming
days, the network recovered.

This incident caused a lot of embarrassment for Skype; clearly, it also changed
its focus to damage limitation for several tense days. Customers were forced to look for alternative solutions for voice calls, which was likely a marketing boon for
competitors.

Given the complexity of the network and the escalation of failures that
occurred, this failure likely would have been hard both to predict
and to plan for. The reason that all of the nodes on the network didn’t fail
was due to different versions of the software and different platforms—there’s
a reliability benefit to having a heterogeneous network rather than a homogeneous
system.

Common Cluster Designs

It is common to start with a local ad hoc cluster of reasonably equivalent
machines. You might wonder if you can add old computers to an ad hoc network, but
typically older CPUs eat a lot of power and run very slowly, so they don’t
contribute nearly as much as you might hope compared to one new,
high-specification machine. An in-office cluster requires someone who can
maintain it. A cluster on Amazon’s EC2 or Microsoft’s Azure, or one run by an academic
institution, offloads the hardware support to the provider’s team.

If you have well-understood processing requirements, it might make sense to
design a custom cluster—perhaps one that uses an InfiniBand high-speed
interconnect in place of gigabit Ethernet, or one that uses a particular
configuration of RAID drives that support your read, write, or resiliency
requirements. You might want to combine CPUs and GPUs on some machines, or
just default to CPUs.

You might want a massively decentralized processing cluster, like the ones used by projects
such as SETI@home and Folding@home through the Berkeley Open Infrastructure for
Network Computing (BOINC) system. They share a centralized coordination system, but the computing nodes join
and leave the project in an ad hoc fashion.

On top of the hardware design, you can run different software architectures.
Queues of work are the most common and easiest to understand. Typically, jobs
are put onto a queue and consumed by a processor. The result of the processing might
go onto another queue for further processing, or it might be used as a final result (e.g., being added into a database). Message-passing systems are slightly different—messages get put onto a message bus and are then consumed by other machines. The messages might time out and get deleted, and they might be consumed by
multiple machines. In a more complex system, processes talk to each other
using interprocess communication—this can be considered an expert-level
configuration, as there are lots of ways that you can set it up badly, which will
result in you losing your sanity. Go down the IPC route only if you really know
that you need it.

How to Start a Clustered Solution

The easiest way to start a clustered system is to begin with one machine that will run
both the job server and a job processor (just one job processor for one CPU). If your tasks
are CPU-bound, run one job processor per CPU; if your tasks are I/O-bound,
run several per CPU. If they’re RAM-bound, be careful that you don’t
run out of RAM. Get your single-machine solution working with one processor and then
add more. Make your code fail in unpredictable ways (e.g., do a 1/0 in your
code, use kill -9 <pid> on your worker, pull the power plug from the socket so the
whole machine dies) to check if your system is robust.

Obviously, you’ll want to do heavier testing than this—a unit test suite full
of coding errors and artificial exceptions is good. Ian likes to throw
in unexpected events, like having a processor run a set of jobs while an
external process is systematically killing important processes and confirming
that these all get restarted cleanly by whatever monitoring process is being used.

Once you have one running job processor, add a second. Check that you’re not
using too much RAM. Do you process jobs twice as fast as before?

Now introduce a second machine, with just one job processor on that new machine
and no job processors on the coordinating machine. Does it process jobs as fast
as when you had the processor on the coordinating machine? If not, why not? Is
latency a problem? Do you have different configurations? Maybe you have
different machine hardware, like CPUs, RAM, and cache sizes?

Now add another nine computers and test to see if you’re processing jobs 10 times
faster than before. If not, why not? Are network collisions now occurring that
slow down your overall processing rate?

To reliably start the cluster’s components when the machine boots, we tend to use
either a cron job, Circus,
or supervisord. Circus and supervisord are both Python-based and have been around for years. cron is old
but very reliable if you’re just starting scripts like a monitoring process that
can start subprocesses as required.

Once you have a reliable cluster, you might want to introduce a random-killer tool
like Netflix’s Chaos Monkey,
which deliberately kills parts of your system to test them for resiliency. Your
processes and your hardware will die eventually, and it doesn’t hurt to know that you’re
likely to survive at least the errors you predict might happen.

Ways to Avoid Pain When Using Clusters

In one particularly painful experience Ian encountered, a series of queues in
a clustered system ground to a halt. Later queues were not being consumed, so
they filled up. Some of the machines ran out of RAM, so their processes died. Earlier
queues were being processed but couldn’t pass their results to the next queue,
so they crashed. In the end the first queue was being filled but not consumed,
so it crashed. After that, we were paying for data from a supplier that
ultimately was discarded. You must sketch out some notes to consider the various
ways your cluster will die and what will happen when (not if) it does. Will you lose data (and is this a problem)? Will you have a large
backlog that’s too painful to process?

Having a system that’s easy to debug probably beats having a faster system. Engineering time
and the cost of downtime are probably your largest expenses (this isn’t true if
you’re running a missile defense program, but it is probably true for a
start-up). Rather than shaving a few bytes by using a low-level compressed
binary protocol, consider using human-readable text in JSON when passing
messages. It does add an overhead for sending the messages and decoding them, but
when you’re left with a partial database after a core computer has caught fire,
you’ll be glad that you can read the important messages quickly as you work to
bring the system back online.

Make sure it is cheap in time and money to deploy updates to the system—both
operating system updates and new versions of your software. Every time anything
changes in the cluster, you risk the system responding in odd ways if it is in a
schizophrenic state. Make sure you use a deployment system like Fabric, Salt, Chef, or Puppet, or a system image like a Debian .deb, a RedHat .rpm, or an Amazon Machine Image. Being able to
robustly deploy an update that upgrades an entire cluster (with a report on any
problems found) massively reduces stress during difficult times.

Positive reporting is useful. Every day, send an email to someone detailing the
performance of the cluster. If that email doesn’t turn up, that’s a useful
clue that something’s happened. You’ll probably want other early warning systems
that’ll notify you faster too; Pingdom and
Server Density are particularly useful
here. A “dead man’s switch” that reacts to the absence of an event (e.g., Dead Man’s Switch) is another useful backup.

Reporting to the team on the health of the cluster is very useful. This might be
an admin page inside a web application, or a separate report. Ganglia is great for this. Ian has seen a Star
Trek LCARS-like interface running on a spare PC in an office that plays the “red
alert” sound when problems are detected—that’s particularly effective at
getting the attention of an entire office. We’ve even seen Arduinos driving
analog instruments like old-fashioned boiler pressure gauges (they make a nice
sound when the needle moves!) showing system load. This kind of reporting is
important so that everyone understands the difference between “normal” and “this
might ruin our Friday night!”

Two Clustering Solutions

In this section we introduce IPython Parallel and NSQ.

IPython clusters are easy to use on one machine with multiple cores. Since many researchers use IPython as their shell or work through Jupyter Notebooks, it is natural to also use it for parallel job control. Building a cluster requires a little bit of system administration knowledge. A huge win with IPython Parallel is that you can use remote clusters (Amazon’s AWS and EC2, for example) just as easily as local clusters.

NSQ is a production-ready queuing system. It
has persistence (so if machines die, jobs can be picked up again by another
machine) and strong mechanisms for scalability. With this greater power comes a
slightly greater need for system administration and engineering skills. However,
NSQ shines in its simplicity and ease of use. While many queuing systems exist
(such as the popular Kafka), none have such
as low a barrier for entry as NSQ.

Using IPython Parallel to Support Research

The IPython clustering support comes via the IPython Parallel project. IPython becomes an
interface to local and remote processing engines where data can be pushed
among the engines and jobs can be pushed to remote machines. Remote debugging
is possible, and the message passing interface (MPI) is optionally supported. This same ZeroMQ communication mechanism powers the Jupyter Notebook interface.

This is great for a research
setting—you can push jobs to machines in a local cluster, interact and debug
if there’s a problem, push data to machines, and collect results back, all
interactively. Note also that PyPy runs IPython and IPython Parallel. The combination might be very powerful (if you don’t use numpy).

Behind the scenes, ZeroMQ is used as the messaging middleware—be aware that ZeroMQ provides no security by design. If you’re building a cluster on a local network, you
can avoid SSH authentication. If you need security, SSH is fully
supported, but it makes configuration a little more involved—start on a local
trusted network and build out as you learn how each component works.

The project is split into four components. An engine is an extension of the IPython kernel; it is a synchronous Python
interpreter that runs your code. You’ll run a set of engines to enable parallel
computing. A controller provides an interface to the engines; it is
responsible for work distribution and supplies a direct interface and a load-balanced interface that provides a work scheduler. A hub keeps track of
engines, schedulers, and clients. Schedulers hide the synchronous nature of the
engines and provide an asynchronous interface.

