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Eberly
GPGPU Programming for Games and Science demonstrates how to achieve 
robustness, accuracy, speed, and/or easily maintained, reusable, and readable 
source code to tackle practical problems in computer science and software 
engineering. The book primarily addresses programming on a graphics processing 
unit (GPU) while covering some material also relevant to programming on a central 
processing unit (CPU). It discusses many concepts of general purpose GPU 
(GPGPU) programming and presents several practical examples in game program-
ming and scientific programming.
The author first describes numerical issues that arise when computing with 
floating-point arithmetic, including making trade-offs among robustness, accuracy, 
and speed. He then shows how single instruction multiple data (SIMD) extensions 
work on CPUs. The core of the book focuses on the GPU from the perspective of 
Direct3D 11 (D3D11) and the High Level Shading Language (HLSL). The book goes 
on to explore practical matters of programming a GPU and discusses vector and 
matrix algebra, rotations and quaternions, and coordinate systems. The final 
chapter gives several sample GPGPU applications on relatively advanced topics.
Features
•  Presents SIMD extensions to the CPU as well as a large collection of 
approximations for standard mathematics functions
•  Provides examples of how to draw using a combination of vertex, geometry, 
and pixel shaders and how to execute a compute shader
•  Shows you how to copy data between CPU and GPU and offers guidance 
on parallelizing data transfer 
•  Explains how to work with multiple GPUs regarding D3D11 adapter 
enumeration and device creation
•  Discusses IEEE floating-point support on a GPU
•  Illustrates how to use the Geometric Tools Engine and the resource 
types in D3D11, with the source code available on a supporting website
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The last book I wrote was Game Physics, 2nd Edition, which shipped in the
Spring of 2010. At that time I decided to take a break from Geometric Tools
and book writing and return to industry to work for Microsoft Corporation,
in a moderately sized technology group that was part of the research branch
of the company. Initially, I worked on a team developing real-time graphics
technology using Direct3D 11, but my intended role was to provide a real-
time physics engine. A year and one reorganization later, I had not been fully
immersed in the engine development and I had not had a chance to improve
my graphics education past the Direct3D 9 level. The original team moved to a
diﬀerent part of the company, I stayed with the current technology group, and
I found myself involved with a computer vision project that just happened to
need a graphics engine with capabilities that only Direct3D 11 could provide.
I had a great opportunity to build a new engine—and in a short period of
time. After all, anyone working for a large company knows that the deadline
for delivery was yesterday. Didn’t you get the memo?
Fortunately, I had help from a friend and colleague, Alan McIntyre, who
also assisted with the physics engine. We were able to produce a reasonable
ﬁrst pass, and I was delighted to see how well thought out Direct3D 11 was
compared to Direct3D 9. Several months and yet another reorganization later,
the team who owned us was acquired by an even larger team to work on
similar computer vision topics but with a hardware component. The graphics
engine was soon to get a major facelift—we got the opportunity to learn about
GPGPU and compute shaders. The engine evolved over the next year and got
a lot of test driving, both from team members and from our own algorithm
development.
The current project grew in scope, as did the team size. I discovered that
at Microsoft a common mantra is reorganize early, reorganize often.Asmuch
as I enjoyed working on the advanced technology, the focus of the company
was changing enough and the reorganizations, both local and company-wide,
were suﬃcient for me to question whether I had the energy to continue on at
Microsoft. In Fall of 2013, the major changes occurring at the leadership level
ﬁnally trickled down and aﬀected our technology group. Although I had the
opportunity to move to other parts of the company and continue working on
similar projects, I decided that retirement was a more attractive oﬀer. In my
last year, I had once again gotten the urge to write books and do contract
work at a small scale, something I prefer because I like to see the fruits of my
labor used and I like being held directly accountable for what I do.
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xxvi Preface
So here we go. As my ﬁrst project, I have written this book on general pur-
pose GPU programming using Direct3D 11. As with all my books, there is a
signiﬁcant source code base that accompanies it. I call this the Geometric Tools
Engine, which will be the replacement for the Wild Magic source code I have
been maintaining for the past 14 years. Much of the book references the source
code, which you can download from our site http:\\www.geometrictools.com.
The focus of the new engine is robust and accurate source code with im-
plementations on the CPU, using SIMD when that makes sense, and with
implementations on the GPU when possible. Although the ﬁrst pass of the
engine uses Direct3D 11 on Microsoft Windows computers, I will soon be
writing an OpenGL-based version to support Linux and Macintosh. And like
Wild Magic, I will post code updates for the Geometric Tools Engine as I
ﬁnish them. No one ever said retirement would be easy!
Thanks go to the reviewers of the book proposal: Alan McIntyre, Jason
Zink, and Dinesh Manocha; their insights were quite useful. Thanks to Dennis
Wenzel, a very long-time friend and colleague who has a knack for poking
holes in my ideas and helped me to improve the engine design. Big thanks
go to Justin Hunt, a friend in the United Kingdom, who agreed to redraw all
my ﬁgures for the book. I created them with Windows Paint. He made them
look beautiful—and vectorized! And ﬁnally, thanks to my editor Rick Adams
for his patience while I was behind schedule and to the production team at
Taylor & Francis and CRC Press for a great job of ﬁnalizing the book.
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Introduction
I have been a professional software engineer on many projects, whether as a
contractor working for my own company or as a full-time employee for other
companies. These projects have involved computer graphics, image analysis
and computer vision, and—perhaps most visibly—real-time 3D game engines
and games. Although they all have relied heavily on mathematics, geometry,
and physics algorithm development, these projects have several requirements
that are in the realm of practical computer science and software engineering:
• requirements for robustness,
• requirements for accuracy,
• requirements for speed, and
• requirements for quality source code, ease of maintenance, reusability,
and readability.
The main goal of this book is to demonstrate how to achieve some (or
all) of these goals for practical problems. With sequential programming, the
requirements are not always mutually satisﬁable. For example, robustness and
accuracy generally come at some cost in additional computing cycles, so it
might not be possible to achieve the desired speed. With parallel programming,
it might very well be possible to have the desired speed, robustness, and
accuracy.
Although the book includes material relevant to programming on a central
processing unit (CPU), whether single core or multiple cores, the majority of
the book is about programming on a graphics processing unit (GPU). The
evolution of GPUs was driven initially by the video game industry to achieve
realistic 3D environments in real time. Recognizing the usefulness of massively
parallel processors for other ﬁelds, GPUs and the associated shader languages
have evolved to meet the need. This is referred to as general purpose GPU
(GPGPU) programming. I will discuss many of the concepts, including several
practical examples relevant to game programming and scientiﬁc programming.
The numerical concepts for CPUs apply equally as well to GPUs, so it is
only natural to include Chapter 2, a discussion about numerical issues when
computing with ﬂoating-point arithmetic. Choosing a balance among robust-
ness, accuracy, and speed is invariably the focus when building a software
product. Making trade-oﬀs is an important part of computer science. The real
1





2 GPGPU Programming for Games and Science
number system and ﬂoating-point number system are not the same.Itpaysto
know the similarities and diﬀerences, because you will get into trouble quickly
if you were to develop an algorithm or solve a numerical problem as if the
computer is using real numbers. This chapter contains a discussion about ba-
sic portions of the IEEE 754-2008 Standard for Floating-Point Arithmetic.
Even with this amount of coverage, I will not have touched on many of the
important features of the standard. The chapter ﬁnishes with several examples
involving ﬂoating-point arithmetic for which the results might be unexpected
if you were thinking instead about real arithmetic.
Low-level parallelism for 3D mathematics comes in the way of single in-
struction multiple data (SIMD) extensions to the CPU. This is the topic of
Chapter 3. Eﬀectively, you have 128-bit registers to work with, each storing
a 4-tuple of 32-bit ﬂoating-point numbers. You can perform arithmetic oper-
ations and logical comparisons in parallel, four components at a time. With
some clever thinking, you can make the SIMD instructions handle more com-
plicated problems. The focus of the book is on the GPU, but GPUs themselves
use SIMD, so it helps to understand how SIMD works on CPUs. Moreover,
modern GPUs now support 64-bit ﬂoating-point numbers, but the instruc-
tion sets are limited, not providing for much more than basic arithmetic and
comparisons. If you are used to having available on the CPU some of the
basic mathematics library functions such as square root, sine, cosine, expo-
nential, and logarithm functions, these are not available natively on the GPU.
You must implement accurate approximations yourself, which is not a trivial
task. The ﬁrst part of the chapter is about basic SIMD support. The last
part provides a large collection of approximations for standard mathematics
functions.
Chapter 4 is the heart of the book, containing a lengthy discussion of
the GPU from the perspective of Direct3D 11 (D3D11) and the High Level
Shading Language (HLSL). Most game developers have been exposed to a
real-time graphics system for drawing. The chapter begins with a summary
of drawing 3D objects, including the various matrices that must be computed
in order to transform geometric primitives so that they can be projected onto
a view plane and rasterized. The various shader types are covered next with
several examples of HLSL programs, how they are compiled, and how one
obtains information from D3D11 about the shaders in order that they can
be set up for execution at runtime. This book covers only vertex, geometry,
pixel, and compute shaders. Domain and hull shaders used in conjunction with
hardware-based tessellation are not discussed. GPGPU for non-game-related
ﬁelds are usually heavy on compute shaders.
The chapter continues with details about creating various D3D11 objects
to support drawing and computing. Input and output resources for shaders
must be created properly. Resource creation for each type of resource with
desired runtime characteristics can be daunting at ﬁrst. Section 4.4 covers
nearly every type of resource you can use in D3D11. You will also see how to
create global states for blending, depth-stencil buﬀer manipulation, and ras-
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terization parameters such as culling and solid or wireframe drawing. Shader
creation is simple enough but I also provide examples of how to draw using
a combination of vertex, geometry, and pixel shaders and how to execute a
compute shader.
Copying data between CPU and GPU is almost always a bottleneck in
real-time applications. Section 4.7 shows you how to copy data and provides
some guidance about parallelizing data transfer when possible.
If you have two or more GPUs in your computer, you can conﬁgure them
to act as one GPU. You can also conﬁgure them to run independently, at
least from a programmer’s perspective. Section 4.8 shows how to work with
multiple GPUs regarding D3D11 adapter enumeration and device creation.
The last section of Chapter 4 discusses the IEEE ﬂoating-point support
on a GPU. It is important to read this, especially when you are planning on
writing compute shaders that require knowledge of how subnormal ﬂoating-
point numbers are handled.
Chapter 5 is on practical matters when programming a GPU. The amount
of low-level D3D11 code needed to accomplish the simplest tasks can be sig-
niﬁcant. You certainly want to think about wrapping much of the behavior
in classes to allow code sharing among applications. Section 5.1 contains a
discussion about a simple application built using only the Microsoft Windows
and D3D11 APIs to give an idea of how much work is involved. I then dis-
cuss how I chose to encapsulate the behavior in the Geometric Tools Engine
(GTEngine). The design and architecture of this engine have been tested in
a commercial environment, albeit in a less evolved form. It has proved useful,
especially for rapid prototyping of advanced real-time algorithms.
The remaining sections of Chapter 5 are about performing basic tasks on
the GPU that you are used to doing on the CPU. These include debugging
applications using shaders, debugging shaders themselves, measuring perfor-
mance using a CPU proﬁler and a GPU proﬁler, and code testing and code
coverage. These topics are more in the realm of software engineering than
GPGPU algorithm development, but in a commercial environment they are
useful and necessary.
The sample applications in this book are heavy on the mathematics. The
Geometric Tools Engine has mathematics support—basic and advanced—for
the CPU and for SIMD on the CPU. I doubt I could write a book without
mathematics, so I included Chapter 6 about vector and matrix algebra, ro-
tations and quaternions, and coordinate systems. There is always a need to
understand coordinate systems and how to convert among them.
Finally, Chapter 7 has several sample GPGPU applications on relatively
advanced topics. I point out some of the concepts you should pay attention
to regarding performance in hopes that when you develop similar algorithms
and implementations, you can try the same concepts yourself. In addition to
these advanced samples, the source code distribution has a collection of basic
samples to show how to use the engine and the resource types in D3D11.
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CPU Computing
2.1 Numerical Computing
The projects I have worked on have a common theme: numerical computing
using ﬂoating-point arithmetic. It is quite easy to compute numerically using
the hardware-supported
ﬂoat and double data types. The process is simple.
Study the mathematics for the problem at hand, develop an abstract algorithm
for the solution, code up a few equations, and then compile, link, and execute—
the results are at your ﬁnger tips. Does the algorithm require computing the
roots to a quadratic equation? No problem, just use the quadratic formula.
Do you need to compute the distance between two line segments? Again, no
problem. Formulate an algorithm to compute the desired distance, code it,
and ship it. If it were only that easy!
At times the algorithm development can be complicated, requiring depth of
knowledge in many ﬁelds. Once you get to the implementation stage, though,
numerical computing is quite easy. Right? Of course it is, except for those
frequent moments when you ﬁnd yourself screaming and pulling out your
hair because you have once again discovered The Curse of Floating-Point
Arithmetic. My memorable moments are when I receive yet another bug report
about one of my implementations for a geometric algorithm that has failed on
some data set. I then painstakingly debug the code to ﬁnd that once again,
ﬂoating-point roundoﬀ errors have led to failure in producing an acceptable
result.
2.1.1 The Curse: An Example from Games
Although The Curse manifests itself in many ways, one of the most com-
mon in geometric applications, especially games, is particularly annoying.
Consider the problem of collision detection and response of two circles, one
stationary with inﬁnite mass and one moving with constant linear velocity
and ﬁnite mass. We want to determine the time of ﬁrst contact, when the
moving circle collides with the stationary circle. We also want to compute the
contact point, which is the point of intersection at the time of ﬁrst contact.
At the instant of contact, the two circles intersect tangentially—there is no
interpenetration of the objects. Finally, we want the moving circle to bounce
5
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away from the stationary circle with no loss of energy; that is, the circle’s
velocity changes direction but not magnitude.
Mathematically, this is a problem whose solution is relatively easy to for-
mulate. To simplify the analysis, let the ﬁrst circle have radius r
0
and center
C
0
. Let the second circle have radius r
1
and center C
1
(t)=P + tV,where
V is a unit-length velocity vector and where P is the starting location of the
circle. Assuming the circles are separated initially, the time of ﬁrst contact
(if any) occurs when the distance between centers is equal to the sum of the
radii. Using squared distances, the mathematical equation of interest is
F (t)=|Δ + tV|
2
− (r
0
+ r
1
)
2
= 0 (2.1)
where Δ = P −C
0
. The circles intersect tangentially whenever F (t)=0.The
function F (t) is quadratic in time, F (t)=a
2
t
2
+2a
1
t+a
0
,wherea
2
= |V|
2
=
1, a
1
= V · Δ,anda
0
= |Δ|
2
− (r
0
+ r
1
)
2
. We may now use the quadratic
formula to compute the smallest positive root T of F ;thatis,F (t) > 0for
0 ≤ t<T and F (T )=0.AttimeT , the circles are in tangential contact, so
in fact T must be a repeated root of F ;thus,T = −a
1
and the discriminant
of the equation is a
2
1
− a
0
=0.
If it were possible to compute using exact arithmetic (real-valued, inﬁnite
precision, no errors), we would expect the behavior shown in Figure 2.1 when
the second circle is moving toward the ﬁrst. Figure 2.1(a) shows the moving
circle approaching the stationary circle. As mentioned previously, the ﬁrst
time of contact is T = −a
1
, a repeated root of F (t) = 0. At this time,
the moving circle touches the stationary circle at the point K,asshownin
Figure 2.1(b). The contact point is on the line segment connecting centers
C
0
and C
1
= P + T V, so we may write K = C
0
+ s(C
1
− C
0
)forsome
s ∈ (0, 1). Because K is on the stationary circle, r
0
= |K − C
0
| = sL,where
L = |C
1
−C
0
|. Because K is on the moving circle, r
1
= |K −C
1
| =(1−s)L.
Thus, r
0
/r
1
= s/(1 −s), which has solution s = r
0
/(r
0
+r
1
); the contact point
is
K =
r
1
r
0
+ r
1
C
0
+
r
0
r
0
+ r
1
(P + T V) (2.2)
The unit-length, outer-pointing normal vector at the time of contact is the
normalized vector diﬀerence of the circle centers,
N =
Δ + T V
|Δ + T V|
(2.3)
The velocity of the moving circle is reﬂected through the normal to obtain a
new velocity
V

= V − 2(V · N)N (2.4)
Figure 2.1(c) shows the moving circle traveling in its new direction, away
from the stationary circle. The time T

shown in the ﬁgure is the incremental
change in time after the contact time T . The center of the circle after T + T

units of time is also shown in the ﬁgure.
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C
0
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(a) 
(b)
(c)
FIGURE 2.1: (a) A circle moving toward the stationary circle. (b) The
moving circle’s velocity is reﬂected through the normal vector at the contact
point. (c) The circle moves away from the stationary circle in the direction of
reﬂected velocity.
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FIGURE 2.2: Numerical roundoﬀ errors cause the circles to interpenetrate
by a small amount.
Simple enough? Unfortunately not. When computing using ﬂoating-point
numbers, you generally cannot compute the exact value of T as a real-valued
number with inﬁnite precision. In theory, the discriminant is exactly zero, so
there is no reason to compute it numerically—just set T = −a
1
= −V ·Δ.In
practice, roundoﬀ errors may produce the ﬂoating-point number T

= T + 
for a small error .If>0, you move the circle centers through time T

after
which the circles have a small amount of interpenetration, as illustrated in
Figure 2.2.
The point P + T V is the theoretical location of the center of the moving
circle, but P + T

V is the numerically computed center. The point K is the
theoretical contact point, but the numerically computed contact point is
K

=
r
1
r
0
+ r
1
C
0
+
r
0
r
0
+ r
1
(P + T

V) (2.5)
which is a weighted average of the circle centers. Because the circles are not in
tangential contact due to roundoﬀ errors, the computed contact point is not
necessarily on either circle, as shown in Figure 2.2. The computed normal to
be used in the collision response is
N

=
Δ + T

V
|Δ + T

V|
(2.6)
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The new velocity vector for the moving circle is the reﬂection of V through
this normal,
V


= V − 2(V · N

)N

(2.7)
As Figure 2.2 demonstrates, the moving circle will travel in a direction that
is consistent with our expectations for the theoretical case shown in Figure
2.1. So far, so good—the roundoﬀ errors have not caused us any signiﬁcant
problems. Now that the velocity vector is updated, the collision detection
system may start anew.
In the theoretical case, deﬁne Q = P + T V − C
0
,whereP + T V is the
new starting center for the moving circle. Deﬁne W = V

,whichisthenew
constant linear velocity for the moving circle and is also a unit-length vector,
because reﬂection through the normal does not change the length of the vector.
The diﬀerence of squared distances is
G(t)=|Q + tW|
2
− (r
0
+ r
1
)
2
= t
2
+2b
1
t + b
0
(2.8)
with G(0) = 0 because the circles are in tangential contact. However, G(t) > 0
for all times t>0 because the moving circle travels away from the stationary
circle. They never again intersect.
In the practical case, deﬁne Q = P + T

V −C
0
and W = V

. The diﬀer-
ence of squared distances is still represented by G(t). However, the roundoﬀ
errors led to interpenetration, so G(0) = |Q|
2
− (r
0
+ r
1
)
2
< 0. There is a
time τ>0 for which G(t) < 0for0≤ t<τ and G(τ) = 0. Without paying
attention to potential problems due to ﬂoating-point arithmetic, the collision
detection system repeats its algorithm by computing the time of ﬁrst contact
τ = −b
1
. The problem is that τ is really the time of last contact. The moving
circle is moved through that time, as shown in Figure 2.3. The contact point
at time τ is K

and the normal vector at the point is N

. The collision system
must now generate a response, which is to compute the new velocity vector
V

by reﬂecting V


through the normal. As the ﬁgure demonstrates, this will
cause the moving circle to re-penetrate the stationary one. It is conceivable—
and has happened to the dismay of many physics programmers—that the
two circles play tug-of-war trying to un-penetrate and then re-penetrate
until the ﬂoating-point arithmetic is kind enough to allow them ﬁnally to
separate.
Building a robust collision detection system is not trivial. In this simple
example, the collision detection must be implemented knowing that ﬂoating-
point roundoﬀ errors can cause problems. The system must recognize that
G(t) < 0fort<τ,inwhichcaseτ cannot be a time of ﬁrst contact and
collision response is not applied.
The brief lesson of this example is that the most important conﬁguration
of a collision detection system is when two objects are in tangential contact.
But this is exactly when ﬂoating-point arithmetic fails you the most.
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FIGURE 2.3: The moving circle is in contact with the stationary circle, but
at the last time of contact.
2.1.2 The Curse: An Example from Science
As I mentioned previously, The Curse strikes regularly in my geometric
code.Inparticular,thiscanhappeninthe incremental construction of a con-
vex hull of points whereby the hull triangle faces are updated for each point
one at a time. At the core of the construction are visibility tests. Given a point
and the current hull, if the point is inside the hull, the point is discarded and
the hull remains the same. If the point is outside the hull, it can see some
faces of the hull but not other faces. This is akin to an observer on Earth who
can see the portion of the Moon facing the Earth but the observer cannot see
the dark side of the Moon.
When a point is outside the hull, the faces that are visible to the point are
removed from the hull. This collection of faces forms a triangle mesh that is
topologically equivalent to a disk, so the mesh boundary is a closed polyline.
New faces are added to the hull by inserting triangles, each formed by the
point and an edge of the polyline. After each update, the resulting set is a
convex hull.
The visibility tests are equivalent to computing the signs of determinants.
A point and a triangular face give rise to a determinant Δ. If Δ > 0, the face
is visible to the point. If Δ < 0, the face is not visible to the point. If Δ = 0,
the face and point are coplanar. The current point is inside the hull when all
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(a) (b)
FIGURE 2.4: Updating the convex hull (in theory). (a) The visible hull
edges are drawn in light gray. The invisible hull edges are drawn in black.
The topmost invisible edge is nearly colinear with the current point. (b) The
visible hull edges were removed and new edges inserted (drawn in dark gray).
determinants are nonpositive, in which case the point is discarded. If at least
one determinant is positive, the hull must be updated. The aforementioned
triangle mesh consists of those faces whose corresponding determinants are
positive. In theory, one may choose either to include faces whose determinants
are zero or to exclude such faces. In practice, determinants that are nearly
zero can cause problems due to misclassiﬁcation of the signs.
The visibility testing is similar for 2D convex hulls. Figure 2.4 illustrates
the update of a convex hull when the current point is outside the hull. In the-
ory, exact computation of the determinants ensures that the updated object
is a convex hull. In practice, ﬂoating-point roundoﬀ errors can cause misclas-
siﬁcation of signs, particularly when the theoretical value is very small. If the
theoretical value of a determinant is a small positive number, the correspond-
ing edge is visible to the point. The numerically computed value might involve
enough roundoﬀ errors that it is a small negative number, causing the program
to identify the edge as not visible. Figure 2.5 illustrates the update of a convex
hull where an edge nearly colinear with the current point is misclassiﬁed as
invisible. Once a misclassiﬁcation occurs, the problems can be compounded
because you might now have edges or faces that participate in visibility tests
when theoretically those edges or faces should not exist. Conversely, edges
or faces might be discarded and do not participate in visibility tests when
theoretically those edges or faces do exist and should participate.
The pattern of having to compute signs of numbers without misclassiﬁca-
tions is common to geometric computing, so you have plenty of opportunities
to see The Curse.
2.1.3 The Need to Understand Floating-Point Systems
The examples discussed here show that you are ill advised to code math-
ematical equations without concern for the underlying system of numerical
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(a) (b)
FIGURE 2.5: Updating the convex hull (in practice). (a) The visible hull
edges are drawn in light gray. The invisible hull edges are drawn in black. The
topmost visible edge is nearly colinear with the current point, but misclassiﬁed
as invisible. (b) The visible hull edges were removed and new edges inserted
(drawn in dark gray). Observe that the resulting polygon is not convex.
computation. We all sometimes make the mistake of thinking of numerical
computing as real-valued arithmetic with numerical errors that are inconse-
quential. Floating-point arithmetic is a decent model of numerical computa-
tion. It has many similarities to real-valued arithmetic, but it also has some
signiﬁcant diﬀerences that can bite you when you least suspect.
One of my favorite examples of unintuitive ﬂoating-point behavior is com-
puting roots of quadratic polynomials f(t)=a
2
t
2
+ a
1
t + a
0
. It is possible to
choose 32-bit ﬂoating-point coeﬃcients such that a computed root is r with
f(r) orders of magnitude larger than zero when the polynomial is evaluated
as f(r)=a
0
+ r(a
1
+ ra
2
).
Choose a
0
= 1.3852034e-27, a
1
= 0.00013351663,anda
2
= 3.0170867e-38.
Using the quadratic formula, the computed root is r =
-4.4253494e+33,which
is a very large magnitude number, and the polynomial value is f(r)=
-2.0068245e+22, which is not close to zero by anyone’s imagination. Let r
p
be the largest 32-bit ﬂoating-point number that is smaller than r (the previ-
ous number); that is, r
p
<rand there are no 32-bit ﬂoating-point numbers
in the interval (r
p
,r). In the example, r
p
= -4.4253497e+33.Letr
n
be the
smallest 32-bit ﬂoating-point number that is larger than r (the next number);
that is, r
n
>rand there are no 32-bit ﬂoating-point numbers in the interval
(r, r
n
). In the example, r
n
= -4.4253491e+33. Evaluations at these numbers
produce f(r
p
)=+2.1253151e+22 and f(r
n
)=-6.1389634e+22.Observethat
f(r
p
)f(r
n
) < 0, |f(r)| < |f(r
p
)|,and|f(r)| < |f (r
n
)|,sor
p
and r
n
bound
the inﬁnite-precision root ˆr for which r is a 32-bit ﬂoating-point approxima-
tion. Thus, r is the best approximation to the root using 32-bit ﬂoating-point
numbers.
Without the analysis of the polynomial at the ﬂoating-point neighbors of
r, you might think your program has a bug. I assure you that your program
is not buggy and that this is the best that you can do. In fact, the problem in
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this example has nothing to do with ﬂoating-point roundoﬀ errors; rather, it
is the problem of the nonuniform distribution of the ﬂoating-point numbers.
For large-magnitude numbers such as r, there simply are not enough 32-bit
ﬂoating-point numbers of that magnitude to produce an accurate result.
In the example mentioned here, you can switch to 64-bit ﬂoating-point
numbers and obtain a more accurate result because there is a very large quan-
tity of 64-bit ﬂoating-point numbers near the 32-bit ﬂoating-point number r.
If r

is the 64-bit approximation to the root of f, you will ﬁnd that f(r

)=
1.3852034457886450e-027. You will also ﬁnd that f(r

p
)andf(r

n
)areopposite
in sign but very large in magnitude. The switch to 64-bit numbers saves the
day, but now it is possible to choose 64-bit ﬂoating-point coeﬃcients for the
quadratic polynomial so that the same problem happens again—the polyno-
mial at the estimated root is orders of magnitude larger than zero.
The bottom line is that you must think about the potential consequences,
good or bad, when using ﬂoating-point systems, and you must understand the
parameters in your mathematical equations and the inputs for those equations
to assess whether the numerically computed results will be reasonable. There
is no magical solution to all your problems requiring ﬂoating-point computa-
tions, so it is essential to be detailed in your (error) analysis of your algorithms
and their implementations.
I mentioned that you must understand the parameters for your equations.
Just when you think that even simple situations are without problems, con-
sider Listing 2.1.
// Solve numerically for x in the equation c1∗x − c0 = 0 .
float c0 = 0 . 01 f ;
float c1 = 1 .0 f ;
float x=c0/c1; // Reported by debugger as 0.0099999998.
LISTING 2.1: Inexact representation of ﬂoating-point inputs.
Just a moment. The answer should be 0.01, right? Sorry, no. The number
0.01 cannot be exactly represented as a 32-bit ﬂoating-point number, even
though you can type it exactly as a numeric constant in the source code.
In fact,
c0/c1 is computed exactly using ﬂoating-point arithmetic, but the
result
x is only an approximation to the inﬁnite-precision result because you
cannot exactly represent the parameter
c0 in the equation. If the parameters
and inputs to your equations and algorithms already have errors in them,any
amount of exact arithmetic cannot change this. Exact arithmetic applied to
approximate inputs will lead to approximate outputs.
It is equally important to understand the strengths and limitations of
ﬂoating-point number systems. For an interesting and entertaining diatribe
about ﬂoating-point in the Java language, see [19]. In fact, William Kahan was
the primary architect of the IEE 754-1985 standard for ﬂoating-point compu-
tation, so his criticisms are well justiﬁed. I found this article while working
on a contract that required computing intersections of ellipses and intersec-
tions of ellipsoids. As an approximation, I used convex polygons to represent
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the ellipses and convex polyhedra to represent the ellipsoids. Java was the
required programming language, but I ﬁrst implemented and tested the algo-
rithms in C++ using 32-bit ﬂoating-point arithmetic. The tests showed that
the code was working correctly, so I ported to Java, still using 32-bit ﬂoating-
point arithmetic, but did not re-test (oops). After delivering the source code,
some time later the client reported a bug for two ellipses that were slightly
overlapping, as shown in a graphical display of the objects but the code was
reporting no intersection. When I tested this in Java, I was able to reproduce
the problem. This is when I learned that, by design (at that time), Java was
not using high-precision registers for intermediate ﬂoating-point calculations
whereas the C++ runtime was. Roundoﬀ errors were signiﬁcant. Fortunately,
the quick-and-dirty solution was to switch to 64-bit ﬂoating-point numbers.
Lesson learned—test on all relevant platforms and understand the numerical
systems of those platforms.
2.2 Balancing Robustness, Accuracy, and Speed
Three important aspects of numerical computing are robustness, accuracy,
and speed. These are typically not mutually satisﬁable, requiring you to weigh
the trade-oﬀs for each option.
2.2.1 Robustness
Researchers have formulated deﬁnitions for robustness of geometric algo-
rithms that are typically encountered in the ﬁeld of computational geometry.
The book [20] contains a chapter about robustness and degeneracy that pro-
vides a history of the topic, including references to many seminal research
papers. The chapter also includes some discussion about ﬂoating-point arith-
metic, about alternatives, and about how those relate to geometric algorithms.
Generally, the book is focused on the theoretical details of geometric problems
that one might encounter in applications, and the authors refer the reader to
commercial implementations of packages for robust geometric and numerical
computing.
2.2.1.1 Formal Deﬁnitions
The deﬁnitions of [20] are quite formal mathematically. A geometric prob-
lem is deﬁned to be a function P : X → Y ,whereX =IR
nd
is the input
space and Y = C × IR
m
is the output space.
1
The set of real numbers is IR,
1
The deﬁnition includes the concept of topology, assigning the standard Euclidean topol-
ogy to X and discrete topology to C. For the purpose of the brief summary of the deﬁnitions,
it is not necessary to know what a topology is.
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the set of k-tuples of real numbers is IR
k
, n and d are positive integers, m is
a nonnegative integer (if zero, then Y = C), and C is a discrete space that is
referred to as the combinatorial portion of the output.
A typical example is the problem of computing the convex hull of a ﬁnite
set of points in two dimensions. In the deﬁnition, d = 2, which is the dimension
of the space containing the points, n is the number of points in the set, and
m = 0. The input points are indexed with integers 1 through n,andC is the
set of all ordered subsets of {1,...,n}. The output of the convex hull algorithm
is an element of C,say,{i
1
,...,i
q
}, which represents the ordered vertices of
the convex polygon that is the convex hull boundary; mathematically, the hull
is the solid polygon that includes points inside as well as on the boundary. If
you additionally want the algorithm to compute the area α of the convex hull,
you can set m = 1 so that the output is a pair ({i
1
,...,i
q
},α) ∈ C ×IR .
Another example is the problem of computing the points of intersection of
pairs of line segments in the plane. We may choose n to be the number of line
segments. Each line segment has two endpoints for a total of four real values,
so d = 4. The combinatorial output is a set of 2-tuples of integers, each of
the form (i
1
,i
2
) indicating that segments i
1
and i
2
intersect. Two segments
intersect either in a single point or for an entire interval of points. We may
choose always to store a pair of points with the convention that if the two
points are equal, there is a single intersection. Thus, we may choose m =4
because a pair of points is represented by four real-valued numbers.
Although the mathematical deﬁnition and framework support proving gen-
eral results about geometric problems, it is not always immediately clear how
to formulate a problem according to the deﬁnition. Also, the formulation as a
geometric problem according to the mathematical deﬁnition gives no indica-
tion how you would attempt to solve the problem itself. Consider the geometric
problem of computing the convex hull for a set of planar disks. At ﬁrst you
might think of this as a problem with an inﬁnite number of inputs—all the
points in all the disks. It is not clear how you choose n and d. It is not correct
to choose d =2andn = ∞, because the cardinality of the integers is not the
same as the cardinality of the reals. The disks have inﬁnitely many points,
but that inﬁnity is not the same as the number of positive integers. You may
instead think of the inputs as n disks, each disk deﬁned by a center and a ra-
dius, so d = 3 with each 3-tuple listing the center coordinates and the radius.
The output will consist of line segments and arcs of circles whose union is the
boundary of the convex hull. The IR
m
term in the output space must represent
the endpoints of the circular arcs and the combinatorial portion must reﬂect
how the endpoints are ordered as you traverse the boundary.
A geometric problem can be selective or constructive. The former term
says that the output is generated from a selection of elements of the input.
For example, the 2D convex hull algorithm for a ﬁnite set of points selects
points from the input and identiﬁes them as the vertices of the hull. The latter
term says that new objects are constructed by the algorithm. For example,
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the problem of all-pairs intersection of line segments requires construction of
points of intersection.
A geometric algorithm is a function A that is applied to an input x ∈ X
of a geometric problem and produces an output A(x) ∈ Y . The algorithm
exactly computes P for x when A(x)=P (x). Of course our goal in practice
is to design an algorithm that exactly computes P . However, ﬂoating-point
arithmetic and other factors such as speed requirements might cause us to
design an algorithm for which A(x) = P (x) for some inputs x. If this happens,
how far oﬀ are we from the correct result? The following deﬁnitions from [20]
attempt to quantify this concept.
A robust geometric algorithm A is one such that for each x ∈ X,thereis
an x

∈ X such that A(x)=P (x

); that is, the output A(x) of the algorithm
is actually the solution to the problem for a diﬀerent input x

. Additionally,
a robust geometric algorithm is said to be stable if x

is near to x,whichsays
that the output A(x) is the solution to the problem for a diﬀerent x

and that
input x

is a (small) perturbation of x. The measure of nearness is formulated
in the following deﬁnition. Let |x| denote the maximum norm of x,which
is the largest absolute value of the components of x.LetO(h(N )) denote
the big-oh notation for bounds on a function h(N) as integer N increases
without bound. For speciﬁed values N>0andε>0, the stable algorithm
A has relative error E(N, ε)ifforeachx ∈ X with |x|∈O(N ), there is an
x

∈ X for which |x − x

|/|x|≤E(N,ε). The number N is a measure of how
large the inputs are and the number ε is a measure of the accuracy of the
underlying numerical representation used in the computations. Naturally, we
want algorithms for which E(N, ε)isassmallaspossible.
To illustrate, consider the incremental algorithm mentioned previously for
the construction of the convex hull of a ﬁnite set of 2D points. Suppose that the
computations are performed with ﬂoating-point arithmetic and that x is the
input set that led to the incorrect sign classiﬁcation illustrated in Figure 2.5.
Intuitively, we should be able to perturb slightly the input points x to obtain a
new set of input points x

for which the sign classiﬁcations are correct. In the
ﬁgure, the oﬀending point would be perturbed so that its vertical component
is reduced enough to avoid the misclassiﬁcation. The incremental algorithm
would then correctly compute the convex hull for x

, so you would conclude
that the algorithm is robust.
2.2.1.2 Algorithms and Implementations
Unfortunately, the formal deﬁnition for robustness is not constructive be-
cause it tells you nothing about how to avoid problems in the ﬁrst place. The
previous example for incremental convex hull construction illustrated the con-
cept of robustness, but the deﬁnition does not help you understand and avoid
the misclassiﬁcation of signs of determinants. Knowing that the algorithm
performs correctly on perturbed inputs does not help you generate a correct
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output for the original data set, and it is not clear how you can prove that an
algorithm is robust for all inputs.
The formal deﬁnitions also do not explicitly emphasize the distinction be-
tween two terms: algorithms and implementations. A geometric problem is
deﬁned as a function whose domain is IR
nd
,thesetofnd-tuples whose com-
ponents are real numbers. A geometric algorithm is a function with the same
domain. The standard incremental algorithm for computing the convex hull of
a ﬁnite set of 2D points with real-valued components is provably correct when
using real-valued arithmetic (exact arithmetic). However, if this algorithm is
implemented on a computer using ﬂoating-point arithmetic, the implementa-
tion does not necessarily produce a theoretically correct output for each input
data set. A fundamental principle for numerical computing is that there are
algorithms and implementations of algorithms, and the two terms cannot be
used interchangeably. The domain for a geometric algorithm is IR
nd
,andthe
arithmetic operations used in the geometric algorithm are those for tuples of
real numbers. However, the domain for an implementation of a geometric algo-
rithm is typically a set of tuples of ﬂoating-point numbers, and the arithmetic
operations used in the implementation are those for tuples of ﬂoating-point
numbers. The theoretical correctness of an algorithm does not immediately
carry over to a practical implementation, although you would like to create
an implementation for which it does.
I do not intend this discussion to belittle the attempts by the theoreti-
cians to quantify the problems inherent in numerical solutions to geometric
problems—it is important in the long term to advance the frontier of the the-
ory of computation. However, as practicing software engineers, we are tasked
with producing software that solves the problems at hand and that performs
according to a set of requirements. Rather than tackling the numerical prob-
lems from the perspective of the theory of computation, my goal is to explore
the numerical problems on a case-by-case basis, illustrating what goes wrong
and then providing analyses, alternate approaches, and perhaps principles and
a mind-set that can help avoid these problems or at least reduce the impact
on the application when they do arise.
2.2.1.3 Practical Deﬁnitions
For the purpose of this book, a nonscientiﬁc deﬁnition for robustness is
used when solving geometric or numerical problems. An algorithm that solves
a problem is one that works correctly with exact arithmetic, whether real-
valued, rational-valued, or integer-valued. A robust implementation of the
algorithm is one that produces reasonable results when using inexact arith-
metic (ﬂoating-point) for an input domain that makes sense for the practical
problem. You, the application developer, get to decide what reasonable means
and what the input domain should be. For example, the geometric problem of
computing the distance d between two-dimensional points (x
0
,y
0
)and(x
1
,y
1
)
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is solved by the algorithm d =

(x
1
− x
0
)
2
+(y
1
− y
0
)
2
. An implementation
is shown in Listing 2.2.
float Distance ( float x0 , float y0 , float x1 , float y1 )
{
float dx = x1 − x0 , dy = y1 − y0 ;
return sqrt(dx∗dx + dy∗dy ) ;
}
LISTING 2.2: Simple implementation for computing distance between two
points.
The algorithm works correctly for all real-valued inputs, because we are
assuming exact arithmetic (real-valued) and exact computation of the square
root function. The implementation uses 32-bit ﬂoating-point arithmetic, so the
arithmetic operations potentially have some roundoﬀ errors and the square
root function will generally produce only an approximation to the theoretical
value. However, as long as the value returned from the function is reasonable
for the inputs you expect in your application, then for all practical purposes
the implementation is robust.
That said, the Listing 2.3 shows that you have to think carefully about
your inputs.
int i1 = (1 << 30);
float x1 = static
cast<float >(i1 );
float d1=Distance(0.0f,0.0f,x1,0.0f);
int i2 = i1 + 64;
float x2 = static
cast<float >(i2 );
float d2=Distance(0.0f,0.0f,x2,0.0f);
float ddiff = d2 − d1 ; // 0 . 0 f
int idiff = i2 − i0 ; // 64
LISTING 2.3: Incorrect distance computation due to input problems.
The input points are all on the x-axis.Thedistancefrom(x
1
, 0) to (0, 0) is
theoretically 2
30
, the distance from (x
2
, 0) to (0, 0) is theoretically 2
30
+64, and
so the distance from (x
1
, 0) to (x
2
, 0) is theoretically 64. The implementation
believes the diﬀerence of distances is zero, which is incorrect. The problem is
that 2
30
is exactly represented as a 32-bit ﬂoating-point number, but 2
30
+
64 cannot be exactly represented. The IEEE 754-2008 Standard requires the
integer 2
30
+ 64 to be represented by the closest ﬂoating-point number, which
is 2
30
. A consequence is that x1 and x2 are the same ﬂoating-point number,
as are
d1 and d2, thus explaining why ddiﬀ is zero. If you know that your
application will produce inputs to
Distance with bounded components, say,
with absolute values in the interval [10
−8
, 10
8
], then for all practical purposes
the implementation
Distance is robust. On the other hand, if your application
must produce integer-valued inputs that cannot be represented exactly as
ﬂoating-point numbers, the implementation
Distance is not robust and you
must come up with a diﬀerent implementation of the algorithm that satisﬁes
your requirements.
In the example for incremental construction of the convex hull of 2D points,
the algorithm uses signs of determinants to determine how to update the cur-
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rent convex hull, identifying faces visible to the current input point, removing
those faces, and creating new ones that share the current input point and the
terminator polyline from the removed faces. An implementation of the algo-
rithm that misclassiﬁes the signs of determinants is not robust. Equivalently,
the implementation is robust when it correctly computes the signs of determi-
nants for the inputs the application expects. There are several approaches to
correct classiﬁcation of the signs, one of those using exact rational arithmetic
because a ﬂoating-point number represents (exactly) a rational numbers.
2.2.2 Accuracy
The term accuracy refers to how close a measurement x
meas
of a quantity
is to its true value x
true
. The closeness can be computed in terms of absolute
error, |x
meas
−x
true
|. Closeness also can be measured in terms of relative error,
|x
meas
− x
true
|/|x
true
|, assuming that the true quantity is not zero.
In the context of numerical computing, the term precision refers to the
number of signiﬁcant digits or bits that can be represented by a numerical
format. As we will see later, 32-bit ﬂoating-point numbers (
ﬂoat)havetwenty-
four bits of precision and 64-bit ﬂoating-point numbers (
double)haveﬁfty-three
bits of precision.
The terms accuracy and precision are not the same concept, although
sometimes people incorrectly use them interchangeably in a scientiﬁc context.
It is possible to have measurements that are accurate and precise, accurate
and not precise, precise and not accurate, and neither accurate nor precise.
Typically, statements involving accuracy and precision include reference to
number of digits (or bits) and/or comparisons (more accurate than, less pre-
cise than). As a simple example, consider measurements to approximate the
value of x =1/7=0.
142857, where the overline indicates that the block of
digits repeats ad inﬁnitum. The number x
0
=0.142857142857 is an estimate
that is accurate and precise to twelve digits. The number x
1
=0.142857 is
accurate to six digits but is not as precise an estimate as x
0
.Thenumber
x
2
=0.111111111111 is precise to twelve digits but not accurate. The number
x
3
=0.01 is neither precise (only two digits) nor accurate.
Accuracy and precision are indirectly related, though. Usually, the accu-
racy of an estimate is related to how precise the number system is. The more
accurate you want the measurement, the more precise your number system
must be. Of course this is not always a correct relationship. A quantity might
be measured using an algorithm that is ill conditioned, whereby the output of
the algorithm varies greatly with small changes in its inputs. A typical exam-
ple is in the numerical solution of a linear system whose coeﬃcient matrix is
nearly singular. Increasing the precision of the underlying numerical system
might help improve the accuracy of the solution for a limited set of inputs,
but generally an increase in precision cannot overcome the ill conditioning.
The latter is a mathematical issue, and it is quite possible that you might be
able to construct an alternate algorithm that is well conditioned.
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Naturally, it is desirable to design algorithms and implement them to ob-
tain accurate results in a robust manner. Doing so in a timely and eﬃcient
manner may not be easy or even possible.
2.2.3 Speed
Robustness and accuracy do not always come for free. In my computa-
tional geometry code, I provide the ability to compute using exact rational
arithmetic, treating the input ﬂoating-point numbers as rational numbers. The
rational arithmetic is based on exact integer arithmetic for integers that have
more bits than supported by standard CPUs. This means that the numerical
computations are performed in software and are quite slow. This is a prob-
lem for a real-time application that must compute convex hulls at runtime.
However, it is usually not a problem for a tool that runs oﬄine to produce
data to be used in a real-time application. For example, a portalizing tool
can compute convex hulls to be used for visibility graphs in a real-time 3D
game. All the game needs is to load the hulls for use in visibility tests. Load-
ing costs are a one-time expense—during level loading—but the point-in-hull
tests are very fast. The convex hull construction is very slow, but the hulls
are computed oﬄine and shipped with the game. The cost of construction is
completely divorced from the runtime execution.
2.2.4 Computer Science Is a Study of Trade-oﬀs
Developing algorithms and implementations that are simultaneously ro-
bust, accurate, and fast is a serious challenge. In practice, you may select any
two of the three and have a chance of meeting those requirements. At the
University of North Carolina, I recall hearing many times from Professor Fred
Brooks: “Computer science is a study of trade-oﬀs.” This has been a dominant
theme in all my practical endeavors, sometimes more so than I would like, es-
pecially when a potential client wants software that is robust, accurate, and
fast. As part of my contract proposals, I try to explain the trade-oﬀs involved
in terms of what you gain and lose by each decision.
Generally, my clients want speed. No problem, just let me know how much
accuracy you are willing to give up or how limited your input data sets must
be to obtain that speed. Assuming the classical model of computing that
involves sequential execution on a single processor, the speed-versus-whatever
trade-oﬀs play a signiﬁcant role in the development. The most common trade-
oﬀ is space-time. If you want to compute something quickly, use memory to
store precomputed data or to store temporary results to avoid recomputation.
If memory is limited, then you are relegated to slower computation time.
On a desktop computer, memory is inexpensive and you have lots of it, so
exchanging space for faster execution time is a popular choice. But even this
choice has consequences to consider, especially when it comes to memory
caches. As you increase memory usage for storing precomputed data, you
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have to be careful in how you access that memory. Data cache misses can be
quite costly on modern architectures.
Computer hardware has evolved signiﬁcantly over the years. These days we
have several options to consider. Modern CPUs have SIMD support for vector
mathematics; speciﬁcally, the CPUs have 128-bit registers that allow us to
load four 32-bit ﬂoating-point numbers. These registers support fast vector
and matrix mathematics. For physics-heavy real-time games, SIMD support
is essential because of the extremely large number of vector-matrix operations
performed by the physics engine.
Modern CPUs also have multiple cores, each core acting as a separate pro-
cessor yet sharing main memory. In fact, some dual processor machines allow
you to partition the main memory between the processors. This provides us
with the ability to develop algorithms with components that may be computed
in parallel. Sequential programming is straightforward and is the model of pro-
gramming that most are used to. Programming on multiple cores requires a
diﬀerent mind-set, because now you have to manage communications between
processors, develop parallel algorithms that can be distributed across threads,
synchronize threads, and prevent concurrent access. Although nonsequential
programming is more diﬃcult to master, it is here to stay. The introduction
of formal concurrency support in C++11 makes it easier to program con-
currently because it has encapsulated some of the more diﬃcult constructs,
making them easier to work with. If you want faster execution of applications,
especially to maintain real-time rates, you need multiple processors. The phys-
ical limitations of chips have been met—a single CPU can have only so many
transistors.
Graphics hardware has also evolved quite rapidly, and GPUs are not just
for graphics anymore. With a reasonably priced graphics card, you have at
your disposal a massively parallel processing system. General-purpose GPU
programming is quite popular. A common use in my contracting involves
GPU-based image processing. It is relatively easy to implement GPU-based
image ﬁlters that signiﬁcantly outperform their counterparts executed on a
single-core CPU. Related to this is the solution of nonlinear partial diﬀer-
ential equations. For example, implementing a real-time numerical solver for
the Navier–Stokes equations of a 3D ﬂuid is a tractable though nontrivial
task.
With all this hardware available, the speed-versus-whatever trade-oﬀs be-
come more interesting. You can use SIMD support for vector-matrix opera-
tions. However, you can also queue up a set of operations and perform them
in parallel on multiple cores or on a GPU. Part of your algorithm develop-
ment is now inﬂuenced by what hardware platforms you plan to target. Even
more importantly these days with smart phones, tablet computers, and other
embedded devices, we must now consider trade-oﬀs among computation time,
memory usage, and power consumption.
Although robustness-accuracy versus speed is a major player in the busi-
ness of trade-oﬀs, other trade-oﬀs are perhaps as important. One that I men-
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tion to people that causes them to ponder for an instant is development time
versus suboptimal algorithm. Sometimes we programmers decide we need an
optimal algorithm to solve a problem just because that is what we are trained
to do. In an industrial environment, however, that is not always the best
choice. For example, suppose you need an algorithm to triangulate simple
polygons with large numbers of vertices. The theoretically optimal algorithm
in time is linear [5]; that is, for n vertices the computation time is O(n). To my
knowledge, no public implementation of this algorithm is available—for that
matter, perhaps no implementation is. Linear average-time algorithms are de-
scribed in [53]. In practice, a randomized linear algorithm might be used [51],
which is O(n log
∗
n), where log
∗
n is the iterated logarithm function. It is a
very slowly growing function that for all practical n is a constant, making the
algorithm eﬀectively linear. But even this algorithm is diﬃcult to implement.
Implementing these algorithms may require a very large amount of develop-
ment time. A more commonly used algorithm involves ear clipping [26, 11].
With careful implementation, the basic algorithm in [26] runs in O(n
2
), and
coding a robust implementation requires on the order of a few days. If the per-
formance of an ear-clipping algorithm is acceptable for your applications, then
it is worthwhile not spending a large amount of development time on some-
thing much more complicated that provides only a moderate improvement to
performance.
2.3 IEEE Floating Point Standard
It is natural to expect a programming language to have built-in support
for ﬂoating-point numbers and arithmetic, especially when the ﬂoating-point
system has a hardware implementation as is the case on modern CPUs and
GPUs. For sake of introducing yet another acronym, the hardware is referred
to as a ﬂoating-point unit (FPU). Less powerful processors such as those on
some embedded devices might not have hardware ﬂoating-point support, so
you have to rely on a software implementation for ﬂoating-point arithmetic.
Nothing prevents you from rolling your own, especially if you want to support
only what your applications need. That said, writing a general-purpose system
for ﬂoating-point arithmetic is not trivial. If you plan on your applications
having the same ﬂoating-point behavior on multiple platforms, some with
ﬂoating-point hardware and some without, you most likely want your software
implementation to follow a standard.
The most common ﬂoating-point systems follow the IEEE Standard for
Floating-Point Arithmetic. As of the time of writing of this book, the most
recent version is the IEEE 754-2008 Standard, a seventy-page copyrighted
PDF document that is available for purchase online from the IEEE Computer
Society. Although a formidable task, it would be useful to see a reference imple-
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mentation of the standard to which we can compare our own implementations,
even if the reference implementation is abstract because it uses a hypothetical
programming language. It is possible to infer some of the standard’s require-
ments by writing test programs in a speciﬁc runtime environment. Of course,
this assumes that the hardware and runtime libraries have an IEEE-compliant
implementation of ﬂoating-point arithmetic. You also need to be careful, be-
cause sometimes you are given control over the behavior of the arithmetic.
In Microsoft Visual Studio, you are given control over precision using the
compiler option
/fp. The default (/fp:precise) allows the 80-bit ﬂoating-point
registers to be used to store intermediate computations. The ﬁnal results can
be much diﬀerent from those that use only the number of bits provided by
the ﬂoating-point type (32-bit or 64-bit). There are also potential issues to
be aware of because the ANSI programming language standards are not nec-
essarily disjoint from ﬂoating-point standards; for example, register usage in
compiled code might involve diﬀerent size ﬂoating-point registers, which makes
it diﬃcult to understand the runtime behavior of the code. There is also the
potential that, even on the same platform, another compiler will generate
ﬂoating-point code that behaves diﬀerently. Microsoft Visual Studio runtime
libraries also provide platform-dependent functions
clearfp and statusfp that
allow you to determine which ﬂoating-point exceptions have occurred (if any).
This leads to greater understanding of a ﬂoating-point number system—you
have to understand the underlying model of numerical computation in order
to write robust software.
In the sample applications, I will mention whether there are any ﬂoating-
point concerns and refer to the IEEE 754-2008 Standard document if neces-
sary. Emphasis will be on computing when all expected intermediate compu-
tations involve only ﬁnite ﬂoating-point numbers. A key aspect of the IEEE
754-2008 Standard that is of concern: an implementation of an IEEE-required
function must produce a result as if it were computed with inﬁnite precision
but then rounded accordingly to a ﬂoating-point number. In the vernacular,
do the best you can do with the speciﬁed precision. The example provided
previously about unexpected behavior when computing quadratic roots has
this ﬂavor. The computed estimate of a root was the best you could do—the
algorithm produced the 32-bit ﬂoating-point number nearest to the inﬁnite
precision root and with smallest-magnitude function value. If the best you
can do is not good enough, you will need to consider other numerical systems
or diﬀerent formulations of your problem that allow more suitable solutions.
2.4 Binary Scientiﬁc Notation
Before we investigate the IEEE ﬂoating-point numbers, this section will
motivate most of the ideas behind them, namely, manipulating binary repre-
sentations of numbers.
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A positive real number r may be written exactly in base-two scientiﬁc
notation, which I refer to as binary scientiﬁc notation,
r =

1+
∞

i=0
c
i
2
−(i+1)

2
p
=1.c ∗ 2
p
(2.9)
where c
i
are the bits, each having a value either zero or one and where 1.c is
a shorthand notation for one plus the inﬁnite summation.
Allowing an inﬁnite sum, the representation for a rational number is not
unique. For example, the number one has a representation 1.0∗2
0
,whichmeans
the power is p =0andcoeﬃcientsarec
i
=0foralli. Another representation
is 1.
1
∞
∗ 2
−1
=0.111 ...,wherethepowerisp = −1 and coeﬃcients are
c
i
=1foralli. The notation 1
∞
indicates that the number 1 is repeated
an inﬁnite number of times. We obtain uniqueness in one of two ways, either
choosing a ﬁnite sum (if there is one) or choosing the representation with the
smallest power p. Not all numbers have ﬁnite representations; for example,
1/3=1.
01
∞
∗ 2
−2
,where01
∞
indicates that the number pair 01 is repeated
ad inﬁnitum. Consequently, one-third is an irrational number base 2.
For computing, we will restrict our attention to ﬁnite sums,
r =

1+
n

i=0
c
i
2
−(i+1)

2
p
=1.c ∗ 2
p
(2.10)
where n ≥ 0. All such ﬁnite sums, positive or negative and including zero,
are referred to as binary scientiﬁc numbers. These numbers are necessarily
rational. GTEngine provides support for these; see class
BSNumber. More detail
about binary scientiﬁc numbers are provided next.
2.4.1 Conversion from Rational to Binary Scientiﬁc
Numbers
Consider the rational number r = n/d,wheren and d are positive integers.
The numerator is of the form
n =2

n
+

n
−1

i=0
n
i
2
i
(2.11)
where the high-order 1-bit occurs at index 
n
≥ 0. The coeﬃcients n
i
are the
remaining bits of the number. If r =1,then
n
= 0 and the upper limit of
the summation in Equation (2.11) is −1. Our convention is that a summation
is zero when the upper limit is smaller than the lower limit. Similarly, the
denominator is of the form
d =2

d
+

d
−1

i=0
d
i
2
i
(2.12)
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where the high-order 1-bit occurs at index 
d
≥ 0. The coeﬃcients d
i
are the
remaining bits of the number, if any.
We may write r as
r =
n
d
=
2

n
+


n
−1
i=0
n
i
2
i
2

d
+


d
−1
i=0
d
i
2
i
=
1+


n
−1
i=0
n
i
2
i−
n
1+


d
−1
i=0
d
i
2
i−
d
2

n
−
d
=
1+α
1+β
2

n
−
d
(2.13)
where α and β are deﬁned by the last equality and both numbers are neces-
sarily in the interval [0, 1).
When α ≥ β,(1+α)/(1 + β) ∈ [1, 2) and
1+α
1+β
=1+
∞

i=0
c
i
2
−(i+1)
=1.c (2.14)
When α<β,(1+α)/(1 + β) ∈ (0, 1), which implies 2(1 + α)/(1 + β) ∈ (1, 2)
and
2(1 + α)
1+β
=1+
∞

i=0
c
i
2
−(i+1)
=1.c (2.15)
Equations (2.14) and (2.15) may be combined to produce the representation
r =1.c ∗ 2

n
−
d
−ω
=1.c ∗ 2
p
(2.16)
where ω is deﬁned by
ω =

0, 2

d
−
n
r ≥ 1
1, 2

d
−
n
r<1
(2.17)
and the power p in Equation (2.9) is
p = 
n
− 
d
− ω (2.18)
Now consider the rational number
s =2
−p
r =1+
∞

i=0
c
i
2
−(i+1)
=1.c
0
c
1
c
2
··· (2.19)
We construct the bits c
i
using an iterative algorithm. Deﬁne s
0
=2(s − 1) =
c
0
.c
1
c
2
···,soc
0
is the integer part of s
0
, and deﬁne s
1
=2(s
0
− c
0
)=
c
1
.c
2
···,soc
1
is the integer part of s
1
. The process is repeated ad inﬁnitum,
s
i+1
=2(s
i
− c
i
)=c
i+1
.c
i+2
···. When using a computer, we will stop the
construction after a speciﬁed number of bits has been reached. If k bits are
requested, then the representation of s is
s =1.c
0
c
1
···c
k−1
+ ε
t
(2.20)
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where ε
t
is the truncation error. Observe that the truncation error is bounded
by the diﬀerence between two consecutive k-bit quantities,
ε
t
=
∞

i=k
c
i
2
i+1
∈

0, 2
−k

(2.21)
We may also choose to round to the nearest k-bit quantity, using a tie-
breaking rule when s is equidistant from two such quantities,
s =1.c
0
c
1
···c
k−1
+
γ
2
k
+ ε
r
(2.22)
where γ is either 0 or 1 and where ε
r
is the rounding error. Deﬁne ρ =
0.c
k
c
k+1
···∈[0, 1]; then
γ =

0, (ρ<1/2) or (ρ =1/2andc
k−1
=0)
1, (ρ>1/2) or (ρ =1/2andc
k−1
=1)
(2.23)
The diﬀerence of two consecutive k-bit quantities is 2
−k
, so the rounding error
is bounded by
ε
r
∈

−2
−(k+1)
, 2
−(k+1)

(2.24)
The tie-breaking rule is referred to as ties to even. Consider the binary number
1c
0
···c
k−1
.c
k
c
k+1
= i.ρ.Ifρ =1/2, the number is equidistant from i and i+1.
Rounding is to whichever of i or i + 1 is even.
Listing 2.4 has pseudocode for handling the conversion of rational num-
bers to binary scientiﬁc numbers. The input rational number is assumed to
be positive. The input last index speciﬁes when to terminate the conversion
when the rational number base 10 is irrational base 2, in which case the out-
put is only an approximation to the input. The pseudocode uses truncation
and, for simplicity of the illustration, assumes that arbitrary-precision integer
arithmetic is used; the data type is denoted
Integer.
void ConvertRationalToBSN ( Rat ion al r , int lastIndex , int&p, int&cbits)
{
// Get the numerator and denominator , both po sit iv e numbers .
Integer n = r .Numerator();
I nte ge r d = r . Denominator ( ) ;
// Get the positio ns of the leading b its for the numerator and
// denominator .
int leadN = GetLeadingBit (n);
int leadD = GetLeadingBit(d);
// The f i r s t g u e s s a t t h e p ower .
p=leadN− leadD ;
// Indirectly compute s = 2ˆ{−p}∗ r by shif ti ng ei th er the numerator
// or denominator accordingly .
if (p > 0)
{
d << =p;
}
else
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{
n << = −p;
}
// I f s < 1, we need to multiply by 2 to obtain 1 < s < 2.
if (n < d)
{
n << =1;
−− p;
}
// s = n /d i s i n t h e i n t e r v a l [ 1 , 2 ) .
Integer c = 1;
for ( Integer mask = (1 << lastIndex ); mask > 0; mask >>=1)
{
// Indirectly compute s = 2∗ (s − c); avoid the subtraction
// when c i s z e r o .
if (c == 1)
{
n −=d; // s = s − c;
}
n << =1; // s = 2∗ s
if (n >=d) // s >=1
{
c=1;
cbits |=mask;
}
else
{
c=0;
}
}
}
LISTING 2.4: Conversion of rational numbers to binary scientiﬁc numbers.
Exercise 2.1 Modify
ConvertRationalToBSN to use round-to-nearest rather
than truncation.
2.4.2 Arithmetic Properties of Binary Scientiﬁc Numbers
Let B be the set of binary scientiﬁc numbers, which consists of numbers
of the form in Equation (2.10), both positive and negative and including zero.
We may add, subtract, and multiply elements of B, the results also in B.
In all cases, the algorithm for performing the arithmetic operation involves
modifying the binary scientiﬁc notation to obtain a number that is a product
of an integers and a power of two.
Speciﬁcally, consider x =1.u ∗ 2
p
.If1.u = 1, deﬁne ˆu =1.If1.u > 0
and u has n bits, then the last bit is a 1-bit. Deﬁne ˆu =1u
0
...u
n−1
,where
u
n−1
= 1. In either case, ˆu is an (n + 1)-bit odd integer with n ≥ 0andwe
may write x =ˆu ∗ 2
p−n
. The GTEngine class BSNumber represents x as the
pair (ˆu, p − n). In the discussion of binary operations, we will use variables x
and y for the inputs, and z for the output. Represent y =1.v ∗ 2
q
using pair
(ˆv, q − m)andz =1.w ∗ 2
r
using pair ( ˆw, r −).
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2.4.2.1 Addition of Binary Scientiﬁc Numbers
Using the previously deﬁned notation, given operands x and y, we need to
determine the values of w and r for the sum z = x + y.Thesumis
x + y =1.u ∗ 2
p
+1.v ∗ 2
q
=ˆu ∗2
p−n
+ˆv ∗ 2
q−m
(2.25)
If p − n ≥ q − m,
ˆu ∗2
p−n
+ˆv ∗ 2
q−m
=

ˆu ∗2
(p−n)−(q−m)
+ˆv

∗ 2
q−m
=˜w ∗ 2
q−m
(2.26)
where the last equality deﬁnes ˜w, a positive integer. Let the ﬁrst 1-bit of ˜w
occur at index f and the trailing 1-bit occur at index t.
Observe that ˜w is odd when p − n>q−m.Inthiscaset =0and ˆw =˜w
with  = f and r =  + q − m.Whenp − n = q − m,˜w is even. We may
shift right the bits of ˜w by t places to obtain ˆw,an( + 1)-bit number with
 = f − t. In fact, the construction applies to the previous case when t =0,
in which case there is no shift and  = f.Thus,
x + y =˜w ∗ 2
q−m
=ˆw ∗ 2
q−m+t
=1.w ∗ 2
q−m+t+
=1.w ∗ 2
q−m+f
(2.27)
which implies r = q − m + f .
If p − n<q− m, a similar construction is applied. We compute ˜w =
ˆu +ˆv ∗ 2
(q−m)−(p−n)
, ﬁnd the ﬁrst 1-bit index f of ˜w and the trailing 1-bit
index t,shiftright ˜w by t bits to obtain ˆw,set = f − t, and ﬁnally obtain
z =1.w ∗ 2
r
where r = p −n + f.
2.4.2.2 Subtraction of Binary Scientiﬁc Numbers
The diﬀerence x − y is computed similarly to the sum x + y except that
the ˜w integer is a diﬀerence of positive integers rather than a sum and is
potentially negative. The
BSNumber classalsostoresasignin{−1, 0, +1},so
when ˜w is negative, the sign member is set to −1.
2.4.2.3 Multiplication of Binary Scientiﬁc Numbers
The product of x =1.u ∗ 2
p
and y =1.v ∗ 2
q
is z =1.w ∗ 2
r
,wherewe
need to determine the values of w and r.Both1.u and 1.v are in the half-
open interval [1, 2), so their product is in the half-open interval [1, 4); that is,
1.u ∗ 1.v = b
1
b
0
.f where b
1
b
0
∈ 1, 2, 3and0.f is the fractional part in [0, 1).
If b
1
=0,thenb
0
=1,0.w =0.f,andr = p + q.Ifb
1
=1,then0.w =0.b
0
f
and r = p + q +1.
If u =0,thenxy =1.v ∗ 2
p+q
.Ifv =0,thenxy =1.u ∗ 2
p+q
;otherwise,
u>0andv>0, so at least one bit of u is nonzero and at least one bit of v is
not zero. Using the notation introduced previously, the product xy is written
as
xy =1.u ∗2
p
∗ 1.v ∗ 2
q
=ˆu ∗ ˆv ∗ 2
p−n+q−m
=ˆw ∗ 2
p+q−n−m
(2.28)
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where ˆw =ˆu ∗ ˆv is the product of integers. The product of an (n + 1)-bit odd
integer and an (m + 1)-bit odd integer is an odd integer with either n + m +1
or n + m + 2 bits. For example, consider the case n =4andm =3.The
product of the two smallest odd integers with the speciﬁed number of bits
is (in binary) 10001 ∗ 1001 = 10011001, which has n + m + 1 = 8 bits. The
product of the two largest odd integers with the speciﬁed number of bits is
11111 ∗ 1111 = 111010001, which has n + m +2=9 bits.
We need to convert the right-hand side of Equation (2.28) back to standard
form. Deﬁne c = 0 when the leading bit of ˆw is at index n+m or c =1whenthe
leading bit is at index n+m+1, and deﬁne  = n+m+c.Thus, ˆw is an (+1)-
bit odd integer of the form ˆw =1w
0
...w
−1
=1.w
0
...w
−1
∗ 2

=1.w ∗ 2

,
where w
−1
= 1 and the last equality deﬁnes w. The product xy is therefore
xy =1.w ∗ 2
p+q−n−m+
=1.w ∗ 2
p+q+c
=1.w ∗ 2
r
(2.29)
The implementation of multiplication in the GTEngine class
BSNumber is to
multipy ˆw =ˆu ∗ ˆv,setc by examining the location of the leading bit of ˆw,
say, , and computing r = p + q + c, ﬁnally representing z = xy as the pair
(ˆw, r −).
2.4.2.4 Division of Binary Scientiﬁc Numbers
Although we can deﬁne division x/y =1.u ∗2
p
/1.v ∗q
2
, we would need to
apply the algorithm of Section 2.4.1 to obtain the bits of 1.w =1.u/1.v.As
noted, the sequence of bits can be inﬁnite, so for a computer implementation,
we would have to select a maximum number of bits and then round the result.
The goal of implementing class
BSNumber is to support exact arithmetic,soI
chose not to implement division. Instead, we can take advantage of abstract
algebra and deﬁne formal ratios of binary scientiﬁc numbers that play the
same role as rational numbers do for the integers. For example, the rational
number 1/3 is meaningful and can be manipulated algebraically without ever
having to compute a decimal representation 1/3=0.3333 .... The same holds
true for ratios of binary scientiﬁc numbers, which is useful for exact arithmetic
in computation geometry. Only at the very end of a geometric algorithm will
you potentially need approximations if you decide you need 32-bit or 64-bit
ﬂoating-point results to report.
Let x ∈ B and y ∈ B,whereB is the set of binary scientiﬁc numbers as
deﬁned previously. We can deﬁne ratios of numbers in B as x/y where y =0.
Although this suggests division, it is not intended to be that way. The ratios
may be deﬁned as the set of 2-tuples R = {(x, y):x ∈ B,y ∈ B \{0}}.
The fancy set notation says that y is in the set B but cannot be the element
0. Just as with rational numbers, a single abstract ratio can have multiple
representations. For example, 1/3and2/6 represent the same number. Also,
0/1and0/2 are both representations for zero.
Given ratios r
0
=(x
0
,y
0
) ∈ R and r
1
=(x
1
,y
1
) ∈ R, addition is deﬁned
as
r
0
+ r
1
=(x
0
∗ y
1
+ x
1
∗ y
0
,y
0
∗ y
1
) (2.30)
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You are more familiar with the notation using fractions,
r
0
+ r
1
=
x
0
y
0
+
x
1
y
1
=
x
0
y
1
+ x
1
y
0
y
0
y
1
(2.31)
where the sum is computed by constructing the common denominator of the
two fractions. Observe that the components of the 2-tuple are computed us-
ing multiplication and addition of binary scientiﬁc numbers, something we
already know how to do with a computer implementation (class
BSNumber).
Subtraction is deﬁned similarly:
r
0
− r
1
=(x
0
∗ y
1
− x
1
∗ y
0
,y
0
∗ y
1
) (2.32)
Multiplication of two ratios is deﬁned as
r
0
∗ r
1
=(x
0
∗ x
1
,y
0
∗ y
1
) (2.33)
where in fraction notation,
r
0
r
1
=
x
0
y
0
x
1
y
1
=
x
0
x
1
y
0
y
1
(2.34)
Division is similarly deﬁned as long as the denominator is not zero,
r
0
/r
1
=(x
0
∗ y
1
,x
1
∗ y
0
) (2.35)
where in fraction notation,
r
0
r
1
=
x
0
y
0
x
1
y
1
=
x
0
y
1
x
1
y
0
(2.36)
As with rational numbers, common factors may be removed from numera-
tor and denominator; that is, for nonzero f,(f ∗x, f ∗y)and(x, y)represent
the same abstract ratio of R.
The 2-tuple notation is how you represent ratios of binary scientiﬁc num-
bers in a computer program. The GTEngine class
BSRational is an implemen-
tation of such ratios and the arithmetic that applies to them.
2.4.3 Algebraic Properties of Binary Scientiﬁc Numbers
The binary scientiﬁc numbers B have abstract algebraic properties of in-
terest. By abstract, I mean in the sense you learn in an undergraduate abstract
algebra class about groups, rings, and ﬁelds. The set B, together with addition
and multiplication, is a commutative ring with unity.
1. Closure under addition: If x, y ∈ B,thenx + y ∈ B.
2. Associativity of addition: For x, y, z inB,(x + y)+z = x +(y + z).
3. Commutativity of addition: For x, y ∈ B, x + y = y + x.
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4. Additive identity: The number 0 ∈ B has the property x +0=x for all
x ∈ B.
5. Additive inverses: If x ∈ B, there is an element y ∈ B for which x+y =0;
y is said to be the additive inverse of x. Our notation for the inverse is
the unary negation, y = −x.
6. Closure under multiplication: If x, y ∈ B,thenx ∗ y ∈ B.
7. Associativity of multiplication: For x, y, z ∈ B,(x ∗ y) ∗ z = x ∗ (y ∗ z).
8. Commutativity of multiplication: For x, y ∈ B, x ∗ y = x ∗ y.
9. Multiplicative identity: The number 1 ∈ B has the property x ∗ 1=x
for all
x ∈ B.
10. Distributivity: For x, y, z ∈ B, x ∗ (y + z)=x ∗ y + x ∗ z.
Elements of B do not necessarily have multiplicative inverses. Recall that we
are restricting B to elements 1.u ∗ 2
p
for which u has a ﬁnite number of bits.
Thenumber3=1.1 ∗ 2
1
is in B but does not have a multiplicative inverse
in B.Ifitdid,itwouldhavetobethenumber1/3, but this number has
representation 1/3=1.
¯
01
∞
∗2
−2
, where the bit pairs 01 repeat ad inﬁnitum;
there is no representation with a ﬁnite number of bits.
The ratios of binary scientiﬁc numbers also have abstract algebraic prop-
erties of interest. The set R together with addition and multiplication form a
ﬁeld. Such an entity is a commutative ring with unity and each nonzero r ∈ R
has a multiplicative inverse. In our 2-tuple notation, if r =(x, y) with x and
y both nonzero elements of B, then the multiplicative inverse is 1/r =(y, x).
From the deﬁnition of Equation (2.33), the product is r ∗ 1/r =(x ∗ y, x ∗ y).
Removing the common multiple gives us (1, 1) which is a representation of the
multiplicative identity 1.
What do the abstract algebraic properties mean in practice? As long as
you have implemented the addition, subtraction, and multiplication opera-
tors correctly, you are guaranteed that the implementation will produce exact
arithmetic results. As long as two expressions theoretically produce the same
number, the implementation will compute the same number.
2.5 Floating-Point Arithmetic
The common ﬂoating-point representations for computing are speciﬁed
in the IEEE 754-2008 Standard for Floating-Point Arithmetic. The native
type
ﬂoat has thirty-two bits of storage and is referred to in the standard
as
binary32. Such numbers are said to provide single precision. The native
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type
double has sixty-four bits of storage and is referred to in the standard
as
binary64. Such numbers are said to provide double precision. This chapter
provides an overview of IEEE 754-2008 ﬂoating-point numbers for the binary
encodings but not for the decimal encodings. For signiﬁcantly more detail, see
[14] and [49].
2.5.1 Binary Encodings
The IEEE 754-2008 Standard deﬁnes binary interchange formats for
ﬂoating-point numbers. In each format, a ﬂoating-point number has a unique
encoding. The formats supported by most hardware are 32-bit (C++ type
ﬂoat), referred to as binary32, and 64-bit (C++ type double), referred to as
binary64. Also of interest is binary16, because many graphics processors support
16-bit ﬂoating-point as a way of reducing memory for vertex buﬀers and/or
reducing the computational load for the arithmetic logic unit.
The ﬁrst encoding presented here is for 8-bit ﬂoating-point numbers, which
is not particularly useful on powerful hardware but is helpful to illustrate
the general concepts for binary encodings. The other sections contain brief
descriptions of the binary encodings for 16-bit, 32-bit, and 64-bit formats.
Generally, n-bit encodings are allowed for n ≥ 128 as long as n is a multiple
of thirty-two.
In the discussions, I will use the type name
binaryN to represent the N-bit
ﬂoating-point number. The type will be treated as a C or C++ union; see
Listing 2.5.
typedef union
{
UIntegerN encoding ; // t he N−bit encoding
F lo a tN number ; // the floating−p o in t number
}
binaryN ;
LISTING 2.5: A union is used to allow accessing a ﬂoating-point number or
manipulating its bits via an unsigned integer.
This is for convenience of notation by not always having to declare explic-
itly a union type in the pseudocode that manipulates both the number and
its encoding.
The encoding for
binaryN has signed zeros,+0and−0. At ﬁrst glance, hav-
ing two representations for zero might be considered unnecessary, but there
are numerical applications where it is important to support this. The encoding
also has signed inﬁnities,+∞ and −∞. Inﬁnities have special rules applied to
them during arithmetic operations. Finally, the encoding has special values,
each called Not-a-Number (NaN). Some of these are called quiet NaNs that
are used to provide diagnostic information when unexpected conditions occur
during ﬂoating-point computations. The others are called signaling NaNs and
also may provide diagnostic information but might also be used to support
the needs of specialized applications. A NaN has an associated payload whose
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FIGURE 2.6: The layout of an 8-bit ﬂoating-point number.
meaning is at the discretion of the implementer. The IEEE 754-2008 Stan-
dard has many requirements regarding the handling of Na Ns in numerical
computations.
2.5.1.1 8-bit Floating-Point Numb ers
The layout of a
binary8 number is shown in Figure 2.6. The IEEE 754-
2008 Standard does not explicitly mention such an encoding, so I have chosen
the encoding tha t I believe best illustrates the ideas for general encodings.
The sign of the number is stored in bit seven. A 0-valued bit is used for a
nonnegative number and a 1-valued bit is used for a negative number. The
exponent is stor ed in bits four through six but is represented using a bias. If
the biased exponent stored in the three bits is e, then the ac tual exponent is
e − 3. The trailing signiﬁcand is stored in bits zero through three. A normal
number has an additional 1-valued bit prepended to the trailing signiﬁcand to
form the signiﬁcand of the number; this bit is considered to be hidden in the
sense it is not explicitly stored in the 8-bit encoding. A subnormal number has
an additional 0-valued bit prepended to the trailing signiﬁcand. To be precise,
the 8-bit quantity is interpreted as follows. Let s be the 1-bit sign, let e be
the 3-bit biased exponent, and let t be the 4-bit trailing signiﬁcand. Listing
2.6 shows how to decode the 8-bit pattern.
binary8 x = <some 8− bit floating−poi n t number >;
uint8
t s = (0x80 & x.encoding) >> 7; // s ig n
uint8
t e = (0x70 & x.encoding) >> 4; // biased exponent
uint8
t t = (0x0f & x . encoding ); // trailing significand
if (e == 0)
{
if (t == 0) // z e r o s
{
// x = ( −1)ˆ s ∗ 0 [ allows for +0 and −0]
}
else // subnormal numbers
{
// x = ( −1)ˆ s ∗ 0.t ∗ 2ˆ{−2}
}
}
else if (e < 7) // normal numbers
{
// x = ( −1)ˆs ∗ 1.t ∗ 2ˆ{ e−3}
}
else // s p e c i a l numbers
{
if (t == 0)
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{
// x = ( −1)ˆ s ∗ infinity
}
else
{
// Not−a−Number ( NaN )
if (t & 0x08)
{
// x = quiet NaN
}
else
{
// x = signaling NaN
}
// payload = t & 0x07
}
}
LISTING 2.6: Decoding an 8-bit ﬂoating-point number.
The maximum (unbiased) exponent is e
max
= 3. The minimum (unbiased)
exponent is e
min
=1− e
max
= −2. The relationship between the minimum
and maximum exponents is required by the IEEE 754-2008 Standard. The
number of bits in the signiﬁcand is p = 5, which includes the four bits of
the trailing signiﬁcand and the leading 1-valued bit for normal numbers. The
subnormal numbers have a leading 0-valued bit, so the number of signiﬁcant
bits for subnormals is always smaller than p.
The encoding has signed zeros, +0 (hex encoding
0x00)and−0 (hex en-
coding
0x80), and signed inﬁnities, +∞ (hex encoding 0x70)and−∞ (hex
encoding
0xf0).
The smallest positive subnormal number is 0.0001 ∗ 2
−2
=2
e
min
+1−p
=
2
−6
=1/64 = 0.015625. All ﬁnite ﬂoating-point numbers are integral multiples
of this number. The largest positive subnormal number is 0.1111 ∗ 2
−2
=
2
e
min
(1 − 2
1−p
)=15/64 = 0.234375. The smallest positive normal number is
1.0000 ∗ 2
−2
=2
e
min
=16/64 = 0.25. The largest positive normal number is
1.1111 ∗ 2
3
=2
e
max
(2 − 2
1−p
) = 992/64 = 15.5.
The binary encodings and their meanings are listed in Table 2.1 for the
128 numbers with a 0-valued sign bit. The hex column lists the encoding of
the 8-bit numbers in hexadecimal format. The multiples of 1/64 (the smallest
positive subnormal) for each number is simply the ﬂoating-point value times
sixty-four. The signaling NaNs are labeled
sNaN and the quiet NaNs are labeled
qNaN, both with payload values listed.
The ﬁnite
binary8 numbers live in the real-valued interval (−16, 16). It is
important to observe that the distribution of the numbers is not uniform.
Figure 2.7 shows hash marks at the locations of the
binary8 numbers. The sub-
normals are in the interval (0.0, 0.25). Zero, the subnormals, and the normals
in [0.0, 0.5] are uniformly distributed. The normals in [0.5, 1.0] are uniformly
distributed but at half the frequency for the numbers in [0.0, 0.5]. The nor-
mals in [1.0, 2.0] are also uniformly distributed but at half the frequency for
the numbers in [0.5, 1.0]. The pattern repeats: for each unbiased exponent
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TABLE 2. 1: The binary encodings for 8-bit ﬂoating-point numbers
hex bsn value hex bsn value hex bsn value
00 +0 0.000000 30 1.0000 ∗ 2
+0
1.0000 60 1.0000 ∗ 2
+3
8.0
01 0.0001 ∗ 2
−2
0.015625 31 1.0001 ∗ 2
+0
1.0625 61 1.0001 ∗ 2
+3
8.5
02 0.0010 ∗ 2
−2
0.031250 32 1.0010 ∗ 2
+0
1.1250 62 1.0010 ∗ 2
+3
9.0
03 0.0011 ∗ 2
−2
0.046875 33 1.0010 ∗ 2
+0
1.1875 63 1.0011 ∗ 2
+3
9.5
04 0.0100 ∗ 2
−2
0.062500 34 1.0100 ∗ 2
+0
1.2500 64 1.0100 ∗ 2
+3
10.0
05 0.0101 ∗ 2
−2
0.078125 35 1.0101 ∗ 2
+0
1.3125 65 1.0101 ∗ 2
+3
10.5
06 0.0110 ∗ 2
−2
0.093750 36 1.0110 ∗ 2
+0
1.3750 66 1.0110 ∗ 2
+3
11.0
07 0.0111 ∗ 2
−2
0.109375 37 1.0111 ∗ 2
+0
1.4375 67 1.0111 ∗ 2
+3
11.5
08 0.1000 ∗ 2
−2
0.125000 38 1.1000 ∗ 2
+0
1.5000 68 1.1000 ∗ 2
+3
12.0
09 0.1001 ∗ 2
−2
0.140625 39 1.1001 ∗ 2
+0
1.5625 69 1.1001 ∗ 2
+3
12.5
0A 0.1010 ∗ 2
−2
0.156250 3A 1.1010 ∗ 2
+0
1.6250 6A 1.1010 ∗ 2
+3
13.0
0B 0.1011 ∗ 2
−2
0.171875 3B 1.1011 ∗ 2
+0
1.6875 6B 1.1011 ∗ 2
+3
13.5
0C 0.1100 ∗ 2
−2
0.187500 3C 1.1100 ∗ 2
+0
1.7500 6C 1.1100 ∗ 2
+3
14.0
0D 0.1101 ∗ 2
−2
0.203125 3D 1.1101 ∗ 2
+0
1.8125 6D 1.1101 ∗ 2
+3
14.5
0E 0.1110 ∗ 2
−2
0.218750 3E 1.1110 ∗ 2
+0
1.8750 6E 1.1110 ∗ 2
+3
15.0
0F 0.1111 ∗ 2
−2
0.234375 3F 1.1111 ∗ 2
+0
1.9375 6F 1.1111 ∗ 2
+3
15.5
10 1.0000 ∗ 2
−2
0.250000 40 1.0000 ∗ 2
+1
2.000 70 +∞
11 1.0001 ∗ 2
−2
0.265625 41 1.0001 ∗ 2
+1
2.125 71 sNaN, payload 001
12 1.0010 ∗ 2
−2
0.281250 42 1.0010 ∗ 2
+1
2.250 72 sNaN, payload 010
13 1.0011 ∗ 2
−2
0.296875 43 1.0011 ∗ 2
+1
2.375 73 sNaN, payload 011
14 1.0100 ∗ 2
−2
0.312500 44 1.0100 ∗ 2
+1
2.500 74 sNaN, payload 100
15 1.0101 ∗ 2
−2
0.328125 45 1.0101 ∗ 2
+1
2.625 75 sNaN, payload 101
16 1.0110 ∗ 2
−2
0.343750 46 1.0110 ∗ 2
+1
2.750 76 sNaN, payload 110
17 1.0111 ∗ 2
−2
0.359375 47 1.0111 ∗ 2
+1
2.875 77 sNaN, payload 111
18 1.1000 ∗ 2
−2
0.375000 48 1.1000 ∗ 2
+1
3.000 78 qNaN, payload 000
19 1.1001 ∗ 2
−2
0.390625 49 1.1001 ∗ 2
+1
3.125 79 qNaN, payload 001
1A 1.1010 ∗ 2
−2
0.406250 4A 1.1010 ∗ 2
+1
3.250 7A qNaN, payload 010
1B 1.1011 ∗ 2
−2
0.421875 4B 1.1011 ∗ 2
+1
3.375 7B qNaN, payload 011
1C 1.1100 ∗ 2
−2
0.437500 4C 1.1100 ∗ 2
+1
3.500 7C qNaN, payload 100
1D 1.1101 ∗ 2
−2
0.453125 4D 1.1101 ∗ 2
+1
3.625 7D qNaN, payload 101
1E 1.1110 ∗ 2
−2
0.468750 4E 1.1110 ∗ 2
+1
3.750 7E qNaN, payload 110
1F 1.1111 ∗ 2
−2
0.484375 4F 1.1111 ∗ 2
+1
3.875 7F qNaN, payload 111
20 1.0000 ∗ 2
−1
0.50000 50 1.0000 ∗ 2
+2
4.00
21 1.0001 ∗ 2
−1
0.53125 51 1.0001 ∗ 2
+2
4.25
22 1.0010 ∗ 2
−1
0.56250 52 1.0010 ∗ 2
+2
4.50
23 1.0011 ∗ 2
−1
0.59375 53 1.0011 ∗ 2
+2
4.75
24 1.0100 ∗ 2
−1
0.62500 54 1.0100 ∗ 2
+2
5.00
25 1.0101 ∗ 2
−1
0.65625 55 1.0101 ∗ 2
+2
5.25
26 1.0110 ∗ 2
−1
0.68750 56 1.0110 ∗ 2
+2
5.50
27 1.0111 ∗ 2
−1
0.71875 57 1.0111 ∗ 2
+2
5.75
28 1.1000 ∗ 2
−1
0.75000 58 1.1000 ∗ 2
+2
6.00
29 1.1001 ∗ 2
−1
0.78125 59 1.1001 ∗ 2
+2
6.25
2A 1.1010 ∗ 2
−1
0.81250 5A 1.1010 ∗ 2
+2
6.50
2B 1.1011 ∗ 2
−1
0.84375 5B 1.1011 ∗ 2
+2
6.75
2C 1.1100 ∗ 2
−1
0.87500 5C 1.1100 ∗ 2
+2
7.00
2D 1.1101 ∗ 2
−1
0.90625 5D 1.1101 ∗ 2
+2
7.25
2E 1.1110 ∗ 2
−1
0.93750 5E 1.1110 ∗ 2
+2
7.50
2F 1.1111 ∗ 2
−1
0.96875 5F 1.1111 ∗ 2
+2
7.75
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FIGURE 2.7: The distribution of the nonnegative binary8 numbers. The ﬁf-
teen subnormal numbers are shown with gray hash marks. The normal num-
bers are shown with black hash marks.
TABLE 2. 2: Quantities of interest for
binary8
name value name value
F8 NUM ENCODING BITS 8 F8 MAX TRAILING 0x0f
F8 NUM EXPONENT BITS 3 F8 SUP TRAILING 0x10
F8 NUM SIGNIFICAND BITS 5 F8 POS ZERO 0x00
F8 NUM TRAILING BITS 4 F8 NEG ZERO 0x80
F8 EXPONENT BIAS 3 F8 MIN SUBNORMAL 0x01
F8 MAX BIASED EXPONENT 7 F8 MAX SUBNORMAL 0x0f
F8 SIGN MASK 0x80 F8 MIN NORMAL 0x10
F8 NOT SIGN MASK 0x7f F8 MAX NORMAL 0x6f
F8 BIASED EXPONENT MASK 0x70 F8 INFINITY 0x70
F8 TRAILING MASK 0x0f
F8 NAN QUIET MASK 0x08
F8 NAN PAYLOAD MASK 0x07
λ, the numbers with that exponent are uniformly distributed in the interval
[2
λ
, 2
λ+1
] but at half the frequency for the numbers in the interval [2
λ−1
, 2
λ
].
When implementing ﬂoating-point arithmetic in software, it is convenient
to deﬁne some quantities of interest as listed in Table 2.2. Similar quanti-
ties will be deﬁned for other binary encodings. The enumerate
F8 INFINITY
is assigned to a number that corresponds to the encoding 2
4
, but this is not
to be considered the value of +∞. Inﬁnities are handled diﬀerently from ﬁ-
nite ﬂoating-point numbers. The enumerate is for bit-pattern testing in the
software implementation.
As we explore the properties and arithmetic of ﬂoating-point numbers
with binary encodings of more bits, it is sometimes instructive to refer back
to
binary8 as motivation because it is easy to wrap your head around a ﬂoating-
point number system with so few numbers.
2.5.1.2 16-Bit Floating-Point Numbers
The layout of a
binary16 number is shown in Figure 2.8. The sign of the
number is stored in bit ﬁfteen. A 0-valued bit is used for a nonnegative number
and a 1-valued bit is used for a negative number. The exponent is stored





[image: ]CPU Computing 37
FIGURE 2.8: The layout of a 16-bit ﬂoating-point number.
in bits ten through fourteen, but is represented using a bias. If the biased
exponent stored in the ﬁve bits is e , then the actual exponent is e − 15. The
trailing signiﬁcand is stored in bits zero through nine. A normal number has
an additional 1-valued bit prepended to the trailing signiﬁcand to form the
signiﬁcand of the number; this bit is considered to be hidden in the sense it
is not explicitly stored in the 16 -bit encoding. A subnormal number has an
additional 0-valued bit prepended to the trailing signiﬁcand. To be precise,
the 16-bit quantity is interpreted as follows. Let s be the 1-bit sign, let e be
the 5-bit biased exponent, and let t be the 10- bit trailing signiﬁcand. Listing
2.7 shows how to decode the 16- bit pattern.
binary16 x = <some 16− bit floating−p oi n t number >;
uint16
t s = (0 x8000 & x . encoding ) >> 15; // s i gn
uint16
t e = (0 x7c00 & x . encoding ) >> 10; // biased exponent
uint16
t t = (0 x03ff & x . encoding ); // trailing significand
if (e == 0)
{
if (t == 0) // z e r o s
{
// x = ( −1)ˆ s ∗ 0 [ allows for +0 and −0]
}
else // subnormal numbers
{
// x = ( −1)ˆ s ∗ 0.t ∗ 2ˆ{−14}
}
}
else if (e < 31) // normal numbers
{
// x = ( −1)ˆs ∗ 1.t ∗ 2ˆ{ e−15}
}
else // s p e c i a l numbers
{
if (t == 0)
{
// x = ( −1)ˆ s ∗ infinity
}
else
{
// Not−a−Number ( NaN )
if ( t & 0x0200 )
{
// x = quiet NaN
}
else
{
// x = signaling NaN
}
// payload = t & 0x01ff
}
}
LISTING 2.7: Decoding a 16-bit ﬂoating-point number.
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TABLE 2 .3: Quantities of interest for
binary16
name value name value
F16 NUM ENCODING BITS 16 F16 MAX TRAILING 0x03ﬀ
F16 NUM EXPONENT BITS 5 F16 SUP TRAILING 0x0400
F16 NUM SIGNIFICAND BITS 11 F16 POS ZERO 0x0000
F16 NUM TRAILING BITS 10 F16 NEG ZERO 0x8000
F16 EXPONENT BIAS 15 F16 MIN SUBNORMAL 0x0001
F16 MAX BIASED EXPONENT 31 F16 MAX SUBNORMAL 0x03ﬀ
F16 SIGN MASK 0x8000 F16 MIN NORMAL 0x0400
F16 NOT SIGN MASK 0x7ﬀf F16 MAX NORMAL 0x7bﬀ
F16 BIASED EXPONENT MASK 0x7c00 F16 INFINITY 0x7c00
F16 TRAILING MASK 0x03ﬀ
F16 NAN QUIET MASK 0x0200
F16 NAN PAYLOAD MASK 0x01ﬀ
The maximum (unbiased) exponent is e
max
= 15. The minimum (unbiased)
exponent is e
min
=1− e
max
= −14. The relationship between the minimum
and maximum exponents is required by the IEEE 754-2008 Standard. The
number of bits in the signiﬁcand is p = 11, which includes the ten bits of
the trailing signiﬁcand and the leading 1-valued bit for normal numbers. The
subnormal numbers have a leading 0-valued bit, so the number of signiﬁcant
bits for subnormals is always smaller than p.
The encoding has signed zeros, +0 (hex encoding
0x0000)and−0(hex
encoding
0x8000), and signed inﬁnities, +∞ (hex encoding 0x7c00)and−∞
(hex encoding
0xfc00).
The smallest positive subnormal number occurs when e =0andt =
1, which is 2
e
min
+1−p
=2
−24
. All ﬁnite ﬂoating-point numbers are integral
multiples of this number. The largest positive subnormal number occurs when
e =0andt has all 1-valued bits, which is 2
e
min
(1 − 2
1−p
)=2
−14
(1 − 2
−10
).
The smallest positive normal number occurs when e =1andt =0,whichis
2
e
min
=2
−14
. The largest positive normal number occurs when e =30andt
has all 1-valued bits, which is 2
e
max
(2 − 2
1−p
)=2
15
(2 − 2
−10
).
The subnormals are in the interval (0, 2
−14
). Zero, the subnormals, and the
normals in [0, 2
−13
] are uniformly distributed. Just as for the 8-bit ﬂoating-
point numbers, for each unbiased exponent λ>1, the numbers with that
exponent are uniformly distributed in the interval [2
λ
, 2
λ+1
] but at half the
frequency for the numbers in the interval [2
λ−1
, 2
λ
].
When implementing ﬂoating-point arithmetic in software, it is convenient
to deﬁne some quantities of interest as listed in Table 2.3. Similar quantities
will be deﬁned for other binary encodings. The enumerate
F16 INFINITY is
assigned to a number that corresponds to the encoding 2
16
, but this is not
to be considered the value of +∞. Inﬁnities are handled diﬀerently from ﬁ-
nite ﬂoating-point numbers. The enumerate is for bit-pattern testing in the
software implementation.
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FIGURE 2.9: The layout of a 32-bit ﬂoating-point number.
2.5.1.3 32-Bit Floating-Point Numbers
The layout of a
binary32 number is shown in Figure 2.9. The sign of the
number is stored in bit thirty-one. A 0-valued bit is used for a nonnegative
number and a 1-valued bit is used for a negative number. The exponent is
stored in bits twenty-three thr ough thirty, but is represented using a bias. If
the biased exponent stored in the eight bits is e, then the actual exponent
is e − 127. The trailing signiﬁcand is stored in bits zero through twenty-two.
A normal number has an additional 1-valued bit prepended to the trailing
signiﬁcand to form the signiﬁcand of the number; this bit is considered to
be hidden in the sense it is not explicitly stored in the 32-bit encoding. A
subnormal number has an additional 0-valued bit prepended to the trailing
signiﬁcand. To be precise, the 32-bit quantity is interpreted as follows. Let s
be the 1-bit sign, let e be the 8-bit biased exponent, and let t be the 23-bit
trailing signiﬁcand. Listing 2.8 shows how to decode the 32-bit pattern.
binary32 x = <some 32− bit floating−p oi n t number >;
uint32
t s = (0 x80000000 & x . encoding ) >> 31; // si g n
uint32
t e = (0 x7f800000 & x . encoding ) >> 23; // biased exponent
uint32
t t = (0 x00 7ff fff & x . encoding ); // trailing significand
if (e == 0)
{
if (t == 0) // z e r o s
{
// x = ( −1)ˆ s ∗ 0 [ allows for +0 and −0]
}
else // subnormal numbers
{
// x = ( −1)ˆ s ∗ 0.t ∗ 2ˆ{−126}
}
}
else if (e < 255) // normal numbers
{
// x = ( −1)ˆs ∗ 1.t ∗ 2ˆ{ e −127}
}
else // s p e c i a l numbers
{
if (t == 0)
{
// x = ( −1)ˆ s ∗ infinity
}
else
{
// Not−a−Number
if ( t & 0 x00400000 )
{
// x = quiet NaN
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}
else
{
// x = signaling NaN
}
// payload = t & 0x003fffff
}
}
LISTING 2.8: Decoding a 32-bit ﬂoating-point number.
The maximum (unbiased) exponent is e
max
= 127. The minimum (unbi-
ased) exponent is e
min
=1− e
max
= −126. The relationship between the
minimum and maximum exponents is required by the IEEE 754-2008 Stan-
dard. The number of bits in the signiﬁcand is p = 24, which includes the
twenty-three bits of the trailing signiﬁcand and the leading 1-valued bit for
normal numbers. The subnormal numbers have a leading 0-valued bit, so the
number of signiﬁcant bits for subnormals is always smaller than p.
The encoding has signed zeros, +0 (hex encoding
0x00000000)and−0(hex
encoding
0x80000000), and signed inﬁnities, +∞ (hex encoding 0x7f800000)and
−∞ (hex encoding
0xﬀ800000).
The smallest positive subnormal number occurs when e =0andt =1,
which is 2
e
min
+1−p
=2
−149
. All ﬁnite ﬂoating-point numbers are integral
multiples of this number. The largest positive subnormal number occurs when
e =0andt has all 1-valued bits, which is 2
e
min
(1 − 2
1−p
)=2
−126
(1 − 2
−23
).
The smallest positive normal number occurs when e =1andt =0,whichis
2
e
min
=2
−126
. The largest positive normal number occurs when e = 254 and
t has all 1-valued bits, which is 2
e
max
(2 − 2
1−p
)=2
127
(2 − 2
−23
).
The subnormals are in the interval (0, 2
−126
). Zero, the subnormals, and
the normals in [0, 2
−125
] are uniformly distributed. Just as for the 8-bit
ﬂoating-point numbers, for each unbiased exponent λ>1, the numbers with
that exponent are uniformly distributed in the interval [2
λ
, 2
λ+1
] but at half
the frequency for the numbers in the interval [2
λ−1
, 2
λ
].
When implementing ﬂoating-point arithmetic in software, it is convenient
to deﬁne some quantities of interest as listed in Table 2.4. Similar quantities
will be deﬁned for other binary encodings. The enumerate
F32 INFINITY is
TABLE 2 .4: Quantities of interest for
binary32
name value name value
F32 NUM ENCODING BITS 32 F32 MAX TRAILING 0x007ﬀﬀf
F32 NUM EXPONENT BITS 8 F32 SUP TRAILING 0x00800000
F32 NUM SIGNIFICAND BITS 24 F32 POS ZERO 0x00000000
F32 NUM TRAILING BITS 23 F32 NEG ZERO 0x80000000
F32 EXPONENT BIAS 127 F32 MIN SUBNORMAL 0x00000001
F32 MAX BIASED EXPONENT 255 F32 MAX SUBNORMAL 0x007ﬀﬀf
F32 SIGN MASK 0x80000000 F32 MIN NORMAL 0x00800000
F32 NOT SIGN MASK 0x7ﬀﬀﬀf F32 MAX NORMAL 0x7f7ﬀﬀf
F32 BIASED EXPONENT MASK 0x7f800000 F32 INFINITY 0x7f800000
F32 TRAILING MASK 0x007ﬀﬀf
F32 NAN QUIET MASK 0x00400000
F32 NAN PAYLOAD MASK 0x003ﬀﬀf
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FIGURE 2.10: The layout of a 64-bit ﬂoating-point number.
assigned to a number that corresponds to the encoding 2
128
, but this is not
to be considered the value of +∞. Inﬁnities are handled diﬀerently from ﬁ-
nite ﬂoating-point numbers. The enumerate is for bit-pattern testing in the
software implementation.
2.5.1.4 64-Bit Floating-Point Numbers
The layout of a
binary64 number is shown in Figure 2.10. The sign of the
number is stored in bit sixty-three. A 0-valued bit is used for a nonnegative
number and a 1-valued bit is used for a negative number. The exponent is
stored in bits ﬁfty-two through sixty-two, but is represented using a bias. If
the biased exponent stored in the eleven bits is e, then the actual exponent
is e − 1023. The trailing signiﬁcand is stored in bits zero through ﬁfty-one.
A normal number has an additional 1-valued bit prepended to the trailing
signiﬁcand to form the signiﬁcand of the number; this bit is considered to
be hidden in the sense it is not explicitly stored in the 32-bit encoding. A
subnormal number has an additional 0-valued bit prepended to the trailing
signiﬁcand. To be precise, the 64-bit quantity is interpreted as follows. Let s
be the 1-bit sign, let e be the 11-bit biased exponent, and let t be the 52-bit
trailing signiﬁcand. Listing 2.9 shows how to decode the 64-bit pattern.
binary64 x = <some 64− bit floating−p oi n t number >;
uint64
t s = (0 x8000000000000000 & x . encoding ) >> 63; // s i gn
uint64
t e = (0 x7ff0000000000000 & x . encoding ) >> 52; // biased exponent
uint64
t t = (0x000fffffffffffff & x.encoding); // trailing significand
if (e == 0)
{
if (t == 0) // z e r o s
{
// x = ( −1)ˆ s ∗ 0 [ allows for +0 and −0]
}
else // subnormal numbers
{
// x = ( −1)ˆ s ∗ 0.t ∗ 2ˆ{−1022}
}
}
else if (e < 2047) // normal numbers
{
// x = ( −1)ˆs ∗ 1.t ∗ 2ˆ{ e −1023}
}
else // s p e c i a l numbers
{
if (t == 0)
{
// x = ( −1)ˆ s ∗ infinity
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}
else
{
if ( t & 0 x0008000000000000 )
{
// x = quiet NaN
}
else
{
// x = signaling NaN
}
// payload = t & 0x0007ffffffffffff
}
}
LISTING 2.9: Decoding a 64-bit ﬂoating-point number.
The maximum (unbiased) exponent is e
max
= 1023. The minimum (un-
biased) exponent is e
min
=1− e
max
= −1022. The relationship between the
minimum and maximum exponents is required by the IEEE 754-2008 Stan-
dard. The number of bits in the signiﬁcand is p = 53, which includes the
ﬁfty-two bits of the trailing signiﬁcand and the leading 1-valued bit for nor-
mal numbers. The subnormal numbers have a leading 0-valued bit, so the
number of signiﬁcant bits for subnormals is always smaller than p.
The encoding has signed zeros, +0 (hex encoding
0x0000000000000000)and
−0 (hex encoding
0x8000000000000000), and signed inﬁnities, +∞ (hex encod-
ing
0x7ﬀ0000000000000)and−∞ (hex encoding 0xﬀf0000000000000).
The smallest positive subnormal number occurs when e =0andt =1,
which is 2
e
min
+1−p
=2
−1074
. All ﬁnite ﬂoating-point numbers are integral
multiples of this number. The largest positive subnormal number occurs when
e =0andt has all 1-valued bits, which is 2
e
min
(1 −2
1−p
)=2
−1022
(1 −2
−52
).
The smallest positive normal number occurs when e =1andt =0,which
is 2
e
min
=2
−1022
. The largest positive normal number occurs when e = 2046
and t has all 1-valued bits, which is 2
e
max
(2 − 2
1−p
)=2
1023
(2 − 2
−52
).
The subnormals are in the interval (0, 2
−1022
). Zero, the subnormals, and
the normals in [0, 2
−1021
] are uniformly distributed. Just as for the 8-bit
ﬂoating-point numbers, for each unbiased exponent λ>1, the numbers with
that exponent are uniformly distributed in the interval [2
λ
, 2
λ+1
] but at half
the frequency for the numbers in the interval [2
λ−1
, 2
λ
].
When implementing ﬂoating-point arithmetic in software, it is convenient
to deﬁne some quantities of interest as listed in Table 2.5. Similar quantities
will be deﬁned for other binary encodings. The enumerate
F64 INFINITY is
assigned to a number that corresponds to the encoding 2
1024
, but this is
not to be considered the value of +∞. Inﬁnities are handled diﬀerently from
ﬁnite ﬂoating-point numbers. The enumerate is for bit-pattern testing in the
software implementation.
2.5.1.5 n -Bit Floating-Point Numbers
The IEEE 754-2008 Standard speciﬁes the requirements for binary encod-
ings of n-bit numbers for n ≥ 128 a multiple of thirty-two bits. The sign bit
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TABLE 2 .5: Quantities of interest for
binary64
name value
F64 NUM ENCODING BITS 64
F64 NUM EXPONENT BITS 11
F64 NUM SIGNIFICAND BITS 53
F64 NUM TRAILING BITS 52
F64 EXPONENT BIAS 1023
F64 MAX BIASED EXPONENT 2047
F64 SIGN MASK 0x8000000000000000
F64 NOT SIGN MASK 0x7ﬀﬀﬀﬀﬀﬀﬀf
F64 BIASED EXPONENT MASK 0x7ﬀ0000000000000
F64 TRAILING MASK 0x000ﬀﬀﬀﬀﬀﬀf
F64 NAN QUIET MASK 0x0008000000000000
F64 NAN PAYLOAD MASK 0x0007ﬀﬀﬀﬀﬀﬀ
F64 MAX TRAILING 0x000ﬀﬀﬀﬀﬀﬀf
F64 SUP TRAILING 0x0010000000000000
F64 POS ZERO 0x0000000000000000
F64 NEG ZERO 0x8000000000000000
F64 MIN SUBNORMAL 0x0000000000000001
F64 MAX SUBNORMAL 0x000ﬀﬀﬀﬀﬀﬀf
F64 MIN NORMAL 0x0010000000000000
F64 MAX NORMAL 0x7feﬀﬀﬀﬀﬀﬀf
F64 INFINITY 0x7ﬀ0000000000000
is the high-order bit, followed by w = round(4 log
2
(k)) − 13 exponent bits,
where the rounding function is to the nearest integer. The exponent bits are
followed by t = n − w − 1 trailing signiﬁcand bits. The precision (in bits) is
p = t + 1. The maximum (unbiased) exponent is e
max
=2
n−p−1
−1, the min-
imum (unbiased) exponent is e
min
=1−e
max
, the exponent bias is β = e
max
,
and if e is a biased exponent, the unbiased exponent is e −β.Thenumberof
exponent bits for
binary128 is ﬁfteen and the number of trailing signiﬁcand bits
is 112. The number of exponent bits for
binary256 is nineteen and the number
of trailing signiﬁcand bits is 236.
The smallest positive subnormal number occurs when e =0andt =1,
which is 2
e
min
+1−p
. All ﬁnite ﬂoating-point numbers are integral multiples of
this number. The largest positive subnormal number occurs when e =0and
t has all 1-valued bits, which is 2
e
min
(1 −2
1−p
). The smallest positive normal
number occurs when e =1andt = 0, which is 2
e
min
. The largest positive
normal number occurs when e = e
max
and t has all 1-valued bits, which is
2
e
max
(2 − 2
1−p
).
The subnormals are in the interval (0, 2
−e
min
). Zero, the subnormals, and
the normals in [0, 2
1−e
min
] are uniformly distributed. Just as for the 8-bit
ﬂoating-point numbers, for each unbiased exponent λ>1, the numbers with
that exponent are uniformly distributed in the interval [2
λ
, 2
λ+1
] but at half
the frequency for the numbers in the interval [2
λ−1
, 2
λ
].
When implementing ﬂoating-point arithmetic in software, it is convenient
to deﬁne some quantities of interest, as shown in Listing 2.10. The data types
Integer (signed integer) and UInteger (unsigned integer) are assumed to use n
bits.
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Integer NUM ENCODING BITS = <number of b its in the encoding >;
Integer NUM
EXPONE NT BITS = Round ( 4 ∗ log2 (NUM ENCODING BITS ) − 13);
Integer NUM
SIGNIFICAND BITS = NUM ENCODING BITS − NUM EXPONENT BITS ;
Integer NUM
TRAILING BITS = N UM SIGNIFICAND BITS − 1;
Integer EXPONENT
BIAS = (1 << (NUM EXPONENT BITS − 1)) − 1;
Integer MAX
BIASED EXPONENT = 2∗EXPONENT BIAS ;
UInteger SIGN
MASK = (1 << (NUM ENCODING BITS − 1));
UInteger NOT
SIGN MASK = ˜SIGN MASK ;
UInteger SUP
TRAILING = ( 1 << NUM TRAILING BITS ) ;
U I n t e g e r BIASED
EXPONE NT MASK = SIGN MASK − SUP TRAIL ING ;
UIn t ege r TRAILING
MASK = SU P TRAILIN G − 1;
UInteger MAX
TRAILING = TRAILING MASK ;
UInteger NAN
QUIET MASK = (1 << (NUM TRAIL ING BITS − 1));
UInteger NAN
PAYLOAD MASK = NAN QUI E T MASK − 1;
UInteger POS
ZERO = 0 ;
UInteger NEG
ZERO = SIGN MASK ;
UInteger MIN
SUBNORMAL = 1 ;
UInteger MAX
SUBNORMAL = TRAILING MASK ;
UInteger MIN
NORMAL = SUP TRAILING ;
UInteger MAX
N ORMAL = BIASED EXPONENT MASK − 1+MAXTRAIL ING ;
U I n t e g e r INFIN ITY = BIASED
EXPONE NT MASK ;
LISTING 2.10: Integer and unsigned integer quantities that are useful for
encoding and decoding ﬂoating-point numbers.
The enumerate
INFINITY is assigned to a number that corresponds to the
encoding 2
w−1
, but this is not to be considered the value of +∞. Inﬁnities
are handled diﬀerently from ﬁnite ﬂoating-point numbers. The enumerate is
for bit-pattern testing in the software implementation.
The general decoding of ﬂoating-point numbers is shown in Listing 2.11
and is similar to the pseudocode provided for 8-bit, 16-bit, 32-bit, and 64-bit
ﬂoating-point numbers.
binaryN x = <some n−bit floating−p o in t number >;
UInteger s = (SIGN
MASK & x . e n c o d in g ) >> (NUM ENCODING BITS − 1);
U I n t e g e r e = (BIASED
EXPONE NT MASK & x . e n c o d i n g ) >> NUM TRAIL ING BITS ;
UIn t ege r t = ( TRAILING
MASK & x . enc o ding ) ;
if (e == 0)
{
if (t == 0) // z e r os
{
// x = ( −1)ˆ s ∗ 0 [ allows for +0 and −0]
}
else // subnormal numbers
{
// x = ( −1)ˆ s ∗ 0.t ∗ 2ˆ{1 − EXPONENT
BIAS}
}
}
else if (e < MAX
BIASED EXPONENT) // norma l numbers
{
// x = ( −1)ˆs ∗ 1.t ∗ 2ˆ{ e − EXPONENT
BIAS}
}
else // s p e c i a l numbers
{
if (t == 0)
{
// x = ( −1)ˆ s ∗ infinity
}
else
{
if (t & NAN
QUIET MASK )
{
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// x = quiet NaN
}
else
{
// x = signaling NaN
}
// p a y l o a d = t & NAN
PAYLOAD MASK
}
}
LISTING 2.11: The general decoding of ﬂoating-point numbers.
The pseudocode that extracts the sign, biased exponent, and trailing sig-
niﬁcand may be encapsulated, as shown in Listing 2.12. The combination of
parts into a number may also be encapsulated. There is no reason to shift the
sign bit into the lowest-order bit.
void GetEncoding ( binaryN x , UInteger& sign , UInteger& biased ,
UInteger& tr ai lin g )
{
sign = (x . encoding & SIGN
MASK ) ;
b i a s e d = ( x . e n c o d i n g & BIASED
EXPONE NT MASK) >> NUM TRAILING BITS ;
t r a i l i n g = ( x . enc o d ing & TRAILING
MASK ) ;
}
binaryN SetEncoding ( UInteger sign , UInteger biased , UInteger t ra i li ng )
{
binaryN x ;
x . encoding = sign | (biased << NUM
TRAILING BITS ) | trailing ;
return x;
}
LISTING 2.12: Convenient wrappers for processing encodings of ﬂoating-
point numbers.
2.5.1.6 Classiﬁcations of Floating-Point Numbers
This section contains information about classifying ﬂoating-point numbers
based on various properties.
Queries for Type of Floating-Point Number. The IEEE 754-2008 Standard
requires queries to determine the type of a speciﬁed ﬂoating-point number.
Firstly, an enumeration is required for the various types. Listing 2.13 shows
pseudocode that satisﬁes the requirement.
enum Classification
{
CLASS
NEG INFINITY ,
CLASS
NEG SUBNORMAL ,
CLASS
NEG NORMAL ,
CLASS
NEG ZERO ,
CLASS
POS ZERO ,
CLASS
POS SUBNORMAL ,
CLASS
POS NORMAL ,
CLASS
POS INFINITY ,
CLASS
QUIET NAN ,
CLASS
SIGNALING NAN
} ;
Classification GetClassification (binaryN x)
{
UInteger sign , biased , t ra ili ng ;
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GetEncoding(x , sign , biased , trail in g );
if (biased == 0)
{
if (trailing == 0)
{
return (sign != 0 ? CLASS
NEG ZERO : CLASS POS ZERO ) ;
}
else
{
return (sign != 0 ? CLASS
NEG SUBNORMAL : CLASS POS SUBNORMAL ) ;
}
}
else if (biased < MAX
BIASED EXPONENT)
{
return (sign != 0 ? CLASS
NEG NORMAL : CLASS POS NORMA L ) ;
}
else if ( trailing == 0)
{
return (sign != 0 ? CLASS
NEG INFINITY : CLASS POS INFINITY ) ;
}
else if ( trailing & NAN
QUIET MASK )
{
return CLAS S
QUIET NAN ;
}
else
{
return CLAS S
SIGNALING NAN ;
}
}
LISTING 2.13: Classiﬁcation of ﬂoating-point numbers.
Secondly, queries are required for whether the number is ﬁnite or inﬁnite,
is normal or subnormal, is zero, is a NaN or a signaling NaN, or whether
the sign bit is set to one. The queries are trivial to implement using the
binary encodings, as shown in Listing 2.14. The enumerates were deﬁned in
the sections on binary encodings.
// Q uery w he t he r x is a z e r o .
bool IsZero ( binaryN x)
{
return x . encoding == POS
ZERO || x . encoding == NEG ZERO ;
}
// Query whether the sign bi t of x i s set to 1.
bool IsSignMinus (binaryN x)
{
return ( x . e n c o di n g & SIGN
MASK ) != POS ZERO ;
}
// Query whether x is a subnormal number .
bool IsSubnormal ( binaryN x)
{
U I n t e g e r b = ( x . e n c o d i n g & BIASED
EXPONE NT MASK) >> NUM TRAILIN G BITS ;
UIn t ege r t = ( x . en c odin g & TRAIL ING
MASK ) ;
return b==POS
ZERO && t > POS ZERO ;
}
// Q uery w he t he r x is a no rm al number .
bool IsNormal ( binaryN x)
{
U I n t e g e r b = ( x . e n c o d i n g & BIASED
EXPONE NT MASK) >> NUM TRAILIN G BITS ;
return POS
ZERO < b&&b< MAX BIASED EXP ONE NT;
}
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// Q uery w he t he r x is a f i n i t e number .
bool IsFinite (binaryN x)
{
U I n t e g e r b = ( x . e n c o d i n g & BIASED
EXPONE NT MASK) >> NUM TRAILIN G BITS ;
return b < MAX
BIASED EXPONENT;
}
// Q uery w he t he r x is an i n f i n i t e number .
bool IsInfinite (binaryN x)
{
U I n t e g e r b = ( x . e n c o d i n g & BIASED
EXPONE NT MASK) >> NUM TRAILIN G BITS ;
UIn t ege r t = ( x . en c odin g & TRAIL ING
MASK ) ;
return b==MAX
BIASED EXPONENT && t == POS ZERO ;
}
// Q uery w he t he r x is Not−a−Number (quiet or signaling ).
bool IsNaN ( binaryN x)
{
U I n t e g e r b = ( x . e n c o d i n g & BIASED
EXPONE NT MASK) >> NUM TRAILIN G BITS ;
UIn t ege r t = ( x . en c odin g & TRAIL ING
MASK ) ;
return b==MAX
BIASED EXPONENT && t != POS ZERO ;
}
// Query whether x is a signaling Not−a−Number .
bool IsSignalingNaN (binaryN x)
{
U I n t e g e r b = ( x . e n c o d i n g & BIASED
EXPONE NT MASK) >> NUM TRAILIN G BITS ;
UIn t ege r t = ( x . en c odin g & TRAIL ING
MASK ) ;
return b==MAX
BIASED EXPONENT
&& ( t & NA N
QUIET MASK ) == POS ZERO
&& ( t & NAN
PAYLOAD MASK) != POS ZERO ;
}
LISTING 2.14: Queries about ﬂoating-point numbers.
Determining Adjacent Floating-Point Numbers. When computing numer-
ically, the classic mind-set is one of coding mathematical equations and im-
plementing algorithms that are formulated at a high level, ignoring or paying
little attention to the fact that the underlying numerical system uses ﬂoating-
point numbers. There is a good chance that you rarely (if ever) write code that
requires computing the ﬂoating-point numbers that are immediately adjacent
to a speciﬁed ﬂoating-point number.
I had provided an example in the introduction chapter regarding the com-
putation of the roots of a quadratic polynomial. In that example, I mentioned
that the computed root appeared to be wrong, but by analyzing the poly-
nomial values at the ﬂoating-point numbers adjacent to the computed root,
the result was the best we could do. This example shows that validating the
results of your calculations might very well require working directly with the
ﬂoating-point number system rather than relying on yet another high-level
mathematical framework that ignores ﬂoating-point issues.
The IEEE 754-2008 Standard recognizes that an implementation provide
queries to obtain the ﬂoating-point values immediately adjacent to a speciﬁed
ﬂoating-point number. The smaller adjacent neighbor is referred to as the
next-down number and the larger adjacent neighbor is referred to as the next-
up number.
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Let nextUp(x) be the function that computes the next-up value for x.For
ﬁnite and nonzero x, the next-up value is the obvious choice—the smallest
ﬂoating-point number that is larger than x. The edge cases are as follows. Let
f
min
be the smallest positive subnormal number and let f
max
be the largest
positive normal number; then
nextUp(−∞)=−f
max
, nextUp(−f
min
)=−0,
nextUp(−0) = f
min
, nextUp(+0) = f
min
,
nextUp(f
max
)=+∞, nextUp(+∞)=+∞
(2.37)
If x is a quiet NaN, then nextUp(x) returns x and does not signal an exception.
If x is a signaling NaN, then nextUp(x) also returns x but signals an invalid
operation exception. An implementation is provided by Listing 2.15, where a
return of a
UInteger implies an implicit conversion to a binaryN.
binaryN GetNextUp ( binaryN x)
{
UInteger sign , biased , t ra ili ng ;
GetEncoding(x , sign , biased , trail in g );
if (biased == 0)
{
if (trailing == 0)
{
// The n ex t−up f o r b o t h −0and+0 is MIN
SUBNORMAL .
return MIN
SUBNORMAL ;
}
else
{
if (sign != 0)
{
// When trailing is 1, x is −MIN
SUBNORMAL and n e x t −up
// i s −0.
−− trailing ;
return SIGN
MASK | trailing ;
}
else
{
// When trailing is MAX
TRAILING , x i s MAX SUBNORMAL a n d
// n ex t−up i s MIN
NORMAL.
++trailing ;
return trailing ;
}
}
}
else if (biased < MAX
BIASED EXPONENT)
{
UInteger nonnegative = (x . encoding & NOT
SIGN MASK ) ;
if (sign != 0)
{
−− nonnegative ;
return SIGN
MASK | nonnegative ;
}
else
{
++nonnegative ;
return nonnegative ;
}
}
else if ( trailing == 0)
{





[image: ]CPU Computing 49
if (sign != 0)
{
// The n ex t−up o f −INFINITY is −MAX
NORMAL.
return SIGN
MASK | MAX NORMAL ;
}
else
{
// The n ex t−up o f +INFINITY i s +INFINITY .
return INFINITY ;
}
}
else if ( trailing & NAN
QUIET MASK )
{
// x is a quiet NaN; return it ( preserving its payload).
return x;
}
else
{
// x is a signaling NaN; signal an invalid operation and return
// i t ( p re s e r v i n g i t s p a y l o a d ).
S i g n a lE x c e p t i o n ( INVALID
OPERATION ) ;
return x;
}
}
LISTING 2.15: An implementation of the nextUp(x) function.
The nextDown(x) function is similar. For ﬁnite and nonzero x, the next-
down value is the obvious choice—the largest ﬂoating-point number that is
smaller than x. The edge cases are
nextDown(−∞)=−∞, nextDown(−f
max
)=−∞,
nextDown(−0) = −f
min
, nextDown(+0) = −f
min
,
nextDown(f
min
)=+0, nextDown(+∞)=f
max
(2.38)
If x is a quiet NaN, then nextDown(x) returns x and does not signal an
exception. If x is a signaling NaN, then nextDown(x) also returns x but signals
an invalid operation exception. An implementation is provided by Listing 2.16,
where a return of a
UInteger implies an implicit conversion to a binaryN.
binaryN GetNextDown ( binaryN x)
{
UInteger sign , biased , t ra ili ng ;
GetEncoding(x , sign , biased , trail in g );
if (biased == 0)
{
if (trailing == 0)
{
// The n ex t−down f o r both −0and+0 is−MIN
SUBNORMAL .
return SIGN
MASK | MIN SUBNORMAL ;
}
else
{
if (sign == 0)
{
// When trailing is 1, x is MIN
SUBNORMAL and n e x t −down
// i s +0.
−− trailing ;
return trailing ;
}
else
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{
// When trailing is MAX
TRAILING , x i s −MAX SUBNORMAL a nd
// n ex t−down i s −MIN
NORMAL.
++trailing ;
return SIGN
MASK | trailing ;
}
}
}
else if (biased < MAX
BIASED EXPONENT)
{
UInteger nonnegative = (x . encoding & NOT
SIGN MASK ) ;
if (sign == 0)
{
−− nonnegative ;
return nonnegative ;
}
else
{
++nonnegative ;
return SIGN
MASK | nonnegative ;
}
}
else if ( trailing == 0)
{
if (sign == 0)
{
// The n ex t−down o f +INFINITY i s +MAX
NORMAL.
return MAX
NORMAL;
}
else
{
// The n ex t−down of −INFINITY i s −INFINITY .
return SIGN
MASK | INFINITY ;
}
}
else if ( trailing & NAN
QUIET MASK )
{
// x is a quiet NaN; return it ( preserving its payload).
return x;
}
else
{
// x is a signaling NaN; signal an invalid operation and return
// i t ( p re s e r v i n g i t s p a y l o a d ).
S i g n a lE x c e p t i o n ( INVALID
OPERATION ) ;
return x;
}
}
LISTING 2.16: An implementation of the nextDown(x) function.
2.5.2 Rounding and Conversions
One of the important aspects of ﬂoating-point arithmetic is rounding.Most
likely you think about rounding when using arithmetic operations such as ad-
dition, subtraction, multiplication, and division. Rounding is also of concern
when computing mathematical functions. An IEEE 754-2008 Standard re-
quirement that is pervasive throughout ﬂoating-point systems is the concept
of producing a correctly rounded result. For example, addition of two n-bit
ﬂoating-point numbers should produce an n-bit ﬂoating-point number that
is closest to the inﬁnitely precise sum. The square root function of an n-bit
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FIGURE 2.11: An illustration of rounding with ties-to-even.
ﬂoating-point number should produce an n-bit ﬂoating-point number that is
closest to the inﬁnitely precise square root.
The concept of closest is controllable by programmers in that they may
specify a rounding mode. The IEEE 754-2008 Standard speciﬁes ﬁve diﬀerent
rounding modes: rounding with ties-to-even (default), rounding with ties-to-
away, rounding toward zero, rounding toward positive,androunding toward
negative. These are deﬁned next with application to a number of the form
σd.r,whereσ is +1 or −1 (the sign of the number), where d is a nonnegative
integer (the integer part of the number), and where r is a nonnegative integer
(the fractional part of the number). Although the discussion and ﬁgures refer
to integers, they are a simpliﬁcation of the actual situation. The rounding
occurs based on the bits that theoretically occur after the trailing signiﬁcand,
so in fact you can think of the discussion and ﬁgures applying to ﬂoating-point
numbers with the appropriate shifting of bits (based on some power of two).
After the discussion on rounding, we will consider conversion between num-
bers in various formats, which will involve rounding. In particular, we will look
at converting between n-bit and m-bit ﬂoating-point formats using rounding
with ties-to-even. If n<m, then the m-bit format is said to be wider than
the n-bit format. Equivalently, the n-bit format is said to be narrower than
the m-bit format.
2.5.2.1 Rounding with Ties-to-Even
This rounding mode is the default and what you are normally taught early
in life when rounding numbers. If the fractional part is smaller than half, you
round down, and if the fractional part is larger than half, you round up.
When the fractional part is exactly half, to avoid bias you round down or
up according to whether the integer part is even or odd, respectively. The
mathematical summary is
round
e
(σd.r)=

σd,
0.r < 1/2or(0.r =1/2andd is even)
σ(d +1), 0.r > 1/2or(0.r =1/2andd is odd)
(2.39)
Figure 2.11 illustrates this on the number line for several intervals. The
use of parentheses and brackets in the ﬁgure is consistent with their use in
interval notation: a parenthesis excludes the point and a bracket includes
the point. Examples are round
e
(1.1) = 1, round
e
(1.9) = 2, round
e
(1.5) =
2, round
e
(2.5) = 2, round
e
(−1.1) = −1, round
e
(−1.5) = −2, and
round
e
(−2.5) = −2.
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FIGURE 2.12: An illustration of rounding with ties-to-away.
FIGURE 2.13: An illustration of rounding toward zero.
2.5.2.2 Rounding with Ties-to-Away
The rounding mode is similar to ties-to-even in that fractions not equal to
half are rounded down or up accordingly. When the fraction is half, the round-
ing is away from zero, meaning that the rounding is to the largest magnitude
integer neighbor. The mathematical summary is
round
a
(σd.r)=

σd, 0.r < 1/2
σ(d +1), 0.r ≥ 1/2
(2.40)
Figure 2.12 illustrates this on the number line for several intervals. Examples
are round
a
(1.1) = 1, round
a
(1.9) = 2, round
a
(1.5) = 2, round
a
(2.5) = 3,
round
a
(−1.1) = −1, round
a
(−1.5) = −2, and round
a
(−2.5) = −3.
2.5.2.3 Rounding toward Zero
The number is rounded toward zero; that is, it is rounded to the inte-
ger neighbor that is smallest in magnitude. You should recognize this as the
familiar truncation mode. The mathematical summary is
round
z
(σd.r)=σd (2.41)
Figure 2.13 illustrates this on the number line for several intervals. Some exam-
ples are round
z
(1) = 1, round
z
(1.1) = 1, round
z
(−1.1) = −1, round
z
(−2) =
−2, round
z
(0.1) = +0, and round
z
(−0.1) = −0. The last two examples em-
phasize that in ﬂoating-point arithmetic, the rounding can produce a signed
zero.
2.5.2.4 Rounding toward Positive
When a number is not exactly an integer, the rounding is in the direction
of the positive axis. If i is an integer and x ∈ (i, i + 1), the rounded value
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FIGURE 2.14: An illustration of rounding toward positive.
FIGURE 2.15: An illustration of rounding toward negative.
is round
p
(x)=i + 1. The equation is more complicated when the number is
formulated as x = σi.f, but this is necessary to understand the implemen-
tation for ﬂoating-point numbers. In this mode, the rounded value is d in all
cases but one: the number is positive, the fractional part is positive, and the
rounded value is d + 1. The mathematical summary is
round
p
(σi.f)=

σd, r =0or(r>0andσ<0)
σd +1,r>0andσ>0
(2.42)
Figure 2.14 illustrates this on the number line for several intervals. Some exam-
ples are round
p
(1) = 1, round
p
(1.1) = 2, round
p
(−1.1) = −1, round
p
(−2) =
−2, and round
p
(−0.7) = −0. The last example emphasizes that in ﬂoating-
point arithmetic, the rounding can produce negative zero.
2.5.2.5 Rounding toward Negative
Rounding in the negative direction is similar to that of rounding in the
positive direction. If i is an integer and x ∈ (i, i + 1), the rounded value is
round
n
(x)=i.Intermsofx = σi.f for ﬂoating-point rounding, the rounded
value is d in all cases but one: the number is negative, the fractional part is
positive, and the rounded value is d − 1. The mathematical summary is
round
n
(σd.r)=

