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1 Introduction to Generative AI: “Drawing” Data from Models
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Introduction

At the Colorado State Fair in 2022, the winning entry was a fantastical sci-fi landscape created by video game designer Jason Allen titled Théâtre D’opéra Spatial (Figure 1.1). The first prize art was remarkable both from the dramatic subject matter, but also due to the unusual origin of this image. Unlike the majority of other artworks entered into the competition, the Théâtre D’opéra Spatial was not painted using oil or watercolors, nor was its “creator” even human; rather, it is an entirely digital image produced by a sophisticated machine learning algorithm called Midjourney. Jason used Midjourney, which has been trained on diverse images, along with natural language instructions to create the image, rather than a brush and canvas.


[image: Figure 1.1: Théâtre D’opéra Spatial (Ref 1)]Figure 1.1: Théâtre D’opéra Spatial (Ref 1)

Visual art is far from the only area in which machine learning has demonstrated astonishing results. Indeed, if you have paid attention to the news in the last few years, you have likely seen many stories about the groundbreaking results of modern AI systems applied to diverse problems, from the hard sciences to online avatars and interactive chat. Deep neural network models, such as the one powering Midjourney, have shown amazing abilities to generate realistic human language (Ref 2), author computer code (Ref 3), and solve school exams with human-level ability (Ref 2). Such models can also classify X-ray images of human anatomy on the level of trained physicians (Ref 4), beat human masters at both classic board games such as Go (an Asian form of chess) as well as multiplayer computer games (Ref 5, 6), and translate French into English with amazing sensitivity to grammatical nuances (Ref 7).


Discriminative versus generative models

However, these latter examples of AI differ in an important way from the model that generated Théâtre D’opéra Spatial. In all of these other applications, the model is presented with a set of inputs—data such as English text, or X-ray images—that is paired with a target output, such as the next word in a translated sentence or the diagnostic classification of an X-ray. Indeed, this is probably the kind of AI model you are most familiar with from prior experiences in predictive modeling; they are broadly known as discriminative models, whose purpose is to create a mapping between a set of input variables and a target output. The target output could be a set of discrete classes (such as which word in the English language appears next in a translation), or a continuous outcome (such as the expected amount of money a customer will spend in an online store over the next 12 months).

However, this kind of model, in which data is “labeled” or “scored,” represents only half the capabilities of modern machine learning. Another class of algorithms, such as the one that generated the winning entry in the Colorado State Art Fair, doesn’t compute a score or label from input variables but rather generates new data. Unlike discriminative models, the input variables are often vectors of numbers that aren’t related to real-world values at all and are often even randomly generated. This kind of model, known as a generative model, which can produce complex outputs such as text, music, or images from random noise, is the topic of this book.

Even if you did not know it at the time, you have probably seen other instances of generative models mentioned in the news alongside the discriminative examples given previously. A prominent example is deepfakes—videos in which one person’s face has been systematically replaced with another’s by using a neural network to remap the pixels (Ref 8) (Figure 1.2).


[image: Figure 1.2: A deepfake image (Ref 9)]Figure 1.2: A deepfake image (Ref 9)


[image: Figure 1.3: A chatbot dialogue created using GPT-2 (Ref 10)]Figure 1.3: A chatbot dialogue created using GPT-2 (Ref 10)

Maybe you have also seen stories about AI models that generate “fake news,” which scientists at the firm OpenAI were initially terrified to release to the public due to concerns it could be used to create propaganda and misinformation online (Figure 1.3) (Ref 11). In these and other applications—such as Google’s voice assistant Duplex, which can make a restaurant reservation by dynamically creating conservation with a human in real-time (Ref 12), or even software that can generate original musical compositions (Ref 13)—we are surrounded by the outputs of generative AI algorithms. These models are able to handle complex information in a variety of domains: creating photorealistic images or stylistic “filters” on pictures, synthetic sound, conversational text, and even rules for optimally playing video games. You might ask: Where did these models come from? How can I implement them myself?



Implementing generative models

While generative models could theoretically be implemented using a wide variety of machine learning algorithms, in practice they are usually built with deep neural networks, which are well suited to capture the complex variation in data such as images or language. In this book, we will focus on implementing these deep-learning-based generative models for many different applications using PyTorch. PyTorch is a Python programming library used to develop and produce deep learning models. It was open-sourced by Meta (formerly Facebook) in 2016 and has become one of the most popular libraries for the research and deployment of neural network models. We’ll execute PyTorch code on the cloud using Google’s Collab notebook environment, which allows you to access world-class computing infrastructure including graphic processing units (GPUs) and tensor processing units (TPUs) on demand and without the need for onerous environment setup. We’ll also leverage the pipelines library from Hugging Face, which provides an easy interface to run experiments using a catalog of some of the most sophisticated models available.

In the following chapters, you will learn not only the underlying theory behind these models, but the practical skills to implement them in popular programming frameworks. In Chapter 2, we’ll review how since 2006 an explosion of research in “deep learning” using large neural network models has produced a wide variety of generative modeling applications. Innovations arising from this research included variational autoencoders (VAEs), which can efficiently generate complex data samples from random numbers that are “decoded” into realistic images, using techniques we will describe in Chapter 3. We will also describe a related image generation algorithm, the generative adversarial network (GAN), in more detail in Chapters 4-6 of this book through applications for image generation, style transfer, and deepfakes. Conceptually, the GAN  model creates a competition between two neural networks. One (termed the “generator”) produces realistic (or, in the case of the experiments by Obvious, artistic) images starting from a set of random numbers that are “decoded” into realistic images by applying a mathematical transformation. In a sense, the generator is like an art student, producing new paintings from brushstrokes and creative inspiration. The second network, known as the discriminator, attempts to classify whether a picture comes from a set of real-world images, or whether it was created by the generator. Thus, the discriminator acts like a teacher, grading whether the student has produced work comparable to the paintings they are attempting to mimic. As the generator becomes better at fooling the discriminator, its output becomes closer and closer to the historical examples it is designed to copy. In Chapter 7, we’ll also describe the algorithm used in Théâtre D’opéra Spatial, the latent diffusion model, which builds on VAEs to provide scalable image synthesis based on natural language prompts from a human user.

Another key innovation in generative models is in the domain of natural language data—by representing the complex interrelationship between words in a sentence in a computationally scalable way, the Transformer network and the Bidirectional Encoder from Transformers (BERT) model built on top of it present powerful building blocks to generate textual data in applications such as chatbots and large language models (LLMs), which we’ll cover in Chapters 8 and 9. In Chapters 10 through 11, we will dive deeper into the most famous foundational models in the current LLM landscape, including ChatGPT and Llama. In Chapters 12 and 13, we’ll cover important tools for using these models, including engineering “prompt” inputs to achieve a desired outcome, and software tools such as LangChain. We’ll also take a tour of “fine-tuning” and interpretational methods such as retrieval-augmented generation (RAG) in Chapter 14. Generative models are a huge field of research that is constantly growing, so unfortunately we cannot cover every topic in this book. For the interested reader, we provide references to further topics in Chapter 15.

Before diving into further details on the various applications of generative models and how to implement them in PyTorch, we will take a step back and examine how exactly generative models are different from other kinds of machine learning. This difference lies with the basic units of any machine learning algorithm: probability and the various ways we use mathematics to quantify the shape and distribution of data we encounter in the world. In the rest of this chapter, we will cover the following:


	How we can use the statistical rules of probability to describe how machine learning models represent the shapes of the datasets we study

	The difference between discriminative and generative models, based on the kinds of probability rules they embody

	Examples of areas where generative modeling has been applied: image generation, style transfer, chatbots and text synthesis, and reinforcement learning






The rules of probability

At the simplest level, a model, be it machine learning or a more classical method such as linear regression, is a mathematical description of how a target variable changes in response to variation in a predictive variable; that relationship could be a linear slope or any of a number of more complex mathematical transformations. In the task of modeling, we usually think of separating the variables in our dataset into two broad classes:


	Independent data, by which we primarily mean inputs to a model, is often denoted by X. For example, if we are trying to predict the grades of school students on an end-of-year exam based on their characteristics, we could think of several kinds of features:

	Categorical: If there are six schools in a district, the school that a student attends could be represented by a six-element vector for each student. The elements are all zero, except for one which is “1,” indicating which of the six schools they are enrolled in.

	Continuous: The student heights or average prior test scores can be represented as continuous real numbers.

	Ordinal: The rank of the student in their class is not meant to be an absolute quantity (like their height) but rather a measure of relative difference.




