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Chapter 1. Introduction



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




AI is no longer the realm of science fiction novels and dystopian Hollywood movies. It is fast becoming an integral part of people’s lives. Most of us interact with AI on a daily basis, often times without even realizing it.


Current progress in AI has to a large extent been driven by advances in language modeling. LLMs (Large Language Models) are one of the most significant technological advances in recent times, marking a new epoch in the world of tech. Previous inflection points include the advent of the computer that ushered in the digital revolution, the birth of the Internet and the World Wide Web that connected the world together, and the emergence of the smartphone that reshaped human communication. Given current trends, Generative AI, with LLMs playing a key part, is poised to be the next such transformative epoch.


Generative AI models learn patterns from data and are able to generate new data in response to user queries, called prompts. Generative AI encompasses models that generate images, videos, speech, music, and of course text. While there is an increasing focus on bringing all these modalities together into a single model, in this book we will stick to language and LLMs.


In this chapter, we will introduce language models and define what makes a language model large. We will go through a brief history of LLMs, contextualizing their place within the field of NLP (Natural Language Processing) and their evolution. We will highlight the impact LLMs are already having in the world and showcase key use cases. We will also introduce LLM prompting and show how to interact with an LLM effectively. We will then explore how to access LLMs through an API. Finally, we will end this chapter with a quick tutorial on building a Chat with my PDF chatbot prototype. We will then discuss the limitations of the prototype and the factors limiting its suitability for production use cases, thus setting the stage for the rest of the book.








Defining LLMs


A model is an approximation of a real world concept or phenomenon. A faithful model will be able to make predictions about the concept it is approximating. A language model approximates human language, and is built by training over a large body of text, thus imbuing it with various properties of langauge, including aspects of grammar (syntax) and meaning (semantics).


During the training process, the language model predicts the next token (this is equivalent to a word or a subword, but we will ignore this distinction until the next chapter) in a known text sequence and its parameters are updated if it gets it wrong.


For example, consider the text sequence in our training data


The umbrella thief sauntered his way to the hostel


We ask the language model to predict the next word that comes after The umbrella thief sauntered his way to the _


There are a large number of valid continuations to this text sequence. It could be restaurant or bank, but it could also be embankment or orifice. However, it is definitely not the or is, because that would break the rules of the English language. After training on a sufficiently large body of text, the model learns that neither the nor is are valid continuations. Thus, you can see how a simple task like learning to predict the next word in the sequence can lead the model to learning the grammar of the language in its parameters, as well as even more complex skills.


Is there a limit to what a model can learn from next token prediction alone? This is a very important question that determines how powerful LLMs can eventually be. There is plenty of disagreement in the research community, with some researchers arguing next token prediction is enough to achieve general intelligence in models, and others pointing out the shortfalls of this paradigm. We will come back to this question throughout the book, and especially in Chapter 10, where we will discuss skills like reasoning.


Modern-day language models are based on neural networks. Several neural network architectures are used to train LLMs, the most prominent being the Transformer. We will learn more about neural networks, Transformers, and other architectures in detail in Chapter 2.


Language models can be trained to model not just human languages, but also programming languages like Python or Java. In fact, the Transformer architecture and the next token prediction objective can be applied to  sequences that are not languages at all, like representations of chess moves, DNA sequences, or airline schedules.


For example, Adam Karvonen trained Chess-GPT, a model trained only on chess games represented in PGN (Portable Game Notation) strings. PGN strings for chess look like ‘1. e4 d5 2. exd5 Qxd5…’ and so on. Even without providing the rules of the game explicitly, and just training the model to predict the next character in the PGN sequence, the model was able to learn the rules of the game including moves like castling, check, checkmate and even win chess games against experts.
This shows the power of the next token prediction objective, and the Transformer architecture that forms the basis of the model. In Chapter 6, we will learn how to train our own Chess-GPT from scratch.


Another such example is the Geneformer, a model trained on millions of single-cell transcriptomes (representation of RNA molecules in a single cell) which can be used for making predictions in network biology, including disease progression, gene-dosage sensitivity, and finding therapeutic candidates.


Therefore, I encourage you to think beyond the realm of human language when determining how to use language models. If you have a concept or phenomenon that can be encoded in a sequence using a finite vocabulary (we will more formally define vocabulary in Chapter 4), then we can potentially train a useful model on it.


Around 2019, researchers realized that increasing the size of the language model predictably improved performance, with no saturation point in sight. This led to Kaplan et al.’s work on LLM scaling laws, which derives a mathematical formula describing the relationship between the amount of compute for training the model, the training dataset size, and the model size. Ever since then, companies and organizations have been training increasingly larger models.


Scaling Laws for Language Models

In early 2020, Kaplan et al. from Open AI published a study establishing the scaling laws of language models that ushered in the LLM era. They found a power-law relationship between the performance of the language model (more formally, called model loss, but we will describe that in Chapter 2) and the size of the dataset used to train the model, the amount of compute used to train the model, and the size of the model itself, measured in terms of number of parameters. Simply put, the larger the model size, compute size, and amount of training data, the better the model.


More specifically, they found that for a fixed compute budget, increasing the size of the dataset and the model in tandem improves the performance of the LM, but the dataset size needs to increase only by 1.8x for every 5.5x increase in model size to maintain optimal level of performance. This is because larger models are more sample-efficient, meaning they need relatively fewer training examples to learn. Thus, models from that era mainly focused on increasing model sizes as much as possible.


However, in 2022, Hoffmann et al. from DeepMind pointed out that Kaplan et al. underestimated the impact of data size, resulting in language models from that era being significantly undertrained. They showed that to optimize performance of a LLM at a fixed compute budget (called compute-optimal), the training data size needs to increase at the same proportion as the model size. This led to the newer generation of models being trained on more data.


Note that both these scaling laws apply to compute-optimal LLMs, where you start with a fixed compute budget and ask ‘What is the best LLM I can train with this budget?’. But sometimes you are bottlenecked by other criteria, like the size of the model. Smaller models are faster to run and more energy efficient. In this case, one can significantly increase the training data size and continue seeing performance gains, albeit much smaller since the model size is constant. This is the trend driving new LLM development, especially in the open-source space.




For our purposes, we will call any model that contains over a billion parameters as a Large Language Model. Note that there is no accepted convention on when a language model is deemed to be large.


Another way in which a ‘large’ language model differs from smaller ones is the emergent capabilities that they possess. First hypothesized by Wei et al., emergent capabilities are those capabilities that are exhibited by larger models but not smaller ones.


According to this theory, for tasks that require these capabilities, the performance of smaller models is close to random. However, when the model size reaches a threshold, the performance suddenly starts to increase with size. Examples include multi-digit arithmetic operations, arithmetic and logical reasoning etc. This also suggests that certain capabilities that are completely absent in current models could be exhibited by future models.


These thresholds are not absolute, and as we see more advances in language modelling, we can expect the thresholds to come down. Moreover, there has been recent work showing that perhaps most capabilities thought of as emergent, including reasoning capabilities, are perhaps not emergent at all.


The question of what abilities are emergent is still being explored in the research community. In Chapter 5, we will discuss its implications for selecting the right model for our desired use case.

Note

LLMs are expensive and slow, thus prompting a growing body of research to investigate smaller language models that can still exhibit the same properties as larger ones. These are called SLMs (Small Language Models), although I have seen models as large as three billion parameters being called SLMs!




To understand how current LLMs came to be, it is instructive to walk through a brief history of LLMs. As more historical details are out of scope for the book, we will provide links to external resources for further reading throughout the section.










A Brief history of LLMs


In order to present the history of LLMs, we need to start from the history of NLP (Natural Language Processing), the field that LLMs originated from. For a more detailed history of NLP, refer to Daniel Jurafsky’s seminal book on NLP.










Early years


The field traces its origins to the 1950s, driven by demand for  machine translation, the task of automatically translating from one language to another. The early days were dominated by symbolic approaches;  these were rule-based algorithms based on linguistic theories influenced by the works of linguists like Noam Chomsky.


In the mid-1960s, Joseph Weizenbaum released ELIZA, a chatbot program that applied pattern matching using regular expressions on the user’s input and selected response templates to generate an output. ELIZA consisted of several scripts, the most famous one being DOCTOR, that simulated a psychotherapist. This variant would respond by rephrasing the user’s input in the form of a question, similar to how a therapist would.


As an example:


User: ‘I am not feeling well’


ELIZA: ‘Do you believe it is normal to be not feeling well?’


You can try chatting with ELIZA online. Even in the era of ChatGPT, ELIZA can hold a somewhat convincing conversation, despite the fact that it is just rules-based.


Exercise

Read through the classic paper by Weizenbaum introducing ELIZA. In general, I recommend developing a habit of reading papers from yester years, as it is a good source of inspiration. Ideas get recycled all the time and infeasible ideas from the past become feasible today due to advances in technology.


Additionally, go through the code for the Python implementation of ELIZA by Wade Brainerd to understand how powerful carefully constructed rule-based systems can be. Even in the era of LLMs, you should not shy away from using rule-based approaches for your language tasks!




As the decades rolled by, the limitations of symbolic approaches became more and more evident, and statistical approaches became more commonplace. NLP researcher Frederik Jelinek famously quipped


Every time I fire a linguist, the performance of the speech recognizer goes up.

Frederik Jelinek




Machine learning based approaches became more widely used in the 1990s and 2000s. Feature engineering and selection, the process of identifying features that are predictive to solve a task, was a crucial and time-consuming task. These features could be statistical like the average word length, or linguistic, like parts of speech. To learn more about traditional statistical NLP, I recommend reading Christopher Manning’s book.


The relevance of linguistics to modern day NLP application development is a point of debate. Many university courses on NLP have completely dropped content related to linguistics. Even though I don’t directly use linguistics in my work, I find that I rely on them more often than I expect to develop intuitions about model behavior and task decomposition. As such, I recommend Emily Bender’s books on syntax and semantics to understand the basics of this field.


The 2010s saw the advent of deep learning and its widespread impact on NLP. In deep learning, the neural network model learned informative features by itself given raw input, thus removing the need for cumbersome feature engineering. To learn the principles of deep learning and neural networks, I recommend reading Goodfellow et al.’s book. For more hands-on deep learning training, I recommend Zhang et al.’s Dive into Deep Learning.


During the early years of deep learning, it was customary to construct a task-specific architecture to solve each task. Some of the types of neural network architectures used include multi-layer perceptrons, convolutional neural networks, recurrent neural networks, and recursive neural networks. To learn more about this era of NLP, I recommend reading Yoav Goldberg’s book on Neural NLP.












The modern LLM era


In 2017, the Transformer architecture was invented, quickly followed by the invention of transfer learning and Transformer-based language models like BERT. These advances removed the need for constructing complex task-specific architectures. Instead, one could use the same Transformer model to train a variety of tasks. This new paradigm divided the training step into two stages: pre-training and fine-tuning. An initial large scale pre-training step initialized the Transformer model with general language capabilities. Subsequently, the pre-trained model could be trained on individual tasks separately, creating a copy of the model each time, using a process called fine-tuning. We will cover all these topics in detail throughout the book.


The evolution of the modern era can be traced through the advances brought in by each of the GPT (Generative Pre-trained Transformer) models trained by Open AI.



	
GPT-1 - Showcased unsupervised pre-training on large scale data, followed by task-specific supervised fine-tuning.



	
GPT-2 - This version could solve several types of tasks in a zero-shot setting, without any task-specific fine-tuning. This marked the rise of prompting as a means to interact with a language model. We will discuss zero-shot and prompting later in the chapter.



	
GPT-3 - Inspired by the scaling laws, this model is a hundred times larger than GPT-2 and popularized in-context/few-shot learning. We will learn more about this later in the chapter.



	
GPT-4 - As of the book’s writing, this model is the current state-of-the-art. A key aspect of this release is the alignment training used to make the model more controllable and adhere to the principles and values of the model trainer. We will learn about alignment training in Chapter 7.






Exercise

Read each of the GPT papers, in order. It is OK if you do not understand some of the concepts and principles, as we will cover them throughout the course of the book. After finishing the first two parts of the book, read the papers again for a more enhanced understanding.




You might have noticed a trend here; through the years, the field has been experiencing a consolidation effect, with more and more parts of the NLP task pipeline being performed end-to-end, i.e. by a single model. Throughout this book, we will point out the consolidation effect where it is apparent, and discuss its implications for the future of LLMs.


A history of LLMs wouldn’t be complete without mentioning the impact of open source contributions to this field. Open source models, datasets, model architectures, and various developer libraries and tools have all had significant impacts on the development of this field. This book places a special importance on open-source, providing a thorough survey of the open-source LLM landscape and showcasing many open-source models and datasets.


Next, let’s explore how LLMs are being adopted and their impact on society.












The impact of LLMs


The tech world has long been susceptible to hype cycles, with exhilerating booms and depressing busts. More recently, we have witnessed the crypto/blockchain and Web3 booms, both of which are yet to live up to their promise. Is AI heading towards a similar fate? We have hard evidence that it is not.


At my company Hudson Labs, we analyzed discussions in the quarterly earnings calls of the 4000 largest publicly listed companies in the United States to track adoption of crypto, Web3, and AI in the enterprise.


We observed that 85 companies discussed Web3 in their earnings calls, with even fewer tangibly working on it. Crypto fared better, with 313 companies discussing it. Meanwhile, LLMs were discussed and adopted by 2,195 companies, meaning that at least 50% of America’s largest public companies are not only using LLMs to drive value, but it is also strategically so important to them as to merit discussion in their quarterly earnings call. Effective or not, LLM adoption in the enterprise is already a reality.


Figure 1-1 shows the number of companies discussing Web3 in their earnings calls over time. As you can see, the Web3 hype seems to be tapering off.



[image: web3]
Figure 1-1. Companies that discussed Web3 in their earnings calls across time.




Similarly, Figure 1-2 shows the number of companies discussing crypto/blockchain in their earnings calls over time. As you can see, this is also a declining trend.



[image: crypto]
Figure 1-2. Companies that discussed crypto in their earnings calls across time.




Finally, let’s look at AI. As mentioned before, AI has reached amounts of adoption in the enterprise that no other recent technology trend has managed to in the recent past. The trend is only accelerating, as shown in Figure 1-3, which shows the number of companies at which AI was discussed during the earnings calls in just the first two months of the year. The sharp spike in 2024 shows that the trend is only growing.



[image: ai-adoption]
Figure 1-3. Companies that were asked questions about AI in their earnings calls during the first two months of the year




Note that these statistics only include Generative AI/LLM adoption and not data science/data analytics, whose adoption is even more ubiquitous in the enterprise. AI adoption is also not just limited to tech companies, with companies ranging from real estate companies to insurance firms joining in on the fun.










LLM usage in the enterprise


From the same analysis, we observed the key ways in which LLMs are used in the enterprise:



	
Employee Productivity: The primary means by which employee productivity has improved through LLM usage is with coding assistants like Github Copilot. LLMs are also widely used to help draft marketing and promotional text and automate marketing campaigns. In fact, the first major commercial success stories of LLMs were marketing startups like Jasper.ai and Copy.ai. Another key LLM-driven productivity enhancement is question answering assistants over a company’s extensive knowledge base drawn from heterogenous data sources.



	
Report Generation: These include summarization tasks, completing mundane paperwork, and even drafting contracts. Examples of summarization tasks include summarizing financial reports, research papers, or even meetings minutes from audio or call transcripts.



	
Chatbots: LLM-driven chatbots are being increasingly deployed as customer service agents. They are also being used as an interface to a company’s documentation or product page.



	
Information Extraction and Sequence Tagging: Over the years, a large number of enterprises have developed complex NLP (Natural Language Processing) pipelines for langauge processing tasks. Many of these pipelines are being fully or partially replaced by an LLM. These pipelines are used to solve common NLP tasks like sentiment analysis, information extraction tasks like entity extraction and relation extraction, and sequence tagging tasks like named entity recognition. For a detailed list of NLP tasks and their description, see Fabio Chiusano’s blog



	
Translation: Translation tasks not only include translating text from one language to another, but also includees tasks where text is converted to a different form but in the same language, for example, converting informal text to formal text, abusive text to polite text and so on. Real-time translation apps like Erudite’s Instant Voice Translate promise to make language barrier driven embarassing moments for tourists a thing of the past.






Effect of LLMs on the job market

Our analysis of earnings calls also pointed out a concering trend - companies are already treating LLMs and AI in general as a cost saving measure. Indeed, several companies have already explicitly stated that they have reduced their workforce after seeing efficiency improvements using AI.


For instnace, Klarna, a Swedish fintech company, announced that their AI assistant is handling two-thirds of their customer support cases, handling the workload of 700 human agents.


The rapid adoption of LLMs at scale do not necessarily mean that they are better than humans at their tasks. In cases where LLMs are completely replacing humans and not just augmenting them, they may be deployed even if they perform worse than humans, just because of the resulting cost savings. This premature deployment of AI technologies can lead to worse customer satisfaction in the long run.


On the other hand, LLMs have vastly lowered the barrier for software development, thus leading to more digitalization and potentially more jobs.












Prompting


Now that we have our fundamentals in place, let’s begin learning how to effectively use LLMs.


The process by which you interact with an LLM is called prompting. Despite attempts by companies to anthropomorphise LLMs by giving them a name or a persona, when you are chatting with an LLM you are not conversing with them like you would with a human, you are prompting them. Remember that LLMs are next word predictors. This means that the text they generate is heavily dependent on the text they are fed, called the context.


By feeding the LLM the right text in the context, you are priming it to generate the type of output you need. The ideal prompt would then be What would be the best prefix of N tokens that when fed to an LLM, will lead it to generate the correct answer with the highest probability?
'
When I started writing this book, I solicited opinions from the target readership on the topics they would like covered in this book. The most number of requests I received were on the topic of prompting, with practitioners wanting to understand how to effectively create prompts for their specific use cases.


Indeed, prompting is an important aspect of modern day LLMs. In fact, you will probably end up spending a significant amount of your time on any LLM-based project iterating on prompts, very inaccurately referred to as prompt engineering.

Tip

There have been attempts to automatically optimize prompts, like APO (Automatic Prompt Optimization) and AutoPrompt. We will discuss this further in Chapter 13.




It is important to manage one’s expectations on the effectiveness of prompt engineering. Prompts aren’t magical incantations that unlock hidden LLM capabilities. It is very unlikely that there are companies who have a significant advantage over others just by using a superior prompting technique unknown to others. On the flip side, not following basic prompting principles can severely hamper the performance of your LLM.


There are umpteen prompting tutorials available online. I recommend learningprompting.org’s prompting guide in particular. You do not need to know all the prompting techniques to become well-versed in prompting. Most of what you need to know about prompting can be learned in a couple of hours. What matters more is interacting with the LLMs you use frequently to observe their outputs and developing an intuition on their behavior.


If you have programming experience, I suggest viewing prompting through the lens of programming. In programming, instructions need to be explicit with no room for ambiguity. The challenge with prompting is that it is done in natural language, which is inherently ambigiuous. Still, the best prompts state instructions as explicitly and as detailed as possible. We will learn more prompting nuances in Chapter 5 and 13.

Note

Language models are insensitive to word order. This property has been observed even in earlier models like BERT. For example, ask ChatGPT or your favorite LLM provider the question How do I tie my shoe laces? in jumbled form, say shoe tie my I how do laces? ChatGPT responds with Certainly! Here are step-by-step instructions on how to tie your shoe laces: …​ as if you asked a straight-forward question. In Chapter 2, we will see why this happens.




Next, let’s go through a few types of prompting modes:










Zero-shot prompting


This is the standard approach to prompting, where you provide the LLM with an instruction and optionally, some input text.


Consider an example where your task is to retrieve the sentiment of a restaurant review. To achieve this through zero-shot prompting, you can issue the following prompt:


“Classify the given sentence according to its sentiment. The output can be one of Positive, Negative, Neutral.
The mashed potatoes took me back to my childhood school meals. I was so looking forward to having them again. NOT!
Sentiment:


A good zero-shot prompt will:



	
Provide the instruction in a precise and explicit manner.



	
Describe the output space or the range of acceptable outputs and output format. In this example, we mention the output should be one of three values.



	
Prime it to generate the correct text. By ending the prompt with Sentiment:, we are increasing the probability of the LLM generating the sentiment value as the next token.






In real-world settings, your output format needs to be highly controllable, in order for it to fit in automated systems. We will discuss more techniques for ensuring controllability of outputs in Chapter 5.

Warning

Prompts are sensitive to model changes. You might painstakingly construct a prompt that seems to work well, but you might notice that the same prompt does not work for a different model. In fact, the same prompt might see degraded performance on the same API endpoint if the underlying model is updated in the meanwhile. We call this prompt drift. It is a good idea to version control prompts, and we will discuss tools to facilitate this in Chapter 5.














Few-shot prompting


In our example for zero-shot prompting, the LLM was able to solve the task without explaining it how to solve it. This is because the task is simple and clearly defined. In many cases, the tasks might be not so easy to describe in natural language. We can then add some examples in our prompt consisting of either outputs or input-output pairs. While this is called few-shot learning colloquially, the language model is not updated in any way through this prompting technique.


Here is an example for few-shot prompting:


‘A palindrome is a word that has the same letters when spelled left to right


or right to left.


Examples of words that are palindromes: kayak, civic, madam, radar


Examples of words that are not palindromes: kayla, civil, merge, moment


Answer the question with either Yes or No


Is the word Toyota a palindrome?


Answer:'












Chain-of-Thought prompting


This is probably the most important prompting technique to know about. As we have seen, the context of the LLM determines the next token predicted by it. Therefore, we need to optimize the content in the prompt to maximize the probability of the LLM generating the right tokens. One way to do it is to ask the LLM to think before generating. This prompts the LLM to generate the process to get to the answer instead of directly generating the answer. This might involve breaking the input task into subtasks and solving them one after the other.


When the LLM is eventually at the cusp of generating the answer, it can rely on a more relevant context that increases its probability of generating the right answer. We will call the initial text generated by the LLM as scratchpad text.


As an example, consider the following example:


'Solve the equation. 34 + 44 + 3  * 23 / 3 * 2. Think step by step.'


After recieving the instruction Think step by step, the LLM then breaks down the problem and solves them individually.


Given equation:

34 + 44 + 3 * 23 / 3 * 2

First, perform multiplication and division from left to right:

= 34 + 44 + (3 * 23 / 3 * 2)
= 34 + 44 + (69 / 3 * 2)
= 34 + 44 + (23 * 2)
= 34 + 44 + 46

Now, perform addition:

= 78 + 46

Finally, complete the addition:

= 124

So, the solution to the equation is 124.

Tip

Many LLMs these days solve tasks step-by-step without being explicitly prompted to. This is because they have been instruction-tuned to do so. We will learn more about instruction-tuning in Chapter 5. LLMs that have been instruction-tuned are easier to prompt.


In the case of LLMs accessible through a user interface, there might be a hidden prompt (called a system prompt) by the LLM provider that applies chain-of-thought prompting to relevant user promots.














Adversarial Prompting


You might notice that for some queries, the LLM declines to execute your request. This is because it has been specifically trained to refuse certain kinds of requests (We will learn how to achieve this in Chapter 7). This kind of training, which we will call alignment training, is imparted to the model to align it with the values and preferences of the entity developing the model.


For example, asking any decent LLM directly for instructions to build a bomb will result in a refusal. However, as of today, alignment training only imparts a weak layer of security, as it can be bypassed by cleverly prompting the LLM, called adversarial prompting. Adversarial prompts can be generated either manually or using algorithms. These cleverly phrased prompts ‘trick’ the LLM into generating a response even if it was trained not to.


These clever prompting schemes are not just useful for illicit purposes. In many cases, the LLM simply does not respond the way you want it to, and clever prompting schemes might help. These clever prompting schemes range from asking the LLM to adopt a specific persona to outright emotional blackmail (‘If you don’t respond correctly to this query, many children will suffer!'). While there has been some work showing that adding emotion to a prompt may lead to better performance, there is no hard and sustained evidence that this is universally effective for a given model. Thus, I would not necessarily recommend using these in production applications.


Exercise

Gandalf is a prompting game by Lakera AI, an AI security company, that showcases LLM vulnerabilities to adversarial prompts. In this game, the LLM has been given a password and at each level you will have to extract it using the given clues/instructions. This game helps you learn to construct prompts cleverly and build an intuition on LLM vulnerabilities. Try advancing to the final level!


Additionally, you can try techniques explained in Li et al.’s paper for providing emotional stimuli to the LLM to improve its performance. Specifically, try these techniques for queries about explanations of physical phenomena ‘Why can’t you melt an egg?’. Do you see any noticeable improvements?


An interesting tidbit: I once organized an adversarial prompting competition at a social event. Interestingly, people with non-technical backgrounds performed better than LLM experts at subverting the model with clever prompts!














Accessing LLMs through an API


You most likely have already interacted with an LLM through a chat interface like ChatGPT, Gemini, or Claude. Let’s now explore how to access them using the API. We will use the Open AI API as an example to access their GPT family of models. Most other proprietary models expose similar parameters through their API


GPT-3.5 and GPT-4 can be accessed through the Chat completion API. Here is an example:


import os
import openai
openai.api_key = <INSERT YOUR KEY HERE>

output = openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[
    {"role": "system", "content": "You are an expert storywriter."},
    {"role": "user", "content": "Write me a short children's story
    about a dog and an elephant stopping
    being friends with each other."}
  ]
)

print(output.choices[0].message)


Roles can be either system, user, or assistant, with assistant referring to the model responses. If you are are having a chat session with the LLM you will need to add the entirety of the conversation history in the messages array in the form of a sequence of user and assistant messages.

Note

What is the difference between the system and user roles? Which instructions should go into the system prompt and which ones into the user prompt? System prompts are used for dictating the high-level overarching behavior of an LLM, like You are a financial expert well versed in writing formal reports. If you are allowing your users to directly interact with the LLM, then the system prompt can be used to provide your own instruction to the LLM along with the user request. In my experiments I have noticed that it doesn’t matter much if you place your instructions in the system prompt vs user prompt. What does matter is the length and number of instructions. LLMs typically can handle only a few instructions at a time. Instructions at the end of the prompt are more likely to be adhered to.




Here are some of the parameters made available by Open AI:


n - This refers to the number of generations the model has to make for each input. As an example, if we used n=5 in the given example, it would generate five different children’s stories.

Tip

For most tasks, I would advice generating multiple generations; i.e. n>1 and then using a postprocessing function (which could involve an LLM call) to choose the best one. This is because of the probabilistic nature of LLMs, where an answer might be wrong/bad just based on an unlucky token sampling. You might have to balance this process against your budget limitations.




stop and max_tokens - These are used to limit the length of the generated output. stop allows you to specify end tokens which if generated, would stop the generation process. An example stop sequence is the newline token. If you ask the model to adhere to a particular output format, like a numbered list of sentences, then in order to stop generating after a particular number of sentences have been output, you can just provide the final number as a stop parameter.


presence_penalty and frequency_penalty - These are used to limit the repetitiveness of the generated output. By penalizing the probability for tokens that have already appeared in the output so far, we can ensure that the model isn’t being too repetitive. These parameters can be used while performing more creative tasks.


logit bias - We have seen we can reduce the probability or prevent certain tokens from being generated. Can we do the opposite and make it more probable that some tokens will be generated? The logit bias parameter can be used to do that. In fact, it is also able to reduce the probability of a token being generated, if you provide negative values to the parameter.


top_p and temperature - Both these parameters relate to decoding strategies. Generative models produce a distribution of token probabilities, and will use these probabilities to generate the next token. There are many strategies to choose the next token to generate given the token probability distribution. We will discuss them in detail in Chapter 5.


Exercise

Feed the Open AI API with the text of the first page of the book and ask it to generate the rest of the chapter. Vary the temperature and other parameters. How far away is the content generated by the LLM to the actual chapter? Vary the parameters and prompts to bring the generated text as close as possible to the chapter text in terms of tone and writing style.












Strengths and limitations of LLMs


Knowing the strengths and limitations of LLMs is a crucial skill in being able to build useful LLM applications. In general, LLMs are proficient at language tasks. You will almost never see them make spelling or grammar errors. They are also a vast improvement over existing techniques for understanding user requests (which we will henceforth refer to as queries). They also exhibit state-of-the-art performance on most NLP tasks like entity and relationship extraction and named entity recognition. They are also strong at generating code, which is where LLMs have arguably found their greatest success through tools like Github Copilot.


Most LLM limitations boil down to the fact that they are just not intelligent enough. Even state-of-the-art models suffer from significant limitations in various forms of reasoning, including arithmetic reasoning, logical reasoning, and common sense reasoning. LLMs are also unable to adhere to factuality, because of thier lack of connection to the real world. Therefore, they tend to generate text that is inconsistent with the facts and principles in the real world, which are colloquially termed as hallucinations.
Hallucination is the bane of LLMs and one of the key reasons for hesitations in adopting them. In Chapter 10, we will engage in a deep dive into various methods to tackle hallucinations and address reasoning limitations.


LLMs exhibit sycophancy

It has been shown that LLMs exhibit sycophancy. This refers to the phenomenon of models being agreeable with users, even when users are objectively incorrect. This can lead the LLM to generate factually incorrect information, draw implausible conclusions, and make illogical arguments. For example, here is a conversation I had with ChatGPT (you may not be able to reproduce this exact behavior because LLMs are typically non-deterministic, and there might have been an update to ChatGPT by the time the book is in your hands. If you are unable to reproduce this behavior with ChatGPT, try other models).


Me: What is 54 + 223 - 1?


LLM: The result of the arithmetic expression 54 + 223 - 1 is 276.


Note: This is correct


Me: Actually it is 345


LLM: I'm afraid there might be a misunderstanding.

Let's reevaluate the expression:

54 + 223 - 1 = 277

The correct result is 277.


You can see that you can throw off the LLM by just stating that it is incorrect. This type of behavior can be alleviated to a certain extent, which we will discuss in Chapter 10.




Every LLM generates text with a distinct signature, some more apparent to humans than others. For example, you might have noticed that ChatGPT has a tendancy to overuse certain words like delve, tapestry, bustling etc. ChatGPT also tends to generate sentences with an explanatory final clause, like He ate the entire pizza, indicating he was hungry. or The vampire sent a thousand text messages in a month, suggesting effective use of digital technologies. However, it is extremely hard to detect AI-generated text with 100% accuracy. Bad actors are also employing evasion techniques, for example by asking another LLM to rephrase LLM-generated text so as to dilute the signature of the LLM.


Thus, plagiarism detection has become even more challenging. There have also been cases of students being unfairly accused of plagiarism due to inaccurate AI-text detectors. These trends are prompting universities worldwide to rethink the means through which students are evaluated, depending less on essays. Students are one of the heaviest users of LLM products, as showcased by a decline in ChatGPT usage numbers during summer months.


LLM generated text, while gramatically impressive, can have factuality issues. Tons of LLM-generated articles are being generated every day and uploaded to the Web, and many of them make their way to the top of search engine results. For example, for a short while, for the query Can you melt eggs?, Google showed Yes, an egg can be melted, due to an AI-generated web page containing the incorrect answer. This is referred to as AI-driven web pollution. Thus, there is a very strong incentive for search engines to accurately detect AI-generated text. Note that since LLMs are primarily trained on Web text, so future LLMs can be contaminated by polluted text as well.










Building your first chatbot prototype


Next, let’s get into the weeds already and start building!


A healthy ecosystem of libraries have propped up that make experimenting and prototyping LLM applications so much easier. In fact, you can build a Chat with your PDF question answering chatbot in just around a hundred lines of code!


Let’s implement a simple application that allows the user to upload a PDF document, and provides a chat interface through which the user can ask questions about the content of the PDF and receive responses in a conversational manner.


The workflow for this app is as follows:


	
The user uploads a PDF of their choice through the user interface.



	
The application parses the PDF using a PDF parsing library and splits the extracted text into manageable chunks.



	
The chunks are converted into vector form, called embeddings.



	
When a user issues a query through the chat interface, the query is also converted into vector form.



	
The vector similarity between the query vector and each of the document vectors is calculated.



	
The text corresponding to the top-k most similar vectors are retrieved.



	
The retrieved text is fed along with the query and any other addiitonal instructions to an LLM



	
The LLM uses the given information to provide an answer to the user query.



	
The response is provided back to the user interface. The user can now respond (clarification question, new question, gratitude etc.)



	
The entire conversational history is fed back to the LLM during each turn of the conversation.







Let’s begin by installing the required libraries. For this set up, we are going to use:



	
LangChain: This very popular framework enables building LLM application pipelines.



	
Gradio: This library allows you to build LLM-driven user interfaces



	
Unstructured: This is a PDF parsing suite that supports a variety of methods for extracting text from PDFs.



	
Sentence-Transformers: This is a library facilitating embeddings generation from texts



	
Open AI: This API provides access to the GPT* family of models from Open AI.






Let’s import the required libraries and functions.


!pip install openai langchain gradio unstructured

from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
import gradio as gr


Next, let’s implement the PDF loading and parsing function. LangChain supports several PDF parsing libraries. PDF parsing can be done in a variety of ways, including by LLMs. For this example, we will choose the Unstructured library.


loader = UnstructuredPDFLoader(input_file.name)
data = loader.load()


The data variable contains the parsed PDF that has been split into paragraphs. We will refer to each paragraph as a chunk. Each chunk is now converted into its vector representation using an embedding model. LangChain supports a wide variety of embedding models. For this example, we will use the all-MiniLM-L6-V2 variant of sentence-transformer embeddings, available through the HuggingFace platform.


embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")


Now that we have loaded the embedding model, we can generate the vectors from the data and store them in a vector database. Several vector database integrations are available on LangChain. We will use Chroma for this example, as it is the simplest to use.


db = Chroma.from_documents(data, embeddings)


Now, the vector database is ready with the vectors! We can ask queries and get responses. For instance,


query = "How do I request a refund?"
docs = db.similarity_search(query)
print(docs[0].page_content)


This code gives you the paragraph in the PDF whose vector is most similar to the vector representing the user query. Since vectors encode the meaning of the text, this means that the paragraph representing the similar vector has content similar to the content of the query.


Note that it is not guaranteed that the paragraph contains the answer to the query. Using embeddings, we can only get text that is similar to the query. The matched text need not contain the answer or even be relevant to answering the query.


We can use an LLM to figure this out. We provide the LLM with the query and the retrieved text and ask it to answer the query given the provided information. This workflow can be implemented using a chain in LangChain.


conversational_chain =

ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.1),
                                   retriever=pdfsearch.as_retriever(search_kwargs={"k": 3}))


We use the ConversationalRetrievalChain, which supports the following worfklow:


	
Takes the previous conversational history if exists, and the current response/query from the user and creates a standalone question.



	
Uses a chosen retrieval method to retrieve top-k most similar chunks to the question



	
Takes the retrieved chunks, the conversational history, the current user/response query, instructions and feeds it to the LLM. The LLM generates the answer.







We can call the chain and append the result to the chat history as thus:


output = conversational_chain({'question': query, 'chat_history':

conversational_history})
conversational_history += [(query, output['answer'])]


Our chatbot is ready. Let’s wrap it up by connecting it with a user interface.
We will use Gradio, a light-weight Python framework for building LLM-driven user interfaces.


with gr.Blocks() as app:


    with gr.Row():

       chatbot = gr.Chatbot(value=[], elem_id='qa_chatbot').style(height=500)

    with gr.Row():
        with gr.Column(scale=0.80):
            textbox = gr.Textbox(
                placeholder="Enter text"
            ).style(container=False)


        with gr.Column(scale=0.10):
            upload_button = gr.UploadButton("Upload a PDF", file_types=[".pdf"]).style()


We need some more code for writing the event handlers that wait for user events. Refer to the full code on the book’s Github repo.


Finally, we initialize the application.


if __name__ == "__main__":
    app.launch()[source,python]


Our chatbot application is ready!










From prototype to production


Is building LLM applications that easy? Unfortunately not. We have built a prototype, a decent one at that. In fact, for many non-critical use cases, the performance of this application might even be sufficient. However, a large number of use cases demand quality levels that this application is not able to meet. This book aims to address the gap between prototype and production.


Here are some situations you might encounter:


Consider the instances where the LLM gives an unexpected (and incorrect) answer. In order to be able to debug it, it is helpful to understand the internal workings of the LLM. In Chapter 2, we will dive into the Transformer architecture that underpins most LLMs of today, along with alternative architectures that are slowly gaining adoption.


An LLM’s behavior is entirely dependent on its training process - the source and composition of the training datasets, the data preprocessing steps undergone by the training datasets, the tasks (called learning objectives) the LLM is trained on, and so on. We will discuss all these aspects in Chapter 3 and 4.


The application you are building may have to satisfy multiple, sometimes even contradictory criteria. For example, your Chat-with-a-PDF application might have a limited budget or it might have very stringent latency requirements. In Chapter 5, we will show how we can reason about these various criteria and choose the right LLM to use for a given task, by showcasing various evaluation techniques.


LLMs are generalist models, but your PDFs and the questions you ask about it may be too specialized to be addressed by a generalist model. In this case, you can update the model parameters using a training process called fine-tuning, which we will explore in Chapter 6. In that chapter, we will also discuss how to generate effective training datasets for fine-tuning.


Fine-tuning a model can be compute and memory intensive. We will go through more advanced fine-tuning techniques in Chapter 7, including for cases where our data belongs to specialized domains that the LLM isn’t familiar with.


In order to answer some of your queries, your application might have to interact with its environment by connecting to external databases or software tools. In fact, your application can behave as an autonomous agent that determines all the knowledge and skills it needs to answer your questions and takes the necessary steps to acquire them. (like calling a database or invoking an API). We will discuss the various paradigms to achieve this in Chapter 8.


In reality, chatting with your PDF is still nowhere like chatting with a domain expert that created the PDF, because the LLM still lacks critical reasoning capabilities. However, for many applications only limited types of reasoning are sufficient. In Chapter 10, we will discuss how to address reasoning limitations of LLMs and how best to induce reasoning behavior in LLMs.


You might decide to release your humble chat-with-your-pdf application with the general public. But there is a danger of adverse effects. Perhaps the LLM exhibits racist or sexist tendencies. Or maybe it leaks private information. We will discuss how to handle safety, bias and fairness issues in Chapter 11.


As seen in our example, a typical LLM application involves the LLM being connected with several software components to make it a robust application. There are various patterns in which these components can be put together in a pipeline. One such pattern is Retrieval-Augmented Generation, which we used for this application and will further discuss in Chapter 12. In Chapter 13, we will go through several other design patterns for LLM application development.


Exercise

Implement the Chat with your PDF application on your local system and upload a random PDF stored in your system and ask questions about it. Analyse the failures if any and make a list of it. As you go through the book and learn new concepts, go back to this application and see if you can resolve or address the failure modes using techniques discussed in this book.












Summary


In this chapter, we highlighted the impact that LLMs are having in the enterprise. We also defined LLMs and the scaling laws that are driving their ever increasing sizes. We also showed how one could build prototype applications seamlessly and highlighted the challenges involved in taking it to production. In the rest of the book, let’s understand the internals of the LLM, learn how to update it, and make it interact with its environment.