On the laptop, we start four engines using ipcluster start -n 4. In
Example 10-1, we start IPython and check that a local Client
can see our four local engines. We can address all four engines using c[:], and we
apply a function to each engine—apply_sync takes a callable, so we supply a zero-argument lambda that will return a string. Each of our four local engines will
run one of these functions, returning the same result.

Example 10-1. Testing that we can see the local engines in IPython

In [1]: import ipyparallel as ipp

In [2]: c = ipp.Client()

In [3]: print(c.ids)
[0, 1, 2, 3]

In [4]: c[:].apply_sync(lambda: "Hello High Performance Pythonistas!")
Out[4]:
['Hello High Performance Pythonistas!',
 'Hello High Performance Pythonistas!',
 'Hello High Performance Pythonistas!',
 'Hello High Performance Pythonistas!']

The engines we’ve constructed are now in an empty state. If we import
modules locally, they won’t be imported into the remote engines.

A clean way to
import both locally and remotely is to use the sync_imports context manager. In
Example 10-2, we’ll import os on both the local IPython and
the four connected engines and then call apply_sync again on the four engines to fetch
their PIDs.

If we didn’t do the remote imports, we’d get a NameError, as
the remote engines wouldn’t know about the os module. We can also use
execute to run any Python command remotely on the engines.

Example 10-2. Importing modules into our remote engines

In [5]: dview=c[:] # this is a direct view (not a load-balanced view)

In [6]: with dview.sync_imports():
 : import os
 :
importing os on engine(s)

In [7]: dview.apply_sync(lambda:os.getpid())
Out[7]: [16158, 16159, 16160, 16163]

In [8]: dview.execute("import sys") # another way to execute commands remotely

You’ll want to push data to the engines. The push command shown in
Example 10-3 lets you send a dictionary of items that are added
to the global namespace of each engine. There’s a corresponding pull to
retrieve items: you give it keys, and it’ll return the corresponding values from
each of the engines.

Example 10-3. Pushing shared data to the engines

In [9]: dview.push({'shared_data':[50, 100]})
Out[9]: <AsyncResult(_push): pending>

In [10]: dview.apply_sync(lambda:len(shared_data))
Out[10]: [2, 2, 2, 2]

In Example 10-4, we use these four engines to
estimate pi. This time we use the
@require decorator to import the random module in the engines. We use a
direct view to send our work out to the engines; this blocks until all the
results come back. Then we estimate pi as we did in Example 9-1.

Example 10-4. Estimating pi using our local cluster

import time
import ipyparallel as ipp
from ipyparallel import require

@require('random')
def estimate_nbr_points_in_quarter_circle(nbr_estimates):
 ...
 return nbr_trials_in_quarter_unit_circle

if __name__ == "__main__":
 c = ipp.Client()
 nbr_engines = len(c.ids)
 print("We're using {} engines".format(nbr_engines))
 nbr_samples_in_total = 1e8
 nbr_parallel_blocks = 4

 dview = c[:]

 nbr_samples_per_worker = nbr_samples_in_total / nbr_parallel_blocks
 t1 = time.time()
 nbr_in_quarter_unit_circles = \

	 dview.apply_sync(estimate_nbr_points_in_quarter_circle,
 nbr_samples_per_worker)
 print("Estimates made:", nbr_in_quarter_unit_circles)

 nbr_jobs = len(nbr_in_quarter_unit_circles)
 pi_estimate = sum(nbr_in_quarter_unit_circles) * 4 / nbr_samples_in_total
 print("Estimated pi", pi_estimate)
 print("Delta:", time.time() - t1)

In Example 10-5 we run this on our four local engines. As in Figure 9-5, this takes approximately 47 seconds on the laptop.

Example 10-5. Estimating pi using our local cluster in IPython

In [1]: %run pi_ipython_cluster.py
We're using 4 engines
Estimates made: [78546259, 78539590, 78541509, 78540021]
Estimated pi 3.14167379
Delta: 47.14534091949463

IPython Parallel offers much more than what’s shown here. Asynchronous jobs and
mappings over larger input ranges are, of course, possible. MPI is supported, which can provide efficient data
sharing. The Joblib library introduced in “Replacing multiprocessing with Joblib”
can use IPython Parallel as a backend along with Dask (which we introduce in “Dask for Distributed Data Structures and DataFrames”).

One particularly powerful feature of IPython Parallel is that it allows you to use larger clustering environments, including
supercomputers and cloud services like Amazon’s EC2. The ElastiCluster project has support for common parallel environments such as IPython and for deployment targets, including AWS, Azure, and OpenStack.

NSQ for Robust Production Clustering

In a production environment, you will need a solution that is more robust than
the other solutions we’ve talked about so far. This is because during the
everyday operation of your cluster, nodes may become unavailable, code may
crash, networks may go down, or one of the other thousands of problems that can
happen may happen. The problem is that all the previous systems have had one computer
where commands are issued, and a limited and static number of computers that read
the commands and execute them. We would instead like a system that can
have multiple actors communicating via a message bus—this would allow us
to have an arbitrary and constantly changing number of message creators and
consumers.

One simple solution to these problems is NSQ, a
highly performant distributed messaging platform. While it is written in GO, it
is completely data format and language agnostic. As a result, there are
libraries in many languages, and the basic
interface into NSQ is a REST API that
requires only the ability to make HTTP calls. Furthermore, we can send messages
in any format we want: JSON, Pickle, msgpack, and so on. Most importantly, however,
it provides fundamental guarantees regarding message delivery, and it does all
of this using two simple design patterns: queues and pub/subs.

Note

We picked NSQ to discuss because it is simple to use and generally performant.
Most importantly for our purposes, it clearly highlights the considerations
you must make when thinking about queuing and message passing in a cluster.
However, other solutions such as ZeroMQ, Amazon’s SQS, Celery, or even Redis may be better
suited for your application.

Queues

A queue is a type of buffer for messages. Whenever you want to send a message
to another part of your processing pipeline, you send it to the queue, and it’ll
wait there until a worker is available. A queue is
most useful in distributed processing when an imbalance exists between
production and consumption. When this imbalance occurs, we can simply scale
horizontally by adding more data consumers until the message production rate and the
consumption rate are equal. In addition, if the computers responsible for
consuming messages go down, the messages are not lost but are simply queued until
a consumer is available, thus giving us message delivery guarantees.

For example, let’s say we would like to process new recommendations for a user
every time that user rates a new item on our site. If we didn’t have a queue,
the “rate” action would directly call the “recalculate-recommendations” action,
regardless of how busy the servers dealing with recommendations were. If all of
a sudden thousands of users decided to rate something, our recommendation servers could
get so swamped with requests that they could start timing out, dropping messages, and
generally becoming unresponsive!

On the other hand, with a queue, the recommendation servers ask for more tasks
when they are ready. A new “rate” action would put a new task on the queue, and
when a recommendation server becomes ready to do more work, it would grab the task
from the queue and process it. In this setup, if more users than normal start
rating items, our queue would fill up and act as a buffer for the
recommendation servers—their workload would be unaffected, and they could
still process messages until the queue was empty.

One potential problem with this is that if a queue becomes completely
overwhelmed with work, it will be storing quite a lot of messages. NSQ solves
this by having multiple storage backends—when there aren’t many messages,
they are stored in memory, and as more messages start coming in, the messages get
put onto disk.

Note

Generally, when working with queued systems, it is a good idea to try to have the
downstream systems (i.e., the recommendation systems in the preceding example) be at
60% capacity with a normal workload. This is a good compromise between
allocating too many resources for a problem and giving your servers enough extra
power for when the amount of work increases beyond normal
levels.

Pub/sub

A pub/sub (short for publisher/subscriber), on the other hand, describes who
gets what messages. A data publisher can push data out of a
particular topic, and data subscribers can subscribe to different feeds of data.
Whenever the publisher puts out a piece of information, it gets sent to all
the subscribers—each gets an identical copy of the original information.
You can think of this like a newspaper: many people can subscribe to a
particular newspaper, and whenever a new edition of the newspaper comes out,
every subscriber gets an identical copy of it. In addition, the producer of the
newspaper doesn’t need to know all the people its papers are being sent to.
As a result, publishers and subscribers are decoupled from each other, which
allows our system to be more robust as our network changes while still in
production.