	Dependent variables, conversely, are the outputs of our models and are denoted by the letter Y. Note that, in some cases, Y is a “label” that can be used to condition a generative output, such as in a conditional GAN. It can be categorical, continuous, or ordinal, and could be an individual element or multidimensional matrix (tensor) for each element of the dataset.



How can we describe the data in our model using statistics? In other words, how can we quantitatively describe what values we are likely to see, how frequently, and which values are more likely to appear together and others? One way is by asking how likely it is to observe a particular value in the data or the probability of that value. For example, if we were to ask what the probability of observing a roll of four on a six-sided die is, the answer is that, on average, we would observe a four once every six rolls. We write this as follows:

Where P denotes “probability of.” What defines the allowed probability values for a particular dataset? If we imagine the set of all possible values of a dataset—such as all values of a die—then a probability maps each value to a number between 0 and 1. The minimum is 0 because we cannot have a negative chance of seeing a result; the most unlikely result is that we would never see a particular value, or 0% probability, such as rolling a seven on a six-sided die. Similarly, we cannot have a greater than 100% probability of observing a result, represented by the value 1; an outcome with probability 1 is absolutely certain. This set of probability values associated with a dataset belongs to discrete classes (such as the faces of a die) or an infinite set of potential values (such as variations in height or weight). In either case, however, these values have to follow certain rules, the probability axioms described by the mathematician Andrey Kolmogorov in 1933 (Ref 14):


	The probability of an observation (a die roll, a particular height) is a non-negative, finite number between 0 and 1.

	The probability of at least one of the observations in the space of all possible observations occurring is 1.

	The probability of distinct, mutually exclusive events (such as the rolls 1-6 on a die) is the sum of the probability of the individual events.



While these rules might seem abstract, we will see in Chapter 3 that they have direct relevance to developing neural network models. For example, an application of rule 1 is to generate the probability between 1 and 0 for a particular outcome in a softmax function for predicting target classes. For example, if our model is asked to classify whether an image contains a cat, dog, or horse, each potential class receives a probability between 0 and 1 as the output of a sigmoid function based on a deep neural network applying nonlinear, multi-layer transformations on the input pixels of an image we are trying to classify. Rule 3 is used to normalize these outcomes into the range 0-1, under the guarantee that they are mutually distinct predictions of a deep neural network (in other words, a real-world image logically cannot be classified as both a dog and cat, but rather a dog or cat, with the probability of these two outcomes additive). Finally, the second rule provides the theoretical guarantees that we can generate data at all using these models.

However, in the context of machine learning and modeling, we are not usually interested in just the probability of observing a piece of input data, X; we instead want to know the conditional probability of an outcome Y given the data X. Said another way, we want to know how likely a label for a set of data is, based on that data. We write this as the probability of Y given X, or the probability of Y conditional on X:

Another question we could ask about Y and X is how likely they are to occur together: their joint probability, which can be expressed using the preceding conditional probability expression as:

This formula expressed the probability of X and Y. In the case of X and Y being completely independent of one another, this is simply their product:

You will see that these expressions become important in our discussion of complementary priors in Chapter 4, and the ability of restricted Boltzmann machines to simulate independent data samples. They are also important as building blocks of Bayes’ theorem, which we describe next.



Discriminative and generative modeling, and Bayes’ theorem

Now, let us consider how these rules of conditional and joint probability relate to the kinds of predictive models that we build for various machine learning applications. In most cases—such as predicting whether an email is fraudulent or the dollar amount of the future lifetime value of a customer—we are interested in the conditional probability, P(Y|X=x), where Y is the set of outcomes we are trying to model and X is the input “features,” and x is a particular value of the input features. For example, we are trying to calculate the probability that an email is fraudulent based on the knowledge of the set of words (the x) in the message. This approach is known as discriminative modeling (Ref 15-17). Discriminative modeling attempts to learn a direct mapping between the data, X, and the outcomes, Y.

Another way to understand discriminative modeling is in the context of Bayes’ theorem (Ref 18),  which relates the conditional and joint probabilities of a dataset, is as follows:

As a side note, the theorem was published two years following the author’s death, and in a forward, Richard Price described it as a mathematical argument for the existence of God, perhaps appropriate given that Thomas Bayes served as a Reverend during his life. In the formula for Bayes’ theorem, the expression P(X|Y)/P(X) is known as the likelihood or the supporting evidence that the observation X gives to the likelihood of observing Y, P(Y) is the prior or the plausibility of the outcome, and P(Y|X) is the posterior or the probability of the outcome given all the independent data we have observed related to the outcome thus far. Conceptually, Bayes’ theorem states that the probability of an outcome is the product of its baseline probability and the probability of the input data conditional on this outcome.

In the context of discriminative learning, we can thus see that a discriminative model directly computes the posterior; we could have a model of the likelihood or prior, but it is not required in this approach. Even though you may not have realized it, most of the models you have probably used in the machine learning toolkit are discriminative, such as:


	Linear regression

	Logistic regression

	Random forests (Ref 19, 20)

	Gradient-boosted decision trees (GBDTs) (Ref 21)

	Support vector machines (SVMs) (Ref 22)



The first two (linear and logistic regression) models the outcome Y conditional on the data X using a Normal or Gaussian (linear regression) or sigmoidal (logistic regression) probability function. In contrast, the last three have no formal probability “model” —they compute a function (an ensemble of trees for random forests or GBDTs, or an inner product distribution for SVM) that maps X to Y, using a loss or error function to tune those estimates; given this nonparametric nature, some authors have argued that these constitute a separate class of “non-model” or “non-parametric” discriminative algorithms (Ref 15).

In contrast, a generative model attempts to learn the joint distribution P(Y, X) of the labels and the input data. Recall that using the definition of joint probability:

We can rewrite Bayes’ theorem as:

Instead of learning a direct mapping of X to Y using P(Y|X), as in the discriminative case, our goal is to model the joint probabilities of X and Y using P(X, Y). While we can use the resulting joint distribution of X and Y to compute the posterior P(Y|X) and learn a “targeted” model, we can also use this distribution to sample new instances of the data by either jointly sampling new tuples (x, y), or sampling new data inputs using a target label Y with the expression:

Examples of generative models include:


	Naive Bayes classifiers

	Gaussian mixture models

	Latent Dirichlet allocation (LDA)

	Hidden Markov models

	Deep Boltzmann machines

	VAEs

	GANs



Naive Bayes classifiers, though named as a discriminative model, utilize Bayes’ theorem to learn the joint distribution of X and Y under the assumption that the X variables are independent. Similarly, Gaussian mixture models describe the likelihood of a data point belonging to one of a group of normal distributions using the joint probability of the label and these distributions. LDA represents a document as the joint probability of a word and a set of underlying keyword lists (topics) that are used in a document. Hidden Markov models express the joint probability of a state and the next state of a piece of data, such as the weather on successive days of the week. The VAE and GAN models we cover in Chapters 3 - 6 also utilize joint distributions to map between complex data types—this mapping allows us to generate data from random vectors or transform one kind of data into another.

As mentioned previously, another view of generative models is that they allow us to generate samples of X if we know an outcome Y. In the first four models listed previously, this conditional probability is just a component of the model formula, with the posterior estimates still being the ultimate objective. However, in the last three examples, which are all deep neural network models, learning the conditional probability of X dependent upon a hidden, or “latent” variable Z, is actually the main objective, in order to generate new data samples. Using the rich structure allowed by multi-layered neural networks, these models can approximate the distribution of complex data types such as images, natural language, and sound. Also, instead of being a target value, Z is often a random number in these applications, serving merely as an input from which to generate a large space of hypothetical data points. To the extent we have a label (such as whether a generated image should be of a dog or dolphin, or the genre of a generated song), the model is P(X|Y=y, Z=z), where the label Y “controls” the generation of data that is otherwise unrestricted by the random nature of Z.



Why generative models?

Now that we have reviewed what generative models are and defined them more formally in the language of probability, why would we have a need for such models in the first place? What value do they provide in practical applications? To answer this question, let us take a brief tour of the topics that we will cover in more detail in the rest of this book.


The promise of deep learning

As noted previously, many of the models we will survey in the book are deep, multi-level neural networks. The last 15 years have seen a renaissance in the development of deep learning models for image classification, natural language processing (NLP) and understanding, and reinforcement learning. These advances were enabled by breakthroughs in traditional challenges in tuning and optimizing very complex models, combined with access to larger datasets, distributed computational power in the cloud, and frameworks such as PyTorch, which make it easier to prototype and reproduce research. We will also lay the theoretical groundwork for the components used in models in the rest of the book, by providing an overview of neural network architectures, optimizers, and regularization in Chapter 2.