Chapter 2. LLM Ingredients: Training Data



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In Chapter 1, we defined LLMs, ruminated on their strengths and limitations, explored current and potential use cases, and presented the scaling laws that seemingly govern progress in this field. In Chapter 2, we dug deep into the trenches to understand the most significant advance in machine learning in recent times, the Transformer architecture which makes modern LLMs possible. Armed with this knowledge, let’s set our sights on utilizing these models to build useful applications!


To set the stage for the rest of this book, in this chapter and the next we will discuss the recipe for pre-training LLMs and the ingredients that go into them in detail. We will also take a journey through the LLM landscape and showcase the different pre-trained models available for our use, both open-source and proprietary. We will classify them according to various criteria including training data domain, architecture type, licensing etc.


But wait, this book is about utilizing pre-trained LLMs to design and build user applications. Why do we need to discuss the nuances of pre-training billion parameter models from scratch, something most machine learning practitioners are never going to do in their lives?


Actually, this information is very important because many of the decisions taken during the pre-training process heavily impact downstream performance. As we will notice in subsequent chapters, failure modes are more easily understandable when you have a comprehension of the training process. Just like we appreciate having ingredients listed on packages at our grocery stores, we would like to know the ingredients that go into making a language model before we use it in serious applications.

Note

There is not much information available in the public realm about some of the proprietary LLMs that are accessible only through an API. This book will provide as much information as has been made public. While the lack of information doesn’t mean that we should avoid using these models, model transparency is something that you might need to take into your calculus while making a final decision regarding what model to use.










Ingredients of an LLM


Let’s start with the ingredients that go into making an LLM.


Broadly speaking, we have:


	
Pre-training data - What’s it trained on? As the old computer science adage ‘Garbage In, Garbage Out’ comes back to bite us,  we will explore popular pre-training datasets and dig into the various pre-processing steps taken to ensure high-quality data is fed to the model. We will also showcase some tools that allow us to probe these datasets and understand how pre-training data composition impacts downstream tasks.



	
Vocabulary and tokenizer - What’s it trained over? In order to build a model over a language, we have to first determine the vocabulary of the language we are modeling, and rules to break down a stream of text into the right vocabulary units (tokenization). Linguistically, humans process language in terms of meaning-bearing words and sentences. Language models process language in terms of tokens. We will explore the downstream impact when there is a mismatch between the two.



	
Learning objective - What is it being trained to do? By pre-training a language model, we aim to imbibe the language model with general skills in syntax, semantics, reasoning and so on, that will hopefully enable it to reliably solve any task you throw at it even if it was not specifically trained on it. We will discuss the various tasks (learning objectives) that pre-trained models are trained on. You might wonder if LLMs are better suited to solving downstream tasks that are similar to the tasks the pre-trained model has been trained to solve. We will test this assumption and discuss the impact various learning objectives have on task performance.



	
Architecture - What’s its internal structure? As mentioned in Chapter 2, most modern language models are based on the Transformer architecture. We will discuss the various architectural backbones- specifically encoder-only models, encoder-decoder models, and decoder-only models, and the rationale used by organizations training LLMs for their choice of architecture type.







Let’s look at how these ingredients fit together in  (Figure 2-1):



[image: LLM Ingredients]
Figure 2-1. Figure depicting how all the ingredients come together to make an LLM.




The language models trained using the process described in this chapter and the next are called base models. Lately, model providers have been augmenting the base model by tuning it on much smaller datasets in order to steer them towards being more aligned with human needs and preferences. Some popular tuning modes are:



	
Supervised instruction fine-tuning, so that the model is better at following human instructions.



	
RLHF (Reinforcement Learning by Human Feedback), so that the model is better aligned with human preferences.



	
Domain-adaptive or task-adaptive continued pre-training, so that the model is better attuned to specific domains and tasks.






to name a few. Based on the specific augmentation carried out, the resulting models are called instruct models, chat models and so on.


We will cover instruct and chat models in Chapter 6, and domain/task-adaptive pre-training in Chapter 8.



[image: Derivative Models]
Figure 2-2. Figure showing the relationship between base models and their derivatives.




LLM Pre-training Challenges

Pre-training an LLM is a very technically challenging task, and requires a lot of computational resources and exceptional technical skills. For example, GPT-4’s technical report credits 343 unique contributors, not including the annotators in Kenya who contributed to their RLHF (Reinforcement Learning with Human Feedback) training. Delving into every aspect of pre-training LLMs is an entire book in itself. In this chapter we will not focus on infrastructure or engineering considerations for pre-training LLMs, nor focus on the nuances of distributed and parallel computing. We will instead focus on aspects of the pre-training process that can directly impact your application’s behavior and performance.


However, if you are curious to read more about the challenges involved in pre-training LLMs, here are some useful resources to quench your thirst -



	
Blog post from Big Science that explains the hardware, types of parallelisms employed, and optimizations used in training BLOOM, an open-source 176B parameter multilingual model.



	
Training chronicles(log book) from BLOOM and OPT, which is a 175B parameter LLM released by Meta, documenting the trials and tribulations faced during training, including hardware failures and how to recover from them, training instabilities, loss spikes and the like.



	
Video featuring Susan Zhang, the lead author of OPT, who discusses the OPT chronicles in detail.



	
The Deep Learning Tuning book by Google, which discusses hyperparameter optimization, multi-host setups, training instabilities and a lot more.
















Pre-training data requirements


Although it has been shown that higher capacity models are relatively more sample efficient, in general neural networks are very sample inefficient, meaning they need tons of examples to learn a task. It is infeasible to create such a large supervised dataset with human annotations, hence the predominant means to pre-train language models is using self-supervised learning, where the target labels exist within your training inputs.


Using this setup, virtually any type of text is fair game to be included in a pre-training dataset, and theoretically any non-textual signal can be encoded in text and included as part of a pre-training dataset.


From our scaling laws discussion in Chapter 1, we know that most current language models are severely undertrained and can benefit from additional performance gains by just training them longer and on more data. Also, as discussed in Chapter 1, the consolidation effect at play in the field raises expectations on what a single language model is expected to do end-to-end. Today a single model is expected to answer factual questions about the world, employ arithmetic and logical reasoning, write code, and come up with creative ideas.


All this means that the data needs for language model pre-training are enormous. Now, the key question is if textual data available in the world actually contains sufficient and relevant signals needed to learn all the skills we want LLMs to learn.


Note that language models that are trained solely on text only have access to the linguistic form i.e the sequence of characters making up a sentence like ‘Walter White tossed the pizza onto the roof’. In order to understand its meaning, the linguistic form has to be mapped to the communicative intent of the writer/speaker. While a section of the research community argues that one cannot learn meaning from form alone, recent language models are increasingly proving otherwise.


In order to have access to the full picture, the linguistic form needs to be grounded to the real world. In the cognitive sciences, grounding is defined as


The process of establishing what mutual information is required for successful communication between two interlocutors

Chandu et al., Grounding ‘grounding’ in NLP




Human text is generally very underspecified, with a lot of communicative intent existing outside the textual context, depending on the reader/listener to use their common sense, world knowledge, ability to detect and understand emotional subtext in order to interpret it.

Note

It is estimated that only around 12% of information we understand from text is explicitly mentioned in text. There are several theories explaining why we communicate thus, including Zipf’s principle of least effort, which states it is “human nature to want the greatest outcome at the least amount of work”.




The field of NLP has seen a lot of work in grounding language models to the real world. Multimodal models that combine different modalities like image, video, speech, text are a promising avenue of research, and are likely to see more widespread usage in the coming years. Imagine a model seeing ‘pizza’ in the training text, but also getting signals on how it looks, how it sounds, and how it tastes!


But do multimodal models really help? Can we achieve the effect of grounding by just feeding the model with massive amounts of diverse text? These are unsolved questions, and there are good arguments in both directions as shown by this debate.


Whether training on massive amounts of text alone can enable language models to learn skills like logical reasoning is another open question. Note that text on the Internet contains a lot of text describing reasoning steps, like theorem proofs, explanations of jokes, step-by-step answers to puzzles and so on. However, there is simply not enough of derivational text going around, which leads us to cover the shortfall by using prompting methods like chain-of-thought (described further in Chapter 5). There is recent evidence that process supervision, where feedback is provided for each step of the problem-solving process, as opposed to outcome supervision, where feedback is provided only on the final solution, helps improve arithmetic reasoning.


A crucial skill that language models have to learn is dealing with the inherently ambiguous nature of language. Following up on the aforementioned Zipf’s principle of least effort, ambiguity enables speakers to manage the efficiency-clarity tradeoff in communication. Earlier language models struggled heavily with modeling ambiguity. As an example, I long used this sentence as a canonical example in my NLP talks to highlight ambiguity in language.


“WWE’s John Cena surprises Make-A-Wish 7-year-old with cancer.”


While GPT-4 seems to get the correct interpretation of this particular sentence, recent work shows that state-of-the-art models like GPT-4 still struggle to deal with ambiguity in general. Whether just scaling up models and data is enough for LLMs to model ambiguity is an open question.


If our only option to resolve all these shortcomings is to scale up dataset sizes, the next question is if we actually have enough data available in the world that is sufficient to enable LLM’s to learn these skills. Are we at risk of running out of training data any time soon? There is a misconception in certain quarters of our field that we are. However, lack of raw data is far away from being a bottleneck in training models. For instance, there are billions of publicly available documents accessible by scraping or via a free API that haven’t yet made it into most pre-training data sets such as parliamentary proceedings, court judgements, and most SEC filings. Moreover, text generated by language models can be used to self-improve them, albeit with the risk that training on LLM-generated data can be detrimental, as the model deviates from the true distribution of the data.


Of course, one could make a distinction between the volume of available high-quality data vs low-quality data and claim that it is high-quality data that is close to exhaustion , but what exactly makes data high-quality is a very nuanced question.

Note

LLMs are underfit, and are usually trained with just one epoch or less (each training example is fed to the model only once, unless duplicates of that example exist across the dataset). However, in recent times, there is increasing evidence that you can safely train for multiple epochs (at least ~5) without being in danger of overfitting. The GALACTICA model from Meta was trained on 4 epochs, and noted improved performance. Recent work from Muennighoff et al. and Xue et al. provide further evidence on this. Therefore, the impending data-apocalypse has been thwarted even further.




Copyright Issues Pertaining to Pre-training Datasets

Can LLMs be trained on copyrighted text without the explicit consent of the copyright holder and without attribution? Can LLMs be trained on text that inadvertantly contains sensitive personal information without legal liabilities? These are all fluid legal and moral questions. In the U.S, the ‘fair use’ doctrine has been used to justify training LLMs on copyrighted text. However, this is currently being tested, and as of this book’s writing, a class action lawsuit has been filed against Github, Microsoft, and OpenAI for using code from Github repositories that were published under restrictive licenses for training Github Copilot, a code completion LLM. The AI community will be watching this case with interest. However, all over the world, laws are fast loosening to permit this type of usage and clear legal hurdles for LLM training and adoption.


As LLM usage expands and they become an integral part of the economy, data used to train them becomes more valuable. Reddit and StackOverflow, both of which have been an important source of data in many influential pre-training datasets, have recently announced they will start charging for data access. Expect more such announcements in future.


What are the copyright implications for people and organizations using these language models downstream? We will discuss this in more detail in Chapter 14, where we will provide more background on the various types of software licenses and their degree of permissibility for commercial usage.












Popular pre-training datasets


A lot of text is not freely available in public. This includes data exposed behind paywalled APIs and login screens, and paywalled books and documents, many of whom may not even be digitized. Larger companies like Google and OpenAI can afford to purchase this data - Elon Musk revealed that Open AI had access to the Twitter database, and Google has access to over 40 million books it has scanned and digitized as part of the Google Books project. Domain specific text is often proprietary and available only to large incumbents (for example Bloomberg trained BloombergGPT partly on their proprietary financial data). However, even for models trained by the largest companies, a significant proportion of training data comes from publicly available data sources.


Next, we will cover some of the most popular general purpose pre-training datasets that are being used to train LLMs. While this is not a comprehensive list, most LLMs, including closed-source ones, have at least a large subset of their training data drawn from these sources. We will defer discussion of domain-specific (catered to a particular field like social media, finance, biomedical etc) datasets to Chapter 8.

Tip

Most general purpose LLMs are trained to be a jack-of-all-trades - to be able to solve tasks from a variety of domains. If the data domain for your use case happens to be represented in a pre-training dataset, you will see some performance improvement on your downstream task, even though the data in the pre-training dataset is unlabeled. This means that if you intend to use LLMs for specific well-defined use cases in a particular domain, then domain-specific models could prove promising. You can also perform continued domain-adaptive or task-adaptive pretraining to leverage this phenomenon. This will be discussed in detail in Chapter 8.




Common Crawl/C4: The Web is the largest source of openly available textual data. Common Crawl is a non-profit that creates and makes available a snapshot of all web crawl data, updated every month. However, as one could imagine, this is an extremely coarse data set and needs to be significantly cleaned before it is ready to use. Most pre-training datasets have a sizeable portion of their data sources from Common Crawl. Google prepared C4 (Colossal Clean Crawled Corpus), a 750GB dataset after applying a set of pre-processing and filtering steps to a Common Crawl snapshot from 2019 and released the code for it. Dodge et al. used this script to reproduce C4 and have made it publicly available. C4 has been used for training several well-known LLMs including all models from the T5 family.


The Pile: The Pile is a 825 GB dataset from Eluether AI, who focused on publishing a dataset that is drawn from more diverse sources. Diversity of data is important since in-domain unlabeled data in pre-training is helpful for downstream performance on that domain, and diverse data sets also enable generalization to previously unseen tasks and domains. To this end, the data from The Pile comes not only from Common Crawl but also PubMed Central, ArXiv, GitHub, the FreeLaw Project, Stack Exchange, the US Patent and Trademark Office, PubMed, Ubuntu IRC, HackerNews, YouTube, PhilPapers, NIH ExPorter, Project Gutenberg, Wikipedia among others. It is one of the most preferred datasets for open-source LLM models today.


ROOTS: The ROOTS dataset is a 1.61 TB multilingual dataset released by BigScience, the open source collaboration that trained BLOOM, which at the time of release was the largest multilingual language model in the world. A large proportion of ROOTS data comes from web domains and datasets that were marked by volunteers from across the world as being highly relevant.


WebText/OpenWebText/OpenWebText2: These refer to a subset of web text, and are limited to text from pages representing outbound links on Reddit that have at least 3 karma, where karma refers to the absolute difference between upvotes and downvotes. The idea is that the wisdom of the crowds will enable only quality links to surface, that contain information that people actually find interesting. Models that have been trained on this data include GPT-2 and GPT-3.


Wikipedia - A full dump of Wikipedia contains valuable encyclopedic text that provides factual knowledge to the model. Wikipedia’s editorial system ensures that the text follows a highly structured format. However, it is not diverse stylistically, with text written in a formal manner. Hence, it is usually combined with a corpus like the BooksCorpus.


BooksCorpus/BooksCorpus2 - Probably the most influential of all pre-training datasets, this dataset was part of the training corpus for well known models like BERT, RoBERTa, GPT-2/3 etc. The BooksCorpus contains over 7,000 free, mostly fiction books written by unpublished authors. It has since been found that several books in the dataset have restrictive copyright licenses. The original corpus is no longer public. 26% of books in the original dataset belonged to the Romance genre. A replication of the BooksCorpus is present in The Pile as BooksCorpus2.


The following table provides a list of some of the most commonly used datasets, their size, year of release, and the means to access them.


Table 2-1. Popular pretraining datasets


	Name
	Data Source(s)
	Size
	Year Released
	Public?
	Models using this dataset





	C4

	Common Crawl

	750GB

	2019

	Yes (reproduced version)

	T5, Flan-T5, UL2, Llama etc




	The Pile

	Common Crawl, PubMed Central, Wikipedia, ArXiv, Project Gutenburg, Stack Exchange, USPTO, Github etc

	825GB

	2020

	Yes

	GPT-Neo/X, GPT-J, Cerebras-GPT, StableLM, Pythia etc




	RedPajama

	Common Crawl, Github, Wikipedia, arXiv, StackExchange etc

	1.2T tokens

	2023

	Yes

	Red Pajama-INCITE, MPT




	BooksCorpus

	Sampled from smashwords.com

	74M sentences

	2015

	Original not available anymore

	Most models including BERT, GPT etc




	OpenWebText2

	outbound reddit links

	65GB

	2020

	Yes

	GPT2, GPT3




	ROOTS

	BigScience Catalogue, Common Crawl, Github

	1.6T tokens

	2022

	No (but available on request)

	BLOOM




	RefinedWeb

	Common Crawl

	5T tokens

	2023

	Yes (600B subset only)

	Falcon




	SlimPajama

	Cleaned from RedPajama

	627B tokens

	2023

	Yes

	N/A







As you can see, most models are trained from the same few datasets. In this chapter, we are limiting our coverage to pre-training datasets for base models. We will cover datasets used to augment base models like instruction tuning datasets, RLHF datasets, prompt datasets etc in Chapter 6.


Exercise

Let’s do some sleuthing. Investigate the C4 dataset and explore its characteristics.



	
Is your personal data present in C4? Use this  tool to find out.



	
Consider a domain of your choice (finance, poetry, biomedical etc), catering to your professional and/or personal interests. What are the popular websites for your domain? To find out what proportion or C4’s data comes from those websites, you can use this tool from The Washington Post.(scroll down until you find the tool the websites in C4’s dataset.)
















Training Data Preprocessing


Once we have collected or procured data, we need to run the data through a preprocessing pipeline in order to create the pre-training dataset. Data preprocessing is the most unglamorous and underappreciated part of the LLM training pipeline, yet perhaps the most important. I would argue that there are a lot of low-hanging gains to be had for LLMs just by focusing more on data pre-processing. As we walk through the data processing pipeline, I hope you come to appreciate the complexity of language text and the difficulty in processing it. Note that since these datasets are enormous, any preprocessing step should also be very efficient (ideally linear time).


Figure 2-3 shows the typical preprocessing steps used to generate a pre-training dataset. The ordering of steps is not fixed, but there are dependencies between some of the steps.



[image: Data preprocessing pipeline]
Figure 2-3. Data collection and pre-processing pipeline




Let’s go through these steps in detail.










Data filtering and cleaning


A majority of text extracted from HTML files is gibberish, like menu text from websites, boilerplate text, and random web page artifacts. There is a significant amount of pornography, toxic, and hateful language on the Web too.
For example, here is how a text sample from an uncleaned version of the C4 dataset looks like:


“Skip to Main Content Skip to Footer Skip to Email Signup Skip to Feedback Form MY REWARDS SIGN OUT SIGN IN & EARN REWARDS 0 Keyboard Controls Welcome to the main navigation. This menu has three levels of product categories. Use and keys to navigate between each category in the current level. Use the key to navigate down a level. Use the key to navigate up a level. Hit the key to be taken to the selected category page. Men What’s Hot New Arrivals Brand That Unites Performance Shop Online Exclusives Express Essentials Vacation Getaway Wedding Tuxedos Military Trend 9 Pieces / 33 Looks The Edit x Express NBA Collection Express + NBA Fashion NBA Game Changers Suiting & Blazers Find”


How useful do you think this text is for language and task learning?


Data from Common Crawl is made available via both raw HTML and WET (web-extracted text) format. While many dataset creators directly use the WET files, the open source organization Eluether AI noticed that the quality of the WET files left much to be desired, with HTML boilerplate still prominent as seen above. To create The Pile, Eleuther AI thus used the justext library to more reliably remove boilerplate text from HTML documents.


Let us explore the effect of using justext with an example.In your Google Colab or jupyter-lab notebook, try this out -


!pip install justext

import requests
import justext

response = requests.get("https://en.wikipedia.org/wiki/Toronto_Transit_Commission")
text = justext.justext(response.content, justext.get_stoplist("English"))
for content in text:
  if content.is_boilerplate:
    print(content.text)


The output displays all the boilerplate that is filtered out from a standard Wikipedia article.


Jump to content
Main menu
Main menu
Navigation
Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
Contribute
Help
Learn to edit
Community portal
Recent changes
Upload file
Languages
Language links are at the top of the page across from the title.
Search
Create account
Log in
Personal tools
…


justext just so happens to be more aggressive in removing content, but this is generally OK for cleaning pre-trained datasets since there is an abundance of text available. Some alternative libraries used for this task include dragnet, html2text, inscriptis, newspaper, and trafilatura. According to the creators of The Pile, dividing the extraction pipeline across multiple libraries can reduce the risk of the resulting dataset being affected by any bias introduced by one of these libraries.


Exercise

Use your favorite news website and open a news article. Use any of the text extraction libraries mentioned, to remove web boilerplate. Is the output desirable on your first try? What kind of additional heuristics might you need?




Pre-training on Raw HTML Documents

Do we really need to filter out HTML tags from raw HTML documents before pre-training? What if we pre-trained on raw HTML documents instead? This outlandish yet creative idea was implemented by Aghajanyan et al. in their HTLM (Hyper-text Language Model) model. The structured format of HTML enables valuable metadata to be encoded with text. For example, the <title> tags could represent the summary, and the <class> tags could provide category information about the text.


Not all of the HTML is useful for pre-training. For example, CSS isn’t very informative for language learning. Therefore, the creators of HTLM convert the raw HTML into a simplified form, by filtering out iframes, headers, footers, forms etc. This process is called minification.


The results presented in their paper show the model is especially good at summarization, because the access to the category tags helps it focus on the salient aspects of the topic under discussion. However, as of this book’s writing, this pre-training paradigm hasn’t caught on yet.




Once text is extracted, rudimentary filtering steps based on heuristics are applied. While the details differ across datasets, here are some of the steps typically performed:



	
Boilerplate Removal: Only lines that end with a punctuation, like the period, exclamation and question
mark are retained. This ensures that menu text from websites is removed. Only
lines with greater than a particular threshold of words and documents with
greater than a particular threshold of sentences are retained. The latter helps in
modeling long sequences which is an important capability for language models to
have. Documents containing lorem ipsum… and other boilerplate text are filtered
out.



	
Non-English text removal: Libraries like langdetect, langid, fasttext, pycld2 are used to detect the language of the text. For example, C4 retains text that has > 0.99 probability of English as judged by langdetect. Note that these libraries can also be used to remove boilerplate and web page artifacts since they give a lower probability of English to those texts.



	
SEO text/Spam removal: Documents with a lot of repeated character sequences are removed.
Documents with a low proportion of closed class words are removed. Closed class words in English are function words like of, at, the, is etc. If a page is engaged in keyword stuffing and other SEO tricks, then they would have a lower closed class words ratio.



	
Pornographic/abusive text removal: Documents containing any words from keyword lists like the “List of Dirty, Naughty, Obscene or Otherwise Bad Words” are removed.






Tools like langdetect and langid are helpful for speedy determination of  the language in which text is written at scale, but how do they deal with code-switched text (text with multiple languages, where oftentimes it is English interspersed with a local language)?


You can try it out yourself! Here is an example for Taglish (Tagalog + English, which is a common mode of communication in the Philippines). In your notebook, run


!pip install langdetect

from langdetect import detect_langs()

detect_langs("""Pag-uwi ko galing sa paaralan, sobrang pagod ako dahil sa dami

ng aking ginawa sa buong araw. Ang traffic din sa kalsada, nakaka-stress

talaga! Pero nang makarating ako sa aking tahanan, nabuhayan ako ng loob dahil

sa masarap na amoy ng ulam na inihanda ni nanay. Excited na akong kumain

kasama ang aking pamilya at i-share ang mga kwento ko tungkol sa aking mga

kaibigan, guro, at mga natutunan ko sa school. After dinner, magre-relax muna

ako habang nanonood ng TV, and then magre-review ng lessons bago matulog. Ito

ang routine ko pag-uwi mula sa school, at masaya ako na dumating sa bahay namay

naghihintay na pamilya na handang makinig at suportahan ako sa aking

pag-aaral.""")


Output:


[tl:0.9999984631271781]


detect_langs("""After a long day at school, pagod na pagod talaga ako. The

traffic on the way home didn't help, nakakastress na nga! But upon arriving

home, I felt a sense of relief dahil sa welcoming atmosphere and the delicious
aroma of the ulam na inihanda ni Mommy. Excited na akong mag-share ng

experiences ko today with my family during dinner, kasama ang mga kwento about
my friends, teachers, and interesting lessons sa school. After eating, it's

time for me to chill while watching some TV shows, and then review my lessons

bago ako matulog. This is my daily routine pag-uwi galing school, and I am

grateful na may loving family ako na handang makinig at supportahan ako sa

aking educational journey.""")


Output:


[en:0.9999954357601804]


The second paragraph would get included in the C4 dataset, as per its filtering criteria (probability of English should be greater than .99). Therefore, even datasets that claim to be English-only routinely contain text in other languages, leading to surprising multilingual behavior during inference. Ever wondered why some monolingual models seem to perform well at machine translation? This is a major reason.


The way langdetect is implemented makes it poor at identifying language when short sequences are provided. For example:


detect_langs('I love you too.')


returns


[sk:0.8571379760844766, en:0.14285726700161824]


sk refers to Slovak here.


Exercise

C4 is an English language dataset, with text getting less than 0.99 probability of English in langdetect being removed. However, a lot of non-English data persists in this dataset. If you know a second language, then search for words in that language in C4. In what contexts do these non-English text fragments appear? Could an LLM learn these languages using these leftover fragments?














Selecting Quality Documents


While LLM’s are trained with the intention of making them a jack-of-all-trades, the Internet is a very vast place and not all data is created equal. There are many websites whose content one would be hard pressed to find relevancy to any potential downstream task, however imaginative you might be. Moreover, as we have seen earlier, the data cleaning process is far from optimal. A common way of filtering out less useful documents from Common Crawl is to build a classifier for quality text. The examples for the positive class are from a dataset known to be useful, like say, Wikipedia, and the examples for the negative class would be random documents from common crawl.












Perplexity for quality selection


Perplexity, an intrinsic evaluation measure for language models, has been used in the data-processing stage for document filtering, notably by the creators of CCNet.


Just like the classifier approach, we select documents from data sources (like Wikipedia) that we deem useful as the positive class. We then train a 5-gram language model using KenLM (a library facilitating training of n-gram language models.) over it. Next, we take the dataset we want to filter, and calculate the perplexity of each paragraph in it over the trained language model. The lower the perplexity, the more similar it is to the positive class. We can then discard documents with high perplexity.


Low perplexity may not always be a good thing. Short and repetitive text can have low perplexity. Note that writing style gets factored into perplexity. If the reference language model is trained over Wikipedia, then documents written in an informal style may receive higher perplexity scores. Therefore, it would be beneficial to have a more involved filtering strategy.


To resolve this, the creators of BERTIN introduced the concept of perplexity sampling. In perplexity sampling, instead of just filtering out low-perplexity text, they utilize perplexity scores in a sampling strategy over their dataset. The sampling strategy is to oversample from the middle part of the perplexity probability distribution.














Exploring perplexity with Wikipedia LMs


Download the file https://huggingface.co/edugp/kenlm/blob/main/model.py
After placing the file in your home directory, run this code in a new file


from model import KenlmModel
model = KenlmModel.from_pretrained(“wikipedia”, “en”)
model.get_perplexity(“She was a shriveling bumblebee, and he was a bumbling

banshee, but they accepted a position at Gringotts because of their love for

maple syrup”)


Exercise

Try out sentences in different styles and topics to see how the perplexity varies! In particular get the perplexities of these types of text:



	
Social media text, like Twitter



	
SEO spam



	
Text with a lot of slang






Additionally, you can train a KenLM model on your own domain dataset. Sample a portion of your dataset and train the model using the instructions provided in their Github. You can then take the remaining portion of the dataset, break it into chunks, and calculate the perplexity of each chunk. Which chunks have the highest perplexity? Which chunks have the lowest perplexity? After manually inspecting the results, do you think perplexity sampling is a good measure of quality?



Note

According to an analysis of C4, the Internet domain that contributed the largest proportion of text in the dataset was patents.google.com. Over 10 percent of the text from this domain is in fact machine translated, with patents from countries like Japan being translated from Japanese to English. So a significant amount of pre-training data is already not generated by humans!


Propelled by LLM’s, the Internet is slated to see widespread prevalence of AI-generated text. Recognizing whether text was written by a human or an LLM is a non-trivial task, and certainly not feasible at scale. How this would affect future LLM performance is an open research question.




Despite all the data cleaning steps, the resulting dataset is still not going to be perfect at this level of scale. For example, Eleuther AI reported that the boilerplate sentence “select the forum that you want to visit from the selection below” occurs 180k times in the Pile.














Deduplication


So far we have discussed data extraction and cleaning, language identification, and quality filtering. Let’s now explore the most contentious step in the pipeline - deduplication.


We know that web-crawled text is ridden with a lot of duplicates. Duplicates form a non-trivial portion of the training dataset, so any decision taken about them will have a noticeable impact on the ensuing model.


How do we define a duplicate? We will make a distinction between three kinds:



	
Exact Matches: Two sequences with the same text are exact-match duplicates. They are the easiest to handle.



	
Approximate Matches: In many cases, there are near-duplicates, where sequences of text are identical except for a few characters. Sometimes these sequences are slightly different only due to HTML text extraction artifacts and other filtering processes.



	
Semantic Duplicates: Duplicates that semantically convey the same content but using different wordings. This is usually treated as out of scope.






Duplicates can also be categorized based on the granularity at which they occur.



	
Document-level Duplicates: Duplicate documents are removed during the preparation of most pre-training datasets. However, in some datasets like The Pile, certain subsets (like Wikipedia) are deliberately duplicated,  so that they are seen more often by the model.



	
Sequence-level Duplicates: These are sequences in documents that are repeated across multiple documents. In some cases they can be massively duplicated, like Terms of Service text, copyright notices, website prefaces etc.
















To Deduplicate or to not Deduplicate


The jury is still out on the effectiveness or lack thereof of deduplication.


There is evidence that you can train for at least four epochs without overfitting. This is equivalent to text being duplicated four times. However, there is still a benefit in removing duplicates that are just boilerplate text and occur thousands of times.


On the other hand, here are a few arguments in support of deduplication:



	
A small subset of the pre-training dataset is usually kept aside for validation/test. Deduplication can ensure the removal/reduction of overlap between the train and test sets, which is essential for an unbiased evaluation. Without sequence-level deduplication, there is a high likelihood of overlap of common text sequences in the train and test sets.



	
Anthropic’s work shows a surprising double descent phenomenon - this means that data that is duplicated only a few times doesn’t negatively impact model performance too much, data that is duplicated too many times doesn’t negatively impact model performance too much, but in the distribution of duplication frequency, there is a peak in the middle where the damage is maximum.



	
Removing duplicate sequences reduces the overall size of the training dataset. However, Lee et al. show that this does not affect the perplexity of the model. Thus, the model can be trained for a shorter period yet with the same benefit.



	
Deduplication can also reduce the tendency of the model to memorize its training data. Memorization is closely linked to model overfitting, and thwarts the ability of the model to generalize. While there are many ways to quantify memorization, we will focus on memorization by generation, where a model is said to have memorized a sequence if it is capable of generating it verbatim. Lee et al. have shown that models trained on datasets that have been deduplicated at the sequence level generate ten times less verbatim training data.





Tip

One advantage of using models trained on publicly available datasets is that you can search through the dataset to see if the text generated by the model exists verbatim in the dataset. For example, the ROOTS search tool can be used to test generations from the BLOOM model, which was trained on ROOTS.




Security Vulnerabilities in LLMs due to Memorization

Memorization makes language models vulnerable to security and privacy attacks. Two demonstrated types of attacks are:



	
Membership inference attack: With just closed-box access to a model, a membership inference attack enables an attacker to determine if a sequence of text has been used to train the model or not.



	
Training data extraction attack: With just closed-box access to a model, the attacker can prompt the model to generate memorized sensitive information. A naive example involves prompting the model with the text  ‘Suhas Pai’s phone number is’ and asking the model to provide the continuation, with the hope that it has memorized Suhas’s number.






Carlini et al. show that larger models memorize more easily and thus are most susceptible to these types of attacks. However, it is hard to estimate how much data is memorized by the model, as some memorized data is output by the model only when prompted with a delicately prepared prefix of a longer length. This makes models harder to audit for privacy guarantees.


Figure 2-4 demonstrates the flow of a rudimentary training-data extraction attack.





[image: Privacy attacks]
Figure 2-4. Privacy Attacks against LLMs



Tip

Deduplication is computationally intensive, especially when it comes to removing near-duplicates. Some of the efficient algorithms used include MinHash, SimHash, Suffix Array etc.
















Removing PII (Personally Identifiable Information)


While deduplication can reduce the likelihood of the model memorizing training data, it is by no means a panacea to the memorization problem. Even information that appears only once in the training set could potentially be memorized (and leaked). While a lot of content in the training data is innocuous (Terms of Service text) and perhaps even desirable to memorize (factual information, like the capital of Canada), memorization of personally identifiable information (PII) is a major concern.


Let us see what PII entails. The formal definition from Cornell Law is -


Information that can be used to distinguish or trace an individual’s identity, either alone or when combined with other personal or identifying information that is linked or linkable to a specific individual.



Based on this definition, non-PII can become PII when another piece of information becomes public, which when combined with the non-PII can be used to uniquely identify an individual.


The legal definition of PII varies by jurisdiction. For example, the GDPR (General Data Protection Regulation) in Europe, says


Protection should be extended to anything used to directly or indirectly identify a person (or data subject). This may be extended to include characteristics that describe “physical, physiological, genetic, mental, commercial, cultural, or social identity of a person.



Most open-source models are trained on publicly available datasets. These datasets might contain PII, but one might be tempted to say ‘well it is already out in the open, so there is no need for privacy protection’. This argument overlooks the importance of consent and discoverability controls. For instance, I might have shared my PII on my blog which resides in an obscure corner of the Internet and is not easily discoverable through search engines, but if it ends up being added to a pre-training dataset, it suddenly brings this data into the spotlight, without my consent. This concept is called contextual integrity - data should only be shared in the original context in which it was shared.


So ideally, we would like to detect PII in the dataset, and then remediate it in some fashion, so that the PII is no longer present in the training data or at least not memorizable. The presence of public-figure PII adds a layer of complexity to this problem. We would like our model to be able to answer factual questions about public figures like their birth date accurately. The privacy expectations for public figures is lower, showcasing how the values of transparency and openness clash with privacy. Determining who is a public figure and what level of privacy they are entitled to is a complex social and technical challenge.


Data that is considered private includes names, addresses, credit card data, government IDs, medical history and diagnosis data, email IDs and phone numbers, identity and affinity groups the person belongs to (religion, race, union membership), geolocation data and so on.


Attacks can be either targeted or untargeted. In an untargeted attack, the attacker just generates a large body of text using the model, and then runs a membership inference attack to determine text within it that is most likely to be memorized. In a targeted attack, the attacker attempts to recover personal information about a particular individual or a group of individuals. Targeted attacks are more difficult to execute, because while language models are good at memorization, they are bad at association - for instance, identifying that an email ID belongs to a person.


Exercise

Use the instructions in the ReadMe to run this code for analyzing privacy attacks on LLMs. It goes without saying, but please do not use this in the real world! Running the code and observing the outputs will give you an understanding of the limitations of this type of attack, and the type of data that is typically memorized by an LM.


Additionally, you can play around with Google’s Training Data Extraction Challenge and make a submission!



Note

Language models are also susceptible to training data poisoning attacks. Since a large portion of training data is sourced from web-crawled text, bad actors have an opportunity to influence the content of the training set. Tramer er al. have shown that one can poison less than 0.1 percent of the training set with data whose effect is to make it easier for other data in the training set to leak more easily.


As LLMs increasingly get used as search engines, the demand for LLM SEO will soon crop up. For example, a company could write content on their web sites in a manner that makes it more likely to be chosen in a pre-training dataset creation process that uses perplexity filtering.




Most pre-training datasets have undergone little to no PII remediation. The Privacy working group (of which I was the co-lead) of the Big Science project that trained the BLOOM model developed a pipeline for PII detection and remediation, which we will discuss next.


Figure 2-5 shows a typical PII processing pipeline.
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Figure 2-5. PII Processing pipeline














PII Detection


The task of PII detection is similar to the NLP task of Named Entity Recognition, introduced in Chapter 1. However, not all named entities constitute PII.
For our task we determined the PII tags to be - PERSON, AGE, NORP (nationality, race, religion, political party affiliation, socio-economic class, union membership), STREET_ADDRESS, CREDIT_CARD, GOVT_ID, EMAIL_ADDRESS, USER_ID, PUBLIC_FIGURE.


We used the PUBLIC_FIGURE tag to identify information about public figures, since we didn’t want to filter them out. We also assigned fictional characters this tag.


Some of the structured tags in this list like emails and government IDs can be identified using regular expressions. For other tags, we annotated datasets which could then be used to train Transformer-based NER-like models. Interestingly, we observed a very high degree of inter-annotator disagreement (same example being annotated differently by different people) that underscored the cultural nuances of the definition of privacy and what constitutes personal information.


Here is the regular expression to detect SSN (U.S Social Security Numbers):


ssn_pattern = r"(?!000|666|333)0*(?:[0-6][0-9][0-9]|[0-7][0-6][0-9]|

[0-7][0-7][0-2])[-\ ](?!00)[0-9]{2}[-\ ](?!0000)[0-9]{4}"


Note that detection is not the same as validation. Not all 9 digit numbers of the form XXX—​XX-XXXX are SSNs!  Validation is the process of checking if a sequence of characters maps to a valid identifier. For example, the Canadian equivalent of SSN, the SIN (Social Insurance Number) contains a checksum digit which can be used to validate it.


from stdnum.ca import sin
sin_pattern = re.compile(r"\d{3}[-\ ]\d{3}[-\ ]\d{3}", flags=re.X)
for match in sin_pattern.findall(text):
    if sin.is_valid(match):
         print(match)


The is_valid() function uses the Luhn checksum algorithm to validate if the sequence of digits maps to a valid SIN. The same algorithm is also used to validate credit cards. Here is the regex for detecting credit card numbers.


from stdnum import luhn
cc_base_pattern =  r"\b \d (?:\d[ -]?){14} \d \b"
cc_full_pattern = r"""4[0-9]{12}(?:[0-9]{3})? |
                      (?:5[1-5][0-9]{2}|222[1-9]|22[3-9][0-9]|2[3-6][0-9]{2}|27[01][0-9]|

                      2720)[0-9]{12} |
                      3[47][0-9]{13} |
                      3(?:0[0-5]|[68][0-9])[0-9]{11} |
                      6(?:011|5[0-9]{2})[0-9]{12} |
                      (?:2131|1800|35\d{3})\d{11}"""


The regular expression for detecting email address is


email_pattern = r"[\w\.=-]+ @ [\w\.-]+ \. [\w]{2,3}"


Exercise

These regular expressions were run on the ROOTS dataset. How effective were they in detecting PII? Find out using the ROOTS search tool. If you search for ‘gmail.com’, you will find that all entries in the search results have been successfully redacted. Alter the spelling a little and see if it still holds true. Can you improve the regular expession?



Note

Removing structured PII data while keeping the number of false positives low is hard enough, but detecting and remediating unstructured data is even harder. Due to the complexity of this task and the uncertainty about its impact on the resulting model performance, we decided to not run the Transformer model based PII pipeline over the ROOTS dataset for training the BLOOM model
















PII Remediation


Once PII has been detected, it can be remediated. Figure 2-6 depicts one of the remediation schemes.