In addition, NSQ adds the notion of a data consumer; that is, multiple
processes can be connected to the same data subscription. Whenever a new piece
of data comes out, every subscriber gets a copy of the data; however, only one
consumer of each subscription sees that data. In the newspaper analogy, you can think of this as having multiple people in the same household who read the newspaper.
The publisher will deliver one paper to the house, since that house has only one
subscription, and whoever in the house gets to it first gets to read that
data. Each subscriber’s consumers do the same processing to a message when they see
it; however, they can potentially be on multiple computers and thus add more
processing power to the entire pool.

We can see a depiction of this pub/sub/consumer paradigm in
Figure 10-1. If a new message gets published on the “clicks”
topic, all the subscribers (or, in NSQ parlance, channels—i.e., “metrics,” “spam_analysis,”
and “archive”) will get a copy. Each subscriber is composed of one or more consumers,
which represent actual processes that react to the messages. In the case of the “metrics” subscriber, only one consumer will see the new message. The next
message will go to another consumer, and so on.

[image: hpp2 1001]
Figure 10-1. NSQ’s pub/sub-like topology

The benefit of spreading the messages among a potentially large pool of
consumers is essentially automatic load balancing. If a message takes quite a
long time to process, that consumer will not signal to NSQ that it is ready for
more messages until it’s done, and thus the other consumers will get the majority of future
messages (until that original consumer is ready to process again). In addition,
it allows existing consumers to disconnect (whether by choice or because of failure) and
new consumers to connect to the cluster while still maintaining processing
power within a particular subscription group. For example, if we find that
“metrics” takes quite a while to process and often is not keeping up with
demand, we can simply add more processes to the consumer pool for that
subscription group, giving us more processing power. On the other hand,
if we see that most of our processes are idle (i.e., not getting any messages), we
can easily remove consumers from this subscription pool.

It is also important to note that anything can publish data. A consumer doesn’t
simply need to be a consumer—it can consume data from one topic and then
publish it to another topic. In fact, this chain is an important workflow when
it comes to this paradigm for distributed computing. Consumers will read from a
topic of data, transform the data in some way, and then publish the data onto a
new topic that other consumers can further transform. In this way, different
topics represent different data, subscription groups represent different
transformations on the data, and consumers are the actual workers who transform
individual messages.

Furthermore, this system provides an incredible redundancy. There can be
many nsqd processes that each consumer connects to, and there can be many
consumers connected to a particular subscription. This makes it so that no single point of failure exists, and your system will be robust even if several
machines disappear. We can see in Figure 10-2 that even if one of
the computers in the diagram goes down, the system is still able to deliver and
process messages. In addition, since NSQ saves pending messages to disk when
shutting down, unless the hardware loss is catastrophic, your data will most
likely still be intact and be delivered. Last, if a consumer is shut down
before responding to a particular message, NSQ will resend that message to
another consumer. This means that even as consumers get shut down, we know that
all the messages in a topic will be responded to at least once.1

[image: hpp2 1002]
Figure 10-2. NSQ connection topology

Distributed Prime Calculation

Code that uses NSQ is generally asynchronous (see Chapter 8 for
a full explanation), although it doesn’t necessarily have to be.2 In the
following example, we will create a pool of workers that read from a topic
called numbers where the messages are simply JSON blobs with numbers in them. The
consumers will read this topic, find out if the numbers are primes, and then
write to another topic, depending on whether the numbers were prime. This will
give us two new topics, prime and non_prime, that other consumers can
connect to in order to do more calculations.3

Note

pynsq (last release Nov 11, 2018) depends on a very outdated release of
tornado (4.5.3, from Jan 6, 2018). This is a good example use case for Docker
(discussed in “Docker”).

As we’ve said before, there are many benefits to doing CPU-bound work like this.
First, we have all the guarantees of robustness, which may or may not be
useful for this project. More importantly, however, we get automatic load
balancing. That means that if one consumer gets a number that takes a
particularly long time to process, the other consumers will pick up the slack.

We create a consumer by creating an nsq.Reader object with the topic and
subscription group specified (as can be seen at the end of
Example 10-6). We also must specify the location of the running
nsqd instance (or the nsqlookupd instance, which we will not get into in this
section). In addition, we specify a handler, which is simply a function that
gets called for each message from the topic. To create a producer, we create an nsq.Writer object and specify the location
of one or more nsqd instances to write to. This gives us the ability to
write to nsq, simply by specifying the topic name and the
message.4

Example 10-6. Distributed prime calculation with NSQ

import json
from functools import partial
from math import sqrt

import nsq

def is_prime(number):
 if number % 2 == 0:
 return False
 for i in range(3, int(sqrt(number)) + 1, 2):
 if number % i == 0:
 return False
 return True

def write_message(topic, data, writer):
 response = writer.pub(topic, data)
 if isinstance(response, nsq.Error):
 print("Error with Message: {}: {}".format(data, response))
 return write_message(data, writer)
 else:
 print("Published Message: ", data)

def calculate_prime(message, writer):
 data = json.loads(message.body)

 prime = is_prime(data["number"])
 data["prime"] = prime
 if prime:
 topic = "prime"
 else:
 topic = "non_prime"

 output_message = json.dumps(data).encode("utf8")
 write_message(topic, output_message, writer)
 message.finish() [image: 1]

if __name__ == "__main__":
 writer = nsq.Writer(["127.0.0.1:4150"])
 handler = partial(calculate_prime, writer=writer)
 reader = nsq.Reader(
 message_handler=handler,
 nsqd_tcp_addresses=["127.0.0.1:4150"],
 topic="numbers",
 channel="worker_group_a",
)
 nsq.run()

	[image: 1]

	We must signal to NSQ when we are done with a message. This will make sure the message is not redelivered to another reader in case of failure.

Note

We can handle messages asynchronously by enabling message.enable_async() in
the message handler after the message is received. However, note that NSQ uses the older callback mechanisms with
tornado’s IOLoop (discussed in [Link to Come]).

To set up the NSQ ecosystem, start an instance of nsqd
on our local machine:5

$ nsqd
[nsqd] 2020/01/25 13:36:39.333097 INFO: nsqd v1.2.0 (built w/go1.12.9)
[nsqd] 2020/01/25 13:36:39.333141 INFO: ID: 235
[nsqd] 2020/01/25 13:36:39.333352 INFO: NSQ: persisting topic/channel metadata
 to nsqd.dat
[nsqd] 2020/01/25 13:36:39.340583 INFO: TCP: listening on [::]:4150
[nsqd] 2020/01/25 13:36:39.340630 INFO: HTTP: listening on [::]:4151

Now we can start as many instances of our Python code
(Example 10-6) as we want. In fact, we can have these instances
running on other computers as long as the reference to the nsqd_tcp_address in
the instantiation of the nsq.Reader is still valid. These consumers will
connect to nsqd and wait for messages to be published on the numbers topic.

Data can be published to the numbers topic in many ways. We will use
command-line tools to do this, since knowing how to poke and prod a system goes a
long way in understanding how to properly deal with it. We can simply use the
HTTP interface to publish messages to the topic:

$ for i in `seq 10000`
> do
> echo {\"number\": $i} | curl -d@- "http://127.0.0.1:4151/pub?topic=numbers"
> done

As this command starts running, we are publishing messages with different
numbers in them to the numbers topic. At the same time, all of our producers
will start outputting status messages indicating that they have seen and processed
messages. In addition, these numbers are being published to either the prime
or the non_prime topic. This allows us to have other data consumers that connect
to either of these topics to get a filtered subset of our original data. For
example, an application that requires only the prime numbers can simply connect
to the prime topic and constantly have new primes for its calculation. We
can see the status of our calculation by using the stats HTTP endpoint for nsqd:

$ curl "http://127.0.0.1:4151/stats"
nsqd v1.2.0 (built w/go1.12.9)
start_time 2020-01-25T14:16:35Z
uptime 26.087839544s

Health: OK

Memory:
 heap_objects 25973
 heap_idle_bytes 61399040
 heap_in_use_bytes 4661248
 heap_released_bytes 0
 gc_pause_usec_100 43
 gc_pause_usec_99 43
 gc_pause_usec_95 43
 next_gc_bytes 4194304
 gc_total_runs 6

Topics:
 [non_prime] depth: 902 be-depth: 0 msgs: 902 e2e%:

 [numbers] depth: 0 be-depth: 0 msgs: 3009 e2e%:
 [worker_group_a] depth: 1926 be-depth: 0 inflt: 1
 def: 0 re-q: 0 timeout: 0
 msgs: 3009 e2e%:
 [V2 electron] state: 3 inflt: 1 rdy: 1 fin: 1082
 re-q: 0 msgs: 1083 connected: 15s

 [prime] depth: 180 be-depth: 0 msgs: 180 e2e%:

Producers:
 [V2 electron] msgs: 1082 connected: 15s
 [prime] msgs: 180
 [non_prime] msgs: 902

We can see here that the numbers topic has one subscription group,
worker_group_a, with one consumer. In addition, the subscription group has a
large depth of 1,926 messages, which means that we are putting messages into NSQ
faster than we can process them. This would be an indication to add more
consumers so that we have more processing power to get through more messages.
Furthermore, we can see that this particular consumer has been connected for 15
seconds, has processed 1,083 messages, and currently has 1 message in flight.
This status endpoint gives quite a good deal of information for debugging your NSQ
setup! Last, we see the prime and non_prime topics, which have no
subscribers or consumers. This means that the messages will be stored until a
subscriber comes requesting the data.