σd, r =0or(r>0andσ>0)
σd − 1,r>0andσ<0
(2.43)
Figure 2.15 illustrates this on the number line for several intervals. Some exam-
ples are round
n
(1) = 1, round
n
(1.1) = 1, round
n
(−1.1) = −2, round
n
(−2) =
−2, and round
n
(0.7) = +0. The last example emphasizes that in ﬂoating-point
arithmetic, the rounding can produce positive zero.
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2.5.2.6 Rounding from Floating-Point to Integral Floating-Point
The ﬁve rounding modes are illustrated in this section for rounding a
ﬂoating-point number to a representable integer, itself a ﬂoating-point num-
ber. In all cases, round(+0) = +0, round(−0) = −0, round(+∞)=+∞,and
round(−∞)=−∞; that is, the sign bits are preserved for the signed zeros
and signed inﬁnities. The function names in this section all start with preﬁx
RoundToIntegral and have a suﬃx that corresponds to the rounding mode.
According to the IEEE 754-2008 Standard, quiet NaNs are mapped to
themselves. The invalid operation is signaled when the input is a signaling
NaN, and the output is the quieted value for that NaN. No signals are gener-
ated for inexact results. The maximum ﬁnite ﬂoating-point values are already
integers, so it is not possible for a rounded result to be inﬁnite (no overﬂow
exception). The IEEE 754-2008 Standard also speciﬁes that an implementa-
tion must provide a function
RoundToIntegralExact that rounds according to
the currently active rounding mode. However, this function does signal the
inexact exception. In the pseudocode, I have comments indicating where the
signaling occurs, each signal raised via a
RaiseFlags function.
Rounding with Ties-To-Even. Consider nonnegative values for x. Similar
arguments are made when x is negative. If 0 ≤ x<1/2, then round
e
(x) = +0.
The remaining numbers are ﬁnite ﬂoating-point numbers for which x ≥ 1/2.
These numbers are necessarily normal, so x =1.t ∗ 2
e
,wheret is the trailing
signiﬁcand and e ≥−1 is the unbiased power.
If e = −1andt =0,thenx =1/2 and round
e
(x) = +0. We round down
because x is midway between zero and one, and zero is the closest even integer.
If e = −1andt>0, then x ∈ (1/2, 1) and the closest integer is round
e
(x)=1.
When e =0,thenumberisx =1.t ∈ [1, 2). If 0.t < 1/2, then x is rounded
down to one. If 0.t ≥ 1/2, then x is rounded up to two. When 0.t =1/2, the
rounding rule says to round to the even integer, which is why 1.5 is rounded
to two.
Let 0 <e<n,wheren is the number of bits in the trailing signiﬁcand.
The number x is
x =1t
n−1
···t
n−e
.t
n−e−1
···t
0
= d.r (2.44)
where the last equality deﬁnes positive integer d and nonnegative integer r.
The number of bits of x is n + 1, the number of bits of d is e +1,andthe
number of bits of r is n − e.If0.r < 1/2, then x is rounded down to d.If
0.r > 1/2, then x is rounded up to d +1. If 0.r =1/2, then x is rounded down
to d when d is even or x is rounded up to d +1whend + 1 is even. In the
source code, it turns out that we may combine the last two cases and process
all e for which 0 ≤ e<n.
If e ≥ n,then
x =1.t ∗ 2
n
∗ 2
e−n
= d ∗ 2
e−n
(2.45)
where d is a positive integer. As a binary number, the leading bits of d are
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a 1-bit followed by the trailing signiﬁcand bits and then followed by zero or
more 0-bits. Therefore, x is an integer and round
e
(x)=x.
Pseudocode for the rounding is presented next. The generic types
Integer
and UInteger represent signed and unsigned integers, respectively, with the
same number of bits as the binary encoding for the ﬂoating-point number.
Listing 2.17 is an implementation of the default rounding mode: rounding
with ties-to-even.
binaryN RoundToIntegralTiesToEven ( binaryN x )
{
UInteger sign , biased , t ra ili ng ;
GetEncoding(x , sign , biased , trail in g );
Integer exponent = biased − binaryN : :EXPONENT
BIAS ;
if (exponent < −1)
{
// | x | < 1/2 , round to +0 or −0.
// Enable for RoundToIntegralExact:
// if (! IsZero(x)) { R a i s eF l a g s ( SIGNAL
INEXACT ) ; }
return sign ;
}
if (exponent == −1)
{
// | x | in [1/2 ,1)
// Enable for RoundToIntegralExact:
/ / R a i s eFl a g s (SIGNAL
INEXACT ) ;
if (trailing == 0)
{
// | x | = 1/2 , round to +0 or −0.
return sign ;
}
else
{
// | x | in (1/2 ,1) , round to +1 or −1.
return sign | binaryN : :ONE;
}
}
if (exponent < binaryN : : NUM
TRAILING BITS )
{
// Process the biased exponent and t r ai l in g simultaneously .
UInteger nonnegative = abs(x ); // a bs ( x) se ts s ign b it t o z e r o
// E x t rac t d .
Integer d shi ft = binaryN : : NUM
TRAILING BITS − exponent ;
UInteger d = (nonnegative >> dshift );
// E x t rac t r .
Integer r sh if t = binaryN : : NUM
ENCODING BITS − dshift ;
UInteger r = (nonnegative << rshift );
// Enable for RoundToIntegralExact:
// i f ( r > 0) { Raise F l a gs ( SIGNAL
INEXACT ) ; }
// Round up t o d+1 ac co r di ng t o t he ti e s −to−even r ul e .
// SIGN
MASK is the equivalent of ”half” for r in its current
// f or ma t , s o HALF
PROXY = SIGN MASK .
if (r > binaryN : :HALF
PROXY // 0. r > 1/2
|| ( r == binaryN : :HALF
PROXY && ( d & 1 ) ) ) // 0 . r = 1/2 and d odd
{
// In the event the t r a i l in g s i gnif ic an d has a l l 1−bits , the
//addition of1todleadstoacarry−overflow ; that is , the
// bit at index binaryN : :NUM
TRAILING BITS be c om es a 1 .
// Therefore , the rounded r esult must be normalized ( set
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// tr ai lin g s igni fic and to zero , increment biased exponent ).
// However , thi s is handled automatically by the simple l og ic
// shown h e r e .
++d ;
}
nonnegative = (d << dshift );
return sign | nonnegative ;
}
if (! IsSignalingNaN (x ))
{
// Fi n ite f l o a t in g −p oi n t numbers with
// exponent >=binaryN::NUM
TRAILING BITS
// are themselves integers . Infinities and quiet NaNs are mapped
// to themselves .
return x;
}
// Q u i et a s ig n a l i n g NaN on i n va lid o p e ra t i on .
Raise F l a gs ( SIGNAL
INVALID OPERATIO N );
return x | binaryN : :NAN
QUIET MASK ;
}
LISTING 2.17: An implementation of rounding with ties-to-even.
Rounding with Ties-to-Away. The rounding is nearly identical to that with
ties-to-even. The discussion of the previous section applies to this case with
two exceptions. Firstly, one-half is rounded to one instead of zero. Secondly,
when 0.r =1/2, the ﬂoating-point value is rounded up. Listing 2.18 is an
implementation.
binaryN RoundToIntegralTiesToAway ( binaryN x)
{
UInteger sign , biased , t ra ili ng ;
GetEncoding(x , sign , biased , trail in g );
Integer exponent = biased − binaryN : :EXPONENT
BIAS ;
if (exponent < −1)
{
// | x | < 1/2 , round to +0 or −0.
// Enable for RoundToIntegralExact:
// if (! IsZero(x)) { R a i s eF l a g s ( SIGNAL
INEXACT ) ; }
return sign ;
}
if (exponent == −1)
{
// | x | in [1/2 ,1), round to +1 or −1.
// Enable for RoundToIntegralExact:
/ / R a i s eFl a g s (SIGNAL
INEXACT ) ;
return sign | binaryN : :ONE;
}
if (exponent < binaryN : : NUM
TRAILING BITS )
{
// Process the biased exponent and t r ai l in g simultaneously .
UInteger nonnegative = abs(x ); // a bs ( x) se ts s ign b it t o z e r o .
// E x t rac t d .
Integer d shi ft = binaryN : : NUM
TRAILING BITS − exponent ;
UInteger d = (nonnegative >> dshift );
// E x t rac t r .
Integer r sh if t = binaryN : : NUM
ENCODING BITS − dshift ;
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UInteger r = (nonnegative << rshift );
// Enable for RoundToIntegralExact:
// i f ( r > 0) { Raise F l a gs ( SIGNAL
INEXACT ) ; }
// Round up t o d+1 ac co r di ng t o t he ti e s −to−away ru le .
// SIGN
MASK is the equivalent of ”half” for r in its current
// f or ma t , s o HALF
PROXY = SIGN MASK .
if (r >= b i n a r yN : : HALF
PROXY ) // 0. r >= 1/2
{
++d ;
}
nonnegative = (d << dshift );
return sign | nonnegative ;
}
if (! IsSignalingNaN (x ))
{
// Fi n ite f l o a t in g −p oi n t numbers with
// exponent >=binaryN::NUM
TRAILING BITS
// are themselves integers . Infinities and quiet NaNs are mapped
// to themselves .
return x;
}
// Q u i et a s ig n a l i n g NaN on i n va lid o p e ra t i on .
Raise F l a gs ( SIGNAL
INVALID OPERATIO N );
return x | binaryN : :NAN
QUIET MASK ;
}
LISTING 2.18: An implementation of rounding with ties-to-away.
Rounding toward Zero. The pseudocode for this mode is slightly simpler
than that for rounding with ties-to-even or ties-to-away. Listing 2.19 is an
implementation.
binaryN RoundToIntegralTowardZero ( binaryN x )
{
UInteger sign , biased , t ra ili ng ;
GetEncoding(x , sign , biased , trail in g );
Integer exponent = biased − binaryN : :EXPONENT
BIAS ;
if (exponent <= −1)
{
// | x | < 1 , round to +0 or −0.
// Enable for RoundToIntegralExact:
// if (! IsZero(x)) { R a i s eF l a g s ( SIGNAL
INEXACT ) ; }
return sign ;
}
if (exponent < binaryN : : NUM
TRAILING BITS )
{
// Process the biased exponent and t r ai l in g simultaneously .
UInteger nonnegative = abs(x ); // a bs ( x) se ts s ign b it t o z e r o .
// E x t rac t d .
Integer d shi ft = binaryN : : NUM
TRAILING BITS − exponent ;
UInteger d = (nonnegative >> dshift );
// Extract r . Shifting d truncates the remainder r , which is
// effectively rounding toward zero , so there is no need to
// e x t ra ct r othe r t ha n fo r sig n a li n g .
Integer r sh if t = binaryN : : NUM
ENCODING BITS − dshift ;
UInteger r = (nonnegative << rshift );
// Enable for RoundToIntegralExact:
// i f ( r > 0) { Raise F l a gs ( SIGNAL
INEXACT ) ; }
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nonnegative = (d << dshift );
return sign | nonnegative ;
}
if (! IsSignalingNaN (x ))
{
// Fi n ite f l o a t in g −p oi n t numbers with
// exponent >=binaryN::NUM
TRAILING BITS
// are themselves integers . Infinities and quiet NaNs are mapped
// to themselves .
return x;
}
// Q u i et a s ig n a l i n g NaN on i n va lid o p e ra t i on .
Raise F l a gs ( SIGNAL
INVALID OPERATIO N );
return x | binaryN : :NAN
QUIET MASK ;
}
LISTING 2.19: An implementation of rounding toward zero.
Rounding toward Positive. The pseudocode is once again similar to that of
previous rounding modes. Despite the seemingly complicated Equation (2.42),
the pseudocode is not that complicated. Listing 2.20 is an implementation.
binaryN RoundToIntegralTowardPositive ( binaryN x)
{
UInteger sign , biased , t ra ili ng ;
GetEncoding(x , sign , biased , trail in g );
Integer exponent = biased − binaryN : :EXPONENT
BIAS ;
if (IsZero(x))
{
// | x | = 0 , round to +0 or −0.
return x;
}
if (exponent < 0)
{
// x in (−1,1)
// Enable for RoundToIntegralExact:
/ / R a i s eFl a g s (SIGNAL
INEXACT ) ;
if (sign == 0)
{
// x in (+0 ,1), round to 1.
return binaryN : :ONE;
}
else
{
// x i n ( −1,−0), round to −0.
return binaryN : : SIGN
MASK | binaryN : :ZERO;
}
}
if (exponent < binaryN : : NUM
TRAILING BITS )
{
// Process the biased exponent and t r ai l in g simultaneously .
UInteger nonnegative = abs(x ); // a bs ( x) se ts s ign b it t o z e r o .
// E x t rac t d .
Integer d shi ft = binaryN : : NUM
TRAILING BITS − exponent ;
UInteger d = (nonnegative >> dshift );
// E x t rac t r .
Integer r sh if t = binaryN : : NUM
ENCODING BITS − dshift ;
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uint32 t r = (nonnegative << rshift );
// Enable for RoundToIntegralExact:
// i f ( r > 0) { Raise F l a gs ( SIGNAL
INEXACT ) ; }
// Round toward p o s i ti v e . I f the ” e l s e ” c la us e were pres ent ,
// it would simply truncate x , which means d may be used as is ,
// so the clause is not necessary .
if (r > 0&& sign ==0)
{
++d ;
}
nonnegative = (d << dshift );
return sign | nonnegative ;
}
if (! IsSignalingNaN (x ))
{
// Fi n ite f l o a t in g −p oi n t numbers with
// exponent >=binaryN::NUM
TRAILING BITS
// are themselves integers . Infinities and quiet NaNs are mapped
// to themselves .
return x;
}
// Q u i et a s ig n a l i n g NaN on i n va lid o p e ra t i on .
Raise F l a gs ( SIGNAL
INVALID OPERATIO N );
return x | binaryN : :NAN
QUIET MASK ;
}
LISTING 2.20: An implementation of rounding toward positive.
Rounding toward Negative. The pseudocode is similar to that for rounding
toward positive. In the only case where d changes, the result is σd − 1=
−d − 1=σ(d + 1), so the pseudocode correctly increments d. Listing 2.21 is
an implementation.
binaryN RoundToIntegralTowardNegative ( binaryN x )
{
UInteger sign , biased , t ra ili ng ;
GetEncoding(x , sign , biased , trail in g );
Integer exponent = biased − binaryN : :EXPONENT
BIAS ;
if (IsZero(x))
{
// | x | = 0 , round to +0 or −0.
return x;
}
if (exponent < 0)
{
// x in (−1,1)
// Enable for RoundToIntegralExact:
/ / R a i s eFl a g s (SIGNAL
INEXACT ) ;
if (sign != 0)
{
// x i n ( −1,−0), round to −1.
return binaryN : : SIGN
MASK | binaryN : :ONE;
}
else
{
// x in (+0 ,1), round to +0.
return binary32 ::ZERO;
}
}
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if (exponent < binaryN : : NUM TRAIL ING BITS )
{
// Process the biased exponent and t r ai l in g simultaneously .
UInteger nonnegative = abs(x ); // a bs ( x) se ts s ign b it t o z e r o .
// E x t rac t d .
Integer d shi ft = binaryN : : NUM
TRAILING BITS − exponent ;
UInteger d = (nonnegative >> dshift );
// E x t rac t r .
Integer r sh if t = binaryN : : NUM
ENCODING BITS − dshift ;
UInteger r = (nonnegative << rshift );
// Enable for RoundToIntegralExact:
// i f ( r > 0) { Raise F l a gs ( SIGNAL
INEXACT ) ; }
// Round toward ne ga ti ve . I f the ” e l s e ” c la u se were present ,
// it would simply truncate x , which means d may be used as is ,
// so the clause is not necessary .
if (r > 0&& sign != 0)
{
++d ;
}
nonnegative = (d << dshift );
return sign | nonnegative ;
}
if (! IsSignalingNaN (x ))
{
// Fi n ite f l o a t in g −p oi n t numbers with
// exponent >=binaryN::NUM
TRAILING BITS
// are themselves integers . Infinities and quiet NaNs are mapped
// to themselves .
return x;
}
// Q u i et a s ig n a l i n g NaN on i n va lid o p e ra t i on .
Raise F l a gs ( SIGNAL
INVALID OPERATIO N );
return x | binaryN : :NAN
QUIET MASK ;
}
LISTING 2.21: An implementation of rounding toward negative.
The modes for rounding toward positive and rounding toward negative are
useful for interval arithmetic.
2.5.2.7 Conversion from Integer to Floating-Point
Conversions from integers to ﬂoating-point numbers are common in appli-
cations. It is not always possible to represent an n-bit integer exactly as an
n-bit ﬂoating-point number. This is easily seen with
binary8. The 8-bit nonneg-
ative integers represented by two’s complement
2
are {−128,...,127}.Theset
of 8-bit integers exactly representable by
binary8 are {−15,...,15}. The other
8-bit integers are converted to the corresponding signed inﬁnities, in which
case an invalid operation exception is generated.
The representable integers for
binary8 are contiguous. The representable
integers for ﬂoating-point types with more than eight bits are not necessar-
2
The two’s complement of an N -bit number is that number subtracted from 2
N
.
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ily contiguous, although there is always a subset that contains contiguous
integers. In fact, the analysis in the previous section showed that when the
exponent is at least equal to the number of bits of the trailing signiﬁcand, all
such ﬂoating-point numbers are integers.
For example, consider the type
binary16. The trailing signiﬁcand has ten
bits. The integers i such that |i|≤2
11
are representable as binary16 numbers.
For all exponents e ≥ 11, all
binary16 numbers are integers. Speciﬁcally, let
0 ≤ e<10. The representable integers with exponent e are 2
e
,...,2
e+1
− 1.
The union over all such e is a contiguous set. When e = 11, the representable
integers are 2
11
+2k for 0 ≤ k<1024. Notice that 2
11
(when k =0)is
adjacent to the largest element of the contiguous representable integers (e<
11). However, the next largest representable integer is 2
11
+2,whichmeans
that 2
11
+ 1 is not representable. Thus, gaps occur in the integers when trying
to represent integers. The gap becomes larger as e increases. Generally, for
e ≥ 11, the representable integers are 2
e
+2
e−10
k for 0 ≤ k<1024.
Be careful when interpreting statements such as: “The largest repre-
sentable integer in 32-bit ﬂoating-point is 2
24
=16,777,216.” What program-
mers mean is that this is the largest of a contiguous set of integers that are
all exactly representable by 32-bit ﬂoating-point numbers. All 32-bit ﬂoating-
point numbers larger than 2
24
exactly represent integers, including FLT MAX;
some of them are representable as 32-bit integers and some of them are not.
For example,
FLT MAX is the number 2
127
(2 − 2
−23
)=2
128
− 2
104
,whichis
an integer; however, it cannot be stored as a 32-bit integer.
Exercise 2.2 The largest positive 16-bit signed integer is 2
15
− 1=32,767.
Show that the largest positive 16-bit signed integer representable by a
binary16
number is 32,752.
Exercise 2.3 The largest positive 32-bit signed integer is 2
31
− 1=
2,147,483,647. What is the largest positive 32-bit signed integer representable
by a
binary32 number?
Exercise 2.4 Derive a formula for the largest positive signed 2
n
-bit integer
that is representable by a 2
n
-bit ﬂoating-point number.
The IEEE 754-2008 Standard speciﬁes that an implementation must
have functions to convert from all supported signed and unsigned inte-
ger formats to all supported arithmetic formats. The generic signature is:
destinationFormat ConvertFromInt (sourceFormat), where the source format is a
signed or unsigned integer and the destination format is an arithmetic format.
The standard programming languages handle the cases when the arithmetic
format is integral, but the ﬂoating-point system must handle the cases when
the arithmetic format is a
binaryN.
Let us derive the algorithm for converting a 32-bit signed integer to a
binary32 number. As mentioned previously, the conversion is not always ex-
act, so some rounding algorithm must be applied. The range of integers is
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−2147483648 =
0x80000000 to 2147483647 = 0x7ﬀﬀﬀf. The pseudocode han-
dles 0 and −2147483648 separately. For other inputs, it suﬃces to analyze the
conversion for nonnegative integers and deal with the sign bit separately.
The integer i = 0 is mapped to +0, the positive zero of
binary32 (an IEEE
requirement). The integer i = −2147483648 = −2
31
is mapped to the binary
encoding
0xcf000000; the sign bit is set and the biased exponent is 158 =
31 + 127.
Now consider i>0. Let  be the index of the leading bit of i,so0≤  ≤ 30.
If <23, then
i =2

+ t
−1
2
−1
+ ···+ t
0
=2


1+t
−1
2
−1
+ ···+ t
0
2
−
+02
−−1
+ ···+02
−23

=1.t ∗2

(2.46)
where the leading  bits of t are the  trailing bits of i, and the remaining bits
of t are zero. The binary scientiﬁc notation for i is exactly representable as
a
binary32. The biased exponent is ¯e =  + 127 and the trailing signiﬁcand is
t = t
−1
···t
0
0 ···0. If  = 23, then i =1.t ∗ 2
23
,where¯e = 23 + 127 = 150
and t = t
22
···t
0
.
If  ≥ 24, then i is not always exactly representable by a
binary32,aswe
saw in a previous discussion. In this case,
i =2

+ t
−1
2
−1
+ ···+ t
−23
2
−23
+ ···+ t
0
=2


1+t
−1
2
−1
+ ···+ t
−23
2
−23
+ ···+ t
0
2
−

=2

1.t
=2
−23

2
23
+ t
−1
2
22
+ ···+ t
−23
+ ···+ t
0
2
−+23

=2
−23
d.r
(2.47)
The trailing signiﬁcand t has  ≥ 24 bits, which is too many to store in
a
binary32. Thus, we must round the result to twenty-three bits. The IEEE
754-2008 Standard requires the rounding to be according to the currently
active rounding mode. To formulate this in terms of the material presented
previously, i has been written as a power of two times d.r,whered is a positive
integer and r is a nonnegative integer. Our rounding modes were stated as
functions round
c
(σd.r), where c ∈{e, a, z, p, n} is the current mode. If you
have such supporting functions, you may call them for the rounding or you
may simply hard-code the processing of t. Source code for the conversion that
rounds to nearest with ties-to-even is shown in Listing 2.22.
binary32 ConvertFromInt ( int32 ti)
{
if (i == 0)
{
// R et u r n +0.
return 0u ;
}
if (i == INT
MIN )
{
// R et u rn −2ˆ{31} ,sign−b i t 1 , b i a se d expon ent 158 = 31+127.
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return 0xcf000000 ;
}
uint32
tsign;
if (i >=0)
{
sign = 0u;
}
else
{
i=−i;
s i g n = b i n a r y 3 2 : : SIGN
MASK ;
}
int32
t leading = GetLeadingBit( i );
uint32
t biased = ( uint32 t )(( leading + binary32 ::EXPONENT BIAS)
<< binary32 ::NUM
TRAILING BITS ) ;
uint32
t nonnegative = (uint32 t)i;
if (leading <=binary32::NUM
TRAILING BITS )
{
int32
tshift=binary32::NUMTRAILING BITS − leading ;
nonnegative = ( nonnegative << s h i f t ) & b i na r y 3 2 : : TRAILIN G
MASK ;
}
else
{
// E x t rac t d .
int32
t dshift = leading − binary32 ::NUM TRAIL ING BITS ;
uint32
t d = (nonnegative >> d s h i f t ) & b i n a ry 3 2 : : TRAILING MASK ;
// E x t rac t r .
int32
t rshift = binary32 ::NUM ENCODING BITS − dshift ;
uint32
t r = (nonnegative << rshift );
if (r > 0)
{
Raise F l a gs ( SIGNAL
INEXACT ) ;
}
// Round t o nea r est w i th tie s −to−even .
if (r > binary32 ::HALF
PROXY // 0 . r > 1/2
|| (r == binary32 ::HALF
PROXY && ( d & 1 ) ) ) // 0 . r = 1/2 and d odd
{
++d ;
}
nonnegative = d;
}
return sign | ( biased + nonnegative );
}
LISTING 2.22: Conversion of a 32-bit signed integer to a 32-bit ﬂoating-
point number.
Exercise 2.5 Implement variations of
ConvertFromInt that use the following
rounding modes: round to nearest with ties-to-away, round toward zero, round
toward positive, and round toward negative. Test your code for correctness.
The mode for rounding to nearest with ties-to-away is not required by the IEEE
754-2008 Standard for binary formats, and in fact this mode is not supported
by Intel ﬂoating-point hardware. Microsoft Visual Studio allows you to set
theroundingmodevia
controlfp, where the mask is MCW RC and the mode
is one of
RC NEAR (default, round to nearest with ties-to-even), RC CHOP
(round toward zero), RC UP (round toward positive), or RC DOWN (round
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toward negative). Devise an experiment that veriﬁes your implementation for
rounding to nearest with ties-to-away is correct.
Exercise 2.6 Implement a function that converts a 16-bit signed integer
(
int16 t)tobinary32. Include code that raises ﬂags when exceptions occur.
Exercise 2.7 Implement a function that converts a 32-bit unsigned integer
(
uint32 t)tobinary32. Include code that raises ﬂags when exceptions occur.
Exercise 2.8 Implement a function that converts a 64-bit signed integer
(
int64 t)tobinary32. Include code that raises ﬂags when exceptions occur.
Exercise 2.9 Let
int256 t represent 256-bit signed integers. Write pseudocode
for a function that converts
int256 t to binary32. This requires slightly more
logic than converting smaller integer types, because now there is the potential
for overﬂow—the input integer might be larger than the
binary32 inﬁnity.
Exercise 2.10 Given an arbitrary precision integer, say, class
Integer,write
pseudocode for a function that converts
Integer to binary32.
2.5.2.8 Conversion from Floating-Point to Rational
When computing using exact rational arithmetic, say, using a class
Rational,
the ﬂoating-point inputs ﬁrst must be converted to
Rational numbers. Assum-
ing arbitrary precision rationals, the conversions are always exact—no round-
ing is necessary. If class
Rational uses a ﬁxed-size integer, then conversions
are either exact or they overﬂow when the ﬂoating-point input is larger than
the maximum rational represented by the class. The common conversions are
presented here for
binary32 and binary64.
Conversion from
binary32 to Rational. Positive normal numbers are of the
form
r =2
¯e−127

1+
22

i=0
t
i
2
i−23

=2
¯e−150

2
23
+ t

(2.48)
where ¯e is the biased exponent in {1,...,254} and where t is an integer in
the set {0,...,2
23
−1}. The rational number r is a product of the sum with a
nonnegative power of two when ¯e ≥ 150 or a ratio of the sum with a positive
power of two when ¯e<150. Positive subnormal numbers are of the form
r =2
−126
22

i=0
t
i
2
i−23
=2
−149
t (2.49)
where t is an integer in the set {1,...,2
23
− 1}. Listing 2.23 is an implemen-
tation of the conversion.
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Rational ConvertFrom (binary32 x)
{
uint32
t sign , biased , trailing ;
GetEncoding(x , sign , biased , trail in g );
I nte g er numer , denom ;
if (biased == 0)
{
if (trailing == 0)
{
// x i s +0 o r −0.
numer = 0;
denom = 1 ;
}
else
{
// x i s subnormal .
numer = t r a i l i n g ;
denom = (1 << 149);
}
}
else if (biased <= 254)
{
// x is no rm al .
numer = (1 << 23) + trailing ;
denom = 1;
power = b i a s ed − 150;
if (power > 0)
{
numer << =power;
}
else if (power < 0)
{
denom <<= −power ;
}
}
else // biased == 255.
{
if (trailing == 0)
{
// x i s + i n f i n i t y o r − infinity .
R a i s e F l a g s (SIGNAL
OVERF LOW ) ;
}
else
{
// x i s a NaN.
Raise F l a gs ( SIGNAL
INVALID OPERATION ) ;
}
// The number i s i n f i n i t e , a q u i e t NaN, o r a sig n a l i n g NaN .
/ / In a l l c a ses , r e tu r n t he maximum normal b i n a ry 3 2 .
numer = ( ( 1 << 24) − 1) << 104;
denom = 1;
}
if (sign ! 0)
{
numer = −numer ;
}
return Ration a l ( numer , denom ) ;
}
LISTING 2.23: Conversion from a 32-bit ﬂoating-point number to a rational
number.
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Conversion from
binary64 to Rational. Positive normal numbers are of the
form
r =2
¯e−1023

1+
51

i=0
t
i
2
i−52

=2
¯e−1075

2
52
+ t

(2.50)
where ¯e is the biased exponent in {1,...,2046} and where t is an integer in
the set {0,...,2
52
−1}. The rational number r is a product of the sum with a
nonnegative power of two when ¯e ≥ 1075 or a ratio of the sum with a positive
power of two when ¯e<1075. Positive subnormal numbers are of the form
r =2
−1022
51

i=0
b
i
2
i−52
=2
−1074
t (2.51)
where t is an integer in the set {1,...,2
52
− 1}. Listing 2.24 is an implemen-
tation of the conversion.
Rational ConvertFrom (binary64 x)
{
uint64
t sign , biased , trailing ;
GetEncoding(x , sign , biased , trail in g );
I nte g er numer , denom ;
if (biased == 0)
{
if (trailing == 0)
{
// x i s +0 o r −0.
numer = 0;
denom = 1 ;
}
else
{
// x i s subnormal .
numer = t r a i l i n g ;
denom = (1 << 1074);
}
}
else if (biased <= 2046)
{
// x is no rm al .
numer = (1 << 52) + trailing ;
denom = 1;
power = b i a s ed − 1075;
if (power > 0)
{
numer << =power;
}
else if (power < 0)
{
denom <<= −power ;
}
}
else // biased == 2047.
{
if (trailing == 0)
{
// x i s + i n f i n i t y o r − infinity .
R a i s e F l a g s (SIGNAL
OVERF LOW ) ;
}
else
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{
// x i s a NaN.
Raise F l a gs ( SIGNAL
INVALID OPERATION ) ;
}
// The number i s i n f i n i t e , a q u i e t NaN, o r a sig n a l i n g NaN .
/ / In a l l c a ses , r e tu r n t he maximum normal b i n a ry 6 4 .
numer = ( ( 1 << 53) − 1) << 971;
denom = 1;
}
if (sign ! 0)
{
numer = −numer ;
}
return Ration a l ( numer , denom ) ;
}
LISTING 2.24: Conversion from a 64-bit ﬂoating-point number to a rational
number.
Exercise 2.11 Write pseudocode that converts a
binaryN number to a Rational
number.
2.5.2.9 Conversion from Rational to Floating-Point
When computing using exact rational arithmetic, the rational output must
be converted to ﬂoating-point numbers. The conversion from a rational num-
ber to a ﬂoating-point number is not always exact. For example, as a binary
number, 1/3=0.
01
∞
, indicating the bit pattern 01 repeats ad inﬁnitum. That
is 1/3=1/4+1/16 + ···1/4
p
+ ···. To verify, let S =1/4+1/16 + ···;then
4S =1+1/4+···. Subtracting, 3S =4S − S = 1, which implies S =1/3.
Because the bit pattern is inﬁnitely repeating, conversion to a ﬂoating-point
number with ﬁnite precision requires rounding. Another example is when the
rational number is larger than the maximum ﬂoating-point number. The con-
version is deemed to be the ﬂoating-point inﬁnity, which is tagged as overﬂow
and an inexact conversion. The common conversions are presented here for
binary32 and binary64.
Conversion from
Rational to binary32.Letr
s
be a positive subnormal
ﬂoating-point number and let r
n
be a positive normal ﬂoating-point number.
We know that
0 <
r
smin
2
<r
smin
≤ r
s
≤ r
smax
<
r
smax
+r
nmin
2
<r
nmin
≤ r
n
≤ r
nmax
<
r
nmax
+r
∞
2
<r
∞
(2.52)
where r
smin
=0.
¯
0
22
1 ∗ 2
−126
, r
smax
=0.
¯
1
23
∗ 2
−126
, r
nmin
=1.
¯
0
23
∗ 2
−126
,
r
nmax
=1.
¯
1
23
∗ 2
127
,andr
∞
=2
128
. The numbers of the form 0.t and 1.t are
written in binary. The notation
¯
b
n
indicates a block of n consecutive b-valued
bits. Because rationals are not always representable exactly by
binary32,we
need to choose a rounding mode. To illustrate, the default mode of rounding
with ties-to-even is chosen. The averages in Equation (2.52) are listed because
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they are the midpoints at which ties occur. Speciﬁcally, r
smin
/2=2
−150
,
(r
smax
+ r
nmin
)/2=0.
¯
1
24
∗ 2
−126
,and(r
nmax
+ r
∞
)/2=1.
¯
1
24
∗ 2
127
.
Listing 2.25 shows the conversion. The power handling and much of the
bit manipulations are motivated by the discussion in Section 2.4. Note that
in production code, you must handle the case when the denominator of input
r is zero. The example here does not do so.
binary32 ConvertTo ( Rational r)
{
if (r == Rational(0))
{
// R et u r n +0.
return binary32 ::ZERO;
}
// Process the signs .
I nte ge r n = r . Numerator () , d = r . Denominator () ;
int nSign = (n >=0 ? 1 : −1);
int dSign = (d >=0 ? 1 : −1);
int rSign = nSign∗dSign ;
uint32
tsign=(rSign< 0 ? binary32 ::SIGN MASK : b i n a r y 3 2 : : ZERO) ;
// Work w i th t h e p o siti v e r atio n a l number . The comments refer
// to the manipulation of the p ositi ve number , but the sign i s
// handled in the return statement .
n=nSign∗n;
d=dSign∗d;
int leadingN = GetLeadingBit(n );
int leadingD = GetLeadingBit(d );
int p = leadingN − leadingD ;
if (p > 0) { d << =p; } else if (p < 0) { n << = −p; }
if (n < d) { n <<=1;−− p; }
if (p < −150) // 0 < r < 2ˆ{−150}
{
// Round t o +0.
Raise F l a gs (SIGNAL
INEXACT ) ;
return sign | binary32 ::ZERO;
}
if (p == −150) // r = (n /d )∗2ˆ{−150}
{
Raise F l a gs (SIGNAL
INEXACT ) ;
if (n == d)
{
// r = 2ˆ{−150}, round to +0 based on t ie s −to−even .
return sign | binary32 ::ZERO;
}
else //
{
// 2ˆ{−150} < r < 2ˆ{−149}, round to minimum subnormal .
return sign | binary32 ::MIN
SUBNORMAL ;
}
}
if (p >= 128) // r >= infinity .
{
R a i s e F l a g s (SIGNAL
OVERF LOW | SIGN AL IN EXACT ) ;
return sign | binary32 :: INFINITY ;
}
// 0.1ˆ{23}∗2ˆ{−126} <=r< 2ˆ{ 128}. Compute t h e t r a i l i n g
// significand to 23 bits and compute the remainder to determine
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// how to round .
uint32
tbiased;
int32
tc, rshift;
if (p < −126)
{
// 2ˆ{−149} <=r< 2ˆ{−126} ( subnormal ) ; use r = 0. c ∗ 2ˆ{−126}.
biased = 0; // Number is subnormal .
c=0; // L e ad i ng bi t i s 0 .
d << =1; // P r e p a r e f or 0 . c f o rm a t .
rshift = −(p + 127); // R i g ht−shift of trailing significand.
}
else
{
// 2ˆ{−126} <=r< 2ˆ{128} (normal); use r = 1.c ∗ 2ˆ{−126}.
biased = p + 127; // Number i s n or ma l .
c=1; // L e ad i ng bi t i s 1 .
rshift = 0; // No r ig h t −shift of trailing significand.
}
uint32
t trailing = 0u;
for (uint32
t mask = ((1 << 22) >> rshift ); mask > 0; mask >> =1)
{
if (c == 1)
{
n −=d; // s = s − c;
}
n << =1; // s = 2∗ s
if (n >=d) // s >=1
{
c=1;
trailing |=mask;
}
else
{
c=0;
}
}
if (c == 1)
{
n −=d;
}
// n/d = 0.r[0]r [1]...
if (n != 0)
{
Raise F l a gs (SIGNAL
INEXACT ) ;
}
// Round up when n / d > 1/2 or ( n/d = 1/2 and t r a i l i n g i s odd ) .
Integer test = 2∗n − d;
if (test > 0 || (test == 0 && ( trailing & 1)))
{
++trailing ;
}
return sign | (( biased << 23) + t r a i l i n g ) ;
}
LISTING 2.25: Conversion from a rational number to a 32-bit ﬂoating-point
number.
Exercise 2.12 Modify the pseudocode of Listing 2.25 to use the other round-
ing modes: round with ties-to-away, round toward zero, round toward positive,
and round toward negative.
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Exercise 2.13 The pseudocode of Listing 2.25 does not handle an input ra-
tional with zero denominator. Modify the pseudocode to handle such a rational
input.
Conversion from
Rational to binary64. In Equation (2.52), r
smin
=0.
¯
0
51
1 ∗
2
−1022
, r
smax
=0.
¯
1
52
∗ 2
−1022
, r
nmin
=1.
¯
0
52
∗ 2
−1022
, r
nmax
=1.
¯
1
52
∗ 2
1023
,
r
∞
=2
1024
, r
smin
/2=2
−1075
,(r
smax
+ r
nmin
)/2=0.
¯
1
53
∗2
−1022
,and(r
nmax
+
r
∞
)/2=1.
¯
1
53
∗ 2
1023
.
The pseudocode for the conversion is a trivial modiﬁcation of that for the
conversion to
binary32. Replace binary32 with binary64, uint32 t with uint64 t,
int32 t with int64 t, −150 with −1075, −149 with −1074, −126 with −1022,
22 with 51, 23 with 52, 127 with 1023, and 128 with 1024.
Exercise 2.14 Modify the pseudocode for converting a rational to a
binary64
to use the other rounding modes: round with ties-to-away, round toward zero,
round toward positive, and round toward negative.
Exercise 2.15 Write pseudocode that converts
Rational to binaryN where N is
a multiple of thirty-two and larger than sixty-four.
2.5.2.10 Conversion to Wider Format
To illustrate, consider the conversion from
binary8 to binary16. The conver-
sion is exact for ﬁnite numbers. We consider it to be exact for all encodings
in the sense that the 8-bit inﬁnities are mapped to the corresponding 16-bit
inﬁnities. An 8-bit NaN with payload is mapped to a 16-bit NaN by copying
the 8-bit payload to the most signiﬁcant bits of the 16-bit payload, and the
quiet bit is copied when set.
Normal 8-bit numbers are converted to normal 16-bit numbers in a trivial
manner. The biased exponent for the 8-bit number is adjusted to become a
biased exponent for the 16-bit number. The trailing bits for the 8-bit number
are copied to the correct location in the trailing bits for the 16-bit number.
Subnormal 8-bit numbers are also converted to normal 16-bit numbers.
The conversion is the following:
0.t ∗ 2
−2
=0.t
3
···t
0
∗ 2
−2
=1.
¯
t
9
···
¯
t
0
∗ 2
¯e−15
=1.
¯
t ∗2
¯e−15
(2.53)
Let  be the index of the leading 1-bit of the integer t. It is necessary that
0 ≤  ≤ 3, because a subnormal number has t =0.Consequently,
0.t
3
···t
0
∗ 2
−2
=1.t
−1
···t
0
∗ 2
−6
=1.t
−1
···t
0
∗ 2
((−6)+15)−15
(2.54)
which implies
¯
t =(t<<(10 − )), ¯e =  + 9 (2.55)
Listing 2.26 has source code for the conversion, where the input is the
encoding for
binary8 and the output is the encoding for binary16.
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uint16 tConvert(uint8tencoding)
{
// Extract the channels for the binary8 number.
uint8
t sign8 = ( encoding & 0x80 );
uint8
t biased8 = (( encoding & 0x70) >> 4);
uint8
t trailing8 = (encoding & 0x0f );
// Generate the channels for the binary16 number.
uint16
tsign16=(sign8<< 8);
uint16
tbiased16,trailing16;
if (biased8 == 0)
{
if (trailing8 == 0)
{
// The number i s 8−zero . Convert to 16− zero .
return sign16 ;
}
else
{
// The number i s 8−subnormal . Convert to 16−normal .
int32
t leading = GetLeadingBit( trailing16 );
int32
tshift=10− leading ;
biased16 = leading + 9;
trailing16 = (trailing8 << shift ) & 0x03ff ;
return sign16 | (biased16 << 10) | trailing16 ;
}
}
if (biased8 < 7)
{
// The number i s 8−normal . Convert to 16−normal .
biased16 = biased8 + 12;
trailing16 = ( trailing8 << 6);
return sign16 | (biased16 << 10) | trailing16 ;
}
if ( trailing8 == 0)
{
// The number i s 8− infinite . Convert to 16− infinite .
return sign16 | 0x7c00 ;
}
// The number i s 8−NaN. Conve r t t o 16−NaN w i t h 8−p a y l o a d embedded i n
// t h e h ig h−order bits of the 16−payload. The code also copies the
// 8−quietNaN mask bi t .
uint16
t maskPayload = (( trailing8 & 0x0f) << 6);
return sign16 | 0x7c00 | maskPayload ;
}
LISTING 2.26: Conversion of an 8-bit ﬂoating-point number to a 16-bit
ﬂoating-point number.
Exercise 2.16 Write a program that implements the conversion from 8-bit
encodings to 16-bit encodings. Write a test function to print to a ﬁle the con-
versions for all 256 inputs. By inspecting and testing several cases, verify that
the conversions are correct.
The pattern is general for conversion to a wider format. Let the narrow
format have n
0
trailing bits and exponent bias β
0
. Let the wide format have
n
1
trailing bits and exponent bias β
1
. The conversion from narrow subnormal
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to wide normal is
0.t ∗2
1−β
0
=0.t
n
0
−1
···t
0
∗2
1−β
0
=1.
¯
t
n
1
−1
···
¯
t
0
∗2
¯e−β
1
=1.
¯
t ∗2
¯e−β
1
(2.56)
Let  be the index of the leading 1-bit of the integer t. It is necessary that
0 ≤  ≤ n
0
− 1, because a subnormal number has t =0.Consequently,
0.t
n
0
−1
···t
0
∗ 2
1−β
0
=1.t
−1
···t
0
∗ 2
1−β
0
−n
0
+
=1.t
−1
···t
0
∗ 2
(1−β
0
−n
0
++β
1
)−β
1
(2.57)
which implies
¯
t =(t<<(n
1
− )), ¯e =1−β
0
− n
0
+  + β
1
(2.58)
Listing 2.27 shows the general conversion, where
NAR refers to the narrow
format and
WID refers to the wide format.
UInteger ConvertNarrowToWide ( UInteger encoding )
{
// Extract the channels for the narrow−f or m a t number .
UInteger signNAR = ( encoding & NAR
SIGN MASK ) ;
UInteger biasedNAR =
(( encoding & NAR
BIASED EXPONENT MASK ) >> NAR NUM TRAIL ING BITS ) ;
UInteger trailingNAR = (encoding & NAR
TRAILING MASK ) ;
// Generate the channels for the wide−f o rm a t number .
UInteger signWID =
(signNAR << (WID
NUM ENCODING BITS − NAR NUM ENCODING BITS ) ) ;
UInteger biasedWID , trailingWID ;
if (biasedNAR == 0)
{
if (trailingNAR == 0)
{
// The number i s NAR−zero . Convert to WID−zero .
return signWID ;
}
else
{
// The number i s NAR−subnormal . Convert to WID−normal .
Integer leading = GetLeadingBit(trailingNAR);
biasedWID = leading + 1 + WID
EXPONENT BIAS −
NAR
EXPONENT BIAS − NAR NUM TRAILING BITS ;
trailingWID = (trailingNAR << (WID
NUM TRAILING BITS −
leading )) & NAR
TRAILING MASK ;
return signWID | (biasedWID << WID
NUM TRAILING BITS) |
trailingWID;
}
}
if (biasedNAR < NA R
MAX BIASED EXPONENT )
{
// The number i s NAR−normal . Convert to WID−normal .
biasedWID = biasedNAR + WID
EXPONENT BIAS − NAR EXPONENT BIAS ;
trailingWID = ( trailingNAR << (WID
NUM TRAIL ING BITS −
NAR
NUM TRAILING BITS ) );
return signWID | (biasedWID << WID
NUM TRAIL ING BITS) |
trailingWID;
}
if (trailingNAR == 0)
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{
// The number i s NAR−infinite . Convert to WID− infinite .
return signWID | WID
BIASED EXPONE NT MASK ;
}
// The number i s NAR−NaN. C o n v ert to WID−NaN w i t h NAR−payload
// embedded in t he h ig h−order bits of the WID−payload . The code
// also copies the NAR−quietNaN mask bi t .
UInteger maskPayload = (( trailingNAR & NAR
TRAILING MASK)
<< (WID
NUM TRAIL ING BITS − NAR NUM TRAIL ING BITS ) ) ;
return signWID | WID
BIASED EXPONENT MASK | maskPayload ;
}
LISTING 2.27: Conversion of a narrow ﬂoating-point format to a wide
ﬂoating-point format.
2.5.2.11 Conversion to Narrower Format
The conversions from a wide format to a narrow format are not always
exact for ﬁnite numbers, so rounding must be used. Round-to-nearest is used
with ties-to-even. A wide-format NaN is mapped to a narrow-format NaN,
but if the wide-format payload has more 1-valued bits than can be stored in
the narrow-format payload, there will be a loss of information. The IEEE 754-
2008 Standard requires the result to be a quiet NaN with (optional) diagnostic
information in the payload.
Figure 2.16 illustrates two ﬂoating-point formats on the nonnegative num-
ber line with important values marked. The mapping from wider to nar-
rower format is illustrated with grayscale bars and text indicating how
to round. All labeled values are exactly representable in the wide format,
but some are not exactly representable in the narrow format. For example,
nar-avr-min-normal-zero is the average of nar-zero and nar-min-subnormal.Even
though the two inputs are exactly representable in the narrow format, the
average is not. This is not a problem, because the comparisons made during
conversion are all in the wide-format number system.
Using encodings in the wide-format number system, let x
zero
be the posi-
tive zero for the narrow format and let x
sub0
be the minimum subnormal for
the narrow format. The average of the two numbers is α
0
= x
sub0
/2. The
half-open interval of numbers [x
zero
,α
0
)isnearestx
zero
,soanywide-format
number in this interval is converted to x
zero
. All such conversions are inexact
except for zero itself. The half-open interval of numbers (α
0
,x
sub0
]isnearest
x
sub0
, so any wide-format number in this interval is converted to x
sub0
. Again,
all such conversion are inexact except for x
sub0
itself. The midpoint α
0
is con-
verted to x
zero
because of the ties-to-even rule: the last bit of the encoding for
zero is 0 (even) and the last bit of the encoding for the minimum subnormal
is 1 (odd), so the rounding is to the number with the even bit.
Similarly, let x
nor1
be the maximum normal for the narrow format. Let x
inf
be the positive inﬁnity for the narrow format, but for the purpose of computing
the average of the two numbers, the encoding of x
inf
is treated as if it were
for a ﬁnite number. The average of the numbers is α
1
=(x
nor1
+ x
inf
)/2. The
half-open interval [x
nor1
,α
1
)isnearestx
nor0
, so any wide-format number in
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WID-zero = NAR-zero
WID-min-subnormal
WID-max-subnormal
WID-min-normal
NAR-avr-min-subnormal-zero
NAR-min-subnormal
NAR-max-subnormal
NAR-min-normal
NAR-max-normal
NAR-avr-max-normal-inﬁnity
NAR-inﬁnity
WID-max-normal
WID-inﬁnity
round to NAR-min-subnormal
round to NAR-inﬁnity
round to NAR-max-normal
round to nearest NAR-number
round to NAR-zero
FIGURE 2.16: Two ﬂoating-point formats on the nonnegative number line.
The labels with preﬁx
wid are for the wider format and the labels with preﬁx
nar are for the narrow format.
this interval is converted to x
nor0
. All such conversions are inexact except for
x
nor1
itself. Let w
inf
be the positive inﬁnity for the wide format. The half-open
interval (α
1
,w
inf
]isnearesttox
inf
, so any wide-format number in this interval
is converted to x
inf
. The conversions are all inexact.
The wide-format numbers in the open interval (x
sub0
,x
nor1
) are converted
to narrow-format numbers using round-to-nearest with ties-to-even. Many of
the conversions are inexact, but some are exact. The algorithm for round-
ing a number to its nearest ﬂoating-point neighbor (Figure 2.16) depends on
whether the nearest number is subnormal or normal. In the ensuing discus-
sion, deﬁne x
nor0
to be the wide-format number that represents the minimum
normal for the narrow format.
Once again for illustration, consider the conversion from
binary16 to
binary8,inwhichcasex
sub0
=2
−6
and x
nor0
=2
−2
. The open interval in
terms of wide-format numbers written as subnormals is the closed interval
[0.00010000000001∗2
−2
, 0.11111111111∗2
−2
]. If 0.s
13
···s
0
is the signiﬁcand
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to a number in this interval, the corresponding narrow subnormal number is
0.s
13
s
12
s
11
s
10
+ ε,whereε is zero or one based on rounding. Deﬁne integers
i and f by i.f = s
13
···s
10
.s
9
···s
0
. Using round-to-nearest with ties-to-even,
the value ε is one when 0.f > 1/2orwhen0.f =1/2andi is odd. If i =15
(all s-bits are 1), then ε = 1 and the addition causes a carry out of s
13
.The
result is i = 16. When using bit-manipulation methods in the source code, the
addition is to the trailing signiﬁcand. The carry-out is to the low-order bit
of the biased exponent. In the current case, the (left-shifted) biased exponent
is zero (the target is a narrow subnormal), so OR-ing the trailing signiﬁcand
into the ﬁnal encoding amounts to increasing the exponent by one. This is the
correct behavior, because the trailing signiﬁcand becomes zero, the exponent
increases by one, and the output is the narrow maximum normal.
Regarding an implementation, it is convenient to generate i and f in a
canonical format. If t is the trailing signiﬁcand for the input wide-format
number, then the signiﬁcand is 1.t.Theinteger1t represents the t with a
prepended 1, the result containing eleven bits. We may shift right to eliminate
the fractional bits; that is, i =(1t>>σ). The signiﬁcand corresponding to the
minimum of the subnormal interval is 1.0000000001 and has the corresponding
exponent −6 and biased exponent ¯e =9=−6 + 15. The 11-bit integer is
10000000001, which when shifted right by σ = 10 produces binary i = 0001.
The signiﬁcand corresponding to the maximum of the subnormal interval is
1.1111111111 and has corresponding exponent −3 and biased exponent ¯e =
12 = −3 + 15. The 11-bit integer is 11111111111, which when shifted right by
σ = 7 produces binary i = 1111. The right shift is σ =10− (¯e − 9) = 19 − ¯e.
The generation of f is similar, using a left shift so that the ﬁrst fraction
bit occurs in the high-order bit of a 16-bit number. The full 16-bit encoding
for the minimum interval endpoint is 000001000000001 =
0x0401. A left shift
by six produces binary
¯
f = 0000000001000000 =
0x0040. The encoding for
the maximum interval endpoint is 0000011111111111 =
0x07ﬀ. A left shift
by twelve produces binary
¯
f = 1111111000000000 =
0xfe00. The operation is
¯
f =1t<<σ,whereσ =¯e − 3. The comparison of 0.f to one-half requires
identifying which bit index contains the ﬁrst bit of f and building a mask
to represent one-half. In the modiﬁed formulation, the comparison is now
between
¯
f and
0x8000.
The next case is when the input is in the half-open interval [x
nor0
,x
nor1
),
where x
nor1
=1.1111 ∗ 2
3
. The input is 1.t ∗ 2
e
=1.t
9
···t
0
∗ 2
e
and the
output is 1.s ∗ 2
e
=1.s
3
···s
0
∗ 2
e
.Letβ
1
be the exponent bias for the wide
format and let β
0
be the exponent bias for the narrow format. The biased
exponent for the input is ¯e
1
= e + β
1
and the biased exponent for the output
is ¯e
0
= e + β
0
=¯e
1
− β
1
+ β
0
. Both input and output are in normal form,
so there is no need to prepend one to t. Using the canonical form described
in the previous two paragraphs, i =(t>>6) and
¯
f =(t<<10). The same
issue arises about a carry-out to the exponent when rounding. In this case,
the (left-shifted) biased exponent is not necessarily zero, so we must add the
incremented trailing signiﬁcand to the biased exponent rather than OR-ing it.
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Listing 2.28 has source code for the conversion, where the input is the
encoding for
binary16 and the output is the encoding for binary8.
uint8 tConvert(uint16tencoding)
{
// Extract the channels for the binary16 number.
uint16
t sign16 = ( encoding & 0x8000 ) ;
uint16
t biased16 = (( encoding & 0x7c00) >> 10);
uint16
t trailing16 = (encoding & 0x03ff);
uint16
t nonneg16 = ( encoding & 0 x 7 f f f ) ;
// Generate the channels for the binary8 number.
uint8
t sign8 = ( sign16 >> 8);
uint8
t biased8 , trailing8 ;
uint16
t frcpart ;
if (biased16 == 0)
{
// noneg16 i s 16− zero or 16−subnormal ; nearest i s 8−zero .
return sign8 ;
}
if (biased16 < 31)
{
// nonneg16 i s 16−normal .
if ( nonneg16 <= 0x2000 ) // <=nar−avrminsubnormal−zero = 2ˆ{−7}
{
// nonneg16 <=2ˆ{−7};nearest is8−zero .
return sign8 ;
}
if ( nonneg16 <= 0x2400 ) // <=nar−minsubnormal = 2ˆ{−6}
{
// 2ˆ{−7 } < nonneg16 <=2ˆ{−6};nearest is8−min−subnormal .
return sign8 | 0x01; // represents nar−min−subnormal
}
if ( nonneg16 < 0x3400) // < nar−minnormal = 2ˆ{−2}
{
// 2ˆ{−6 } < nonneg16 < 2ˆ{−2}; round to near est 8−subnormal
// w i th t i es −to−even . Note that the biased8 value i s
// implicitly zero.
trailing16 |= 0x0400 ;
trailing8 = (trailing16 >> (19 − biased16 ));
frcpart = ( trailing16 << (biased16 − 3));
if (frcpart > 0x8000
|| ( f rc p ar t == 0 x8000 && ( t r a iling8 & 1)))
{
// I f there i s a ca rry in to the exponent , the nearest i s
// a c t u a l ly 8−min−normal 1.0∗2ˆ{−6} ,sothehigh−order
// bit of trailing8 makes biased8 equal to 1 and the
// result is correct .
++trailing8 ;
}
return sign8 | trailing8 ;
}
if ( nonneg16 < 0x4be0) // < nar−maxnormal = 1.1111∗2ˆ{3}
{
// 2ˆ{−2 } <= nonneg16 < 1.1111∗2ˆ{3 } ; round to n ea res t
// 8−normal with t i es to even .
biased8 = ((biased16 − 15 + 3) << 4);
trailing8 = (trailing16 >> 6);
frcpart = ( trailing16 << 10);
if (frcpart > 0x8000
|| ( f rc p ar t == 0 x8000 && ( t r a iling8 & 1)))
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{
// I f there i s a ca rry in to the exponent , the ad ditio n
// of trailing8 to biased8 (rather than OR−ing ) produces
// t he co r r ec t r e s u l t .
++trailing8 ;
}
return sign8 | (biased8 + trailing8 );
}
if ( nonneg16 < 0x4bf0) // < nar−avrmaxnor−i n f = 1.11111∗2ˆ{ 3}
{
// 1.1111∗2ˆ{ 3} <= nonneg16 < 1.11111∗ 2ˆ{ 3}; th e number i s
// c l o s e st t o 8−max−normal .
return sign8 | 0x6f; // represents nar−max−normal
}
// nonneg16 >= 1.11111∗ 2ˆ{ 3 };convertto8− infinite .
return sign8 | 0x70 ; // represents nar−infinity
}
if (trailing16 == 0)
{
// The number i s 16− infinite . Convert to 8− infinite .
return sign8 | 0x70 ; // represents nar−infinity
}
// The number i s 16−NaN. Conve r t t o 8 −NaN w i t h 8
−payload the
// h ig h−order 3 bits of the 16−payload . The code also grabs the
// 16−quietNaN mask b it .
if (( trailing16 & 0x003f) == 0)
{
// The 16− payload has only its f ir st 3 bits set , so it can be
// represented as an 8−payload without loss of information .
uint8
t maskPayload = ( uin t8 t )(( trailing16 & 0x03ff) >> 6);
return sign8 | 0x70 | maskPayload ;
}
// The 16− payload cannot be represented as an 8−payload without
// loss of information . Make the NaN quiet (as required) and set
// t h e l ow−order bit to1(user−defined diagnostic information ).
return sign8 | 0x79 ;
}
LISTING 2.28: Conversion from a wide ﬂoating-point format to a narrow
ﬂoating-point format.
Exercise 2.17 Write a program that implements the conversion from 16-bit
encodings to 8-bit encodings. Write a test function to print to a ﬁle the con-
versions for all 65,536 inputs. By inspecting and testing several cases, verify
that the conversions are correct.
Exercise 2.18 Suppose that your ﬂoating-point system has a status word
whose bits represent the IEEE exceptions that can occur: inexact operation,
underﬂow, overﬂow, division by zero, and invalid operation. Modify the source
code for conversion from 16-bit encodings to 8-bit encodings by inserting state-
ments that set the appropriate bits of the status words when exceptions occur.
In particular, the inexact-operation bit must be set when a 16-bit number can-
not be exactly represented as an 8-bit number.
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Exercise 2.19 Inthesourcecode,whenthe16-payload does not map exactly
to the 8-payload, the returned value is a quiet NaN. The arbitrary choice was
made to set the 8-payload to 1. You cannot rely on a 1-valued low-order pay-
load bit to indicate the inexact payload conversion, because a 16-bit payload
of
001000000 willmaptoan8-bit payload of 001,andthe1-bit in the 16-
bit payload does not correspond to an inexact payload conversion from 32-bit
to 16-bit. In your ﬂoating-point system, let the low-order payload bit always
correspond to the inexact representation of NaN payload during conversion.
Modify the source code to support this choice.
The pattern is general for conversion to a narrower format. Let the number
of trailing signiﬁcand bits be n
0
for the narrow format and n
1
for the wide
format. Let the exponent biases be β
0
for the narrow format and β
1
for the
wide format.
Consider the case when the output is in the narrow subnormal range,

0.
¯
0
n
0
−1
1 ∗ 2
1−β
0
, 0.
¯
1
n
0
∗ 2
1−β
0

(2.59)
where
¯
b
p
denotes the bit-value b repeated p times.Theopenintervalinterms
of wide-format numbers written as subnormals is the closed interval

0.
¯
0
n
0
−1
1
¯
0
n
1
−1
1 ∗ 2
1−β
0
, 0.
¯
n
1
+1∗ 2
1−β
0

(2.60)
The signiﬁcand to a number in this interval requires at most n
0
+ n
1
bits, say,
0.s
n
0
+n
1
−1
···s
n
1
···s
n
1
−1
···s
0
(2.61)
The corresponding narrow subnormal number is 0.s
n
0
+n
1
−1
···s
n
1
+ ε,where
ε is zero or one based on rounding. As in the example for converting a 16-bit
encoding to an 8-bit encoding, we may deﬁned integers i and f such that
i.f = s
n
1
−1
···s
n
1
.s
n
1
−1
···s
0
.
If the input is 1.t ∗ 2
e
1
,theinteger1t contains n
1
+ 1 bits. We may shift
right to eliminate the fractional bits, i =(1t>>σ
r
), where
σ
r
=(n
1
− n
0
)+(β
1
− β
0
)+1− ¯e
1
(2.62)
where ¯e
1
= e
1
+ β
1
is the biased exponent for the input. The reason for the
right shift equation is motivated by the example provided previously. The
minimum for the subnormal interval is
0.
¯
0
n
0
−1
1
¯
0
n
1
−1
1 ∗ 2
1−β
0
=1.
¯
0
n
1
−1
∗ 2
1−β
0
−n
0
(2.63)
and the biased exponent is ¯e
1
=1−β
0
−n
0
+ β
1
. The right shift is exactly n
1
,
so if the general formula is σ
r
= n
1
−(¯e
1
−v), we need v =1−β
0
−n
0
+ β
1
to
ensure the formula is correct at the interval minimum. Let
¯
f be the left-shifted
value of f such that the high-order bit of f is in the high-order bit of the k
1
-bit
integer that stores the wide format. Think of of 1t embedded in a large set of
bits so that shifting does not lose any bits. When you right shift the integer
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1t by σ
r
, the fractional part is located just to the right of a block of k
1
bits
whose low-order bit contains the least signiﬁcant bit of (1t>>σ
r
). The right
shift that moves the fractional part to the high-order bit of the k
1
-bit block
must be k
1
. The total left shifting is therefore
σ

= k
1
− σ
r
(2.64)
To verify using the previous example, k
1
= 16, σ
r
=19− ¯e
1
,andσ

=¯e
1
−3.
Consider the case when the input and output are both normal numbers.
The wide input is 1.t ∗ 2
e
and the narrow output is 1.s ∗ 2
e
. The biased
exponent for the input is ¯e
1
= e + β
1
and the biased exponent for the output
is ¯e
0
= e + β
0
=¯e
1
− β
1
+ β
0
. Both input and output are in normal form, so
there is no need to prepend one to t. The integer part is i =(t>>σ
r
), where
σ
r
= n
1
− n
0
(2.65)
and the fractional part is
¯
f =(t<<σ

), where
σ

= k
1
− (n
1
− n
0
) (2.66)
As before, if the rounding causes a carry-out into the biased exponent, we han-
dle this by adding the trailing signiﬁcand to the (left-shifted) biased exponent
rather than OR-ing it.
The pseudocode is shown in Listing 2.29, where
WID refers to the wide
format and
NAR refers to the narrow format. When the preﬁx WID NAR is
used, this indicates that the identiﬁer represents the narrow-format num-
ber as a wide-format number. The mask
WID HALF PROXY is the same as
WID SIGN MASK, which is a k
1
-bit unsigned integer with all zero bits except
for the high-order bit.
UInteger ConvertWideToNarrow ( UInteger encoding )
{
// E x t rac t t h e c h an n e l s f o r t h e w id e number .
UInteger signWID = ( encoding & WID
SIGN MASK ) ;
UInteger biasedWID =
(( encoding & WID
EXPONE NT MASK) >> WID NUM TRAILING BITS ) ;
UInteger trailingWID = (encoding & WID
TRAILING MASK ) ;
UInteger nonnegWID = ( encoding & WID
NOT SIGN MASK ) ;
// Generate the channels for the narrow number.
UInteger signNAR =
(signWID >> (WID
NUM ENCODING BITS − NAR NUM ENCODING BITS ) ) ;
UInteger biasedNAR , trailingNAR;
UInteger rshi ft , lsh ift , frcpart ;
if (biasedWID == 0)
{
// nonnegWID i s WID−zero or WID−subnormal ; nearest i s NAR−zero .
return signNAR ;
}
if (biasedWID < WID
MAX BIASED EXPONENT )
{
// nonnegWID i s WID−normal .
if (nonnegWID <=WID
NAR AVR MIN SUBNORMAL ZERO )
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{
// N e a r e s t i s NAR−zero .
return signNAR ;
}
if (nonnegWID <=WID
NAR MIN SUBNORMAL)
{
// N e a r e s t i s NAR−min−subnormal .
return signNAR | NAR
MIN SUBNORMAL ;
}
if (nonnegWID < WID
NAR MIN NORMAL)
{
// Round to ne a res t NAR−subnormal with ties −to−even . Note
// t h a t bi asedN AR i s i mp l i c i t ly z e r o .
trailingWID |=WID
SUP TRAILING MASK ;
rshift = WID
NUM TRAILING BITS − NAR NUM TRAIL ING BITS +
WID
EXPONENT BIAS − NAR EXPONENT BIAS + 1 − biasedWID ;
trailingNAR = ( trailingWID >> rshift );
lshift = WID
NUM ENCODING BITS − rshift ;
frcpart = (trailingWID << lshift );
if (frcpart > WID
HALF PROXY
|| ( frcpart == WID
HALF PROXY && ( trailingNAR & 1)))
{
// I f there i s a ca rry in to the exponent , the high−order
// bit of trailingNAR makes biasedNAR equal to 1 and the
// result is correct .
++trailingNAR;
}
return signNAR | trailingNAR;
}
if (nonnegWID < WID
NAR MAX NORMAL)
{
// Round to ne a res t NAR−normal with t ie s −to−even .
biasedNAR = (( biasedWID − WID
EXPONENT BIAS + NAR EXPONENT BIAS)
<< NAR
NUM TRAILING BITS ) ;
rshift = WID
NUM TRAILING BITS − NAR NUM TRAIL ING BITS ;
trailingNAR = ( trailingWID >> rshift );
lshift = WID
NUM ENCODING BITS − rshift ;
frcpart = (trailingWID << lshift );
if (frcpart > WID
HALF PROXY
|| ( frcpart == WID
HALF PROXY && ( trailingNAR & 1)))
{
// I f there i s a ca rry in to the exponent , the ad ditio n of
// trailingNAR to biasedNAR ( rather than OR−ing ) produces
// t he co r r ec t r e s u l t .
++trailing8 ;
}
return signNAR | (biasedNAR + trailingNAR);
}
if (nonnegWID < WID
NAR AVR MAX NORMAL INFINITY)
{
// nonneg16 i s c lo s es t to NAR−max−normal .
return signNAR | NAR
MAX NORMAL ;
}
// nonnegWID >=WID
NAR AVR MAX NORMAL INFINITY ; c o n v e r t t o
// NAR− infinite .
return signNAR | NAR
INFINITY ;
}
if (trailingWID == 0)
{
// The number i s WID−infinite . Convert to NAR− infinite .
return signNAR | NAR
BIASED EXPONENT MASK ;
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}
// The number i s WID−NaN. C o n v ert to NAR−NaN w i t h NA R−payload the
// h ig h−order $n
0 −1$ b i t s o f t h e WID−payload . The code also grabs
// t h e WID6−quietNaN mask bi t .
if (( trailingWID & WID
PAYLOAD EXCESS)==0)
{
// The WID−payload has only its f ir st WID
NUM TRAIL ING BITS−1
// b i t s s e t , s o i t c an b e r e p rese n t e d a s a NAR−payload without
// loss of information .
rshift = WID
NUM TRAIL ING BITS − NAR NUM TRAILING BITS ;
UInteger maskPayload = (( trailingWID & WID
TRAILING MASK)
>> rshift );
return signNAR | NAR
BIASED EXPONENT MASK | maskPayload ;
}
// The WID−payload cannot be represented as a NAR−payload without
// loss of information . Make the NaN quiet (as required) and set
// t h e l ow−order bit to1(user−defined diagnostic information ).
return signNAR | NAR
BIASED EXPONENT MASK | NAR QUIET MASK | 1;
}
LISTING 2.29: The conversion of a wide-format number to a narrower for-
mat.
The mask
WID PAYLOAD EXCESS locates the bits of the wide payload that
cannot be mapped to bits of the narrow payload. The trailing signiﬁcand for
the narrow number is qp
n
0
−1
···p
0
,whereq is the bit to set for a quiet NaN.
The trailing signiﬁcand is ¯q ¯p
n
1
−2
···¯p
n
1
−n
0
¯p
n
1
−n
0
−1
···¯p
0
for the wide num-
ber, where ¯q is the bit to set for a quiet NaN. The ﬁrst n
0
bits ¯q ¯p
n
1
−2
···¯p
n
1
−n
0
are shifted to occupy qp
n
0
−1
···p
0
. The other bits are lost. The payload-excess
mask has 1-valued bits at the indices 0 through n
1
− n
0
− 1 and zeros at all
other indices.
Exercise 2.20 Using the pseudocode as a guide, write a program that (1)
converts 16-bit encodings to 32-bit encodings and (2) converts 32-bit encodings
to 16-bit encodings. Write a test program with a suﬃcient number of examples
to verify that your implementations are correct. (Hint: Think about this in
terms of code coverage.)
2.5.3 Arithmetic Operations
The arithmetic operations of addition, subtraction, and multiplication are
as described in Section 2.4.2, although the implementation in hardware will
not look like the software algorithms I discussed. Division can be implemented
as described previously, using a straightforward division of binary numbers
similar to what you do for long division of integers. The ﬂoating-point hard-
ware uses barrel shifters in the implementation.
Other division approaches are possible. To compute a reciprocal 1/x for
a speciﬁed positive number x, we can use Newton’s method to compute the
root y of f(y)=1/y − x for a suitably chosen initial guess y
0
. The iterates
are
y
i+1
= y
i
− f(y
i
)/f

(y
i
)=y
i
(2 − xy
i
),i≥ 0 (2.67)
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Using binary scientiﬁc notation, we can factor out a power of two so that
the number for which we actually compute the reciprocal is x ∈ [1/2, 1).
Using a minimax algorithm (see Section 3.3), we can ﬁt 1/x on [1/2, 1) with
a linear polynomial c
0
+ c
1
x to minimize the maximum absolute value of the
error |E(x)| where E(x)=x(c
0
+ c
1
x) − 1. The local minimum on [1/2, 1]
occurs when E

(x) = 0, in which case x = −c
0
/(2c
1
). To balance the error
according to the Chebyshev equioscillation theorem, we need E(1/2) = E(1) =
−E(−c
0
/2c
1
), which leads to two equations in the two unknowns c
0
and c
1
.
The solution is c
0
=48/17 and c
1
= −32/17, and the maximum ﬁtted error
is approximately 0.0588235. The inital guess is chosen as y
0
=(48−32x)/17.
A more interesting implementation of division in hardware uses multiplica-
tive division [15]. To compute the division x/y observe that
x
y
=
xf
0
f
1
...f
n−1
yf
0
f
1
...f
n−1
(2.68)
for any positive factors f
i
. With carefully chosen factors, we can itera-
tively drive the denominator yf
0
...f
n−1
to 1, in which case the numerator
xf
0
...f
n−1
is the result of the division. Factoring out powers of two for x and
y so that x ∈ [0, 1/2) and y ∈ (1/2, 1], we can choose initial values x
0
= x,
y
0
= y,andfactorsf
i
=1+x
2
i
. The iterates are
x
i+1
y
i+1
=
x
i
f
i
y
i
f
i
,i≥ 0 (2.69)
After n iterations, the result has minimum precision of 2
n
bits.
2.5.4 Mathematical Functions
The IEEE 754-2008 Standard has requirements about various operations
and mathematical functions to support correctly rounded results. With the
default mode of round-to-nearest, a function such as
y=sqrt(x)for a (nonneg-
ative) 32-bit ﬂoating-point input
x must return a 32-bit ﬂoating-point input
y that is the closest ﬂoating-point number to the theoretical square root. For
example, Listing 2.30 shows the correctly rounded result for a square root
operation.
float x = 1.25 f ; // x . binary32 = 0x3fa00000 ( exact re presentation )
float y = sqrt(x); // y. binary32 = 0x3f8f1bbd
// y . binary64 = 0x3ff1e377a0000000
// y . bi na ry = 1.1 e377a
yT he or et ic al . b in ary = 1.1 e3779b9 + remainder ;
y = RoundToNearestFloat( yTheoretical );
LISTING 2.30: Correctly rounded result for square root.
The exact value is irrational but may be expanded to as many binary places
as is shown. The closest 32-bit ﬂoating-point value to the theoretical answer is
obtained in this case by rounding up. If the rounding mode of the FPU were
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set to round toward zero, the
sqrt function would be required to return the
32-bit ﬂoating-point number with encoding
0x3ﬀ1e377b.
Generally, deriving mathematical approximations to functions with correct
rounding is a technical challenge. FPU hardware can provide fast computation
by using registers with higher precision than that of the inputs to the func-
tions. If the ﬂoating-point arithmetic were to be implemented in software, you
might not obtain as fast a computation as you would like. However, you may
consider trading accuracy for speed. This is a typical trade-oﬀ for computing
with SIMD registers; see Chapter 3.
The standard mathematics library that ships with Microsoft Visual Studio
has several functions supported by an FPU, shown in Listing 2.31. Variations
are provided for
ﬂoat and double.
acos (x) // in v e r s e cos i n e
asin(x) // i n v er s e si n e
atan(x) // i n v er s e t a n g e n t
atan2(y , x) // i nve rs e tangent with quadrant s elec tion
ceil (x) // round up to i nt eg er va lu e
cos ( x) // c o sin e
cosh ( x) // hyperbolic cosine
exp ( x ) // exponential base e
fabs(x) // absolute value
floor(x) // round down to i nt eg er
fmod ( x , y) // remainder of x/y
frexp(x,y) // g e t t ra i l i n g sig n i f i c and and e xp o n en t o f a number
ldexp (x , y) // co mpute number f ro m t ra i l in g s ig n i f i c a nd and e x po n en t
log(x) // logarithm base e
log10(x) // logarithm base 10
modf ( f , i ) // split f into fractional and integer parts
pow(x , y ) // r a ise x t o p ower y
sin(x) // s i ne
sinh(x) // hyperbolic sine
sqrt (x) // square root
tan (x ) // t a n g e nt
tanh ( x) // hyperbolic tangent
LISTING 2.31: The standard mathematics library functions.
2.5.5 Floating-Point Oddities
This section contains a small collection of problems whose solutions are
unexpected.
2.5.5.1 Where Have My Digits Gone?
Compute the roots of a quadratic equation a
2
x
2
+ a
1
x + a
0
=0.The
standard formula is
x =
−a
1
±

a
2
1
− 4a
0
a
2
2a
2
(2.70)
where the discriminant is Δ = a
2
1
− 4a
0
a
2
. The equation has no real-valued
roots when Δ < 0, one repeated real-value root when Δ = 0, and two distinct
real-valued roots when Δ > 0.
For the case Δ > 0, when a
2
is nearly zero and a
1
> 0, the numerator
for the larger root is −a
1
+

a
2
1
− 4a
0
a
2
. The argument of the square root
function is approximately a
2
1
, so the square root is approximately a
1
,inwhich
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case you have a diﬀerence of two numbers of similar magnitude. This can
lead to cancellation of many signiﬁcant digits, producing a numerator that
is nearly zero and eﬀectively noise. The division by the nearly zero a
2
then
magniﬁes the result. The recommended way to avoid this problem is to modify
the equation,
−a
1
+
√
a
2
1
−4a
0
a
2
2a
2
=
−a
1
+
√
a
2
1
−4a
0
a
2
2a
2
·
−a
1
−
√
a
2
1
−4a
0
a
2
−a
1
−
√
a
2
1
−4a
0
a
2
=
a
2
1
−(a
2
1
−4a
0
a
2
)
−2a
2
(a
1
+
√
a
2
1
−4a
0
a
2
)
=
a
0
(a
1
+
√
a
2
1
−4a
0
a
2
)/2
(2.71)
The new formula is mathematically equivalent to the old formula, but now the
denominator has a sum of nearly equal values, which avoids the cancellation.
The basic illustration of subtractive cancellation is shown in Listing 2.32.
float a0 = −0.01 f ; // 0xbc23d70a
float a1 = 0.001 f ; // 0x3a83126f
float a2 = 0.000001 f ; // 0x358637bd
float discriminant = a1∗a1 − 4.0 f∗ a0∗a2 ; // i s pos i t i v e
float rootDiscriminant = sqrtf (discriminant );
float root [2] , rootPrev [2] , rootNext [2];
float poly [2] , polyPrev [2] , polyNext [2];
// V a lu e ( a0 , a1 , a2 , r ) = a0 + r ∗(a1 + r∗a2 )
// Original formula.
float invTwoA2 = 0 .5 f / a 2 ;
root [0] = (−a1 − rootDiscriminant)∗ invTwoA2 ;
root [1] = (−a1 + rootDiscriminant)∗ invTwoA2 ;
poly [0] = a0 + root [0]∗ (a1 + root[0]∗ a2 ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
rootPrev [0] = NextDown(root [0]); // −1009.9020 (0 xc47c79bb )
rootCurr [0] = root [0]; // −1009.9020 (0 x c47 c79 ba )
rootNext[0] = NextUp(root [0]); // −1009.9019 (0 xc47c79b9 )
p olyPrev [ 0 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 0 ] ) ; // +3.8622883 e−8 (0 x3325e24f )
pol yC ur r [0] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 0 ] ) ; // −2.3621011e−8 (0 xb2cae727)
polyNext[0] = Value(a0 ,a1 ,a2 , rootNext [0]); // −8.5864897e−8 (0 xb3b864ba)
rootPrev [1] = NextDown(root [1]); // +9.9019375 (0 x411e6e56 )
rootCurr [1] = root [1]; // +9.9019384 (0 x411e6e57 )
rootNext[1] = NextUp(root [1]); // +9.9019394 (0 x411e6e58 )
p olyPrev [ 1 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 1 ] ) ; // −1.3455720e−8 (0 xb2672ae2 )
pol yC ur r [1] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 1 ] ) ; // −1.2483159e−8 (0 xb2567584)
polyNext[1] = Value(a0 ,a1 ,a2 , rootNext [1]); // −1.1510599e−8 (0 xb245c026 )
// Modified formula .
float temp = −0.5 f ∗(a1 + rootDiscriminant);
root [0] = temp/a2;
root [1] = a0/temp;
poly [0] = a0 + root [0]∗ (a1 + root[0]∗ a2 ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
// 0−indexed values same as for original formula .
rootPrev [1] = NextDown(root [1]); // +9.9019499 (0 x411e6e63 )
rootCurr [1] = root [1]; // +9.9019508 (0 x411e6e64 )
rootNext[1] = NextUp(root [1]); // +9.9019518 (0 x411e6e65 )
p olyPrev [ 1 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 1 ] ) ; // −8.1242973e−10 (0 xb05f51a9)
pol yC ur r [1] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 1 ] ) ; // +1.6013110 e−10 (0 x2f3010e6 )
polyNext[1] = Value(a0 ,a1 ,a2 , rootNext [1]); // +1.1326919 e−09 (0 x309bad0e )
LISTING 2.32: Subtractive cancellation in ﬂoating-point arithmetic.
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The 0-index roots are the same for the two methods but the 1-index roots
diﬀer. In fact, the roots have trailing signiﬁcands that diﬀer by seven, which
amounts to a ﬂoating-point diﬀerence of 1/2
21
+1/2
22
+1/2
23
.
=8.34465e−7.
The pseudocode shows the two ﬂoating-point neighbors of the 0-index
root, namely,
rootPrev[0] and rootNext[0]. Observe that the polynomial values
at those points have opposite signs, which means that zero lies between them
(in terms of inﬁnite precision). The polynomial value at the computed root is
nearly zero and has a magnitude smaller than that of the polynomial value
at the root’s next-up neighbor. Thus, the ﬂoating-point value computed for
the root is the best that you can do in terms of 32-bit ﬂoat and polynomial
evaluation deﬁned as it is.
The pseudocode also shows the two ﬂoating-point neighbors of the 1-index
root computed using the original quadratic formula. Observe that the polyno-
mial value at that root is nearly zero. However, the two ﬂoating-point neigh-
bors of the root have polynomial values of the same sign as that of the root,
so the next-down and next-up values do not bound a root (in terms of inﬁnite
precision). The modiﬁed formula does lead to a ﬂoating-point approxima-
tion to the root whose next-down and next-up values do bound the inﬁnite
precision root. This is clear by observing that the polynomial values at the
neighbors have opposite signs and the magnitude of the polynomial value at
the estimated root is smaller than the magnitudes of the polynomial values at
the neighbors.
Notice that the original formula uses one division but the modiﬁed formula
uses two divisions. Thus, the modiﬁed formula is more expensive to compute,
but it gives a better estimate of the root. If you polish the root from the
original formula using one iteration of Newton’s method, you obtain the root
produced by the modiﬁed method.
// r o ot [ 1 ] = +9.9019384 (0 x411e6e57 )
// p o l y [1] = −1.2483159e−008
root [1] −= poly [1]/(a1 + root [1]∗ (2.0 f∗a2 ) ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
// r o ot [ 1 ] = +9.9019508 (0 x411e6e64 )
// p ol y [ 1 ] = +1.6013110 e−010
The root polishing involves a second division, so in eﬀect the original for-
mula plus one Newton iteration gets you to the same place. Here are sev-
eral questions for investigation. The assumption is that the quadratic coeﬃ-
cients are chosen so that the root estimates involve only ﬁnite ﬂoating-point
numbers—that is, NaNs and inﬁnities are not generated.
Exercise 2.21 Let r
0
be a root estimate from the original formula. Let f (r)=
a
0
+ r(a
1
+ ra
2
) be the ﬂoating-point expression used to evaluate the quadratic
polynomial. Let r
1
= r
0
− f(r
0
)/(a
1
+ r
0
(2a
2
)).Letr
2
be an estimate for the
same root using the modiﬁed formula. Is it always true that r
1
= r
2
?
Exercise 2.22 If the answer to the previous question is false, what is the
maximum number of Newton iterations that leads to the root estimate of the
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modiﬁed formula? Is it ever possible for the Newton iterates to cycle, thus
preventing convergence to an estimated root?
Exercise 2.23 Let r be a root estimate from the modiﬁed formula. Let r
d
be the next-down neighbor of r and let r
u
be the next-up neighbor of r.Let
f(r)=a
0
+ r(a
1
+ ra
2
) be the ﬂoating-point expression used to evaluate the
quadratic polynomial. Is it always true that f (r
d
)f(r
u
) ≤ 0 and |f(r)| =
min{|f(r
d
)|, |f (r)|, |f(r
u
)|}?
The leading coeﬃcient is chosen to be very small. Listing 2.33 shows how
bad the subtractive cancellation can be.
float a0 = −0.01 f ; // 0xbc23d70a
float a1 = 0.001 f ; // 0x3a83126f
float a2 = 10.0 f∗FL T
MIN ; // 1.1754944e−37 (0 x02200000)
float discriminant = a1∗a1 − 4.0 f∗ a0∗a2 ; // i s pos i t i v e
float rootDiscriminant = sqrtf (discriminant );
float root [2] , rootPrev [2] , rootNext [2];
float poly [2] , polyPrev [2] , polyNext [2];
// V a lu e ( a0 , a1 , a2 , r ) = a0 + r ∗(a1 + r∗a2 )
// Original formula.
float invTwoA2 = 0 .5 f / a 2 ;
root [0] = (−a1 − rootDiscriminant)∗ invTwoA2 ;
root [1] = (−a1 + rootDiscriminant)∗ invTwoA2 ;
poly [0] = a0 + root [0]∗ (a1 + root[0]∗ a2 ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
rootPrev [0] = NextDown(root [0]); // −8.5070602e+33 (0 x f7d1 b719 )
rootCurr [0] = root [0]; // −8.5070596e+33 (0 x f7d1 b718 )
rootNext[0] = NextUp(root [0]); // −8.5070590e+33 (0 x f7d 1b717 )
p olyPrev [ 0 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 0 ] ) ; // +6.1897012 e+23 (0 x67031270 )
pol yC ur r [0] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 0 ] ) ; // −0.0099999998 (0 xbc23d70a )
polyNext[0] = Value(a0 ,a1 ,a2 , rootNext [0]); // −6.1896998e+23 (0 xe703126e )
rootPrev [1] = NextDown(root [1]); // −1.401e−45#DEN (0 x80000001 )
rootCurr [1] = root [1]; // 0.00000000 (0 x00000000)
rootNext[1] = NextUp(root [1]); // +1.401 e−45#DEN (0 x00000001 )
p olyPrev [ 1 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 1 ] ) ; // −0.0099999998 (0 xbc23d70a )
pol yC ur r [1] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 1 ] ) ; // −0.0099999998 (0 xbc23d70a )
polyNext[1] = Value(a0 ,a1 ,a2 , rootNext [1]); // −0.0099999998 (0 xbc23d70a )
// Modified formula .
float temp = −0.5 f ∗(a1 + rootDiscriminant);
root [0] = temp/a2;
root [1] = a0/temp;
poly [0] = a0 + root [0]∗ (a1 + root[0]∗ a2 ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
// 0−indexed values same as for original formula .
rootPrev [1] = NextDown(root [1]); // +9.9999981 (0 x 411ffffe)
rootCurr [1] = root [1]; // +9.9999990 (0 x 4 1 1 f f f f f )
rootNext[1] = NextUp(root [1]); // +10.000000 (0 x41200000 )
p olyPrev [ 1 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 1 ] ) ; // −1.2088568e−09 (0 xb0a624de )
pol yC ur r [1] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 1 ] ) ; // −2.5518243e−10 (0xaf8c49bc)
polyNext[1] = Value(a0 ,a1 ,a2 , rootNext [1]); // +6.9849193 e−10 (0 x30400000 )
LISTING 2.33: Another example of subtractive cancellation and how bad
it can be.
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The original formula estimates a root of 0.0 with corresponding polynomial
value −0.0099999998. The coeﬃcient a
0
=0.001 cannot be exactly represented
in ﬂoating point, so the polynomial value is a
0
as represented in ﬂoating point.
The modiﬁed formula estimates a root of 9.9999990, which is much diﬀerent
from 0.0. The corresponding polynomial value is −2.5518243e−010, which is
closer to zero than the polynomial value for the estimated root obtained by
the original formula.
Once again observe that the next-down and next-up values for the esti-
mated root using the modiﬁed formula produce polynomial values of opposite
sign. Moreover, the magnitude of the polynomial value at the estimate root is
smaller than the magnitudes of the polynomial values at the neighbors. The
modiﬁed formula is the best you can do for estimating the root using 32-bit
ﬂoats.
The estimated root from the original formula appears to be quite bad. How
bad is it? Well, try polishing the root with one iteration of Newton’s method.
// root [1] = 0.00000000 (0x00000000)
// p o l y [1] = −0.0099999998 (0 xbc23d70a )
root [1] −= poly [1]/(a1 + root [1]∗ (2.0 f∗a2 ) ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
// r o ot [ 1 ] = +9.9999990 (0 x 4 1 1 f f f f f )
// p o l y [1] = −2.5518243e−010 (0 x a f8c 4 9bc )
Once again we have obtained the estimated root of the modiﬁed formula
with only a single iteration. Perhaps the estimated root of the original formula
appeared to be inaccurate, but the root polishing appears to indicate that it
was close enough to quickly reﬁne it to a good estimate.
An issue to be aware of for the modiﬁed formula is when a
1
=0.The
quadratic equation is a
2
x
2
+ a
0
= 0. When there are real-valued roots, they
must be x = ±

−a
0
/a
2
. One root is the negative of the other (when a
0
=0).
The modiﬁed formula, however, will estimate two roots that are not negatives
of each other, as shown in Listing 2.34.
float a0 = −0.01 f ; // 0xbc23d70a
float a1 = 0 .0 f ; // 0x00000000
float a2 = 0.001 f ; // 0x3a83126f
float discriminant = a1∗a1 − 4.0 f∗ a0∗a2 ; // i s pos i t i v e
float rootDiscriminant = sqrtf (discriminant );
float root [2] , rootPrev [2] , rootNext [2];
float poly [2] , polyPrev [2] , polyNext [2];
// V a lu e ( a0 , a1 , a2 , r ) = a0 + r ∗(a1 + r∗a2 )
// Original formula.
float invTwoA2 = 0 .5 f / a 2 ;
root [0] = (−a1 − rootDiscriminant)∗ invTwoA2 ;
root [1] = (−a1 + rootDiscriminant)∗ invTwoA2 ;
poly [0] = a0 + root [0]∗ (a1 + root[0]∗ a2 ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
rootPrev [0] = NextDown(root [0]); // −3.1622779 (0 x c04 a62c3 )
rootCurr [0] = root [0]; // −3.1622777 (0 x c04 a62c2 )
rootNext[0] = NextUp(root [0]); // −3.1622775 (0 xc0 4a62c1 )
p olyPrev [ 0 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 0 ] ) ; // +2.4489206 e−09 (0 x312849de )
pol yC ur r [0] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 0 ] ) ; // +9.4102892 e−10 (0 x30815583 )
polyNext[0] = Value(a0 ,a1 ,a2 , rootNext [0]); // −5.6686256e−10 (0 xb01bd168 )
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rootPrev [1] = NextDown(root [1]); // +3.1622775 (0 x404a62c1 )
rootCurr [1] = root [1]; // +3.1622777 (0 x404a62c2 )
rootNext[1] = NextUp(root [1]); // +3.1622779 (0 x404a62c3 )
p olyPrev [ 1 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 1 ] ) ; // −5.6686256e−10 (0 xb01bd168 )
pol yC ur r [1] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 1 ] ) ; // +9.4102892 e−10 (0 x30815583 )
polyNext[1] = Value(a0 ,a1 ,a2 , rootNext [1]); // +2.4489206 e−09 (0 x312849de )
// Modified formula .
float temp = −0.5 f ∗(a1 + rootDiscriminant);
root [0] = temp/a2;
root [1] = a0/temp;
poly [0] = a0 + root [0]∗ (a1 + root[0]∗ a2 ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
// 0−indexed values same as for original formula .
rootPrev [1] = NextDown(root [1]); // +3.1622772 (0 x404a62c0 )
rootCurr [1] = root [1]; // +3.1622775 (0 x404a62c1 )
rootNext[1] = NextUp(root [1]); // +3.1622777 (0 x404a62c2 )
p olyPrev [ 1 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 1 ] ) ; // −2.0747539e−09 (0 xb10e9375 )
pol yC ur r [1] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 1 ] ) ; // −5.6686256e−10 (0 xb01bd168 )
polyNext[1] = Value(a0 ,a1 ,a2 , rootNext [1]); // +9.4102892 e−10 (0 x30815583 )
LISTING 2.34: Numerically incorrect quadratic roots when using the mod-
iﬁed quadratic formula.
The original formula estimates two roots, one the negative of the other.
Notice that the next-down and next-up values for the 0-index root have op-
posite sign polynomial values, so next-down and next-up bound the root (as
an inﬁnite precision value). However, the magnitude of the polynomial value
at the estimated root is larger than the magnitude of the polynomial value at
the next-up neighbor.
The modiﬁed formula estimates two roots, one not the negative of the
other, but they are suﬃciently close in magnitude. The next-down and next-
up values for the 1-index root have opposite-sign polynomial values and the
magnitude of the polynomial value at the estimated root is smaller than the
magnitudes of the polynomial values at the neighbors. But as in the other
examples, one Newton iterate applied to the 1-index estimated root from the
original formula will polish the root to be the 1-index estimated root from the
modiﬁed formula.
One Newton iterate to polish the 0-index root produces an estimated root
of −3.162775. The polished roots are negatives of each other.
2.5.5.2 Have a Nice Stay!
In the previous section, root polishing was used for the estimated roots
obtained from the original formula. In each of the two examples, a single
Newton iterate was suﬃcient to produce the estimated root obtained from
the modiﬁed formula.
Generally, you might be tempted to polish roots regardless of the formula
used. Naturally, you want an estimate for which the polynomial value is close
to zero. Be very careful here. Suppose you chose a small threshold ε>0for
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which you want the estimated root r to satisfy |f (r)| <ε. Being mathematical,
this is a natural thing to try.
float a0 = <something >,a1=<something >,a2=<something >;
float root = <estimated using original or modified formula>;
float poly = a0 + root∗(a1 + root∗a2 ) ;
const f loat myPolyEpsilon = 1e−06 f ;
while (fabsf(poly) > myPolyEpsilon)
{
float polyDerivative = a1 + root∗ (2.0 f∗a2 ) ;
root −= poly/polyDerivative ;
poly = a0 + root∗(a1 + root∗a2 ) ;
}
In many cases, you will be waiting a very long time for your program to
terminate—a very long time, as this is an inﬁnite loop. It is better to limit the
number of iterations by a user-speciﬁed loop maximum. Even better, use a
std::set to store the visited root candidates. When a candidate already exists in
the set, you have a cycle of numbers, in which case you can terminate the root
ﬁnding and report the number whose corresponding function value is closest
to zero.
2.5.5.3 The Best I Can Do Is That Bad?
Listing 2.35 is an example that shows the best you can do in ﬁnding roots
but where one of the roots looks to be absolutely wrong.
float a0 = 1.3852034e−27 f ; // 0x12db7e87
float a1 = 0.00013351663f ; // 0 x390c0099
float a2 = 3.0170867e−38 f ; // 0x0124440d
float discriminant = a1∗a1 − 4.0 f∗ a0∗a2 ; // i s pos i t i v e
float rootDiscriminant = sqrtf (discriminant );
float root [2] , rootPrev [2] , rootNext [2];
float poly [2] , polyPrev [2] , polyNext [2];
// V a lu e ( a0 , a1 , a2 , r ) = a0 + r ∗(a1 + r∗a2 )
// Modified formula .
float temp = −0.5 f ∗(a1 + rootDiscriminant);
root [0] = temp/a2;
root [1] = a0/temp;
poly [0] = a0 + root [0]∗ (a1 + root[0]∗ a2 ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
rootPrev [0] = NextDown(root [0]); // −4.4253497e+33 (0 x f7 5a 2 fc 4 )
rootCurr [0] = root [0]; // −4.4253494e+33 (0 x f7 5a 2 fc 3 )
rootNext[0] = NextUp(root [0]); // −4.4253491e+33 (0 xf 7 5a 2 fc 2 )
p olyPrev [ 0 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 0 ] ) ; // +2.1253151 e+22 (0 x64900457 )
pol yC ur r [0] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 0 ] ) ; // −2.0068245e+22 (0 xe487fcdb )
polyNext[0] = Value(a0 ,a1 ,a2 , rootNext [0]); // −6.1389634e+22 (0 x e 5 4f f f 0 5 )
rootPrev [1] = NextDown(root [1]); // −1.0374764e−23 (0 x9948ad58 )
rootCurr [1] = root [1]; // −1.0374763e−23 (0 x9948ad57 )
rootNext[1] = NextUp(root [1]); // −1.0374763e−23 (0 x9948ad56 )
p olyPrev [ 1 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 1 ] ) ; // −2.0747539e−
09 (0 x870f9998)
pol yC ur r [1] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 1 ] ) ; // −5.6686256e−10 (0 x84663fc0 )
polyNext[1] = Value(a0 ,a1 ,a2 , rootNext [1]); // +9.4102892 e−10 (0 x0708679a )
LISTING 2.35: An example of correct root ﬁnding, although at ﬁrst glance
they look incorrect.
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The0-indexrootestimateis−4.4253494e + 33, which is quite large in
magnitude, and the polynomial value at the root is −2.0068245e+22, which is
also quite large in magnitude. When you ﬁrst see the result, you will probably
tell yourself that there is a bug somewhere in your code. However, observe that
the next-down and next-up values for the estimated root have opposite-sign
polynomial values, so the inﬁnite-precision root is bounded by next-up and
next-down. Moreover, the magnitude of the polynomial value at the estimated
root is smaller than the magnitudes of the polynomial values at the neighbors.
This is the best you can do.
This example just emphasizes how sparse the ﬂoating-point numbers are
on the real line when those numbers are large in magnitude.
If you repeat the experiment using 64-bit doubles, the results are more
what you expect. The coeﬃcients are the exact 64-bit representations of the
32-bit values of the last code block. Listing 2.36 shows the results.
double a0 = 1.3852034457886450e−27;
double a1 = 0.00013351663073990494;
double a2 = 3.0170866780915123e−38;
double discriminant = a1∗a1 − 4.0∗ a0∗a2 ; // i s pos i t i v e
double rootDiscriminant = sqrt(discriminant );
double root [2] , rootPrev [2] , rootNext [2] ;
double poly [2] , polyPrev [2] , polyNext [2];
// V a lu e ( a0 , a1 , a2 , r ) = a0 + r ∗(a1 + r∗a2 )
// Modified formula .
double temp = −0.5∗(a1 + rootDiscriminant);
root [0] = temp/a2;
root [1] = a0/temp;
poly [0] = a0 + root [0]∗ (a1 + root[0]∗ a2 ) ;
poly [1] = a0 + root [1]∗ (a1 + root[1]∗ a2 ) ;
rootPrev [0] = NextDown(root [0]); // −4.4253495171163665 e+33
rootCurr [0] = root [0]; // −4.4253495171163659 e+33
rootNext[0] = NextUp(root [0]); // −4.4253495171163653 e+33
p olyPrev [ 0 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 0 ] ) ; // 119949339011631.06
pol yC ur r [0] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 0 ] ) ; // 1.3852034457886450e−27
polyNext[0] = Value(a0 ,a1 ,a2 , rootNext [0]); // −119949339011631.03
rootPrev [1] = NextDown(root [1]); // −1.0374763339310665 e −23
rootCurr [1] = root [1]; // −1.0374763339310664 e−23
rootNext[1] = NextUp(root [1]); // −1.0374763339310662 e−23
p olyPrev [ 1 ] = V a l u e ( a0 , a1 , a2 , r ootPrev [ 1 ] ) ; // −1.7936620343357659 e−43
pol yC ur r [1] = V a lu e ( a0 , a1 , a2 , roo tC ur r [ 1 ] ) ; // 0.00000000000000000
polyNext[1] = Value(a0 ,a1 ,a2 , rootNext [1]); // 1.7936620343357659e
−43
LISTING 2.36: The example of Listing 2.35 but computed using double-
precision numbers. The hexadecimal encodings are omitted here.
This shows that having a very large number of 64-bit ﬂoating-point
numbers between the 32-bit ﬂoating-point next-down and next-up of the
previous code block allows you to produce a precise estimate of the 0-
index root (−4.4253495171163659e+ 33) with a polynomial value nearly zero
(1.3852034457886450e−27).
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2.5.5.4 You Have Been More Than Helpful
There is a tendency to think that you can help the compiler in its optimiza-
tion by factoring out subexpressions, thus avoiding redundant computations.
You do this by computing the subexpressions and storing in temporary local
variables. For example,
float x=<something >,y=<something >,z=<something >;
// Original expressions . Five arithmetic operations (when unoptimized).
float expression1 = x∗y ∗z;
float expression2 = x∗y ∗(z + 1.0f );
// T ryin g to be h e l p f u l to t he c om pi le r . Three a r i t h m et i c o p e r a t i on s ( hand
// o p t i m i z e d ).
float xyProduct = x∗y;
float expression1 = xyProduct∗ z;
float expression2 = expression1 + xyProduct ;
Be careful! If x and y are very large numbers, explicitly computing xyProduct
can lead to problems, as the following example illustrates.
float large1 = 1.1e+24f ; // 0x6768ef1f
float large2 = 2.2e+24f ; // 0x67e8ef1f
float small = 1e−12 f ; // 0x2b8cbccc
// In t e rn a ll y , r ig h t −hand s i d e i s computed u s in g 64− bit double , avoiding the
// 32− bit float overflow in the product large1∗ large2 . The result is
// i n t he n or ma l r a ng e fo r 32− bit float . The floating−point processor
// s ign als ” inexact ” because the 64− bit result is not exactly
// r e p re s e nt a b l e a s a 32− bit number , so rounding−to−nearest is applied.
float product1 = large1∗ large2∗ small ; // 2.4200001e+36 (0 x7be9099c )
// In t e rn a ll y , r ig h t −hand s i d e i s computed u s in g 64− bit double , avoiding the
// 32− bit float overflow . However , the 64− bit result is larger than
// 32− bit infinity , so the conversion back to 32− bit float fails . The
// f l o a t in g −point processor signals ”overflow” and ”inexact” and assigns
// i n f i n i t y t o temp .
float temp = l ar g e1∗ large2; // 1.#INF000 (0 x7f800000 )
// Too late . temp is i nf in it y and the product on the right−hand s i d e
// remains infinity (no signal generated by the floating−point processor).
// Mathematically , product1 and product2 are the ”same” but the
// f l o a t in g −point calculations lead to different values .
float product2 = temp∗ small ; // 1.#INF000 (0 x7f800000)
// The rig h t −hand s i d e f o r computing p ro duct 1 i n 64− bit .
double dlarge1 = (double)large1;
double dlarge2 = (double)large2;
double dsmall = ( double)small;
double
dproduct1 = dlarge1∗ dlarge2∗ small ;
// 2.4200001207672320e+036
// 0x477d21337c642a3d
// f = 2ˆ{120}∗1.11010010000100110011100
// d = 2ˆ {120}∗1.110100100001001101111100011001000010101000111101
// ˆ
// f i r s t mis match
// Rounding e r ro r i s a pp rox ima tel y 2ˆ{120}∗2ˆ{−21} =2ˆ{99} .
The last part of the code shows that the rounding error in computing
product1 is very large, but this is most likely preferable to having an indeter-
minate result of inﬁnity.
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2.5.5.5 Hardware and Optimizing Compiler Issues
Optimizing compilers can generate a diﬀerent order of operations than
what you might have speciﬁed (without parentheses), which can aﬀect the
ﬁnal result. The optimizer interferes with carefully written code that deals
with rounding and overﬂow. If you have carefully designed expressions to be
evaluated in a certain order, use parentheses to force that order.
Subnormals can cause a switch from hardware to microcode, leading to
slow execution.
As shown in the example for GPU root ﬁnding, the hardware/drivers might
not be compliant with the IEEE 754-2008 standard.
Intermediate calculations in 80-bit registers might be temporary stored in
a 32-bit register for later use. The programmer cannot control this because
the compiler generates the code and (usually) does not provide the ability
to give hints about what you want to happen. Until language groups agree
on providing explicit control to programmers, such as
/fp:precise for Microsoft
Visual Studio regarding compiled code, you might have to resort to assembly
instructions or platform- and compiler-speciﬁc solutions.
Attempts to compute functions such as fast inverse sqrt on CPUs such as
the PowerPC might not work as you see on Intel CPUs. For example, fast
invsqrt on the PowerPC has load-hit-store penalties when trying to access
a union—the value is manipulated as an
unsigned int but then as a ﬂoat,so
diﬀerent registers must be read and written. This is particularly a problem on
game consoles, so you might as well skip the fast method and use hardware-
provided alternatives.
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SIMD Computing
3.1 Intel Streaming SIMD Extensions
Current CPUs have small-scale parallel support for 3D mathematics com-
putations using single-instruction-multiple-data (SIMD) computing. The pro-
cessors provide 128-bit registers, each register storing four 32-bit
ﬂoat values.
The fundamental concepts are
• to provide addition and multiplication of four numbers simultaneously
(a single instruction applied to multiple data) and
• to allow shuﬄing, sometimes called swizzling, of the four components.
Of course, such hardware has support for more than just these operations.
In this section I will brieﬂy summarize the SIMD support for Intel CPUs,
discuss a wrapper class that GTEngine has, and cover several approximations
to standard mathematics functions. The latter topic is necessary because many
SIMD implementations do not provide instructions for the standard functions.
This is true for Intel’s SIMD, and it is true for Direct3D 11 GPU hardware.
You might very well ﬁnd that you have to implement approximations for both
the GPU and SIMD on the CPU.
The original SIMD support on Intel CPUs is called Intel Streaming SIMD
Extensions (SSE). New features were added over the years, and with each
the version number was appended to the acronym. Nearly everything I do
with GTEngine requires the second version, SSE2. To access the support for
programming, you simply need to include two header ﬁles,
#include <xmmintrin .h>
#include <emmintrin .h>
These give you access to data types for the registers and compiler intrinsics
that allow you to use SIMD instructions within your C++ programs.
The main data type is the union
m128 whose deﬁnition is found in
xmmintrin.h. It has a special declaration so that it is 16-byte aligned, a re-
quirement to use SSE2 instructions. If you require dynamic allocation to cre-
ate items of this type, you can use Microsoft’s
aligned malloc and aligned free.
SSE2 provides also its own wrappers for aligned allocations,
mm malloc and
mm free.
93





[image: ]94 GPGPU Programming for Games and Science
The online MSDN documentation has many pages about the intrinsics
available to you. I will not list them all here, but I will talk about the ones I
use to illustrate the basic concepts. The instructions are preﬁxed with
mm.
For example, to load two 128-bit registers and add them as 4-tuples,
m128 v0 = mm set ps (3.0 f ,2 .0 f ,1.0 f ,0. 0 f ); // v0 = (0.0f ,1.0f ,2.0f ,3.0 f)
m128 v1 = mm set ps1 (4.0 f ); // v1 = (4.0f ,4.0f ,4.0f ,4.0 f)
m128 sum = mm add ps ( v0 , v1 ) ; // sum = ( 4 .0 f ,5 . 0 f , 6 .0 f , 7 . 0 f )
Notice that the order of the numbers in the loading of v0 is reversed from
what you are used to. You will need to be careful about this reversal when
looking at a
m128 object in a debugger watch window. If you want to load
them using the reversed order, you can use the
mm setr ps instruction.
3.1.1 Shuﬄing Components
Shuﬄing of components of mm128 is supported by the instruction
mm shuﬄe ps and the MM SHUFFLE macro,
#d e f i n e MM SHUFFLE( i3 , i2 , i1 , i0 )\
(i0) | (( i1 ) << 2) | (( i2 ) << 4) | (( i3 ) << 6)
m128 a ; // (a[0] ,a[1] ,a[2] ,a[3]) = mm set ps(a[3] ,a[2] ,a[1] ,a[0])
m128 b ; // (b[0] ,b[1] ,b[2] ,b[3]) = mm set ps(b[3] ,b[2] ,b[1] ,b[0])
m128 r e s u l t = mm shuffle ps (v0 ,v1 , MM SHUFFLE( i3 , i2 , i1 , i0 )) ;
// = (a[ i0 ] ,a[ i1 ] ,b[ i2 ] ,b[ i3 ]) =
mm set ps(b[i3],b[i2],a[i1],a[i0])
The MM SHUFFLE is deﬁned in xmmintrin.h for convenience. Each input to the
macro is a number from zero to three, so you need only two bits per number.
The macro hides the shifting and OR-ing that builds a single 8-bit number
that represents your selection.
Shuﬄing can be used to compute a dot product of 4-tuples, as shown in
Listing 3.1.
m128 Dot ( m128 const v0 , m128 const v1 )
{
// v0 = (x0 , y0 , z0 , w0 )
// v1 = (x1 , y1 , z1 , w1 )
// d o t ( v0 , v1 ) = x0 ∗x1 + y0∗y1 + z0 ∗z1 + w0∗w1
// ( x0 ∗x1 , y 0∗y1 , z0 ∗z1 , w0∗w1 )
m128 t0 = mm mul ps ( v0 , v1 ) ;
// ( y0 ∗y1 , x 0∗x1 , w0∗w1 , z0∗z1 )
m128 t1 = mm shuffle ps (t0 , t0 , MM SHUFFLE(2, 3, 0, 1));
// ( x0 ∗x1 + y0∗y1 , x0 ∗x1 + y0 ∗y1 , z 0 ∗z1 + w0∗w1 , z0 ∗ z1 + w0∗w1 )
m128 t2 = mm add ps ( t0 , t1 ) ;
// ( z0 ∗ z1 + w0∗w1 , z 0∗z1 + w0∗w1 , x0∗x1 + y0∗y1 , x 0∗ x1 + y0 ∗y1 )
m128 t3 = mm shuffle ps (t2 , t2 , MM SHUFFLE(0, 0, 2, 2));
// ( dot , dot , dot , d ot )
m128 dotSplat = mm add ps ( t2 , t3 ) ;
return dotSplat;
}
LISTING 3.1: Computing a dot product of 4-tuples using SSE2.
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The parallel multiplication is the obvious ﬁrst step to compute. The technical
problem is to sum the components after the multiplication. To do so, you
must shuﬄe the components and perform additions. The use of the word splat
indicates that each channel of a 4-tuple is set to the same number. The dot
product, which is a scalar, is splatted across all four components of the result.
Notice that the ﬁnal result is itself stored in a 128-bit register. If you need
to consume the scalar value of the dot product, you must extract it from the
register,
m128 dotSplat = Dot(v0 , v1);
float dot = dotSplat.m128
f32 [ 0 ] ;
The dot-product calculations are all performed in 128-bit registers. As soon
as you extract a component, you break the SIMD pipeline,sotospeak.Thisis
a performance loss if you were to continue processing the data in the 128-bit
registers for your ﬁnal results. I discuss this concept later in the section.
3.1.2 Single-Component versus All-Component Access
In the dot-product code of Listing 3.1, the instructions worked in parallel
on all four components. For example,
mm add ps adds two 4-tuples and returns
a 4-tuple. The suﬃx
ps indicates that the operation applies to all components.
It is possible to execute on the ﬁrst component without extracting that single
component to a CPU register. The instructions supporting this have suﬃx
ss.
For example,
m128 v0 ; // (x0, y0, z0, w0)
m128 v1 ; // (x1, y1, z1, w1)
m128 sumFirstKeepOthers = mm add ss(v0, v1); // ( x0 + x1 , y0 , z0 , w0 )
The single-component instructions usedwithshuﬄingcanleadtocomputa-
tions that have a heterogeneous ﬂavor about them; that is, you can compute
in the ﬁrst channel, shuﬄe it to the fourth channel, compute in the ﬁrst chan-
nel, shuﬄe it to the third channel, and so on until you have four channels
ﬁlled with your desired computations. For example, you might build a 4-tuple
(f
0
(x),f
1
(x),f
2
(x),f
3
(x)) in this manner for four diﬀerent functions f
i
(x).
3.1.3 Load and Store Instructions
We already saw the initialization functions mm set ps and mm setr ps that
set the four channels of a
m128 object. And we saw mm set ps1 that sets the
channels to the same scalar. You might need to load the channels of a
m128
from values in an array. You might also want to store the channels to an array.
// Load f rom CPU t o m128 . DO NOT USE THIS CODE .
float numbers [ 4 ] = { 0.0 f , 1.0 f , 2.0 f , 3.0 f } ;
m128 v = mm load ps ( numbers ) ; // v = (0.0f ,1.0 f ,2.0f ,3.0 f)
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// S av e f ro m m128 t o CPU . DO NOT USE THIS CODE.
v=
mm shuffle ps (v,v, MM SHUFFLE(0,1,2,3)); // R ev er se component o r de r .
float otherNumbers [ 4 ] ;
mm store ps(otherNumbers , v ); // otherNumbers = {3.0f ,2.0f ,1.0f ,0.0 f}
I added comments about not using these code blocks for loading and stor-
ing. The problem is that both the load and store instructions require their
arguments to be 16-byte aligned. With the compiler default settings for align-
ment,
numbers or otherNumbers are guaranteed to be 4-byte aligned but not
16-byte aligned. If you execute the code in the debugger and, say,
numbers is
not 16-byte aligned, you will crash with an access violation. On my machine
the messages in the output window were
First-chance exception at 0x009DFA4C in LoadStoreTest.exe: 0xC0000005: Access violation reading
location 0xFFFFFFFF.
Unhandled exception at 0x009DFA4C in LoadStoreTest.exe: 0xC0000005: Access violation reading
location 0xFFFFFFFF.
With no other information, a crash due to misalignment is diﬃcult to diagnose.
To avoid the alignment problem it is not enough to typecast, say,
// Typecasting does not affect the byte alignment of ”numbers.”
float numbers [ 4 ] = { 0.0 f , 1.0 f , 2.0 f , 3.0 f } ;
m128 v al u e = ∗( m128 ∗) numbers ;
Instead, you must use instructions that are designed to handle unaligned in-
puts, namely,
mm loadu ps and mm storeu ps. The corrected examples for load
and store are
// Load f rom CPU t o m128 . USE THIS CODE.
float numbers [ 4 ] = { 0.0 f , 1.0 f , 2.0 f , 3.0 f } ;
m128 v = mm loadu ps ( numbers ) ; // v = ( 0 .0 f ,1. 0 f ,2 .0 f , 3 .0 f )
// S av e f ro m
m128 to CPU . USE THIS CODE.
v=
mm shuffle ps (v,v, MM SHUFFLE(0,1,2,3)); // r e v e r s e component o r d er
float otherNumbers [ 4 ] ;
mm storeu ps ( otherNumbers , v ) ; // otherNumbers = { 3.0f ,2.0f ,1.0f ,0.0 f}
The unaligned loads and stores can be a performance issue if they occur
often. If you use the alignment macros provided by the runtime library to align
your own data, you can avoid using the unaligned load and store instructions
altogether. The compiler will generate code to load and store using the aligned
instructions, so you will not pay the performance hit for the unaligned accesses.
Choosing aligned data has some additional details you must pay attention
to. For example, consider the code
struct MyTuple4
{
MyTuple4 ( ) {}
MyTuple4 ( float x, float y, float z, float w)
{
number [0 ] = x ;
number [1 ] = y ;
number [2 ] = z ;
number [3 ] = w ;
}
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MyTuple4 operator+(MyTuple const&v) const
{
MyTuple4 sum ;
for ( int i=0; i< 4; ++i )
{
sum . number [ 0 ] = number [ 0 ] + v . number [ 0 ] ;
}
return sum ;
}
float number [ 4 ] ;
} ;
MyTuple4 v0(1.0f, 2.0f, 3.0f, 4.0f);
MyTuple4 v1(5.0f, 6.0f, 7.0f, 8.0f);
MyTuple4 sum = v0 + v1 ;
To gain some performance by using SSE2, you might instead implement your
addition operator as
MyTuple4 MyTuple4 : : operator+(MyTuple4 const&v)
{
MyTuple4 sum ;
m128 ss eV0 = mm loadu ps(&v0 [0 ] );
m128 ss eV1 = mm loadu ps(&v1 [0 ] );
m128 sseSum = mm add ps ( sseV0 , sseV1 ) ;
mm storeu ps (&sum [ 0 ] , sseSum ) ;
return sum ;
} ;
As mentioned, the unaligned loads and stores can be a performance hit. An
alternative to avoid the unaligned instructions is to align the struct itself,
struct declspec (align (16)) MyTuple4
{
// Same body as b ef o re .
} ;
MyTuple4 MyTuple4 : : operator+(MyCPUTuple4 const&v)
{
MyTuple4 sum ;
m128 ss eV0 = mm load ps(&v0 [0 ] );
m128 ss eV1 = mm load ps(&v1 [0 ] );
m128 sseSum = mm add ps ( sseV0 , sseV1 ) ;
mm store p s(&sum [ 0 ] , sseSum ) ;
return sum ;
} ;
Yet another alternative is to declare the class as
struct MyTuple4
{
MyTuple4 ( ) {}
MyTuple4 ( float x, float y, float z, float w)
{
number =
mm setr ps(x,y,z,w);
}
MyTuple4 operator+(MyTuple4 const&v) const
{
MyTuple4 sum ;
sum . number =
mm add ps ( number , v . number );
return sum ;
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}
m12 8 number ;
} ;
The general rule for alignment of a struct is that it is equal to the largest
alignment of its components. In this case,
m128 is 16-byte aligned which
guarantees that
MyTuple4 is 16-byte aligned.
The alignment of the struct is based on stack location. In the
MyTuple4
version with m128 number,aMyTuple4 object declared on the stack is 16-
byte aligned; that is, its address is a multiple of 16 bytes. However, if you
were to dynamically allocate the object using
new or malloc, the address is not
guaranteed to be 16-byte aligned. Fortunately with Microsoft Visual Studio
2013, warnings are generated when this is possible. Compiling for
Win32,a
32-bit conﬁguration,
// With t h e 16− b y t e al i g n e d v er si ons o f MyTuple4 , t his li n e o f co de . . .
MyTuple4∗ v=new MyTuple4(1.0f, 2.0f, 3.0f, 4.0f);
// . . g e ne r a t e s t h e w a rn i n g .
// Wa rnin g C4316 : ‘MyTuple4 ’ : o bj e c t al l o c at e d on t h e hea p may n o t
// be aligned 16.
The warning does not appear for x64, the 64-bit conﬁguration. Memory al-
locations on
x64 are guaranteed to be 8-byte aligned on 32-bit Windows and
16-byte aligned on 64-bit Windows. If you plan to support only 64-bit Win-
dows, you need not worry about the heap alignment for data to be loaded
directly to 128-bit registers. However, stack alignment on either 32-bit or 64-
bit Windows by default is 8-byte, so you still need the special declaration for
the struct.
Mixing C++ member function calls and SSE2 instructions can also be a
performance issue. The problem is that the compiler will generate instruc-
tions for CPU registers that handle the implicit
this pointer that is present
in nonstatic member functions. When you look at the assembly instructions,
you will see interleaved instructions for the CPU and for SSE2. This inter-
leaving is part of breaking the SIMD pipeline. Although an object-oriented
purist might like everything to be hidden behind a class interface, when it
comes to performance sometimes it is better not to hide the complexity. This
means making it clear that you are executing a contiguous sequence of SSE2
instructions, at most using an inline C-style function to wrap the sequence.
3.1.4 Logical Instructions
SSE2 instructions for logical operations of two bit patterns include
mm and ps for AND, mm or ps for OR, and mm xor ps for XOR. The NOT
operation is achieved using XOR,
m128 FFFF = mm set ps1 (0 xFFFFFFFF ) ; // A mask o f a ll 1− bits .
m128 v al u e ; // A 4− tuple of unsigned int .
m128 notValue = mm xor ps (FFFF , v a lu e ) ; // Flip the bits in value.
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TABLE 3. 1: SIMD comparison operators
comparisions negated comparisons
eq for equal neq for not-equal
lt for less-than nlt for not-less-than
le for less-than-or-equal nle for not-less-than-or-equal
gt for greater-than ngt for not-greater-than
ge for greater-than-or-equal nge for not-greater-than-or-equal
SSE2 also has the instruction mm andnot ps(x,y) that ﬂips the bits of x then
ANDs the result with
y,
m128 v0 , v1 ; // Two 4 −tuples of unsigned int .
m128 r e s u l t = mm andnot ps ( v0 , v1 ) ; // ˜ v0 & v1
m128 sameResult = mm and ps ( mm xor p s (FFFF , v0 ) , v1 ) ;
3.1.5 Comparison Instructions
A full suite of comparisons are available and shown in Table 3.1. The single-
channel instructions are of the form
mm cmp<operator> ss and the all-channel
types are of the form
mm cmp<operator> ps. These are not your typical com-
parisons! SSE2 neither has if-then and if-then-else branching constructs nor
loop constructs. Instead, each comparison instruction has two inputs, each a
4-tuple of
ﬂoat. The return value is a 4-tuple of unsigned int. If two correspond-
ing channels satisfy the comparison query, the returned channel for that pair
is
0xFFFFFFFF; otherwise, the returned channel is 0x00000000. For example,
m128 v0 = mm setr ps(1.0f, 3.0f, 5.0f, 6.0f);
m128 v1 = mm setr ps(2.0f, 1.0f, 5.0f, 7.0f);
m128 c0 = mm cmplt ps ( v0 , v1 ) ;
/ / c0 = (0 xFFFFFFFF , 0 x 00000000 , 0 x00000000 , 0xFFFFFFFF )
m128 c1 = mm cmpnlt ps ( v0 , v1 );
// c1 = (0 x00000000 , 0xFFFFFFFF , 0 xFFFFFFFF , 0 x00000000 )
m128 c2 = mm cm peq ps ( v0 , v1 );
// c2 = (0 x00000000 , 0 x00000000 , 0xFFFFFFFF , 0 x00000000 )
Branching is an expensive thing to do on a processor, so SSE2 does not
support it. In basic numerical computations using SIMD, it may be faster to
compute the results of both branches and then select the result from those.
The return value of the comparison instructions can be used for the selection.
Consider computing the minimum components of two 4-tuples,
m128 v0 = mm setr ps(1.0f, 3.0f, 5.0f, 6.0f);
m128 v1 = mm setr ps(2.0f, 1.0f, 5.0f, 7.0f);
m128 c = mm cmplt ps ( v0 , v1 );
/ / c = (0 xFFFFFFFF , 0 x 00000000 , 0 x00000000 , 0xFFFFFFFF )
m128 minV0V1 = mm or ps ( mm and ps ( c , v0 ) , mm andnot ps ( c , v1 )) ;
// minV0V1 = (1.0f, 1.0f, 5.0f, 6.0f)
SSE2 actually has instructions for minimum ( mm min ps)andmaximum
(
mm max ps), but the example is a good illustration of how you select rather
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TABLE 3 .2: SIMD arithmetic operators
operation operation
add for addition sqrt for the square root function
sub for subtraction rcp for the reciprocal of a number
mul for multiplication rsqrt for the reciprocal of a square root
div for division
than branch. More examples of selection are provided later in the section on
ﬂattening branches.
3.1.6 Arithmetic Instructions
The basic arithmetic instructions are shown in Table 3.2. The single-
channel instructions are of the form
mm <operator> ss and the all-channel
types are of the form
mm <operator> ps.
3.1.7 Matrix Multiplication and Transpose
A motivator for SSE was vector and matrix algebra in computer graph-
ics. The 4-tuples can represent vectors (last component zero) or points (last
component one), both examples of homogeneous points in aﬃne algebra. Ho-
mogeneous matrices are of size 4 × 4 and can represent linear, aﬃne, and
projective transformations. SSE2 can support matrices as a 4-tuple of
m128
objects. However, you will have to choose whether the objects are the rows
of the matrix or the columns of the matrix. And you will have to implement
either matrix-vector products, vector-matrix products, or both. I discuss these
conventions in Section 6.2. GTEngine allows you to select the conventions us-
ing conditional compilation; the default is row-major order with matrix-vector
as the natural order for a product.
Matrix-vector products are interesting in SSE2. The abstract formulation
of the product is
MV =
⎡
⎢
⎢
⎣
m
00
m
01
m
02
m
03
m
10
m
11
m
12
m
13
m
20
m
21
m
22
m
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m
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m
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m
32
m
33
⎤
⎥
⎥
⎦
⎡
⎢
⎢
⎣
v
0
v
1
v
2
v
3
⎤
⎥
⎥
⎦
(3.1)
On a CPU, your instinct is to compute the matrix-vector product as four dot
products, each a dot of a matrix row and the vector:
MV =
⎡
⎢
⎢
⎣
R
0
· V
R
1
· V
R
2
· V
R
3
· V
⎤
⎥
⎥
⎦
(3.2)
where as a 4-tuple, R
i
=(m
i0
,m
i1
,m
i2
,m
i3
). This appears to have good cache
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coherence, although on a Windows machine the cache line size is sixty-four
bytes, which is enough to store a 4 ×4matrixof
ﬂoat. An alternative view of
matrix-vector multiplication is
MV = v
0
C
0
+ v
1
C
1
+ v
2
C
2
+ v
3
C
3
(3.3)
which is a linear combination of the columns of the matrix. As a 4-tuple,
C
j
=(m
0j
,m
1j
,m
2j
,m
3j
).
Listing 3.2 shows how to compute Equation (3.2) using the SSE2 dot
product of Listing 3.1.
m128 M[ 4 ] ; // m a t r i x M s t or e d a s r ow s
m128 V ; // the vector V
m128 Pro duct ; // M∗V
m128 t0 , t1 , t2 , t3 ; // t em p or a ry r e g i s t e r s
// d o t p r o d u c t o f row 0 and v e c t or
t0 =
mm mul ps (M[ 0 ] , V ) ;
t1 =
mm shuffle ps (t0 , t0 , MM SHUFFLE(2, 3, 0, 1));
t2 =
mm add ps ( t0 , t 1 ) ;
t3 =
mm shuffle ps (t2 , t2 , MM SHUFFLE(0, 0, 2, 2));
m128 p 0 s pl a t = mm add ps ( t2 , t3 ) ;
// d o t p r o d u c t o f row 1 and v e c t or
t0 =
mm mul ps (M[ 1 ] , V ) ;
t1 =
mm shuffle ps (t0 , t0 , MM SHUFFLE(2, 3, 0, 1));
t2 =
mm add ps ( t0 , t 1 ) ;
t3 =
mm shuffle ps (t2 , t2 , MM SHUFFLE(0, 0, 2, 2));
m128 p 1 s pl a t = mm add ps ( t2 , t3 ) ;
// d o t p r o d u c t o f row 2 and v e c t or
t0 =
mm mul ps (M[ 2 ] , V ) ;
t1 =
mm shuffle ps (t0 , t0 , MM SHUFFLE(2, 3, 0, 1));
t2 =
mm add ps ( t0 , t 1 ) ;
t3 =
mm shuffle ps (t2 , t2 , MM SHUFFLE(0, 0, 2, 2));
m128 p 2 s pl a t = mm add ps ( t2 , t3 ) ;
// d o t p r o d u c t o f row 3 and v e c t or
t0 =
mm mul ps (M[ 3 ] , V ) ;
t1 =
mm shuffle ps (t0 , t0 , MM SHUFFLE(2, 3, 0, 1));
t2 =
mm add ps ( t0 , t 1 ) ;
t3 =
mm shuffle ps (t2 , t2 , MM SHUFFLE(0, 0, 2, 2));
m128 p 3 s pl a t = mm add ps ( t2 , t3 ) ;
// S h uff l e t o o btain P = ( p0 , p1 , p2 , p 3 ).
t0 =
mm shuffle ps (p0splat , p1splat , MM SHUFFLE(0, 1, 0, 0));
t1 =
mm shuffle ps (p2splat , p3splat , MM SHUFFLE(0, 1, 0, 0));
Product =
mm shuffle ps (t0 , t1 , MM SHUFFLE(2, 0, 2, 0));
LISTING 3.2: Computing the matrix-vector product as four row-vector dot
products in SSE2.
On the other hand, Equation (3.3) is computed as shown in Listing 3.3.
m128 M[ 4 ] ; // matrix M sto red as columns
m128 V ; // the vector V
m128 Pro duct ; // M∗V
m128 t0 , t1 , t2 , t3 ; // t em p or a ry r e g i s t e r s
// Splat the coefficients V[ i ] for the matrix columns , setting up for
// parallel multiply .
m128 v 0 s p l a t = mm shuffle ps (V, V, MM SHUFFLE(0, 0, 0, 0));
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m128 v 1 s p l a t = mm shuffle ps (V, V, MM SHUFFLE(1, 1, 1, 1));
m128 v 2 s p l a t = mm shuffle ps (V, V, MM SHUFFLE(2, 2, 2, 2));
m128 v 3 s p l a t = mm shuffle ps (V, V, MM SHUFFLE(3, 3, 3, 3));
t0 =
mm mul ps (M[ 0 ] , t0 ) ; // ( m00∗v0 , m10∗v0 , m20∗v0 , m30∗v0 )
t1 =
mm mul ps (M[ 1 ] , t1 ) ; // ( m01∗v1 , m11∗v1 , m21∗v1 , m31∗v1 )
t2 =
mm mul ps (M[ 2 ] , t2 ) ; // ( m02∗v2 , m12∗v2 , m22∗v2 , m32∗v2 )
t3 =
mm mul ps (M[ 3 ] , t3 ) ; // ( m03∗v3 , m13∗v3 , m23∗v3 , m33∗v3 )
t0 =
mm add ps ( t0 , t 1 ) ;
// t 0 = ( m00∗ v0+m01∗v1 , m10∗v0+m11∗v1 , m20∗v0+m21∗v1 , m30∗v0+m31∗v1 )
t2 =
mm add ps ( t2 , t 3 ) ;
// t 2 = ( m02∗ v2+m03∗v3 , m12∗v2+m13∗v3 , m22∗v2+m23∗v3 , m32∗v2+m33∗v3 )
Product =
mm add ps ( t0 , t 2 ) ;
LISTING 3.3: Computing the matrix-vector product as a linear combination
of columns in SSE2.
The lesson appears to be that to support matrix-vector products M V,
the matrix should be stored in column-major order rather than row-major
order. The conclusion is based on the dot product requiring several instruc-
tions to implement, which is due to the use of SSE2. In fact, more SIMD
features have been added over the years. SSE4.1 added a dot-product intrin-
sic,
mm dp ps(a,b,mask),wherea and b are 4-tuples of ﬂoats. The mask is an
integer whose low-order 8 bits have meaning. Bits four through seven indicate
which components of the inputs should be multiplied: a 1-bit means multiply
and a 0-bit means use a zero in the sum. Bits zero through three indicate
which components of the output should be written. Listing 3.2 can then be
modiﬁed to the code of Listing 3.4.
m128 M[ 4 ] ; // m a t r i x M s t or e d a s r ow s
m128 V ; // the vector V
m128 p0 = mm dp ps (M[ 0 ] , V, 0 x0F1 ) ; // (p0, 0, 0, 0)
m128 p1 = mm dp ps (M[ 1 ] , V, 0 x0F2 ) ; // ( 0 , p1 , 0 , 0 )
m128 p2 = mm dp ps (M[ 2 ] , V, 0 x0F4 ) ; // ( 0 , 0 , p2 , 0 )
m128 p3 = mm dp ps (M[ 3 ] , V, 0 x0F8 ) ; // ( 0 , 0 , 0 , p3 )
m128 Pro duct = mm or ps ( mm or ps (p0 , p1) , mm or ps ( p2 , p3 ) ) ;
LISTING 3.4: Computing the matrix-vector product as four row-vector dot
products in SSE4.1.
With direct hardware support for dot product, now the row-major order stor-
age for M is acceptable when computing MV. On the GPU, hardware support
is provided for dot products, so you will ﬁnd that a GPU-based matrix-vector
is compiled to assembly code similar to that of Listing 3.4.
Transposing a matrix is another common operation in linear algebra. For
4 × 4 matrices, the transpose is computed by shuﬄing components. The ﬁle
xmmintrin.h deﬁnes a macro, MM TRANSPOSE4 PS, that takes as input the
four rows (or columns) of a matrix, computes the transpose by shuﬄing, and
stores the result in the original four rows. If you do not want an in-place
transpose, you can easily implement your own function, as shown in Listing
3.5. This code works whether you have stored the matrix as rows or as columns.
The comments indicate what the registers store after the operations following
them, rows for row-major storage or cols for column-major storage.
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void Transpose ( m128 const∗ mat , m128∗ trn )
{
// ro ws : ( m00 , m01 , m10 , m11 ) , c o l s : ( m00 , m10 , m01 , m11)
m128 s0 = mm shuffle ps(mat[0] , mat[1] , MM SHUFFLE ( 1 , 0 , 1 , 0 ) ) ;
// ro ws : ( m20 , m21 , m30 , m31 ) , c o l s : ( m02 , m12 , m03 , m13)
m128 s1 = mm shuffle ps(mat[2] , mat[3] , MM SHUFFLE ( 1 , 0 , 1 , 0 ) ) ;
// ro ws : ( m02 , m03 , m12 , m13 ) , c o l s : ( m20 , m30 , m21 , m31)
m128 s2 = mm shuffle ps(mat[0] , mat[1] , MM SHUFFLE ( 3 , 2 , 3 , 2 ) ) ;
// ro ws : ( m22 , m23 , m32 , m33 ) , c o l s : ( m22 , m32 , m23 , m33)
m128 s3 = mm shuffle ps(mat[2] , mat[3] , MM SHUFFLE ( 3 , 2 , 3 , 2 ) ) ;
// ro ws : ( m00 , m10 , m20 , m30 ) , c o l s : ( m00 , m01 , m02 , m03)
trn [0] =
mm shuffle ps (s0 , s1 , MM SHUFFLE(2, 0, 2, 0));
// ro ws : ( m01 , m11 , m21 , m31 ) , c o l s : ( m10 , m11 , m12 , m13)
trn [1] =
mm shuffle ps (s0 , s1 , MM SHUFFLE(3, 1, 3, 1));
// ro ws : ( m02 , m12 , m22 , m32 ) , c o l s : ( m20 , m21 , m22 , m23)
trn [2] =
mm shuffle ps (s2 , s3 , MM SHUFFLE(2, 0, 2, 0));
// ro ws : ( m03 , m13 , m23 , m33 ) , c o l s : ( m30 , m31 , m32 , m33)
trn [3] =
mm shuffle ps (s2 , s3 , MM SHUFFLE(3, 1, 3, 1));
}
LISTING 3.5:Transposeofa4× 4 matrix using shuﬄing.
3.1.8 IEEE Floating-Point Support
Intel SSE provides the ability to control ﬂoating-point behavior by ma-
nipulating the control register for the SIMD ﬂoating-point hardware. You
can set the register using
mm setcsr or get the register using mm getcsr. File
xmmintrin.h has several ﬂags that can be used to control the exceptions that
are raised, to control the rounding mode for arithmetic operations, and to
decide whether or not to ﬂush subnormals to the same-sign zero.
3.1.9 Keep the Pipeline Running
You should avoid breaking the pipeline during your sequence of instruc-
tions. Sometimes this leads to code that, at ﬁrst glance, seems unnecessary or
cryptic. For example, consider normalizing a 4-tuple vector. You might try to
write SIMD code as shown in Listing 3.6.
m128 NormalizeWithBreak ( m128 const v)
{
// ( sqrLength , sqrLength , sqrLength , sqrLength )
m128 s qr Le ng th = Dot ( v , v ) ;
// ( length , length , length , length )
m128 l e ng th = mm sqrt ps (sqrLength );
if ( len gth . m128
f32 [0 ] > 0.0 f )
{
// Divide by the length to normalize .
m128 n or ma l iz ed = mm div ps (v , length );
return normalized ;
}
else
{
// If length is zero, v = (0,0,0,0).
return v;
}
}
LISTING 3.6: Normalizing a vector using SSE2 with a break in the pipeline.