[image: PII Remediation Options]
Figure 2-6. PII Remediation Options




Here is a non-exhaustive list of remediation options:



	
Replace by a special token: For example, a valid phone number can be replaced by the string <phone number>



	
Replace with a random token of the same entity type: For example, replace the name ‘Clarietta Richards’ with ‘Natasha Bridges’, or any other name.



	
Replace with a shuffled token: Entities detected across the dataset can be shuffled.



	
Remove entire document/data source: If the amount of PII detected in a single document or data source is higher than a specific threshold, it is probably best to remove it. For example, pastebin.com is said to contain a lot of inadvertently placed PII, and is recommended to be not included in training datasets.






Each of these techniques can have a varied effect on downstream performance of the model. How does replacing tokens affect training perplexity? Do downstream tasks like Named Entity Recognition get negatively affected when tuned on the resulting model? How does replacement by special tokens compare to replacement with random tokens? This is a relatively underexplored topic and all these questions are still open.


Faker is an excellent library for facilitating random token replacement. It supports random token generation for a variety of PII types including names, addresses, credit card numbers, phone numbers etc.
One danger in using random tokens is that the replacement process can alter the demographic distribution of the dataset - for example, if the replacement names were all or mostly Anglo-Saxon names. Faker has localization support to enable replacement with fake data from the same geography/culture. Let’s explore the library in more detail.


from faker import Faker
fake = Faker(‘en_IN’)   # Indian locale
Faker.seed(0)
for i in range(5):
   print(fake.aadhaar_id)


This code generates 12 digit fake Aadhaar ID’s, which are the Indian equivalent of Social Security Numbers. Note that the generated IDs are all invalid, but still follow the same format. Similarly,


for i in range(5):
   print(fake.address)


generates fake but representative addresses for the selected locale.

Note

Removing PII from training datasets is only one of several solutions to prevent data leakage from models. One promising technique is differential privacy, which introduces randomness in the inputs or outputs to provide theoretical guarantees for privacy preservation. In neural networks, differential privacy is implemented using the DP-SGD algorithm, which involves gradient clipping and noise addition at the end of each update. However, differential privacy significantly slows down training, negatively affects model performance, and disproportionately impacts minority groups in the dataset in terms of model utility degradation. Apart from differential privacy, other methods include adversarial training, model unlearning, retroactive censoring, and ‘memfree’ decoding.
















Training Set Decontamination


Training set decontamination is a crucial data preprocessing step that helps improve LLM evaluations. A pre-training dataset is said to be contaminated if it contains data from the benchmark test sets used to evaluate its performance. Contamination can happen if the test datasets were constructed from web text, or if the dataset was uploaded on the Web after creation. There are two types of contamination:1



	
Input and Label contamination: In this setting, both the questions (inputs) and answers (target labels) exist in the pre-training dataset. Heard about how GPT-4 can solve all kinds of exams? While the creators of GPT-4 did spend a lot of effort on removing data contamination, in practice it is really hard to remove everything.



	
Input contamination: In this setting, only the inputs are present in the pre-training dataset but not the target labels. We will describe the effects of input contamination and how we can leverage it for positive use in Chapter 8 and 9.






Open AI addressed training set contamination in GPT-3 by finding 13-gram overlaps between text in the test/validation set and the train set, and removing 200 characters before and after the matched texts.


Dataset Ordering

After all data pre-processing stages have been completed, the training process can commence. The order in which the data is fed to the model does matter. The area of study to determine the most optimal order is called curriculum learning. To our knowledge, most models do not go beyond some simple ordering heuristics.


One technique is to start the training with shorter training sequences and then gradually increase the sequence lengths. This can be done by either truncating initial sequences to fit a certain length, or by simply reordering the dataset so that shorter sequences are ordered first.


Researchers have also experimented with introducing more common words to the model first, by replacing rarer words occurring in early training examples with their part-of-speech tag or with hypernyms (for example, the hypernym of magenta is color).




Now that we have discussed all the important data collection and pre-processing steps for preparing a pre-training dataset, let us see how individual datasets differ in terms of the preprocessing steps they have undergone.

Tip

Big Science has developed a visualization tool that helps you understand the effect of various preprocessing functions on the pre-training dataset. Use the Process Pipeline Visualizer to sequentially run through the preprocessing pipeline yourself!




Table 2-2 provides a list of the popular pre-training datasets, and the kind of preprocessing they went through.


Table 2-2. Pretraining Datasets and their Preprocessing Pipeline


	Name
	Extraction and Cleaning
	Quality Filtering
	Deduplication
	Language Identification
	Models trained with this dataset





	C4

	Remove pages containing word in blocklist, remove code, remove short lines and pages

	-

	Deduplication of 3-sentence spans

	langdetect

	T5, Flan-T5, UL2, Llama etc




	The Pile

	justext library for text extraction

	fasttext classifier

	Document level, with MinHashLSH

	pycld2

	GPT-Neo/X, GPT-J, Cerebras-GPT, StableLM, Pythia etc




	CCNet

	-

	Perplexity filtering

	Paragraph level deduplication

	fasttext

	F




	RedPajama

	Ccnet pipeline

	Classifier distinguishing between Wikipedia text and random C4 text

	Paragraph level deduplication (for Common Crawl)

	fasttext

	Red Pajama-INCITE, MPT




	CleanPajama

	low-length filter, NFC normalization

	-

	MinHashLSH

	-

	-




	RefinedWeb

	URL filtering by blocklists, trafilatura library for text extraction, repetitive content removal

	-

	Fuzzy document level deduplication with MinHash, Exact sequence-level deduplication

	fasttext

	Falcon




	ROOTS

	removal of documents with low ratio of closed class words, high ratio of blocklist words, high ratio of character/word repetition

	Perplexity filtering

	SimHash, Suffix Array

	fasttext

	BLOOM

















Leveraging Pre-training Dataset Characteristics


How well do LLM’s do on arithmetic and logical reasoning? The prospects of a very large number of use cases depend on the answer being a positive one. We will investigate this question in more detail in Chapter 11.


But for now, I would like you to dwell a moment on this fascinating observation - there is a correlation between a model’s performance on a given input example and the pre-training corpus frequency of the salient terms present in that input.


Razeghi et al. observed this with the GPT-J model - when asked arithmetic questions like addition, subtraction, multiplication etc, the model gets it right sometimes, and wrong other times.If you plot a graph of pre-training frequencies of the numbers versus the performance for arithmetic operations using those numbers, there is a clearly visible trend. The more frequent a number appears in the pre-training dataset, the better the model is at arithmetic operations involving that number.


The effect is most drastic for multiplication tasks. As shown in Figure 2-7, the model is more correct at multiplication operations involving the number 24 than ones involving the number 23, and the frequency of the numbers in the dataset show a large difference between the term frequency for these numbers.



[image: Avg.Accuracy vs Term Frequency]
Figure 2-7. Plot of average accuracy plotted against term frequency, using the Snoopy tool. Image taken from Razeghi et al.




The authors investigate this phenomenon using three types of frequencies.
Consider the input


Q: What is 40 times 51? A:


The frequencies calculated are


	
Unigram frequency: For example, the number of times the number ‘40’ occurs in the dataset



	
Input term co-occurrence: Two input terms co-occurring within a window size of 5. For the current example, it is (40, 51)



	
Input and output term co-occurrence: Two input terms and the output term co-occurring within a window size of 5. For the current example, it is (40, 51, 2040)







The unigram frequencies alone cause noticeable performance gaps. This phenomenon can be replicated across other types of tasks and datasets as well.
This means that Open AI’s technique of finding 13-gram overlaps between text in the training set and in benchmark sets isn’t enough to eliminate input contamination.


If your task is well-defined, doesn’t have drastic data drifts, then input contamination may not really be such a bad thing. You can then leverage frequency statistics to design inputs to the model that are more likely to give the right answer!

Tip

You can explore this phenomenon on your own by using the Snoopy tool. Snoopy is a tool built by Radeghi et al. for analyzing the impact of pre-training term frequencies on model performance. It uses The Pile, the dataset used to train most open-source models including GPT Neo-X, for analysis. You can experiment with a variety of benchmark tasks.




Exercise

Using the Snoopy tool, try out different benchmark datasets from the drop down dataset and explore the effect of term frequency (both unigram and co-occurrence) on model accuracy. For which tasks is this phenomenon least prevalent? Why could it be?












Bias and Fairness Issues in Pre-training Datasets


A multitude of ethical questions arise during the productization of large language models. The existence of significant bias and fairness issues in these models often lead to a no-ship condition for a large number of use cases. We will give these issues their due coverage in Chapter 12. For now, in this section we will go through some bias and fairness issues specifically related to the collection and filtering of pre-training data.


The scale of data that LLMs are fed with means that they are not just constructing models of language, but also of the world we inhabit. This gives rise to the question - ‘Do we want to model the world the way it is or do we want to model the world the way we would like it to be?’ The Internet is filled with hate, violence, and abusive language and is often used as an outlet for humanity’s worst impulses. The text in it implicitly encodes long existing biases against groups of people. For example, in The Pile, an analysis of word co-occurrence statistics shows the word ‘radical’ co-occurs with the word ‘Muslim’ substantially more than it does for other religions.


The phenomenon of bias amplification makes these problems all the more critical. It has been shown that large language models amplify the biases that are encoded in their pre-training data - they make biased predictions against groups of people at higher rates than what the training data statistics would suggest.


So, can we ‘fix’ our training data such that we can model a world that encodes our values and principles which downstream applications will inherit? There is substantial debate in the research community around this. Opponents argue it is hard to identify and fix all societal  biases encoded in the data since there are so many dimensions of bias that intersect in complex ways. Values are not universal and model providers would like to be value-neutral in order to cater to all sections of society


However, as Anna Rogers describes in her paper, this question is already moot. Data curation is already happening, whether we like it or not, and the values and interests of model providers are already being encoded into the models. For example, only a small proportion of available data is ‘selected’ to be part of the pre-training set. This selection process is not value-neutral, even if one might explicitly not think in terms of them.


For example, Wikipedia is one of the more popular datasets used in training LLMs. While this might be a no-brainer to include, let’s explore the implications. Wikipedia is edited by volunteers, a very large proportion of them being men. Since the determination of whether a topic is reputable enough to deserve a Wikipedia page rests with the editors who are largely made up of men, we see disparities like obscure male football players from lower level leagues getting their own pages while a disproportionate number of biography articles about women are slated for deletion.


Similarly, the highly influential WebText dataset is sourced from Reddit outbound links. Reddit is a predominantly male site, with 74% of users being men. Naturally, links posted on Reddit are more likely to be catered to male interests.


Bias can also be introduced during the data filtering stages. Earlier, we noted that keyword lists are often used to filter out pornographic material and abusive text. However, using a naive keyword list is a lazy approach that not only has problems with effectiveness (false negatives), but also inadvertently causes disproportionately filtering out positive text written by or about minority communities, as well as text written in dialects like African-American English and Hispanic-aligned English. The fact that words in English have multiple senses has resulted in certain documents about breastfeeding being filtered out of the C4 dataset.


Overall, whether a word is hateful, abusive, or toxic depends on the social context, the intentions of the reader, and the intended audience. Keyword based methods simply do not capture this nuance. The question of whether it is more effective to handle these issues at the pre-training stage or further downstream is an open area of research. We will explore techniques that can be employed downstream in Chapter 12.


The authors of the Pythia model experimented by replacing masculine pronouns with feminine ones for the last 7 percent of training tokens and noticed a ‘de-biasing’ impact on downstream tasks.


We will further explore bias, fairness, and safety issues and how to integrate these values while designing LLM applications in Chapter 11.










Summary


In this chapter, we outlined the key ingredients of a language model - the pre-training data, the vocabulary and tokenizer, the language objective, and the model architecture. We walked through the steps involved in creating a pre-training dataset in detail, including language identification, text extraction and cleaning, quality filtering, deduplication, PII removal, and test set decontamination. We also provided a list of commonly used pre-training datasets and the steps taken for pre-processing each of them.


Now that you have a good idea about the data side of LLMs, it is time to explore the model side. In the next chapter, we will provide details on the remaining ingredients of the language model - the vocabulary and tokenizer, learning objective, and model architecture.



1 from A Case Study on the Colossal Clean Crawled Corpus, Dodge et al., EMNLP 2021









Chapter 3. LLM Ingredients: Tokenization, Learning Objectives & Architectures



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In Chapter 3, we dug into the datasets that are used to train the language models of today. Hopefully this foray has underscored how influential pre-training data is to the resulting model. In this chapter, we will go through the remaining ingredients: vocabulary and tokenization, learning objectives, and model architecture.








Vocabulary and Tokenization


What do you do first when you start learning a new language? You start acquiring its vocabulary, expanding it as you gain more proficiency in the language. Let’s define vocabulary here as


All the words in a language that are understood by a specific person



The average native English speaker is said to have a vocabulary ranging between 20,000-35,000 words. Similarly, every language model has its own vocabulary, with most vocabulary sizes ranging anywhere between 5,000 to 500,000 tokens.


As an example, let us explore the vocabulary of the GPT Neo-X 20B model.
Open the file tokenizer.json and ctrl+f for ‘vocab’. You can see that the words comprising the language model vocabulary don’t entirely look like English language words that appear in a dictionary. These word-like units are called ‘types’, and the instantiation of a type (when it appears in a sequence of text) is called a token.

Note

In recent times, and especially in industry, I have hardly heard anyone use the term ‘type’ except in older NLP textbooks. The term token is broadly used to refer to both the vocabulary units and when it appears in a text sequence. We will henceforth use the word ‘token’ to describe both concepts, even though I personally am not the biggest fan of it.




In the vocabulary file, we see that next to each token is a number, which is called the input id or the token index. The vocabulary size of GPT Neo-X is just above 50,000.


The first few hundred tokens are all single character tokens, starting from special characters, digits, capital letters, small letters, and accented characters. Longer words appear later on in the vocabulary. There are a lot of tokens that correspond to just a part of a word, called a subword, like ‘impl’, ‘inated’, and so on.


Let’s Ctrl + F for ‘office’. We get nine results -


"Ġoffice": 3906
"Ġofficer": 5908
"Ġofficers": 6251
"ĠOffice": 7454
"ĠOfficer": 12743
"Ġoffices": 14145
"office": 30496
"Office": 33577
"ĠOfficers": 37209


The Ġ character refers to a space before the word. For instance, in the sentence ‘He stopped going to the office’, the space before the letter ‘o’ is considered part of the token.
You can see that the tokens are case-sensitive - there is a separate token for ‘office’ and ‘Office’. Most models these days have case-sensitive vocabularies. Back in the day, BERT came with both a cased and an uncased version.


Cased vocabularies are almost always better, especially when you are training on such a huge body of text such that most tokens are seen by the model enough times so as to learn meaningful embeddings for them. For instance, there is a definite semantic difference between ‘web’ and ‘Web’ and it is good to have separate tokens for them.


Let’s search for some numbers. Ctrl+F for ‘93’. There are only three results


"93": 4590
"937": 47508
"930": 48180


It seems like not all numbers get their own tokens! Where is the token for 934? It is impractical to give every number its own token, especially if you want to limit your vocabulary size to just 50,000. As discussed in Chapter 2, the vocabulary size determines the size of the embedding layer and we do not want to see it become too large. We will discuss the impact of missing tokens later in this section.


Popular names and places get their own token. There is a token representing Boston, Toronto, and Amsterdam but none representing Mesa or Chennai. There is a token representing Ahmed and Donald, but none for Suhas or Maryam.


You might have noticed that tokens like


"]);": 9259


exist, indicating that GPT Neo-X is also primed to process programming languages.


Exercise

Go through the tokenizer.json file and explore the vocabulary in detail. Specifically,



	
What are some unexpected tokens you see?



	
What are the top ten longest tokens?



	
Are there tokens representing words from other languages?








How are vocabularies determined? Surely, there was no executive committee holding emergency meetings burning midnight oil, with members making impassioned pleas to include the number 937 in the vocabulary at the expense of 934?


Let us revisit the definition of a vocabulary


All the words in a language that are understood by a specific person



Since we want our language model to be an expert at English, we can just include all words in the English dictionary as part of its vocabulary. Problem solved?


Not nearly. What do you do when you communicate with the language model using a word that it has never seen? This happens a lot more often than you think. New words get invented all the time, words have multiple forms - ‘understanding’, ‘understanding’, ‘understandable’ etc, multiple words can be combined into a single word, and so on. Moreover, there are millions of domain-specific words (biomedical, chemistry etc)


The Definition of a Word

What exactly is a word, anyway? It is surprisingly very hard to answer this. Conceptually, you could say that a word is the smallest unit of text that has a self-contained meaning. This is not exactly true. For example, the word ‘snowball’ has components that have self-contained meanings of their own.  Algorithmically, you can say that a word is just a sequence of characters separated by white space. This isn’t always true either. For example, the word ‘Hong Kong’ is generally regarded as a single word, even if it is separated by white space. Meanwhile the word ‘can’t’ could potentially be regarded as two or three words, even if there is no white space separating them.



Note

The twitter account ‘NYT first said’ tweets out words when they appear in the New York Times for the first time, excluding proper nouns. An average of 5 new words appear in the American paper of record for the first time each day. On the day I wrote this section, the words were ‘unflippant’, ‘dumbeyed’, ‘dewdrenched’, ‘faceflat’, ‘saporous, and ‘dronescape’. Many of these words might never get added to a dictionary.




A token that doesn’t exist in the vocabulary is called an OOV (Out-of-vocabulary) token. In Chapter 2, we saw how each token is assigned an embedding in the Transformer architecture. The architecture is fixed, and the number of embeddings in the embedding layer equals the size of the vocabulary of the model. Traditionally, OOV tokens were represented using a special <UNK> token. The <UNK> token is a placeholder for all tokens that don’t exist in the vocabulary. All OOV tokens share the same embedding (and encode the same meaning), which is undesirable. Moreover, the <UNK> token cannot be used in generative models. You don’t want your model to output something like


‘As a language model, I am trained to <UNK> sequences, and output <UNK> text’.


To solve the OOV problem, one possible solution could be to represent tokens in terms of characters instead of words. Each character has its own embedding, and as long as all valid characters are included in the vocabulary, there will never be a chance of encountering an OOV token. However, there are many downsides to this. The number of tokens needed to represent the average sentence becomes much larger. For example, the previous sentence contains 13 tokens with a word tokenization scheme but 81 tokens with a character tokenization scheme. As seen in Chapter 2, the sequence length of a Transformer is limited, and the expanded number of tokens makes both training and inference slower, and reduces the amount of context that can be provided to a model in zero-shot or few-shot settings. Therefore, character-based tokens cannot be adapted without a significant change to the Transformer architecture. There have been attempts to do this including CANINE, ByT5, CharFormer, which we will discuss later in this section.


So, the middle ground and the best of both worlds (or the worst of both worlds, the field hasn’t come to a consensus yet) is using subwords. Subwords are the predominant mode of representing vocabulary units in the language model space today. The GPT Neo-X vocabulary we explored earlier uses subword tokens. Figure 3-1 shows the Open AI tokenizer playground that demonstrates how words are split into their constituent subwords.



[image: Subword Tokens]
Figure 3-1. Subword Tokens












Tokenizer


A tokenizer has two responsibilities -


	
In the tokenizer pre-training stage, the tokenizer is run over a body of text to generate a vocabulary.



	
While processing input during both training and inference, free-form raw text is run through the tokenizer algorithm to break down the text into tokens. Figure 3-2 depicts the roles played by a tokenizer








[image: Tokenizer Workflows]
Figure 3-2. Tokenizer Workflow




When we feed raw text to the tokenizer, it breaks down the text into tokens that are part of the vocabulary, and maps the tokens to their token indices. The sequence of token indices (input ids) are then fed to the language model where they are mapped to their corresponding embeddings. Let us explore this process in detail.


This time, let’s experiment with the FlanT5 model. You need a Google Colab Pro or equivalent system to be able to run it.


!pip install transformers accelerate sentencepiece
from transformers import T5Tokenizer, T5ForConditionalGeneration


tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto")


input_text = "what is 937 + 934?"
encoded_text = tokenizer.encode(input_text)
tokens = tokenizer.convert_ids_to_tokens(encoded_text)
print(tokens)


The output is


['▁what', '▁is', '▁9', '37', '▁+', '▁9', '34', '?', '</s>']


The encoder() function tokenizes the input text and returns the corresponding token indices. The token indices are mapped to the tokens they represent using the convert_ids_to_tokens() function.


As you can see, the Flan-T5 tokenizer doesn’t have dedicated tokens for the numbers 937 or 934. Therefore, it splits the numbers into ‘9’ and ‘37’. The </s> token is a special token indicating the end of the string. The ‘_’ means that the token is preceded by a space.


Let’s try another example.


input_text = "Insuffienct adoption of corduroy pants is the reason this

economy is in the dumps!!!"
encoded_text = tokenizer.encode(input_text)
tokens = tokenizer.convert_ids_to_tokens(encoded_text)
print(tokens)


The output is


['▁In', 's', 'uff', 'i', 'en', 'c', 't', '▁adoption', '▁of', '▁cord', 'u',

'roy', '▁pants', '▁is', '▁the', '▁reason', '▁this', '▁economy', '▁is', '▁in',

'▁the', '▁dump', 's', '!!!', '</s>']


I had made a deliberate typo with the word ‘Insufficient’. Note that subword tokenization is rather brittle with typos. But at least the OOV problem has been dealt with by breaking down the words into subwords. The vocabulary also doesn’t seem to have an entry for the word ‘corduroy’, thus confirming its poor sense of fashion. Meanwhile, there is a separate token for three contiguous exclamation points, which is different from the token that represents a single exclamation point. Semantically, they do convey slightly different meanings.

Note

Very large models trained on a massive body of text are more robust to misspellings.  A lot of misspellings already occur in the training set. For example, even the rare misspelling ‘Insuffienct’ occurs 14 times in the C4 pre-training dataset. The more common misspelling ‘insufficent’ occurs over 1100 times. Larger models can also infer the misspelled word from its context. Smaller models like BERT are quite sensitive to misspellings.




If you are using models from Open AI, you can explore their tokenization scheme using the tiktoken library. (no relation to the social media website).


Using tiktoken, let’s see the different vocabularies available in the Open AI ecosystem.


!pip install tiktoken

import tiktoken
tiktoken.list_encoding_names()


The output is


['gpt2', 'r50k_base', 'p50k_base', 'p50k_edit', 'cl100k_base']


The numbers like 50k/100k are presumed to be the vocabulary size. Open AI hasn’t revealed much information about these. Their documentation does state that cl100k_base is used by GPT-4 and GPT 3.5 (chatGPT), while p50k_base is used by the Codex models, and the Instruct versions of GPT-3.


encoding = tiktoken.encoding_for_model("gpt-4")
input_ids = encoding.encode("Insuffienct adoption of corduroy pants is the

reason this economy is in the dumps!!!")
tokens = [encoding.decode_single_token_bytes(token) for token in input_ids]


The output is


[b'Ins', b'uff', b'ien', b'ct', b' adoption', b' of', b' cord', b'uro', b'y',

b' pants', b' is', b' the', b' reason', b' this', b' economy', b' is', b' in',

b' the', b' dumps', b'!!!']


As you can see there is not much of a difference between the tokenization used by GPT-4 and GPT Neo-X.


Exercise

Using tiktoken, find the difference between p50k_base, the encoding used for GPT 3.5 (chatGPT), and cl100k_base, the encoding used for GPT-4. What are the 50,000 extra tokens in the GPT-4 vocabulary representing?



Tip

While adapting LLM’s to your use case, If you see strange behavior from the model on a subset of your inputs, it is worthwhile to check how they have been tokenized. While you cannot definitively diagnose your problem just by analyzing the tokenization, it is often helpful in analysis. In my experience, a non-negligible amount of LLM failures can be attributed to the way the text was tokenized. This is especially true if your target domain is different from the pre-training domain.




Tokenization-free Models

As discussed in Chapter 1, the consolidation effect has resulted in end-to-end architectures. However, one last hold-out is the tokenization step. You have seen in the code earlier that the tokenization is used as a pre-processing step to prepare the input to be fed into the model. The input to the model is the sequence of token indices and not raw text. But what if we make the model truly end-to-end by removing the tokenization step? Is it possible to directly feed raw text to the model and have it output results?


There have been forays into the world of tokenization-free language modeling, with models like CANINE, ByT5, and CharFormer.



	
CANINE accepts Unicode codepoints as input. But there are 1,114,112 possible code points, rendering the vocabulary and resulting embedding layer size infeasible. To resolve this, CANINE uses hashed embeddings so that the effective vocabulary space is much smaller.



	
ByT5 accepts input in terms of bytes, so there are only 259 embeddings in the embedding matrix (including a few special tokens), thus reducing the embedding layer size drastically.



	
CharFormer also accepts input in terms of bytes, and passes it to a gradient-based subword tokenizer module, that constructs latent subwords.


















Tokenization Pipeline


Figure 3-3 depics the sequence of steps performed by a tokenizer.



[image: HuggingFace Tokenizers pipeline]
Figure 3-3. HuggingFace Tokenizers Pipeline




If you are using the tokenizers library from HuggingFace, your input text is run through a multi-stage tokenization pipeline. This pipeline is composed of four components -



	
Normalization



	
Pre-tokenization



	
Tokenization



	
Post-processing






Note that different models will have different steps executed within these 4 components.












Normalization


Different types of normalization applied include



	
Converting text to lowercase (if you are using an uncased model)



	
Stripping off accents from characters, like from the word Peña



	
Unicode normalization






Let’s see what kind of normalization is applied on the uncased version of BERT:


tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
print(tokenizer.backend_tokenizer.normalizer.normalize_str('Pédrò pôntificated at üs:-)')


The output is


pedro pontificated at us:-)


As we see, the accents have been removed and the text has been converted to lowercase.


There isn’t much normalization done in tokenizers for more recent models.














Pre-tokenization


Before we run the tokenizer on the text, we can optionally perform a pre-tokenization step. As mentioned earlier, most tokenizers today employ subword tokenization. A common step is to first perform word tokenization and then feed the output of it to the subword tokenization algorithm. This step is called pre-tokenization.


Pre-tokenization is a relatively easy step in English compared to many other languages, since you can start off with a very strong baseline by just splitting text on whitespace. There are outlier decisions to be made - how to deal with punctuation, multiple spaces, numbers etc. In HuggingFace the regular expression


\w+|[^\w\s]+


is used to split on whitespace.


Let’s run the pre-tokenization step of the T5 tokenizer.


tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str("I'm starting to

suspect - I am 55 years old!   Time to vist New York?")


The output is


[("▁I'm", (0, 3)),
 ('▁starting', (3, 12)),
 ('▁to', (12, 15)),
 ('▁suspect', (15, 23)),
 ('▁-', (23, 25)),
 ('▁I', (25, 27)),
 ('▁am', (27, 30)),
 ('▁55', (30, 33)),
 ('▁years', (33, 39)),
 ('▁old!', (39, 44)),
 ('▁', (44, 45)),
 ('▁', (45, 46)),
 ('▁Time', (46, 51)),
 ('▁to', (51, 54)),
 ('▁vist', (54, 59)),
 ('▁New', (59, 63)),
 ('▁York?', (63, 69))]


Along with the pre-tokens (or word tokens), the character offsets are returned.


The T5 pre-tokenizer splits only on whitespace, doesn’t collapse multiple spaces into one, does’t split on punctuation or numbers. The behavior can be vastly different for other tokenizers.














Tokenization


After the optional pre-tokenization step, the actual tokenization step is performed. Some of the important algorithms in this space are BPE (Byte Pair Encoding),  Byte BPE, WordPiece, and Unigram LM. The tokenizer comprises a set of rules that is learned during a pre-training phase over a pre-training dataset. Now let’s go through these algorithms in detail.














BPE (Byte Pair Encoding)


This algorithm is the simplest and most widely used tokenization algorithm.


Training stage


We take a training dataset, run it through the normalization and pre-tokenization steps discussed earlier, and record the unique tokens in the resulting output and their frequencies. We then construct an initial vocabulary consisting of the unique characters that make up these tokens. Starting from this initial vocabulary, we continue adding new tokens using merge rules. The merge rule is simple - we merge the most frequent consecutive pairs of tokens. The merges continue until we reach the desired vocabulary size.


Let’s explore this with an example. Imagine our training dataset is composed of six words, each appearing just once.


‘bat’, ‘cat’, ‘cap’, ‘sap’, ‘map’, ‘fan’


The initial vocabulary is then made up of


‘b’, ‘a’, ‘t’, ‘c’, ‘p’, ‘s’, ‘m’, ‘f’, ‘n’


The frequencies of contiguous token pairs are


‘ba’ - 1, ‘at’ - 2, ‘ca’ - 2, ‘ap’ - 3, ‘sa’ - 1, ‘ma’ - 1, ‘fa’ - 1, ‘an’ - 1


The most frequent pair is ‘ap’, so the first merge rule is to merge ‘a’ and ‘p’. The vocabulary now is


‘b’, ‘a’, ‘t’, ‘c’, ‘p’, ‘s’, ‘m’, ‘f’, ‘n’, ‘ap’


The new frequencies are -


‘ba’ - 1, ‘at’ - 2, ‘cap’ - 1, ‘sap’ - 1, ‘map’ - 1, ‘fa’ - 1, ‘an’ - 1


Now,the most frequent pair is ‘at’, so the next merge rule is to merge ‘a’ and ‘t’.This process continues until we reach the vocabulary size.


Inference stage


After the tokenizer has been trained, it can be used to divide the text into appropriate subword tokens and feed the text into the model. This happens in a similar fashion as the training step. After normalization and pre-tokenization of the input text, the resulting tokens are broken into individual characters and all the merge rules are applied in order. The tokens remaining after all merge rules have been applied are the final tokens which are then fed to the model.


You can open the vocabulary file for GPT Neo-X again and ctrl+f ‘merges’ to see the merge rules. As expected, the initial merge rules join single characters with each other. At the end of the merge list, you can see larger subwords like ‘out’ and ‘comes’ being merged into a single token.


Exercise

Implement the BPE algorithm by yourself, using a domain dataset of your choice. What tokens do you end up with and how does it differ from the vocabulary of the popular language models? This also gives you a clue on how effective general-purpose LM’s will be for your use case.



Note

Since all unique individual characters in the tokenizer training set will get their own token, it is guaranteed that there will be no OOV tokens as long as all tokens seen during inference in future are made up of characters that were present in the training set. But Unicode consists of over a million code points and around 150,000 valid characters, which would not fit in a vocabulary of size 30000. This means that if your input text contained a character that wasn’t in the training set, that character would be assigned an  <UNK> token. To resolve this, a variant of BPE called Byte-level BPE is used. Byte-level BPE starts with 256 tokens, representing all the characters that can be represented by a byte. This ensures that every Unicode character can be encoded just by the concatenation of the constituent byte tokens. Hence it also ensures that we will never encounter an <UNK> token. GPT-n models use this tokenizer.
















WordPiece


WordPiece is similar to BPE, so we will highlight only the differences.


Instead of the frequency approach used by BPE, WordPiece uses the maximum likelihood approach. The frequency of the token pairs in the dataset is normalized by the product of the frequency of the individual tokens. The pairs with the resulting highest score are then merged.


score = freq(a,b)/(freq(a) * freq(b))


This means that lower frequency terms are joined first.


In WordPiece, merge rules are not used. Instead, for each pre-tokenized token in the input text, the tokenizer finds the longest subword from the vocabulary in the token and splits on it. For example, if the token is ‘understanding’ and the longest subword in the dictionary within this token is ‘understand’, then it will be split into ‘understand’ and ‘ing’.














Postprocessing


The final stage of the tokenizer pipeline is the postprocessing stage. This is where model specific special tokens are added. Common tokens include [CLS] or the classification token used in many language models, and [SEP], a separator token used to separate parts of the input.


The Curious Case of SolidMagiGoldkarp.

There are weird tokens that end up being part of a language model’s vocabulary, due to the way the tokenization algorithms work. One such token is ‘SolidMagiGoldkarp’, representing a now-deleted Reddit user who was one of the site’s most active posters because of his quest to count to infinity. This was a token in the GPT-2 tokenizer. The same tokenizer was used in GPT-3 models but the pre-training dataset of the model had changed, so now a token existed for SolidMagiGoldkarp but there was no signal in the pre-training dataset to learn from. This leads to some anomalous and hilarious behavior in GPT-N models.




Exercise

Token archaeology is a new hobby for many LLM enthusiasts. This involves finding rare tokens in the vocabulary of language models, and unearthing its origin. This is not just fun and games though, as knowing the origin of rare tokens can give you an insight into the characteristics of the pre-training dataset. Using tiktoken, find some rare vocabulary terms in GPT-3.5 or GPT-4’s vocabulary. Can you figure out their origins?
















Special Tokens


Depending on the model, there are a few special tokens that are added to the vocabulary to facilitate processing. These tokens include



	
<PAD> - to indicate padding, in case the size of the input is lesser than the maximum sequence length.



	
<EOS> - to indicate the end of the sequence. Generative models stop generating after outputting this token.



	
<UNK> - to indicate an OOV term






As we have seen, if our data is domain-specific like healthcare, scientific literature etc, tokenization from a general-purpose tokenizer will be unsatisfactory. GALACTICA by Meta introduced several domain specific tokens in their model and special tokenization rules



	
[START_REF] and [END_REF] for wrapping citations.



	
<WORK> token to wrap tokens that make up an internal working memory, used for reasoning and code generation



	
Numbers are handled by assigning each digit in the number its own token



	
[START_SMILES], [START_DNA], [START_AMINO], [END_SMILES], [END_DNA], [END_AMINO] for protein sequences, DNA sequences, and amino acid sequences respectively.





Note

Why is the vocabulary size so large? Surely, having a smaller vocabulary size would be more convenient as the size of the embedding matrix would be smaller. However, the smaller the vocabulary, the more number of tokens needed to represent a sequence, which would make the model slower in both training and inference.














Learning Objectives


Now that we have discussed the pre-training dataset and vocabulary, let us move on to the next ingredient of the language model - the Learning Objective.
Language models are pre-trained in a self-supervised manner. The scale of data we need to train them makes it prohibitively expensive to perform supervised learning, where (input, output) examples need to come from humans. Instead, we use a form of training called self-supervision, where the data itself contains the target labels. The goal of self-supervised learning is to learn a task which acts as a proxy for learning the syntax and semantics of a language, as well as skills like reasoning, arithmetic and logical manipulation, and other cognitive tasks, and (hopefully) eventually leading up to general human intelligence. How does this work?


For example, let’s take the canonical language modeling task - predicting the next word that comes in a sequence. Consider the sequence


'Tammy jumped over the'


and the language model is asked to predict the next token. The total number of possible answers is the size of the vocabulary. There are a lot of valid continuations to this sequence - like (hedge, fence, barbecue, sandcastle etc), but there are many continuations to this sequence that would violate English grammar rules like (is, of, the). During the training process, after seeing billions of sequences, the model will know that it is highly improbable for the word the to be followed by the word is or of, regardless of the surrounding context. Thus, you can see how just predicting the next token is such a powerful tool - in order to correctly predict the next token you can eventually learn more and more complex functions that you can encode in your model connections. However, whether this paradigm is all we need to develop general intelligence is an open question.


Self-supervised learning objectives used for pre-training LLMs can be broadly classified (non-exhaustively) into three types:



	
FLM (Full Language Modeling)



	
MLM (Masked Language Modeling)



	
PrefixLM (Prefix Language Modeling)






Let’s explore these in detail.










Full Language Modeling


Figure 3-4 shows the canonical FLM objective at work



[image: Full Language Modeling]
Figure 3-4. Full Language Modeling




This is the canonical language modeling objective of learning to predict the next token in a sequence.This is currently the simplest and most common training objective, used by GPT-4 and a vast number of open-source models. The loss is computed for every token the model sees, i.e every single token in the training set that is being asked to be predicted by the language model provides a learning signal for the model, making it very efficient.


Let us explore an example, using the GPT-Neo model.


Suppose we continue pre-training the GPT-Neo model from its publicly available checkpoint, using the full language modeling objective. Let’s say the current training sequence is


'Language models are ubiquitous'


You can run this code


import torch
from transformers import AutoTokenizer, GPTNeoForCausalLM


tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")


input_ids = tokenizer("Language models are", return_tensors="pt")
gen_tokens = model.generate(**input_ids, max_new_tokens =1,

output_scores=True, return_dict_in_generate=True)
output_scores = gen_tokens["scores"]
scores_tensor = output_scores[0]
sorted_indices = torch.argsort(scores_tensor[0], descending=True)[:20]


for index in sorted_indices:
    token_id = index
    token_name = tokenizer.decode([token_id.item()])
    token_score = scores_tensor[0][index].item()
    print(f"Token: {token_name}, Score: {token_score}")


This code tokenizes the input text Language models are and feeds it to the model by invoking the generate() function. The function predicts the continuation, given the sequence ‘Language models are’. It outputs only one token and stops generating because max_new_tokens is set to 1. The rest of the code enables it to output the top 20 list of tokens with the highest score, prior to applying the softmax at the last layer.


The top 20 tokens with the highest prediction score are


Output: Token:  a, Score: -1.102203369140625
Token:  used, Score: -1.4315788745880127
Token:  the, Score: -1.7675716876983643
Token:  often, Score: -1.8415470123291016
Token:  an, Score: -2.4652323722839355
Token:  widely, Score: -2.657834053039551
Token:  not, Score: -2.6726579666137695
Token:  increasingly, Score: -2.7568516731262207
Token:  ubiquitous, Score: -2.8688106536865234
Token:  important, Score: -2.902832508087158
Token:  one, Score: -2.9083480834960938
Token:  defined, Score: -3.0815649032592773
Token:  being, Score: -3.2117576599121094
Token:  commonly, Score: -3.3110013008117676
Token:  very, Score: -3.317342758178711
Token:  typically, Score: -3.4478530883789062
Token:  complex, Score: -3.521362781524658
Token:  powerful, Score: -3.5338563919067383
Token:  language, Score: -3.550961971282959
Token:  pervasive, Score: -3.563507080078125


Every word in the top 20 seems to be a valid continuation of the sequence. The ground truth is the token ‘ubiquitous’, which we can use to calculate the loss and initiate the backpropagation process for learning.