Note

In production systems, you can use the even more powerful tool nsqadmin, which provides
a web interface with very detailed overviews of all topics/subscribers and
consumers. In addition, it allows you to easily pause and delete subscribers and
topics.

To actually see the messages, we would create a new consumer for the
prime (or non_prime) topic that simply archives the results to a file or database. Alternatively,
we can use the nsq_tail tool to take a peek at the data and see what it
contains:

$ nsq_tail --topic prime -n 5 --nsqd-tcp-address=127.0.0.1:4150
2020/01/25 14:34:17 Adding consumer for topic: prime
2020/01/25 14:34:17 INF 1 [prime/tail574169#ephemeral] (127.0.0.1:4150)
 connecting to nsqd
{"number": 1, "prime": true}
{"number": 3, "prime": true}
{"number": 5, "prime": true}
{"number": 7, "prime": true}
{"number": 11, "prime": true}

Other Clustering Tools to Look At

Job processing systems using queues have existed since the start of the computer
science industry, back when computers were very slow and lots of jobs needed to
be processed. As a result, there are many libraries for queues, and many of
these can be used in a cluster configuration. We strongly suggest that you pick
a mature library with an active community behind it and supporting the same feature
set that you’ll need without too many additional features.

The more features a library has, the more ways you’ll find to misconfigure it
and waste time on debugging. Simplicity is generally the right aim when
dealing with clustered solutions. Here are a few of the more commonly used
clustering solutions:

	
ZeroMQ is a low-level and performant messaging library
that enables you to send messages between nodes. It natively supports pub/sub
paradigms and can also communicate over multiple types of transports (TCP,
UDP, WebSocket, etc). It is quite low level and doesn’t provide many useful abstractions, which can make its use a bit difficult. That being said, it’s in use in
Jupyter, Auth0, Spotify, and many more places!

	
Celery (BSD license) is a widely used
asynchronous task queue using a distributed messaging architecture, written in
Python. It supports Python, PyPy, and Jython. It typically it uses RabbitMQ as the
message broker, but it also supports Redis, MongoDB, and other storage systems.
It is often used in web development projects. Andrew Godwin discusses Celery in
[Link to Come].

	
Airflow and
Luigi use directed acyclic graphs to chain
dependent jobs into sequences that run reliably, with monitoring and reporting
services. They’re widely used in industry for data science tasks, and we
recommend reviewing these before you embark on a custom solution.

	
Amazon’s Simple Queue Service (SQS) is a job
processing system integrated into AWS. Job consumers and
producers can live inside AWS or can be external, so SQS is easy to start with
and supports easy migration into the cloud. Library support exists for many
languages.

Docker

Docker is a tool of general importance in the
Python ecosystem. However, the problems it solves are particularly important
when dealing with a large team or a cluster. In particular, Docker helps to
create reproducible environments in which to run your code, share/control runtime
environments, easily share runnable code between team members, and deploy code to
a cluster of nodes based on resource needs.

Docker’s Performance

One common misconception about Docker is that it substantially slows down the
runtime performance of the applications it is running. While this can be true in
some cases, it generally is not. Furthermore, most of the performance
degradations can almost always be removed with some easy configuration changes.

In terms of CPU and memory access, Docker (and all other container-based
solutions) will not lead to any performance degradations. This is because
Docker simply creates a special namespace within the host operating system where
the code can run normally, albeit with separate constraints from other running
programs. Essentially, Docker code accesses the CPU and memory in the same way
that every other
program on the computer does; however, it can have a separate set
of configuration values to fine-tune resource limits.6

This is because Docker is an instance of OS-level virtualization, as opposed to
hardware virtualization such as VMware or VirtualBox. With hardware
virtualization, software runs on “fake” hardware that introduces overhead
accessing all resources. On the other hand, OS virtualization uses the native
hardware but runs on a “fake” operating system. Thanks to the cgroups Linux
feature, this “fake” operating system can be tightly coupled to the running
operating system, which gives the possibility of running with almost no
overhead.

Warning

cgroups is specifically a feature in the Linux kernel. As a result, performance
implications discussed here are restricted to Linux systems. In fact,
to run Docker on macOS or Windows, we first must run the Linux kernel in a
hardware-virtualized environment. Docker Machine, the application helping
streamline this process, uses VirtualBox to accomplish this. As a result, you
will see performance overhead from the hardware-virtualized portion of the
process. This overhead will be greatly reduced when running on a Linux system,
where hardware virtualization is not needed.

As an example, let’s create a simple Docker container to run the 2D diffusion
code from [Link to Come]. As a baseline, we can run the code on the
host system’s Python to get a benchmark:

$ python diffusion_numpy_memory2.py
Runtime for 100 iterations with grid size (256, 256): 1.4418s

To create our Docker container, we have to make a directory that
contains the Python file diffusion_numpy_memory2.py, a pip requirements
file for dependencies, and a Dockerfile, as shown in Example 10-7.

Example 10-7. Simple Docker container

$ ls
diffusion_numpy_memory2.py
Dockerfile
requirements.txt

$ cat requirements.txt
numpy>=1.18.0

$ cat Dockerfile
FROM python:3.7

WORKDIR /usr/src/app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .
CMD python ./diffusion_numpy_memory2.py

The Dockerfile starts by stating what container we’d like to use as our base.
These base containers can be a wide selection of Linux-based operating systems
or a higher-level service. The Python Foundation provides official
containers for all major Python versions, which makes selecting the
Python version you’d like to use incredibly simple. Next, we define the location of our
working directory (the selection of /usr/src/app is arbitrary), copy our
requirements file into it, and begin setting up our environment as we normally
would on our local machine, using RUN commands.

One major difference between setting up your development environment normally
and on Docker are the COPY commands. They copy files from the local directory
into the container. For example, the requirements.txt file is copied into
the container so that it is there for the pip install command. Finally, at
the end of the Dockerfile, we copy all the files from the current directory into
the container and tell Docker to run python ./diffusion_numpy_memory2.py when
the container starts.

Caution

In the Dockerfile in Example 10-7, beginners often wonder why we first copy only the
requirements file and then later copy the entire directory into the container. When
building a container, Docker tries hard to cache each step in the build process.
To determine whether the cache is still valid, the contents of the
files being copied back and forth are checked. By first copying only the
requirements file and then moving the rest of the directory, we will have to
run pip install only if the requirements file changes. If only the Python source
has changed, a new build will use cached build steps and skip straight to the
second COPY command.