[image: ]104 GPGPU Programming for Games and Science
The problem is that the SIMD register which stores
length must have a com-
ponent extracted and copied to a CPU register, and then the comparison is
computed on the CPU. Transfers between CPU and SIMD registers will slow
you down.
The code shown in Listing 3.7 is a better choice because it avoids the break
in the pipeline.
m128 N or ma li ze ( m128 const v)
{
// ( sqrLength , sqrLength , sqrLength , sqrLength )
m128 s qr Le ng th = Dot ( v , v ) ;
// ( length , length , length , length )
m128 l e ng th = mm sqrt ps (sqrLength );
// Divide by length to normalize ; potentially produces a divide by zero .
m128 n or ma l iz ed = mm div ps (v , length );
// Set to zero when the original length is zero.
m128 z er o = mm setzero ps (); //=(0.0f,0.0f,0.0f,0.0f)
m128 mask = mm cmpneq ps ( z e ro , leng t h ) ;
normalized =
mm and ps(mask, normalized );
return normalized ;
}
LISTING 3.7: Normalizing a vector using SSE2 without a break in the
pipeline.
Where did the if-else branch go in Listing 3.6? You will notice in Listing 3.7
the instruction
mm cmpneq ps.Iflength has positive components, the mask
has components 0xFFFFFFFF. When you AND the mask with normalized,you
obtain
normalized, which is the desired output. If length has zero components,
the comparisons are false and
mask has zero components. When the mask is
AND-ed with
normalized, you obtain zero, which is the desired output. The
code implements the selection mechanism mentioned previously. In the next
section we will look at several possibilities for dealing with nested branching.
3.1.10 Flattening of Branches
Let us look at comparisons and how to write branchless code. Using the
selection mechanism mentioned previously, Listing 3.8 deﬁnes a function for
simplicity of presentation,
m128 S e l e c t ( m128 cmp , m128 v0 , m128 v1 )
{
return
mm or ps ( mm and ps (cmp , v0 ) , mm andnot ps (cmp, v1 )) ;
}
LISTING 3.8: The deﬁnition of the Select function for ﬂattening branches.
where
cmp is intended to be a result from a comparison, and v0 and v1 are
the inputs whose components are to be selected. In most cases,
cmp has com-
ponents that are either
0xFFFFFFFF or 0x00000000, but the function is more
general in that
cmp can have any bit patterns of interest.
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The term ﬂatten means to replace branching code (if-then or if-then-else)
with branchless code that evaluates both of the original branches and selects
the correct result. The simplest form of ﬂattening is shown in Listing 3.9. CPU
code illustrates the original branching using single ﬂoating-point numbers, and
the SIMD version is shown afterward using 4-tuples.
float v0 , v1 , v2 , v3 , r ;
if (v0 > v1 )
{
r=v2;
}
else
{
r=v3;
}
m128 sv0 , sv1 , sv2 , sv3 , s r ;
sr = Select(
mm gt ps ( sv0 , sv1 ) , sv2 , sv3 ) ;
LISTING 3.9: Flattening a single branch.
Listing 3.10 shows nested branching where only the outer-then clause con-
tains a branch.
float v0 , v1 , v2 , v3 , v4 , v5 , v6 , r ;
if (v0 > v1 )
{
if (v2 > v3)
{
r=v4;
}
else
{
r=v5;
}
}
else
{
r=v6;
}
m128 sv0 , sv1 , sv2 , sv3 , sv4 , sv5 , sv6 , sr ;
m128 thenResult = Select ( mm gt ps ( sv2 , sv3 ) , sv4 , sv5 ) ;
sr = Select(
mm gt ps ( sv0 , sv1 ) , thenResult , v6 ) ;
LISTING 3.10: Flattening a two-level branch where the outer-then clause
has a nested branch.
Listing 3.11 shows nested branching where only the outer-else clause contains
a branch.
float v0 , v1 , v2 , v3 , v4 , v5 , v6 , r ;
if (v0 > v1 )
{
r=v4;
}
else
{
if (v2 > v3)
{
r=v5;
}
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else
{
r=v6;
}
}
m128 sv0 , sv1 , sv2 , sv3 , sv4 , sv5 , sv6 , sr ;
m128 elseResult = Select( mm gt ps ( sv2 , sv3 ) , sv5 , sv6 ) ;
sr = Select(
mm gt ps(sv0 , sv1), sv4 , elseResult );
LISTING 3.11: Flattening a two-level branch where the outer-else clause
has a nested branch.
Listing 3.12 shows nested branching where both outer clauses contain
branches.
float v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , v9 , r ;
if (v0 > v1 )
{
if (v2 > v3)
{
r=v6;
}
else
{
r=v7;
}
}
else
{
if (v4 > v5)
{
r=v8;
}
else
{
r=v9;
}
}
m128 sv0 , sv1 , sv2 , sv3 , sv4 , sv5 , sv6 , sv7 , sv8 , sv9 , sr ;
m128 thenResult = Select ( mm gt ps ( sv2 , sv3 ) , sv6 , sv7 ) ;
m128 elseResult = Select( mm gt ps ( sv4 , sv5 ) , sv8 , sv9 ) ;
sr = Select(
mm gt ps(v0 , v1), thenResult , elseResult );
LISTING 3.12: Flattening a two-level branch where the outer clauses have
nested branches.
3.2 SIMD Wrappers
The SSE code can become quite lengthy for complicated operations. The
dot-product code of Listing 3.1 was short, consisting of ﬁve instructions plus
comments. The GTEngine SIMD code for computing the inverse of a 4 × 4
matrix is on the order of 330 lines of comments and code! Naturally, you will
want to encapsulate many of your common operations with inline function
wrappers.
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Microsoft has SIMD wrappers now referred to as DirectX Math.Youcan
ﬁnd the top-level header ﬁles in the Windows Kits folder,
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMath.h
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMathConvert.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMathMatrix.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMathMisc.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXMathVector.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXPackedVector.h
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXPackedVector.inl
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXCollision.h
C:/Program Files (x86)/Windows Kits/8.1/Include/um/DirectXCollision.inl
You will ﬁnd support for Intel SSE2, Microsoft Xbox 360 (VMX128), and
Microsoft Xbox One (ARM-Neon). An online blog is maintained about topics
related to DirectX and DirectX Math [56].
The GTEngine source code contains an implementation of various mathe-
matical concepts using SSE2. I will be updating this to SSE4 over time. The
current code is quite extensive and has conditional compilation to support
row-major order (the
m128 array stores rows) or column-major order (the
m128 array stores columns). You can ﬁnd the code at
GeometricTools/GTEngine/Source/Mathematics/SIMD/GteIntelSSE.{h,inl,cpp}
Generally, you want the SIMD instructions to be inlined, so the implementa-
tion is contained in the
*.inl ﬁle. The reason for the existence of the *.cpp is
to deﬁne SIMD constants that are useful throughout the code.
Many of the algorithms are simple, but some have signiﬁcant mathematics
behind them. The algorithms are discussed in Chapter 6.
3.3 Function Approximations
Several approximations to standard mathematics library functions are de-
scribed in this section. These involve trading accuracy to obtain speed. These
may be used in CPU, GPU, or SIMD code. Some of the approximations take
advantage of binary representations of 32-bit IEEE ﬂoating-point numbers.
Other approximations are mathematical in nature, usually applying mini-
max algorithms to obtain polynomial or rational function appproximations,
whether 32-bit or 64-bit ﬂoating-point arithmetic is used.
The approximations are presented for ﬂoating-point on the CPU. It is
straightforward to implement SSE2 versions.
3.3.1 Minimax Approximations
Many approximation problems tend to be formulated as least-squares prob-
lems.Ifp(x)=

d
i=0
p
i
x
i
, which is a polynomial of degree d with coeﬃcients
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p
0
through p
d
, the least-squares approximation is obtained by minimizing
E(p
0
,...,p
d
)=

b
a
|f(x) − p(x)|
2
dx (3.4)
The coeﬃcients of the polynomial are determined by setting the ﬁrst-order
partial derivatives of E to zero,
0=
∂E
∂p
j
= −2

b
a
(f(x) − p(x)))x
j
dx (3.5)
which simpliﬁes to

b
a
x
j
p(x) dx =

b
a
x
j
f(x) dx (3.6)
and then to
d

i=0

b
i+j+1
− a
i+j+1
i + j +1

p
i
=

b
a
x
j
f(x) dx = c
j
(3.7)
where the last equality deﬁnes the values c
j
.Thisisalinearsystemofd +1
equations in d + 1 unknowns that may be solved numerically for the p
i
.It
is necessary to integrate x
j
f(x), either in closed form or through numerical
quadrature methods, to obtain c
j
.
The approximation error is

E(p
0
,...,p
d
)/(b − a), a root-mean-squared
error that measures the average error over the domain [a, b] of the function.
When computing numerically, such an error is typically of little use. What
we usually want to know is the maximum error between p(x)andf(x)for
all inputs x. This leads us to a formulation of the approximation in the L
∞
sense (maximum absolute error for any input) rather than in the L
2
sense
(root-mean-square error over an interval).
Unfortunately, the L
∞
formulation is rarely taught in undergraduate
mathematics programs, because the proofs and constructions require math-
ematical machinery that is deeper than what the curriculum supports. In
the following sections, the polynomials that approximate the function are
constructed to minimize the maximum error for a polynomial of a speciﬁed
degree. The proofs of why the polynomials attain the minimum are not pro-
vided here. However, a practicing computer scientist may easily understand
the algorithms and implement or modify them accordingly.
Given a function f (x)onaninterval[a, b], our goal is to construct a poly-
nomial p(x)ofdegreed that approximates f (x) and minimizes the maximum
absolute error between f(x)andp(x)on[a, b]. Such a polynomial generates
the smallest minimax error
ε
d
=min

max
x∈[a,b]
|f(x) − p(x)| : p is a polynomial of degree d

(3.8)
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The choice of degree depends on your application’s constraints. Generally,
the larger the degree, the more time is required to evaluate p(x). On the
other hand, as the degree increases, we expect the error to decrease. This is a
classical trade-oﬀ in computer science: Greater accuracy comes at the cost of
increased computational time.
When I ﬁrst started investigating fast function approximations to stan-
dard mathematics functions, I looked at formulas in [1]. As advertised, this
is a handbook and unfortunately contains no mathematical derivations. Some
of the approximations were credited to a technical report from Los Alamos
Laboratory in 1955 [3]; I managed to obtain a PDF of a scanned, typewritten
document. The Abramowitz book and the Carlson report both reference work
by Hastings, and I managed to obtain a used copy [4]. All of these works were
not satisfying in that the mathematical details are sketchy. In the end, though,
I managed to piece together the concepts and algorithms and wrote code for
many of the standard mathematics functions. The underlying principle is the
Chebyshev equioscillation theorem, which states that the polynomial p(x)of
degree d that best ﬁts f(x) in the sense of Equation (3.8) has the property
that there exist at least d +2 values of x for which |f (x) − p(x)| = ε
d
.The
diﬀerences equioscillate: if x
i
and x
i+1
are two consecutive values for which
|f(x) − p(x)| = ε
d
,then[f(x
i+1
) −p(x
i+1
)] = −[f (x
i
) −p(x
i
)]. Also, p is the
unique polynomial with degree(p) ≤ d for which this equioscillation occurs.
The set {x
i
} is referred to as an alternating set.
To read a detailed description of the mathematics and some algorithms to
construct the polynomials, see [25]. The Remez algorithm I discuss here is de-
scribed in [50, Section 17.6]. Let ε represent the minimax error (or the negative
of the minimax error) and let p
0
through p
d
be the polynomial coeﬃcients.
1. Start with an alternating set S
0
= {x
i
}
d+1
i=0
of points on the interval
[a, b], where x
0
= a and x
d+1
= b.
2. Solve the equations p(x
i
)+(−1)
i
ε = f(x
i
), a linear system of d +2
equations in d + 2 unknowns p
0
through p
d
and ε.
3. Compute the set S
1
of x-values for which |f (x) − p(x)| attains its local
maxima. One always keeps a and b in the set, so we need compute only
the interior local maximum points.
4. If the local maxima have equal values and the (f (x) − p(x)) values al-
ternate in sign, then p(x) is the best-ﬁt polynomial; otherwise replace
S
0
with S
1
and repeat steps 2, 3, and 4.
In step 1, you need to choose S
0
. Sources suggest choosing roots of Cheby-
shev polynomials; for example, see [50, Chapter 17] on Functional Approxi-
mation. For the functions to which I applied the minimax algorithm, I instead
chose p(x)equaltof(x) on a uniformly spaced set of interior points of [a, b].
This gives you an initial polynomial approximation for which f(x) −p(x)has
oscillatory behavior.
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In step 3, you may solve for the roots of g(x)=f

(x) − p

(x)usinga
numerical method of your choice. Some sources of information state that
you may start with x ∈ S
0
and use a Newton-Raphson iterate to obtain
¯x = x − G(x)/G

(x) that is (hopefully) close to a root of G(x), and then
insert ¯x in S
1
.Thekeywordhereishopefully; the idea might work in some
cases, but it is possible in other cases that ¯x is farther from a local maximum
point than is x. When I tried this algorithm to approximate sin(x)on[0,π/2]
with a degree-5 polynomial, the single-iterate approach failed. My goal is to
compute polynomial coeﬃcients that will be used in a hard-coded function.
The computational time required to accurately ﬁnd the roots of G(x) is unim-
portant, so I used bisection for root ﬁnding. Each pair of consecutive roots of
g(x) are used as a bounding interval for roots of g

(x). Some of the functions
have double roots at the endpoints of the domain of approximation, so I choose
bounding interval endpoints slightly diﬀerent from the domain endpoints.
As you increase the degree of the polynomial, the linear system solver
for computing the initial polynomial coeﬃcients can have enough numerical
roundoﬀ error that the polynomial is numerically suspect. If you need higher-
degree approximations, you will have to resort to high-precision arithmetic to
solve the system.
3.3.2 Inverse Square Root Function Using Root Finding
A fast inverse square root has been a popular topic for many years. Its
history and discussion is found on the Wikipedia page entitled “Fast inverse
square root.” You can also read about it via the online document [21]. The
algorithm described there is eﬀectively Newton’s method for root ﬁnding and
includes a magic number whose origin spurred a lot of the discussion. I present
the algorithm here but later provide an alternative using minimax approxi-
mations.
The root-ﬁnding algorithm uses Newton’s method to estimate a root of
f(y)=1/y
2
− x. The iterates are
y
i+1
= y
i
− f(y
i
)/f

(y
i
)=y
i
(3 − xy
2
i
)/2,i≥ 0 (3.9)
for an initial estimate y
0
. The algorithm is shown in Listing 3.13.
float FastInverseSqrt ( float x)
{
union Binary32 { float number ; u i nt 3 2
tencoding;} ;
float xhalf = 0.5 f∗x;
Binary32 y ;
y . number = x ;
y . encoding = 0x5f3759df − (y. encoding >> 1);
y . number = y . number∗(1.5 f − xhalf∗ y . number ∗y . number ) ; // Newton s t e p
return y . number ;
}
LISTING 3.13: A fast approximation to 1/sqrt(x) for 32-bit ﬂoating-point.
The accuracy is reasonable as long as
x is not too small (i.e., not a sub-
normal). To increase accuracy, you can repeat the Newton step one or more
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TABLE 3. 3: Inverse square root accuracy and performance
iterates max rel error max abs error speed up over 1/sqrt(x)
1 1.75238e-03 1.56142e+16 4.30
2 4.76837e-06 4.06819e+13 2.29
3 2.38419e-07 2.19902e+12 1.52
4 2.38419e-07 1.64927e+12 1.11
time. Table 3.3 shows the maximum relative and absolute errors for normal
ﬂoating-point inputs for one through four Newton steps. It also shows the
speedups when using the approximation. The accuracy is reported only for
normal numbers. The accuracy for subnormals is not good. Although the ab-
solute error looks atrocious, those values are for extremely small ﬂoating-point
inputs. For numbers on the order of one, the absolute error is about
1e-03.As
the numbers increase in magnitude, the absolute error decreases. For numbers
on the order of the maximum normal, the absolute error is approximately
1e-22.
Listing 3.14 has a double-precision version of the approximation. This can
be used on the GPU, because as of D3D11.1, there is no double-precision
square root instruction available for HLSL.
double FastInverseSqrt (double x)
{
union Binary64 { double number ; ui nt 64
tencoding;} ;
double xhalf = 0.5∗ x;
Binary64 y ;
y . number = x ;
y . encoding = 0x5fe6ec85e7de30daULL − (y. encoding >> 1);
y . number = y . number∗(1.5 − xhalf∗y . number ∗y . number ) ;
return y . number ;
}
LISTING 3.14: A fast approximation to 1/sqrt(x) for 64-bit ﬂoating-point.
3.3.3 Square Root Function
One fast approximation uses the fast inverse square root function; that is,
you can use
FastSqrt(x) = x * FastInvSqrt(x). Apply as many Newton steps as
needed for the desired accuracy.
A range reduction and a polynomial approximation together lead to a fast
approximation. In binary scientiﬁc notation, let x =1.t ∗ 2
p
where t is the
trailing signiﬁcand and p is the unbiased exponent. Thinking of t as a fraction
in [0, 1), we can write x =(1+t)∗2
p
.Ifp is even, then y =
√
x =
√
1+t∗2
p/2
.
If p is odd, then y =
√
x =
√
2
√
1+t ∗2
(p−1)/2
.Youmayextractt and p from
the ﬂoating-point encoding, so the approximation we need is for
√
1+t for
t ∈ [0, 1). The logic for
ﬂoat numbers is
float const sqrt2 = sqrt (2.0 f ); // Precomputed co nsta nt .
// Ge t t i n [ 0 , 1 ) .
int p;
float m= frexp(x, &p); // m in [1/2 ,1)
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FIGURE 3.1: The plot of g(x)=
√
1+x − p(x) for the initial polynomial
of degree 3.
float t=2.0f∗m − 1.0 f ; // t in [0 , 1)
−− p;
// Select sqrt (2) or 1; avoid branching for speed .
float adjust = (1 & p)∗ sqrt2 + (1 & ˜p)∗ 1.0 f ;
int halfP = (p − 1) / 2;
float sqrtT = Polynomial ( t ) ; // approximation for sqrt (1 + t) , t in [0 ,1)
float y=adjust∗ ldexp (sqrtT , halfP ); // approximation for sqrt (x)
The function to approximate is f (x)=
√
1+x and the approximating
polynomial is p(x)=

d
i=0
p
i
x
i
of degree d ≥ 1. I required that p(0) = f(0) =
1andp(1) = f(1) =
√
2, so we need to compute coeﬃcients p
i
for 1 ≤ i ≤ d−1.
An initial guess for p(x)isp(i/d)=f(i/d)for1≤ i ≤ d − 1, in which case
g(x)=f(x) −p(x) is oscillatory. For degree 3, the conditions are p(0) = f (0),
p(1/3) = f(1/3), p(2/3) = f (2/3), and p(1) = f(1), which lead to the initial
polynomial p(x)= 1+0.497043x −0.106823x
2
+0.023993x
3
. The plot of g(x)
is shown in Figure 3.1. You can see that the roots of g(x)are{0, 1/3, 2/3, 1}.
Also, the function is oscillatory but the maximum and minimum values do not
have the same magnitude; that is, the initial polynomial is not the minimax
approximation.
The three local extrema are located using bisection applied to double-
precision domain values. Listing 3.15 shows one step of the Remez iteration.
double root0 [d + 1]; // The roots of g(x); d is the degree of p(x).
double root1 [d ]; // The roots of g ’(x ).
for ( int i=0, j=0; i< d; ++i)
{
// The bounding i nt er va l for a root of g ’( x) i s [ x0 , x1 ] .
double x0 = root0 [ i ] , x1 = root0 [ i + 1];
// Bisect based on sign of g ’(x) , signs in {−1,0,1}.Problemis
// configured so that s0∗s1 < 0.
int s0 = Sign(g’(x0));
int s1 = Sign(g’(x1));
for (;;)
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{
double xmid = 0 . 5∗ (x0 + x1);
int smid = Sign ( g ’ ( xmid ) ) ;
if (x0 == xmid || x1 == xmid || smid == 0)
{ root1 [ j++] = xmid; break ; }
if (smid == s0) { x0 = xmid ; } else { x1 = xmid ; }
}
}
// Compute g ( x ) at th e l o c a l extre ma . I n t he or y , th e minimax p ol yn om ia l
// causes thes e val ues to have same magnitude but o s c i l l a t e in si gn .
// You can use these to determine when to terminate Remez iterations .
double error [d ];
for (int i = 0; i < d; ++i )
{
error [ i ] = g( root1 [ i ]);
}
// STOP w hen y o u hav e met your c r i t e r i a f o r convergence .
// Solve p( root1 [ i ]) + (−1)ˆ{ i }∗e = f(root1 [ i ]) for e and coefficients
// of p, a total of d+2 unknowns. We know p[0] = 1 , so we need only
// solve a l inea r system of d+1 equations .
Matrix<d+1,d+1,double> A; // (d+1)−by −(d+1) m a t rix
Vector <d+1,double> B; // (d+1)−by −1 vector
double sign = 1.0;
for (int r = 0; r < d; ++r , sign = −sign)
{
A(r , 0) = root1 [ r ];
for (int c = 1; c < d; ++c) { A(r , c) = root1 [ r ] ∗ A( r , c − 1); }
A(r , d ) = s i g n ;
B[ r ] = f( root1 [ r ]) − 1.0;
}
for (int c = 0; c < d; ++c) { A( d , c ) = 1 . 0 ; }
A( d , d ) = 0 .0 ;
B[d ] = f (1.0) − 1.0;
Vector <d+1,double> solution = Inverse(A)
∗B;
for (int i = 0; i < d; ++i ) { p[ i + 1] = solution[ i ]; }
// Aft er s e ve ra l i t er a ti o ns , e i s the common magnitude of e rr or [ ] .
double e = solution [ degree ];
/ / Co m p u te the r o o t s of g ( x ) f o r the n ext Remez i t e r a t i o n .
for (int i = 0, j = 0; i < d − 1; ++i )
{
// The bounding i nt er va l for a root of g(x) is [ x0 , x1 ] , which i s
// r e as o na bl e f o r a good i n i t i a l gu es s f o r p ( x ) .
double x0 = root1 [ i ] , x1 = root1 [ i + 1];
// Bisect based on sign of g(x) , signs in {−1,0,1}.Problemis
// configured so that s0∗s1 < 0.
int s0 = Sign(g(x0));
int s1 = Sign(g(x1));
for (;;)
{
double xmid = 0.5∗(x0 + x1);
int smid = Sign(g(xmid));
if (x0 == xmid || x1 == xmid || smid == 0)
{ root0 [ j++] = xmid; break ; }
if (smid == s0) { x0 = xmid ; } else { x1 = xmid ; }
}
}
LISTING 3.15: One Remez iteration for updating the locations of the local
extrema.
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FIGURE 3.2: The plot of g(x)=
√
1+x − p(x) for the ﬁnal polynomial of
degree 3.
Figure 3.2 shows the plot of g(x) for degree 3 after several Remez iterations.
The ﬁgure makes it clear that the values of g(x) at the local extrema have the
same magnitude and alternate in sign.
Table 3.4 shows the coeﬃcients of the minimax polynomials of degrees one
through seven for f(x)=
√
1+x for x ∈ [0, 1). The numbers are the coeﬃ-
cients p
i
for the polynomial p(x). The table shows the maximum error for the
approximation. The tool
GeometricTools/GTEngine/Tools/GenerateApproximations
generated Table 3.4 using ﬁles FitSqrt.h and FitSqrt.inl.
3.3.4 Inverse Square Root Using a Minimax Algorithm
The application of the minimax algorithm is nearly identical to that for
the square root function. In binary scientiﬁc notation, let x =1.t ∗ 2
p
where
t is the trailing signiﬁcand and p is the unbiased exponent. Thinking of t as
afractionin[0, 1), we can write x =(1+t) ∗ 2
p
.Ifp is even, then 1/
√
x =
(1/
√
1+t) ∗2
−p/2
.Ifp is odd, then 1/
√
x =(1/(
√
2
√
1+t)) ∗2
−(p−1)/2
.You
may extract t and p from the ﬂoating-point encoding, so the approximation
we need is for 1/
√
1+t for t ∈ [0, 1).
The tool
GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in
FitInvSqrt.h and FitInvSqrt.inl and is nearly identical to
the code used for the square root function. This code generates Table 3.5,
showing the coeﬃcients of the minimax polynomials of degrees one through
seven for f(x)=1/
√
1+x for x ∈ [0, 1). The numbers are the coeﬃcients p
i
for the polynomial p(x). The table shows the maximum error for the approx-
imation.
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TABLE 3 .4: Minimax polynomial approximations to
√
1+x
d coeﬃcients d coeﬃcients
1 p
0
=+1 2 p
0
=+1
p
1
=+4.1421356237309505 ∗ 10
−1
p
1
=+4.8563183076125260 ∗ 10
−1
e =+1.7766952966368793 ∗ 10
−2
p
2
= −7.1418268388157458 ∗ 10
−2
e =+1.1795695163108744 ∗ 10
−3
3 p
0
=+1 4 p
0
=+1
p
1
=+4.9750045320242231 ∗ 10
−1
p
1
=+4.9955939832918816 ∗ 10
−1
p
2
= −1.0787308044477850 ∗ 10
−1
p
2
= −1.2024066151943025 ∗ 10
−1
p
3
=+2.4586189615451115 ∗ 10
−2
p
3
=+4.5461507257698486 ∗ 10
−2
e =+1.1309620116468910 ∗ 10
−4
p
4
= −1.0566681694362146 ∗ 10
−2
e =+1.2741170151556180 ∗ 10
−5
5 p
0
=+1 6 p
0
=+1
p
1
=+4.9992197660031912 ∗ 10
−1
p
1
=+4.9998616695784914 ∗ 10
−1
p
2
= −1.2378506719245053 ∗ 10
−1
p
2
= −1.2470733323278438 ∗ 10
−1
p
3
=+5.6122776972699739 ∗ 10
−2
p
3
=+6.0388587356982271 ∗ 10
−2
p
4
= −2.3128836281145482 ∗ 10
−2
p
4
= −3.1692053551807930 ∗ 10
−2
p
5
=+5.0827122737047148 ∗ 10
−3
p
5
=+1.2856590305148075 ∗ 10
−2
e =+1.5725568940708201 ∗ 10
−6
p
6
= −2.6183954624343642 ∗ 10
−3
e =+2.0584155535630089 ∗ 10
−7
7 p
0
=+1 8 p
0
=+1
p
1
=+4.9999754817809228 ∗ 10
−1
p
1
=+4.9999956583056759 ∗ 10
−1
p
2
= −1.2493243476353655 ∗ 10
−1
p
2
= −1.2498490369914350 ∗ 10
−1
p
3
=+6.1859954146370910 ∗ 10
−2
p
3
=+6.2318494667579216 ∗ 10
−2
p
4
= −3.6091595023208356 ∗ 10
−2
p
4
= −3.7982961896432244 ∗ 10
−2
p
5
=+1.9483946523450868 ∗ 10
−2
p
5
=+2.3642612312869460 ∗ 10
−2
p
6
= −7.5166134568007692 ∗ 10
−3
p
6
= −1.2529377587270574 ∗ 10
−2
p
7
=+1.4127567687864939 ∗ 10
−3
p
7
=+4.5382426960713929 ∗ 10
−3
e =+2.8072302919734948 ∗ 10
−8
p
8
= −7.8810995273670414 ∗ 10
−4
e =+3.9460605685825989 ∗ 10
−9
TABLE 3. 5: Minimax polynomial approximations to f(x)=1/
√
1+x
d coeﬃcients d coeﬃcients
1 p
0
=+1 2 p
0
=+1
p
1
= −2.9289321881345254 ∗ 10
−1
p
1
= −4.4539812104566801 ∗ 10
−1
e =+3.7814314552701983 ∗ 10
−2
p
2
=+1.5250490223221547 ∗ 10
−1
e =+4.1953446330581234 ∗ 10
−3
3 p
0
=+1 4 p
0
=+1
p
1
= −4.8703230993068791 ∗ 10
−1
p
1
= −4.9710061558048779 ∗ 10
−1
p
2
=+2.8163710486669835 ∗ 10
−1
p
2
=+3.4266247597676802 ∗ 10
−1
p
3
= −8.7498013749463421 ∗ 10
−2
p
3
= −1.9106356536293490 ∗ 10
−1
e =+5.6307702007266786 ∗ 10
−4
p
4
=+5.2608486153198797 ∗ 10
−2
e =+8.1513919987605266 ∗ 10
−5
5 p
0
=+1 6 p
0
=+1
p
1
= −4.9937760586004143 ∗ 10
−1
p
1
= −4.9987029229547453 ∗ 10
−1
p
2
=+3.6508741295133973 ∗ 10
−1
p
2
=+3.7220923604495226 ∗ 10
−1
p
3
= −2.5884890281853501 ∗ 10
−1
p
3
= −2.9193067713256937 ∗ 10
−1
p
4
=+1.3275782221320753 ∗ 10
−1
p
4
=+1.9937605991094642 ∗ 10
−1
p
5
= −3.2511945299404488 ∗ 10
−2
p
5
= −9.3135712130901993 ∗ 10
−2
e =+1.2289367475583346 ∗ 10
−5
p
6
=+2.0458166789566690 ∗ 10
−2
e =+1.9001451223750465 ∗ 10
−6
7 p
0
=+1 8 p
0
=+1
p
1
= −4.9997357250704977 ∗ 10
−1
p
1
= −4.9999471066120371 ∗ 10
−1
p
2
=+3.7426216884998809 ∗ 10
−1
p
2
=+3.7481415745794067 ∗ 10
−1
p
3
= −3.0539882498248971 ∗ 10
−1
p
3
= −3.1023804387422160 ∗ 10
−1
p
4
=+2.3976005607005391 ∗ 10
−1
p
4
=+2.5977002682930106 ∗ 10
−1
p
5
= −1.5410326351684489 ∗ 10
−1
p
5
= −1.9818790717727097 ∗ 10
−1
p
6
=+6.5598809723041995 ∗ 10
−2
p
6
=+1.1882414252613671 ∗ 10
−1
p
7
= −1.3038592450470787 ∗ 10
−2
p
7
= −4.6270038088550791 ∗ 10
−2
e =+2.9887724993168940 ∗ 10
−7
p
8
=+8.3891541755747312 ∗ 10
−3
e =+4.7596926146947771 ∗ 10
−8
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3.3.5 Sine Function
To approximate the function sin(x), the Chebyshev equioscillation theorem
may be used with or without additional constraints on the function. Without
constraints, the sine function can be approximated on the interval [0,π/2] with
a polynomial having only odd-power terms, p(x)=

n
i=0
p
i
x
2i+1
of degree
d =2n + 1. Choosing degree 5 and using the initial alternating set S
0
=
{π/6,π/3, 1}, four Remez iterations led to
p(x)=0.999698 − 0.165674x +0.0075147x
3
(3.10)
with a global error bound 6.7277003513603606 ∗ 10
−5
.
However, the slope of the polynomial at x = 0 is not one, which is the
slope of the sine function at zero. Instead, I prefer approximations whose ﬁrst
term is x,say,
f(x)=sin(x)
.
= x +
n

i=1
p
i
x
2i+1
= p(x) (3.11)
of degree d =2n + 1. The ﬁrst constraint is that p

(0) = f

(0) = cos(0) = 1.
I also impose the second constraint that the approximation should match the
function at the other endpoint; that is, p(π/2) = f(π/2) = sin(π/2) = 1.
This constrained problem can be solved similar to how I ﬁtted the square root
function. The interval for the approximation is [0,π/2].
The sine function is odd, sin(−x)=−sin(x), in which case you auto-
matically have an approximation on the interval [−π/2,π/2]. To compute an
approximation for any real-valued input, you must use range reduction by
applying trigonometric identities and appealing to the periodicity of the func-
tion. For example, if you want to estimate sin(x)forx ∈ [π/2,π], observe that
sin(x)=sin(π − x). If x ∈ [π/2,π], then π − x ∈ [0,π/2]. For x ∈ [π, 2π],
sin(x)=−sin(x −π)wherex −π ∈ [0,π]. Finally, for x>2π, we can reduce
to a value in [0, 2π] and use the periodicity sin(x +2πk)=sin(
x) for any
integer k.
The tool
GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in
FitSin.h and FitSin.inl. The implementation is slightly
diﬀerent from that of the square root function because we want only the
odd-power terms. The code generates Table 3.6 for f(x)=sin(x) with
x ∈ [−π/2,π/2]. The ﬁtted polynomial is p(x)=x

n
i=0
p
i
x
2i
.
3.3.6 Cosine Function
The tool GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in
FitCos.h and FitCos.inl. The implementation is similar
to that of the sine function except that we want only the even-power terms.
The code generates Table 3.7 for f (x)=cos(x) with x ∈ [−π/2,π/2]. The
ﬁtted polynomial is p(x)=

n
i=0
p
i
x
2i
.
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TABLE 3. 6: Minimax polynomial approximations to f(x)=sin(x)
d coeﬃcients d coeﬃcients
3 p
0
=+1 5 p
0
=+1
p
1
= −1.4727245910375519 ∗ 10
−1
p
1
= −1.6600599923812209 ∗ 10
−1
e =+1.3481903639145865 ∗ 10
−2
p
2
=+7.5924178409012000 ∗ 10
−3
e =+1.4001209384639779 ∗ 10
−4
7 p
0
=+1 9 p
0
=+1
p
1
= −1.6665578084732124 ∗ 10
−1
p
1
= −1.6666656235308897 ∗ 10
−1
p
2
=+8.3109378830028557 ∗ 10
−3
p
2
=+8.3329962509886002 ∗ 10
−3
p
3
= −1.8447486103462252 ∗ 10
−4
p
3
= −1.9805100675274190 ∗ 10
−4
e =+1.0205878936686563 ∗ 10
−6
p
4
=+2.5967200279475300 ∗ 10
−6
e =+5.2010746265374053 ∗ 10
−9
11 p
0
=+1
p
1
= −1.6666666601721269 ∗ 10
−1
p
2
=+8.3333303183525942 ∗ 10
−3
p
3
= −1.9840782426250314 ∗ 10
−4
p
4
=+2.7521557770526783 ∗ 10
−6
p
5
= −2.3828544692960918 ∗ 10
−8
e =+1.9295870457014530 ∗ 10
−11
TABLE 3 .7: Minimax polynomial approximations to f (x)=cos(x)
d coeﬃcients d coeﬃcients
2 p
0
=+1 4 p
0
=+1
p
1
= −4.0528473456935105 ∗ 10
−1
p
1
= −4.9607181958647262 ∗ 10
−1
e =+5.4870946878404048 ∗ 10
−2
p
2
=+3.6794619653489236 ∗ 10
−2
e =+9.1879932449712154 ∗ 10
−4
6 p
0
=+1 8 p
0
=+1
p
1
= −4.9992746217057404 ∗ 10
−1
p
1
= −4.9999925121358291 ∗ 10
−1
p
2
=+4.1493920348353308 ∗ 10
−2
p
2
=+4.1663780117805693 ∗ 10
−2
p
3
= −1.2712435011987822 ∗ 10
−3
p
3
= −1.3854239405310942 ∗ 10
−3
e =+9.2028470133065365 ∗ 10
−6
p
4
=+2.3154171575501259 ∗ 10
−5
e =+5.9804533020235695 ∗ 10
−8
10 p
0
=+1
p
1
= −4.9999999508695869 ∗ 10
−1
p
2
=+4.1666638865338612 ∗ 10
−2
p
3
= −1.3888377661039897 ∗ 10
−3
p
4
=+2.4760495088926859 ∗ 10
−5
p
5
= −2.6051615464872668 ∗ 10
−7
e =+2.7006769043325107 ∗ 10
−10
3.3.7 Tangent Function
The tool GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in
FitTan.h and FitTan.inl. The implementation is similar
to that of the sine function. The code generates Table 3.8 for f (x)=tan(x)
with x ∈ [−π/4,π/4]. The ﬁtted polynomial is p(x)=

n
i=0
p
i
x
2i+1
.
3.3.8 Inverse Sine Function
The inverse of the sine function is not easily approximated with a poly-
nomial. If the algorithm applied to the sine function is also applied to the
inverse sine function, say, asin(x)
.
=

n
i=0
p
i
x
2i+1
for x ∈ [0, 1], the coeﬃ-
cients and errors bounds produced by the algorithm are shown in Table 3.9.
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TABLE 3. 8: Minimax polynomial approximations to f(x)=tan(x)
d coeﬃcients d coeﬃcients
3 p
0
=1 5 p
0
=1
p
1
=4.4295926544736286 ∗ 10
−1
p
1
=3.1401320403542421 ∗ 10
−1
e =1.1661892256204731 ∗ 10
−2
p
2
=2.0903948109240345 ∗ 10
−1
e =5.8431854390143118 ∗ 10
−4
7 p
0
=1 9 p
0
=1
p
1
=3.3607213284422555 ∗ 10
−1
p
1
=3.3299232843941784 ∗ 10
−1
p
2
=1.1261037305184907 ∗ 10
−1
p
2
=1.3747843432474838 ∗ 10
−1
p
3
=9.8352099470524479 ∗ 10
−2
p
3
=3.7696344813028304 ∗ 10
−2
e =3.5418688397723108 ∗ 10
−5
p
4
=4.6097377279281204 ∗ 10
−2
e =2.2988173242199927 ∗ 10
−6
11 p
0
=1 13 p
0
=1
p
1
=3.3337224456224224 ∗ 10
−1
p
1
=3.3332916426394554 ∗ 10
−1
p
2
=1.3264516053824593 ∗ 10
−1
p
2
=1.3343404625112498 ∗ 10
−1
p
3
=5.8145237645931047 ∗ 10
−2
p
3
=5.3104565343119248 ∗ 10
−2
p
4
=1.0732193237572574 ∗ 10
−2
p
4
=2.5355038312682154 ∗ 10
−2
p
5
=2.1558456793513869 ∗ 10
−2
p
5
=1.8253255966556026 ∗ 10
−3
e =1.5426257940140409 ∗ 10
−7
p
6
=1.0069407176615641 ∗ 10
−2
TABLE 3 .9: Minimax polynomial approximations to f (x) = asin(x)
d coeﬃcients d coeﬃcients
3 p
0
=+1 5 p
0
=+1
p
1
=+5.7079632679489661 ∗ 10
−1
p
1
= −6.8255938822453732 ∗ 10
−1
e =+1.9685342444004972 ∗ 10
−2
p
2
=+1.2533557150194339
e =+1.0028055316328449 ∗ 10
−1
7 p
0
=+1 9 p
0
=+1
p
1
=+1.6842448305091242 p
1
= −2.2428186249120721
p
2
= −4.7058687958517496 p
2
=+1.3291181223980431 ∗ 10
+1
p
3
=+3.5924202921375237 p
3
= −2.1822323710205467 ∗ 10
+1
e =+6.8107317352554375 ∗ 10
−2
p
4
=+1.1344757437932010 ∗ 10
+1
e =+5.1836906475086431 ∗ 10
−2
The coeﬃcients increase signiﬁcantly in magnitude and the global error bound
does not decrease much. Plots of the error f(x) − p(x) showed me that the
equioscillatory behavior is present, but to reduce the error to a small value
will lead to such large coeﬃcients that the polynomial is simply not practical
in numerical computations.
The problem with the coeﬃcients has to do with the behavior of the deriva-
tive of asin(x)atx = 1; that is, lim
x→1
−
asin

(x) = lim
x→1
−
1/
√
1 − x
2
=
+∞. We can remove the derivative singularity by consider instead the func-
tion f (x) and its derivative f

(x),
f(x)=
π/2 − asin(x)
√
1 − x
,f

(x)=
−1/
√
1+x + f(x)/2
1 − x
(3.12)
It may be shown using L’Hˆopital’s rule that f (1) = lim
x→1
−
f(x)=
√
2
and f

(1) = lim
x→1
−
f

(x)=−2
−3/2
/3
.
= −0.117851. We can approximate
f(x)
.
= p(x)wherep(x)=

d
i=0
p
i
x
i
, thereby obtaining
asin(x)
.
= π/2 −
√
1 − xp(x) (3.13)
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TABLE 3. 1 0: Minimax polynomial approximations to f (x)=(π/2 −
asin(x))/
√
1 − x
d coeﬃcients d coeﬃcients
1 p
0
=+1.5707963267948966 2 p
0
=+1.5707963267948966
p
1
= −1.5658276442180141 ∗ 10
−1
p
1
= −2.0347053865798365 ∗ 10
−1
e =+1.1659002803738105 ∗ 10
−2
p
2
=+4.6887774236182234 ∗ 10
−2
e =+9.0311602490029258 ∗ 10
−4
3 p
0
=+1.5707963267948966 4 p
0
=+1.5707963267948966
p
1
= −2.1253291899190285 ∗ 10
−1
p
1
= −2.1422258835275865 ∗ 10
−1
p
2
=+7.4773789639484223 ∗ 10
−2
p
2
=+8.4936675142844198 ∗ 10
−2
p
3
= −1.8823635069382449 ∗ 10
−2
p
3
= −3.5991475120957794 ∗ 10
−2
e =+9.3066396954288172 ∗ 10
−5
p
4
=+8.6946239090712751 ∗ 10
−3
e =+1.0930595804481413 ∗ 10
−5
5 p
0
=+1.5707963267948966 6 p
0
=+1.5707963267948966
p
1
= −2.1453292139805524 ∗ 10
−1
p
1
= −2.1458939285677325 ∗ 10
−1
p
2
=+8.7973089282889383 ∗ 10
−2
p
2
=+8.8784960563641491 ∗ 10
−2
p
3
= −4.5130266382166440 ∗ 10
−2
p
3
= −4.8887131453156485 ∗ 10
−2
p
4
=+1.9467466687281387 ∗ 10
−2
p
4
=+2.7011519960012720 ∗ 10
−2
p
5
= −4.3601326117634898 ∗ 10
−3
p
5
= −1.1210537323478320 ∗ 10
−2
e =+1.3861070257241426 ∗ 10
−6
p
6
=+2.3078166879102469 ∗ 10
−3
e =+1.8491291330427484 ∗ 10
−7
7 p
0
=+1.5707963267948966 8 p
0
=+1.5707963267948966
p
1
= −2.1459960076929829 ∗ 10
−1
p
1
= −2.1460143648688035 ∗ 10
−1
p
2
=+8.8986946573346160 ∗ 10
−2
p
2
=+8.9034700107934128 ∗ 10
−2
p
3
= −5.0207843052845647 ∗ 10
−2
p
3
= −5.0625279962389413 ∗ 10
−2
p
4
=+3.0961594977611639 ∗ 10
−2
p
4
=+3.2683762943179318 ∗ 10
−2
p
5
= −1.7162031184398074 ∗ 10
−2
p
5
= −2.0949278766238422 ∗ 10
−2
p
6
=+6.7072304676685235 ∗ 10
−3
p
6
=+1.1272900916992512 ∗ 10
−2
p
7
= −1.2690614339589956 ∗ 10
−3
p
7
= −4.1160981058965262 ∗ 10
−3
e =+2.5574620927948377 ∗ 10
−8
p
8
=+7.1796493341480527 ∗ 10
−4
e =+3.6340015129032732 ∗ 10
−9
Evaluating at x =0,weobtainp(0) = π/2. The remainder of the coeﬃ-
cients are determined by the minimax algorithm. The tool
GeometricTools/
GTEngine/Tools/GenerateApproximations
generated Table 3.10 using ﬁles FitASin.h
and FitASin.inl.
3.3.9 Inverse Cosine Function
The same problems with the inverse sine function occur with the inverse
cosine function acos(x). Although a minimax algorithm can be applied to
acos(x)/
√
1 − x similar to that for the inverse sine function, a simple trigono-
metric identity suﬃces: acos(x) + asin(x)=π/2. Thus, the approximation is
acos(x)=π/2−asin(x)
.
=
√
1 − xp(x)wherep(x) is a polynomial constructed
for the inverse sine approximation.
3.3.10 Inverse Tangent Function
The tool GeometricTools/GTEngine/Tools/GenerateApproximations has the min-
imax implementation in
FitATan.h and FitATan.inl. The implementation is sim-
ilar to that of the sine function. The code generates Table 3.11 for f (x)=
atan(x)forx ∈ [−1, 1]. The ﬁtted polynomial is p(x)=

n
i=0
p
i
x
2i+1
.
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TABLE 3 .11: Minimax polynomial approximations to f(x) = atan(x)
d coeﬃcients d coeﬃcients
3 p
0
=+1 5 p
0
=+1
p
1
= −2.1460183660255172 ∗ 10
−1
p
1
= −3.0189478312144946 ∗ 10
−1
e =+1.5970326392614240 ∗ 10
−2
p
2
=+8.7292946518897740 ∗ 10
−2
e =+1.3509832247372636 ∗ 10
−3
7 p
0
=+1 9 p
0
=+1
p
1
= −3.2570157599356531 ∗ 10
−1
p
1
= −3.3157878236439586 ∗ 10
−1
p
2
=+1.5342994884206673 ∗ 10
−1
p
2
=+1.8383034738018011 ∗ 10
−1
p
3
= −4.2330209451053591 ∗ 10
−2
p
3
= −8.9253037587244677 ∗ 10
−2
e =+1.5051227215514412 ∗ 10
−4
p
4
=+2.2399635968909593 ∗ 10
−2
e =+1.8921598624582064 ∗ 10
−5
11 p
0
=+1 13 p
0
=+1
p
1
= −3.3294527685374087 ∗ 10
−1
p
1
= −3.3324998579202170 ∗ 10
−1
p
2
=+1.9498657165383548 ∗ 10
−1
p
2
=+1.9856563505717162 ∗ 10
−1
p
3
= −1.1921576270475498 ∗ 10
−1
p
3
= −1.3374657325451267 ∗ 10
−1
p
4
=+5.5063351366968050 ∗ 10
−2
p
4
=+8.1675882859940430 ∗ 10
−2
p
5
= −1.2490720064867844 ∗ 10
−2
p
5
= −3.5059680836411644 ∗ 10
−2
e =+2.5477724974187765 ∗ 10
−6
p
6
=+7.2128853633444123 ∗ 10
−3
e =+3.5859104691865484 ∗ 10
−7
3.3.11 Exponential Functions
Given a ﬂoating-point input y, we wish to compute 2
y
. Range reduction
is obtained by choosing y = i + x,wherei = y is the largest integer smaller
than y and where x ∈ [0, 1) is the fractional part. We can easily compute 2
i
,
so the problem reduces to computing f(x)=2
x
for x ∈ [0, 1). Once again a
minimax polynomial approximation may be used, 2
x
.
=

d
i=0
p
i
x
i
.Thetool
GeometricTools/GTEngine/Tools/GenerateApproximations has the minimax imple-
mentation in
FitExp2.h and FitExp2.inl. The implementation is similar to that
of the square root function. The code generates Table 3.12 for f(x)=2
x
for
x ∈ [0, 1]. The ﬁtted polynomial is p(x)=

n
i=0
p
i
x
i
.
To compute the natural exponential e
x
,usetheidentity2
y
= e
x
where
y = x log
2
(e) and then apply the minimax approximation for 2
y
.
3.3.12 Logarithmic Functions
Range reduction may be used for an input x to f(x) = log
2
(x); that is,
x =(1+t) ∗ 2
p
for some integer power p and for t ∈ [0, 1). Of course, this
information may be obtained from the binary representation for a ﬂoating-
point number. Applying the logarithm, we obtain log
2
(x) = log
2
(1 + t)+p.
We may focus our attention on computing log
2
(1 + t)fort ∈ [0, 1), a prob-
lem similar to that for the square root function. The minimax approximation
is log
2
(1 + x)
.
=

d
i=1
p
i
x
i
. Observe that the constant term of the polyno-
mial is zero. The tool
GeometricTools/GTEngine/Tools/GenerateApproximations has
the minimax implementation in
FitLog2.h and FitLog2.inl. The code generates
Table 3.13 for f(x) = log
2
(1 + x)forx ∈ [0, 1]. The ﬁtted polynomial is
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TABLE 3 .12: Minimax polynomial approximations to f(x)=2
x
d coeﬃcients d coeﬃcients
1 p
0
=1 2 p
0
=1
p
1
=1 p
1
=6.5571332605741528 ∗ 10
−1
e =8.6071332055934313 ∗ 10
−2
p
2
=3.4428667394258472 ∗ 10
−1
e =3.8132476831060358 ∗ 10
−3
3 p
0
=1 4 p
0
=1
p
1
=6.9589012084456225 ∗ 10
−1
p
1
=6.9300392358459195 ∗ 10
−1
p
2
=2.2486494900110188 ∗ 10
−1
p
2
=2.4154981722455560 ∗ 10
−1
p
3
=7.9244930154334980 ∗ 10
−2
p
3
=5.1744260331489045 ∗ 10
−2
e =1.4694877755186408 ∗ 10
−4
p
4
=1.3701998859367848 ∗ 10
−2
e =4.7617792624521371 ∗ 10
−6
5 p
0
=1 6 p
0
=1
p
1
=6.9315298010274962 ∗ 10
−1
p
1
=6.9314698914837525 ∗ 10
−1
p
2
=2.4014712313022102 ∗ 10
−1
p
2
=2.4023013440952923 ∗ 10
−1
p
3
=5.5855296413199085 ∗ 10
−2
p
3
=5.5481276898206033 ∗ 10
−2
p
4
=8.9477503096873079 ∗ 10
−3
p
4
=9.6838443037086108 ∗ 10
−3
p
5
=1.8968500441332026 ∗ 10
−3
p
5
=1.2388324048515642 ∗ 10
−3
e =1.3162098333463490 ∗ 10
−7
p
6
=2.1892283501756538 ∗ 10
−4
e =3.1589168225654163 ∗ 10
−9
7 p
0
=1
p
1
=6.9314718588750690 ∗ 10
−1
p
2
=2.4022637363165700 ∗ 10
−1
p
3
=5.5505235570535660 ∗ 10
−2
p
4
=9.6136265387940512 ∗ 10
−3
p
5
=1.3429234504656051 ∗ 10
−3
p
6
=1.4299202757683815 ∗ 10
−4
p
7
=2.1662892777385423 ∗ 10
−5
e =6.6864513925679603 ∗ 10
−11
TABLE 3 .13: Minimax polynomial approximations to f(x) = log
2
(1 + x)
d coeﬃcients d coeﬃcients
1 p
1
=+1 2 p
1
=+1.3465553856377803
e =+8.6071332055934202 ∗ 10
−2
p
2
= −3.4655538563778032 ∗ 10
−1
e =+7.6362868906658110 ∗ 10
−3
3 p
1
=+1.4228653756681227 4 p
1
=+1.4387257478171547
p
2
= −5.8208556916449616 ∗ 10
−1
p
2
= −6.7778401359918661 ∗ 10
−1
p
3
=+1.5922019349637218 ∗ 10
−1
p
3
=+3.2118898377713379 ∗ 10
−1
e =+8.7902902652883808 ∗ 10
−4
p
4
= −8.2130717995088531 ∗ 10
−2
e =+1.1318551355360418 ∗ 10
−4
5 p
1
=+1.4419170408633741 6 p
1
=+1.4425449435950917
p
2
= −7.0909645927612530 ∗ 10
−1
p
2
= −7.1814525675038965 ∗ 10
−1
p
3
=+4.1560609399164150 ∗ 10
−1
p
3
=+4.5754919692564044 ∗ 10
−1
p
4
= −1.9357573729558908 ∗ 10
−1
p
4
= −2.7790534462849337 ∗ 10
−1
p
5
=+4.5149061716699634 ∗ 10
−2
p
5
=+1.2179791068763279 ∗ 10
−1
e =+1.5521274478735858 ∗ 10
−5
p
6
= −2.5841449829670182 ∗ 10
−2
e =+2.2162051216689793 ∗ 10
−6
7 p
1
=+1.4426664401536078 8 p
1
=+1.4426896453621882
p
2
= −7.2055423726162360 ∗ 10
−1
p
2
= −7.2115893912535967 ∗ 10
−1
p
3
=+4.7332419162501083 ∗ 10
−1
p
3
=+4.7861716616785088 ∗ 10
−1
p
4
= −3.2514018752954144 ∗ 10
−1
p
4
= −3.4699935395019565 ∗ 10
−1
p
5
=+1.9302965529095673 ∗ 10
−1
p
5
=+2.4114048765477492 ∗ 10
−1
p
6
= −7.8534970641157997 ∗ 10
−2
p
6
= −1.3657398692885181 ∗ 10
−1
p
7
=+1.5209108363023915 ∗ 10
−2
p
7
=+5.1421382871922106 ∗ 10
−2
e =+3.2546531700261561 ∗ 10
−7
p
8
= −9.1364020499895560 ∗ 10
−3
e =+4.8796219218050219 ∗ 10
−8
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p(x)=

n
i=1
p
i
x
i
. To compute the natural logarithm log(x), use the identity
log(x) = log
2
(x)/ log
2
(e)wheree
.
=2.7182818 is the natural base and then
apply the minimax approximation for log
2
(x).
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4.1 Drawing a 3D Object
The classical use of shader programming on GPUs involves drawing 3D
geometric primitives within a 2D window using perspective projection. In
order to motivate the parallelism that a GPU provides, let us review all the
steps involved in drawing a 3D geometric object. The parallelism comes in two
forms. The ﬁrst form is the partitioning of the work due to the large number of
pixels that can be processed independently—this is massive parallelism due to
a large number of cores on the GPU. The second form is the vectorized work
per vertex and per pixel—this is SIMD parallelism available on each core. A
detailed discussion of the components of a shader-based rendering engine may
be found in [8].
4.1.1 Model Space
Consider a 3D geometric object composed of vertices and triangles that
connect the vertices. The vertices are deﬁned in model space. In games, such
objects are sometimes referred to as models, and artists usually create them
with a modeling package. The model space is whatever coordinate system the
artist chose to use when creating the objects.
4.1.2 World Space
The 3D game itself is given a coordinate system called world space,the
name suggesting that the geometric objects live in a consistent world. Points
in the world are located as 3-tuple Cartesian coordinates. An origin must be
chosen as a common reference point for all objects; usually the origin is the
3-tuple (0, 0, 0). A set of three orthogonal direction vectors are chosen as the
Cartesian frame; usually these are chosen as the 3-tuples (1, 0, 0), (0, 1, 0), and
(0, 0, 1). Which of these is the up-vector is your choice.
A geometric object must be placed somewhere in the world. The object was
created in a model space, so we must transform its vertices to world space.
Let W be the model-to-world transformation that accomplishes this. As is
typical in computer graphics with perspective cameras, the vertices are stored
123
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as homogeneous points that are 4-tuples of the form (x, y, z, 1). The x-, y-, and
z-values represent the distances from the origin along each of the Cartesian
direction vectors, and the combination of the three numbers is the location
of that point in the world. The last component is an algebraic convenience
to allow us to handle aﬃne and perspective transformations within the same
mathematical framework. Let P
model
be the 3 × 1 column vector whose rows
are the components of (x, y, z). A 4 ×4 homogeneous matrix H
world
represents
an aﬃne transformation consisting of translation and rotation; however, an
artist might also intend for some objects to be scaled, whether uniformly or
nonuniformly. Generally, the matrix is of the block form
H
world
=

M
T
0
T
1

(4.1)
where T is the 3×1 translation and M represents rotations, scalings, shearing,
or other linear-algebraic operations. The 3×1 zero vector is 0. The lower-right
element is the scalar 1. The world-space location of the model-space point is

P
world
1

= H
world

P
model
1

=

MP
model
+ T
1

(4.2)
As shown, the matrix has last row (0, 0, 0, 1) to represent an aﬃne transforma-
tion. GTEngine allows you to choose diﬀerent conventions for matrix storage
and multiplication; see Chapter 6.
4.1.3 View Space
Observers in the world have their own coordinate systems by which they
can specify object locations. Although we naturally use stereo vision, for sim-
plicity the assumption of monocular vision is used. Objects are observed from
a location called the eyepoint, say, E. Assuming the observer is standing, the
body axis is the natural up direction, say, U. Looking straight ahead, we have
the direction of view, say, D.Wemaychooseathirddirectiontobetothe
right, say, R. Abstractly, these quantites are part of a camera and the coordi-
nate system is {E; D, U, R} where the ﬁrst point is the origin. The last three
vectors are ordered and form a right-handed orthonormal basis;thatis,the
vectors are unit length, mutually perpendicular, and R = D × U.Thelast
vector in the ordered set is the cross product of the ﬁrst two vectors. The ori-
gin and vectors in the coordinate system are speciﬁed in world coordinates;as
3-tuples, the components are measured in the Cartesian directions mentioned
in the previous paragraph.
A 3-tuple may be used to describe the location of a point relative to the
camera,say,(d, u, r), which corresponds to the world point P
world
= E +
dD +uU+ rR. In the standard transformation pipeline of computer graphics,
the convention has been to list the order of measurements as (r, u, d). The
ordered set of vectors {R, U, D} is a left-handed orthonormal basis,where
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D = −R × U. Once again using homogeneous points, we may compute the
view space (or camera space)pointP
view
whoserowsarethecomponentsof
(r, u, d). Let Q =[RUD] be the matrix whose columns are the camera
directions considered as 3 ×1 vectors. The homogeneous transformation from
world space to view space is of the block form
H
view
=

Q
T
−Q
T
E
0
T
1

(4.3)
The view-space location of the world-space point is

P
view
1

= H
view

P
world
1

=

Q
T
(P
world
− E)
1

(4.4)
In your code, you should be clear about the relationship between the geometry
you have in mind for the camera directions and the algebra associated with it.
GTEngine has a class
Camera that stores the eyepoint and camera coordinate
vectors. The interface allows you to write these individually, but you may only
read the view matrix.
4.1.4 Projection Space
Let us consider a perspective camera, although it is simple to allow an or-
thographic camera when drawing 3D objects. A view plane is chosen in front
of the eyepoint and perpendicular to the direction of view. The 3D objects are
projected onto this plane by intersecting the plane with rays from the eyepoint
through the object points. For the simpliﬁed geometric primitives that repre-
sent the boundaries of objects and that consist of vertices and triangles, the
vertices are projected onto the plane. Points on the boundaries and inside the
triangles do not have to be explicitly projected—the perspective projections
are obtained by interpolation of the vertex projections.
The view plane has normal vector −D so that it is perpendicular to the
direction of view. The plane is positioned d
min
> 0 units in front of the
eyepoint; that is, a point on the plane is E + d
min
D. Therefore, the equation
of the view plane is
0=−D ·[X −(E + d
min
D)] = −D · (X − E)+d
min
(4.5)
The points X satisfying this equation are on the plane. For each vertex P
world
,
a ray is parameterized by X(t)=E+t(P
world
−E)fort>0. The constraint on
t says that we care only about points in front of the eyepoint. Substituting this
into the plane equation, we may solve for the t-value, say,
¯
t = d
min
/(P
world
−
E). If V
world
= X(
¯
t) is the projection point, some algebraic steps lead to
V
world
=
(ED
T
+ d
min
I)(P
world
− E)
D
T
(P
world
− E)
=
N
δ
(4.6)
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where I is the 3 × 3 identity matrix and where the last equality deﬁnes the
numerator and denominator of the computation. We may compute the nu-
merator and denominator separately using homogeneous points and matrices,

N
δ

=

ED
T
+ d
min
I −(ED
T
+ d
min
I)E
D
T
−D
T
E

P
world
1

(4.7)
where the left-hand side is deﬁned by the product on the right-hand side.
It is more convenient to formulate the projection in view space itself. The
ﬁnal result is a homogeneous point said to be in projection space or clip space:
P
proj
=

N

δ


=

Q
T
−Q
T
E
0
T
1


N
δ

=

Q
T
−Q
T
E
0
T
1

ED
T
+ d
min
I −(ED
T
+ d
min
I)E
D
T
−D
T
E


P
world
1

=

Q
T
−Q
T
E
0
T
1

ED
T
+ d
min
I −(ED
T
+ d
min
I)E
D
T
−D
T
E

Q E
0
T
1


P
view
1

=

d
min
I 0
D
T
Q 0


P
view
1

=

d
min
P
view
D
T
Q

=
⎡
⎣
d
min
⎡
⎣
r
u
d
⎤
⎦
d
⎤
⎦
(4.8)
The projected point itself requires the perspective divide.Thenumeratoris
a 3-tuple and must be divided by the denominator d, leading to the view-
plane point (rd
min
/d, ud
min
/d, d
min
). As expected, the last component is the
distance from the eyepoint to the view plane.
At ﬁrst glance it appears that the homogeneous projection matrix we
should use is
ˆ
H
proj
=

d
min
I 0
D
T
Q 0

(4.9)
in which case the transformation pipeline from model space to projection space
is
P
proj
=
ˆ
H
proj
H
view
H
world

P
model
1

(4.10)
where the ﬁnal result is a 4 × 1 homogeneous point. As a tuple, this point is
P
proj
=(N

,δ

) and the projected point on the view plane (in view coordi-
nates) is V
proj
= N

/δ

=(rd
min
/d, ud
min
/d, d
min
). However, the world is a
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FIGURE 4.1: An eyepoint E and a view frustum. The point X in the view
frustum is projected to the point Y on the view plane.
large place, so we can draw objects in only a small part of it, called the view
frustum, a 6-sided convex polyhedron that is the frustum of a pyramid for
perspective projection or a cube for an orthographic projection. The standard
computer graphics transformation pipelines map the frustum into a cube. The
D3D11 cube is [−1, 1]
2
× [0, 1] . The actual homogeneous projection matrix
used to obtain P
proj
incorporates the view frustum bounds.
The view frustum is deﬁned by selecting extreme values for the components
of (r, u, d), say, r
min
≤ r ≤ r
max
, u
min
≤ u ≤ u
max
,andd
min
≤ d ≤ d
max
.
Figure 4.1 is a 3D rendering of the frustum as a wireframe. A symmetric view
frustum has the property r
min
= −r
max
and u
min
= −u
max
. Figure 4.2 shows a
symmetric view frustum with its faces labeled. The horizontal ﬁeld of view has
half-angle θ
r
that satisﬁes the equation tan(θ
r
)=r
max
/d
min
and the vertical
ﬁeld of view has half-angle θ
u
that satisﬁes the equation tan(θ
u
)=u
max
/d
min
.
In the general case, the ru-coordinates of points in the view frustum are
mapped to [−1, 1]
2
by
r

=
2
r
max
− r
min

d
min
r −
r
min
+ r
max
2
d

u

=
2
u
max
− u
min

d
min
u −
u
min
+ u
max
2
d

(4.11)
The perspective mapping of the interval [d
min
,d
max
] to a target interval [t
0
,t
1
]
is of the form t = a + b/d =(ad + b)/d = d

/d, where the last equality deﬁnes
the numerator d

. The coeﬃcients a and b are determined from the linear
system a + b/d
min
= t
0
and a + b/d
max
= t
1
. The target interval for D3D11 is
[0, 1] and the numerator of the mapping is
d

=
d
max
(d − d
min
)
d
max
− d
min
(4.12)
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FIGURE 4.2: (a) A 3D drawing of the symmetric view frustum. The left,
right, bottom, top, near, and far planes are labeled, as are the eight vertices
of the frustum. (b) A 2D drawing of the frustum as seen from the top side.
(c) A 2D drawing of the frustum as seen from the right side.
The corresponding homogeneous projection matrix is
H
proj
=
⎡
⎢
⎢
⎢
⎣
2d
min
r
max
−r
min
0 −
r
max
+r
min
r
max
−r
min
0
0
2d
min
u
max
−u
min
−
u
max
+u
min
u
max
−u
min
0
00
d
max
d
max
−d
min
−
d
max
d
min
d
max
−d
min
00 1 0
⎤
⎥
⎥
⎥
⎦
(4.13)
The matrix of Equation (4.13) is indeed diﬀerent from that in Equation
(4.9). The projection-space point is not that of Equation (4.10); rather, it is
P
proj
= H
proj
H
view
H
world

P
model
1

=
⎡
⎢
⎢
⎣
r

u

d

d
⎤
⎥
⎥
⎦
(4.14)
where r

, u

,andd

are deﬁned in Equations (4.11) and (4.12). The view
frustum is deﬁned by the constraints |r

|≤d, |u

|≤d,0≤ d

≤ d
max
,and
d
min
≤ d ≤ d
max
.
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4.1.5 Window Space
The perspective divide is performed on the 4-tuples (r

,u

,d

,d)toobtain
(r

,u

,d

)=(r

/d, u

/d, d

/d), (4.15)
called normalized device coordinates. They satisfy the constraints |r

|≤1,
|u

|≤1, and 0 ≤ d

≤ 1. The 2-tuples (r

,u

) are mapped to real-valued
window space 2-tuples (x, y) in a window of width W and height H where
0 ≤ x<W and 0 ≤ y<H.The(r

,u

) tuples are right handed but display
windows are left handed, so the mapping involves a reﬂection. Speciﬁcally, the
mapping is
x =
W (1 + r

)
2
,y=
H(1 −u

)
2
(4.16)
Observe that the computations are real valued. The actual integer-valued
pixels drawn are based on rules about real-valued pixel containment within
triangles. The right edge r

=1mapstox = W and the bottom edge u

= −1
maps to y = H. Both indices are out of range, but the containment rules lead
to rejection of the corresponding pixels; see the next section on rasterization.
The mapping from (r

,u

)to(x, y) is based on using the entire window
for drawing the objects. It is possible to draw the objects to a subrectangle of
the window. This subrectangle is referred to as the viewport. In D3D11, the
concept of viewport includes a subinterval of depth, so in fact the viewport is
a subcube of the cube [0,W) × [0,H) × [0, 1].
Viewport handling is deﬁnitely speciﬁc to the graphics API. Moreover, now
that machines can have multiple monitors with extended displays, a window
can occupy screen real estate on two monitors. The pixel indexing scheme
in this case must support windows for which a dimension is larger than that
of any single monitor. And it must support negative positions, especially if
the secondary monitor is conﬁgured to be to the left of the primary mon-
itor. The viewport APIs must allow for this. Even using only Direct3D on
a Microsoft Windows computer, be aware that the viewport handling varies
between D3D9, D3D10, and D3D11.
Let the viewport have upper-left corner (x
0
,y
0
), width w
0
> 0, and height
h
0
> 0.Thedepthmaybeconstrainedto[z
0
,z
1
] ⊆ [0, 1]. The mapping from
normalized device coordinates to the viewport is then
x = x
0
+
w
0
(1 + r

)
2
,y= y
0
+
h
0
(1 − u

)
2
,z= z
0
+(z
1
− z
0
)d

(4.17)
If P
ndc
is the 3 × 1 column vector whose rows are the normalized device
coordinates (r

,u

,d

)andP
window
is the 3 × 1 column vector whose rows
are the window coordinates (x, y, z), then

P
window
1

⎡
⎢
⎢
⎣
w
0
/20 0 x
0
+ w
0
/2
0 −h
0
/20 y
0
+ h
0
/2
00z
1
− z
0
z
0
00 0 1
⎤
⎥
⎥
⎦

P
ndc
1

(4.18)
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TABLE 4. 1: The transformation pipeline
point transform name matrix equation
P
model
↓ world matrix, H
world
, (4.1)
P
world
↓ view matrix, H
view
, (4.3)
P
view
↓ projection matrix, H
proj
, (4.13)
P
proj
↓ perspective divide, (4.15)
P
ndc
↓ window matrix, H
window
, (4.19)
P
window
The ﬁnal homogeneous matrix in the transformation pipeline is
H
window
=
⎡
⎢
⎢
⎣
w
0
/20 0 x
0
+ w
0
/2
0 −h
0
/20y
0
+ h
0
/2
00z
1
− z
0
z
0
00 0 1
⎤
⎥
⎥
⎦
(4.19)
4.1.6 Summary of the Transformations
The previous sections show how to transform a point in a 3D model space
to a point in window space. The sequence of steps is shown in Table 4.1.
Software renderers implement the entire pipeline, both for vertices of the tri-
angles and the interpolated points during rasterization of the triangles. When
hardware-accelerated graphics for consumer machines ﬁrst arrived, the appli-
cation was still responsible for computing and multiplying the world, view,
and projection matrices. The perspective divisions and mapping to window
coordinates were performed in graphics hardware (hardware rasterization).
On later graphics hardware, the entire transformation pipeline was handled
by the hardware including computing texture coordinates and lighting data
at vertices (hardware texturing and lighting). However, control of per-pixel
attributes during rasterization was indirect and somewhat cryptic (the ﬁxed-
function pipeline). Finally, the graphics hardware evolved to allow detailed
control over vertex and pixel attributes (shader programming).
The composition of the world, view, and projection homogeneous matrices
is of importance to shader programs,
H
pvw
= H
proj
H
view
H
world
(4.20)
Although each individual matrix may be used by shader programs, for stan-
dard drawing of 3D objects use the composition. It is convenient for the ap-
plication to compute this matrix product and provide it to the shader.
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4.1.7 Rasterization
We now get to the stage of drawing a 3D object that allows massive par-
allelism. Consider a 3D triangle that is fully in the view frustum and that is
fully visible to the observer (the camera eyepoint). Let the model-space ver-
tices be V
i
for 0 ≤ i ≤ 2. Each vertex has a set of attributes such as color,
texture coordinate, or normal vector for lighting. Refer to these collectively
as A
i
for vertex i. The vertices are transformed from model space to window
space, leading to three real-valued pixels (x
i
,y
i
)for0≤ i ≤ 2. The vertex is
assigned a color through some sequence of computations involving the vertex
attributes. The triangle contains other pixels that we wish to assign colors.
The standard approach is to rasterize the triangle into the pixel grid and
perspectively interpolate the vertex attributes for the pixel colors.
Let V be a point in the triangle. We may write this point as a linear
combination of the vertices: V = b
0
V
0
+ b
1
V
1
+ b
2
V
2
,whereb
i
≥ 0and
b
0
+ b
1
+ b
2
= 1. The coeﬃcients b
i
are called barycentric coordinates of V
relative to the vertices. They are preserved by aﬃne tranformations. We may
interpolate the attributes A at V using barycentric coordinates and then
applying the perspective divide. Let the projection-space coordinates of the
vertices be (r

i
,u

i
,d

i
,d
i
). The perspectively interpolated attributes are
A =
b
0
A
0
+ b
1
A
1
+ b
2
A
2
b
0
d
0
+ b
1
d
1
+ b
2
d
2
(4.21)
The standard approach to rasterization is to use the top-left rule.This
is the extension of the one-dimensional concept of half-open intervals. The
interval (x
0
,x
1
) consists of numbers x for which x
0
<x<x
1
. Note that the
endpoints are not included in the interval. In calculus, the interval is said to
be open. The interval [x
0
,x
1
] consists of numbers x for which x
0
≤ x ≤ x
1
.In
this case, the endpoints are included in the interval and the interval is said to
be closed. Deﬁne [x
0
,x
1
)tobethesetofnumbersx for which x
0
≤ x<x
1
.
The interval is said to be half open in the sense that the number x
1
is not
included in the set; however, x
0
is in the set. The interval is also said to be
half closed.
Consider the set of real-valued numbers visualized as a line. Consider an
ordered set of n real-valued numbers x
i
for 0 ≤ i<nand where x
i
<x
i+1
.
Assign to each x
i
a color c
i
. We wish to assign colors to each integer in
[x
0
,x
1
) using linear interpolation of the colors at the x
i
that bound the integer.
Although we could iterate over the integers j in [x
0
,x
1
), query for the interval
[x
i
,x
i+1
] that contains j, and interpolate a color c = c
i
+(j − x
i
)/(x
i+1
−
x
i
)(c
i+1
− c
i
), this is akin to the drawing objects in 2D by iterating over all
the pixels and querying which geometric primitive contains it. However, in 2D
we iterate over the geometric primitives and determine the pixels contained
by each primitive. The natural specialization to 1D is to iterate over the
intervals [x
i
,x
i+1
] and determine which integers are contained by the interval.
Moreover, we wish to “visit” each integer only once. This raises the question
of ownership of integers by the intervals, something that can be determined
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FIGURE 4.3: A one-dimensional illustration of pixel ownership using half-
open intervals.
y
x
FIGURE 4.4: A set that is the Cartesian product of half-open intervals. The
top and left edges of the rectangle are included in the set (drawn as solid black
lines) but the right and bottom edges are not included (drawn as dotted black
lines).
by using half-open intervals [x
i
,x
i+1
) to avoid the problem when an x
i+1
is already an integer and shared by the intervals [x
i
,x
i+1
]and[x
i+1
,x
i+2
].
Figure 4.3 illustrates the ownership for the 1D problem. Figure 4.3 shows a
set of numbers x
0
through x
5
and integer points on the real line. The pixel
ownerships are listed next.
• [x
0
,x
1
)owns1,2,and3.
• [x
1
,x
2
) owns only 4 because x
2
= 5 and the right endpoint of the interval
is excluded.
• [x
2
,x
3
)owns5and6.
• [x
3
,x
4
)owns7,8,and9.
• [x
4
,x
5
) does not own any integers because x
5
= 10 and the right end-
point of the interval is excluded.
An extension of half-open intervals to 2D uses Cartesian products of 1D
intervals. The rectangle [x
0
,x
1
) ×[y
0
,y
1
) is the set of 2-tuples (x, y) for which
x
0
≤ x<x
1
and y
0
≤ y<y
1
. Figure 4.4 shows such a set drawn in a
left-handed coordinate system with x increasing rightward and y increasing
downward.


















[image: ]GPU Computing 133
FIGURE 4.5: A two-dimensional illustration of pixel ownership using the
top-left rasterization rule.
The concept of half-open interval may be extended to triangles in 2D.
Edges are either horizontal (y is constant) or not horizontal. If a triangle edge
is horizontal and all triangle points are on or below that edge, the edge is said
to be a top edge. If a triangle edge is not horizontal and all triangle points in
the rows spanned by the edge are on or right of that edge, the edge is said to be
a left edge. A triangle has one or two left edges but does not necessarily have
a top edge. Similar to the 1D rasterization shown in Figure 4.3, a 2D triangle
with real-valued vertices may be drawn in the plane and covers various pixels
(integer-valued points).
Top-Left Rasterization Rule A pixel is owned by the triangle if it is
• strictly inside the triangle,
• on a top edge but not the rightmost point of that edge, or
• on a left edge but not the bottommost point of that edge.
The rule guarantees a partitioning of the to-be-drawn pixels into disjoint
sets of pixels, each set owned by a triangle. Figure 4.5 shows a triangle and
its pixel ownership. The pixels are drawn as squares and the pixel centers are
drawn as plus signs. The gray-colored pixels are those owned by the triangle.
The pixels at (1, 4) and (3, 6) are exactly on left edges of the triangle, so they
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are owned by the triangle. The pixel at (7, 7), although exactly a vertex, is
not strictly inside the triangle and not on a top or left edge, so the triangle
does not own it.
The disjoint partitioning of the pixels not only is relevant to guaranteeing
a pixel is drawn once, it allows the pixel processing to be eﬃciently distributed
across multiple cores, whether CPU cores in software rendering or GPU cores
in hardware rendering. The partitioning of a rectangular array is a key obser-
vation to GPGPU computing, as we will see in the next section.
4.2 High Level Shading Language (HLSL)
In this section I will discuss shader programming using the D3D11 high
level shading language (HLSL). Various shader types are examined without
regard to how you actually hook up inputs, outputs, and execute them using
a D3D11 engine.
4.2.1 Vertex and Pixel Shaders
Let us look at some simple shaders used for drawing. The discussion here
builds on top of the presentation in Section 4.1. The ﬁrst example involves
vertex color attributes only. The sample application is
GeometricTools/GTEngine/Samples/Basics/VertexColoring
Listing 4.1 contains a vertex shader and a pixel shader. The shader uses the
vector-on-the-right multiplication convention, although GTEngine has condi-
tional compilation to support the vector-on-the-left convention.
cbuffer PVWMatrix
{
float4x4 pvwMatrix;
} ;
struct VS
INPUT
{
float3 modelPosition : POSITION;
float4 modelColor : COLOR0;
} ;
struct VS
OUTP UT
{
float4 vertexColor : COLOR0;
float4 clipPosition : SV
POSITION ;
} ;
VS
OUTP UT VSMain ( VS INPUT input)
{
VS
OUTPUT output ;
output . vertexcolor = input. modelColor ;
output . clipPosition = mul(pvwMatrix , float4 ( modelPosition , 1.0 f ));
return output ;
}
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struct PS INPUT
{
float4 vertexColor : COLOR0;
} ;
struct PS
OUTP UT
{
float4 pixelColor0 : SV
TARGET0 ;
} ;
PS
OUTP UT PSMain ( PS INPUT input)
{
PS
OUTPUT output ;
output . pixelColor0 = input. vertexColor ;
return output ;
} ;
LISTING 4.1: A vertex shader and a pixel shader for simple vertex coloring
of geometric primitives.
The vertex shader is the function named
VSMain. The input to each invo-
cation of the function is of type
VS INPUT, which has the model-space position
of the vertex as a 3-tuple (
modelPosition) and the color attribute (modelColor),
which represents an RGBA color whose channels are ﬂoating-point numbers
in the interval [0, 1]. The output of the function is of type
VS OUTPUT and
simply passes through the model color as
vertexColor. The other output param-
eter,
clipPosition, is required and contains the projection-space coordinates of
the incoming model-space position. The multiplication involves the constant
buﬀer named
PVWMatrix; speciﬁcally, the member pvwMatrix stores the matrix
of Equation (4.20). If you choose the vector-on-the-left convention, the param-
eters in the
mul operator are reversed; see the GteVertexColorEﬀect.cpp ﬁle to
see how either convention is supported using conditional compilation within
the HLSL shader itself. Constant buﬀers provide a mechanism for sharing
parameters that are common to all invocations of a shader.
The pixel shader is the function
PSMain. The input to each invocation of the
function is of type
PS INPUT, which stores the color value that is perspectively
interpolated by the rasterizer for the target pixel. The output of the function is
of type
PS OUTPUT and simply passes through the interpolated color obtained
from the rasterizer.
HLSL uses semantics to convey information about the use of input and
output parameters. When rolling your own eﬀects system, the vertex shader
input semantics are not necessarily meaningful. The semantic name and the
actual meaning of the data can be quite diﬀerent; for example, you might
pass in physical parameters through a
TEXCOORD semantic even though the
parameters are not used for texture lookups. However, the semantics are nec-
essary to associate vertex shader outputs with pixel shader inputs.
Two of the semantics are preﬁxed with
SV . These are called system value
semantics. The vertex shader must output the projection-space position using
the semantic
SV POSITION, thereby letting the rasterizer know that clipPosition
must be used to generate the window-space positions and for interpolation. A
pixel shader input can also be labeled with the
SV POSITION semantic. This
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input stores the pixel center with a one-half oﬀset in the xy components of
that input member.
The pixel shader uses the semantic
SV TARGET0, indicating which output
color buﬀer is written. In D3D11, the maximum number of such buﬀers is
eight. In our example, we are writing to buﬀer zero. It is possible to write to
multiple render targets. To do so, you add more members to
PS OUTPUT and
label them with the semantics indicating which targets you want. The pixel
shader then assigns values to each of the members.
Vertex and pixel shaders for basic 2D texturing of a square formed of two
triangles are shown in Listing 4.2. The shader uses the vector-on-the-right
multiplication convention, although GTEngine has conditional compilation to
support the vector-on-the-left convention.
cbuffer PVWMatrix
{
float4x4 pvwMatrix;
} ;
struct VS
INPUT
{
float3 modelPosition : POSITION;
f l o a t 2 modelTCoord : TEXCOORD0;
} ;
struct VS
OUTP UT
{
fl oa t2 vertexTCoord : TEXCOORD0;
float4 clipPosition : SV
POSITION ;
} ;
VS
OUTP UT VSMain ( VS INPUT input)
{
VS
OUTPUT output ;
output . vertexTCoord = input .modelTCoord;
output . clipPosition = mul(pvwMatrix , float4 ( modelPosition , 1.0 f ));
return output ;
}
struct PS
INPUT
{
fl oa t2 vertexTCoord : TEXCOORD0;
} ;
struct PS
OUTP UT
{
float4 pixelColor0 : SV
TARGET0 ;
} ;
Texture2D baseTexture ;
SamplerState baseSampler ;
PS
OUTP UT PSMain ( PS INPUT input)
{
PS
OUTPUT output ;
output . pixelColor0 = baseTexture.Sample(baseSampler , input.vertexTCoord );
return output ;
} ;
LISTING 4.2: A vertex shader and a pixel shader for simple texturing of
geometric primitives.
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FIGURE 4.6: (a) A rendering of a vertex-colored triangle. (b) A rendering
of a textured square.
Sample applications to demonstrate vertex coloring of a single triangle and
texturing of a square are
GeometricTools/GTEngine/Samples/Basics/VertexColoring
GeometricTools/GTEngine/Samples/Basics/Texturing
Figure 4.6 shows grayscale renderings. The application renderings are in color.
The shader programs are relatively easy to read without extensive knowl-
edge of HLSL or D3D11. However, it is necessary to compile the shaders,
whether oﬄine or at runtime. At runtime, the shader inputs and outputs
must be hooked up for execution. In the preceding examples, an application
must create a constant buﬀer to store the 4 × 4 world-view-projection matrix
of Equation (4.20). This buﬀer is hooked up to the shader at runtime using
D3D11 API calls, and the name
PVWMatrix is a convenience for identifying the
input to hook up to. Although a programmer may look at an assembly listing
of the compiled shader to determine the constant-buﬀer register assigned to
PVWMatrix, shader reﬂection may be used to obtain that information, thus
establishing a map of constant buﬀer names to registers.
The vertex shader is executed for vertices obtained from a user-constructed
vertex buﬀer. This is a chunk of memory that you must let D3D11 know how
it is to be interpreted. Moreover, you need to create an input layout object
that establishes the relationship between members of the vertex buﬀer and
the input format deﬁned by
VS INPUT.
D3D11 will execute the vertex shader as needed, but it needs to know
the type of geometric primitive you want drawn. The primitive topology is
speciﬁed by the user: triangle mesh, triangle strip, line mesh, line strip, points,
etc. The vertices are used in the order provided by the vertex buﬀer—an
indexless primitive—or in an order speciﬁed by an index buﬀer. This buﬀer
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stores integer indices (16-bit or 32-bit) into the vertex buﬀer interpreted as
an array of structures. When the corresponding D3D11 draw call is made, the
vertices are processed by calls to
VSMain.Whenanentireprimitiveisready,
say, the three vertices of a triangle have been processed by the vertex shader
calls, the rasterizer identiﬁes the pixels owned by the triangle and calls
PSMain
for each owned pixel.
In the texturing example, the model-space texture coordinates are passed
through by the vertex shader. The rasterizer then interpolates these coordi-
nates and passes them to the pixel shader so that the 2D texture can be sam-
pled to obtain a color. The
baseTexture object is a read-only texture that the
programmer needs to create and hook up to the shader. The texture must be
sampled. The standard methods are nearest neighbor or linear interpolation,
and the programmer may specify these by creating
baseSampler and hooking
it up to the shader. The texture might also be created for mipmapping.
All in all, there are a lot of steps required to get D3D11 ready to draw
something as simple as a vertex-colored or textured object! After I brieﬂy
discuss geometry shaders and compute shaders, the remainder of Section 4.2
is a discussion of the key steps, including how to create a D3D11 device and
immediate context for drawing and how to create the aforementioned buﬀers.
The daunting details of the self-contained low-level D3D11 commands in a
single
main program are discussed in Section 5.1. The source code for drawing
a triangle that is both vertex colored and textured is provided using only low-
level D3D11 commands. I guarantee that you do not want to keep repeating
such low-level code for your applications. In that section, my intent is to
motivate building a D3D11 engine that encapsulates as much of the work as
possible. Consider GTEngine as a case study; you may ﬁnd a brief discussion
about its design and architecture in Section 5.1.
4.2.2 Geometry Shaders
One of the features introduced in Shader Model 4 (D3D10) that was not
in Shader Model 3 (D3D9) is geometry shaders. These shaders give you the
ability to generate geometric primitives from other primitives.
The prototypical example is generation of billboards that always face the
camera. In particular, given a center point C in camera coordinates and a size
s>0, the four corners of the billboard are (r, u, d)=C ±s(1, 0, 0)±s(0, 1, 0).
In D3D9, you can generate billboards as an array of two-triangle quads, so for
n billboards you need 4n vertices in the vertex buﬀer, each vertex position a
3-tuple. Thus, the vertex buﬀer has 12n ﬂoating-point values for the corner
positions. However, we have only four degrees of freedom, three for the center
point and one for the size. It would be convenient to have a vertex buﬀer
for which the 12n ﬂoating-point positions are replaced by 4n ﬂoating-point
values, three for center and one for size per vertex. Geometry shaders provide
support to allow you to generate the corners on the GPU rather than on the
CPU.
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The sample application is
GeometricTools/GTEngine/Samples/Basics/GeometryShaders
Listing 4.3 contains the HLSL code for drawing square billboards that are
axis aligned in window space. The vertex buﬀer is an array of structures, each
structure containing the model-space location of the center of the billboard,
a color for the billboard, and a size parameter that controls how large each
square is. The geometry shader uses the vector-on-the-right multiplication
convention, although GTEngine has conditional compilation to support the
vector-on-the-left convention.
struct VS STRUCT
{
float3 position : POSITION;
float3 color : COLOR0;
float s i z e : TEXCOORD0;
} ;
VS
STRUCT VSMain ( VS STRUCT input)
{
return input ;
}
struct GS
OUTP UT
{
float3 color : COLOR0;
float4 clipPosition : SV
POSITION ;
} ;
cbuffer Matrices
{
float4x4 vwMatrix ;
float4x4 pMatrix;
} ;
static float4 offset [4] =
{
float4(−1.0 f , −1.0f , 0.0 f , 0.0 f ) ,
f lo a t4 (+1.0 f , −1.0f , 0.0 f , 0.0 f ) ,
float4(−1.0 f , +1.0 f , 0 . 0 f , 0 . 0 f ) ,
float4(+1.0f, +1.0f, 0.0f, 0.0f)
} ;
[ maxvertexcount (6) ]
void GSMain ( poi n t VS
STRUCT input [1] , inout TriangleStream<GS OUTPUT> stream)
{
GS
OUTPUT output[4];
float4 viewPosition = mul(vwMatrix , float4( particle . position , 1.0f ));
for ( int i=0; i< 4; ++i )
{
float4 corner = viewPosition + input [0]. size∗ offset [ i ];
output [ i ]. c lipP os it io n = mul( pMatrix , corner );
output [ i ]. color = input [0]. color ;
}
s tr e am . Append ( o ut p ut [ 0 ] ) ;
s tr e am . Append ( o ut p ut [ 1 ] ) ;
s tr e am . Append ( o ut p ut [ 3 ] ) ;
stream . RestartStrip ();
s tr e am . Append ( o ut p ut [ 0 ] ) ;
s tr e am . Append ( o ut p ut [ 3 ] ) ;
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s tr e am . Append ( o ut p ut [ 2 ] ) ;
stream . RestartStrip ();
}
struct PS
OUTP UT
{
float4 pixelColor0 : SV
TARGET0 ;
} ;
PS
OUTP UT PSMain (GS OUTPUT input)
{
PS
OUTPUT output ;
output . pixelColor0 = float4 (input . color , 1.0 f );
return output ;
}
LISTING 4.3: HLSL code to draw square billboards.
The vertex shader
VSMain simply passes through its input, allowing the
geometry shader to generate the billboards. The vertices are tagged by the
application to be point primitives. The geometry shader
GSMain is consistent
with this, because its ﬁrst parameter is labeled as
point and is given a single
vertex shader output structure. The incoming point is in model-space coordi-
nates. It is transformed to view space using the product of the view matrix
and the world matrix. The geometry shader generates the four corners of the
billboard in view-space coordinates. Those corners are then transformed into
projection space by application of the projection matrix. As with the previ-
ous vertex shader examples, the clip position must be returned so that the
rasterizer can generate the pixels corresponding to the billboard squares. The
billboard color is simply passed through.
The second parameter of the geometry shader speciﬁes that the output of
the shader is a list of triangles. These must be generated using the topology
of a triangle strip. The
stream.Append calls occur three at a time, placing a
triangle into output stream. The indexing of the
output[] array is that for a
triangle strip. The call to
RestartStrip indicates that an output primitive is
complete. You have to specify the maximum number of output vertices—in
this example, it is six.
The pixel shader now takes an input that is generated by the rasterizer
when it processes the billboard triangles. The sample application uses a single
color per billboard, so the billboard color value is the ﬁnal result for the pixel.
Notice that
oﬀset[] is declared as a static array. The elements of the array
are not accessible to the application code. The
[unroll] directive in the geometry
shader causes the loop to be unrolled. The assembly output listing veriﬁes this;
see Section 4.2.4 about generating the listing. The
oﬀset[] values are inlined
accordingly. If the
static keyword is omitted, a global constant buﬀer is created
(called
$Global) but the array values are still inlined.
Figure 4.7 shows grayscale renderings of the billboards for two diﬀerent
orientations of the virtual trackball. The application draws the billboards
using color.
Geometry shaders have more sophisticated uses. The Marching Cubes sur-
face extraction example uses geometry shaders to generate triangles within
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FIGURE 4.7: Renderings of billboards generated by geometry shaders.
a voxel based on a table lookup o f information. Geometry shaders are also
useful for splatting p o int primitives; see [17].
4.2.3 Compute Shaders
To motivate compute shaders, let us look at small- scale Gaussian blurring
of a 2D color image, a convolution of an image with a 3 × 3 kernel whose
weights a re nonnegative and sum to one. The sample applicatio n is
GeometricTools/GTEngine/Samples/Basics/GaussianBlurring
Listing 4.4 shows the HLSL ﬁle.
Texture2D<float4> input ;
RWTexture2D<float4> output ;
static float weight [3][3] =
{
{ 1.0 f / 16.0 f , 2.0 f / 16.0f , 1.0 f / 16.0 f } ,
{ 2.0 f / 16.0 f , 4.0 f / 16.0f , 2.0 f / 16.0 f } ,
{ 1.0 f / 16.0 f , 2.0 f / 16.0f , 1.0 f / 16.0 f }
} ;
static int2 offset [3][3] =
{
{ int2(−1, −1), i nt2 ( 0 , −1), i n t 2 (+1 , −1) } ,
{ int2(−1, 0) , int2 (0 , 0) , int2(+1, 0) } ,
{ int2(−1 , +1) , i n t 2 ( 0 , +1) , i n t 2 (+1 , +1) }
} ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( i nt2 t : S V
DispatchThreadID)
{
float4 result = 0.0f ;
for ( int r=0; r< 3; ++r)
{
for ( int c=0; c< 3; ++c)
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{
result += weight[r ][c] ∗ input [t + offset [ r ][ c ]];
}
}
output [ t ] = f lo at 4 ( res ul t . rgb , 1.0 f );
}
LISTING 4.4: A compute shader that implements small-scale Gaussian blur-
ring.
The input and output images are 2D textures, each having 32-bit ﬂoating-
point channels for red, green, blue, and alpha. For this example, the alpha
channels are all one. The output at a pixel (x, y) is computed as the weighted
average of the nine pixels in the 3×3 neighborhood of the input pixel at (x, y).
By the way, the assignment of the scalar zero to a 4-tuple
result appears to be
an error. As it turns out, the HLSL compiler allows this, replicating (splatting)
the scalar in all channels; thus, the initial value of
result is (0, 0, 0, 0).
A key diﬀerence between compute shaders and the other shaders we have
looked at is that you need to handle the domain decomposition for the inputs.
To be clear, for a single triangle the vertex shader is called by the graphics
driver three times, once per vertex. Based on the output clip positions, the
rasterizer identiﬁes the pixels covered by the triangle, perspectively interpo-
lates the vertex attributes at those pixels, and then calls the pixel shader for
each pixel. You can access the (x, y) location of the pixel in the pixel shader
using an input tagged as
SV POSITION.
On the other hand, a compute shader is responsible for processing a group
of threads. These are provided via the attribute
numthreads. Imagine the GPU
threads partitioned into a 3D grid of dimensions N
x
, N
y
,andN
z
with one
thread per grid cell. Each cell is indexed by (x, y, z)with0≤ x<N
x
,0≤
y<N
y
,and0≤ z<N
z
. The grid can be partition into a lower-resolution
3D grid of groups of dimensions G
x
, G
y
,andG
z
with each group having T
x
threads in the x-dimension, T
y
threads in the y-dimension, and T
z
threads
in the z-dimension. T
x
, T
y
,andT
z
are the parameters used in the numthreads
attribute. In our example, T
x
is NUM X THREADS, T
y
is NUM Y THREADS,
and T
z
is 1. The counts are passed as macros to the compiler. In the sample
application they are T
x
=8,T
y
=8,andT
z
= 1. In normal usage, N
x
=
G
x
T
x
, N
y
= G
y
T
y
,andN
z
= G
z
T
z
. In the sample application, the image to
be blurred has dimensions 1024 × 768, so N
x
= 1024, N
y
= 768, N
z
=1,
G
x
= 1024/8 = 128, G
y
= 768/8 = 96, and G
z
= 1. The group counts are
passed to a function,
ID3D11DeviceContext::Dispatch, that is called to execute
the compute shader.
Observe that
numthreads allows you to specify the T -counts; you need to
specify the G-countsinyourapplicationcode.Butthenhowdoyouknow
which thread your program is actually using? This is the job of the system
value semantic
SV DispatchThreadID passed to CSMain. Generally, you can pass
in the ID
t as an int3 or uint3; it is the tuple (x, y, z) for the grid cell (thread)
that is calling
CSMain. In the application, I know I am processing a 2D image
and I partitioned the threads in a 2D manner, so I took the liberty to pass in
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FIGURE 4.8: An illustration of Equation (4.22) that relates the dispatch
thread ID to the group ID and the group thread ID.
t as an int2 for convenience. Notice that output is a 2D texture. This compute
shader has no need for texture sampling, so we can look up the texture values
directly without sampling. The
operator[] provides the direct lookup and it
expects a 2-tuple for the index. Because
t is already a 2-tuple, I can use it as
is. However, if I had declared
int3 t, then I would need to perform the lookup
as
output[t.xy].
The indexing of cells is quite general and does not always have to be as
simple as that shown in the sample application. Other system value semantics
are supported for indexing:
SV GroupThreadID, SV GroupID,andSV GroupIndex.
A detailed example with diagrams is presented at the MSDN page [38]. A
group thread ID is a 3-tuple (t
x
,t
y
,t
z
)with0≤ t
x
<T
x
,0≤ t
y
<T
y
,and
0 ≤ t
z
<T
z
; that is, the group thread ID gives you indexing relative to the
group of threads that are currently executing and calling
CSMain.Agroup ID
is a 3-tuple (g
x
,g
y
,g
z
)with0≤ g
x
<G
x
,0≤ g
y
<G
y
,and0≤ g
z
<G
z
;that
is, the group ID gives you indexing into the lower-resolution grid of groups of
threads. The dispatch thread ID is the tuple
(d
x
,d
y
,d
z
)=(T
x
g
x
+ t
x
,T
y
g
y
+ t
y
,T
z
g
z
+ t
z
) (4.22)
Figure 4.8 shows a 2D illustration of the dispatch thread ID.
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FIGURE 4.9: Upper left: the original image. Upper right: 100 blurring
passes. Lower left: 1000 blurring passes. Lower right: 10,000 blurring passes.
The sample application creates a compute shader whose input is a color
image and whose output is a blurred image of the same size. The roles of
input and output are then swapped; as such, the input and output are called
ping-pong buﬀers. The blurred image becomes the input and the output is a
blur of the blurred image. Figure 4.9 shows the original image and several
blurred copies. The borders of the blurred image become dark, nearly black,
as the number of passes increases. This is the usual problem that occurs when
ﬁltering an image—how do you handle the pixels at the boundary? On the
CPU, typically you handle the boundary pixels separately to avoid out-of-
range accesses to the image pixels. The HLSL code in Listing 4.4 does not
have explicit logic for handling the boundary. Instead, I rely on the out-of-
range accesses to produce predictable values. Speciﬁcally, any access to the
input[] that is out of range will return a 4-tuple with zero components. I will
come back to this topic later when I discuss compiling the compute shader.
4.2.4 Compiling HLSL Shaders
Shader programs may be compiled using the command-line compiler FXC
or they may be compiled at runtime using the D3DCompiler system. The MSDN
documentation for the latter is available online, and the
FXC compiler options
are similar to those described for
D3DCompile.
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We will ﬁrst look at
FXC. Support for D3D11.0 is provided by Windows 8.0
in the Windows Kits folder, and support for D3D11.1 is provided by Windows
8.1 in the Windows Kits folder. I use Windows 8.1 on 64-bit machines; the
FXC compiler path is
C:/Program Files (x86)/Windows Kits/8.1/bin/x64/fxc.exe
Assuming you have the containing folder in your environment path, you can
run
FXC from a command window. The list of options may be viewed by typing
"fxc /?" in the window (without the quotes),
Microsoft (R) Direct3D Shader Compiler 6.3.9600.16384
Copyright (C) 2013 Microsoft. All rights reserved.
Usage: fxc <options> <files>
/?, /help print this message
/T <profile> target profile
/E <name> entrypoint name
/I <include> additional include path
/Vi display details about the include process
/Od disable optimizations
/Op disable preshaders
/O{0,1,2,3} optimization level; 1 is default
/WX treat warnings as errors
/Vd disable validation
/Zi enable debugging information
/Zpr pack matrices in row-major order
/Zpc pack matrices in column-major order
/Gpp force partial precision
/Gfa avoid flow control constructs
/Gfp prefer flow control constructs
/Gdp disable effect performance mode
/Ges enable strict mode
/Gec enable backwards compatibility mode
/Gis force IEEE strictness
/Gch compile as a child effect for FX 4.x targets
/Fo <file> output object file
/Fl <file> output a library
/Fc <file> output assembly code listing file
/Fx <file> output assembly code and hex listing file
/Fh <file> output header file containing object code
/Fe <file> output warnings and errors to a specific file
/Fd <file> extract shader PDB and write to given file
/Vn <name> use <name> as variable name in header file
/Cc output color coded assembly listings
/Ni output instruction numbers in assembly listings
/No output instruction byte offset in assembly listings
/Lx output hexadecimal literals
/P <file> preprocess to file (must be used alone)
@<file> options response file
/dumpbin load a binary file rather than compiling
/Qstrip_reflect strip reflection data from 4_0+ shader bytecode
/Qstrip_debug strip debug information from 4_0+ shader bytecode
/Qstrip_priv strip private data from 4_0+ shader bytecode
/compress compress DX10 shader bytecode from files
/decompress decompress bytecode from first file, output files should
be listed in the order they were in during compression
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/shtemplate <file> template shader file for merging/matching resources
/mergeUAVs merge UAV slots of template shader and current shader
/matchUAVs match template shader UAV slots in current shader
/res_may_alias assume that UAVs/SRVs may alias for cs_5_0+
/setprivate <file> private data to add to compiled shader blob
/getprivate <file> save private data from shader blob
/D <id>=<text> define macro
/nologo suppress copyright message
<profile>: cs_4_0 cs_4_1 cs_5_0 ds_5_0 gs_4_0 gs_4_1 gs_5_0 hs_5_0 lib_4_0
lib_4_1 lib_4_0_level_9_1 lib_4_0_level_9_3 lib_5_0 ps_2_0 ps_2_a ps_2_b
ps_2_sw ps_3_0 ps_3_sw ps_4_0 ps_4_0_level_9_1 ps_4_0_level_9_3
ps_4_0_level_9_0 ps_4_1 ps_5_0 tx_1_0 vs_1_1 vs_2_0 vs_2_a vs_2_sw
vs_3_0 vs_3_sw vs_4_0 vs_4_0_level_9_1 vs_4_0_level_9_3 vs_4_0_level_9_0
vs_4_1 vs_5_0
The options are extensive, but I will discuss the ones that I use most often.
•
/T <proﬁle>. The supported proﬁles are listed at the end of the
command-line text. I use only Shader Model 5 on my machines, and
this book does not discuss tessellation features. Thus, the only proﬁles
I use in GTEngine are
vs 5 0 (vertex shaders), ps 5 0 (pixel shaders),
gs 5 0 (geometry shaders), and cs 5 0 (compute shaders).
•
/E <name>. You can have multiple programs deﬁned in a single HLSL
ﬁle, so you must specify the name (entry point) of the shader program to
be compiled. I tend to be consistent and use program names of the form
XSMain,whereX is one of V, P, G,orC, but at times it is convenient to
group together related shaders and use names of a diﬀerent format; see
the
Fluids2D shader EnforceStateBoundary.hlsl, for instance.
•
/Fc <ﬁle>.IuseFXC to ensure shaders compile before loading them in
applications to be (re)compiled at runtime. Sometimes I want to see
how constant buﬀers are laid out in memory or what bind points are
associated with resources. This option allows you to write the assembly
listing and other information to a text ﬁle.
•
/Zi. Sometimes you want to look at the assembly output to understand
whether your high-level code is ineﬃcient and possibly needs rewriting.
By default, the output is only a sequence of assembly instructions. This
option requests that additional information be embedded in the output;
for example, line numbers are printed followed by the corresponding
blocks of assembly instructions.
•
/Gis. This option forces strict compliance with IEEE standards for
ﬂoating-point arithmetic. For 3D rendering, IEEE strictness is usually
not necessary, but most likely you will want this for accurate (and pred-
icatable) results using compute shaders.
•
/Zpr and /Zpc. These specify the storage format for matrices; the default
is column major. GTEngine is designed so that the default packing of
matrices is consistent with your choice of packing on the CPU: row major
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if you have exposed the preprocessor symbol
GTE USE ROW MAJOR in
the GTEngineDEF.h ﬁle or column major if you have hidden this symbol.
•
/D <id>=<text>. You can deﬁne preprocessor symbols that are used by
the shader programs.
Be aware that the option names are case sensitive! Let us look at the output
of several experiments using
FXC.
4.2.4.1 Compiling the Vertex Coloring Shaders
Copy Listing 4.1 to a ﬁle named
VertexColoring.hlsl. Open a command win-
dow in the folder that contains this ﬁle. You can do so from Windows Explorer
by navigating to that folder and selecting it using shift-right-click, which
launches a pop-up dialog. One of the options is “Open command window
here.”
To compile the vertex shader, use
fxc /T vs 5 0 /E VSMain /Zpr /Fc VertexColoringR.vs5.txt VertexColoring.hlsl
I have selected row-major ordering for the matrices, so the application must
attach a constant buﬀer with the
pvwMatrix stored in row-major order. The
contents of the output text ﬁle are shown in Listing 4.5.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
// Buffer Definitions :
//
// cbuffer PVWMatrix
// {
//
// r ow
majorfloat4x4pvwMatrix; //Offset:0Size:64
//
// }
//
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
// PVWMatrix cbuffer NA NA 0 1
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// POSITION 0 xyz 0 NONE f loa t xyz
// COLOR 0 xyzw 1 NONE f l o a t xyzw
//
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// COLOR 0 xyzw 0 NONE f l o a t xyzw
// SV
POSITION 0 xyzw 1 POS f l o a t xyzw
//
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vs 5 0
dcl
globalFlags refactoringAllowed
dcl
constantbuffer cb0[4] , immediateIndexed
dcl
input v0.xyz
dcl
input v1.xyzw
dcl
output o0.xyzw
dcl
output s i v o 1 . xyzw , posi t i on
dcl
temps 1
mov o0 . xyzw , v 1 . xyzw
mov r 0 . xyz , v0 . xyzx
mov r0 .w, l (1.000000)
dp4 o 1 . x , cb 0 [ 0 ] . xyzw , r 0 . xyzw
dp4 o 1 . y , cb 0 [ 1 ] . xyzw , r 0 . xyzw
dp4 o 1 . z , c b0 [ 2 ] . xyzw , r 0 . xyzw
dp4 o 1 .w, cb 0 [ 3 ] . xyzw , r 0 . xyzw
ret
// Approximately 8 instruction slots used
LISTING 4.5: The output assembly listing for the vertex shader of
VertexColoring.hlsl for row-major matrix storage.
The constant buﬀer information is displayed ﬁrst. The default matrix stor-
age for HLSL is column major, so when you select row major, the matrix
member is tagged with
row major.Thetypeisﬂoat4x4,denotinga4× 4ma-
trix. The oﬀset is measured in bytes from the beginning of the buﬀer memory.
In this case, the constant buﬀer has only one member, making it ﬁrst in the
memory with oﬀset zero. The size sixty-four is the total number of bytes used
by the buﬀer. The resource binding stores the buﬀer name (not the member
name) and indicates that the buﬀer is associated with slot zero and has one
element. This information is related to assigning constant buﬀer registers to
hold the matrix values; see the discussion later in this section.
The signatures have the semantic names and the indices associated with
them. The HLSL ﬁle declares the
modelPosition member of VS INPUT to be
semantic
POSITION, where the absence of a numeric suﬃx is assumed to mean
zero; that is, the semantic is interpreted as
POSITION0.ThemodelColor is
tagged with
COLOR0, indicating it is semantic COLOR at index zero. The
masks indicate the total number of vector channels available. The member
modelPosition is declared as ﬂoat3, so only three channels are available as indi-
cated by the mask
xyz.ThemembermodelColor is declared as ﬂoat4,soallfour
channels are available. The last column of the table indicates which of these
channels are actually used. In the current example, all available channels are
used. The format speciﬁes the scalar type, which is
ﬂoat for all channels of the
inputs. It is possible for applications to specify vertex input members using
other scalar types such as integers.
The register numbers refer to the input and output registers for the shader.
The assembly statement
dcl input v0.xyz declares the input register v0 and that
three channels are used. In the input signature comment,
POSITION0 shows its
register number to be zero, which indicates the position 3-tuple will be stored
in register
v0.TheCOLOR0 input uses register one; dcl input v1.xyzw declares
that register
v1 will store the color. The SysValue column of the table indicates
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whether the semantic is a regular one or a system value one. The member
vertexColor of VS OUTPUT hasregularsemanticandisstoredinregistero0.
The member
clipPosition uses a system value semantic and is stored in register
o1.
The initial comments are followed by a block of HLSL assembly instruc-
tions. These will be provided to the graphics driver at runtime, and the driver
will make an additional pass, compiling to byte code for optimization. For all
practical purposes, the optimization pass is a black box and invariably pro-
prietary information. The ﬁrst assembly line contains the shader proﬁle, in
our case
vs 5 0. The instructions preﬁxed with dcl are declarations. I already
mentioned that the input and output registers are declared. The statement
with
dcl constantbuﬀer cb0[4] declares an array of four constant buﬀer regis-
ters with array name
cb0. Each register holds a 4-tuple of 32-bit numbers,
so
cb0[4] stores the rows of pvwMatrix. In the resource bindings, the constant
buﬀer named
PVWMatrix is assigned to slot zero; the zero refers to cb0.The
dcl temps 1 instruction declares that one temporary register is used in the as-
sembly, namely, register
r0.
The instruction
mov o0.xyzw, v1.xyzw copies the input modelColor to
the output
vertexColor. The instruction mov r0.xyz, v0.xyzx copies the input
modelPosition to the temporary register r0. A 4-tuple is required for the right-
most argument of
mov. Because v0 is declared as a 3-tuple, the compiler has
swizzled the channels by replicating the x-channel into the w-channel. This
w-channel is not used, so it does not matter which channel is swizzled into
it. The w-channel of
r0 is assigned using mov r0.w, l(1.000000). This instruc-
tion copies the literal constant 1 into that channel, after which
r0 contains
ﬂoat4(modelPosition,1.0f).
The next four instructions
dp4 are dot products of the rows of pvwMatrix
with r0. This is equivalent to the matrix-vector product
⎡
⎢
⎢
⎣
m
00
m
01
m
02
m
03
m
10
m
11
m
12
m
13
m
20
m
21
m
22
m
23
m
30
m
31
m
32
m
33
⎤
⎥
⎥
⎦
⎡
⎢
⎢
⎣
v
0
v
1
v
2
1
⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣
R
T
0
R
T
1
R
T
2
R
T
3
⎤
⎥
⎥
⎦
V
=
⎡
⎢
⎢
⎣
R
0
· V
R
1
· V
R
2
· V
R
3
· V
⎤
⎥
⎥
⎦
(4.23)
If you compile the vertex shader for column-major matrix storage,
fxc /T vs 5 0 /E VSMain /Zpc /Fc VertexColoringR.vs5.txt VertexColoring.hlsl
the matrix-vector assembly instructions are diﬀerent, as shown in Listing 4.6.
You may also omit
/Zpc, because the FXC default is column-major storage.
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mul r0 . xyzw , v0 . yyyy , cb0 [ 1 ] . xyzw
mad r0 . xyzw , cb0 [ 0 ] . xyzw , v0 . xxxx , r0 . xyzw
mad r0 . xyzw , cb0 [2 ] . xyzw , v0 . zzzz , r0 . xyzw
add o1 . xyzw , r 0 . xyz w , cb 0 [ 3 ] . xyzw
LISTING 4.6: The output assembly listing for the matrix-vector product of
the vertex shader of
VertexColoring.hlsl for column-major matrix storage.
This is equivalent to the matrix-vector product
⎡
⎢
⎢
⎣
m
00
m
01
m
02
m
03
m
10
m
11
m
12
m
13
m
20
m
21
m
22
m
23
m
30
m
31
m
32
m
33
⎤
⎥
⎥
⎦
⎡
⎢
⎢
⎣
v
0
v
1
v
2
1
⎤
⎥
⎥
⎦
=