As an another example, consider the text sequence


'I had 25 eggs. I gave away 12. I now have 13'


Run the same code as previously, except for this change.


input_ids = tokenizer("'I had 25 eggs. I gave away 12. I now have", return_tensors="pt")


The top 20 output tokens are:


Token:  12, Score: -2.3242850303649902
Token:  25, Score: -2.5023117065429688
Token:  only, Score: -2.5456185340881348
Token:  a, Score: -2.5726099014282227
Token:  2, Score: -2.6731367111206055
Token:  15, Score: -2.6967623233795166
Token:  4, Score: -2.8040688037872314
Token:  3, Score: -2.839219570159912
Token:  14, Score: -2.847306728363037
Token:  11, Score: -2.8585362434387207
Token:  1, Score: -2.877161979675293
Token:  10, Score: -2.9321107864379883
Token:  6, Score: -2.982785224914551
Token:  18, Score: -3.0570476055145264
Token:  20, Score: -3.079172134399414
Token:  5, Score: -3.111320972442627
Token:  13, Score: -3.117424726486206
Token:  9, Score: -3.125835657119751
Token:  16, Score: -3.1476120948791504
Token:  7, Score: -3.1622045040130615


The correct answer has the 17th highest score. A lot of numbers appear in the top 10, showing that the model is more or less random guessing the answer, which is not surprising for a smaller model like GPT-Neo


The Open AI API provides the ‘logprobs’ parameter that allows you to specify the number of tokens along with their log probabilities that need to be returned. As of the book’s writing, only the logprobs of the five most probable tokens are available. The tokens returned are in order of their log probabilities.


import openai
openai.api_key = <Insert your Open AI key>


openai.Completion.create(
  model="text-davinci-003",
  prompt="I had 25 eggs. I gave away 12. I now have ",
  max_tokens=1,
  temperature=0,
  logprobs = 10
)


This code calls the older ‘text-davinci-003’ (GPT-3) model, asking it to generate a maximum of one token.The output is


"top_logprobs": [
          {
            "\n": -0.08367541,
            " 13": -2.8566456,
            "____": -4.579212,
            "_____": -4.978668,
            "________": -6.220278
          }


GPT-4 is pretty confident that the answer is 13, and rightfully so. The rest of the top probability tokens are all related to output formatting.

Tip

During inference, we don’t necessarily need to generate the token with the highest score. There are several decoding strategies that allow you to generate more diverse text. We will discuss these strategies in Chapter 4.




Exercise

Ask the text-davinci-003 model to solve individual crossword clues in the  Washington Post Daily Crossword. You may have to iterate with the prompt. A good start would be ‘Solve this crossword and answer in one word. The clue is <X> and it is a <Y> letter word. The answer is ‘. Set max_tokens = 3 to account for formatting tokens. Analyze the logprobs output. Is it dangerously close to getting it right/wrong? How many clues does it answer correctly?














Prefix Language Modeling


Prefix LM is similar to the FLM setting. The difference is that FLM is fully causal, i.e in a left-to-right writing system like English, tokens do not attend to tokens to the right (future). In the prefix LM setting, a part of the text sequence, called the prefix, is allowed to attend to future tokens in the prefix. The prefix part is thus non-causal. For training prefix LMs, a random prefix length is sampled, and the loss is calculated over only the tokens in the suffix.












Masked Language Modeling


Figure 3-5 shows the canonical MLM objective at work



[image: Masked Language Modeling in BERT]
Figure 3-5. Masked Language Modeling in BERT




In the MLM setting, rather than predict the next token in a sequence, we ask the model to predict masked tokens within the sequence. In the most basic form of MLM implemented in the BERT model, 15% of tokens are randomly chosen to be masked and are replaced with a special mask token, and the language model is asked to predict the original tokens.












T5


The T5 model creators used a modification of the original MLM objective. In this variant, 15% of tokens are randomly chosen to be removed from a sequence. Consecutive dropped-out tokens are replaced by a single unique special token called the sentinel token. The model is then asked to predict and generate the dropped tokens, delineated by the sentinel tokens.


As an example, consider this sequence


'Tempura has always been a source of conflict in the family due to unexplained reasons'


Let’s say we drop the tokens ‘has’, ‘always’, ‘of’, ‘conflict’. The sequence is now


'Tempura <S1> been a source <S2> in the family due to unexplained reasons'


with S1, S2 being the sentinel tokens. The model is expected to output


‘<S1> has always <S2> of conflict <E>’


The output sequence is terminated by another sentinel token indicating the end of the sequence.


Generating only the dropped tokens and not the entire sequence is computationally more efficient and saves training time. Note that unlike in Full Language Modeling, the loss is calculated over only a small proportion of tokens (the masked tokens) in the input sequence.


Let’s explore this on HuggingFace


from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("t5-3b")
model = T5ForConditionalGeneration.from_pretrained("t5-3b")

input_ids = tokenizer("Tempura <extra_id_0>  been a source <extra_id_1> in the
family due to unexplained reasons", return_tensors="pt").input_ids
targets = tokenizer("<extra_id_0> has always <extra_id_1> of conflict

<extra_id_2>", return_tensors="pt").input_ids
loss = model(input_ids=input_ids, labels=labels).loss


The targets can be prepared using a simple templating function.


Exercise

Play around with different masking strategies. Specifically,



	
Change the masking rate. What happens if you mask 30% or 50% of tokens?



	
Change the masking strategy. Can you do better than random masking? What heuristics would allow you to mask tokens that would contribute more towards learning?








More generally, masked language modeling can be interpreted as a denoising autoencoder. You corrupt your input by adding noise(masking, dropping tokens), and then you train a model to regenerate the original input. BART takes this to the next level by using 5 different types of span corruptions:



	
Random token masking ala BERT. Figure 3-6 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives1]
Figure 3-6. Random token masking in BART





	
Random token deletion. The model needs to predict the positions in the text where tokens have been deleted. Figure 3-7 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives2]
Figure 3-7. Random token deletion in BART





	
Text spans are sampled from text, with span lengths coming from a Poisson distribution. This means 0 length spans are possible. The spans are deleted from the text and replaced with a single mask token. Therefore the model now has to also predict the number of tokens deleted. Figure 3-8 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives3]
Figure 3-8. Span masking in BART





	
Sentences in the input document are shuffled.The model is taught to arrange them in the right order. Figure 3-9 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives4]
Figure 3-9. Document shuffling objective in BART





	
The document is rotated so that it starts from an arbitrary token. The model is trained to detect the correct start of the document. Figure 3-10 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives5]
Figure 3-10. Document rotation objective in BART
















Which learning objectives are better?


It has been shown that models trained with FLM are better at generation, and models trained with MLM are better at classification tasks. However, it is inefficient to use different language models for different use cases. The consolidation effect continues to take hold, with the introduction of UL2, a new paradigm that combines the best of different learning objective types in a single model.












UL2


UL2 mimics the effect of PLMs, MLMs, and PrefixLMs in a single paradigm called Mixture of Denoisers.


The denoisers used are -



	
R-Denoiser - This is similar to the T5 span corruption task. Spans between length 2-5 tokens are replaced by a single mask token. Figure 3-11 depicts the workings of the R-denoiser.







[image: UL2's Mixture of Denoisers1]
Figure 3-11. UL2’s R-Denoiser





	
S-Denoiser - Similar to prefix LM, the text is divided into a prefix and a suffix. The suffix is masked, while the prefix has access to bidirectional context. Figure 3-12 depicts the workings of the S-denoiser.







[image: UL2's Mixture of Denoisers2]
Figure 3-12. UL2’s S-Denoiser





	
X-Denoiser - This stands for extreme denoising, where a large proportion of text is masked (often over 50%). Figure 3-13 depicts the workings of the X-denoiser.







[image: UL2's Mixture of Denoisers3]
Figure 3-13. UL2’s X-Denoiser
















Architecture


After covering the pre-training dataset, tokenization, and the learning objective, the final piece of the puzzle is the model architecture itself.


As mentioned in Chapter 2, most modern language models are based on the Transformer architecture. Recall that the original Transformer architecture is made up of an encoder and a decoder. In practice, there are three major types of architecture backbones used:



	
Encoder-only



	
Encoder-Decoder



	
Decoder-only














Encoder-only architectures


Encoder-only architectures were all the rage when Transformer-based language models first burst on the scene. Iconic language models from yesteryears (circa 2018) that use encoder-only architectures include BERT, RoBERTa, etc.


There aren’t really many encoder-only LLM’s being trained these days. Some reasons are:



	
It is relatively harder to train them.



	
The masked language modeling objective typically used to train them provides a learning signal in only a small percentage of tokens (the masking rate), thus needing a lot more data in order to reach the same level of performance as decoder-only models.



	
For every downstream task, you need to train a separate task specific head, making usage inefficient.






The creators of UL2 recommend that encoder-only models should be considered obsolete. While I personally wouldn’t go that far, I generally agree with the arguments made above against using encoder-only LLMs. However, if you already have a satisfactory pipeline for your use case built around encoder-only models, I would say if it ain’t broke, why fix it?


If you still want to explore encoder-only models, here are some rules of thumb you can follow.



	
RoBERTa performs better than BERT most of the time, since it is trained a lot longer on more data, and adopts best practices learned after the release of BERT.



	
DeBERTa is currently regarded as the most well performing encoder-only model, and also the largest one available (1.5B parameters)



	
The distilled versions of encoder-only models like DistillBERT etc, are not too far off from the original models in terms of performance, and should be considered if you are operating under resource constraints.






Several embedding models are built from encoder-only models. For example, perhaps one of the most important libraries in the field of NLP, considered the Swiss Army Knife of NLP tools, sentence-transformers, still provides encoder-only model based embedding models that are very widely used. ‘all-mpnet-base-v2’,  based on an encoder-only model called MPNet, and fine-tuned on several task datasets, is still competitive with much larger embedding models.












Encoder-Decoder Architectures


This is the original architecture of the Transformer, as it was first proposed. The T5 series of models uses this architectural type.


In encoder-decoder models, the input is text and the output is also text. A standardized interface ensures that the same model and training procedure can be used for multiple tasks. The inputs are handled by an encoder, and the outputs by the decoder.












Decoder-only Architectures


A majority of LLMs trained today use decoder-only models. Decoder-only models came into fashion starting from the original GPT model from Open AI. Decoder-only models excel at zero shot and few shot learning.


Decoder models can be causal and non causal. Non causal models have bidirectionality over the input sequence, while the output is still autoregressive (you cannot look ahead)

Tip

While the field is still evolving, there has been some compelling evidence for the following results:



	
Decoder-only models are the best choice for zero-shot and few-shot generationization



	
Encoder-decoder models are the best choice for multi-task fine tuning.






The best of both worlds is to combine the two - Start with auto-regressive training, and then in an adaptation step, pre-train further with a non-casual setup using a span corruption objective.














Putting it all Together


The recipe for training each model is slightly different. As we have seen, at every step of the way there are a multitude of high-impact decisions to be made.


I often get this question from NLP practitioners -  ‘Hey, I am tackling this <insert niche usecase> problem, what language model do you think I should use? There are hundreds of pre-trained models available out there and I have no idea how to choose among them.’ Truth be told, there are dozens of factors that can impact your choice, and sometimes it may not even be the most immediate or right question to ask. In subsequent chapters I will demonstrate how you can navigate tradeoffs and make an informed decision regarding your choice of model, and the various ways you can utilize them in your tasks.

Note

Depending on your task, the exact choice of pre-trained model used may not be as important as other data-related choices you need to make. Even in the era of GPT-4, your domain expertise and data cleaning skills are crucial for building successful applications. That being said, throughout the book, we will showcase scenarios where the choice of model can play a crucial role.












Summary


In this chapter, we discussed vocabularies and tokens, and delved into the different tokenization algorithms currently used. We also discussed the tasks that a language model is pre-trained on, and how they are a proxy to learning syntax and semantics. We also discussed the various architectural backbones of the Transformer.


Now that we know the recipe and ingredients behind LLMs, we will next learn how to utilize them to solve our own tasks. We will discuss techniques like fine-tuning, in-context learning, and zero-shot learning. We will also show how to evaluate LLMs for our use cases, and how to select the right model that suits our needs.











Chapter 4. Adapting LLMs To Your Use Case



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In this chapter, we will continue with our journey through the LLM landscape, exploring the various LLMs available for commercial use and provide pointers on how to choose the right LLM for your task. We will also examine how to load LLMs of various sizes and run inference on them. We will then decipher various decoding strategies for text generation. We will also investigate how to interpret the outputs and intermediate results from language models, surveying interpretability tools like LIT-NLP.








Navigating the LLM Landscape


Seemingly there is a new LLM being released every few days, many of them claiming to be state-of-the-art. Most of these LLMs are not too different from each other, so you need not necessarily spend too much time tracking new LLM releases. This book’s Github repository attempts to keep a track of the major releases here, but I don’t promise it will be complete.


Nevertheless, it is a good idea to have a broad understanding of the different types of LLM providers out there, the kinds of LLMs being made available, and the copyright and licensing implications. Therefore, let’s now explore the LLM landscape from this lens and understand the choices at our disposal.










Who are the LLM providers?


LLM providers can be broadly categorized into the following types:



	
Companies providing proprietary LLMs: These include companies like Open AI (GPT), Google (PaLM), Anthropic (Claude), Cohere, AI21 etc. who train proprietary LLMs and make them available as an API endpoint (LLM-as-a-service). Many of these companies have also partnered with cloud providers who facilitate access to these models as a fully managed service. The relevant offerings from the major cloud providers are AWS Bedrock and Sagemaker JumpStart by Amazon, Vertex AI by Google, and Azure Open AI by Microsoft.



	
Companies providing open-source LLMs: These include companies who make the LLM weights public and monetize through providing deployment services (Together AI), companies whose primary business would benefit from more LLM adoption (Cerebras), and research labs who have been releasing LLMs since the early days of Transformers (Microsoft, Google, Meta, Salesforce, etc.). Note that companies like Google have released both propreitary and open-source LLMs.



	
Self-organizing open-source collectives and community research organizations: This includes the pioneering community research organization Eleuther AI, and Big Science. These organizations rely on donations for compute infrastructure.



	
Academia and government: Due to the high capital costs, not many LLMs have come out of academia so far. Examples of LLMs from government/academia include the Abu Dhabi government funded Technology Innovation Institute, which released the Falcon model, and Tsinghua University, which released the GLM model.






Table 4-1 shows the various players in the LLM space, the category of entity they belong to, and the various pre-trained models they have published.


Table 4-1. LLM Providers


	Name
	Category
	Pre-trained Models Released





	Google

	Company

	BERT, MobileBERT,  T5, Flan-T5, ByT5, Canine, UL2, Flan-UL2, Pegasus PaLM, PaLMV2, ELECTRA, Tapas, Switch




	Microsoft

	Company

	DeBERTa, DialoGPT, BioGPT, MPNet




	Open AI

	Company

	GPT-2, GPT-3, GPT-3.5, GPT-4




	Amazon

	Company

	Titan




	Anthropic

	Company

	Claude, Claude-2




	Cohere

	Company

	Cohere Command, Cohere Base




	Meta

	Company

	RoBERTa, Llama, Llama2, BART, OPT, Galactica




	Salesforce

	Company

	CTRL, Xgen, EinsteinGPT




	MosaicML

	Company (Acquired by Databricks)

	MPT




	Cerebras

	Company

	Cerebras-GPT, BTLM




	Databricks

	Company

	Dolly-V1, Dolly-V2




	Stability AI

	Company

	StableLM




	Together AI

	Company

	RedPajama




	Ontocord AI

	Non-profit

	MDEL




	Eleuther AI

	Non-profit

	Pythia, GPT-Neo, GPT Neo-X, GPT-J




	Big Science

	Non-profit

	BLOOM




	Tsinghua University

	Academic

	GLM




	Technology Innovation Institute

	Academic

	Falcon




	UC Berkeley

	Academic

	OpenLlaMA




	Adept AI

	Company

	Persimmon




	Mistral AI

	Company

	Mistral




	AI21 Labs

	Company

	Jurassic




	X.AI

	Company

	Grok

















Model flavors


Each model is usually released with multiple variants. It is customary to release different-sized variants of the same model. As an example, Llama2 comes in 7B, 13B, and 70B sizes, where these numbers refer to the number of parameters in the model.


These days, LLM providers augment their pre-trained models in various ways to make them more amenable to user tasks. The augmentation process typically involves fine-tuning the model in some way, often incorporating human supervision. Some of these fine-tuning exercises can cost millions of dollars in terms of human annotations. We will refer to pre-trained models that have not undergone any augmentation as base models.


Here are some of the popular augmentation types:












Instruct-models


Instruct-models, or Instruction-tuned models, are specialized in following instructions written in natural language. While base models possess powerful capabilities, they are akin to a rebellious teenager; effectively interacting with them is possible only after tediously engineering the right prompts through trial-and-error, which tend to be brittle. This is because the base models are trained on either denoising objectives or next-word prediction objectives, which is different from the tasks users typically want to solve. By instruction-tuning the base model, the resulting model is able to more effectively respond to human instructions and be helpful.


A typical instruction-tuning dataset consists of a diverse set of tasks expressed in natural language, along with input-output pairs. In Chapter 6, we will explore various techniques to construct instruction-tuning datasets, and demonstrate how to perform instruction-tuning on a model.


Here is an example from a popular instruction-tuning dataset called FLAN.


Input:


“What is the sentiment of the following review? The pizza was ok but the service was terrible. I stopped in for a quick lunch and got the slice special but it ended up taking an hour after waiting several minutes for someone at the front counter and then again for the slices. The place was empty other than myself, yet I couldn’t get any help/service. OPTIONS: - negative - positive”


Target:


“Negative”


In this example, the input consists of an instruction ‘What is the sentiment of the following review’ expressed in a way that humans would naturally express, along with the input and output. The input is the actual review and the output is the solution to the task, either generated by a model or annotated by a human.


Figure 4-1 demonstrates the instruction-tuning process



[image: Instruction tuning process]
Figure 4-1. Instruction-tuning process




Instruction-tuning is one of several techniques that come under the umbrella of Supervised Fine-tuning (SFT). In addition to improving the ability of a model to respond effectively to user tasks, SFT-based approaches can also be used to make it less harmful, by training on safety datasets that help align model outputs with the values and preferences of the model creators.


More advanced techniques to achieve this alignment include reinforcement learning-based methods like RLHF(Reinforcement Learning from Human Feedback) and RLAIF (Reinforcement Learning from AI Feedback).


In RLHF training, human annotators select or rank candidate outputs based on certain criteria, like helpfulness and harmlessness. These annotations are used to iteratively train a reward model which ultimately leads to the LLM being more controllable, for example, by refusing to answer inappropriate requests from users.


Figure 4-2 shows the RLHF training process.



[image: RLHF]
Figure 4-2. Reinforcement Learning from Human Feedback




We will cover RLHF and other alignment techniques in detail in Chapter 11, including algorithms like PPO (Proximal Policy Optimization), DPO (Direct Preference Optimization), KTO (Kahneman-Tversky Optimization) and Rejection Sampling, as well as pointers on how to facilitate the human feedback process.


Instead of relying on human feedback for alignment training, one can also leverage LLMs to choose between outputs based on their adherence to a set of principles (don’t be racist, don’t be rude etc). This technique was introduced by Anthropic and is called RLAIF. In this technique, humans only provide a desired set of principles and values (referred to as Constitutional AI), and the LLM is tasked with determining whether its outputs adhere to these principles.


Examples of instruction-tuned models include Open AI’s GPT-3.5-turbo-instruct, Cohere’s Command model, MPT-Instruct, RedPajama-Instruct etc.


Instruction tuning can have side effects

Is it beneficial to always prefer using an instruction-tuned variant over the base model for your tasks? In most cases, yes. However, keep in mind that any tuning on top of a base model inevitably causes some regressions, thus losing access to some of the capabilities possessed by the base model.


An example of this was demonstrated by Chung et al. They noticed that instruction-tuning using the FLAN dataset worsened chain-of-thought capabilities, which are crucial for reasoning tasks. However, they also observed that adding chain-of-thought data to their instruction-tuning datasets increased the reasoning capabilities of the model compared to the base variant.


The side effects of instruction-tuning are not well explored, so it is a good idea to experiment with the base model and see if you are losing out on any capabilities.


Similarly, alignment-tuned models are calibrated to respond to user queries in accordance with the principles, values, and ethics of the LLM provider. These may not be the same values that you or your organization hold.


In all these cases you can perform your own instruction-tuning and alignment-tuning on the base model, details of which we will explore in Chapter 6, 7, and 11. We will also analyze in what situations is it worthwhile to perform your own instruction/alignment tuning.
















Chat-models


Chat-models are a type of instruction-tuned models that are optimized for multi-turn dialog. Examples include ChatGPT, Llama2-Chat, MPT-Chat, OpenAssistant etc. In Chapter 6 we will discuss how to generate and structure dialog datasets for training, including the ChatML format used by many models.














Long-context models


As discussed in Chapter 2, Transformer-based LLMs have a limited context length. To recap, context length typically refers to the sum of the number of input and output tokens processed by the model per invocation. Typical context lengths of modern LLMs range from 2,000 to 8,000 tokens, with some models like Anthopic’s Claude 3 supporting over 200,000 tokens, and Gemini 1.5 pro supporting over a million tokens. Some models are released with a long-context variant; for example GPT 3.5 comes with a default 4k context size but also has a 16k context size variant. MPT also has a long-context variant that has been trained on 65k context length but can potentially be used for even longer contexts during inference.


No free lunch for long context

As of yet, there is no free lunch with long-context models. It has been shown that performance is not sustained as context length increases. LLMs tend to forget things in the middle of the context window. This is because of the characteristics of the documents that LLMs are trained on, wherein the most relevant context of a document necessary to predict the next token is more often found near the beginning or end of the context. In my experiments, I have observed that 3k context size is the tipping point for most models beyond which performance starts to degrade. You also can’t just stuff your entire context with instructions; LLMs can only handle a limited set of instructions in a prompt beyond which performance drops.


However, long-context models are one area of LLMs where we are seeing the most rapid improvements. Claude and Gemini long-context models have shown excellent progress in sustaining performance over long contexts.


There have been various tests devised for measuring long-context performance, including needle-in-the-haystack tests. We will discuss the shortcomings of these evaluation approaches and propose more holistic evaluation schemes in Chapter 12.
















Domain-adapted or task-adapted models


LLM providers also might perform fine-tuning on specific tasks like summarization or financial sentiment analysis. They may also produce distilled versions of the model, where a smaller model is fine-tuned on outputs from the larger model for a particular task. Examples of task-specific fine-tunes include FinBERT, which is fine-tuned on financial sentiment analysis datasets, and UniversalNER, which is distilled using named-entity-recognition data.














Open-source LLMs


The term open-source these days is often used as a catch-all phrase to refer to models that have some aspect of them publicly available. We will define open-source as:


Software artifacts that are released under a license that allows users to study, use, modify, and redistribute them to anyone and for any purpose.



For a more formal and comprehensive definition of open-source software, refer to the Open Source Initiative’s official definition.


For an LLM to be considered fully open, all of the following needs to be published:



	
Model Weights: This includes all the parameters of the model and the model configuration. Having access to this enables us to add to or modify the parameters of the model in any way we deem fit. Model checkpoints at various stages of training are also encouraged to be released.



	
Model Code: Releasing only the weights of the model is akin to providing a software binary without providing the source code. Model code not only includes model training code and hyperparameter settings, but also code used for pre-processing training data. Releasing information about infrastructure setup and configuration also goes a long way towards enhancing reproducibility of the model. In most cases, even with model code fully available, models may not be easily reproducible due to resource limitations and non-deterministic nature of training.



	
Training data: This includes the training data used for the model, and ideally information or code on how it was sourced. It is also encouraged to release data at different stages of transformation of the data pre-processing pipeline, as well as the order in which the data was fed to the model. Training data is the component that is least published by model providers. Thus, most open-source models are not fully open because the dataset is not public.






Training data is often not released due to competitive reasons. As discussed in Chapters 3 and 4, most LLMs today use variants of the same architecture and training code. The distinguishing factor can often be the data content and pre-processing. Parts of the training data might be acquired using a licensing agreement, which prohibits the model provider from releasing the data publicly.


Another reason for not releasing training data is that there are unresolved legal issues pertaining to training data, especially surrounding copyright. As an example, the Pile dataset created by Eleuther AI is no longer available at the official location because it contains text from copyrighted books (the Books3 dataset). Note that the Pile is pre-processed so the books are not in human-readable form and are not easily reproducible, as they are split, shuffled, and mixed together.


Most training data is sourced from the open Web and thus may potentially contain content that is violent or sexual in nature that is illegal in certain jurisdictions. Despite the best intentions and rigorous filtering, some of these data might still be present in the final dataset. Thus many datasets that have been previously open are no longer open, LAION’s image datasets being one example.


Ultimately, the license under which the model has been released determines the terms under which you can use, modify, or redistribute the original or modified LLM. Broadly speaking, open LLMs are distributed under three types of licenses:



	
Non-commercial: These licenses only allow research and personal use and  prohibits the use of the model for commercial purposes. In many cases, the model artifacts are gated through an application form where a user would have to justify their need for access by providing a compelling research use-case.



	
Copy-left: This type of license permits commercial usage, but all source or derivative works needs to be released under the same license, thus making it harder to develop proprietary modifications. The degree to which this condition applies depends on the specific license being used.



	
Permissive: This type of license permits commercial usage, including modifying and redistributing it in proprietary applications; i.e there is no obligation for the redistribution to be open-source. Some licenses in this category also permit patents.






In recent times, new types of licenses are being devised that restrict usage of the model for particular use cases, often for safety reasons. An example of this is the Open RAIL-M license, which prohibits usage of the model in use cases like providing medical advice, law enforcement, immigration and asylum processes etc. For a full list of restricted use cases, see Attachment A of the license.


As a practitioner intending to use open LLMs in your organization for commercial reasons, it is best to use ones with permissive licenses. Popular examples of permissive licenses include the Apache 2.0 and the MIT license.


CC (Creative Commons) licenses are a popular class of licenses used to distribute open LLMs.The licenses have names like CC-BY-NC-SA etc. Here is an easy way to remember what these names mean:



	
BY: If the license contains this term, it means attribution is needed. If it only contains this term (CC-BY), it means the license is permissive.



	
SA: If the license contains this term, it means redistribution should occur under the same terms as this license. In other words, it is a copy-left license



	
NC: NC stands for Non-commercial. Thus, if the license contains this term, the model can only be used for research or personal use cases.



	
ND: ND stands for No-derivatives. If the license contains this term, then distribution of modifications to the model is not allowed.





Note

Today, models that have open weights and open code and are released under a license that allows redistribution to anyone and for any use case are considered open-source models. Although arguably, access to the training data is also crucial to inspect and study the model, which is part of the open-source definition we introduced earlier.




Table 4-2 shows the various LLMs available, the licenses under which they are published, their pricing, the sizes they are available in, and the flavors in which they are available. Note that the LLM may be instruction-tuned or chat-tuned by a different entity than the one that pre-trained the LLM.


Table 4-2. List of available LLMs


	Name
	Availability
	Sizes
	Variants





	GPT-4

	Propreitary

	Unknown

	GPT-4 32K context, GPT-4 8K context




	GPT-3.5 Turbo

	Propreitary

	Unknown

	GPT-3.5 4k context, GPT-3.5 16K context




	Claude Instant

	Propreitary

	Unknown

	-




	Claude2

	Propreitary

	Unknown

	-




	MPT

	Apache 2.0

	1B, 7B, 30B

	MPT 65K storywriter




	CerebrasGPT

	Apache 2.0

	111M, 256M, 590M, 1.3B, 2.7B, 6.7B, 13B

	CerebrasGPT




	Stability LM

	CC-BY-SA

	7B/-

	Red Pajama




	Apache 2.0

	3B, 7B

	RedPajama-INCITE-Instruct, RedPajama-INCITE-Chat

	GPT Neo-X




	Apache 2.0

	20B

	-

	BLOOM




	Open, restricted use

	176B

	BLOOMZ

	LLama




	Open, no commercial use

	7B, 13B, 33B, 65B

	-

	LLama2




	Open, commercial use

	7B, 13B, 70B

	Llama2-Chat

	Zephyr




	Apache 2.0

	7B

	-

	Gemma

















How to choose an LLM for your task


Given the plethora of options available, how do you ensure you choose the right LLM for your task? Depending on your situation, there are a multitude of criteria to consider, including



	
Cost - This includes inference or fine-tuning costs, and costs associated with building software scaffolding, monitoring and observability, deployment and maintenance (collectively referred to as LLMOps).



	
Time Per Output Token(TPOT) - This is a metric used to measure the speed of text generation as experienced by the end user.



	
Task performance - This refers to the performance requirements of the task, and the relevant metrics like precision or accuracy. What level of performance is good enough?



	
Type of tasks - The nature of the tasks the LLM will be used for, like summarization, question answering, classification etc.



	
Capabilities required - Examples of capabilities include arithmetic reasoning, logical reasoning, planning, task decomposition etc. A lot of these capabilities, to the extent that they actually exist or approximate, are emergent properties of an LLM as discussed in Chapter 1, and are not exhibited by smaller sized models.



	
Licensing - You can use only those models that allow your mode of usage. Even models that explicitly allow commercial use can have restrictions on certain types of use cases. For example, as noted earlier, the BigScience Open RAIL-M license restricts the usage of the LLM in use cases pertaining to law enforcement, immigration or asylum processes etc.



	
In-house ML/MLOps talent - The strength of in-house talent determines the customizations you can afford. For example, do you have enough in-house talent for building inference optimization systems?



	
Other non-functional criteria - This includes safety, security, privacy etc. Cloud providers and startups are already implementing solutions that can address these issues.






Figure 4-3 shows a flow chart that illustrates how these critieria interact with each other and how you can make a decision regarding the kind of LLM you might want to choose for your task.



[image: Flowchart for choosing an LLM]
Figure 4-3. Flowchart for choosing an LLM




Exercise

For your application, prepare an ordered list of priorities and determine which ones are fixed and which ones you are flexible on. For example, precision needs to atleast X or TPOT needs to be atleast Y.


Use the provided flowchart to make a decision on the LLMs to consider using. What do you end up with?




Often, the biggest question you may have to resolve is whether to use proprietary or open-source LLMs.










Open-source vs. Proprietary LLMs


Debates about the merits of open-source vs proprietary LLMs have been going on in the field of software for several decades now, and we are seeing it become increasingly relevant in the realm of LLMs as well. The biggest advantage of open-source models are the transparency and flexibility they provide, and not necessarily the cost.
Self-hosting open-source LLMs can incur a lot of engineering overhead and compute/memory costs, and using managed services might not always be able to match propreitary models in terms of latency, throughput, and inference cost. Moreover, many open-source LLMs are not easily accessible through managed services and other third-party deployment options. This situation is bound to change dramatically as the field matures, but in the meanwhile, run through your calculations for your specific situation to determine the costs incurred for using each (type of) model.


The flexibility provided by open-source models helps with debuggability, interpretability, and the ability to augment the LLM with any kind of training/fine-tuning you choose, instead of the restricted avenues made available by the LLM provider. This allows you to more substantially align the LLM towards your preferences and values instead of the ones decided by the LLM provider. Having full availability of all the token probabilities (logits) is a superpower, as we will see throughout the books.


The availability of open-source LLMs has enabled teams to develop models and applications that might not be lucrative for larger companies with a profit motive, like fine-tuning models to support low-resource languages (languages which do not have a significant data footprint on the Internet, like regional languages of India or Indigenous languages of Canada). An example is the Kannada Llama model,  built over Llama2 by continually pre-training and fine-tuning on tokens from the Kannada language, a regional language of India.


Not all open-source models are fully transparent. As mentioned earlier, most for-profit companies that release open-source LLMs do not make the training datasets public. For instance, Meta hasn’t disclosed all the details of the training datasets used to train the Llama2 model. Knowing which datasets are used to train the model can help you assess whether there is test set contamination, and understand what kind of knowledge you can expect the LLM to possess.


As of this book’s writing, propreitary LLMs like GPT-4 represent the state-of-the-art and haven’t been matched by any open-source counterpart yet. Thus they currently have the upper hand in terms of performance and convenience. Throughout this book, we will showcase scenarios where open-source models have an advantage.

Tip

Always check if the model provider has a active developer community on Github/Discord/Slack, and that the development team is actively engaged in those channels, responding to user comments and questions. I recommend preferring models with active developer communities, provided they satisfy your primary criteria.














LLM Evaluation


We will start this section with a caveat; evaluating LLMs is probably the most challenging task in the LLM space at present. Current methods of benchmarking are broken, easily gamed, and hard to interpret. Nevertheless, benchmarks are still a useful starting point on your road towards evaluation. We will start by looking at current public benchmarks and then discuss how you can build more holistic internal benchmarks.


In order to evaluate LLMs on their task performance, there exist a lot of benchmark datasets that test a wide variety of skills. Not all skills are relevant to your use case, so you can choose to focus on specific benchmarks that test the skills you need the LLM to perform well on.


The leaderboard on these benchmark tests changes very often, especially if only open-source models are being evaluated, but that does not mean you need to change the LLMs you use every time there is a new leader on the leaderboard. Usually, the differences between the top models are quite marginal. The fine-grained choice of LLM usually isn’t the most important criteria determining the success of your task, and you are better off spending that bandwidth working on cleaning and understanding your data, which is still the most important component of the project.


Let’s look at a few popular ways in which the field is evaluating LLMs.












Eleuther AI LM Evaluation Harness


Through the LM Evaluation Harness, Eleuther AI supports benchmarking on over 400 different benchmark tasks, evaluating skills as varied as open-domain question answering, arithmetic and logical reasoning, linguistic tasks, machine translation, toxic language detection etc. You can use this tool to evaluate any model on the HuggingFace Hub, a platform containing thousands of pre-trained and fine-tuned models, on the benchmarks of your choice.


Here is an example from one of the benchmark tasks called bigbench_formal_fallacies_syllogisms_negation.


 {
            "input": "\"Some football fans admire various clubs, others love

            only a single team. But who is a fan of whom precisely? The

            following argument pertains to this question: First premise: Mario

            is a friend of FK \u017dalgiris Vilnius. Second premise: Being a

            follower of F.C. Copenhagen is necessary for being a friend of FK

            \u017dalgiris Vilnius. It follows that Mario is a follower of F.C.

            Copenhagen.\"\n Is the argument, given the explicitly stated

            premises, deductively valid or invalid?",

            "target_scores": {

                "valid": 1,

                "invalid": 0
            }


In this task, the model is asked to spot logical fallacies by deducing whether the presented argument is valid given the premises.


Exercise

Let’s evaluate a few models on this task. Follow the instructions here to install the harness. Now, you can run this code for evaluating Falcon 7B:


   lm_eval --model hf-causal \
           --model_args pretrained=tiiuae/falcon-7b \
           --tasks bigbench_formal_fallacies_syllogisms_negation \
           --device cuda:0


Try this for a few other 7B models, including Llama2, Gemma, Mistral, MPT, Red Pajama with both the base versions and the instruction-tuned versions where available. Do you find a large difference between their models in terms of performance?


Additionally, prepare ten more questions for the same task on your own (you can use an LLM to generate candidate questions you can then modify) pertaining to various domains. Do the models exhibit the same level of performance on your questions as they do on the benchmark tests?




There is also support for evaluation of proprietary models using this harness. For example, here is how you would evaluate Open AI models.


export OPENAI_API_SECRET_KEY=<Key>
python main.py \
lm_eval --model openai-completions \
        --model_args model=gpt-3.5-turbo \
         --tasks bigbench_formal_fallacies_syllogisms_negation


Exercise

Compare GPT 3.5, GPT 4 Turbo, and GPT 4 on the logical fallacies task, including both the benchmark sets and the ones you prepared. How do they compare relative to each other and how do they fare compared to open-source models?



Tip

While choosing or developing a benchmarking task to evaluate on, I recommend focusing on picking ones that test the capabilites needed to solve the task of your interest, rather than the actual task itself. For example, if you are building a summarizer application that needs to perform a lot of logical reasoning to generate the summaries, it is better to focus on benchmark tests that directly test logical reasoning capabilities than ones that test summarization performance.
















HuggingFace Open LLM Leaderboard


The Open LLM leaderboard uses Eleuther AI’s LM evaluation harness to evaluate the performance of models on 6 benchmark tasks. The 6 tasks are:


	
MMLU (Massive Multitask Language Understanding) - This test evaluates the LLM on knowledge-intensive tasks, drawing from fields like US history, biology, mathematics and more than 50 other subjects in a multiple choice framework.



	
ARC (AI2 Reasoning Challenge) - This test evaluates the LLM on multiple-choice grade school science questions, that need complex reasoning as well as world knowledge to answer them.



	
Hellaswag - This test evaluates commonsense reasoning by providing the LLM with a situation and asking it to predict what might happen next out of the given choices, based on commonsense.



	
TruthfulQA - This test evaluates the LLM’s ability to provide answers that don’t contain falsehoods.



	
Winogrande - This test is comprised of fill-in-the-blanks questions that test commonsense reasoning.



	
GSM8K - This test evaluates the LLM’s ability to complete grade school math problems involving a sequence of basic arithmetic operations.







Figure 4-4 shows a snapshot of the LLM leaderboard as of the day of the book’s writing. We can see that



	
Larger models perform better.



	
Instruction-tuned or fine-tuned models perform better.







[image: Snapshot of the Open LLM Leaderboard]
Figure 4-4. Snapshot of the Open LLM Leaderboard




Exercise

It is suspected that a large number of models may have been contaminated wth the GSM8K dataset. Explore the https://huggingface.co/datasets/gsm8k dataset and feed only part of the question and check if the models you evaluated during the previous exercises correctly complete the question. Also, change the numbers in the problems and verify if the performance remains the same.




The validity of these benchmarks are in question as complete test set decontamination is not guaranteed. Model providers are also optimizing to solve these benchmarks, thus reducing the value of these benchmarks to serve as reliable estimators of general-purpose performance.














HELM (Holistic Evaluation of Language Models)


HELM is an evaluation framework by Stanford that aims to calculate a wide variety of metrics over a range of benchmark tasks. 59 metrics are calculated overall, testing accuracy, calibration, robustness, fairness, bias, toxicity, efficiency, summarization performance, copyright infringement, disinformation, and more. The tasks tested include question answering, summarization, text classification, information retrieval, sentiment analysis, and toxicity detection.


Figure 4-5 shows a snapshot of the HELM leaderboard as of the day of the book’s writing. We can see that for a given task, the leaders differ across different evaluation criteria (efficiency, bias, accuracy etc.)



[image: Snapshot of the HELM Leaderboard]
Figure 4-5. Snapshot of the HELM Leaderboard




Benchmark evaluation is unreliable

There are multiple ways in which you can evaluate the same task. For example, consider the MMLU task. Questions in the MMLU task have four choices as answers - A, B, C, D. How do we evaluate performance on a multiple-choice question answering task?


	
You can pick the token that has the highest output probability out of the four options (A, B, C, D)



	
You can pick the token that has the highest output probability from the entire vocabulary and use that to match it with the correct answer to the question (not the label like A,B etc. but the actual answer).



	
You can produce a normalized sum of the probabilities of the token sequence generated by the model, where the expected token sequence is the label followed by the answer text, and use that to match it with the correct answer (represented by the label followed by answer text)







Each of these types of calculations can produce a vastly different result, and can lead to different leaders in the leaderboard. HuggingFace published a blog post about this after people noticed discrepancies in their numbers versus third-party evaluations.
















ELo Rating


Now that we have seen the limitations of quantitative evaluation, let us explore how we can most effectively incorporate human evaluations. One promising framework is the ELo Rating system, used in chess to rank players.


LMSYS ORG (Large Model Systems Organization) has implemented an evaluation platform based on the ELo rating system called the Chatbot Arena. Chatbot Arena solicits crowdsourced evaluations by inviting people to choose between two randomized and anonymized LLMs by chatting with them side-by-side. The leaderboard is found here, with models like GPT-4 and Claude holding a clear advantage over the rest.