Now we are ready to build and run the container, which can be named and tagged.
Container names generally take the format
<username>/<project-name>,7
while the optional tag generally is either descriptive of the current version of
the code or simply the tag latest (this is the default and will be applied
automatically if no tag is specified). To help with versioning, it is
general convention to always tag the most recent build with latest (which
will get overwritten when a new build is made) as well as a descriptive tag so
that we can easily find this version again in the future:

$ docker build -t high_performance/diffusion2d:numpy-memory2 \
 -t high_performance/diffusion2d:latest .
Sending build context to Docker daemon 5.632kB
Step 1/6 : FROM python:3.7
 ---> 3624d01978a1
Step 2/6 : WORKDIR /usr/src/app
 ---> Running in 04efc02f2ddf
Removing intermediate container 04efc02f2ddf
 ---> 9110a0496749
Step 3/6 : COPY requirements.txt ./
 ---> 45f9ecf91f74
Step 4/6 : RUN pip install --no-cache-dir -r requirements.txt
 ---> Running in 8505623a9fa6
Collecting numpy>=1.18.0 (from -r requirements.txt (line 1))
 Downloading https://.../numpy-1.18.0-cp37-cp37m-manylinux1_x86_64.whl (20.1MB)
Installing collected packages: numpy
Successfully installed numpy-1.18.0
You are using pip version 18.1, however version 19.3.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
Removing intermediate container 8505623a9fa6
 ---> 5abc2df1116f
Step 5/6 : COPY . .
 ---> 52727a6e9715
Step 6/6 : CMD python ./diffusion_numpy_memory2.py
 ---> Running in c1e885b926b3
Removing intermediate container c1e885b926b3
 ---> 892a33754f1d
Successfully built 892a33754f1d
Successfully tagged high_performance/diffusion2d:numpy-memory2
Successfully tagged high_performance/diffusion2d:latest

$ docker run high_performance/diffusion2d:numpy-memory2
Runtime for 100 iterations with grid size (256, 256): 1.4493s

We can see that at its core, Docker is not slower than running on the host
machine in any meaningful way when the task relies mainly on CPU/memory.
However, as with anything, there is no free lunch, and at times
Docker performance suffers. While a full discussion of optimizing Docker
containers is outside the scope of this book, we offer the following list of considerations
for when you are creating Docker containers for high performance code:

	
Be wary of copying too much data into a Docker container or even having too
much data in the same directory as a Docker build. If the build context,
as advertised by the first line of the docker build command, is too large,
performance can suffer (remedy this with a .dockerignore file).

	
Docker uses various filesystem tricks to layer filesystems on top of each other.
This helps the caching of builds but can be slower than dealing with the host
filesystem. Use host-level mounts when you need to access data quickly, and
consider using volumes set as read-only to choose a volume driver that is
fitting for your infrastructure.

	
Docker creates a virtual network for all your containers to live behind. This
can be great for keeping most of your services hidden behind a gateway, but it
also adds slight network overhead. For most use cases, this overhead is
negligible, but it can be mitigated by changing the network driver.

	
GPUs and other host-level devices can be accessed using special runtime
drivers for Docker. For example, nvidia-docker allows Docker environments
to easily use connected NVIDIA GPUs. In general, devices can be made available
with the --device runtime flag.

As always, it is important to profile your Docker containers to know what the
issues are and whether there are some easy wins in terms of efficiency. The
docker stats command provides a good high-level view to help understand
the current runtime performance of your containers.

Advantages of Docker

So far it has seemed that Docker is simply adding a whole new host of issues to
contend with in terms of performance. However, the gains to reproducibility and
reliability of runtime environments far surpass any extra complexity.

Locally, having access to all our previously run Docker containers allows us to
quickly rerun and retest previous versions of our code without having to worry
about changes to the runtime environment, such as dependencies and system
packages (Example 10-8 shows a list of containers we can run with a simple docker_run command). This makes it incredibly easy to constantly be testing for performance
regressions that otherwise would be difficult to reproduce.

Example 10-8. Docker tags to keep track of previous runtime environments

$ docker images -a
REPOSITORY TAG IMAGE ID
highperformance/diffusion2d latest ceabe8b555ab
highperformance/diffusion2d numpy-memory2 ceabe8b555ab
highperformance/diffusion2d numpy-memory1 66523a1a107d
highperformance/diffusion2d python-memory 46381a8db9bd
highperformance/diffusion2d python 4cac9773ca5e

Many more benefits come with the use of a container registry, which allows the
storage and sharing of Docker images with the simple docker pull and docker
push commands, in a similar way to git. This lets us put all our containers
in a publicly available location, allowing team members to pull in changes or new
versions and letting them immediately run the code.

Note

This book is a great example of the benefits of sharing a Docker container for
standardizing a runtime environment. To convert this book from
asciidoc, the markup language it was written in, into PDF, a Docker container was
shared between us so we could reliably and reproducibly build book artifacts.
This standardization saved us countless hours that were spent in the first
edition as one of us would have a build issue that the other couldn’t
reproduce or help debug.

Running docker pull highperformance/diffusion2d:latest is much easier than
having to clone a repository and doing all the associated setup that may be
necessary to run a project. This is particularly true for research code, which
may have some very fragile system dependencies. Having all of this inside an
easily pullable Docker container means all of these setup steps can be skipped
and the code can be run easily. As a result, code can be shared more easily, and
a coding team can work more effectively together.

Finally, in conjunction with kubernetes and other
similar technologies, Dockerizing your code helps with actually running it with
the resources it needs. Kubernetes allows you to create a cluster of nodes, each
labeled with resources it may have, and to orchestrate running containers on
the nodes. It will take care of making sure the correct number of instances are being
run, and thanks to the Docker virtualization, the code will be run in the same
environment that you saved it to. One of the biggest pains of working with a cluster
is making sure that the cluster nodes have the correct runtime environment as
your workstation, and using Docker virtualization completely resolves this.8

Wrap-Up

So far in the book, we’ve looked at profiling to understand slow parts of your
code, compiling and using numpy to make your code run faster, and various
approaches to multiple processes and computers. In addition, we surveyed
container virtualization to manage code environments and help in cluster
deployment. In the penultimate chapter, we’ll look at ways of using less RAM
through different data structures and probabilistic approaches. These lessons
could help you keep all your data on one machine, avoiding the need to run a
cluster.

1 This can be quite advantageous when we’re working in AWS, where we can have our nsqd processes running on a reserved instance and our consumers working on a cluster of spot instances.
2 This asynchronicity comes from NSQ’s protocol for sending messages to consumers being push-based. This makes it so our code can have an asynchronous read from our connection to NSQ happen in the background and wake up when a message is found.
3 This sort of chaining of data analysis is called pipelining and can be an effective way to perform multiple types of analysis on the same data efficiently.
4 You can also easily publish a message manually with an HTTP call; however, this nsq.Writer object simplifies much of the error handling.
5 For this example, we installed NSQ straight onto our system by unpacking the provided binaries into our PATH environment variable. Alternatively, you can use Docker, discussed in “Docker”, to easily run the latest versions.
6 This fine-tuning can, for example, be used to adjust the amount of memory a process has access to, or which CPUs or even how much of the CPU it can use.
7 The username portion of the container name is useful when also pushing built containers to a repository.
8 A great tutorial to get started with Docker and Kubernetes can be found at https://oreil.ly/l9jXD.

About the Authors

Micha Gorelick was the first woman on Mars in 2033 and won the Nobel Prize in 2056 for her contributions to time travel. After seeing the deplorable uses of her new technology, she traveled back in time to 2012 and convinced herself to quit her nascent research into time travel and follow her love of data. She has since cofounded Fast Forward Labs, an applied machine learning research lab, authored multiple papers on ethical computing, and helped build the inclusive community space Community Forge in Wilkinsburg. In 2019 she cofounded Probable Models, an ethical machine learning group, which made the interactive immersive play Project Amelia. In 2020 she could be found in France helping journalists at the OCCRP find stories in data. A monument celebrating her life can be found in Central Park, 1857.

Ian Ozsvald is a Chief Data Scientist and coach. He co-organizes the annual PyDataLondon conference with 700+ attendees and the associated 14,000+ member monthly meetup. He runs the established Mor Consulting Data Science consultancy in London and gives conference talks internationally, often as keynote speaker. He has 24 years of experience as a senior data science leader, trainer, and team coach. Noting the absence of advice for senior leaders he established the RebelAI data science leadership community in 2023, having helped many clients at a strategic level since 2015. For fun, he’s walked by his high-energy Springer Spaniel, surfs the Cornish coast, and drinks fine coffee. Past talks and articles can be found at https://ianozsvald.com.

assets/hpp2_0102.png
Characteristics of various memory units

1,

o

&

,IIE

108

% 5 5 0%
(s/an) pea:

5 5 5
E E] E

&
"
5

&

&

100

101

10°
107
10°

(21Aq) azis

(S/QW) 34m

assets/hpp2_0101.png
Clock Frequency (MHz)

Clock Frequency

10000
1000
100
- L
10 £
L]
1
0 Iy
1970 1980 1990 2000 2010

Year

2020

AMD
Cypress
DEC
Fujitsu
Hitachi
HP

IBM
Intel
Motorola
MIPS
SGI

Sun
Cyrix
HAL
NexGen
Ross
Zilog
Centaur

assets/hpp2_0706.png
6.94
6.12x | 6.21x 6.31x

5.71x
5.78 + 5:52x

5.29x

4.78x
4.63

3.69x
3.47 4 3.18x

2.47x
2.31 =4

1.79x

1.16 4 1-00x

0.00
CPython 2.PyPy 1.3PyPy 1.4PyPy 1.5PyPy 1.6PyPy 1.7PyPy 1.8PyPy 1P/Py 2.0 BPyPy 2.1PyPy 2.RPyPy trunk

assets/hpp3_0705_1.png
Generated by Cython 3.0.10

hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: cythonfn.c

02: cimport numpy as np

03:

05: """Calculate output list using Julia update rule"""
06: cdef unsigned int i, n

07: cdef double complex z, c

+09: for i in range(len(zs)):

+10: n=20

+11: z = zs[i]

+12: c = cs[i]

+13: while n < maxiter and (z.real * z.real + z.imag * z.imag) < 4:
+14: z=2z%z+cC

+15: n+=1

+16: output[i] = n

+17: return output

assets/hpp2_0705.png
Generated by Cython 3.0.10

hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: cythonfn.c

02: """Calculate output list using Julia update rule"""
03: cdef unsigned int i, n

04: cdef double complex z, c

+06: for i in range(len(zs)):

+07: n=20

+08: z = zs[i]

+09: c = cs[i]

+10: while n < maxiter and (z.real * z.real + z.imag * z.imag) < 4:
+11: z=2z%z+cC

+12: n+=1

+13: output[i] = n

+14: return output

assets/hpp2_0803.png
Time to process 500 http requests (s)

102

10!