C
0
C
1
C
2
C
3

V
= v
0
C
0
+ v
1
C
1
+ v
2
C
2
+ C
3
(4.24)
In the row-major format, the number of instructions is eight. In the
column-major format, the number of instructions is six. You might be tempted
to conclude that the column-major format with vector-on-the-right multiplica-
tion convention is faster. This is not the case for my AMD 7970 graphics card
based on proﬁling experiments. The row-major code runs 1.5 times faster than
the column-major code. See Section 5.3 for more details about the proﬁling.
Compile the pixel shader using
fxc /T ps 5 0 /E PSMain /Fc VertexColoringR.ps5.txt VertexColoring.hlsl
to obtain the output in Listing 4.7. No matrix multiplications are used in the
pixel shader, so it does not matter what you specify for the matrix storage
convention.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// COLOR 0 xyzw 0 NONE f l o a t xyzw
//
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// SV
TARGET 0 xyzw 0 TARGET f lo a t xyzw
//
ps
5 0
dcl
globalFlags refactoringAllowed
dcl
input ps linear v0.xyzw
dcl
output o0.xyzw
mov o0 . xyzw , v 0 . xyzw
ret
// Approximately 2 instruction slots used
LISTING 4.7: The output assembly listing for the pixel shader of
VertexColoring.hlsl.
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The assembly instructions are trivial, because the pixel shader is a pass
through for the incoming color.
4.2.4.2 Compiling the Texturing Shaders
Copy Listing 4.2 to a ﬁle named
Texturing.hlsl. The sample application is
GeometricTools/GTEngine/Samples/Basics/Texturing
Open a command window in the folder and compile the vertex shader. The
only diﬀerence between the output listing for this shader and for the vertex
color shader is that the vertex input has a 2-tuple texture coordinate rather
than a 4-tuple color. The semantic is
TEXCOORD0. When you compile the pixel
shader, you get the output shown in Listing 4.8. The indexable command was
manually split so that the listing ﬁts within the width of the book.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
/ / b a s e S a m p l e r s a m p l e r NA NA 0 1
// baseTexture texture float4 2d 0 1
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
/ / TEXCOORD 0 x y 0 NONE f l o a t x y
//
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// SV
TARGET 0 xyzw 0 TARGET f lo a t xyzw
//
ps
5 0
dcl
globalFlags refactoringAllowed
dcl
sampler s0 , mode default
dcl
resource texture2d (float , float , float , float )t0
dcl
input ps linear v0.xy
dcl
output o0.xyzw
sample
indexable( texture2d )( float , float , float , float )
o0 . xyzw , v0 . xyxx , t0 . xyzw , s0
ret
// Approximately 2 instruction slots used
LISTING 4.8: The output assembly listing for the pixel shader of
Texturing.hlsl.
This shows two new register types, a sampler register
s0 and a texture regis-
ter
t0. The sampler is tagged mode default, which means that you can use it
as inputs to texture-object methods
Sample (the function will select the ap-
propriate mipmap level when the attached texture has mipmaps),
SampleLevel
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(the function will use the speciﬁed mipmap level), and
SampleGrad (the func-
tion uses a gradient to aﬀect the sample location). The assembly instruction
sample indexable has four arguments. From right to left, these are the sampler
state, the texture to sample (all four channels are requested), the texture co-
ordinate (only the ﬁrst two channels matter; the rest are swizzled), and the
register for the output. The output in this case is an output register for the
pixel shader. If you instead swizzled the sampling call, say,
output . pixelColor0 =
baseTexture .Sample(baseSample , input . vertexTCoord ). xxxx ;
the assembly instructions are
sample indexable (texture2d )( float , float , float , float )
r0 . x , v0 . xyxx , t0 . xyzw , s0
mov o0 . xyzw , r0 . xxxx
The sampled value is written to a temporary register and then that register
is swizzled and assigned to the shader output register.
4.2.4.3 Compiling the Billboard Shaders
Copy Listing 4.3 to a ﬁle named
Billboards.hlsl. Open a command window
in the folder and compile the vertex shader. Because the vertex shader is just
a pass-through of inputs, it does not matter which matrix storage option is
speciﬁed. The output is shown in Listing 4.9.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// POSITION 0 xyz 0 NONE f loa t xyz
// COLOR 0 xyz 1 NONE f l oa t xyz
/ / TEXCOORD 0 x 2 NONE f l o a t x
//
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// POSITION 0 xyz 0 NONE f l oa t xyz
/ / TEXCOORD 0 w 0 NONE f l o a t w
// COLOR 0 xyz 1 NONE f l oa t xyz
//
vs
5 0
dcl
globalFlags refactoringAllowed
dcl
input v0.xyz
dcl
input v1.xyz
dcl
input v2.x
dcl
output o0. xyz
dcl
output o0.w
dcl
output o1. xyz
mov o0 . xyz , v0 . xy zx
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mov o0 .w, v2 . x
mov o1 . xyz , v1 . xy zx
ret
// Approximately 4 instruction slots used
LISTING 4.9: The output assembly listing for the vertex shader of
Billboards.hlsl.
The input and output signatures are similar to what we have seen before,
except that the HLSL compiler has taken the liberty to optimize the output.
The
POSITION0 and TEXCOORD0 outputs are stored in the same register,
the position in the ﬁrst three components (
xyz) and the billboard size in the
last component (
w). When the geometry shader consumes the vertex shader
output, only two registers per vertex are fetched rather than three if the
compiler had decided not to optimize.
Compile the geometry shader now. This shader does access the matrix of
the constant buﬀer, so it matters about matrix storage. For this example, I
have selected option
/Zpc for column-major storage. The output is shown in
Listing 4.10. Some of the instructions were manually split to ﬁt within the
width of the book.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
// Buffer Definitions :
//
// cbuffer Matrices
// {
//
//float4x4vwMatrix; //Offset:0Size:64
// f l oat 4x 4 p Ma t r ix ; // O ffs e t : 64 S i ze : 64
//
// }
//
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
// Matrices cbuffer NA NA 0 1
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// POSITION 0 xyz 0 NONE f l oa t xyz
/ / TEXCOORD 0 w 0 NONE f l o a t w
// COLOR 0 xyz 1 NONE f l oa t xyz
//
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// COLOR 0 xyz 0 NONE f l oa t xyz
// SV
POSITION 0 xyzw 1 POS f l o a t xyzw
//
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gs 5 0
dcl
globalFlags refactoringAllowed
dcl
constantbuffer cb0[8] , immediateIndexed
dcl
input v[1][0].xyz
dcl
input v[1][0].w
dcl
input v[1][1].xyz
dcl
temps 4
dcl
inputprimitive point
dcl
stream m0
dcl
outputtopology trianglestrip
dcl
output o0. xyz
dcl
output s i v o 1 . xyzw , posi t i on
dcl
maxout 6
mov o0.xyz , v[0][1].xyzx
mul r0 . xyzw , cb0 [ 1 ] . xyzw , v [ 0 ] [ 0 ] . yyyy
mad r0 . xyzw , cb0 [ 0 ] . xyzw , v [ 0 ] [ 0 ] . xxxx , r0 . xyzw
mad r0 . xyzw , cb0 [2 ] . xyzw , v [ 0 ][ 0 ]. zzzz , r0 . xyzw
add r 0 . xyzw , r 0 . xyzw , c b0 [ 3 ] . xyzw
mad r 1 . xy z w , v [ 0 ] [ 0 ] . wwww, l ( − 1.000000, −1.000000 , 0. 000000, 0.000000) ,
r 0 . xyzw
mul r2 . xyzw , r1 . yyyy , cb0 [ 5 ] . xyzw
mad r2 . xyzw , cb0 [ 4 ] . xyzw , r1 . xxxx , r2 . xyzw
mad r2 .xyzw , cb0 [ 6] . xyzw , r1 . zzzz , r2 . xyzw
mad r 1 . xy z w , c b 0 [ 7 ] . x y zw , r 1 . wwww, r 2 . xy z w
mov o1 . xyzw , r 1 . xyzw
emit
stream m0
mov o0.xyz , v[0][1].xyzx
mad r 2 . xy z w , v [ 0 ] [ 0 ] . wwww, l ( 1 . 000000 , −1.000000 , 0 .000000, 0.000000) ,
r 0 . xyzw
mul r3 . xyzw , r2 . yyyy , cb0 [ 5 ] . xyzw
mad r3 . xyzw , cb0 [ 4 ] . xyzw , r2 . xxxx , r3 . xyzw
mad r3 .xyzw , cb0 [ 6] . xyzw , r2 . zzzz , r3 . xyzw
mad r 2 . xy z w , c b 0 [ 7 ] . x y zw , r 2 . wwww, r 3 . xy z w
mov o1 . xyzw , r 2 . xyzw
emit
stream m0
mov o0.xyz , v[0][1].xyzx
mad r 2 . xy z w , v [ 0 ] [ 0 ] . wwww, l ( 1 . 000000 , 1.000000, 0.000000, 0.000000) ,
r 0 . xyzw
mad r 0 . xy z w , v [ 0 ] [ 0 ] . wwww, l ( − 1.000000, 1.000000, 0.000000, 0.000000) ,
r 0 . xyzw
mul r3 . xyzw , r2 . yyyy , cb0 [ 5 ] . xyzw
mad r3 . xyzw , cb0 [ 4 ] . xyzw , r2 . xxxx , r3 . xyzw
mad r3 .xyzw , cb0 [ 6] . xyzw , r2 . zzzz , r3 . xyzw
mad r 2 . xy z w , c b 0 [ 7 ] . x y zw , r 2 . wwww, r 3 . xy z w
mov o1 . xyzw , r 2 . xyzw
emit
stream m0
cut
stream m0
mov o0.xyz , v[0][1].xyzx
mov o1 . xyzw , r 1 . xyzw
emit
stream m0
mov o0.xyz , v[0][1].xyzx
mov o1 . xyzw , r 2 . xyzw
emit
stream m0
mov o0.xyz , v[0][1].xyzx
mul r1 . xyzw , r0 . yyyy , cb0 [ 5 ] . xyzw
mad r1 . xyzw , cb0 [ 4 ] . xyzw , r0 . xxxx , r1 . xyzw
mad r1 .xyzw , cb0 [ 6] . xyzw , r0 . zzzz , r1 . xyzw
mad r 0 . xy z w , c b 0 [ 7 ] . x y zw , r 0 . wwww, r 1 . xy z w
mov o1 . xyzw , r 0 . xyzw
emit
stream m0
cut
stream m0
ret
// Approximately 45 instruction slots used
LISTING 4.10: The output assembly listing for the geometry shader of
Billboards.hlsl.
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The
dcl instructions indicate that the constant buﬀer is stored as an ar-
ray of registers,
cb0[8], which is suﬃcient to store the two 4 × 4 matrices.
The input registers are doubly indexed, which is diﬀerent from what we saw
in the previous examples. The ﬁrst index
n of V[n][i] represents the number
of inputs to the geometry shader, which in our example is one because the
input is a point. Generally, the input can also be
line VS STRUCT input[2] or
triangle VS STRUCT input[3]. The second index i represents the register num-
ber. The declarations indicate that register
V[0][0] stores the position (xyz)
and size (
w), and register V[0][1] stores the color (xyz). Four temporary reg-
isters are used,
r0 through r3. The input primitive is a point and the output
topology is a triangle. The maximum number of vertices generated by the
geometry shader is six. The output stream of triangles is managed by register
m0. The color is returned in output register o0 and the clip position is returned
in output register
o1.
The
mov and mad instructions are what we saw in the previous examples
to compute the matrix-vector products when using column-major storage for
the matrix and vector-on-the-right multiplication convention. The
emit stream
instruction corresponds to the Append calls and the cut stream instruction cor-
responds to the
RestartStrip calls.
Compile the pixel shader to obtain the output shown in Listing 4.11.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// COLOR 0 xyz 0 NONE f l oa t xyz
// SV
POSITION 0 xyzw 1 POS f l o a t
//
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// SV
TARGET 0 xyzw 0 TARGET f lo a t xyzw
//
ps
5 0
dcl
globalFlags refactoringAllowed
dcl
input ps linear v0.xyz
dcl
output o0.xyzw
mov o0 . xyz , v0 . xy zx
mov o0.w, l (1.000000)
ret
// Approximately 3 instruction slots used
LISTING 4.11: The output assembly listing for the pixel shader of
Billboards.hlsl.
There are no surprises here. The shader input is a 3-tuple color and the shader
output is the same color (
xyz) with an alpha channel (w) set to one. The swizzle
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channels are named
xyzw in the assembly listings, but in your HLSL code you
may use
rgba as alternate names.
4.2.4.4 Compiling the Gaussian Blurring Shaders
Copy Listing 4.4 to a ﬁle named
GaussianBlurring.hlsl. The sample applica-
tion is
GeometricTools/GTEngine/Samples/Basics/GaussianBlurring
Compile the compute shader using the command line
fxc /T cs 5 0/ECSMain/DNUMX THREADS=8 /D NUM Y THREADS=8
/Fc GaussianBlurring.txt GaussianBlurring.hlsl
to obtain the output shown in Listing 4.12. The indexable instruction was
manually split to ﬁt within the width of the book.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
// input texture float4 2d 0 1
// output UAV fl oa t4 2d 0 1
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Input
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
cs
5 0
dcl
globalFlags refactoringAllowed
dcl
resource texture2d (float , float , float , float )t0
dcl
uav typed texture2d (float , float , float , float )u0
dcl
input vThreadID.xy
dcl
temps 3
dcl
indexableTemp x0[9] , 4
dcl
indexableTemp x1[9] , 4
dcl
thread group 8, 8, 1
mov x0 [ 0]. x , l (0.062500)
mov x0 [ 1]. x , l (0.125000)
mov x0 [ 2]. x , l (0.062500)
mov x0 [ 3]. x , l (0.125000)
mov x0 [ 4]. x , l (0.250000)
mov x0 [ 5]. x , l (0.125000)
mov x0 [ 6]. x , l (0.062500)
mov x0 [ 7]. x , l (0.125000)
mov x0 [ 8]. x , l (0.062500)
mov x1 [ 0 ] . x y , l ( −1,−1,0,0)
mov x1[1].xy, l(0,− 1,0,0)
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mov x1[2].xy, l(1,− 1,0,0)
mov x1 [ 3 ] . x y , l ( −1,0,0,0)
mov x1[4].xy, l(0,0,0,0)
mov x1[5].xy, l(1,0,0,0)
mov x1 [ 6 ] . x y , l ( −1,1,0,0)
mov x1[7].xy, l(0,1,0,0)
mov x1[8].xy, l(1,1,0,0)
mov r0 .zw, l (0 ,0 ,0 ,0)
mov r1 . xy , l (0 ,0 ,0 ,0)
loop
ige r1.z , r1 .y, l (3)
breakc
nz r1 .z
mov r1 . z , r1 . x
mov r1 .w, l ( 0)
loop
ige r2.x, r1.w, l (3)
breakc
nz r2 .x
imad r2.x, r1.y, l(3), r1.w
mov r2.y, x0[r2.x + 0].x
mov r2 . xz , x1 [ r2 . x + 0] . xxyx
iadd r0 . xy , r2 . xzxx , vThreadID . xyxx
ld
indexable(texture2d)(float , float , float , float)
r 0 . x , r 0 . xyz w , t 0 . xyzw
mad r1 . z , r2 . y , r0 . x , r1 . z
iadd r1 .w, r1 .w, l (1)
endloop
mov r1 . x , r1 . z
iadd r1 .y , r1 .y , l (1)
endloop
store
uav t yp e d u0 . xyzw , vThreadID . xyyy , r1 . xxxx
ret
// Approximately 41 instruction slots used
LISTING 4.12: The output assembly listing for the compute shader of
GaussianBlurring.hlsl.
This listing shows several register types we have not seen yet. Firstly, the
input texture is declared as
Texture2D<ﬂoat4> and is assigned to register t0,
which makes it a read-only texture. The input is processed in the application
by attaching a shader resource view (SRV). The output texture is declared as
RWTexture2D<ﬂoat4>, which makes it writable and is assigned to register u0.
The output is processed in the application by attaching an unordered access
view (UAV). Although the
RW preﬁx indicates read-write access, there are
some restrictions on the data type for performing both reads and writes to a
resource in the same call of the compute shader.
Secondly, there are registers named
x0 and x1. These are referred to as
temporary indexable registers. Their purpose is so we can index into the static
arrays
weight[][] and oﬀset[][] when in the inner loop of the shader. The array
values are loaded into the temporary indexable registers ﬁrst, then the dou-
ble loop is executed. You can see the nontrivial indexing
x0[r2.x + 0].x and
x1[r2.x + 0].xxyx inside the inner loop of the assembly code. Excessive use of
temporary indexable registers can lead to a performance degradation because
of the large number of
mov instructions that are used to load the registers.
Looping itself can be a performance problem. Shader programs are most
eﬃcient when no branching is present. This a rule of thumb, but as always
you need to proﬁle to be sure. HLSL allows you to provide a hint that a loop
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should be unrolled by the compiler.. Modify the compute shader as shown
next:
[ unroll ]
for ( int r=0; r< 3; ++r)
{
[ unroll ]
for ( int c=0; c< 3; ++c)
{
result += weight[r ][c] ∗ input [t + offset [ r ][ c ]];
}
}
which tells the compiler to unroll both loops, if possible. In this case, the
number of loop iterations is known at compile time, and we expect to obtain
nine occurrences of the inner-loop body, say,
re su lt += 0.0625 f ∗ input [ int2 (t .x − 1, t.y − 1)];
re su lt += 0.1250 f ∗ input [ int2 (t .x , t .y − 1)];
re su lt += 0.0625 f ∗ input [ int2 (t .x + 1, t .y − 1)];
re su lt += 0.1250 f ∗ input [ int2 (t .x − 1, t.y )];
re su lt += 0.2500 f ∗ input [ int2 (t .x , t .y )];
re su lt += 0.1250 f ∗ input [ int2 (t .x + 1, t .y )];
re su lt += 0.0625 f ∗ input [ int2 (t .x − 1, t.y + 1)];
re su lt += 0.1250 f ∗ input [ int2 (t .x , t .y + 1)];
re su lt += 0.0625 f ∗ input [ int2 (t .x + 1, t .y + 1)];
When you now compile the shader, you get the output of Listing 4.13.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
// input texture float4 2d 0 1
// output UAV fl oa t4 2d 0 1
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Input
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
cs
5 0
dcl
globalFlags refactoringAllowed
dcl
resource texture2d (float , float , float , float )t0
dcl
uav typed texture2d (float , float , float , float )u0
dcl
input vThreadID.xy
dcl
temps 3
dcl
thread group 8, 8, 1
mov r0 .zw, l (0 ,0 ,0 ,0)
iadd r1 . xyzw , vThreadID . xyxy , l (−1, −1, 0 , −1)
mov r0 . xy , r1 . zwzz
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ld indexable (texture2d )(float , float , float , float ) r 0 . xyz , r 0 . xyzw , t 0 . xyzw
mul r0 . xyz , r0 . xyzx , l (0.125000 , 0.125000, 0.125000, 0.000000)
mov r1 .zw, l (0 ,0 ,0 ,0)
ld
indexable (texture2d)(float , float , float , float ) r 1 . xy z , r 1 . xyzw , t 0 . xyz w
mad r0 . xyz , r1 . xyzx , l (0.062500, 0.062500, 0.062500, 0.000000) , r0 . xyzx
mov r1 .zw, l (0 ,0 ,0 ,0)
iadd r2 . xyzw , vThreadID . xyxy , l (−1, 0, 1, −1)
mov r1 . xy , r2 . zwzz
ld
indexable (texture2d)(float , float , float , float ) r 1 . xy z , r 1 . xyzw , t 0 . xyz w
mad r0 . xyz , r1 . xyzx , l (0.062500, 0.062500, 0.062500, 0.000000) , r0 . xyzx
mov r2 .zw, l (0 ,0 ,0 ,0)
ld
indexable (texture2d)(float , float , float , float ) r 1 . xy z , r 2 . xyzw , t 0 . xyz w
mad r0 . xyz , r1 . xyzx , l (0.125000, 0.125000, 0.125000, 0.000000) , r0 . xyzx
mov r1 . xy , vThreadID . xyxx
mov r1 .zw, l (0 ,0 ,0 ,0)
ld
indexable (texture2d)(float , float , float , float ) r 1 . xy z , r 1 . xyzw , t 0 . xyz w
mad r0 . xyz , r1 . xyzx , l (0.250000, 0.250000, 0.250000, 0.000000) , r0 . xyzx
mov r1 .zw, l (0 ,0 ,0 ,0)
iadd r2 . xyzw , vThreadID . xyxy , l (−1, 1, 1, 0)
mov r1 . xy , r2 . zwzz
ld
indexable (texture2d)(float , float , float , float ) r 1 . xy z , r 1 . xyzw , t 0 . xyz w
mad r0 . xyz , r1 . xyzx , l (0.125000, 0.125000, 0.125000, 0.000000) , r0 . xyzx
mov r2 .zw, l (0 ,0 ,0 ,0)
ld
indexable (texture2d)(float , float , float , float ) r 1 . xy z , r 2 . xyzw , t 0 . xyz w
mad r0 . xyz , r1 . xyzx , l (0.062500, 0.062500, 0.062500, 0.000000) , r0 . xyzx
mov r1 .zw, l (0 ,0 ,0 ,0)
iadd r2 . xyzw , vThreadID . xyxy , l ( 1 , 1 , 0 , 1)
mov r1 . xy , r2 . zwzz
ld
indexable (texture2d)(float , float , float , float ) r 1 . xy z , r 1 . xyzw , t 0 . xyz w
mad r0 . xyz , r1 . xyzx , l (0.125000, 0.125000, 0.125000, 0.000000) , r0 . xyzx
mov r2 .zw, l (0 ,0 ,0 ,0)
ld
indexable (texture2d)(float , float , float , float ) r 1 . xy z , r 2 . xyzw , t 0 . xyz w
mad r0 . xyz , r1 . xyzx , l (0.062500, 0.062500, 0.062500, 0.000000) , r0 . xyzx
mov r0 .w, l (1.000000)
store
uav t yp e d u0 . xyzw , vThreadID . xyyy , r0 . xyzw
ret
// Approximately 39 instruction slots used
LISTING 4.13: The output assembly listing for the compute shader of
GaussianBlurring.hlsl with loop unrolling.
The temporary indexable registers no longer occur. The static array values
are used in literal values in the
mul and mad instructions. How much faster can
this be? On my AMD 7970, the sample application—without loop unrolling—
runs at approximately 2200 frames per second. With loop unrolling, the ap-
plication runs at approximately 3100 frames per second, which is a speedup
of 1.4!
By the way, about the black borders in the images of Figure 4.9, this is due
to out-of-range indexing in the compute shader when the pixel you process has
neighbors outside of the image. On a CPU, you would test for boundary pixels
and process accordingly. You can do the same on the GPU, either explicitly
or by using the HLSL
Sample instruction if the resource is a texture; however,
you can also rely on the GPU to be consistent about fetching resources out of
range. In particular, the
ld indexable instruction is guaranteed to return zero
components for out-of-range indices in certain circumstances. The information
is available through the online MSDN documentation, but there is no explicit
entry for
ld indexable for either Shader Model 4 or Shader Model 5. You have
to look at the Shader Model 4 documentation for the
ld instruction [44].
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4.2.5 Reﬂecting HLSL Shaders
So far the shader compiling has been illustrated using FXC; however, the
shaders can be compiled at runtime using the
D3DCompile function. Its signa-
ture is shown in Listing 4.14.
HRESULT D3DCompile (
LPCVOID p SrcDat a , / / HLSL code a s a s t r i n g
SIZE
TSrcDataSize, // le n g t h o f t he s tri n g
LPCSTR pSo urceName , // name for the string ( optional)
CONST D3D
SHADER MACRO∗ pDefines , // preprocessor (/D options in FXC)
ID3DInclude∗ pInclude , // specify an include file handler
LPCSTR pEntrypoint , // function to compile (the /E option in FXC)
LPCS T R p T ar g et , // profile to use (the /T option in FXC)
UINT Fl a gs 1 , // options (such as /Zpr and /Gis in FXC)
UINT Fl a gs 2 , // options for the DX11 effect system
ID3DBlob∗∗ ppCode , // output : byte code and other information
ID3DBlob∗∗ ppErrorMsgs // output : buffer of errors/warnings ( if any)
);
LISTING 4.14: The signature for the D3DCompile function.
In previous versions of Direct3D, a compiler call was provided to compile
the code in a ﬁle. This no longer exists, so the simplest thing to do is to load the
ﬁle as text, build a string from the lines of text, and pass this to
D3DCompile.
The
ID3DInclude* parameter is for advanced use, but the default used by
GTEngine is
D3D COMPILE STANDARD FILE INCLUDE. GTEngine also does
not use the D3D11 eﬀect system, so zero is passed for this parameter.
Assuming the compilation succeeded, the
ID3DBlob* object returned in
the next-to-last parameter stores the compiled code and information about
it. In particular, the blob has the information we have been discussing that
occurs in the text output from
FXC. The blob may be queried for relevant
information needed to know structure and buﬀer packing, to attach resources,
and to execute the shaders at runtime. The query process is called shader
reﬂection. The reﬂection function signature is shown in Listing 4.15.
HRESULT D3DReflect(
LPCVOID p SrcDat a , // compiled blob memory
SIZE
TSrcDataSize,// number o f by t e s in c o m p i l e d b l o b memory
REFIID pInterface , // set to IID
ID3D11ShaderReflection for GTEngine
void∗∗ ppReflector // output : reflection interface
);
LISTING 4.15: The signature for the D3DReﬂect function.
Listing 4.16 shows how to compile the shader and perform reﬂection for
some basic information. The reﬂection system has more features than are
discussed here. In the code presented next, all calls are assumed to succeed,
so the logic for handling
HRESULT values is omitted for simplicity.
void CompileAndReflect(
std :: string hlsl , // HLSL shader as a single string
std :: string name, // string for ease of identification
D3D
SHADER MACRO defines [] , // macros provided by user
ID3DINCLUD E ∗ include , // D3D
COMPILE STANDARD FILE INCLUDE
std :: string entry , // name of function; for example , ”VSMain”
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std :: string target , // o ne o f ” v s 5 0”, ”ps 5 0”, ”gs 5 0”, ”cs 5 0”
unsigned int compileFlags // b i t f l a g s t ha t mimic o pt io n s such as / Zpr
)
{
// Compile the HLSL shader .
ID3DBlob∗ compiledCode = null ptr ;
ID3DBlob∗ errors = nullptr ;
D3DCompile ( h l s l . c
str(), hlsl.length(), name.c str (),
defines , include , entry . c
str(), target. c str () , compileFlags , 0,
&compiledCode , &errors );
// On success , ’ compiledCode ’ is not null and ’ errors ’ is null .
// Create the shader r eflection interface .
ID3D11ShaderReflection∗ reflector = nullptr ;
D3DReflect( compiledCode−>GetBufferPointer () ,
compiledCode−>GetBufferSize () , IID
ID3D11ShaderReflection ,
( void∗∗)& r e f l e c t o r ) ;
// On success , ’ re fl ector ’ i s not null .
// Ge t t h e t op−level information about the shader .
D3D11
SHADER DESC shaderDesc ;
reflector−>GetDesc(& shaderDesc ) ;
// Get the shader inputs ( if any ).
for (UINT i = 0; i < shaderDesc . InputParameters ; ++i )
{
D3D11
SIGNATURE PARAMETER DESC inputDesc;
reflector−>GetInputParameterDesc ( i , &inputDesc );
}
// Get the shader outputs ( i f any ).
for (UINT i = 0; i < shaderDesc . InputParameters ; ++i )
{
D3D11
SIGNATURE PARAMETER DESC outputDesc ;
reflector−>GetOutputParameterDesc ( i , &outputDesc ) ;
}
// Get the ”constant buffers”, which includes constant buffers ,
// texture buffers , structs defined in shaders , and interface
// p o i n te rs .
for (UINT i = 0; i < shaderDesc . ConstantBuffers ; ++i )
{
ID3D11ShaderReflectionConstantBuffer ∗ cb =
reflector−>GetConstantBufferByIndex ( i );
D3D11
SHADER BUFFER DESC cbDesc ;
cb−>GetDesc(&cbDesc ) ;
D3D11
SHADER IN PUT BIND DESC r bDes c ;
reflector−>GetResourceBindingDescByName ( cbDesc .Name, &rbDesc ) ;
GetVariables(cb , cbDesc. Variables );
}
// Get the resource s bound to the shader .
for (UINT i = 0; i < shaderDesc . BoundResources; ++i )
{
D3D11
SHADER IN PUT BIND DESC r bDes c ;
reflector−>GetResourceBindingDesc( i , &rbDesc );
if (rbDesc.Type == D3D
SIT CBUFFER
|| rbDesc . Type == D3D
SIT TBUFFER)
{
// These were processed in the last loop.
}
else if (rbDesc.Type == D3D
SIT TEXTURE
|| rbDesc . Type == D3D
SIT UAV RWTYPED )
{
// number o f c h an n e ls [ 1 t h ro u gh 4 ] : 1 + ( r bD e s c . u F l a g s >> 2)
// dimensions : determined by D3D
SRV DIMENSION ∗ values
// single or array : determined by D3D
SRV DIMENSION ∗ values
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// writable in shader : rbDesc.Type is D3D SIT UAV RWTYPED
}
else if (rbDesc.Type == D3D
SIT SAMPLER )
{
// no specialized information
}
else // O th er D3D
SIT ∗ values are for structured buffer types .
{
// writable in shader : rbDesc.Type has UAV in its name
}
}
}
void GetVariables ( ID3D11ShaderReflectionConstantBuffer ∗ cb ,
UINT numVariables)
{
for (UINT i = 0; i < numVariables; ++i )
{
ID3D11ShaderReflectionVariable∗ v=cb−>GetVariableByIndex ( i );
ID3D11ShaderReflectionType ∗ vType = v−>GetType ( ) ;
D3D11
SHADER VARIABLE DESC vDesc ;
v−>GetDesc(&vDesc ) ;
D3D11
SHADER TYPE DESC vtD es c ;
vType−>GetDesc(& vtDesc ) ;
GetTypes ( vType , vtDesc . Members ) ; // Recurse on nested structs .
}
}
void GetTypes( ID3D11ShaderReflectionType ∗ pType , unsigned int numChildren)
{
for (UINT i = 0; i < numChildren ; ++i )
{
ID3D11ShaderReflectionType ∗ cType = pType−>GetMemberTypeByIndex ( i ) ;
char const∗ cName = pTy pe−>GetM emberTypeN ame ( i ) ;
D3D11
SHADER TYPE DESC c tDe sc ;
cType−>GetDesc(&ctDesc ) ;
GetTypes ( cType , ctDesc . Members ) ;
}
}
LISTING 4.16: Compile an HLSL program at runtime and start the shader
reﬂection system.
The
HLSLFactory library that ships with GTEngine is a wrapper around
compilation and reﬂection. The error handling does exist in that code. The
tool does not currently support reﬂection of dynamic linkage (the constant
buﬀer case
D3D CT INTERFACE POINTERS).
A contrived HLSL compute shader that shows how to obtain member
layouts for nested structures is provided in Listing 4.17. The point of the
example is that a struct can have diﬀerent member layouts depending on
whether it is used in a constant buﬀer or as a structured buﬀer resource.
struct A { float fvalue [4]; int2 i2value ; } ;
struct B { int ivalue ; A avalue; } ;
cbuffer MyCBuffer { B input ; } ;
StructuredBuffer<B> sbuffer [2];
Texture2D<float4> mytexture ;
RWTexture1D<float> output ;
[ numthreads (1 , 1 , 1 )]
void CSMai n ( int t:SV
DispatchThreadID)
{
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float result = (float )input . ivalue ;
for ( int i=0; i< 4; ++i )
{
result += input . avalue. fvalue [ i ];
}
result += (float )input . avalue . i2value .x;
result += (float )input . avalue . i2value .y;
for ( int j=0; j< 2; ++j )
{
B mybvalue = sbuffer[j ][0];
result += (float ) mybvalue . i v a l u e ;
for ( int k=0; k< 4; ++k)
{
r e su l t += mybvalue . avalu e . fv al ue [ k ] ;
}
result += (float ) mybvalue . a va lu e . i 2 v al u e . x ;
result += (float ) mybvalue . a va lu e . i 2 v al u e . y ;
}
result += mytexture[ int2(0 ,0)].x;
output [ 0] = resu lt ;
}
LISTING 4.17: An example of nested structs for which constant buﬀers have
one member layout but structured buﬀers have another member layout.
The output of
FXC is shown in Listing 4.18. The generator comment was
removed, white space was removed, the
sbuﬀer layouts are the same for the
two array members, the signatures were removed, and the
ld structured indexable
commands were split across multiple lines to ﬁt in the width of the page.
// cbuffer MyCBuffer
// {
// st r uc t B
// {
// int ivalue ; // Offset : 0
// s t r u c t A
// {
// float fvalue [4]; // Offset : 16
// int2 i2value ; // Offset : 68
// } avalue ; // Offset : 16
// } input ; // Offset : 0 Size : 76
// }
//
// Resource bind info for sbuffer [0] and sbuffer [1]
// {
// st r uc t B
// {
// int ivalue ; // Offset : 0
// s t r u c t A
// {
// float fvalue [4]; // Offset : 4
// int2 i2value ; // Offset : 20
// } avalue ; // Offset : 4
// } $Element; //Offset:0Size:28
// }
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
// sbuffer [0] texture struct r/o 0 1
// sbuffer [1] texture struct r/o 1 1
// m y t e x tu r e te xt ure f l o a t 4 2d 2 1
// output UAV flo at 1d 0 1
// MyCBuffer c b u f f e r NA NA 0 1
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cs 5 0
dcl
globalFlags refactoringAllowed
dcl
constantbuffer cb0[5] , immediateIndexed
dcl
resource structured t0 , 28
dcl
resource structured t1 , 28
dcl
resource texture2d (float , float , float , float )t2
dcl
uav typed texture1d (float , float , float , float )u0
dcl
temps 2
dcl
thread group 1, 1, 1
itof r0.x, cb0 [0].x
add r0.x, r0.x, cb0[1].x
add r0.x, r0.x, cb0[2].x
add r0.x, r0.x, cb0[3].x
add r0.x, r0.x, cb0[4].x
i t of r0 . yz , cb0 [4 ] . yyzy
add r 0 . x , r 0 . y , r 0 . x
add r 0 . x , r 0 . z , r 0 . x
ld
structured indexable(structured buffer , stride=28)
( mixed , mixed , mixed , mixed ) r 1 . xyzw , l ( 0 ) , l ( 0 ) , t0 . xyzw
itof r0.y, r1.x
add r 0 . x , r 0 . y , r 0 . x
add r 0 . x , r 1 . y , r 0 . x
add r 0 . x , r 1 . z , r 0 . x
add r 0 . x , r 1 . w, r 0 . x
ld
structured indexable(structured buffer , stride=28)
( mixed , mixed , mixed , mixed) r0 . yzw , l (0) , l (16) , t0 . xxyz
add r 0 . x , r 0 . y , r 0 . x
i to f r0 . yz , r0 . zzwz
add r 0 . x , r 0 . y , r 0 . x
add r 0 . x , r 0 . z , r 0 . x
ld
structured indexable(structured buffer , stride=28)
( mixed , mixed , mixed , mixed ) r 1 . xyzw , l ( 0 ) , l ( 0 ) , t1 . xyzw
itof r0.y, r1.x
add r 0 . x , r 0 . y , r 0 . x
add r 0 . x , r 1 . y , r 0 . x
add r 0 . x , r 1 . z , r 0 . x
add r 0 . x , r 1 . w, r 0 . x
ld
structured indexable(structured buffer , stride=28)
( mixed , mixed , mixed , mixed) r0 . yzw , l (0) , l (16) , t1 . xxyz
add r 0 . x , r 0 . y , r 0 . x
i to f r0 . yz , r0 . zzwz
add r 0 . x , r 0 . y , r 0 . x
add r 0 . x , r 0 . z , r 0 . x
ld
indexable (texture2d)(float , float , float , float ) r0.y, l(0, 0, 0, 0),
t 2 . yxzw
add r 0 . x , r 0 . y , r 0 . x
store
uav ty pe d u0 . xyzw , l (0 ,0 ,0 ,0) , r0 . xxxx
ret
// Approximately 34 instruction slots used
LISTING 4.18: A modiﬁed listing of the FXC output from the compute
shader of Listing 4.17.
Notice that the constant buﬀer version of
struct B uses 76 bytes but the
structured buﬀer version uses 28 bytes. The latter is what you expect in a
C-style struct that has seven members, each requiring 4 bytes. The constant
buﬀer version is adhering to the HLSL packing rules. What still caught my
attention, though, is the number 76. Given that each register uses 16 bytes,
why not 80 bytes? I also thought at ﬁrst that the constant buﬀer would use
six registers requiring 96 bytes, because
ivalue is stored in one register, each
of the four
fvalue array elements is stored in a register, and i2value uses one
register. My thinking was incorrect. In fact,
i2value is stored in the yz-channels
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of the register that stores
fvalue[3] in its x-channel. This explains the size 76
rather than 80, because the 4-byte w-channel is unused. The layout is veriﬁed
by the assembly instructions. The last typecast of
ﬂoat to int is the instruction
itof r0.yz, cb0[4].yyzy that eﬀectively copies the yz-channels of cb0[4] into the
yz-channels of temporary register
r0.
The shader reﬂection system produces a description whose non-default-
value members are shown in Listing 4.19 with some comments added.
desc. Creator = ”Microsoft (R) HLSL Shader Compiler 6.3.9600.16384”
desc . Versi on = 0x00050050 // v s
5 0
desc . Flags = 0 x0000a908 // D3DCOMPILE
∗ flags
desc. ConstantBuffers = 3 // MyCBuffer , s b u f f e r [ 0 , 1 ]
desc . BoundResources = 5 // MyCBuffer , sbuffer [0 ,1] , mytexture , output
desc. InstructionCount = 34 // start is first ’ itof ’, final is ’ret ’
desc . TempRegisterCount = 2 // ’ d cl
temps 2 ’ ’
desc . TextureLoadInstructions = 5 // ’ l d
∗ ’ instructions
desc. FloatInstructionCount = 21 // ’add ’ instructions
desc . StaticFlowControlCount = 1 // ’ ret ’ instruction
desc. cTextureStoreInstructions = 1 // ’ s t o r e
uav typed ’ instruction
LISTING 4.19: The non-default-value members of D3D11 SHADER DESC for
the compute shader of Listing 4.17.
The constant buﬀer loop produces the information shown in Listing 4.20.
The one- and two-letter preﬁxes are from the D3D description member names,
used here for the descriptions to ﬁt the width of the page. The descriptions
for
sbuﬀer[0] and sbuﬀer[1] are the same, so only one block is written here.
cbDesc [ 0 ] {n=” MyCBuffer ” , t=D3D CT CBUFFER , v =1, s =80 , f =0}
rbDesc [0] {n=” MyCBuffer ” , t=D3D
SIT CBUFFER , bp=0, bc=1, f =0, r t =0,
d= D3D
SRV DIMENSI ON UNKNOWN , n s =0}
vDesc [ 0 ] {n=”input” , o=0, s=76, f=2, dv=null , stex=−1, t e x s =0, ssam=−1,
sams=0}
vtDesc [ 0] { cl=D3D
SVC STRUCT , t= D3D SVT VOID , r =1 , c=7 , e=0 , m=2, o =0 ,
n=”B” }
cName=” i v a l u e ”
ctDesc [0 ] { cl=D3D
SVC SCALAR , t =D3 D SVT INT , r =1, c =1, e=0, m=0, o=0,
n=” i n t ” }
cName=” a v a l u e ”
ctDesc [1 ] { cl=D3D
SVC STRUCT , t= D3D SVT VOID , r =1, c=6 , e=0, m=2, o =1 6 ,
n=”A” }
ctDesc [0 ] { cl=D3D
SVC SCALAR , t =D3D SVT FLOAT , r =1, c=1, e=4, m=0,
o=0, n=” f l o a t ”}
ctDesc [1 ] { cl=D3D
SVC VECTOR , t=D3D SVT INT, r =1, c=2, e=0, m=0,
o=52, n=” in t2 ”}
cbDesc [ 1 , 2 ] {n=” s b u f f e r [ 0 ] ” , t=D3D
CT RESOURCE BIND INFO , v =1, s =28 , f =0}
rbDesc [1 , 2] {n=” s b u f f e r [ 0 ] ” , t=D3D
SIT STRUCTURED , bp = [0 ,1] , b c=1 , f =0,
rt=D3D
RETURN TYPE MIXED , d=D3D SRV DIMENSION BUFFER , ns =28}
vDesc [ 0 ] {n=”$Element”,o=0,s=28,f=2,dv=null, stex=−1, t e xs =0,
ssam=−1, sams =0}
vtDesc [ 0] { cl=D3D
SVC STRUCT , t= D3D SVT VOID , r =1 , c=7 , e=0 , m=2, o =0 ,
n=”B” }
cName=” i v a l u e ”
ctDesc [0 ] { cl=D3D
SVC SCALAR , t =D3 D SVT INT , r =1, c =1, e=0, m=0, o=0,
n=” i n t ” }
cName=” a v a l u e ”
ctDesc [1 ] { cl=D3D
SVC STRUCT , t= D3D SVT VOID , r =1, c=6 , e=0, m=2, o =4 ,
n=”A” }
cName=” f v a l u e ”
ctDesc [0 ] { cl=D3D
SVC SCALAR , t =D3D SVT FLOAT , r =1, c=1, e=4, m=0,
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o=0, n=” f l o a t ”}
cName=” i 2 v a l u e ”
ctDesc [1 ] { cl=D3D
SVC VECTOR , t=D3D SVT INT, r =1, c=2, e=0, m=0,
o=16, n=” in t2 ”}
LISTING 4.20: Descriptions about the constant buﬀers in the compute
shader of Listing 4.17.
The descriptions for
MyCBuﬀer indicate that the size is 80 bytes, the bind
point is 0, and the bind count is 1. This information is needed by an application
to create a DX11 buﬀer and to attach the resource to the shader program for
execution. The variable and variable type descriptions provide the layout of
the constant buﬀer. The
vDesc[0] item says the constant buﬀer name used
in the HLSL code is
input and uses 76 of the 80 bytes of storage. The ﬂag
value two comes from bit ﬂags in
D3D SHADER VARIABLE FLAGS,inthiscase
a single ﬂag
D3D SVF USED that indicates the constant buﬀers is used in the
shader.
The corresponding
vtDesc[0] item describes the type of the variable. The
type has name
B and is a struct type (D3D SVC STRUCT and D3D SVT VOID).
The r and c values are for rows and columns of a matrix type, but these are
ﬁlled even when the type is not of matrix form. You must also look at the e
value (number of elements). In the example at hand, e = 0, which indicates
that the type is not of matrix form; rather, it is viewed as a single row (r =1)
of seven (c = 7) 4-byte quantities:
ivalue (one 4-byte value), avalue.fvalue[0,1,2,3]
(four 4-byte quantities), and avalue.i2value (two 4-byte quantities). The oﬀset
o = 0 is measured relative to the beginning of the constant buﬀer storage.
The number of members (or children) is m = 2, indicating that struct
B has
two members:
ivalue and avalue.
The recursive function
GetTypes in Listing 4.16 produces the cName and
ctDesc items in Listing 4.20. The ﬁrst visited child (of B)hasnameivalue and
has type name
int. Thus, it is a integer scalar type (D3D SVC SCALAR and
D3D SVT INT). It is not of matrix form, so e =0.Asascalar,itisviewedasa
single row (r = 1) with one column (c =1).Itsoﬀsetiso =0andismeasured
relative to the base address of its parent. The parent is
MyCBuﬀer,andwesaw
that
input has oﬀset zero. The absolute oﬀset of ivalue is obtained by adding
its relative oﬀset zero to the parent oﬀset zero (of
input), which is zero; that
is,
ivalue ﬁlls the ﬁrst four bytes of the constant buﬀer memory.
The second visited child of
B has name avalue and has type name A.This
member is itself a struct (
D3D SVC STRUCT and D3D SVT VOID). The number
of elements is e =0,so
A is not of matrix form but it is viewed as a single row
(r = 1) of six (c =6)4-bytevalues:
fvalue[0,1,2,3] (four 4-byte quantities) and
i2value (two 4-byte quantities). The oﬀset is o = 16, relative to the parent B,
so the absolute oﬀset in the constant buﬀer is sixteen. The number is sixteen
because the packing rules for constant buﬀers requires
ivalue to be stored in
a 16-byte register, in which case
A is stored starting in the next available
register. The number of members is m = 2, indicating that struct
A has two
members:
fvalue and i2value.
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The ﬁrst visited child of
A has name fvalue and has type name ﬂoat.Itis
a ﬂoat scalar type (
D3D SVC SCALAR and D3D SVT FLOAT). The number of
elements is e = 4; because this number is not zero, this is of matrix form. The
number of rows is r = 1, so the matrix is really a one-dimensional array that
has e = 4 elements and each element has c = 1 columns. This is a fancy way
of saying that the
fvalue is an array of four ﬂoat values, but the bookkeeping
allows for handling general arrays of general elements. The relative oﬀset from
thebaseaddressof
A is o = 0, so the absolute address from the base address
of
MyCBuﬀer is sixteen.
The second visited child of
A has name i2value and has type name int2,
indicating it is a 2-tuple of integers. This is a vector type as compared to a
scalar type (
D3D SVC VECTOR and D3D SVT INT). The number of elements is
zero, so it is not of matrix form. It has r =1rowsandc = 2 columns, the
latter indicating that
i2value is a 2-tuple. This member is not a struct so it has
no children (m = 0). The relative oﬀset from the base address of
A is o = 52.
As described previously,
fvalue[3] is stored in the x-component of a register and
i2value is stored in the yz-components, which leads to the oﬀset value of 52.
The absolute oﬀset from the base address of
MyCBuﬀer is 16 + 52 = 68. This
is the number displayed next to
i2value in the MyCBuﬀer comments of Listing
4.18.
The descriptions of
B for sbuﬀer[0] and sbuﬀer[1] are identical except for
the oﬀset values. As a structured buﬀer type,
B is packed just as you would
expect for a C-struct using 32-bit alignment, in this case seven 4-byte values
are packed into a 28-byte chunk of memory.
The loop over the resources bound to the shader leads to a visit of
MyCBuﬀer, which is ignored in this loop because it was processed in the previ-
ous loop, and visits to
sbuﬀer[0,1], mytexture,andoutput. The resource binding
description for
sbuﬀer[0] shows it is of type D3D SIT STRUCTURED (read-only
structured buﬀer) and has bind point zero. The bind point for
sbuﬀer[1] is one.
The bind points must be known by the application for attaching the resources
to the shader for execution.
The resource binding description for
mytexture shows it is of type
D3D SIT TEXTURE (read-only texture). The bind point is two, which is the
next available bind point for read-only inputs after the structured buﬀers
are assigned bind points; these are assigned in the order the resources occur
in the HLSL code. The return type is
D3D RETURN TYPE FLOAT,whichis
a consequence of using
ﬂoat4 in the template Texture2D<ﬂoat4>.Thenum-
ber of components is obtained from the ﬂags value f = 12 by the formula
4=1+(f>>2). Thus, the return type and the ﬂags can be used to de-
termine the template type, something that might be useful for a tool that
generates C++ source code from an HLSL program in order to wrap all the
resource management of that program. The dimension of this texture is re-
ported as
D3D SRV DIMENSION TEXTURE2D.
The resource binding description for
output shows it is of type
D3D SIT UAV RWTYPED (read-write texture). The fact that it is an unordered
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access view (UAV) means that the shader writes to the resource. In some cases
you can read and write the resource, but this is limited to resources with a na-
tive 32-bit template type; for example,
RWTexture2D<ﬂoat>. The bind point is
zero, which is needed by the application for attaching the resource for shader
execution. The return type is also
D3D RETURN TYPE FLOAT, but the ﬂag’s
value is f = 0 which implies there is 1 = 1 + (f>>2) component. Thus,
the reﬂection indicates that
output was declared as RWTexture1D<ﬂoat>.The
dimension is reported as
D3D SRV DIMENSION TEXTURE1D.
4.3 Devices, Contexts, and Swap Chains
The top-level objects required for accessing the capabilities of a GPU are
devices and immediate contexts. The immediate context is used to queue up
GPU commands that are to be executed immediately (as soon as possible)
on the GPU. D3D11 also has the concept of a deferred context where GPU
command lists are inserted for execution at a later time. Deferred contexts
are useful for coarse-level management of the GPU in multithreaded applica-
tions. Although useful, this book does not contain a discussion about deferred
contexts. The GTEngine code is based on immediate contexts and takes ad-
vantage of the thread-safe device for creating resources to be used by the GPU
at the appropriate times.
Compute shaders may be executed using only the services of a device
and an immediate context. Drawing to a window using vertex, geometry, and
pixel shaders requires additional D3D11 objects. Speciﬁcally, you need a swap
chain and one or more pairs of color and depth-stencil buﬀers. The classical
case, designed for performance, is to have two pairs for double buﬀering.The
graphics system can draw to the back buﬀer while the front buﬀer is displayed
to the monitor. Once complete, the two buﬀers are swapped, which is the
responsibility of the swap chain object.
4.3.1 Creating a Device and an Immediate Context
A device and a corresponding immediate context are created by the D3D11
function
HRESULT D3D11CreateDevice (
IDXGIAdapter ∗ pAdapter ,
D3D
DRIVER TYPE D riverType ,
HMODULE S o f t w a r e ,
UINT Fl a gs ,
CONST D3D
FEATURE LEVEL ∗ pFeatureLevels ,
UINT FeatureLevels ,
UINT SDKVersion ,
ID3D11Device∗∗ ppDevice ,
D3D
FEATURE LEVEL ∗ pFeatureLevel ,
ID3D11DeviceContext∗∗ ppImmediateContext );
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where the last three parameters are the outputs of the creation. The standard
use of this call is to obtain access to hardware acceleration on a machine with
a single GPU. The function call is
UINT const numFeatureLevels = 7;
D3D
FEATURE LEVEL const featureLevels [numFeatureLevels] =
{
D3D
FEATURE LEVEL 11 1,
D3D
FEATURE LEVEL 11 0,
D3D
FEATURE LEVEL 10 1,
D3D
FEATURE LEVEL 10 0,
D3D
FEATURE LEVEL 9 3,
D3D
FEATURE LEVEL 9 2,
D3D
FEATURE LEVEL 9 1
} ;
ID3D11Device∗ device ;
D3D
FEATURE LEVEL selectedFeatureLevel
ID3D11DeviceContext∗ immediateContext ;
HRESULT hr = D3D11CreateDevice ( nu l lp t r , D3D
DRIVER TYPE HARDWARE ,
nu ll ptr , 0 , fea tu reLevel s , numFeatureLevels , D3D11
SDK VERSION ,
&device , &selectedFeatureLevel , &immediateContext );
The featureLevels are listed in order of the feature set you want for the device.
If Direct3D 11.1 is available on the machine, that feature will be selected. If
it is not available but Direct3D 11.0 is available, that feature will be selected.
The output
selectedFeatureLevel indicates which feature level the device is. On
success,
hr is S OK and both device and immediateContext are not null.
When the adapter input is null, the default adapter is requested and is
the one associated with the GPU. If you have multiple GPUs, you can obtain
nonnull adapter pointers by enumeration; see Section 4.8 for details on how
to create devices and contexts when multiple GPUs are present.
The driver type is usually hardware, but other options are available. These
include the ability to use software rendering and to create a reference device.
The latter supports the D3D11 SDK in software and is mainly useful for
debugging. Drivers shipped by graphics card manufacturers can have bugs
in them. A comparison of outputs for the hardware-accelerated device and
reference device might lead to proof that a driver has a bug. The
HMODULE
input must be null for hardware acceleration. If you happen to have written a
software rasterizer you want to test, you can do so in a DLL, load that DLL,
and use its module handle as the input to device creation. I do not discuss
this capability in the book.
The
Flags input is typically zero; otherwise, it may be a combination of
D3D11 CREATE DEVICE FLAGS bit ﬂags. Two bit ﬂags that are useful for de-
bugging are
D3D11 CREATE DEVICE DEBUG, D3D11 CREATE DEVICE SINGLETHREADED
I use the debug ﬂag regularly and add the application to the list of executables
monitored by the DirectX Control Panel; see Section 5.2 for details. The single-
threading ﬂag is useful if you believe your multithreaded application might
have threading problems regarding the graphics system and you want to verify
by showing that the single-threaded version runs correctly.
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The feature levels of interest to you are provided via an array. You are not
required to list all available levels. For example, if you know you are running
on a machine with Direct3D 11.0 and want only a device of that type, you can
deﬁne a
featureLevels array with the single element D3D FEATURE LEVEL 11 0.
The device creation does allow you to pass a null pointer, but at the present
time the call will not create a D3D11.1 device when on a machine with
D3D11.1.
The device and immediate context are reference counted, so when you are
ﬁnished with them you must call their
Release() functions.
4.3.2 Creating Swap Chains
Assuming you have created a window with an associated handle and whose
client rectangle has a speciﬁed width and height, you can create a swap
chain for a device as shown in Listing 4.21. For simplicity of presentation,
no
HRESULT error handling is included. The actual engine code does include
this.
void CreateSwapChain (HWND handle , UINT width , UINT height ,
ID3D11Device∗ devi ce , IDXGISwapChain∗& swapChain)
{
// Get a DXGI device and factory that will be used for creating the
// swap c h a i n .
IDXGIDevice ∗ dxgiDevice = nullptr ;
device−>QueryInterface (
u u id o f ( IDXGIDevice ) , ( void∗∗)& d xgiD e vic e ) ;
IDXGIAdapter ∗ dxgiAdapter = nullptr ;
dxgiDevice−>GetAdapter(&dxgiAdapter ) ;
IDXGIFactory1∗ dxgiFactory = nullptr ;
dxgiAdapter−>GetParent (
uu id of ( IDXGIFactory1 ) , ( void∗∗)&dxgiFactory );
// C r e a t e t h e swap c h a i n .
DXGI
SWAP CHAIN DESC d esc ;
desc . BufferDesc .Width = width ;
desc . BufferDesc . Height = height ;
desc . BufferDesc . RefreshRate . Numerator = 0;
desc . BufferDesc . RefreshRate . Denominator = 1;
desc . BufferDesc . Format = DXGI
FORMAT R8G8B8A8 UNORM ;
desc. BufferDesc . ScanlineOrdering =
DXGI
MODE SCANLINE ORDER UN SPECIFIED ;
desc . BufferDesc . Scaling = DXGI
MODE SCALING UN SPECIFIE D ;
des c . SampleDesc . Count = 1 ;
d es c . SampleDesc . Q u a l i t y = 0 ;
desc . BufferUsage =
DXGI
USAGE BACK BUFFER | DXGI USAGE RENDER TARGET OUTP UT ;
desc . BufferCount = 2;
d e s c . OutputWindow = h a n d l e ;
d esc . Windowed = TRUE;
desc . SwapEffect = DXGI
SWAP EFFECT DISCARD;
desc . Flags = 0;
IDXGISwapChain∗ swapChain = n u ll p tr ;
dxgiFactory−>CreateSwapChain ( dxgiDevice , &desc , &swapChain ) ;
// Clean up and return .
dxgiFactory−>Release ();
dxgiAdapter−>Release ();
dxgiDevice−>Release ();
return swapChain ;
}
LISTING 4.21: Creating a swap chain for displaying graphics data to a
window.
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The refresh rate is speciﬁed as a rational number in units of hertz. The ra-
tional number 0/1 indicates that the default refresh rate of the monitor should
be used. The scanline ordering and scaling parameters are listed as unspeci-
ﬁed, allowing the display system to use its defaults. The sample description is
for multisampling; the default values are speciﬁed (no multisampling).
The buﬀer usage ﬂag
DXGI USAGE RENDER TARGET indicates that you
intend to write to the back buﬀer for output. It is possible to use back buﬀers
as inputs to shaders and as unordered access views. The buﬀer count is two,
indicating that you want a back buﬀer and a front buﬀer.
For classical drawing, the color output format is 8-bit RGBA.
DXGI FORMAT R8G8B8A8 UNORM represents such a format; the UNORM preﬁx
indicates that ﬂoating-point color channel values in [0, 1] are interpreted as 8-
bit values in {0,...,255}. It is possible to specify 16-bit RGBA or 10-10-10-2
RGBA format, which is useful when the back buﬀer is set up to be used as
an input to a shader.
A window can be created to be full screen, but the advice is to create
a windowed swap chain and use
IDXGISwapChain::SetFullscreenState to toggle
between windowed mode and full-screen mode.
The swap eﬀect parameter indicates that the back buﬀer contents are dis-
carded after the swap. Other parameters allow the back buﬀer contents to
persist. In particular, for a Window Store application the swap eﬀect must be
DXGI SWAP EFFECT FLIP SEQUENTIAL. The creation of swap chains with ad-
vanced features is not described in this book. You can obtain more information
from the MSDN online documentation about such features.
Once you are ﬁnished using a swap chain, remember to call its
Release()
function in order to decrement its reference count.
In GTEngine for the purpose of this book, swap chains are created as shown
in Listing 4.21. You are welcome to explore other choices for the parameters.
It is possible to create the device, the immediate context, and the swap chain
all in one interface call:
D3D11CreateDeviceAndSwapChain. In GTEngine, I have
chosen to keep the creation calls separate.
In addition to a swap chain, you need to create a back buﬀer that consists
typically of a color buﬀer and a depth-stencil buﬀer. For drawing, you also need
various state information related to rasterization and blending operations. The
creation of these are discussed in Section 4.4.
4.3.3 Creating the Back Buﬀer
Once the swap chain has been created, we need to associate with it the
color and depth-stencil buﬀers that make up the back buﬀer. Listing 4.22
shows the creation, requiring both the device and its immediate context. For
simplicity of presentation, no
HRESULT error handling is included. The actual
engine code does include the handling.
void CreateBackBuffer (UINT width , UINT height , ID3D11Device∗ device ,
ID3D11DeviceContext∗ immediat eContext , IDXGISwapChain∗ swapChain ,
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ID3D11Texture2D∗& co lo rB uff er , ID3D11RenderTargetView∗& colorView ,
ID3D11Texture2D∗& depthStencilBuffer ,
ID3D11DepthStencilView∗& depthStencilView)
{
// Create the color buffer and color view.
swapChain−>GetBuffer (0,
u u i d o f ( ID3D11Texture2D ) ,
( void∗∗)&colorBuffer );
device−>CreateRenderTargetView ( colorBuffer , nullptr , &colorView );
// C r e a t e t h e d ep th−s t e n c i l b uf f er and depth−stencil view.
D3D11
TEXTURE2D DESC d esc ;
desc .Width = width ;
desc. Height = height ;
desc . MipLevels = 1;
desc. ArraySize = 1;
d es c . Format = DXGI
FORMAT D24 UNO R M S8 UINT ;
des c . SampleDesc . Count = 1 ;
d es c . SampleDesc . Q u a l i t y = 0 ;
d e s c . Usage = D3D11
USAGE DEFAULT ;
desc . BindFlags = D3D11
BIND DEPTH STENCIL ;
desc . CPUAccessFlags = 0 ;
desc . MiscFlags = 0;
device−>CreateTexture2D(&desc , nullptr , &depthStencilBuffer );
device−>CreateDepthStencilView ( depthStencilBuffer , nullptr ,
&depthStencilView );
// S et t h e vie w p o rt t o c o ve r t h e e n t ir e window and t h e en t i r e
// depth range .
D3D11
VIEWPORT v i e w p o r t ;
viewport .Width = static
cast<float >(width );
viewport . Height = static
cast<float >(height );
viewport . TopLeftX = 0.0 f ;
viewport . TopLeftY = 0.0 f ;
viewport .MinDepth = 0.0 f ;
viewport .MaxDepth = 1.0 f ;
immediateContext−>RSSetViewports (1 , &viewport );
// Set the co lo r view and depth−stencil view to be active .
immediateContext−>OMSetRenderTargets(1, &colorView , depthStencilView );
}
LISTING 4.22: Creating a back buﬀer.
At various times during execution, you might want to set the color buﬀer
or depth-stencil buﬀer to constant values via clearing. This can be done using
a context; for example,
// clear color
float clearColor [4] = { 0.0 f , 0.1 f , 0.5f , 0.7 f } ; / / RGBA
context−>ClearRenderTargetView(colorView , clearColor )
// clear depth , stencil value ignored
float clearDepth = 0.5 f ;
context−>ClearDepthStencilView( depthStencilView , D3D11
CLEAR DEPTH ,
clearDepth , 0);
// clear stencil , depth value ignored
unsigned char clearStencil = 16;
context−>ClearDepthStencilView( depthStencilView , D3D11
CLEAR STEN CIL , 0 .0 f ,
clearStencil );
// clear depth and stencil
context−>ClearDepthStencilView( depthStencilView ,
D3D11
CLEAR DEPTH | D3D11 CL EAR STENCIL, clearDepth , clearSte ncil );
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The views determine which portions of the buﬀers are set to the constant
values. The color and depth-stencil views created for the back buﬀer have
views that cover the entire buﬀer, so all buﬀer values are set. It is possible
to have multiple views for a single buﬀer, so if you want to clear only a
subrectangle of a buﬀer, you must create a view of that size and pass that to
the clear calls.
Once you are ﬁnished using the color buﬀer, color view, depth-stencil
buﬀer, and depth-stencil view, remember to call their
Release() functions so
that their reference counts are decremented. If you plan on resizing the win-
dow during runtime, you will need to destroy the current back buﬀer objects
and create new ones for the modiﬁed width and height. This is accomplished
using
IDXGISwapChain::ResizeBuﬀers. You must release the old objects ﬁrst, call
the
ResizeBuﬀers function, and then create the new objects.
4.4 Resources
The HLSL shader programs discussed previously had various resources
that needed to be attached for input and output, explicitly declared as con-
stant buﬀers, structured buﬀers, textures, and sampler state. For drawing, we
also had the implicit occurrence of vertex buﬀers (input to vertex shaders)
and index buﬀers (geometric primitives that determine input to pixel shaders
during rasterization). Other types of resources are available for more advanced
computing and drawing.
D3D11 uses a hierarchy of COM interfaces with base
IUnknown.The
ID3D11Device interface inherits from IUnknown and the ID3D11DeviceContext in-
terface inherits from
ID3D11DeviceChild. A subhierarchy of interfaces related to
the resources that may be attached to shaders for execution is shown next:
ID3D11DeviceChild
ID3D11Resource
ID3D11Buffer
ID3D11Texture1D
ID3D11Texture2D
ID3D11Texture3D
ID3D11BlendState
ID3D11DepthStencilState
ID3D11RasterizerState
ID3D11SamplerState
ID3D11VertexShader
ID3D11GeometryShader
ID3D11PixelShader
ID3D11ComputeShader
The number of ﬂavors of resources is more than the four listed under
ID3D11Resource; for example, cube maps and texture-array resources are cre-
ated as part of the aforementioned interfaces. The desired resource is selected
via parameters to a description structure. For the purpose of object-oriented
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design using C++ virtual functions, it would have been convenient to have in-
terfaces such as
ID3D11Texture, ID3D11State,andID3D11Shader from which the
appropriate interfaces inherit. GTEngine deals with this by having a richer
hierarchy of C++ classes that are tied to D3D11 objects via the bridge pat-
tern but with some similarities to the adapter pattern [12]. See Section 5.1 for
the GTEngine hierarchy and how those classes avoid accessing D3D11-speciﬁc
information in order to hide the implementation details in the graphics en-
gine. This abstraction is necessary when the time comes to provide a graphics
engine for OpenGL and GLSL shader programming.
The main resource categories are buﬀers, textures,andtexture arrays.The
D3D11 mechanism for creating textures allows you to specify a singleton or
an array, but the texture arrays require the concept of subresource to access
elements of the array. The idea of subresource also applies to mipmaps of
textures. In the presentation, I have separated out the texture-array resource
discussion in order to emphasize the slightly diﬀerent creation semantics com-
pared to singleton textures.
Another category I call draw targets, which are containers that encapsulate
render targets and depth-stencil textures for drawing to oﬀscreen memory.
The back buﬀer discussed in Section 4.3.3 is essentially a draw target that
encapsulates a render target and a depth-stencil texture for direct display to
the screen. Although a draw target is not a D3D11 construct, it is in GTEngine
and simpliﬁes working with oﬀscreen drawing.
4.4.1 Resource Usage and CPU Access
The various description structures used to create resources have a member
of type
D3D11 USAGE and ﬂags for CPU access related to copying,
enum D3D11 USAGE
{
D3D11
USAGE DEFAULT ,
D3D11
USAGE IMMUTABLE ,
D3D11
USAGE DYNAMIC ,
D3D11
USAGE STAGING
} ;
enum D3D11
CPU ACCE SS FLAG
{
D3D11
CPU ACCESS WRITE = 0x10000L ,
D3D11
CPU ACCESS READ = 0 x20000L
} ;
The default usage ﬂag indicates the resource requires both read and write ac-
cess by the GPU. The immutable usage ﬂag indicates that the resource may
be read by the GPU but not written to by the GPU; such a resource must have
its memory initialized on creation. The dynamic usage ﬂag declares that the
resource may be read by the GPU and written by the CPU. Typical examples
are constant buﬀers that store the transformations for positioning and orient-
ing 3D objects or vertex buﬀers for deformable geometry. A dynamic resource
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is modiﬁed frequently by mapping the memory and providing a pointer to the
data so the CPU can write to it. The staging usage is designed to support
the transfer of video memory from the GPU to the CPU, which I refer to as
read-back from the GPU, although the transfer can be in the other direction
as well; see Section 4.7 for the details of how staging buﬀers are used.
The usage and CPU access are not independent concepts. In all the de-
scription structures discussed later (except for staging resources), a descrip-
tion
desc has members desc.Usage and desc.CPUAcessFlags. Assuming an ab-
stract
input object that has requests input.wantImmutable, input.wantDynamic,
and
input.wantShaderOutput, the description members are set as shown in List-
ing 4.23.
void SetUsageAccess ( desc , input)
{
if (input .wantImmutable)
{
d e s c . Usage = D3D11
USAGE IMMUTABLE ;
desc . CPUAccessFlags = 0 ;
}
else if (input .wantDynamic)
{
d e s c . Usage = D3D11
USAGE DYNAMIC ;
des c . CPUAccessFlags = D3D11
CPU ACCESS WRITE ;
}
else // input .wantShaderOutput
{
d e s c . Usage = D3D11
USAGE DEFAULT ;
desc . CPUAccessFlags = 0 ;
}
}
LISTING 4.23: Common code for setting the usage and CPU access for a
description structure.
The usage and access might be modiﬁed additionally depending on the speciﬁc
resource at hand. In particular, if a resource is declared as a render target, the
usage must be
D3D11 USAGE DEFAULT. Staging resources are handled sepa-
rately. The various code blocks will call this function and make it clear if usage
and access must be modiﬁed.
4.4.2 Resource Views
Resources are created, but they are not accessed directly during graphics
processing. Instead you need to create views of the resources. Think of an
analogy with databases. The resource is the database and you can have mul-
tiple views of that database. The two common categories are shader resource
views that are applied to shader inputs (read-only resources) and unordered
access views that are applied to shader outputs (read-write resources). You
can also create render-target views and depth-stencil views for working with
frame buﬀers. In fact, these were used in the creation of the back buﬀer; see
Section 4.3.3 for the details.
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Listing 4.24 shows the description structure for a shader resource view and
how to create such a view. Speciﬁc assignment of members of the description
for each resource type is discussed in later sections.
struct D3D11 SHADER RESOURCE VIEW DESC
{
DXGI
FORMAT Fo rm at ;
D3D11
SRV DIMENSION ViewDimension ;
union {
D3D11
BUFFER SRV Buffer ;
D3D11
TEX1D SRV Textu re1D ;
D3D11
TEX1D ARRAY SRV Texture1DArray ;
D3D11
TEX2D SRV Textu re2D ;
D3D11
TEX2D ARRAY SRV Texture2DArray ;
D3D11
TEX2DMS SRV Texture2DMS ;
D3D11
TEX2DMS ARRAY SRV Texture2DMSArray ;
D3D11
TEX3D SRV Textu re3D ;
D3D11
TEXCUBE SRV TextureCube ;
D3D11
TEXCUBE ARRAY SRV TextureCubeArray ;
D3D11
BUFFEREX SRV BufferEx ;
} ;
} ;
ID3D11Resource∗ resource = //Theresource tobeviewed for reading.
D3D11
SHADER RESOURCE VIEW DESC srDesc ; // S et members a s de si r e d .
ID3D11ShaderResourceView ∗ srView ;
HRESU LT h r = d e v i c e −>CreateShaderResourceView( resource , &srDesc , &srView );
LISTING 4.24: The description for a shader resource view and the code to
create the view.
The
ViewDimension member is set to a ﬂag that indicates which of the union
cases the view represents. Each case has its own structure of values that must
be set according to the desired view capabilities.
Listing 4.25 shows the description structure for an unordered access view
and how to create such a view. Speciﬁc assignment of members of the descrip-
tion for each resource type is discussed in later sections.
struct D3D11 UNORDERED ACCESS VIEW DESC
{
DXGI
FORMAT Fo rm at ;
D3D11
UAV DIMENSION ViewDimension ;
union {
D3D11
BUFFER UAV Buffer ;
D3D11
TEX1D UAV Texture1 D ;
D3D11
TEX1D ARRAY UAV Texture1DArray ;
D3D11
TEX2D UAV Texture2 D ;
D3D11
TEX2D ARRAY UAV Texture2DArray ;
D3D11
TEX3D UAV Texture3 D ;
} ;
} ;
ID3D11Resource∗ resource = //Theresource tobeviewed for writing.
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ; // S e t members a s d es ir ed .
ID3D11UnorderedAccessView ∗ uaView ;
HRESU LT h r = d e v i c e −>CreateUnorderedAccessView( resource , &uaDesc , &uaView );
LISTING 4.25: The description for an unordered access view and the code
to create the view.
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The
ViewDimension member is set to a ﬂag that indicates which of the union
cases the view represents. Each case has its own structure of values that must
be set according to the desired view capabilities.
Although render targets and depth-stencils are created as 2D textures, they
need separate interfaces for creating views for writing. Listing 4.26 shows the
description structures for these objects and how to create views.
struct D3D11 RENDER TARGET VIEW DESC
{
DXGI
FORMAT Fo rm at ;
D3D11
RTV DIMENSION ViewDimension ;
union {
D3D11
BUFFER RTV Buffer ;
D3D11
TEX1D RTV Texture1D ;
D3D11
TEX1D ARRAY RTV Texture1DArray ;
D3D11
TEX2D RTV Texture2D ;
D3D11
TEX2D ARRAY RTV Texture2DArray ;
D3D11
TEX2DMS RTV Texture2DMS ;
D3D11
TEX2DMS ARRAY RTV Texture2DMSArray ;
D3D11
TEX3D RTV Texture3D ;
} ;
} ;
struct D3D11
DEPTH STEN CIL VIEW DESC
{
DXGI
FORMAT Fo rm at ;
D3D11
DSV DIMENSION ViewDimension ;
UINT F l a g s ;
union {
D3D11
TEX1D DSV Texture1D ;
D3D11
TEX1D ARRAY DSV Texture1DArray ;
D3D11
TEX2D DSV Texture2D ;
D3D11
TEX2D ARRAY DSV Texture2DArray ;
D3D11
TEX2DMS DSV Texture2DMS ;
D3D11
TEX2DMS ARRAY DSV Texture2DMSArray ;
} ;
} ;
ID3D11Texture2D∗ renderTarget = //Theresource tobeviewed for writing.
D3D11
RENDER TARGET VIEW DESC r t D e s c ; // S e t members a s de s i re d .
ID3D11RenderTargetView∗ rtView ;
HRESU LT h r = d e v i c e −>CreateUnorderedAccessView( renderTarget , &rtDesc ,
&r tVie w ) ;
ID3D11Texture2D∗ depthStencil = //Theresource tobeviewedforwriting.
D3D11
DEPTH STENCIL VIEW DESC dsDesc ; // S et members a s de si r e d .
ID3D11DepthStencilView∗ dsView ;
HRESU LT h r = d e v i c e −>CreateUnorderedAccessView( depthStencil , &dsDesc ,
&dsView ) ;
LISTING 4.26: The descriptions for render target and depth-stencil views
and the code to create the views.
The
ViewDimension member is set to a ﬂag that indicates which of the union
cases the view represents. Each case has its own structure of values that must
be set according to the desired view capabilities. The depth-stencil
Flags mem-
ber is used to specify read-only depth and/or stencil to allow multiple views
of the same resource.
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Subresource 0 (10 x 5)
Subresource 1 (5 x 2)
Subresource 2 (2 x 1)
Subresource 3 (1 x 1)
FIGURE 4.10: The mipmaps for a 10 × 5 texture, labeled with the subre-
source indices.
4.4.3 Subresources
You are likely familiar with textures and the mipmaps associated with
them. Classical mipmapping is about generating a pyramid of textures, the
original texture having the highest resolution and living at the base of the
pyramid, and the tip of the pyramid having the lowest resolution. It is pos-
sible to create a texture in D3D11 and declare that it should have mipmaps.
The texture and mipmaps are said to be subresources [48]. D3D11 has a num-
bering scheme for subresources that allows you to select them by an index.
The original texture is subresource zero. The ﬁrst mipmap generated from
the texture is subresource one. If the texture has L mipmap levels, they are
identiﬁed with subresource indices from 0 through L −1. For example, Figure
4.10 shows the abstraction of a sequence of mipmaps for a 10 × 5texture.
D3D11 has the concept of a texture-array resource. This is created as
a single resource. All textures in the array are of the same dimensions and
format, and each texture in the array is considered to be a subresource. If
the array has N textures, you will guess that the subresource indices vary
from 0 to N −1. This is true when in fact the textures do not have mipmaps.
However, when mipmaps exist, the indexing is by mipmap level ﬁrst and array
item second. For example, Figure 4.11 shows the abstraction of an array of
3 textures, each 10 × 5, each having mipmaps. The subresource index
sri is a
one-dimensional equivalent to the two-dimensional table location
(item,level).
The relationships between subresource indices and the levels are
// Convert table location (item , level ) to a subresource index . The
// table location has constraints 0 <=item< numArrayItems and
// 0 <= level < numMipmapLevels .
s r i = numMipmapLevels ∗ item + level ;
// Convert a subresource index to a table location (item , level ). The index
// h as c o n st r ai n ts 0 <=sri< numArrayItems ∗numMipmapLevels .
it em = s r i / numMipmapLevels ;
l e v e l = s r i % numMipmapLevels ;
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Level 0
Level 1
Level 2
Level 3
0
1
2
3
4
5
6
7
8
9
10
11
Item 0 Item 1
Item 2
FIGURE 4.11: An array of three textures of size 10 × 5, each having
mipmaps. The subresources are organized as a two-dimensional table. The
subresource indices are listed inside the table entries.
The sizes of the mipmaps are according to the rules D3D11 imposes.
The following formulas are the rules for a 3D texture with dimensions
(width,height,depth), but they also apply to a 1D texture whose dimensions
may be thought of as
(width,1,1) or a 2D texture whose dimensions may be
thought of as
(width,height,1).Lett denote the largest integer smaller than t
(the ﬂoor function). If (W

,H

,D

) are the dimensions of the mipmap at level
, then the dimensions of the next smallest mipmap at  +1are
(W
+1
,H
+1
,D
+1
)
=(max(W

/2, 1) , max (H

/2, 1) , max (D

/2, 1)) (4.25)
The number of mipmap levels is
L =1+max(log
2
(W
0
), log
2
(H
0
), log
2
(D
0
)) (4.26)
where log
2
(t) is the logarithm base 2 of t.InGTEnginecode,L is computed
using only integer operations.
4.4.4 Buﬀers
The buﬀer types available are constant buﬀers, texture buﬀers, ver-
tex buﬀers, index buﬀers, structured buﬀers, append-consume buﬀers, byte-
address buﬀers, indirect-arguments buﬀers, and staging buﬀers. All are created
by ﬁlling in the members of the
D3D11 BUFFER DESC, deﬁned by
struct D3D11 BUFFER DESC
{
UINT ByteWidth ;
D3D11
USAGE Usage ;
UINT BindFlags ; / / b i t f l a g s in D3D11
BIND FLAG
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UINT CPUAccessFlags ; // b i t f l a g s i n D3D11 CPU ACCESS FL AG or 0
UINT M i s cFl a g s ; // b i t f l a g s i n D3D11
RESOURCE MISC FLAG or 0
UINT StructureByteStride ;
} ;
ByteWidth is the number of bytes required to store the buﬀer. The Usage ﬂags
were described previously. The
BindFlags member speciﬁes how the buﬀer is
bound to the graphics pipeline. The
CPUAccessFlags member indicates how the
CPU can access the buﬀer memory (if at all). With the
MiscFlags member, we
can select from the variations of structured buﬀers. It also supports advanced
features including automatic mipmap generation, texture sharing between de-
vices, and thread-safe access to shared resources. Staging buﬀers are used for
copying between the CPU and GPU, the topic of Section 4.7.
The members of the buﬀer description are not independent. For example,
if default usage is selected and the CPU-access is set for read, D3D11 will fail
the buﬀer creation call. The examples of buﬀer creation shown next are all
structured similarly in order to avoid (or at least minimize) the chances of an
invalid description. In GTEngine, the application programmer must specify
the usage for most buﬀer types, although some types require default usage.
For buﬀers other than staging, the CPU access is set for write only in the
dynamic usage case. The CPU access for read in GTEngine is restricted to
staging buﬀers.
In the buﬀer creation code, I assume an
ID3D11Device* device is available.
I assume an
input object that stores all the information necessary to create
the buﬀer. Such objects are part of the front end of GTEngine (base class
Buﬀer). I also assume an output object that stores the created D3D11 objects.
Such objects are part of the back end of GTEngine (classes preﬁxed as
DX11*,
managed by class
DX11Engine that encapsulates device). This design decouples
the application code from D3D11-speciﬁc details to allow porting to OpenGL.
For simplicity, the code listed here does not handle
HRESULT errors, but the
GTEngine code does.
The set up and call to create an
ID3D11Buﬀer object is common to all
buﬀers. The creation is conditional on whether or not you want to have the
buﬀer initialized from CPU memory. Listing 4.27 deﬁnes a helper function
that is used in all the sample creation code. It uses the abstract
input object
described previously.
ID3D11Buffer∗ CreateFrom(desc , input)
{
ID3D11Buffer∗ buffer ;
if (input .data)
{
// Create the GPU version of the buffer and initialize it with
// CPU data. Initialization is required for D3D11
USAGE IMMUTABLE .
D3D11
SUBRESOURCE DATA d a ta ;
data.pSysMem = input. data;
data . SysMemPitch = 0;
data . SysMemSlicePitch = 0;
device−>CreateBuffer(&desc , &data , &buffer );
}
else
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{
// Create an uninitialized GPU version of the buffer. The call
// w i l l f a i l i f you h ave c hos e n D3D11
USAGE IMMUTABLE .
device−>CreateBuffer(&desc , nullptr , &buffer );
}
return buffer ;
}
LISTING 4.27: Common code for creating an ID3D11Buﬀer object.
4.4.4.1 Constant Buﬀers
A constant buﬀer is created as shown in Listing 4.28. See Listing 4.23
for information about
SetUsageAccess and Listing 4.27 for information about
CreateFrom.
D3D11 BUFFER DESC d es c ;
desc. ByteWidth = input .numBytes; // Must be a multiple of 16.
desc . BindFlags = D3D11
BIND CONSTANT BUFFER ;
desc . MiscFlags = 0;
desc. StructureByteStride = 0;
SetUsageAccess (desc , input );
output . buffer = Createfrom(desc , input );
LISTING 4.28: Creating a constant buﬀer.
The bind ﬂag indicates that a constant buﬀer should be created. If the constant
buﬀer does not change during runtime, it is created to be immutable and its
CPU access ﬂag is set to zero. If you plan on modifying the constant buﬀer
at runtime via memory mapping, you declare it to be dynamic and the CPU
access ﬂag must be set for writing. The miscelleaneous ﬂags and the structure
size (
StructureByteStride) are irrelevant for this resource, so they are set to zero.
The number of bytes can be determined from shader reﬂection.
4.4.4.2 Texture Buﬀers
Texture buﬀers were apparently designed to provide more eﬃcient memory
access compared to constant buﬀers. The online MSDN documentation [47]
states that a texture buﬀer is a specialized resource that is accessed like a
texture and can have better performance. You can bind up to 128 texture
buﬀers per pipeline stage. I ran some experiments on my AMD 7970 graphics
card to determine what the diﬀerence in memory performance is. I did not see
an improvement, but perhaps there would be on a lower-end graphics card. As
always, you should proﬁle before making a design decision about which to use.
If you choose to use a texture buﬀer, use the
tbuﬀer declaration in the HLSL
code just as you would use a
cbuﬀer declaration. Listing 4.29 shows how to
create a texture buﬀer. See Listing 4.23 for information about
SetUsageAccess
and Listing 4.27 for information about CreateFrom.
D3D11 BUFFER DESC d es c ;
desc. ByteWidth = input .numBytes;
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc . MiscFlags = 0;
desc. StructureByteStride = 0;
SetUsageAccess (desc , input );
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output . buffer = CreateFrom(desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.srvFormat ;
srDesc. ViewDimension = D3D11
SRV DIMENSION BUFFER ;
srDesc. Buffer . FirstElement = 0;
srDesc. Buffer .NumElements = input .numElements ;
device−>CreateShaderResourceView( output . buffer , &srDesc , &output . srView );
LISTING 4.29: Creating a texture buﬀer.
Because the texture buﬀer is accessed like a texture, the bind ﬂag must specify
the buﬀer is a shader resource so that you can create a shader resource view
for it. A texture buﬀer is not intended as a shader output, so there is no reason
to create an unordered access view for it.
4.4.4.3 Vertex Buﬀers
A vertex buﬀer is created as shown in Listing 4.30. See Listing 4.23
for information about
SetUsageAccess and Listing 4.27 for information about
CreateFrom.
D3D11 BUFFER DESC d es c ;
desc. ByteWidth = input .numBytes;
desc . BindFlags = D3D11
BIND VERTEX BUFFER ;
desc . MiscFlags = 0;
desc. StructureByteStride = 0;
SetUsageAccess (desc , input );
output . buffer = CreateFrom(desc , input );
if (input.wantBindStreamOutput)
{
// Generate vert ice s in geometry shaders .
d e s c . Usage = D3D11
USAGE DEFAULT ;
desc . BindFlags |= D3D11
BIND STREAM OUTPUT ;
desc . CPUAccessFlags = 0 ;
}
LISTING 4.30: Creating a vertex buﬀer.
The description members have no information for D3D11 about vertex
buﬀer organization regarding position, colors, texture coordinates, and so on.
This information is provided by the description structure,
struct D3D11 INPUT ELEMENT DESC
{
LPCSTR SemanticName ;
UINT SemanticIndex ;
DXGI
FORMAT Fo rm at ;
UINT InputSlot;
UINT AlignedByteOffset ;
D3D11
INPUT CLASSIFICATION I n putSl o t C l a s s ;
UINT InstanceDataStepRate ;
} ;
For an example, see Listing 4.31.
struct MyVertex { float position [3] , color [4] , tcoord0 [2] , tcoord1 ; } ;
UINT const numElements = 4 ; // position , color , tcoord0 , tcoord1
D3D11
INPUT ELEMENT DESC d e s c [ numElements ] ;
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/ / HLSL sema ntic i s POSITION0
d e s c [ 0 ] . SemanticName = ”POSITION ” ;
desc [ 0]. SemanticIndex = 0;
d es c [ 0 ] . F ormat = D XGI
FORMAT R32G32B32 FLOA T ; // position has 3 channels
desc [0]. InputSlot = 0;
desc [0]. AlignedByteOffset = 0;
des c [ 0 ] . I n p u t S l ot C l a ss = D3D11
INPUT PER VERTEX DATA ;
desc [0 ]. InstanceDataStepRate = 0;
// HLSL s em a n t i c i s COLOR0
d e s c [ 1 ] . SemanticName = ”COLOR” ;
desc [ 1]. SemanticIndex = 0;
d es c [ 1 ] . F ormat = D XGI
FORMAT R32G32B32A32 FLOAT ; // color has 4 channels
desc [1]. InputSlot = 0;
desc [1]. AlignedByteOffset = 12; // offset after position [3]
des c [ 1 ] . I n p u t S l ot C l a ss = D3D11
INPUT PER VERTEX DATA ;
desc [1 ]. InstanceDataStepRate = 0;
/ / HLSL s ema nti c i s TEXCOORD0
d e s c [ 2 ] . SemanticName = ”TEXCOORD” ;
desc [ 2]. SemanticIndex = 0;
d es c [ 2 ] . F ormat = D XGI
FORMAT R32G32 FLO AT ; // tcoord0 has 2 channels
desc [2]. InputSlot = 0;
desc [2]. AlignedByteOffset = 28; // offset after color [4]
des c [ 2 ] . I n p u t S l ot C l a ss = D3D11
INPUT PER VERTEX DATA ;
desc [2 ]. InstanceDataStepRate = 0;
/ / HLSL s ema nti c i s TEXCOORD1
d e s c [ 3 ] . SemanticName = ”TEXCOORD” ;
desc [ 3]. SemanticIndex = 1;
d e s c [ 3 ] . Format = DXGI
FORMAT R32 FLOAT ; // tcoord1 has 1 channels
desc [3]. InputSlot = 0;
desc [3]. AlignedByteOffset = 36; // offset after tcoord0 [2]
des c [ 3 ] . I n p u t S l ot C l a ss = D3D11
INPUT PER VERTEX DATA ;
desc [3 ]. InstanceDataStepRate = 0;
LISTING 4.31: Creating a vertex format via a D3D11 INPUT ELEMENT
DESC structure.
The element descriptions are needed to establish the connection be-
tween the vertex buﬀer data and the inputs required by a vertex shader;
the connection uses the semantic names and indices. The interface ob-
ject that does this is an input layout (
ID3D11InputLayout) and the function
ID3D11Device::CreateInputLayout creates one using the element description, the
number of elements, a pointer to the CPU vertex buﬀer data, and the vertex
shader blob produced by the
D3DCompile function.
This graphics subsystem is one of the more complicated to manage. In
GTEngine I have hidden the input layout management details by providing a
VertexFormat class that allows you to provide the input element description in
a manner independent of the D3D11 interfaces. In the previous example, the
front end will have the following, where the
Bind function has inputs: semantic
name, component type, and semantic index.
VertexFormat vf ;
vf . Bind(VA
POSITION , DF R32G32B32 FLOAT , 0 ) ; // float3 position : POSITION0
vf . Bind(VA
COLOR , DF R32G32B3A322 FLOAT , 0 ) ; // f lo a t4 c ol or : COLOR0
vf . Bind(VA
TEXC OORD , DF R32G32 FLOAT , 0 ) ; // float2 tcoord0 : TEXCOORD0
vf . Bind(VA
TEXC OORD , DF R32 FLOAT , 1 ) ; // float tcoord1 : TEXCOORD1
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The assumption is that the order of the elements in the description is the
same as the order of the
Bind calls. In the back end, the class DX11InputLayout
contains the D3D11-speciﬁc details for creation of an input layout.
4.4.4.4 Index Buﬀers
An index buﬀer is created as shown in Listing 4.32. See Listing 4.23
for information about
SetUsageAccess and Listing 4.27 for information about
CreateFrom.
D3D11 BUFFER DESC d es c ;
desc. ByteWidth = input .numBytes;
desc . BindFlags = D3D11
BIND INDEX BUFFER ;
desc . MiscFlags = 0;
desc. StructureByteStride = 0;
SetUsageAccess (desc , input );
output . buffer = CreateFrom(desc , input );
LISTING 4.32: Creating an index buﬀer.
The type of primitive the index buﬀer represents is also not speciﬁed. This
information is provided to the drawing system via the input assembly function
ID3D11DeviceContext::IASetPrimitiveTopology. See Section 4.6.2 for details.
4.4.4.5 Structured Buﬀers
Creation of a structured buﬀer, declared in the HLSL code as
StructuredBuﬀer or RWStructuredBuﬀer, is more complicated than that for con-
stant, vertex, or index buﬀers. Listing 4.33 shows the details. See Listing 4.23
for information about
SetUsageAccess and Listing 4.27 for information about
CreateFrom.
D3D11 BUFFER DESC d es c ;
desc. ByteWidth = input .numBytes;
desc . BindFlags = D3D11
SHADER RESOURCE ;
desc . MiscFlags = D3D11
RESOURCE MISC BUFFER STRUCTURED ;
desc. StructureByteStride = input. numBytesPerStruct ;
SetUsageAccess (desc , input );
output . buffer = CreateFrom(desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = DXGI
FORMAT UNKNOWN ;
srDesc. ViewDimension = D3D11
SRV DIMENSION BUFFER ;
srDesc. Buffer . FirstElement = 0;
srDesc. Buffer .NumElements = input .numElements ;
device−>CreateShaderResourceView( output . buffer , &srDesc , &output . srView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
u a D es c . F o r m at = DXGI
FORMAT UNKNOWN ;
uaDesc . ViewDimension = D3D11
UAV DIMENSION BUFFER ;
uaDesc. Buffer . FirstElement = 0;
uaDesc. Buffer .NumElements = input .numElements ;
uaDesc. Buffer . Flags = input . structuredBufferType ;
device−>CreateUnorderedAccessView( output . buffer , &uaDesc ,
&output . uaView );
}
LISTING 4.33: Creating a structured buﬀer.
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The ability to set a structured buﬀer to be writable in the shaders leads
to some constraints on how the description members are set. Initially, the
bind ﬂag is set to
D3D11 SHADER RESOURCE because the structured buﬀer
can be read by the shader. The miscellaneous ﬂag is set to indicate that
the buﬀer is indeed a structured buﬀer. Texture formats are explicitly de-
ﬁned in the D3D11 interface but structured buﬀer formats are deﬁned by the
user; thus, we need to tell the graphics system how large a struct is via the
StructureByteStride member. If the structured buﬀer is an output of a shader,
declared as
RWStructuredBuﬀer, then it must have an unordered access view.
Such a buﬀer must be declared with default usage.
A shader resource view must be created so that the structured buﬀer can be
used as an input to a shader. The structure format is unknown to D3D11 inter-
nally, so you must specify it as
DXGI FORMAT UNKNOWN.TheViewDimension
parameter indicates the view is for a buﬀer type. The srDesc.Buﬀer.FirstElement
and srDesc.Buﬀer.NumElements are set to values that imply the entire buﬀer is
available in the view. However, it is possible to allow a view only for a subset
determined by the starting oﬀset into the buﬀer (
FirstElement) and how many
contiguous elements you want to allow access to (
NumElements).
For a writable structured buﬀer that is declared in HLSL code as
RWStructuredBuﬀer, an unordered access view must be created. The descrip-
tion structure is similar to that for a shader resource view, except that the
ViewDimension parameter has UAV instead of SRV.
Structured buﬀers can have internal counters.The
Buﬀer.Flags member is
speciﬁc to UAVs and has value zero when you want a structured buﬀer with-
out a counter. The other two choices are
D3D11 BUFFER UAV FLAG APPEND
for an append-consume buﬀer or D3D11 BUFFER UAV FLAG COUNTER for a
structured buﬀer with counter. In Listing 4.33,
input.structuredBuﬀerType is one
of these UAV ﬂags.
Append buﬀers, declared in HLSL as
AppendStructuredBuﬀer, are useful for
compute shaders where an output occurs only under restricted conditions;
that is, the compute shader does not output a value for each thread calling
it. Output values are inserted into the append buﬀer as needed, and nothing
prevents a single compute shader call from appending more than one value.
Consume buﬀers, declared in HLSL as
ConsumeStructuredBuﬀer, are also useful
for compute shaders as inputs that are used only under restricted conditions.
To create either type of buﬀer, create a structured buﬀer with an unordered
access view whose UAV ﬂag is
D3D11 BUFFER UAV FLAG APPEND.
A simple illustration is provided in the sample
GeometricTools/GTEngine/Samples/Basics/AppendConsumeBuﬀers
Listing 4.34 shows the HLSL ﬁle for this sample.
struct Particle { int2 location ; } ;
ConsumeStructuredBuffer <Particle> currentState ;
AppendStructuredBuffer<Particle> nextState ;
// The test code uses Dispatch(1,1,1), so ’id’ is (x,0,0) with 0 <=x< 32.
[ numthreads (32 , 1 , 1 )]
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void CSMain(uint3 id : SV GroupThreadID )
{
// Append o n l y h a l f t h e c u r r e nt st at e ( t h e even −indexed ones ).
Particle p = currentState.Consume();
if (( p . lo ca ti o n [ 0 ] & 1) == 0)
{
n e x t S tat e . Append ( p ) ;
}
}
LISTING 4.34: The HLSL ﬁle for the AppendConsumeBuﬀers sample applica-
tion.
The main pitfall in using append buﬀers is knowing how large a buﬀer you
need to create to store your results. A sample application where this is an issue
is with exhaustive GPU-based root-ﬁnding, where the solutions of F (x)=0
are located by evaluating F at all ﬁnite 32-bit ﬂoating-point numbers. See
GeometricTools/GTEngine/Samples/Numerics/RootFinding
As roots are found, they are stored in an append buﬀer. Care must be taken to
ensure the append buﬀer has enough storage; otherwise, if the buﬀer becomes
full, roots are potentially not recorded.
I was curious what the behavior is for the HLSL
Append call when the
buﬀer is full. The brief documentation [27] does not say anything about the
behavior. As I have learned, when the documentation is insuﬃcient for a high-
level function, compile the shader, look at the assembly instructions generated
by the compiler, and then look at the documentation for the assembly. In this
case the
Append call is compiled to imm atomic alloc and has documentation
[43]. The instruction is an atomic increment of the interal counter, returning
the previous value to be used for indexing (in our case, into the
nextState
buﬀer). The online documentation states, “There is no clamping of the count,
so it wraps on overﬂow.” I thought I found what I was looking for. When you
create the D3D11 unordered access view for the append buﬀer, the maximum
number of elements is speciﬁed, so D3D11 therefore knows the maximum
number of elements in the buﬀer. If an attempt is made in the shader to append
past the maximum number, the counter will wrap around and the element at
index zero is overwritten. I performed an experiment to verify this, but the
results were not in agreement with my interpretation of the quote. GTEngine
maintains a staging buﬀer to which I can read back the value of the internal
counter using the function
ID3D11DeviceContext::CopyStructureCount. I created
a consume buﬀer of four elements and an append buﬀer of two elements, and I
executed a shader that consumed each of the four inputs and appended all of
them to the output. After the read back, the internal counter was reported as
four. I tried to read back four elements from the append buﬀer, but fortunately
the
Map call generated an error that the number of bytes requested exceeded
that maximum size of the buﬀer. I ignored the error and checked the staging
buﬀer’s memory contents to see that in fact only two elements were copied.
What this suggests is that when the internal counter is read back, it needs to be
clamped to the maximum number of elements. You can look at the diﬀerence
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between the counter and the maximum number to determine how many
Append
calls were made during a full buﬀer (if this information is important to you).
Section 4.7 has the details of copying data between the CPU and GPU,
including how to read back the internal counter and the appended elements.
The buﬀer is typically not full, so you do not want to read back the entire
buﬀer just to access a small subset.
A structured buﬀer with counter is intended to be written in the HLSL
code, so you must create an unordered access view and the UAV ﬂag must be
set to
D3D11 BUFFER UAV FLAG COUNTER. You manage the counter yourself
in the shader code by using
uint IncrementCounter() and uint DecrementCounter(),
which are atomic operations on the GPU.
4.4.4.6 Raw Buﬀers
Raw buﬀers, also called byte-address buﬀers, are supported by D3D11. The
buﬀer is eﬀectively an array of 4-byte values that can be read from and/or
written to in the HLSL shader, but the data is presented as unsigned integers.
You must reinterpret these bits according to how you designed the data layout
of the raw buﬀers. A simple illustration is provided in the sample
GeometricTools/GTEngine/Samples/Basics/RawBuﬀers
Listing 4.35 shows the HLSL ﬁle for this sample.
// 16 b y t e s p ac ked a s : ’a ’ , p i <double>,pi<float >, −1, ’ b ’
ByteAddressBuffer input ;
// 16 b y t e s r e p a c k a g e d a s : p i<double>,pi<float >, −1, ’a ’, ’b’
RWByteAddressBuffer output ;
[ numthreads (1 , 1 , 1 )]
void CSMai n ( i nt3 t : S V
DispatchThreadID)
{
uint4 inValue = input .Load4(0);
// Extract character ’a ’.
u in t a = in Va lu e . x & 0 x000000FF ;
// Extract double−precision pi .
uint pidLoEncoding =
( inValue .x >> 8) | ( ( in Va lu e . y & 0 x000000FF ) << 24);
uint pidHiEncoding =
( inValue .y >> 8) | ( ( in Va lu e . z & 0 x000000FF ) << 24);
double pid = asdouble (pidLoEncoding , pidHiEncoding);
// E x t rac t si n gl e −precision pi.
uint pifEncoding =
( inValue .z >> 8) | ( ( i nV al ue .w & 0 x000000FF ) << 24);
float pif = asfloat (pifEncoding );
// E x t rac t s h or t −1.
uin t minusOneEncoding = ( inValue .w >> 8 ) & 0 x0000FFFF ;
int minusOne = a si nt ( minusOneEncoding) >> 16;
// Extract character ’b ’.
uint b = ( inValue .w >> 24);
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// Return the repackaged input . Although we already know the uint
// values are the same as extracted , this code shows how to
// reinterpret ’ float ’ and ’double ’ values .
asuint (pid , pidLoEncoding , pidHiEncoding);
pifEncoding = asuint ( pif );
uint4 outValue ;
outValue . x = pidLoEncoding ;
outValue .y = pidHiEncoding;
outValue .z = pifEncoding;
outValue .w = minusOneEncoding | (a << 16) | (b << 24);
output . Store4 (0 , outValue );
}
LISTING 4.35: The HLSL ﬁle for the RawBuﬀers sample application.
The byte-address buﬀer HLSL objects have
Load* functions to read data
from the buﬀer. The
Load4(i) function call returns four 4-byte quantities start-
ing at byte address i. This address must be a multiple of four. From exper-
iments, it appears that if you pass in an index not a multiple of four, the
largest multiple of four smaller than i is used instead. The writable byte-
address buﬀer HLSL object also has
Store* functions to write data to the
buﬀer. The
Store4(i,value) call stores four 4-byte quantities at byte address i.
The address restrictions are the same as for
Load.
Creation of a raw buﬀer is shown in Listing 4.36. See Listing 4.23 for
information about
SetUsageAccess and Listing 4.27 for information about
CreateFrom.
D3D11 BUFFER DESC d es c ;
desc. ByteWidth = input .numBytes;
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc . MiscFlags = D3D11
RESOURCE MISC BUFFER ALLOW RAW VIEWS ;
desc. StructureByteStride = 0;
SetUsageAccess (desc , input );
output . buffer = CreateFrom(desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = DXGI
FORMAT R32 TYPEL ESS ;
srDesc. ViewDimension = D3D11
SRV DIMENSION BUFFEREX ;
srDesc. BufferEx . FirstElement = 0;
srDesc. BufferEx .NumElements = input .numElements ;
srDesc . BufferEx . Flags = D3D11
BUFFEREX SR V FLAG RAW ;
device−>CreateShaderResourceView( output . buffer , &srDesc , &output . srView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc . Format = DXGI
FORMAT R32 TYPEL ESS ;
uaDesc . ViewDimension = D3D11
UAV DIMENSION BUFFER ;
uaDesc. Buffer . FirstElement = 0;
uaDesc. Buffer .NumElements = input .numElements ;
uaDesc . B u f fe r . Fl a gs = D3D11
BUFFER UAV FLAG RAW ;
hr = device−>CreateUnorderedAccessView( output . buffer , &uaDesc ,
&output . uaView );
}
LISTING 4.36: Creation of a raw buﬀer.
Observe that the buﬀer description has a miscellaneous ﬂag diﬀerent from
that of a structured buﬀer, so byte-address buﬀers are not consider structured.
Also observe that the formats for the views are typeless, indicating that the
byte layout is unknown to D3D11 internals other than the memory comes in
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32-bit chunks (the
R32 part of the ﬂag). It is the programmer’s responsibility
to interpret the data as needed. The shader resource view description also
needs to use the
BuﬀerEx variation in order to specify a raw buﬀer.
4.4.4.7 Indirect-Argument Buﬀers
The last type of buﬀer involves drawing instances of geometry. A vertex
buﬀer may be used to provide per-vertex data for use by the vertex shader,
but D3D11 also allows you to provide per-instance data when you want to
have a world populated with lots of similar objects but each with minor
variations compared to the others. The D3D11 functions
DrawInstanced and
DrawIndexedInstance are used for drawing instances, the ﬁrst using the vertex
ordering as it naturally occurs and the second using an index buﬀer to control
the vertex ordering. Each of these functions has input parameters that are
speciﬁed programatically; that is, the parameters are stored in variables that
are reference in the code. D3D11 provides functions
DrawInstancedIndirect and
DrawIndexedInstanceIndirect that take indirect-argument buﬀers. The input pa-
rameters are stored in this buﬀer. This gives you a lot of ﬂexibility to control
drawing via the GPU rather than by CPU code.
Creation of an indirect-arguments buﬀer is shown in Listing 4.37. See List-
ing 4.23 for information about
SetUsageAccess and Listing 4.27 for information
about
CreateFrom.
D3D11 BUFFER DESC d es c ;
desc .ByteWidth = // number o f b y t e s in t he i n di re c t −arguments buffer
d e s c . Usage = D3D11
USAGE DEFAULT ;
desc . BindFlags = 0;
desc . CPUAccessFlags = 0;
desc . MiscFlags = D3D11
RESOURCE MISC DRAWINDIRECT ARGS ;
desc. StructureByteStride = 0;
SetUsageAccess (desc , input );
output . buffer = CreateFrom(desc , input );
LISTING 4.37: Creation of an indirect-arguments buﬀer.
The description’s miscellaneous ﬂag has a special value that must be set.
None of the samples in this book use instancing. For more details on how
to use instancing, directly or indirectly, see [57].
4.4.5 Textures
Unlike buﬀers where one description structure ﬁts all, the description struc-
tures for textures are partitioned by dimension. The 1D and 2D descriptions
support texture array resources in that you can specify the number of elements
in the array. I will discuss these separately, because an array of textures in an
HLSL program and a texture array are not the same thing. Suppose you have
N 2D textures that you want accessed by the program, all the same size and
format. Your options for accessing them are
// Shader reflection will show that these generate N bind points ,
// one per texture , with names ”arrayOfTextures[0]” through
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// ”arrayOfTextures[N− 1]”.
Texture2D<float4> arrayOfTextures[N];
// Shader reflection will show that this generates one bind point.
Texture2DArray <float4> textureArray ;
The form you choose might simply be a matter of taste when the total number
of resources for the shader is small. The limit on input resource bind points is
128 [46], so you might be hard pressed to reach that limit if you use an array
of textures.
The texture creations are set up so that mipmaps can be generated auto-
matically if the application programmer so desires. This is acceptable when
textures are used for drawing and the artists are content with the standard
ﬁltering algorithms used to generate the mipmap levels. If you want to gen-
erate the mipmaps procedurally, the mipmap parameters in creation must be
set diﬀerently. For GPGPU computing, the mipmap levels might have nothing
to do with the science of texturing, and switching among them can be tied
to some algorithmic behavior that you have invented. For the purpose of this
book, GTEngine currently uses mipmapping only for drawing.
In the texture creation code as in the buﬀer creation code, I assume there
is an
input object with all the information necessary to create the texture, and
there is an
output object to store the results. And I assume the existence of
an
ID3D11Device* device to handle the creation.
The setup and call to create an
ID3D11Texture<N>D object is common
to all textures of dimension N. The creation is conditional on whether or
not you want to have the texture initialized from CPU memory. Listing 4.38
deﬁnes helper functions that are used in all the sample creation code, one for
each dimension one, two, or three. It uses the abstract
input object described
previously. Also, the automatic mipmap settings are common to all texture
types, so we have a helper function for the setting.
ID3D11Texture1D∗ Create1From(desc , input)
{
ID3D11Texture1D∗ texture ;
if (input .data)
{
// Create the GPU version of the texture and initialize it with
// CPU data. Initialization is required for D3D11
USAGE IMMUTABLE .
D3D11
SUBRESOURCE DATA∗ data =
new D3D11
SUBRESOURCE DATA[ input . numSubresources ];
for ( sri = 0; sri < numSubresources ; ++s ri )
{
data[ sri ].pSysMem = input. subresource( sri ). data;
data [ s r i ]. SysMemPitch = 0;
data [ s r i ] . SysMemSlicePitch = 0;
}
device−>CreateTexture1D (&desc , data , &tex tur e ) ;
delete [] data;
}
else
{
// Create an uninitialized GPU version of the texture. The call
// w i l l f a i l i f you h ave c hos e n D3D11
USAGE IMMUTABLE .
device−>CreateTexture1D (&desc , nu llp tr , &te xt ure ) ;
}
return texture ;
}
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ID3D11Texture2D∗ Create2From(desc , input)
{
ID3D11Texture2D∗ texture ;
if (input .data)
{
// Create the GPU version of the texture and initialize it with
// CPU data. Initialization is required for D3D11
USAGE IMMUTABLE .
D3D11
SUBRESOURCE DATA∗ data =
new D3D11
SUBRESOURCE DATA[ input . numSubresources ];
for ( sri = 0; sri < numSubresources ; ++s ri )
{
data[ sri ].pSysMem = input. subresource( sri ). data;
data[ sri ]. SysMemPitch = input . subresource( sri ). rowPitch ;
data [ s r i ] . SysMemSlicePitch = 0;
}
device−>CreateTexture2D (&desc , data , &tex tur e ) ;
delete [] data;
}
else
{
// Create an uninitialized GPU version of the texture. The call
// w i l l f a i l i f you h ave c hos e n D3D11
USAGE IMMUTABLE .
device−>CreateTexture2D (&desc , nu llp tr , &te xt ure ) ;
}
return texture ;
}
ID3D11Texture3D∗ Create3From(desc , input)
{
ID3D11Texture3D∗ texture ;
if (input .data)
{
// Create the GPU version of the texture and initialize it with
// CPU data. Initialization is required for D3D11
USAGE IMMUTABLE .
D3D11
SUBRESOURCE DATA∗ data =
new D3D11
SUBRESOURCE DATA[ input . numSubresources ];
for ( sri = 0; sri < numSubresources ; ++s ri )
{
data[ sri ].pSysMem = input. subresource( sri ). data;
data[ sri ]. SysMemPitch = input . subresource( sri ). rowPitch ;
data[ sri ]. SysMemSlicePitch = input. subresource( sri ). slicePitch ;
}
device−>CreateTexture3D (&desc , data , &tex tur e ) ;
delete [] data;
}
else
{
// Create an uninitialized GPU version of the texture. The call
// w i l l f a i l i f you h ave c hos e n D3D11
USAGE IMMUTABLE .
device−>CreateTexture3D (&desc , nu llp tr , &te xt ure ) ;
}
return texture ;
}
void SetAutogenerateMipmaps(desc , input)
{
if (input .wantAutogeneratedMipmaps && ! input . wantSharing)
{
d e s c . Usage = D3D11
USAGE DEFAULT ;
desc . BindFlags |= D3D11
BIND RENDER TARGET ;
desc . CPUAccessFlags = 0 ;
desc . MiscFlags |= D3D11
RESOURCE MISC GENERATE MIPS ;
}
}
LISTING 4.38: Common code for creating an ID3D11Texture<N>D object.
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4.4.5.1 1D Textures
Listing 4.39 shows the creation of a 1D texture, including creation of views.
See Listing 4.23 for information about
SetUsageAccess and Listing 4.38 for
information about
Create1From and SetAutogenerateMipmaps.
D3D11 TEXTURE1D DESC d e s c ;
desc.Width = input.width;
desc. MipLevels = input. numMipmapLevels;
desc. ArraySize = 1; // single texture , not a texture array
desc.Format = input . format ; // constrained to DXGI
FORMAT choices
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc . MiscFlags = 0;
SetUsageAccess (desc , input );
SetAutogenerateMipmaps(desc , input );
output . texture = Create1From (desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.format ;
srDesc. ViewDimension = D3D11
SRV DIMENSION TEXTURE1D;
srDesc . Texture1D . MostDetailedMip = 0;
srDesc. Texture1D. MipLevels = input .numMipmapLevels;
device−>CreateShaderResourceView( output . texture , &srDesc , &output . srView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc.Format = desc.Format;
uaDesc . ViewDimension = D3D11
UAV DIMENSION TEXTURE1D ;
uaDesc. Texture1D. MipSlice = 0;
device−>CreateUnorderedAccessView( output . texture , &uaDesc ,
&output . uaView );
}
LISTING 4.39: Creation of a 1D texture.
D3D11 expects that you have as many
D3D11 SUBRESOURCE DATA objects
as there are subresources when you pass
input.data to CreateTexture1D.Ifyou
have fewer than expected, the call will crash due to a memory access exception.
Although the description guarantees that D3D11 can compute for itself the
number of subresources, it simply cannot know how much memory you have
allocated for
input.data.
Automatic generation of mipmaps requires that the resource be a render
target. It does not have to be an unordered access view. The latter can be
speciﬁed additionally if you want to write to the render target textures in a
shader.
The request for automatic generation of mipmaps does not actually lead
to computation behind the scenes. You actually have to make a context call,
as shown in Listing 4.40.
// device and associated immediate context
ID3D11Device∗ device ;
ID3D11DeviceContext∗ context ;
MyTexture input ; // All information is set before calling next function .
output = CreateMyDX11Texture (device , input );
if (input.wantAutogeneratedMipmaps)
{
context−>GenerateMips ( output . srView ) ;
}
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// M od if y t h e l ev e l −0 mipmap of output , e it h er by mapped w ri tes or by
// sta g i ng t e x tu r e s . Then make t h e n e x t c al l t o h av e t he o t h e r l e v e l s
// computed .
if (input.wantAutogeneratedMipmaps)
{
context−>GenerateMips ( output . srView ) ;
}
LISTING 4.40: Pseudocode for telling D3D11 to compute mipmap levels
after the level-0 mipmap is initialized or (later) modiﬁed.
Because the generation requires a context, you cannot have them computed
by the device (during the
CreateMyDX11Texture) call. If you really want them
computed at texture creation time, you will need to do so on the CPU at run-
time or precomputed and loaded from disk, using your own code for mipmap
computations. The
input.data must have all subresources computed ahead of
time in order to ﬁll in all levels during the
CreateTexture1D call. In GTEngine,
I use the context call immediately after creation.
4.4.5.2 2D Textures
The texture creation shown here is for HLSL objects of type
Texture2D
and RWTexture2D. Creation for render targets and depth-stencil textures is
discussedlaterinthesectionondrawtargets.
Listing 4.41 shows the creation of a 2D texture that does not use mul-
tisampling. However, if you wish to share this texture with another device
(from the same GPU), the construction allows this. The texture is created
without multisampling but does allow sharing. See Listing 4.23 for informa-
tion about
SetUsageAccess and Listing 4.38 for information about Create2From
and SetAutogenerateMipmaps.
D3D11 TEXTURE2D DESC d e s c ;
desc.Width = input.width;
desc. Height = input . height ;
desc. MipLevels = input. numMipmapLevels;
desc. ArraySize = 1; // single texture , not a texture array
desc.Format = input . format ; // constrained to DXGI
FORMAT choices
des c . SampleDesc . Count = 1 ; // no multisampling
d es c . SampleDesc . Q u a l i t y = 0 ; // no multisampling
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc. MiscFlags = ( input. wantSharing ? D3D11
RESOURCE MISC SH ARED : 0 );
SetUsageAccess (desc , input );
SetAutogenerateMipmaps(desc , input );
output . texture = Create2From (desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.format ;
srDesc. ViewDimension = D3D11
SRV DIMENSION TEXTURE2D;
srDesc . Texture2D . MostDetailedMip = 0;
srDesc. Texture2D. MipLevels = input .numMipmapLevels;
device−>CreateShaderResourceView( output . texture , &srDesc , &output . srView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc.Format = input. format ;
uaDesc . ViewDimension = D3D11
UAV DIMENSION TEXTURE2D ;
uaDesc. Texture2D. MipSlice = 0;
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hr = device−>CreateUnorderedAccessView( output . texture , &uaDesc ,
&output . uaView );
}
LISTING 4.41: Creation of a 2D texture for shader input and/or output
but not for render targets or depth-stencil textures.
See Listing 4.40 for generating mipmaps automatically.
If you requested that the 2D texture be shared by another device, you have
to do some COM programming to create the sharing
ID3D11Texture2D object
and you have to create views to go with it. Listing 4.42 shows the details.
The
HRESULT error handling is omitted for simplicity, but you really do need
this in case you have tried to share a texture that cannot be shared. The
GTEngine code handles the errors.
// a device and a 2D texture created with it
ID3D11Device∗ ownerDevice = // some devic e
ID3D11Texture2∗ ownertexture = // t e xt u r e c r e ated w i th o wn e rD e vi c e
ID3D11Device∗ sharingDevice = // the device that wants to share the tex ture
ID3D11Texture2∗ sharedTexture = // the textu re shared with ownerDevice
// Get access to the DXGI resource for ownerTexture and obtain a handle
// from it to be used for sharing .
IDXGIResource ∗ ownerResource = n ull pt r ;
ownertexture−>QueryInterface (
u ui do f ( IDXGIResource ) ,
( void∗∗)&ownerResource );
HANDLE handle = nullptr ;
ownerResource−>GetSharedHandle(&handle );
ownerResource−>Release ();
// Create the shared texture for the sharing device .
sharingDevice−>OpenSharedResource( handle ,
u u i d o f ( ID3D11Texture2D ) ,
( void∗∗)& sha red Te xtu re ) ;
LISTING 4.42: Code that shows how to share an ID3D11Texture2D object
created on one device with another device.
The sharing mechanism works as long as the two devices were created
by the same adapter; see Section 4.8 for a discussion about adapters. If you
have two devices, each created on a separate adapter, say, when you have two
independent GPUs working, you cannot share textures between them.
4.4.5.3 3D Textures
Listing 4.43 shows the creation of a 3D texture, including creation of views.
See Listing 4.23 for information about
SetUsageAccess and Listing 4.38 for
information about
Create3From and SetAutogenerateMipmaps.
D3D11 TEXTURE3D DESC d e s c ;
desc.Width = input.width;
desc. Height = input . height ;
desc.Depth = input .depth;
desc. MipLevels = input. numMipmapLevels;
desc.Format = input . format ;
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc . MiscFlags = 0;
SetUsageAccess (desc , input );
SetAutogenerateMipmaps(desc , input );
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output . texture = Create3From (desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.format ;
srDesc. ViewDimension = D3D11
SRV DIMENSION TEXTURE3D;
srDesc . Texture3D . MostDetailedMip = 0;
srDesc. Texture3D. MipLevels = input .numMipmapLevels;
device−>CreateShaderResourceView( output . texture , &srDesc , &output . srView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc.Format = input. format ;
uaDesc . ViewDimension = D3D11
UAV DIMENSION TEXTURE3D ;
uaDesc. Texture3D. MipSlice = 0;
uaDesc. Texture3D. FirstWSlice = 0;
uaDesc.Texture3D .WSize = input .depth;
device−>CreateUnorderedAccessView( output . texture , &uaDesc ,
&output . uaView );
}
LISTING 4.43: Creation of a 3D texture.
See Listing 4.40 for generating mipmaps automatically.
4.4.6 Texture Arrays
As mentioned previously, HLSL supports texture-array resources that use a
single bind point in a shader. Such resources exist for arrays of 1D textures and
for arrays of 2D textures but not for arrays of 3D textures. A cube map,which
consists of six textures covering the faces of a cube, has been used classically
for environment mapping and then later as table lookups for normal vectors.
Although a cube map might be thought of as a single texture, it is represented
in D3D11 as a 2D texture array consisting of six items.
4.4.6.1 1D Texture Arrays
Listing 4.44 shows the creation of a 1D texture array, including creation of
views. See Listing 4.23 for information about
SetUsageAccess and Listing 4.38
for information about
Create1From and SetAutogenerateMipmaps.
D3D11 TEXTURE1D DESC d e s c ;
desc.Width = input.width;
desc. MipLevels = input. numMipmapLevels;
desc. ArraySize = input .numArrayItems ;
desc.Format = input . format ;
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc . MiscFlags = 0;
SetUsageAccess (desc , input );
SetAutogenerateMipmaps(desc , input );
output . texture = Create1From (desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.format ;
srDesc. ViewDimension = D3D11
SRV DIMENSION TEXTURE1DARRAY ;
srDesc . Texture1DArray . MostDetailedMip = 0;
srDesc. Texture1DArray. MipLevels = input.numMipmapLevels;
srDesc . Texture1DArray . F ir stA rr ayS li ce = 0;
srDesc. Texture1DArray. ArraySize = input .numArrayItems ;
device−>CreateShaderResourceView( output . texture , &srDesc , &output . srView );
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if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc.Format = desc.Format;
uaDesc . ViewDimension = D3D11
UAV DIMENSION TEXTURE1DARRAY ;
uaDesc . Texture1DArray . MipSlice = 0;
uaDesc . Texture1DArray . Fi rs tA rr aySl ice = 0;
uaDesc.Texture1DArray. ArraySize = input .numArrayItems ;
device−>CreateUnorderedAccessView( output . texture , &uaDesc ,
&output . uaView );
}
LISTING 4.44: Creation of a 1D texture array.
One diﬀerence between creation of 1D texture arrays and 1D textures (List-
ing 4.39) is that
desc.ArraySize is set to a number presumably larger than one.
Another diﬀerence is that the abstract
input object must know how many sub-
resources there are and must deliver the subresource data pointers and pitches
correctly to the
D3D11 SUBRESOURCE DATA objects. The views, however, have
diﬀerent
ViewDimension values and additional members to set.
4.4.6.2 2D Texture Arrays
Listing 4.45 shows the creation of a 2D texture array, including creation of
views. See Listing 4.23 for information about
SetUsageAccess and Listing 4.38
for information about
Create2From and SetAutogenerateMipmaps.
D3D11 TEXTURE2D DESC d e s c ;
desc.Width = input.width;
desc. MipLevels = input. numMipmapLevels;
desc. ArraySize = input .numArrayItems ;
desc.Format = input . format ;
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc . MiscFlags = 0;
SetUsageAccess (desc , input );
SetAutogenerateMipmaps(desc , input );
output . texture = Create2From (desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.format ;
srDesc. ViewDimension = D3D11
SRV DIMENSION TEXTURE2DARRAY ;
srDesc . Texture2DArray . MostDetailedMip = 0;
srDesc. Texture2DArray. MipLevels = input.numMipmapLevels;
srDesc . Texture2DArray . F ir stA rr ayS li ce = 0;
srDesc. Texture2DArray. ArraySize = input .numArrayItems ;
device−>CreateShaderResourceView( output . texture , &srDesc , &output . srView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc.Format = desc.Format;
uaDesc . ViewDimension = D3D11
UAV DIMENSION TEXTURE2DARRAY ;
uaDesc . Texture2DArray . MipSlice = 0;
uaDesc . Texture2DArray . Fi rs tA rr aySl ice = 0;
uaDesc.Texture2DArray. ArraySize = input .numArrayItems ;
device−>CreateUnorderedAccessView( output . texture , &uaDesc ,
&output . uaView );
}
LISTING 4.45: Creation of a 2D texture array.
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One diﬀerence between creation of 2D texture arrays and 2D textures (List-
ing 4.41) is that
desc.ArraySize is set to a number presumably larger than one.
Another diﬀerence is that the abstract
input object must know how many sub-
resources there are and must deliver the subresource data pointers and pitches
correctly to the
D3D11 SUBRESOURCE DATA objects. The views, however, have
diﬀerent
ViewDimension values and additional members to set.
4.4.6.3 Cubemap Textures
Listing 4.46 shows the creation of a cubemap texture, including creation of
views. See Listing 4.23 for information about
SetUsageAccess and Listing 4.38
for information about
Create2From and SetAutogenerateMipmaps.
D3D11 TEXTURE2D DESC d e s c ;
desc.Width = input.width;
desc. MipLevels = input. numMipmapLevels;
desc. ArraySize = 6;
desc.Format = input . format ;
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc . MiscFlags = D3D11
RESOURCE MISC TEXTURECUBE ;
SetUsageAccess (desc , input );
SetAutogenerateMipmaps(desc , input );
output . texture = Create2From (desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.format ;
srDesc. ViewDimension = D3D11
SRV DIMENSION TEXTURECUBE ;
srDesc . TextureCube . MostDetailedMip = 0;
srDesc. TextureCube . MipLevels = input .numMipmapLevels;
device−>CreateShaderResourceView( output . texture , &srDesc , &output . srView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc.Format = desc.Format;
uaDesc . ViewDimension = D3D11
UAV DIMENSION TEXTURE2DARRAY ;
uaDesc . Texture2DArray . MipSlice = 0;
uaDesc . Texture2DArray . Fi rs tA rr aySl ice = 0;
uaDesc.Texture2DArray. ArraySize = input .numArrayItems ;
device−>CreateUnorderedAccessView( output . texture , &uaDesc ,
&output . uaView );
}
LISTING 4.46: Creation of a cubemap texture.
Two diﬀerences between creation of a texture cube and a 2D texture array
(Listing 4.45) are that
desc.ArraySize is set explicitly to six and desc.MiscFlags
is set to D3D11 RESOURCE MISC TEXTURECUBE. Another diﬀerence is that
the abstract
input object must know how many subresources there are and
must deliver the subresource data pointers and pitches correctly to the
D3D11 SUBRESOURCE DATA objects. The shader resource views have diﬀer-
ent members but the unordered access views are the same; there is no UAV
dimension for cube maps.
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4.4.6.4 Cubemap Texture Arrays
Listing 4.47 shows the creation of a cubemap texture array, including cre-
ation of views. See Listing 4.23 for information about
SetUsageAccess and List-
ing 4.38 for information about
Create2From and SetAutogenerateMipmaps.
D3D11 TEXTURE2D DESC d e s c ;
desc.Width = input.width;
desc. MipLevels = input. numMipmapLevels;
desc. ArraySize = 6∗ input .numCubes ;
desc.Format = input . format ;
desc . BindFlags = D3D11
BIND SHADER RESOURCE ;
desc . MiscFlags = D3D11
RESOURCE MISC TEXTURECUBE ;
SetUsageAccess (desc , input );
SetAutogenerateMipmaps(desc , input );
output . texture = Create2From (desc , input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.format ;
srDesc. ViewDimension = D3D11
SRV DIMENSION TEXTURECUBEARRAY ;
srDesc . TextureCubeArray . MostDetailedMip = 0;
srDesc. TextureCubeArray . MipLevels = input .numMipmapLevels;
srDesc . TextureCubeArray . First2DArrayFace = 0;
srDesc. TextureCubeArray .NumCubes = input .numCubes;
device−>CreateShaderResourceView( output . texture , &srDesc , &output . srView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc.Format = desc.Format;
uaDesc . ViewDimension = D3D11
UAV DIMENSION TEXTURE2DARRAY ;
uaDesc . Texture2DArray . MipSlice = 0;
uaDesc . Texture2DArray . Fi rs tA rr aySl ice = 0;
uaDesc.Texture2DArray. ArraySize = input .numArrayItems ;
device−>CreateUnorderedAccessView( output . texture , &uaDesc ,
&output . uaView );
}
LISTING 4.47: Creation of a cubemap texture array.
Two diﬀerences between creation of a texture cube array and a 2D texture ar-
ray (Listing 4.45) are that
desc.ArraySize is set explicitly to six times the number
of cubes and
desc.MiscFlags is set to D3D11 RESOURCE MISC TEXTURECUBE.
Another diﬀerence is that the abstract
input object must know how many
subresources there are and must deliver the subresource data pointers and
pitches correctly to the
D3D11 SUBRESOURCE DATA objects. The shader re-
source views have diﬀerent members but the unordered access views are the
same; there is no UAV dimension for cube map arrays.
4.4.7 Draw Targets
Draw targets are a construct I use in GTEngine to encapsulate one or
more render targets and optionally a depth-stencil texture for the purpose of
oﬀscreen rendering or computing within a pixel shader. In D3D11, all render
targets must be enabled at the same time, so the encapsulation makes sense.
Using the same pattern of creation as for single textures, Listing 4.48 shows
the creation of a render target, including creation of views. See Listing 4.38
for information about
Create2From.