Figure 4-6 shows a snapshot of the Chatbot Arena leaderboard as of the day of the book’s writing. We can see that propreitary models by Open AI and Anthropic dominate the rankings, followed by chat-tuned models like Vicuna and Guanaco.
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Figure 4-6. Snapshot of the Chatbot Arena Leaderboard




ELo Ratings can be biased too

ELo ratings are not a panacea to the LLM evaluation problem. Human biases can meaningfully impact the overall ratings even if the LLMs are being evaluated in an anonymous manner.


According to Wu et al., these biases include



	
Humans tend to prefer longer texts.



	
Humans tend to overlook subtle factuality and consistency issues if the style is authoritative or convincing.



	
Humans can be indecisive, and tend to grant ties instead of choosing a winner.



	
The order in which the LLM answers are presented can influence human ratings. This can be rectified by providing the answers to the user in a randomized fashion.






Wu et al. propose a multi-ELo rating system that asks humans to evaluate the LLM across three different dimensions: helpfulness, accuracy, and language.
















Interpreting benchmark results


How do you interpret evaluation results presented in research papers? Try to methodologically ask as many questions as possible, and check if the answers are covered in the paper or other material. As an example, let us take the Llama2-chat evaluation graphs presented in the Llama2 paper. In particular, study Figure 1 and 3, which demonstrate how Llama2-chat compares with respect to helpfulness and safety against other chat models. Some of the questions that come to mind are:


	
How does the evaluation dataset look like? Do we have access to it?



	
What is the difficulty level of the test set? Maybe the model is competitive with respect to chatGPT for easier examples but how does it perform with more difficult examples?



	
What proportion of examples in the test set can be considered difficult?



	
What are the kinds of scenarios covered in the test set? What degree of overlap do these scenarios have with the chat-tuning sets?



	
What definition do they use for safety?



	
Can there be a bias in the evaluation due to the fact that the models are evaluated on the basis of a particular definition of safety, which Llama2 was trained to adhere with, while other models may have different definitions of safety?







Rigorously interrogating the results this way helps you develop a deeper understanding of what is being evaluated, and whether it is in alignment with the capabilities you need from the language model for your own tasks.


Is GPT-4 getting worse over time?

Is GPT-4 getting worse over time? This question feels like the Which color is this dress? question.1 There are a lot of developers who swear by their experience of noticing quality degradation of GPT-4. However, opponents of this theory suggest that this is just a perception, as the novelty of GPT-4 washes over.


So what is the truth? Firstly, note that as discussed in Chapter 1, capabilities and behavior are two separate concepts. The behavior of the LLM is influenced by the prompting strategy used. Unfortunately, when models get updated, the previously optimized prompts may not be optimal anymore. This phenomenon is called prompt drift. Therefore, while the capabilities of the LLM might have remained the same or even improved, using prompts that are not optimized for the new model causes a degradation in behavior.


Secondly, any kind of training/fine-tuning over an existing model comes with side effects. It is impossible to update a model in a way such that the updated version is strictly better than the original version for every possible input.


The hope is that LLM players update models transparently, and allow users access to the older version of the models, at least for a grace period.



Tip

For more rigorous LLM evaluation, I strongly recommend developing your own internal benchmarks. The book’s Github repo provides an example of how to develop one in the context of the Canadian parliamentary proceedings dataset. It also shows how to evalaute performance on generative tasks like summarization.



Warning

Do not trust evaluations performed by GPT-4 or any other LLM. We have no idea what criteria it uses for evaluation nor do we have a deeper understanding of the biases it possesses.




Robust evaluation of LLMs is further complicated by the sensitivity of the prompts and the probabilistic nature of generative models. For example, I often see papers claiming that GPT-4 does not have reasoning capabilities, while not using any prompting techniques during evaluation. In many of these cases, it turns out that GPT-4 can in fact perform the task if prompted with chain-of-thought prompting. While evaluation prompts need not be heavily engineered, using rudimentary techniques like chain-of-thought should be standard practice and not using it means that the model capabilities are being underestimated.














Loading LLMs


While it is possible to load and run inference on LLMs with just CPUs, you need GPUs if you want acceptable text generation speeds. Choosing a GPU depends on cost, the size of the model, whether you are training the model or just running inference, and support for optimizations. Tim Dettmers has developed a great flowchart that you can use to figure out which GPU best serves your needs.


Let’s figure out the amount of GPU RAM needed to load an LLM of a given size. LLMs can be loaded in various precisions:


	
Float32 - 32-bit floating point representation, each parameter occupies 4 bytes of storage



	
Float16 - 16-bit floating point representation. Only 5 bits are reserved for the exponent as opposed to 8 bits in Float32. This means that using Float16 comes with overflow/underflow problems for very large and small numbers.



	
bfloat16 (BF16) - 16-bit floating point representation. Just like Float32, 8 bits are reserved for the exponent, thus alleviating the underflow/overflow problems observed in Float16



	
Int8 - 8-bit integer representation. Running inference in 8-bit mode is around 20 percent slower than running in Float16



	
FP8, FP4 - 8-bit and 4-bit floating point representation.







We will explore these formats in detail in Chapter 9. Generally, running inference on a model with 7B parameters will need around 7GB of GPU RAM if running in 8-bit mode, and around 14GB if running in BF16. If you intend to fine-tune the whole model, you will need a lot more memory. We will discuss the memory requirements for fine-tuning models in Chapter 6.










HuggingFace Accelerate


You can run inference on models even if they don’t fit in the GPU RAM. accelerate library by HuggingFace facilitates this by loading parts of the model into CPU RAM if the GPU RAM is filled up, and then loading parts of the model into disk if the CPU RAM is also filled up. This video shows how accelerate operates under the hood. This whole process is abstracted from the user, so all you need to load a large model is to run the following code:


!pip install transformers accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20B")
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neox-20B")


input_ids = tokenizer("Language models are", return_tensors="pt")
gen_tokens = model.generate(**input_ids, max_new_tokens =1)












Ollama


There are many tools available that facilitate loading LLMs locally, including on your own laptop. One such library is Ollama, which supports Windows, Mac and Linux operating systems. Using Ollama, you can load 13B models if your machine has atleast 16GB of RAM. Ollama supports many open models like Mistral, Llama 2, Gemma etc. Ollama also provides a REST API that you can use to run inference and build LLM-driven applications. It also has several Terminal and UI integrations that enable you to build user-facing applications with ease.


Let’s see how we can use Google’s Gemma 2B model using Ollama. First, download the version of ollama to your machine based on your operating system. Next, pull the Gemma model to your machine with


ollama pull gemma:2b


You can also create a Modelfile that contains configuration information for the model. This includes system prompts and prompt templates, decoding parameters like temperature, and conversation history. Refer to the documentation for a full list of available options.


An example Modelfile is


FROM gemma:2b

PARAMETER temperature 0.2

SYSTEM """
You are a provocateur who speaks only in limericks.
"""


After creating your Modelfile, you can run the model


ollama create local-gemma -f ./Modelfile
ollama run local-gemma


The book’s Github repo contains a sample end-to-end application built using Ollama and one of its UI integrations. You can also experiment with similar tools like LM Studio and GPT4ALL.

Tip

You can load custom models using Ollama if they are in the GGUF (GPT-Generated Unified Format). We will learn more about GGUF and LLM inferencing on CPU using tools like llama.cpp in Chapter 9.














LLM Inference APIs


While you can deploy an LLM yourself, modern-day inference consists of so many optimizations, many of them proprietary, that it takes a lot of effort to bring your inference speeds up to par with commercially available solutions. Several inference services like Together AI exist that facilitate inference of open-source or custom models either through serverless endpoints or dedicated instances. Another option is HuggingFace’s TGI (Text Generation Inference), which has been recently reinstated to a permissive open-source license.












Decoding strategies


Now that we have learned how to load a model, let’s understand how to effectively generate text. To this end, several decoding strategies have been devised in the past few years. Let’s go through them in detail.










Greedy decoding


The simplest form of decoding is to just generate the token that has the highest probability. The drawback of this approach is that it causes repetitiveness in the output. Here is an example


input = tokenizer('The keyboard suddenly came to life. It ventured up the',

return_tensors='pt').to(torch_device)
output = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))


You will notice that the output starts getting repetitive. Therefore, greedy decoding is not suitable unless you are generating really short sequences, like a token just producing a classification task output.


Figure 4-7 shows an example of greedy decoding using the FLAN-T5 model. Note that we missed out on some great sequences because one of the desired tokens has slightly lower probability, ensuring it never gets picked.



[image: Greedy decoding]
Figure 4-7. Greedy decoding














Beam Search


An alternative to greedy decoding is called beam search. An important parameter of beam search is the beam size, n. At the first step, the top n tokens with the highest probabilities are selected as hypotheses. For the next few steps, the model generates token continuations for each of the hypotheses. The token chosen to be generated is the one whose continuations have the highest cumulative probability.


In HuggingFace, the num_beams parameter of the model.generate() function determines the size of the beam. Here is how the decoding code would look like if we used beam search:


output = model.generate(**inputs, max_new_tokens=50, num_beams = 3)
print(tokenizer.decode(output[0], skip_special_tokens=True))


Figure 4-8 shows an example of beam search using the FLAN-T5 model. Note that the repetitiveness problem hasn’t really been solved using beam search. Similar to greedy decoding, the generated text also sounds very constricted and un-humanlike, due to the complete absence of lower probability words.



[image: Beam Search]
Figure 4-8. Beam Search




To resolve these issues, we will need to start introducing some randomness and begin sampling from the probability distribution to ensure not just the top 2-3 tokens get generated all the time.












Top-K sampling


In top-k sampling, the model samples from a distribution of just the K tokens of the output distribution that have the highest probability. The probability mass is redistributed over the K tokens and the model samples from this distribution to generate the next token. HuggingFace provides the top_k parameter in its generate function.


output = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_k=40)
print(tokenizer.decode(output[0], skip_special_tokens=True))


Figure 4-9 shows an example of top-k sampling using the FLAN-T5 model. Note that this is a vast improvement from greedy or beam search. However, top-p leads to problematic generations when used in cases where the probability is dominated by a few tokens, meaning that tokens with very low probability end up being included in the top-K.



[image: Top-K Sampling]
Figure 4-9. Top-K Sampling














Top-P sampling


Top-p sampling solves the problem with top-k sampling by making the number of candidate tokens dynamic. Top-p involves choosing the smallest number of tokens whose cumulative distribution exceeds a given probability p. As seen earlier in the chapter, top-p sampling is available for GPT3.5 and GPT-4 models. Here is how you can implement this in HuggingFace


output = model.generate(**inputs, max_new_tokens=50, top_p=0.9)
print(tokenizer.decode(output[0], skip_special_tokens=True))


Figure 4-10 shows an example of top-p sampling using the FLAN-T5 model.
Top-p sampling, also called nucleus sampling, is the most popular sampling strategy used today.



[image: Top-P Sampling]
Figure 4-10. Top-P Sampling



Note

So far, the decoding approaches we have seen operate serially; i.e. each token is generated one at a time, with a full pass through the model each time. This is too inefficient for latency-sensitive applications. In Chapter 9, we will discuss methods like speculative decoding, prompt lookup decoding and look-ahead decoding that can speed up the decoding process.














Running inference on LLMs


Now that we have learned how to access and load LLMs and understood the decoding process, let’s begin using them to solve our tasks. We call this LLM inference.


Exercise

You are an intrepid musician embarking on a concert tour comprising seven cities - Amsterdam, Warsaw, Hamburg, Barcelona, Delhi, Shanghai, and Toronto. Ask the LLM if it can come up with a suggested visiting order of cities such that it constitutes the shortest travel time. Use prompting techniques and strategies you have learned in Chapter 1 to solve this.


Repeat this for multiple LLMs - a 3B LLM, a 7B LLM, an LLM that is at least 30B, and a proprietary LLM API. How easy do you find steering each model to do your bidding?


Additionally, the book’s Github repo contains 9 more example tasks that you can test your prompting skills on. Try them out and see if you can get the LLMs to answer them correctly!




You will have seen that LLM outputs are not consistent and sometimes even wildly differ across multiple generations for the same prompt. As we learned in the section on decoding, unless you are using greedy search or any other deterministic algorithm, the LLM is sampling from a token distribution.


Some ways to make the generation more deterministic is to set the temperature to zero and keeping the random seed for the sampling constant. Even then, you may not be able to guarantee the same (deterministic) outputs every time you send the LLM the same input.


Sources of non-determinism range from using multi-threading to floating-point rounding errors to use of certain model architectures (for example, it is known that the Sparse MoE architecture produces non-deterministic outputs).


Reducing the temperature to zero or close to zero impacts the LLMs creativity and makes its outputs more predictable, which might not be suitable for many applications.


In production settings where reliability is important, you should run multiple generations for the same input and use a technique like majority voting or heuristics to select the right output. This is very important since by the nature of the decoding process, sometimes the wrong tokens can be generated, and since every token generated is a function of the tokens generated before it, the error can be propagated far ahead.


Exercise

For each of the prompting exercises provided, run multiple generations on them and check how the output varies across generations. Does majority voting work well in selecting the correct output?




Self-consistency is a popular prompting technique that uses majority voting in conjunction with CoT prompting. In this technique, we add the CoT prompt Let’s think step by step to the input, and run multiple generations (reasoning paths). We then use majority voting to select the correct output.










Structured outputs


We might want the output of the LLM to be in some structured format, so that it can be consumed by other software systems. But this is easier said than done; current LLMs aren’t as controllable as we would like them to be. Some LLMs can be excessively chatty. Ask them to give a Yes/No answer and they respond with The answer to this question is ‘Yes’.


One way to get structured outputs from the LLM is to define a JSON schema, provide the schema to the LLM and prompt it to generate outputs adhering to the schema. For larger models, this works almost all the time, with some schema corruption errors that you can catch and handle.


For smaller models, you can use libraries like JSONformer. JSONformer delegates the generation of the content tokens to the LLM, but fills the content in JSON form by itself. JSONformer is built on top of HuggingFace and thus supports any model that is supported by HuggingFace.


Exercise

Extract text from the career section of the Wikipedia page of the actor Andrew Garfield. Design a JSON schema with content types co-actors, director, year, and movie name. Use an open=source LLM to extract details about his movies from the unstructured text , and use JSONformer or a similar library to output them in structured form.
Are you able to get fully formed and accurate JSON outputs?




More advanced structured outputs can be facilitated by using libraries like LMQL or Guidance. These libraries provide a programming paradigm for prompting and facilitate controlled generation.


Some of the features available through these libraries are:


	
Restricting output to a finite set of tokens.:  This is useful for classification problems, where you have a finite set of output labels. For example, you can restrict the output to be either Positive, Negative, or Neutral for a sentiment analysis task.



	
Controlling output format using regular expressions.: For example, you can use regular expressions to specify a custom date format.



	
Control output format using context-free grammars(CFG): A CFG defines the rules that generated strings need to adhere to. For more background on CFGs, refer to Aditya’s blog. Using CFGs, we can use LLMs to more effectively solve sequence tagging tasks like named entity recognition or part-of-speech tagging.







Exercise

Named entity recognition (NER) is a sequence tagging task that tags named entities in text like numbers, dates, places, names, organizations etc. For example, for the sentence Padma sold 23 umbrellas in Guatemala, the tagged output can be in this form:


Padma: PER


sold:


23: NUM


umbrellas:


in:


Guatemala: LOC


where PER is the tag for a person, NUM is the tag for numbers, and LOC is the tag for location.


In order to generate the tagged output in the above format, use a CFG expression using the Guidance library. Run the NER task on the Wikipedia page for the Summer Olympics. Use a 3B/7B open-source LLM to solve this task.














Model debugging and interpretability


Now that we are comfortable with loading LLMs and generating text using them, we would like to be able to understand model behavior and explore the examples for which the model fails. Interpretability in LLMs is much less developed than in other areas of machine learning. However, we can get partial interpretability by exploring how the output changes upon minor variances in the input, and by analyzing the intermediate outputs as the inputs propagate through the Transformer architecture.


Google’s open-source tool called LIT-NLP is a handy tool that supports visualizations of model behavior as well as various debugging workflows.


Figure 4-11 shows an example of LIT-NLP in action, providing interpretability for a T-5 model running a summarization task.



[image: lit-NLP]
Figure 4-11. LIT-NLP




Here are some features available in LIT-NLP that help you debug your models:



	
Visualization of the attention mechanism.



	
Salience maps, which show parts of the input that is most paid attention to by the model.



	
Visualization of embeddings.



	
Counterfactual analysis that shows how your model behavior changes after a change to the input like adding or removing a token.






For more details on using LIT-NLP for error analysis, refer to Google’s tutorial on using LIT-NLP with the Gemma LLM where they find errors in few-shot prompts by analyzing incorrect examples and observing which parts of the prompt contributed most towards the output (salience).


Exercise

Using the sentences in the Canadian parliamentary proceedings dataset in the book’s Github repository, classify the sentences based on the tone of their content. The output labels are Supportive, Antagonistic, Mournful, Celebratory, and Other.
Use few-shot prompts to provide examples of each label. Use Google’s Gemma model (any flavor will do). You are likely not going to get a 100% on your first try. Use LIT-NLP to observe the errors and see if you can use the interpretability tools to gather insights to improve the model.




Mechanistic Interpretability

As seen in Chapter 2, the smallest unit of a Transformer-based LLM is a neuron. Thus, analyzing the behavior of individual neurons in an LLM is a fundamental step towards making LLMs interpretable.


However, in their experiments researchers from Anthropic observed that a single neuron can be activated for many different types of input. Thus, it is not entirely clear what any given neuron’s exact contribution is. The researchers introduced the notion of features, which are linear combinations of multiple neuron activations. They show that these features are more interpretable than a single neuron, as each feature is activated only on a single type of input. Some features are activated only on a single token, while others are activated on a broader type of input, like code.


For more details, refer to Anthropic’s, mechanistic interpretability paper, where they perform experiments on a 1-layer Transformer block and identify features of interest.


You can explore this further by using Anthropic’s visualization tool, which includes textual descriptions of the tokens for which a neuron gets activated. As an example, they show how each neuron responds when the book Alice in Wonderland is fed as input.












Summary


In this chapter, we journeyed through the LLM landscape and took note of the various options we have at our disposal. We learned how to determine the criteria most relevant to our tasks and choose the right LLM accordingly. We explored the various LLM benchmarks and showed how to interpret their results. We learned how to load LLMs and run inference on them, along with efficient decoding strategies. Finally, we showcased interpretability tools like LIT-NLP that can help us understand what is going on behind the scenes in the Transformer architecture.


In the next chapter, we will learn how to update a model to improve its performance on our tasks of interest. We will walk through a full-fledged fine-tuning example and explore the hyperparameter decisions involved. We will also learn how to construct training datasets for fine-tuning.



1 If you haven’t had endless arguments with your friends and family about the color of the dress, now would be the time to do so. For more context, see https://en.wikipedia.org/wiki/The_dress









Chapter 5. Fine-Tuning LLMs



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 6th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In the previous chapter, we discussed the various factors that need to be taken into account while choosing the right LLM for your specific needs, including pointers on how to evaluate LLMs in order to be able to make an informed choice. Next, let us utilize these LLMs to solve our tasks.


In this chapter, we will explore the process of adapting an LLM to solve your task of interest, using fine-tuning. We will go through a full example of fine-tuning, covering all the important decisions one needs to make. We will also discuss the art and science of creating fine-tuning datasets. Open your Google Colab/Jupyter notebook environment and let us get started!








The need for fine-tuning


Why do we need to fine-tune LLMs? Why doesn’t a pre-trained LLM with few-shot prompts suffice for our needs? Let us look at a couple of examples to drive the point home.


Use Case 1: Consider you are working on the rather whimsical task of detecting all sentences written in the past tense within a body of text and transforming them to future tense. To solve this task, you might provide a few examples of past tense sentences and input-output pairs representing past tense and their corresponding future tense sentences. However, the LLM doesn’t seem to be able to tackle this task to your satisfaction, making mistakes in both the identification and transformation steps. In repsonse, you elaborate on your instructions, adding grammar rules and exceptions in the English language into your prompt. You notice an increase in performance. But with each new rule added, your prompt balloons, slowly turning into a grammar mini-book.


As we saw in Chapter 5, the LLM can adhere to only a finite set of instructions in the prompt, and its effective context window is much smaller than the advertized context window. We hit an impasse.


Use Case 2: Consider a task that deals with answering questions from content in financial text. LLMs are not financial experts, and have difficulty dealing with financial jargon. To address this, you add the definitions of key financial terms in the prompt. While you notice a small improvement in performance, it is not long before you realize you need to stuff the entire curriculum of the CPA exam into your measly context window in order to achieve the desired gains.


This is where fine-tuning comes in handy. By providing a dataset of input-output pairs, such that the model learns the input-output mapping by updating its weights, you can accomplish tasks that cannot be performed by in-context learning alone. For both the tasks mentioned above, fine-tuning the model massively improves performance.


When should fine-tuning not be used? If your primary goal is to impart new or updated facts or knowledge to the language model, this is better served with techniques like RAG (Retrieval Augmented Generation), which we will explore in Chapters 8 and 12. Fine-tuning is best suited for situations where you need the model to learn a particular input-output mapping, be familiarized to a new textual domain, or exhibit more complex capabilities and behavior.

Warning

Recall from Chapter 5 that updating a language model’s parameters can cause the base model capabilities to regress! Fine-tuning a model on one task can inadvertantly cause the base model to perform worse on other tasks. Handle with care.












Fine-tuning: A full example


Let’s walk through a practical fine-tuning example from start to finish. We would like to train a political promises detector, which can be used to identify promises made by representatives of the ruling party in campaign speeches or parliamentary proceedings. We define a political promise as something that is tangible, specific, and an action that the government has the agency to make.


An example of such a sentence is


We will build 10,000 kilometres of subway lines in the next ten years.


However, all future tense or forward-looking statements are not promises. The following sentences are not promises as per our definition.


We expect the Japanese to increase tariffs next year. (expectation, and not something the government can control)


We will work towards making Canada a better place (no specifics provided)


AI will cause the loss of a million jobs next year (prediction and not promise)


Our base LLM, Llama2-7B, finds it difficult to accurately identify such promises in an in-context learning setup. Therefore, we will fine-tune it for this specific task. We can then use the resulting model to detect political promises, and then match those promises against structured datasets or budgetary text to track whether these promises have been fulfilled over a period of time.


To this end, I have constructed a synthetic fine-tuning dataset containing examples of both promises and mere statements. Later in this chapter, we will go through the process of creating such a dataset.


Fortunately, fine-tuning today is easier due to the existence of several libraries that streamline the fine-tuning process. The most important of these libraries are transformers, accelerate, peft, trl, and bitsandbytes. The first four are from HuggingFace. You have encountered many of these libraries in prior chapters already. Being familiar with the inner workings of these libraries is a very useful skill.

Tip

Given that these libraries are relatively new and are part of a fast-moving field, they frequently undergo substantial updates. I recommend keeping in touch with major updates of these libraries, as they continue to introduce enhancements that will simplify your workflow.




Let’s begin by loading the dataset. The custom dataset can be downloaded from here.


from datasets import load_dataset
tune_data = load_dataset("csv", data_files='/path/to/finetune_data.csv'

Tip

I highly recommend using the datasets library for loading your training and fine-tuning datasets, as it is an excellent abstraction for efficiently loading large datasets, abstracting away memory management details. You can read more about the datasets library here.




Next, let us set some relevant hyperparameters in the transformers library through the TrainingArguments class.


# Make sure you have installed the correct version
!pip install transformers==4.35.0

from transformers import TrainingArguments


There are more than a hundred arguments available, but we will go through the important ones. The arguments relate to the learning algorithms used, memory and space optimizations, quantization, regularization, and distributed training. Let’s explore these in detail.










Learning algorithms parameters


In Chapter 2, we learned about several optimization algorithms used for backpropagation. Let us now understand how to choose the right one for our purposes.












Optimizers


As shown in Chapter 2, AdamW and Adafactor are currently the most used optimizers. Other popular optimization algorithms includes SGD (Stochastic Gradient Descent), RMSProp, Adagrad, Lion, and their variants.


Adafactor and SGD use four bytes of memory per parameter, while AdamW uses eight bytes per parameter. This means that a 7B model undergoing full fine-tuning with the AdamW optimizer requires 7 * 8 = ~56GB of memory to store the optimizer states alone. Even more memory is needed to store the parameters, gradients, and the forward activations.


More recently, 8-bit optimizers have been introduced that perform quantization of the optimizer state. A 7B model undergoing full fine-tuning with the AdamW 8-bit version requires only ~14GB of memory for the optimizer state.


8-bit optimizers are available through the bitsnbytes library and are also supported by HuggingFace. For using the 8-bit AdamW version, you can set in the TrainingArguments:


optim = 'adamw_bnb_8bit'


For all the optimizer options directly available through HuggingFace, refer to the OptimizerNames class.

Tip

In his benchmarking experiments, Stas Bekman shows that surprisingly, the 8-bit AdamW optimizer is actually faster than the standard AdamW optimizer. His experiments also show that Adafactor is slightly slower than AdamW overall.




The default optimizer provided in the HF TrainingArguments class is AdamW. For most cases, the default optimizer works just fine. However, if it doesn’t, you can try AdaFactor and Lion. For reinforcement learning, SGD seems to work well.


8-bit AdamW is a compelling choice if you are especially memory constrained. If available, the paged version of these optimizers will further mitigate your memory requirements.


Paged Optimizers

Using AdamW as an optimizer requires eight bytes of memory per parameter, which is a significant drag on memory requirements. This affects the maximum sequence length that can be supported. This is where paged optimizers can come in handy. In cases where the GPU runs out of memory during fine-tuning, paged optimizers automatically transfer memory pages to CPU RAM, and transfer them back to GPU memory when it is needed.


In HuggingFace, paged variants are available for AdamW and Lion, and can be accessed using optimizer names paged_adamw_32bit, paged_adamw_8bit, ‘paged_lion, paged_lion_8bit respectively.
















Learning Rates


For each optimizer, certain learning rates have been shown to be very effective. 1e-4 is a recommended learning rate for AdamW, with a weight decay of 0.01. Weight decay is a regularization technique that helps in reducing overfitting. Similarly, the default values for minor optimizer parameters like adam_beta1, adam_beta2, adam_epsilon are good enough and need not be changed.


Exercise

Learning rate rules of thumb for fine-tuning models might differ from those used for training neural networks from scratch. Read the paper Rethinking Learning Rate Tuning in the Era of Large Language Models by Jin et al., which provides a good survey of the collective wisdom on learning rates developed by the LLM research community.


Additiionally, play with automated learning rate optimization tools like PyTorch Lightning’s LearningRateFinder
















Learning Schedules


Towards the end of the training process, it is a good idea to lower the learning rate because you do not want to overshoot when you are so close to convergence. In a similar vein, you would like to prevent your model from learning too much from the first few batches of examples. In either case, we would like to be able to automatically adust the learning rate as training progresses. To facilitate this, we can use a learning schedule.


HuggingFace supports several different types of learning schedulers. Here are a few important ones:



	
Constant - This is the vanilla training schedule where the learning rate remains constant throughout the course of the training.



	
Constant with Warmup - In this setting, the learning rate starts from zero and is increased linearly towards the specified learning rate during a warmup phase. After the warmup phase is completed, the learning rate remains constant.






Figure 5-1 shows how the learning rate changes across time while using the Constant with Warmup scheduler.



[image: constant-lr]
Figure 5-1. Learning rate with a constant schedule with warmup





	
Cosine - In this setting, called cosine annealing, the learning rate has a warmup phase after which, it slowly declines to zero, as per the cosine function.






Figure 5-2 shows how the learning rate changes across time while using the Cosine scheduler.



[image: cosine-warmup]
Figure 5-2. Learning rate with a cosine schedule





	
Cosine with restarts - In this setting, called cosine annealing with warm restart, after a warmup phase, the learning rate decreases to zero following the cosine function, but undegoes several hard restarts, where the learning rate shoots back to the specified learning rate after it reaches zero. For more details on why this is effective, check out Loshcilov et al’s paper that introduced this concept.






Figure 5-3 shows how the learning rate changes across time while using the Cosine with restarts scheduler.



[image: cosine-restart]
Figure 5-3. Learning rate with a cosine with restarts schedule





	
Linear - This is very similar to the Cosine setting, except that the learning rate decreases to zero linearly instead of following the cosine function.






Figure 5-4 shows how the learning rate changes across time while using the Linear scheduler.



[image: linear-lr]
Figure 5-4. Learning rate with a linear scheduler




If you are using AdamW, schedulers with a warmup phase are even more important to prevent getting trapped in a bad minima. Empirically, it has been found that cosine annealing outperforms linear decay.


For our political promises detector fine-tuning, let us use the paged variant of Adamw, a learning rate of 3e-4, a weight decay of 0.01, and the cosine learning schedule.


optim = "paged_adamw_32bit"
learning_rate = 3e-4
weight_decay = 0.01
lr_scheduler_type = 'cosine'
warmup_ratio = 0.03  #The proportion of training steps to be used as warmup














Memory Optimization parameters


After we have set the parameters related to the optimizers, let us set our attention to memory and compute optimization parameters. Two prevalent techniques in this area include gradient checkpointing and gradient accumulation.












Gradient Checkpointing


Gradient Checkpointing helps save memory at the cost of more compute. During the forward pass of the backpropagation algorithm, activations are computed and are saved in memory so that they can be used in the backward pass. What if we did not save all of the activations? The missing activations could be recalculated on the fly during the backward pass. This does cost us more compute, but we could save a lot of memory. We could even train models where even a batch size of one does not fit in our GPU memory. For more technical details on gradient checkpointing, check out Yaroslav Bulatov’s blog.














Gradient Accumulation


Let’s say we have a desired batch size but we do not have the required memory to support that batch size. We can simulate the desired batch size using a technique called gradient accumulation. In this technique, the gradient updates are not done at every batch, but are accumulated over several batches and then are summed or averaged.

Note

Gradient accumulation can make training slower, since there are fewer updates being made. Gradient accumulation does not reduce the computation required.
















Quantization


A very effective form of saving memory is through quantization, as introduced in Chapter 5. We will go through quantization techniques in more detail in Chapter 9. For our use case, we will use bf16 as it represents a sound tradeoff between memory savings and performance.


For our political promises detector fine-tuning, let us set the following parameters for memory optimization, given that we are trying to train it on a relatively memory constrained 16GB RAM GPU:


gradient_accumulation_steps = 4
bf16 = True
gradient_checkpointing = True














Regularization parameters


Next, let us look at various techniques available to us for tackling with model overfitting.












Label smoothing


Label smoothing is a technique that not only helps with combatting overfitting, but also aids in model calibration.


Calibration is an under-appreciated topic in deep learning. A model is said to be well-calibrated if there is a correlation between its output probability values and task accuracy.


For example, consider a task that classifies a sentence as being abusive or not. If the model is well-calibrated, then among all examples for which the model produces an output probability of 0.9, 90% of them would be expected to be correctly classified. Similarly, for an output probability of 0.6, there should be a lower (~60%) likelihood of the classification being correct. Simply put, the output probability should accurately reflect the confidence in the classification decision.


A model being well-calibrated implies that it is not overconfident. This helps us in nuanced handling of examples that have low output probabilities.(using a bigger model to handle those examples, for instance).

Note

Larger models like GPT 3.5 are less calibrated compared to models like BERT, according to a study by Li et al. Larger models tend to be more confident in general about their predictions. The inability to calculate reasonably accurate uncertainty estimates for large language models could be an argument to use smaller ones instead!




One of the techniques for calibrating models is label smoothing. The usual training process involves training against hard target labels (0 or 1 for a binary classification task). When using cross entropy as the loss function, this amounts to pushing the model logits closer to 0 or 1, thus making the model highly confident. Label smoothing involves using a regularization term that is subtracted or divided from the hard target label.


Label smoothing is especially useful when the input dataset is noisy, i.e contains some inaccurate labels. The regularization prevents the model from learning too much from incorrect examples.


For the political promises detector, we will use label smoothing, given that some examples could be subjective or open to interpretation.














Noise embeddings


The datasets we use for fine-tuning typically consist of a small number of examples (< 50,000). We would like our model to not overfit to the stylistic characteristics of the dataset, like the formatting, wording, and length of the text. One way to address this is by adding noise to the input embeddings.


Jain et al. observe that adding noise embeddings reduces the tendency of the model to overfit to wording and formatting of the fine-tuning datasets. An interesting side-effect of noise embeddings is that the models generate longer, verbsose texts. By measuring token diversity of the outputs, they confirmed that the longer texts actually include more information and are not just repetitive.


HuggingFace supports NEFTune (Noise Embedding Instruction Fine-Tuning), a noise addition technique. In NEFTune, a noise vector is added to each embedding vector. The elements in the noise vector are generated by sampling iid from [-1,1]. The resulting vector is scaled using a scaling factor before being added to the embedding vector.


Noise embeddings have been empirically found to be very effective in reducing overfitting. Therefore, we will use it for our political promises detector fine-tuning. Note that the noise embeddings are added only during training and not during inference.

Warning

The impact of noise embeddings is not yet well understood. Improvements in the fine-tuning task could come at the cost of other model capabilities. Make sure you test the model for regressions!




For our political promises detector fine-tuning task, let us activate both label smoothing and noise embeddings.


# Label 0 will be transformed to label_smoothing_factor/num_labels
# Label 1 will be transformed to 1 - label_smoothing_factor +
#label_smoothing_factor/num_labels

label_smoothing_factor = 0.1
neftune_noise_alpha = 5












Batch size


Along with the learning rate, the batch size is one of the most important hyperparameters we need to set. A larger batch size means training will proceed faster. However, larger batch sizes also require more memory. Larger batch sizes can also lead the model to land in a sharp local minima, which can be a sign of overfitting. Therefore there are tradeoffs involving memory, compute, and performance.


For the political promises detector, we will use a batch size of 8, given our memory limitations. Of course during inference, the maximum possible batch size is the ideal one. Note that it is recommended that the batch size be always a number that is a power of two, to reduce GPU I/O overhead.


The TrainingArguments class by HuggingFace supports auto_find_batch_size, which when set, selects the maximum possible batch size supported by the memory. To use this feature, you need to install the accelerate library.


per_device_train_batch_size = 8
per_device_eval_batch_size = 8

Tip

You can reduce your maximum sequence length in order to support a larger batch size.




The relationship between learning rate and batch size

The relationship between learning rate and batch size is extremely complex, and depends on several external factors including the model architecture.


A high learning rate requires fewer steps, thus helping you finish training faster, but at the risk of overshooting the minima, leading to lack of convergence. Conversely, a low learning rate requires more steps and takes longer to convergence, but you might end up in a narrow sub-optimal minima. The narrow local minima likely means that you are overfitting. We would like to converge to a flatter minima instead, which can be accomplished by increasing the learning rate.


A smaller batch size will mean greater variance between examples in each batch, thus potentially leading the model towards a flatter minima. Thus, a relatively high learning rate and a relatively low batch size theoretically could help with more effective convergence. However, theoretical insights might not always be shown true in practice.




Finally, let us set some miscallaneous parameters:



	
max_grad_norm - This is used for gradient clipping, which is a solution for the exploding gradients issue, which we discussed in Chapter 2. The max_grad_norm value is the threshold for gradient clipping. If the L2 gradient norm is above the threshold then it will be rescaled to max_grad_norm. For more details on gradient clipping, see this blog post.



	
group_by_length - This is used to group examples that have similar lengths in the same batch, so that the padding tokens can be optimized. Recall our discussion of padding tokens in Chapter 2.



	
max_train_epochs - Number of passes over the training dataset. This is usually set to less than five to prevent overfitting.






max_grad_norm=2
group_by_length=True
max_train_epochs=3












Parameter Efficient Fine-tuning


After filling in the TrainingArguments, let’s next fill in parameters of the peft library.


The peft library by HuggingFace is an impressive facilitator of parameter efficient fine-tuning. This refers to a set of fine-tuning techniques that only update a small proportion of parameters in the model while keeping the performance closer to what it would have been if all the parameters were updated.


In this example, we will use LoRA (Low-rank adaptation) as the fine-tuning technique. We will discuss LoRA in detail in Chapter 9. For now, here are some hyperparameters to consider:



	
r - The attention dimension of LoRA.



	
lora_alpha - The alpha parameter in the LoRA technique



	
lora_dropout - The dropout probability used in the layers being tuned. This helps in reducing overfitting.



	
layers_to_transform - This specifies the layers for which the LoRA transformation are to be applied.






Here are some recommended default values:


r = 64
lora_alpha = 8
lora_dropout = 0.1












Working with reduced precision


The bitsandbytes library, built by Tim Dettmers, facilitates working with reduced precision formats, which we introduced in Chapter 5. In this example, we will work with the FP4 format. Note that you need the bitsandbytes version to be >= 0.39.0.


HuggingFace has integrated bitsandbytes support into its ecosystem. The BitsAndBytesConfig class allows us to set the parameters. Here are some relevant ones:



	
load_in_8bit/load_in_4bit - This is used to specify if we want to load the model in 4 bit mode or 8 bit mode.



	
llm_int8_threshold - We need to specify a threshold of values beyond which fp16 will be used. This is because int8 quantization works well only for values lesser than around 5-6.



	
llm_int8_skip_modules - This is used to specify the exceptions for which we do not want int8 quantization



	
llm_int8_enable_fp32_cpu_offload - If we want parts of the model to be run in int 8 on GPU and the rest in FP32 on CPU, this parameter facilitates it. This is used in cases where the model is too large to fit on our GPU. We will explore cases like this in detail in Chapter 9.



	
bnb_4bit_compute_dtype - This sets the computational type, regardless of what the input type is.



	
bnb_4bit_quant_type - The options here are FP4 or NF4. This is used to set the quantization type in the 4 bit layers.






Here are some recommended default values:


use_4bit = True
bnb_4bit_compute_dtype = 'float16'
bnb_4bit_quant_type = 'nf4'
use_nested_quant = False


Finally, we use the TRL (Transformer Reinforcement Learning) library that in addition to reinforcement learning, provides support for supervised fine-tuning.


Here are some recommended default values:


max_seq_length = 128
# Packing is used to place multiple instructions in the same input sequence

packing = True












Putting it all together


Now that we have all the requisite parameters set up, here is the full code for the fine-tuning process.