100

Finding the right number of concurrent requests

= 50ms request time

= 300ms request time
=e 550ms request time
== 800MS request time

0 100

200 300
Number of concurrent requests

400

assets/hpp2_0806.png
Request Number

1000

800

600

400

200

Call timeline for aiohttp

0.0

02

0.4

06
Time

0.8

10

assets/hpp2_0802.png
Request Number

1000

800

600

200

Call timeline ftor serial

20

Time

60

80

100

toc01.html
		Brief Table of Contents (Not Yet Final)

		1. Understanding Performant Python

		The Fundamental Computer System

		Computing Units

		Memory Units

		Communications Layers

		Putting the Fundamental Elements Together

		Idealized Computing Versus the Python Virtual Machine

		So Why Use Python?

		How to Be a Highly Performant Programmer

		Good Working Practices

		Optimizing for the Team Rather than the Code Block

		The Remote Performant Programmer

		Some Thoughts on Good Notebook Practice

		Getting the Joy Back into Your Work

		The future of Python

		Where did the GIL go?

		Does Python have a JIT?

		2. Profiling to Find Bottlenecks

		Profiling Efficiently

		Introducing the Julia Set

		Calculating the Full Julia Set

		Simple Approaches to Timing—print and a Decorator

		Simple Timing Using the Unix time Command

		Using the cProfile Module

		Visualizing cProfile Output with SnakeViz

		Using line_profiler for Line-by-Line Measurements

		Using memory_profiler to Diagnose Memory Usage

		Combining CPU and Memory Profiling with Scalene

		Introspecting an Existing Process with PySpy

		VizTracer for an interactive time-based call stack

		Bytecode: Under the Hood

		Using the dis Module to Examine CPython Bytecode

		Digging into bytecode specialisation with Specialist

		Different Approaches, Different Complexity

		Unit Testing During Optimization to Maintain Correctness

		No-op @profile Decorator

		Strategies to Profile Your Code Successfully

		Wrap-Up

		3. Lists and Tuples

		A More Efficient Search

		Lists Versus Tuples

		Lists as Dynamic Arrays

		Tuples as Static Arrays

		Wrap-Up

		4. Dictionaries and Sets

		How Do Dictionaries and Sets Work?

		Inserting and Retrieving

		Deletion

		Resizing

		Hash Functions and Entropy

		Wrap-Up

		5. Iterators and Generators

		Iterators for Infinite Series

		Lazy Generator Evaluation

		Wrap-Up

		6. Pandas, Dask and Polars

		Pandas

		Pandas’s Internal Model

		Arrow and NumPy

		Applying a Function to Many Rows of Data

		Numba to Compile NumPy for Pandas

		Building DataFrames and Series from Partial Results Rather than Concatenating

		There’s More Than One (and Possibly a Faster) Way to Do a Job

		Advice for Effective Pandas Development

		Dask for Distributed Data Structures and DataFrames

		Diagnostics

		Parallel Pandas with Dask

		Parallelized apply with Swifter on Dask

		Polars for Fast DataFrames

		Wrap-Up

		7. Compiling to C

		What Sort of Speed Gains Are Possible?

		JIT Versus AOT Compilers

		Why Does Type Information Help the Code Run Faster?

		Using a C Compiler

		Reviewing the Julia Set Example

		Cython

		Compiling a Pure Python Version Using Cython

		pyximport

		Cython Annotations to Analyze a Block of Code

		Adding Some Type Annotations

		Cython and numpy

		Parallelizing the Solution with OpenMP on One Machine

		Numba

		PyPy

		Garbage Collection Differences

		Running PyPy and Installing Modules

		A Summary of Speed Improvements

		When to Use Each Technology

		Other Upcoming Projects

		Foreign Function Interfaces

		ctypes

		cffi

		f2py

		CPython Extensions: C

		CPython Extensions: Rust

		Wrap-Up

		8. Asynchronous I/O

		Introduction to Asynchronous Programming

		How Does async/await Work?

		Serial Crawler

		Asynchronous Crawler

		Shared CPU–I/O Workload

		Serial

		Batched Results

		Full Async

		Wrap-Up

		9. The multiprocessing Module

		An Overview of the multiprocessing Module

		Estimating Pi Using the Monte Carlo Method

		Estimating Pi Using Processes and Threads

		Using Python Objects

		Replacing multiprocessing with Joblib

		Random Numbers in Parallel Systems

		Using numpy

		Finding Prime Numbers

		Queues of Work

		Verifying Primes Using Interprocess Communication

		Serial Solution

		Naive Pool Solution

		A Less Naive Pool Solution

		Using Manager.Value as a Flag

		Using Redis as a Flag

		Using RawValue as a Flag

		Using mmap as a Flag

		Using mmap as a Flag Redux

		Sharing numpy Data with multiprocessing

		Synchronizing File and Variable Access

		File Locking

		Locking a Value

		Wrap-Up

		10. Clusters and Job Queues

		Benefits of Clustering

		Drawbacks of Clustering

		$462 Million Wall Street Loss Through Poor Cluster Upgrade Strategy

		Skype’s 24-Hour Global Outage

		Common Cluster Designs

		How to Start a Clustered Solution

		Ways to Avoid Pain When Using Clusters

		Two Clustering Solutions

		Using IPython Parallel to Support Research

		NSQ for Robust Production Clustering

		Queues

		Pub/sub

		Distributed Prime Calculation

		Other Clustering Tools to Look At

		Docker

		Docker’s Performance

		Advantages of Docker

		Wrap-Up

		About the Authors

assets/hpp2_0801.png
Runtime of serial vs. concurrent programs

seridl EES T I I BRI [T T EET T T T T T TT]

concurrent PR A T T FE LT T 1
Task1 [&=] Task2 [] Task 3 []1/0 Wait

assets/hpp2_08in03.png
Call timeline Tor async saver

Sy S P

—1-—-e

[—+— CPU Time

10 Time

-

1
1
1
1
1
!
T

é

- ————

50

R]
1agwnp 1sanbay

10

Time

assets/hpp2_08in02.png
Number of times slower compared to doing no 10

Comparison of CPU and 10 workload methods

1.08

T
—#- batches

1.06

1.04

1.02

1.00 —W

—%- nolo
¥ ¥
0.05 0.10 015 020 025

Time per iteration (s)

assets/hpp2_08in01.png
Number of times slower compared to doing no 10

Comparison of CPU and 10 workload methods

T
—@— serial

¥~ 010
¥ ¥
0.05 0.10 015 020 025

Time per iteration (s)

assets/hpp3_0212.png
54M % of time = 100.0% (9.633s/ 9.633s)

V /tmp/scalene/julial memoryprofiler.py

TIME MEMORY MEMORY MEMORY MEMORY COPY GPU GPU LINE PROFILE (click to reset order)

peak average timeline activity util. memory /tmp/scalene/julial_memoryprofiler.py

8 * fdef calculate_z_serial_purepython(maxiter, zs, cs):
. » 10 f output = [0] * len(zs)

‘ 11 * f for 1 in range(len(zs)):

15 while n < maxiter and abs(z) < 2:

| 18 f output[i] = n
22 * fdef calc_pure_python(draw_output, desired_width. ma
43 * f for ycoord in y:

44 * f for xcoord in x:
| 40M 4 . 45 f zs.append(complex(xcoord, ycoord))
I 31M] . 46 f cs.append(complex(c_real, c_imag))
| 67 calc_pure_python(draw_output=False, desired_width=1
TIME MEMORY MEMORY MEMORY MEMORY COPY GPU GPU FUNCTION PROFILE (click to reset order)
peak average timeline activity util. memory /tmp/scalene/julial_memoryprofiler.py
8 calculate_z_serial_purepython

| ‘ 22 calc_pure_python

assets/hpp3_0208.png
/home/ian/miniconda3/envs/high-performance-python-3e/bin/python julial_memoryprofiler2.py

memory used (in MiB)

60

50

a0

20

10

o 1 2 3
time (in seconds)

4

—— 24/02/2024 - start at 19:05:09.808
—— calculate 2_serial_purepython 6.1375
—— calc_pure_python 6.1485

assets/cover.png
High
Performance
Python

Practical Performant

Programming for Humans

Micha Gorelick & lan Ozsvald

assets/hpp3_0902.png
Time to estimate Pi using objects with 400,000,000
dart throws in series, threaded and with processes

200

Serial and Threads have similar execution time

175

Serial execution only runs once on one core

150

125

100

3

Execution time (seconds) - smaller is better

/

25
-® serial
<3¢ Threads
< Processes
o ;
2 4 6 8 10 12 14

Number of workers

assets/hpp3_0901.png
Pi estimated as 3.1472 using
10,000 Monte Carlo dart throws

assets/hpp2_0808.png
Number of times slower compared to doing no 10

1.08

1.06

1.04

1.02

1.00

Comparison of CPU and 10 workload methods

T
—#- batches
—— async

%~ nolo

\u—

0.05

010 015
Time per iteration (s)

0.20

assets/hpp2_0807.png
Number of times slower compared to doing no 10

Comparison of CPU and 10 workload methods

Time per iteration (s)

—@~ serial
—#- batches
—— async
~¥- no 10
\.\\
L e——— < - -
0.05 0.10 015 0.20 0.25

assets/hpp3_0203.png

assets/hpp_0906.png
CPU (8 cores and 8 HyperThreads)

12

1

10

Under 26 seconds of execution time

Time (seconds)

100

40

assets/hpp3_0202.png
2.00

175

150

125

1.00

075

050

025

0.00

Two examples of the evolution of
abs(z) with c=-0.62772-0.42193]

cutoff

——7=0j
=& 7=(-0.82+0)) |

Iteration

assets/hpp_0905.png
CPU (8 cores and 8 HyperThreads)

12

1

10

6

Under 46 seconds of execution time

o 4 12 16 20 24 28 32 36 40 M
Time (seconds)

100

40

CPU %

assets/hpp3_0201.png

assets/hpp_0904.png
CPU (8 cores and 8 HyperThreads)

16

15

14

13

12

1

10

1

Under 92 seconds of execution time

30

0o 10 20 4 50 60 70 80 9
Time (seconds)

100

80

60

40

20

CPU %

assets/hpp2_0103.png
Bandwidth for Common Interfaces

409.6

256.0

204.8

100.0
s

=01

10.0

10.0
- m| ml
s
O
S

7.0

13
&
o

0.326
&

° 3
2 8
]]

(sh1q9) paads

400
350
300
150
100
50
0

assets/hpp_0903.png
CPU (8 cores and 8 HyperThreads)

16

15

14

13

12

1

10

Under 182 seconds of execution time

100

80

60

40

20

CPU %

1 .-.-.-.-. 0
80

0 20 40 60 100 120 140 160 180
Time (seconds)

assets/hpp3_0207.png
/home/ian/miniconda3/envs/high-performance-python-3e/bin/python julial_memoryprofiler_with_labels.py

memory used (in MiB)

140

120

100

EY

60

a0

20

4
time (in seconds)

[WNEE;

24022024 - start at 18:57:33.512
calculate_z_serial_purepython 6.9525
calc_pure_python 7.277s
create_output list 0.004s
calculate_output 5.9475

assets/hpp3_0206.png
/home/ian/miniconda3/envs/high-performance-python-3e/bin/python julial_memoryprofiler.py

memory used (in MiB)

140

120

100

EY

60

a0

20

3 4
time (in seconds)

—— 24/02/2024 - start at 18:44:17.279
—— calculate 2_serial_purepython 6.0125
—— calc_pure_python 6.309s

assets/hpp3_0205.png
styte: | Icicle v

:

Depth: 10 v

cutoff: [1 ~ 1000 v

Call Stack

Search: |
ncalls - tottime percall cumtime percall filename:lineno(function)
1 8.453 8.453 13.25 1825 julial nopil.py:9(calculate z serial purepython)
1 0.7986 0.7986 14.36 14.36 julial nopil.py:23(calc_pure python)
1 0.03564 0.03564 144 14.4 julial nopil.py:1(<module>)
1 0.007733 0.007733 0.007733 0.007733 ~:0(<built-in method builtins.sum>)
1 5.096e-05 5.096e-05 5.096e-05 5.096e-05 ~:0(<method 'disable' of ' Isprof.Profiler' objects>)
1 8.719e-06 8.719e-06 14.4 14.4 ~:0(<built-in method builtins.exec>)
2 3.593e-06 1.797e-06 3.593e-06 1.797e-06 ~:0(<built-in method time.time>)
3! 7.513e-05 2.504e-05 7.513e-05 2.504e-05 ~:0(<built-in method builtins.print>)
4 2.693e-06 6.733e-07 2.693e-06 6.733e-07 ~:0(<built-in method builtins.len>)
2002000 0.3042 1.519e-07 0.3042 1.519e-07 ~:0(<method 'append' of 'list' objects>)
34219980 4.799 1.402e-07 4.799 1.402e-07 ~:0(<built-in method builtins.abs>)

assets/hpp_0907.png
CPU (8 cores and 8 HyperThreads)

16

15

14

13

12

1

10

Under 182 seconds of execution time

0

20

40

60

80 100 120
Time (seconds)

140

160

180

100

80

60

40

20

CPU %

assets/hpp3_0204.png
100 %

80 %

60 %

40 %

20%

[cpu1 8.8% [cpu2 100.0% [] cpus 3.0% [] cpua 0.0%
[cpus 0.0% [] cpus 7.0% [cpu7 0.0% [crus 0.0%

[cpus 0.0% CPU10 0.0% CPU11 0.0% CPU12 2.0%
CPU13 1.0% [cpu14 4.0% [cruis 0.0% CPU16 0.0%

assets/hpp_0906_16.png
Under 28 seconds of execution time

assets/3.png

UbuntuMono-BoldItalic.otf

assets/hpp_0908.png
Execution time (seconds) - smaller is better

12

10

Time to estimate Pi using numpy with 400,000,000
dart throws in series, threaded and with processes

Seri

al execution or

Iy runs once on of

e core

D

X
-® serial
<3¢ Threads
< Processes
2 4 6 8 10 12 14 16

Number of workers

UbuntuMono-Italic.otf

UbuntuMono-Regular.otf

css_assets/titlepage_footer_ebook.png
OREILLY®

assets/hpp3_0209.png
Collecting samples from
Total Samples 7800
GIL: 100.00%, Active: 100.00%, Threads: 1

OwnTime

TotalTime

' (python v3.11.7)

Function (filename:line)

49.00%
33.00%
18.00%
0.00%
0.00%
0.00%

100.00%

42.48s
24.33s
11.18s
0.010s
0.000s
0.000s

42.48s
24.33s
11.18s
0.010s
78.00s
78.00s

calculate z serial purepython (julial nopil.py:16)
calculate z serial purepython (julial nopil.py:17)
calculate z serial purepython (julial nopil.py:18)
calculate z serial purepython (julial nopil.py:14)
<module> (julial nopil.py:64)

calc_pure python (julial nopil.py:50)

assets/hpp_0912.png
2.5

2.01.95%

15

Completion time (seconds)

05

0.0

10°

Time cost of varying chunksizes with 8 processes for
prime checking in range [100000000-100099999]

0.22s 0.22s 0.21s

0.21s

10!

102
chunksize parameter

10°

0.24s

0.31:

10*

—e experiments
e default

0.81s

assets/hpp_0911.png
2.5

2.0

15

Completion time (seconds)

05

0.0

2.06s

10°

Time cost of varying chunksizes with 8 processes for
prime checking in range [100000000-100099999]

0.22s 0.21s 0.21s

0.21s

10!