[image: ]GPU Computing 199
D3D11 TEXTURE2D DESC d e s c ;
desc.Width = input.width;
desc. Height = input . height ;
desc. MipLevels = input. numMipmapLevels;
desc. ArraySize = 1;
desc.Format = input . format ;
des c . SampleDesc . Count = 1 ;
d es c . SampleDesc . Q u a l i t y = 0 ;
d e s c . Usage = D3D11
USAGE DEFAULT ;
desc . BindFlags = D3D11
BIND SHADER RESOURCE | D3D11 BIND RENDER TARGET ;
des c . CPUAccessFlags = D3D11
CPU A CCESS NONE;
desc. MiscFlags = ( input. wantShared ?
D3D11
RESOURCE MISC S HARED : D3D11 RESOURCE MISC NONE ) ;
if (input.wantShaderOutput )
{
desc . BindFlags |= D3D11
BIND UNORDERED ACCESS ;
}
if (input.wantAutogeneratedMipmaps && !input.wantShared)
{
desc . MiscFlags |= D3D11
RESOURCE MISC GENERATE MIPS ;
}
output . texture = Create2From( input );
D3D11
SHADER RESOURCE VIEW DESC srDesc ;
srDesc. Format = input.format ;
srDesc. ViewDimension = D3D11
SRV DIMENSION TEXTURE2D;
srDesc . Texture2D . MostDetailedMip = 0;
srDesc. Texture2D. MipLevels = input .numMipmapLevels;
device−>CreateShaderResourceView( output . texture , &srDesc , &output . srView );
D3D11
RENDER TARGET VIEW DESC r t D e s c ;
rtDesc .Format = input.format ;
rtDesc . ViewDimension = D3D11
RTV DIMENSION TEXTURE2D ;
rtDesc .Texture2D. MipSlice = 0;
device−>CreateRenderTargetView ( output . texture , &rtDesc , &output . rtView );
if (input.wantShaderOutput )
{
D3D11
UNORDERED ACCESS VIEW DESC uaDesc ;
uaDesc.Format = input. format ;
uaDesc . ViewDimension = D3D11
UAV DIMENSION TEXTURE2D ;
uaDesc. Texture2D. MipSlice = 0;
hr = device−>CreateUnorderedAccessView( output . texture , &uaDesc ,
&output . uaView );
}
LISTING 4.48: Creation of a render target.
Listing 4.49 shows the creation of a depth-stencil texture, including cre-
ation of views. Such a texture cannot be a shader input; you cannot set the
D3D11 BIND SHADER RESOURCE ﬂag. There is also no reason to initialize the
texture. You can initialize values to a constant using clearing, just as is done
for the depth-stencil texture of the back buﬀer. Mipmapping is not supported.
You cannot use this texture as a shader output.
D3D11 TEXTURE2D DESC d e s c ;
desc.Width = input.width;
desc. Height = input . height ;
desc . MipLevels = 1;
desc. ArraySize = 1;
desc .Format = static
cast<DXGI FORMAT>(texture−>GetFormat ());
des c . SampleDesc . Count = 1 ;
d es c . SampleDesc . Q u a l i t y = 0 ;
d e s c . Usage = D3D11
USAGE DEFAULT ;
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desc . BindFlags = D3D11 BIND DEPTH STENCIL ;
des c . CPUAccessFlags = D3D11
CPU A CCESS NONE;
desc. MiscFlags = ( input. wantShared ?
D3D11
RESOURCE MISC S HARED : D3D11 RESOURCE MISC NONE ) ;
device−>CreateTexture2D(&desc , nullptr , &output . texture ) ;
// C r e a t e a v i ew o f t he t ex tu r e .
CreateDSView( device , d esc ) ;
LISTING 4.49: Creation of a depth-stencil texture.
The depth-stencil textures are quite restrictive. If you need to consume
depth output from a draw target, you can read it back from the GPU and
copy it to a 2D texture. Of course, you will need to interpret the depth-
stencil data when consuming it. For example, if the depth format is 24-bits
of depth and 8-bits of stencil, the 2D texture you copy to can be a 32-bit
unsigned integer. The 8 high-order bits contain the stencil and the 24 low-order
bits contain the depth. However, if you really want the depth information, it
is easier to pass the perspective depth as an output of the vertex shader
(
clipPosition.z/clipPosition.w), set it as an input to the pixel shader, and write it
to a render target. The render-target texture can be either a shader input or
a shader output for another shader.
An example to demonstrate various features of draw targets is
GeometricTools/GTEngine/Samples/Basics/MultipleRenderTargets
A DrawTarget object is created with two render targets and a depth-stencil
texture. The application renders a textured square to the draw target. To make
it interesting, the ﬁrst render target, say,
renderTarget0, stores the pixel texture
color and the second render target, say,
renderTarget1,storestheSV POSITION
value that is generated by the vertex shader. The xy-coordinates of this value
are the location of the pixel where the drawing is to occur, but with one-half
added to each. The vertex shader also has an output that is the perspective
depth, a value z ∈ [0, 1]. The pixel shader converts this to linearized depth
z

∈ [0, 1] using
z

=
d
min
z
d
max
(1 − z)+d
min
z
where d
min
is the near distance of the view frustum and d
max
is the far distance
of the view frustum. The linearized depth is written to the depth-stencil tex-
ture because the semantic of the output is
SV DEPTH. This means your depth
buﬀer no longer stores information about perspective depth. However, only a
single square is in the scene, so there is no side eﬀect regarding occlusion.
In half of the application window, the
renderTarget0 is drawn to the screen,
so you see what appears to be the 3D rendering of the square. You can move
the camera and rotate the square via the virtual trackball.
After drawing the render target, the depth-stencil texture is read back from
the GPU and copied to a 32-bit single-channel ﬂoat texture, say,
linearDepth.
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The render targets are created with shader resource views, so they can
both be used as shader inputs. The ﬁrst render target is created so that it is
a shader output—it has an unordered access view associated with it. This is
in addition to the texture being bound as a render target. The application has
another shader whose inputs are
renderTarget0, renderTarget1,andlinearDepth.
Moreover,
renderTarget0 is a shader output. The shader draws to the other
half of the window grayscale values corresponding to the linearized depth,
not sampled from the incoming window location; rather, they are sampled
using the screen positions stored in
renderTarget1 that were generated by the
3D rendering of the square. At the same time, the color values stored in
renderTarget0 are set to a constant color.
Finally,
renderTarget0 is set for automatic mipmap generation. The applica-
tion has veriﬁcation code that reads back level one of the mipmap and writes
it to a PNG ﬁle. The render target is 1024
2
and the PNG ﬁle has an image of
size 512
2
. After drawing to the window, the render target is read back again
to verify that the second shader has set it to a constant color. Level zero is
written to a PNG ﬁle to show it indeed is constant.
4.5 States
The state objects related to drawing are blending control (ID3D11BlendState),
depth-stencil control (
ID3D11DepthStencilState), and rasterization control
(
ID3D11RasterizerState). The sampler state has a similar creation interface, al-
though it probably should be thought of more as an object to be bound to a
shader rather than as a controller of global drawing state.
States are created similar to the buﬀer and texture resources: a description
structure is assigned the desired state values and passed to a creation function,
producing an interface pointer for the corresponding state. For example,
D3D11 BLEND DESC bDe sc ; // F i l l in t he d e s cr i pt i o n f i e l d s .
ID3D11BlendState∗ bState ;
HRESU LT h r = d e v i c e −>CreateBlendState (&bDesc , &bState );
D3D11
DEPTH STENCIL DESC dsDesc ; // Fill in the description fields .
ID3D11DepthStencilState∗ dsState ;
HRESU LT h r = d e v i c e −>CreateDepthStencilState(&dsDesc , &dsState );
D3D11
RASTERIZER DESC rDesc ; // F i l l in t he de s c r i p ti o n f i e l d s .
ID3D11RasterizerState∗ rState ;
HRESU LT h r = d e v i c e −>CreateRasterizerState(&rDesc , &rState );
D3D11
SAMPLER DESC s Des c ; // Fill in the description fields .
ID3D11SamplerState∗ sState ;
HRESU LT h r = d e v i c e −>CreateSamplerState (&sDesc , &sState );
The blend state description structure has an array of eight descriptor struc-
tures of type
D3D11 RENDER TARGET BLEND DESC. A context may have up
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to eight render targets attached, each whose blending is controlled by one of
these descriptors.
Despite the usage diﬀerences between sampler state and the other states,
GTEngine groups together the four states as derived classes from a base class
named
DX11DrawingState.
4.6 Shaders
The creation and basic use of vertex, geometry, pixel, and compute shaders
are presented in this section.
4.6.1 Creating Shaders
Section 4.2.4 contains an in-depth discussion about compiling HLSL code,
either oﬄine using
FXC or at runtime using the D3DCompile function. The
output of
D3DCompile is an ID3DBlob* interface that eﬀectively wraps a chunk
of memory that contains the compiled code and the information necessary for
shader reﬂection. Creation of shaders simply requires access to this blob, as
shown in Listing 4.50. The
ID3D11ClassLinkage capabilities are not used here.
// The blob associated with compiling a shader .
ID3DBlob∗ blob = <D3DCompile o ut put >;
void const∗ buffer = blob−>GetBufferPointer ();
size
t numBytes = blob−>GetBufferSize ();
HRESU LT h r ;
ID3D11VertexShader∗ vshader = nullptr ;
hr = device −>CreateVertexShader ( buffer , numBytes , nullptr , &vshader );
ID3D11GeometryShader∗ gshader = nullptr ;
hr = device −>CreateGeometryShader ( buffer , numBytes , nul lp tr , &gshader ) ;
ID3D11PixelShader∗ pshader = nullptr ;
hr = device −>CreatePixelShader( buffer , numBytes , nullptr , &pshader);
ID3D11ComputeShader∗ cshader = nullptr ;
hr = device −>CreateComputeShader ( b uf fer , numBytes , n ul lpt r , &csha der ) ;
LISTING 4.50: Creation of vertex, geometry, pixel, and compute shaders.
4.6.2 Vertex, Geometry, and Pixel Shader Execution
During application runtime, you will be executing various instructions
through the immediate context related to drawing. When ﬁnished, you need
to initiate the buﬀer swapping. Eﬀectively, this tells the graphics system to
commit to executing whatever drawing commands have been queued up. For
real-time drawing in a single-threaded application, the drawing is performed
during application idle time. A typical loop is shown next in pseudocode:
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while ( application has idle time)
{
clear
color and depth stencil buffers ;
issue
drawing commands ;
swapChain−>Present ( syncInterval , flags ); // Swap buffers .
}
The Present call is for D3D11.0. When the syncInterval is set to zero, the
buﬀers are presented to the display immediately without synchronization to
vertical blanking. A value of 1, 2, 3, or 4 allows you to wait for vertical blanking
the speciﬁed number of times. For example, if you have a 60 Hz monitor—
and assuming you can draw your scene at 60 Hz, a
syncInterval value of 1 will
present the back buﬀer at 60 Hz. If the drawing takes less than 1/60 of a
second, the
Present call will block until 1/60 of a second has elapsed (and the
display is ready for a refresh draw). A
syncInterval of 2 will present the back
buﬀer at 30 Hz (2 times 1/60 of a second).
The
ﬂags parameter is a combination of bit ﬂags of type DXGI PRESENT.
The common ﬂag is 0, indicating that the current buﬀer should simply be pre-
sented. Other ﬂags are used for advanced features including restricting output
(not all monitors display the results), stereo rendering, testing, and for allow-
ing custom presentation, among other options. The MSDN documentation
suggests that for D3D11.1 you use
Present1 [42], which has an additional pa-
rameter of type
DXGI PRESENT PARAMETERS. The parameter allows you to
work with dirty rectangles and scrolling, useful for limiting drawing on devices
for which you want to minimize power consumption.
To illustrate the basic sequence of drawing commands, consider a geomet-
ric primitive with a vertex buﬀer and optionally an index buﬀer. Suppose that
we have a vertex shader, optionally a geometry shader, and a pixel shader to
execute and that none of the shaders has UAV outputs. The pixel shader out-
put goes to the back buﬀer; that is, no draw targets are enabled. Listing 4.51
shows one way to draw the primitive. This is pseudocode to avoid repetition
of code that varies for each shader type only by the D3D11 interface names.
In GTEngine, a shader type and its various interfaces are encapsulated into a
class to hide the dependency of interface names on shader type.
/ / the D3D11 o b j e c t s r eq u i r e d f o r d ra wing the p r i m i t i v e
ID3D11DeviceContext∗ context ; // the act ive immediate context
ID3D11Buffer∗ vbuffer ; // vertex buffer
ID3D11Buffer∗ ibuffer ; // index buffer
ID3D11VertexShader∗ Vshader ;
ID3D11GeometryShader∗ Gshader;
ID3D11PixelShader∗ Pshader ;
ID3D11InputLayout∗ layout ; // connects vbuffer elements and Vshader inputs
// Enable the vertex buffer .
UINT vbindpoint ; // get from shader reflection
UINT vbindcount = 1; // get from shader reflection , using 1 for simplicity
ID3D11Buffer∗ vbuffers [ vbindcount ] = { vbuffer } ;
UINT vstrides [ vbindcount ] = { size
of vertex } ;
UINT voffsets [ vbindcount ] = { starting
offset in vbuffer } ;
context−>IASetVertexBuffers ( vbindpoint , vbindcount , vbuffers , vstrides ,
voffsets );
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// Enable the index buffer .
DXGI
FORMAT i f o r m a t ; // DXGI FORM AT R32 UINT o r D XGI FORM AT R16 UINT
UINT ioffset = { starting
offset in ibuffer } ;
context−>IASetIndexBuffer ( ibuffer , iformat , ioffset );
// Enable the input layout .
context−>IASetInputLayout (layout );
// Enable the shaders .
for (each shader type $ in {V, G, P})
{
// Attach constant buffers .
UINT cbindpoint ; // get from shader reflection
UINT cbindcount ; // get from shader reflection
ID3D11Buffer∗ cbuffers [ cbindcount ];
context−>$SSetConstantBuffers ( cbindpoint , cbindcount , cbuffers );
// Attach the input resources .
UINT r b i n d p o i n t ; // get from shader reflection
UINT rbindcount; // get from shader reflection
ID3D11ShaderResourceView ∗ srViews [ rbindcount ];
context−>$SSetShaderResources( rbindpoint , rbindcount , srViews );
// Attach the samplers ( i f any ) f or use by te xt ure s .
UINT sbindpoint; // get from shader re flection
UINT sbindcount ; // get from shader reflect ion
ID3D11SamplerState∗ samplerStates [ sbindcount ];
context−>$SSetSamplers (sbindpoint , sbindcount , samplerStates );
// Enable the shader for execution .
UINT numInstances ; // cu r ren t ly n o t u s ed i n GTEngine
ID3D11ClassInstance∗ instances [ numInstances ];
context−>$SSetShader ($shader , instances , numInstances );
}
// These are obtained from the client−side vertex buffer and index buffer .
UINT vertexOffset ;
UINT numActiveIndices ;
UINT firstIndex ;
D3D11
PRIMITIVE TOPOLOGY topology ; // what the indices represent
context−>IASetPrimitiveTopology(topology );
context−>DrawIndexed( numActiveIndices , firstIndex , vertexOffset );
LISTING 4.51: Typical setup for executing vertex, geometry, and pixel
shaders.
If the vertex ordering in the buﬀer represents the primitives you want to
draw, you do not need an index buﬀer but you do need the topology informa-
tion. The enabling of the index buﬀer is therefore conditional. In GTEngine,
I designed a class
IndexBuﬀer to store indices and topology. In the case that
the vertex buﬀer ordering does not require indices,
IndexBuﬀer is still used but
it stores only the topology. The drawing call for the non-indexed case is
// These are obtained from the client−side vertex buffer and index buffer .
UINT numActiveVertices ;
UINT vertexOffset ;
D3D11
PRIMITIVE TOPOLOGY topology ; // what the vertices represent
context−>IASetPrimitiveTopology(topology );
context−>Draw( numActiveVertices , vertexOffset );
It is possible to query for the number of drawn pixels. This is sometimes
useful for debugging. Listing 4.52 shows the details.
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uint64 t numPixelsDrawn = 0 ;
D3D11
QUERY DESC d e s c ;
d e s c . Query = D3D11
QUERY OCCLUSION ;
desc . MiscFlags = D3D11
QUERY MISC NONE ;
ID3D11Query∗ query ;
device−>CreateQuery (&desc , &query );
context−>Begin( query ) ;
context−>Draw ∗ (...);
context−>End( query ) ;
while (S
OK != context−>GetData ( query ,&numPixelsDrawn , sizeof (UINT64) ,0))
{
// Wait for end of query .
}
query−>Release();
LISTING 4.52: Using a query to count the number of drawn pixels.
Compute shaders typically have unordered access views for shader output.
There is an interface call
ID3D11DeviceContext::CSSetUnorderedAccessViews that
allows you to enable these before compute-shader execution. D3D11.0 allows
pixel shaders to use unordered access views. However, there is no interface
named
ID3D11DeviceContext::PSSetUnorderedAccessViews. The output of pixel
shaders are normally render targets, and the render targets must be enabled so
you can write to them. If the pixel shader has unordered access views, the ren-
der targets and the unordered access views must be set simultaneously with a
single call to
ID3D11DeviceContext::OMSetRenderTargetsAndUnorderedAccessViews,
which is part of the output merger (OM) stage. The technical diﬃculty is that
you might already have bound render targets, even if only the back buﬀer.
To avoid the complicated ﬂow of logic to have everything enabled and ready
to draw, the
OMSet* call has a special parameter that tells D3D11 to keep
the currently bound render targets but to set the incoming unordered access
views. Speciﬁcally,
// the unordered access views of a pixel shader output resource
UINT ubindpoint; // get from shader re flection
UINT ubindcount; // get from shader reflection
ID3D11UnorderedAccessView ∗ uaviews [ ubindcount ];
UINT initialCounts [ ubindcount ]; // used by buffers with counters
context−>OMSetRenderTargetsAndUnorderedAccessViews (
D3D11
KEEP RENDER TARGETS AND DEPTH STENCIL, nullptr , nullptr ,
ubindpoint , ubindcount , uaviews , initialCounts );
D3D11.1 allows all the shader types to have unordered access views.
4.6.3 Compute Shader Execution
Setting up for the execution of a compute shader is relatively simple and
uses the consistent approach that was discussed for drawing in Section 4.6.2.
Resources are attached to the shader as constant buﬀers and as views: shader
resource views (SRVs) for inputs and unordered access views (UAVs) for out-
put. Listing 4.53 shows the typical set up and execution.
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// Attach constant buffers .
UINT cbindpoint ; // get from shader reflection
UINT cbindcount ; // get from shader reflection
ID3D11Buffer∗ cbuffers [ cbindcount ];
context−>CSSetConstantBuffers (cbindpoint , cbindcount , cbuffers );
// Attach the input resources .
UINT r b i n d p o i n t ; // get from shader reflection
UINT rbindcount; // get from shader reflection
ID3D11ShaderResourceView ∗ srViews [ rbindcount ];
context−>CSSetShaderResources ( rbindpoint , rbindcount , srViews );
// Attach the output resourc es .
UINT ubindpoint; // get from shader re flection
UINT ubindcount; // get from shader reflection
ID3D11UnorderedAccessView ∗ uaviews [ ubindcount ];
unsigned int in it ia lc ou nt s [ ubindCount ]; // used by buffers with counters ;
context−>CSSetUnorderedAccessViews ( ubindPoint , ubindcount , uaviews ,
initialcounts );
// Attach the samplers ( i f any ) f or use by text ure s .
UINT sbindpoint; // get from shader re flection
UINT sbindcount ; // get from shader reflection
ID3D11SamplerState∗ samplerStates [ sbindcount ];
context−>CSSetSamplers(sbindpoint , sbindcount , samplerStates );
// Enable the compute shader for execution .
ID3D11ComputeShader∗ cshader ; // compute shader to execute
UINT numInstances ; // currently not used in GTEngine
ID3D11ClassInstance∗ instances [ numInstances ];
context−>CSSetShader ( cshader , instances , numInstances ) ;
// Execute the compute shader .
context−>Dis pat c h (numXGroups , numYGroups , num ZGro ups ) ;
LISTING 4.53: Typical setup for executing a compute shader.
The
Dispatch call is not blocking, so it is asynchronous in the sense that
the GPU can execute the shader while the CPU continues to execute other
instructions. If you need to read back the shader output from GPU to CPU
immediately after the dispatch, a stall will occur because the CPU must wait
for the GPU to ﬁnish.
Sometimes you might want the GPU to ﬁnish anyway before continuing
CPU execution. In my experience, this was sometimes necessary because the
display driver would shut down and restart due to the GPU taking too long on
the queued command lists. In D3D11.0, the timeout when executing a GPU
packet is two seconds. D3D11.1 gives you the ability to disable the timeout, al-
though you should be cautious about doing so. See the MSDN documentation
on the device creation ﬂag
D3D11 CREATE DEVICE DISABLE GPU TIMEOUT
[28]. If you want to wait for the GPU to ﬁnish, you can launch a D3D11
query after the
Dispatch call. The query is shown in Listing 4.54.
D3D11 QUERY DESC d esc ;
d e s c . Query = D3D11
QUERY EVENT ;
desc . MiscFlags = 0;
ID3D11Query∗ query = n ullpt r ;
if (SUCC EEDED( d e v i c e −>CreateQuery (&desc , &query ) ))
{
immediateContext−>End( query );
BOOL d a t a = 0 ;
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while (S OK != immediateContext−>GetData ( query ,&data , sizeof (data),0))
{
// Wa it fo r t he GPU t o f i n i s h .
}
query−>Release ();
}
LISTING 4.54: A query that causes the CPU to wait for the GPU to ﬁnish
executing its current command list.
4.7 Copying Data between CPU and GPU
As powerful as GPUs are for computing, you have to upload data from
the CPU to the GPU in order to compute. And you might have to download
computed results from the GPU to the CPU. For data-heavy processing, the
memory copies are a major bottleneck.
In this section, I will discuss several ways for copying data between the
CPU and GPU. These are all single-threaded operations, occurring on the
thread in which the device was created. Similar to the discussions in Section
4.4 on the creation of resources, this discussion assumes the existence of an
immediate
context and a client-side input that stores all necessary information
for the copy to succeed.
Applications that generate a lot of texture data can be multithreaded for
performance regarding memory copies. The processing of the textures occurs
on the thread in which the device and immediate context were created. The
GPU resource creation depends only on the device, and the device calls are
thread safe, assuming you did not create the device to be single threaded. If
the texture processing is fast enough to exceed the rate of texture generation,
a producer-consumer model may be used to parallelize the creation and the
processing. See Section 7.1 about the sample application
GeometricTools/GTEngine/Samples/Graphics/VideoStreams
that implements this concept.
The various mechanisms to copy data between processors are shown in
Figure 4.12.
4.7.1 Mapped Writes for Dynamic Update
For resources that were created with the D3D11 USAGE DYNAMIC ﬂag, the
mechanism to update the GPU memory uses memory mapping.Updateofa
buﬀer resource is shown in Listing 4.55. The abstract
input object stores an
oﬀset into the data. The number of active bytes must be selected to ensure
that the copied block of memory is a subblock of
input.data.Theoutput.buﬀer
was created using the code of Section 4.4.
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FIGURE 4.12: Copying data between processors.
D3D11 MAPPED SUBRESOURCE s ub ;
context−>Map ( out put . b u f f e r , 0 , D3D11
MAP WRITE DISCARD, 0 , &sub ) ;
memcpy(sub .pData , input . data + input . offset , input .numActiveBytes );
context−>Unmap( output . buffer , 0);
LISTING 4.55: Updating an ID3D11Buﬀer object using mapped writes.
The
ID3D11DeviceContext::Map function [39] takes as input the buﬀer object,
the subresource index zero because buﬀers have only one subresource, a
D3D11 MAP value [29], and a D3D11 MAP FLAG value [30]; the function then
ﬁlls in a
D3D11 MAPPED SUBRESOURCE subresource data structure [31]. The
returned
HRESULT is not tested in the example for simplicity, but your code
should test it; the GTEngine code does. The memory is locked for exclusive
access while the mapping is in eﬀect. This subresource structure has a pointer
sub.pData to the mapped memory. After you have written to it, you need to
unlock the memory with the
ID3D11DeviceContext::Unmap function [40]. The
map ﬂag
D3D11 MAP WRITE DISCARD tells D3D11 that the previous buﬀer
contents can be discarded and are considered to be undeﬁned.
Updating a texture resource using memory mapping requires more work.
In particular, 2D and 3D textures might not be stored in contiguous GPU
memory. When the textures are created and initialized, a row pitch for 2D and
3D textures and a slice pitch for 3D textures are provided for the source data
(your CPU data). The GPU versions might have to adhere to requirements
of byte alignment diﬀerent from those on the CPU—this is akin to Intel SSE
data requiring 16-byte alignment when CPU data only needs 4-byte alignment.
When the
D3D11 MAPPED SUBRESOURCE members are ﬁlled in, you have to
copy rows and slices one-by-one when the pitches do not match your CPU
version of the texture. Update of a texture resource is shown in Listing 4.56.
The
output.texture was created using the code of Section 4.4.
unsigned int sri ; // the index for the subresource to be updated
D3D11
MAPPED SUBRESOURCE s u b ;
context−>Map ( outpu t . t e x t u r e , s r i , D3D11
MAP WRITE DISCARD, 0 , &sub ) ;
// the client−side subresource information
Subresource csub = input. subresource( sri );
if (input.numDimensions == 1)
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{
// Mipmap levels for 1D textures and texture arrays are in contiguous
/ / memory .
memcpy (sub . pData , csub . data , csub . GetNumBytesFor( csub . l ev el ));
}
else if (input .numDimensions == 2)
{
unsigned int numRows = csub.GetNumRowsFor(csub. level );
CopyPitched2(numRows, csub . rowPitch , csub . data ,
sub . RowPitch , sub . pData );
}
else // input .numDimensions == 3
{
unsigned int numRows = csub.GetNumRowsFor(csub. level );
unsigned int numSlices = csub . GetNumSlicesFor ( csub . l ev e l );
CopyPitched3(numRows , numSlices , csub . rowPitch , csub . s licePitch ,
csub . data , sub . RowPitch , sub . DepthPitch , sub . pData ) ;
}
context−>Unmap ( t ex t u r e , s r i ) ;
LISTING 4.56: Updating an ID3D11Texture object using mapped writes.
The client-side subresource information includes the texture element format,
the number of texture array items, the number of mipmap levels, and mipmap
image sizes. The
csub.Get* calls access that information. Again for simplicity,
the
HRESULT value for the Map function is not handled but should be in real
code. The dimension-speciﬁc copies are shown in Listing 4.57.
void CopyPitched2(
unsigned int numRows ,
unsigned int srcRowPitch , void const∗ srcData ,
unsigned int trgRowPitch , void∗ trgData )
{
if ( srcRowPitch == trgRowPitch )
{
// The memory is contiguous.
memcpy( trgData , srcData , trgRowPitch∗numRows ) ;
}
else
{
// Padding was added to each row of the textur e , so we must
// copy a row at a time to compensate fo r d i f f e r i n g pi tch es .
unsigned int numRowBytes = std : : min( srcRowPitch , trgRowPitch );
char const∗ srcRow = static
cast<char const∗>(srcData );
char∗ trgRow = static
cast<char∗>(trgData );
for ( unsigned int row = 0; row < numRows ; ++row )
{
memcpy ( tr gRow , srcRow , n um RowB y te s ) ;
srcRow += srcR owPitch ;
trgRow += t rgR owPi tch ;
}
}
}
void CopyPitched3( unsigned int numRows , unsigned int numSlices ,
unsigned int srcRowPitch , unsigned int srcSlicePitch ,
void const∗ srcData , unsigned int trgRowPitch ,
unsigned int trgSlicePitch , void∗ trgData )
{
if ( srcRowPitch == trgRowPitch && srcS lic ePitc h == tr gSl ic ePi tch )
{
// The memory is contiguous.
memcpy ( trgData , s rcDa ta , t r g S l i c e P i t c h ∗ numSlices );
}
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else
{
// Padding was added to each row and/ or s l i c e of the textur e , so
// we must copy the data to compensate f or d i f f e r i n g p itc he s .
unsigned int numRowBytes = std : : min( srcRowPitch , trgRowPitch );
char const∗ srcSlice = static
cast<char const∗>(srcData );
char∗ trgSlice = static
cast<char∗>(trgData );
for ( unsigned int slice = 0; slice < numSlices ; ++sl ice )
{
char const ∗ srcRow = s r c S l i c e ;
char∗ trgRow = t r g S l i c e ;
for ( unsigned int row = 0; row < numRows ; ++row )
{
memcpy ( tr gRow , srcRow , n um RowB y te s ) ;
srcRow += srcR owPitch ;
trgRow += t rgR owPi tch ;
}
srcSlice += srcSlicePitch ;
trgSlice += trgSlicePitch ;
}
}
}
LISTING 4.57: Memory copies used by dynamic updates of textures.
D3D11 also has an update function,
ID3D11DeviceContext::UpdateSubresource,
for copying CPU data to a subresource that was created in nonmappable mem-
ory [41].
4.7.2 Staging Resources
The dynamic writes using memory mapping are one way to copy CPU
data to the GPU resource. However, you cannot use memory-mapped reads
to copy GPU resource data directly to CPU memory. D3D11 requires copying
from the GPU to a staging resource ﬁrst and then copying from the staging
resource to CPU memory. The double hop invariably makes copying from the
GPU to the CPU expensive.
Staging resources are created using the same description structures that
were used for the original resources. I will not present all the variations here;
you can look at the GTEngine source code. To illustrate one of these, List-
ing 4.58 shows the creation of a staging texture for a 2D texture without
multisampling.
D3D11 TEXTURE2D DESC d e s c ;
desc.Width = input.width;
desc. Height = input . height ;
desc. MipLevels = input. numMipmapLevels;
desc. ArraySize = input .numArrayItems ;
desc.Format = input . format ;
des c . SampleDesc . Count = 1 ;
d es c . SampleDesc . Q u a l i t y = 0 ;
des c . Usage = D3D11
USAGE STAGING ;
desc . BindFlags = 0;
desc . CPUAccessFlags = // D3D11
CPU ACCESS WRITE , D3D11 CPU ACCESS READ
desc . MiscFlags = 0;
device−>CreateTexture2D(&desc , nullptr , &output . staging );
LISTING 4.58: Creation of a 2D staging texture without multisampling.
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The
desc.CPUAccessFlags is set for read or write or both. You can have bidirec-
tional support by OR-ing the two ﬂags together. The
output.staging object is
of type
ID3D11Texture2D*.
4.7.3 Copy from CPU to GPU
The copy from CPU to GPU for a buﬀer resource is shown in Listing 4.59.
The abstract
input object stores an oﬀset into the data. The number of active
bytes must be selected to ensure that the copied block of memory is a subblock
of
input.data.Theoutput.buﬀer was created using the code of Section 4.4.
// Copy from CPU to staging resource .
D3D11
MAPPED SUBRESOURCE s u b ;
context−>Map( out put . s t a g i n g , 0 , D3D11
MAP WRITE , 0 , &s ub ) ;
memcpy(sub .pData , input .data + input . offset , input .numActiveBytes );
context−>Unmap ( mSta ging , 0 ) ;
/ / Co p y from sta g i ng r e sou r ce to GPU memory .
D3D11
BOX box = { input . offset , 0, 0, input .numActiveBytes , 1, 1 } ;
context−>CopySubresourceRegion (output . buffer , 0, input . offset , 0, 0,
output . staging , 0 , &box );
LISTING 4.59: Copy from CPU to GPU for a buﬀer resource. The subre-
source index is zero because buﬀers have only one subresource.
The staging resource was created to have the same size as the buﬀer. The
box
and the destination x, y,andz parameters to the copy call specify the source
and destination regions for the copy.
The copy from CPU to GPU for a texture resource is shown in Listing
4.60. The
output.texture was created using the code of Section 4.4.
// Copy from CPU to staging resource .
unsigned int sri ; //theindexforthesubresourcetobecopied
D3D11
MAPPED SUBRESOURCE s u b ;
context−>Map( out put . s t a g i n g , s r i , D3D11
MAP WRITE , 0 , &s ub ) ;
// Copy from CPU memory to staging texture . This is identical to the
// dynamic update copy except that the d estination i s the staging texture .
// the client−side subresource information
Subresource csub = input. subresource( sri );
if (input.numDimensions == 1)
{
// Mipmap levels for 1D textures and texture arrays are in contiguous
/ / memory .
memcpy (sub . pData , csub . data , csub . GetNumBytesFor( csub . l ev el ));
}
else if (input .numDimensions == 2)
{
unsigned int numRows = csub.GetNumRowsFor(csub. level );
CopyPitched2(numRows, csub . rowPitch , csub . data ,
sub . RowPitch , sub . pData );
}
else // input .numDimensions == 3
{
unsigned int numRows = csub.GetNumRowsFor(csub. level );
unsigned int numSlices = csub . GetNumSlicesFor ( csub . l ev e l );
CopyPitched3(numRows , numSlices , csub . rowPitch , csub . s licePitch ,
csub . data , sub . RowPitch , sub . DepthPitch , sub . pData ) ;
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}
context−>Unmap( output . staging , s r i );
// Copy from staging texture to GPU memory . The entire subresource is
// copied .
context−>CopySubresourceRegion ( output . texture , sri , 0 , 0 , 0 ,
output . staging , sri , n ul lptr );
LISTING 4.60: Copy from CPU to GPU for a texture resource.
4.7.4 Copy from GPU to CPU
The copy from GPU to CPU for a buﬀer resource is shown in Listing 4.61.
The abstract
input object stores an oﬀset into the data. The number of active
bytes must be selected to ensure that the copied block of memory is a subblock
of
input.data.Theoutput.buﬀer was created using the code of Section 4.4.
// Copy from GPU to staging resource .
D3D11
BOX box = { input . offset , 0, 0, input .numActiveBytes , 1, 1 } ;
context−>CopySubresourceRegion (output . staging , 0, input . offset , 0, 0,
output . buffer , 0 , &box );
// Copy f ro m st a g in g r e s ou r c e t o CPU.
D3D11
MAPPED SUBRESOURCE s u b ;
context−>Map( out upt . s t a g i n g , 0 , D3D11
MAP READ , 0 , &su b ) ;
memcpy(input . data + input. offset , sub.pData , input .numActiveBytes );
context−>Unmap ( mSta ging , 0 ) ;
LISTING 4.61: Copy from GPU to CPU for a buﬀer resource. The subre-
source index is zero because buﬀers have only one subresource.
The staging resource was created to have the same size as the buﬀer. The
box
and the destination x, y,andz parameters to the copy call specify the source
and destination regions for the copy.
The copy from GPU to CPU for a texture resource is shown in Listing
4.62. The
output.texture was created using the code of Section 4.4.
// Copy from GPU to staging resource .
ID3D11Resource∗ dxTexture = GetDXResource ( );
context−>CopySubresourceRegion ( output . staging , sri , 0 , 0 , 0 ,
output . Texture , sri , null pt r ) ;
// Copy f ro m st a g in g t ex tu r e t o CPU memory .
D3D11
MAPPED SUBRESOURCE s u b ;
context−>Map( out put . s t a g i n g , s r i , D3D11
MAP READ , 0 , &sub ) ;
// the client−side subresource information
Subresource csub = input. subresource( sri );
if (input.numDimensions == 1)
{
memcpy ( s r . data , sub . p Data , t e x t u r e −>GetNumBytesFor ( s r . l e v el ) ) ;
}
else if (input .numDimensions == 2)
{
unsigned int numRows = csub.GetNumRowsFor(csub. level );
CopyPitched2(numRows , sub . RowPitch , sub . pData ,
csub . rowPitch , csub . data ) ;
}
else // input .numDimensions == 3
{
unsigned int numRows = csub.GetNumRowsFor(csub. level );
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unsigned int numSlices = csub . GetNumSlicesFor ( csub . le ve l ) ;
CopyPitched3(numRows , numSlices , sub . RowPitch , sub . DepthPitch ,
sub . pData , csub . rowPitch , csub . slicePi tch , csub . data ) ;
}
context−>Unmap( output . staging , s r i );
LISTING 4.62: Copy from GPU to CPU for a texture resource.
4.7.5 Copy from GPU to GPU
D3D11 has functions for GPU-to-GPU copy via the ID3D11DeviceContext
interfaces, CopyResource [36] and CopySubresourceRegion [37]. The main technical
problem is that you cannot copy between arbitrary formats. I had mentioned
previously in Section 4.4.7 about trying to copy from a depth-stencil texture
with format
DXGI FORMA T D24 UNORM S8 UINT to a regular texture with for-
mat
DXGI R32 UINT. The textures are of the same dimensions and the texture
elements are 32-bit integers. An attempt to call
CopyResource for these tex-
tures generates an error in the D3D11 debug layer. The function itself does
not have a returned
HRESULT for you to detect the error and handle it accord-
ingly. This means you have to be careful when attempting to copy between
resources.
It is possible to use the copy functions already discussed to avoid the
formatting issues, assuming you are careful and know what you are doing will
work; for example,
ClientInput depthStencilInput ; // CPU v er si on of depth−stencil texture
ClientOutput depthStencilOutput; // GPU v er si on of depth−stencil texture
ClientInput regularInput ; // CPU ve r s io n o f R32
UINT 2D tex t u re
ClientOutput regularOutput; // GPU ve rs io n o f R32
UINT 2D tex t u re
CopyGpuToCpu( depth Ste n cilO utp u t . t e x tur e , d e pt hSt e nc i lIn put . t ex t ure ) ;
memcpy(depthStencilInput . texture , regularInput . texture );
CopyCpuToGpu( re g u lar I n put . tex t ure , reg u la rO ut put . t e xtu re ) ;
The problem with this approach is that there are four copies: GPU-to-
staging, staging-to-CPU, CPU-to-staging, and staging-to-GPU. The design of
CopyCpuToGpu and CopyGpuToCpu involves transferring the memory into and
out of the CPU-version of the resource. For a GPU-to-GPU copy, you can skip
this transferring.
ClientInput depthStencilInput ; // CPU v er si on of depth−stencil texture
ClientOutput depthStencilOutput; // GPU v er si on of depth−stencil texture
ClientInput regularInput ; // CPU ve r s io n o f R32
UINT 2D tex t u re
ClientOutput regularOutput; // GPU ve rs io n o f R32
UINT 2D tex t u re
CopyGpuToStaging (depthStencilOutput. texture , depthStencilOutput. staging );
CopyStagingToStaging( depthStencilOutput. staging , regularOutput. staging );
CopyStagingToGpu (regularOutput. staging , regularOutput. texture );
// The a c tu al DX11 co de :
ID3D11DeviceContext∗ context ; // the acti ve immediate context
unsigned int numBytes ; // total bytes , same for both textures
ID3D11Texture2∗ dsTexture ; // depth−stencil texture
ID3D11Texture2∗ dsStaging ; // depth−stencil staging
ID3D11Texture2∗ rgTexture ; // regular texture
ID3D11Texture2∗ rgStaging ; // re gul ar s tag i n g
context−>CopySubresourceRegion ( dsStaging , 0 , 0 , 0 , 0 , dsTexture , 0 ,
nullptr );
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D3D11 MAPPED SUBRESOURCE d sS ub , r g Sub ;
context−>Map( d s S ta g i n g , 0 , D3D11
MAP READ , 0 , &dsSub ) ;
context−>Map( r g S t a g i n g , 0 , D3D11
MAP WRITE , 0 , &rg Su b ) ;
memcpy ( rgSub . pData , dsSub . pData , numBytes ) ;
context−>Unmap ( d s S t ag i n g , 0 ) ;
context−>Unmap ( r g St a g i n g , 0 ) ;
context−>CopySubresourceRegion (rgTexture , 0, 0, 0, 0, rgStaging , 0,
nullptr );
We now have three copies: GPU-to-staging, staging-to-staging, and staging-to-
GPU. In exchange, the CPU memory of the regular texture no longer matches
that of the GPU memory. This would be an issue only if you have to consume
the CPU memory. Generally for real-time applications, one of your main per-
formance goals is to avoid having to copy from GPU all the way back to CPU
memory, so it is usually not necessary for CPU and GPU versions of memory
to match.
4.8 Multiple GPUs
Computers may have multiple graphics cards installed whose GPUs can
work together through a cable that connects them. AMD Radeon cards do
this through their CrossFireX technology. NVIDIA cards do this through their
SLI technology. In fact, it is possible to build a machine with more than two
graphics cards. The motherboards must support this, you need a hefty power
supply, and the operating system drivers must support this.
4.8.1 Enumerating the Adapters
The GPUs are referred to as adapters and D3D11 allows you to enumerate
them, as shown in Listing 4.63. Each graphics card can have monitors attached
to it; these are called outputs and also may be enumerated for each adapter.
For simplicity of presentation, the
HRESULT error processing is omitted; you
should check the return values in real code.
IDXGIFactory1∗ factory = nullptr ;
CreateDXGIFactory1 (
uui do f ( IDXGIFactory1 ) , ( void∗∗)& fac to ry ) ;
struct AdapterInfo { IDXGIAdapter1∗ adapter ; DXGI
ADAPTER DESC1 d e s c ; } ;
std : : vector<AdapterInfo> aiArray ;
for ( unsigned int i=0;/∗∗/ ;++i)
{
AdapterInfo ai ;
if (factory−>EnumAdapters1(i , &ai . adapter ) != DXGI
ERROR NOT FOUND )
{
ai . adapter−>GetDesc1(& a i . des c ) ;
aiArray . push
back ( ai );
}
else // All adapters have been found.
{
break ;
}
}
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struct OutputInfo { IDXGIOutput ∗ output ; DXGI OUTPUT DESC d e s c ; } ;
struct AOInfo { AdapterInfo ai ; std : : vector<OutputInfo> oiArray ; } ;
std : : vector<AOInfo> aoArray ;
for ( auto const& ai : aiArray )
{
AOInfo ao ;
ao . a i = a i ;
for ( unsigned int j=0;/∗∗/ ;++j)
{
OutputInfo oi ;
if ( ai . adapter−>EnumOutputs( j , &oi . o u tp u t )
!= DXGI
ERROR NOT FOUND )
{
oi . output−>GetDesc(&o i . desc ) ;
ao. oiArray . push
back ( oi );
}
else // All outputs for this adapter have been found.
{
break ;
}
}
aoArray . push
back (ao );
}
factory−>Release ();
LISTING 4.63: Enumeration of adapters and outputs attached to the
adapters.
When the application is ﬁnished using the adapters and outputs, they must
be released because the enumeration calls increased their internal reference
counts. GTEngine provides class wrappers to handle the reference counting
for you.
As discussed in Section 4.3, the ﬁrst device creation is an
IDXGIAdapter*
interface pointer. When null, the device is created for the default adapter,
which is a GPU if you have one attached. However, you can specify an adapter
that was produced by the enumeration. For dual-GPU machines, two scenarios
exist. If the GPUs are conﬁgured to use CrossFireX for AMD or SLI for
NVIDIA, the enumeration reports only one GPU adapter. If CrossFireX or
SLI are disabled, the enumeration reports two GPU adapters. You may create
a
DX11Engine object for each adapter and use them independently.
On my Windows 8.1 machine with dual AMD 7970 machine and Cross-
FireX disabled, the enumeration reports three adapters. The ﬁrst two are for
the GPUs. The ﬁrst GPU adapter reports two outputs because I have two
monitors attached. The second GPU adapter reports no outputs (no monitors
attached). Starting with Windows 8, the enumeration reports another adapter
called the Micr osoft Basic Render Driver. This is eﬀectively a software ren-
derer that you can use. An overview of DXGI is found online [33]. This page
describes enumeration of adapters and how you can access the basic render
driver if so desired.
4.8.2 Copying Data between Multiple GPUs
Dual GPUs can be a double-edged sword. If you have independent com-
puting pipelines, you can get good parallelism from the two GPUs. However,
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if you have UAV outputs computed on one GPU that must be consumed by
the other GPU, you have to transfer the data between the GPUs. Unfortu-
nately, the mechanism for sharing textures between two devices works only
when those devices are created from a single adapter. Thus, you need to de-
sign carefully how the pipelines are laid out. Ideally, if you have to transfer
data from one GPU to another, you should try to do so without stalling both
GPUs.WhileyouarereadingbackdataononeGPU,youshoulddosoby
copying it to a staging buﬀer. The other GPU should be kept busy computing
during this phase. When the read-back of the ﬁrst GPU is complete and the
second GPU is ready, copy the memory from the staging buﬀer of the ﬁrst
GPU to a staging buﬀer for the second GPU and then upload the results to
GPU memory.
Listing 4.64 shows a complete example of copying a one-dimensional tex-
ture from the video memory of one GPU to that of another. The HRESULT
error checking is omitted for simplicity.
// Enumerate the a da pt ers but not the outputs attached to the
// adapters. The test machine is known to have two adapters
// that are not configured to work in unison .
IDXGIFactory1∗ factory = nullptr ;
CreateDXGIFactory1 (
uui do f ( IDXGIFactory1 ) , ( void∗∗)& fac to ry ) ;
IDXGIAdapter1 ∗ adapter [2];
factory−>EnumAdapters1(0 , &adapter [0] );
factory−>EnumAdapters1(1 , &adapter [1] );
factory−>Release ();
// Create D3D11.0 devices , one from each adapter . The driver type must be
// D3D
DRIVER TYPE UNKNOWN when yo u p a s s a non−null pointer for adapter .
D3D
FEATURE LEVEL f e a t u r e L e v e l s [ 1 ] = { D3D FEATURE LEVEL 11 0 } ;
D3D
FEATURE LEVEL f e a t u r e L e v e l ;
ID3D11Device∗ device0 = nullptr ;
ID3D11DeviceContext∗ context0 = null ptr ;
D3D11CreateDevice ( a da pter [ 0 ] , D3D
DRIVER TYPE UNKNOWN, nullptr , 0,
featureLevels , 1, D3D11
SDK VERSION, &device0 , &featureLevel ,
&c o n te x t 0 ) ;
ID3D11Device∗ device1 = nullptr ;
ID3D11DeviceContext∗ context1 = null ptr ;
D3D11CreateDevice ( a da pter [ 1 ] , D3D
DRIVER TYPE UNKNOWN, nullptr , 0,
featureLevels , 1, D3D11
SDK VERSION, &device1 , &featureLevel ,
&c o n te x t 1 ) ;
// C r e a t e t e x t ure 0 on GPU0 and i n i t i a l i z e i t t o { 0, 1, 2, 3 } .
unsigned int const width = 4;
D3D11
TEXTURE1D DESC d esc ;
desc .Width = width ;
desc . MipLevels = 1;
desc. ArraySize = 1;
d e s c . Format = DXGI
FORMAT R8G8B8A8 UNORM ;
d e s c . Usage = D3D11
USAGE DEFAULT ;
desc . BindFlags = 0;
des c . CPUAccessFlags = 0 ;
desc . MiscFlags = 0;
unsigned char initial0 [width] = { 0, 1, 2, 3 };
D3D11
SUBRESOURCE DATA s rD a t a ;
srData .pSysMem = i n i t ia l 0 ;
srData . SysMemPitch = 4∗ width ;
srData . SysMemSlicePitch = 0;
ID3D11Texture1D∗ texture0 = nullptr ;
device0−>CreateTexture1D (&desc , &srData , &texture0 ) ;
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// C r e a t e t e x t ure 1 on GPU1 and i n i t i a l i z e i t t o { 0, 0, 0, 0 } .
unsigned char initial1 [width] = { 0, 0, 0, 0 };
srData .pSysMem = i n i t ia l 1 ;
ID3D11Texture1D∗ texture1 = nullptr ;
device1−>CreateTexture1D (&desc , &srData , &texture1 ) ;
// C r e a t e stag i n g0 on GPU0 s o t h a t i t c an be mapped fo r read i n g .
des c . Usage = D3D11
USAGE STAGING ;
des c . CPUAccessFlags = D3D11
CPU ACCESS READ ;
ID3D11Texture1D∗ staging0 = nullptr ;
device0−>CreateTexture1D (&stDesc , nul lp tr , &staging0 ) ;
// C r e a t e stag i n g1 on GPU1 s o t h a t i t ca n b e mapped f o r w ri t i n g and
// reading. The latter is required so we can verify by a read−back
// that the video memory copy actually occurred .
des c . CPUAccessFlags |= D3D11
CPU ACCESS WRITE ;
ID3D11Texture1D∗ staging1 = nullptr ;
device1−>CreateTexture1D (&desc , nu ll pt r , &staging1 );
// Copy from GPU0 video memory to GPU0 staging buffer .
context0 −>CopyResource ( staging0 , textur e0 ) ;
// Map the GPU0 staging buffer for reading .
D3D11
MAPPED SUBRESOURCE sub0 ;
context0 −>Map( s t a g i ng 0 , 0 , D3D11
MAP READ, 0 , &sub0 );
// Map the GPU1 staging buffer for writing .
D3D11
MAPPED SUBRESOURCE sub1 ;
context1 −>Map( s t a g i ng 1 , 0 , D3D11
MAP WRITE , 0 , &sub1 ) ;
// Copy from staging buffer of GPU0 to staging buffer of GPU1.
memcpy ( sub1 . pData , sub0 . pData , 4∗ width );
// Unmap t h e stag i n g buf fe r s .
context0 −>Unmap( st a g i ng 0 , 0 ) ;
context1 −>Unmap( st a g i ng 1 , 0 ) ;
// Copy from GPU1 staging buffer to GPU1 video memory.
context1 −>CopyResource ( texture1 , st ag in g1 );
// Read back from GPU1 v id eo memory to v e r i f y the copy a c tu a l l y o cc ur re d .
context1 −>CopyResource ( staging1 , textur e1 ) ;
context1 −>Map( s t a g i ng 1 , 0 , D3D11
MAP READ, 0 , &sub1 );
unsigned char∗ data = (unsigned char∗) sub1 . pData ; // d at a = { 0, 1, 2, 3 }
context1 −>Unmap( st a g i ng 1 , 0 ) ;
/ / D est r oy a l l the D3D11 . 0 o b je c t s .
staging0−>Release (); staging1−>Release ();
texture0 −> Release (); texture1−>Release ();
context0 −>Rel ease ( ); context1 −>Release ();
device0−>Release (); device1−>Release ();
LISTING 4.64: An example of copying a texture from the video memory of
one GPU to that of another.
4.9 IEEE Floating-Point on the GPU
D3D11 supports various ﬂoating-point formats, some of them with devia-
tions from the IEEE 754-2008 standard. A summary of the formats and rules
is found at [34].
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For 32-bit ﬂoating-point numbers, some of the deviations from the rules are
about the handling of quiet or signaling NaNs. Two variations that potentially
have more impact when comparing the results from the GPU and from an FPU
associated with the CPU are the following.
• The default rounding rule for IEEE 754-2008 is round-to-nearest ties-
to-even. This rule is discussed in Section 2.5.2.1. The idea is that a
ﬂoating-point operation produces the ﬂoating-point number nearest to
the theoretical result. When the theoretical result has a fractional part
that is one-half, you round down if the integer part is even or round
up if the integer part is odd. D3D11 does not require the hardware to
adhere to this rule; that is, the hardware can truncate the result rather
than rounding to nearest.
• Subnormal numbers are ﬂushed to sign-preserved zero on input and
output of ﬂoating-point mathematical operations. If the numbers are
simply copied and not mathematically manipulated, the ﬂushing does
not occur.
The hardware can support 64-bit ﬂoating-point numbers. According to
[34], the double precision hardware is compliant with the IEEE 754-2008
Standard. However, the standard has many requirements. Section 5.4.1 of
the Standard document is about arithmetic operations; it states that imple-
mentations shall provide a square root operation. As of D3D11.1, no such
operation exists.
Surprisingly, at least to me, is that 64-bit subnormals are not ﬂushed to
zero during arithmetic operations. I would have expected the opposite to be
true—that single precision would not ﬂush to zero and double precision does.
I tried an experiment to verify this,
GeometricTools/GTEngine/Samples/Basics/IEEEFloatingPoint
Listing 4.65 shows a compute shader for adding two ﬂoat numbers read from an
input structured buﬀer with the result returned in an output structured buﬀer.
The application code is listed below the HLSL code; the application creates the
input structured buﬀer with two subnormal ﬂoating-point numbers. Reading
back the output buﬀer, the result is zero which shows that the 32-bit ﬂush-
to-zero semantics were applied.
// code in TestSubnormals . hlsl , macro REAL i s f loat or double
StructuredBuffer<REAL> input ; // two subnormal numbers
RWStructuredBuffer<REAL> output ; // sum of inputs that is subnormal
[numthreads(1,1,1)]
void CSMai n ( i nt3 t : S V
DispatchThreadID)
{
output [0] = input [0] + input [1];
}
template <typename Real , typename Binary>
class TestSubnormals
{
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public :
TestSubnormals( std : : str ing const& hlslfile , std :: string const&realname,
Binary& result )
{
DX11Engine e n g i n e ;
std :: shared
ptr<StructuredBuffer> inputBuffer(
new StructuredBuffer(2, sizeof (Real )));
Real∗ input = inputBuffer−>Get<Real > ();
Binary v0 , v1;
v0 . e nc o d in g = 1 ;
v1 . e nc o d in g = 1 ;
input [0] = v0.number ; // smallest p osi tive subnormal
input [1] = v1.number ; // same a s v0
// Compute v0+v1 an d s t ore i n t h i s b u ffe r .
std :: shared
ptr<StructuredBuffer> outputBuffer(
new StructuredBuffer(1, sizeof (Real )));
outputBuffer−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
outputBuffer−>SetCopyType ( R es ou rc e : : COPY
STAGING TO CPU ) ;
Real∗ output = outputBuffer−>Get<Real >();
output [0 ] = ( Real )0;
HLSLDefiner de f in er ;
definer . SetString (”REAL”, realname );
std :: shared
ptr<ComputeShader> cshader (
ShaderFactory :: CreateCompute( h ls lf il e , definer ));
cshader−>Set(”input” , inputBuffer);
cshader−>Set (”output ” , outputBuffer );
engine . Execute ( cshader , 1 , 1 , 1);
e ngi ne . CopyGpuToCpu( ou tp utB u ff er ) ;
r e sul t . number = o u t pu t [ 0 ] ;
inputBuffer = nullptr ;
outputBuffer = nullptr ;
cshader = nullptr ;
}
} ;
void main ( )
{
union Float
{
float number ;
uint32
tencoding;
} ;
Float result ;
TestSubnormals<float ,Float> test (”TestSubnormals . h ls l ” , ” f loa t ” ,
result );
// With IEEE 754 −2008 b e h av ior tha t p rese r ves subnormals , the output
// r e s ul t s h o u l d h a ve e n c o d i n g 2 ( number i s 2ˆ{−148}). I ns te ad ,
// r es ul t . encoding = 0 , which means that the GPU has flu shed the
// subnormal r es ul t to zero .
}
LISTING 4.65: Veriﬁcation that ﬂoat subnormals are ﬂushed to zero when
used in arithmetic operations.
I ran the same experiment with 64-bit ﬂoating-point numbers. Listing 4.66
shows the application code.
void main ( )
{
union Double
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{
double number ;
uint64
tencoding;
} ;
Double r e s ul t ;
TestSubnormals<double , Double> dtest (”TestSubnormals . h ls l ” , ”double” ,
result );
// With IEEE 754 −2008 b e h av ior tha t p rese r ves subnormals , the output
// r e s ul t s h o u l d h a ve e n c o d i n g 2 ( number i s 2ˆ{−1073}). Indeed ,
// dre su lt . encoding = 2 , so the subnormal re sul t was not flushed .
}
LISTING 4.66: Veriﬁcation that double subnormals are not ﬂushed to zero
when used in arithmetic operations.
What this argues is that if you need the full range of 32-bit ﬂoating-point
numbers, including subnormals, in your GPGPU computations, you can use
double precision instead—recall that all 32-bit subnormal numbers convert
to 64-bit normal numbers. You can do the conversion on the FPU associated
with the CPU and then upload those double-precision numbers to the GPU
for consumption.
The amount of work to compute with
double instead of ﬂoat might take
more eﬀort. For example, the exhaustive
ﬂoat-based root ﬁnder
GeometricTools/GTEngine/Samples/Numerics/RootFinding
uses the dispatch thread ID to generate the 23-bit trailing signiﬁcand em-
bedded in a 32-bit
uint, loops over the biased exponents, and builds the ﬂoat
values using asﬂoat to be used as the function inputs. The question is whether
a ﬂoat-to-double conversion will produce the correct double-precison value.
On my AMD 7970, the answer is no. For example,
StructuredBuffer<float> input ; // subnormal 2ˆ{−149}
RWStructuredBuffer<double> output ;
[numthreads(1,1,1)]
void CSMai n ( i nt3 t : S V
DispatchThreadID)
{
output [ 0] = ( double)input [0];
}
I looked at the assembly output to see there was a ftod instruction for the
conversion of
ﬂoat to double. Reading back the output, the result was the
double-precision number 0.0, so the hardware ﬂushed the subnormal ﬂoat
to zero during the assignment. The MSDN documentation for the assembly
instruction
ftod [35] states that implementations may either honor subnormals
or ﬂush them to zero. This means you are not guaranteed that the hardware
will convert the 32-bit numbers properly. Instead, you need to implement in
HLSL the narrow-to-wide conversion code of Section 2.5.2.10, at least the case
when the narrow value is subnormal.
In terms of HLSL assembly instructions, D3D11.0 supports addition
dadd;
multiplication
dmul; comparisons deq, dge dlt, dne;extremesdmin, dmax;as-
signment
dmov; and conversions between 32-bit and 64-bit ﬂoating-point dtof,
ftod. D3D11.1 additionally supports division ddiv, reciprocal drcp,andfused
multiply-add
dfma.
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The assembly instructions do not include any common mathematical func-
tions such as square root, exponential and logarithm, or trigonometric func-
tions. If you need these, you will have to roll your own function approxima-
tions, much like what was done for Intel SSE2 in Section 3.3.
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Practical Matters
5.1 Engine Design and Architecture
I mentioned previously that the low-level D3D11 code for a simple appli-
cation can be enormous. You deﬁnitely want to wrap much of the execution
code that is common to applications. In this section, I discuss a simple appli-
cation that uses the Windows API for window creation, event handling, and
window destruction. The application also uses the DirectX API for D3D11 ob-
ject creation, handling, and destruction. The idea is to show how everything
ﬁts together without hiding the internal mechanics. Although the argument
is for the encapsulation of the components in a graphics engine, this simple
application provides a test bed where everything is exposed. You can easily
modify this to experiment with D3D11 features that interest you.
5.1.1 A Simple Low-Level D3D11 Application
The sample application
GeometricTools/GTEngine/Samples/Basics/LowLevelD3D11
creates a window and a large collection of D3D11 objects in order to draw
a single triangle that is vertex colored and textured. Additionally, a virtual
trackball is provided so that you can left-click-and-drag the mouse in order
to rotate the triangle in real time. The total number of lines of source code
in
Application.{h,cpp} ﬁles is approximately 1350. This is a signiﬁcant amount
of code just to draw a single triangle! The ﬁle
LowLevelD3D11.cpp contains a
simple main function that creates an application object, runs it, and then
deletes it:
void main ( )
{
TheApplication = new Application ();
if ( TheApplication−>Create (64 , 64 , 512 , 512 , D3D
FEATURE LEVEL 11 1,
D3D11
CREATE DEVICE DEBUG) )
{
TheApplication−>Run ( ) ;
}
delete TheApplication ;
}
223
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The
Create function has inputs for the upper-left corner of the window, the
window width and height, the desired version of D3D11, and ﬂags for device
creation.
Listing 5.1 shows the header ﬁle for the application class. The ﬁrst three
header ﬁles are those for D3D11. The math header is used to access
sqrt and
acos in the virtual trackball code. The ﬁle streaming header is used to load
compiled shaders from disk.
#include <D3D11 . h>
#include <D3Dcompiler . h>
#include <DXGI.h>
#include <cmath>
#include <fstream>
class Application
{
public :
˜Application ();
Application ();
bool Create ( int xOrigin , int yOrigin , int xSize , int ySize ,
D3D
FEATURE LEVEL f e a t u r e L e v e l , UINT f l a g s ) ;
void Run ( ) ;
private :
static LRESULT CALLBACK WindowProcedure (HWND handle , UINT message ,
WPARAM w P a r am , LPARAM l P a r a m ) ;
// support for creation
bool CreateAppWindow( int xOrigin , int yOrigin , int xSize , int ySize );
bool CreateGraphics(D3D
FEATURE LEVEL f e a t u r e L e v e l , UINT f l a g s ) ;
bool CreateShaders ();
ID3DBlob∗ LoadShaderBlob( std : : wstring const& filename );
bool CreateVertexBuffer ();
bool CreateInputLayout ();
bool CreateConstantBuffer ();
bool CreateTexture ();
bool CreateShaderResourceView ();
bool CreateBlendState ();
bool CreateDepthStencilState ();
bool CreateRasterizerState ();
bool CreateSamplerState ();
// support for drawing
void ClearBuffers ();
void Draw ( ) ;
void SwapBuffers ( unsigned int syncInterval );
// support for virtual trackball
void OnLeftMouseDown( int x, int y);
void OnLeftMouseDrag ( int x, int y);
void OnLeftMouseUp ( int x, int y);
void RotateTrackball( float x0 , float y0 , float x1 , float y1 ) ;
void ComputeProjectionMatrix ();
void ComputeViewMatrix () ;
void ComputeWorldMatrix( ) ;
void UpdateConstantBuffer ();
// window parameters
ATOM mA to m ;
HWND m H a n d l e ;
int mXOrigin , mYOrigin , mXSize , mYSize ;
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/ / D3D11 o b j e c t s a nd p ara m et ers
ID3D11Device∗ mDevice ;
ID3D11DeviceContext∗ mImmediate ;
D3D
FEATURE LEVEL mFeatureLevel ;
IDXGISwapChain∗ mSwapChain ;
ID3D11Texture2D∗ mColorBuffer ;
ID3D11RenderTargetView∗ mColorView ;
ID3D11Texture2D∗ mDepthStencilBuffer ;
ID3D11DepthStencilView∗ mDepthStencilView ;
D3D11
VIEWPORT mViewp ort ;
// application−s p e c i f i c D3D11 o b j e c t s
ID3D11VertexShader∗ mVertexShader ;
ID3DBlob∗ mVertexShaderBlob;
ID3D11PixelShader ∗ mPixelShader ;
ID3D11Buffer∗ mVertexBuffer;
ID3D11InputLayout∗ mInputLayout ;
ID3D11Buffer∗ mConstantBuffer ;
ID3D11Texture2D∗ mTexture ;
ID3D11ShaderResourceView ∗ mShaderResourceView ;
ID3D11SamplerState∗ mSamplerState ;
ID3D11BlendState∗ mBlendState ;
ID3D11DepthStencilState∗ mDepthStencilState ;
ID3D11RasterizerState∗ mRasterizerState ;
struct Vertex
{
float position [3];
float color [4];
float tcoord [2];
} ;
int mNumVertices ;
int mVertexOffset ;
// camera parameters
float mUpFO VDeg rees ;
float mAspectRatio ;
float mDMin , mDMax, mUMin , mUMa x, mRMin , mR Max ;
float mEye [3 ] , mDVector [ 3 ] , mUVecto r [ 3 ] , mRVector [ 3 ] ;
float mViewMatrix [4][4];
float mProjectionMatrix [4 ][ 4] ;
float mWorldMatrix [4][4];
// d a ta fo r a v i r t u a l t r a c kb a l l
float mTrackballMatrix [4 ][ 4] ;
float mXTrack0 , mYTrack0 , mXTrack1 , m YT r ac k1 ;
float mSaveTrackballMatrix [ 4] [ 4] ;
bool mTrackBallDown ;
} ;
extern Application∗ TheApplication ;
LISTING 5.1:TheApplication class header ﬁle.
As you can see, the
Application class has a small public interface but the
private interface manages a lot of objects. The public
Create function is a sim-
ple call to all the private creation functions. The
CreateAppWindow function
uses the Windows API to create an application window that has a message
pump and function for processing the messages. The
CreateGraphics function
creates the D3D11 device, the immediate context, the swap chain, the color
buﬀer and its shader resource view, and the depth-stencil buﬀer and its shader
resource view. The creation functions for blend state, depth-stencil state, and
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rasterization state are designed to give you the default states for most ap-
plications. Some applications have a need for multiple states, switching them
based on the current drawing needs. For example, some objects might require
alpha blending enabled to be drawn properly.
The remaining creation functions are related to the geometric primitive
to be drawn. The triangle is a non-indexed primitive, so no index buﬀer is
created. The constant buﬀer stores the world-view-projection matrix of Equa-
tion (4.20), which is needed to transform the triangle vertices into the view
frustum so that the rasterizer can project and draw the correct pixels. The
various D3D11 objects needed for drawing were discussed in Chapter 4, so the
source code will look familiar to you.
The application
Run function contains the standard message pump for
a Windows application. The window is displayed and the message pump is
started. This is a loop that checks for pending events such as key presses
or mouse clicks and then calls the window’s event handler to process them.
When no events are pending, you have idle time to consume. The D3D11 code
for real-time rendering occurs here: updating the constant buﬀer, clearing the
color and depth-stencil buﬀers, drawing the geometric primitive, and swapping
the front and back buﬀers.
5.1.2 HLSL Compilation in Microsoft Visual Studio
The sample application also shows oﬀ a feature of Microsoft Visual Studio
2013 that is convenient for development. When you add HLSL ﬁles to your
project, they are automatically set up to be compiled by
FXC.Initiatinga
build, HLSL ﬁles are compiled ﬁrst followed by CPP ﬁles. The compiled shader
output (*.cso) ﬁles are generated in the appropriate output folders (
Debug
and Release). The format is binary and may be loaded as ID3DBlob* objects,
which is what you need to create D3D11 shader objects; for example, you
would load a compiled vertex shader output to an
ID3DBlob* and pass it to
ID3D11Device::CreateVertexShader to create a ID3D11VertexShader object.
Although it is usually convenient to package together a vertex shader and
a pixel shader for a single eﬀect, the automatic HLSL compilation cannot
process both shaders in a single HLSL build step. Therefore, the advice is to
keep separate HLSL ﬁles for the shaders. For each such ﬁle, you must set the
ﬁle properties accordingly. For example, in the sample application you can
launch the property page for
SimpleVShader.hlsl. Under the General conﬁgura-
tion properties, you will see that the
Item Type is HLSL Compiler. Under the
conﬁguration properties, select the
HLSL Compiler drop-down list. The dialog
pane on the right shows some properties that I set. The
Entrypoint Name is set
to
VSMain; the default name when you ﬁrst include an HLSL ﬁle is main,so
I changed this to what I want. Optimizations are disabled for a
Debug build
and debugging information is enabled. For a
Release build, optimizations are
enabled and debugging information is disabled.
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The default
ShaderType is blank, so I changed this to VertexShader /vs
using the provided drop-down list. The default shader model is the mini-
mum feature level
Shader Model 4 Level 9 1(/40 level 9 1), so I changed this to
Shader Model 5 (/5 0). If you have deﬁnes that need to be set, you can add
those to the
Preprocessor Deﬁnitions section.
I selected the
Advanced item on the left. The dialog pane on the right has
aﬁeld
Additional Options. I added command-line options requesting row-major
storage for shader matrices (
/Zpr) because that is how I set up matrices in
the sample; GTEngine uses row-major storage by default. I also requested to
enable strict mode (
/Ges) and force IEEE strictness (/Gis).
Finally, select the
Command Line item on the left. The dialog pane on the
right shows you the
FXC command line that is generated by your choices. In
the case at hand, it is
/Zi /E"VSMain" /Od /Fo"<MyPath>\LowLevelD3D11\Debug\SimpleVShader.cso" /vs"_5_0" /nologo
If you want the compiled shader output embedded in your application, you
can instead compile to a header ﬁle that contains a character representation
of the
ID3DBlob*. The header ﬁle is then included in your application and you
do not have to ship
*.cso ﬁles separately.
I do not use the automatic compilation of HLSL in GTEngine applications,
preferring instead to keep the shaders bundled together. This also supports
my tool for generating C++ code from HLSL and using that tool in a custom
build step for the HLSL ﬁle.
5.1.3 Design Goals for the Geometric Tools Engine
I will describe brieﬂy the high-level design goals for the Geometric Tools
engine, named GTEngine. A more detailed discussion of the design could be
abookonitsown.
5.1.3.1 An HLSL Factory
The driving force for the engine design is the HLSL shader ﬁle. High-
performance algorithm development invariably involves thinking how you can
write shaders to accomplish your goals. Once those shaders are written and
correctly compile, an application needs to create corresponding objects at
runtime, to create input and output resources to attach to the shaders and
to execute the shaders. Consequently, I wrote the library
HLSLFactory as a
stand-alone system that compiles HLSL shaders and uses the D3D11 reﬂection
system to obtain information about the various resources, such as the type of
resource and bind points. As a stand-alone system, you can use this within
your own engine code; that is, you do not have to use GTEngine at all if you
so choose.
The top-level class in the library is
HLSLShaderFactory and has only two
public static functions:
CreateFromFile and CreateFromString. The inputs for the
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former include the name of the HLSL ﬁle, the entry function name, the target
proﬁle, an
HLSLDeﬁner object that stores the preprocessor deﬁnes necessary
to compile the HLSL shader, and a bit ﬂag for compiler options. The in-
puts for the latter are similar except that you provide a string for the shader
and a name that plays the role of the ﬁle name. The output of each call is
a
HLSLShader object that stores all the information necessary to create and
manipulate D3D11 shaders at runtime. The subsystems in
HLSLShaderFactory
were described in to some extent in Section 4.2.
The GTEngine interface to an
HLSLShader object is provided by the class
ShaderFactory. This class also has only public static functions, creators with
names speciﬁc to the shader type. For example, there is a function
CreateVertex
that passes its inputs to the HLSL factory system and takes the result-
ing
HLSLShader object and produces a GTEngine VertexShader object. The
GTEngine shader classes such as
VertexShader are shims to introduce runtime-
type information and are derived from class
Shader. This base class is the
GTEngine analogy to
HLSLShader and stores the relevant information need to
create and manipulate D3D11 objects at runtime.
5.1.3.2 Resource Bridges
The Geometric Tools source code named Wild Magic 5 has a large graph-
ics component that supports D3D9 and OpenGL on Microsoft Windows, and
supports OpenGL on Linux and Macintosh OS X. In order to hide the plat-
form dependencies, I use a bridge pattern [12] so I can manipulate graphics
objects in a platform-independent manner within the application code. The
back-end graphics objects speciﬁc to D3D9 or OpenGL have separate imple-
mentations that hide the platform dependencies. You can actually write an
application once, yet it compiles and runs for each supported platform. My
goal for GTEngine is similar, although for the purpose of this book I am ship-
ping only a D3D11 version ﬁrst. Knowing that later I will support OpenGL
on Linux and Macintosh OS X, I chose once again to use a bridge pattern.
The relevant COM interface hierarchy for D3D11 resources is shown next.
ID3D11DeviceChild
ID3D11Resource
ID3D11Buffer
ID3D11Texture1D
ID3D11Texture2D
ID3D11Texture3D
ID3D11BlendState
ID3D11DepthStencilState
ID3D11RasterizerState
ID3D11SamplerState
ID3D11VertexShader
ID3D11GeometryShader
ID3D11PixelShader
ID3D11ComputeShader
Although it would have been convenient for object-oriented wrappers
and factoring out common code, interfaces
ID3D11Texture, ID3D11State,or
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ID3D11Shader do not exist. The ID3D11Buﬀer interface supports a variety
of types, including constant buﬀers, vertex buﬀers, index buﬀers, and so
on. I introduced a slightly richer hierarchy by wrapping these resources in
classes whose names are preﬁxed with
DX11; for example, there is an ab-
stract class wrapper
DX11Texture and a concrete class wrapper DX11Texture1.
I also have an abstract class wrapper
DX11Buﬀer and a concrete class wrapper
DX11ConstantBuﬀer.
For the bridge pattern, I have similar classes for the platform-independent
front end whose names do not have the
DX11 preﬁx. The hierarchy is shown
next for the front end. The back-end classes have the same name except with
the
DX11 preﬁx.
GraphicsObject
Resource
Buffer
ConstantBuffer
TextureBuffer
VertexBuffer
IndexBuffer
StructuredBuffer
TypedBuffer
RawBuffer
IndirectArgumentsBuffer
Texture
TextureSingle
Texture1
Texture2
TextureRT
TextureDS
Texture3
TextureArray
Texture1Array
Texture2Array
TextureCube
TextureCubeArray
Shader
VertexShader
GeometryShader
PixelShader
ComputeShader
DrawingState
SamplerState
BlendState
DepthStencilState
RasterizerState
I have broken out the special types for buﬀers and for textures. The tex-
tures are factored further into
TextureSingle and TextureArray.Theformeris
intended to represent a single texture (an array of one item) but the latter
is intended for an array of multiple textures.
TextureRT represents render tar-
gets and
TextureDS represents depth-stencil textures, both handled diﬀerent
from regular textures used for geometric primitives. Although sampler state is
grouped together with the other global states, keep in mind that it is handled
as a resource to be attached to shaders.
The D3D11 back end has some additional classes that do not need exposure
on the front end. The class
DX11InputLayout encapsulates the creation and
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manipulation of
ID3D11InputLayout objects; however, these can be built from
a front-end vertex buﬀer and vertex shader without the front end having to
generate the layout. GPU adapter and output support is encapsulated in the
engine classes
DXGIAdapter and DXGIOutput, both requiring only the lower-level
DXGI support provided by DirectX.
The workhorse of GTEngine graphics is the class
DX11Engine.Thisclass
is a manager of the creation, destruction, and manipulation of objects and
resources. You can think of
DX11Engine as an encapulation of a device
(
ID3D11Device*) and an immediate context (ID3D11DeviceContext*). The class
also acts as the bridge manager using member functions
Bind and Unbind.
Given a front-end resource, say,
Texture2, you can call Bind on that texture.
DX11Engine determines whether this is the ﬁrst time it has seen that texture.
If so, it creates a back-end
DX11Texture2 and stores the front-end and back-end
pair in a map container. Each time the
Texture2 object is used in a graphics
operation, the engine has the responsibility for setting up the drawing or com-
puting pipeline accordingly. At any time you can call
Unbind on a resource so
that its D3D11 equivalent is destroyed.
The front-end base class
GraphicsObject has a listener system whose inter-
face is a nested class
ListenerForDestruction. Any listener derived from this inter-
face is notiﬁed during a
GraphicsObject destructor call that the object is about
to be destroyed. The listener can take action before the destruction occurs.
DX11Engine has a listener for such objects; for example, when the Texture2 ob-
ject is destroyed, the engine listener destroys the corresponding
DX11Texture2
object via an Unbind call. You can explicitly call Unbind on a resource if you
want the D3D11 resource destroyed even though the front-end resource is not
being destroyed.
All bridges are handled in a thread-safe manner; that is, if you are creat-
ing and destroying resources in threads diﬀerent from the one on which the
drawing or computing is occurring, the bridge maps are accessed using critical
sections.
5.1.3.3 Visual Eﬀects
The front end has a class
VisualEﬀect that is a container for a vertex shader,
a pixel shader, and an optional geometry shader. The class is convenient be-
cause typically you draw using a pair of vertex and pixel shaders with the
vertex shader optionally feeding a geometry shader.
Some common but simple eﬀects are derived from
VisualEﬀect and pro-
vided for your convenience:
Texture2Eﬀect and Texture3Eﬀect support pixel
shaders that access a single 2D or 3D texture,
VertexColorEﬀect supports
geometric primitives whose vertices are assigned RGBA vertex colors, and
ConstantColorEﬀect supports geometric primitives for which all vertices have
the same vertex color (constant diﬀuse material color).
TextEﬀect supports drawing text overlaid on the application window. I use
bitmapped fonts for this; in particular, I have a font class that stores the
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information, namely,
FontArialW400H18. It is derived from a base class Font,so
you can have more than one font active in an application. The tool
GeometricTools/GTEngine/Tools/BitmapFontCreator
allows you to use the Windows API to process a font and generate the Font-
derived class. However, please be aware that some fonts are licensed, so you
should not ship such fonts even when converted to bitmaps using this tool. If
you must, you should contact the owners of the font and purchase a license.
The class
OverlayEﬀect is not derived from VisualEﬀect, but it has the same
ﬂavor. This class is used mainly for drawing 2D rectangular GUI widgets
overlaid on the application window. For example, if you want to write an
application with your own custom-designed buttons, sliders, and other controls
solely within the realm of the 3D graphics engine (i.e., no Windows API calls),
you can do so with an overlay. Of course you are responsible for processing
mouse clicks, key strokes, and any other GUI logic necessary to accomplish
your goals.
5.1.3.4 Visual Objects and Scene Graphs
The geometric primitives you plan on drawing require geometry, optional
indexing, and a visual eﬀect. For convenience, the front end has a class
Visual
that is a container for these. Additionally, 3D primitives are built so that you
need to use a transform from model space to world space, so I have factored
out a base class called
Spatial that stores transforms. Even this class is fairly
general in that it supports a hierarchical data structure called a scene graph.
The leaf nodes of the hierarchy are
Spatial objects; for this book, they are Visual
objects but you can also add sound-related objects, like Audial, that support
3D sound via emitters and listeners. The interior nodes of the hierarchy are
deﬁned by class
Node.TheSpatial class stores a pointer to a unique parent; that
is, trees are supported but not directed acyclic graphs. The
Node class stores
child pointers. The scene graph system has support for hierarchical transforms
and bounding spheres used for high-level object culling. Thus, the
Spatial class
stores a local transform that determines how its represented object is posi-
tioned and oriented within the coordinate space of its parent. It also stores a
world transform that determines how its represented object is positioned and
oriented within the coordinate system of the world, which corresponds to the
root of the hierarchy. A goal of this book does not include discussing scene
graph management. For much more detail on this topic, see [8].
5.1.3.5 Cameras
The
Camera class is really a transformation manager for drawing 3D primi-
tives. Section 4.1 has a detailed presentation of the various matrices involved.
The concept of a camera is convenient in most applications, so you will ﬁnd in
the GTEngine
Window class an instance of a camera. This camera is initialized
with the desired parameters and it is accessed and used to update constant
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buﬀers used by vertex shaders that require a world-view-projection matrix of
Equation (4.20) to transform model-space vertices to projection space for use
by the rasterizer.
5.2 Debugging
Debugging is an important part of the development process for GPGPU,
just as it is for CPU programming. CPU debuggers have evolved signiﬁcantly
over the years; GPU debuggers are younger and still evolving. Regardless, the
art of debugging is more about your skills in formulating good hypotheses and
testing them than it is about having the appropriate tools available.
5.2.1 Debugging on the CPU
GPU debugging support within Microsoft Visual Studio 2013 comes in
the form of the DirectX Control Panel. You can access this by selecting the
Debug option on the menu bar. Select the second item on the menu, which
is labeled
Graphics, and you will see a pop-up menu with an option labeled
DirectX Control Panel. You have to run this with administrator privileges, so
you will get the usual darkened screen and a dialog asking you whether you
want to run the tool.
A dialog box appears with the title
DirectX Properties.Ialwayschoosethe
Debug Layer radio button to be Force On. You must add executables you want
monitored via the
Scope option by selecting the Edit List button and brows-
ing for the desired executables. In
Message Settings,IcheckedtheInfo box. In
Break Settings IcheckedtheEnable break on functionality box. I can then check
boxes in the
Break on Severity part of the dialog. Of these I checked Corruption,
Error,andWarning. With these options and device creation ﬂag chosen to be
D3D11 CREATE DEVICE DEBUG, DirectX will display messages in the output
window of Microsoft Visual Studio. If your code generates a DirectX cor-
ruption, error, or warning, the debugger will break—typically because of an
exception—and you will have access to a call stack. Moreover, the DirectX
debug output will usually have suggestions about what the problem is and
what you need to do to avoid it.
Various objects that are created, used, and destroyed have information
displayed in the output window, but the default is to use memory addresses
to identify them. This is not particularly helpful. You can, however, provide
names for such objects via the device context. Speciﬁcally, you can use
const char∗ myName = <some name>;
UINT l e n g t h = s t r l e n ( myName ) ;
HRESULT hr = context−>SetPrivateData (WKPDID
D3DDebugObjectName,
length , myName);
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When an object with a name causes the DirectX debug layer to emit infor-
mation about the object, you will see the object’s name appear with that
information. I have wrapped the naming in GTEngine to allow you to condi-
tionally turn the names of objects on or oﬀ.
5.2.2 Debugging on the GPU
Microsoft Visual Studio 2013 allows you to debug HLSL shaders. You can
actually have HLSL shaders in your project ﬁles. If you drag an HLSL ﬁle
into the project, its ﬁle properties show that it will be built by the “HLSL
Compiler.” If you choose to use this mechanism, you must set compiler options
via the properties dialog. Currently, you must have one shader type per ﬁle,
because the custom build mechanism cannot be set up to compile two diﬀerent
shaders from the same ﬁle.
I prefer not to use this mechanism, because in my production environment
I have custom build steps that generate C++ source code from HLSL using my
own tools that use the shader factory tool mentioned in Section 4.2. However,
I can still use the HLSL debugging capabilities that Microsoft Visual Studio
2013 provides, and I am not limited by the one-shader-per-ﬁle constraint.
For example, look at the sample application
GeometricTools/GTEngine/Samples/Graphics/BlendedTerrain
The ﬁle BlendedTerrain.hlsl ﬁle contains both a vertex shader and a pixel shader.
The source ﬁle
BlendedTerrainEﬀect.cpp has the function
bool BlendedTerrainEffect :: LoadShader(Environment const& environment ,
std :: string const&name)
The compiler ﬂags include
D3DCOMPILE DEBUG and D3DCOMPILE SKIP OPTIMIZATION
in order to support the debugging from within Microsoft Visual Studio 2013.
Assuming the application compiles and runs, you can select from the menu
bar the
Debug option, then Graphics,andthenStart Diagnostics. The application
will launch and the screen will have text that asks you to capture a frame using
the
Print Screen key. After doing so, you will see a new window in the IDE with
a captured frame. In this application, the frame is a colored rendering of a
mountain and sky. After capturing, you can terminate the application. The
HLSL debugger eﬀectively runs as a simulation using the captured data. You
cannot toggle between CPU debugging and HLSL debugging.
Select a mountain pixel in the scene. You will see a new window displayed
entitled
Graphics Pixel History. A tree control is available for the instruction
ID3D11DeviceContext::DrawIndexed. If you expand the tree control, expand the
item that says
Triangle, you will see buttons to start debugging either the
vertex shader or the pixel shader. Pressing one of these, the
BlendedTerrain.hlsl
ﬁle will appear in the IDE with the familiar debugger icon for the current line
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to be executed. Just as with the CPU debugger, you can step through the
lines of HLSL code and watch variables and registers.
Debugging compute shaders is similar, although you still have to capture
frames even though the compute shader is usually not frame based. For ex-
ample, look at the sample application
GeometricTools/GTEngine/Samples/Basics/GaussianBlurring
This application uses the compute shader GaussianBlurring.hlsl to blur an im-
age repeatedly. The resulting images are displayed on the screen, so you can
capture frames as described previously. The compute shader is compiled with
debugging information:
HLSLDefiner definer ;
definer . SetInt(”NUM
X THREADS” , mNumXThreads ) ;
definer . SetInt(”NUM
Y THREADS” , mNumYThreads ) ;
path = env . GetPath (” GaussianBlur3x3 . h l s l ” ) ;
unsigned int flags =
D3DCOMPILE
ENABLE STRICTNESS |
D3DCOMPILE
IEEE STRICTN ESS |
D3DCOMPI LE
DEBUG |
D3DCOMPILE
SKIP OPTIMIZATION ;
mGaussianBlurShader . reset ( ShaderFactory : : CreateCompute(path , definer ,
”CSMain” , ” cs
5 0”, flags ));
Capture a frame and terminate the application. Select a pixel in the frame.
When the graphics debugger is active, a tool bar appears on the menu that
has an option
Pipeline Stages. Select that option and a new window will appear
that has a thumbnail of the frame, information about the compute shader
Dispatch call, and a button that allows you to start debugging the compute
shader. Press the button and the HLSL ﬁle will appear in the IDE with the
usual debugging capabilities.
In some applications, you might not have frames to capture. You can try
mixing the compute shaders into the application so that during idle time, you
call the compute shader, draw a rectangle that covers the application window,
capture a frame, and then use the HLSL debugger. Alternatively, you can use
the old-fashioned
printf debugging in GPU style. Include writable textures or
structured buﬀers in your compute shader that can store intermediate compu-
tations. You can read these back from GPU to CPU and analyze the results.
For example,
Texture2D<float> input ;
RWTexture2D<float> output ;
RWTexture2D<float2> debugInfo ;
[ numthreads (NUMX, NUMY, 1 )]
void CSMai n ( i n t 2 t : SV
DispatchThreadID)
{
float temp0 = SomeFunction(input [ t ]);
float temp1 = SomeOtherFunction (input [t ]);
output=temp0+temp1;
debugInfo [ t ] = float2 (temp0 , temp1);
}
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After readback, you can examine the values of
temp0 and temp1 in case they
appear not to be correct because the output appears not to be correct.
More detailed information about using graphics debugging and HLSL de-
bugging is available online [32].
5.2.3 Be Mindful of Your Surroundings
When writing complicated computer shaders, I occasionally came across
apparent bugs in the HLSL compiler; in the D3D11 runtime when executing
a shader; and in the graphics drivers, whether AMD or NVIDIA. These are
usually diﬃcult to diagnose. I always assume ﬁrst that I have made an error
or that I misunderstand something about the graphics system. In many cases
the assumption is correct. In other cases—well—all software has bugs.
When shaders do not behave the way you expect and you are certain the
problem is not of your doing, you have to be diligent in your investigations. You
have to formulate hypotheses and test them. I have lost count of the number of
times I have heard professional developers try guessing at the causes, whether
software failures or performance problems. If only you could be so lucky to
guess right. My rules of thumb for shader problems are the following:
1. Figure out what I did wrong.
2. Try to write a simple program that reproduces the problem.
3. If successful in Rule 2, try running the program using a diﬀerent version
of the driver or using a diﬀerent manufacturer’s graphics card or using
the D3D11 reference driver to see whether the problem persists.
4. Look at the HLSL assembly code to get some clues about the source of
error.
I have applied Rule 3 successfully in one such problem when using an AMD
graphics card. I was trying to build a pyramid of textures that was not a
standard mipmap of box averages. The textures were incorrect from a certain
level on. The reference driver produced the correct textures as did the same
shader program running on an NVIDIA graphics card. I have had problems on
NVIDIA cards where complicated shaders were not running correctly, acting
almost as if there were too many instructions for the driver to handle. In these
situations, I was able to run the shaders successfully on AMD cards. I have
also seen a deadlock in an NVIDIA driver, occurring when the texture resource
system was trying to delete a texture in one thread and create a texture in
another thread—a D3D11 device is supposedly thread-safe, so this deadlock
should not happen. After poring through call stacks on various threads and
looking at timelines with a concurrency visualizer, I decided the problem was
not of my doing. An upgrade to a newer NVIDIA driver ﬁxed the problem.
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5.2.3.1 An Example of an HLSL Compiler Bug
As an example, consider the discussion of Section 4.2.4.1 regarding the
storage convention for matrices. The
FXC output diﬀers depending on whether
you use option
/Zpr for row-major storage or /Zpc for column-major storage.
Although the standard way to pass the world-view-projection matrix of Equa-
tion (4.20) to a shader is via a constant buﬀer, I thought I would experiment
and pass the matrix to the shader via a structured buﬀer. The results were
unexpected. Consider the HLSL code in Listing 5.2, where I used a compute
shader for the experiment.
StructuredBuffer<float4x4> input ; // 1 e le m en t
RWTexture1D<float> output ; // 16 elements
[numthreads(1,1,1)]
void CSMai n ( i nt3 t : S V
DispatchThreadID)
{
for ( int j=0,k=0; j< 4; ++j )
{
for ( int i=0; i< 4 ; ++ i , ++k )
{
output [k] = input [0][ j ][ i ];
}
}
}
LISTING 5.2: A compute shader program that fetches a matrix from a
structured buﬀer with native type
ﬂoat4x4.
The
FXC output is shown in Listing 5.3 regardless of whether the option
is speciﬁed for row-major or column-major order! The
ld structured indexable
instruction was manually split across lines to ﬁt in the width of the page.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
// Buffer Definitions :
//
// Resource bind info for input
// {
//
//float4x4$Element; //Offset:0Size:64
//
// }
//
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
// input texture struct r/o 0 1
// output UAV flo at 1d 0 1
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Input
//
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// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
cs
5 0
dcl
globalFlags refactoringAllowed
dcl
resource structured t0 , 64
dcl
uav typed texture1d (float , float , float , float )u0
dcl
temps 2
dcl
thread group 1, 1, 1
mov r0 . xy , l (0 ,0 ,0 ,0)
loop
ige r0.z , r0 .x, l (4)
breakc
nz r0 .z
ishl r0.z, r0.x, l (2)
mov r1 . x , r0 . y
mov r1 . y , l (0 )
loop
ige r0.w, r1 .y, l (4)
breakc
nz r0 .w
ishl r0 .w, r1.y, l (4)
iadd r0 .w, r0 .w, r0 . z
ld
structured indexable (structured buffer , stride=64)
(mixed , mixed , mixed , mixed ) r0 .w, l (0) , r0 .w, t0 . xxxx
store
uav t yp e d u0 . xyzw , r1 . xxxx , r0 .wwww
iadd r1 . xy , r1 . xyxx , l (1 , 1 , 0 , 0)
endloop
mov r0 . y , r1 . x
iadd r0 .x , r0 .x , l (1)
endloop
ret
// Approximately 20 instruction slots used
LISTING 5.3:TheFXC output from the compute shader of Listing 5.2 is
the same whether you use
/Zpr or /Zpc.
I compiled with the two diﬀerent options and ran Beyond Compare to view
the ﬁle diﬀerences—the ﬁles were identical. When using
/Zpr, what caught my
attention was the absence of the
row major tag on the ﬂoat 4x4 $Element in the
resource binding information. The input matrix A was set to a known pattern
and the output array B is expected to be an increasing sequence, as shown in
Equation (5.1).
A =
⎡
⎢
⎢
⎣
0123
4567
8 9 10 11
12 13 14 15
⎤
⎥
⎥
⎦
B = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
(5.1)
However, when
/Zpr is set, the input A is still interpreted as col-
umn major even though the test application passed the matrix through
the structured buﬀer in row-major order. The output was the incorrect
{0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15}.
As an experiment, I modiﬁed the HLSL ﬁle slightly as shown in Listing
5.4. This program should be equivalent to that of Listing 5.2.
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struct MyMatrix { float4x4 A; } ;
StructuredBuffer<MyMatrix> input ; // 1 e l em en t
RWTexture1D<float> output ; // 16 elements
[numthreads(1,1,1)]
void CSMai n ( i nt3 t : S V
DispatchThreadID)
{
for ( int j=0,k=0; j< 4; ++j )
{
for ( int i=0; i< 4 ; ++ i , ++k )
{
output [k] = input [0].A[ j ][ i ];
}
}
}
LISTING 5.4: A compute shader program that fetches a matrix from a
structured buﬀer with a struct that has a single member
ﬂoat4x4.
The output from
FXC using /Zpr is shown in Listing 5.5. The ld structured indexable
instruction was manually split across lines to ﬁt in the width of the page.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
// Buffer Definitions :
//
// Resource bind info for input1
// {
//
// s t r u c t MyMatrix
// {
//
// ro w
major float4x4 A; // Offset : 0
//
// } $Element; //Offset:0Size:64
//
// }
//
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
// input1 texture struct r/o 0 1
// output UAV flo at 1d 0 1
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Input
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
cs
5 0
dcl
globalFlags refactoringAllowed
dcl
resource structured t0 , 64
dcl
uav typed texture1d (float , float , float , float )u0
dcl
temps 2
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dcl thread group 1, 1, 1
mov r0 . xy , l (0 ,0 ,0 ,0)
loop
ige r0.z , r0 .x, l (4)
breakc
nz r0 .z
ishl r0.z, r0.x, l (4)
mov r1 . x , r0 . y
mov r1 . y , l (0 )
loop
ige r0.w, r1 .y, l (4)
breakc
nz r0 .w
ishl r0 .w, r1.y, l (2)
iadd r0 .w, r0 .w, r0 . z
ld
structured indexable (structured buffer , stride=64)
(mixed , mixed , mixed , mixed ) r0 .w, l (0) , r0 .w, t0 . xxxx
store
uav t yp e d u0 . xyzw , r1 . xxxx , r0 .wwww
iadd r1 . xy , r1 . xyxx , l (1 , 1 , 0 , 0)
endloop
mov r0 . y , r1 . x
iadd r0 .x , r0 .x , l (1)
endloop
ret
// Approximately 20 instruction slots used
LISTING 5.5:TheFXC output from the compute shader of Listing 5.4 using
/Zpr.
Now we see the
row major tag on the matrix in the resource binding informa-
tion. The only other diﬀerences in output are the lines with the
ishl instruc-
tions. This compute shader, whether compiled with
/Zpr or /Zpc, produces the
same correct output.
5.2.3.2 An Example of a Programmer Bug
The compute shader program shown in Listing 5.6 is a greatly simpliﬁed
example of what I was actually working on, but it is suﬃcient to demonstrate
the problem.
cbuffer MyCBuffer { float input [4]; } ;
RWTexture1D<float> output ; // four elements
[numthreads(1,1,1)]
void CSMai n ( int t:SV
DispatchThreadID)
{
for ( int i=0; i< 4; ++i )
{
output [ i ] = input [ i ]; // pass through the input values
}
}
LISTING 5.6: An example of a programmer bug.
The constant buﬀer has four ﬂoating-point numbers, so I created a buﬀer
of 16 bytes and and initialized the values to {0, 1, 2, 3}. The output texture
values are {0, 0, 0, 0}, which is not what I expected. I modiﬁed the inputs to
{1, 2, 3, 4} and obtained the output values {1, 0, 0, 0}, which is still not what
I expected. Surely this is a bug in the HLSL compiler? I stuck to my rules of
thumb. In this case I posted a question on www.gamedev.net and mentioned
the problem. A responder provided the link [45]. The webpage mentions the
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HLSL packing rules for constant buﬀers. Arrays in constant buﬀers are not
packed by default. This avoids oﬀset computations if you have four array
elements per register. If you want to incur the ALU overhead, you can always
pack the arrays yourself. The problem, though, is you cannot loop over the
array in your HLSL code, so that code must unpack manually. In the previous
code sample, the problem really was mine—my lack of understanding of the
HLSL packing rules. According to the rules, there should be four registers
assigned to
MyCBuﬀer.
The output of
FXC is shown in Listing 5.7.
//
// Generated by Microsoft (R) HLSL Shader Compiler 6.3.9600.16384
//
//
// Buffer Definitions :
//
// cbuffer MyCBuffer
// {
//
// float input [4]; // Offset : 0 Size : 52
//
// }
//
//
// Resource Bindings :
//
// Name Type For mat Dim S lot E l em e nt s
// −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−− −−−−−−−−
// output UAV flo at 1d 0 1
// MyCBuffer c b u f f e r NA NA 0 1
//
//
//
// Input signature :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Input
//
// Output s i g n at u r e :
//
// Name Index Mask Register SysValue Format Used
// −−−−−−−−−−−−−−−−−−−− −−−−− −−−−−− −−−−−−−− −−−−−−−− −−−−−−− −−−−−−
// no Output
cs
5 0
dcl
globalFlags refactoringAllowed
dcl
constantbuffer cb0[4] , dynamicIndexed
dcl
uav typed texture1d (float , float , float , float )u0
dcl
temps 1
dcl
thread group 1, 1, 1
mov r0 . x , l ( 0)
loop
ige r0.y, r0.x, l (4)
breakc
nz r0 .y
store
uav t yp e d u0 . xyzw , r0 . xxxx , cb0 [ r0 . x + 0 ] . xxxx
iadd r0 .x , r0 .x , l (1)
endloop
ret
// Approximately 8 instruction slots used
LISTING 5.7: The output of FXC applied to the code of Listing 5.6.
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The ﬁrst hint the output provides is the size of 52 for the constant buﬀer.
If the packing had been as I assumed, the size should be 16. Even knowing
the packing rules, should the size be 64 (four registers at 16 bytes each)?
Yes, there are four registers assigned—you can see this in the instruction
dcl constantbuﬀer cb0[4]. However, the FXC compiler is reporting that you are
only “using” 52 of these bytes. This count includes the forty-eight bytes for
the ﬁrst three registers, but the program uses only the ﬁrst component of the
fourth register (4 more bytes). Well, be careful about interpreting the com-
ments in the human-readable output. In the shader reﬂection that GTEngine
uses to compile shaders at runtime, the number of bytes for
MyCBuﬀer is
queried from a
D3D11 SHADER BUFFER DESC and the size is reported as 64
bytes.
So in fact the problem is mine. I modiﬁed the constant buﬀer creation to
use a buﬀer of 64 bytes, typecast it as an array of four
Vector4<ﬂoat> objects,
and set the zeroth components of the vectors to be 0, 1, 2, and 3. The output
was then exactly these input values.
5.3 Performance
GPGPU is very much about high performance. Despite the availability of
embarrassingly parallel hardware, you have the responsibility of ensuring the
end-to-end performance of your applications. In turn, you must understand
what tools are available to you to accomplish your performance goals.
5.3.1 Performance on the CPU
On a CPU, the standard tool for measuring performance is a proﬁler.
Microsoft Visual Studio 2013 has a proﬁler you may use. This is accessible
throught the main menu by choosing the
Analyze option. In the pop-up menu,
you then choose the
Proﬁler option. For fastest access to the capabilities, you
can run an uninstrumented version of your application and attach aproﬁler
to it. You cannot proﬁle an application with a debugger attached. Thus, you
should run your application from the menu option
Debug and then select the
suboption
Start Without Debugging. After the application launches, select menu
option
Analyze, suboption Proﬁler, and then select the Attach/Detach item. You
need to run the tool in administrator mode to access the high-performance
counters, so the ﬁrst time you run this during a Microsoft Visual Studio ses-
sion, you will be prompted with the usual dialog box about running as ad-
ministrator.
Once the tool starts up, you will see a dialog box containing a list of
applications that are running. Select the application you want to proﬁle; that
is the one the proﬁler will be attached to. A window will appear in the IDE
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showing that the proﬁler is running. You can either terminate the application
or select an option that says to stop proﬁling. In either case, the proﬁler will
display output telling you that it is collecting the data. Finally, a window is
displayed with the results. A simple summary is displayed, but the most useful
is listed under
Related Views, speciﬁcally the Functions link.
When you visit the functions link, you will see a list of functions and
DLLs, and you can sort by exclusive (count time in that function) or by
inclusive (count time in that function and in the functions it calls). For real-
time graphics, I prefer the inclusive view, because it gives me a quick idea
about where I am spending the time in the call stack. You can double-click a
function to display a window of the source code for that function with lines
highlighted that are taking the majority of the time to execute. Of course,
there are many other options you can explore. I suggest playing with this tool
for a while and explore the information available to you.
Another tool that is available as a plugin to Microsoft Visual Studio 2013
is the Concurrency Visualizer. You can obtain this for free through the IDE
by selecting the menu option
Tools | Extensions and Updates | Online | Visual Studio Gallery | Tools | Performance |
Concurrency Visualizer for Visual Studio 2013
An installation button is available. Once installed, the menu option Analyze
now has a new suboption Concurrency Visualizer. Just as with the proﬁler, start
your application without a debugger attached. Attach the Concurrency Vi-
sualizer to your application process. Once again you need to run this in ad-
ministrator mode, so you might be prompted with a dialog box. A window
appears in the IDE that tells you to terminate the application when desired,
or you can select a link that says to stop the data collection (but the applica-
tion continues to run). The amount of information this tool generates is quite
large, so you do not want to run it for long.
A window appears with a summary of information. The most important
link to select is the
Threads link. You get a collection of timelines for threads.
A slider allows you to zoom in and see various color-coded blocks; the legend
for coloring is shown. Selecting the green blocks in the main thread, you can
see what code is being executed. Having the thread timelines adjacent to each
other can give you information, for example, when one thread is stalling an-
other. The tool itself can detect this and show you which thread’s callstack
is blocking your thread (and vice versa). The DirectX GPU threads are also
displayed; these are the DLL threads, not individual GPU compute shader
execution threads. Again, I suggest you play with this tool to see what infor-
mation is available.
If you want a larger suite of tools with more capabilities, but one that is not
free, I suggest Intel Parallel Studio XE 2013. The proﬁling tool is Intel VTune
Ampliﬁer XE 2013. You can obtain proﬁling information at the assembly
level and customize what you want to measure. Filtering by thread is a nice
capability, and you can view timelines for the threads. The suite also comes
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with a tool called Intel Inspector XE 2013 that helps you track down memory
errors, leaks, and threading problems.
5.3.2 Performance on the GPU
Performance measurements on the GPU are possible at a high level us-
ing only D3D11 support. Firstly, you can always measure frame rate dur-
ing idle loop time to give you a coarse idea of how long something takes
to compute or how much faster something is after you have made shader
changes. The GTEngine sample applications show how to do this. Secondly,
the
ID3D11Device interface allows queries related to timing. Listing 5.8 shows
the basic code. The
HRESULT processing is omitted for simplicity, but the
GTEngine code handles the return values.
// −−− initialization code
ID3D11Device∗ device ; // the device of interest
ID3D11DeviceContext∗ immediate ; // the associated context
D3D11
QUERY DATA TIMESTAMP DISJOINT timeStamp ;
ID3D11Query∗ frequencyQuery ;
ID3D11Query∗ startTimeQuery ;
ID3D11Query∗ finalTimeQuery ;
D3D11
QUERY DESC d e s c ;
des c . Query = D3D11
QUERY TIMESTAMP DISJOINT;
desc . MiscFlags = D3D11
QUERY MISC NONE ;
device−>CreateQuery(&desc , &frequencyQuery );
d e s c . Q uer y = D3D11
QUERY TIMESTAMP ;
desc . MiscFlags = D3D11
QUERY MISC NONE ;
device−>CreateQuery (&desc , &startTimeQuery );
device−>CreateQuery (&desc , &finalTimeQuery );
// −−− runtime code
// B eg i n t i m e r .
immediate−>Begin( frequencyQuery );
immediate−>End( s t art Ti me Que ry ) ;
int64
tstartTime;
while (S
OK != immediate−>GetData( startTimeQuery , &startTime ,
sizeof (startTime), 0))
{
// Wait for end of query .
}
// CPU code that c a lls into the GPU goes here .
// End t i m e r .
immediate−>End( finalTimeQuery );
int64
tfinalTime;
while (S
OK != immediate−>GetData (finalTimeQuery , &finalTime ,
sizeof (finalTime), 0))
{
// Wait for end of query .
}
immediate−>End( frequencyQuery );
while (S
OK != immediate−>GetData ( frequencyQuery , &timeStamp ,
sizeof (timeStamp), 0))
{
// Wait for end of query .
}
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// number o f t i ck s fo r GPU e xecut i o n
int64
t numTicks = finalTime − startTime ;
// number o f s e c o n d s f o r GPU ex ecut i o n
double numSeconds = ( ( double) numTicks )/ (( double) timeStamp . Frequency );
LISTING 5.8: D3D11 code to support timing of execution on the GPU.
GTEngine encapsulates this system in class
DX11PerformanceCounter and the
engine functions
DX11Engine::BeginTimer and DX11Engine::EndTimer. The typical
usage is
DX11Engine e n g i n e ;
DX11PerformanceCounter performance(engine .GetDevice ());
engine . BeginTimer (performance );
// CPU code that c a lls into the GPU goes here .
engine . EndTimer( performance );
double seconds = performance . GetSeconds ();
The D3D11 timing query is at best a quick measurement of performance.
However, it says nothing about what is actually happening on the GPU re-
garding computation (arithmetic logic units, both scalar and vector) or mem-
ory bandwidth (cache behavior). Graphics chip manufacturers provide their
own performance tools. NVIDIA has its
Nsight tool so you can work within
Microsoft Visual Studio; it is available for download from NVIDIA’s website.
You can debug shaders as well as proﬁle with this tool.
AMD has performance tools you may download from their website. I have
had mixed success with the stand-alone tools. I have had better success with
their GPU Performance API that you can load dynamically loaded and use
directly within an application. The version I am using is 2.11.739.0. Although
I have a class wrapper that encapsulates their DLL, I cannot redistribute the
library. To use my class wrapper, you must download the API yourself and
agree to the license. I can, however, show you how the wrapper works. I have
installed the AMD GPU Performance API to the following folders:
GeometricTools/GTEngine/Tools/GPUPerfAPI-2.11.739.0/Bin
GeometricTools/GTEngine/Tools/GPUPerfAPI-2.11.739.0/Include
GeometricTools/GTEngine/Tools/GPUPerfAPI-2.11.739.0/Source
The Include and Source folders also contain my class-based wrapper
AMDPerformance. You can add the wrapper header and source ﬁle to any
project for which you want GPU proﬁling on an AMD graphics card. The
API is loaded dynamically, so the DLLs must be found at runtime. To sup-
port this in any Geometric Tools development, I have created folders
C:/Program Files (x86)/GeometricTools/x86
C:/Program Files (x86)/GeometricTools/x64
and copied the AMD performance DLLs to these folders. The same folders
will be used for DLL versions of GTEngine. Of course, you need administra-
tive privileges to do this, and you will need to do this manually because the
software does not come with an installer. I also have these folders as part of
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the system
PATH environment variable, which is searched when an application
requires DLLs.
The AMD GPU Performance API has various counters it can measure de-
pending on the model of your graphics card. The API allows you to enumerate
these. For an AMD 7970, the enumeration shows 62 counters I can measure.
For example, there is a counter named
GPUTime that I can request and have
the API report its value. A sample application shows how to use the counters,
GeometricTools/GTEngine/Basics/PerformanceAMD
The application draws 1024 triangles with random vertices in the cube [−1, 1]
3
and with random texture coordinates in [0, 1]
2
. Back-face culling is disabled.
The texture for the triangles is loaded from the hard disk but each frame
is blurred using a compute shader. The
PerformanceAMDWindow header ﬁle
declares
private :
static void Listener (GPA
Logging Type type , char const∗ message ) ;
AMDPerfo rmance m Per for ma nc e ;
The Listener function is a callback provided to the performance library to be
called when events are generated by the library during the measurements. I
have these messages written to the output window of the IDE. The constructor
of the application window object is
Performa nceAMDWi ndow : : Perfo rmanceAM DWindo w ( P a ramete rs& p ara meters )
:
Window( parameters ) ,
mTextColor (0 .0 f , 0.0 f , 0.0 f , 1.0 f ) ,
mPerformance ( mEngine−>GetDevice ())
{
CreateCamera ( ) ;
CreateTextureGenerator () ;
CreateScene ();
// D is a b le ba ck−face culling .
mNoCullingState . re set (new RasterizerState ());
mNoCullingState−>cullMode = RasterizerState ::CULL
NONE ;
mEngine−>SetRasterize rStat e ( mNoCullingState );
mPer forma nce . S a v e Co u n t e r I n f o r m a t i o n ( ” AMD7970Counters . tx t ” );
mPerformance . R e gi s t e r ( L i s t e n er ) ;
mPerformance . S e tA l l C o u n t e rs ( ) ;
}
The mPerformance object is constructed by giving it the ID3D11Device object
associated with the window. At the end of the constructor, a description of
the counters is written to a ﬁle. You need do this only once for a speciﬁc
graphics card. The
Listener callback is provided to the performance system
and all counters enumerated by the system are enabled for measurement.
The idle-time function for the real-time behavior is
void PerformanceAMDWindow : : OnId le ()
{
MeasureTime ( ) ;
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MoveCamera ( ) ;
UpdateConstants ( );
mEngine−>ClearBuffers ();
mPerformance . P r ofi l e ( [ this ]()
{
mEngine−>Execut e ( mGenerateText ure , mNumXGroups , mNumYGroups , 1 ) ;
mEngine−>Draw(mTriangles );
} );
// Compute the average measurements . GetAverage allows you to access
// the measurements during application runtime. SaveAverage calls
// GetAverage and writes the results to a spreadsheet .
std : : vector<std : : vector<AMDPerforma nce : : M eas ur emen t>> measurements ;
if (mPerformance . GetNumProfileCalls() == 16)
{
mPerformance . G etAve ra g e ( mea sur emen ts ) ;
mPerformance .SaveAverage(”ProfileResults . csv”);
}
DrawFrameRate ( 8 , mYSize − 8 , mTextColor );
mEngine−>DisplayColorBuffer(0);
UpdateFrameCount ( ) ;
}
The CPU-based frame rate counter is part of the GTEngine window class; it
is measured using
MeasureTime and UpdateFrameCount, and the frame rate is
displayed (in frames per second) in the application window (lower-left corner).
The GPU operations I want to measure are bounded by the lambda function
passed to
mPerformance.Proﬁle. The capture clause speciﬁes the variable this
because I need to access class members of PerformanceAMDWindow.
The sample is designed to measure the GPU performance during the ﬁrst
sixteen calls of
OnIdle, after which it computes the average of the measurements
and saves the results to a comma-separated-value ﬁle. This format allows you
to open the ﬁle with Microsoft Excel or other spreadsheet tool. At the highest
level, the counter
GPUTime has a measurement of 0.49 milliseconds of execution
on the GPU. The counter
GPUBusy was measured at 100 percent. Table 5.1
shows measurements related to the vertex and pixel shaders.
TABLE 5. 1: Vertex and pixel shader performance measurements
counter measurement description
VSBusy 1.27 percentage of time the shader unit has
vertex shader work to do
VSVerticesIn 3072 number of vertices processed by vertex
shader
PSBusy 11.76 percentage of time the shader unit has
pixel shader work to do
PrimitivesIn 1024 number of primitives received by the
hardware
PSPixelsOut 258247 color buﬀer writes by the pixel shader
PSExportStalls 0.03 percentage of GPUBusy (positive means
bottleneck in late depth testing or in color
buﬀer)
TexUnitBusy 85.61 percentage of GPUTime the texture unit
is active
CBMemWritten 1228420 bytes written to the color buﬀer
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TABLE 5. 2: Compute shader performance measurements
counter measurement description
CSThreadGroups 12288 number of thread groups
CSThreads 1048130 number of threads
CSWavefronts 12288 number of wavefronts
CSBusy 86.24 percentage time the shader unit has com-
pute shader work to do
CSMemUnitBusy 87.15 percentage of GPUTime the memory unit
is active
CSMemUnitStalled 0.47 percentage of GPUTime the memory unit
is stalled
CSFetchSize 5220.28 total kilobytes fetched from video memory
CSWriteSize 3072 kilobytes written to video memory
CSWriteUnitStalled 0.14 percentage of GPUTime the write unit is
stalled
CSCacheHit 67.23 percentage of instructions that hit the
data cache
CSSALUBusy 0.09 percentage of GPUTime scalar ALU in-
structions are processed
CSSALUInsts 0.32 average number of scalar ALU instruc-
tions per work item
CSSFetchInsts 0.09 average number of scalar fetch instruc-
tions from video memory executed per
work item
CSVALUBusy 4.16 percentage of GPUTime vector ALU in-
structions are processed
CSVALUInsts 28.48 average number of vector ALU instruc-
tions per work item
CSVFetchInsts 4.49 average number of vector fetch instruc-
tions from video memory executed per
work item
CSVWriteInsts 0.09 average number of vector write instruc-
tions to video memory executed per work
item
CSVALUUtilization 99.97 percentage of active vector ALU threads
in a wave
Table 5.2 shows the measurements related to the compute shader. The
ﬁrst category of measurements involve thread counting. An AMD wavefront
consists of sixty-four threads. I chose the compute shader to use 8 × 8 × 1
threads, which is one wavefront per thread group. Thus, the reported num-
bers of thread groups and wavefronts are the same. The second category of
measurements are about memory accesses. The third category is about the
arithmetic logic units (ALUs), both scalar (single-channel operations) and
vector (multichannel operations in the SIMD sense).
Table 5.3 shows the measurements related to depth, stencil, and culling
state (including clipping). The application disabled back-face culling and all
triangles are visible during the performance testing, so culling primitives and
clipped primitives are both zero.
5.3.3 Performance Guidelines
Here is a brief list of guidelines to follow in order to obtain high perfor-
mance when writing GPGPU-based applications.
• Choose thread group sizes properly. On AMD hardware, a wavefront
consists of sixty-four GPU threads. On NVIDIA, a warp consists of


















[image: ]248 GPGPU Programming for Games and Science
TABLE 5. 3: Depth, stencil, and culling state performance measurements
counter measurement description
PrimitiveAssemblyBusy 9.42 percentage of GPUTime that clipping and
culling is busy
CulledPrims 0 number of culled primitives
ClippedPrims 0 number of primitives requiring at least
one clipping operation
DepthStencilBusy 10.24 percentage of time GPU spent performing
depth and stencil tests
ZUnitStalled 0.10 percentage of GPUTime depth buﬀer
waits for color buﬀer to be ready for
writes
HiZQuadsCulled 95.93 percentage of quads not continuing in the
pipeline after HiZ test (written directly to
depth buﬀer or culled)
PostZQuads 1.74 percentage of quads for which pixel shader
will run and may be PostZ tested
PreZQuadsCulled 2.33 percentage of quads rejected based on de-
tailZ and earlyZ tests
PreZSamplesFailingZ 383368 number of samples tested for Z before
shading and failed Z test
PreZSamplesPassing 258247 number of samples tested for Z after shad-
ing and passed
PreZTilesDetailCulled 0.03 percentage of tiles rejected because the
primitive had no contributing area
thirty-two GPU threads. You should choose the numthreads parameters
to have a product that is a multiple of these numbers; otherwise, the
excess threads will be executed anyway yet their work is rejected. You
should prefer to keep all the threads busy doing work that is accepted.
• Prefer to avoid branching and the associated stalls whenever possible; if
necessary, use SIMD-style ﬂattening, manually or via the
ﬂatten direc-
tive.
• Use group-shared memory to avoid redundant memory accesses when
computing in neighborhoods of a point and to store shared computations
that are expensive. Be sure to determine the break-even point for when
group-shared memory outperforms the naive look-up-everything-in-the-
neighborhood approach.
• Prefer loop unrolling via the
unroll directive, but proﬁle the shader be-
cause sometimes loop unrolling might lead to slower code. I had this
happen on occasion but not frequently.
• Avoid loops controlled by variables associated with unordered access
views. Such control is usually a performance problem. If your algorithm
requires this and you have designed this in a sequential manner, you
can analyze the algorithm to see whether you can make it a multipass
algorithm that avoids the UAV loop control. For example, I had to do
this when writing a GPU-based connected component labeler that used
a union-ﬁnd algorithm.
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• Try to keep data on GPU; that is, avoid uploads to the GPU and read-
backs from the GPU in the middle of an end-to-end algorithm. The
memory transfer is a serious bottleneck.
• When creating a lot of D3D11 resources, try to do so in a thread that
is separate from the consumer of the resources. This takes advantage of
the thread safety of the
ID3D11Device object. In the producer-consumer
model, you will have to thread the CPU code for the consumption.
• If you have a sequence of GPU stages that must be performed in order,
and if one of them performs worse than the CPU algorithm, that is not
a reason to avoid porting to the GPU. The goal is a speedup for the
entire sequence. It is not necessary to have each GPU stage outperform
the corresponding CPU stage.
• Use GPU performance counters for hardware information such as mem-
ory and texture cache misses; memory reads, write, and stalls; scalar
ALU usage; vector ALU usage; etc.
• Use multiple tools, because one alone is usually not suﬃcient to give
you enough information to diagnose. You should deﬁnitely use a CPU
proﬁler for end-to-end performance measurements, a GPU proﬁler to un-
derstand what is happening on the GPU, and a tool such as Microsoft’s
Concurrency Visualizer to see how the application threads are laid out
over time in order to determine where stalls are in the end-to-end exe-
cution.
• Do not follow the guidelines as if they are absolute rules. For example, if
you have branching and the proﬁler shows that branching is not a bottle-
neck, there is no reason to remove the branching—especially if it makes
the algorithm more complicated. As another example, just because you
access shader resources in a neighborhood of the location speciﬁed by the
dispatch thread ID does not mean you should immediately use group-
shared memory. Such sharing has some ﬁxed costs associated with it. Try
writing the shaders both way, with and without group-shared memory,
and measure the performance in order to make your ﬁnal decision.
5.4 Code Testing
In an industrial software engineering development environment, you invari-
ably have test teams to support what you do. One of those tasks is to verify
that (most of) your code has been exercised so that you have some assurance
that what you wrote is actually used during application runtime. This falls in
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the realm of code testing. To illustrate some of the testing topics, consider the
contrived function of Listing 5.9.
enum ErrorCode { INSERTED , NO MATCH , INVAL ID INPUT } ;
ErrorCode In sert ( char const∗ name , Database& db)
{
ErrorCode code = INSERTED;
if (name != nullptr )
{
if (name[0] == ’A’)
{
db . InsertARecord (name);
}
else if (name [ 0 ] == ’B ’ && name [ 1 ] == ’ a ’ )
{
db . InsertBCRecord (name);
}
else if (name[0] == ’D’)
{
db. InsertERecord(name);
}
else
{
code = NO
MATCH ;
}
}
else
{
c o d e = IN VALID
INPUT ;
}
return code ;
}
LISTING 5.9: A simple example to illustrate testing concepts.
5.4.1 Topics in Code Testing
Code testing is a large topic, and I do not plan on going into detail about
it in this book. But I do want to mention several topics because they should
be on your mind during development. Some high-level questions you must ask
yourself are:
1. Does the code do what it is designed to do?
2. Will the code perform robustly for the inputs it is intended to process?
3. What are the conditions under which the code will fail? If any, what
safeguards does the code have to prevent failure?
In the example at hand, I assume the existence of an object
db that allows
you to insert character strings into a database. The code is designed to allow
insertion of strings starting with “A”, “Ba”, or “D”; other strings are not
inserted. Given this limited description, I would say that the code does what
it is designed to do. You can test the code with
ErrorCode code ;
code = Insert(”Alligator”, db); // co de = INSERTED
code = I n s e r t ( ”Bat” , db ) ; // co de = INSERTED
code = I n s e r t ( ”Dog” , db ) ; // c od e = INSERTED
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code = I n s e r t ( ”Cat” , db ) ; // co de = NO MATCH
code = Insert (nullptr , db); / / c o d e = INVALID
INPUT
However, without a formal requirements list, do you really know whether the
code does what it is designed to do? For example, is the name matching
supposed to be case sensitive?
c ode = InsertName ( ”BAt” ) ; // co de = NO MATCH, i s th i s what yo u want ?
Checking your code against a requirements list is not something for which
tools are readily available. You will need to be diligent about this topic. In
my industrial experience, getting a well-written requirements list from your
clients or coworkers is as painful as pulling teeth.
Regarding robustness, the code at least tests whether the input pointer is
not null. However, the code is not as robust as it could be. For example,
char const∗ name0 = ”B” ;
code = InsertName ( name0 , db ) ; // co de = NO
MATCH , w h i c h i s o k a y
char const∗ name1 = new ch ar [1];
name1 [ 0 ] = ’ B’ ;
// What should the returned code be? Dereferencing name1[1] is a memory
// access violation .
code = InsertName ( name1 , db ) ;
Most likely the programmer intended the input name to be a null-terminated
string, but string handling is problematic, because you have no idea of the
length of the string and
strlen measures the length by searching for a null
character. Thus, the caller of
Insert has the responsibility for meeting the
precondition that
name is a null-terminated string. A better design might be
to pass in the length:
ErrorCode I nsert Alt1 ( unsigned int length , char const∗ name , Database& db)
{
ErrorCode code = NO
MATCH ;
if (name != nullptr && length > 0)
{
if (length >=1)
{
if (name[0] == ’A’ || name [ 0 ] == ’D ’ )
{
db . InsertARecord (name );
code = INSERTED;
}
}
else if (length >=2)
{
if (name [ 0 ] == ’ B ’ && name [1 ] == ’ a ’ )
{
db . InsertBCRecord(name);
code = INSERTED;
}
}
}
else
{
co de = INVALID
MATCH ;
}
return code ;
}
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However, there is no guarantee that the caller has ensured that the length
is correct for the speciﬁed name. Alternatively, you can use a diﬀerent data
structure for the string:
ErrorCode I nsert Alt2 ( std : : st ring const&name, Database&db)
{
ErrorCode code = NO
MATCH ;
if (name != ””)
{
if (name. length () >=1)
{
if (name[0] == ’A’ || name [ 0 ] == ’D ’ )
{
db . InsertARecord (name. c
str ());
code = INSERTED;
}
}
else if (name. length () >=2)
{
if (name [ 0 ] == ’ B ’ && name [1 ] == ’ a ’ )
{
db . InsertBCRecord(name. c
str ());
code = INSERTED;
}
}
}
else
{
co de = INVALID
MATCH ;
}
return code ;
}
This alternative is attractive in that the caller must properly formulate the
name string, although an accidental memory overwrite can be painful. This
gives you fewer responsibilities. The
db object is still expecting a native
pointer, but at least you are passing a pointer to a well-formed string, re-
lying on
std::string to be implemented and tested properly.
Regardless of how you design the algorithm for insertion, it is your respon-
sibility to test the code, even before passing it oﬀ to a formal team of testers.
Concepts you should be familiar with are unit testing, regression testing,and
code coverage. Unit testing has two goals. The ﬁrst goal is to verify that your
code correctly solves the problems you intended. Because you are most likely
not the only person working on the code base, others might change the code.
The code might have been deemed correct but later changes make it incorrect.
Unit tests tend to be executed on a regular basis in order to trap problems
introduced during code maintenance; thus, the second goal of unit testing is
to ﬁnd regressions in behavior. As always, do not wait for a test team to ﬁnd
any regressions or bugs you have introduced. The best time to diagnose and
ﬁnd bugs is as soon as you have introduced them. If you wait, you might forget
what you were thinking when you made the code changes.
The unit tests should be designed to exercise as much of the code as
possible, including any error conditions that your code tries to trap. Code
coverage generally comes in a few ﬂavors. You can measure which functions
in your code are entered during execution, which blocks of code are executed,
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or which lines of code are executed. Function coverage is useful mainly for
high-level measurements of what parts of your code base are actually being
used. Line coverage is, perhaps, too ﬁne a measurement—if you have n lines
without branching, all lines will be executed.
In my experience at Microsoft, the automated code coverage tools used
block counting where the blocks are determined from the generated assembly
code. One block is a sequence of assembly instructions without branching. Al-
though this makes sense at a high level, there are some low-level consequences
that you must keep in mind. Firstly, the assembly code generated for debug
conﬁgurations and release conﬁgurations are diﬀerent, especially when code is
inlined. Secondly, the tools will count function call entry and function call exit
blocks, and sometimes branching is handled in a manner you did not expect.
For example, a simple function of the form
bool IsDepthTexture ( Texture texture )
{
return texture . type == DEPTH
TEXTURE ENUMERATION ;
}
Texture mytexture ;
if ( IsDepthTexture ( mytexture ))
{
DoSomething ;
}
shows up as four blocks. Two of those blocks are the call entry and call
exit handling, usually stack manipulation to push and pop input parame-
ters. Two other blocks are generated because of the implied branching due
to the
operator== comparison. The small code stub most likely generates 75
percent code coverage, because the calling code does not have an
else clause,
and the code coverage tool thinks you have not tested the case of the texture
not being a depth texture. The code coverage tools typically come with a user
interface that allows you to see coverage information at the source-code level,
even though the blocks are counted at the assembly level.
You should certainly strive for full code coverage, but in practice you
cannot expect to reach 100 percent because you invariably will have fault
conditions that are diﬃcult to test. This is in the realm of fault injection,
which is diﬃcult to implement. For example, if your code creates a D3D11
device and context, and that code works ﬁne on your machine, you might not
have ever tested your code to see what happens if the device creation fails,
say, on a machine that has only D3D9 hardware. To test the failure, you could
step through with a debugger and set the return
HRESULT to something other
than
S OK, then let the program continue running to see whether it terminates
properly. Unfortunately, manual fault injection of this type is not suitable for
a production environment where you want to automate the testing.
Unit tests that lead to 100 percent code coverage do not necessarily guar-
antee that your code works correctly. If your algorithm is implemented incor-
rectly, no amount of code coverage measurement will help you. Thus, code
coverage is necessary for your development environment but it is not entirely
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suﬃcient for a quality product. And unit testing is not always enough. Such
tests tend to be for low-level components of your code. For an entire appli-
cation, you tend to have end-to-end testing. Each component might be unit
tested and deemed correct, but do the components all work together correctly
to produce the desired application results? End-to-end test design is speciﬁc
to the application at hand, so there are no general guidelines for how to do
this within your environment.
5.4.2 Code Coverage and Unit Testing on the GPU
Because of the highly parallel nature of a GPU, tool support that you
normally ﬁnd for CPU computing is not as evolved for GPU computing. As
mentioned previously, you can copy intermediate computations into structured
buﬀers, read them back from GPU to CPU, and analyze them for any problems
in the shader code. The same idea applies to obtaining code coverage. You can
provide a structured buﬀer or texture that has unsigned integers used as bit
ﬂags, set for each block of code in the shader. For example, consider Listing
5.10.
Texture2D<float4> input ;
RWTexture2D<float4> output ;
RWTexture2D<uint> codeCoverage ; // initially all zero values
[ numthreads (NUMX, NUMY, 1 )]
void CSMai n ( i n t 2 t : SV
DispatchThreadID)
{
if (input[t ]. r > 0.0 f )
{
output [t] = input [t ]. rrrr ;
codeCoverage [ t ] |=1;
}
else if (input[ t ]. g > 0.0 f )
{
output [t] = input [t ]. gggg ;
codeCoverage [ t ] |=2;
}
else if (input[ t ]. b > 0.0 f )
{
output [t] = input [t ]. bbbb ;
codeCoverage [ t ] |=4;
}
else
{
output [t] = input [t ]. aaaa ;
codeCoverage [ t ] |=8;
}
}
LISTING 5.10: An example of measuring code coverage on the GPU.
The
codeCoverage output sets a bit in the bit ﬂag based on which block of code
is executed. Moreover, in this example you additionally get information about
the block for each thread with ID
t.
If you care only about the generic block regardless of thread, you could
easily have a single-element 2D texture and set only bits of
codeCoverage[0].
However, keep in mind that the current code guarantees no concurrent access





[image: ]Practical Matters 255
to
codeCoverage[t]. Using a single element, you want to guard against concur-
rent access. This is particularly true if you want to count how many times you
executed a block. For example, consider Listing 5.11.
Texture2D<float4> input ;
RWTexture2D<float4> output ;
RWStructuredBuffer<uint> codeCoverage ; // four values , all initially zero
[ numthreads (8 , 8 , 1 )]
void CSMai n ( i n t 2 t : SV
DispatchThreadID)
{
if (input[t ]. r > 0.0 f )
{
output [t] = input [t ]. rrrr ;
uint oldValue0 ;
InterlockedAdd(codeCoverage [0] , 1, oldValue0 );
}
else if (input[ t ]. g > 0.0 f )
{
output [t] = input [t ]. gggg ;
uint oldValue1 ;
InterlockedAdd(codeCoverage [1] , 1, oldValue1 );
}
else if (input[ t ]. b > 0.0 f )
{
output [t] = input [t ]. bbbb ;
uint oldValue2 ;
InterlockedAdd(codeCoverage [2] , 1, oldValue2 );
}
else
{
output [t] = input [t ]. aaaa ;
uint oldValue3 ;
InterlockedAdd(codeCoverage [3] , 1, oldValue3 );
}
}
LISTING 5.11: An example of code coverage on the GPU where you count
how many times each block is visited.
As always, a measurement taken during an experiment aﬀects the exper-
iment itself. The HLSL compiler does a good job of optimizing code. If you
insert instructions for measuring code coverage, it is possible that the opti-
mizer cannot do what it did before the insertion. Thus, the code coverage
measurements change the actual code whose coverage you are trying to mea-
sure. Also, if the shader is extremely lengthy and complicated, you can spend
a lot of time adding the code coverage instructions. Moreover, if your shader is
bordering on the limit of number of instructions, the additional code coverage
instructions could push you over the limit and the shader will not compile.
One thing you should do if you plan on measuring the code coverage on a
regular basis—wrap the code coverage instructions with preprocessor macros
that you can turn on or oﬀ. Within GTEngine, you can do this using the
HLSLDeﬁner class.
Regarding unit testing, my general rule of thumb is to write C++ code
that is designed to do the same thing the HLSL code is designed to do. You can
read back the HLSL outputs and compare them to the C++ outputs. If the
outputs are dependent on the IEEE ﬂoating-point behavior, say, you expect
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some subnormals in the C++ code, your unit tests will have to account for
this and compare properly. If your shader output is from the image processing
domain, you can write unit tests and do regression testing by reading back
the image outputs and compare them to a database of images generated from
previous runs of the code.
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Linear and Aﬃne Algebra
6.1 Vectors
Vectors and matrices are the most common entities manipulated in real-
time applications. I assume you are familiar with the algebra and geometry
of these. Although it is important to understand the abstract concepts one
normally encounters in courses on linear or aﬃne algebra, the focus here is on
the concrete computational aspects and on the geometric relationships asso-
ciated with these entities. We will work only with real-valued computations,
so there is no need to have a data type or support for complex numbers.
In practice, vectors are represented as one-dimensional arrays of scalars;
typically, the data type is ﬂoating-point, either 32-bit
ﬂoat or 64-bit double.
GTEngine supports both by implementing its mathematics library using tem-
plates. Matrices are represented as two-dimensional arrays of scalars.
Mathematics engines for real-time applications provide vector implemen-
tations that support basic arithmetic: sum and diﬀerence of vectors, multipli-
cation of a vector by a scalar, dot product of vectors, and length of a vector.
Usually, support is included for normalizing a vector, where you compute a
unit-length vector in the same direction as the original, assuming it is not
zero. GTEngine does so and also includes support for computing extreme val-
ues from a set of vectors, the result an axis-aligned bounding box. The engine
provides geometric operations related to orthogonality, namely, computing or-
thogonal vectors or bases; cross products in 3D are part of this support. Aﬃne
operations include computing barycentric coordinates and determining within
a user-speciﬁed tolerance the dimensionality of a set of vectors. Finally, com-
parison operators are provided to support standard C++ sorted containers.
GTEngine has a base template class
Vector<int,Real> whose ﬁrst param-
eter is the dimension (number of components) and whose second parame-
ter is the ﬂoating-point type (
ﬂoat or double). Derived classes Vector2<Real>,
Vector3<Real>,andVector4<Real> provide additional dimension-speciﬁc con-
structors and operations.
257
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6.1.1 Robust Length and Normalization Computations
A common operation for vectors is computing the length. If V has com-
ponents x
i
for 0 ≤ i<n, the length is mathematically deﬁned as
|V| =




n−1

i=0
x
2
i
(6.1)
The most frequently encountered implementation is the obvious one, shown in
Listing 6.1, where components of the vector
V can be accessed by the bracket
operator. The data type
Real is either ﬂoat or double.
Real Length ( Vector V)
{
Real length = 0;
for ( int i=0; i< n; ++i)
{
length += V[ i ]∗V[ i ];
}
length = sqrt(length );
return length ;
}
LISTING 6.1: Computing the length of a vector.
For small-magnitude components, this implementation is reasonable, but
if the components are large in magnitude, the ﬂoating-point computations for
the sum of squares can overﬂow, leading to a return value of ﬂoating-point
inﬁnity. For example, let M be the maximum ﬁnite ﬂoating-point number for
Real. The vector V =(M/2,M/2,M/2) has theoretical length
√
3M/2, which
should have a ﬁnite ﬂoating-point number that approximates it. However, us-
ing ﬂoating-point arithmetic, the term
V[0]*V[0] will overﬂow to become the
ﬂoating-point inﬁnity. The same is true for the other squares, and accumu-
lating them will still produce ﬂoating-point inﬁnity. The
sqrt function returns
ﬂoating-point inﬁnity when its input is inﬁnite.
A mathematically equivalent algorithm that leads to a robust implementa-
tion is the following. Let j be the index for the vector’s component of largest
magnitude; thus, |x
i
|≤|x
j
| for all i.Ifx
j
= 0, then the vector is the zero
vector and its length is zero. If x
j
= 0, factor the vector to V = |x
j
|(V/|x
j
|).
The vector W = V/|x
j
| has components all smaller or equal to one in magni-
tude, so the obvious length computation for it does not overﬂow. Listing 6.2
has pseudocode for this algorithm.
Real LengthRobust ( Vector V)
{
R ea l maxAbsComponent = |V[0]| ;
for ( int i=1; i< n; ++i)
{
Re al absComponent = |V[ i ] | ;
if (absComponent > maxAbsComponent)
{
maxAbsComponent = absComponent ;
}
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}
Real length ;
if (maxAbsComponent > 0)
{
V ec to r W = V/ maxAbsComponent ;
l e n gth = maxAbsComponent∗ sqrt(Length(W));
}
else
{
length = 0;
}
return length ;
}
LISTING 6.2: Computing the length of a vector robustly.
Normalization of a vector requires computing the length of the vector
and dividing the vector by it when not zero. The obvious implementation
suﬀers from the same numerical problems that length computations do. The
algorithm replaces the vector by its normalization and returns the computed
length. Listing 6.3 has pseudocode for the algorithm. The ampersand indicates
that the input
V will be modiﬁed as a side eﬀect of the function.
Real Normalize ( Vector& V)
{
Real length = Length (V); // The computation can overflow .
if (length > 0)
{
V=V/length;
}
return length ;
}
LISTING 6.3: Normalizing a vector.
A robust implementation that uses the idea of factoring out the largest
magnitude component is shown in Listing 6.4.
Real NormalizeRobust ( Vector& V)
{
R ea l maxAbsComponent = |V[0]| ;
for ( int i=1; i< n; ++i)
{
Re al absComponent = |V[ i ] | ;
if (absComponent > maxAbsComponent)
{
maxAbsComponent = absComponent ;
}
}
Real length ;
if (maxAbsComponent > 0)
{
V = V/maxAbsComponent ;
length = Length(V);
V=V/length;
length ∗= maxAbsComponent ;
}
return length ;
}
LISTING 6.4: Normalizing a vector robustly.
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Sometimes the length of a vector might be computed from a dot prod-
uct that was previously computed:
length = sqrt(Dot(V,V)). The dot product
itself can overﬂow, and there is no protection against that. If you expect
large-magnitude components in your computations, you will want to avoid
computing the length from a dot product.
The base class for vectors has the interface to support the various functions
described here, shown in Listing 6.5.
template <int N, typename Real>
Real Dot ( Vector <N, Real> const& v0 , Vector <N, Real> const&v1);
template <int N, typename Real>
Real Length ( Vector <N, Real> const&v);
template <int N, typename Real>
Real LengthRobust ( Vector<N, Real> const&v);
template <int N, typename Real>
Real Normalize (Vector<N, Real>&v);
template <int N, typename Real>
Real NormalizeRobust ( Vector<N, Real>&v);
LISTING 6.5: The vector class interface for dot products, length, and nor-
malization.
6.1.2 Orthogonality
Two nonzero vectors U and V are said to be orthogonal or perpendicular
when their dot product is zero: U · V = 0. Geometrically, the angle between
the vectors is 90 degrees.
1
Observe that the vectors sU for nonzero scalars s
are also orthogonal to V.
6.1.2.1 Orthogonality in 2D
In 2D, it is easy to compute an orthogonal vector corresponding to a
nonzero vector V =(x
0
,y
0
), namely, V
⊥
=(y
0
, −x
0
). The superscript sym-
bol on the orthogonal vector is standard mathematical notation for a vector
perpendicular to the one named in the expression. As mentioned, s(y
0
, −x
0
)
for nonzero s are all perpendicular to V.IfV is unit length, there are exactly
two unit-length vectors perpendicular to it: (y
0
, −x
0
)and(−y
0
,x
0
).
GTEngine has functions to support orthogonality in 2D, as shown in List-
ing 6.6.
template <typename Real>
Vector2 <Real> Perp ( Vector2 <Real> const&v);
template <typename Real>
1
The concept of orthogonal is more general. The vectors are orthogonal with respect to
a positive deﬁnite matrix A when U
T
AV = 0. The matrix is referred to as a metric and
the left-hand side of the equation is referred to as an inner product.WhenA is the identity
matrix, the test is U
T
V = 0, where the left-hand side of the equation is the dot product of
vectors.
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Vector2 <Real> UnitPerp ( Vector2 <Real> const&v);
template <typename Real>
Real DotPerp ( Vector2 <Real> const& v0 , Vector2 <Real> const&v1);
LISTING 6.6: The 2D vector interface for perpendicular vectors and dot-
perp.
The function
Perp computes (y
0
, −x
0
) for input (x
0
,y
0
). The components of
the input are swapped and the second one is negated. The choice for negating
the ﬁrst component rather than the second component is based on generating
the perpendicular vector via a formal determinant,
det

E
0
E
1
x
0
y
0

= y
0
E
0
− x
0
E
1
(6.2)
where E
0
=(1, 0) and E
1
=(0, 1). The determinant idea is useful for comput-
ing perpendicular vectors in higher dimensions. The function
UnitPerp com-
putes the unit-length vector (y
0
, −x
0
)/

x
2
0
+ y
2
0
when the input is nonzero.
The zero vector is returned when the input is the zero vector. Sometimes 2D
geometric algorithms involve dot products of the form
(x
0
,y
0
) · (x
1
,y
1
)
⊥
=(x
0
,y
0
) · (y
1
, −x
1
)
= x
0
y
1
− x
1
y
0
=det

x
0
y
0
x
1
y
1

(6.3)
The computation is referred to as the dot-perp of the vectors. A useful identity
is U·V
⊥
= −V ·U
⊥
. The function DotPerp returns the dot-perp of the inputs.
6.1.2.2 Orthogonality in 3D
In 3D, an orthogonal vector V
2
=(x
2
,y
2
,z
2
) may be computed corre-
sponding to two linearly independent vectors V
0
=(x
0
,y
0
,z
0
)andV
1
=
(x
1
,y
1
,z
1
) using the cross-product operator,
V
2
= V
0
× V
1
=det
⎡
⎣
E
0
E
1
E
2
x
0
y
0
z
0
x
1
y
1
z
1
⎤
⎦
=(y
0
z
1
− y
1
z
0
,z
0
x
1
− x
0
z
1
,x
0
y
1
− x
1
y
0
)
(6.4)
GTEngine has functions to support orthogonality in 3D, as shown in List-
ing 6.7. The functions have a template integer parameter
N that should be
three or four. The latter case allows you to use the functions when you choose
to represent aﬃne points and vectors with 4-tuples. The last component of
aﬃne points is one and the last component of aﬃne vectors is zero. The cross
product of two aﬃne vector 4-tuples will produce an aﬃne vector 4-tuple
whose last component is zero.
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template <int N, typename Real>
Vector <N, Real> Cr os s ( Vector<N, Real> const& v0 , Vector <N, Real> const&v1);
template <int N, typename Real>
Vector <N, Real> UnitCross ( Vector <N, Real> const&v0,
Vector <N, Real> const&v1);
template <int N, typename Real>
Real DotCross ( Vector<N, Real> const& v0 , Vector <N, Real> const&v1,
Vector <N, Real> const&v2);
LISTING 6.7: The vector interface for cross products and dot-cross, where
N is three or four.
The function
Cross computes the cross product of the inputs. If you require a
unit-length orthogonal vector, the cross product can be normalized, a result
returned by function
UnitCross. If the cross product is zero, the function re-
turns the zero vector. Similar to the dot-perp operation in 2D, the dot-cross
operation is useful and is more commonly referred to as the triple scalar prod-
uct of three vectors deﬁned by V
0
·V
1
×V
2
. The function DotCross computes
the triple scalar product.
V
0
· V
1
× V
2
=det
⎡
⎣
x
0
y
0
z
0
x
1
y
1
z
1
x
2
y
2
z
2
⎤
⎦
= x
2
(y
0
z
1
− y
1
z
0
)+y
2
(z
0
x
1
− x
0
z
1
)+z
2
(x
0
y
1
− x
1
y
0
)
(6.5)
6.1.2.3 Orthogonality in 4D
In 4D, an orthogonal vector V
3
=(x
3
,y
3
,z
3
,w
3
) may be computed
corresponding to three linearly independent vectors V
0
=(x
0
,y
0
,z
0
,w
0
),
V
1
=(x
1
,y
1
,z
1
,w
1
), and V
2
=(x
2
,y
2
,z
2
,w
2
) using an extension of the
determinant idea to 4D. I call this the hypercross product:
V
3
= Hypercross(V
0
, V
1
, V
2
)
=det
⎡
⎢
⎣
E
0
E
1
E
2
E
3
x
0
y
0
z
0
w
0
x
1
y
1
z
1
w
1
x
2
y
2
z
2
w
2
⎤
⎥
⎦
=det
⎡
⎣
y
0
z
0
w
0
y
1
z
1
w
1
y
2
z
2
w
2
⎤
⎦
E
0
− det
⎡
⎣
x
0
z
0
w
0
x
1
z
1
w
1
x
2
z
2
w
2
⎤
⎦
E
1
+det
⎡
⎣
x
0
y
0
w
0
x
1
y
1
w
1
x
2
y
2
w
2
⎤
⎦
E
2
− det
⎡
⎣
x
0
y
0
z
0
x
1
y
1
z
1
x
2
y
2
z
2
⎤
⎦
E
3
(6.6)
GTEngine has functions to support orthogonality in 4D, as shown in List-
ing 6.8.
template <typename Real>
Vector4 <Real> HyperCross ( Vector4<Real> const&v0,
Vector4 <Real> const& v1 , Vector4 <Real> const&v2);
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template <typename Real>
Vector4 <Real> UnitHyperCross (Vector4<Real> const&v0,
Vector4 <Real> const& v1 , Vector4 <Real> const&v2);
template <typename Real>
Real DotHyperCross ( Vector4<Real> const& v0 , Vector4 <Real> const&v1,
Vector4 <Real> const& v2 , Vector4 <Real> const&v3);
LISTING 6.8: The vector interface for hypercross products and dot-
hypercross.
The function
HyperCross computes the hypercross product of the inputs. If
you require a unit-length orthogonal vector, the hypercross product can be
normalized, a result returned by function
UnitHyperCross. If the hypercross
product is zero, the function returns the zero vector. Similar to the dot-cross
operation in 3D, the dot-hypercross operation is
DotHyperCross(V
0
, V
1
, V
2
, V
3
)=det
⎡
⎢
⎢
⎣
x
0
y
0
z
0
w
0
x
1
y
1
z
1
w
1
x
2
y
2
z
2
w
2
x
3
y
3
z
3
w
3
⎤
⎥
⎥
⎦
(6.7)
6.1.2.4 Gram-Schmidt Orthonormalization
In d-dimensional space, let {V
i
}
n−1
i=0
be a linearly independent set of vec-
tors; necessarily n ≤ d. An algorithm for modifying these to construct a set
{U
i
}
n−1
i=0
whose elements are unit length and mutually perpendicular is called
Gram-Schmidt orthonormalization. The construction is iterative:
U
0
=
V
0
|V
0
|
; U
i
=
V
i
−

i−1
j=0
(U
j
· V
i
)U
j
|V
i
−

i−1
j=0
(U
j
· V
i
)U
j
|
,i≥ 1 (6.8)
The idea is to compute the ﬁrst vector U
0
by normalizing V
0
. The second
vector U
1
is obtained by projecting out the U
0
component from V
1
and then
normalizing. The resulting vector is necessarily orthogonal to the ﬁrst. The
next vector is projected by removing components from the previous orthogonal
vectors, followed by normalization. Theoretically, this is a correct algorithm,
but in practice using ﬂoating-point arithmetic, when d is large, the numerical
roundoﬀ errors can be problematic. Other numerical methods are typically
used to avoid this [16].
The resulting set of vectors is referred to as an orthonormal set of vectors,a
topic explored in the next section. GTEngine has a single templated function
for computing the algorithm as stated here. The interface is deﬁned in the
base vector class; see Listing 6.9.
template <int N, typename Real>
Real Orthonormalize ( int numElements , Ve ctor<N, Real >∗ v);
LISTING 6.9: The vector interface for Gram-Schmidt orthonormalization.
The number of elements is speciﬁed, and this must be no larger than the
parameter
N. The vectors are orthonormalized in place, so v is an input-output
array.
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6.1.3 Orthonormal Sets
A frequently asked question in computer graphics is how, given a unit-
length vector N =(x, y, z), one computes two unit-length vectors U and V
so that the three vectors are mutually perpendicular. For example, N might
be a normal vector to a plane, and you want to deﬁne a coordinate system
in the plane, which requires computing U and V. There are many choices
for the vectors, but for numerical robustness, I have always recommended the
following algorithm.
Locate the component of maximum absolute value. To illustrate, suppose
that x is this value, so |x|≥|y| and |x|≥|z|. Swap the ﬁrst two components,
changing the sign on the second, and set the third component to 0, obtaining
(y, −x, 0). Normalize this to obtain
U =
(y, −x, 0)

x
2
+ y
2
(6.9)
Now compute a cross product to obtain the other vector,
V = N × U =
(xz, yz, −x
2
− y
2
)

x
2
+ y
2
(6.10)
As you can see, a division by

x
2
+ y
2
is required, so it is necessary that
the divisor not be zero. In fact it is not, because of how we choose x.Fora
unit-length vector (x, y, z)where|x|≥|y| and |x|≥|z|, it is necessary that
|x|≥1/
√
3. The division by

x
2
+ y
2
is therefore numerically robust—you
are not dividing by a number close to zero.
In linear algebra, we refer to the set {U, V, N} as an orthonormal set.By
deﬁnition, the vectors are unit length and mutually perpendicular. Let N
denote the span of N.Formally,thisistheset
N = {tN : t ∈ IR } (6.11)
where IR is the set of real numbers. The span is the line that contains the
origin 0 with direction N. We may deﬁne the span of any number of vectors.
For example, the span of U and V is
U, V = {sU + tV : s ∈ IR ,t ∈ IR } (6.12)
This is the plane that contains the origin and has unit-length normal N;that
is, any vector in U, V is perpendicular to N. The span of U and V is said to
be the orthogonal complement of the span of N. Equivalently, the span of N is
said to be the orthogonal complement of the span of U and V. The notation
for orthogonal complement is to add a superscript “perp” symbol. N
⊥
is
the orthogonal complement of the span of N and U, V
⊥
is the orthogonal
complement of the span of U and V.Moreover,
U, V
⊥
= N, N
⊥
= U, V (6.13)
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6.1.3.1 Orthonormal Sets in 2D
The ideas in the introduction specialize to two dimensions. Given a unit-
length vector U
0
=(x
0
,y
0
), a unit-length vector perpendicular to it is U
1
=
(x
1
,y
1
)=(y
0
, −x
0
). The span of each vector is a line and the two lines are
perpendicular; therefore,
U
0