Generating images

A challenge to generating images—such as the Théâtre D’opéra Spatial—is that frequently images have no labels (such as a digit); rather, we want to map the space of random numbers into a set of artificial images using a latent vector Z, as we described earlier in the chapter. A further constraint is that we want to promote the diversity of these images—if we input numbers within a certain range, we would like to know that they generate different outputs, and be able to tune the resulting image features. For this purpose, VAEs (Ref 23)­—a kind of deep neural network model that learns to encode images as a latent variable Z, which it decodes into the input image—were developed to generate diverse and photorealistic images (Figure 1.4), which we will cover in Chapter 3.





[image: Figure 1.4: Sample Images from a VAE (Ref 24-25)]Figure 1.4: Sample Images from a VAE (Ref 24-25)

In the context of image classification tasks, being able to generate new images can help us increase  the number of examples in an existing dataset, or reduce the bias if our existing dataset is heavily skewed toward a particular kind of photograph. Applications could include generating alternative poses (angles, shades, perspective shots) for product photographs on a fashion e-commerce website (Figure 1.5).


[image: Figure 1.5 Simulating alternative poses with deep generative models (Ref 26)]Figure 1.5 Simulating alternative poses with deep generative models (Ref 26)

In a similar application, 2D images of automotive designs can be translated into 3D models using generative AI methods (Ref 39).



Data augmentation

Another powerful use case for generative models is to augment the limitations of small existing datasets with additional examples. These additional examples can help improve the quality of discriminate models trained from this expanded dataset by improving their generalization abilities. This augmented data can be used for semi-supervised learning; an initial discriminative model is trained using the real limited data. That model is then used to generate labels for the synthetic data, augmenting the dataset. Finally, a second discriminate model is trained using the combined real and synthetic datasets. Examples of these kinds of applications include increasing the number of diagnostic examples in medical image datasets for cancer and bone lesions (Ref 37-38).



Style transfer and image transformation

In addition to mapping artificial images to a space of random numbers, we could also use generative models to learn a mapping between one kind of image and a second. This kind of model can, for example, be used to convert an image of a horse into that of a zebra (Figure 1.6, Ref 27), transform a photo into a painting, or create “deepfake videos,” in which one actor’s face has been replaced with another’s (Figure 1.2).


[image: Figure 1.6: CycleGANs apply stripes to horses to generate zebras (Ref 27)]Figure 1.6: CycleGANs apply stripes to horses to generate zebras (Ref 27)

Another fascinating example of applying generative modeling is a study in which a lost masterpiece of the artist Pablo Picasso  was discovered to have been painted over with another image. After X-ray imaging of The Old Guitarist and The Crouching Beggar indicated that earlier images of a woman and a landscape lay underneath (Figure 1.7), researchers used the other paintings from Picasso’s “blue period” or other color photographs to train a “neural style transfer” model that transforms black and white images (the X-ray radiographs of the overlying paintings) to the coloration of the original artwork. Then, applying this transfer model to the “hidden” images allowed them to reconstruct “colored-in” versions of the lost paintings.





[image: Figure 1.7: The Picasso paintings The Old Guitarist (top) and The Crouching Beggar (bottom) hid older paintings that were recovered using deep learning to color in the X-ray image of the painted-over scenes (middle) with color patterns learned from examples (column (d)), generating colorized versions of the lost art (far right) (Ref 28)]Figure 1.7: The Picasso paintings The Old Guitarist (top) and The Crouching Beggar (bottom) hid older paintings that were recovered using deep learning to color in the X-ray image of the painted-over scenes (middle) with color patterns learned from examples (column (d)), generating colorized versions of the lost art (far right) (Ref 28)

All of these models use the previously mentioned GANs, a type of deep learning model proposed in 2014 (Ref 29). In addition to changing the contents of an image (as in the preceding zebra example), these models can also be used to map one image into another, such as paired images (dogs and humans with similar facial features, Figure 1.8), or generate textual descriptions from images (Figure 1.9).


[image: Figure 1.8: Sim-GAN for mapping human to animal or anime faces (Ref 30)]Figure 1.8: Sim-GAN for mapping human to animal or anime faces (Ref 30)


[image: Figure 1.9: Caption-GAN for generating descriptions from images (Ref 31)]Figure 1.9: Caption-GAN for generating descriptions from images (Ref 31)

We could also condition the properties of the generated images on some auxiliary information such as labels, an approach used in the GANGogh algorithm, which synthesizes images in the style of different artists by supplying the desired artist as input to the generative model. We will describe these applications in Chapters 4 and 6. Generative AI is also enabling programmers to become artists through models such as Stable Diffusion, which translates natural language descriptions of an image into a visual rendering (Figure 1.10)—we’ll cover how it does this in Chapter 7 and try to reproduce Théâtre D’opéra Spatial.


[image: Figure 1.10: Stable Diffusion examples (Ref 32)]Figure 1.10: Stable Diffusion examples (Ref 32)



Fake news and chatbots

Humans have always wanted to talk to machines; the first chatbot, ELIZA (Ref 33), was written at MIT in the 1960s and used a simple program to transform a user’s input and generate a response, in the mode of a “therapist” who frequently responds in the form of a question. More sophisticated models can generate entirely novel text, such as Google’s BERT (Ref 34) and GPT-2 (Ref 11), which use a unit called a “transformer” to generate new words based on past words in a body of text. A transformer module in a neural network allows a network to propose a new word in the context of preceding words in a piece of text, emphasizing those that are more relevant in order to generate plausible stretches of language. The BERT model then combines transformer units into a powerful multi-dimensional encoding of natural language patterns and contextual significance. This approach can be used in document creation for NLP tasks, or for chatbot dialogue systems (Figure 1.3), which we will cover in Chapters 8 and 9.

Increasingly powerful LLMs have demonstrated remarkable performance in language generation, creative writing, and authoring novel code. In Chapters 10 and 11, we’ll cover some of the most important general, or “foundational,” models that can be tuned for specific tasks after being trained on large sets of diverse language data. These include both closed-source (ChatGPT) and openly available (Llama) models (Figure 1.11). To adapt these models to specific problems, we will apply methods such as prompt engineering (Chapter 12), fine-tuning, and RAG (Chapter 14). We’ll do so using common tools in this ecosystem such as LangChain and the HuggingFace pipelines library, which are the topic of Chapter 13.


[image: Figure 1.11: LLM examples—GPT-4 (top) and Llama2 (bottom) (Ref 35, 36)]Figure 1.11: LLM examples—GPT-4 (top) and Llama2 (bottom) (Ref 35, 36)




Unique challenges of generative models

Given the powerful applications that generative models are applied to, what are the major challenges in implementing them? As described, most of these models utilize complex data, requiring us to fit large models with sufficiently diverse inputs to capture all the nuances of their features and distribution. That complexity arises from sources including:


	Range of variation: The number of potential images generated from a set of three color channel pixels is immense, as is the vocabulary of many languages

	Heterogeneity of sources: Language models, in particular, are often developed using a mixture of data from several websites

	Size: Once data becomes large, it becomes more difficult to catch duplications, factual errors (such as mistranslations), noise (such as scrambled images), and systematic biases

	Rate of change: Many developers of LLMs struggle to keep model information current with the state of the world and thus provide relevant answers to user prompts



This has implications both for the number of examples that we must collect to adequately represent the kind of data we are trying to generate, and the computational resources needed to build the model. Throughout this book, we will use cloud-based tools to accelerate our experiments with these models. A more subtle problem that comes from having complex data, and the fact that we are trying to generate data rather than a numerical label or value, is that our notion of model “accuracy” is much more complicated—we cannot simply calculate the distance to a single label or scores. We will discuss in Chapter 3 and Chapter 4 how deep generative models such as VAE and GAN algorithms take different approaches to determining whether a generated image is comparable to a real-world image. Finally, our models need to allow us to generate both large and diverse samples, and the various methods we will discuss take different approaches to controlling the diversity of data.