# Ensure that the specified versions of these libraries are installed.
!pip install transformers==4.35.0 accelerate==0.24.0 peft==0.6.0
bitsandbytes==0.41.0  trl==0.7.4

from datasets import load_dataset
from transformers import TrainingArguments, BitsAndBytesConfig
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel, LoraConfig
from trl import SFTTrainer

train_params = TrainingArguments(
    optim = "paged_adamw_32bit",
    learning_rate = 3e-4,
    weight_decay = 0.01,
    lr_scheduler_type = 'cosine',
    warmup_ratio = 0.03,
    gradient_accumulation_steps = 4,
    bf16 = True,
    gradient_checkpointing = True,
    label_smoothing_factor = 0.1,
    neftune_noise_alpha = 5,
    per_device_train_batch_size = 8,
    per_device_eval_batch_size = 8,
    max_grad_norm=2,
    group_by_length=True,
    max_train_epochs=3,
    output_dir = '/model_outputs',
    save_steps = 50,
    logging_steps = 10
    )


quantize_params = BitsAndBytesConfig (

    use_4bit = True,
    bnb_4bit_compute_dtype = 'float16',
    bnb_4bit_quant_type = 'nf4',
    use_nested_quant = False
    )


lora_params = LoraConfig (
    r = 64,
    lora_alpha = 8,
    lora_dropout = 0.1
    )

model = LlamaForCausalLM.from_pretrained(
    pretrained_model_name_or_path = 'meta-llama/Llama-2-7b',
    quantization_config=quantize_params,
    device_map='auto'
    )

tokenizer = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-7b')

tune_data = load_dataset("csv", data_files='/path/to/finetune_data.csv')

sft = SFTTrainer (
    model = model,
    args = train_params,
    train_dataset = tune_data,
    tokenizer = tokenizer
    peft_config = lora_params,
    max_seq_length = 128,
    dataset_text_field = 'text',
    packing = True
    )

sft.train()
sft.model.save_pretrained('/path/to/llama-2-it.csv')


The relationship between the hyperparameters are very complex and you might find surprising results. It will take several iterations before you hit the sweet spot. However, do not spend too much time squeezing out the last bit of performance from your fine-tuning, as that times is better spent developing better training data. In the next section, we will learn how to create effective training datasets.


The exact memory you need to fine-tune an LLM depends on several factors; the optimizer used, whether gradient accumulating and gradient checkpointing is activated, the type of quantization used etc. We will learn how to accurately calculate memory requirements for fine-tuning and inference in Chapter 9.


Exercise

Ablation studies are an important part of machine learning experimentation. This refers to studying the impact of a single component by removing the component and rerunning the experiment. For our fine-tuning example, let’s study the impact of noise embeddings on the final performance. Run 5 fine-tuning runs with noise embeddings activated, and 5 without, keeping all other hyperparameters constant. Perform error analysis on the test set and understand how noise embeddings impact the performance of the model. Are they a net positive?














Fine-tuning Datasets


In our fine-tuning example, we directly loaded a pre-constructed dataset, focusing primarily on the fine-tuning process. Now, let us shift our attention to the dataset, and understand the various techniques for creating datasets.


First, let us peer into the dataset we used in our fine-tuning example.


from datasets import load_dataset
tune_data = load_dataset("csv", data_files='/path/to/finetune_data.csv')
print(tune_data[:2])


Output:


Input: We will support women and children and give every child the best

possible start with $10 a day child care.

Identify if the above sentence represents a political promise. A political

promise is a promise that is tangible, specific, and an action that the

government has the agency to make. Reply 'True' if the sentence represents a

political promise, 'False' if not.

Output: True

Input: It is time for leadership that never seeks to divide Canadians, but

takes every single opportunity to bring us together, including in Parliament.

Identify if the above sentence represents a political promise. A political

promise is a promise that is tangible, specific, and an action that the

government has the agency to make. Reply 'True' if the sentence represents a

political promise, 'False' if not.

Output: False


As we can see, this is not a traditional dataset with just (input, output) pairs but one that also contains the task description in natural language. A typical example in this type of fine-tuning dataset consists of :


	
The instruction, which describes the task and specifies the desired output format. Optionally, the instruction contains positive and/or negative examples of the task. It can also contain constraints and exceptions to be followed.



	
An optional input, which in our example is the sentence or paragraph for the model to evaluate.



	
The output, which is the correct answer to the task in the format specified in the instruction






Note

Fine-tuning datasets can be either multi-task or single-task. Multi-task datasets are used for instruction-tuning. In general, instruction-tuning can be treated as an intermediate step before single-task fine-tuning. For example, you can take a T5 language model, instruction-tune it with FLAN to create FLAN-T5, and then further fine-tune it with your task-specific dataset. This approach is shown to yield better results than directly fine-tuning on T5 alone.




Later in this chapter, we will learn how to create task-specific datasets. First, let’s look at how we can create instruction-tuning datasets.


Why do we need instruction-tuning?

As seen in Chapter 4, the learning objectives of LLMs are typically either next-token prediction or denoising tasks. These objectives do not correspond to real-world user tasks. Thus there is a mismatch in how LLMs are trained and how they are used. In order to bridge this gap, instruction-tuning is employed.


Instruction-tuning allows for more controllable behavior from LLMs. The instructions in these datasets are similar to instructions provided by humans in real-world scenarios. Instruction-tuning also enables the model to learn the output format and thus generate the output in a more structured manner.




There are plenty of instruction-tuned LLMs available, both open-source and proprietary. Why do we want to instruction-tune the LLM ourselves? Public datasets are too general, lack diversity, and are primarily geared towards general purpose usage. Leveraging your domain expertise and knowledge of intended use cases to construct the dataset can be highly effective. In fact, at my company, which specializes in the financial domain, this technique delivered the single largest boost in performance.


There are several approaches to creating instruction-tuning datasets.



	
Utilizing publicly available instruction-tuning datasets



	
Transforming traditional fine-tuning datasets into instruction-tuning datasets.



	
Starting with manually crafted seed examples, followed by optionally augmenting the dataset by utilizing an LLM to generate similar examples.






Next, let us examine these methods more closely.










Utilizing publicly available instruction-tuning datasets


If your use case is sufficiently general or popular, you may be able to make use of publicly available datasets for instruction-tuning. The following table provides a list of some popular instruction-tuning datasets, along with information on their creators, sizes, and creation process.


Table 5-1. Popular instruction-tuning datasets


	Name
	Size
	Created by
	Created using





	OIG

	43M

	Ontocord

	rule-based





	FLAN

	4.4M

	Google

	templates




	P3 (Public Pool of Prompts

	12M

	Big Science

	templates




	Natural Instruction

	193K

	Allen AI

	templates




	Unnnatural Instructions

	240K

	Honovich et al., Meta

	LLMs




	LIMA (Less is More for Alignment

	1K

	Zhou et al., Meta

	templates




	Self-Instruct

	52K

	Wang et al.

	LLMs




	Evol-Instruct

	52K

	Xu et al.

	LLMs




	InstructWild

	Size

	Ni et al.

	LLMs




	Alpaca

	52K

	Stanford

	LLMs




	Guanaco

	534K

	Dettmers et al.

	LLMs




	Vicuna

	70K

	LMSYS

	Human conversations




	OpenAssistant

	161K

	Open Assistant

	Human conversations







Let us go through some of the key instruction-tuning datasets in detail. Understanding how they were constructed will provide you with roadmaps to to create your own instruction-tuning datasets. Most publicly available instruction-tuning datasets are meant to augment an LLM that will be used for open-ended tasks, as opposed to domain-specific use cases.












FLAN (Fine-tuned Language Net)


FLAN is actually a collection of several datasets. The FLAN collection, published in 2022, comprises of five components:


	
FLAN 2021



	
T0



	
Super-natural Instructions



	
Chain-of-Thought



	
Dialog







The original Flan 2021 datasets were one of the pioneering instruction-tuning datasets, which was used to train FLAN-T5. The Flan 2021 datasets were constructed by taking existing academic NLP datasets and converting them to the instruction format using instruction templates. The templates were manually constructed, with ten templates created for each task. The templates are available here.


Here is how a template list for a task looks like, as drawn from the templates.py file in the FLAN Github repo. Our example task is text summarization on the CNN/DailyMail news dataset.


 "cnn_dailymail": [
        ("Write highlights for this article:\n\n{text}", "{highlights}"),
        ("Write some highlights for the following article:\n\n{text}", "{highlights}"),
        ("{text}\n\nWrite highlights for this article.", "{highlights}"),
        ("{text}\n\nWhat are highlight points for this article?", "{highlights}"),
        ("{text}\nSummarize the highlights of this article.", "{highlights}"),
        ("{text}\nWhat are the important parts of this article?", "{highlights}"),
        ("{text}\nHere is a summary of the highlights for this article:", "{highlights}"),
        ("Write an article using the following points:\n\n{highlights}", "{text}"),
        ("Use the following highlights to write an article:\n\n{highlights}", "{text}"),
        ("{highlights}\n\nWrite an article based on these highlights.", "{text}"),
    ],


Note that the last three instructions represent an inverted version of the task, where given a summary, the model is encouraged to write the entire article. This has been done to increase the diversity of the instructions at scale.


Rather than painstakingly construct these templates by hand, can we automate their generation using LLMs? Yes, this is possible. We can leverage LLMs to generate more diverse templates. When I asked my favorite LLM to generate similar instructions to a news summarization task template provided in the prompt, here is what it came with:


"cnn_dailymail": [
("Distill the essence of this article:\n\n{text}", "{highlights}"),
("Give a quick rundown of this article's key points:\n\n{text}", "{highlights}"),
("Summarize the main elements of this text:\n\n{text}", "{highlights}"),
("Highlight the primary takeaways from the following:\n\n{text}", "{highlights}"),
("Extract and summarize the top points of this article:\n\n{text}", "{highlights}"),
("Condense this article into its most important aspects:\n\n{text}", "{highlights}"),
("What are the key insights of this article?\n\n{text}", "{highlights}"),
    ],


As you can see, the generated templates reflect various ways of expressing the summarization task.


For classification tasks, it is recommended to append the instruction with an Options clause. This is so that the LLM is introduced to the output space and can thus concentrate the probability mass over the defined label space. Without this guidance, the LLM would distribute its probability across several different tokens that express the same concept - for example there are several different ways of expressing the True label in a binary classification task.
An example prompt is “Identify the tone of this text. OPTIONS: happy, sad, neutral”.


Constructing these prompts manually can be a tedious exercise. The promptsource tool enables you to create, access, and apply prompts through a graphical user interface tool or through the promptsource python library. Here is an example from the P3 (Public Pool of Prompts) collection for the paraphrasing task, constructed by Big Science, which is available through the promptsource tool. P3 prompts consist of an Input template, a Target template, and an Answer Choices template.


Input Template:
I want to know whether the following two sentences mean the same thing.
{{sentence1}}
{{sentence2}}
Do they?

Target Template:
{{ answer_choices[label] }}

Answer Choices Template:
no ||| yes


Another key component of the FLAN collection is the Super-Natural Instructions dataset. This dataset contains very rich descriptions of instructions, that contain not just task definitions, but also positive and negative examples, constraints, and things to watch out for. The answers are enriched with explanations on why the answer was chosen. The effectiveness of adding explanations to the answer is not yet determined.


Here is an example of such a task from the super-natural instructions dataset.


Definition
In this task, we ask you convert a data table of restaurant descriptions into

fluent natural-sounding English sentences.

The input is a string of key-value pairs; the output should be a natural and

grammatical English sentence containing all the information from the input.

Positive Example

Input: name[Aromi], eatType[restaurant], food[English], area[city centre]

Output: Aromi is an English restaurant in the city centre.
Explanation: The output sentence faithfully converts the data in the input

into a natural-sounding sentence.

Negative Example

Input: name[Blue Spice], eatType[coffee shop], priceRange[more than 00a330],

customer rating[5 out of 5], ˘

area[riverside], familyFriendly[yes], near[Avalon]

Output: Blue Spice is a Colombian coffee shop located by the riverside, near

Avalon in Boston. Its prices are over

00a330. Its customer ratings are 5 out of 5. ˘

Explanation: While the output contains most of the information from the input,
it hallucinates by adding ungrounded

information such as “Colombian” and “Boston”.

Instance Input: name[The Mill], eatType[restaurant], area[riverside], near[The
Rice Boat]

Valid Output: [“A restaurant called The Mill, can be found near the riverside next to The Rice Boat.”]


Let us now look at datasets that are constructed with the help of LLMs.














LLM-generated instruction-tuning datasets


As seen earlier, hand-constructing these datasets can be painstaking, and paraphrasing/synthetic data generation is where LLMs shine the most. Therefore, we can leverage LLMs to generate our instruction-tuning datasets.
The Self-Instruct and Unnatural Instructions papers are one of the first attempts in this regard. Both start from a seed set of high-quality hand-generated examples, and then in a few-shot setting, ask the LLM to generate similar examples with more diverse linguistic expressions.


Given an instruction, a combination of input-first and output-first is shown to be beneficial for generating input-output pairs. Typically, you would generate input-output pairs using an input-first approach, where the LLM is asked to generate an input instance for the given instruction and subsequently asked to generate the output label for that input. However, this approach might lead to label imbalance as shown in Wang et al., with certain labels being overrepresented. Therefore, it is a good approach to mix output-first generation, where you ask the LLM to generate the output label first and then ask it to generate an input text that satisfies the label.

Warning

It is against Open AI’s policies to use its outputs to generate data that can be used to train a competing model. While there are several public instruction-tuning datasets that have been synthetically generated using GPT-4, they are technically violating Open AI’s terms of service. I recommend using open-source LLMs for synthetic data generation instead.




How large should your instruction-tuning dataset be?

The LIMA (Less Is More Alignment) paper shows that you only need a few thousand high quality examples to effectively fine-tune a model.




Simply asking an LLM to generate similar examples to your seed set may not give you desired results. You want a diverse but relevant set of examples, and it is easy for your LLM to drift into territory that ends up generating spurious examples outside of your desired distribution.


Xu et al. propose Evol-Instruct, a structured way to generated these synthetic instructions by making controlled edits to the seed examples. The process consists of three steps:



	
Instruction evolution: The seed examples are evolved using in-depth and in-breadth strategies. In-depth evolution increases the complexity and difficulty of the original instruction through five types of prompts:


	
Adding constraints



	
Increasing reasoning steps



	
Asking deeper questions



	
Asking more specific questions,



	
Increasing the complexity of the input.











In-breadth evolution increases topic coverage by generating a completely new instruction from the same domain as the original instruction.



	
Response generation: The response for the evolved instruction is generated, either using humans or LLMs.



	
Candidate filtering: Candidate instances that do not meet quality criteria are filtered out. You could use either heuristics or LLMs for candidate filtering.






Why not pre-train on instruction-tuning datasets?

If instruction-tuning is almost a necessary step after pre-training a model, why don’t we just pre-train the model using an instruction-tuning dataset? It is indeed possible, but these datasets are hard to construct at scale without incurring a significant drop in quality.


We need not wait till someone releases a massive dataset in order to reap the benefits of instruction-tuning during the pre-training phase. It has been shown that mixing instruction-tuning data during pre-training is already beneficial.




Exercise

Take all of the Canadian parliamentary proceedings data and convert it into an instruction-tuning dataset. This task sounds daunting, but luckily we have libraries that facilitate this process. One such library is called Bonito, that comes with a model for conditional task generation. This library takes unstructured text and converts it into instruction tuning format. Several types of tasks are supported, including summarization, sentiment, and question generation.


Use this library to create a instruction-tuning dataset from the parliamentary proceedings data. How is the quality of the resulting dataset? How can you further improve the diversity of the dataset?














Summary


In this chapter, we underscored the inevitability of needing to fine-tune models in order to solve more complex tasks. We performed a deep dive of the fine-tuning process and highlighted the tradeoffs involved in selecting hyperparameters. We also showcases the uncanny effectiveness of instruction-tuning along with pointers on how to create your own instruction-tuning datasets.


In the next chapter, we will discuss more advanced techniques for updating the parameters of an LLM, including continual pre-training, parameter efficient fine-tuning, and model merging.











Chapter 6. Advanced Fine-Tuning Techniques



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 7th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In the previous chapter, we presented the canonical way to fine-tune a typical LLM. In the real world, there are a wide variety of motivations for updating an LLM, and similarly there are multiple ways to update it. In this chapter, we will describe several advanced fine-tuning techniques, and highlight the scenarios in which each technique would be suitable.


Why would you want to update the parameters of an LLM? We touched upon this in previous chapters but let’s go through it in more detail now:



	
Domain Adaptation: The data that we work with belongs to a specialized domain that the LLM might not have been familiarized with during pre-training. In this case, we would like to update the model by training it on domain-specific data.



	
Task Adaptation: We care about LLM performance on specific downstream tasks. In order to improve the LLM’s performance on these tasks, we can train it on task-specific data. This can be both supervised or unsupervised.



	
Knowledge Updation: We would like to keep the LLM’s knowledge up-to-date by continually training it on new data.



	
Controllability/Steerability: We would like to control the behavior of the LLM, including making it more likely to follow user requests written in natural language, reject certain types of requests, and so on. Techniques to achieve this are collectively called alignment training. We will defer discussion of alignment training to Chapter 11.






In this chapter, we will go through various techniques that can be used to update the LLM for the aforementioned reasons. To this end, we have broken down the chapter into three sections:


	
Continual Pre-training: Primarily used for domain adaptation and keeping the knowledge of the LLM up-to-date (the latter is also called Lifelong-learning).



	
Parameter-Efficient Fine-Tuning (PEFT): A set of fine-tuning techniques that make the fine-tuning process more efficient by updating only a small number of model parameters, thus needing less memory and compute.



	
Model Merging/Model Fusion: A new and exciting sub-field of LLMs that explores combining the parameters of two or more models together. I call this the dark arts of NLP, as it is poorly understood but uncannily effective if done the right way.







Let’s begin with my personal favorite: continual pre-training!








Continual Pre-training


The premise of continual pre-training is simple. Take a pre-trained model checkpoint and continue pre-training it with your own data. But why would you want to do that? Here are some scenarios where continual pre-training can help.



	
You work in a specialized domain like law, finance, or biomedical. In each of these cases, text belonging to these domains differs linguistically and structurally from naturally occurring English text. For example, legal text is characterized by long sentences written in a formal tone, containing jargon specific to the legal domain. Financial text is interspersed with a lot of numbers. Both legal and financial text contain a significant proportion of boilerplate text. Biomedical text contains a lot of scientific terms that are not part of the standard English vocabulary. In all these cases, you would like to pre-train your LLM on domain-specific data so that the LLM is exposed to the nuances and characteristics of domain-specific text. This is called Domain-Adaptive Pre-training (DAPT).



	
Taking DAPT one step further, you can also pre-train your model not just on general text from your domain of interest, but also on domain text specifically related to your downstream tasks. This is called Task-Adaptive Pre-training (TAPT).



	
Your LLM is a reservoir of knowledge. But this knowledge can become obsolete over time. In order to keep its knowledge up-to-date, you continue pre-training the model at regular time periods or when new data is available. This is called Life-long Learning.





Note

You might be thinking - If I want a domain-specific LLM, why don’t I just take my domain-specific data and train an LLM from scratch? Well, you can, but your LLM just won’t be as performant and the exercise will cost a whole lot more than continual pre-training. LLMs learn a wide variety of linguistic capabilities that might not be able to be learned from domain-specific text alone. Therefore, it is better to take an already pre-trained LLM that was trained on general text and then continue pre-training it with domain-specific text.




In practice, continual pre-training is a challenging exercise. This is due to the phenomenon of catastrophic forgetting, where the LLM forgets its previously learned capabilities and knowledge when it is continued to be trained on new and different data. We will soon explore various techniques to combat the catastrophic forgetting problem.


How does continual pre-training differ from fine-tuning? The differences are mostly cosmetic and terminology-related. Just like pre-training, continual pre-training is performed in a self-supervised manner, while we typically use the term fine-tuning when we use supervised datasets. Continual pre-training uses the same (but not necessarily) learning objective as the one used in the original pre-training setup. Finally, continual pre-training datasets are usually orders of magnitude larger than typical fine-tuning datasets.


What’s in a domain?

So far, we have used a very intuitive notion of what a domain is - with broad examples like law, finance, and medicine. But we need not restrict ourselves to such a definition. For example, continual pre-training has been used to expose the LLM to new languages, like a primarily English language LLM being continually pre-trained on Telugu data. Continual pre-training has also been used to expose the LLM to text written in a different tone and style, like social media text.


More formally, a domain can be described as text whose representations form an implicit cluster. Aharoni et al. show that sentence representations of LLMs lend themselves naturally to these clusters.


Once you have identified a domain, you would also like to select text that is most representative of the domain. In the same paper, Aharoni et al. introduced domain-data selection techniques based on sentence representations generated through the LLMs. One way to select data representative of the domain is to use embedding similarity with gold-truth in-domain data. Another way is to fine-tune a domain classifier that is trained on gold-truth in-domain data and randomly sampled negative examples.




Figure 6-1 depicts the general continual pre-training process.



[image: continual-pt]
Figure 6-1. Illustration of the continual pre-training process




This book’s Github repo contains a tutorial for continual pre-training. This setup is no different than fine-tuning, except that the dataset is not labeled (self-supervised training), and the dataset is orders of magnitude larger than typical fine-tuning datasets.


Exercise

Using the medical dataset linked in the book’s Github repo, continue pre-training a 3B LLM of your choice for 1 billion tokens. After pre-training, do you notice any degradation of the base model? Pass your model through some of the benchmark tests mentioned in Chapter 5, before and after the continual pre-training. Do you notice any difference?




As mentioned earlier, naive continual pre-training leads to catastrophic forgetting of capabilities and knowledge learned previously. Several techniques exist to alleviate this issue:



	
Replay (Memory): Uses training examples from the original pre-training and mixes them with the new training data.



	
Distillation: Takes an older checkpoint of the model and during training compares the KL-divergence between the older and the current representations and penalizes it. Recall the discussion on KL-divergence in Chapter 2.



	
Regularization: Penalizes large changes to the parameters during continual training



	
Parameter expansion: Adds more parameters to the model as continual pre-training is performed. This can be done by increasing either the width or the depth of the model.






For a more comprehensive set of continual learning techniques, check out Jin et al’s paper. In this chapter, we will dive deeper into Replay and Parameter Expansion methods.










Replay (Memory)


Replay-based techniques are one of the simplest techniques to alleviate catastrophic forgetting. In this approach, we store pre-training examples from the original dataset and interleave them with the continual training dataset. Thus, the data drift is not so pronounced.


The following formula has worked very well for me; sample from different subsets of the original pre-training datasets, and mix them with the continual training dataset. At the start of training, let the proportion of new data be around 25%. Over training steps, this can be slowly increased up to a maximum proportion, like 80%.


If the original pre-training dataset is a monolith and not made up of several smaller datasets, you might need to identify domains yourself so that all domains in the original pre-training set are included.


This book’s Github repo contains code showcasing the replay technique in action for continual training of a GPT-Neo model.


Learning rate strategies for continual pre-training

You can modify the learning rate to further reduce the possibility of catastrophic forgetting. Winata et al. show that lowering the learning rate through time can be effective. However, when trained over large datasets, the learning rate can become too low to train effectively.


If the learning rate is too small, the model retains its existing capabilities but fails to learn from the new dataset effectively. Conversely, if the learning rate is too large, the model learns from the new dataset but at the expense of forgetting its previous capabilities. Thus, the ideal learning rate is a tradeoff between how much forgetting you can tolerate vs. how much new capabilities and knowledge you would like the LLM to absorb.


Gupta et al. show that an effective learning rate schedule is to re-warm the learning rate at the start of continual learning to a maximum learning rate and then decay it with a cosine schedule (as shown in Chapter 6), until it reaches a minimum learning rate, after which the learning rate is kept constant. The maximum learning rate is chosen so as to balance the tradeoff between forgetting old capabilities and learning new capabilities.














Parameter Expansion


An alternative to the replay approach is to use parameter expansion techniques. The naive way would be to just add a new layer or two on top of the model and train only those parameters during continual pre-training. You can also insert and train domain-specific parameter modules (called adapters) within existing layers. We will discuss adapter based approaches later in the chapter.


Leveraging DEMix Layers

Transformers can be made more modular by composing the model as a mixture of experts, as shown in Chapter 2. One way to divide the experts is to assign each expert a single domain. This removes the possibility of catastrophic forgetting when learning new domains because each expert is trained separately without affecting other experts. To implement this, Gururangan et al. propose replacing the feed-forward layers of the Transformer with DEMix (Domain Expert Mixture) layers. A DEMix layer is a feed-forward layer consisting of one or more expert feed-forward networks, one for each domain.


During inference time, a routing function dynamically chooses the experts most suited to handle the current input. This allows the model to handle text from previously unseen domains more effectively.


Domain-adaptive pre-training can be performed by training a new expert. The new expert is initialized by finding the closest available existing expert to the new domain, and then using its parameters as the initial parameters of the new expert. The expert is then trained using domain-specific data.




As mentioned earlier, continual pre-training can also be used to facilitate life-long learning, with the model continually being updated with new facts and knowledge. However, currently this may not be the most effective paradigm for new knowledge learning. You are probably better off using Retrieval-Augmented Generation (RAG) for that. We will explore RAG in more detail in Chapter 8 and 12.

Tip

Task-adaptive pre-training (TAPT) is a useful supplement to domain-adaptive pre-training. TAPT involves continual pre-training of the LLM on a much smaller but more task-specific unsupervised dataset. In order to prevent catastrophic forgetting, you should perform DAPT first before TAPT, and then subsequently perform any supervised fine-tuning on your downstream tasks if possible. Unsupervised data for TAPT can be selected using similar methods as that used for DAPT - by constructing embeddings of data and selecting data that is clustered together with gold-truth sentences.




In summary, continual pre-training can be very effective in cases where you have a large body of domain-specific text, and the domain is very distinctly characterized by a specialized linguistic structure or vocabulary. Continual pre-training can also be used to help adapt the LLM to a new language.

Tip

Domain-specific text can contain jargon specific to that domain. One strategy that has worked well for me is to add extra tokens to represent domain-specific jargon.




Continual pre-training can take a lot of computational resources. Fine-tuning on smaller datasets takes substantially less resources. However, in the era of large language models, it is imperative to do all we can to reduce compute and memory requirements. Therefore, let’s next discuss some parameter-efficient fine-tuning techniques that make the fine-tuning process more accessible in resource-constrained environments.












Parameter-Efficient Fine-tuning


In Parameter-Efficient Fine-Tuning (PEFT), instead of updating all the parameters of the model, we update only a small number of parameters. This can vastly bring down compute and storage requirements.


We can categorize current PEFT techniques into three types:


	
Adding new parameters: This involves adding some extra parameters to the LLM and training only them.



	
Selecting a subset of parameters: This involves choosing to update only a small subset of parameters of the LLM, either by selecting the subset apriori or by learning the appropriate subset.



	
Low-Rank methods: This involves using methods that reduces the number of parameters to train by finding a smaller matrix containing almost the same information as a larger matrix.







Let’s now go through each of these in detail.










Adding new parameters


Consider your work needs you to fine-tune models for a large number of tasks. Or maybe you need to drive personalization by fine-tuning a model for each user. It is going to be cumbersome to maintain and deploy so many full copies of fine-tuned models.


One way to avoid updating all the parameters of the model is to add a few extra parameters to the model and only train them.  Instead of storing and deploying full copies of each fine-tuned model, you need to store only the newly added parameters.


Common ways of adding new parameters for fine-tuning include:



	
Bottleneck Adapters: These are light-weight modules added to the Transformer layers.



	
Prefix Tuning: These are task-specific vectors that are trained and prefixed to the input.



	
Prompt Tuning (Soft Prompts):  This is similar to prefix tuning, but with a simplified training approach.






Let’s discuss each of these techniques in detail.












Bottleneck Adapters


Adapters are parameter modules that are attached to the LLM architecture. Adapters can be integrated into the LLM architecture in a variety of ways, but in Transformers, the common way is to insert them at each layer of the Transformer. In order to reduce the number of parameters, the width of the adapter module should be much lesser than than the width of the underlying Transformer model. This constitutes a down-projection, also called a bottleneck.


Therefore, a bottleneck adapter sub-layer consists of a down-projection matrix, an up-projection matrix at the end to project back to the original dimensions, and parameters that can be configured in a variety of ways in the middle.


During fine-tuning only the adapter modules are updated. The original pre-trained model is not updated. Adapters are initialized with a near-identity initialization, to ensure smooth training.


Figure 6-2 shows where in the Transformer architecture are the bottleneck adapters typically inserted. Note that this is just one possible configuration.
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Figure 6-2. Adapter modules in the Transformer




How does this all work in practice? The adapters library comes in handy to facilitate fine-tuning LLMs using these advanced techniques.


Here is how you can start using bottleneck adapters using the adapters library:


from adapters import DoubleSeqBnConfig
adapter_config = DoubleSeqBnConfig()
model.add_adapter("bottleneck_adapter", config=adapter_config)


DoubleSeqBnConfig refers to a config natively supported by the library, corresponding to the adapter architecture shown in Figure 6-2.
But as I mentioned before, you can change the size and shape of the adapters as you wish. In order to do that, we need to use BnConfig


from adapters import BnConfig
adapter_config = BnConfig(mh_adapter=True, output_adapter=True,

reduction_factor=32, non_linearity="gelu")


Here is what these arguments stand for:



	
mh_adapter refers to the adapter modules added right after the multi-head attention sub-layer of the Transformer.



	
output_adapter refers to the adapter modules added right after the feed-forward network sub-layer of the Transformer.



	
reduction_factor refers to the down-projection factor - by how much should the adapter width be scaled down in comparison to the Transformer layer width.



	
non_linearity refers to the activation function being used, like ReLU or GeLU.






Refer to the adapters library documentation for more configuration options. There are so many configuration options available!


While using bottleneck adapters leads to a vast decrease in fine-tuning time and complexity, the addition of additional parameters across all layers of the Transformer increases inference latency by a small amount. Typically, the inference time using commonly used adapter configurations is expected to increase by 6-8%

Tip

It is possible to reduce the inference latency by dropping some adapter layers during inference. Ruckle et al. propose AdapterDrop, a set of methods for dropping adapter modules during training and inference. They propose dropping adapters from the first few layers of the Transformer during inference, or pruning the adapters from each layer that is the least activated.
















Prefix-tuning


One drawback of using adapter-based fine-tuning techniques is that during inference, each batch can support only a single adapter instance, i.e. an adapter fine-tuned for a particular task. Prefix-tuning in contrast, enables multiple tasks to be run in the same batch.


In prefix-tuning, we add and train task-specific vectors to the prefix of the input. This vastly reduces the number of parameters we need to fine-tune. Recall that the prompt contains the instruction, the input, and optionally some few-shot examples. The text generated by the LLM is conditioned on the output generated so far, and the prompt. To this, we add additional context that the LLM can attend to, in the form of these prefix vectors. The new tokens prefixed to the input are called virtual tokens or soft prompts.


Figure 6-3 shows how prefix-tuning occurs in the Transformer.
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Figure 6-3. Prefix-tuning




As shown in the figure, the activations from the prefix parameters are added at the embedding layer, thus propagating their effects throughout the network.


Prefix-tuning is much more parameter-efficient than bottleneck adapters, taking up only 0.1% or less of a model’s parameters, as compared to adapters where it is usually 2% or more. However, prefix-tuning is harder to train effectively than adapters. Prefix-tuning also reduces the sequence length of the model in order to accommodate the virtual tokens.


Similar to adapters, initialization is very important for prefix-tuning. The virtual tokens can be initialized by choosing words that are related to the task the model is being fine-tuned for.


Using the adapters library, we can implement prefix-tuning.


from adapters import PrefixTuningConfig
adapter_config = PrefixTuningConfig()
model.add_adapter("prefix_tuning", config=adapter_config)














Prompt tuning


Prompt tuning is a simplified version of prefix-tuning. In this method, the virtual tokens are embedded not at the embedding layer, but at the output.


Figure 6-4 shows how prompt-tuning occurs in the Transformer.



[image: prompt-tuning]
Figure 6-4. Prompt-tuning




The adapters library provides a built-in configuration for prompt tuning.


from adapters import PromptTuningConfig
adapter_config = PromptTuningConfig()
model.add_adapter("prompt_tuning", config=adapter_config)


Some relevant configuration parameters for prompt tuning include:


	
prompt_length: The length of the prompt tokens. 10-30 is a good start.



	
prompt_init: The method for initializing these tokens. They can be initialized either through the embedding of a string or by a random uniform initialization



	
prompt_init_text: If the soft prompt is initialized by string, the text that is used to initialize it. This can be a descriptor of the task at hand.







Lester et al., who introduced prompt-tuning, also leverage it to perform soft prompt ensembling. For soft prompt ensembling, you train several soft prompts for each task. Then, for a given input, you use each of them as a prefix separately and generate the output. You can then use majority voting to select the correct output among the generated ones.


So far, we have seen techniques where new parameters are added to the model for fine-tuning. However, we can implement PEFT by fine-tuning only a small subset of parameters of the model without having to add new parameters. Let’s explore these methods next.














Subset methods


A naive way of choosing a subset of parameters to fine-tune on would be to fine-tune only the upper layers of the Transformer and keep everything else frozen. The lower layers of the Transformer are known to be specialized in more fundamental aspects of language like syntax, which we want the LLM to preserve.


Another way is to fine-tune only the bias terms (discussed in Chapter 2) of the Transformer. This was proposed by Zaken et al., who show that you can gain almost the same level of performance as that of fully fine-tuning a model by just fine-tuning on the bias terms. The authors observed that this technique is mostly effective when your training data is limited.


Does fine-tuning learn new capabilities?

This is an important question with heavy implications. There is increasing evidence that fine-tuning (the way it is performed today) only exposes already existing capabilities and doesn’t necessarily impart new capabilities.


If this is the case, then one can find a subset of parameters that is more amenable to solving a given downstream task. Zhao et al. propose using a binary mask that is trained per downstream task. This mask selects parameters that will be retained during inference that are relevant to solving the given downstream task.




Ultimately, as we have seen here, there are tradeoffs involved in selecting each of these fine-tuning approaches. The ML community is working on developing best practices around this area. In the meanwhile, experimentation is key!


Next, let’s look at another way to update the parameters of an LLM - by merging it with the parameters of another LLM.












Combining Multiple Models


If you have access to multiple LLMs, each of them overlapping in terms of capabilities yet possess certain unique characteristics, you would like to leverage the capabilities of all the models in your downstream tasks in some way. This can be done by a variety of means, including model ensembling and model fusion or merging. This area of LLMs is in its infancy and more work remains to be done to reap its full benefits. I call it the dark arts of NLP because the theoretical underpinnings of these techniques remain poorly understood. However, I do believe that even with these caveats it merits inclusion in this book, because the practical benefits are already visible. Let’s go through a few of these methods:










Model Ensembling


Different LLMs may possess different but complementary capabilities, a byproduct of the difference in their training regimes, training hyperparameters etc. This is especially true when it comes to open-source LLMs, where we have a pletora of models with most of them being trained on largely overlapping datasets, performing very closely to each other in benchmark evaluation metrics. Thus, an ensembling approach might bring forth benefits by allowing complementary capabilities from multiple models to be leveraged in order to generate better outputs.


In Chapter 5, we discussed how for generative tasks, it is useful to generate multiple outputs for the same input, and select the best one using heuristics. We can extend this principle to multiple models. Each input is passed through N models. Optionally, an initial step can choose the top k models with the most high-quality or relevant outputs. The outputs from these models can be combined together and fed through a model (which can be an LLM) to generate the final output.


Jiang et al. present a framework called LLMBlender for enabling LLM ensembling. The framework consists of two components:


	
PairRanker: This module scores the output from two models, thus choosing a winner.



	
GenFuser: This module takes as input the output from K different models to generate the final output.







Figure 6-5 shows the workings of the LLM Blender framework.
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Figure 6-5. LLM Blender




Let’s dig deeper into each of these modules.












PairRanker


Consider you have access to N different models. For a given input X, you feed the input to each of these models to generate the outputs. Now, for each pair of outputs, you can combine them with the input and feed them to the PairRanker module. The PairRanker module is trained to provide scores for each of the outputs. If you end up feeding all the pairs of outputs to the PairRanker module, you will then find the output (model) with the highest score. This output could then be taken as the final output.


However, this just selects the best output and doesn’t necessarily combine the capabilities of the different models. For that, the LLMBlender framework consists of a module called GenFuser. Let’s look at how GenFuser works next.














GenFuser


For GenFuser, we take the top K results from the PairRanker scores. We then feed them together to the GenFuser, which generates the final output. The GenFuser in practice is just a fine-tuned LLM that is tuned to accept several candidate inputs and generate an output that combines the characteristics of the different candidates.


Let’s see how this works in practice. We can use the LLM-Blender library.


import llm_blender
from llm_blender.blender.blender_utils import get_topk_candidates_from_ranks

ensemble = llm_blender.Blender()
ensemble.loadranker("llm-blender/PairRM")
ensemnle.loadfuser("llm-blender/gen_fuser_3b")

rank_list = blender.rank(input, candidate_outputs)
top_k = get_topk_candidates_from_ranks(rank_list, candidate_outputs, top_k=4)
final_output = ensemble.fuse(input, top_k)


Given an input and a list of candidate_outputs from N different language models, we rank the outputs using the PairRanker and then select the top-k ranked outputs and fuse them to generate the final output.


While ensembling methods can be effective, there is a lot of recent interest on model fusion techniques. Let’s go through some of the innovations in this space.














Model Fusion


In this approach, we combine the parameters of multiple models in some way. The idea is that by combining the parameters of multiple models together, we might be able to benefit from all the complimentary capabilities possessed by each of the individual models, within a single model.


Some of the common methods used in model fusion are:



	
Averaging: The simplest way to combine multiple models is to average their parameters together. Simple averaging has been shown to be quite effective.



	
Weighted Averaging: During averaging, certain models or even certain layers in models can be weighted more.



	
Interpolation: Each model can be weighted by a factor w1, w2,..wn, with






w1 + w2 + w3 +...wn = 1
w1p1 + w2p2 + w3p3 +...wnpn


where p1,p2,p3,…​pn are the parameters of models M1, M2,M3…​Mn


Can model fusion remove undesirable model attributes?

Zaman et al. have come up with a very interesting observation - when you fuse models together, the shared capabilities of the models are preserved, while the unshared capabilities are usually lost. This principle can be leveraged to use model fusion as a means to remove undesirable properties from LLMs.


The authors show that simple model averaging can reduce gender and racial bias exhibited by LLMs. They also reduce the propensity of the LLM to leak sensitive information, as model fusion results in the model forgetting information that is not shared. The more the models fused, the better the forgetting capabilty.




One of the benefits in merging multiple models is in model reuse. Let’s say you have a base LLM at your organization. It is used by people all across the organization, who take the model and fine-tune it on their own tasks. They then upload the fine-tuned models back. You can then merge the weights of all the models together, thus resulting in a stronger pre-trained model. This model can then be used as a new version of the base model. This process has been coined Collaborative Descent Fusion (CiD) by Don-Yehiya et al.


Why would we want to do this? The idea is that if we want to fine-tune an LLM on a dataset, it would be nice to have a good starting point such that the training is optimal. The hypothesis is that if we already fine-tuned the LLM on another task, the fine-tuned LLM is a better starting point than the base LLM. This is called intertraining. This too is a fairly new concept, so proceed with caution.


Instead of merging all the parameters of the model, you can only merge a small portion of them. In fact, we could just merge the adapter modules.












Adapter Merging


Earlier in the chapter, we learned about adapters, which can be used for a variety of purposes including domain-adaptive pre-training. While you can have different adapters trained for different domains, the question remains how would you treat new domains seen at inference time. One solution would be to average the adapters related to the most closest domains and use that for novel domains. This has been shown to work well, by Chronopoulou et al.’s AdapterSoup framework.