102
chunksize parameter

10°

0.24s

0.32s,

10*

—e experiments
e default

0.79s

assets/hpp_0910.png
2.5

15

Completion time (seconds)

05

0.0

Time cost of varying chunksizes with 8 processes for
prime checking in range [100000000-100099999]

—e experiments

.02}

0.5

0.23s

0.22s

10

20

30
chunksize parameter

40

60

assets/hpp2_0909.png
Time cost for checking primali
0.00010 T 9P ty

X Prime
Not prime

0.00008

0.00006

Seconds per test

0.00004

0.00002

0.00000

] 200,000 400,000 600,000 800,000 1,000,000
Integers to test

assets/hpp2_0301.png
starting address
system memory

— A

LOX0
€0%0
€0X0
¥0X0
S0%0
90%0
LOX0
80%0
60%0
BOX0
qox0

I0X0

_/Y\/

reserved memory
for list of size 6

assets/hpp_0916.png
Time in seconds (smaller is better)

o

IS

Slower IPC methods

~@- Sserial (No IPC)
¥ Less naive Pool

| Redis flag
-A- Manager flag

assets/hpp3_0211.png
def calculate z_serial purepython(maxiter, zs, cs):
"""Calculate output list using Julia update rule"""
output = [0] * len(zs)
for i in range(len(zs)):

return output

assets/hpp2_0915.png
Factor for non-prime

3,000

2,500

2,000

w
8
8

1,000

500

Frequency of 446 non-prime factors up to 10,000,000

Most common factors: 2, 3,5, 7, ...

10

100 1,000 10,000 100,000
Frequency of factor (log scale)

1,000,000

assets/hpp3_0213.png
1d22:25:33 +
825013 576

v
~

A MainProcess 144919

Current Selection

00:00:00 00:00:00

00:00:00
300000 000

00:00:00 00:00:00

00:00:00
400000 000

00:00:00
500000 000

00:00:00
600000 000

calculate_z_serial_purepython (/tmp/scalene/julial_viztracer.py:8)

Slice calculate_z_serial_purepython (/tmp/scalene/julial_viztracer.py:8)

Details

Name
Category
Start time
Duration
Thread
Process
SQL ID

499ms 644us 74ns
MainThread [144919]
MainProcess [144919]

10
1
12
13
14
15
16
17
18
19
20
21
22

Contextual Options ~

def calculate_z_serial_purepython(maxiter, zs, cs):
"""Calculate output list using Julia update rule"""
output = [0] * len(zs)

for 1 in range(len(zs)):

n=20
z = zs[i]
c = cs(i]

while n < maxiter and abs(z) < 2:
z=z*z+c
n+=1
output/i] = n
return output

import numpy as np

assets/hpp_0914.png
100

80

60

Seconds (smaller is better)

20

The overhead of Queues on lightweight tasks

Lommemm=X

x

<

1 child process via Queues

¢ Using Queues
~®- No queue

@ queue

3 4 5 6

Number of processes

assets/hpp3_0210.png
pPy-spy record -o profile.svg -- python julial nopil.py
all

<module> (julial nopil.py:64)
calc_pure python (julial nopil.py:50)
calculate_z serial purepython (julial nopil.py:16)

calculate z serial purepython (julial nopil.py:17) ..on (julial nopil.py:18)

assets/hpp_0913.png
2.5

2.0

15

Completion time (seconds)

05

0.0

1.58s

0.82]

Time cost of varying number of chunks with 8 processes for

prime checking in range [100000000-100099999]

10

—e experiments

224500005 B2 T2 35 250 D2 B4R 2 T2 P2 5225

15
Number of chunks

20

25

30

assets/2.png

DejaVuSans-Bold.otf

assets/hpp2_0303.png
2
l.append(3) 4 o
1 py
€O,
5 py

l.append(4)
—> 1
2
3
4
|.append(5) §
1 copy]
5 copy >
3 copy 3
7 copy 7
5

|.append(6)

—>

ajlu]lbh]lwWwlN

DejaVuSerif.otf

assets/list_overallocation.png
ooooo

: A\\\\\\\\\\\\\

UbuntuMono-Bold.otf

assets/1.png

assets/hpp_0917.png
Time in seconds (smaller is better)

2.00

175

150

125

1.00

075

050

025

0.00

Faster IPC methods

¥ Less naive Pool

~®- Rawvalue flag
4B MMap flag
"-A- MMap Redux flag

W e

assets/hpp2_0401.png
items

key: Rome
data: Italy

key: San Francisco
data: USA

key: New York
data: USA

key: Barcelona L
data: Spain -

|
|
L}
!

dictionary

key: Rome
data: Italy

key: San Francisco
data: USA

key: Barcelona
data: Spain

key: New York
data: USA

- e e e e e e e e -

assets/4.png

assets/hpp3_pandas_concat.png
Time (s)

175

150

12

1.0t

8

0.7

0.5

8

02

0.00

Concat cost per iteration chunk

0 2 4 6 8 10

Iteration chunk

assets/hpp2_0606.png
Hours of usage

14

12

10

°
®

°
S

0.4

02

0.0

Maximum slope (row 80,900)
m=0.04 c=0.74

Minimum slope (row 57,424)

m=-0.04 c=1.28

Days

12

Days

12

assets/hpp2_0605.png
Hours of usage

14

12

10

0.8

0.6

0.4

02

0.0

Random hours of mobile phone usage for 3 people

Days

10

12

assets/dict_overallocation.png
Number of elements overallocated

350000

300000

250000

200000

150000

100000

50000

Overallocation in dicts

50000

100000
Number of items in the dict

150000

200000

assets/hpp2_0704.png
Generated by Cython 3.0.10

hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: cythonfn.c

02: """Calculate output list using Julia update rule"""
03: cdef unsigned int i, n

04: cdef double complex z, c

+06: for i in range(len(zs)):

+07: n==~0

+08: z = zs[i]

+09: c = cs[i]

+10: while n < maxiter and abs(z) < 2:
+11: z=2z2%z+cC

+12: n+=1

+13: output[i] = n

+14: return output

assets/hpp2_1002.png
A=

consumer

consumer

assets/hpp3_0703.png
Generated by Cython 3.0.10

Yellow lines hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: cythonfn.c

+01: def calculate z(maxiter, zs, cs):
02: """Calculate output list using Julia update rule"""
+03: output = [0] * len(zs)
__pyx t 1 = PyObject Length(_ pyx v zs);
_ pyx t 2 = PyList New(l * ((_ pyx t 1<0) ? 0: pyx t 1));
(__pyx_t 2);
{ Py ssize t pyx_ temp;
for (__pyx temp=0; pyx temp < pyx t 1; pyx temp++) {
__ Pyx INCREF(_pyx int 0);
(__pyx int 0);
if (_ Pyx PylList SET ITEM(_ pyx t 2, pyx temp, pyx _int 0)) ;

}
}
__pyx v output = ((PyObject*) pyx t 2);
_pyx_t 2 =0;
+04: for i in range(len(zs)):
+05: n=20
+06: z = zs[i]
+07: c = cs[i]
+08: while n < maxiter and abs(z) < 2:
+09: z=2*z+cC
+10: n+=1
+11: output[i] = n

+12: return output

assets/hpp2_1001.png
separate host

[Consumers\

assets/hpp3_0702.png
Generated by Cython 3.0.10

hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: cythonfn.c

02: """Calculate output list using Julia update rule"""

+04: for i in range(len(zs)):
+05: n=2~0

+06: z = zs[i]

+07: c = cs[i]

+10: n +=1
+11: output[i] = n
+12: return output

assets/hpp_0918.png
4

ian@ian-XPS-15-9510: ~/workspace/personal/high_performance_python_book/high-performance-python-3e/examples_i... — O .

File Edit View Search Terminal Help

or| | 1 ar| 1 8[| | 1 12[]|]
1[] 5[] o 1 13[] | 1
2011] 6] 10[] | 1 14[] | 1
3[| 1 70 1 11[] 1 15[1
MemD| [| [ILIEIEIEIEITIT T irinr137.26/62.561 Tasks: 214, 1451 thr; 1 running
Swpl | | 1 Load average: 0.73 1.17 1.00

Uptime: 1 day, 22:28:43

PIDAUSER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command

1981926 ian 20 0 30.6G 30.5G 30.56 S 0.0 47.7 0:23.72 L python np_shared.py

dlHelp [@Setup [®SearchlfIFilterjgilist [§dSortByl@Nice -[fNice +gKill [@llouit |

assets/hpp2_0701.png
Faster execution

Quick wins and diminishing returns

Beware diminishing
returns with

Use a compiler or JIT extended effort

to achieve quick wins

Improve algorithm
based on evidence

Profile to understand
program’s behavior

Increasing effort