Summary

In this chapter, we discussed what generative modeling is, and how it fits into the landscape of more familiar machine learning methods, using probability theory and Bayes’ theorem to describe how these models approach prediction in an opposite manner to discriminative learning. We reviewed use cases for generative learning, both for specific kinds of data and general prediction tasks. As we saw, text and images are the two major forms of data that these models are applied to. For images, the major models we will discuss are VAE, GAN, and similar algorithms. For text, the dominant models are transformer architectures such as Llama, GPT, and BERT. Finally, we examined some of the specialized challenges that arise from building these models.
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Introduction

The wide range of generative AI models that we will implement in this book are all built on the foundation of advances over the last 15 years in deep learning and neural networks. While in practice we could implement these projects without reference to historical developments, it will give you a richer understanding of how and why these models work to retrace their underlying components. In this chapter, we will dive into this background, showing you how generative AI models are built from the ground up, how smaller units are assembled into complex architectures, how the loss functions in these models are optimized, and some current theories as to why these models are so effective. Armed with this background knowledge, you should be able to understand in greater depth the reasoning behind the more advanced models and topics that start in Chapter 11, Painting Pictures with Neural Networks Using VAEs of this book. Generally speaking, we can group the architecture, transforms, and optimization methods of neural network models into a number of choices regarding how the model is constructed and trained, which we will cover in this chapter:

Which neural network architecture to use:


	Perceptron

	Multilayer perceptron (MLP)/feedforward

	Convolutional Neural Networks (CNNs)

	Recurrent Neural Networks (RNNs)

	Long Short-Term Memory Networks (LSTMs)

	Gated Recurrent Units (GRUs)

	Transformers



Which activation functions to use in the network:


	Linear

	Sigmoid

	Tanh

	Rectified Linear Unit (ReLU)

	Parametric Rectified Linear Unit (PReLU)

	Exponential Linear Unit (ELU)

	Gaussian Error Linear Unit (GELU)

	Sigmoid Linear Unit (SiLU)

	Swish and Gaussian Error Linear Unit (SwiGLU)

	Positional Encoding



What optimization algorithm to use to tune the parameters of the network:


	Stochastic Gradient Descent (SGD)

	Root Mean Square Propogation (RMSProp)

	Adaptive Gradient (AdaGrad)

	Adaptive Moment Estimation (ADAM)

	ADAM Weighted (ADAMW)

	Adapative Delta (AdaDelta)

	Hessian-free optimization



How to initialize the parameters of the network:


	Random

	Xavier initialization

	He initialization



As you can appreciate, the products of these decisions can lead to a huge number of potential neural network variants, and one of the challenges of developing these models is determining the right search space within each of these choices. In the course of describing the history of neural networks we will discuss the implications of each of these model parameters in more detail. Our overview of this field begins with the origin of the discipline: the humble perceptron model.



Perceptrons—a brain in a function

The simplest neural network architecture—the perceptron—was inspired by biological research to understand the basis of mental processing in an attempt to represent the function of the brain with mathematical formulae. In this section we will cover some of this early research and how it inspired what is now the field of deep learning and generative AI.


From tissues to TLUs

The recent popularity of AI algorithms might give the false impression that this field is new. Many recent models are based on discoveries made decades ago that have been reinvigorated by the massive computational resources available in the cloud and customized hardware for parallel matrix computations such as Graphical Processing Units (GPUs), Tensor Processing Units (TPUs), and Field Programmable Gate Array (FPGAs). If we consider research on neural networks to include their biological inspiration as well as computational theory, this field is over a hundred years old. Indeed, one of the first neural networks described appears in the detailed anatomical illustrations of 19th Century scientist Santiago Ramón y Cajal, whose illustrations based on experimental observations of layers of interconnected neuronal cells inspired the Neuron Doctrine—the idea that the brain is composed of individual, physically distinct and specialized cells, rather than a single continuous network.1 The distinct layers of the retina observed by Cajal were also the inspiration for particular neural network architectures such as the CNN, which we will discuss later in this chapter.


[image: Figure 2.1: The networks of interconnected neurons illustrated by Santiago Ramón y Cajal 3]Figure 2.1: The networks of interconnected neurons illustrated by Santiago Ramón y Cajal 3

This observation of simple neuronal cells interconnected in large networks led computational researchers to hypothesize how mental activity might be represented by simple, logical operations that, combined, yield complex mental phenomena. The original "automata theory" is usually traced to a 1943 article by Warren McCulloch and Walter Pitts of the Massachusetts Institute of Technology.3 They described a simple model known as the Threshold Logic Unit (TLU), in which binary inputs are translated into a binary output based on a threshold:

where I is the input values (typically binary in the range 0 to 1), W is the weights with ranges from (0, 1) or (-1, 1), and f is a threshold function that converts these inputs into a binary output depending upon whether they exceed a threshold T:4

Visually and conceptually, there is some similarity between McCulloch and Pitts' model and the biological neuron that inspired it (Figure 2.2). Their model integrates inputs into an output signal, just as the natural dendrites (short, input "arms" of the neuron that receive signals from other cells) of a neuron synthesize inputs into a single output via the axon (the long "tail" of the cell, which passes signals received from the dendrites along to other neurons). We might imagine that, just as neuronal cells are composed into networks to yield complex biological circuits, these simple units might be connected to simulate sophisticated decision processes.


[image: Figure 2.2: The TLU model and the biological neuron 5 6]Figure 2.2: The TLU model and the biological neuron 5 6

Intruigingly, the similarity between the mathematical and biological forms of these models has been experimentally tested, with isolated neurons cultured in a dish and hooked to a multielectrode array evidencing basic learning behavior when supplied simulated environments such as games (Ref[. Indeed, using this simple model, we can already start to represent several logical operations. If we consider a simple case of a neuron with one input, we can see that a TLU can solve an identity or negation function (Tables 2.1 and 2.2).

For an identity operation that simply returns the input as output, the weight matrix would have 1s on the diagonal (or be simply the scalar 1, for a single numerical input, as illustrated in Table 2.1):




	Identity
	



	Input
	Output



	1
	1



	0
	0





Table 2.1: TLU logic for identity operations
Similarly, for a negation operation, the weight matrix could be a negative identity matrix, with a threshold at 0 flipping the sign of the output from the input:




	Negation
	



	Input
	Output



	1
	0



	0
	1





Table 2.2: TLU logic for negation operations
Given two inputs, a TLU could also represent operations such as AND and OR. Here, a threshold could be set such that combined input values either have to exceed or equal 2 (to yield an output of 1) for an AND operation (Table 2.3) or 1 (to yield an output of 1 if either of the two inputs are 1) in an OR operation (Table 2.4).




	AND
	
	



	Input 1
	Input 2
	Output



	0
	0
	0



	1
	0
	0



	0
	1
	0



	1
	1
	1





Table 2.3: TLU logic for AND operations



	OR
	
	



	Input 1
	Input 2
	Output



	0
	0
	0



	1
	0
	1



	0
	1
	1



	1
	1
	1





Table 2.4: TLU logic for OR operations
However, a TLU cannot capture patterns such as Exclusive OR (XOR), which emits 1 if and only if one or the other bits is true but not both (Table 2.5).




	XOR
	
	



	Input 1
	Input 2
	Output



	0
	0
	0



	1
	0
	1



	0
	1
	1



	1
	1
	0





Table 325: TLU logic for XOR operations
To see why this is true, consider a TLU with two inputs and positive weights of 1 for each unit. If the threshold value T is 1, then inputs of (0, 0), (1, 0), and (0, 1) will yield the correct value. What happens with (1, 1) though? Because the threshold function returns 1 for any inputs summing to greater than 1, it cannot represent XOR (Table 2.5), which would require a second threshold to compute a different output once a different, higher value is exceeded. Changing one or both of the weights to negative values won't help either; the problem is that the decision threshold operates only in one direction and can't be reversed for larger inputs.

Similarly, the TLU can't represent the negation of the Exclusive NOR, XNOR (Table 2.6):




	XNOR
	
	



	Input 1
	Input 2
	Output



	0
	0
	1



	1
	0
	0



	0
	1
	0



	1
	1
	1





Table 2.6: TLU logic for XNOR operations
As with the XOR operation (Table 2.5), the impossibility of the XNOR operation (Table 2.6) being represented by a TLU function can be illustrated by considering a weight matrix of two 1s; for two inputs (1, 0) or (0, 1), we obtain the correct value if we set a threshold of 2 for outputting 1. As with the XOR operation, we run into a problem with an input of (0, 0), as we can't set a second threshold to output 1 at a sum of 0.