⊥
= U
1
, U
1

⊥
= U
0
 (6.14)
The set {U
0
, U
1
} is an orthonormal set.
The set {U
0
, U
1
} is a left-handed orthonormal set. The vectors are unit
length and perpendicular, and the matrix M =[U
0
U
1
]whosecolumnsare
the two vectors is orthogonal with det(M)=−1. To obtain a right-handed
orthonormal set, negate the last vector: {U
0
, −U
1
}.
The
Vector2<Real> interface for computing orthogonal complements is
shown in Listing 6.10.
template <typename Real>
Re al ComputeOrthogonalComplement ( int numInputs , Vector2<Real>∗ v);
LISTING 6.10: The 2D vector interface for computing orthogonal comple-
ments.
The return values of the functions is the minimum length of the unnormalized
vectors constructed during the Gram-Schmidt algorithm. It is possible the
inputs are nearly linearly dependent, in a numerical sense, in which case the
return value is nearly zero. The function provides a consistent signature across
dimensions. The
numInputs must be one and v[] must have one vector.
6.1.3.2 Orthonormal Sets in 3D
The ideas in the preamble to the section on orthonormal sets were for 3D.
This subsection formalizes the ideas.
One Vector from Two Inputs. Given two vectors V
0
and V
1
,thecross
product is obtained from Equation (6.4). If either of the input vectors is the
zero vector or if the input vectors are nonzero and parallel, the cross product
is the zero vector. If the input vectors are unit length and perpendicular, then
the cross product is guaranteed to be unit length and {V
0
, V
1
, V
2
} is an
orthonormal set.
If the input vectors are linearly independent, we may use Equation (6.8)
to obtain a pair of unit-length vectors, U
0
and U
1
. We may then compute the
cross product to obtain another unit-length vector, U
2
= U
0
× U
1
,whichis
perpendicular to the input vectors; that is,
U
2
 = U
0
, U
1

⊥
(6.15)
Two Vectors from One Input. If we start with only one unit-length vector
U
2
, we wish to ﬁnd two unit-length vectors U
0
and U
1
such that {U
0
, U
1
, U
2
}
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is an orthonormal set, in which case
U
0
, U
1
 = U
2

⊥
(6.16)
But we have already seen how to do this—in the introduction section. Let
us be slightly more formal and use the symbolic determinant idea. This idea
allows us to generalize to four dimensions.
Let U
2
=(x, y, z) be a unit-length vector. Suppose that x has the largest
absolute value of the three components. We may construct a determinant
whose last row is one of the basis vectors E
i
that does not have a zero in its
ﬁrst component—the one corresponding to the location of x.Letuschoose
(0, 0, 1) as this vector; then
det
⎡
⎣
E
0
E
1
E
2
xyz
001
⎤
⎦
= yE
0
− xE
1
+0E
2
=(y, −x, 0) (6.17)
which matches the construction in the introduction. This vector cannot be the
zero vector, because we know that x has largest absolute magnitude and so
cannot be zero because the initial vector is not the zero vector. Normalizing
the vector, we have U
0
=(y, −x, 0)/

x
2
+ y
2
. We may then compute U
1
=
U
2
× U
0
.
If y has the largest absolute magnitude, then the last row of the determi-
nant can be either (1, 0, 0) or (0, 0, 1); that is, we may not choose the Euclidean
basis vector with a one in the same component that corresponds to y.Forex-
ample,
det
⎡
⎣
E
0
E
1
E
2
xyz
100
⎤
⎦
=0E
0
+ zE
1
− yE
2
=(0,z,−y) (6.18)
Once again the result cannot be the zero vector, so we may robustly compute
U
0
=(0,z,−y)/

y
2
+ z
2
and U
1
= U
2
× U
0
.
And ﬁnally, let z have the largest absolute magnitude. We may compute
det
⎡
⎣
E
0
E
1
E
2
xyz
010
⎤
⎦
= −zE
0
+0E
1
+ xE
2
=(−z, 0,x) (6.19)
which cannot be the zero vector. Thus, U
0
=(−z,0,x)/
√
x
2
+ z
2
and U
1
=
U
2
× U
0
. Of course, we could have also chosen the last row to be (1, 0, 0).
The set {U
0
, U
1
, U
2
} is a right-handed orthonormal set. The vectors are
unit length and mutually perpendicular, and the matrix M =[U
0
U
1
U
2
],
whose columns are the three vectors, is orthogonal with det(M) = +1. To
obtain a left-handed orthonormal set, negate the last vector: {U
0
, U
1
, −U
2
}.
The 3D interface for computing orthogonal complements is shown in List-
ing 6.11.
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template <typename Real>
Re al ComputeOrthogonalComplement ( int numInputs , Vector3<Real>∗ v);
LISTING 6.11: The 3D vector interface for computing orthogonal comple-
ments.
The return values of the functions is the minimum length of the unnormalized
vectors constructed during the Gram-Schmidt algorithm. It is possible the
inputs are nearly linearly dependent, in a numerical sense, in which case the
return value is nearly zero. The function provides a consistent signature across
dimensions. The
numInputs must be one or two and v[] must have numInputs
vectors.
6.1.3.3 Orthonormal Sets in 4D
This section shows how the concepts in three dimensions extend to four
dimensions.
One Vector from Three Inputs. Consider three vectors V
i
for i =0, 1, 2
that are linearly independent. We may compute a fourth vector V
3
that is
perpendicular to the three inputs using the hypercross formula in Equation
(6.6). Gram-Schmidt orthonormalization of Equation (6.8) may be applied to
the four vectors to obtain an orthonormal set.
Two Vectors from Two Inputs. Let us consider two unit-length and perpen-
dicular vectors U
i
=(x
i
,y
i
,z
i
,w
i
)fori =0, 1. If the inputs are only linearly
independent, we may use Gram-Schmidt orthonormalization to obtain the
unit-length and perpendicular vectors. The inputs have six associated 2 × 2
determinants: x
0
y
1
−x
1
y
0
, x
0
z
1
−x
1
z
0
, x
0
w
1
−x
1
w
0
, y
0
z
1
−y
1
z
0
, y
0
w
1
−y
1
w
0
,
and z
0
w
1
− z
1
w
0
. It is guaranteed that not all of these determinants are zero
when the input vectors are linearly independent. We may search for the de-
terminant of largest absolute magnitude, which is equivalent to searching for
the largest absolute magnitude component in the three-dimensional setting.
For simplicity, assume that x
0
y
1
− x
1
y
0
has the largest absolute magni-
tude. The handling of other cases is similar. We may construct a symbolic
determinant whose last row is either (0, 0, 1, 0) or (0, 0, 0, 1). The idea is that
we need a Euclidean basis vector whose components corresponding to the x
and y locations are zero. We used a similar approach in three dimensions. To
illustrate, let us choose (0, 0, 0, 1). The determinant is
det
⎡
⎢
⎢
⎣
E
0
E
1
E
2
E
3
x
0
y
0
z
0
w
0
x
1
y
1
z
1
w
1
0001
⎤
⎥
⎥
⎦
=(y
0
z
1
− y
1
z
0
)E
0
− (x
0
z
1
− x
1
z
0
)E
1
+(x
0
y
1
− x
1
y
0
)E
2
+0E
3
(6.20)
This vector cannot be the zero vector, because we know that x
0
y
1
−x
1
y
0
has
the largest absolute magnitude and is not zero. Moreover, we know that this
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vector is perpendicular to the ﬁrst two row vectors in the determinant. We
can choose the unit-length vector
U
2
=(x
2
,y
2
,z
2
,w
2
)=
(y
0
z
1
− y
1
z
0
,x
1
z
0
− x
0
z
1
,x
0
y
1
− x
1
y
0
, 0)
|(y
0
z
1
− y
1
z
0
,x
1
z
0
− x
0
z
1
,x
0
y
1
− x
1
y
0
, 0)|
(6.21)
Observe that (x
2
,y
2
,z
2
) is the normalized cross product of (x
0
,y
0
,z
0
)and
(x
1
,y
1
,z
1
), and w
2
=0.
We may now compute
U
3
=det
⎡
⎢
⎢
⎣
E
0
E
1
E
2
E
3
x
0
y
0
z
0
w
0
x
1
y
1
z
1
w
1
x
2
y
2
z
2
0
⎤
⎥
⎥
⎦
(6.22)
which is guaranteed to be unit length. Moreover,
U
2
, U
3
 = U
0
, U
1

⊥
(6.23)
That is, the span of the output vectors is the orthogonal complement of the
span of the input vectors.
The same idea applies to each of the six cases that arise when locating the
maximum of the 2 × 2 determinants.
Three Vectors from One Input.LetU
0
=(x
0
,y
0
,z
0
,w
0
) be a unit-length
vector. Similar to the construction in three dimensions, search for the compo-
nent of largest absolute magnitude. For simplicity, assume it is x
0
. The other
cases are handled similarly.
Choose U
1
=(y
0
, −x
0
, 0, 0)/

x
2
0
+ y
2
0
, which is not the zero vector. U
1
is unit length and perpendicular to U
1
. Now apply the construction of the
previous section to obtain U
2
and U
3
.
The set {U
0
, U
1
, U
2
, U
3
} is a left-handed orthonormal set. The vec-
tors are unit length and mutually perpendicular, and the matrix M =
[U
0
U
1
U
2
U
3
], whose columns are the four vectors, is orthogonal with
det(M)=−1. To obtain a right-handed orthonormal set, negate the last
vector: {U
0
, U
1
, U
2
, −U
3
}.
The
Vector4<Real> interface for computing orthogonal complements is
shown in Listing 6.12.
template <typename Real>
Re al ComputeOrthogonalComplement ( int numInputs , Vector4<Real>∗ v);
LISTING 6.12: The 4D vector interface for computing orthogonal comple-
ments.
The return values of the functions is the minimum length of the unnormalized
vectors constructed during the Gram-Schmidt algorithm. It is possible the
inputs are nearly linearly dependent, in a numerical sense, in which case the
return value is nearly zero. The function provides a consistent signature across
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dimensions. The
numInputs must be one, two, or three and inputs[] must have
numInputs vectors. The implementation was carefully written to ensure that if
the number of inputs is one or two and the inputs are 3D vectors written as
4D aﬃne vectors (w = 0), the output is the same as if you had passed the 3D
vectors to the 3D version of the function with last component w =0.
6.1.4 Barycentric Coordinates
Let P
0
, P
1
,andP
2
be the vertices of a triangle in 2D. The triangle is
assumed to be nondegenerate; mathematically, the vectors P
0
−P
2
and P
1
−
P
2
must be linearly independent. Another point P can be represented as a
linear combination of the triangle vertices,
P = b
0
P
0
+ b
1
P
1
+ b
2
P
2
(6.24)
where b
0
+ b
1
+ b
2
= 1. The coeﬃcients are referred to as the barycentric
coordinates of P relative to the triangle. The coordinates may be computed
as follows. Subtract P
2
from the linear combination,
P − P
2
= b
0
P
0
+ b
1
P
1
+(b
2
− 1)P
2
= b
0
(P
0
− P
2
)+b
1
(P
1
− P
2
)
(6.25)
Dotting the equation with perpendicular vectors of point diﬀerences, we obtain
b
0
=(P −P
2
) · (P
1
− P
2
)
⊥
/(P
0
− P
2
) · (P
1
− P
2
)
⊥
b
1
=(P
0
− P
2
) · (P −P
2
)
⊥
/(P
0
− P
2
) · (P
1
− P
2
)
⊥
b
2
=1− b
0
− b
1
(6.26)
The formula for b
1
was constructed using the identity U · V
⊥
= −V ·U
⊥
.
The
Vector2<Real> class has the interface function shown in Listing 6.13.
template <typename Real>
bool ComputeBarycentrics ( Vector2<Real> const& p , Vector2 <Real> const&v0,
Vector2 <Real> const& v1 , Vector2 <Real> const&v2, Real bary[3],
Real epsilon = ( Real )0);
LISTING 6.13: The 2D vector interface for barycentric coordinates.
The denominators for the b
0
and b
1
expressions can be nearly zero, which
might generate enough numerical error to be of concern. Geometrically, the
triangle is needlelike (nearly a line segment). The functions allow you to specify
a ﬂoating-point tolerance for which a denominator smaller than the tolerance
implies a degenerate triangle. The Boolean return is
true if and only if the
denominators are larger than the tolerance. The barycentric coordinates are
considered to be valid only when the function returns
true; they are actually
set to zero when the function returns
false.
Let P
0
, P
1
, P
2
,andP
3
be the vertices of a tetrahedron in 3D. The tetra-
hedron is assumed to be nondegenerate; mathematically, the vectors P
0
−P
3
,
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P
1
−P
3
,andP
2
−P
3
must be linearly independent. Another point P can be
represented as a linear combination of the tetrahedron vertices,
P = b
0
P
0
+ b
1
P
1
+ b
2
P
2
+ b
3
P
3
(6.27)
where b
0
+ b
1
+ b
2
+ b
3
= 1. The coeﬃcients are referred to as the barycentric
coordinates of P relative to the tetrahedron. The coordinates may be computed
as follows. Subtract P
3
from the linear combination,
P − P
3
= b
0
P
0
+ b
1
P
1
+ b
2
P
2
+(b
3
− 1)P
3
= b
0
(P
0
− P
3
)+b
1
(P
1
− P
3
)+b
2
(P
2
− P
3
)
E = b
0
E
0
+ b
1
E
1
+ b
2
E
2
(6.28)
where the last equation deﬁnes the vectors E and E
i
for i =0, 1, 2. Applying
cross products and dot products, we obtain
b
0
= E · E
1
× E
2
/E
0
· E
1
× E
2
b
1
= E · E
2
× E
0
/E
0
· E
1
× E
2
b
2
= E · E
0
× E
1
/E
0
· E
1
× E
2
b
3
=1− b
0
− b
1
− b
2
(6.29)
The
Vector3<Real> class has the interface function shown in Listing 6.14.
template <typename Real>
bool ComputeBarycentrics ( Vector3<Real> const& p , Vector3 <Real> const&v0,
Vector3 <Real> const& v1 , Vector3 <Real> const&v2,
Vector3 <Real> const& v3 , Real bary [4 ] , Real epsilon = ( Real )0);
LISTING 6.14: The 3D vector interface for barycentric coordinates.
The denominators for the b
0
, b
1
,andb
2
expressions can be nearly zero, which
might generate enough numerical error to be of concern. Geometrically, the
tetrahedron is nearly ﬂat or needlelike (nearly degenerate). The functions
allow you to specify a ﬂoating-point tolerance for which a denominator smaller
than the tolerance implies a degenerate triangle. The Boolean return is
true if
and only if the denominators are larger than the tolerance. The barycentric
coordinates are considered to be valid only when the function returns
true;
they are actually set to zero when the function returns
false.
6.1.5 Intrinsic Dimensionality
In several applications it might be of use to know the intrinsic dimension-
ality of a collection of n-dimensional vectors. For example, if the collection
contains all the same vector, the intrinsic dimensionality is zero. If the vectors
all lie on the same line, the intrinsic dimensionality is one. It is possible the
vectors all lie in a k-dimensional subspace, in which case the intrinsic dimen-
sionality is k. The concept is more general. For example, if a collection of
3D vectors all lie on a sphere, the intrinsic dimensionality is two. However,
identifying a k-dimensional manifold that contains a collection of points in n
dimensions is a complicated problem; see the literature on generating surfaces
from unordered points.
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GTEngine provides support for determining numerically the intrinsic di-
mensionality in terms of points, lines, and planes as the approximating objects.
A typical application is computation of the convex hull of a set of 3D points.
Books describing convex hull algorithms for three dimensions assume that the
set of points is not degenerate; that is, the points are not all the same, do not
lie on a line, and do not line in a plane. In practice, you most likely do not have
this knowledge about your set of points. An implementation of convex hull for
3D points must decide when to switch to convex hull for 2D points (intrinsic
dimensionality is two) or to convex hull for 1D points (intrinsic dimensional-
ity is one). The implementation for determining intrinsic dimensionality uses
ﬂoating-point tolerances that are user controlled to decide whether the points
are suﬃciently close to lying in a plane or suﬃciently close to lying on a line.
The actual plane or line is computed, allowing you to project the points onto
the object to reduce the dimension and call a lower-dimension convex hull
ﬁnder.
The class for 2D intrinsic dimensionality is shown in Listing 6.15.
template <typename Real>
class IntrinsicsVector2
{
public :
IntrinsicsVector2 (int numVectors , Vector2 <Real> const∗ v,
Real inEpsilon );
Real epsilon ;
int dimension ;
Real min[2] , max[2];
Real maxRange ;
Vector2 <Real> origin ;
Vector2 <Real> direction [2];
int extreme [ 3 ] ;
bool extrem eCCW ;
} ;
LISTING 6.15: The 2D vector interface for intrinsic dimensionality.
All work is performed in the constructor, storing
inEpsilon in class member
epsilon and computing the remaining class members according to the following
algorithm.
The axis-aligned bounding box of the input points is computed and stored
in
min[] and max[].ThemembermaxRange stores the maximum diﬀerence of
max[0]-min[0] and max[1]-min[1]. The indices into v[] for the points that support
the bounding box in the direction of maximum range are stored in
extreme[0]
and extreme[1].Theorigin is chosen to be v[extreme[0]].
If the maximum range is less than or equal to
epsilon, the point set is
assumed to degenerate to a single point, namely,
origin. The equality to epsilon
allows the input tolerance to be exactly zero. The dimension is set to zero. The
member
extremeCCW is not meaningful in this case.
If the maximum range is greater than
epsilon, the length of the vector
connecting the two extreme points must have length greater than or equal
to
epsilon.Thememberdirection[0] is computed as the unit-length vector
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connecting the extreme points. The member
direction[1] is a perpendicular unit-
length vector, computed using the negative of the function
Vector2<Real>::Perp
so that direction[1] is a counterclockwise rotation of direction[0]. The idea is that
the points have intrinsic dimensionality of at least one with signiﬁcant com-
ponents in the direction of the line
origin+t*direction[0].
The maximum distance from the input points to the line
origin+t*direction[0]
is computed, a quantity measured in the direction[1]. In fact, signed distances
are computed to support orientation information about the extreme set. We
know the point of maximum distance from the line and on which side of the
line it lives. The index into
v[] for the point of maximum distance is stored in
extreme[2]. We are eﬀectively building an oriented bounding box for the points
with axes
direction[].
If the maximum distance is less than or equal to
epsilon*maxRange,the
point set is assumed to degenerate to a line segment. The
dimension is set
to one. The member
extremeCCW is not meaningful in this case. The use of
epsilon*maxRange instead of epsilon alone is to be invariant to scaling; that is,
epsilon is a relative error tolerance rather than an absolute error tolerance.
If the maximum is larger than
epsilon*maxRange,thedimension is set to
two and the points have full intrinsic dimensionality. The points indexed by
extreme[] form a triangle. The ordering of the extreme points is stored in
extremeCCW. Observe that knowing which side of the line v[extreme[2]] lives
on is essential to know ordering.
The geometric ideas for class
IntrinsicsVector2 extend naturally to 3D. The
class for 3D intrinsic dimensionality is shown in Listing 6.16.
template <typename Real>
class IntrinsicsVector2
{
public :
IntrinsicsVector3 (int numVectors , Vector3 <Real> const∗ v,
Real inEpsilon );
Real epsilon ;
int dimension ;
Real min[3] , max[3];
Real maxRange ;
Vector3 <Real> origin ;
Vector3 <Real> direction [3];
int extreme [ 4 ] ;
bool extrem eCCW ;
} ;
LISTING 6.16: The 3D vector interface for intrinsic dimensionality.
All work is performed in the constructor, storing
inEpsilon in class member
epsilon and computing the remaining class members according to the following
algorithm.
The axis-aligned bounding box of the input points is computed and stored
in
min[] and max[].ThemembermaxRange stores the maximum diﬀerence of
the
max[i]-min[i]. The indices into v[] for the points that support the bounding
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box in the direction of maximum range are stored in
extreme[0] and extreme[1].
The
origin is chosen to be v[extreme[0]].
If the maximum range is less than or equal to
epsilon, the point set is
assumed to degenerate to a single point, namely,
origin. The equality to epsilon
allows the input tolerance to be exactly zero. The dimension is set to zero. The
member
extremeCCW is not meaningful in this case.
If the maximum range is greater than
epsilon, the length of the vector con-
necting the two extreme points must have length greater than or equal to
epsilon.Thememberdirection[0] is computed as the unit-length vector connect-
ing the extreme points.
The maximum distance from the input points to the line
origin+t*direction[0]
is computed, a quantity measured in the orthogonal complement of direction[0].
We do not actually need to know a basis for the orthogonal complement, be-
cause we can project out the
direction[0] component from v[i]-origin and measure
the length of the projection. The index into
v[] for the point of maximum dis-
tance is stored in
extreme[2].
If the maximum distance is less than or equal to
epsilon*maxRange,the
point set is assumed to degenerate to a line segment. The
dimension is set
to one. The member
extremeCCW is not meaningful in this case. The use of
epsilon*maxRange instead of epsilon alone is to be invariant to scaling; that is,
epsilon is a relative error tolerance rather than an absolute error tolerance.
If the maximum is larger than
epsilon*maxRange, we now know that
the intrinsic dimensionality is two or three. We compute the orthogonal
complement of
direction[0] and store the basis vectors in direction[1] and
direction[2]. The maximum distance from the input points to the plane
origin+s*direction[0]+t*direction[1] is computed. We can do so by computing the
component in the
direction[0] from v[i]-origin. The sign of the distance is impor-
tant for computing orientation, so that information is tracked. The index into
v[] of the point of maximum distance is stored in extreme[3].
If the maximum distance is less than or equal to
epsilon*maxRange,the
point set is assumed to degenerate to a planar polygon. The
dimension is set
to two. The member
extremeCCW is not meaningful in this case.
If the maximum distance is larger than
epsilon*maxRange,thedimension is set
to three and the points have full intrinsic dimensionality. The points indexed
by
extreme[] form a tetrahedron. The ordering of the extreme points is stored
in
extremeCCW. Observe that knowing which side of the plane v[extreme[3]] lives
on is essential to know ordering.
6.2 Matrices
Mathematics engines provide matrix implementations that are focused
on the tranformational aspects, namely, matrix-vector multiplication, matrix-
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matrix multiplication, transposes, determinants, and inverses. Rotation ma-
trices are a special classes of matrices that are also supported. The extent
of the support can vary and might include the ability to generate and con-
vert among many representations: axis-angle, Euler angles, and quaternions.
GTEngine provides a full suite of classes and functions for rotation support.
Although not used often in the applications, support exists for sums and dif-
ferences of matrices, for product of a matrix with a scalar, and for L
p
norms
where p ∈{1, 2, ∞}. As with vectors, comparison operators are provided to
support sorted containers.
GTEngine has a base template class
Matrix<int,int,Real> whose ﬁrst param-
eter is the number of rows, second parameter is the number of columns, and
third parameter is the ﬂoating-point type. Derived classes
Matrix2x2<Real>,
Matrix3x3<Real>,andMatrix4x4<Real> provide additional dimension-speciﬁc
constructors and operations for the commonly occurring square matrices of
low dimension.
6.2.1 Matrix Storage and Transfom Conventions
One source of pain when using mathematics engines, especially when you
already have your own code that duplicates functionality, is ﬁguring out the
engines’ conventions and how they relate to yours. I doubt any of us have
been immune to dealing with interoperability concerns. Two major conven-
tions to deal with are the matrix storage convention and the matrix transform
convention.
The ﬁrst convention refers to whether you store your matrices in row-major
order or column-major order. Eﬀectively, this is a choice for mapping a two-
dimensional array into a one-dimensional array. Let A =[a
rc
]beann × m
matrix whose ﬁrst index refers to row r with 0 ≤ r<nand whose second
index refers to column c with 0 ≤ c<m. We visualize this as a table, shown
next for n =2andm =3:
A =

a
00
a
01
a
02
a
10
a
11
a
12

(6.30)
Row-major order stores the elements as (a
00
,a
01
,a
02
,a
10
,a
11
,a
12
), whereas
column-major order stores the elements as (a
00
,a
10
,a
01
,a
11
,a
02
,a
12
). Gener-
ally, the one-dimensional array is B =[b
i
] and has nm elements. For row-major
order, the index mapping from A to B is i = c + mr. The inverse mapping
is (c, r)=(i%m, i/m), where % is the integer modulo operator and / is in-
teger division. For column-major order, the index mapping from A to B is
i = r + nc. The inverse mapping is (c, r)=(i%n, i/n).
The second convention refers to which side of the matrix you envision a
vector when multiplying. If A is a square matrix and V is a vector of the
appropriate size, do you choose the product to be AV or V
T
A?Irefertothe
former product as vector-on-the-right convention and the latter product as
vector-on-the-left convention.IfA is not a square matrix, then the side of the
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matrix on which a vector lives depends solely on the dimensions of the matrix
and vector; that is, there is no ambiguity about the product.
GTEngine allows you to select these conventions by conditional compila-
tion of the libraries. The ﬁle
GeometricTools/GTEngine/Source/GTEngineDEF.h
contains preprocessor macros that you can enable or disable as you desire.
The macros enabled by default are
GTE USE ROW MAJOR, indicating that
matrices are stored in row-major-order, and
GTE USE MAT VEC, indicating
that vector-on-the-right is used. Flexibility on your part has its consequences.
Firstly, whenever algorithms in the engine depend on either convention, the
implementations have conditionally compiled code. This requires me to pro-
vide multiple versions of the implementation, and I need to ensure that the
sample applications do the same. Secondly, the HLSL compiler for D3D11 has
similar conventions, so you need to ensure that your shaders are set up prop-
erly to match your conventions. In the sample applications with shaders, I have
included conditional compilation in the HLSL ﬁles themselves—controlled by
the very same preprocessor macros in the C++ code. The HLSL compiler
provides the ability to enable or disable macros via arguments to the compiler
function call.
Other engine conventions related to coordinate system handling are neces-
sary. I will go into detail about those conventions in the section on coordinate
systems.
6.2.2 Base Class Matrix Operations
The base class is template <int NumRows, int NumCols, typename Real> Matrix,
which supports general matrices with user-speciﬁed sizes. The storage itself
is protected, because the details cannot be exposed to the public based on
the user-selectable convention for row-major or column-major storage. List-
ing6.17showsthedatarepresentation.
template <int NumRows , int NumCols , typename Real>
class Matrix
{
protected :
// The data structures take advantage of the built−in operator [] ,
// range checking , and visualizers in MSVS.
class Table
{
public :
// operator () provides storage−order−independent element access .
#i f defined (GTE
USE ROW MAJOR)
Real const& operator () ( int r, int c) const
{ return mStorage [ r ] [ c ] ; }
Real& operator () ( int r, int c) { return mStorage [ r ] [ c ] ; }
std :: array<std : : array<Real , NumCols>,NumRows> mStorage ;
#e l s e
Real const& operator () ( int r, int c) const
{ return mStorage [ c ] [ r ] ; }
Real& operator () ( int r, int c) { return mStorage [ c ] [ r ] ; }
std :: array<std : : array<Real ,NumRows>,NumCols> mStorage ;
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#endif
} ;
union
{
// Access as a one−dimensional array .
std :: array<Real ,NumRows∗NumCols> mTuple ;
// Access as a two−dimensional array .
Table mTable;
} ;
} ;
LISTING 6.17: Storage for the matrix class.
The data structures take advantage of the built-in
operator[] for std::array,in-
cluding range checking and visualizers in Microsoft Visual Studio 2013. The
union allows internal manipulation of the matrix entries either as a one-
dimensional or two-dimensional array. As the comments indicate, access via
operator() hides the storage convention.
The class has the default constructor, a copy constructor, and an assign-
ment operator. Constructors that are dependent on dimension are declared in
derived classes.
Listing 6.18 shows the accessor interface for the class.
template <int NumRows , int NumCols , typename Real>
class Matrix
{
public :
// The storage representation for the members is transparent to the
// user . The matrix entry in row r and column c is A(r , c). The fi rs t
// operator () returns a const reference rather than a Real value.
// This supports writing via standard file operations that require a
// const poi nt er to data .
inline Real const& operator () ( int r, int c) const ;
inline Real& operator () ( int r, int c);
// Member access is by rows or by columns .
void SetRo w ( int r , Vector <NumCols , R ea l > const&vec);
void SetCol ( int c , Vector <NumRows, Real> const&vec);
Vector <NumCols , R e a l > GetRow ( int r) const ;
Vector <NumRows, Re al> GetCol ( int c) const ;
// Member access is by one−dimensional index . NOTE: These accessors
// are useful for the manipulation of matrix entries when it does not
// matter whether storage i s row−major or column−major . Do not use
// constructs such as M(c+NumCols∗ r) or M(r+NumRows∗c) that expose
// the storage convention .
inline Real const& operator () ( int i) const ;
inline
Real& operator () ( int i);
} ;
LISTING 6.18: Member accessors for the matrix class.
The ﬁrst two functions allow you to access individual matrix entries by spec-
ifying the row and column. The next four functions allow you to access a row
or a column as a whole. The last two functions allow you to access the matrix
as a one-dimensional array, but the intent is to support simple operations such
as memory copying and streaming to and from disk.
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Finally, the class implements the standard six comparison operators to
support sorted container classes; see Listing 6.19.
template <int NumRows , int NumCols , typename Real>
class Matrix
{
public :
// comparisons for sorted containers and geometric ordering
bool operator== ( M a t r i x const&mat) const ;
bool operator!= ( M atrix const&mat) const ;
bool operator< (Matrix const&mat) const ;
bool operator<=(Matrix const&mat) const ;
bool operator> (Matrix const&mat) const ;
bool operator>=(Matrix const&mat) const ;
} ;
LISTING 6.19: Comparison operators for the matrix class.
A large number of functions are deﬁned outside the class, a practice sug-
gested in [55, Rule 44]. Included are unary operators so that you can write
expressions +
M and −M for matrices. Also included are the linear-algebraic
operations for matrix addition, subtraction, scalar multiplication and division,
and the usual arithemtic update operators such as
operator+=.
Three L
p
matrix norms are implemented, for p ∈{1, 2, ∞}.TheL
1
norm
is the sum of the absolute values of the matrix entries; see function
L1Norm.
The L
2
norm is the sum of the squared matrix entries, the most commonly
used matrix norm; see function
L2Norm.TheL
∞
norm is the maximum of the
absolute values of the matrix entries; see function
LInﬁnityNorm.
Inversion of square matrices is provided by the function
Inverse.Theal-
gorithm involves Gaussian elimination with full pivoting. When the inverse
does not exist as determined numerically, the zero matrix is returned. Inver-
sion for square matrices of sizes two, three, and four are specialized by the
derived classes for these sizes; the algorithms use cofactor expansions. If M is
an invertible matrix, M
−1
denotes the inverse.
The matrix transpose is provided by the function
Transp ose. The transpose
is denoted by M
T
.
Two matrix-vector products are supported; see Listing 6.20 for the inter-
faces.
// M∗V
template <int NumRows , int NumCols , typename Real>
Vector <NumRows, Real>
operator∗ (
Matrix<NumRows , NumCols , Re al> const&M,
Vector <NumCols , R e a l > const&V);
// VˆT∗M
template <int NumRows , int NumCols , typename Real>
Vector <NumCols , R e a l>
operator∗ (
Vector <NumRows, Re al> const&V,
Matrix<NumRows , NumCols , Re al> const&M);
LISTING 6.20: Matrix-vector products.
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The operators make it clear which product you get based on the order of the
inputs. The template declarations ensure at compile time the enforcement of
the rules for products. The product MV is deﬁned only when the number
of columns of M is equal to the number of rows of V. The product V
T
M is
deﬁned only when the number of rows of M is equal to the number of columns
of V
T
(equivalently, the number of rows of V).
A collection of matrix-matrix products are provided: AB, AB
T
, A
T
B,and
A
T
B
T
,whereA and B are the appropriate size matrices. Once again, the tem-
plate declartions ensure that at compile time the row-column count equalities
are enforced. For a diagonal matrix D, there are functions to compute MD
and DM as long as the row-column sizes are valid. However, the diagonal
matrix is represented as a vector that stores the diagonal entries.
6.2.3 Square Matrix Operations in 2D
Square matrices of size two are built by derivation from the base class.
Listing 6.21 shows the minimal interface.
template <typename Real>
class Matrix2x2 : public Matrix <2,2,Real>
{
public :
// Construction and destruction . The destructor hides the base−class
// destructor , but the latter has no side effects . Matrix2x2 is
// designed to provide specialized constructors and geometric
// operations . The d efault constructor does not i n i t i a l i z e i ts data .
˜Matrix2x2 ( );
Matrix2x2 ( );
Matrix2x2 ( Matrix2x2 const&mat);
Matrix2x2 ( Matrix <2,2,Real> const&mat);
Matrix2x2 ( Real m00, Real m01, Real m10, Real m11 );
// Create a diagonal matrix . Pass zeros to create the zero matrix .
// Pass ones to create the identity matrix .
Matrix2x2 ( Real m00, Real m11 );
// Create a rotation matrix from an angle (in radians ). The matrix is
// [ GTE
USE MAT VEC ]
// R( t ) = {{c,−s } ,{ s,c}}
// [ GTE
USE VEC MAT ]
// R( t ) = {{c,s},{−s,c}}
// where c = cos( t) , s = sin ( t) , and the inner−brace pairs are rows of
// t h e m a t r i x .
Matrix2x2 ( Real angle ) ;
// Create special matrices .
void MakeZero ( ) ;
void MakeIdentity () ;
void MakeDiagonal ( Real m00 , Real m11 );
void MakeRotation ( Real angle ) ;
// Get the angle (radians) from a rotation matrix . The caller is
// responsible for ensuring the matrix is a rotation .
void Get ( Re al& a ng l e ) const ;
// assignment
Matrix2x2& operator=(Matrix2x2 const&mat);
Matrix2x2& operator=(Matrix<2,2,Real> const&mat);
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// special matrices
static Matrix2x2 Zero ();
static Matrix2x2 Identity ();
} ;
LISTING 6.21: The class interface for 2 × 2 matrices.
The constructors are for the speciﬁc size two. The constructor and assignment
operator for the base class are provided to allow implicit conversions. Static
functions are implemented to return the zero matrix and the identity matrix.
We use functions to avoid the standard template dilemma of declaring static
members that might be instantiated in multiple modules.
Geometric operations are implemented outside the class; see Listing 6.22.
template <typename Real>
Matrix2x2<Real> Inverse (Matrix2x2<Real> const&M);
template <typename Real>
Matrix2x2<Real> Adjoint (Matrix2x2<Real> const&M);
template <typename Real>
Real Determinant ( Matrix2x2<Real> const&M);
template <typename Real>
Real Trace ( Matrix2x2<Real> const&M);
LISTING 6.22: Geometric operations for 2 × 2 matrices.
The matrix and the quantities these functions compute are shown next.
M =

m
00
m
01
m
10
m
11

, trace(M)=m
00
+ m
11
,
det(M)=m
00
m
11
− m
01
m
10
, adjoint(M)=

m
11
−m
01
−m
10
m
00

,
M
−1
=adjoint(M )/ det(M)
(6.31)
The inverse exists only when det(M) = 0. As in the base class inversion, if
the matrix is not invertible, the
Inverse function returns the zero matrix. The
adjoint matrix is the transpose of the matrix of cofactors for M.
In the implementations, you will notice that there is no conditional com-
pilation for code depending on the matrix storage convention. The base class
hides the conditional compilation, so derived classes can manipulate the ma-
trix entries via
operator()(int,int) without regard to the storage convention.
6.2.4 Square Matrix Operations in 3D
Square matrices of size three are built by derivation from the base class.
Listing 6.23 shows the minimal interface.
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template <typename Real>
class Matrix3x3 : public Matrix <3,3,Real>
{
public :
// Construction and destruction . The destructor hides the base−class
// destructor , but the latter has no side effects . Matrix3x3 is
// designed to provide specialized constructors and geometric
// operations . The d efault constructor does not i n i t i a l i z e i ts data .
˜Matrix3x3 ( );
Matrix3x3 ( );
Matrix3x3 ( Matrix3x3 const&mat);
Matrix3x3 ( Matrix <3,3,Real> const&mat);
Matrix3x3 (
Real m00, Real m01, Real m02,
Real m10, Real m11, Real m12,
Real m20, Real m21, Real m22 );
// Create a diagonal matrix . Pass zeros to create the zero matrix .
// Pass ones to create the identity matrix .
Matrix3x3 ( Real m00, Real m11, Real m22);
// Create special matrices .
void MakeZero ( ) ;
void MakeIdentity () ;
void MakeDiagonal ( Real m00 , Real m11, Real m22 ) ;
// assignment
Matrix3x3& operator=(Matrix3x3 const&mat);
Matrix3x3& operator=(Matrix<3,3,Real> const&mat);
// special matrices
static Matrix3x3 Zero ();
static Matrix3x3 Identity ();
} ;
LISTING 6.23: The class interface for 3 × 3 matrices.
The constructors are for the speciﬁc size three. The constructor and assign-
ment operator for the base class are provided to allow implicit conversions.
Static functions are implemented to return the zero matrix and the identity
matrix. We use functions to avoid the standard template dilemma of declaring
static members that might be instantiated in multiple modules.
Geometric operations are implemented outside the class; see Listing 6.24.
template <typename Real>
Matrix3x3<Real> Inverse (Matrix3x3<Real> const&M);
template <typename Real>
Matrix3x3<Real> Adjoint (Matrix3x3<Real> const&M);
template <typename Real>
Real Determinant ( Matrix3x3<Real> const&M);
template <typename Real>
Real Trace ( Matrix3x3<Real> const&M);
LISTING 6.24: Geometric operations for 3 × 3 matrices.
The matrix and the quantities these functions compute are shown next.
M =
⎡
⎣
m
00
m
01
m
02
m
10
m
11
m
12
m
20
m
21
m
22
⎤
⎦
,





Linear and Aﬃne Algebra 281
trace(M)=m
00
+ m
11
+ m
22
,
det(M)=m
00
(m
11
m
22
− m
12
m
21
)+m
01
(m
12
m
20
− m
10
m
22
)
+ m
02
(m
10
m
21
− m
11
m
20
),
adjoint(M)=
⎡
⎣
m
11
m
22
− m
12
m
21
m
02
m
21
− m
01
m
22
m
01
m
12
− m
02
m
11
m
12
m
20
− m
10
m
22
m
00
m
22
− m
02
m
20
m
02
m
10
− m
00
m
12
m
10
m
21
− m
11
m
20
m
01
m
20
− m
00
m
21
m
00
m
11
− m
01
m
10
⎤
⎦
,
M
−1
=adjoint(M)/ det(M)
(6.32)
The inverse exists only when det(M) = 0. As in the base class inversion, if
the matrix is not invertible, the
Inverse function returns the zero matrix. In
the implementations, you will notice that there is no conditional compilation
for code depending on the matrix storage convention. The base class hides the
conditional compilation, so derived classes can manipulate the matrix entries
via
operator() without regard to the storage convention.
6.2.5 Square Matrix Operations in 4D
Square matrices of size four are built by derivation from the base class.
Listing 6.25 shows the minimal interface.
template <typename Real>
class Matrix4x4 : public Matrix <4,4,Real>
{
public :
// Construction and destruction . The destructor hides the base−class
// destructor , but the latter has no side effects . Matrix4x4 is
// designed to provide specialized constructors and geometric
// operations . The d efault constructor does not i n i t i a l i z e i ts data .
˜Matrix4x4 ( );
Matrix4x4 ( );
Matrix4x4 ( Matrix4x4 const&mat);
Matrix4x4 ( Matrix <4,4,Real> const&mat);
Matrix4x4 (
Real m00, Real m01, Real m02, Real m03,
Real m10, Real m11, Real m12, Real m13,
Real m20, Real m21, Real m22, Real m23,
Real m30, Real m31, Real m32, Real m33) ;
// Create a diagonal matrix . Pass zeros to create the zero matrix .
// Pass ones to create the identity matrix .
Matrix4x4 ( Real m00, Real m11, Real m22, Real m33 );
// Create special matrices .
void MakeZero ( ) ;
void MakeIdentity () ;
void MakeDiagonal ( Real m00 , Real m11, Real m22 , Real m33 );
// assignment
Matrix4x4& operator=(Matrix4x4 const&mat);
Matrix4x4& operator=(Matrix<4,4,Real> const&mat);


















282 GPGPU Programming for Games and Science
// special matrices
static Matrix4x4 Zero ();
static Matrix4x4 Identity ();
} ;
LISTING 6.25: The class interface for 4 × 4 matrices.
The constructors are for the speciﬁc size four. The constructor and assignment
operator for the base class are provided to allow implicit conversions. Static
functions are implemented to return the zero matrix and the identity matrix.
We use functions to avoid the standard template dilemma of declaring static
members that might be instantiated in multiple modules.
Geometric operations are implemented outside the class; see Listing 6.26.
template <typename Real>
Matrix4x4<Real> Inverse (Matrix4x4<Real> const&M);
template <typename Real>
Matrix4x4<Real> Adjoint (Matrix4x4<Real> const&M);
template <typename Real>
Real Determinant ( Matrix4x4<Real> const&M);
template <typename Real>
Real Trace ( Matrix4x4<Real> const&M);
LISTING 6.26: Geometric operations for 4 × 4 matrices.
Let M =[m
rc
]bea4× 4 matrix. The trace of the matrix is trace(M)=
m
00
+ m
11
+ m
22
+ m
33
. The adjoint matrix, determinant, and inverse may
be computed in a manner similar to what was done for 3 × 3 matrices—
expansion across a row using cofactors. This is what is typically taught in a
linear algebra class. The expression for the determinant is a product of the
ﬁrst row of M and the ﬁrst column of adjoint(M). The column entries are
eﬀectively 3 × 3 determinants. Construction of M
−1
requires computing all
the adjoint entries, so you have twelve 3 × 3 determinants to compute. These
in turn can be computed by cofactor expansions, a recursive process. As it
turns out, a more eﬃcient procedure may be used to compute adjoint(M),
det(M), and M
−1
; it is discussed in the next section.
6.2.6 The Laplace Expansion Theorem
Let us revisit the computation of the determinant of a 3 × 3matrixA =
[a
rc
], where the row index satisﬁes 0 ≤ r ≤ 2 and the column index satisﬁes
0 ≤ c ≤ 2. The matrix is
A =
⎡
⎣
a
00
a
01
a
02
a
10
a
11
a
12
a
20
a
21
a
22
⎤
⎦
(6.33)
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Expanding by the ﬁrst row,
det(A)=+a
00
· det

a
11
a
12
a
21
a
22

− a
01
· det

a
10
a
12
a
20
a
22

+ a
02
· det

a
10
a
11
a
20
a
21

=+a
00
(a
11
a
22
− a
12
a
21
) − a
01
(a
10
a
22
− a
12
a
20
)
+ a
02
(a
10
a
21
− a
11
a
20
)
=+a
00
a
11
a
22
+ a
01
a
12
a
20
+ a
02
a
10
a
21
− a
00
a
12
a
21
− a
01
a
10
a
22
− a
02
a
11
a
20
(6.34)
Each term in the ﬁrst line of Equation (6.34) involves a sign, an entry from
row 0 of A, and a determinant of a submatrix of A.Ifa
0c
is an entry in row
0, then the sign is (−1)
0+c
and the submatrix is obtained by removing row 0
and column c from A.
Five other expansions produce the same determinant formula: by row 1,
byrow2,bycolumn0,bycolumn1,orbycolumn2.Inallsixformulas,each
term involves a matrix entry a
rc
, an associated sign (−1)
r+c
, and a submatrix
M
rc
that is obtained from A by removing row r and column c. The cofactor
associated with the term is
γ
rc
=(−1)
r+c
det M
rc
(6.35)
The matrix of cofactors is adjoint(A)=[γ
rc
]forrows0≤ r ≤ 2andfor
columns 0 ≤ c ≤ 2, speciﬁcally,
adjoint(A)=
⎡
⎣
+(a
11
a
22
− a
12
a
21
) −(a
01
a
22
− a
02
a
21
)+(a
01
a
12
− a
02
a
11
)
−(a
10
a
22
− a
12
a
20
)+(a
00
a
22
− a
02
a
20
) −(a
00
a
12
− a
02
a
10
)
+(a
10
a
21
− a
11
a
20
) −(a
00
a
21
− a
01
a
20
)+(a
00
a
11
− a
01
a
10
)
⎤
⎦
(6.36)
The ﬁrst line of Equation (6.34) may be written also as
det(A)=+det[a
00
] · det

a
11
a
12
a
21
a
22

− det[a
01
] · det

a
10
a
12
a
20
a
22

+det[a
02
] · det

a
10
a
11
a
20
a
21

(6.37)
which is a sum of the products of the determinants of the submatrices of A,
with alternating signs for the terms. A visual way to look at this is shown in
Figure 6.1. Each 3 × 3 grid represents the matrix entries. The dark-colored
cells represent the 1 ×1 submatrices in the determinant formula and the light-
colored cells represent the 2 × 2 submatrices in the determinant formula.
In the left 3 × 3 grid of the ﬁgure, the dark-colored cell represents the
submatrix [a
00
] from the ﬁrst term in the determinant formula. The light-
colored cells are the complementary submatrix of [a
00
], namely, the 2 × 2
submatrix that is part of the ﬁrst term of the formula; the ﬁrst row has a
11
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FIGURE 6.1: A visualization of the determinant of a 3 × 3matrix.
and a
12
and the second row has a
21
and a
22
. The submatrix is obtained from
A by removing row 0 and column 0.
In the middle 3 × 3 grid of the ﬁgure, the dark-colored cell represents
the submatrix [a
01
] from the second term in the determinant formula. The
light-colored cells are the complementary submatrix of [a
01
], namely, the 2 ×2
submatrix that is part of the second term of the formula; the ﬁrst row has a
10
and a
12
and the second row has a
20
and a
22
. The submatrix is obtained from
A by removing row 0 and column 1.
In the right 3 × 3 grid of the ﬁgure, the dark-colored cell represents the
submatrix [a
02
] from the third term in the determinant formula. The light-
colored cells are the complementary submatrix of [a
02
], namely, the 2 × 2
matrix that is part of the third term of the formula; the ﬁrst row has a
10
and
a
11
and the second row has a
20
and a
21
. The submatrix is obtained from A
by removing row 0 and column 2.
The Laplace expansion theorem is a general formula for computing the
determinant of an n × n matrix A.Letr =(r
1
,r
2
,...,r
k
) be a list of k row
indices for A,where1≤ k<nand 0 ≤ r
1
<r
2
< ··· <r
k
<n.Let
c =(c
1
,c
2
,...,c
k
)bealistofk column indices for A,where1≤ k<nand
0 ≤ c
1
<c
2
< ···<c
k
<n. The submatrix obtained by keeping the entries in
the intersection of any row and column that are in the lists is denoted
S(A; r, c) (6.38)
The submatrix obtained by removing the entries in the rows and columns that
are in the list is denoted
S

(A; r, c) (6.39)
and is the complementary submatrix for S(A; r, c). For example, let A be a
3 × 3matrix.Letr = (0) and c =(1).Then
S(A; r, c)=[a
01
],S

(A; r, c)=

a
10
a
12
a
20
a
22

(6.40)
In the middle 3 ×3 grid of Figure 6.1, S(A;(0), (1)) is formed from the dark-
colored cell and S

(A;(0), (1)) is formed from the light-colored cells.
The Laplace expansion theorem is as follows. Let A be an n × n matrix.
Let r =(r
1
,r
2
,...,r
k
) be a list of k row indices, where 1 ≤ k<nand
0 ≤ r
1
<r
2
< ···r
k
<n. The determinant of A is
det(A)=(−1)
|r|

c
(−1)
|c|
det S(A; r, c)detS

(A; r, c) (6.41)
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FIGURE 6.2: A visualization of the expansion by row zero of a 4 ×4matrix
in order to compute the determinant.
where |r| = r
1
+ r
2
+ ···+ r
k
, |c| = c
1
+ c
2
+ ···+ c
k
, and the summation is
over all k-tuples c =(c
1
,c
2
,...,c
k
)forwhich1≤ c
1
<c
2
< ···<c
k
<n.
Forexample,considera3× 3 matrix with r = (0) (that is, k =1).Then
|r| =0,c =(c
0
), and the determinant is
det(A)=

2
c
0
=0
(−1)
c
0
det S(A;(0), (c
0
)) det S

(A;(0), (c
0
))
=(−1)
0
det S(A;(0), (0)) det S

(A;(0), (0))
+(−1)
1
det S(A;(0), (1)) det S

(A;(0), (1))
+(−1)
2
det S(A;(0), (2)) det S

(A;(0), (2))
=+det[a
00
] · det

a
11
a
12
a
21
a
22

− det[a
01
] · det

a
10
a
12
a
20
a
22

+det[a
02
] · det

a
10
a
11
a
20
a
21

(6.42)
which is Equation (6.37).
The Laplace expansion theorem may be applied to 4 × 4 matrices in a
couple of ways. The ﬁrst way uses an expansion by a row or by a column,
which is the most common approach. The matrix is
A =
⎡
⎢
⎢
⎣
a
00
a
01
a
02
a
03
a
10
a
11
a
12
a
13
a
20
a
21
a
22
a
23
a
30
a
31
a
32
a
33
⎤
⎥
⎥
⎦
(6.43)
Using the visualization as motivated by Figure 6.1, an expansion by row zero
is visualized in Figure 6.2: The algebraic equivalent is
det(A)= +det[a
00
] · det
⎡
⎣
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
⎤
⎦
− det[a
01
] · det
⎡
⎣
a
10
a
12
a
13
a
20
a
22
a
23
a
30
a
32
a
33
⎤
⎦
+det[a
02
] · det
⎡
⎣
a
10
a
11
a
13
a
20
a
21
a
23
a
30
a
31
a
33
⎤
⎦
− det[a
03
] · det
⎡
⎣
a
10
a
11
a
12
a
20
a
21
a
22
a
30
a
31
a
32
⎤
⎦
(6.44)
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It is possible, however, to use the Laplace expansion theorem in a diﬀerent
manner. Choose r =(0, 1), an expansion by rows zero and one, so to speak;
then |r| =0+1=1, c =(c
0
,c
1
), and
det(A)=−

c
(−1)
c
0
+c
1
det S(A;(0, 1), c)detS

(A;(0, 1), c)
=+detS(A;(0, 1), (0, 1)) det S

(A;(0, 1), (0, 1))
− det S(A;(0, 1), (0, 2)) det S

(A;(0, 1), (0, 2))
+detS(A;(0, 1), (0, 3)) det S

(A;(0, 1), (0, 3))
+detS(A;(0, 1), (1, 2)) det S

(A;(0, 1), (1, 2))
− det S(A;(0, 1), (1, 3)) det S

(A;(0, 1), (1, 3))
+detS(A;(0, 1), (2, 3)) det S

(A;(0, 1), (2, 3))
=+det

a
00
a
01
a
10
a
11

det

a
22
a
23
a
32
a
33

−det

a
00
a
02
a
10
a
12

det

a
21
a
23
a
31
a
33

+det

a
00
a
03
a
10
a
13

det

a
21
a
22
a
31
a
32

+det

a
01
a
02
a
11
a
12

det

a
20
a
23
a
30
a
33

−det

a
01
a
03
a
11
a
13

det

a
20
a
22
a
30
a
32

+det

a
02
a
03
a
12
a
13

det

a
20
a
21
a
30
a
31

(6.45)
The visualization for this approach, similar to that of Figure 6.2, is shown
in Figure 6.3.
Computing the determinant of a 2 × 2 matrix requires one multiplication
and one addition (or subtraction). The operation count is listed as a 2-tuple,
the ﬁrst component the number of multiplications and the second component
the number of additions: Θ
2
=(2, 1). Computing the determinant of a 3 × 3
matrix, when expanded by the ﬁrst row according to Equation (6.34), requires
the following number of operations: Θ
3
=3Θ
2
+(3, 2) = (9, 5). Using the
row expansion of Equation (6.44) to compute the determinant of a 4 × 4
matrix, the operation count is Θ
4
=4Θ
3
+(4, 3) = (40, 23). However, if
you use Equation (6.45) to compute the determinant, the operation count is
Θ

4
= 12Θ
2
+(6, 5) = (30, 17). The total number of operations using Equation
(6.44) is sixty-three and the total number of operation using Equation (6.45)
is forty-seven, so the latter equation is more eﬃcient in terms of operation
count.
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FIGURE 6.3: A visualization of the expansion by rows zero and one of a
4 × 4 matrix in order to compute the determinant.
To compute the inverse of a 4 × 4matrixA, ﬁrst construct the adjoint
matrix. The cofactors involve 3 × 3 determinants. For example, the entry in
row zero and column zero of adjoint(A)is
+det
⎡
⎣
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
⎤
⎦
=+a
11
· det

a
22
a
23
a
32
a
33

− a
12
· det

a
21
a
23
a
31
a
33

+ a
13
· det

a
21
a
22
a
31
a
32

(6.46)
This equation involves determinants of 2 × 2 submatrices that also occur in
the equation for the determinant of the 4×4 matrix. This suggests computing
all of the entries of adjoint(A) using only 2 × 2 submatrices.
Speciﬁcally, deﬁne
s
0
=det

a
00
a
01
a
10
a
11

,c
5
=det

a
22
a
23
a
32
a
33

s
1
=det

a
00
a
02
a
10
a
12

,c
4
=det

a
21
a
23
a
31
a
33

s
2
=det

a
00
a
03
a
10
a
13

,c
3
=det

a
21
a
22
a
31
a
32

s
3
=det

a
01
a
02
a
11
a
12

,c
2
=det

a
20
a
23
a
30
a
33

s
4
=det

a
01
a
03
a
11
a
13

,c
1
=det

a
20
a
22
a
30
a
32

s
5
=det

a
02
a
03
a
12
a
13

,c
0
=det

a
20
a
21
a
30
a
31

(6.47)
then
det(A)=s
0
c
5
− s
1
c
4
+ s
2
c
3
+ s
3
c
2
− s
4
c
1
+ s
5
c
0
(6.48)
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and adjoint(A)=[m
ij
] has the following entries:
m
00
=+a
11
c
5
− a
12
c
4
+ a
13
c
3
m
01
= −a
01
c
5
+ a
02
c
4
− a
03
c
3
m
02
=+a
31
s
5
− a
32
s
4
+ a
33
s
3
m
03
= −a
21
s
5
+ a
22
s
4
− a
23
s
3
m
10
= −a
10
c
5
+ a
12
c
2
− a
13
c
1
m
11
=+a
00
c
5
− a
02
c
2
+ a
03
c
1
m
12
= −a
30
s
5
+ a
32
s
2
− a
33
s
1
m
13
=+a
20
s
5
− a
22
s
2
+ a
23
s
1
m
20
=+a
10
c
4
− a
11
c
2
+ a
13
c
0
m
21
= −a
00
c
4
+ a
01
c
2
− a
03
c
0
m
22
=+a
30
s
4
− a
31
s
2
+ a
33
s
0
m
23
= −a
20
s
4
+ a
21
s
2
− a
23
s
0
m
30
= −a
10
c
3
+ a
11
c
1
− a
12
c
0
m
31
=+a
00
c
3
− a
01
c
1
+ a
02
c
0
m
32
= −a
30
s
3
+ a
31
s
1
− a
32
s
0
m
33
=+a
20
s
3
− a
21
s
1
+ a
22
s
0
(6.49)
If the determinant is not zero, then the inverse of A is computed using A
−1
=
adjoint(A)/ det(A).
The implementations of adjoint, determinant, and inverse for the
Matrix4x4<Real> class uses this approach.
6.3 Rotations
Rotations are a common operation that occur in 3D applications. This
section describes the basic concepts and various representations of rotations,
namely, by matrix, by quaternion, by axis-angle, and by Euler angles.
6.3.1 Rotation in 2D
The rotation of the vector (x, y) about the origin by an angle θ>0is
the vector (x

,y

) speciﬁed by x

= x cos θ − y sin θ and and y

= x sin θ +
y cos θ. The formula is derived using a standard trigonometric construction.
The direction of rotation is counterclockwise about the origin. In vector-matrix
form the equation is

x

y


=

cos θ −sin θ
sin θ cos θ

x
y

(6.50)
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FIGURE 6.4: {U
0
, U
1
, U
2
} is a right-handed orthonormal set. A rotation
is desired about U
2
by the angle θ>0.
6.3.2 Rotation in 3D
If we add a third dimension, the rotation of the vector (x, y, z)aboutthe
z-axis by an angle θ>0 is just a rotation of the (x, y) portion about the
origin in the xy-plane. The rotated vector (x

,y

,z

) is speciﬁed by
⎡
⎣
x

y

z

⎤
⎦
=
⎡
⎣
cos θ −sin θ 0
sin θ cos θ 0
001
⎤
⎦
⎡
⎣
x
y
z
⎤
⎦
(6.51)
Setting V =[xyz]
T
, V

=[x

y

z

]
T
, σ =sinθ,andγ =cosθ, the rotation is
V

= R
0
V,whereR
0
is the rotation matrix,
R
0
=
⎡
⎣
γ −σ 0
σγ0
001
⎤
⎦
(6.52)
The standard coordinate axis directions (standard basis), represented as 3 ×1
vectors, are E
0
=[100]
T
, E
1
=[010]
T
,andE
2
=[001]
T
.Observethat
R
0
E
0
= γE
0
+ σE
1
,R
0
E
1
= −σE
0
+ γE
1
,R
0
E
2
= E
2
(6.53)
The vectors R
0
E
0
, R
0
E
1
,andR
0
E
2
are the columns of R
0
. The vectors E
T
0
R
0
,
E
T
1
R
0
,andE
T
2
R
0
are the rows of R
0
.
The equation for rotation of a 3D vector V by an angle θ>0aboutan
axis with unit-length direction U
2
is derived next. Let U
0
and U
1
be unit-
length and perpendicular vectors in the plane containing the origin and having
normal U
2
= U
0
×U
1
;thus,{U
0
, U
1
, U
2
} is a right-handed orthonormal set.
Figure 6.4 is an illustration. The orthonormal set of vectors may be used as a
basis, both as domain and range of the rotational transformation. The matrix
R
0
in Equation (6.52) represents the rotation in this basis. A matrix R
1
that
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represents the rotation in the standard basis {E
0
, E
1
, E
2
} will transform U
0
,
U
1
,andU
2
as
R
1
U
0
= γU
0
+ σU
1
,R
1
U
1
= −σU
0
+ γU
1
,R
1
U
2
= U
2
(6.54)
The similarity between Equation (6.54) and Equation (6.53) is no coincidence.
The equations in (6.53) may be collected into block-matrix form,
R
1

U
0
U
1
U
2

=

γU
0
+ σU
1
−σU
0
+ γU
1
U
2

=

U
0
U
1
U
2

⎡
⎣
γ −σ 0
σγ0
001
⎤
⎦
(6.55)
The matrix P =[U
0
U
1
U
2
], whose columns are the speciﬁed vectors, is itself
a rotation matrix because {U
0
, U
1
, U
2
} is a right-handed orthonormal set;
its inverse is just its transpose. Equation (6.55) is R
1
P = PR
0
.Solvingfor
R
1
= PR
0
P
T
,wehave
R
1
=

U
0
U
1
U
2

⎡
⎣
γ −σ 0
σγ0
001
⎤
⎦

U
0
U
1
U
2

T
=

U
0
U
1
U
2

⎡
⎣
γ −σ 0
σγ0
001
⎤
⎦
⎡
⎢
⎣
U
T
0
U
T
1
U
T
2
⎤
⎥
⎦
=

U
0
U
1
U
2

⎡
⎢
⎣
γU
T
0
− σU
T
1
σU
T
0
+ γU
T
1
U
T
2
⎤
⎥
⎦
= U
0

γU
T
0
− σU
T
1

+ U
1

σU
T
0
+ γU
T
1

+ U
2
U
T
2
= c

U
0
U
T
0
+ U
1
U
T
1

+ s

U
1
U
T
0
− U
0
U
T
1

+ U
2
U
T
2
(6.56)
Keep in mind that U
0
U
T
0
is the product of a 3×1matrixanda1×3matrix,the
result a 3×3 matrix. This is not the same as U
T
0
U
0
, a product of a 1×3matrix
and a 3×1matrix,theresulta1×1 matrix (a scalar). Similarly, U
1
U
T
1
, U
2
U
T
2
,
U
1
U
T
0
,andU
0
U
T
1
are 3 ×3 matrices. From a computational perspective, R
1
is easily computed from Equation (6.56), but requires selecting U
0
and U
1
for
the speciﬁed axis direction U
2
. Your intuition, though, should tell you that the
rotation about the axis is independent of which pair of orthonormal vectors
you choose in the plane. The following construction shows how to remove the
dependence.
The representation of V in the basis {U
0
, U
1
, U
2
} is
V =(U
0
· V) U
0
+(U
1
· V) U
1
+(U
2
· V) U
2
= a
0
U
0
+ a
1
U
1
+ a
2
U
2
(6.57)
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where the last equality deﬁnes a
0
, a
1
,anda
2
as the dot products of the
basis vectors with V. This renaming is done for simplicity of notation in the
constructions. A couple of vector quantities of interest are
U
2
× V = U
2
× (a
0
U
0
+ a
1
U
1
+ a
2
U
2
)
= a
0
U
2
× U
0
+ a
1
U
2
× U
1
+ a
2
U
2
× U
2
= −a
1
U
0
+ a
0
U
1
(6.58)
and
U
2
× (U
2
× V)) = U
2
× (a
0
U
1
− a
1
U
0
)
= a
0
U
2
× U
1
− a
1
U
2
× U
0
= −a
0
U
0
− a
1
U
1
(6.59)
The cross product U
2
×V can be written as a matrix multiplied by a vector.
Let U
2
=(s
0
,s
1
,s
2
)andV =(v
0
,v
1
,v
2
); then
U
2
× V =
⎡
⎣
s
1
v
2
− s
2
v
1
s
2
v
0
− s
0
v
2
s
0
v
1
− s
1
v
0
⎤
⎦
=
⎡
⎣
0 −s
2
s
1
s
2
0 −s
0
−s
1
s
0
0
⎤
⎦
⎡
⎣
v
1
v
2
v
3
⎤
⎦
= SV
(6.60)
where the last equality deﬁnes the 3 × 3matrixS.Thismatrixisskew-
symmetric because S
T
= −S. The cross product U
2
×(U
2
×V) is written as
a matrix multiplied by a vector by applying Equation (6.60) twice:
U
2
× (U
2
× V)=S(U
2
× V)=S(SV)=S
2
V (6.61)
We now look closer at the vectors V = IV,whereI is the identity matrix;
U
2
× V = SV;andU
2
× (U
2
× V)=S
2
V to determine how U
0
, U
1
,and
their various products are related to the matrices I, S,andS
2
.
Firstly, observe that Equation (6.57) may be manipulated as
IV = V
=(U
0
· V)U
0
+(U
1
· V)U
1
+(U
2
· V)U
2
= U
0
(U
T
0
V)+U
1
(U
T
1
V)+U
2
(U
T
2
V)
=(U
0
U
T
0
+ U
1
U
T
1
+ U
2
U
T
2
)V
(6.62)
The equation is true for all vectors V,so
I = U
0
U
T
0
+ U
1
U
T
1
+ U
2
U
T
2
(6.63)
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Secondly, Equations (6.57), (6.58), and (6.60) imply
SV = U
2
× V
= a
0
U
1
− a
1
U
0
=(U
0
· V)U
1
− (U
1
· V)U
0
= U
1
(U
T
0
V) − U
0
(U
T
1
V)
=(U
1
U
T
0
− U
0
U
T
1
)V
(6.64)
This equation is true for all vectors V,so
S = U
1
U
T
0
− U
0
U
T
1
(6.65)
Thirdly, Equations (6.57), (6.59), and (6.61) imply the relationship
S
2
V = U
2
× (U
2
× V)
= −a
0
U
0
− a
1
U
1
=(U
2
· V)U
2
− V
= U
2
(U
T
2
V) −V
=(U
2
U
T
2
− I)V
(6.66)
This equation is true for all vectors V,so
S
2
= U
2
U
T
2
− I (6.67)
Combining these relationships with Equation (6.56),
R
1
= γ(U
0
U
T
0
+ U
1
U
T
1
)+σ(U
1
U
T
0
− U
0
U
T
1
)+U
2
U
T
2
Equation (6.56)
= γ(I − U
2
U
T
2
)+σ(U
1
U
T
0
− U
0
U
T
1
)+U
2
U
T
2
by Equation (6.63)
= γ(I − U
2
U
T
2
)+σS + U
2
U
T
2
by Equation (6.65)
= I + σS +(1− γ)(U
2
U
T
2
− I)
= I +(sinθ)S +(1− cos θ)S
2
by Equation (6.67)
(6.68)
This equation provides the rotation matrix R
1
in terms of the unit-length axis
direction U
2
stored as the matrix S and the angle θ occurring in σ =sinθ
and γ =cosθ. The application of the rotation matrix to a vector is
R
1
V =(I + σS +(1− γ)S
2
)V
= IV + σSV +(1− γ)S
2
V
= V + σU
2
× V +(1− γ)U
2
× (U
2
× V)
(6.69)
Make sure you understand the constructions used to obtain Equations (6.56)
and (6.68). The same idea is used later to motivate how a quaternion is related
to a rotation matrix in four dimensions.
6.3.3 Rotation in 4D
Equation (6.69) is referred to as the Rodrigues rotation formula.Thefor-
mula allows you to rotate a vector knowing the angle of rotation and unit-
length axis direction without explicitly constructing the rotation matrix. Com-
puting the rotation matrix via the skew-symmetric decomposition in Equation
(6.68) is standard in practice because it is not expensive computationally.
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Rotation matrices in 2D may be similarly decomposed,
R =

cos θ −sin θ
sin θ cos θ

=cosθ

10
01

+sinθ

0 −1
10

=(cosθ)I +(sinθ)S
(6.70)
where the last equality deﬁnes the skew-symmetric matrix S.ThematrixS
of Equation (6.68) has three distinctly labeled entries: s
0
, s
1
,ands
2
.Inthe
2D case, S has one distinctly labeled entry (the upper-right entry): s
0
= −1.
Generally, rotation matrices R in n dimensions have skew-symmetric de-
compositions
R =
n−1

k=0
c
k
θ
k
S
k
(6.71)
that may be constructed by exponentiating the n × n skew-symmetric ma-
trix R =exp(θS). The power series for the exponential function is exp(x)=

∞
k=0
x
k
/k!. Formally replacing the matrix S in the expression, we have
a power series of matrices. The series is actually ﬁnite, using the Cayley-
Hamilton theorem from linear algebra. The characteristic polynomial of S is
p(t)=det(tI − S), a polynomial of degree n. The theorem states that when
you substitute the matrix S formally into the polynomial, it must be that
p(S) = 0, where the right-hand side is the zero matrix. If the polynomial is
p(t)=

n
k=0
p
k
t
k
,wherep
n
=1,then
p(S)=
n

k=0
p
k
S
k
= 0 (6.72)
whichprovidesanexpressionforS
n
in terms of lower-degree powers of S.
The power series exp(S) may be reduced modulo p(S) to produce a ﬁnite sum
whose largest-degree term is S
n−1
.
The power series construction for 4D rotation matrices is tedious. The
details are not presented here but the summary is. Following the patterns for
S in 2D and 3D, deﬁne
S =
⎡
⎢
⎢
⎣
0 −s
5
+s
4
−s
2
+s
5
0 −s
3
+s
1
−s
4
+s
3
0 −s
0
+s
2
−s
1
+s
0
0
⎤
⎥
⎥
⎦
(6.73)
where s
2
0
+s
2
1
+s
2
2
+s
2
3
+s
2
4
+s
2
5
= 1. Deﬁne d = s
0
s
5
−s
1
s
4
+s
2
s
3
, r =
√
1 − 4d
2
,
ω
0
=

(1 − r)/2, and ω
1
=

(1 + r)/2. The argument for the square root in
the deﬁnition for r can be shown to be nonnegative, so r is real-valued and
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in the interval [0, 1]. Consequently, 0 ≤ ω
0
≤ ω
1
≤ 1. The skew-symmetric
decomposition for R =exp(S) is listed next, where σ
i
= sin(ω
i
θ)andγ
i
=
cos(ω
i
θ),
R =
⎧
⎪
⎨
⎪
⎩
c
0
I + c
1
S + c
2
S
2
+ c
3
S
3
, 0 <r<1
I +(sinθ)S +(1− cos θ)S
2
,r=1
cos(θ/
√
2)I +
√
2 sin(θ/
√
2)S, r =0
(6.74)
where
c
0
=

ω
2
1
γ
0
− ω
2
0
γ
1

/

ω
2
1
− ω
2
0

c
1
=

ω
2
1
(σ
0
/ω
0
) − ω
2
0
(σ
1
/ω
1
)

/

ω
2
1
− ω
2
0

c
2
=(γ
0
− γ
1
) /

ω
2
1
− ω
2
0

c
3
=((σ
0
/ω
0
) −(σ
1
/ω
1
)) /

ω
2
1
− ω
2
0

(6.75)
The ﬁrst case in Equation (6.74) is referred to as a double rotation and
corresponds to a rotation occurring in a two-dimensional plane and a rotation
occurring in the orthogonal complement (also a two-dimensional plane), each
rotation occurring with diﬀerent angles.
The second case in Equation (6.74) is referred to as a simple rotation,
because it is the type of rotation in 3D that we are familiar with. The rotation
is within one two-dimensional plane in 4D. The decomposition can be derived
symbolically from the double-rotation case by setting ω
0
= 0. The result has
an S
3
term. The characteristic polynomial p(t) has degree 4, but the minimal
polynomial is m(t)=t
3
+ t and m(S)=S
3
+ S = 0, which allows us to replace
S
3
= −S.
The third case in Equation (6.74) is referred to as an equiangular ro-
tation, a double rotation but with both rotation angles the same. In fact,
ω
0
= ω
1
=1/
√
2. The decomposition can be obtained symbolically from
the double-rotation case by taking a limit as ω
1
approaches ω
0
and using
l’Hˆopital’s Rule. The result has S
3
and S
4
terms. The characteristic poly-
nomial has degree 4, but the minimal polynomial is m(t)=t
2
+1/2and
m(S)=S
2
+ I/2, which allows us to replace S
2
= −I/2andS
3
= −S/2.
6.3.4 Quaternions
A quaternion is speciﬁed by the abstract quantity q = xi + yj + zk + w,
where x, y, z,andw are real numbers. This quantity can be thought of as a
vector (x, y, z, w) ∈ IR
4
. A quaternion is unit length when x
2
+y
2
+z
2
+w
2
=1,
which is a point on a hypersphere in 4D with radius one. The unit-length
quaternions are related to rotations when an algebraic structure is imposed
on them, the topic of this section.
Practitioners sometimes use the term quaternion in place of unit-length
quaternion when dealing with rotations. It is important to keep in mind the
context. For example, in physical simulations orientation can be represented
by a unit-length quaternion but angular velocity is represented by a quaternion
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that is not necessarily unit length. Another issue to be aware of is the ordering
of the components. Some programmers might implement quaternions with
order (w, x, y, z). In GTEngine, the order is (x, y, z, w).
6.3.4.1 Algebraic Operations
The symbols i, j,andk in q = xi + yj + zk + w can be endowed with
a product operation, i
2
= j
2
= k
2
= ijk = −1. In abstract algebra, the
set {±1, ±i, ±j, ±k} is a group with the speciﬁed operation. In fact, it is a
noncommutative group because the operation is not generally commutative.
For example, ij = k and ji = −1 · k = −k,soij = ji. Generally, ij = k,
jk = i, ki = j, ji = −k, kj = −i,andik = −j.
The quaternion q allows formal linear combinations of 1, i, j,andk,where
the coeﬃcients are real numbers. In abstract algebra, the set of all such com-
binations is a group algebra when it is endowed with addition and scalar mul-
tiplication and when it inherits the multiplication of the underlying group.
Addition of two quaternions is deﬁned by
q
0
+ q
1
=(x
0
i + y
0
j + z
0
k + w
0
)+(x
1
i + y
1
j + z
1
k + w
1
)
=(x
0
+ x
1
)i +(y
0
+ y
1
)j +(z
0
+ z
1
)k +(w
0
+ w
1
)
(6.76)
Scalar multiplication of a quaternion by a real number c is deﬁned by
cq = c(xi + yj + zk + w)=(cx)i +(cy)j +(cz)k +(cw) (6.77)
The subtraction operation is deﬁned as a consequence of these two deﬁnitions,
q
0
− q
1
= q
0
+(−1)q
1
.
Multiplication is allowed for quaternions. The product of quaternions is
deﬁned by allowing the distributive law to apply and by using the various
product formulas for the i, j,andk terms:
q
0
q
1
=(x
0
i + y
0
j + z
0
k + w
0
)(x
1
i + y
1
j + z
1
k + w
1
)
=(w
0
x
1
+ w
1
x
0
+ y
0
z
1
− z
0
y
1
)i +
(w
0
y
1
+ w
1
y
0
+ z
0
x
1
− x
0
z
1
)j +
(w
0
z
1
+ w
1
z
0
+ x
0
y
1
− y
0
x
1
)k +
(w
0
w
1
− x
0
x
1
− y
0
y
1
− z
0
z
1
)
(6.78)
As noted, multiplication is not generally commutative. The product in the
other order obtained from Equation (6.78) by interchanging the zero and one
subscripts is
q
1
q
0
=(x
1
i + y
1
j + z
1
k + w
1
)(x
0
i + y
0
j + z
0
k + w
0
)
=(w
0
x
1
+ w
1
x
0
+ y
1
z
0
− y
0
z
1
)i +
(w
0
y
1
+ w
1
y
0
+ z
1
x
0
− z
0
x
1
)j +
(w
0
z
1
+ w
1
z
0
+ x
1
y
0
− x
0
y
1
)k +
(w
0
w
1
− x
0
x
1
− y
0
y
1
− z
0
z
1
)
(6.79)
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The w-components of q
0
q
1
and q
1
q
0
are the same. On the other hand, the last
two terms in each of the i-, j-, and k-components in Equation 6.79 are opposite
in sign to their counterparts in Equation 6.78. Symbolically, Equations (6.78)
and (6.79) are diﬀerent, but for some quaternions (but not all), it is possible
that q
0
q
1
= q
1
q
0
(the product commutes). For this to happen we need
(x
0
,y
0
,z
0
) × (x
1
,y
1
,z
1
)=(y
0
z
1
− y
1
z
0
,z
0
x
1
− z
1
x
0
,x
0
y
1
− y
0
x
1
)
=(y
1
z
0
− y
0
z
1
,z
1
x
0
− z
0
x
1
,x
1
y
0
− x
0
y
1
)
=(x
1
,y
1
,z
1
) × (x
0
,y
0
,z
0
)
(6.80)
which says that the cross product of two vectors is the same. The only way this
can happen is if the cross product is zero: (x
0
,y
0
,z
0
) ×(x
1
,y
1
,z
1
)=(0, 0, 0).
The fact that squares of i, j,andk are −1 shows that there are some
similarities to the complex numbers. The complex number c = w + ix has real
part w and imaginary part x.Theconjugate of the numbers is ¯c = w −ix.The
norm of the complex number is N (c)=w
2
+x
2
and the length is |c| =

N(c).
Observe that the squared length is |c|
2
= cˆc =ˆcc. If the length is not zero,
the inverse of the complex number is c
−1
=¯c/N(c). The polar form of a
unit-length complex number is c =cosφ + i sin φ.
Similar deﬁnitions may be formulated for quaternions. Deﬁne ˆv = xi +
yj + zk so that q =ˆv + w.Thew-component is referred to as the real part of q
and ˆv is referred to as the imaginary portion of q (not part because there are
multiple terms in the expression). The conjugate of q is denoted q
∗
= −ˆv + w;
for historical reasons, the conjugate notation uses a superscript asterisk rather
than an overline bar. Because quaternion multiplication is not commutative
but complex multiplication is, there is a diﬀerence between the two algebras
regarding conjugates. If p and q are quaternions, (pq)
∗
= q
∗
p
∗
;thatis,the
order is reversed after taking the conjugate. This has a similarity to transpose
of two matrices. The norm of q is N (q)=x
2
+ y
2
+ z
2
+ w
2
and the length
is |q| =

N(q). The squared length is |q|
2
= qq
∗
= q
∗
q. If the length is not
zero, the inverse of the quaternion is q
−1
= q
∗
/N (q). The polar form of a
unit-length quaternion is q =cosφ +
ˆ
d sin φ,where
ˆ
d = xi + yj + zk is the
unit-length portion; that is, x
2
+ y
2
+ z
2
= 1. It is easily shown that
ˆ
d
2
= −1.
The representation q = w +ˆv is a coordinate-free description. We may
identify ˆv = xi + yj + zk with the vector v =(x, y, z). This allows us to deﬁne
two operations on the imaginary portions based on how those operations apply
to vectors. The dot product of ˆv
0
and ˆv
1
is denoted ˆv
0
·ˆv
1
and deﬁned to be the
real-valued vector dot product v
0
·v
1
.Thecross product of ˆv
0
and ˆv
1
is denoted
ˆv
0
×ˆv
1
, another quaternion with zero w component. Its x, y,andz values are
the components of the vector cross product v
0
× v
1
. In this formulation, the
product of two quaternions is
(w
0
+ˆv
0
)(w
1
+ˆv
1
)=(w
0
w
1
− ˆv
0
· ˆv
1
)+w
0
ˆv
1
+ w
1
ˆv
0
+ˆv
0
× ˆv
1
(6.81)
As we showed previously, the product commutes if and only if ˆv
0
× ˆv
1
=0.
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A straightforward implementation of quaternions and the associated alge-
bra is provided by the interface shown in Listing 6.27. The
Rotate and Slerp
functions are discussed later in this section.
template <typename Real>
class Quaternion : public Vector <4, R eal >
{
public :
// The quaternions are of the form q = x∗ i+y∗ j+z∗k + w. In tuple
// form, q = (x,y,z,w).
// Construction and destruction . The default constructor does not
// initialize the members.
˜Quaternion ();
Quaternion ();
Quaternion (Quaternion const&q);
Quaternion ( Vector <4, R ea l> const&q);
Quaternion ( Real x , Real y , Real z , Real w);
// assignment
Quaternion& operator=(Quaternion const&q);
Quaternion& operator= ( Vector <4, R ea l> const&q);
// special quaternions
static Quaternion Zero (); // z = 0∗ i+0∗ j+0∗k+0
static Quaternion I (); // i = 1∗ i+0∗ j+0∗k+0
static Quaternion J (); // j = 0∗ i+1∗ j+0∗k+0
static Quaternion K (); // k = 0∗ i+0∗ j+1∗k+0
static Quaternion Identity (); // 1 = 0∗ i+0∗ j+0∗k+1
} ;
template <
typename Real>
Quaternion<Real> operator∗ (Quaternion<Real> const&q0,
Quaternion<Real> const&q1);
template <typename Real>
Quaternion<Real> Inverse (Quaternion<Real> const&q);
template <typename Real>
Quaternion<Real> Conjugate ( Quaternion<Real> const&q);
template <typename Real>
Vector <4, R ea l> Rotate ( Quaternion<Real> const& q , Vector <4, R ea l> const&v);
template <typename Real>
Quaternion<Real> Slerp ( Real t , Quaternion<Real> const&q0,
Quaternion<Real> const&q1);
LISTING 6.27:TheQuaternion<Real> interface for the quaternions and al-
gebra associated with them.
6.3.4.2 Relationship of Quaternions to Rotations
Consider rotating a vector v about an axis with unit-length direction d by
an angle θ to obtain a vector u. The sense of the rotation is counterclockwise,
as shown in Figure 6.4.
The quaternions
ˆ
d,ˆv,andˆu are those identiﬁed with the vectors d, v,and
u. Deﬁne the quaternion q = γ + σ
ˆ
d,whereγ =cos(θ/2) and σ = sin(θ/2).
The quaternion ˆu = qˆvq
∗
has a zero w-component; the left-hand side is written
as if there is no w-component, but we do need to verify this. The vector u
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turns out to be the rotation of v. The formal calculations are listed next:
qˆvq
∗
=(γ + σ
ˆ
d)(0 + ˆv)(γ − σ
ˆ
d)
=(−σ
ˆ
d · ˆv + γˆv + σ
ˆ
d × ˆv)(γ − σ
ˆ
d)
=[(−σ
ˆ
d · ˆv)(γ) − (γˆv + σ
ˆ
d × ˆv)(−σ
ˆ
d)]+
(γ)(γˆv + σ
ˆ
d × ˆv)+(−σ
ˆ
d · ˆv)(−σ
ˆ
d)+
(γˆv
+ σ
ˆ
d × ˆv) × (−σ
ˆ
d)
= γ
2
ˆv + σ
2
(
ˆ
d · ˆv)
ˆ
d +2σγ
ˆ
d × ˆv + σ
2
ˆ
d × (
ˆ
d × ˆv)
(6.82)
The second equality uses Equation (6.81), the third equality uses Equation
(6.81), and the last equality uses the identities (
ˆ
d × ˆv) ·
ˆ
d =0,ˆv ×
ˆ
d = −
ˆ
d × ˆv
and
ˆ
d×(
ˆ
d×ˆv)=−(
ˆ
d×ˆv)×
ˆ
d, the same identities that the vector counterparts
d and v satisfy. Continuing with the calculations,
qˆvq
∗
=(1− σ
2
)ˆv +2σγ
ˆ
d × ˆv + σ
2
[(
ˆ
d · ˆv)
ˆ
d +
ˆ
d × (
ˆ
d × ˆv)]
=ˆv +2σγ
ˆ
d × ˆv + σ
2
[(
ˆ
d · ˆv)
ˆ
d − ˆv +
ˆ
d ×(
ˆ
d × ˆv)]
(6.83)
An identity from vector algebra is d × (d × v)=(d · v)d − (d · d)v =
(d · v)d − v, the last equality a consequence of d being unit length. The
quaternion counterpart satisﬁes the same identity, so
qˆvq
∗
=ˆv +2σγ
ˆ
d × ˆv +2σ
2
ˆ
d ×(
ˆ
d × ˆv) (6.84)
Recall also the trigonometric identities sin θ =2sin(θ/2) cos(θ/2) = 2σγ and
1 − cos θ =2sin
2
(θ/2) = 2σ
2
, so we ﬁnally arrive at
qˆvq
∗
=ˆv +(sinθ)
ˆ
d × ˆv +(1− cos θ)
ˆ
d × (
ˆ
d × ˆv) (6.85)
This is the quaternion counterpart of Equation (6.69), the general rotation of
v about an axis d by an angle θ. The vector u corresponding to ˆu = qˆvq
∗
is
therefore the rotation of v.
The GTEngine function that implements this operation is shown in Listing
6.28.
template <typename Real>
Vector <4, R ea l> Rotate ( Quaternion<Real> const& q , Vector <4, R ea l> const&v)
{
Vector <4,R ea l> u=q∗ Quaternion<Real>(v) ∗ Conjugate (q );
// Z ero−out the w−component to avoid numerical roundoff error .
u[3] = (Real)0;
return u;
}
LISTING 6.28: Source code for the rotation of a vector directly by quater-
nion operations.
The rotation matrix R corresponding to the quaternion q may be obtained
by computing symbolically the right-hand side of ˆu = qˆvq
∗
and factoring the
coeﬃcients of the i-, j-, and k-terms to obtain u = Rv,where
R =
⎡
⎣
1 − 2y
2
− 2z
2
2xy − 2wz 2xz +2wy
2xy +2wz 1 − 2x
2
− 2z
2
2yz − 2wx
2xz − 2wy 2yz +2wx 1 − 2x
2
− 2y
2
⎤
⎦
(6.86)





[image: ]Linear and Aﬃne Algebra 299
TheGTEnginesourcecodeforthisandother conversions is described later.
Take note that the rotation matrix here is for the vector-on-the-right multi-
plication convention.
Composition of rotations is stated easily in terms of quaternion algebra.
If p and q are unit-length quaternions that represent rotations, and if ˆv is
the quaternion identiﬁed with vector v, then the rotation represented by q is
accomplished by ˆu = qˆvq
∗
as shown earlier. The vector u identiﬁed with ˆu is
further modiﬁed by the rotation represented by p:
pˆup
∗
= p(qˆvq
∗
)p
∗
=(pq)ˆv(q
∗
p
∗
) quaternion multiplication is associative
=(pq)ˆv(pq)
∗
property of conjugation
(6.87)
This equation shows that the composite rotation is represented by the quater-
nion product pq.
6.3.4.3 Spherical Linear Interpolation of Quaternions
As we have seen, unit-length quaternions represent rotations. Orientation
of an object is represented by a rotation matrix, where the columns (or rows)
of the matrix are the axes associated with the orientation. Keyframe anima-
tion is an application in which positions and orientations are chosen for an
object at speciﬁc times. The intermediate positions and orientations between
the speciﬁc times are computed via interpolation. The simplest algorithm for
handling positions is linear interpolation, sometimes reduced to the acronym
LERP.IfP
0
and P
1
are positions at speciﬁed times s
0
and s
1
, the in-between
positions are
P(s)=
(s
1
− s)
s
1
− s
0
P
0
+
s − s
0
s
1
− s
0
P
1
(6.88)
for s ∈ [s
0
,s
1
]. When s is normalized to t =(s − s
0
)/(s
1
− s
0
) ∈ [0, 1], the
linear interpolation is
P(t)=(1− t)P
0
+ tP
1
(6.89)
Uniform sampling of t ∈ [0, 1] leads to uniform spacing of points along the
line segment connecting P
0
and P
1
.Inmathematicalterms,thispropertyis
implied by the derivative of the parameterized curve having constant length.
For LERP the length of the derivative is |P

(t)| = |P
1
− P
0
|, which is a
constant.
The quaternion counterpart for linear interpolation is referred to as spher-
ical linear interpolation or SLERP for short. This was made popular in com-
puter graphics by [52]. The motivation for the deﬁnition comes from unit-
length vectors in 2D, which live on a circle of radius one. Figure 6.5 illus-
trates the idea. On the unit hypersphere in 4D, we choose the great circle
arc connecting the two quaternions. We want an interpolation of the form
q(t)=c
0
(t)q
0
+ c
1
(t)q
1
for to-be-determined coeﬃcient functions c
0
(t)and
c
1
(t). The angle between q
0
and q
1
is θ ∈ [0,π), the angle between q
0
and q(t)
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FIGURE 6.5: Interpolation of quaternions q
0
and q
1
on a circle of radius 1.
The parameter t is in [0, 1].
is tθ, and the angle between q
1
and q(t)is(1−t)θ. The dot product of vectors
gives us the cosine of the angle between them,
cos(tθ)=q
0
· q(t)=c
0
(t)+cos(θ)c
1
(t)
cos((1 − t)θ)=q
1
· q(t)=cos(θ)c
0
(t)+c
1
(t)
(6.90)
These are two equations in two unknowns; the solution is
c
0
(t)=
cos(tθ) − cos(θ) cos((1 − t)θ)
1 − cos
2
(θ)
=
sin((1 − t)θ)
sin(θ)
(6.91)
c
1
(t)=
cos((1 − t)θ) − cos(θ)cos(tθ)
1 − cos
2
(θ)
=
sin(tθ)
sin(θ)
Spherical linear interpolation is therefore
slerp(t; q
0
,q
1
)) = q(t)=
sin((1 − t)θ)q
0
+ sin(tθ)q
1
sin(θ)
(6.92)
Uniform sampling of t ∈ [0, 1] leads to uniform spacing of quaternions along
the circular arc connection q
0
and q
1
. The length of the derivative is
|q

(t)| =
#
#
#
#
−θ cos((1 − t)θ)q
0
+ θ cos(tθ)q
1
sin(θ)
#
#
#
#
= θ (6.93)
where the right-hand side is expanded as a dot product and the computations
use q
0
· q
0
=1,q
0
· q
1
=cos(θ), q
1
· q
1
= 1, and some trigonometric identities
are applied. The derivative has constant length, so in fact the uniform spacing
is guaranteed for uniform t-samples. Observe that SLERP is not deﬁned for
antipodal points q
1
= −q
0
, because there are inﬁnitely many great circle arcs
that connect them.
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An implementation of Equation (6.92) requires dealing with three issues.
Firstly, if the quaternions are equal, the angle between them is zero, in which
case SLERP has a divide by zero. The same divide-by-zero problem occurs
when the quaternions are antipodal, but this is not a problem because SLERP
is not deﬁned for antipodal points. Secondly, quaternions represent rotations
but provide a double covering: q and −q represent the same rotation. An
implementation will avoid the antipodal points and the double-covering issue
by requiring the angle between the quaternions to be acute. If desired, this can
be accomplished by preprocessing the sequence of quaternions in an animation
sequence, negating quaternions in the sequence as needed to guarantee that
consecutive quaternions have a nonnegative dot product. Thirdly, the function
acos is applied to compute θ from q
0
· q
1
=cosθ. When using ﬂoating-point
arithmetic, roundoﬀ errors can lead to a dot product slightly larger than
one. This condition must be trapped and handled, because the
acos function
returns a quiet NaN for arguments larger than one. A typical implementation
of SLERP is shown in Listing 6.29
Quaternion Slerp ( Real t , Quaternion q0, Quaternion q1)
{
Real cosTheta = Dot(q0 , q1 );
if (cosTheta < 0)
{
q1 = −q1 ;
cosTheta = −cosTheta ;
}
if (cosTheta < 1)
{
// Angle theta is in the interval (0, pi /2].
Real theta = acos ( cosTheta );
Real invSinTheta = 1/ sin (theta );
R e al c0 = sin ((1 − t)∗ theta)∗ invSinTheta ;
Real c1 = sin ( t∗ theta)∗ invSinTheta ;
return c0 ∗q0 + c1 ∗q1 ;
}
else
{
// Angle theta is zero , so just return one of the inputs .
return q0 ;
}
}
LISTING 6.29: A direct implementation of SLERP.
SLERP is an expensive function to compute because of one call to
acos,
three calls to
sin, and one division. Moreover, branching is potentially ex-
pensive, although on modern CPUs, branching tables for branch prediction
eliminate much of that expense. On SIMD hardware, the if-then-else process-
ing is replaced by selection, which adds some overhead cost, although the gain
from parallelism oﬀsets this.
One way to avoid the expensive function calls is to approximate
sin by a
polynomial and
acos by a square root and a polynomial [1]. However, a sim-
ple observation about the coeﬃcients used in SLERP and some basic ideas
from linear diﬀerential equations lead to a faster SLERP evaluation, one that
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uses only multiplications and additions and has no branching. For applica-
tions that make heavy use of SLERP, the approximation provides a decent
approximation with a signiﬁcant speedup.
An alternative that is faster and more robust is presented in [10], which in-
volves a two-variable polynomial approximation. The algorithm uses only mul-
tiplication, addition, and subtraction and does not require division, branching,
or testing for special conditions. It is also friendly to SIMD.
The coeﬃcient sin(tθ)/ sin(θ) in Equation (6.92) is evaluated for t ∈ [0, 1].
It has the same form as sin(nθ)/ sin(θ) for nonnegative integers n,anexpres-
sion that is related to Chebyshev polynomials of the second kind, u
n
(x), deﬁned
for |x|≤1; see [50, Section 7.6] on orthogonal polynomials. The polynomials
are deﬁned recursively by u
0
(x)=1,u
1
(x)=2x, u
n
(x)=2xu
n−1
(x)−u
n−2
(x)
for n ≥ 2 and have the property u
n−1
(cos(θ)) = sin(nθ)/ sin(θ). They are so-
lutions to the second-order linear diﬀerential equation

x
2
− 1

u

n−1
(x)+3xu

n−1
(x)+

1 − n
2

u
n−1
(x) = 0 (6.94)
where x =cos(θ) ∈ [0, 1] for angles θ ∈ [0,π/2]. Equation (6.94) allows for
a continuous variable t rather than the discrete variable n, so if we deﬁne
u
t−1
(cos(θ)) = sin(tθ)/ sin(θ) for real-valued t ∈ [0, 1], the SLERP equation
is rewritten as
slerp(t; q
0
,q
1
)=u
−t
(cos(θ)) q
0
+ u
t−1
(cos(θ)) q
1
(6.95)
Equation (6.95) suggests that we can construct formulas for u
−t
and u
1−t
that
depend only on cos(θ)=q
0
· q
1
, thereby avoiding the explicit computation of
θ and the calls to the sine function.
Deﬁne f(x; t)=u
t−1
(x), which is viewed as a function of x for a speciﬁed
real-valued parameter t. It is a solution to Equation (6.94) with n formally
replaced by t,

x
2
− 1

f

(x; t)+3xf

(x; t)+

1 − t
2

f(x; t) = 0 (6.96)
The prime symbols denote diﬀerentiation with respect to x.
We may specify an initial value for f (1; t) at the endpoint x = 1. Obtain-
ing a unique solution to a linear second-order diﬀerential equation normally
requires specifying the derivative value at x = 1; however, the equation is
singular at x = 1, because the coeﬃcient of f

is 0 at x = 1. The uniqueness
is guaranteed by specifying only the value of f at the endpoint. When x is
one, θ is zero and evaluation of u
t−1
(0) is in the limiting sense,
u
t−1
(1) = lim
θ→0
u
t−1
(cos(θ)) = lim
θ→0
sin(tθ)
sin(θ)
= lim
θ→0
t cos(tθ)
cos(θ)
= t (6.97)
The next-to-last equality of Equation (6.97) uses an application of l’Hˆopital’s
Rule. The initial condition is therefore f(1; t)=t.
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A standard undergraduate course on diﬀerential equations shows how to
solve the diﬀerential equation using power series [2]. Because we want an
expansion at x =1,thepowersare(x − 1)
i
. The next equation lists power
series for f and its ﬁrst- and second-order derivatives with respect to x:
f =
∞

i=0
a
i
(x−1)
i
,f

=
∞

i=0
ia
i
(x−1)
i−1
,f

=
∞

i=0
i(i−1)a
i
(x−1)
i−2
(6.98)
The coeﬃcients of the powers of (x − 1) are written to show their functional
dependence on t. Substituting these into Equation (6.96),
0=

x
2
− 1

f

+3xf

+

1 − t
2

f
=

(x − 1)
2
+2(x − 1)

f

+3[(x − 1) + 1] f

+

1 − t
2

f
=

∞
i=0

(i + 1)(2i +3)a
i+1
+((i +1)
2
− t
2
))a
i

(x − 1)
i
(6.99)
For the power series to be identically zero for all x, it is necessary that the
coeﬃcients are all zero. The condition f(1; t)=t implies a
0
= t.Theselead
to a recurrence equation with initial condition,
a
0
= t, a
i
=
t
2
− i
2
i(2i +1)
a
i−1
,i≥ 1 (6.100)
It is apparent from Equation (6.100) that a
i
(t) is a polynomial in t with
degree 2i +1. Observethata
0
(0) = 0, which implies a
i
(0) = 0 for i ≥ 0; this
is equivalent to f(x; 0) = 0. Similarly, a
0
(1) = 1 and a
1
(1) = 0, which implies
a
i
(1) = 0 for i ≥ 1; this is equivalent to f (x;1)= 1.
We now have a power series for f(x; t)usingpowersof(x − 1) and whose
coeﬃcients are polynomials in t that may be generated iteratively. The power
series may be truncated and given an error term,
f(x; t)=

n
i=0
a
i
(t)(x − 1)
i
+

∞
i=n+1
a
i
(t)(x − 1)
i
=

n
i=0
a
i
(t)(x − 1)
i
+ ε(x; t, n)
.
=

n
i=0
a
i
(t)(x − 1)
i
+ μ
n
a
n
(t)(x − 1)
n
=
ˆ
f(x; t)
(6.101)
where ε(x; t, n) is the error of truncation. The approximation is
ˆ
f(x; t), where
μ
n
is a constant that is chosen to provide a global error bound. A large part
of [10] is about how to choose μ and delves into the Chebyshev equioscillation
theorem and the Remez algorithm; the details are skipped here. The global
error bound is |f(x; t) −
ˆ
f(x; t)|≤e
n
. Table 6.1 summarizes the error bounds
and how many terms are used in the approximation. You may select the desired
error bound e
n
, look up the corresponding μ,andchoosethen terms of the
polynomial to be evaluated. Equation (6.100) is evaluated as many times as
is required for the choice of n.
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TABLE 6. 1: Error balancing for several n in the Remez algorithm
n μ
n
e
n
n μ
n
e
n
1 0.62943436108234530 5.745259 ∗ 10
−3
9 0.91015881189952352 5.277561 ∗ 10
−7
2 0.73965850021313961 1.092666 ∗ 10
−3
10 0.91767344933047190 2.110597 ∗ 10
−7
3 0.79701067629566813 2.809387 ∗ 10
−4
11 0.92401541194159076 8.600881 ∗ 10
−8
4 0.83291820510335812 8.409177 ∗ 10
−5
12 0.92944142668012797 3.560875 ∗ 10
−8
5 0.85772477879039977 2.763477 ∗ 10
−5
13 0.93413793373091059 1.494321 ∗ 10
−8
6 0.87596835698904785 9.678992 ∗ 10
−6
14 0.93824371262559758 6.344653 ∗ 10
−9
7 0.88998444919711206 3.551215 ∗ 10
−6
15 0.94186426368404708 2.721482 ∗ 10
−9
8 0.90110745351730037 1.349968 ∗ 10
−6
16 0.94508125972497303 1.177902 ∗ 10
−9
GTEngine implements this algorithm on the CPU/FPU for n =8.The
implementation is shown in Listing 6.30.
template <typename Real> Quaternion<Real> Slerp (Real t ,
Quaternion<Real> const&q0, Quaternion<Real> const&q1)
{
Real const onePlusMuFPU = ( Real )1.90110745351730037;
Real const a[9] =
{
(Real)1/((Real)1∗(Real)3), (Real )1/((Real)2∗(Real)5),
(Real)1/((Real)3∗(Real)7), (Real )1/((Real)4∗(Real)9),
(Real)1/((Real)5∗( Real )11) , ( Real )1/(( Real )6∗(Real )13) ,
(Real)1/((Real)7∗( Real )15) , ( Real )1/(( Real )8∗(Real )17) ,
onePlusMuFPU ∗( Real )1/(( Real )9∗ (Real )19)
} ;
Real const b[9] =
{
(Real)1/( Real )3, ( Real)2/( Real )5 ,
(Real)3/( Real )7, ( Real)4/( Real )9 ,
(Real)5/( Real )11 , (Real )6/(Real )13,
(Real)7/( Real )15 , (Real )8/(Real )17,
onePlusMuFPU ∗(Real )9/(Real )19
} ;
Real cs = Dot(q0 , q1 );
Real sign ;
if (cs >=(Real)0)
{
sign = (Real )1;
}
else
{
cs = −cs ;
sign = (Real)−1;
}
Real csm1 = cs − (Real)1;
Real term0 = ( Real )1 − t, term1 = t;
Real sqr0 = term0∗term0 , s q r1 = term1 ∗term1 ;
Real u0 = term0 , u1 = term1 ;
for (
int i=0; i<=8;++i)
{
term0 ∗=(a[i]∗ sqr0 − b[ i ])∗ csm1 ;
term1 ∗=(a[i]∗ sqr1 − b[ i ])∗ csm1 ;
u0 += t erm 0 ;
u1 += t erm 1 ;
}
u1 ∗=sign;
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Quaternion<Real> slerp = q0∗u0 + q1∗u1 ;
return slerp ;
}
LISTING 6.30: A fast, accurate, and robust implementation of SLERP.
On the CPU/FPU, the speed-up over the code in Listing 6.29 is more than
two-fold for 32-bit ﬂoating-point numbers. A SIMD implementation, described
in a later section, provides for parallel SLERP operations for additional speed
ups.
6.3.5 Euler Angles
Rotations about the coordinate axes are easy to deﬁne and work with.
My convention is that a positive angle θ corresponds to a counterclockwise
rotation in the plane when viewed by an observer on the positive side of the
axis looking at the origin. In order to conform to this convention, the rotation
matrix depends on the matrix-vector multiplication convention in eﬀect.
name vector-on-the-right vector-on-the-left name
R
0
(θ
0
)
⎡
⎣
10 0
0cosθ
0
− sin θ
0
0sinθ
0
cos θ
0
⎤
⎦
⎡
⎣
100
0cosθ
0
sin θ
0
0 − sin θ
0
cos θ
0
⎤
⎦
ˆ
R
0
(θ
0
)
R
1
(θ
1
)
⎡
⎣
cos θ
1
0sinθ
1
01 0
− sin θ
1
0cosθ
1
⎤
⎦
⎡
⎣
cos θ
1
0 − sin θ
1
01 0
sin θ
1
0cosθ
1
⎤
⎦
ˆ
R
1
(θ
1
)
R
2
(θ
2
)
⎡
⎣
cos θ
2
− sin θ
2
0
sin θ
2
cos θ
2
0
001
⎤
⎦
⎡
⎣
cos θ
2
sin θ
2
0
− sin θ
2
cos θ
2
0
001
⎤
⎦
ˆ
R
2
(θ
2
)
(6.102)
Index zero indicates a rotation about the x-axis, index one indicates a rotation
about the y-axis, and index 2 indicates a rotation about the z-axis. The angles
are referred to as Euler angles.
For example, using vector-on-the-right convention, consider a rota-
tion matrix that is a composition of coordinate rotation matrices, R =
R
0
(θ
0
)R
1
(θ
1
)R
2
(θ
2
). The ordering is said to be xyz. Five other possible
combinations are xzy, yxz, yzx, zxy,andzyx. Another type of composi-
tion involves three angles but only two coordinate axes; for example, R =
R
0
(θ
0
)R
1
(θ
1
)R
0
(θ
2
). The ordering is said to be xyx.Fiveotherpossiblecom-
binations are xzx, yxy, yzy, zxz,andzyz. In total, we have twelve possible
combinations of coordinate axis rotation matrices.
The term “xyz ordering” is confusing when you allow for diﬀerent multipli-
cation conventions. In the previous paragraph, xyz ordering is a composition
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for which the z-axis rotation is applied ﬁrst, the y-axis rotation second, and
the x-axis rotation third:
RV = R
0
(θ
0
)[R
1
(θ
1
)[R
2
(θ
2
)V]] (6.103)
Using vector-on-the-left convention, the rotation
ˆ
R = R
T
leads to equal 3-
tuples RV and V
T
ˆ
R. It is convenient to implement Euler angles in a manner
that hides the underlying matrix-vector multiplication convention. For the
current example, we want a composition for
ˆ
R that applies the z-axis rotation
ﬁrst, the y-axis rotation second, and the x-axis rotation third. Speciﬁcally,
ˆ
R =
ˆ
R
2
(θ
2
)
ˆ
R
1
(θ
1
)
ˆ
R
0
(θ
0
), which is a “zyx ordering.” The application to a
vector is
V
T
ˆ
R =

V
T
ˆ
R
2
(θ
2
)

ˆ
R
1
(θ
1
)

ˆ
R
0
(θ
0
) (6.104)
which is the same 3-tuple as RV. In terms of matrix operations, all we are
doing is applying tranposes,
ˆ
R = R
T
=(R
0
(θ
0
)R
1
(θ
1
)R
0
(θ
2
))
T
= R
2
(θ
2
)
T
R
1
(θ
1
)
T
R
0
(θ
2
)
T
=
ˆ
R
2
(θ
2
)
ˆ
R
1
(θ
1
)
ˆ
R
0
(θ
0
)
(6.105)
GTEngine hides the matrix-vector multiplication convention as described
previously. The Euler angle composition is presented through an interface that
implements the function W ,
W (E
i
0
,φ
0
, E
i
1
,φ
1
, E
i
2
,φ
2
)=
$
R(E
i
2
,φ
2
)R(E
i
1
,φ
1
)R(E
i
0
,φ
0
), vector-on-the-right convention
ˆ
R(E
i
0
,φ
0
)
ˆ
R(E
i
1
,φ
1
)
ˆ
R(E
i
2
,φ
2
), vector-on-the-left convention
(6.106)
For three distinct axes, (i
0
,i
1
,i
2
)isoneof(0, 1, 2), (0, 2, 1), (1, 2, 0), (1, 0, 2),
(2, 0, 1), or (2, 1, 0). For two distinct axes, (i
0
,i
1
,i
2
)isoneof(0, 1, 0), (0, 2, 0),
(1, 0, 1), (1, 2, 1), (2, 0, 2), or (2, 1, 2). The indexing of axes is such that regard-
less of multiplication convention, the rotation about axis i
0
is applied ﬁrst,
the rotation about axis i
1
is applied second, and the rotation about axis i
2
is
applied third. The angles are φ
j
= θ
i
j
for 0 ≤ j ≤ 2.
6.3.5.1 World Coordinates versus Body Coordinates
I refer to the twelve factorizations of the last section as Euler angles in
world coordinates. The coordinate axis rotations are speciﬁed for the original
coordinate axes, and the rotations are applied one at a time in the world
coordinate system. It is also possible to deﬁne Euler angles in body coordinates.
In this scenario, the coordinate axes themselves are rotated. In my opinion,
specifying Euler angles in body coordinates is more intuitive than specifying
them in world coordinates, because you can imagine the actual motion of the
object for each selected body-axis rotation.
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Let the initial body axes be the orthonormal right-handed basis
{U
0
, U
1
, U
2
}. The vectors are unit-length, mutually perpendicular, and
U
0
× U
1
= U
2
. Let the rotation angles be θ
i
for 0 ≤ i ≤ 2 and deﬁne
s
i
=sinθ
i
and c
i
=cosθ
i
. The rotation matrix by an angle θ corresponding
to an axis with unit-length direction V is R(V,θ).
The illustration assumes the vector-on-the-right multiplication convention.
The ﬁrst rotation is by angle θ
0
about the body axis U
0
; let the rotation
matrix be denoted R
0
= R(U
0
,θ
0
). The second rotation is by angle θ
1
about
the rotated body axis R
0
U
0
; the rotation matrix is R
1
= R(R
0
U
0
,θ
1
). The
third rotation is by angle θ
2
about the twice-rotated body axis R
1
R
0
U
2
;
the rotation matrix is R
2
= R(R
1
R
0
U
2
,θ
2
). The composition of the three
rotations is R
2
R
1
R
0
,say,
B(U
0
,θ
0
, U
1
,θ
1
, U
2
,θ
2
)
= R(R(R(U
0
,θ
0
)U
1
,θ
1
)U
2
,θ
2
)R(R(U
0
,θ
0
)U
1
,θ
1
)R(U
0
,θ
0
)
= R(s
1
U
0
− s
0
c
1
U
1
− s
0
c
0
U
2
,θ
2
)R(c
0
U
1
+ s
0
U
2
,θ
1
)R(U
0
,θ
0
)
= UB(E
0
,θ
0
, E
1
,θ
1
, E
2
,θ
2
)U
T
(6.107)
where E
0
=(1, 0, 0), E
1
=(0, 1, 0), E
2
=(0, 0, 1), and U =[U
0
U
1
U
2
]
is the rotation matrix whose columns are the speciﬁed vectors. I leave it as
an exercise to prove the following relationship between Euler angles in world
coordinates and Euler angles in body coordinates,
B(E
0
,θ
0
, E
1
,θ
1
, E
2
,θ
2
)=W (E
0
,θ
0
, E
1
,θ
1
, E
0
,θ
2
) (6.108)
Observe that the world-coordinate function corresponds to a three-axis rota-
tion where one of the axes is repeated.
We may also compose three body-axis rotations when one of the axes is
repeated. The general composition formula in Equation (6.107) is overloaded
to cover this case. For example, the xyx composition using the standard Eu-
clidean basis is
B(U
0
,θ
0
, U
1
,θ
1
, U
0
,θ
2
)
= R(R(R(U
0
,θ
0
)U
1
,θ
1
)U
0
,θ
2
)R(R(U
0
,θ
0
)U
1
,θ
1
)R(U
0
,θ
0
)
= R(c
1
U
0
+ s
0
s
1
U
1
− c
0
s
1
U
2
,θ
2
)R(c
0
U
1
+ s
0
U
2
,θ
1
)R(U
0
,θ
0
)
= UB(E
0
,θ
0
, E
1
,θ
1
, E
0
,θ
2
)U
T
= UB(E
0
,θ
0
+ θ
2
, E
1
,θ
1
, E
0
, 0)U
T
(6.109)
The last equality appeals to your intuition that—with body coordinates—if
you rotate around a body axis two separate times, you might as well rotate
around it once by the sum of the angles. This reduction is not valid when
using xyx Euler angles in world coordinates.
The body-axis composition when using the vector-on-the-left convention
is
B(U
0
,θ
0
, U
1
,θ
1
, U
2
,θ
2
)
=
ˆ
R(U
0
,θ
0
)
ˆ
R(U
T
1
ˆ
R(U
0
,θ
0
),θ
1
)
ˆ
R(U
T
2
ˆ
R(U
T
1
ˆ
R(U
0
,θ
0
),θ
1
),θ
2
)
(6.110)
The matrix-vector convention is hidden by using the same interface for both
conventions.
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6.3.6 Conversion between Representations
GTEngine supports four diﬀerent representations for rotations: matrices,
axis-angle pairs, quaternions, and Euler angles in world coordinates. In most
applications, invariably you want to convert from one representation to an-
other. There are twelve such conversions—a 4 ×4 table where the oﬀ-diagonal
entries correspond to the conversion functions.
The conversions are encapsulated by a templated class,
Rotation<N,Real>,
where
N is three or four and Real is ﬂoat or double. The idea of parameter N
is to support conversions for 3D rotations embedded in 4D when using aﬃne
algebra. I also wanted a consistent interface for any-to-any conversions, but as
is well known, the return type of C++ functions is not part of the signature
when generating decorated names. It is convenient to have compact code as
shown in Listing 6.31.
// Error : The compiler complains that the Convert functions are ambiguous ,
// because the return type i s not part of the function signature .
template <int N, typename Real> Matrix<N,N, Real>
Convert ( Quaternion<Real const &);
template <int N, typename Real> Matrix<N,N, Real>
Convert ( AxisAngle<Real> const &);
Quaternion<float> q=<some quaternion >;
AxisAngle <3, float> aa = <some a n gle −axis pair >;
Matrix3x3<float> r0 = Convert (q );
Matrix3x3<float> r1 = Convert (aa ) ;
LISTING 6.31: An attempt to have compact conversion code. The compiler
does not allow this.
The usual way to deal with this is to return the result via a function parameter,
as shown in Listing 6.32.
template <int N, typename Real>
void Convert ( Quaternion<Real const &, Ma tri x<N,N, Real >&);
template <int N, typename Real>
void Convert ( AxisAngle<Real> const &, Ma trix<N,N, Real >&);
Quaternion<float> q=<some quaternion >;
AxisAngle <3, float> aa = <some a n gle −axis pair >;
Matrix3x3<float> r0 , r1 ;
Convert (q , r0 );
Convert (aa , r1 );
LISTING 6.32: A workaround for the compiler complaints of Listing 6.31.
I prefer the compact code. To circumvent the compiler complaints, I imple-
mented the
Rotation class so that its constructors act as the input consumers
of the conversion and implicit operators act as the output producers of the
conversion, as shown in Listing 6.33.
template <int N, typename Real>
class Rotation
{
public :
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// Create rotations from various representations .
Rotation ( Matrix<N,N, Real> const&matrix);
Rotation ( Quaternion<Real> const& quaternion );
Rotation ( AxisAngle<N, Real> const&axisAngle);
Rotation ( EulerAngles<Real> const& eulerAngles );
// Convert one representation to another.
operator Matrix<N,N, Real> () const ;
operator Quaternion<Real> () const ;
operator AxisAngle<N, Real> () const ;
operator EulerAngles<Real> () const ;
} ;
Quaternion<float> q=<some quaternion >;
AxisAngle <3, float> aa = <some a n gle −axis pair >;
Matrix3x3<float> r0 = Rotation <3, R ea l >(q ) ;
Matrix3x3<float> r1 = Rotation <3, R ea l >(aa ) ;
Rotation <
3, R eal> rotation (q);
Matrix3x3 matrix = rotat ion ;
EulerAngles<float> euler = rotation ;
LISTING 6.33: The ﬁnal conversion code that provides compact code but
no compiler warnings.
The conversions themselves are implemented as private class member func-
tions. In fact, you can have a persistant
Rotation object that can be used to
convert to diﬀerent representations, as shown by the ﬁnal block of code in the
listing. In a sense,
Rotation is an abstraction of the concept of a rotation. To
apply a rotation, you need an instantiation as some algebraic entity, which is
what the implicit operator conversions give you.
6.3.6.1 Quaternion to Matrix
The conversion from a quaternion to a rotation matrix for the vector-on-
the-right convention was provided by Equation (6.86). The rotation matrix
for the vector-on-the-left convention is the transpose of the matrix of that
equation.
6.3.6.2 Matrix to Quaternion
The rotation matrices corresponding to quaternions contain quadratic
terms involving the quaternion components x, y, z,andw. Let the entries
of the rotation matrix be r
ij
for 0 ≤ i ≤ 2and0≤ j ≤ 2.
4x
2
=(+r
00
− r
11
− r
22
+1), 4y
2
=(−r
00
+ r
11
− r
22
+1),
4z
2
=(−r
00
− r
11
+ r
22
+1), 4w
2
=(+r
00
+ r
11
+ r
22
+1),
4xy = r
01
+ r
10
, 4xz = r
02
+ r
20
, 4yz = r
12
+ r
21
,
4xw = r
21
− r
12
, 4yw = r
02
− r
20
, 4zw = r
10
− r
01
, (vector-on-right)
4xw = r
12
− r
21
, 4yw = r
20
− r
02
, 4zw = r
01
− r
10
, (vector-on-left)
2(x
2
+ y
2
)=1− r
22
, 2(z
2
+ w
2
)=1+r
22
,
2(y
2
− x
2
)=r
11
− r
00
, 2(w
2
− z
2
)=r
11
+ r
00
(6.111)
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If Q is the 4 ×1 vector corresponding to the 4-tuple (x, y, z, w), the previous
equations give us a matrix
4QQ
T
=
⎡
⎢
⎢
⎣
4x
2
4xy 4xz 4zw
4yx 4y
2
4yz 4yw
4zx 4zy 4z
2
4zw
4wx 4wy 4wz 4w
2
⎤
⎥
⎥
⎦
(6.112)
Theoretically, any nonzero row of the matrix can be normalized to obtain
a quaternion q. To be numerically robust, the code determines the row of
maximum length and normalizes it to obtain q.
The row of maximum length corresponds to the quaternion component of
largest magnitude, but this begs the question because we do not know yet what
the quaternion components are. Instead, we must infer the largest-magnitude
component. The quaternion is obtained by normalizing the corresponding row.
The pseudocode in Listing 6.34 does the job.
Real sign = ( vector−on−right−convention ? +1 : −1);
if (r22 <=0) // 2( xˆ2 + y ˆ2) >=1
{
omr22 = 1 − r22 ; dif1 0 = r11 − r00 ;
if (dif10 <=0) // xˆ2 >=yˆ2, 4xˆ2>=1, x>= 1/2 , | x | i s maximum
{
fourxsqr = omr22 − dif10 ; invfourx = 0.5/sqrt (fourxsqr );
q.x = fourxsqr∗ invfourx ;
q. y = ( r01+r10)∗ invfourx ;
q. z = ( r02+r20)∗ invfourx ;
q.w = sign∗(r21−r12 )∗ invfourx ;
}
else // y ˆ2 >=xˆ2, 4yˆ2>=1, y>= 1/2 , | y | i s maximum
{
fourysqr = om22 + dif10 ; invfoury = 0.5/sqrt(fourysqr );
q. x = ( r01+r10)∗ invfoury ;
q.y = fourysqr∗ inv4y ;
q. z = ( r12+r21)∗ invfoury ;
q.w = sign∗(r02−r20 )∗ invfoury ;
}
}
else // 2( z ˆ2 + wˆ2) >=1
{
opr22 = 1 + r22 ; sum10 = r11 + r00 ;
if (sum10 <=0) // z ˆ2
>=wˆ2, 4zˆ2>=1, z>= 1/2 , | z | i s maximum
{
fourzsqr = opr22 − sum10; invfourz = 0.5/sqrt( fourzsqr );
q. x = ( r02+r20)∗ invfourz ;
q. y = ( r12+r21)∗ invfourz ;
q. z = fourzsqr∗ invfourz ;
q.w = sign∗(r10−r01 )∗ invfourz ;
}
else // wˆ2 >=zˆ2, 4wˆ2>=1,w>= 1/2 , |w| i s ma ximum
{
fourwsqr = opr22 + sum10 ; invfourw = 0.5/ sqrt ( fourwsqr );
q.x = sign∗(r21−r12 )∗ invfourw ;
q.y = sign∗(r02−r20 )∗ invfourw ;
q.z = sign∗(r10−r01 )∗ invfourw ;
q.w = fourwsqr∗ inv4w ;
}
}
LISTING 6.34: Determining the largest-magnitude component of q from the
products of components.
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6.3.6.3 Axis-Angle to Matrix
The conversion from an axis-angle pair to a matrix is provided by Equa-
tion (6.68). The equation was derived for the vector-on-the-right convention.
The implementation for vector-on-the-left just computes the transpose of the
matrix of this equation.
6.3.6.4 Matrix to Axis-Angle
For the vector-on-the-right convention, the rotation matrix is R = I +
(sin θ)S +(1− cos θ)S
2
,whereS =[s
ij
] is the skew-symmetric matrix whose
components determine the unit-length direction of the axis of rotation. If that
direction is U =(u
0
,u
1
,u
2
), then s
01
= −u
2
, s
02
= u
1
,ands
12
= −u
0
.
The trace of R is the sum of the diagonal entries, and it can be determined
from the matrix equation: trace(R)=1+2cosθ. Solving for the angle, θ =
acos((trace(R) −1)/2) ∈ [0,π].
If θ = 0, the rotation matrix is the identity I. Any axis serves as the
rotation axis, so the source code uses (arbitrarily) U =(1, 0, 0).
If θ ∈ (0,π), the axis direction is extracted from S =(R − R
T
)/(2 sin θ).
To be numerically robust, the 3-tuple extracted is normalized to minimize the
eﬀects of numerical roundoﬀ errors when θ is nearly 0 or nearly π.Toavoidbias
from previous roundoﬀ errors and guarantee the result is the same whether we
extract from R or R
T
,setu
0
= r
21
− r
12
, u
1
= r
02
− r
20
,andu
2
= r
10
− r
01
.
The resulting 3-tuple is the normalized. For the vector-on-the-left convention,
the axis direction is extracted from S =(R
T
−R)/(2 sin θ)usingu
0
= r
12
−r
21
,
u
1
= r
20
− r
02
,andu
2
= r
01
− r
10
followed by normalization.
If θ = π,then
R + I =2(I + S
2
)=2UU
T
=
⎡
⎣
2u
2
0
2u
0
u
1
2u
0
u
2
2u
0
u
1
2u
2
1
2u
1
u
2
2u
0
u
2
2u
1
u
2
2u
2
2
⎤
⎦
(6.113)
which is a symmetric matrix regardless of choice of multiplication convention.
The source code does not need to use conditional deﬁnes to handle sepa-
rate cases. Extracting U in a numerically robust manner is similar to how
we computed a quaternion from a matrix. In this case, we simply compute
the maximum diagonal entry of R + I to determine the largest-magnitude
component of U and select the corresponding row of the matrix to normal-
ize. The axis direction is obtained by normalizing the corresponding row. The
pseudocode in Listing 6.35 illustrates.
if (r00 >=r11)
{
if (r00 >=r22) // u0 ˆ2 l ar g es t −magnitude
{
U = ( r00 + 1 , ( r01 + r10 )/2 , ( r02 + r20 )/2);
}
else // u2 ˆ2 la rg es t −magnitude
{
U = (( r20 + r02 )/2 , ( r21 + r12 )/2 , r22 + 1);
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}
}
else
{
if (r11 >=r22) // u1 ˆ2 l ar g es t −magnitude
{
U = (( r10 + r01 )/2 , r11 + 1 , ( r12 + r21 )/2 );
}
else // u2 ˆ2 la rg es t −magnitude
{
U = (( r20 + r02 )/2 , ( r21 + r12 )/2 , r22 + 1);
}
}
Normalize(U);
LISTING 6.35: Determining the largest-magnitude component of U from
the products of components.
Numerical bias is avoided by averaging the oﬀ-diagonal terms, ensuring the
results are the same for R or R
T
. It does not matter that the normalization
computes a positive entry in U corresponding to the specially computed diag-
onal entry. For a rotation by π radians, R(U,π)andR(−U,π)arethesame
rotation matrix.
6.3.6.5 Axis-Angle to Quaternion
This conversion is simple. The quaternion angle is half the rotation angle
and the imaginary portion of the quaternion is a multiple of the rotation axis.
Listing 6.36 has the pseudocode for converting an axis-angle pair
(axis,angle)
to a quaternion q.
Real sign = ( vector−on−the−right−convention ? +1 : −1);
Real halfAngle = 0.5∗ sign∗ angle ;
Real sn = sin ( halfAngle ) ;
q[0] = sn∗ axis [0];
q[1] = sn∗ axis [1];
q[2] = sn∗ axis [2];
q[3] = cos(halfAngle);
LISTING 6.36: Conversion of an axis-angle pair (axis,angle) to a quaternion
q.
6.3.6.6 Quaternion to Axis-Angle
This conversion is as simple as that for axis-angle to quaternion, as shown
in Listing 6.37.
Real sign = ( vector−on−the−right−convention ? +1 : −1);
Real axisSqrLen = q [0]∗ q[0] + q[1]∗ q[1] + q[2]∗ q[2];
if (axisSqrLen > 0)
{
Real adjust = sign/sqrt (axisSqrLen);
axis [0] = q[0]∗ adjust ;
axis [1] = q[1]∗ adjust ;
axis [2] = q[2]∗ adjust ;
angle = acos(q[3]);
}
else
{
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// The a ng le i s 0 ( modulo 2∗ pi). Any axis will work , so choose (1,0 ,0).
a. axis [0] = 1;
a.angle = 0;
}
LISTING 6.37: Conversion of a quaternion q to an axis-angle pair (axis,angle).
6.3.6.7 Euler Angles to Matrix
The conversion involves a simple composition of coordinate-axis rotations,
as shown in Listing 6.38. The pseudocode assumes that the indices are cor-
rectly formed; all are distinct, or the ﬁrst and last indices are the same and
diﬀerent from the middle.
struct EulerAngles
{
int axis [3]; // i n { 0,1,2}
Real angle [ 3] ; // i n r a d i an s
}
Vector3 Unit [3 ] = { (1 ,0 ,0), (0 ,1 ,0) , (0 ,0 ,1) } ;
Matrix3x3 r0 = Rotation (AxisAngle (Unit (e . axis [0]) , e . angle [0] )) ;
Matrix3x3 r1 = Rotation (AxisAngle (Unit (e . axis [1]) , e . angle [1] )) ;
Matrix3x3 r2 = Rotation (AxisAngle (Unit (e . axis [2]) , e . angle [2] )) ;
Matrix3x3 r = ( vector−on−right−convention ? r2∗ r1∗ r0 : r0∗ r1∗ r2 );
LISTING 6.38: Conversion of Euler angles e to a rotation matrix r.
6.3.6.8 Matrix to Euler Angles
Deﬁne c
i
=cos(θ
i
)ands
i
= sin(θ
i
)for0≤ i ≤ 2. Let the rotation matrix
be R =[r
ij
]for0≤ i ≤ 2and0≤ j ≤ 2.
The product R = R
0
(θ
0
)R
1
(θ
1
)R
2
(θ
1
)servesasthepatternforsixfactor-
izations with three distinct coordinate axes. Formally multiplying the three
coordinate rotation matrices and equating yields
⎡
⎣
r
00
r
01
r
02
r
10
r
11
r
12
r
20
r
21
r
22
⎤
⎦
=
⎡
⎣
c
1
c
2
−c
1
s
2
s
1
c
0
s
2
+ s
0
s
1
c
2
c
0
c
2
− s
0
s
1
s
2
−s
0
c
1
s
0
s
2
− c
0
s
1
c
2
s
0
c
2
+ c
0
s
1
s
2
c
0
c
1
⎤
⎦
(6.114)
The simplest term to work with is s
1
= r
02
,soθ
1
= asin(r
02
). There are three
cases to consider.
1. If θ
1
∈ (−π/2,π/2), then c
1
=0andc
1
(s
0
,c
0
)=(−r
12
,r
22
), in which
case θ
0
= atan2(−r
12
,r
22
), and c
1
(s
2
,c
2
)=(−r
01
,r
00
), in which case
θ
2
= atan2(−r
01
,r
00
). In the source code, this case is tagged as UNIQUE.
2. If θ
1
= π/2, then s
1
=1andc
1
=0.Inthiscase,

r
10
r
11
r
20
r
21

=

s
0
c
2
+ c
0
s
2
c
0
c
2
− s
0
s
2
s
0
s
2
− c
0
c
2
s
0
c
2
+ c
0
s
2

=

sin(θ
0
+ θ
2
)cos(θ
0
+ θ
2
)
−cos(θ
0
+ θ
2
) sin(θ
0
+ θ
2
)