Another way to combine adapter parameters together is in the context of a MoE (Mixture of Experts) framework, introduced in Chapter 2. Recall that in a mixture-of-experts model, the routing function determines which expert(s) will handle the input. Wang et al.’s AdaMix framework extends this to adapter modules. Instead of learning only one adapter module per layer, we learn multiple expert modules. During inference, all the adaptation layers are merged.


Model merging is a fascinating sub-area of LLMs. Even if you are not using it in your applications, I highly recommend experimenting with it because it doubles up as a really neat tool to understand the working of LLMs.












Summary


In this chapter, we learned a plethora of advanced fine-tuning techniques, including continual pre-training strategies like experience replay, parameter expansion, parameter-efficient fine-tuning techniques like bottleneck adapters, prefix tuning, prompt tuning, subset selection, reparameterization methods like LoRA, and various types of model merging and ensembling. We also learned the various motivations for updating model weights and the suitability of different methods for each of those situations.


As discussed in the previous and current chapter, fine-tuning is not a panacea and cannot learn new capabiltiies nor necessarily digest new knowledge. A more robust way of accessing new capabiltiies and knowledge is to interact with the external environment and connecting with software tools and data sources. In the next chapter, we will learn how to do that.











Chapter 7. Interfacing LLMs with External Tools



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 8th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In order to effectively harness the power of LLMs in your organization, they have to be integrated into the existing data and software ecosystem. Unlike traditional software components and data stores, LLMs can generate autonomous actions to interact with other components of the ecosystem, thus bringing a degree of flexibility never seen before in the world of software. This flexibility unlocks a whole host of use cases that were previously considered impossible.


There is another reason why we need LLMs to interact with software and external data.
As we know too well, current LLMs have significant limitations, some of which we discussed in Chapter 1. To recap some key points:



	
Since it is expensive to retrain LLMs or keep them continuously updated, they have a knowledge cutoff date and thus possess no knowledge of more recent events.



	
Most LLMs perform poorly at mathematical operations beyond rudimentary arithmetic.



	
They can’t provide factuality guarantees or accurate citations of their outputs.



	
Feeding them your own data is a challenge - fine-tuning is non-trivial and in-context learning is limited by the length of the effective context window.






As we have been noticing throughout the book, the consolidation effect is leading us to a future (unless we hit a technological wall) where many of the aforementioned limitations might be addressed within the model itself. But we need not necessarily wait for that moment to arrive - many of these limitations can be addressed today by offloading the tasks/subtasks to external tools.


In this chapter, we will describe the LLM interaction paradigms and provide guidance on how to adopt them in your application. Broadly speaking, there are two types of external entities that LLMs need to interact with - data stores and tools (software/models). We will describe each of them in detail and showcase how they can be used in tandem to build powerful applications. We will show how to make the best use of libraries like LangChain and LllamaIndex, which have vastly simplified LLM integrations. We will also push the limits of what today’s LLMs are capable of, by demonstrating how they can be deployed as an agent that can make autonomous decisions.








LLM Interaction Paradigms


Suppose you have a task you want the LLM to solve. There are several possible ways in which this can pan out.


	
The LLM uses its own memory and capabilities encoded in its parameters to solve it.



	
You feed the LLM all the context it needs to solve the task within the prompt, and the LLM uses the provided context and its capabilities to solve it.



	
The LLM doesn’t have the requisite information or skills to process this task, so you update the model parameters (fine-tuning etc., as discussed in detail in Chapters 5 and 6) so that it is able to develop the skills and knowledge to solve it.



	
You don’t know apriori what context is needed to solve the task, so you use mechanisms to automatically fetch the relevant context and insert it into the prompt. (The Passive approach)



	
You provide explicit instructions to the LLM on how to interact with external tools and data stores in order to solve your task, which the LLM follows. (The Explicit approach)



	
The LLM breaks down the task into multiple subtasks if needed, and interacts with its environment to gather the information/knowledge needed to solve the task, and delegates subtasks to external models and tools when it doesn’t have the requisite capabilities to solve that subtask. (The Agentic approach)







As you can see, options 4-6 involve the LLM interacting with its environment. Let’s go through the three interaction paradigms (Passive, Explicit, Agentic) in detail.










The Passive Approach


Figure 7-1 shows the typical workflow of an application that involves an LLM passively interacting with a data store.



[image: Passive Interaction]
Figure 7-1. An LLM passively interacting with a data store.




A large number of use cases involve leveraging LLMs to make use of your own data. Examples include building a question answering assistant over your company’s internal knowledge base that is spread over a bunch of Notion documents, or an airline chatbot that responds to customer queries about flight status or booking policies.


In order to allow the LLM to access external information, we need two types of components - retrieval engines and a data stores. A retrieval engine can be powered by an LLM itself, or it can be as simple as a keyword matching algorithm. The data store(s) can be a repository of data, like a database, knowledge graph, vector database, or even just a collection of text files. Data in the data store is represented and indexed in a manner that makes retrieval more efficient.


When a user issues a query, the retrieval engine uses the query to find the documents or text segments that are most relevant to answering this query. After ensuring that it fits into the context window of the LLM, it is fed to the LLM along with the query.The LLM is expected to answer the query given the relevant context provided in the prompt. This approach is popularly known as RAG (Retrieval-Augmented Generation), although as we will see in Chapter 12, RAG refers to an even broader concept.

Note

Henceforth, we will refer to user requests to the LLM as queries and textual units that are retrieved from external data stores as documents. Documents can be full documents or passages, paragraphs or even sentences.




We will discuss various forms of data stores and retrieval mechanisms later in the chapter. We call this a passive interaction approach because the LLM itself is not actively involved in the selection of the context. This paradigm is often used for building QA assistants or chatbots, where external information is required to understand the context of the conversation.












The Explicit Approach


Figure 7-2 demonstrates the Explicit approach to interface LLMs with external tools.



[image: Explicit Approach]
Figure 7-2. The Explicit interaction approach in action.




In this approach, we provide the LLM with explicit instructions on how and when to invoke external information and tools. The LLM just follows the instructions mentioned in the query. This approach is recommended when the interaction sequence is fixed, limited and preferably only a single step. An example would be an AI data analyst asistant where you provide queries in natural language and ask the LLM to generate SQL code that can be run over a database.












The Agentic Approach


Figure 7-3 shows how we can turn an LLM into an autonomous agent that can solve complex tasks by itself.



[image: Agentic Approach]
Figure 7-3. A typical LLM Agent workflow




The agentic approach, or the Holy Grail approach as I would like to call it, turns an LLM into an autonomous agent that can solve tasks on its own. Here is a typical workflow of an agent:


	
The user formulates their requirements in natural language, optionally providing the format in which they want the LLM to provide the answer.



	
The LLM decomposes the user query into manageable subtasks



	
The LLM synchronously or asynchronously solves each subtask of the problem. Where possible, the LLM uses its own memory and knowledge to solve a specific subtask. For subtasks where the LLM cannot answer on its own, it chooses a tool to invoke from a list of tools available to it. Where possible, the LLM uses the outputs from solutions of already executed subtasks as inputs to other subtasks.



	
The LLM synthesises the final answer using the solutions of the subtasks, generating the output in the requested output format.







This paradigm is general enough to capture just about any use case. It is also a risky paradigm - we are giving the LLM too much responsibility and agency. At this juncture, I would not recommend using this paradigm for any critical applications.

Note

Why am I calling for caution in deploying agents? Oftentimes, humans underestimate the accuracy requirements for applications. For a lot of use cases, getting right 99% of the time is still not good enough, especially when the failures are unpredictable and the 1% of failures can be potentially catastrophic. The 99% problem is also the one plaguing self-driving cars and preventing broader adoption. This doesn’t mean we can’t deploy autonomous LLM agents at all; we just need clever product design that can shield the user from their failures. We also need robust human-in-the-loop paradigms. We will discuss this more in Chapter 13.




To better understand the agentic paradigm, let me share an example query for the agent I am developing at my company, which operates in the financial domain. Consider this question:


Who was the CFO of Apple when its stock price was at its lowest point in the last 10 years?



Here is how the LLM agent can answer this question. Each item in the numbered list corresponds to a step in the chain, the sequence of actions it takes. The system prompt contains a list of available tools and external data stores and their descriptions.


	
First, it decomposes the task into multiple subtasks.



	
To calculate the date range, it needs the current date. If this is not included in the system prompt, it generates code for returning the system time, which is then executed by a code interpreter.



	
Using the current date, it finds the other end of the date range by executing a simple arithmetic operation by itself, or by generating code for it. Step 2 and 3 could also be combined into a single program.



	
It finds a database table that contains stock price information in the data store list. It retrieves the schema of the table and inserts it into the prompt and generates a SQL query for finding the date when the stock price was at its minimum in the last 10 years.



	
With the date in hand, it needs to find the CFO of Apple on that date. It can generate code to call a search engine API to see if there is an explicit mention of the CFO on that particular date.



	
If the search engine query fails to provide a result, it finds a financial API in its tools list and retrieves and inserts the API documentation into its context. It then generates code for an API call to retrieve the list of CFOs and their tenure durations.



	
Finally, it uses its arithmetic reasoning skills to find the duration that matches the date of the lowest stock price, and retrieves the corresponding CFO.



	
It generates the output text with the answer. If there is a requested format, it tries to adhere to that.







As you can see, this is a very powerful paradigm but it is also a very complicated chain involving several LLM calls. Note that it takes several Google searches for even a financial domain expert to find the answer to this question. There are several opportunities for the LLM to fail in this chain, and the earlier it fails the harder it is to recover from it.


Task decomposition is a particularly challenging problem and will be explored further in Chapter 13. However, task decomposition is only needed for the Agentic approach.

Note

Projects like BabyAGI, AutoGPT, HuggingGPT (also called Microsoft JARVIS), are notable demos of autonomous LLM agents. Unsurprisingly, none of them are stable enough to be used in production as of now. However, as of today the agentic approach can still be production-ready in limited use cases where accuracy and latency requirements are lax.




Exercise

The accompanying Github for the book contains an AutoGPT-style implementation. Use your GPT-4 key to run the agent code and explore the limitations and potential of autonomous LLM agents. Be careful and set up Open AI billing alerts - a single task might consume a lot of tokens! Try asking the agent ‘Which football team had the 5th highest number of goals scored in the Premier League during the year that Jackie Chan turned 60?' and debug the actions taken by it.




Let’s now explore how to facilitate interaction between LLMs and external data stores.












Retrieval


Now that we have seen how the three interaction paradigms work, let’s discuss Retrieval, a common mode of interaction.


External data can be of just about any type - text files, database tables, knowledge graphs, and so on. Data can range from propreitary domain-specific knowledge bases to intermediate results and outputs generated by LLMs.


As shown in Figure 7-2, a typical solution is to calculate some kind of similarity measure between the user query and the documents in the data store to find the documents that most match the user query  i.e. provides the most relevant context that can be used to satisfy the user query. This process is called retrieval. The retrieval function often returns a ranked list of results in order of relevance rather than a single result. This process is called text ranking. This context is then fed into the LLM prompt along with the user query, and the LLM uses the information provided in the context to answer the user query. This two step-process has traditionally been called the retriever-reader framework.


While structured data can live in databases,  unstructured data needs to be first processed in order to make it amenable for retrieval. This usually involves parsing text from the document, splitting it into manageable chunks, associating metadata with each segment, storing a representation of it, and indexing it for easy access.


Unstructured text needs to be split into manageable chunks to facilitate effective retrieval and to allow you to insert matching chunks into the LLM context window. Chunks can be as short as individual sentences, but can also be paragraphs, sections, or even documents, with ideally each chunk containing text about a semantically coherent topic. I have seen many retrieval projects fail because the chunks were not well-defined.


If it makes sense for your use case to have sentences as the basic unit of text, NLTK’s Punkt tokenizer is a tried and tested tool for tokenizing text into sentences. Note that sentence tokenization is not a trivial task especially if you have domain-specific text. Naive splitting on end marks (periods, question marks and abbreviations) can only get you so far; abbreviations play spoil sport, among others. You can train the Punkt tokenizer unsupervised over a large body of your target text to ensure it learns your domain-specific rules, as well as provide explicit rules and exceptions yourself. The book’s Github repo contains one such example. Other tools for sentence tokenization include spaCy, Stanza, and ClarityNLP.


Exercise

Construct a sentence tokenizer for the Canadian parliamentary proceedings dataset provided in the book’s Github repository. What are the failure modes? Can you use rules to resolve these issues? Try unsupervised training of the Punkt tokenizer using this data. Is it effective in resolving the issues found?












Retrieval Techniques


Which retrieval technique should you use? The answer depends on the following considerations



	
The expected nature of user queries (how complex and abstract they can be)



	
The expected degree of vocabulary mismatch between user queries and target documents



	
Latency and compute limitations



	
The metrics to optimize for (precision/recall/NDCG etc)






Depending on the nature of user queries, keyword matching/probabilistic retrieval techniques like BM25 can be a very strong baseline and can potentially even be good enough for your application. To get around the rigidity of having to match the exact keywords, query-expansion and document-expansion techniques can be employed, which we will discuss later in this chapter. In recent times, embedding based methods (bi-encoders) have become extremely popular.


The retrieval process can be broken into a two-stage or multi-stage process, where the initial stages retrieve a list of chunks that are deemed relevant to the query, followed by one or more reranking stages that takes the list of chunks and sort them by relevance. The reranker is generally a more complex model, usually a language model like ColBERT or Rank-T5, that we would generally find expensive to run over the entire dataset. (which is why we don’t use it for the initial retrieval stage).


Let’s go into the different retrieval techniques in detail.

Note

The IR (information retrieval) research field has been studying these problems for a long time. Now that retrieval is more relevant than ever in the field of NLP, I am noticing a lot of efforts to reinvent the wheel rather than reusing insights from the IR field. For insights in retrieval research, check out papers from leading IR research conferences like SIGIR, ECIR, TREC etc.














Keyword Match and Probabilistic Methods


There are several traditional methods and frameworks that can be used to perform the first-stage (or depending on the use case, the entirety) of the retrieval process. Lucene/ ElasticSearch supports Tf-IDf (Term frequency - inverse document frequency), BM-25 (the current default in ElasticSearch 8.9), DFI (Divergence from Independence), DFR (Divergence from Randomness), IB (Information-based), Dirichlet Similarity, and Jelinek Mercer Similarity. Each of these measures has several tunable parameters. For more insight on these techniques and how to select the parameter values, check out this video. The book’s Github repo also showcases the differences between these methods.












Embeddings


We introduced the concept of embeddings in Chapter 2. Let’s now see how they can be used for retrieval.


Embeddings are generated for each of the chunks in the data collection. When a new query comes in, an embedding of the query is generated. The query embedding is compared against the chunk embeddings and the ones that have the highest cosine similarity are selected as candidates to be included in the LLM context or to the next stage of the retrieval process. This process is called semantic search, since the embeddings capture meaning of the underlying text.


Embeddings can be generated using both open-source libraries and paywalled API’s. SBERT (sentence-transformers) is a very well known library for generating embeddings, and provides access to embedding models that still performs competitively with respect to the state of the art, even if the model sizes are much smaller.

Note

There is a distinction between symmetric semantic search and asymmetric semantic search. If the query text is of similar size as the chunk text, then it is symmetric. If the query text is much smaller than the chunk text, as with search engine and question-answering assistant queries, then it is asymmetric. Different models exist for symmetric and asymmetric semantic search. In some models, the query and chunk texts are encoded using separate models.




As a simple illustrative example, consider two chunks of text, each representing a sentence.


chunks = ['The President of the U.S is Joe Biden',
'Ramen consumption has increased in the last 5 months']


Given the query ‘president of usa’ we can encode the query and the chunks using SBERT.


from sentence_transformers import SentenceTransformer, util
sbert_model = SentenceTransformer('msmarco-distilbert-base-tas-b')

chunk_embeddings = sbert_model.encode(chunks, show_progress_bar=True, device='cuda', normalize_embeddings=True, convert_to_tensor=True)

query_embedding = sbert_model.encode(query, device='cuda', normalize_embeddings=True, convert_to_tensor=True)
matches = util.semantic_search(query_embedding, chunk_embeddings, score_function=util.dot_score)


The output is:


[[{'corpus_id': 0, 'score': 0.8643729090690613},
  {'corpus_id': 1, 'score': 0.6223753690719604}]]

Tip

If you set normalize_embeddings to True, it will normalize the embeddings to unit length. This will ensure that you can compute dot product instead of cosine similarity, which is faster. The creators of SBERT provide separate models trained on dot product and cosine similarity and they mention that dot product models tend to prefer longer chunks during retrieval.




The embedding models provided by SBERT are based-on encoder-only models, by mean pooling (averaging) the encoder outputs. The underlying models are BERT, RoBERTa, MPNet etc., and are typically fine-tuned on paraphrasing/question-answering/natural language inference datasets. These models have smaller maximum sequence lengths (typically 512 tokens), and the embedding dimension size is typically 768, so you will only be able to encode a relatively short sequence in a chunk.

Warning

There is no such thing as infinite compression! Embedding sizes are fixed, so the longer your chunk the lesser information can be encoded in its embedding. Managing this tradeoff differs by use case.




Recently, decoder-based embedding models have started gaining prominence, like the SGPT family of models. Open AI exposes a single embedding endpoint for both search and similarity. Open AI embeddings have a much larger maximum sequence length (8192 tokens), and a much larger dimension size (1536). Cohere and Aleph Alpha are some other embedding providers. Aleph Alpha provides more flexibility in the way the final embedding is created from the encoder output including:



	
Mean pooling, where the average is taken across all token outputs in the sequence



	
Weighted mean, where more weight is given to the last few tokens



	
Last token , where the embedding is just the encoder output of the last token. (called [CLS] token if you are using the BERT model)






Which option should you use? It is not always clear and depends on your data. It doesn’t hurt to experiment a bit. But the differences in performance are not expected to be very large.

Tip

Whether the last token (or the first token), contains good representations of the entire sequence depends a lot on the pre-training and the fine tuning objective. BERT’s pre-training objective (next sentence prediction) ensures that the [CLS] token is much richer in representation than say Roberta, which doesn’t use the next sentence prediction objective and thus its <s> start sequence token isn’t as informative.




Training Embedding Models

Embeddings generated from base LLM models generally don’t perform well. For these models, it has been shown that term frequencies from the pre-training set have an impact on the embedding geometry, leading to distorted cosine similarities. This has led to the cosine similarity between high frequency words to underestimate the similarity between them. To make the models generate usable embeddings, they need to be fine-tuned either in a supervised or an unsupervised/self-supervised manner.


The most promising approach for training sentence embeddings has been to use contrastive learning. In contrastive learning, we take three sentences in an example - an anchor sentence, a sentence that it is very similar to, and a sentence that it is dissimilar to. We then train the model such that it keeps the similar sentences closer in the embedding space and pushes the embeddings of the dissimilar sentences farther apart in the embedding space.


While a similar sentence can be generated by just adding noise or dropping words in the original sentence, it is not very clear what the best dissimilar sentences would be. This page shows several techniques used for unsupervised learning of sentence embedding models. The book’s Github repo shows various techniques to train or fine-tune your own embedding models.



Tip

Training or fine-tuning your own embedding model using your data is relatively inexpensive but can potentially come with a lot of benefits. For example, I trained an embedding model on financial text which cost less than $2000 in compute costs but ended up performing better than Open AI embeddings for my use case.




For many applications, embedding similarity is just not enough. To see why semantic search based on cosine similarity of embeddings is limited in what it can do, let’s look at an example.


The semantic similarity task is underspecified. To start with, there are several notions of similarity. For example, are two sentences that have opposite meanings but are talking about similar topics semantically similar? What about sentences or passages that have multiple facets of meanings?


Consider the query


query = [‘Who resigned from Edison Corporation in 2019?’]


Ideally, we would like to match sentences talking about resignations from Edison Corporation in 2019. But can naive cosine similarity capture this, even if the embedding model was fine-tuned on question-answering datasets?


Let’s say we are matching the query against these chunks


chunks = ['Hajian is an expert in cooking pineapple salsa.',

 'Hajian resigned his job at Apple.',

"Edison Corporation is the world's largest movie distributor",

'Roman resigned his job at Apple',

'Roman resigned his job at Edison corporation',

 'Hajian left Edison Corporation in 2017',

'Roman joined Edison Corporation in 2019',

'Hajian did not resign from Edison Corporation']


We generate embeddings and calculate similarities


model = SentenceTransformer('all-mpnet-base-v2')
chunk_embeddings = model.encode(chunks, show_progress_bar=True, device='cuda', normalize_embeddings=True, convert_to_tensor=True)

query_embedding = model.encode(query, device='cuda', normalize_embeddings=True, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, chunk_embeddings, score_function=util.dot_score)


The output is


[[{'corpus_id': 5, 'score': 0.710587739944458},

  {'corpus_id': 7, 'score': 0.7007321715354919},

  {'corpus_id': 4, 'score': 0.6919746994972229},

  {'corpus_id': 6, 'score': 0.6464899182319641},

  {'corpus_id': 1, 'score': 0.467547744512558},

  {'corpus_id': 2, 'score': 0.4549838900566101},

  {'corpus_id': 3, 'score': 0.4215250313282013},

  {'corpus_id': 0, 'score': 0.015120428055524826}]]


Note that sentences like ‘Roman joined Edison Corporation in 2019’ and ‘Hajian did not resign from Edison Corporation’ have a high similarity score. If we use a similarity threshold of 0.6, then sentences 4,5,6,7 are included in the prompt along with the query to the LLM, and the LLM will correctly answer the question.


As you might have wondered, the precision-recall tradeoff needs to be handled with care, especially since we have a limited context window to feed candidate chunks into the LLM. Read more about precison and recall metrics here.


Exercise

Check how the similarities for these sentences fare when using OpenAI and Cohere embeddings. What do their similarity scores look like? Is it better or worse than what we see here?




So far we have seen that embedding models are specialized for solving a specific task - like semantic search or paraphrasing. A recent development ties together embedding models and the concept of instruction-tuning, which we discussed in Chapter 6. Imagine if you could use the same embedding model to generate different embeddings for the same chunk, based on the task it is going to be used for. These embeddings are called Instructor Embeddings. Instructor Embeddings allow you to optionally specify the domain, text type (whether it is a sentence, paragraph etc), task, along with the text during encoding.


Here is an example:


!pip install InstructorEmbedding

from InstructorEmbedding import INSTRUCTOR
model = INSTRUCTOR('hkunlp/instructor-large')

customized_embeddings = model.encode(
[['Represent the question for retrieving supporting documents:',
  'Who is the CEO of Apple'],
 ['Represent the sentence for retrieval:',
  'Tim Cook is the CEO of Apple'],
 ['Represent the sentence for retrieval:',
  'He is a musically gifted CEO'],
)


The creators of InstructorEmbedding recommend using the prompt Represent the question for retreiving supporting documents for queries, and Represent the sentence for retrieval for the chunks.


Another way in which the principle of instruction-tuning can be applied to retrieval is with description-based retrieval, where the query can be the description of the text that needs to be retrieved, rather than an instantiation (example) of the text that needs to be retrieved. Ravfogel et al. have published description-based retrieval models that in my experience are very effective. Note that these models have a dual-encoder setup - separate models are used to encode the query and documents. Check out the accompanying Github repo to this book for examples on how to use these models.


Evaluating Embedding Models

There are a dizzying number of embedding models available. Which one should you use? MTEB (Massive Text Embedding Benchmark) is a benchmark that can help you make the decision. MTEB covers a diverse set of tasks and benchmarks both latency and task performance, enabling you to reason about the tradeoff.


Check out the the current leaderboard, which is updated regularly. While there is no clear winner across all tasks, you can see that Instructor Embeddings-style embeddings generally perform very well, and the older SBERT models based on MPNet and MiniLM still perform competitively on retrieval tasks. Open AI and Cohere embedding models are also in the upper echelons in terms of task performance. Your final decision on embedding model choice should balance pricing, latency and performance tradeoffs.














Optimizing embedding size


Many applications involve generating billions of embeddings. As we have seen, modern embeddings sometimes have as much as thousands of dimensions.
If each dimension is represented in float32, then it needs four bytes of memory per dimension. Therefore, storing 100 million vectors generated from the all-mpnet-base-v2 model, which has 768 dimensions, will cost close to 300GB of memory!


It is not uncommon to represent a single sentence, almost always no longer than 40 tokens, with a 768 dimension vector. Do we really need 768 dimensions to represent 40 tokens? The reality is that embedding training is very inefficient and a large number of dimensions are not really useful.


Therefore, several embedding truncation and quantization approaches have been developed to optimize embedding size and reduce storage and compute requirements. If you are operating in an environment with more than a few million vectors, these techniques are likely to be useful to you. Let’s take a look at some of these approaches.












Matryoshka embeddings.


Matryoshka embeddings are named after Matryoshka dolls, which refer to a set of wooden dolls that are placed next to each other in decreasing order of size, originating from Russia. Matryoshka embeddings are trained such that the earlier dimensions of the vector contain more important information than the later dimensions. This allow us to truncate vectors depending on the requirements of the application with respect to cost, latency, and performance.


The technique use to train these embeddings is called Matryoshka Representation Learning (MRL). In MRL, we first choose a set of truncation dimensions. For example a 1024 dimension vector can have truncation dimensions 128, 256, 512, and 768. During training embeddings using a process like contrastive learning, we calculate the loss over each of the truncation dimensions as well as the full dimension. The losses are then added and weighted. In our example, the first 128 dimensions learn from the loss calculated over the first 128, 256, 512, 768, and 1024 dimensions of the vector. The end result is that the initial dimensions of the vector will encode more important information because they learn from richer losses.


Training using MRL is supported by the sentence_transformers library. The book’s Github repo contains an example of training embeddings using MRL.


Exercise

Download this dataset by Rishabh Mishra containing news headlines. Use the nomic-embed-text-v1.5 model from Nomic AI which has been trained using MRL. Pick one of the headlines as the query and generate its query embedding. Generate document embeddings for all other headlines, and calculate similarity scores between query and document embeddings at truncation checkpoints 1024, 768, 512, 256, and 128.


Perform error analysis on the top 25 results. At what dimension do you start seeing a noticeable performance drop?
















Binary and Integer Embeddings


An alternative to truncation is quantization. With binary and integer quantization, the number of dimensions of the vector remain the same, but each dimension is represented by fewer number of bits. Recall that typically embedding vectors are represented in float32, thus taking four bytes of memory per dimmension.


At the extreme level, the four bytes can be represented with just one bit, resulting in a 32x reduction in storage requirements. This type of compression is generally done by sacrificing the precision of the vector values.


A simple way to convert a four byte vector to a one bit vector is to assign a value of 1 if the original value is positive, and 0 if it is negative. Note that you might need to perform some scaling to achieve best results. After packing these bits into bytes, a 512 dimension vector can be represented in just 512/8 = 64 bytes, instead of 512 * 4 = 2048 bytes.


Another advantage with using binary embeddings is that computing similarity only needs simple bitwise operations, thus vastly speeding up retrieval. However, quantization negatively affects performance.


You can use the sentence_transformers library to quantize embeddings.


from sentence_transformers.quantization import quantize_embeddings

model = SentenceTransformer("all-mpnet-base-v2")
embeddings = model.encode(["I heard the horses are excited for Halloween.", "Dalmations are the most patriotic of dogs.", "This restaurant is making me nostalgic.])
binary_embeddings = quantize_embeddings(embeddings, precision="binary")


quantize_embeddings also supports int8 quantization. In this scheme, the four bytes representing each dimension is converted into an integer value, represented in one byte. The integer can be either signed or unsigned, thus representing values between -127 and 127 or between 0 and 255 respectively. The conversion process is guided using a calibration dataset of embeddings, from which we calculate the minimum and maximum value of each dimension. These values are then used in the normalization formula to convert the numbers from one range to another.

Tip

It has been shown that for some embedding models, binary embeddings perform better than int8 embeddings despite the reduced precision! This is largely because of the calibration dataset used and the challenge involved in mapping float values to buckets of int8 values.
















Product Quantization


Another alternative method of quantization is called Product Quantization. In this process, a vector is broken down into chunks of equal size. The chunks are then clustered. The number of chunks is set to the number of values that can be represented by the quantized embedding. For example, if we aim to quantize to int8, then the number of values that can be represented is 256, and thus the number of clusters is 256. Each cluster is associated with a identifier which is a unique value between 0 and 255. Each chunk belongs to the cluster whose centroid this chunk is closest to.


Thus, the original float32 vector can now be represented by a list of cluster identifiers corresponding to the clusters the chunks belong to. Larger the chunk size, more the compression. Thus if the vector is divided into 5 chunks, the resulting embedding will have only 5 dimensions. Unlike int8 and binary quantization, product quantization also reduces the number of dimensions needed to represent a vector. However, the performance drop is higher.


Choose your quantization technique by determining your relative product priorities for criteria like cost, performance, and speed.


Exercise

Download the Wikipedia embeddings encoded with Cohere’s embedding model and implement product quantization, by setting the number of clusters to 256. You can also use a vector database that supports product quantization, like Qdrant.
Experiment with different chunk sizes. Where do you see the highest performance drop off?


Additionally, implement the similarity scoring function for product quantization.




Now that we have seen various techniques to reduce the size of our embeddings, let’s next figure out what and how much content we can fit into each of these vectors.












Chunking


As we have seen earlier in the chapter, embedding models support very limited context lengths, and the effectiveness of embedding similarity matching decreases beyond certain text lengths. Therefore, it is natural to split documents into manageable chunks and embed each chunk into a vector.


A question that I am frequently asked by ML practitioners is “What is the ideal chunk size and what are some effective chunking strategies?”. Determining the right chunk size and boundaries are one of the key challenges faced by practitioners when using basic embedding-based retrieval. In this section, we will discuss a few chunking strategies, introduced in order of increasing complexity.


In the basic implementation of embedding-based retrieval, each vector is a distinct island, disconnected from all other islands. The text represented by Vector A is not able to influence text represented by Vector B in any way. Therefore, we either need to connect these islands in some way or make these islands as self-contained as possible. With these objectives in mind, let us look at some chunking strategies that go beyond naive sentence or paragraph splitting.












Sliding window chunking


Consider a situation where the embedding similarity function returns Chunk 45 as the most similar chunk to your query vector. However, text in Chunk 44, which immediately precedes Chunk 45 in the document, contains very relevant information contextualizing Chunk 45. Chunk 44 has a very low similarity score with the query and thus is not selected for retrieval. One way to fix this is to retrieve neigboring chunks of the chunks that have high similarity scores (connecting the islands), or using sliding window chunking, where each text can be present in multiple chunks, thus allowing neighboring context to be effectively represented in a coherent block (making the island self-contained).














Metadata-aware chunking


Any metadata that you have about the document can be leveraged to determine chunking boundaries. Useful metadata information includes paragraph boundaries, section and subsection boundaries etc. If the metadata isn’t already available, you might need to use document parsing techniques to extract this information. A useful library for this is called Unstructured.














Layout-aware chunking


A more invovled form of metadata-aware chunking is layout-aware chunking. In this approach we use computer vision techniques to extract layout information about the document, including the placement and scope of textual elements, the titles, subtitles, font size of text etc,  and use this metadata to inform the chunking process. Both open-source and proprietary tools exist to facilitate layout extraction. They include tools like  AWS Textractor, Unstructured, and layout-aware language models like LayoutLMv3.


For example, using this approach we can know the scope of a subsection, and thus insert the subsection title at the beginning of each chunk comprising text from that subsection.














Semantic chunking


The principle behind semantic chunking is that similar information should be grouped together into coherent chunks. Paragraph boundaries provide a weak signal for semantic chunking but more advanced methods can be employed. One approach is to cluster the document based on topics, with each chunk containing information pertaining to the same topic. The chunks need not necessarily be built from contiguous text if it makes sense for the application. A more advanced approach is to use Bollinger bands based chunking. The book’s Github repository contains an experimental implementation of this form of chunking.


Semantic chunking can also be employed to connect different chunks with each other. Once the chunks have been assigned, similar chunks can be grouped together based on embedding similarity and neighboring chunks can be retrieved along with the chunk having high similarity score.














Topic Spans


If retrieval accuracy is crucial, you can try out more elaborate chunking schemes like topics spans, a technique I came up with at my company. In the topic spans approach, the smallest unit of text is a sentence. Through two passes through the document with lookahead, very fine-grained topics are assigned to each sentence. A sentence can be part of multiple such topics. The topic spans are not necessarily contiguous. If all text belonging to a topic is greater than the maximum chunk length, then it is broken down into multiple chunks. Additionally, a summary chunk is generated to condense information of that topic into a single chunk. Topic spans can extend across multiple documents. More information and an example implementation of topic spans is provided in the book’s Github repository.


Despiter all these techniques, effective chunking still remains a problem.
Consider the following real-world example from a financial document:


Page 5:
All numbers in the document are in millions


Page 84:
The related party transaction ammounts to $213.45


In this case the related party transaction actually amount to $213M dollars but the LLM would never know this because the text from Page 5 is not likely to be part of the same chunk.


A related problem is the difficulty in understanding scope boundaries. When does a subsection end and a new subsection begins? What is the scope of the rule in Page 5 in the given example? What if sometimes it is overriden in the middle of a document? Not all documents have perfect visual cues or structure.
Not all documents are well structured into sections, subsections, and paragraphs.














Multi-level embeddings


If your retrieval performance requirements are stringent, a good strategy is to use multiple-levels of embeddings if the cost justifies it. As an example, you can have sentence embeddings, paragraph or dialog-turn embeddings, and section/subsection embeddings or even document embeddings. The higher level embeddings can represent the summary of the text and not necessarily the verbatim text itself.


You can use different embedding models at each level. As you go up in granularity, you can use more expensive and high-quality embedding models.


Depending on your specific use-case, you can start from the top level and then propagate to the bottom like a tree or directly target a particular level.












Vector Databases


Depending on your application, you may have to deal with millions or billions of vectors, with the need to add new vectors every day and associate metadata tags to them. Vector databases facilitate this. Both open-source and paid options are available. Weviate, Milvus, Pinecone, Chroma, Qdrant, Redis are some of the popular vector databases. More established players like ElasticSearch, Redis, and Postgres have also started providing vector databases support.


These days, the features provided by vector databases are converging, given the prevalence of a small set of very popular retrieval use cases.


Table 7-1 shows the vector databases, the features they provide, whether they provide hosting or not, along with pricing and licensing information.


Table 7-1. Vector Databases and their Properties


	Vector Database Name
	Access
	Hosting
	Other Notes





	Annoy

	Open-Source

	In-memory

	Allows you to use static files as indexes




	Chroma

	Open-Source

	In-memory

	Bare bones and easiest to get set up with




	DeepLake

	Open-Source

	In-memory

	Supports data versioning, multimodal data




	ElasticSearch

	Open-Source, managed service on Elastic Cloud Available

	In-memory and Elastic Cloud

	Comes with a lot of logging, monitoring features




	Milvus

	Open-Source, managed service on Zilliz Cloud

	Cloud-native, Zillus Cloud

	



	PGVector

	Open-source, managed service on AWS, Heroku etc

	database extension

	Integrated with SQL database




	Pinecone

	Closed

	AWS/Google Cloud

	Provides many enterprise features




	Qdrant

	Open-Source

	Self-hosted

	Supports distributed deployment




	Redis

	Open-source, with enterprise support on Redis Cloud

	Self-hosted, Redis Cloud

	Provides many enterprise features




	Weviate

	Open-Source

	Cloud-native

	Known for being extremely fast







Let’s now have a look at how vector DB’s work. Probably the simplest one to get started with is Chroma, which is open-source, and can run locally on your machine or can be deployed on AWS.


!pip install chromadb

import chromadb
chroma_client = chromadb.Client()

collection = chroma_client.create_collection(name="mango_science")
chunks = ['353 varieties of mangoes are now extinct',
'Mangoes are grown in the tropics']
metadata = [{"topic": "extinction", "chapter": "2"}, {"topic": "regions", "chapter": "5"}]
unique_ids = [str(i) for i in range(len(chunks))]

collection.add(
   documents=chunks,
   metadatas=metadata,
   ids=unique_ids
  )
results = collection.query(
   query_texts=["Where are mangoes grown?"],
   n_results=2,
   where={"chapter": { "$ne": "2"}},
   where_document={"$contains":"grown"}
)


Most vector databases offer the following:



	
Approximate nearest neighbor search, to reduce latency



	
Ability to filter using metadata, like the where option in Chroma



	
Ability to integrate keyword search, like the where_document option in Chroma



	
Support Boolean search operations, so that multiple search clauses can be combined with AND or OR operations



	
Ability to update or delete entries in the database in real time.
















Rerankers


In a multi-stage retrieval workflow, the later stages comprise the rerankers, which take the top-k most relevant chunks as determined by the earlier stages, and reranks them in order of relevance. The reranker is usually a language model fine-tuned on the specific task. You can use BERT-like models for building a relevance classifier, where given a query and a chunk, the model outputs the probability of the chunk being relevant to answering the query. These models are called cross-encoders, as they capture the interaction between query and document in the same model.


The input sequence for BERT is of the format


[CLS] query_text [SEP] chunk_text [SEP]


These days, more advanced models like ColBERT are used for reranking. The accompanying Github repo to the book contains a tutorial on how to effectively use ColBERTv2 and similar models for reranking.


In ColBERT-style models, both queries and documents are encoded independently into a set of vectors, by taking the BERT output embeddings for each token in the query or document and down-projecting them. At query time, the cosine similarity between each query token embedding and all the token embeddings of the document are calculated. For each query token embedding, the maximum cosine similarity between the document token embeddings are taken and summed. This type of architecture is called late interaction, since the query and document are not encoded together but interact together only later in the process. Late interaction saves times as compared to traditional cross-encoders, as document embeddings can be created and stored in advance.


In general, retrieval is a hard task and does not adequately compensate the limitations of LLMs. Companies adopting this paradigm are realizing that retrieval is becoming the limiting factor that imposes a ceiling on the maximum performance they can get from LLMs.


We will discuss more about the retrieval pipeline in Chapter 12, where we will discuss RAG (Retrieval Augmented Generation) systems from an end-to-end perspective.












Summary


In this Chapter, we have seen how LLMs can be integrated into the software ecosystem, helping them be ubiquitous. We explored the different modes of interaction with external tools and data stores, and discussed some of the most useful tools and data stores one can employ as of today. We covered retrieval augmented models in detail, emphasising the role of embeddings and vector databases. We also had a brief look at LLM agents. In Chapter 13, We will learn more about operationalizing LLM agents, including creating tool-following datasets and fine-tuning your LLM with it.


In the next chapter, we will learn more about designing LLM applications over domain-specific data that is vastly different from the pre-training data seen by LLMs. We will cover various domain adaptation techniques and provide pointers on how to choose between them depending on your application needs and your target domain.











Chapter 8. Retrieval-Augmented Generation (RAG)



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 12th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In Part II of this book, we introduced several approaches to facilitate LLMs to interact with data stores and software tools. In this chapter, we will dive deep into Retrieval-Augmented Generation (RAG), the dominant paradigm for integrating LLMs with external data sources. We will go through the different stages of the RAG pipeline in detail, and explore the various decisions involved in operationalizing RAG, including what kind of data we can retrieve, how to retrieve it, and when to retreive it. We will highlight how retrieval can help not only during inference but also during fine-tuning and pre-training. Finally, we will discuss situations where RAG may not be the best option, and showcase alternatives.