From TLUs to tuning perceptrons

Besides these limitations for representing the XOR and XNOR operations, there are additional simplifications that cap the representational power of the TLU model; the weights are fixed, and the output can only be binary (0 or 1). Clearly, for a system such as a neuron to "learn," it needs to respond to the environment and determine the relevance of different inputs based on feedback from prior experiences. This idea was captured in the 1949 book Organization of Behavior by Canadian Psychologist Donald Hebb, who proposed that the activity of nearby neuronal cells would tend to synchronize over time, sometimes paraphrased at Hebb's Law: Neurons that fire together wire together7 8. Building on Hebb's proposal that weights changed over time, researcher Frank Rosenblatt of the Cornell Aeronautical Laboratory proposed the perceptron model in the 1950s.9 He replaced the fixed weights in the TLU model with adaptive weights and added a bias term, giving a new function:

We note that the inputs I have been denoted X to underscore the fact that they could be any value, not just binary 0 or 1. Combining Hebb's observations with the TLU model, the weights of the perceptron would be updated according to a simple learning rule:


	Start with a set of J samples x(1) …. x(j). These samples all have a label y which is 0 or 1, giving labeled data (y, x)(1) …. (y, x)(j). These samples could have either a single value, in which case the perceptron has a single input, or be a vector with length N and indices i for multi-value input.

	Initialize all weights w to a small random value or 0.

	Compute the estimated value, yhat, for all the examples x using the perceptron function.

	Update the weights using a learning rate r to more closely match the input to the desired output for each step t in training:



Wi(t + 1) = wi(t) + r(yj - yhatj)xj,i, for all J samples and N features. Conceptually, note that if y is 0 and the target is 1, we want to increase the value of the weight by some increment r; likewise, if the target is 0 and the estimate is 1, we want to decrease the weight so the inputs do not exceed the threshold.


	Repeat steps 3-4 until the difference between the predicted and actual outputs, y and yhat, falls below some desired threshold. In the case of a non-zero bias term, b, an update can be computed as well using a similar formula.



While simple, you can appreciate that many patterns could be learned from such a classifier, though still not the XOR function. However, by combining several perceptrons into multiple layers, these units could represent any simple Boolean function,10 and indeed McCulloch and Pitts had previously speculated on combining such simple units into a universal computation engine, or Turing Machine, that could represent any operation in a standard programming language. However, the preceding learning algorithm operates on each unit independently, meaning it could be extended to networks composed of many layers of perceptrons (Figure 2.3).


[image: Figure 2.3: A multi-layer perceptron 11]Figure 2.3: A multi-layer perceptron 11

However, the 1969 book Perceptrons, by MIT computer scientists Marvin Minksy and Seymour Papert, demonstrated that a three-layer feed-forward network required complete (non-zero weight) connections between at least one of these units (in the first layer) and all inputs to compute all possible logical outputs12. This meant that instead of having a very sparse structure, like biological neurons, which are only connected to a few of their neighbors, these computational models required very dense connections.

While sparse connections between neurons—in other words, not every neuron is connected to every other between layers - have been incorporated in later architectures, such as CNNs, such dense connections remain a feature of many modern models too, particularly in the fully connected layers that often form the second to last hidden layers in models. Fully connected layers with a large number of neurons can have impressive ability to classify complex patterns of input, at the cost of large computational resources needed to estimate and execute them. In addition to these models being computationally unwieldy on the hardware of the day, the observation that sparse models could not compute all logical operations was interpreted more broadly by the research community as Perceptrons cannot compute XOR. While erroneous,13 this message led to a drought in funding for AI in subsequent years, a period sometimes referred to as the AI Winter14.

The next revolution in neural network research would require a more efficient way to compute the required parameters updated in complex models, a technique that would become known as backpropagation.




Multi-layer perceptrons and backpropagation

While large research funding for neural networks declined until the 1980s after the publication of Perceptrons, researchers still recognized that these models had value, particularly when assembled into multi-layer networks, each composed of several perceptron units. Indeed, when the mathematical form of the output function (that is, the output of the model) was relaxed to take on many forms (such as a linear function or a sigmoid), these networks could solve both regression and classification problems, with theoretical results showing that 3-layer networks could effectively approximate any output.15 However, none of this work addressed the practical limitations of computing the solutions to these models, with rules such as the perceptron learning algorithm described earlier proving a great limitation to the applied use of them. A central problem was how to appropriately estimate the weights in the hidden layers of the network, which form the internal “representation” of the data within the model.

Renewed interest in neural networks came with a practical solution to computing those hidden weights through tthe backpropagation algorithm, which, while discovered in the 1960s, was not widely applied to neural networks until the 1980s, following several studies highlighting its usefulness for learning the weights in these models.16 As you saw with the perceptron model, a learning rule to update weights is relatively easy to derive as long as there are no "hidden" layers. The input is transformed once by the perceptron to compute an output value, meaning the weights can be directly tuned to yield the desired output. When there are hidden layers between the input and output, the problem becomes more complex: when do we change the internal weights to compute the activations that feed into the final output? How do we modify them in relation to the input weights?

The insight of the backpropagation technique is that we can use the chain rule from calculus to efficiently compute the derivatives of each parameter of a network with respect to a loss function and, combined with a learning rule, this provides a scalable way to train multilayer networks.

Let's illustrate backpropagation with an example: consider a network like the one shown in Figure 2.3. Assume that the output in the final layer is computed using a sigmoidal function, which yields a value between 0 and 1:

Furthermore, the value y, the sum of the inputs to the final neuron, is a weighted sum of the sigmoidal inputs of the hidden units:

We also need a notion of when the network is performing well or badly at its task. A straightforward error function to use here is squared loss:

where yhat is the estimated value (from the output of the model) and y is the real value, summed over all the input examples J and the outputs of the network K (where K=1, since there is only a single output value). Backpropagation begins with a "forward pass" where we compute the values of all the outputs in the inner and outer layers, to obtain the estimated values of yhat. We then proceed with a backward step to compute gradients to update the weights.

Our overall objective is to compute partial derivatives for the weights w and bias terms b in each neuron: and , which will allow us to compute the updates for b and w. Towards this goal, let's start by computing the update rule for the inputs in the final neuron; we want to date the partial derivative of the error E with respect to each of these inputs (in this example there are five, corresponding to the five hidden layer neurons), using the chain rule:

We can get the value by differentiating the loss function:




which for an individual example is just the difference between the input and output value. For



, we need to take the partial derivative of the sigmoid function:









Putting it all together, we have:




If we want to compute the gradient for a particular parameter of x, such as a weight w or bias term b, we need one more step:




We already know the first term and x depends on w only through the inputs from the lower layers y since it is a linear function, so we obtain:




If we want to compute this derivative for one of the neurons in the hidden layer, we likewise take the partial derivative with respect to this input yi, which is simply:




So, in total we can sum over all units that feed into this hidden layer:




We can repeat this process recursively for any units in deeper layers to obtain the desired update rule, since we now know how to calculate the gradients for y or w at any layer. This makes the process of updating weights efficient since once we have computed the gradients through the backward pass we can combine consecutive gradients through the layers to get the required gradient at any depth of the network.

Now that we have the gradients for each w (or other parameter of the neuron we might want to calculate), how can we make a "learning rule" to update the weights? In their paper,17 Hinton et al. noted that we could apply an update to the model parameters after computing gradients on each sample batch but suggested instead applying an update calculated after averaging over all samples. The gradient represents the direction in which the error function is changing with the greatest magnitude with respect to the parameters; thus, to update, we want to push the weight in the opposite direction, with



the update, and e a small value (a step size):



Then at each time t during training we update the weight using this calculated gradient:




Extending this approach, Hinton et al. proposed an exponentially weighted update of the current gradient plus prior updates:




where alpha is a decay parameter to weight the contribution of prior updates ranging from 0 to 1. Following this procedure, we would initialize the weights in the network with some small random values, choose a step size e and iterate with forward and backward passes, along with updates to the parameters, until the loss function reaches some desired value.

Now that we have described the formal mathematics behind backpropagation, let us look at how it is implemented in practice in software packages such as PyTorch.


Backpropagation in practice

While it is useful to go through this derivation in order to understand how the update rules for a deep neural network are derived, this would clearly quickly become unwieldy for large networks and complex architectures. It's fortunate, therefore, that PyTorch handles the computation of these gradients automatically. During the initialization of the model, each gradient is computed as an intermediate node between tensors and operations in the graph: as an example, see Figure 2.4:


[image: Figure 2.4: Inserting gradient operations into thePyTorch PyTorch graph 18]Figure 2.4: Inserting gradient operations into thePyTorch PyTorch graph 18

The top of the preceding figure shows a function w computed from the output of a Sigmoidal—a type of neuron function we'll cover later in this chapter, which in turn is computed from multiplying a weight vector by an input x On the bottom, you can see that this graph has been augmented by PyTorchPyTorch to compute all the intermediate gradients required for backpropagation as part of the overall control flow.