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Therefore, θ
0
+ θ
2
= atan2(r
10
,r
11
). There is one degree of freedom, so
the factorization is not unique. In the source code, this case is tagged as
NOT UNIQUE SUM.
3. If θ
1
= −π/2, then s
1
= −1andc
1
=0.Inthiscase,

r
10
r
11
r
20
r
21

=

c
0
s
2
− s
0
c
2
c
0
c
2
+ s
0
s
2
c
0
c
2
+ s
0
s
2
s
0
c
2
− c
0
s
2

=

sin(θ
2
− θ
0
)cos(θ
2
− θ
0
)
cos(θ
2
− θ
0
) −sin(θ
2
− θ
0
)

Therefore, θ
2
− θ
0
= atan2(r
10
,r
11
). There is one degree of freedom, so
the factorization is not unique. In the source code, this case is tagged as
NOT UNIQUE DIF.
The factorization R = R
0
(θ
0
)R
1
(θ
1
)R
0
(θ
2
) serves as the pattern for six
factorizations with two distinct coordinate axes, one repeated. Formally mul-
tiplying the three coordinate rotation matrices and equating yields
⎡
⎣
r
00
r
01
r
02
r
10
r
11
r
12
r
20
r
21
r
22
⎤
⎦
=
⎡
⎣
c
1
s
1
s
2
s
1
c
2
s
0
s
1
c
0
c
2
− s
0
c
1
s
2
−s
0
c
1
c
2
− c
0
s
2
−c
0
s
1
s
0
c
2
+ c
0
c
1
s
2
c
0
c
1
c
2
− s
0
s
2
⎤
⎦
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The simplest term to work with is c
1
= r
00
,soθ
1
= acos(r
00
). There are three
cases to consider.
1. If θ
1
∈ (0,π), then s
1
=0ands
1
(s
0
,c
0
)=(r
10
, −r
20
), in which case
θ
0
= atan2(r
10
, −r
20
), and s
1
(s
2
,c
2
)=(r
01
,r
02
), in which case θ
2
=
atan2(r
01
,r
02
). In the source code, this case is tagged as UNIQUE.
2. If θ
1
=0,thenc
1
=1ands
1
=0.Inthiscase,

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r
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r
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r
22

=
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0
c
1
− s
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1
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0
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=

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1
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0
) −sin(θ
1
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0
)
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1
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0
)cos(θ
1
+ θ
0
)

Therefore, θ
1
+ θ
0
= atan2(−r
12
,r
11
). There is one degree of freedom, so
the factorization is not unique. In the source code, this case is tagged as
NOT UNIQUE SUM.
3. If θ
1
= π,thenc
1
= −1ands
1
=0.Inthiscase,

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=

c
0
c
1
+ s
0
s
1
s
0
c
1
− c
0
s
1
s
0
c
1
− c
0
s
1
−c
0
c
1
− s
0
s
1

=

cos(θ
1
− θ
0
) −sin(θ
1
− θ
0
)
−sin(θ
1
− θ
0
) −cos(θ
1
− θ
0
)
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Therefore, θ
1
−θ
0
= atan2(−r
12
,r
11
). There is one degree of freedom, so
the factorization is not unique. In the source code, this case is tagged as
NOT UNIQUE DIF.
All twelve cases of Euler angles can be analyzed as shown previously. A
simple implementation involves setting up a switch statement to select among
these cases. However, it is possible to establish patterns in all the code frag-
ments to eliminate the switch in favor of a couple of comparisons. Listing 6.39
shows the compact code for the vector-on-the-right convention. The pseu-
docode assumes that the indices are correctly formed; all are distinct, or the
ﬁrst and last indices are the same and diﬀerent from the middle. The Euler
angle structure is the same as that of Listing 6.38.
if (e. axis [0] != e. axis [2])
{
// Map (0,1,2), (1,2,0), and (2,0,1) to +1. Map (0,2,1), (2,1,0),
// and (1,0,2) to −1.
int parity = (((e. axis [2] | (e. axis [1] << 2)) >> e. axis [0]) & 1);
Real const sign = ( parity & 1 ? −1 : +1);
if (r(e. axis [2] ,e. axis [0]) < 1)
{
if (r(e.axis[2],e.axis[0]) > −1)
{
e.angle[2] = atan2(sign∗ r(e. axis [1] ,e. axis [0]) ,
r(e.axis[0],e. axis [0]));
e.angle[1] = asin(− sign∗ r(e.axis[2] ,e. axis [0]));
e.angle[0] = atan2(sign∗ r(e. axis [2] ,e. axis [1]) ,
r(e.axis[2],e. axis [2]));
result = UNIQUE;
}
else
{
e.angle[2] = 0;
e.angle[1] = sign∗ pi /2;
e.angle[0] = atan2(− sign∗ r(e. axis [1] ,e. axis [2]) ,
r(e.axis[1],e. axis [1]));
result = NOT
UNIQUE DIF ;
}
}
else
{
e.angle [2] = 0;
e.angle [1] = −sign∗ pi /2;
e.angle [0] = atan2(− sign∗ r(e. axis [1] ,e. axis [2]) ,
r(e. axis [1] ,e. axis [1]));
result = NOT
UNIQUE SUM ;
}
}
else
{
// Map (0,2,0), (1,0,1), and (2,1,2) to +1. Map (0,1,0), (1,2,1),
// and (2,0,2) to −1.
int b0 = 3 − e.axis[1] − e. axis [2];
int parity = (((b0 | (e. axis [1] << 2)) >> e. axis [2]) & 1);
Real const sign = ( parity & 1 ? +1 : −1);
if (r(e. axis [2] ,e. axis [2]) < 1)
{
if (r(e.axis[2],e.axis[2]) > −1)
{
e.angle [2] = atan2(r(e. axis [1] ,e. axis [2]) ,
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sign∗ r(b0,e. axis [2]));
e.angle[1] = acos(r(e.axis[2],e.axis [2]));
e.angle [0] = atan2(r(e. axis [2] ,e. axis [1]) ,
−sign∗ r(e.axis [2] ,b0));
e.result = UNIQUE;
}
else
{
e.angle[2] = 0;
e.angle[1] = pi;
e.angle[0] = atan2(sign∗ r(e.axis [1] ,b0),
r(e.axis[1],e. axis [1]));
e.result = NOT
UNIQUE DIF ;
}
}
else
{
e.angle [2] = 0;
e.angle [1] = 0;
e.angle [0] = atan2(sign∗ r(e. axis[1],b0),
r(e. axis [1] ,e. axis [1]));
e. result = NOT
UNIQUE SUM ;
}
}
LISTING 6.39: Conversion of a rotation matrix r to Euler angles e when
using the vector-on-the-right convention.
The main diﬃculty in establishing the pattern is in discovering the need for
the
parity, sign,andb0 variables.
The pseudocode for the vector-on-the-left convention is shown in Listing
6.40.
if (e. axis [0] != e. axis [2])
{
// Map (0,1,2), (1,2,0), and (2,0,1) to +1. Map (0,2,1), (2,1,0),
// and (1,0,2) to −1.
int parity = (((e. axis [0] | (e. axis [1] << 2)) >> e. axis [2]) & 1);
Real const sign = ( parity & 1 ? +1 : −1);
if (r(e. axis [0] ,e. axis [2]) < 1)
{
if (r(e.axis[0],e.axis[2]) > −1)
{
e.angle[0] = atan2(sign∗ r(e. axis [1] ,e. axis [2]) ,
r(e.axis[2],e. axis [2]));
e.angle[1] = asin(− sign∗ r(e.axis[0] ,e. axis [2]));
e.angle[2] = atan2(sign∗ r(e. axis [0] ,e. axis [1]) ,
r(e.axis[0],e. axis [0]));
e.result = UNIQUE;
}
else
{
e.angle[0] = 0;
e.angle[1] = sign∗ pi /2;
e.angle[2] = atan2(− sign∗ r(e. axis [1] ,e. axis [0]) ,
r(e.axis[1],e. axis [1]));
e.result = NOT
UNIQUE DIF ;
}
}
else
{
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e.angle [0] = 0;
e.angle [1] = −sign∗ pi /2;
e.angle [2] = atan2(− sign∗ r(e. axis [1] ,e. axis [0]) ,
r(e. axis [1] ,e. axis [1]));
e. result = NOT
UNIQUE SUM ;
}
}
else
{
// Map (0,2,0), (1,0,1), and (2,1,2) to −1. Map (0,1,0), (1,2,1),
// and (2,0,2) to +1.
int b2 = 3 − e.axis[0] − e. axis [1];
int parity = (((b2 | (e. axis [1] << 2)) >> e. axis [0]) & 1);
Real const sign = ( parity & 1 ? −1 : +1);
if (r(e. axis [0] ,e. axis [0]) < 1)
{
if (r(e.axis[0],e.axis[0]) > −1)
{
e.angle [0] = atan2(r(e. axis [1] ,e. axis [0]) ,
sign∗ r(b2,e. axis [0]));
e.angle[1] = acos(r(e.axis[0],e.axis [0]));
e.angle [2] = atan2(r(e. axis [0] ,e. axis [1]) ,
−sign∗ r(e.axis [0] ,b2));
e.result = UNIQUE;
}
else
{
e.angle[0] = 0;
e.angle[1] = pi;
e.angle[2] = atan2(sign∗ r(e.axis [1] ,b2),
r(e.axis[1],e. axis [1]));
e.result = NOT
UNIQUE DIF ;
}
}
else
{
e.angle [0] = 0;
e.angle [1] = 0;
e.angle [2] = atan2(sign∗ r(e. axis[1],b2),
r(e. axis [1] ,e. axis [1]));
e. result = NOT
UNIQUE SUM ;
}
}
LISTING 6.40: Conversion of a rotation matrix r to Euler angles e when
using the vector-on-the-left convention.
The main diﬃculty in establishing the pattern is in discovering the need for
the
parity, sign,andb2 variables.
6.3.6.9 Euler Angles to and fromQuaternionorAxis-Angle
The conversions use those developed previously. For conversion of Euler
angles to quaternion or axis-angle, the Euler angles are ﬁrst converted to a
matrix representation. The matrix is then converted to quaternion or axis-
angle. For the conversion of quaternion or axis-angle to Euler angles, the
quaternion or axis-angle is ﬁrst converted to a matrix representation. The
matrix is then converted to Euler angles.
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6.4 Coordinate Systems
Coordinate systems in the 3D world are a convenient way for describing
where objects are located and how they move. We each might have our own
systems, but as always it is generally diﬃcult to get two people to agree!
We have three degrees of freedom in our world for specifying locations and
directions. In the abstract, we will talk about those degrees of freedom as
scalar measurements and list them as a 3-tuple, (x, y, z). Invariably there is a
reference point from which the measurements are made. In the abstract, this
is called the origin and is denoted (0, 0, 0). The directions at the origin along
which we make the measurements are denoted (1, 0, 0) for the x-measurement,
(0, 1, 0) for the y-measurement, and (0, 0, 1) for the z-measurement. Clearly,
if two people observe the same object in the world, that object is located
somewhere. How the people measure where that location is depends on their
choices for the origin and the directions of measurement. No matter how we
make those measurements based on our conventions, the object exists in the
world in a ﬁxed location. What is required to avoid the ambiguity of multiple
measurement systems is a common frame of reference.
The common frame of reference is an abstraction that allows you to do
bookkeeping, so to speak. Choosing a common frame of reference and setting
up coordinate systems appears to be a chicken-and-egg problem. To choose a
common frame, do we not get back to the same ambiguity when two people
deﬁne the frame diﬀerently? The ambiguity is in the bookkeeping. Your brain
gives you the ability to visualize the world and its geometric relationships,
and the geometry has no ambiguities. When attempting to work with two
coordinate systems, you must visualize how one system is overlaid on the
other so that the geometric relationships are the same.
The common frame of reference is called the Cartesian frame. The 3-tuples
to identify the origin and directions of measurement are referred to as the
Cartesian coordinate system. I like to think of these as the world and world
coordinate system. Naturally, I can have my world and you can have yours.
But if you want to play in my world, you must accept my world coordinate
system, and you must understand how your bookkeeping relates to mine.
One of the problems in understanding coordinate systems is the use of
(x, y, z) when teaching people 3D mathematics. The meanings of the coordi-
nate values and how they relate to the geometry of the world are typically
implicit in the lectures and depend on the choices of the lecturer. As a math-
ematician, I am guilty of using (x, y, z) in diﬀerent contexts with diﬀerent
meanings. In my writings about computer graphics, I prefer to talk in terms
of the visually meaningful degrees of freedom. For example, I might use more
meaningful symbols, say, the 3-tuple (f,r, u), to indicate locations relative to
a stationary observer at an origin (0, 0, 0). The observer measures distances
if he were to move forward or backward, left or right, and up or down. The
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measurement f is made in the forward direction where a positive value implies
forward motion and a negative value implies backward motion. Similarly, the
measurement r is made in the right direction and the measurement u is made
in the up direction. Even so, someone else writing about computer graphics
might instead choose to use bookkeeping in the order (f,u,r). The swapping
of the last two components is eﬀectively a change in handedness,andallbook-
keeping depends on your choice of ordering. In the end, you must make clear
what your conventions are, what the variables measure, and how you are doing
your bookkeeping.
In this section I will describe the basics for setting up a coordinate system
and communicating your conventions to someone else in case they have to
convert between their coordinate system and yours. In particular, a frequently
asked question in 3D applications is how to convert between right-handed
coordinate systems and left-handed coordinate systems. I will introduce some
example conversions and then describe the general mathematical process for
conversions.
6.4.1 Geometry and Aﬃne Algebra
The mathematical framework for dealing with the algebra of coordinate
systems as related to the geometry is referred to as aﬃne algebra.TheCarte-
sian frame represents points as 3-tuples (x, y, z), and the origin (0, 0, 0) is a
special point. The directions of measurements are also 3-tuples and are called
vectors. Points are measurements of absolute location whereas vectors are
measurements of relative locations.
Vectors are the central focus in a course on linear algebra. Sets of vectors
endowed with an addition operator and a scalar multiplication operator are
called vector spaces. The introduction of points, distinct from vectors, are the
focus of aﬃne algebra. Such an algebra involves a vector space L and a set of
points A. The following conditions are the deﬁnition for aﬃne algebra:
1. For each ordered pair of points P, Q∈A, there is a unique vector in L
called the diﬀerence vector and denoted by Δ(P, Q).
2. For each point P∈A and V ∈ L, there is a unique point Q∈A such
that V =Δ(P, Q).
3. For any three points P, Q, R∈A, it must be that Δ(P, Q)+Δ(Q, R)=
Δ(P, R).
Figure 6.6 illustrates these three items. If P and Q are speciﬁed, V is
uniquely determined (item 1). If P and V are speciﬁed, Q is uniquely deter-
mined (item 2). Figure 6.6(b) illustrates item 3.
The formal deﬁnition for an aﬃne space introduced the diﬀerence vector
Δ(P, Q). Figure 6.6 gives you the geometric intuition about the diﬀerence,
speciﬁcally that it appears to be a subtraction operation for two points. How-
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Q
V = ¢(P,Q)
P
(a)(b)

FIGURE 6.6: (a) A vector V connecting two points P and Q. (b) The sum
of vectors, each vector determined by two points.
ever, certain consequences of the deﬁnition may be proved directly without
having a concrete formulation for an actual subtraction of points.
A few consequences of the deﬁnition for an aﬃne algebra follow.
1. Δ(P, P)=0.
2. Δ(Q, P)=−Δ(P, Q).
3. If Δ(P
1
, Q
1
)=Δ(P
2
, Q
2
), then Δ(P
1
, P
2
)=Δ(Q
1
, Q
2
).
The ﬁrst consequence follows immediately from item 3 in the deﬁnition
where Q is replaced by P,Δ(P, P)+Δ(P, R)=Δ(P, R). The vector Δ(P, R)
is subtracted from both sides to obtain Δ(P, P)=0.
The second consequence also follows from item 3 in the deﬁnition where
R is replaced by P,Δ(P, Q)+Δ(Q, P)=Δ(P, P)=0. The last equality is
what we just proved in the previous paragraph. The ﬁrst vector is subtracted
from both sides to obtain Δ(Q, P)=−Δ(P, Q).
The third consequence is called the parallelogram law. Figure 6.7 illustrates
this law. Item 3 in the deﬁnition can be applied in two ways:
Δ(P
1
, P
2
)+Δ(P
2
, Q
2
)=Δ(P
1
, Q
2
)and
Δ(P
1
, Q
1
)+Δ(Q
1
, Q
2
)=Δ(P
1
, Q
2
)
(6.116)
Subtracting these leads to
0 =Δ(P
1
, P
2
)+Δ(P
2
, Q
2
) − Δ(P
1
, Q
1
) − Δ(Q
1
, Q
2
)
=Δ(P
1
, P
2
) − Δ(Q
1
, Q
2
)
(6.117)
where the last equality is valid because we assumed Δ(P
1
, Q
1
)=Δ(P
2
, Q
2
).
Therefore, Δ(P
1
, P
2
)=Δ(Q
1
, Q
2
).
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FIGURE 6.7: The parallelogram law for aﬃne algebra.
In the formal sense of aﬃne algebra, points and vectors are distinct entities.
We have already used two diﬀerent fonts to help distinguish between them: P
is a point, V is a vector. To be suggestive of the standard implementation of
diﬀerence of points, we may use V = Q−Pinstead of V =Δ(P, Q), and we
may reorganize the expression as Q = P + V.
When implementing the concepts of points and vectors in an object-
oriented mathematics, you have the choice of creating separate classes, say,
Point and Vector. It is common to use 4-tuples (x, y, z, w) for both, choosing
points as (x, y, z, 1) and vectors as (x, y, z, 0). In this way, the diﬀerence of
points is a vector, and the sum of a point and a vector is a point. However,
if you attempt to add two points, you obtain a w-component of two, which
should not be allowed. You can rely on the compiler to enforce some of the
rules that distinguish points from vectors. For example, your
Point class will
deﬁne an operator for subtracting two points but not an operator to add two
points. If a user tries to add points, the compiler complains. However, as you
add more functionality to the class, you will ﬁnd that you have to enforce
some of the rules at runtime, say, by generating exceptions. This is particu-
larly true when computing an aﬃne sum of points, a weighted sum of points
where the weights sum to one, in which case the result is a point. This type of
operation is what barycentric coordinates is about. Similarly, you can have an
aﬃne diﬀerence of points, a weighted sum of points where the weights sum to
zero, in which case the result is a vector. This type of operation occurs when
estimating derivatives of point-valued functions—the derivatives are vector
quantities. Finally, if you then allow homogeneous points in general, where w
can be any real-valued number, and you allow homogeneous transformations
that include aﬃne matrices and projection matrices, the rule enforcement
becomes more complicated.
Over the years I have ﬂip-ﬂopped between enforcement of the distinction
between points and vectors or simply having a single vector class. In the for-
mer case, the enforcement is complicated. In the latter case, the programmer
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is responsible for keeping the distinction in his head and enforcing the rules ac-
cordingly. In my last commercial endeavor I attempted to build a very general
homogeneous algebra system, supporting linear algebra, aﬃne algebra, and
homogeneous operations, while at the same time having as much compiler
support and runtime support for enforcing the rules. In the end, the program-
mers using the system still found ways to violate the point-vector distinction
although not intentionally. My conclusion was that the eﬀort spent trying
to protect a programmer from inadvertently making errors was not justiﬁed
by the maintenance costs. The bottom line is: You must understand and be
adept at the mathematical abstractions, and you are responsible for getting
it right in code. In GTEngine, I have implemented only the
Vector class; there
is no support for
Point.TheMatrix4x4 class allows you to use aﬃne algebra, as
shown in the next section.
6.4.2 Transformations
Aﬃne transformations are the most frequent type of transformation en-
countered in 3D applications. Less frequent are projections, but these are
necessary for 3D graphics applications, whether the drawing uses perspective
or orthographic projection. Having to manipulate 4 × 4 matrices directly is
sometimes error prone, whereby a programmer forgets to distinguish between
a point and a vector. If there is no strong type checking, one might very
well compute a diﬀerence of 4-tuple points (w-components are 1), the result
a 4-tuple vector (w-component is 0), but assign the result to a point, thus
overlooking the fact that the point now (incorrectly) has a w-component of 0.
This is particularly a problem when the tuples and matrices are designed for
SIMD support.
Additionally, programmers tend to think geometrically rather than alge-
braically when it comes to transformations. We have geometric intuition what
it means to translate, scale, rotate, and shear. The algebraic details are once
again part of the bookkeeping process. It is natural and convenient to provide
a transformation factory for programmers to use. Such a factory allows one
to specify the natural channels of translation, scaling, rotation, and shearing.
Projection transformations represented as homogeneous 4 × 4 matrices are
less intuitive geometrically than aﬃne transformations, but these also may be
created by a transformation factory.
In this section I am assuming the vector-on-the-right convention when us-
ing matrices and vectors. The actual convention can be hidden by the interface
for the transformation factory.
6.4.2.1 Composition of Aﬃne Transformations
The natural channels of an aﬃne transformation include translation, scal-
ing, rotation, and shearing. Composing these channels is a straightforward
process, as shown next. As a reminder, we are using the right-handed coor-
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dinate system with origin (0, 0, 0) and ordered axis direction vectors (1, 0, 0),
(0, 1, 0), and (0, 0, 1). We use the vector-on-the-right convention for matrix-
vector multiplication.
Translation. The simplest of transformations is translation. In tuple form,
if (t
0
,t
1
,t
2
) is the speciﬁed translation, a tuple (x
0
,x
1
,x
2
) is translated to
(y
0
,y
1
,y
2
)=(x
0
+ t
0
,x
1
+ t
1
,x
2
+ t
2
). In aﬃne form using 3 × 3 matrices,
Y =
⎡
⎣
y
0
y
1
y
2
⎤
⎦
=
⎡
⎣
x
0
+ t
0
x
1
+ t
1
x
2
+ t
2
⎤
⎦
=
⎡
⎣
x
0
x
1
x
2
⎤
⎦
+
⎡
⎣
t
0
t
1
t
2
⎤
⎦
= IX +T = X+ T (6.118)
where I is the 3 × 3 identity matrix. Linear transformations are of the form
Y = AX,whereA is a 3 × 3 matrix of constants, and where X and Y are
vectors. The translation equation is of the form Y = IX + T,whereI is
the 3 × 3 identity matrix. This is not a linear transformation because of the
addition of the translation vector T. It is an aﬃne transformation.
This representation clouds the distinction between a point and a vector. If
you noticed, I referred to X, Y,andT as vectors. No mention is made about
points, yet translation is an aﬃne transformation. Because T is the term that
prevents the translation from being a linear one, we could say that T is a
point rather than a vector. The consequence is that X + T is the sum of a
vector and a point. Our axioms of aﬃne algebra state that the result must be
a point, yet we have called Y a vector.
The problem lies in trying to think of T as either a point or a vector. The
resolution is to use 4 × 4 matrices and the convention of the w-component of
0 for vectors and 1 for points. The aﬃne form of translation is then

Y
1

=
⎡
⎢
⎢
⎣
y
0
y
1
y
2
1
⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣
x
0
+ t
0
x
1
+ t
1
x
2
+ t
2
1
⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣
100
t
0
010t
1
001t
2
000 1
⎤
⎥
⎥
⎦
⎡
⎢
⎢
⎣
x
0
x
1
x
2
1
⎤
⎥
⎥
⎦
= H
T

X
1

=

X + T
1

(6.119)
The translation components are part of the homogeneous matrix H
T
,sointhis
sense the translation is neither a point nor a vector. However, the diﬀerence
of input and output points is

Y
1

−

X
1

=

T
0

(6.120)
so the translation may be thought of a 4-tuple (T, 0) that is a vector, not a
point.
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We may summarize the block-matrix form of H
T
,namely,
H
T
=
⎡
⎢
⎢
⎣
100
t
0
010t
1
001t
2
000 1
⎤
⎥
⎥
⎦
=

I
T
0
T
1

(6.121)
TheinverseofthetranslationisX = Y −T. The corresponding homogeneous
inverse matrix is
H
−1
T
=
⎡
⎢
⎢
⎣
100
−t
0
010−t
1
001−t
2
000 1
⎤
⎥
⎥
⎦
=

I
−T
0
T
1

(6.122)
when applied to the 4-tuple (Y, 1), we obtain the 4-tuple (X, 1) = (Y −T, 1).
Scaling.Lets
0
, s
1
,ands
2
be nonzero scaling parameters. Although a
scaling can be zero, typically we do not see this in a 3D application. Also,
the scales are usually positive. A negative scale acts like a reﬂection and a
positive scale in the corresponding axis direction. A tuple (x
0
,x
1
,x
2
) is scaled
by (y
0
,y
1
,y
2
)=(s
0
x
0
,s
1
x
1
,s
2
x
2
). In aﬃne form using 3 × 3 matrices,
Y =
⎡
⎣
y
0
y
1
y
2
⎤
⎦
=
⎡
⎣
s
0
x
0
s
1
x
1
s
2
x
2
⎤
⎦
=
⎡
⎣
s
0
00
0 s
1
0
00s
2
⎤
⎦
⎡
⎣
x
0
x
1
x
2
⎤
⎦
= SX (6.123)
where S is the diagonal matrix of scales.
In aﬃne form using 4 × 4 matrices,

Y
1

=
⎡
⎢
⎢
⎣
y
0
y
1
y
2
1
⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣
s
0
x
0
s
1
x
1
s
2
x
2
1
⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣
s
0
000
0 s
1
0 0
00s
2
0
0001
⎤
⎥
⎥
⎦
⎡
⎢
⎢
⎣
x
0
x
1
x
2
1
⎤
⎥
⎥
⎦
= H
S

X
1

=

SX
1

(6.124)
The scale components are part of the homogeneous matrix H
S
.
We may summarize the block-matrix form of H
S
,namely,
H
S
=
⎡
⎢
⎢
⎣
s
0
000
0 s
1
0 0
00s
2
0
0001
⎤
⎥
⎥
⎦
=

S
0
0
T
1

(6.125)
When the scales are nonzero, the inverse of the translation is X = S
−1
Y.The
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corresponding homogeneous inverse matrix is
H
−1
S
=
⎡
⎢
⎢
⎣
1
s
0
000
0
1
s
1
0 0
00
1
s
2
0
0001
⎤
⎥
⎥
⎦
=

S
−1
0
0
T
1

(6.126)
when applied to the 4-tuple (Y, 1), we obtain the 4-tuple (X, 1) = (S
−1
Y, 1).
A special case of interest is uniform scaling, where the scales are all the
same: s
0
= s
1
= s
2
.
Rotation. The 3D rotation matrices were discussed previously, where
positive angles correspond to counterclockwise rotations assuming the ob-
server is looking at the rotation plane in the direction opposite that of
the rotation axis. Let the rotation axis direction be the unit-length vector
U =(u
0
,u
1
,u
2
) and let the rotation angle be θ. Using the Rodrigues formula
R = I +(sinθ)S +(1− cos θ)S
2
,whereS is the skew symmetric matrix such
that SV = U × V, a vector X is rotated to Y = RX.Inaﬃneformusing
4 × 4 matrices,

Y
1

=

R
0
0
T
1

X
1

= H
R

X
1

(6.127)
The inverse transformation is

X
1

=

R
T
0
0
T
1

Y
1

= H
−1
R

Y
1

(6.128)
The inverse transformation uses the fact that a rotation matrix is orthogonal,
R
T
R = I.
Shearing. In 2D, shearing matrices are of the form
A =

1 a
01

,B=

10
b 1

(6.129)
The matrix A represents a shear in the x
0
-direction. The shearing of tuple
(x
0
,x
1
)is(y
0
,y
1
)=(x
0
+ ax
1
,x
1
). Observe that the x
1
-component are un-
changed, so each tuple is moved along lines parallel to the x
0
-axis. The ma-
trix B represents a shear in the x
1
-direction. The shearing of tuple (x
0
,x
1
)
is (y
0
,y
1
)=(x
0
,x
1
+ bx
0
). Observe that the x
0
-components is unchanged, so
each tuple is moved along lines parallel to the x
1
-axis.
In 3D, shearing matrices are
A =
⎡
⎣
1 a
0
a
1
01a
2
00 1
⎤
⎦
,B=
⎡
⎣
100
b
0
10
b
1
b
2
1
⎤
⎦
(6.130)
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The corresponding 4 × 4 aﬃne matrices are
H
A
=
⎡
⎢
⎢
⎣
1 a
0
a
1
0
01a
2
0
00 1
0
00 01
⎤
⎥
⎥
⎦
=

A
0
0
T
1

H
B
=
⎡
⎢
⎢
⎣
100
0
b
0
100
b
1
b
2
1 0
0001
⎤
⎥
⎥
⎦
=

B
0
0
T
1

(6.131)
The inverses are
H
−1
A
=
⎡
⎢
⎢
⎣
1 −a
0
a
0
a
2
− a
1
0
01 −a
2
0
00 1
0
00 0 1
⎤
⎥
⎥
⎦
=

A
−1
0
0
T
1

H
−1
B
=
⎡
⎢
⎢
⎣
100
0
−b
0
100
b
0
b
2
− b
1
−b
2
1 0
0001
⎤
⎥
⎥
⎦
=

B
−1
0
0
T
1

(6.132)
The inverses are themselves shearing matrices. In the transform factory im-
plementation using our vector-on-the-right convention, we use only shears for
which the matrices are upper triangular.
Exercise 6.1 Consider shearing matrices
A
0
=

1 a
0
01

,A
1
=

10
a
1
1

,A
2
=

1 a
2
01

Determine a
0
, a
1
,anda
2
so that the product A
0
A
1
A
2
is a rotation matrix.
Show that every rotation matrix can be factored into a product of three shearing
matrices.
Exercise 6.2 Is it possible to factor a 3D rotation into a product of shear-
ing matrices? If so, how many shearing matrices are needed and what is the
formula?
Composition of the Homogeneous Matrices. We may multiply any combi-
nation of translations, scalings, rotations, and shears, the end result an aﬃne
matrix. Generally, the product of two aﬃne matrices is an aﬃne matrix,

M
0
T
0
0
T
1

M
1
T
1
0
T
1

=

M
0
M
1
M
0
T
1
+ T
0
0
T
1

(6.133)
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Thus, it is simple enough to compose matrices as a product. The more diﬃcult
problem is how to decompose a matrix into translations, rotations, scalings,
and shearings. That is the topic of the next section.
A special set of transformations is the set of rigid transformations.These
consist of products of translations and rotations. An object for which all its
points are transformed by translations and rotations retains its shape—only
its location and orientation vary. A rigid transformation is of the form
H =

R
T
0
T
1

(6.134)
Another special set of transformations involve only translations, uniform
scalings, and rotations. I will call these scaled rigid transformations. Such a
transformation is of the form
H =

sR
T
0
T
1

(6.135)
for some scale s =0.
Exercise 6.3 Show that the product of rigid transformations is a rigid trans-
formation. Show the inverse of a rigid transformation is a rigid transforma-
tion.
Exercise 6.4 Show that the product of scaled rigid transformations is a scaled
rigid transformation. Show that the inverse of a scaled rigid transformation is
a scaled rigid transformation.
Exercise 6.5 Consider the set of transformations consisting of shearings and
translations. Show that the product of shear-translation transformations is a
shear-translation transformation. Show that the inverse of a shear-translation
transformation is a shear-translation transformation.
Exercise 6.6 What do translations, scalings, rotations, and shearings look
like as 4 ×4 matrices using the vector-on-the-left convention?
Exercise 6.7 Equation (6.133) shows that the product of two aﬃne matrices
is an aﬃne matrix. Therefore, the product of three aﬃne matrices is an aﬃne
matrix. What is the ﬁnal matrix resulting from a product of three aﬃne matri-
ces? What is the ﬁnal matrix resulting from a product of four aﬃne matrices?
Generalize this to a closed-form equation for the product of n aﬃne matrices.
6.4.2.2 Decomposition of Aﬃne Transformations
It is not always possible to factor a matrix M into a product of a rotation
matrix, a scale matrix and a translation matrix. The translation part is always
trivial to factor out, so consider M without translation. Generally, the best
you can do is factor M = LSR where L and R are rotation matrices and S is a
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diagonal matrix of nonnegative entries. This is referred to as a singular value
decomposition. Related to this is the polar decomposition, M = RS,whereR
is a rotation matrix and S is a symmetric matrix. These factorizations are
advanced topics; for example, see [18].
Any 3 × 3invertiblematrixM may be decomposed uniquely into the
product of an orthogonal matrix, a scaling matrix with positive scales, and a
shearing matrix. The ﬁrst step in showing this involves the QR decomposition,
which may be computed using Gram-Schmidt orthonormalization. Let M =
[M
0
M
1
M
2
], where the three vectors are the columns of M . Because M is
invertible, M
0
is not the zero vector and may be normalized:
Q
0
=
M
0
|M
0
|
(6.136)
Because M is invertible, M
0
and M
1
cannot be parallel. Thus, projecting M
0
onto the plane perpendicular to Q
0
must produce a nonzero vector that is
perpendicular to Q
0
and may be normalized:
Q
1
=
M
1
− (M
1
· Q
0
)Q
0
|M
1
− (M
1
· Q
0
)Q
0
|
(6.137)
Because M is invertible, M
2
cannot lie in the plane spanned by M
0
and M
1
,
so projecting M
2
onto the line perpendicular to that plane must produce a
nonzero vector that is perpendicular to both Q
0
and Q
1
and may be normal-
ized:
Q
2
=
M
2
− (M
2
· Q
0
)Q
0
− (M
2
· Q
1
)Q
1
|M
2
− (M
2
· Q
0
)Q
0
− (M
2
· Q
1
)Q
1
|
(6.138)
By the construction of the Q
i
vectors, the matrix Q =[Q
0
Q
1
Q
2
] is orthog-
onal. It is a rotation matrix when the determinant of M is positive; it is a
reﬂection matrix when the determinant of M is negative. We will see why in
amoment.
The columns of Q are linearly independent vectors, so we may represent
the columns of M in terms of those vectors. Moreover, some of the terms in
the representation are not present because of how we constructed the columns
of Q from the columns of M :
M
0
=(Q
0
· M
0
)Q
0
+(0)Q
1
+(0)Q
1
M
1
=(Q
0
· M
1
)Q
0
+(Q
1
· M
1
)Q
1
+(0)Q
2
M
2
=(Q
0
· M
2
)Q
0
+(Q
1
· M
2
)Q
1
+(Q
2
· M
2
)Q
2
(6.139)
This is written in matrix form as
M =[M
0
M
1
M
2
]
=[Q
0
Q
1
Q
2
]
⎡
⎣
Q
0
· M
0
Q
0
· M
1
Q
0
· M
2
0 Q
1
· M
1
Q
1
· M
2
00Q
2
· M
2
⎤
⎦
= QR
(6.140)
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where the matrix R is upper triangular, but sometimes called right triangular,
which is why R is used in the name of the decomposition.
The determinant may be computed as
det(M)=det(Q)det(R)=det(Q)(Q
0
· M
0
)(Q
1
· M
1
)(Q
2
· M
2
) (6.141)
where det(Q)=+1whenQ represents a rotation or det(Q)=−1whenQ
represents a reﬂection. The remaining terms on the right-hand side of the
determinant equation turn out to be positive. Dotting equation (6.136) with
M
0
leads to
Q
0
· M
0
= |M
0
| > 0 (6.142)
Dotting equation (6.137) with M
1
and the orthonormality of the Q
i
lead to
Q
1
· M
1
= Q
1
· [M
1
− (Q
0
· M
1
)Q
0
]
= |M
1
− (Q
0
· M
1
)Q
0
| > 0
(6.143)
Dotting equation (6.138) with M
2
and using the orthonormality of the Q
i
lead to
Q
2
· M
2
= Q
2
· [M
2
− (Q
0
· M
2
)Q
0
− (Q
1
· M
2
)Q
1
]
= |M
1
− (Q
0
· M
1
)Q
0
− (Q
0
· M
2
)Q
1
| > 0
(6.144)
Therefore, the Q is a rotation when det(M) > 0orQ is a reﬂection when
det(M) < 0.
The decomposition is unique when all we require is that M is invertible
and Q is orthogonal. The diagonal entries of R are positive. If we deﬁne
those diagonal entries by s
i
= Q
i
· M
i
and deﬁne the scale matrix S =
diagonal(s
0
,s
1
,s
2
), then the decomposition is M = QCS,whereC = RS
−1
is an upper triangular matrix whose diagonal entries are all one. Thus, Q is
orthogonal, C is a shearing matrix, and S is a scaling matrix.
If we always wish to have a decomposition where Q is a rotation matrix,
then the uniqueness of the decomposition is not possible. To see this, suppose
Q is a reﬂection matrix. We can negate one of its columns to obtain a rotation
matrix. To preserve the equality in the decomposition, we in turn must negate
the diagonal entry of R in that same column. This gives us three possibilities
for factoring M into a rotation, a shearing, and a scaling. Eliminating the
reﬂection means introducing a negative scale.
The construction here should make it clear why reﬂections and negative
scales are both undesirable in most 3D applications. If we require that any 3×3
matrix M used in an aﬃne transformation have positive determinant, then
we will have a unique decomposition M = RCS,whereR is a rotation matrix
(notice the switch in notation from Q to R), C is an upper-triangular shearing
matrix, and S is a scaling matrix of positive scales. This requirement is the
foundation for the transformation factory whose implementation is provided
later. The factory allows us to create transformations by manipulating only
translations, rotations, upper-triangular shearings, and positive scalings.
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6.4.2.3 A Simple Transformation Factory
Let us ﬁrst consider 4 × 4 aﬃne transformations,
H =

M
T
0
T
1

(6.145)
A programmer can manipulate the twelve entries of M and T directly, choos-
ing them to represent the desired translation, scaling, rotation, and shearing.
If M is known to be a composition of rotation and uniform scale, we might
wish to update only the scale or only the rotation. This requires decomposing
M = Rs,whereR is the rotation matrix and s is the scale. Knowing M is
of this form, the scale is the length of the ﬁrst column of M and, in fact, the
length of any column of M . The rotation matrix is extracted by normalizing
the columns of M :
M =[M
0
M
1
M
2
] → s = |M
0
|,R= M/s (6.146)
The scale and/or rotation may be updated and composed to form the new
matrix M .
Similarly, if M is known to be a composition of rotation and shearing, we
might wish to update only the rotation or only the shearing. The programmer
must use Gram-Schmidt orthonormalization to decompose M = RC,where
R is a rotation and C is a shear. In this case, though, knowing the order
of composition is important. We might have built M = CR,inwhichcase
the decomposition is diﬀerent. Having the programmer remember the order of
composition and the process of decomposing matrix is typically cumbersome,
repetitive, and error prone. It makes sense to specify the order of composition
of the individual components and to provide a factory that encapsulates the
details of the composition and decomposition.
As discussed previously, if we require det(M) > 0, we can factor M = RCS
uniquely, where R is a rotation matrix, C is an upper-triangular shearing
matrix, and S is a scaling matrix of positive scales. The aﬃne matrix has
twelve independent components; the last row is always (0, 0, 0, 1). We wish to
store the translation, scale, rotation, and shear and allow the programmer to
set and get these as desired. When the programmer requests the composition
of these as an aﬃne matrix, the factory will do so at that time.
The translation has three components, (t
0
,t
1
,t
2
). The scales are (s
0
,s
1
,s
2
)
with the understanding that all three scales are equal when we want uniform
scaling. The rotation matrix has nine elements, but we can store it instead
as a quaternion with components q = q
0
i + q
1
j + q
2
k + q
3
. We know that −q
also represents the rotation, so if we require q
3
≥ 0 and take advantage of the
unit length of q as a 4-tuple, we can reduce the storage to (q
0
,q
1
,q
2
). The
factory is responsible for computing q
3
=

1 − q
2
0
− q
2
1
− q
2
2
atthetimethe
aﬃne matrix is requested. The shearing matrix has 3 unknown components,
(c
0
,c
1
,c
2
). In total, the factory must only store twelve numbers for the chan-
nels used to build the aﬃne matrix, so the memory requirements are the same
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as those for storing M and T generally. The advantage of the separate chan-
nels, though, is that the programmer can manipulate them in a geometrically
intuitive manner and not have to worry about the mathematical details of the
composition or decomposition.
The simple transformation factory may be extended to support projection
matrices, including those for a symmetric view frustum, for a nonsymmetric
view frustum, and for a convex quadrilateral viewport.
In GTEngine, we have provided a transformation factory for the most com-
monly used channels: translation, rotation (with multiple representations),
and nonzero uniform scaling. The class interface is shown in Listing 6.41.
template <typename Real>
class Transform : public Matrix4x4<Real>
{
public :
// Construction and destruction . The default constructor generates the
// identity transformation .
˜Transform ( );
Transform ( );
Transform ( Transform const& transform );
// Assignment .
Transform& operator=(Transform const& transform );
// Set the transformation to the identity .
void SetIdentity ();
// The quaternion is unit length .
void SetQuaternion ( Quaternion<Real> const&q);
Quaternion<Real> GetQuaternion () const ;
// The axis is unit length and the angle is in radians .
void SetAxisAngle ( AxisAngle <4, R ea l> const&axisAngle);
AxisAngle <4, R ea l> GetAxisAngle () const ;
// The Euler angles are in radians . The GetEulerAngles function
// expects the eulerAngles. axis [] values to be set to the axis order
// yo u want .
void SetEulerAngles (EulerAngles<Real> const& eulerAngles );
void GetEulerAngles ( EulerAngles<Real>& eulerAngles) const ;
// The caller must ensure that the input to SetRotation is a rotation
// m a t r i x .
void SetRotation ( Matrix4x4<Real> const&rotation);
Matrix4x4<Real> GetRotation () const ;
// The sc al e i s a n o nz e ro number .
void SetScale (Real scale );
Real GetScale () const ;
// No constraints exist for the translation components. The second
// S et ∗ f un cti on uses only the f i r s t thr ee components of
// ’ t r ans l a t ion ’ . The G et ∗W∗ functions store the translation in the
// f i r s t three components of the output . The fourth component i s w=0
// or w=1 depending on which function you ca ll .
void SetTranslation (Real x0 , Real x1 , Real x2);
Vector3 <Real> GetTranslation () const ;
void SetTranslation (Vector4<Real> const&translation);
Vector4 <Real> GetTranslationW0 () const ;
Vector4 <Real> GetTranslationW1 () const ;
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// Multiplication of transforms. M0 is ’ this ’, M1 is ’transform ’,
// and the function returns M0∗M1 .
Transform<Real> operator∗ ( Transform<Real> const& transform ) const ;
private :
// Compute th e b a s e −c la s s Matrix4x4<Real> from the channels .
void UpdateMatrix () ;
Quaternion<Real> mQuaternion ;
Real mTranslation [3 ] , mScale ;
} ;
LISTING 6.41:TheTransform class in GTEngine.
The
Transform class stores the individual channels for rotation, translation,
and uniform scale. Each
Set* operation invokes the private UpdateMatrix that
computes the actual 4 × 4 aﬃne representation and stores it in the
Matrix4x4
base-class member.
The class works for either matrix-vector multiplication conventions. The
translation handling allows you to set the w-component when using aﬃne
algebra, which allows you to manipulate a translation as either a point or a
vector. The multiplication operator is convenient for products of transforms,
especially for scene graph transformation hierarchies; see classes
Spatial and
Node.
6.4.3 Coordinate System Conventions
I will focus on the most common coordinate systems, those where the axis
directions form an orthonormal set. This naturally ties coordinate systems to
the concepts of rotation. Let us review brieﬂy rotation in the xy-plane. The
classical view is to select the (x, y) coordinates so that the positive x-axis is
directed rightward and the positive y-axisisdirectedupward,asisshownin
Figure 6.8.
The length of the vector (x
0
,y
0
)isr =

x
2
0
+ y
2
0
. From basic trigonometry,
x
0
= r cos φ and y
0
= r sin φ. Because (x
1
,y
1
) is obtained by rotating (x
0
,y
0
),
its length is also r. Also from basic trignometry, x
1
= r cos(θ + φ)andy
1
=
r sin(θ + φ). Therefore,
x
1
= r cos(θ + φ)=r cos θ cos φ −r sin θ sin φ = x
0
cos θ − y
0
sin θ
y
1
= r sin(θ + φ)=r sin θ cos φ + r cos θ sin φ = x
0
sin θ + y
0
cos θ
The visualization of the problem is an appeal to geometry. The construction
uses trigonometry. The ﬁnal aspect is bookkeeping, where we algebraically
write the equations in tabular form as a matrix-vector product.

x
1
y
1

=

cos θ −sin θ
sin θ cos θ

x
0
y
0

(6.147)
This should be a familiar formula that you have used for rotating vectors in
the plane.
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FIGURE 6.8: Illustration of a counterclockwise rotation of (x
0
,y
0
)to(x
1
,y
1
)
by a positive angle θ measured from the positive x-axis. The positive angle
φ is the angle between the x-axis and the initial point (x
0
,y
0
). The positive
angle θ + φ is the angle between the x-axis and the ﬁnal point (x
1
,y
1
).
A substantial amount of terminology was introduced for constructing
Equation (6.147), which represents a rotation in the xy-plane. Most of us
would construct the equation without thinking twice about our conventions,
but indeed we have several issues that need addressing. It is important to
document the conventions you are using for your coordinate systems.
• Clearly Deﬁned Coordinate System. The origin is the point (0, 0). Al-
though this is not speciﬁcally stated in the chapter introduction, you
probably assumed this to be the case based on Figure 6.8. The ﬁgure
also clearly deﬁnes the coordinate axis directions, which numerically you
would intuitively choose as (1, 0) for the x-axis direction and (0, 1) for
the y-axis direction.
• Points or Vectors? It is not clear whether the 2-tuple (x, y) refers to a
point in the plane or is a vector measured relative to the origin (0, 0).
Equation (6.147) intends for the 2-tuples to be vectors.
• Which Handedness? The coordinate system is deﬁned to be right handed.
This is an arbitrary convention in 2D, without appeal to the right-hand
rule for cross products in 3D. However, right handedness is the standard
choice for the geometry shown in Figure 6.8. When processing 2D im-
ages, it is typical to use left-handed coordinates, where the origin is the
upper-left corner of the image, the x-axis is directed rightward, and the
y-axis is directed downward.
• Angle Measurement and Rotation Direction. The caption of Figure 6.8
speciﬁes that the angles are measured from the positive x-axis, and that
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a positive angle corresponds to a counterclockwise rotation. Although the
use of the terms clockwise and counterclockwise rotation are standard,
not all clocks have hands that move the way you expect!
2
I will assume
that we all agree what clockwise and counterclockwise refer to.
• Column or Row Vectors? Equation (6.147) has a tabular form that rep-
resents the 2-tuples as 2 ×1 column vectors. The matrix-vector product
uses what I refer to as the vector-on-the-right convention. I could have
easily used a vector-on-the-left convention, whereby the 2-tuples are rep-
resented as 1 × 2 row vectors. This changes the tabular format of the
equation.
• Matrix Data Storage. Although this is a concept that is irrelevant mathe-
matically, it is important when implementing vector and matrix algebra
on a computer. The two standard choices are to store the 2D-array data
in 1D-memory either in row-major or column-major order. At ﬁrst glance
this might be viewed as an arbitrary choice, but there are performance
consequences to consider (discussed later in this chapter).
Is this much ado about nothing? In my experience, no. The most annoying
aspect of working with someone else’s mathematics library is when the con-
ventions are not clearly stated. You have to rely on code samples that use that
library in order to reverse engineer the conventions, either by reading those
samples or by writing your own and executing the code to see the relation-
ships among inputs and outputs. Moreover, the conventions stated here have
dependencies. It is absolutely essential that you make clear what your con-
ventions are. To stress the importance, let us further look at the 2D rotation
problem.
Suppose that you are using a mathematics library that supports 2D rota-
tion and the comment in the source code is that of Listing 6.42.
// The 2D rotation matrix for the library is of the form
// +−−+
// R = | cos ( t ) −sin (t) |
// | sin(t) cos(t) |
// +−−+
LISTING 6.42: Incomplete comments describing the form of a 2D rotation
matrix.
At least the code has some comments, but they are not suﬃcient for you
to understand the conventions. If R is intended to be used according to the
conventions described previously in this chapter, then you need to be told
2
When I was in 9th grade, my homeroom was the Electric Shop. We salvaged useable
components from Army Surplus equipment, such as transistors the size of your little ﬁnger-
tip. We were entertained by an odd piece of equipment—a clock whose numbers were the
opposite order you are used to and whose hands moved in the opposite direction you are
used to. That thro ws a wrench into a consistent deﬁnition of clockwise and counterclockwise.
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FIGURE 6.9: A point in the world located with diﬀerent coordinates sys-
tems. (a) The coordinate system (x, y) is right handed. (b) The coordinate
system (¯x, ¯y) is left handed.
this. What if the library provider uses the vector-on-the-left and positive-
angle-counterclockwise conventions? In this case, R represents a rotation in
the opposite direction from that with vector-on-the-right and positive-angle-
counterclockwise. What if the library provider uses the vector-on-the-left and
positive-angle-clockwise conventions? Now R represents the rotation we dis-
cussed when using vector-on-the-right and positive-angle-counterclockwise.
Wait! The analysis of the previous paragraph is based on the assumptions
that the coordinate system is right handed and that angles are measured
from the positive x-axis. Figure 6.9 compares the two systems with diﬀer-
ent handedness. If (x
0
,y
0
) is a speciﬁc point in the right-handed system, its
representation in the left-handed system is (¯x
0
, ¯y
0
)=(x
0
, −y
0
). Let r be the
length of the tuples as vectors. Assuming the right-handed system uses the
vector-on-the-right and positive-angle-counterclockwise conventions, (x
0
,y
0
)
is obtained by rotating (r, 0) counterclockwise by the angle θ>0. The ma-
trix R represents the rotation. The same matrix represents the rotation when
using vector-on-the-left and positive-angle-clockwise conventions. In fact, R
represents the rotation in the left-handed system as long as that system uses
the vector-on-the-right and positive-angle-clockwise conventions or if it uses
the vector-on-the-left and positive-angle-counterclockwise conventions. In all
four cases, the angle is measured from the positive rightward axis.
For notation’s sake, let us use the acronyms RHS for right-handed system,
LHS for left-handed system, VOR for vector-on-the-right, VOL for vector-
on-the-left, CW for positive-angle-clockwise, and CCW for positive-angle-
counterclockwise. Table 6.2 shows the combination of conventions for which R
is the rotation matrix and for which R
T
is the rotation matrix. As is apparent,
the handedness, the vector-multiplication convention, and the direction of ro-
tation are interdependent. In fact, if you change one of these three attributes,
the matrix you should choose is the transpose of the one chosen before the
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TABLE 6 .2: Rotation conventions
R is the rotation matrix R
T
is the rotation matrix
RHS VOR CCW RHS VOR CW
RHS VOL CW RHS VOL CCW
LHS VOR CW LHS VOR CCW
LHS VOL CCW LHS VOL CW
change. Three attributes, each having two choices, leads to eight possibilities,
as Table 6.2 shows. It is important to make clear how you have chosen these
conventions.
6.4.4 Converting between Coordinate Systems
Consider a simple case of converting between two coordinate systems,
one a right-handed system and one a left-handed system, both based at
their natural origins. Figure 6.10 illustrates. Both coordinate system ori-
gins are at the Cartesian frame origin (0, 0, 0). The Cartesian coordinate
axis directions are (1, 0, 0) in the right direction, (0, 1, 0) into the plane of
the page, and (0, 0, 1) in the up direction. The coordinate axis directions for
the ﬁrst system are the same as those for the Cartesian frame. Observe that
(1, 0, 0) ×(0, 1, 0) = (0, 0, 1), so the last vector is the cross product of the ﬁrst
two. Geometrically, these conform to the right-hand rule for cross products,
so the coordinate system is right handed. The coordinate axis directions for
the second system in the order speciﬁed by (x

0
,x

1
,x

2
) and in terms of the
same common Cartesian frame as the ﬁrst system are (1, 0, 0), (0, 0, 1), and
(0, 1, 0). Observe that (1, 0, 0) × (0, 0, 1) = (0, −1, 0), so the last vector is the
negative cross product of the ﬁrst two. These conform to the left-hand rule
for cross products, so the coordinate system is left handed.
The conversion details are driven by the geometry of the images in the
ﬁgure. The axes are all aligned but their names are diﬀerent. The x
i
coordinate
of the ﬁrst system and the x

i
coordinate correspond to the same measurement
along their common axis. We can set up a matrix equation that relates the
measurements,
X

=
⎡
⎣
x

0
x

1
x

2
⎤
⎦
=
⎡
⎣
100
001
010
⎤
⎦
⎡
⎣
x
0
x
1
x
2
⎤
⎦
= CX (6.148)
where the last equation deﬁnes the 3 × 3matrixC.ThematrixC swaps the
last two components of a vector. The matrix is orthogonal, because C
T
C = I,
and det(C)=−1, which makes the matrix a reﬂection. The conversion in the
other direction is
⎡
⎣
x
0
x
1
x
2
⎤
⎦
⎡
⎣
100
001
010
⎤
⎦
⎡
⎣
x

0
x

1
x

2
⎤
⎦
= C
−1
⎡
⎣
x

0
x

1
x

2
⎤
⎦
(6.149)
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(cos μ, sin μ, 0) 
(-sin μ, 0, cos μ)     
(0,0,0)
(cos μ, 0, sin μ) 
X
2
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X
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FIGURE 6.10: Conversion from (x
0
,x
1
,x
2
) in a right-handed coordinate
system to (x

0
,x

1
,x

2
)inaleft-handedcoordinatesystem.
It so happens that C
−1
= C
T
= C. For orthonormal coordinate axes, generally
C
−1
= C
T
.
Equations (6.148) and (6.149) are easy enough to set up based on a visual
inspection of the coordinate axes. Now suppose that we have a rotation in the
ﬁrst coordinate system, and that rotation is represented by a rotation matrix
R. We want to determine the rotation matrix R

in the second coordinate
system that produces the same rotation. For example, suppose we rotate points
about the z-axis by a small angle θ. The left image of Figure 6.10 shows the
action of the rotation for inputs (1, 0, 0) and (0, 1, 0). The right image shows
the same action, which is a rotation in the x

z

-plane. The transformations
are
U =
⎡
⎣
u
0
u
1
u
2
⎤
⎦
=
⎡
⎣
c −s 0
sc0
001
⎤
⎦
⎡
⎣
x
0
x
1
x
2
⎤
⎦
= RX
U

=
⎡
⎣
u

0
u

1
u

2
⎤
⎦
=
⎡
⎣
c 0 −s
01 0
s 0 c
⎤
⎦
⎡
⎣
x

0
x

1
x

2
⎤
⎦
= R

X

(6.150)
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where c =cosθ and s =sinθ. The linear-algebraic relationship between R and
R

is obtained by substituting Equations (6.148) and (6.149) for both inputs
and outputs into the last equation, R

X = U

= CU = CRX = CRC
−1
X

,
in which case
R

= CRC
−1
,R= C
−1
R

C (6.151)
This is known in linear algebra as a change of basis. We can represent the
same geometric action in two diﬀerent coordinate systems. In our case, the
domain and range of the transformation have the same basis. Change of basis
is more general in that you can have diﬀerent bases for the domain and range.
Let us generalize for a more complicated setting. Suppose that the right-
handed coordinate system has origin at a point P and the left-handed coordi-
nate system has an origin at a point P

. To determine the conversion between
systems, we can reduce this case to the one discussed previously by subtract-
ing the origins from our points to form vectors. Equation (6.148) is compactly
written as X

= CX. In our current scenario, the equation becomes
X

− P

= C (X − P) (6.152)
Equation (6.149) is compactly written as X = C
−1
X

. In our current sce-
neario, the equation becomes
X − P = C
−1

X

− P


(6.153)
Equation (6.152) may be written using points and aﬃne matrices,

I −P

0
T
1

X

1

=

C 0
0
T
1

I −P
0
T
1

X
1

(6.154)
and then inverting the matrix on the left and multiplying both sides of the
equation and composing products:

X

1

=

C P

− CP
0
T
1

X
1

= A

X
1

(6.155)
where the last equality deﬁnes the 4 ×4matrixA. Similarly, Equation (6.153)
becomes

X
1

=

C
−1
P − C
−1
P

0
T
1

X
1

= A
−1

X

1

(6.156)
This is referred to as an aﬃne change of basis.
The conversion of matrices is similar to the original example. Geometri-
cally, the rotation in the right-handed coordinate system is about the axis
containing the origin P with x
2
-axis direction. The same rotation in the left-
handed coordinate system is about the axis containing the origin P

with
x

1
-axis direction. We may subtract the origins to obtain vectors that are ro-
tated as shown previously,
U − P = R(X − P), U

− P

= R

(X

− P

) (6.157)
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H
M

−→ H
A ↑↓ A
−1
A ↑↓ A
−1
H −→
M
H
FIGURE 6.11: The commutative diagram that shows how transformations
are related via a change of basis.
Applying the change of basis for both inputs and outputs,
R

(X

−P

)=U

−P

= C(U−P)=CR(X−P)=CRC
−1
(X

−P

) (6.158)
Of course we already know that R

= CRC
−1
, but the equation allows us
to represent the relationship between the rotations using aﬃne matrices. The
transformation for the right-handed coordinate system involves translating
the coordinate system origin P to the Cartesian origin, rotating about the up
axis, then translating back to P. The transformation is

U
1

=

I P
0
T
1

R 0
0
T
1

I −P
0
T
1

X
1

=

R P − RP
0
T
1

X
1

= M

X
1

(6.159)
where the last equality deﬁnes the 4 × 4matrixM. The transformation for
the left-handed coordinate system is

U

1

=

I P

0
T
1

R

0
0
T
1

I −P

0
T
1

X

1

=

R

P

− R

P

0
T
1

X

1

= M


X

1

(6.160)
where the last equality deﬁnes the 4 × 4matrixM

. The transformations M
and M

are related by
M

= AMA
−1
,M= A
−1
M

A (6.161)
The relationship is summarized by the commutative diagram shown in
Figure 6.11. In fact, this diagram is valid for any aﬃne transformation M
and any change of basis, even if the bases are nonorthogonal sets. The symbol
H denotes the space of 4-tuple points. In the bottom row, the domain of the
transformation is the leftmost H,andM maps the domain to the range, which
is the rightmost H. Alternatively, you can follow the path from lower-left H to
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upper-left H (apply A), to upper-right H (apply M

),andthentolower-right
H (apply A
−1
). That is, M and A
−1
M

A produce the same result, where
application of matrices is from right to left (vector-on-the-right convention).
Similarly, you can apply M

from upper-left H to upper-right H or you can
equivalently traverse from upper-left to lower-left to lower-right to upper-right
using AMA
−1
.
For orthonormal bases, the process is automated for you except the very
ﬁrst step: You must visualize how the coordinate axes are overlayed and you
must then construct the matrix C. That’s geometry. The rest is algebra.
The process applies even for general bases but creating the change of basis
matrix is slightly more complicated. Let the basis for the ﬁrst coordinate
system be {V
0
, V
1
, V
2
} and the basis for the second coordinate system be
{V

0
, V

1
, V

2
}. The change of basis matrix C has the property that V

i
= CV
i
for all i.IfV is the matrix whose columns are the V
i
and V

is the matrix
whose columns are the V

i
,thenV

= CV .WecaninvertV to obtain C =
V

V
−1
.
The conversions of transformations assumed both coordinate systems use
the vector-on-the-right multiplication convention. If either or both coordinate
systems use the vector-on-the-left convention, you can still use the conver-
sion here but you must transpose each matrix that uses the vector-on-the-
left convention, apply the conversion, then transpose the result. For exam-
ple, if the ﬁrst coordinate system uses vector-on-the-right and the second
coordinate system uses vector-on-the-left, the transformation M

for the sec-
ond coordinate system is (M

)
T
= AMA
−1
. If the ﬁrst coordinate system
uses vector-on-the-left and the second coordinate system uses vector-on-the-
right, the relationship is M

= AM
T
A
−1
. If both use vector-on-the-right, then
(M

)
T
= AM
T
A
−1
.
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Sample Applications
7.1 Video Streams
The video stream sample illustrates the parallel copying that was men-
tioned in Section 4.7. The application is located at
GeometricTools/GTEngine/Samples/Graphics/VideoStreams
A video stream is a collection of images through time. Some application do-
mains have multiple video streams, presumably synchronized in time. Stereo
vision is one such domain where you have two streams, one per camera. The
goal is to process the images as they arrive from their producer, whether live
camera feeds or recordings on disk.
Although it would be nice to demonstrate the concept with real video
data, that is a lot of data to download from the Geometric Tools website. For
the sake of reducing bandwidth, four video streams are generated randomly
by the sample and written to disk. Later, the streams are loaded from disk
and are processed using a producer-consumer model. The producer is the ﬁle
loader, which runs in its own thread, and the consumer is the main thread
that displays the images in the application window. Because the randomly
generated images are not interesting, I have not provided any screen captures
for this book.
7.1.1 The VideoStream Class
The abstract base class VideoStream encapsulates the behavior for process-
ing a stream of images. It provides a frame capturing system that calls a virtual
function,
GetImage, to access a single image in the stream. Each derived class
overrides
GetImage; in our case, the class is FileVideoStream that loads the next
available image from disk. If you were building a system driven by live cam-
eras, a class
CameraVideoSystem can be implemented whose GetImage obtains
the next available image from the camera.
The image is stored in a GTEngine
Texture2 object of the appropriate
format and size so that it can be processed by the GPU. A frame is deﬁned as
a structure that contains a
Texture2 image, a unique frame number, and the
time (in ticks) required to acquire the image from the producer and copy it to
341
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GPU memory. The latter value is simply for performance measurements and
might not be necessary for other applications. Listing 7.1 shows the code for
acquiring the image and creating the texture.
void VideoStream : : CaptureFrame ( )
{
int64
t s ta rt Ti ck s = mProductionTimer . GetTicks ( ) ;
char∗ data = GetImage ();
if (data)
{
mFrame . image . r e s et (
new Texture2 (mType, mWidth , mHeight , false , false ));
mFrame . i ma ge−>SetData ( data ) ;
mEngine−>Bind (mFrame . image ) ;
mFrame . i ma ge−>SetData(nullptr );
}
int64
t f i n al T ic k s = mProductionTimer . GetTicks ( ) ;
mFrame. t i c k s = f i n a l T i c k s − startTicks ;
mPerformanceTicks = mPerformanceTimer. GetTicks () ;
++mPerformanceFrames ;
}
LISTING 7.1: Acquiring an image and creating a texture from it.
The timer is started and a call is made to acquire the image. In our case,
the call leads to a load of the image from disk. For typical images, the size
is large enough that in a single-threaded program, the disk load can cause a
noticeable stall. If the producer cannot provide an image when requested, it
has the option of returning a null pointer as a signal that the consumer the
data is not available—a dropped frame, so to speak.
When the data is available, a
Texture2 object is created from the known
format
mType with the known sizes mWidth and mHeight. The ﬁrst false pa-
rameter says we do not want mipmaps for this texture, which is a message
to the engine to create the GPU version without mipmaps. The second
false
parameter says we do not want a system memory copy in which to store the
texture. We could have used the default creation using the default-initialized
inputs and then copied the image data to the system memory, using
mFrame . i mage . r e s et (new Texture2 (mType , mWidth, mHeight ) );
memcpy ( mFr a m e . image−>GetData ( ) , data , mFrame. image−>GetNumBytes ( ) ) ;
mEngine−>Bind (mFrame . image ) ;
but this leads to an extra copy—from CPU to CPU—that is ineﬃcient. In-
stead, the GTEngine
Resource base class (for Texture2) allows you to specify a
pointer to data that is used as the data source when the
Bind call creates the
GPU version of the resource.
After the capture and creation of the GPU version of the texture, the timer
is stopped. The application displays the performance statistics overlaid on top
of the application window.
7.1.2 The VideoStreamManager Class
It is convenient to have a manager class for multiple video streams, espe-
cially when the streams need to be synchronized (as they do in stereo vision).
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The class
VideoStreamManager provides the necessary mananagement, and it
also has summary statistics for the performance for all the video streams. In
this sample, the number of video streams is four.
The class has support for various methods of capturing, both in serial and
in parallel, to demonstrate the performance characteristics of each approach.
You can change the method by exposing one of four conditional deﬁnes in
the
VideoStreamsWindow.h ﬁle. Their names involve MANUAL or TRIGGERED.
The former means that the frame capture is explicitly launched by calls in the
main thread. The latter means that the frame capture is implicitly launched
by a separate thread using a timer that is designed to deliver frames at a ﬁxed
rate. The names also involve
SERIAL or PARALLEL. The former means that the
video streams are captured one at a time. The latter means the frames are
captured by launching threads for all the streams and waiting for them all to
ﬁnish.
Regardless of the capture method, once all video frames are available they
must be assembled into an aggregrate frame. The frame data structure for
VideoStreamManager consists of an array of Texture2 images—one per video
stream and presumably synchronized to be images captured of the same scene,
a unique frame number, and the time (in ticks) required to acquire all the im-
ages and copying them to GPU memory. The latter value is for performance
measurements and might not be necessary for other applications. To sup-
port parallelism and concurrent access, the frames are placed in a thread-safe
queue. Thus, the video stream manager acts as the producer for frames, de-
positing frames on the queue. When the consumer is ready to process a frame,
it accesses the same queue and removes the frame it will process. The function
for assembling frames is named
AssembleFullFrame.
Listing 7.2 is the function for capturing the video streams serially.
void VideoStreamManager : : CaptureFrameSerial ()
{
int64
t s ta rt Ti ck s = mProductionTimer . GetTicks ( ) ;
size
t const numVideoStreams = mVideoStreams . s iz e ( ) ;
for (size
ti=0;i< numVideoStreams; ++i )
{
mVideoStreams [ i ]−>CaptureFrame ( );
}
AssembleFullFrame ( startTicks );
}
LISTING 7.2: Capturing video streams serially.
Listing 7.3 is the function for capturing the video streams in parallel.
void VideoStreamManager : : Cap tur eFram ePar al lel ( )
{
int64
t s ta rt Ti ck s = mProductionTimer . GetTicks ( ) ;
size
t const numVideoStreams = mVideoStreams . s iz e ( ) ;
std : : vector<std : : thread> captureThread(numVideoStreams);
for (size
ti=0;i< numVideoStreams; ++i )
{
captureThread[ i ] = std :: thread
(
[ this ,i]()
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{
mVideoStreams [ i]−>CaptureFrame ( ) ;
}
);
}
for (size
ti=0;i< numVideoStreams; ++i )
{
captureThread[ i ]. join ();
}
AssembleFullFrame ( startTicks );
}
LISTING 7.3: Capturing video streams in parallel.
The ﬁrst loop launches threads to capture frames, one per video stream. The
second loop waits for the threads to ﬁnish. The application must explicitly
call one or the other when capture is initiated in the main thread, say, in the
OnIdle function call,
mVideoStreamManager−>CaptureFrameSerial ();
// o r m Video Strea mMan ager−>CaptureFrameParallel();
if ( mVideoStreamManager−>GetFrame ( mCurrent ))
{
for ( int i=0; i< 4; ++i )
{
mOverlay [ i ]−>SetTexture (mCurrent. frames [ i ]. image);
mEngine−>Draw( m O ve rl ay [ i ] ) ;
}
DrawStatistics ();
mEngine−>DisplayColorBuffer(0);
}
The consumer is the main thread, which sets the overlay eﬀects to use the
textures and draws them to the application window. Control of the frame rate
can be accomplished by setting the input parameter to
DisplayColorBuﬀer to 1
for 60 frames per second, 2 for 30 frames per second, etc. In the sample, the
input 0 says not to wait for the vertical retrace. The
GetFrame call determines
whether the queue of frames has elements. If it does, one is removed from the
queue and returned in the
mCurrent object. The capture is occurring in the
same frame, so the queue should always have a frame for consumption as long
as the producer has created one. The ﬁle loading always blocks until the image
is loaded, so indeed the producer always inserts an image into the queue.
For triggered capturing, the application must launch a thread that calls
either the serial or parallel capture function. Listing 7.4 shows the implemen-
tation.
void VideoStreamManager :: StartTriggeredCapture (double fps , bool parallel )
{
if ( nullptr == mTrigger && fps > 0.0)
{
void (VideoStreamManager::∗ Capture )( void );
if (parallel)
{
Capture = &VideoStreamManager :: CaptureFrameParallel;
}
else
{
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Capture = &VideoStreamManager : : CaptureFrameSerial ;
}
mTrigger = new Trigger ();
mTrigger−>ticksPerFrame = mTrigger−>timer . GetTicks (1.0/ fps );
mTrigger−>running = true ;
mTrigger−>triggerThread = new std :: thread
(
[ this ,Capture]()
{
int64
t startTime = mTrigger−>timer . GetTicks ();
while ( mTrigger−>running)
{
int64
t fin al Ti me = startTime + mTrigger−>ticksPerFrame ;
do
{
startTime = mTrigger−>timer . GetTicks ( );
}
while (startTime < finalTime );
( this−>∗Capture )();
}
}
);
}
}
LISTING 7.4: Launching a thread to handle image capturing.
The frame rate in frames per second and the choice of serial or parallel capture
are provided as inputs. The
Trigger object is a structure that has a 64-bit
timer, a pointer to the thread object, a Boolean that may be set to enable
or disable capturing, and a counter for the number of ticks per frame. The
latter is used so that we can call
Capture using the 64-bit counter rather than
always converting ticks to seconds and using ﬂoating-point numbers instead.
The thread function is speciﬁed as a lambda, which is simple to read and
encapsulates the thread creation in a single code block.
The application calls this function once it is ready to start the message
pump, which is usually at the end of the constructor. Once the message pump
starts,
OnIdle is called frequently. The function has the code block
if ( mVideoStreamManager−>GetFrame ( mCurrent ))
{
for ( int i=0; i< 4; ++i )
{
mOverlay [ i ]−>SetTexture (mCurrent. frames [ i ]. image);
mEngine−>Draw( m O ve rl ay [ i ] ) ;
}
DrawStatistics ();
mEngine−>DisplayColorBuffer(0);
}
As before, GetFrame queries the queue of frames to determine whether there is
a frame available. Because the image capture is running in a separate thread
and occurs at a speciﬁed rate, most of the time
GetFrame ﬁnds there is no
image available. When there is one, it is removed from the thread-safe queue
and the images are drawn.
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Generally, disk loading is slow, so it might not be possible to run at 60
or 30 frames per second. If you have a solid state drive, you might get the
impression it is. Also, disk caching might give the illusion you are running
fast. But when the video streams are on the order of gigabytes of data, you
will probably notice the drop in frame rate. For live camera capture, as long
as the camera hardware can deliver at 60 or 30 frames per second, the drawing
can easily keep up with that rate and there are no stalls in the application.
However, any extensive image processing that occurs in
OnIdle might take long
enough that you cannot meet the desired frame rate. For example, in stereo
vision where you are trying to match corresponding points to obtain depth
values, the computations will be extensive. You might have to balance image
size, camera frame rate, and CPU/GPU frame rate in order to accomplish
your goals.
7.2 Root Finding
Several methods are discussed for computing roots to functions when you
are in a single-threaded CPU environment. As an alternative, the GPU may
allow you to ﬁnd roots using an exhaustive search when computing with 32-
bit ﬂoating-point numbers, but you will need to interpret properly the output
depending on the function.
7.2.1 Root Bounding
The general problem is this: given a continuous real-valued function f(x)
with domain D ⊆ IR, ﬁnd all x for which f(x) = 0. In practice, the root
ﬁnding might be limited to a ﬁnite interval that is a subset of the domain.
In many cases, the interval is determined via root bounding.Thatis,you
search D for intervals of the form [a, b] for which f(a)andf(b) have opposite
sign. The intermediate value theorem says that the function must attain any
value between f (a)andf(b). In particular, if the signs of these numbers are
opposite, then 0 is between f(a)andf(b), so there must be a number x ∈ (a, b)
for which f(x) = 0. The intermediate value theorem guarantees at least one
root for f(x)on[a, b], but there may be others.
The practical challenge is to ﬁnd an interval on which f (x) has a unique
root. Techniques exist for computing root-bounding intervals for polynomial
functions, although some of these are sensitive to the use of ﬂoating-point
arithmetic, so you need to implement them very carefully. One such method
is recursive, computing the roots of derivatives of the polynomial. Another
related one but more robust involves Sturm sequences of polynomials; for
example, see [8].
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7.2.2 Bisection
If f(x)isdeﬁnedin[a, b] and has opposite signs at the endpoints
(f(a)f (b) < 0), then the simplest method for computing a root is bisection.
For the sake of argument, suppose f (a) < 0andf(b) > 0. Compute the in-
terval midpoint m =(a + b)/2 and evaluate f(m). If f(m) < 0, then the
intermediate value theorem guarantees f (x)hasarooton[m, b]. This subin-
terval is half the length of the original. If f(m) > 0, then f(x)hasaroot
on [a, m]. In either case, you can repeat the algorithm on the subinterval. Of
course if you get lucky and ﬁnd that f (m) = 0, you have your root.
In theory, the bisection algorithm usually does not converge in a ﬁnite
number of steps, so in practice you need to limit the number of iterations.
Based on the discussion of Section 2.5.5, root ﬁnding can be badly behaved
if you were to terminate the iterations based on how close to zero the cur-
rent f (m) is. Instead, you can terminate based on the length of the current
subinterval. Current generation ﬂoating-point units are fast enough that an
alternative is to repeat bisection until the midpoint equals one of the end-
points. The termination is guaranteed, because there are only a ﬁnite number
of ﬂoating-point numbers and at some time the rounding of the average of the
endpoints will be to one of those endpoints:
Real x0 , x1 ; // i n t e r v a l [ x0 , x1 ] w i th x 0 < x1 , Real is float or double
Real f0 = f(x0), f1 = f(x1);
int s0 = Sign( f0 ) , s1 = Sign ( f1 ); // s 0 ∗ s1 < 0
Real root ;
for (;;)
{
Rea l xmid = (x0 + x1 ) / 2 ;
int smid = Sign ( f ( xmid ) ) ;
if (x0 == xmid || x1 == xmid || smid == 0)
{
root = xmid;
break ;
}
if (smid == s0)
{
x0 = xmid ;
}
else
{
x1 = xmid ;
}
}
If the loop terminates because smid is zero, then you have a root for which
the function evaluates exactly to zero. However, be aware that with ﬂoating-
point arithmetic, the expression you use to evaluate the function can inﬂuence
the outcome. For example, consider a quadratic polynomial f(x)=ax
2
+bx+c.
With ﬂoating-point, you can get two diﬀerent values,
float a = 0.1234 f ;
float b=−0.56 f ;
float c=−122840.000 f ;
float x = 1000.0 f ;
float f0 , f1 ;
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f0 = a∗x ∗x+b∗x+c; // f 0 = 0 . 0 f
f1 = x∗(a∗x+b)+c; // f1 = 0.00781250000f
The computed numbers are indeed diﬀerent. If the loop terminates with dis-
tinct
x0 and x1 and where f0 and f1 have opposite signs, you have a root-
bounding interval (given the way you have decided to evaluate the function),
no matter how small or large in magnitude the endpoint function values. As
mentioned in Section 2.5.5, this is the best you can do with 32-bit ﬂoating-
point arithmetic.
7.2.3 Newton’s Method
One of the most popular root-ﬁnding methods is Newton’s method, which
requires the function to be continuously diﬀerentiable. It is based on having
an estimate x
i
of a root and then choosing the next estimate x
i+1
as the point
of intersection between the tangent line to the graph of f at (x
i
,f(x
i
)). This
point is
x
i+1
= x
i
−
f(x
i
)
f

(x
i
)
(7.1)
It is essential that you have a good initial estimate x
0
for the root in order for
the iterates to converge to the root. In practice, the iterations are repeated
until you meet some termination criterion.
As mentioned in Section 2.5.5, choosing a criterion based on how close
f(x
i
) is to zero usually is not advised. Even if the function values are on order
one (i.e., reasonably sized ﬂoating-point numbers) you can run into problems.
A typical attempt at coding the root ﬁnder is
float x; // initial guess
float functionEpsilon ; // po s i t i v e number c lo se t o z e r o
float derivativeEpsilon ; // worries about dividing by zero
int maxIterations; // l i mi t i t e r a t i on s when the unexpected happens
for ( int i=0; i< maxIterations; ++i )
{
float f = Function(x );
if (std ::abs(f) < functionEpsilon)
{
return x; // f small , so we will call this a root
}
float df = FunctionDerivative(x);
if (std ::abs(df) < derivativeEpsilon)
{
// This leads to division by ( nearly) zero. WHAT TO DO?
return aargh ;
}
x −=f/df;
}
return x; // Failed to converge , so return current best guess?
Let us ignore the problem for now of the derivative nearly zero, assuming
you have a function whose derivative does not have this behavior near a root.
The comparison to
functionEpsilon can fail; consider the quadratic polynomial
of Section 2.5.5 for which you have a root bound of two consecutive ﬂoating-





[image: ]Sample Applications 349
point numbers but their magnitudes well exceed the epsilon test. Most likely,
you will continue to loop until maximum iterations, never obtaining estimates
better than the previous iterations.
One of the classical root-ﬁnder breakers you see in a course on numerical
methods is a function for which the iterates cycle around the root but never
converge. For example, f(x)=x/(1 + x
2
/3) has this property at x = ±1. The
iterates are
x
i+1
= x
i
−
f(x
i
)
f

(x
i
)
= −
2x
3
i
3 − x
2
i
(7.2)
For initial guess x
0
= 1, the next iterate is x
1
= −1 and yet the next iterate
is x
2
= 1. You can iterate as much as you want but you will not ﬁnd the
root x = 0. The same cyclical behavior can happen due to numerical roundoﬀ
errors if you are near a root. My suggestion for a solution with a computer-
science ﬂavor rather than a purely mathematical one is to store the iterates
and trap the cycles,
float x; // initial guess
float functionEpsilon ; // po s i t i v e number c lo se t o z e r o
int maxIterations; // l i mi t i t e r a t i on s when the unexpected happens
std : : set<float> visited ;
visited . insert (x);
for ( int i=0; i< maxIterations; ++i )
{
float f = Function(x );
if (std ::abs(f) < functionEpsilon)
{
return x; // f small , so we will call this a root
}
float df = FunctionDerivative(x);
x −=f/df;
if (visited . find(x) == visited .end())
{
// We have not yet seen this iterate .
visited . insert (x);
}
else
{
// We have seen this iterate , so there is a cycle . One possible
// response is to return the iterate whose function value is
// smallest .
float fmin = std :: numeric
limits<float >::max ( ) ;
float root = std :: numeric
limits<float >::max ( ) ;
for ( auto y: visited)
{
float fabs = std : : abs( Function (y )) ;
if (fabs < fmin )
{
fmin = fabs ;
root = y;
}
}
return root ;
}
}
return x; // Failed to converge , so return current best guess?
Finally, in practice you probably want to implement a hybrid of Newton’s
method and bisection. Given a root-bounding interval [a, b], compute a New-
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ton’s iterate starting at x
0
= a. If the resulting x
1
is inside [a, b], then accept
this value and compute another Newton’s iterate. But if x
1
is outside [a, b],
reject x
1
and apply a bisection step.
7.2.4 Exhaustive Evaluation
If you want a (presumably) robust computation for ﬂoat roots of any func-
tion f(x) with no worries about computation time, a simple but slow algorithm
is to iterate over all ﬁnite
ﬂoat numbers and evaluate the function. Let x
0
and
x
1
be two consecutive ﬁnite ﬂoating-point numbers. If f (x
0
)f(x
1
) < 0, then
the interval [x
0
,x
1
] bounds a root. However, there are no ﬂoating-point num-
bers between x
0
and x
1
, so the best you can do is estimate the root with x
i
for which |f(x
i
)| is the minimum absolute value of the two function values. In
fact, the test should be f(x
0
)f(x
1
) ≤ 0, allowing for either of the x-values to
be exactly a root with the understanding that the function evaluation involves
potentially roundoﬀ errors—with exact arithmetic, f is not exactly zero at the
rational-valued input.
A sample application illustrating the root ﬁnding is located at
GeometricTools/GTEngine/Samples/Numerics/RootFinding
In the previous paragraph, I parenthesized “presumably” because there are
some potential problems with the GPU output. These are mentioned at the
end of the discussion.
7.2.4.1 CPU Root Finding Using a Single Thread
The inner-loop costs depend on the function evaluation. To give you an
idea of how expensive the approach is, consider the code in Listing 7.5 that
computes the roots of f(x)=(x −1.1)(x +2.2). On my machine with an Intel
Core i7-3930K 3.20 GHz core, the execution time was approximately 10.5
seconds. In general, the polynomial function may be replaced by any other
function whose domain is the set of real numbers; that is, the algorithm is not
speciﬁc to polynomials, but of course the execution time increases as the cost
of evaluating f(x) increases. If your function’s domain is a subset of the real
numbers, you will need to modify the code to visit only those ﬂoating-point
numbers in the domain.
float MyFunction ( float x) { return (x − 1.1 f )∗ (x + 2.2f ); }
void FindRootsCPUSingle( std : : set<float>& roots )
{
std :: set<float> roots ;
unsigned int const supTrailing = (1 << 23);
for ( unsigned int trailing = 0; trailing < supTrailing ; ++trailing )
{
for ( unsigned int biased = 0; biased < 255; ++biased)
{
unsigned int exponent = ( biased << 23);
unsigned int encoding0 = exponent | trailing ;
unsigned int encoding1 = encoding0 + 1;
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float z0 = ∗( float∗)&encoding0 ;
float z1 = ∗( float∗)&encoding1 ;
float f0 = MyFunction( z0 );
float f1 = MyFunction( z1 );
if (f0∗ f1 <=0.0f)
{
roots . insert ( std :: abs( f0) <=std::abs(f1) ? z0 : z1);
}
z0 = −z0 ;
z1 = −z1 ;
f0 = MyFunction( z0 );
f1 = MyFunction( z1 );
if (f0∗ f1 <=0.0f)
{
roots . insert ( std :: abs( f0) <=std::abs(f1) ? z0 : z1);
}
}
}
}
LISTING 7.5: Root ﬁnding on the CPU using an exhaustive search with a
single thread.
The same approach for
double roots is a lot slower. Do not try this at home.
You have 2
32
times more numbers to process, so the total execution time is
on the order of 1430 years!
7.2.4.2 CPU Root Finding Using Multiple Threads
The exhaustive processing for ﬁnite
ﬂoat numbers may be reduced by dis-
tributing the work across cores. Each core handles a subset of the inputs.
Listing 7.6 shows an implementation of this.
void FindSubRootsCPU( unsigned int tmin , unsigned int tsup ,
std :: set<float>& roots )
{
for ( unsigned int trailing = tmin; trailing < tsup; ++trailing )
{
for ( unsigned int biased = 0; biased < 255; ++biased)
{
unsigned int exponent = ( biased << 23);
unsigned int encoding0 = exponent | trailing ;
unsigned int encoding1 = encoding0 + 1;
float z0 = ∗( float∗)&encoding0 ;
float z1 = ∗( float∗)&encoding1 ;
float f0 = MyFunction( z0 );
float f1 = MyFunction( z1 );
if (f0∗ f1 <=0.0f)
{
roots . insert ( std :: abs( f0) <=std::abs(f1) ? z0 : z1);
}
z0 = −z0 ;
z1 = −z1 ;
f0 = MyFunction( z0 );
f1 = MyFunction( z1 );
if (f0∗ f1 <=0.0f)
{
roots . insert ( std :: abs( f0) <=std::abs(f1) ? z0 : z1);
}
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}
}
}
void FindRootsCPUMultithreaded ( std : : set<float>& roots )
{
int const numThreads = 1 6;
unsigned int const supTrailing = (1 << 23);
std :: set<float> subRoots [ numThreads ];
std :: thread process [numThreads];
for ( int t=0; t< numThreads ; ++t )
{
unsigned int tmin = t ∗ supTrailing / numThreads;
unsigned int tsup = ( t + 1) ∗ supTrailing / numThreads;
auto r oo t F i nde r = s t d : : b i n d ( FindSubRootsCPU , tmin , ts up ,
std :: ref(subRoots[t ]));
process [ t ] = std :: thread ([&rootFinder ](){ rootFinder (); } );
}
for ( int t=0; t< numThreads ; ++t )
{
process [ t ]. join ();
}
for ( int t=0; t< numThreads ; ++t )
{
for ( auto const& z : subRoots [ t ])
{
roots . insert (z);
}
}
}
LISTING 7.6: Root ﬁnding on the CPU using an exhaustive search with
multiple threads.
The performance depends on the number of cores your machine has available.
My machine has six cores (twelve logical processors). Running sixteen threads,
the execution time for the root ﬁnding is approximately 1.7 seconds, which is
faster than the 10.5 seconds for root ﬁnding in a single thread.
7.2.4.3 GPU Root Finding
You can even perform this experiment using a GPU. The number of trailing
signiﬁcands is 2
23
, so I chose to partition these into a 2
12
×2
11
= 4096 ×2048
grid. The trailing signiﬁcand mapping is i = x+4096y. Listing 7.7 contains the
compute shader and the GTEngine application code that creates and executes
it.
// RootFinding. hlsl
// The ma cro FUNCTION
BODY must be declared by an HLSLDefiner object .
float Function( float z) { return FUNCTION
BODY ; }
// The number o f e l e m e nt s in t h e a ppend bu f f e r must be s uf f i c i e n t l y l a r g e .
AppendStructuredBuffer<float4> rootBounds ;
[ numthreads (8 , 8 , 1 )]
void CSMai n ( u i nt 2 t : SV
DispatchThreadID)
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{
u in t t r a i l i n g = t . x + 4096 ∗ t.y;
for ( uint biased = 0; biased < 255; ++biased )
{
uint exponent = ( biased << 23);
uint encoding0 = exponent | trailing ;
float z0 = asfloat (encoding0 );
uint encoding1 = encoding0 + 1;
float z1 = asfloat (encoding1 );
float f0 = Function(z0 );
float f1 = Function(z1 );
if (sign(f0) ∗ sign (f1) <=0.0f)
{
rootBounds . Append( float4 (z0 , f0 , z1 , f1 ));
}
z0 = −z0 ;
z1 = −z1 ;
f0 = Function(z0 );
f1 = Function(z1 );
if (sign(f0) ∗ sign (f1) <=0.0f)
{
rootBounds . Append( float4 (z1 , f1 , z0 , f0 ));
}
}
}
// C++ a p p l ic a ti o n c od e
void FindRootsGPU( s td : : set<float>& roots )
{
DX11Engine e n g i n e ;
std :: shared
ptr<StructuredBuffer> acBuffer(new StructuredBuffer(
1024 , sizeof ( Vector4 <float >)));
acBuffer−>MakeAppendConsume ( ) ;
acBuffer−>SetCopyType ( Re so ur ce : : COPY
STAGING TO CPU ) ;
acBuffer−>SetNumActiveElements (0);
HLSLDefiner definer ;
definer . SetString (”FUNCTION
BODY” , ” ( z − 1.1 f )∗(z + 2.2f)”);
std :: shared
ptr<ComputeShader> cshader (
ShaderFactory : : CreateCompute(”RootFinder . h lsl ” , definer ));
cshader−>Set (”rootBounds” , acBuffer ) ;
engine . Execute ( cshader , 512 , 256 , 1 );
e ngi ne . CopyGpuToCpu( a cBu ff er );
int numActive = acBuffer−>GetNumActiveElements ( ) ;
Vector4 <float>∗ rootBounds = acBuffer−>GetAs<Vector4 <float >>();
for ( int i=0; i< numActive ; ++i )
{
Vector4 <float> const& rb = rootBounds [ i ] ;
if (std ::abs(rb[1]) <=std::abs(rb[3]))
{
roots .insert(rb [0]);
}
else
{
roots .insert(rb [2]);
}
}
acBuffer = nullptr ;
cshader = nullptr ;
}
LISTING 7.7: Root ﬁnding on the GPU using an exhaustive search with
512 × 256 thread groups, each group containing 8 × 8 threads.
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The execution time for the GPU version of the root ﬁnder was measured
to be approximately 1.4 seconds. This is faster than the CPU single-threaded
time (10.5 seconds) and the CPU multithreaded time (1.7 seconds). The speed
up of the GPU version over the CPU multithreaded version is not that much,
but if the function is more complicated and expensive to compute, the GPU
version should be much faster.
Several comments are in order about the GPU root ﬁnder.
1. The HLSL function
asﬂoat is extremely handy for allowing you to inter-
pret bit patterns diﬀerently. This feature was not available in Shader
Model 3 (D3D 9). A similar function
asdouble allows you to assemble
double values from input resources that store uint values.
2. The body of the function is delivered to the HLSL compiler via an
HLSLDeﬁner object that is part of the design of GTEngine. You can see
where this is set in the C++ application code.
3. Because sorting is not a natural thing to do in a shader, I choose to
compute root-bounding intervals and store them in an append buﬀer.
The GPU memory for this buﬀer must be copied back to the CPU in
order to construct the (sorted) set of roots. The read-back from the GPU
is the most expensive part of the computation.
4. The GPU ﬂoating-point arithmetic might use ﬂush-to-zero semantics
for subnormals, potentially leading to diﬀerences in the sets of roots
reported by the CPU and by the GPU.
5. The number of root-bounding intervals is generally unknown, although
in this example we know that the quadratic polynomial has two roots.
The append buﬀer must be created with enough storage for the intervals;
otherwise, we may miss some intervals once the buﬀer is full. If r is a
ﬂoating-point number for which the ﬂoating-point computation of F (r)
is exactly zero, we will actually get two bounding intervals, [r
0
,r]and
[r, r
1
]wherer
0
, r,andr
1
are three consecutive ﬂoating-point numbers.
In worst case all roots lead to function values of exactly zero, so to be
safe we need the append buﬀer to have twice as many roots. In fact, the
situation can be worse when extraneous roots are generated, typically
when the GPU uses ﬂush-to-zero semantics for subnormal ﬂoating-point
numbers. If you want to ensure you have enough storage for a general
root ﬁnder, you can make multiple passes. The ﬁrst pass does not append
the intervals; rather, it keeps track of the number of intervals, storing
this counter in a
RWStructuredBuﬀer<uint> that has exactly one element.
The counter is read back to the CPU and an append buﬀer is created
to store that many intervals. The second pass uses the compute shader
as shown in Listing 7.7.
6. When a function is nearly zero, ﬂoating-point roundoﬀ errors during
function evaluation can cause a lot of spurious root-bounding intervals.
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For example, when experimenting with the minimax approximation to
the inverse sine function, I used the GPU-based exhaustive approach
to compute root bounds for g(x)andg

(x) mentioned in the minimax
construction, using 32-bit
ﬂoat. I knew from plotting the graphs that
g

(x) had three roots, but the GPU output reported approximately ﬁfty
root-bounding intervals. An analysis of the output showed that the inter-
vals were clustered about 3 diﬀerent ﬂoating-point values. The spurious
intervals were a result of sign changes caused by the rounding errors.
I performed the same experiment on the CPU and had approximately
40 root-bounding intervals reported. When I switched to 64-bit
double,
the CPU code reported 3 root-bounding intervals. I could not switch to
double on the GPU because there is no sqrt function available in double
precision. The message here is that you cannot just blindly use the GPU
output. You might have additional work to do, say, regarding clustering
of the output intervals.
7. The root-bounding intervals have
ﬂoat endpoints. If you want a higher-
precision estimate for the root, you can convert the endpoints to
double
and use bisection or Newton’s method on the CPU to polish the root.
7.3 Least Squares Fitting
A common algorithm for ﬁtting data with a parameterized function is least
squares ﬁtting. This section shows algorithms for ﬁtting of lines and planes.
A GPGPU version of plane ﬁtting is provided to show how to estimate
normal vectors of height-ﬁeld samples. The vectors can be used for lighting
or they can be used to identify ﬂat portions of the height ﬁeld. The latter is
typical of LIDAR, where lasers are used to illuminate a target and the reﬂected
light can be measured to estimate distances to the target. For example, one
might want to identify sections of roofs in a scene with LIDAR generated from
an airplane.
7.3.1 Fit a Line to 2D Points
The classical introduction to least squares ﬁtting involves ﬁtting a set of
points {(x
i
,y
i
)}
n−1
i=0
by a line y = Ax+ B. The assumption is that the y-values
are measurements that are dependent on the x-values.
The selection of A and B is based on minimizing the sum of squared
errors between the samples and the corresponding points on the ﬁtted line.
The errors are measured only in the y-direction. Deﬁne the error function
F (A, B)=

n−1
i=0
[(Ax
i
+ B) − y
i
]
2
, a nonnegative function whose graph is a
paraboloid with vertex occurring when ∇F (A, B)=(0, 0). Thus, the global
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minimum of F occurs at the vertex. The gradient equation leads to a system
of two linear equations in the unknowns A and B,namely,(0, 0) = ∇F =
2

n
i=0
[(Ax
i
+ B − y
i
](x
i
, 1). The linear system is listed next, where we use
the statistical concept of expected value of a uniformly distributed random
variable U,namely,E[U ]=(

n
i=0
u
i
)/n;

E[X
2
] E[X]
E[X]1

A
B

=

E[XY ]
E[Y ]

(7.3)
The solution to this system provides the coeﬃcients for the least squares ﬁt.

A
B

=
1
E[X
2
] −E[X]
2

E[XY ] −E[X]E[Y ]
E[X
2
]E[Y ] − E[XY ]E[X]

(7.4)
Although the construction is mathematically correct, in practice when us-
ing ﬂoating-point numbers to solve the system, ill conditioning can cause prob-
lems. Typically, the ill conditioning manifests itself via subtractive cancella-
tion; see the example presented later.
To avoid the ill conditioning, it is better to ﬁt the data with a line y − ¯y =
A(x − ¯x)+C,where¯x = E[X]and¯y = E[Y ] are the averages of the sample
channels. The error function F (A, C) for this version has zero gradient that
leads to the linear system

E[(X − ¯x)
2
] E[X − ¯x]
E[X − ¯x]1

A
C

=

E[(X − ¯x)(Y − ¯y)]
E[Y − ¯y]

(7.5)
Observe that E[X − ¯x]=0andE[Y − ¯y] = 0, so in fact the matrix of
coeﬃcients is diagonal and the last entry of the right-hand side is zero. The
solution is
A = E[(X − ¯x)(Y − ¯y)]/E[(X − ¯x)
2
],C= 0 (7.6)
and the ﬁtted line is y−¯y = A(x−¯x). The line has slope A and passes through
the average point (¯x, ¯y). Compared to the previous version, it can be shown
that B =¯y − A¯x, so mathematically the two formulations produce the same
line. However, the second formulation does not suﬀer from the ill conditioning
that the ﬁrst formulation does when computing numerically.
Listing 7.8 is a program that ﬁts a line to four samples.
int main ( )
{
// Random s a mp l es . C as e 1 : The x−va lu es are not ordered , but
// mathematically this is not required . Case 2: Swap sample[2]
// and s a m pl e [ 3 ] t o o rd e r by x−value .
int const numSamples = 4 ;
Vector2 <float> s a m pl e [ numSamples ] =
{
Vector2 <float >(1.00001252f , 156.358536 f ) ,
Vector2 <float >(1.00193310f , 180.874054 f ) ,
Vector2 <float >(1.00585008f , 147.987305 f ) ,
Vector2 <float >(1.00350296f , 189.596252 f )
} ;
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// Compute l i n e a r s ys te m element s .
float sumX = 0 . 0 f , sumY = 0 .0 f , sumXX = 0 . 0 f , sumXY = 0 . 0 f ;
float sum1 = ( float )numSamples ;
for ( int i=0; i< numSamples ; ++i )
{
sumX += sample[i ][0];
sumY += sample[i ][1];
sumXX += sample[ i ][0]∗ sample[ i ] [0 ] ;
sumXY += sample[ i ][0]∗ sample[ i ] [1 ] ;
}
Matrix2<float> A( sumXX , sumX , sumX , sum1 ) ;
Vector2 <float> B( sumXY , sumY ) ;
float det = A[ 0] [0 ]∗ A[1][1] − A[0][1]∗ A[1][0];
float invDet = 1.0 f/det ;
// Solve by computing the in verse of A f i r s t ; that is , the adjoint
// of A is divided by the determinant before the multiplication of B.
Vector2 <float> solution1 ;
solution1 [0] = (A[1][1]∗ invDet)∗B[0] − (A[0 ] [ 1 ] ∗ invDet)∗B[1];
solution1 [1] = (A[0][0]∗ invDet)∗B[1] − (A[1 ] [ 0 ] ∗ invDet)∗B[0];
// Solve by multiplying B by the adjoint of A and then dividing by
// the determinant .
Vector2 <float> solution2 ;
solution2 [0] = (A[1][1]∗ B[0] − A[0][1]∗ B[1])∗ invDet ;
solution2 [1] = (A[0][0]∗ B[1] − A[1][0]∗ B[0])∗ invDet ;
// Compute the mean of the samples and subtract before computing the
// sum of squared terms .
Vector2 <
float> mean (sumX/numSamples , sumY/ numSamples ) ;
float rsumXX = 0. 0 f ;
float rsumXY = 0. 0 f ;
for ( int i=0; i< numSamples ; ++i )
{
float dx = sampl e [ i ] [ 0 ] − mean[0];
float dy = sampl e [ i ] [ 1 ] − mean[1];
rsumXX += d x ∗ dx ;
rsumXY += d x ∗ dy ;
}
Vector2 <float> solution3(rsumXY/rsumXX, 0.0f);
// Compute the least squares error functions for the three cases .
float error1 = 0.0f , error2 = 0.0f , error3 = 0.0 f ;
float diff ;
for ( int i=0; i< numSamples ; ++i )
{
diff = solution1 [0]∗ sample[ i ][0] + solution1 [1] − sample[i ][1];
error1 += diff∗ diff ;
diff = solution2 [0]∗ sample[ i ][0] + solution2 [1] − sample[i ][1];
error2 += diff∗ diff ;
diff = solution3 [0]∗ (sample[i ][0] − mean[0]) −
(sample[i ][1] − mean[1]);
error3 += diff∗ diff ;
}
return 0;
}
LISTING 7.8: Program to illustrate ill conditioning in line ﬁtting when the
mean is not subtracted from the samples.
The linear system AS = B is ill conditioned. Recall that the inverse of a
matrix is A
−1
=adjoint(A)/ det(A). The ﬁrst approach solves the system
by computing the inverse ﬁrst and then multiplying B, S
1
= A
−1
B.The
second approach multiplies by the adjoint matrix ﬁrst and then divides by the
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TABLE 7 .1: Numerical ill conditioning for least squares
Case 1 Case 2
sumX 4.01129866 4.01129818
sumY 674.816162 674.816162
sumXX 4.02264738 4.02264738
sumXY 676.697632 676.697632
det 7.24792480e−005 7.62939453e−005
invDet 13797.0527 13107.2002
solution1 (−1360.00000, 1536.00000) (−1288.00000, 1460.00000)
solution2 (−1360.84216, 1532.63159) (−1289.59998, 1459.20007)
rsumXX 1.83162738e−005 1.83162738e−005
rsumXY −0.0246384665 −0.0246384628
solution3 (−1345.16809, 0.000000000) (−1345.16785, 0.000000000)
error1 1180.78613 1133.57544
error2 1135.34753 1163.27869
error3 1133.04541 1133.04553
determinant, S
2
=(adjoint(A)B)/ det(A). The third approach subtracts the
mean from the samples and then computes solution S
3
directly. Two cases
are presented to illustrate how sensitive the ﬁrst two approaches are to even
something as simple as swapping a pair of samples. The numerical results
are shown in Table 7.1. Solution S
3
is better than the other two, and it is
robust to swapping the order of two of the samples. Solution S
1
has integer
components due to computations that produce ﬂoating-point numbers in the
range for which the numbers are nonconsecutive integers (the numbers are
larger than 2
24
).
Using exact rational arithmetic to compute the coeﬃcients A and B
for the ﬁtted line y = Ax + B and to compute the least squares er-
ror F (A, B), and then converting to the nearest
double values, we ob-
tain A = −1345.1678879586245, B = 1517.6715721342564, and F =
1133.0455049651985.
7.3.2 Fit a Plane to 3D Points
Given a set of points {(x
i
,y
i
,z
i
)}
n−1
i=0
, where it is presumed that the z-
values are measurements that depend on the x-andy-values, a plane of the
form z = Ax + By + C may be ﬁtted to the data. The construction is similar
to that for ﬁtting 2D points by a line.
The selection of A, B,andC is based on minimizing the sum of squared
errors between the samples and the corresponding points on the ﬁtted plane.
The errors are measured only in the z-direction. Deﬁne the error function
F (A, B, C)=

n−1
i=0
[(Ax
i
+ By
i
+ C) − z
i
]
2
, a nonnegative function whose
graph is a paraboloid with vertex occurring when (0, 0, 0) = ∇F (A, B, C)=
2

n
i=0
[(Ax
i
+ By
i
+ C) −z
i
](x
i
,y
i
, 1). The linear system is listed next, where
the E[] notation refers to expected value mentioned in the section on line
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ﬁtting,
⎡
⎣
E[X
2
] E[XY ] E[X]
E[XY ] E[Y
2
] E[Y ]
E[X] E[Y ]1
⎤
⎦
⎡
⎣
A
B
C
⎤
⎦
=
⎡
⎣
E[XZ]
E[YZ]
E[Z]
⎤
⎦
(7.7)
The solution to this system provides the coeﬃcients for the least squares ﬁt.
As in the case of ﬁtting a line, the linear system can be ill conditioned. To
avoid this, it is better to ﬁt the data with a plane z−¯z = A(x−¯x)+B(y−¯y)+D,
where ¯x,¯y,and¯z are the averages of the sample channels. The error function
F (A, B, D) for this version has zero gradient that leads to the linear system
⎡
⎣
E[(X − ¯x)
2
] E[(X − ¯x)(Y − ¯y)] 0
E[(X − ¯x)(Y − ¯y)] E[(Y − ¯y)
2
]0
001
⎤
⎦
⎡
⎣
A
B
D
⎤
⎦
=
⎡
⎣
E[(X − ¯x)(Z − ¯z)]
E[(Y − ¯y)(Z − ¯z)]
0
⎤
⎦
(7.8)
The solution for (A, B) is obtained by solving a 2 ×2 linear system, and it is
the case that D = 0. The ﬁtted plane is z − ¯z = A(x − ¯x)+B(y − ¯y). The
plane has unit-length normal vector (−A, −B,1)/
√
A
2
+ B
2
+ 1 and passes
through the average point (¯x, ¯y, ¯z).
Even in the well-conditioned formulation, you can still have numerical
problems—when the 2 × 2 block of the coeﬃcient matrix is nearly singular.
This can happen if you have a collection of points that are nearly collinear,
which makes it diﬃcult to ﬁt with a plane.
If the covariance E[(X − ¯x)(Y −¯y)]] is zero, then the coeﬃcients are easily
determined because the matrix of coeﬃcients is diagonal. In particular, this
case happens on a rectangular gridofsamples,say,where(x
i
,y
j
)=(a+ci, b+
dj )for0≤ i ≤ i
max
,0≤ j ≤ j
max
, c>0, and d>0.
A practical example is provided in Section 7.3.4 with implementations both
for the CPU and GPU.
7.3.3 Orthogonal Regression
The line and plane ﬁtting previously discussed had one variable dependent
on the others. It is possible to ﬁt the points with lines and planes when all
variables are independent.
7.3.3.1 Fitting with Lines
Section 7.3.1 is about ﬁtting samples (x
i
,y
i
) with a line y = Ax + B.The
y-value is assumed to be dependent on the x-value. The least squares ﬁtting
uses errors measured in the y-direction. I refer to this as height line ﬁtting to
emphasize that errors are measured in the dependent variable (the height of
the graph). If the x-andy-values are independent variables, we may measure
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errors in the direction orthogonal to the postulated line. This is referred to as
orthogonal line ﬁtting.
Because the variables are independent, orthogonal line ﬁtting may be used
in any dimension m.Letthem-dimensional samples be {X
i
}
n−1
i=0
. The ﬁtted
line is parameterized as L(t)=A + tD where D is unit length and A is a
point on the line. The squared distance from a sample point to the line is
obtained by projecting out the D component of X
i
− A and computing the
squared length,

2
i
= |(X
i
− A) − D · (X
i
− A)D|
2
=(X
i
− A)
T
P (X
i
− A) (7.9)
where P = I −DD
T
is a projection matrix onto a plane containing the origin
and whose normal is D. The matrix has the property P
2
= P . The least
squares error function is the sum of the squared lengths,
F (A, D)=
n−1

i=0

2
i
=
n−1

i=0
(X
i
− A)
T
P (X
i
− A) (7.10)
A minimum of F must occur its derivative with respect to the components of
A is zero, namely,
0 =
∂F
∂A
= −2
n−1

i=0
P (X
i
− A)=−2P
n−1

i=0
(X
i
− A) (7.11)
Therefore, (

n−1
i=0
X
i
)/n = A + τD for some scalar τ. Regardless of choice of
τ, the right-hand side is a point on the line whose location cannot change the
value of F because the line itself is invariant regardless of its parameterization;
that is, F (A + τD, D)=F (A, D) for all τ . We might as well choose τ =0,so
A =
1
n
n−1

i=0
X
i
(7.12)
is the average of the sample points.
Deﬁne Y
i
= X
i
− A and observe that F may be factored as
F (A, D)=D
T
n−1

i=0

Y
T
i
Y I − Y
i
Y
T
i

D = D
T
SD (7.13)
where I is the identity matrix and where the last equality deﬁnes the sym-
metric matrix S. The problem is now one of minimizing a quadratic form over
the set of unit-length vectors. The minimum occurs for a unit-length vector
D whose corresponding eigenvalue is the minimum of all the eigenvalues. We
may use an eigensolver to compute D.


















[image: ]Sample Applications 361
7.3.3.2 Fitting with Planes
Section 7.3.2 is about ﬁtting samples (x
i
,y
i
,z
i
) with a plane z = Ax+By+
C.Thez-value is assumed to be dependent on the x-andy-values. The least
squares ﬁtting uses errors measured in the z-direction. I refer to this as height
plane ﬁtting to emphasize that errors are measured in the dependent variable
(the height of the graph). If the x-, y-, and z-values are independent variables,
we may measure the errors in the direction orthogonal to the postulated plane.
This is referred to as orthogonal plane ﬁtting.
Because the variables are independent, orthogonal plane ﬁtting may be
used in any dimension m.Letthem-dimensional samples be {X
i
}
n−1
i=0
.The
ﬁtted hyperplane is represented implicitly by N · (X − A)=0whereA is a
point on the hyperplane and N is a unit-length normal for the hyperplane.
The squared distance from a sample point to the hyperplane is obtained by
projecting X
i
− A onto a normal line and computing the squared length,

2
i
= |N · (X
i
− A|
2
=(X
i
− A)
T
P (X
i
− A) (7.14)
where P = NN
T
is a projection matrix onto a normal line containing the
origin and whose direction is N. The matrix has the property P
2
= P .The
least squares error function is the sum of the squared lengths,
F (A, N)=
n−1

i=0

2
i
=
n−1

i=0
(X
i
− A)
T
P (X
i
− A) (7.15)
A minimum of F must occur its derivative with respect to the components of
A is zero, namely,
0 =
∂F
∂A
= −2
n−1

i=0
P (X
i
− A)=−2P
n−1

i=0
(X
i
− A) (7.16)
Therefore, (

n−1
i=0
X
i
)/n = A + D for some vector D that is perpendicular to
N;thatis,D lies in the hyperplane. Regardless of choice of D, the right-hand
side is a point on the line whose location cannot change the value of F because
the hyperplane itself is invariant regardless of the location of its origin; that
is, F (A + D, N)=F (A, N) for all D for which D · N = 0. We might as well
choose D = 0,so
A =
1
n
n−1

i=0
X
i
(7.17)
is the average of the sample points.
Deﬁne Y
i
= X
i
− A and observe that F may be factored as
F (A, N)=N
T
n−1

i=0
Y
i
Y
T
i
N = N
T
SN (7.18)
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where the last equality deﬁnes the symmetric matrix S.Asforlines,the
problem is now one of minimizing a quadratic form over the set of unit-length
vectors. The minimum occurs for a unit-length vector N whose corresponding
eigenvalue is the minimum of all the eigenvalues. We may use an eigensolver
to compute N.
7.3.4 Estimation of Tangent Planes
The sample application
GeometricTools/GTEngine/Samples/Numerics/PlaneEstimation
shows how to estimate tangent planes to points on a bicubic B´ezier height
ﬁeld. The surface points are stored in a 32-bit RGBA texture image of size
1024 ×1024. The (x, y) values are the indices into the texture. The z-value is
computed using B´ezier control points. The tangent plane at each surface point
(x, y, f(x, y)) is estimated using a least-squares ﬁt as described previously.
The estimation is computed for a 7 × 7 neighborhood centered at (x, y). The
neighborhood size is a parameter to the shader that does the least-squares
ﬁtting, so you can experiment by modifying the size.
The points are chosen so that most of the height values are positive but
some are negative or zero. When computing the height ﬁeld, any nonpositive
value is deemed to be missing data. This makes the plane ﬁtting interesting
in that the neighborhood does not always contain forty-nine points.
The application visualizes both the surface and the normals to the surface.
Points for which the height is positive are drawn in shades of green that are
proportional to height. Missing data is drawn in solid blue. This visualization
appears in the left half of the application window. The ﬁtted planes are of the
form z = Ax+By+C and are reported as 4-tuples D(A, B, −1,C), where D is
the determinant of the covariance matrix built by the ﬁtting algorithm. In the-
ory, D>0, so you can extract unit-length normals by normalizing the 3-tuple
(DA, DB, −D)toobtainN =(A, B, −1)/
√
A
2
+ B
2
+ 1. In this example, A
and B are relatively small compared to one, so instead of pseudocoloring the
normal vectors, I pseudocolor using normalized (A, B) and then map to the
unit square [0, 1]
2
to obtain valid red and green colors. Missing data is drawn
as solid blue.
The HLSL compute shader for least-squares ﬁtting is shown in Listing 7.9.
Currently, I have the number of threads in each dimension set to eight and the
radius to three. I stripped the comments from the listing to keep the listing
short. The discussion about the shader design occurs after the listing. The
actual HLSL ﬁle has the comments embedded in it.
Texture2D<float4> positions ;
RWTexture2D<float4> planes ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( i n t 2 t : SV
DispatchThreadID)
{
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float4 position = positions [ t ];
if (position .w > 0.0 f )
{
float4 center = float4( position .xy , 0, 0);
float4 sums0 = 0.0 f ; // ( sumXX , sumXY, sumX , sumXZ)
float4 sums1 = 0.0 f ; // ( sumYX , sumYY, sumY , sumYZ)
float4 sums2 = 0.0 f ; // ( sumX, sumY, sum1 , sumZ )
int2 offset ;
[ unroll ]
for (offset.y =−RADIUS ; o f f s e t . y <= RADIUS ; ++o f f s e t . y )
{
[unroll]
for ( offset .x = −RADIUS; offset .x <= RADIUS ; ++o f f s e t . x )
{
float4 diff = positions [t + offset ] − center ;
float valid = sign( diff .w);
sums0 += valid∗ d i f f . xxxx∗ d i f f . xywz ;
sums1 += valid∗ d i f f . yyyy∗ d i f f . xywz ;
sums2 += valid∗ d i f f . xywz ;
}
}
if (sums2.z >=3.0f)
{
fl o a t 3 V0xV1 = cr o ss ( sums0 . xyz , sums1 . x yz ) ;
fl o a t 3 V1xV2 = cr o ss ( sums1 . xyz , sums2 . x yz ) ;
fl o a t 3 V2xV0 = cr o ss ( sums2 . xyz , sums0 . x yz ) ;
float determinant = dot(sums0.xyz, V1xV2);
f l o a t 3 DABC = s um s0 . w∗V1xV2 + s u m s1 . w∗V2xV0 + s u m s2 .w∗V0xV1 ;
p l a n e s [ t ] = f l o a t 4 ( DABC . x y , −d e t e r m i n a n t , DABC . z ) ;
}
else
{
planes [t ] = 0.0 f ;
}
}
else
{
planes [t] = 0.0f ;
}
} ;
LISTING 7.9: HLSL shader for least-squares plane ﬁtting.
Valid positions are of the form (x, y, z, 1), where z>0 and missing data
are of the form (x, y, 0, 0). The shader ﬁrst tests the w-component to see
whether the incoming point is valid. If not, the returned 4-tuple for the plane
is (0, 0, 0, 0) as an indication to the application that no plane is available for
a missing datum.
The center of the neighborhood is chosen to occur at (x, y)oftheincom-
ing point. For the height ﬁeld of this example, this point is the xy-mean when
the neighborhood has no missing values. However, it is only the approximate
xy-mean when the neighborhood has missing values. Subtracting the approxi-
mate xy-mean will still help us avoid the catastrophic cancellation mentioned
previously.
The covariance matrix is computed by iterating over the neighboring
points. Notice that as a 4-tuple the center is (x, y, 0, 0). When computing
the covariance matrix, we subtract the center from each neighbor. Having a
w-value of zero means that we will not destroy the validity information stored
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in the points’ w-channel. The sign of the w-channel of the diﬀerence is either
one or zero.
The summation is computed eﬃciently using vectorization. The match-
ing swizzles indicate the particular sum. For example, the swizzle pairs of
diﬀ.xxxx*diﬀ.xywz are xx, xy, xw,andxz. For valid positions, the w-channel is
one, so the pair
xw corresponds to an x-sum. For diﬀ.yyyy*diﬀ.xywz the pairs
are
yx, yy, yw,andyz. For valid positions, the w-channel is one, so the pair
yw corresponds to a y-sum. For diﬀ.xywz and valid positions, the w-channel
corresponds to a sum of the numbers one, in which case
sums2.z is the number
of valid positions in the neighborhood. No valid positions mean no estimated
plane, but to obtain a plane ﬁt we should have at least three noncollinear
points. Thus,
sums2.z needs to be at least three. Even this might not be enough
if your missing data is such that the valid neighborhood points lie on a line.
When not enough valid data is available, the returned plane is (0, 0, 0, 0) as
an indication to the application that no plane is available.
At this time we have enough valid sample points to solve the linear sys-
tem for the coeﬃcients (A, B, C). Abstractly, the system of Equation (7.7) is
MP = R,whereM is the matrix of summations, P represents the coeﬃcients
of the plane equation, and R is the right-hand-side column of summations.
The HLSL shader could explicitly solve the equation using Cramer’s rule and
scalar computations, but to take advantage of the vectorization of the cross
product, I use the following fact. We can write M as a matrix of row vectors
and the inverse as a matrix of column vectors,
M =
⎡
⎣
V
T
0
V
T
1
V
T
2
⎤
⎦
,M
−1
=
1
det(M)

V
1
× V
2
V
2
× V
0
V
0
× V
1

(7.19)
where V
i
are 3 ×1 column vectors and det(M)=V
0
· V
1
× V
2
is the deter-
minant of M.
If you were to convert the shader to using
double rather than ﬂoat,be
aware that there are no
double versions of cross or dot. You will need to write
your own. You can do so in a scalar-like manner but you could also mimic
the Intel SSE2 SIMD approach that is implemented in class
SIMD in the ﬁles
GteIntelSSE.{h,inl,cpp}.
Executing the two shaders—one for B´ezier evaluation and one for least-
squares ﬁtting—in each pass of
OnIdle leads to approximately 186 frames per
second.
7.4 P artial Sums
Given a sequence of n numbers {a
i
}
n−1
i=0
, the goal is to compute the partial
sums {s
j
}
n−1
j=0
where s
j
=

j
i=0
a
j
. Although perhaps not interesting by itself,
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FIGURE 7.1: The binary expression tree for computing partial sums on the
CPU.
applications might have partial sums as a subproblem. An example is provided
in Section 7.6 for computing the shortest path through a weighted graph on
a rectangular grid.
Computing partial sums on a CPU is simple, as shown in Listing 7.10.
float a[n] = <the numbers to sum>;
float s[n]; // t h e p a r t i a l sums
s[0] = a[0];
for ( int i=1; i< n; ++i)
{
s[i] = s[i−1] + a [ i ] ;
}
LISTING 7.10: A CPU implementation for computing partial sums.
This algorithm is sequential, because each partial sum is computed only af-
ter the previous partial sum is computed. It is possible to implement this
algorithm for the GPU using a single thread; however, n must be small, oth-
erwise the GPU execution time might exceed the maximum allowed before the
display driver must gracefully shutdown, and a single thread of execution is
deﬁnitely not recommended for hardware designed for embarrassingly parallel
computation.
To motivate how you would make better use of the GPU, note that the
CPU algorithm generates an expression tree that is binary. For example, let
n = 4. The binary tree is shown in Figure 7.1. Each interior node is a sum
of the numbers in the two child nodes to which the arrows point. The tree
represents a parenthesizing of the sums, namely, s
0
= a
0
, s
1
=(a
0
)+a
1
,
s
2
=(a
0
+ a
1
)+a
2
,ands
3
=((a
0
+ a
1
)+a
2
)+a
3
.
If we can construct a diﬀerent binary tree to represent the expression, but
one that allows us to compute in parallel, such a tree will be a good candidate
for computing the partial sums on the GPU. In fact, there are many ways to
do this, all according to dynamic programming. Deﬁne S(i, j)=

j
k=i
a
j
for
all relevant indices i and j with i ≤ j. The input numbers are a
i
= S(i, i).
We can decompose such a sum as S(i, j)=S(i, k)+S(k +1,j) for any index
k with i ≤ k and k +1 ≤ j. As is the case in dynamic programming, there
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FIGURE 7.2: A DAG for computing partial sums of four numbers.
are many subproblems we could solve but we want to select a small set of
subproblems, memoize the results, and combine them to solve the original
problem. One such approach is illustrated as a directed acyclic graph (DAG)
when n = 4, shown in Figure 7.2. Each node in the graph has two arcs
pointing to the nodes whose values are summed. The inputs are S(i, i)=a
i
for 0 ≤ i ≤ 3. The ﬁrst sums to compute are S(0, 1) = S(0, 0) + S(1, 1) and
S(2, 3) = S(2, 2) + S(3, 3). These may be computed simultaneously, so we
have our ﬁrst hint at parallelism. The next sums to compute are S(0, 2) =
S(0, 1) + S(2, 2) and S(0, 3) = S(0, 1) + S(2, 3).
The pattern of decomposing is more obvious when n =8,asshowninFig-
ure 7.3. The ﬁrst sums to compute in parallel are S(0, 1), S(2, 3), S(4, 5), and
S(6, 7). The second sums to compute in parallel are S(0, 2), S(4, 6), S(0, 3),
and S(4, 7). The third sums to compute in parallel are S(0, 4), S(0, 5), S(0
, 6),
and S(0, 7). Observe that each subset of sums has four numbers that can be
computed in parallel. If we were to compute the partial sums using the CPU
algorithm discussed ﬁrst, the number of additions is seven because the loop
executes seven times. Using the DAG approach, we use twelve additions, but
unlike the CPU algorithm, some of these happen in parallel. Each subset of
four terms are computed simultaneously, so four additions occur in a single
unit of time. We have three subsets, so eﬀectively we use three units of time for
addition on the GPU but seven units on the CPU. Of course, in practice you
have start-up costs to take into account, so as always—proﬁle your results.
The DAG pattern extends to larger n =2
m
. The decomposition is
S(2
p
x, 2
p
x +2
p−1
+ y)
= S(2
p
x, 2
p
x +2
p−1
− 1) + S(2
p
x +2
p−1
, 2
p
x +2
p−1
+ y)
(7.20)
for 0 ≤ x<2
m−p
,0≤ y<2
p−1
,andforeachp increasing from 1 to m.
This equates to m shaders called in succession, each shader having a single
group of n/2=2
m−1
threads. The CPU version of the algorithm uses n − 1
additions. The GPU version makes log
2
(n) passes, n/2 additions computed in
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FIGURE 7.3: A DAG for computing partial sums of eight numbers.
parallel per pass, so asymptotically the GPU performance is superior. That
is the theory, but as always you need to proﬁle the algorithm to measure the
real speedup.
The number of threads per dimension in a D3D11 HLSL program is limited
to 1024, so the sample code presented next is set up for n = 1024. The numbers
S(i, j) are stored in an array, but the set of relevant numbers is sparse in the
array. This allows the program to remain simple. The HLSL program can be
redesigned to handle n>1024 and to be more eﬃcient about memory usage,
but I leave this as an exercise. Listing 7.11 shows the HLSL code.
// Code contains contents of PartialSums . hlsl .
#d e f i n e NUM
X THREADS ( 1 << (LOGN−P))
#d e f i n e NUM
Y THREADS ( 1 << (P−1))
#d e f i n e TWO
P(1<< P)
#d e f i n e TWO
PM1 ( 1 << (P−1))
RWTexture2D<float> sum ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( i nt2 t : S V
GroupThreadID )
{
float input0 = sum[ int2 (TWO
P ∗ t.x, TWOP ∗ t.x + TWOPM1 − 1)];
float input1 = sum[ int2 (TWO
P ∗ t.x + TWOPM1,
TWO
P ∗ t.x + TWOPM1 + t . y ) ] ;
sum [ i nt 2 (TWO
P ∗ t.x, TWOP ∗ t.x + TWOPM1 + t . y )] = input0 + input1 ;
}
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// The applicati on code i s executed on the CPU. Create the compute shader
// objects . The diagonal of sum(∗ , ∗ ) i s s et to t he numbers whose p a r t i a l
// sums a r e re q u ir e d .
s t d : : mt19937 mte ;
std :: uniform
real distribution<float> unitRandom ( 0 .0 f , 1 .0 f ) ;
int const logn = 10;
int const n=(1<< logn );
std : : shared
ptr<ComputeShader> partialSumShader [ logn ];
std : : shared
ptr<Texture2 > sum(new Texture2 (DF R32 FLOAT, n, n));
float∗ data = sum−>GetAs<float >();
for ( int i=0; i< n; ++i)
{
data [ i + n∗ i ] = unitRandom ( mte ) ;
}
sum−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
sum−>SetCopyType ( R es ou rc e : : COPY
STAGING TO CPU ) ;
HLSLDefiner definer ;
definer . SetInt(”LOGN”, logn );
for ( int i=0; i< logn ; ++i )
{
definer . SetInt(”P”, i + 1);
partialSumShader [ i ]. reset (
ShaderFactory :: CreateCompute(”PartialSums . hlsl ”) , definer );
partialSumShader [ i]−>Set (”sum” , sum );
}
// Execute the shader . Each ca l l i nv olv es one group of threads .
DX11Engine ∗ engine = <your engine object >;
for ( int i=0; i< logn ; ++i )
{
engine−>Execute( partialSumShader [ i ] , 1, 1, 1);
}
// Read back the data . If this is one stage in a longer GPU pipeline and
// you plan on consuming the partial sums in a later stage , there is no
// need to read back the data .
engine−>CopyGpuToCpu(sum ) ;
float partialSum [n ];
for ( int i=0; i< n; ++i)
{
partial [ i] = data[0 + n∗ i]; // The e l e m en t s sum ( 0 , i ) .
}
LISTING 7.11: The HLSL program for computing partial sums of numbers.
7.5 All-Pairs Triangle Intersection
Let us look at the problem of computing whether two 3D triangles inter-
sect, a test-intersection query, so to speak. In such a query, we care only about
knowing the triangles intersect (or not). A ﬁnd-intersection query involves
computing the actual set of intersection, which in the case of two triangles is
either a point or a line segment. For simplicity, I will consider the two trian-
gles to intersect only when the set of intersection is a line segment. Such an
intersection is said to be transverse, whereas the point-contact case is said to
be tangential.
Let the ﬁrst triangle have vertices U
i
and the second triangle have vertices
V
i
for 0 ≤ i ≤ 2. The planes that contain the triangles have (not necessarily
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unit-length) normal vectors
N =(U
2
− U
0
) ×(U
1
− U
0
), M =(V
2
− V
0
) × (V
1
− V
0
) (7.21)
and the plane equations are N · (X − U
0
)=0andM · (X − V
0
)=0.
A necessary condition for the second triangle to intersect the ﬁrst is that
the second triangle must intersect the plane of the ﬁrst. A transverse inter-
section of triangle and plane requires that at least one vertex is on the side of
the plane in the direction of N and at least one vertex is on the opposite side
of the plane. In terms of the plane equation, we need d
i
0
= N ·(V
i
0
−U
0
) > 0
for some i
0
and d
i
1
= N · (V
i
1
− U
0
) < 0forsomei
1
. The remaining vertex
V
i
2
can be on either side of the plane or even on the plane itself. The edge
connecting V
i
0
and V
i
1
intersects the plane at a point P = V
i
0
+t(V
i
1
−V
i
0
)
for some t ∈ (0, 1). Because the intersection point is on the plane, we know
0=N · (P − U
0
)
= N · (V
i
0
− U
0
)+tN · (V
i
1
− V
i
0
)
= N · (V
i
0
− U
0
)+tN · ((V
i
1
− U
0
) −(V
i
0
− U
0
))
= d
i
0
+ t(d
i
1
− d
i
0
)
(7.22)
Solving for t and substituting in the parametric equation for P, the intersec-
tion point is
P =
d
i
1
V
i
0
− d
i
0
V
i
1
d
i
1
− d
i
0
(7.23)
If two edges of the triangle intersect the plane transversely, we can compute
the points of intersection using Equation (7.22), say P
0
and P
1
. In the event
that only one edge transversely intersects the plane, call the intersection P
0
,
then call the remaining vertex on the plane P
1
. In either case the line segment
of intersection has endpoints P
0
and P
1
. A direction of the line segment
is, of course, the diﬀerence of endpoints. However, a line direction is also
the cross product of normals, N × M. Choose a unit-length direction D =
N × M/|N × M|.
For the triangles to intersect transversely, we need each triangle to intersect
the plane of the other triangle, thereby producing two segments with four
endpoints: P
0
, P
1
, Q
0
,andQ
1
. Both segments must be contained by the same
line, but we do not yet know whether the segments overlap (triangles intersect)
or are separated (triangles do not intersect). For numerical robustness, choose
A to be the average of the four points. We may compute scalars s
i
and t
i
so
that P
i
= A + s
i
D and Q
i
= A + t
i
D. The triangles intersect transversely
whenever the intervals [min(s
0
,s
1
), max(s
0
,s
1
)] and [min(t
0
,t
1
), max(t
0
,t
1
)]
overlap. They do overlap when
max(s
0
,s
1
) > min(t
0
,t
1
)and max(t
0
,t
1
) > min(s
0
,s
1
) (7.24)
In fact, this is a ﬁnd-intersection query because the interval of intersection
determines the line segment of intersection of the two triangles.
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The exhaustive algorithm for determining where two triangle meshes inter-
sect is to iterate over all pairs of triangles, one from each mesh, and compute
the intersection of the two triangles of the pair. This is generally not the ap-
proach one should take when computing on a CPU, because it is extremely
slow and ineﬃcient. A spatial data structure is typically used to localize the
search for intersecting pairs. For example, a tree of bounding volumes may
be precomputed for a nondeformable triangle mesh—usually the bounding
volumes are spheres, axis-aligned boxes, or oriented boxes. The intersection
query involves testing for overlap of the root bounding volumes, one from each
tree. If they do not overlap, then the triangle meshes cannot intersect. If they
do overlap, a double recursion is applied, once for the ﬁrst tree and then for
each visited node, once for the second tree. At any time when two bounding
volumes do not overlap, the depth-ﬁrst traversal stops for those tree branches.
Assuming the meshes do intersect, you will eventually reach two overlapping
bounding volumes, each one at a leaf of a tree. Assuming that the leaf nodes
represent single triangles, at that time you can apply the triangle-triangle
intersection query. I have a description of this algorithm in [9] and a Wild
Magic sample application called
CollisionsBoundTree that implements it for two
cylinder meshes.
When you have a massively parallel GPU, you might very well have enough
computing power for all-pairs triangle intersections, assuming that the number
of triangles is not too large. The sample application that illustrates this is
GeometricTools/GTEngine/Samples/Geometry/AllPairsTriangles
The triangle-triangle intersection query described previously is implemented
in the ﬁles
TriangleIntersection.{h,cpp}. A mesh-mesh intersection query is im-
plemented both for the CPU and for the GPU. In this sample, the ﬁrst mesh
is a cylinder with 4416 triangles and the second mesh is a torus with 4608
triangles. Initially, the two meshes are not intersecting. The cylinder triangles
are drawn in blue and the torus triangles are drawn in red. You can use the
virtual trackball by left-click-and-drag to rotate the torus so that it intersects
the cylinder. When a pair of triangles intersect, the cylinder triangle is drawn
in cyan and the torus triangle is drawn in yellow. Figure 7.4 shows a screen
capture of the intersection.
The performance diﬀerence is quite noticeable on my AMD 7970 graphics
card. The GPU version runs at 175 frames per second, allowing you to rotate
the torus and see the intersection results in real time. The CPU version runs
so slowly that the frame rate counter I display always shows zero frames per
second. Thus, you might as well measure seconds per frame for the CPU.
You can certainly choke the GPU by increasing the triangle count. Possible
alternatives to improve performance are:
1. Decompose the meshes into submeshes and call the GPU triangle-
triangle intersector for each pair of submeshes.
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FIGURE 7.4: Intersection of a meshes for a cylinder and a torus.
2. Precompute a tree of bounding volumes and perform the localized search
on the CPU to generate sets of triangles that you know do intersect.
Then process those sets with the GPU triangle-triangle intersector.
3. Precompute the tree of bounding volumes on the GPU and use the GPU
triangle-triangle intersector.
I leave these alternatives as exercises.
7.6 Shortest Path in a Weighted Graph
Consider a directed graph G =(V, E), where V is the set of vertices and
E is the set of directed edges connecting vertices. Assuming V is ﬁnite, we
may index the n vertices as V = {V
i
}
n−1
i=0
and the m edges as E = {E
j
}
m−1
j=0
,
where E
j
= V
i
j
,V
k
j
 for a pair of vertices. Each edge is assigned a positive
weight w
j
. Given a beginning vertex V
b
and an ending vertex V
e
, the problem
is to compute a path from V
b
to V
e
whose sum of weights along the path is
the minimum for any path connecting the two vertices.
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Standard textbooks on algorithms (for example, [6]) discuss this type of
problem in the general context of graph algorithms. In particular, this is
known as a single-pair shortest-path problem. Variations include single-source
shortest-path (shortest paths from a beginning vertex to all other vertices),
single-destination shortest-path (shortest path to an ending vertex from all
other vertices), and all-pairs shortest-paths (shortest paths for all pairs of
vertices). Methods of solving such problems include relaxation, Dijkstra’s al-
gorithm, and the Bellman-Ford algorithm. For the single-pair shortest-path
problem in a directed acyclic graph, we can use a topological sort of the ver-
tices and compute the shortest path on order O(n+m), where n is the number
of vertices and m is the number of edges.
This section provides an example of such a problem for a graph that is a
square grid of dimensions S × S. The grid points are located at the integer
points (x, y), where 0 ≤ x<Sand 0 ≤ y<S. The directed edges starting at
(x, y) are limited to E
1
(x, y)=(x, y), (x+1,y), E
2
(x, y)=(x, y), (x, y+1),
and E
3
(x, y)=(x, y), (x +1,y+1). Each point has an associated function
value, F (x, y) > 0.
Think of the grid and function values as an image that represents a terrain
where the function values are altitude (height). To walk between two points
on the terrain with minimum eﬀort, you want to minimize the total change
in altitude. For example, if you are at a point facing a tall mountain peak
and you want to get to a point directly ahead but on the other side of the
mountain, you have the option of walking straight up the mountain, over the
top, and down to your destination. Climbing can be a lot of eﬀort, so you
can instead try to walk around the mountain because the path keeps you on
relatively ﬂat terrain. However, if the path around the mountain is on the
order of ten kilometers but the path up and over the mountain is on the
order of one kilometer, it is not clear which path minimizes your eﬀort. On
a small scale, you will consider the altitudes between your current location
and a location to which you want to walk taking into account the distance
between the locations.
In the abstract, the weight w assigned to an edge of the grid is the
sum of the altitudes along the straight-line path connecting the vertices
but multiplied by the length of the path. In the continuous formulation,
consider vertices (x
0
,y
0
)and(x
1
,y
1
) and the linear path connecting them,
(x(t),y(t)) = (x
0
,y
0
)+t(x
1
,y
1
)fort ∈ [0, 1]. The weight is an integral that
we can approximate using the trapezoid rule,
w =