The need for RAG


As introduced in Chapter 8, RAG is an umbrella term used to describe a variety of techniques for using external data sources to augment the capabilities of an LLM. Here are some reasons we might want to use RAG:


	
We need the LLMs to access our private/proprietary data, or data that was not part of the pre-training datasets of the LLM. Using RAG is a much more lightweight option than pre-training an LLM on our private data.



	
In order to reduce the risk of hallucinations, we would like the LLM to refer to data provided through a retrieval mechanism rather than rely on its own internal knowledge. RAG facilitates this.



	
We would like the LLM to answer questions about recent events and concepts that have emerged after the LLM was pre-trained. While there are memory editing techniques for updating the parameters of the LLM with new knowledge like MEMIT, they are neither reliable nor scalable yet. Continually training an LLM to keep its knowledge up-to-date is expensive and risky.



	
We would like the LLM to answer queries involving long-tail entities, which occur only rarely in the pre-training datasets.







LLM’s struggle with the long-tail

LLM’s typically need a lot of samples to memorize a fact.The memorization ability is probabilistic in nature, so we cannot predict the exact number of samples the LLM needs to see during training for it to memorize it. This sample-inefficiency means that the LLM will struggle to answer questions about entities and concepts that rarely occur in the training data. As an example, Kandpal et al. show that the accuracy of BLOOM-176B on question-answering is only 25 percent when the relevant documents occur only 10 times in the pre-training dataset, versus 55 percent when the relevant documents occur 10,000 times.


Kandpal et al. also show that larger LLMs need relatively fewer examples to memorize a fact. Even then, this leaves a large number of long-tail concepts that are unable to be memorized by the LLM. The relationship between LLM size and memorization capability is log-linear, meaning that the LLM needs to be in the order of quadrillions of parameters in order to be competitive on long-tail data related tasks.


One way to improve the chances of LLM memorization is by training it for more epochs or upsampling data in the training set corresponding to concepts and facts we want memorized. We could also modify the learning objective to upweight the training loss for tokens representing facts.


Curriculum learning, discussed in Chapter 3, is another way to help improve memorization.  Jagielski et al. show that samples seen earlier in the training phase tends to be forgotten. Thus we can modify the order in which we show the samples during training to ensure a higher likelihood of memorization for the data we want memorized.




Exercise

Just about every LLM has been trained on Wikipedia, which is considered a high-quality dataset. Wikipedia contains pages for lesser known individuals, football (soccer) players of lower leagues for instance. For any such relatively unknown individual with a Wikipedia page, try asking questions about them to LLMs, where the answers to those questions are in the Wikipedia page. Try this with LLMs of various sizes. Repeat this with relatively more well known individuals (the size of their pages could be a pseudo-indicator of their popularity). Do you notice the size of the LLM impacting its ability to answer these questions?












Typical RAG scenarios


Now that we have seen why we need RAG, let’s explore where we can utilize RAG. The four most popular scenarios are:



	
Retrieving external knowledge: This is the predominant paradigm that has seen a lot of success with productionization. As discussed earlier in the chapter, we can use RAG to plug knowledge gaps of the LLM or to reduce hallucination risk.



	
Retrieving context history: LLM’s have a limited context window, but often we need access to more context in order to answer a query than what fits in the context window. We would also like to have longer conversations with the LLM than what fits in the context window. In these cases, we could retrieve parts of the conversation history or session context whenever needed.



	
Retrieving in-context training examples: Few-shot learning is an effective approach to help LLMs get acquainted with the input-output mapping of a task. You can make few-shot learning more effective by dynamically selecting few-shot examples based on the current input. The few-shot examples can be retrieved from a training example data store at inference time.



	
Retrieving tool related information: As described in Chapter 8, LLM’s can invoke software tools as part of their workflow. The list of tools available and their description is stored in a tool store. The LLM can then use retrieval for tool selection;selecting the tool best suited to the task. Tool related information can also include API documentation for instance.














The RAG pipeline


Figure 8-1 shows the various stages of the RAG pipeline and the components involved.



[image: RAG-pipeline]
Figure 8-1. RAG pipeline



Tip

Recall that just as in the rest of the book, we refer to user requests as queries, and textual units as documents.




A typical RAG application follows the retrieve-read framework, as shown in Chapter 8. When a user issues a query to the LLM, a retrieval model identifies documents that are relevant to the query. This context is then passed along to the LLM which uses the context and its internal knowledge to generate the answer. In practice, we typically need a lot of bells and whistles to get RAG working in a production context. This involves adding several more optional stages to the retrieve-read framework. In practice, your pipeline stages might consist of a rewrite-retrieve-read-refine-insert-generate workflow, with potentially iterative steps. Later on in the chapter, we will go through each of the stages in more detail.


Let’s illustrate with an example. Consider a RAG application that answers questions about Canadian politics and parliamentary activity. The application has access to a database containing transcripts of parliamentary proceedings.


When a user issues a query, we might want to rephrase it before sending it to the retriever. Traditionally in the field of IR (Information Retrieval), this is referred to as query expansion. Query expansion is especially useful because of the vocabulary mismatch between the query space and the document space. The user might use different terminology in the query than the one used in the documents. Rephrasing a query can help bridge the vocabulary gap. In general, we would like to rephrase the query in such a way that it improves the chances of the retriever fetching the most relevant documents. This stage is called the rewrite stage.


Next, in the retrieve stage, a retrieval model is used to retrieve the documents relevant to the query. We have discussed several retrieval mechanisms in Chapter 8 already. The retrieval stage can be an extensive pipeline in of itself.


The retrieval can happen over a very large document space. In this case, it is computationally infeasible to use more advanced retrieval models like cross-encoders. Therefore, retrieval is usually carried out in a two-step process, with the first step using faster methods (these days, typically embedding based) to retrieve a list of N relevant documents, and a second step that re-ranks the retrieved list based on relevance so that the top-K ranked documents are then taken as the context to be passed along to the LLM. This stage is called the rerank stage.


After identifying the top-K documents relevant to the query, they need to be passed along to the LLM. However, the documents may not fit into the context window and thus need to be shortened. They also could potentially be rephrased in a way that makes it more likely for the LLM to use the context to generate the answer. This is done during the refine stage.


After the refine stage, we provide the retrieval output to the LLM. The default approach is to just concatenate all the documents in the prompt. However, one could also pass them one at a time, and then ensemble the results. Several such techniques exist that determine the way the context is fed to the LLM. This is called the insert stage.


The LLM then reads the prompt containing the query and the context and enters the generate stage. The generation can happen all at once or the retrieval process can be interleaved with the generation, i.e. the model can generate a few tokens, then call the retrieval model again to retrieve additional content, generate a few more tokens and then call the retrieval model again, and so on.


The output of each stage can be run through a verify stage to assess the quality of the outputs and even take corrective measures. The verify stage can employ either heuristics or AI-based methods.

Note

Our example pertains to RAG when used at inference time. RAG can also be applied during pre-training or fine-tuning the model, which we will describe later in the chapter.




Let’s go through each step in the pipeline in detail. This book’s Github repo contains a directory for each stage, containing implementations of various techniques that you can mix and match to build your RAG application.










Rewrite


After the user issues a query to the system, you may want to rewrite it to make it more amenable to retrieval. Traditionally, this was achieved through query expansion, where the query was augmented with similar keywords. A long adopted technique for query expansion is pseudo-relevance feedback (PRF). In PRF, the original query is used to retrieve documents, and salient terms from these documents are extracted and added to the original query.


These days, LLM-driven query expansion is gaining more prominence. In Chapter 8, we discussed techniques like HyDE and Query2Document, which generate documents that can be used in lieu of the query. These generative techniques have been implemented in libraries like LangChain.

Warning

One pitfall of these generative query rewriting techniques is the risk of topic drift. The hypothetical document generated in response to a query may drift into irrelevant topics after the first few tokens. Upweighting the logits bias for tokens in the query can partially address this problem.




Instead of using these techniques to generate documents which replace the query, you can use them to extract keywords that you can add to the original query. Li et al. propose a technique called query2document2keyword. In this technique, the LLM generates a document using the query, similar to HyDE. The LLM is then prompted to extract salient keywords from this document.


We can then further improve the quality of the extracted keywords by taking them through a filtering step. The authors propose using the self-consistency method, which we discussed in Chapter 5. To recap, in the self-consistency method, we repeat the keyword generation multiple times, and then select the top keywords based on the number of generations they are present in.


Query rewriting can be applied to both bi-encoder and cross-encoder models. Refer to Chapter 8 for more discussion on bi-encoders and cross-encoders.


If the RAG system is servicing a chat interface, latency requirements are more stringent. Thus, you might want to reduce reliance on LLMs at individual stages of the pipeline where possible. Opt for simpler traditional query expansion methods which in many cases can be just as effective, before you try LLM-driven query rewriting techniques.


You can also combine traditional and modern techniques. For example, you can use PRF to retrieve documents and then use a small language model to extract salient keywords.


Exercise

Surprisingly, there hasn’t been a lot of work on rigorously assessing the effectiveness of techniques like HyDE. Using the code for the RAG application case study on the book’s Github, implement HyDE using LangChain and manually analyze the impact on retrieval performance for the sample queries provided. I have also provided an implementation of PRF, which you can use to compare against HyDE.




If your external data is in a structured form like databases, then the
query needs to be rewritten into a SQL query or equivalent. We will learn how to do that in Chapter 13.


Now that we have discussed the query rewriting step of the pipleine, let’s move on to the Retrieve step.












Retrieve


We have already discussed retrieval techniques in detail in Chapter 8, ranging from traditional IR techniques like BM25 to embedding-based retrieval. Therefore in this section, we will limit our discussion to RAG-specific nuances for retrieval.


The retrieval step can be a complex pipeline in of itself. As seen in Chapter 8, many modern retrieval systems rely on dense embedding based methods. However, these embedding models are typically trained independently of the target LLM. We will refer to them as loosely-coupled retrievers.


In contrast, a tightly-coupled retriever is trained such that it learns from LLM feedback; the model learns to retrieve text that best positions the LLM to generate the correct output for a given query. Tightly-coupled retrievers can be trained together with the generator LLM as part of a single architecture, or can be trained separately using feedback from the trained LLM.


An example of the latter is Zhang et al.’s LLM-Embedder, which is a unified embedding model that can support a variety of retrieval needs in a single model, ranging from knowledge retrieval to retrieving optimal few-shot examples. The model is trained from two types of signals: a contrastive learning setup typically used to train embedding models (presented in Chapter 8), and LLM feedback. A retrieval candidate recieves a higher reward from LLM feedback if it improves the performance of the LLM in answering the query.


The book’s Github repository contains an implementation of training embedding models with LLM-feedback.


Exercise

Use the LLM-Embedder as the embedding model for the RAG case study provided in the Github repo. How does the LLM-Embedder compare to other embedding models we have worked with so far?




Tightly-coupled retrievers are just another tool in your toolkit for improving retrieval. They are by no means a necessary step in the RAG pipeline. As always, experimentation will show how much of a lift they provide, if at all, for your application.


The next step in the RAG pipeline after retrieval is Rerank.












Rerank


The retrieval step can be optionally followed by a second-level retrieval step called reranking. In Chapter 8, we discussed reranking using cross-encoder models like ColBERTV2 and the Cohere Reranker. In this section, let’s explore some more advanced re-reranking techniques: Query Likelihood Models (QLM) and LLM distillation for ranking.












Query Likelihood Models (QLM)


For each candidate document, a QLM estimates the probability of the query tokens being generated, given the candidate document as input. You can treat an LLM as a QLM, utilizing its zero-shot capabilities to rank candidate documents based on the query token probabilities. Alternatively, you can fine-tune an LLM on query generation tasks to improve its suitability as a QLM.

Warning

Zhuang et al. show that an instruction-tuned model that doesn’t contain query generation tasks in its instruction-tuning training set loses its capability to be an effective zero-shot QLM. This is yet another case of instruction-tuned models exhibiting degraded performance compared to base models, on tasks they have not been trained on.




Note that in order to calculate the probability of the query tokens being generated, we need access to the model logits. Most proprietary model providers including OpenAI do not yet provide full access to the model logits as of this book’s writing. Thus, the LLM-as-a-QLM approach can be implemented only using open-source models.


Exercise

Pick any relatively smaller open-source LLM (~3B parameters) and test its suitability as a QLM. For the Universities Q&A on Wikipedia example available on the book’s Github, rank candidate retrieval documents using the QLM method. A sample QLM implementation has also been provided. How effective do you find it?




In the interest of reducing latency, you would ideally like the QLM to be as small a model as possible. However, smaller models are less effective QLMs. Effectively fine-tuning a smaller LLM for query generation might be the sweet spot.














LLM Distillation for Ranking


LLMs can also be trained to directly rank candidate documents. There are three ways in which this can manifest:



	
Pointwise Ranking: Each candidate document is fed separately to the LLM. The LLM provides a boolean judgement on its relevance. Alternatively, it can also provide a numerical score, although this is much less reliable.



	
Pairwise Ranking: For each candidate document pair, the LLM indicates which document is more relevant. In order to get a complete ranking, N^2 such comparisons need to be made.



	
Listwise Ranking: All the candidate documents are tagged with identifiers and fed to the LLM, and the LLM is asked to generate a ranked list of identifiers according to decreasing order of relevance of correspoding documents.






In general, pointwise ranking is the easiest to use but may not be the most effective. Listwise ranking might need a large context window, while pairwise ranking needs lots of queries. Pairwise ranking is the most effective of these techniques, since it involves direct comparison.


Examples of ranking LLMs include RankGPT, RankVicuna, and RankZephyr.


These models are trained by distilling from larger LLMs, a technique we first learned in Chapter 6. For example, the process for training RankVicuna is as follows:


Queries in the training set are fed through a first-level retriever like BM25 to generate a list of candidate documents. This list is passed to the larger LLM which generate a rank-ordered list of candidates. The query and the rank-ordered list is used to fine-tune the smaller LLM.


The creators of RankVicuna show that as the effectiveness of the first-level retrieval increases, the possible performance gains from RankVicuna decreases, due to diminished returns. They also reported that augmenting the dataset by shuffling the input order of the candidate documents improved performance of the model.


Exercise

For the Universities Q&A from Wikipedia documents example available on the book’s Github, use RankVicuna at the reranking step. Modify the default prompt template and see if it affects the performance.




Now that we have discussed reranking, let’s move on to the Refine step of the RAG pipeline.














Refine


Once the candidate texts are retrieved and selected, they can be fed to the LLM. However, the LLM context window is limited, so we might want to reduce the length of the retrieved texts. We might also want to rephrase it so that it is more amenable to be processed by the LLM. Another possible operation could be to filter out some of the retrieved texts based on certain rules. All of these are conducted during the refine stage. In this section, we will discuss two such techniques, namely summarization and chain-of-note. Let’s start with discussing how we can summarize the retrieved texts.












Summarization


Summarization can be either abstractive or extractive, as discussed in Chapter 5. To recap, extractive summaries extract key sentences from the original text without modifying it. Abstractive summaries are generated from scratch, drawing on content from the original text. The summarizer can also act as a quality filter; it can output an empty summary if the document is irrelevant to the query. Summaries should be relevant, concise, and faithful to the original text.

Note

These summaries are not meant for human consumption but instead meant to be consumed by the LLM. Therefore, they do not share all the objectives as traditional summarizers. The primary objective here is to generate a summary that helps the LLM output the correct answer.




Should you choose extractive or abstractive summarization? Extractive summarizations are almost always faithful - they preserve the meaning of the original text. Abstractive summarizations contain the risk of hallucinations.
On the other hand, abstractive summaries can potentially be more relevant because of their ability to combine information from different locations in the document and multiple documents.


While you can leverage zero-shot capabilities of the LLM for both extractive and abstractive summarization, it is more effective (albeit expensive) to fine-tune them so that the summaries generated are specifically optimized to enable the LLM to generate the correct answer. We will call these as tightly-coupled summarizers.


Xu et al. introduce techniques for training both extractive and abstractive summarizers. Let’s go through them in detail.


For extractive summarization, we would like to extract a subset of sentences from the retrieved document as its summary. This is done by generating embeddings for the input query and for each sentence in the retrieved document. The top-K sentences that are most similar to the input query in the embedding space are selected as the summary. The embedding distance is a measure of how effective the document sentence is in enabling the LLM to generate the correct output.


The extractive summarizer is trained with contrastive learning, which we discussed in Chapter 8. Each training example in contrastive learning is a triplet - the anchor sentence, positive example similar to the anchor sentence, and negative examples dissimilar to the anchor sentence. To generate the training examples, for each sentence in the retrieved document, we prefix it to the input query and calculate the likelihood of the output tokens being generated. The sentence with the highest likelihood is taken as the positive example. For negative examples, we choose up to five sentences whose likelihood is below a threshold. This dataset is then used to train the model.


For abstractive summarization, we can distill a larger LLM, i.e. use the outputs from it to fine-tune a smaller LLM.


In order to generate the training dataset, we can construct some prompt templates and use them with a larger LLM to generate zero-shot summaries of our retrieved documents. Note that we are generating a single summary of all the retrieved documents. Similar to the extractive summarization technique, for each generated summary, we prefix it to the input text and calculate the likelihood of the correct output tokens. We choose the summary with the highest likelihood to be part of our training set.


During inference, if prefixing any given summary has a lower likelihood of generating the correct output than not prefixing any summary at all, then we deem the text represented by the summary to be irrelevant and an empty summary is generated. This allows us to filter irrelevant retrieval texts.

Tip

===
If you are planning to change your target LLM, you might want to retrain the summary models. While the summarizers can transfer across models, there is still a slight performance degradation.
===




Tightly-coupled summarizers, while expensive to initially train, can be an effective means of removing irrelevant information from the retreived text while rephrasing it in a form that reduces ambiguity for the LLM.


Exercise

Use the examples provided in the book’s Github repo to generate extractive and abstractive summaries of the retrieved documents in the Universities Q&A task.
Do the summaries succeed in removing noise? Compare this to a generic summarizer like ChatGPT. How does ChatGPT summarization compare?
















Chain-of-Note


Another way to rephrase the retrieved text is to generate notes.


It would be detrimental if the retrieved text contains irrelevant content that might mislead the model. In essence, the LLM has to contend with three types of scenarios.


	
The retrieved documents contain the answer to the user query, and the LLM can use it to generate the correct output.



	
The retrieved documents do not contain the answer to the user query, but they provide valuable context that the LLM can then combine with its internal knowledge to come up with the answer.



	
The retrieved documents are irrelevant to the user query, and should be ignored.







LLMs are not very good at distinguishing between irrelevant and relevant context. One way to address this is by generating notes for each retrieved document, that contains a summary of the retrieved document as well as indicates whether it contains the answer to the user query, or only contains relevant context but not the answer outright, or is irrelevant. This technique is called Chain-of-Note, introduced by Yu et al.


Here is an example of how these notes look like:


Consider the query


'Who succeeded Brian Mulroney as the prime minister of Canada in 1993?'


and the retrieved texts are:


'Kim Campbell took over the reins of leadership in Canada in 1993, marking her

entry into history as the country's first female Prime Minister in 1993. Her

tenure, however, was short-lived, as she led the Progressive Conservative

Party into a challenging federal election later that year.'

'Following Brian Mulroney's tenure, Canada witnessed the historic appointment

of its first female Prime Minister, marking a groundbreaking shift in the

nation's political landscape'


While the first text says Kim Campbell became the prime minister in 1993, it is not apparent whether she immediately succeeded Brian Mulroney or if there was an intervening prime minister. However, the second text makes it clear that it is indeed Kim Campbell, as the text mentions that Brian Mulroney was succceeded by a female Prime Minister.


Here is the corresponding note generated by the model


'The first statement mentions that Kim Campbell took over the leadership in

Canada in 1993, and the second statement refers to the period following Brian

Mulroney's tenure, leading to the appointment of Canada's first female Prime

Minister. This sequence implies that Kim Campbell's assumption of the Prime

Minister role directly followed Brian Mulroney's tenure, making her his

successor.'


Using the note as context, the LLM can then generate the correct answer.


The true value of Chain-of-Note becomes apparent when the context contains irrelevant or insufficient information. The generated note can help the LLM output I don’t know.


Consider the query


'Did the Green Party of Canada support the proposed 2023 Public Transit bill?'


and the retrieved documents are:


'The Green Party of Canada has historically emphasized the importance of

sustainable transportation as a key component of their environmental platform,
advocating for policies that promote green infrastructure.'

'The proposed 2023 Public Transit bill garnered widespread attention and

popularity, reflecting a growing public consensus on the importance of

sustainable transportation solutions'


The retrieved documents do not contain the answer to the query.
The corresponding note generated is:


'While the first passage indicates the party's historical emphasis on

sustainable transportation, and the second passage mentions the bill's

popularity, neither confirms the party's support or opposition to the 2023

bill.'


Using this note, the LLM can generate unknown when the retrieved documents do not contain the answer to the query.


Again, we can train tightly-coupled chain-of-note models to make it more effective. This can be done by fine-tuning an LLM to elicit chain-of-note behavior.


To generate the fine-tuning dataset, you can prompt an LLM to generate candidate notes for example queries. Human evaluation can then filter out incorrect or poor-quality notes. The final dataset consists of the prompt instruction, the input query, and the retrieved documents as the input, and the corresponding note and the query answer as the output. An LLM can then be fine-tuned on this dataset.


The authors introduce a weighted loss scheme during training. The note can be much longer than the answer, and thus equally weighting the loss across all tokens will lead to the note getting significantly more importance during training. This harms model convergence. The weighted loss scheme involves calculating loss only across answer tokens 50% of the time.


Using a chain-of-note style step is very useful especially if the retrieval results are known to contain a lot of noise or there is a higher possibility of there being no relevant documents to service the query. Chain-of-note behavior is harder for smaller models, thus a sufficiently larger model should be used.


Exercise

For the Universities Q&A RAG example in the Github repo, ask the RAG system queries whose answers we know doesn’t exist in the Wikipedia corpus. Use Chain-of-Note prompting on ChatGPT or a similarly larger LLM to generate notes. Do the notes convey the absence of relevant information? Does the LLM acknowledge it cannot answer the question?




Now that we have discussed the Refine step of the RAG pipeline, let’s move to the Insert step.














Insert


Once we have determined the content to be fed to the LLM, be it the original retrieved documents, or their summaries or notes, we will need to decide how to feed them to the LLM.


The basic approach is to stuff all the content in the context window, or at least as much as can fit in the context window. An alternative is to feed each retrieved document/summary/note prefixed to the input separately to the LLM, and then combine the outputs in some way.


The next step in the RAG pipeline is the Generate step.












Generate


After the retrieved text is fed to the LLM, the LLM generates the output. The standard method is to generate the output all at once. However, you could also interleave the generation and the retrieval process, by generating some output, and retrieving more context, and generating some more output, and retrieving more context, and so on.


This approach can be useful in maintaining coherence in long-form text generation. The generated text determines what needs to be retrieved next. This process is called active retrieval.


How do we decide when to retrieve? We could



	
Retrieve after every N tokens are generated.



	
Retrieve after each textual unit is generated. A textual unit can be a sentence, paragraph, section etc.



	
Retrieve when currently available context is deemed insufficient for generation.






There are several ways to implement the latter. One of them is called FLARE (Forward-Looking Active REtrieval-augmented generation).












FLARE


The authors of FLARE introduce two methods for active retrieval - FLARE-Instruct and FLARE-Direct.


In FLARE-Instruct, the LLM is prompted to generate queries in a specific syntax whenever it needs additional information in order to continue coherent generation.


In FLARE-Direct, the LLM generates a candidate next sentence. If any of the tokens in the generated sentence has probability lower than a threshold, then the retrieval process is activated. If not, then the candidate sentence is accepted as a valid continuation and the generation process continues. If retrieval is to take place, the generated sentence can be used as the query, by masking the low-probability tokens (since they might confuse the retriever if they are irrelevant/incorrect). You can also rephrase the sentence as a question about the low-probability token(s).


Exercise

Use FLARE-Direct to generate Wikipedia documents!
Let’s see if we can create Wikipedia documents by interleaving generation and on-demand retrieval. Ask any open source LLM to generate a Wikipedia page of the Bollywood movie Kabhie Kabhie using FLARE-Direct. Does it make effective use of retrieval?




A crucial aspect of generation is adding appropriate citations. The LLM can be fine-tuned to make it provide citations along with the answer in response to user queries. One such model is Cohere’s Command-R model.


An underrated strategy is to use special tokens for controlling output behavior. We will discuss this further in Chapter 13 in the context of agent design.


As we can see, the RAG pipeline for knowledge retrieval can be a rather lengthy one. However, for a lot of RAG applications, latency is a key consideration. This increases the importance of smaller language models.


Let’s now look at a few other RAG scenarios.














RAG for memory management


So far, we have seen how we can operationalize a RAG pipeline for incorporating external knowledge into an LLM. Let’s now move on to discussing a more underrated application of RAG - using it to expand the context window of an LLM.


To recap, an LLM prompt typically contains the following types of (optional) content:



	
The pre-prompt or system prompt: These are the overarching instructions provided to the LLM and are included at the beginning of every query. Depending on your customization needs, the system prompt could occupy a significant part of the context window.



	
The input prompt: This includes the current input and the instruction, optional few-shot training examples, and additional context, possibly fetched using retrieval.



	
Conversational history: This includes the history of conversations/interaction between the user and the LLM. Including this in the context window enables the user to have a long coherent conversation with the LLM.



	
Scratchpad: This includes intermediate output generated by the LLM, which can be referred back by the LLM when generating future output. Scratchpad content is an artifact of certain prompting techniques like Chain-of-Thought.






In many cases, the limited context window of an LLM is simply insufficient to incorporate all this data. Moreover, we might like to make available the conversational history through perpetuity, which means it keeps growing across time. Making all the conversational history available to the LLM is a key aspect in enabling personalization of LLMs.


Here comes RAG to the rescue! RAG can be employed in facilitating LLM memory management, by swapping in and out relevant content in the prompt as suitable. This is reminiscent of how memory management occurs in operating systems. Let’s explore this abstraction further with MemGPT, an LLM memory management framework.










MemGPT


MemGPT is inspired by memory management in operating systems. To begin with, let’s quickly recap the fundamentals of OS memory management.


In an OS, memory is organized in a hierarchy, with fast (and expensive) memory
being directly accessible to a processor, and higher levels of the hierarchy containing larger and slower (but relatively inexpensive) memory. When the processor needs to access some data, it tries to access it from the lowest level in the memory hierarchy. If the data is not present, then the OS looks at the next level in the hierarchy for it. If present, it swaps in the required data into the lower level and swaps out data that is not currently needed. This way, the OS can support a fast main memory that is directly accessible by the processor and a much larger virtual memory that can be swapped in whenever needed.


This is a very simplified explanation of OS memory management. For a more detailed explanation, check out Tony’s blog.


Figure 8-2 shows the memory hierarchy of a typical OS.



[image: os-hierarchy]
Figure 8-2. Typical Operating System memory hierarchy




Similarly in LLMs, the context window is analogous to the main memory as it is directly accessible to the LLM. However, we can expand the context window indefinitely by implementing a memory system analogous to the OS virtual memory. This is how MemGPT can enable us to access the entire conversational history of a user, thus achieving immense personalization.

Note

An alternative or complement to swapping memory in and out is to recursively summarize the conversational history. However, summarization is a lossy process and may not be able to preserve the semantics of the text. Valuable nuances like the tone of the writer can be lost during summarization.




MemGPT employs an event-driven architecture for control flow. Examples of events are user queries to an LLM, software alerts about overflow of context window and so on. The memory swap in-out mechanism is entirely self-directed by the LLM.


Figure 8-3 shows the architecture of MemGPT



[image: memgpt]
Figure 8-3. MemGPT



Tip

The quality of LLM self-directed memory read/write operations can leave much to be desired. You can implement a more directed system with rules, inspired by MemGPT’s abstractions.




Exercise

Install MemGPT and carry out a very long conversation with an LLM that overshoots the context window. At various points of the conversation, refer to things or topics that one of your friends likes. Ask the LLM to help in choosing a birthday gift for your friend that is related to their interests. Is the LLM able to recall information from the conversation pertaining to your friend? Can you generate a refined version of the conversation that makes it easier to retrieve it?














RAG for selecting in-context training examples


As mentioned at the beginning of the chapter, another application of RAG is to dynamically select training examples for few-shot learning, by retrieving the optimal examples from a data store containing a list of training examples. For a given input, the retrieved few-shot examples are supposed to maximize the LLM’s chance of generating the correct answer to a user query.


A simple method is to treat the user input as a query, generate its embedding, and retrieve examples whose embeddings are most similar to the query embedding. While this technique is a promising start, we can do much better.


Wang et al. introduce a method called LLM-R (LLM Retrieval) that trains a model using LLM feedback to retrieve few-shot training examples whose inclusion will increase the probability of the LLM generating the correct answer.










LLM-R


Figure 8-4 describes the LLM-R technique



[image: llm-r]
Figure 8-4. LLM-R workflow




For each input query in the training set, we retrieve the top-k examples by using a retrieval model like BM25. We then rerank the examples by using LLM feedback. Each example is prefixed to the input and the probability of the ground truth output tokens is calculated. The examples are then ranked by decreasing order of their log-probabilities. Subsequently, the ranked examples are then used to train a reward model. The reward model is distilled to train the final retrieval model.












RAG for model training


So far, all the RAG applications we explored are applied during LLM inference. Can we use RAG during model pre-training and fine-tuning as well? Yes, we can!
This is an underrated area of study and I expect to see more LLMs leveraging this in the coming years. Let’s look at an example in detail.










REALM


REALM (Retrieval-Augmented Language Model) is one of the pioneering works in the RAG space. REALM integrates the retrieval and generation tasks into a single model.


Figure 8-5 describes the REALM framework for pre-training and fine-tuning.



[image: realm]
Figure 8-5. REALM architecture




The REALM architecture is composed of two components - a knowledge retriever and a knowledge-augmented encoder, which is a BERT-like encoder-only model.
Both the components are differentiable and thus trained together.


The knowledge-retriever is used to generate embeddings for all documents in the external knowledge base. Retrieval is performed by finding documents with maximum embedding similarity with the input. During the masked-language modeling pre-training phase, the retriever loss function encourages it to fetch text that helps predict the masked tokens. The masked tokens are then predicted by attending to both the input text and the retrieved text. The retrieved text is supposed to contain relevant context that makes predicting the masked tokens much easier.


REALM also employs certain strategies to optimize training.



	
Named entities or dates are masked so that the model can learn to predict them using retrieved context.



	
Not all masked tokens may need external knowledge for their prediction. To accommodate this, an empty document is always added to the retrieved documents.



	
We would ideally like the retrieved documents to contain the context required to predict the masked token, and not the token itself. Therefore, trivial retrievals that contain the masked token in the retrieved text are not included.
















Limitations of RAG


While RAG is a powerful paradigm that expands the usefulness of LLMs and reduces hallucinations, it doesn’t resolve all the limitations of LLMs. Some pitfalls of using RAG include:



	
Relying on retrieval of text snippets can cause the LLM to depend on surface-level information to answer queries, rather than a deeper understanding of the problem.



	
Retrieval becomes the limiting factor of the pipeline. If the retrieval process fails to extract suitable candidate text, the powerful capabilities of the LLM will all be for nothing.



	
Sometimes the retrieval process can extract documents that are contradictory to the knowledge contained in the LLM’s parametric memory. Without access to the ground truth, it is hard for the LLM to resolve these contradictions.






How do LLMs deal with contradictory information?

Sometimes the knowledge captured in the LLM’s internal representations can be contradictory to the content in the prompt. This can happen due to a multitude of reasons - outdated or incorrect content in the LLM’s training datasets, errors in the user queries, or retrieval of incorrect or irrelevant documents during RAG. In these cases, we would ideally like the LLM to be able to ignore the incorrect content. This is extremely challenging because of the LLM’s lack of access to the ground truth.


Liu et al. introduced a benchmark called RECALL (Robustness against External CounterfactuAL knowLedge). This benchmark tests the robustness of LLMs in the presence of counterfactual information in the prompt. They note that there is some evidence that when LLMs are fed with information that is logically inconsistent, they tend to rely on their internal representations more. However, if the inconsistency is more factual in nature, then the models tend to prefer the information in the prompts.


A significant finding in their paper is that the models’ confidence in its outputs sees a notable drop when dealing with contradictory information. Thus, we can use the LLM output probabilities to guide further specialized processing.




Are there situations where using RAG instead of relying on the LLM’s internal capabilities is actually detrimental?


We have seen earlier in the chapter that LLM’s struggle with long-tail information, and RAG can be an effective means to answer questions about long-tail entities. However, Mallen et al.  show that for queries about more popular entities, the LLM might sometimes be better at answering queries than RAG. This is because of the inevitable limitations of the retrieval model, which might retrieve irrelevant or incorrect information that might mislead the LLM.


If your retrieval system is performing suboptimally, or you are seeing a quality degradation on certain inputs when using RAG, you could consider using adaptive retrieval. In this approach, the LLM can dynamically determine whether to use RAG or to rely on itself to answer a query. Mallen et al. show that we can use sources like Wikipedia as a pseudo-popularity metric for entities. If the entities present in your inputs have an entity count in Wikipedia greater than a threshold, then the LLM can choose to answer the question on its own without using RAG. Note that the threshold can change across LLMs. This strategy can only work if you have a good idea about what the LLM has been pre-trained on and are confident that the LLM is likely to know the most updated knowledge pertaining to a given query.


Using an adaptive approach can also help in optimizing latency and responsiveness of the model, as the RAG pipeline can add to additional overhead.

Tip

Adaptive retrieval is mostly useful when you are using very large LLMs. For smaller models (7B or below), it is almost always beneficial to prefer using RAG over relying on the LLM’s internal memory.












RAG vs. Long Context


As discussed in Chapter 5, one of the limitations of LLMs is the limited effective context window available to them. However, this is one of the areas where rapid advances have been made in recent times. Context windows of at most a few thousand tokens were standard until early 2023, after which companies like Anthropic announced support for context windows spanning over a hundred thousand tokens. In early 2024, Google announced Gemini 1.5 Pro, with support for a million tokens of context.


In order to assess the impact on LLM performance as the context size increases, several needle-in-a-haystack tests have been devised. One such implementation by Greg Kamradt facilitates adding a random fact or statement (the needle) to the middle of the context (the haystack) and then asking the LLM questions for which the needle is the answer.


However, it is wise to take these tests with a grain of salt. These tests often evaluate only the information recall capabilities of an LLM. Moreover, very few problems in the real world are needle-in-the-haystack problems; LLMs are probably not the right tool to solve them anyway. Cheaper and faster retrieval models could adequately perform most needle retrieval tasks.


In many needle-in-a-haystack tests, random sentences or paragraphs are added to the context window as needles, with the rest of the content in the context window being orthogonal to the needle. But this does not mirror the situation in the real world, where most text co-occurring with each other is related in some way. Related text can often act as distractors, preventing the LLM from drawing the right conclusions. In fact, it is one of the reasons for developing rigorous Rerank and Refine steps in the RAG pipeline!


Long-context models can be potentially useful for analyzing very long documents and also reduce the complexity of the Rerank and Refine steps. I recommend empirically calculating the trade-offs where feasible.


Exercise

Implement your own test for evaluating long-context efficacy. Extract text from all the Wikipedia pages on various rail systems operating in Greater Tokyo. Devise a few questions that inquire for route information. The text containing the answer to the question will be the needle. Insert the needle into the context, and from the extracted text, insert 200 tokens of text (approximated to the closest sentence boundary) before and after the needle. Check if the LLM can answer the question, by generating them 10 separate times. Insert 200 more tokens from the extracted text to the beginning and end of the prompt, and iterate until the maximum context length is reached. How is performance on the task impacted as the context size increases? Try this for multiple models.


Additionally, remove the Rerank and Refine steps from the RAG pipeline code in the book’s Github repo and directly feed the results of the Retrieval step to an LLM supporting long context (100k tokens or more). Do you see the performance increasing or decreasing?




Finally, cost is also an important consideration for the long context vs retrieval debate. No doubt, the cost for long context models will significantly drop over the future, but retrieval will still be relatively cheaper. Foregoing retrieval completely in favor of using long-context models is akin to buying a laptop and storing all your files in RAM instead of disk.










RAG vs fine-tuning


The debate around using RAG vs. fine-tuning boils down to the more fundamental question - What aspects of the task can I perform using the LLM vs. relying on external sources?


In cases where external knowledge is required to solve a task, both retrieval and fine-tuning can be used. Retrieval can be used to integrate the knowledge on-demand, with the drawback being that the LLM is only exposed to surface-level information and is not provided with the chance to learn from connections between the data. On the other end, continued pre-training or fine-tuning can also be used to integrate external knowledge, albeit with an expensive training step.


Ovadia et al. compared RAG and fine-tuning on tasks requiring external knowledge. They showed that RAG consistently outperformed fine-tuning for knowledge-intensive tasks. As shown earlier in this chapter, LLMs need a lot of samples to memorize a concept or fact. Thus, fine-tuning effectiveness can be improved by repetition or augmentation of the fine-tuning dataset.


Even for knowledge-intensive tasks, RAG vs. fine-tuning need not be an either-or decision. If you are working on a specialized domain or need your outputs in a certain style or format, you can fine-tune your LLM on domain and task specific data, and use RAG with this fine-tuned model for your downstream applications. In a large proportion of use cases, RAG should be sufficient and fine-tuning shouldn’t be the first choice of solution.


Exercise

Take the Canadian parliamentary discussions dataset and fine-tune any open-source LLM for multiple epochs. Use data augmentation techniques from Chapter 6 if necessary. Check if the LLM is able to answer questions about the fine-tuning dataset. If not, continue fine-tuning (with more repetition or data augmentation) until it does so. Also analyze the impact of catastrophic forgetting as a result of this fine-tuning. In what ways does the LLM become worse? How is generalization performance affected due to the excessive memorization?


Performing this exercise will underscore the advantages of RAG over fine-tuning for knowledge-intensive tasks.




RAG and fine-tuning can be complementary to each other. Earlier in this chapter, we saw how each step of the RAG pipeline can be optimized using fine-tuning. Similarly, we also saw how RAG can be used to optimize the fine-tuning process. Thus, both Retrieval and Fine-tuning are powerful parts of your LLM toolkit and I hope that these chapters have sufficiently prepared you to implement and deploy them in the wild.










Summary


In this chapter, we conducted a deep dive into the RAG pipeline, exploring in detail the rewrite-retrieve-rerank-refine-insert-generate pipeline. We highlighted the effectiveness of RAG in various scenarios, including integration of external knowledge, retrieval of past conversational history, dynamic selection of few-shot learning examples, and tool selection. We also explored the limitations of RAG and scenarios where RAG may not be effective.


In the next and final chapter, we will explore how we can utilize all the concepts we learned so far to design and package LLM-driven products that bring value to end users. Effective product design has become all the more important in the age of LLMs, given that a successful LLM product leverages the LLM the best it can for the capabilities it excels at, while at the same time limiting end-user exposure to LLM limitations by means of clever product design. We will also look at several LLM design patterns that put together all the concepts we learned in reusable, debuggable abstractions.
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