After storing these intermediate values, the task of combining them, as shown in the calculation in Figure 2.4, into a complete gradient through recursive operations falls to the Autograd package. Under the hood, PyTorch uses a method called reverse-mode automatic differentiation to compute gradients; it holds the dependent variable (the output y) fixed, and recursively computes backwards to the beginning of the network the required gradients.

For example, let's consider a neural network of the following form:


[image: Figure 2.5: Reverse-mode automatic differentiation 19]Figure 2.5: Reverse-mode automatic differentiation 19

If we want to compute the derivative of the output y with respect to an input x we need to repeatedly substitute the outermost expression20 This substitution utilizes the “chain rule” from Calculus, which describes how to calculate the derivative of nested functions using a product of derivatives that connect the inner and outer functions:




Thus, to compute the desired gradient we need to just traverse the graph from top to bottom, storing each intermediate gradient as we calculate it. These values are stored on a record, referred to as a tape in reference to early computers in which information was stored on a magnetic tape,21 which is then used to replay the values for calculation. The alternative would be to use forward-mode automatic differentiation, computing from bottom to top. This requires two instead of one pass (for each branch feeding into the final value), but is conceptually simpler to implement and doesn't require the storage memory of reverse mode. More importantly, though, reverse-mode mimics the derivation of backpropagation that I described earlier.

The tape (also known as the Wengert Tape, after one of its developers) is actually a data structure that you can access in the PyTorch Core API. As an example, import the core library:


import torch



The tape is then available using the grad() method, with which you can evaluate gradients with respect to intermediate values within the graph22:


# Enable gradient tracking for tensor 'x'
x = torch.ones(2, 2, requires_grad=True)
# Define y and z
y = x + 2
z = 3 * y**2
# Compute the mean of z
out = z.mean()
# Retain gradients for intermediate variable 'y'
y.retain_grad()
# Backpropagate to compute gradients, retaining the graph
out.backward(retain_graph=True)
# Print the gradient of z with respect to y
print("Gradient dz/dy:")
print(y.grad)



By default, the memory resources used are released once backward() is called; however, you can also use the retain_graph=True argument to store these results23:


import torch
# Initialize x with gradient tracking
x = torch.tensor(3.0, requires_grad=True)
# Perform operations
y = x * x # y = x^2
z = y * y # z = y^2 = (x^2)^2
# Compute gradients
z.backward(retain_graph=True) # Compute gradients for z with respect to x
# Access the gradient dz/dx
dz_dx = x.grad.item() # Gradient of z with respect to x
# Clear the existing gradients in x.grad to avoid accumulation
x.grad.zero_()
# To compute dy/dx, you need to call backward on y
y.backward() # Compute gradients for y with respect to x
dy_dx = x.grad.item() # Gradient of y with respect to x
print(f'dz/dx = {dz_dx}')
print(f'dy/dx = {dy_dx}')



Now that you've seen how PyTorch computes gradients in practice to evaluate backpropagation, let's return to the details of how the backpropagation technique evolved over time in response to challenges in practical implementation.



The shortfalls of backpropagation

While the backpropagation procedure provides a way to update interior weights within the network in a principled way, it has several shortcomings that made deep networks difficult to use in practice. One is the problem of vanishing gradients. In our derivation of the backpropagation formulas, you saw that gradients for weights deeper in the network are a product of successive partial derivatives from higher layers. In our example, we used the sigmoid function; if we plot out the value of the sigmoid and its first derivative, we can see a potential problem:


[image: Figure 2.6: The sigmoid function and its gradient 24]Figure 2.6: The sigmoid function and its gradient 24

As the value of the sigmoid function increases or decreases towards the extremes (0 or 1, representing being either "off" or "on"), the values of the gradient vanish to near zero. This means that the updates to w and b, which are products of these gradients from hidden activation functions y, shrink towards zero, making the weights change little between iterations and making the parameters of the hidden layer neurons change very slowly during backpropagation. Clearly one problem here is that the sigmoid function saturates; thus, choosing another nonlinearity might circumvent this problem (this is indeed one of the solutions that was proposed as the ReLU, as we'll cover later).

Another problem is more subtle, and has to do with how the network utilizes its available free parameters. As you saw in Chapter 1, An Introduction to Generative AI: "Drawing" Data from Models, a posterior probability of a variable can be computed as a product of a likelihood and a prior distribution. We can see deep neural networks as a graphical representation of this kind of probability: the output of the neuron, depending upon its parameters, is a product of all the input values and the distributions on those inputs (the priors). A problem occurs when those values become tightly coupled. As an illustration, consider the competing hypotheses for a headache:


[image: Figure 2.7: The explaining away effect]Figure 2.7: The explaining away effect

If a patient has cancer, the evidence is so overwhelming that whether they have a cold or not provides no additional value; in essence, the value of the two prior hypotheses becomes coupled because of the influence of one. This makes it intractable to compute the relative contribution of different parameters, particularly in a deep network; A 2006 study25 showed how to counteract this effect, and was one of the first demonstrations of tractable inference in deep neural networks, a breakthrough that relied upon a generative model that produced images of hand-drawn digits.

Beyond these concerns, other challenges in the more widespread adoption of neural networks in the 1990s and early 2000s were the availability of methods such as Support Vector Machines26, Gradient and Stochastic Gradient Boosting Models,27 Random Forests,28 and even penalized regression methods such as LASSO29 and Elastic Net,30 for classification and regression tasks.

While, in theory, deep neural networks had potentially greater representational power than these models since they built hierarchical representations of the input data through successive layers in contrast to the "shallow" representation given by a single transformation such as a regression weight or decision tree, in practice the challenges of training deep networks made these "shallow" methods more attractive for practical applications. This was coupled with the fact that larger networks required tuning thousands or even millions of parameters, requiring large-scale matrix calculations that were infeasible before the explosion of cheap compute resources—including GPUs and TPUs especially suited to rapid matrix calculations—available from cloud vendors made these experiments practical.

Now that we've covered the basics of training simple network architectures, let's turn to more complex models that will form the building blocks of many of the generative models in the rest of the book: CNNs and sequence models (RNNs, LSTMs, and others).




Varieties of networks: Convolution and recursive

Up until now we've primarily discussed the basics of neural networks by referencing feedforward networks, where every input is connected to every output in each layer. While these feedforward networks are useful for illustrating how deep networks are trained, they are only one class of a broader set of architectures used in modern applications, including generative models. Thus, before covering some of the techniques that make training large networks practical, let's review these alternative deep models.


Networks for seeing: Convolutional architectures

As noted at the beginning of this chapter, one of the inspirations for deep neural network models is the biological nervous system. As researchers attempted to design computer vision systems that would mimic the functioning of the visual system, they turned to the architecture of the retina, as revealed by physiological studies by neurobiologists David Huber and Torsten Weisel in the 1960s.31 As previously described, the physiologist Santiago Ramon Y Cajal provided visual evidence that neural structures such as the retina are arranged in vertical networks:


[image: Figure 2.8: The "deep network" of the retina 32 33]Figure 2.8: The "deep network" of the retina 32 33

Huber and Weisel studied the retinal system in cats, showing how their perception of shapes is composed of the activity of individual cells arranged in a column. Each column of cells is designed to detect a specific orientation of an edge in an input image; images of complex shapes are stitched together from these simpler images.



Early CNNs

This idea of columns inspired early research into CNN architectures34. Instead of learning individual weights between units as in a feedforward network, this architecture (Figure 2.9) uses shared weights within a group of neurons specialized to detect a specific edge in an image. The initial layer of the network (denoted H1) consists of 12 groups of 64 neurons each. Each of these 12 groups, the 64 neurons represent an 8x8 version of the input image that has been “shrunk” - to get the value of each pixel in that 8x8 image, one multiplies a 5x5 weight with a 5x5 patch of the input 16x16 image. By sliding the 5x5 weight 3 pixels up, down, left, and right, one can cover the whole input.

Note that multiplying this 5x5 weight against a patch of the input image is only one of the possible transformations we could have done; we could also have simply taken the average or max of the pixels within a 5x5 region, an operation known as max-pooling or average pooling.

When combined, these 12 groups of neurons in layer H1 form 12 8 x 8 grids representing the presence or absence of a particular edge within a part of the image—the 8 x 8 grid is effectively a down-sampled version of the image where each of the 12 groups is picking up different aspects of the image through this downsampling operation (Figure 2.9). This weight sharing makes intuitive sense in that the kernel represented by the weight is specified to detect a distinct color and/or shape, regardless of where it appears in the image. An effect of this down-sampling is a degree of positional invariance; we only know the edge occurred somewhere within a region of the image, but not the exact location due to the reduced resolution from downsampling. Because they are computed by multiplying a 5 x 5 matrix (kernel) with a part of the image, an operation used in image blurring and other transformations, these 5 x 5 input features are known as convolutional kernels, and give the network its name.


[image: Figure 2.9: The CNN 35]Figure 2.9: The CNN 35

Once we have these 12 8 x 8 downsampled versions of the image, the next layer (H2) also has 12 groups of neurons; here, the kernels are 5 x 5 x 8—they traverse the surface of an 8 x 8 map from H1, across 8 of the 12 groups. We need 16 neurons of these 5 x 5 x 8 groups since a 5 x 5 grid can be moved over four times up and down on an 8 x 8 grid to cover all the pixels in the 8 x 8 grid.

Just like deeper cells in the visual cortex, the deeper layers in the network integrate across multiple columns to combine information from different edge detectors together.

Finally, the third hidden layer of this network (H3) contains all-to-all connections between 30 hidden units and the 12 x 16 units in the H2, just as in a traditional feedforward network; a final output of 10 units classifies the input image as one of 10 hand-drawn digits.

Through weight sharing, the overall number of free parameters in this network is reduced, though it is still large in absolute terms. While backpropagation was used successfully for this task, it required a carefully designed network for a rather limited set of images with a restricted set of outcomes—for real-world applications, such as detecting objects from hundreds or thousands of possible categories, other approaches would be necessary.



AlexNet and other CNN innovations

A 2012 article that produced state-of-the-art results classifying the 1.3 million images in ImageNet into 1,000 classes using a model termed AlexNet demonstrates some of the later innovations that made training these kinds of models practical.36 One, as I've alluded to before, is using ReLUs37 in place of sigmoids or hyperbolic tangent functions. A ReLU is a function of the form:




In contrast to the sigmoid function, or tanh, in which the derivative shrinks to 0 as the function is saturated, the ReLU function has a constant gradient and a discontinuity at 0 (Figure 2.10). This means that the gradient does not saturate and causes deeper layers of the network to train more slowly, leading to intractable optimization.
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While advantageous due to non-vanishing gradients and their low computational requirements (as they are simply thresholded linear transforms), ReLU functions have the downside that they can "turn off" if the input falls below 0, leading again to a 0 gradient. This deficiency was resolved by later work in which a "leak" below 0 was introduced39:




A further refinement is to make this threshold adaptive with a slope a, the Parameterized Leak ReLU (PReLU)40:




More recent research has led to the development of the GELU, ELU, and SiLU units, which combined elements of the RELU with greater flexbility.

Another trick used by AlexNet is dropout.41 The idea of dropout is inspired by ensemble methods in which we average the predictions of many models to obtain more robust results. Clearly for deep neural networks this is prohibitive; thus a compromise is to randomly set the values of a subset of neurons to 0 with a probability of 0.5. These values are reset with every forward pass of backpropagation, allowing the network to effectively sample different architectures since the "dropped out" neurons don't participate in the output in that pass. This effectively reduces the number of model parameters by 50% that we are updating in each backpropagation pass, thus acting as form of regularization and reducing overfitting.


[image: Figure 2.11: Dropout]Figure 2.11: Dropout

Yet another enhancement used in AlexNet is local response normalization. Even though ReLUs don't saturate in the same manner as other units, the authors of the model still found value in constraining the range of output. For example, in an individual kernel, they normalized the input using values of adjacent kernels, meaning the overall response was rescaled42:




where a is the unnormalized output at a given x, y location on an image, the sum over j is over adjacent kernels, and B, k, and alpha are hyperparameters. This rescaling is reminiscent of a later innovation used widely in both convolutional and other neural network architectures, batch normalization43. Batch normalization also applies a transformation on "raw" activations within a network:




where x is the unnormalized output, and B and y are scale and shift parameters. This transformation is widely applied in many neural network architectures to accelerate training, through the exact reason why it is effective remains a topic of debate.44

Now that you have an idea of some of the methodological advances that made training large CNNs possible, let's examine the structure of AlexNet to see some additional architectural components that we will use in the CNNs we implement in generative models in later chapters.



AlexNet architecture

While the architecture of AlexNet shown in Figure 2.12 might look intimidating, it is not so difficult to understand once we break up this large model into individual processing steps. Let's start with the input images and trace how the output classification is computed for each image through a series of transformations performed by each subsequent layer of the neural network.


[image: Figure 2.12: AlexNet]Figure 2.12: AlexNet

The input images to AlexNet are size 224 x 224 x 3 (for RGB channels). The first layer consists of groups of 96 units and 11 x 11 x 3 kernels; the output is response normalized (as described previously) and max pooled. Max pooling is an operation that takes the maximum value over an n x n grid to register whether a pattern appeared anywhere in the input; this is again a form of positional invariance.

The second layer is also a set of kernels of size 5 x 5 x 8 in groups of 256. The third through to fifth hidden layers have additional convolutions, without normalization, followed by two fully connected layers and an output of size 1,000 representing the possible image classes in ImageNet. The authors of AlexNet used several GPUs to train the model, and this acceleration is important to the output.


[image: Figure 3213: Image kernels from AlexNet]Figure 3213: Image kernels from AlexNet

Looking at the features learned during training in the initial 11 x 11 x 3 convolutions (Figure 2.13), we can see recognizable edges and colors. While the authors of AlexNet don't show examples of neurons higher in the network that synthesize these basic features, an illustration is provided by another study in which researchers trained a large CNN to classify images in YouTube videos, yielding a neuron in the upper reaches of the network that appeared to be a cat detector (Figure 2.14).


[image: Figure 2.14: A cat detector learned from YouTube videos 45]Figure 2.14: A cat detector learned from YouTube videos 45

This overview should give you an idea of why CNN architectures look the way they do, and what developments have allowed them to become more tractable as the basis for image classifiers or image-based generative models over time. We will now turn to a second class of more specialized architectures—RNNs—that's used to develop time or sequence-based models.




Networks for sequential data

In addition to image data, natural language text has also been a frequent topic of interest in neural network research. However, unlike the datasets we've examined thus far, language has a distinct order that is important to its meaning. Thus, to accurately capture the patterns in language or time-dependent data, it is necessary to utilize networks designed for this purpose.


RNNs and LSTMs

Let's imagine we are trying to predict the next word in a sentence, given the words up until this point. A neural network that attempted to predict the next word would need to take into account not only the current word but a variable number of prior inputs. If we instead used only a simple feedforward MLP, the network would essentially process the entire sentence or each word as a vector. This introduces the problem of either having to pad variable-length inputs to a common length and not preserving any notion of correlation (that is, which words in the sentence are more relevant than others in generating the next prediction), or only using the last word at each step as the input, which removes the context of the rest of the sentence and all the information it can provide. This kind of problem inspired the "vanilla" RNN46, which incorporates not only the current input but the prior step's hidden state in computing a neuron's output:




One way to visualize this is to imagine each layer feeding recursively into the next timestep in a sequence. In effect, if we "unroll" each part of the sequence, we end up with a very deep neural network, where each layer shares the same weights.47


[image: Figure 2.15: The unrolled RNN 48]Figure 2.15: The unrolled RNN 48

The same difficulties that characterize training deep feedforward networks also apply to RNNs; gradients tend to die out over long distances using traditional activation functions (or explode if the gradients become greater than 1).

However, unlike feedforward networks, RNNs aren't trained with traditional backpropagation, but rather a variant known as backpropagation through time (BPTT): the network is unrolled, as before, and backpropagation is used, averaging over errors at each time point (since an "output," the hidden state, occurs at each step).49 Also, in the case of RNNs, we run into the problem that the network has a very short memory; it only incorporates information from the most recent unit before the current one and has trouble maintaining long-range context. For applications such as translation, this is clearly a problem, as the interpretation of a word at the end of a sentence may depend on terms near the beginning, not just those directly preceding it.

The LSTM network was developed to allow RNNs to maintain a context or state over long sequences, and addresses the exploding/vanishing gradient problem by allowing the gradient in the initial layer to be “stored” in a secondary memory and used—without exploding or vanishing—in tuning the weights of subsequent layers.50


[image: Figure 2.16: LSTM network]Figure 2.16: LSTM network

Figure 2.16 shows how this works: in a vanilla RNN, we only maintain a short-term memory h coming from the prior step's hidden unit activations. In addition to this short-term memory, the LSTM architecture introduces an additional layer c, the "long-term" memory, which can persist over many timesteps. The design is in some ways reminiscent of an electrical capacitor, which can use the c layer to store up or hold "charge," and discharge it once it has reached some threshold. To compute these updates, an LSTM unit consists of a number of related neurons, or gates, that act together to transform the input at each time step.

Given an input vector x, and the hidden state h, at the previous time t-1, at each time step an LSTM first computes a value from 0 to 1 for each element of c representing what fraction of information is "forgotten" of each element of the vector:




We make a second, similar calculation to determine what from the input value to preserve:




We now know which elements of c are updated; we can compute this update as follows:




where o is a Hadamard product (element-wise multiplication). In essence this equation tells us how to compute updates using the tanh transform, filter them using the input gate, and combine them with the prior time step's long-term memory using the forget gate to potentially filter out old values.

To compute the output at each time step, we compute another output gate:




And to compute the final output at each step (the hidden layer fed as short-term memory to the next step) we have:




Many variants of this basic design have been proposed; for example, the "peephole" LSTM substituted h(t-1) with c(t-1) (thus each operation gets to "peep" at the long-term memory cell),51 while the GRU52 simplifies the overall design by removing the output gate. What these designs all have in common is that they avoid the vanishing (or exploding) gradient difficulties seen during the training of RNNs, since the long-term memory acts as a buffer to maintain the gradient and propagate neuronal activations over many timesteps.




Transformers

While we will discuss this topic in more detail in Chapter 9, NLP 2.0: Using Transformers to Generate Text, it important to note that Convolutional and Recursive Units have been replaced in many current applications by Transformers, a type of architecture first described in 2017. In a way, transformers combine the strengths of both recursive and convolutional networks. Like convolutional networks, they compute relative similarity between elements in a sequence or matrix; but unlike convolutional networks they perform this calculation between all elements rather than just locally. Like LSTMs, they preserve a context window through positional encoding elements, the all-to-all pairwise similarity (also known as self-attention), and pass through connections that resemble the memory units in LSTMs. However, unlike LSTMs, they can computed in parallel, enabling more efficient training.

Figure 2.17 Gives an overview of how this remarkable operation works; each element in a sequence is tokenized and represented as three sets of vectors; the Query (Q), the Key (K), and the Value (V). By multiplying all Q and K and rescaling them by V, we get a compact representation of the relevance of each element of the sequence to all others. And, we can perform this operation in parallel using different sets of learned weights, to pick up different kinds of relative importance using Multi-Head Attention.


[image: Figure 2.17: The Transformer Attention Module]Figure 2.17: The Transformer Attention Module



Building a better optimizer

In this chapter we have so far discussed several examples in which better neural network architectures allowed for breakthroughs; however, just as (and perhaps even more) important is the optimization procedure used to minimize the error function in these problems, which "learns" the parameters of the network by selecting those that yield the lowest error. Referring to our discussion of backpropagation, this problem has two components:


	How to initialize the weights: In many applications historically, we see that the authors used random weights within some range, and hoped that the use of backpropagation would result in at least a locally minimal loss function from this random starting point. Whether the activation functions in the network had staturated or 0 values (increasing the likelihood of uninformative gradients during training of the model) was not considered.

	How to find the local minimum loss: In basic backpropagation, we used gradient descent using a fixed learning rate and a first derivative update to traverse the potential solution space of weight matrices; however, there is good reason to believe there might be more efficient ways to find a local minimum.



In fact, both of these have turned out to be key considerations towards progress in deep learning research.


Gradient descent to ADAM

As we saw in our discussion of backpropagation, the original version proposed in 1986 for training neural networks averaged the loss over the entire dataset before taking the gradient and updating the weights. Obviously, this is quite slow and makes distributing the model difficult, as we can't split up the input data and model replicas; if we use them, each needs to have access to the whole dataset.

In contrast, SGD computes gradient updates after n samples, where n could a range from 1 to N, the size of the dataset. In practice, we usually perform mini-batch gradient descent, in which n is relatively small, and we randomize assignment of data to the n batches after each epoch (a single pass through the data).

However, SGD can be slow, leading researchers to propose alternatives that accelerate the search for a minimum. As seen in the original backpropagation algorithm, one idea is to use a form of exponentially weighted momentum that remembers prior steps and continues in promising directions. Variants have been proposed, such as Nesterov Momentum, which adds a term to increase this acceleration.53




In comparison to the momentum term used in the original backpropagation algorithm, the addition of the current momentum term to the gradient helps keep the momentum component aligned with the gradient changes.

Another optimization, termed Adaptive Gradient (Adagrad)54, scales the learning rate for each update by the running the sum of squares (G) of the gradient of that parameter; thus, elements that are frequently updated are downsampled, while those that are infrequently updated are pushed to update with greater magnitude:




This approach has the downside that as we continue to train the neural network, the sum G will increase indefinitely, ultimately shrinking the learning rate to a very small value. To fix this shortcoming, two variant methods, RMSProp55 (frequently applied to RNNs) and AdaDelta56 impose fixed-width windows of n steps in the computation of G.

Adaptive Momentum Estimation (ADAM)57 can be seen as an attempt to combine momentum and AdaDelta; the momentum calculation is used to preserve the history of past gradient updates, while the sum of decaying squared gradients within a fixed update window used in AdaDelta is applied to scale the resulting gradient. An improvement on ADAM, ADAMW, a weight decay scheme from SGD is used in updating parameters at each time step.

The methods mentioned here all share the property of being first order: they involve only the first derivative of the loss with respect to the input. While simple to compute, this may introduce practical challenges with navigating the complex solution space of neural network parameters. As shown in Figure 2.18, if we visualize the landscape of weight parameters as a ravine, then first-order methods will either move too quickly in areas in which the curvature is changing quickly (the top image) overshooting the minima, or will change too slowly within the minima "ravine," where the curvature is low. An ideal algorithm would take into account not only the curvature but the rate of change of the curvature, allowing an optimizer order method to take larger step sizes when the curvature changes very slowly and vice versa (the bottom image).


[image: Figure 2.18: Complex landscapes and second-order methods 58]Figure 2.18: Complex landscapes and second-order methods 58

Because they make use of the rate of change of the derivative (the second derivative), these methods are known as second order, and have demonstrated some success in optimizing neural network models.59

However, the computation required for each update is larger than for first-order methods, and because most second-order methods involve large matrix inversions (and thus memory utilization), approximations are required to make these methods scale. Ultimately, however, one of the breakthroughs in practically optimizing networks comes not just from the optimization algorithm, but how we initialize the weights in the model.



Xavier initialization

As noted previously, in earlier research it was common to initialize weights in a neural network with some range of random values. Breakthroughs in the training of Deep Belief Networks in 2006

If you've ever used a layer in PyTorch , you will notice that the default initialization for layer weights draws from either a truncated normal or uniform distribution. Where does this choice come from? As I described previously, one of the challenges with deep networks using sigmoidal or hyperbolic activation functions is that they tend to become saturated, since the values for these functions are capped with very large or negative input. We might interpret the challenge of initializing networks then as keeping weights in such a range that they don't saturate the neuron's output. Another way to understand this is to assume that the input and output values of the neuron have similar variance; the signal is not massively amplifying or diminishing while passing through the neuron.

In practice, for a linear neuron, y = wx + b, we could compute the variance of the input and output as:




The b is constant, so we are left with:




Since there are N elements in the weight matrix, and we want var(y) to equal var(x), this gives:




Therefore, for a weight matrix w, we can use a truncated normal or uniform distribution with variance 1/N (the average number of input and output units, so the number of weights).60 Variations have also been applied to ReLU units:61 these methods are referred to by their original authors' names as Xavier or He initialization.

In summary, we've reviewed several common optimizers used under the hood in PyTorchPyTorch, and discussed how they improve upon the basic form of SGD. We've also discussed how clever weight initialization schemes work together with these optimizers to allow us to train ever more complex models.




Summary

In this chapter, we've covered the basic vocabulary of deep learning—how initial research into perceptrons and MLPs led to simple learning rules being abandoned for backpropagation. We also looked at specialized neural network architectures such as CNNs, based on the visual cortex, and recurrent networks, specialized for sequence modeling. Finally, we examined variants of the gradient descent algorithm proposed originally for backpropagation, which have advantages such as momentum, and described weight initialization schemes that place the parameters of the network in a range that is easier to navigate to a local minimum.

With this context in place, we are all set to dive into projects in generative modeling, beginning with the generation of MNIST digits using Deep Belief Networks in Chapter 11, Painting Pictures with Neural Networks Using VAEs.
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