(x
1
− x
0
)
2
+(y
1
− y
0
)
2
%
1
0
F (x(t),y(t)) dt
.
=

(x
1
− x
0
)
2
+(y
1
− y
0
)
2
(F (x
0
,y
0
)+F (x
1
,y
1
)) /2
(7.25)
where the right-hand side is an application of the trapezoid rule for approxi-
mating an integral. Thus, the weights w
i
associated with the edges E
i
deﬁned
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FIGURE 7.5: The directed edges from a point in the grid graph. Each vertex
stores the altitude F (x, y) and the weights w
1
(x, y), w
2
(x, y), and w
3
(x, y).
previously are
w
1
(E
1
)=(F (x, y)+F (x +1,y)) /2
w
2
(E
2
)=(F (x, y)+F (x, y +1))/2
w
3
(E
3
)=(F (x, y)+F (x +1,y+1))/
√
2
(7.26)
Figure 7.5 shows point (x, y) and the three neighbors to which you can walk.
The weights are labeled with the beginning point, indicating that a data struc-
ture for the vertex at (x, y) stores the altitude F (x, y) and three weights
w
1
(x, y), w
2
(x, y), and w
3
(x, y) for the outgoing edges.
The beginning vertex for our example is (0, 0) and the ending vertex is
(S − 1,S − 1). We need to compute a path of minimum total weight. I will
refer to the sum of weights for a path between two vertices as the distance
between the vertices, but keep in mind this is not the Euclidean distance
between the xy-values. Let d(x, y) denote the distance from (0, 0) to (x, y).
The vertices are sorted topologically in the sense that a vertex located at
(x, y) also has three incoming edges, as shown in Figure 7.6. If the distances
d(x −1,y−1), d(x −1,y), and d(x, y −1) are known, we can compute d(x, y)
in a recursive manner as
d(x, y)=min
⎧
⎨
⎩
d(x − 1,y)+w
1
(x − 1,y),
d(x, y − 1) + w
2
(x, y − 1),
d(x − 1,y−1) + w
3
(x − 1,y− 1)
⎫
⎬
⎭
(7.27)
Initially we know that d(0, 0) = 0; that is, the distance from a vertex to
itself is zero. The recursion in Equation (7.27) requires us to know the distance
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FIGURE 7.6: The directed edges to a point in the grid graph.
for the three predecessors show in Figure 7.6. Consequently, we must compute
next the values d(x, 0) for 1 ≤ x<Sand d(0,y)for1≤ y<S. Finally, we
can compute d(x, y)forx ≥ 1andy ≥ 1, but not just at any selected (x, y).
The distance computation eﬀectively is a breadth-ﬁrst process. Once we know
the distance at the top and left edges of the grid, we can solve for distances
along grid lines of the form x + y = z for 2 ≤ z ≤ 2(S − 1), as shown in
Figure 7.7. Once we have computed the distances for all grid points on a line
x + y = z, we can use those distances for computing grid points on the next
line x + y = z +1. For z = 2, we have previously computed d(2, 0) and d(0, 2),
z=2
z=3
z=4
z=5
z=6
z=7
z=8
x
y
FIGURE 7.7: The breadth-ﬁrst update of distances in a 5 × 5grid.
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so we need only compute d(1, 1). For z = 3, we must compute d(1, 2) and
d(2, 1). Pseudocode for the breadth-ﬁrst search on an S × S grid is shown in
Listing 7.12.
d(0 ,0) = 0;
for (x = 1; x < S; ++x)
{
d(x,0) = d(x−1,0) + w1(x−1,0);
}
for (y = 1; y < S; ++y)
{
d(0,y) = d(0,y−1) + w2 (0 , x −1);
}
for (z = 2; z < S; ++z)
{
for (x = 1, y = z−x; y > 0; ++x , −− y)
{
d1 = d ( x −1, y) + w1 ( x −1, y );
d2 = d ( x , y −1) + w2( x , y −1);
d3 = d ( x −1, y−1) + w3( x −1,y −1);
d(x, y) = min(d1,d2 ,d3);
}
}
for (z = S; z <=2∗ (S−1); ++z )
{
for (y = S−1, x = z−y; x < S; −− y, ++x)
{
d1 = d ( x −1, y) + w1 ( x −1, y );
d2 = d ( x , y −1) + w2( x , y −1);
d3 = d ( x −1, y−1) + w3( x −1,y −1);
d(x, y) = min(d1,d2 ,d3);
}
}
LISTING 7.12: Breadth-ﬁrst update of distances in an S ×S grid.
It is not suﬃcient to compute the distances. We need to keep track of the
actual path. Whatever weight was used in computing the minimum distance,
its grid location must be stored. The data structure for each grid point is
therefore
struct Node
{
float distance ;
int xPrevious , yPrevious ;
} ;
At (0, 0), the previous location is set to (−1, −1) as a ﬂag indicating there is
no previous neighbor. For x>0, the previous location for (x, 0) is (x − 1, 0).
For y>0, the previous location for (0,y)is(0,y− 1). For x>0andy>0,
the innermost loop logic must be replaced by
dmin = d(x −1, y ) + w1(x −1, y ) ;
previousmin = (x−1, y ) ;
dcandidate = d(x ,y−1) + w2( x , y −1);
if ( dcandidate < dmin )
{
dmin = dcandidate ;
previousmin = (x ,y−1);
}
dcandidate = d(x−1, y−1) + w3( x−1,y −1);
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if ( dcandidate < dmin )
{
dmin = dcandidate ;
previousmin = (x−1, y −1);
}
d(x,y) = dmin;
previous(x,y) = previousmin ;
Once the distances have been computed, the path is generated by
stack<intpair> path ;
x=S− 1; y = S − 1;
while (x != −1&&y != −1)
{
path . push ( x , y ) ;
(x, y) = previous(x, y);
}
and you can pop the stack to visit the path nodes from (0, 0) to (S −1,S−1).
The algorithm for shortest path is straightforward to implement for the
CPU. However, implementing a GPU version that has decent performance
is more diﬃcult. The ﬁrst problem is implementing the partial sums via the
loops for d(x, 0) and d(0,y). A single GPU thread could be dedicated per
loop, but that sequential operation is not eﬃcient. Instead, we can use the
dynamic programming solution discussed in Section 7.4. The second problem
is implementing the inner loops of the z-loops. Because of the dependency
that the z + 1 line cannot be computed until the z line is computed, we
do not have much workload that can be distributed across GPU threads.
Fortunately, though, the order of computation in the inner loops is irrelevant,
so each distance d(x, y) on a line x + y = z can be computed in parallel with
the others. Thus, we can take advantage of some parallelism, but the GPU is
not fully utilized.
The sample algorithm that implements both the CPU and GPU versions
is
GeometricTools/GTEngine/Samples/Geometry/ShortestPath
A height ﬁeld (for the altitudes) of size 512 × 512 is generated from a bicubic
polynomial and then perturbed by small random numbers. This could be done
on the CPU, but I have chosen to create it on the GPU. The values must be
read back to the CPU in order for the CPU-based shortest-path algorithm to
consume it. The GPU version has quite a few shaders to create in order to use
the partial-sum algorithm and have the results for d(x, 0) stored in the ﬁrst
row of a distance texture and the results for d(0,y) stored in the ﬁrst column of
the same texture. Also, a previous texture is required, a two-channel integer-
valued texture whose ﬁrst row and ﬁrst column must be initialized properly.
The z-line shader has a constant buﬀer that stores the starting (x, y)and
the number of pixels on that line to update. This buﬀer is updated for each
z-value in the loops.
The height ﬁeld is recomputed each frame. The performance measurements
are comparable for my AMD 7970 graphics card. The CPU performance is 57





[image: ]Sample Applications 377
frames per second and the GPU performance is 60 frames per second. This
is not that signiﬁcant a speed up. However, the need for a shortest-path al-
gorithm with the grid as described here arose in a stereo vision application.
Signals (digital curves) for two corresponding scan lines in rectiﬁed left and
right images needed to be matched to locate corresponding points. The func-
tion F (x, y) was a cost function for matching a point (and neighborhood) at
row-index x on the left signal to a point (and neighborhood) at row-index y
on the right signal. The cost function is expensive to compute on a CPU, so
it was computed instead on the GPU; this is why I recompute the height ﬁeld
in the sample application—to mimic the vision application. Reading back the
results to the CPU, computing the shortest path on the CPU, and uploading
the path to the GPU for downstream computations was not an option be-
cause we wanted the vision computations to stay always on the GPU. This is
an example of the performance guidelines I mentioned in Section 5.3.3: it is
not always necessary to have each task in a GPU-based application run faster
than its counterpart on the CPU. The important performance measurement
is end-to-end speed.
7.7 Convolution
Consider a 2D image, whether color or grayscale, that must be ﬁltered by
convolution. This process computes a pixel at location (x, y) in the output
image as a weighted sum of pixels in a rectangular region centered at (x, y)in
the input image. Let the input image be represented as an N
0
×N
1
array with
elements A
i
0
,i
1
,where0≤ i
0
<N
0
and 0 ≤ i
1
<N
1
. The output image is
the same sized array and has elements B
i
0
,i
1
. The weights are represented as
a(2M
0
+1)×(2M
1
+ 1) array with elements W
j
0
,j
1
where 0 ≤ j
0
≤ 2M
0
and
0 ≤ j
1
≤ 2M
1
. For simplicity, the weight array is chosen with odd dimensions.
The convolution of image A with weights W is
B
i
0
,i
1
=
M
0

j
0
=−M
0
M
1

j
1
=−M
1
W
j
0
+M
0
,j
1
+M
1
I
i
0
+j
0
,i
1
+j
1
(7.28)
The typical example is blurring using a radially symmetric Gaussian dis-
tribution to generate the weights in a square ﬁlter of size 2M +1,
G(x, y, σ)=
1
2πσ
2
exp

−
x
2
+ y
2
2σ
2

(7.29)
where σ
2
is the variance and the mean is (0, 0). The distribution is formulated
in terms of continuous variables but you need the weights on a discrete grid.
Therefore, you need a relationship between the desired standard deviation σ
and M ; see the discussion later in this section about one way to do this.
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The sample application
GeometricTools/GTEngine/Samples/Imagics/Convolution
shows several methods for computing a convolution for a 2D image. Two of
these compute the convolution natively in 2D. Three of these use the fact that
the Gaussian distribution is separable:
G(x, y, σ)=
1
√
2πσ
2
exp

−
x
2
2σ
2

1
√
2πσ
2
exp

−
y
2
2σ
2

= g
0
(x, σ)g
1
(y, σ)
(7.30)
where the last equality deﬁnes the functions g
0
and g
1
. In continuous terms
with images deﬁned for all real numbers, the convolution is deﬁned by
B(x, y)=[G ⊗I](x, y)=

∞
−∞

∞
−∞
G(u, v)I(x − u, y − v) du dv (7.31)
Turns out that separability means you can convolve with each of the functions
in the factorization,
B(x, y)=[G ⊗ I](x, y)=[g
1
⊗ [g
0
⊗ I]](x, y) (7.32)
In discrete terms, the convolution of an image with a separable ﬁlter of size
N ×M is equivalent to convolving ﬁrst with a ﬁlter of size N ×1andthenby
a ﬁlter of size 1 ×M. The number of arithmetic operations is greatly reduced,
so it is more eﬃcient to use separability. The sample application demonstrates
this and shows the frame rates associated with each method.
The sample application also shows how to use group-shared memory in a
compute shader. The memory is declared using an identiﬁer
groupshared,and
it is shared by all threads in the thread group currently executing. In image
processing algorithms such as convolution, the neighborhood image lookups
can be a bottleneck in the memory system. A large amount of time is spent on
looking up the same pixel value but in diﬀerent threads when those threads
all need access to the pixel. The idea of group-shared memory is to allow each
thread to load one image value, have all threads wait until the entire group
has loaded its values (via a synchronization call), and then proceed with the
computations by accessing values in group-shared memory.
Listing 7.13 shows the straightforward implemention of a convolution of
an image with a ﬁlter kernel of size (2R +1)× (2R + 1) where the radius
R>0.
cbuffer Weights { float weight[2∗R+1][2∗R+1]; } ;
Texture2D<float4> input ;
RWTexture2D<float4> output ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( i nt2 dt : SV
DispatchThreadID)
{
float4 result = 0.0f ;
for ( int y=−R; y <=R; ++y)
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{
for ( int x=−R; x <=R; ++x)
{
r e s u l t += w e i g h t [ y+R ] [ x+R ] ∗ input[ dt+int2(x ,y )];
}
}
output [ dt ] = r es ul t ;
}
LISTING 7.13: Convolution with a square ﬁlter kernel.
The ﬁlter kernel weights are supplied via a constant buﬀer. The default HLSL
packing rules will store each weight in the x-swizzle of a register, so the con-
stant buﬀers uses (2R+1)
2
registers and the application must pack the weights
accordingly. Each thread will load all (2R +1)
2
image values in the neigh-
borhood centered at the thread ID
(dt.x,dt.y).Noattemptismadetoavoid
accessing the input image using out-of-range indices. According to the HLSL
speciﬁcations for the
ld instruction for a texture, out-of-range reads will re-
turn zeroed memory. If you execute this shader for a large radius, you will
see darkening around the blurred image boundary. The zeroed memory is
averaged with the image values, causing the darkening.
We do not know the order of execution of threads, but imagine that if
thread
(dt.x + 1, dt.y) were to execute immediately after thread (dt.x,dt.y),we
would again load (2R +1)
2
image values. However, only (2R +1) of them
are new compared to the previous set, so will have loaded redundantly many
image values from memory to registers. In an attempt to avoid the redundant
loads, you may use group-shared memory. Listing 7.14 shows a shader that
does so.
cbuffer Weights { float weight[2∗R+1][2∗R+1]; } ;
Texture2D<float4> input ;
RWTexture2D<float4> output ;
groupshared float4 samples [NUM
Y THREADS + 2 ∗ R][NUMX THREADS + 2 ∗ R];
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( i nt2 dt : S V
DispatchThreadID , in t2 gt : SV GroupThreadID )
{
// Load the texels from the input texture , store them in group−shared
/ / memory , an d h ave a l l t hre a d s i n the group wait u n t i l a l l t e x e l s
// a r e l o a d e d .
samples [ gt.y + R][ gt. x + R] = input [dt ];
if (gt.y >=R)
{
if (gt.y < NUM
Y THREADS − R)
{
if (gt.x >=R)
{
if (gt.x < NUM
X THREADS − R)
{
// No extra inputs to load .
}
else
{
samples [ gt . y+R] [ gt . x+2∗R] = input[dt+int2(+R,0)];
}
}
else
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{
samples [ gt.y+R][ gt.x] = input[ dt+int2(−R,0)];
}
}
else
{
if (gt.x >=R)
{
if (gt.x < NUM
X THREADS − R)
{
samples [ gt . y+2∗R][ gt .x+R] = input [dt+int2(0,+R)];
}
else
{
samples [ gt . y+2∗R][ gt.x+2∗R] = input[dt+int2(+R,+R)];
samples [ gt . y+2∗R][ gt .x+R] = input [dt+int2(0,+R)];
samples [ gt . y+R] [ gt . x+2∗R] = input[dt+int2(+R,0)];
}
}
else
{
samples [ gt . y+2∗R][ gt .x] = input [dt+int2(−R,+R ) ] ;
samples [ gt . y+2∗R][ gt .x+R] = input [dt+int2(0,+R)];
samples [ gt.y+R][ gt.x] = input[ dt+int2(−R,0)];
}
}
}
else
{
if (gt.x >=R)
{
if (gt.x < NUM
X THREADS − R)
{
samples [ gt.y ][ gt. x+R] = input [dt+int2(0,−R)];
}
else
{
samples [ gt . y ] [ gt . x+2∗R] = input [dt+int2(+R,−R)];
samples [ gt.y ][ gt. x+R] = input [dt+int2(0,−R)];
samples [ gt . y+R] [ gt . x+2∗R] = input [dt+int2(+R,0)];
}
}
else
{
samples [ gt.y ][ gt. x] = input [dt+int2(−R, −R)];
samples [ gt.y ][ gt. x+R] = input [dt+int2(0,−R)];
samples [ gt.y+R][ gt.x] = input [dt+int2(−R,0)];
}
}
GroupMemoryBarrierWithGroupSync ( );
float4 result = 0.0f ;
for ( int y=0; y<=2∗R; ++y)
{
for ( int x=0; x<=2∗R; ++x)
{
result += weight[y][x] ∗ samples [ gt . y+y ] [ gt . x+x ] ;
}
}
output [ dt ] = r es ul t ;
}
LISTING 7.14: Convolution with a square ﬁlter kernel and using group-
shared memory.
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You will notice that the shader program is much longer than the direct
approach. The ﬁrst part of the program loads the input image values to group-
shared memory. But why is this so complicated? The test image is 1024×768.
For the sake of simplicity in the presentation, suppose R = 1 in which case we
are convolving with a 3 × 3 kernel. Suppose that the number of x-threads is
512 and the number of x-groups is 2. To produce an output at pixel (x
0
,y
0
)
requires accessing pixels with x-value satisfying x
0
−R ≤ x ≤ x
0
+R and with
y-value satisfying y
0
− R ≤ y
0
+ R.If(x
0
,y
0
) is within R pixels of the pixels
represented by the thread group, we would access neighborhood values outside
that set of pixels. Thus, the group-shared memory
samples must be larger
than the number of group threads in order to store the image values outside
the group. The nested if-then-else statements are designed to distribute the
loading responsibility among those pixels near the group boundaries. This is
preferable to assigning the responsibility of a large number of loads to a small
number of threads because threads not loading a lot of data will be stalled
until the other threads can load theirs.
The function
GroupMemoryBarrierWithGroupSync is for synchronization and
speciﬁes that all threads in the group wait until they get to that point in
the code. Once they do, all data in the thread group has been loaded into
samples and each thread can read the shared memory as needed to compute
its weighted sum.
Now you might ask why bother choosing more than one x-group. The
problem is that in D3D11, group-shared memory is limited to 32,768 bytes
and the number of threads in a group is limited to 1024. In most cases you
have to decompose the domain into small groups so that the shared data ﬁts
in memory. In Listing 7.14, we need
(NUM X THREADS+2∗R)∗ (NUM Y THREADS+2∗R) <= 32768/ sizeof ( float ) = 2048
In the application code, I selected the number of x-threads and y-threads each
to be sixteen and the radius can be no larger than eight. The radius eight case
uses 16,384 bytes of shared memory.
The application also implements a shader that uses the separability of
the Gaussian kernel. Two passes are required, one for a convolution with a
(2R +1)×1 ﬁlter and one for a convolution with a 1 ×(2R + 1) ﬁlter. Listing
7.15 shows the HLSL code.
cbuffer Weights { float weight[2∗R+1 ]; } ;
Texture2D<float4> input ;
RWTexture2D<float4> output ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void HorizontalPass( int2 dt : SV
DispatchThreadID)
{
float4 result = 0.0f ;
for ( int x=−R; x <=R; ++x)
{
r e s u l t += w e i g h t [ x+R ] ∗ input [dt+int2(x ,0)];
}
output [ dt ] = r es ul t ;
}
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[ numthreads (NUM X THREADS , NUM Y THREADS , 1 ) ]
void VerticalPass( int2 dt : SV
DispatchThreadID)
{
float4 result = 0.0f ;
for ( int y=−R; y <=R; ++y)
{
r e s u l t += w e i g h t [ y+R ] ∗ input [dt+int2 (0,y )];
}
output [ dt ] = r es ul t ;
LISTING 7.15: Convolution with a square ﬁlter kernel and using separabil-
ity.
The code is concise and runs faster than the code in Listings 7.13 and 7.14. I
have also implemented the separable ﬁlters using group-shared memory, but
I will not include the code here.
As always, you want to proﬁle the results. Using simple frame rates (in
convolutions per second), Table 7.2 is a comparison of the implementations.
The method is 0 for Listing 7.13, 1 for Listing 7.14, and 2 for Listing 7.15.
Method 3 is a convolution using separability and group-shared memory where
the number of x-groups is 1. Method 4 is a convolution using separability
and group-shared memory where the number of x-groups is 4. The numbers
were somewhat surprising when comparing a method with and without group-
shared memory. I expected the group-shared performance to be better for large
radii. The only win for shared memory appears to be for 2D convolution with
radius one. Apparently, the memory reads for the AMD 7970 are good enough
that the
groupshared mechanism does not help in this application. You should
compare the methods anyway on other hardware.
In this example, the hope for group-shared memory was to avoid redundant
memory lookups. Shared memory can be used also to cache numbers that are
expensive to compute; that is, if you had to recompute expressions many
times, causing a bottleneck in the scalar or vector arithmetic logic units, you
should consider storing them in shared memory.
A ﬁnal concept about convolution with square ﬁlter kernels is in order. The
Gaussian kernel is separable. Thinking of the kernel as a (2R +1)×(2R +1)
matrix M, the matrix can be factored as M = VV
T
where V is a (2R +1)×1
vector. A 2D convolution by M may be obtained by convolving with V
T
TABLE 7 .2: Performance comparisons for convolution implementations
radius method 0 method 1 method 2 method 3 method 4
1 2834 3012 2238 1746 1750
2 2407 1860 2245 1743 1773
3 1442 1168 2233 1830 1929
4 1045 779 2275 1804 2086
5 701 544 2305 1705 1948
6 545 396 2244 1584 1780
7 399 306 2135 1495 1530
8 323 241 2033 1396 1500
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(horizontal pass) and convolving the result with V (vertical pass). The vector
V has symmetry to it. If v
i
are the components of V for 0 ≤ i ≤ 2R, then the
center element is v
R
and v
R+j
= V
R−j
for 0 ≤ j ≤ R. As a consequence, M
is symmetric about its center; I will use the term fully symmetric to describe
M.Ifm
i,j
are the elements of M for 0 ≤ i ≤ 2R and 0 ≤ j ≤ 2R,then
m
R+j,R+k
= m
R−k,R−
for 0 ≤ k ≤ R and 0 ≤  ≤ R. For example, consider
R =2andσ =0.538079560; then the vector is the following, written as a
tuple
V =(0.00073656, 0.13098156, 0.73656368, 0.13098156, 0.00073656) (7.33)
and the matrix is
M =
⎡
⎢
⎢
⎢
⎣
0.00000054 0.00009647 0.00005425 0.00009647 0.00000054
0.00009647 0.01715617 0.09647627 0.01715617 0.00009647
0.00005425 0.09647627 0.54252612 0.09647627 0.00005425
0.00009647 0.01715617 0.09647627 0.01715617 0.00009647
0.00000054 0.00009647 0.00005425 0.00009647 0.00000054
⎤
⎥
⎥
⎥
⎦
(7.34)
If you were given a (2R+1)
2
fully symmetric matrix M without knowledge
of how it was generated, how can you factor it in order to take advantage of
separability? As it turns out, not all fully symmetric matrices can be factored
into a product of a vector with itself. To see this, consider
M =
⎡
⎣
aba
bcb
aba
⎤
⎦
?
=
⎡
⎣
u
v
u
⎤
⎦

uvu

=
⎡
⎣
u
2
uv u
2
uv v
2
uv
u
2
uv u
2
⎤
⎦
(7.35)
where the question mark suggests it might or might not be possible to equate
the left-hand and right-hand sides. For equality to occur, we need a ≥ 0and
c ≥ 0. This already places constraints on the elements of M, so not all fully
symmetric matrices can be factored this way. As an attempt to allow negative
a or c, we could introduce a scalar factor σ<0 on the right-hand side so that
a = σu
2
and c = σv
2
; however, it is clear that the signs of a and c must agree.
AmatrixM with a = −1andc = 1 cannot be factored as desired. When a
and c are nonnegative, we obtain u =
√
a, v =
√
c,andb =
√
ac which implies
b ≥ 0; however, if b<0, we can choose u or v to be the negative square root.
It is possible, though, to factor M into a linear combination of at most R+1
vector products. The matrix is symmetric in the classical linear algebraic sense,
M
T
= M,soithas(2R + 1) linearly independent unit-length eigenvectors,
say, U
i
for 0 ≤ i ≤ 2R, and corresponding eigenvalues λ
i
. The eigenvalues are
not necessarily distinct; in fact, zero is an eigenvalue of algebraic multiplicity
at least R.Thematrixcanbe decomposed into
M =
2R

i=0
λ
i
U
i
U
T
i
(7.36)
which is derivable algebraically from MR = RD,whereR is a rotation matrix
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whose columns are the U
i
and D is a diagonal matrix whose diagonal entries
are the corresponding eigenvalues. Let the eigenvalues be ordered so that the
zero eigenvalues occur from indices n to 2R,wheren ≤ R;then
M =
n−1

i=0
λ
i
U
i
U
T
i
(7.37)
The convolution of M with an image can be computed by convolving the image
2n times and then summing outputs. The input image is convolved with U
i
(horizontal pass) and then U
T
i
(vertical pass), the result stored in an output
image T
i
. The ﬁnal output image T is the linear combination T =

n−1
i=0
λ
i
T
i
.
For example, the derivative-like ﬁlter
M =
⎡
⎣
−1 −2 −1
−212−2
−1 −2 −1
⎤
⎦
= λ
0
U
0
U
T
0
+ λ
1
U
1
U
T
1
(7.38)
where λ
0
=5+
√
57, λ
1
=5−
√
57, and
U
0
=
(2, −7 −
√
57, 2)
)
8+(7+
√
57)
2
, U
1
=
(2, −7+
√
57, 2)
)
8+(7−
√
57)
2
(7.39)
More factorizations for 5 × 5 general matrices (not necessarily fully sym-
metric) are proved in the PhD dissertation [24], where M is a sum of products
with terms not necessarily generated by vector products. The hope is that a
linear combination by convolutions of smaller ﬁlters will perform faster than
a convolution by the original ﬁlter.
7.8 Median Filtering
Consider a 2D grayscale image that has a small number of pixel values that
you wish to modify because they are extremely large or small compared to
what you expect pixel values to be. For example, you might have a generally
dark image that contains a small number of very bright pixels. At ﬁrst you
might consider using convolution with a ﬁlter kernel that performs a weighted
average in each pixel’s neighborhood to produce an output image for which
the noise has been visually reduced. However, if a pixel is very bright and its
neighbors very dark, a weighted average might not be enough to remedy the
contrast at that pixel.
Instead, we can apply a rank-order ﬁlter that sorts the neighborhood of
pixels by intensity and chooses as output one of the ordered values in a spec-
iﬁed location. The most common is to choose the median of the pixel values.
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The idea is that the very bright or very dark pixels are outliers and the sorting
places them at the tail ends of the sorted pixels. Selecting the median reduces
greatly the chance that a noisy pixel will still remain in the neighborhood in
the output image.
Although the output is via selection, the rank-order ﬁlters are image
smoothers just as weighted-average convolution ﬁlters are when you apply
them repeatedly to an image. This is no surprise, because for sets of num-
bers with not a lot of variation of intensity, the mean and the median are
similar. In fact, the ﬁxed-point sequences from the repeated application of a
one-dimensional median ﬁlter are completely known [7].
Rank-order ﬁlters may be extended by computing the output to be
a weighted average of the ordered neighbors, but these ﬁlters are also
smoothers. A more sophisticated extension is a weighted majority minimum
range (WMMR) ﬁlter [22]. A set of N + 1 nonnegative weights are chosen
that sum to one. After sorting a neighborhood of (2N + 1) intensities, the
weighted average is computed for each subset of N + 1 contiguous numbers.
There are N +1 such averages, the minimum chosen as the output of the ﬁlter.
The ﬁxed-point sequences from the repeated application of one-dimensional
WMMR ﬁlter are also completely known. These demonstrate that the ﬁlter
has smoothing behavior in regions where the intensities have small variation
but has edge-preserving behavior in regions where the intensities have large
variation.
In this section I discuss how to implement median ﬁltering on two-
dimensional images for high performance on the GPU. The sample application
is
GeometricTools/GTEngine/Samples/Imagics/MedianFiltering
The WMMR ﬁlters may also be implemented on the GPU, but the implemen-
tations are not provided here. The median ﬁltering is implemented for 3 × 3
and 5 × 5 neighborhoods using repeated applications of the min and max op-
erators. The 3 × 3 approach is discussed in Median Finding on a 3-by-3 Grid
by Alan Paeth in [13]. An optimal extension to 5 × 5 neighborhoods is not
immediately obvious from the 3 × 3 case. For comparison, a shader program
that uses an insertion sort for the neighborhood is provided. The min-max
approach clearly outperforms the insertion sort approach.
7.8.1 Median by Sorting
I used an insertion sort for computing the median value of a neighborhood
of dimensions (2R +1)×(2R +1), whereR is the radius of the neighborhood.
Listing 7.16 contains the HLSL code.
#d e f i n e SIZE ( 2 ∗RADIUS+1)
#d e f i n e NUM
DATA ( S I Z E ∗SIZE )
Texture2D<float> input ;
RWTexture2D<float> output ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
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void CSMai n ( i nt2 dt : SV DispatchThreadID)
{
// Load the neighborhood of the pixel .
float data [NUM
DATA ] ;
int i=0;
int2 offset ;
[ unroll ]
for (offset.y =−RADIUS ; o f f s e t . y <= RADIUS ; ++o f f s e t . y )
{
[ unroll ]
for (offset.x =−RADIUS ; o f f s e t . x <= RADIUS ; ++o f f s e t . x )
{
data[ i ] = input [dt + offset ];
++ i ;
}
}
// Use an i ns er ti o n s or t to lo cate the median value .
for ( int i0 = 1; i0 < NUM
DATA ; + +i 0 )
{
float value = data [ i0 ];
int i1 ;
for (i1 = i0; i1 > 0; −− i1)
{
if (value < data [ i1 − 1])
{
data [ i1 ] = data [ i1 − 1];
}
else
{
break ;
}
}
data [ i1 ] = value ;
}
output [ dt ] = data [NUM
DATA / 2 ] ;
}
LISTING 7.16: A shader that uses insertion sort to compute the median.
The radius and number of x-andy-threads is provided via an
HLSLDeﬁner
object in the application code. The ﬁrst pair of loops has compact code for
reading the neighborhood of the pixel, but the
unroll directives cause the HLSL
compiler to generate sequential code for loading the values. The second pair of
loops is standard code for an insertion sort of a set of numbers. I unit-tested
the code by applying the ﬁlter on the GPU, reading back the output image,
and comparing to an output image generated by the same code on the CPU. I
also compared the insertion sorts of neighborhoods to sorted values obtained
by
std::sort. On my AMD 7970 graphics card for a 1024×1024 image, the 3×3
ﬁlter runs at 1370 frames per second and the 5 ×5 ﬁlter runs at 60 frames per
second.
I also added
unroll directives to the loops of the insertion sort, but the
output was incorrect in both cases. The Microsoft Direct3D shader compiler
version is 6.3.9600.16384. I did not investigate further to determine the cor-
rectness (or not) of the generated assembly instructions. When you unroll the
loop manually, you have a long sequence of nested if-then expressions, so even





Sample Applications 387
if the loop were to be unrolled correctly, you have a lot of branching that can
occur. Most likely that branching is as expensive as the loop construct.
7.8.2 Median of 3 × 3 Using Min-Max Operations
To avoid branching and looping in the shader, the key observation is that
if you have a set S of 2n + 1 numbers, any subset T of n +2 numbers has
the property min(T ) ≤ median(S) ≤ max(T ). The proof is by contradiction.
Suppose that median(S) < min(T ). If you were to sort S,say,x
0
≤ ··· ≤
x
n
≤ ··· ≤ x
2n
,thenx
n
=median(S). However the n + 2 elements of T ,
presumed to be larger than x
n
must be in the sorted set as x
n−1
through
x
2n
, which overlaps x
n
, a contradiction. Similarly, if it were the case that
median(S) > max(T ), then the n + 2 elements of T must be in the sorted set
as x
0
through x
n+1
, which overlaps x
n
and is again a contradiction.
A3× 3 neighborhood has 2n +1=9numbers(n =4).Ifwechoose
a subset T of n + 2 = 6 numbers and locate the minimum and maximum
without fully sorting T , we can discard those numbers because they cannot be
the median. This leaves us with a set of seven numbers. We can repeat the
process and discard two more numbers, leaving us with a set of ﬁve numbers,
and then again leaving us with a set of three numbers. The median is obtained
by ordering the three numbers and selecting the middle one.
The algorithm for locating the minimum and maximum is performed
within the array. We swap elements so that the minimum bubbles toward
the beginning of the array and the maximum bubbles toward the end of the
array. Only swapping is allowed, because elements that are not the extreme
must be preserved for repetition of the algorithm on the next smallest set. Al-
though a direct GPU implementation may manipulate the subsets as arrays
of scalars
ﬂoat, we can additionally take advantage of vectorization and store
the numbers in 4-tuples
ﬂoat4. This allows us to perform swaps of the channels
of
ﬂoat4 numbers in parallel.
The nine elements of the neighborhood are stored in three
ﬂoat4 tuples
where only the ﬁrst channel of the last tuple is used. Although we can set
up the
ﬂoat4 values manually by assigning one channel at at time, the HLSL
compiler will unroll a double loop and set up the swizzling properly. Listing
7.17 shows the HLSL code for this.
void LoadNeighbors (
in Texture2D<float> input , // the image to be f i l t er e d
in int2 dt , // the neighborhood center (dt .x , dt . y)
out floa t4 e [3]) // nine elements copied to e [0 ]. xyzw , e [1 ]. xyzw , e [2 ]. x
{
uint i = 0;
int2 offset ;
[ unroll ]
for (offset.y = −1; o f f s e t . y <= 1; ++offset .y)
{
[ unroll ]
for (offset.x = −1; o f f se t . x <=1;++offset.x)
{
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// The HLSL compiler determines the correct swizzle (. s) for
// e[ i / 4]. s knowing that i started at 0 and increments on
// each p as s .
e[ i / 4][ i % 4] = input [dt + offset ];
++ i ;
}
}
}
LISTING 7.17: Initialization of data for vectorized median ﬁltering.
The operation that is at the heart of the min-max searching is to swap
two k-tuples u and v so that the minimum is in u and the maximum is in v.
The minimum and maximum are computed in the SIMD sense, applying to
all channels of the tuples. The generic function for this operation is
void minmax(inout vector<float ,k> u, inout vector<float ,k> v)
{
vector<float ,k> save = u;
u=min(save, v);
v=max(save, v);
}
Let us now locate the minimum and maximum in the subset of six numbers
stored in
e[0].xyzw and e[1].xy. Listing 7.18 shows the function that bubbles the
minimum to
e[0].x and the maximum to e[1].y.
void minmax6(inout float4 e[3])
{
minmax(e[0].xy,e[0].zw); // min in { e0 . xy , e1 . xy } ,maxin{ e0 .zw , e1 . xy }
minmax(e[0].xz ,e[0].yw); // min i n { e0 . x , e1 . x y } ,maxin{ e0 . w, e1 . xy}
minmax(e[1].x, e[1].y); // min i n { e0 . x , e1 . x } ,maxin{ e0 . w, e1 . y}
minmax(e[0].xw,e[1].xy); //minine0.x,maxine1.y
}
LISTING 7.18: Extracting the minimum and maximum from six numbers
with swaps.
The comments in the code make it clear the subsets of numbers that contain
the minimum and the maximum. Similar functions for smaller subsets are
named
minmax5, minmax4,andminmax3. These are all designed to minimize
the number of swaps needed to bubble the extremes to the ﬁrst and last
swizzles.
The compute shader for the median ﬁltering is shown in Listing 7.19. The
subset of six elements has its minimum moved to
e[0].x and its maximum moved
to
e[1].y by the function minimax6. The minimum is discarded by moving an
unvisited element of the neighborhood into
e[0].x. The maximum is discarded
implicitly, because the next subset of ﬁve elements has the last element in the
channel immediately before the maximum’s channel.
#include ”MedianShared . h l s l i ”
Texture2D<float> input ;
RWTexture2D<float> output ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( i nt2 dt : SV
DispatchThreadID)
{
float4 e [3]; // 12 sl o t s , we u s e t h e f i r s t 9
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LoadNeighbors( input , dt , e );
minmax6 ( e ) ; / / Dis car d min / max of v0 . . v 5 ( 2 n+1=9, n +2=6).
e[0].x = e[2].x; // Copy v8 t o v0 sl o t .
minmax5 ( e ) ; / / Dis car d min / max of v0 . . v 4 ( 2 n+1=7, n +2=5).
e[0].x = e[1].w; // Copy v7 t o v0 sl o t .
minmax4 ( e ) ; / / Dis car d min / max of v0 . . v 3 ( 2 n+1=5, n +2=4).
e[0].x = e[1].z; // Copy v6 to v0 s lo t .
minmax3 ( e ) ; // S o r t v0 , v1 , and v2 .
output [dt] = e[0].y; // Return the median v1 .
}
LISTING 7.19: The compute shader for 3 × 3 median ﬁltering.
The
LoadNeighbors and minmaxN functions are deﬁned in the included hlsli ﬁle
to be shared by all median ﬁlter shaders. Although this example shows hard-
coded numbers for radius three, the actual shader code uses macros to generate
these.
On my AMD 7970 graphics card for a 1024 ×1024 image, the 3 × 3ﬁlter
runs at 2540 frames per second, which is faster than the 1370 frames per
second for the insertion-sort approach.
7.8.3 Median of 5 × 5 Using Min-Max Operations
The generalization of the algorithm from 3 × 3to5× 5 neighborhoods
has many paths. When you have a larger set of numbers, the possibilities for
swapping channels increases greatly. The goal is to minimize the swaps. The
number of
ﬂoat4 required is seven, where we use only the ﬁrst twenty ﬁve of
the twenty eight available channels.
Given 2n +1 = 25 elements (n = 12), the largest subset to process is
the ﬁrst one with n + 2 = 14 elements. As a ﬁrst attempt to generalize, you
might consider deﬁning functions
minmax7 through minmax14 and apply them
one at a time and then copying an unprocessed element into
e[0].x as we did
in Listing 7.19. The problem, though, is that when the last
ﬂoat4 is not fully
ﬁlled, the number of
minmax operations increases due to (1) a need for swizzling
involving single channels and (2) the limit of two
ﬂoat4 per minmax call. For
example,
minmax6 in Listing 7.18 has four minmax operations. A function for
seven elements is shown in Listing 7.20 and uses six
minmax operations.
void minmax7(inout float4 e[7])
{
minmax(e[0].xy,e[0].zw); // min in { e0 . xy , e1 . xy z} ,maxin{e0 . zw , e1 . xy z }
minmax(e[0].xz ,e[0].yw); // min i n { e0 . x , e1 . xyz } ,maxin{ e0 .w, e1 . xyz}
minmax(e[1].x, e[1].y); // min i n { e0 . x , e1 . x z } ,maxin{ e0 . w, e1 . yz }
minmax(e[1].x, e[1].z); // min i n { e0 . x , e1 . x } ,maxin{ e0 . w, e1 . yz }
minmax(e[1].y, e[1].z); // min i n { e0 . x , e1 . x } ,maxin{ e0 . w, e1 . z}
minmax(e[0].xw,e[1].xz); //minine0.x,maxine1.z
}
LISTING 7.20: Extracting the minimum and maximum from seven numbers
with swaps.
A function for eight elements is shown in Listing 7.21 and uses ﬁve
minmax
operations, one fewer than that for the smaller subset of seven elements.
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void minmax8(inout float4 e[7])
{
minmax ( e [0 ] , e [ 1 ] ) ; //minine0,maxine1
minmax(e[0].xy,e[0].zw); // min in e0 . xy , max in e1
minmax(e[0].x, e[0].y); //minine0.x,maxine1
minmax(e[1].xy,e[1].zw); //minine0.x,maxine1.zw
minmax(e[1].z, e[1].w); //minine0.x,maxine1.w
}
LISTING 7.21: Extracting the minimum and maximum from eight numbers
with swaps.
This pattern occurs for larger numbers, and it appears that the largest number
of
minmax operations occurs when the last ﬂoat4 uses only three channels.
The ﬁrst attempt was based on wanting to apply the key observation that
the minimum and maximum of a subset of n + 2 elements can be discarded.
But the same is true even when the subset has more than n + 2 elements.
The trick to reducing the number of calls to
minmax is to use subsets whose
numbers of elements are multiples of four. The idea is to take advantage of
the vectorization and swap as many channels in parallel at the same time.
In particular, we want to swap fully ﬁlled
ﬂoat4 objects. For an initial set of
twenty-ﬁve elements, we need only two more functions, namely,
minmax12 and
minmax16, shown in Listing 7.22.
void minmax12(inout float4 e [7])
{
minmax ( e [0 ] , e [ 1 ] ) ; // min in { e0 , e2 } ,maxin{e1 , e 2 }
minmax ( e [0 ] , e [ 2 ] ) ; //minine0,maxin{e1 , e 2 }
minmax ( e [1 ] , e [ 2 ] ) ; //minine0,maxine2
minmax(e[0].xy, e[0].zw); // min in e0 . xy , max i n e2
minmax(e[0].xz , e[0].yw); //minine0.x,maxine2
minmax(e[2].xy, e[2].zw); //minine0.x,maxine2.xy
minmax(e[2].xz , e[2].yw); //minine0.x,maxine2.y
}
void minmax16(inout float4 e [7])
{
minmax ( e [0 ] , e [ 1 ] ) ; // min in { e0 , e2 , e 3} ,maxin{e1 , e2 , e 3 }
minmax ( e [2 ] , e [ 3 ] ) ; // min in { e0 , e2 } ,maxin{e1 , e 3 }
minmax ( e [0 ] , e [ 2 ] ) ; //minine0,maxin{e1 , e 3 }
minmax ( e [1 ] , e [ 3 ] ) ; //minine0,maxine3
minmax(e[0].xy, e[0].zw); // min in e0 . xy , max i n e3
minmax(e[0].xz , e[0].yw); //minine0.x,maxine3
minmax(e[3].xy, e[3].zw); //minine0.x,maxine3.xy
minmax(e[3].xz , e[3].yw); //minine0.x,maxine3.y
}
LISTING 7.22: Extracting the minimum and maximum from twelve or six-
teen numbers with swaps.
Not only will this reduce the number of
minmax calls compared to the ﬁrst
attempt, you have fewer new functions to implement (two versus eight). This
is helpful in the event you want larger neighborhoods. By the way, in each
function the ﬁrst block of
minmax calls that take ﬂoat4 inputs are essentially
a parallel sort of the four channels. For example, after the ﬁrst three calls
in
minmax12, you know that e[0].x ≤ e[1].x ≤ e[2].x, e[0].y ≤ e[1].y ≤ e[2].y,
e[0].z ≤ e[1].z ≤ e[2].z,ande[0].w ≤ e[1].w ≤ e[2].w.
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In the second (and optimal) attempt, we will use
minmax8, minmax12,and
minmax16 multiple times. Each time, though, we must copy two unprocessed
elements rather than one in order to set up for the next smaller subset. The
compute shader for the median ﬁltering is shown in Listing 7.23.
#include ”MedianShared . h l s l i ”
Texture2D<float> input ;
RWTexture2D<float> output ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( i nt2 dt : SV
DispatchThreadID)
{
float4 e [7]; // 28 sl o t s , we u s e t h e f i r s t 25
LoadNeighbors( input , dt , e );
minmax16(e ); // D i s c a rd min/max o f v0 . . v1 5 (2n +1=25, n+2<16).
e[0][0] = e[6][0]; // Copy v24 t o v0 s l o t .
e[3][3] = e[5][3]; // Copy v23 t o v15 s l ot .
minmax16(e ); // D i s c a rd min/max o f v0 . . v1 5 (2n +1=23, n+2<16).
e[0][0] = e[5][2]; // Copy v22 t o v0 s l o t .
e[3][3] = e[5][1]; // Copy v21 t o v15 s l ot .
minmax12(e ); // D i s c a r d min /max o f v 0 . . v1 1 (2n+1=21, n +2=12).
e[0][0] = e[5][0]; // Copy v20 t o v0 s l o t .
e[2][3] = e[4][3]; // Copy v19 t o v11 s l ot .
minmax12(e ); // D i s c a rd min/max o f v0 . . v1 1 (2n +1=19, n+2<12).
e[0][0] = e[4][2]; // Copy v18 t o v0 s l o t .
e[2][3] = e[4][1]; // Copy v17 t o v11 s l ot .
minmax12(e ); // D i s c a rd min/max o f v0 . . v1 1 (2n +1=17, n+2<12).
e[0][0] = e[4][0]; // Copy v16 t o v0 s l o t .
e[2][3] = e[3][3]; // Copy v15 t o v11 s l ot .
minmax12(e ); // D i s c a rd min/max o f v0 . . v1 1 (2n +1=15, n+2<12).
e[0][0] = e[3][2]; // Copy v14 t o v0 s l o t .
e[2][3] = e[3][1]; // Copy v13 t o v11 s l ot .
minmax8 ( e ) ; / / Di scar d mi n /max of v0 . . v 7 ( 2 n +1=13, n +2=8).
e[0][0] = e[3][0]; // Copy v12 t o v0 s l o t .
e[1][3] = e[2][3]; // Copy v11 t o v7 s l o t .
minmax8 ( e ) ; // D i s c a rd min/max o f v0 . . v7 ( 2 n+1=11, n+2<8).
e[0][0] = e[2][2]; // Copy v10 t o v0 s l o t .
e[1][3] = e[2][1]; // Copy v9 t o v7 sl o t .
minmax6 ( e ) ; / / Dis car d min / max of v0 . . v 5 ( 2 n+1=9, n +2=6).
e[0].x = e[2].x; // Copy v8 t o v0 sl o t .
minmax5 ( e ) ; / / Dis car d min / max of v0 . . v 4 ( 2 n+1=7, n +2=5).
e[0].x = e[1].w; // Copy v7 t o v0 sl o t .
minmax4 ( e ) ; / / Dis car d min / max of v0 . . v 3 ( 2 n+1=5, n +2=4).
e[0].x = e[1].z; // Copy v6 to v0 s lo t .
minmax3 ( e ) ; // S o r t v0 , v1 , and v2 .
output [dt] = e[0].y; // Return the median v1 .
}
LISTING 7.23: The compute shader for 5 × 5 median ﬁltering.
The
LoadNeighbors and minmaxN functions are deﬁned in the included hlsli ﬁle
to be shared by all median ﬁlter shaders. Although this example shows hard-
coded numbers for radius ﬁve, the actual shader code uses macros to generate
these.
On my AMD 7970 graphics card for a 1024 ×1024 image, the 5 × 5ﬁlter
runs at 2500 frames per second, which is orders of magnitude faster than the
60 frames per second for the insertion-sort approach. Clearly, the absence of
looping and branching in the min-max approach is superior and shows you
just how expensive looping and branching can be on the GPU.
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FIGURE 7.8: A level surface for a single voxel.
7.9 Level Surface Extraction
Consider a continuous function F(x, y, z) deﬁned on a domain that is an
axis-aligned solid box [x
min
,x
max
] ×[y
min
,y
max
] ×[z
min
,z
max
] and with range
[f
min
,f
max
]. A level set is deﬁned by the implicit equation F (x, y, z)=L for
L ∈ [f
min
,f
max
]. The number L is said to a level value. The level set contains
topological objects, potentially of mixed dimension. For practical purposes,
though, we are interested in those objects that are locally two-dimensional;
these are referred to as isosurfaces or level surfaces.
In image processing, the function F (x, y, z) is built from a 3D regular lat-
tice of function samples. For example, in medical imaging the samples can be
magnetic resonance images (MRI) or computed tomography (CT). In other
application domains, the samples can be scalar measurements from physi-
cal processes. The regular lattice has size N
0
× N
1
× N
2
with integer points
(i
0
,i
1
,i
2
), where 0 ≤ i
j
<N
j
for all j.Avoxel is a rectangular solid whose cor-
ners are eight neighboring lattice points (i
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+ 1). Figure 7.8 illustrates the level surface contained by a
single voxel. Each corner of the voxel has an associated function value. Four
of these are shown in Figure 7.8, one positive and three negative. Assuming
the function values vary continuously, each edge connecting a positive and
negative value must have a point where the function is zero. The level surface
F (x, y, z) = 0 necessarily passes through those zero points, as illustrated by
the triangularly shaped surface drawn in gray.
A standard isosurface extraction algorithm for a 3D image is the Marching
Cubes algorithm [23][?]. The algorithm analyzes each voxel in the image and
determines whether the isosurface intersects it. If so, the algorithm produces
a triangle mesh that approximates the isosurface inside the voxel. To simplify
the algorithm, the function values at the corners are required to be positive
or negative and the level value is required to be zero. The latter constraint is
not restrictive, because you can always reformulate the level set F (x, y, z)=L
as the zero level set of G(x, y, z)=F (x, y, z) − L. The former constraint of
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nonzero function values prevents the isosurface from containing voxel corners.
This leads to a table lookup for the triangle meshes with 256 entries (two
possible signs at the eight corners). The constraint is generally not an issue.
For example, medical image data tends to be integer valued. The isosurfaces
produced by a level value that is exactly an integer I are usually not much
diﬀerent from those produced by a level value that is a ﬂoating-point number
I + ε for a small number ε.
The strength of this algorithm is the speed in which the triangle meshes
are generated for the entire isosurface, the performance due to the simplicity
of the table lookups. The original algorithm had a topological ﬂaw. Two voxels
sharing a face with alternating signs at the four corners might lead to triangle
meshes that do not form a continuous mesh across the face. This problem
can be ﬁxed by carefully implementing the table to deal with meshes and
reﬂections of them, depending on the sign data. The consequence, though,
is that the triangle mesh produced for the level set F = L can be diﬀerent
from the triangle mesh produced by the level set −F = −L.Themeshesare
not always consistent with those produced by truly assuming the voxel corners
produce a function via trilinear interpolation, but in practice this is usually not
a problem. If it is, you can use an ear-clipping algorithm that is consistent with
a trilinear function, one that I described in [9]. The ear-clipping algorithm,
though, is more complicated to implement on a GPU.
The table lookup leads to twenty-one distinct triangle-mesh conﬁgurations.
Each conﬁguration can occur with diﬀerent orientations depending on the
signs at the corners. Figures 7.9 through 7.10 show the conﬁgurations, each
labeled with a name to describe the sign patterns at the corners. In the source
code, the signs are stored in an 8-bit quantity, where a 0-bit denotes a positive
sign and a 1-bit denotes a negative sign. The cubes that are shown are oriented
so that the corners are 3-tuples with components either zero or one. The
corner (0, 0, 0) is the one farthest from view. The z-axis is upward, the y-axis
is rightward, and the x-axis points out of the plane of the page although it
is drawn askew at a 45-degree angle for perspective. The indexing is: (0, 0, 0)
has index 0, (1, 0, 0) has index 1, (0, 1, 0) has index 2, (1, 1, 0) has index 3,
(0, 0, 1) has index 4, (1, 0, 1) has index 5, (0, 1, 1) has index 6, and (1, 1, 1) has
index 7.
GTEngine has a class called
MarchingCubes that is used to generate a table
of information about the vertices and triangles in a voxel determined by the
8-bit sign index for the voxel corners. The maximum number of vertices for
a voxel mesh is twelve, because the voxel has twelve edges. The maximum
number of triangles is ﬁve, which you can count for yourself in Figures 7.9
through 7.10. The table is stored as a 2D array of integers,
table[256][41],
where the row index represents the 256 possible 8-bit sign indices. For the
conﬁguration i,
table[i][0] stores the number of vertices and table[i][1] stores the
number of triangles.
The twenty-four entries
table[i][2] through table[i][25] storeuptotwelvepairs
of voxel corner indices. Each pair identiﬁes a voxel edge that contains a vertex,
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FIGURE 7.9: Triangle mesh conﬁgurations (part 1).
so the number of pairs is the same as the number of vertices. The pair of indices
are always listed with smallest ﬁrst and largest second. These numbers are used
for linear interpolation of the function values at the voxel corners in order to
identity where on the edge the mesh vertex lives.
The ﬁfteen entries
table[i][26] through table[i][40] store up to ﬁve triples of
indices that represent triangles in the mesh. The indexing is for the pairs of
voxel corner indices, eﬀectively telling you which vertices form the triangle.
The index ordering is such that the triangle is counterclockwise oriented when
viewed from the negative side of the zero-valued level surface.
For example, the conﬁguration Bit 5 FaceDiag-FaceDiag has nine vertices
and ﬁve triangles. Vertex v
0
is associated with the pair (0, 1), where 0 is
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FIGURE 7.10: Triangle mesh conﬁgurations (part 2).
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associated with corner (0, 0, 0) and 1 is associated with corner (1, 0, 0). Vertex
v
5
is associated with pair (1, 3) and vertex v
6
is associated with pair (1, 5).
The triple of indices for the triangle formed by these three vertices is (0, 5, 6).
The ordering is counterclockwise when viewed from the negative side of the
level surface, say, from the corner (1, 0, 0) that has a negative function value.
The table in full is
int i=0x29; // s i gn b i ts , b in ar y 00101001 (−−+−+−−+)
table [ i ][0] = 9;
table [ i ][1] = 5;
table[ i ][2..25] = { 0,1,0,4,0,2,2,3,3,7,1,3,1,5,5,7,4,5,x,x,x,x,x,x} ;
table [ i ][24..40] = { 0,5,6,1,8,7,1,7,2,2,7,4,2,4,3} ;
The sample application illustrating the concepts is
GeometricTools/GTEngine/Samples/Imagics/SurfaceExtraction
Two diﬀerent algorithms are presented for the extraction, the second one the
preferred one for optimal performance. A function is generated as a sum of
Gaussian distributions in order to produce multiple components for various
level values.
The ﬁrst algorithm uses the compute shader in
ExtractSurface.hlsl. The in-
puts are the Marching Cubes lookup table (structured buﬀer), the 3D image
from which level surfaces will be extracted (3D texture), and a constant buﬀer
with the level value of interest. The buﬀer also had the dimensions of a voxel,
because some image applications require this; for example, medical images
usually have a real-world measurement for the voxel size, say, in millimeters
per dimension. The output is an append buﬀer, because it is unknown how
many voxels actually contain the level surface. The append buﬀer uses a data
structure that stores the bit-sign index and the information obtained from the
Marching Cubes table lookup. It also stores the linearly interpolated function
values along the edges so that we know where the vertices lie on the voxel
edges. Keep in mind that the order of GPU thread execution is not determin-
istic, so the order of the voxels in the append buﬀer can vary for each call
using the same level value. If you need a spatially organized set of voxels that
contain the level surface, you can always allocate a structured buﬀer that has
the same number of elements as the original image, but this can consume a
large amount of GPU memory. The compute shader cannot produce index
buﬀer outputs directly, so the append buﬀer is read back from the GPU so
that the CPU can construct the triangle mesh, this using the sample applica-
tion
CreateMesh function. The triangle mesh is then uploaded to the GPU for
drawing. The memory transfer between the GPU and CPU is a bottleneck in
the application.
The second algorithm uses the
SV VertexID semantic in D3D11 so you can
use the drawing subsystem to pass the indices of the index buﬀer represent-
ing the triangles instead of the actual vertices. This mechanism facilitates the
interoperability of compute shaders with vertex, geometry, and pixel shaders;
that is, compute shaders can generate information in structured buﬀers and
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level value 0.01 level value 0.5
FIGURE 7.11: Surface extraction for two level values.
textures, and these resources can be attached to vertex, geometry, and pixel
shaders to be accessed via the indices passed to the vertex shader. The com-
pute shader in
ExtractSurfaceIndirect.hlsl is similar to the previous compute
shader except that the only information returned in the voxel buﬀer is the
1D index of the voxel relative to the 3D image and the bit-sign index that is
used in the Marching Cubes table lookup.
In this algorithm, the append buﬀer is not read back to the CPU. However,
the number of elements in the append buﬀer is read back—this is a single
4-byte integer, so the memory transfer is not a bottleneck. We have vertex,
geometry, and pixel shaders in the ﬁle
DrawSurfaceIndirect.hlsl. The drawing call
speciﬁes that we will draw points, but in this case the indices are just those
between zero and the number of elements in the append buﬀer. The append
buﬀer is attached to the vertex shader. When the vertex shader receives an
index, it extracts the voxel index and bit-sign index and passes them to the
geometry shader. The geometry shader does the work of interpolating the
edges for the voxel at hand in order to generate 3D points for the vertices,
and then it creates the triangles using information from the Marching Cubes
table.
The performance between the two methods is noticeable, mainly because
the large GPU-CPU memory transfers are not present in the second method.
On my AMD 7970, the ﬁrst method runs at 612 frames per second for level
value 0.5 and at 80 frames per second for level value 0.01. The program slows
down for smaller level values, because there are more voxels that contain
portions of the triangle mesh and so the GPU-CPU transfer involves more
data. The second method runs at 1375 frames per second for level value 0.5
and at 914 frames per second for level value 0.01. Either method produces the
same output, shown in Figure 7.11. The ﬁgures are drawn in grayscale. The
actual program displays them with various colors, and you can toggle between
solid display and wireframe display.
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7.10 Mass-Spring Systems
A deformable body can be modeled as a system of particles (point masses)
connected by springs. One-dimensional arrays are good for modeling hair or
rope, two-dimensional arrays are good for modeling cloth or water surfaces,
and three-dimensional arrays are good for modeling solid blobs, say, of gelati-
nous material.
Arbitrary topologies are also allowed, so in general suppose you have a
mass-spring system of p particles where particle i has mass m
i
(possibly in-
ﬁnite) and location X
i
. The system has springs, modeled using Hooke’s law.
The spring attaching particle i to particle j has spring constant c
ij
and resting
length L
ij
.LetA
i
denote the set of indices j for which particle j is connected
to particle i by a spring. The equation of motion for particle i is
m
i
¨
X
i
= I
i
+ E
i
=

j∈A
i
c
ij
(|X
j
− X
i
|−L
ij
)
X
j
− X
i
|X
j
− X
i
|
+ E
i
(7.40)
where the terms of the summation for I
i
are the internal forces due to the
springs. The external forces E are generated by wind, gravity, or simply pulling
on the particles. The particle positions may be listed in a single tuple
X =(X
0
,...,X
n−1
) (7.41)
and the internal and external forces divided by the masses may be listed in a
single tuple,
F =((I
0
+ E
0
)/m
0
,...,(I
n−1
+ E
n−1
)/m
n−1
) (7.42)
If you want a particle to be immovable, you can assign it inﬁnite mass. In
practice, you assign zero to the inverse mass 1/m. Equation (7.40) is concisely
written as a system of second-order diﬀerential equations,
¨
X = F(t, X,
¨
X) (7.43)
where the right-hand side indicates that F can vary with time, position, and
velocity. This can be reduced further to a system of ﬁrst-order diﬀerential
equations by choosing V =
˙
X,inwhichcase
˙
V =
¨
X and
˙
S =

˙
X
˙
V

=

V
F(t, X, V)

= G(t, S) (7.44)
where S is the state vector of positions and velocity and G(t, S) is a concise
representation of the right-hand side of the system of diﬀerential equations.
To simulate the mass-spring system, we need to implement a numerical
solver for the ﬁrst-order system of diﬀerential equations. I choose to use a
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Runge–Kutta fourth-order method whose input is the current time t
i
and
current state S
i
and whose output is the state S
i+1
at the next time t
i+1
=
t
i
+ h for a small time step h>0:
K
1
= G(t
i
, S
i
)
K
2
= G(t
i
+ h/2, S
i
+ hK
1
/2)
K
3
= G(t
i
+ h/2, S
i
+ hK
2
/2)
K
4
= G(t
i
+ h, S
i
+ hK
3
)
S
i+1
= S
i
+ h(K
1
+2K
2
+2K
3
+ K
4
)/6
(7.45)
Equation (7.40) can be specialized for arrays of particles. For a 1D array,
each particle has two neighbors. Let the spring connecting particle j to particle
j + 1 have spring constant c
j
and resting length L
j
. Deﬁne the Hooke’s law
term
H
j
= c
j
(|X
j+1
− X
j
|−L
j
)
X
j+1
− X
j
|X
j+1
− X
j
|
(7.46)
The equation of motion for the particle is
m
i
¨
X
i
= H
i−1
+ H
i
+ E
i
(7.47)
For a 2D array, each particle has four neighbors. Let the spring connecting par-
ticle (j
0
,j
1
)toparticle(k
0
,k
1
) have spring constant c
j
0
,j
1
and resting length
L
j
0
,j
1
. Deﬁne the Hooke’s law term
H
j
0
,j
1
= c
j
0
,j
1
(|X
k
0
,k
1
− X
j
0
,j
1
|−L
j
0
,j
1
)
X
k
0
,k
1
− X
j
0
,j
1
|X
k
0
,k
1
− X
j
0
,j
1
|
(7.48)
The equation of motion for the particle is
m
i
0
,i
1
¨
X
i
0
,i
1
= H
i
0
−1,i
1
+ H
i
0
+1,i
1
+ H
i
0
,i
1
−1
+ H
i
0
,i
1
+1
+ E
i
0
,i
1
(7.49)
For a 3D array, each particle has six neighbors. Let the spring connecting
particle (j
0
,j
1
,j
2
)toparticle(k
0
,k
1
,k
2
) have spring constant c
j
0
,j
1
,j
2
and
resting length L
j
0
,j
1
,j
2
. Deﬁne the Hooke’s law term
H
j
0
,j
1
,j
2
=
c
j
0
,j
1
,j
2
(|X
k
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,k
1
,k
2
− X
j
0
,j
1
,j
2
|−L
j
0
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1
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2
)
X
k
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(7.50)
The equation of motion for the particle is
m
i
0
,i
1
,i
2
¨
X
i
0
,i
1
,i
2
= H
i
0
−1,i
1
,i
2
+ H
i
0
+1,i
1
,i
2
+ H
i
0
,i
1
−1,i
2
+ H
i
0
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1
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2
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2
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2
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0
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1
,i
2
(7.51)
The sample application
GeometricTools/GTEngine/Samples/Physics/MassSprings3D
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is an implementation of Equation (7.51) using the numerical method of Equa-
tion (7.45) for both the CPU and GPU in order to compare performance.
The graphics are not particularly pretty. The mass-spring system has size
32 × 32 × 32. The outer shell of particles are set to have inﬁnite mass so that
they cannot move. This prevents the cube of masses from collapsing into its
center. The faces of the cube of masses are vertex colored, each face having
a distinct color. The only external force is viscous friction, where each parti-
cle’s velocity is dampened by the coeﬃcient of viscosity whose value is 0.1. As
the simulation is executed, you can see the particles on the cube faces move
about slightly. A more visually interesting application is the gelatin cube of
[9], where the cube has semitransparent textured faces and only 6 ×6 ×6par-
ticles. However, the particle positions are used as control points for a B´ezier
volume function, which adds smoothness to the motion. And that application
runs on the CPU. As an exercise, you can modify the mass-spring application
of this book to have the same visual appearance.
The diﬀerential equation update occurs as eight separate loops to compute
in order: K
1
, S
i
+ hK
1
/2, K
2
, S
i
+ hK
2
/2, K
3
, S
i
+ hK
3
, K
4
,andS
i
+
h(K
1
+2K
2
+2K
3
+ K
4
). This is encapsulated by class CpuMassSpringVolume
for CPU computing. The GPU version is in class GpuMassSpringVolume but the
diﬀerential equation solver is contained in eight diﬀerent HLSL shaders. These
shaders have no tricks to deal with CPU-GPU diﬀerences. The Runge–Kutta
solver is a straightforward implementation for either processor.
As expected, the performance diﬀerence is striking. The CPU version of
the mass-spring system executes at 33 frames per second. The GPU version
runs on my AMD 7970 graphics card at 2300 frames per second.
7.11 Fluid Dynamics
Consider a ﬂuid in space (2D or 3D) that has velocity u(x,t) and density
ρ(x,t), each dependent on spatial location x and time t. A simpliﬁed model
of ﬂuid ﬂow is presented in [54], and a detailed derivation of the model from
conservation laws and with simplifying assumptions is provided in [9]. The
model is suitable for computing on a GPU, thus providing real-time ﬂuid
simulations. The modeling equations are
∂u
∂t
+(u ·∇)u = ν
vel
∇
2
u + F
vel
, conservation of momentum
∂ρ
∂t
+(u ·∇)ρ = ν
den
∇
2
ρ + F
den
, conservation of mass
∇·u =0, incompressible ﬂuid
(7.52)
where ∇ is the gradient operator, ∇
2
= ∇·∇is the Laplacian operator, ν
vel
and ν
den
are viscosity coeﬃcients (positive constants), F
vel
(x,t)isanexternal
source of acceleration (for example, due to wind or gravity), and F
den
(x,t)is
an external source (or sink) of density.
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The ﬂuid is conﬁned to a bounded region of space R that has boundary
B. The initial conditions for velocity and density must be speciﬁed within the
region,
u(x, 0) = u
0
(x),ρ(x, 0) = ρ
0
(x), x ∈ R (7.53)
for user-deﬁned functions u
0
and ρ
0
.
The boundary conditions must be speciﬁed also for all time. For simplic-
ity, the density is required to be zero on the boundary and the velocity is
required to have zero component in the normal direction to the boundary.
These conditions are based on the requirement of conﬁnement. No mass is
at the boundary of the region (density is zero) and no mass may escape the
region due to motion (velocity has zero component normal to the boundary):
n(x) · u(x,t)=0,ρ(x,t)=0, x ∈ B, t ≥ 0 (7.54)
where n(x) is the unit-length outer-pointing normal vector to the boundary
point x.
7.11.1 Numerical Methods
The classical approach to solve the ﬁrst two of Equations (7.52) uses ﬁ-
nite diﬀerence estimates for the derivatives. The time derivative is estimated
by a forward diﬀerence and the spatial derivatives are estimated by centered
diﬀerences. The numerical method is usually conditionally stable, requiring
small time steps in the simulation. Creating an implicit equation with the
right-hand-side terms involving t +Δt (thetimewewantnewstateinforma-
tion) rather than time t is a reasonable alternative that may be solved using
Gauss-Seidel iteration. In the case at hand, the terms (u ·∇)ρ and (u ·∇)u
lead to a complicated set of equations to iterate.
A third possibility takes advantage of the left-hand-sides of the ﬁrst two
of Equations (7.52) being material derivatives. The ﬂuid ﬂow may be thought
of as particles traveling along curves with time-varying positions, say, x(t).
These curves are referred to as ﬂow lines where the particles travel along the
curves with velocity x

(t)=u(t). The time-varying density is related to how
the particles move: h(t)=ρ(x(t),t). The time derivative is
h

(t)=
∂ρ
∂t
+ x

(t) ·∇ρ =
∂ρ
∂t
+(u ·∇)ρ =

∂
∂t
+ u ·∇

ρ =
Dρ
Dt
(7.55)
where D/Dt = ∂/∂t + u ·∇is the material derivative operator. Similarly, if
g(t)=u(x(t),t), then g

(t)=Du/Dt. Deﬁne the state vector that consists of
density and velocity to be S(t)=(g(t),h(t)), deﬁne the diﬀerential operator
L =(ν
vel
∇
2
,ν
den
∇
2
), and deﬁne the external source F =(F
vel
,F
den
). The
initial condition is S(0) = (u
0
,ρ
0
). In vectorized form, Equations (7.52) are
then
∂S(x,t)
∂t
= LS(x,t)+F(x,t), ∇·u(x,t)=0, x ∈ R, t ≥ 0
S(x, 0) = (u
0
(x),ρ
0
(x)), x ∈ R
(n(x), 1) · S(x,t)=0, x ∈ B, t ≥ 0
(7.56)
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We use the following estimate for the material derivative of S:
S

(t)
.
=
S(x(t),t+Δ
t
) −S(x(t −Δ
t
),t)
Δ
t
(7.57)
The right-hand side in the limit as Δ
t
approaches zero becomes S

(t). This
allows us to compute the next state at the current position using the current
state at the last position, thus simplifying the numerical computations. Let
ˆ
L
represent the operator corresponding to centered diﬀerences for estimates of
spatial derivatives. The numerical method for solving the ﬁrst two of Equations
(7.52) is
S(x(t),t+Δ
t
)=S(x(t −Δ
t
),t)+Δ
t

ˆ
LS(x(t),t)+F(x(t),t)

(7.58)
The left-hand side of the equation is the state vector we want to compute for
the next time t +Δ
t
. The right-hand side of the equation requires computing
the sources at the current time t. It also requires looking up the state vector at
the previous time t−Δ
t
but along ﬂow lines. This mechanism is referred to as
advection. We can estimate the previous state by using the backward diﬀerence
u(x(t),t)
.
=(x(t) − x(t − Δ
t
))/Δ
t
;thatis,x(t − Δ
t
)
.
= x(t) − Δ
t
u(x(t),t).
Given the current position and time, we can estimate the previous position
and look up the state vector at that position at the previous time. On a regular
grid, the previous position is usually not at a grid point, so we will use linear
interpolation to approximate the previous state vector. The ﬁnal formulation
of the numerical method is listed next, where we have dropped the notation
about position depending on time:
S(x,t+Δ
t
)=S(x − Δ
t
u(x,t),t)+Δ
t

ˆ
LS(x,t)+F(x,t)

(7.59)
The left-hand side is the new state (time t +Δ
t
) at a grid position x,and
it depends on the right-hand side that contains information only about the
current state (time t) in a neighborhood of the grid position.
The update of the state vector has approximation errors, so the estimated
velocity does not necessarily have a divergence of zero. A velocity vector ﬁeld u
may be decomposed as u = −∇φ+∇×g;thisisreferredtoastheHelmholtz de-
composition. Dotting the decomposition with the gradient operator, the func-
tion φ must be a solution to ∇
2
φ = −∇ ·u.Ifu is the output from the state
vector update, we need to modify it to have divergence of zero,
ˆ
u = u + ∇φ.
Observe that ∇·
ˆ
u = ∇·u + ∇
2
φ = 0. Thus, we must solve the Poisson
equation ∇
2
φ = −∇ · u for φ, compute its gradient, and update the velocity
to
ˆ
u. The numerical method for solving the Poisson equation involves cen-
tered diﬀerence estimates for the spatial partial derivatives and Gauss-Seidel
iteration to solve the set of linear equations produced by the estimates. We
need a boundary condition for the Poisson equation. In the theoretical case of
∇·u =0,wecanchooseφ = 0, which suggests that the boundary values for
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φ should be zero. This process is summarized next but with the dependence
on t not shown,
∇
2
φ(x)=−∇· u(x), x ∈ R
φ(x)=0, x ∈ B
ˆ
u(x)=u(x)+∇φ(x), x ∈ R
n(x) ·
ˆ
u(x)=0, x ∈ B
(7.60)
High-level pseudocode for the numerical solver is shown in Listing 7.24.
t=0;
dt = <small positive time step>;
// any setup for F(x , t ) in Equation (7.56)
InitializeSources ();
// Compute S(x ,0) in Equation (7.56). To support advection on the
// f i r s t update , s et S(x,− dt ) = S(x ,0 ).
InitializeVelocityAndDensity ();
// constraint in Equation (7.56) for S(x,0) and S(x,− dt )
EnforceVelocityAndDensityBoundaryConstraint ();
DoForever
{
// Compute S ( x , t+dt ) f r o m S ( x , t ) an d S( x , t−dt ) .
ComputeNextState ( ) ;
// constraint for S(x, t+dt)
EnforceVelocityAndDensityBoundaryConstraint ();
// Update the velocity to have a zero divergence .
ComputeDivergenceOfVelocity () ;
SolvePoissonEquationForPhi ();
EnforcePhiBoundaryConstraint ();
AddGradientPhiToVelocity ();
EnforceVelocityBoundaryConstraint ();
t+=dt;
} ;
LISTING 7.24: Pseudocode for the high-level ﬂuid simulation.
Actual implementations for 2D and 3D are provided in the source code that
accompanies the book. They are described in the next sections.
7.11.2 Solving Fluid Flow in 2D
The sample application is found at
GeometricTools/GTEngine/Samples/Physics/Fluids2D
In the application, the 2D ﬂuid is be conﬁned to a square R = {(x, y):0≤
x ≤ 1, 0 ≤ y ≤ 1}. The boundary B consists of points for which x =0,x =1,
y =0,ory = 1. The velocity is (u, v). The velocity boundary conditions are
u(0,y,t)=0,u(1,y,t)=0,v(x, 0,t) = 0, and v(x, 1,t)=0.
We partition R into an N
0
×N
1
grid, each grid cell a rectangle of dimensions
Δ
x
=1/N
0
and Δ
y
=1/N
1
. Centered ﬁnite diﬀerences are used for
ˆ
L in
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Equation (7.59),
S
xx
(x, y, t)
.
=
S(x +Δ
x
,y,t) −2S(x, y, t)+S(x − Δ
x
,y,t)
Δ
2
x
(7.61)
and
S
yy
(x, y, t)
.
=
S(x, y +Δ
y
,t) − 2S(x, y, t)+S(x, y − Δ
y
,t)
Δ
2
y
(7.62)
The update for state information is
S(x, y, t +Δ
t
)=S(x − Δ
t
u, y − Δ
t
v, t)
+ λ
x
∗(S(x +Δ
x
,y,t) −2S(x, y, t)+S(x − Δ
x
,y,t))
+ λ
y
∗ (S(x, y +Δ
y
,t) − 2S(x, y, t)+S(x, y − Δ
y
,t))
+Δ
t
F(x, y, t)
(7.63)
where λ
x
=(Δ
t
/Δ
2
x
)(ν
vel
,ν
vel
,ν
den
), λ
y
=(Δ
t
/Δ
2
y
)(ν
vel
,ν
vel
,ν
den
), and the ∗
operator denotes componentwise multiplication of tuples: (a, b, c) ∗ (d, e, f )=
(ad, be, cf).
In the compute shaders of the sample application, a constant buﬀer is
used to store the various physical parameters. The declaration in the shaders
and the creation and initialization are listed next. The naming conventions to
relate the two are clear. Listing 7.25 shows the setup code.
/ / F ro m v ar i o u s HLSL f i l e s :
cbuffer Parameters
{
float4 spaceDelta ; // ( dx , dy , 0 , 0 )
float4 halfDivDelta ; // (0.5/dx , 0.5/dy , 0, 0)
float4 timeDelta ; // (dt/dx , dt/dy , 0, dt)
float4 viscosityX ; // ( velVX , velVX , 0 , denVX )
float4 viscosityY ; // ( velVX , velVY , 0 , denVY )
float4 epsilon ; // (epsilonX , epsilonY , 0 , epsilon0 )
} ;
// From Smoke2D. c p p :
// Create the shared parameters for many of the simulation shaders .
float dx = 1.0 f / static
cast<float >(mXSize );
float dy = 1.0 f / static
cast<float >(mYSize );
float dtDivDxDx = ( dt /dx )/ dx ;
float dtDivDyDy = ( dt /dy )/ dy ;
float ratio = dx/dy;
float ratioSqr = ratio∗ ratio ;
float factor = 0.5f /(1.0f + ratioSqr );
float epsilonX = factor ;
float epsilonY = ratioSqr∗ factor ;
float epsilon0 = dx∗ dx∗ factor ;
float const denViscosity = 0.0001 f ;
float const v elV is cosit y = 0.0001 f ;
float denVX = d e n V i s c o s i t y ∗ dtDivDxDx ;
float denVY = d e n V i s c o s i t y ∗ dtDivDyDy ;
float velVX = velViscosity∗dtDivDxDx;
float velVY = velViscosity∗dtDivDyDy;
mParameters. r es et (new ConstantBuffer ( sizeof (Parameters ) , false ));
Parameters& p = ∗ mParameters−>GetAs<Parameters >();
p. spaceDelta = Vector4<float >(dx , dy , 0.0 f , 0 .0 f );
p . ha lf Div Del ta = Vector4 <float >(0.5f/dx, 0.5f/dy, 0.0f , 0.0f );
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p . timeDelta = Vector4 <float >(dt/dx , dt/dy , 0.0f , dt);
p . v i s co s it y X = Vector4 <float >(velVX , velVX , 0 . 0 f , denVX ) ;
p . v i s co s it y Y = Vector4 <float >(velVY , velVY , 0 . 0 f , denVY ) ;
p . e p si l o n = Vector4 <float >(epsilonX , epsilonY , 0.0 f , epsilon0 );
LISTING 7.25: Setup of constant buﬀers for the 2D ﬂuid simulation.
The ﬂuid grid has
mXSize columns and mYSize rows, which are both 256 in the
application. The time step
dt is chosen to be 0.001.
7.11.2.1 Initialization of State
The initialization of velocity and density is implemented in the class
InitializeState. The assignments are in the constructor for the class. The initial
velocities are set to zero and the initial densities are set to random numbers
in [0, 1]. Textures storing state information at current time and previous time
are also created by the constructor. Listing 7.26 shows the pseudocode.
// I n i t ia l density values are randomly generated .
s t d : : mt19937 mte ;
std :: uniform
real distribution<float> unirnd (0.0 f , 1.0 f );
mDensity. reset(new Texture2 (DF
R32 FLOAT , x S i ze , y S i z e ) ) ;
float∗ data = mDensity−>GetAs<float > ();
for ( int i=0; i< mDensity −>GetNumElements ( ) ; ++i , ++data )
{
∗ data = unirnd (mte);
}
// Initial velocity values are zero.
mVelocity . reset (new Texture2 (DF
R32G32 FLO AT , xSize , y S i z e ) ) ;
memset ( m V e loc ity−>GetData ( ) , 0 , m Velo city −>GetNumBytes());
// The states at time 0 and time −dt a re i n i t i a l i z e d by a compute s ha der .
mStateTm1 . r e s e t (new Texture2 (DF
R32G32B32A32 FLOAT , xSiz e , y S i z e ) ) ;
mStateTm1−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
mStateT . r e set ( new Texture2 (DF
R32G32B32A32 FLOAT , xSiz e , y S i z e ) ) ;
mStateT−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
LISTING 7.26: Selection of initial state for 2D ﬂuids.
The compute shader is trivial as is the GTEngine code that creates an
instance and executes the shader, as shown in Listing 7.27.
// From InitializeState . hlsl :
Texture2D<float> density ;
Texture2D<float2> velocity ;
RWTexture2D<float4> stateTm1 ;
RWTexture2D<float4> stateT ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
float4 initial = float4(velocity[c.xy], 0.0f , density[c.xy]);
stateTm1 [ c . xy ] = i n i t i a l ;
stateT [c . xy ] = i ni ti al ;
}
// From InitializeState .cpp:
// Create the shader for initializing velocity and density.
HLSLDefiner definer ;
definer . SetInt(”NUM
X THREADS” , numXThreads ) ;
definer . SetInt(”NUM
Y THREADS” , numYThreads ) ;


















[image: ]406 GPGPU Programming for Games and Science
mInitializeState . reset(
ShaderFactory ::CreateCompute(”InitializeState . hlsl”, definer ));
mInitializeState−>Set (” density ” , mDensity ) ;
mInitializeState−>Set (” v el oc i ty ” , mVelocity );
mInitializeState−>S et ( ” stateTm1 ” , mStateTm1 ) ;
mInitializeState−>Set(”stateT” , mStateT );
// From InitializeSta te . cpp ( in a wrapper for execution ):
engine−>Execu te ( m I n i t i a l i z e S t a t e , mNumXGrou ps , mNumYGroups , 1 ) ;
LISTING 7.27: Initial state computations 2D ﬂuids, both for the CPU and
the GPU.
7.11.2.2 Initialization of External Forces
The external density control in Equation (7.52) has a source, a sink, and
is constant for all time. Thus, ﬂuid is added at one location in the square and
removed at another location.
F
den
(x, y)= A
0
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−
|(x−x
0
,y−y
0
)|
2
2σ
2
0

− A
1
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1
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2
2σ
2
1

(7.64)
where A
i
> 0, σ
i
> 0, and (x
i
,y
i
) ∈ (0, 1)
2
are user-deﬁned constants.
The external velocity control has three types of components. A constant
gravitational force G is applied. A wind force W is applied at the middle of
the left side of the square but is distributed as a Gaussian through a small
portion of space with direction towards the right. Finally, a sum of vortices
V
i
gives the ﬂuid local swirling eﬀects. All external forces are constant over
time.
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where g
i
, M
i
> 0, s
i
> 0, and (ξ
i
,η
i
) ∈ (0, 1)
2
are user-deﬁned constants.
The class
InitializeSource manages the setup and evaluation of the external
forces. The constructor does the work, but the initialization is more compli-
cated than that for state initialization. If the number n of vortices is small,
we can generate the vortex contribution rapidly on the CPU. However, if n
is large, the start-up time for the application can be quite lengthy because
of the triple loop necessary to sum the n contributions at each pixel in the
image. In the application, I have chosen to use 1024 vortices. Unlike the den-
sity that is initialized to random numbers on the CPU, the parameters of the
external forces are selected on the CPU but the computations of the initial
source are all performed on the GPU. The
InitializeSource constructor contains
code shown in Listing 7.28.
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// Create the resources for generating velocity from vortices .
mVortex . r e s e t ( new ConstantBuffer ( sizeof(Vortex), true ));
mVelocity0. reset(new Texture2 (DF
R32G32 FLO AT , xSize , ySi z e ) ) ;
mVelocity0−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
mVelocity1. reset(new Texture2 (DF
R32G32 FLO AT , xSize , ySi z e ) ) ;
mVelocity1−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
// Create the resources for generating velocity from wind and gravity .
mExternal . r eset (new ConstantBuffer ( sizeof (External), false ));
External& e = ∗ mExternal−>Data<External >();
// (x ,y , variance , amplitude)
e. densityProducer = Vector4<float >(0.25f,0.75f,0.01f,2.0f);
// (x ,y , variance , amplitude)
e . densityConsumer = Vector4<float >(0.75f,0.25f,0.01f,2.0f);
// no gravity for this sample
e . g r a vi t y = Vector4 <float >(0.0f , 0.0 f , 0.0 f , 0.0 f );
// (x ,y , variance , amplitude)
e . wind = Vector4 <float >(0.0f , 0.5 f , 0.001 f , 32.0 f );
mSource . r e s e t ( new Texture2 (DF
R32G32B32A32 FLOAT , xSiz e , y S i z e ) ) ;
mSource−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
LISTING 7.28: Setup code for initialization of source forces for 2D ﬂuids.
The
mSource texture is initialized with the external forces.
The vortex generation occurs ﬁrst and is passed to the initialization shader
so that gravity and wind forces may be added. The
Parameters constant buﬀer
was mentioned previously and is omitted from the listings. The relevant HLSL
code is shown in Listing 7.29.
// From GenerateVortex . h lsl :
cbuffer Vortex
{
float4 data; // (x , y , variance , amplitude )
} ;
Texture2D<float2> inVelocity ;
RWTexture2D<float2> outVelocity;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
float2 location = spaceDelta . xy∗(c.xy + 0.5f );
float2 diff = location − data . xy ;
float arg = −dot( di ff , d if f )/ data . z ;
float magnitude = data .w∗exp ( a rg ) ;
fl o at 2 vo rt exV el oc it y = magnitude∗ float2( diff .y, − diff .x);
outVelocity[c. xy] = inVelocity [c.xy] + vortexVelocity ;
}
// From InitializeSource . hlsl :
cbuffer External
{
float4 densityProducer ; // (x , y , variance , amplitude)
float4 densityConsumer; // (x , y , variance , amplitude)
float4 gravity ; // ( x , y , ∗ , ∗)
float4 wind; // (x , y , variance , amplitude)
} ;
Texture2D<float2> vortexVelocity ;
RWTexture2D<float4> source;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
// Compute the location of the pixel (x,y) in normalized [0 ,1]ˆ2.
float2 location = spaceDelta . xy∗(c.xy + 0.5f );
// Compute an input to the fluid simulation consisting of a producer
// of density and a consumer of density .
float2 diff = location − densityProducer . xy ;
float arg = −dot( diff , diff )/ densityProducer . z;
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float density = densityProducer .w∗ exp ( a rg ) ;
diff = location − densityConsumer. xy ;
arg = −dot( diff , di ff )/densityConsumer. z ;
density −= densityConsumer.w∗exp ( arg ) ;
// Compute an input to the fluid simulation consisting of gravity ,
// a single wind source , and vortex impulses .
float windDiff = location .y − wind . y ;
float windArg = −windDiff∗ windDiff/wind.z;
float2 windVelocity = { wind .w∗ exp ( windArg ) , 0.0 f } ;
float2 velocity = gravity .xy + windVelocity + vortexVelocity [c.xy];
source[c.xy] = float4(velocity .xy , 0.0f , density );
}
LISTING 7.29: HLSL code for generating vortices and other forces in 2D
ﬂuids.
The creation of instances of the shader and the execution of them is shown
in Listing 7.30.
// From InitializeSource .cpp:
HLSLDefiner definer ;
definer . SetInt(”NUM
X THREADS” , numXThreads ) ;
definer . SetInt(”NUM
Y THREADS” , numYThreads ) ;
mGenerateVortex . res et (
ShaderFactory :: CreateCompute(”GenerateVortex . h lsl ” , definer )) ;
mGenerateVortex −>Set(”Parameters ” , parameters );
mGenerateVortex −>Set (” Vortex ” , mVortex ) ;
mGenerateVortex −>Set (” i nVe loci ty ” , mVelocity0 );
mGenerateVortex −>Set (” o ut Vel ocit y” , mVelocity1 );
mInitializeSource . reset(
ShaderFactory :: CreateCompute(” I nitializ eSource . hlsl ” , definer ));
mInitializeSource−>Set (”Parameters ” , parameters );
mInitializeSource−>Set (” External ” , mExternal );
mInitializeSource−>Set (” source” , mSource );
// From InitializeSource .cpp (in a wrapper for execution ):
// Compute the ve lo ci ty one vortex at a time . After the loop terminates ,
// the final velocity is stored in mVelocity0.
s t d : : mt19937 mte ;
std :: uniform
real distribution<float> unirnd (0.0 f , 1.0 f );
std :: uniform
real distribution<float> symrnd (−1.0 f , 1 . 0 f ) ;
std :: uniform
real distribution<float> posrnd0 (0.001 f , 0.01 f );
std :: uniform
real distribution<float> posrnd1 (128.0 f , 256.0 f ) ;
memset ( m V e loc ity 0−>GetData ( ) , 0 , m Vel ocity0 −>GetN umBytes ( ) ) ;
Vortex& v = ∗mVortex −>GetAs<Vortex >();
for ( int i=0; i< NUM
VORTICES ; ++i )
{
v . data [0] = unirnd (mte );
v . data [1] = unirnd (mte );
v . data [2] = posrnd0 (mte );
v . data [3] = posrnd1 (mte );
if (symrnd(mte) < 0.0 f ) { v.data[3] = −v.data [3]; }
engine−>CopyCpuToGpu( m V or te x ) ;
engine−>Execu te ( mGenerateVorte x , mNu mXGroups , mNumYGroups , 1 );
std :: swap(mVelocity0 , mVelocity1 );
mGenerateVortex −>Set (” i nVe loci ty ” , mVelocity0 );
mGenerateVortex −>Set (” o ut Vel ocit y” , mVelocity1 ) ;
}
// Compute the sources for the f lu id simulation .
mInitializeSource−>Set(”vortexVelocity” , mVelocity0);
engine−>Execu te ( m I n it i a l i z e S o u r c e , mNumXGroups , mNumYGroups , 1 );
LISTING 7.30: Shader creation and execution for initializing sources in 2D
ﬂuids.
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The vortex parameters are randomly generated on the CPU, one vortex at
a time. The negation of
v.data[3] reverses the direction of spin for the vortex—
also randomly selected. These parameters are uploaded as constant buﬀers
and then the shader is executed. The loop ping-pongs between two textures
for eﬃciency (no GPU-to-CPU copies). When all vortices are computed, the
result is in
mVelocity0, which is then attached to the shader that computes the
gravity and wind forces. The vortex velocities are added to those.
The design for the remaining shader wrapper classes is similar to that for
InitializeState and InitializeSource. Resources are created, shaders are loaded from
disk and compiled, and an execution wrapper is provided for the simulation.
The remainder of the discussion focuses on the HLSL ﬁles themselves.
7.11.2.3 Updating the State with Advection
The update of state using advection and derivative estimation is encapsu-
latedintheclass
UpdateState, as shown in Listing 7.31. The Parameters constant
buﬀer is omitted from the listing.
// From UpdateState . hl sl :
Texture2D<float4> source;
Texture2D<float4> stateTm1 ;
Texture2D<float4> stateT ;
SamplerState advectionSampler ; // bilinear , clamp
RWTexture2D<float4> updateState ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
uint2 dim;
stateT . GetDimensions(dim .x , dim . y );
int x=int(c.x);
int y=int(c.y);
int xm = max ( x −1, 0 ) ;
int xp = min ( x +1, dim .x −1);
int ym = max ( y −1, 0 ) ;
int yp = min ( y +1, dim .y −1);
// Sa mple s ta t es a t (x , y ) , ( x+dx , y ) , ( x−dx , y ) , (x , y+dy ) , ( x , y−dy ) .
float4 stateZZ = stateT[ int2(x, y )];
float4 statePZ = stateT[ int2(xp , y )];
float4 stateMZ = stateT[ int2(xm, y )];
float4 stateZP = stateT[ int2(x, yp )];
float4 stateZM = stateT[ int2(x, ym)];
//Samplethesourcestateat(x,y).
float4 src = source[ int2(x, y )];
// Estimate second−order derivatives of state at (x,y).
fl oa t4 stateDXX = statePZ − 2.0 f∗ stateZZ + stateMZ ;
fl oa t4 stateDYY = stateZP − 2.0 f∗ stateZZ + stateZM ;
// Compute a dve ct i on .
float2 tcd = spaceDelta . xy∗(c.xy − timeDelta . xy∗stateZZ . xy + 0.5 f );
fl oa t4 a dvection = stateTm1 . SampleLevel ( advectionSampler , tcd , 0.0 f ) ;
// Update the state.
updateState [ c .xy] = advection +
(viscosityX∗ stateDXX + v i s c o s i t y Y ∗stateDYY + timeDelta .w∗ src );
}
LISTING 7.31: HLSL code for updating the 2D ﬂuid state with advection.
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The resources for compute shaders are accessed directly by index. The
dimensions of the texture are conveniently accessed by the HLSL function
GetDimensions.TheSV DispatchThreadID system-value semantic provides a nat-
ural tuple into a grid. If a compute shader is called with (x
t
,y
t
,z
t
) threads
(the parameters in the
[numthreads] statement) and (x
g
,y
g
,z
g
) groups (the pa-
rameters passed to the
Dispatch call), then the dispatch ID (c
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,c
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In our case, the thread counts are
NUM X THREADS, NUM Y THREADS,and1.
The group counts are
dim.x/NUM X THREADS, dim.y/NUM Y THREADS,and1.
The dispatch thread ID
c satisﬁes (0,0,0) <= (c.x,c.y,c.z) < (dim.x,dim.y,1).We
are guaranteed that the
x and y values in the shader are within bounds for
the state texture. We need to access the four immediate neighbors to compute
centered ﬁnite diﬀerences, so the computation of
xm, xp, ym,andyp must be
clamped to the image domain.
1
The external force contributions are provided by the lookup into the
source texture. The ﬁnite diﬀerence approximations are stored in stateDXX
and stateDYY; observe that these computations are vectorized for speed—the
ﬁrst two components are for the velocity and the last component is for density.
Recall that advection involves estimating the previous state at a subpixel
location; see Equation (7.63). That location is (x, y) − Δ
t
(u, v), where (x, y)
is the current pixel center and (u, v) is the current velocity. Texture sampling,
though, requires a normalized texture coordinate in [0, 1]
2
. The shader code
ﬂoat2 tcd = spaceDelta.xy*(c.xy - timeDelta.xy*stateZZ.xy + 0.5f) is the conversion
to such a coordinate. For an image of width W and height H, the standard
graphics mapping for a pixel (x
p
,y
p
) ∈ [0,W) ×[0,H) to a texture coordinate
(x
t
,y
t
) ∈ [0, 1)
2
is
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
x
p
+1/2
W
,
y
p
+1/2
H

(7.67)
The term
c.xy - timeDelta.xy*stateZZ.xy is in pixel coordinates. Adding 0.5f
and multiplying by spaceDelta.xy = (1/dim.x, 1/dim.y) = (1/W,1/H) converts the
pixel coordinates to texture coordinates. As always in compute shaders,
you must specify the miplevel, which requires a call to the HLSL function
SampleLevel rather than Sample.
The ﬁnal statement is the update step and is also vectorized for speed.
7.11.2.4 Applying the State Boundary Conditions
The compute shaders are allowed to compute values on the image bound-
aries. Because we cannot guarantee the order in which GPU threads are called,
we cannot enforce boundary values until all state information is computed on
1
Alternatively, we could have use nearest-neighbor sampling of the state texture using
the HLSL
SampleLevel function call, which requires computing ﬁrst a texture coordinate.
The sampler can then tak e care of the clamping to image domain.
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the image domain. Thus, enforcing the boundary conditions is a postprocess-
ing task. Multiple shaders are used for this task and use ping-pong buﬀers.
The shaders are executed in pairs.
The boundary condition n(x) · u(x,t) = 0 may be applied on the grid
solely by setting the appropriate velocity components to zero at the boundary
cells. However, this introduces some discontinuity in the velocity near the
boundary. To counteract this, a zero-derivative condition is also applied. The
grid cells adjacent to the boundary are copied to the boundary ﬁrst, then the
appropriate components are set to zero.
One shader of the pair is responsible for copying the velocity information
from boundary-adjacent rows and columns adjacent to temporary buﬀers.
The other shader writes the information from the temporary buﬀers to the
boundary rows and columns and sets various components to zero. The process
is illustrated next using a small grid.
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The class
EnforceStateBoundary encapsulates the boundary handling for ve-
locity and density. The compute shaders are listed next and executed in the
order speciﬁed. The shaders are compiled one at a time using conditional de-
ﬁnes to expose the main functions. Listing 7.32 has the relevant shader code.
// From EnforceStateBoundary . h lsl :
Texture2D<float4> state ;
RWTexture1D<float> xMin ;
RWTexture1D<float> xMax ;
[ numthreads (1 , NUM
Y THREADS , 1 ) ]
void CopyXEdge ( u i nt 3 c : S V
DispatchThreadID)
{
uint2 dim;
s t a te . G et D im en si o ns ( dim . x , dim . y ) ;
xMin[c. y] = state [ uint2(1, c. y)]. y;
xMax[c. y] = state [ uint2(dim.x−2, c . y ) ] . y ;
}
Texture1D<float> xMin ;
Texture1D<float> xM ax ;
RWTexture2D<float4> state ;
[ numthreads (1 , NUM
Y THREADS , 1 ) ]
void WriteXEdge ( u i n t3 c : S V
DispatchThreadID)
{
uint2 dim;
s t a te . G et D im en si o ns ( dim . x , dim . y ) ;
state [ uint2(0, c.y )] = float4 (0.0f , xMin[c.y] , 0.0f , 0.0 f );
state [ uint2(dim.x−1, c . y ) ] = f lo a t4 ( 0 .0 f , xMax [ c . y ] , 0 . 0 f , 0 . 0 f ) ;
}
Texture2D<float4> state ;
RWTexture1D<float> yMin ;
RWTexture1D<float> yMax ;
[ numthreads (NUM
X THREADS , 1 , 1 ) ]
void CopyYEdge ( u i nt 3 c : S V
DispatchThreadID)
{
uint2 dim;
s t a te . G et D im en si o ns ( dim . x , dim . y ) ;
yMin[c. x] = state [ uint2(c.x, 1)]. x;
yMax[c. x] = state [ uint2(c.x, dim.y− 2)]. x ;
}
Texture1D<float> yMin ;
Texture1D<float> yM ax ;
RWTexture2D<float4> state ;
[ numthreads (NUM
X THREADS , 1 , 1 ) ]
void WriteYEdge ( u i n t3 c : S V
DispatchThreadID)
{
uint2 dim;
s t a te . G et D im en si o ns ( dim . x , dim . y ) ;
state [ uint2(c.x, 0)] = float4 (yMin[c.x] , 0.0f , 0.0f , 0.0f );
state [ uint2(c.x, dim.y−1)]=float4(yMax[c.x],0.0f,0.0f,0.0f);
}
LISTING 7.32: HLSL code for enforcing the boundary conditions for the
2D ﬂuid state.
The minimum and maximum buﬀers are created and managed by the class
but not exposed to the application.
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7.11.2.5 Computing the Divergence of Velocity
The class
ComputeDivergence manages the simple shader for computing the
divergence of the velocity vector. This involves centered ﬁnite diﬀerence esti-
mates. Listing 7.33 shows the compute shader; the
Parameters constant buﬀer
is omitted.
// From ComputeDivergence . h l s l :
Texture2D<float4> state ;
RWTexture2D<float> divergence ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
uint w, h;
state .GetDimensions(w, h);
int x=int(c.x);
int y=int(c.y);
int xm = max ( x −1, 0 ) ;
int xp = min (x +1, w−1);
int ym = max ( y −1, 0 ) ;
int yp = min (y +1, h −1);
float2 velocityGradient =
{
state [ int2(xp , y )]. x − state [int2(xm, y )].x,
state [ int2(x, yp)]. y − state [ int2(x, ym)]. y
} ;
divergence [c .xy] = dot( halfDivDelta .xy , velocityGradient );
}
LISTING 7.33: HLSL code for computing the divergence of the velocity for
2D ﬂuids.
7.11.2.6 Solving the Poisson Equation
The class
SolvePoisson manages the shaders for solving the Poisson equa-
tion ∇
2
φ = −∇ · u with boundary condition φ = 0. As noted previously,
the solver is implicit and uses Gauss-Seidel iteration with ping-pong buﬀers.
The ﬁrst buﬀer must be zeroed, which is accomplished by a compute shader
ZeroPoisson.hlsl. The compute shader SolvePoisson.hlsl is called thirty-two times,
each time swapping buﬀer pointers to avoid memory copies. Listing 7.34 shows
the compute shaders for solving the equation; the
Parameters constant buﬀer
is omitted.
// From ZeroPoisson . hlsl :
RWTexture2D<float> poisson ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
poisson [c .xy] = 0.0f ;
}
// From SolvePoisson . hlsl :
Texture2D<float> divergence ;
Texture2D<float> poisson ;
RWTexture2D<float> outPoisson ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
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{
uint2 dim;
divergence . GetDimensions(dim.x , dim. y);
int x=int(c.x);
int y=int(c.y);
int xm = max ( x −1, 0 ) ;
int xp = min ( x +1, dim .x −1);
int ym = max ( y −1, 0 ) ;
int yp = min ( y +1, dim .y −1);
// Sa mple t h e d iv e r g e n ce a t ( x , y ) .
float div = divergence [ int2(x, y )];
// Sa mple v a lu e s a t ( x , y ) , ( x+dx , y ) , (x−dx , y ) , (x , y+dy ) , (x , y−dy ) .
float poisPZ = poisson [ int2(xp , y )];
float poisMZ = poisson[ int2(xm, y )];
float poisZP = poisson[ int2 (x, yp )];
float poisZM = poisson[ int2(x , ym)];
float4 temp = { poisPZ + poisMZ , poisZP + poisZM , 0.0 f , div } ;
outPoisson [ c .xy] = dot( epsilon , temp);
}
LISTING 7.34: HLSL code for solving the Poisson equation for 2D ﬂuids.
The boundary conditions are enforced via postprocessing shaders. These
are simple, writing zeros to the desired locations and using temporary buﬀers
to avoid memory copies. Listing 7.35 shows the shader code.
// From EnforcePoissonBoundary. h lsl :
RWTexture2D<float> image ;
[ numthreads (1 , NUM
Y THREADS , 1 ) ]
void WriteXEdge ( u i n t3 c : S V
DispatchThreadID)
{
uint2 dim;
im ag e . G et D im e ns i on s ( dim . x , dim . y ) ;
image[ uint2 (0, c.y )] = 0.0 f ;
image[ uint2(dim.x−1, c . y ) ] = 0 . 0 f ;
}
RWTexture2D<float> image ;
[ numthreads (NUM
X THREADS , 1 , 1 ) ]
void WriteYEdge ( u i n t3 c : S V
DispatchThreadID)
{
uint2 dim;
im ag e . G et D im e ns i on s ( dim . x , dim . y ) ;
image[ uint2(c .x , 0)] = 0.0 f;
image[ uint2(c .x , dim.y−1)] = 0 .0 f ;
}
LISTING 7.35: HLSL code for enforcing the boundary conditions after solv-
ing the Poisson equation.
7.11.2.7 Updating the Velocity to Be Divergence Free
The gradient of φ, the solution to the Poisson equation, must be added
back to the velocity vector. This process is managed by class
AdjustVelocity.
The shader code is shown in Listing 7.36; the
Parameters constant buﬀer is
omitted.
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// From AdjustVelocity. hlsl :
Texture2D<float4> inState;
Texture2D<float> poisson ;
RWTexture2D<float4> outState ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
uint2 dim;
i n S ta t e . G et D im en s io n s ( dim .x , dim . y ) ;
int x=int(c.x);
int y=int(c.y);
int xm = max ( x −1, 0 ) ;
int xp = min ( x +1, dim .x −1);
int ym = max ( y −1, 0 ) ;
int yp = min ( y +1, dim .y −1);
// Sample the state at (x,y).
float4 state = inState [c.xy ];
// Sample Poisson values at immediate neighbors of (x,y).
float poisPZ = poisson [ int2(xp , y )];
float poisMZ = poisson[ int2(xm, y )];
float poisZP = poisson[ int2 (x, yp )];
float poisZM = poisson[ int2(x , ym)];
float4 diff = { poisPZ − poisMZ , p oi sZ P − poisZM , 0 . 0 f , 0 . 0 f } ;
outState [c . xy ] = state + halfDivDelta ∗ diff ;
}
LISTING 7.36: HLSL code for updating the velocity to be divergence free.
The gradient is estimated using centered ﬁnite diﬀerences and the result is
structured to use vectorized computations for speed.
7.11.2.8 Screen Captures from the Simulation
The 2D ﬂuid simulation is clamped to run at 60 frames per second. The
screen captures shown in Figure 7.12 were taken every second. The coloring
of the density is based on the velocity vectors and modulated by the density.
The pixel shader is shown in Listing 7.37.
// From DrawDensity . hl s l :
Texture2D<float4> state ;
SamplerState bilinearClampSampler;
struct PS
INPUT { floa t2 vertexTCoord : TEXCOORD0; } ;
float4 PSMain (PS
INPUT input) : SV TARGET
{
float4 current = state . Sample( bilinearClampSampler ,
input .vertexTCoord );
float3 color = 0.5f + 0.5f∗ current .xyz/(1.0f + abs(current .xyz ));
return float4 (current .w∗ color , 1.0 f );
}
LISTING 7.37: The pixel shader for visualizing the density of the 2D ﬂuid.
Naturally, screen captures are not suﬃcient to convey the actual real-time
behavior. You will have to run it yourself.
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FIGURE 7.12: Screen captures from the 2D ﬂuid simulation. The upper-
left image is the initial random density with initial zero velocity. The captures
were taken at 1-second intervals, left to right and then top to bottom.
7.11.3 Solving Fluid Flow in 3D
The sample application is found at
GeometricTools/GTEngine/Samples/Physics/Fluids3D
In the sample application, the 3D ﬂuid is conﬁned to a cube R = {(x, y, z):
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. The boundary B consists of points
for which x =0,x =1,y =0,y =1,z =0,orz = 1. The velocity is
(u, v, w). The velocity boundary conditions are u(0,y,z,t)=0,u(1,y,z,t)=
0, v(x, 0,z,t)=0,v(x, 1,z,t)=0,w(x, y, 0,t) = 0, and w(x, y, 1,t)=0.
We partition R into an N
0
× N
1
× N
2
grid, each grid cell a rectangular
solid of dimensions Δ
x
=1/N
0
,Δ
y
=1/N
1
,andΔ
z
=1/N
2
. Centered ﬁnite
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diﬀerences are used for
ˆ
L in Equation (7.59),
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.
=
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2
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and
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The update for state information is
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den
). Also, (a, b, c, d) ∗(e, f, g, h)=(ae,bf,cg,dh)iscompo-
nentwise multiplication of tuples.
In the compute shaders of the sample application, a constant buﬀer is
used to store the various physical parameters. The declaration in the shaders
and the creation and initialization are listed next. The naming conventions to
relate the two are clear. Listing 7.38 shows the setup code.
/ / F ro m v ar i o u s HLSL f i l e s :
cbuffer Parameters
{
float4 spaceDelta ; // ( dx , dy , dz , 0)
float4 halfDivDelta ; // (0.5/dx , 0.5/dy , 0.5/dz , 0)
float4 timeDelta ; // (dt/dx , dt/dy , dt/dz, dt)
float4 viscosityX ; // ( velVX , velVX , velVX , denVX )
float4 viscosityY ; // ( velVX , velVY , velVY , denVY )
float4 viscosityZ ; // ( velVZ , velVZ , velVZ , denVZ)
float4 epsilon ; // (epsilonX , epsilonY , epsilonZ , epsilon0 )
} ;
// From Smoke3D. c p p :
// Create the shared parameters for many of the simulation shaders .
float dx = 1.0 f / static
cast<float >(mXSize );
float dy = 1.0 f / static
cast<float >(mYSize );
float dz = 1. 0 f / static
cast<float >(mZS ize ) ;
float dtDivDxDx = ( dt /dx )/ dx ;
float dtDivDyDy = ( dt /dy )/ dy ;
float dtDivDzDz = ( d t/ dz )/ dz ;
float ratio0 = dx/dy;
float ratio1 = dx/dz;
float ratio0Sqr = ratio0∗ ratio0 ;
float ratio1Sqr = ratio1∗ ratio1 ;
float factor = 0.5f /(1.0f + ratio0Sqr + ratio1Sqr);
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float epsilonX = factor ;
float epsilonY = ratio0Sqr∗ factor ;
float epsilonZ = ratio1Sqr∗ factor ;
float epsilon0 = dx∗ dx∗ factor ;
float const denViscosity = 0.0001 f ;
float const v elV is cosit y = 0.0001 f ;
float denVX = d e n V i s c o s i t y ∗ dtDivDxDx ;
float denVY = d e n V i s c o s i t y ∗ dtDivDyDy ;
float denVZ = d en V is c os ity ∗ dtDivDzDz ;
float velVX = velViscosity∗dtDivDxDx;
float velVY = velViscosity∗dtDivDyDy;
float velVZ = velViscosity∗dtDivDzDz ;
LISTING 7.38: Setup of constant buﬀers for the 3D ﬂuid simulation.
The ﬂuid grid has
mXSize columns, mYSize rows, and mZSize slices, which are
both 128 in the application. The time step
dt is chosen to be 0.002.
7.11.3.1 Initialization of State
The initialization of velocity and density is implemented in the class
InitializeState. The assignments are in the constructor for the class. The initial
velocities are set to zero and the initial densities are set to random numbers
in [0, 1]. Textures storing state information at current time and previous time
are also created by the constructor. Listing 7.39 shows the pseudocode.
// I n i t ia l density values are randomly generated .
s t d : : mt19937 mte ;
std :: uniform
real distribution<float> unirnd (0.0 f , 1.0 f );
mDensity. reset(new Texture3 (DF
R32 FLOAT , xSize , ySize , zSize ) );
float∗ data = mDensity−>GetAs<float > ();
for ( int i=0; i< mDensity −>GetNumElements ( ) ; ++i , ++data )
{
∗ data = unirnd (mte);
}
// Initial velocity values are zero.
mVelocity . reset (new Texture3 (DF
R32G32B32A32 FLOAT , xSize , ySize , zSize )) ;
mVelocity−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
memset ( m V e loc ity−>GetData ( ) , 0 , m Velo city −>GetNumBytes());
// The states at time 0 and time −dt a re i n i t i a l i z e d by a compute s ha der .
mStateTm1 . r e s e t (new Texture3 (DF
R32G32B32A32 FLOAT , xSize , ySize , zSize )) ;
mStateTm1−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
mStateT . r e set ( new Texture3 (DF
R32G32B32A32 FLOAT , xSize , ySize , zSize ));
mStateT−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
LISTING 7.39: Selection of initial state for 3D ﬂuids.
The compute shader is trivial as is the GTEngine code that creates an
instance and executes the shader, as shown in Listing 7.40.
// From InitializeState . hlsl :
Texture3D<float> density ;
Texture3D<float4> velocity ;
RWTexture3D<float4> stateTm1 ;
RWTexture3D<float4> stateT ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , NUM Z THREADS ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
float4 initial = float4(velocity [c.xyz].xyz , density[c.xyz]);
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stateTm1[c.xyz] = initial ;
stateT[c.xyz] = initial ;
}
// From InitializeState .cpp:
// Create the shader for initializing velocity and density.
HLSLDefiner definer ;
definer . SetInt(”NUM
X THREADS” , numXThreads ) ;
definer . SetInt(”NUM
Y THREADS” , numYThreads ) ;
definer . SetInt(”NUM
Z THREADS” , numZThreads );
mInitializeState . reset(ShaderFactory :: CreateCompute(path , definer ));
mInitializeState−>Set (” density ” , mDensity ) ;
mInitializeState−>Set (” v el oc i ty ” , mVelocity );
mInitializeState−>S et ( ” stateTm1 ” , mStateTm1 ) ;
mInitializeState−>Set(”stateT” , mStateT );
// From InitializeSta te . cpp ( in a wrapper for execution ):
engine−>Execu te ( m I n i t i a l i z e S t a t e , mNumXGroup s , mNumYGroups , mNumZGroups ) ;
LISTING 7.40: Initial state computations 3D ﬂuids, both for the CPU and
the GPU.
7.11.3.2 Initialization of External Forces
The external density control in Equation (7.52) has a source, a sink, and
is constant for all time. Thus, ﬂuid is added at one location in the square and
removed at another location.
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where A
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) ∈ (0, 1)
2
are user-deﬁned constants.
The external velocity control has three types of components. A constant
gravitational force G is applied. A wind force W is applied at the middle of
the left side of the square but is distributed as a Gaussian through a small
portion of space with direction towards the right. Finally, a sum of vortices
V
i
gives the ﬂuid local swirling eﬀects. All external forces are constant over
time.
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where g
i
, M
i
> 0, s
i
> 0, (ξ
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3
are user-deﬁned constants. The
normal vectors N
i
are unit length and act as the axis directions for the planar
vortices.





[image: ]420 GPGPU Programming for Games and Science
The class
InitializeSource manages the setup and evaluation of the external
forces. The constructor does the work, but the initialization is more compli-
cated than that for state initialization. If the number n of vortices is small,
we can generate the vortex contribution rapidly on the CPU. However, if n
is large, the start-up time for the application can be quite lengthy because
of the triple loop necessary to sum the n contributions at each pixel in the
image. In the application, I have chosen to use 1024 vortices. Unlike the den-
sity that is initialized to random numbers on the CPU, the parameters of the
external forces are selected on the CPU but the computations of the initial
source are all performed on the GPU. The
InitializeSource constructor contains
code shown in Listing 7.41.
// Create the resources for generating velocity from vortices .
struct Vortex { Vector4 <float> position , normal, data ; } ;
mVortex . r e s e t ( new ConstantBuffer ( sizeof(Vortex), true ));
mVelocity0. reset(new Texture3 (DF
R32G32B32A32 FLOAT , xSize , ySize , zSize ));
mVelocity0−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
mVelocity1. reset(new Texture3 (DF
R32G32B32A32 FLOAT , xSize , ySize , zSize ));
mVelocity1−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
// Create the resources for generating velocity from wind and gravity .
struct External
{
Vector4 <float> densityProducer ; // ( x , y , z , ∗)
Vector4 <float> densityPData; // ( variance , amplitude , ∗ , ∗)
Vector4 <float> densityConsumer; // (x , y , z , ∗)
Vector4 <float> densityCData; // ( variance , amplitude , ∗ , ∗)
Vector4 <float> gravity ;
Vector4 <float> windData ;
} ;
mExternal . r eset (new ConstantBuffer ( sizeof (External), false ));
External& e = ∗ mExternal−>GetAs<External >();
e. densityProducer = Vector4<float >(0.5f, 0.5f, 0.5f, 0.0f);
e . densityPData = Vector4<float >(0.01 f , 16.0f , 0.0 f , 0.0 f );
e . densityConsumer = Vector4<float >(0.75f,0.75f,0.75f,0.0f);
e . densityCData = Vector4<float >(0.01f , 0.0 f , 0.0 f , 0.0 f );
e . g r a vi t y = Vector4 <float >(0.0f , 0.0 f , 0.0 f , 0.0 f );
e . windData = Vector4<float >(0.001f, 0.0f, 0.0f, 0.0f);
mSource . r e s e t (
new Texture3 (DF R32G32B32A32 FLOAT , xSize , ySize , zSize ));
mSource−>SetUsage ( Resource : : SHADER
OUTP UT ) ;
LISTING 7.41: Setup code for initialization of source forces for 3D ﬂuids.
The
mSource texture is initialized with the external forces.
The vortex generation occurs ﬁrst and is passed to the initialization shader
so that gravity and wind forces may be added. The
Parameters constant buﬀer
was mentioned previously and is omitted from the listings. The relevant HLSL
code is shown in Listing 7.42.
// From GenerateVortex . h lsl :
cbuffer Vortex
{
float4 position ; // ( px , py , pz , ∗)
float4 normal ; // ( nx , ny , nz , ∗)
float4 data; // ( variance , amplitude , ∗ , ∗)
} ;
Texture3D<float4> inVelocity ;
RWTexture3D<float4> outVelocity;
[ numthreads (NUM
X THREADS , NUM Y THREADS , NUM Z THREADS ) ]
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void CSMai n ( u int 3 c : S V DispatchThreadID)
{
float3 location = spaceDelta . xyz∗( c . xyz + 0.5 f ) ;
float3 diff = location − p osi ti on . xyz ;
float arg = −dot( di ff , d if f )/ data . x ;
float magnitude = data . y∗ exp ( arg ) ;
float4 vortexVelocity = float4(magnitude∗ c r os s ( no rma l . xyz , d i f f ) , 0 . 0 f ) ;
ou tV el ocity [ c . xyz ] = in Ve loc it y [ c . xyz ] + vo rt exV el oci ty ;
}
// From InitializeSource . hlsl :
cbuffer External
{
float4 densityProducer ; //(x,y,z,∗)
float4 densityPData; // ( variance , amplitude , ∗ , ∗)
float4 densityConsumer; //(x,y,z,∗)
float4 densityCData; // ( variance , amplitude , ∗ , ∗)
float4 gravity ; //(x,y,z,∗)
fl o at 4 windData ; // ( variance , amplitude , ∗ , ∗)
} ;
Texture3D<float4> vortexVelocity ;
RWTexture3D<float4> source;
[ numthreads (NUM
X THREADS , NUM Y THREADS , NUM Z THREADS ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
// Compute the location of the voxel (x,y,z) in normalized [0 ,1]ˆ3.
float3 location = spaceDelta . xyz∗( c . xyz + 0.5 f ) ;
// Compute an input to the fluid simulation consisting of a producer
// of density and a consumer of density .
float3 diff = location − densityProducer . xyz;
float arg = −dot( diff , d i ff )/ densityPData . x ;
float density = densityPData.y∗ exp ( arg ) ;
diff = location − densityConsumer. xyz ;
arg = −dot( diff , d i ff )/ densityCData . x ;
density −=densityCData.y∗ exp ( arg ) ;
// Compute an input to the fluid simulation consisting of gravity ,
// a single wind source , and vortex impulses .
float windArg = −dot(location .xz , location .xz)/windData.x;
float3 windVelocity = { 0.0 f , windData. y∗ exp ( windArg ) , 0.0 f } ;
float3 velocity =
gr avi ty . xyz + windVelocity + vo rt exV elo ci ty [ c . xyz ] . xyz ;
source[c.xyz] = float4 ( velocity .xyz , density );
}
LISTING 7.42: HLSL code for generating vortices and other forces in 3D
ﬂuids.
The creation of instances of the shader and the execution of them is shown
in Listing 7.43.
// From InitializeSource .cpp:
HLSLDefiner definer ;
definer . SetInt(”NUM
X THREADS” , numXThreads ) ;
definer . SetInt(”NUM
Y THREADS” , numYThreads ) ;
definer . SetInt(”NUM
Z THREADS” , numZThreads );
mGenerateVortex . res et (
ShaderFactory :: CreateCompute(”GenerateVortex . h lsl ” , definer )) ;
mGenerateVortex −>Set(”Parameters ” , parameters );
mGenerateVortex −>Set (” Vortex ” , mVortex ) ;
mGenerateVortex −>Set (” i nVe loci ty ” , mVelocity0 );
mGenerateVortex −>Set (” o ut Vel ocit y” , mVelocity1 );
mInitializeSource . reset(
ShaderFactory :: CreateCompute(” I nitializ eSource . hlsl ” , definer ));
mInitializeSource−>Set (”Parameters ” , parameters );
mInitializeSource−>Set (” External ” , mExternal );
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mInitializeSource−>Set (” source” , mSource );
// From InitializeSource .cpp (in a wrapper for execution ):
// Compute the ve lo ci ty one vortex at a time . After the loop terminates ,
// the final velocity is stored in mVelocity0.
s t d : : mt19937 mte ;
std :: uniform
real distribution<float> unirnd (0.0 f , 1.0 f );
std :: uniform
real distribution<float> symrnd (−1.0 f , 1 . 0 f ) ;
std :: uniform
real distribution<float> posrnd0 (0.001 f , 0.01 f );
std :: uniform
real distribution<float> posrnd1 (64.0 f , 128.0 f );
memset ( m V e loc ity 0−>GetData ( ) , 0 , m Vel ocity0 −>GetN umBytes ( ) ) ;
Vortex& v = ∗mVortex −>GetAs<Vortex >();
for ( int i=0; i< NUM
VORTICES ; ++i )
{
v . position [0] = unirnd (mte );
v . position [1] = unirnd (mte );
v . position [2] = unirnd (mte );
v.position [3] = 0.0f;
v.normal[0] = symrnd(mte);
v.normal[1] = symrnd(mte);
v.normal[2] = symrnd(mte);
v.normal[3] = 0.0f;
Normalize(v . normal );
v . data [0] = posrnd0 (mte );
v . data [1] = posrnd1 (mte );
v.data[2] = 0.0f;
v.data[3] = 0.0f;
engine−>CopyCpuToGpu( m V or te x ) ;
engine−>Execu te ( mGenerateVorte x , mNu mXGroups , mNumYGroups ,
mNumZGroups ) ;
std :: swap(mVelocity0 , mVelocity1 );
mGenerateVortex −>Set (” i nVe loci ty ” , mVelocity0 );
mGenerateVortex −>Set (” o ut Vel ocit y” , mVelocity1 ) ;
}
// Compute the sources for the f lu id simulation .
mInitializeSource−>Set(”vortexVelocity” , mVelocity0);
engine−>Execu te ( m I n it i a l i z e S o u r c e , mNumXGroups , mNumYGroups , mNumZGroups ) ;
LISTING 7.43: Shader creation and execution for initializing sources in 3D
ﬂuids.
The vortex parameters are randomly generated on the CPU, one vortex
at a time. These parameters are uploaded as constant buﬀers and then the
shader is executed. The loop ping-pongs between two textures for eﬃciency
(no GPU-to-CPU copies). When all vortices are computed, the result is in
mVelocity0, which is then attached to the shader that computes the gravity
and wind forces. The vortex velocities are added to those.
The design for the remaining shader wrapper classes is similar to that for
InitializeState and InitializeSource. Resources are created, shaders are loaded from
disk and compiled, and an execution wrapper is provided for the simulation.
The remainder of the discussion focuses on the HLSL ﬁles themselves.
7.11.3.3 Updating the State with Advection
The update of state using advection and derivative estimation is encapsu-
latedintheclass
UpdateState, as shown in Listing 7.44. The Parameters constant
buﬀer is omitted from the listing.
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// From UpdateState . hl sl :
Texture3D<float4> source;
Texture3D<float4> stateTm1 ;
Texture3D<float4> stateT ;
SamplerState advectionSampler ; // trilinear , clamp
RWTexture3D<float4> updateState ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , NUM Z THREADS ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
uint3 dim;
s t a te T . G et Di m en s io n s ( dim . x , dim . y , dim . z );
int x=int(c.x);
int y=int(c.y);
int z=int(c.z);
int xm = max ( x −1, 0 ) ;
int xp = min ( x +1, dim .x −1);
int ym = max ( y −1, 0 ) ;
int yp = min ( y +1, dim .y −1);
int zm = max ( z −1, 0 ) ;
int zp = min ( z +1, dim . z −1);
// Sample states at (x , y , z) and immediate neighbors .
float4 stateZZZ = stateT [ int3 (x , y , z )] ;
float4 statePZZ = stateT [ int3 (xp , y , z )] ;
float4 stateMZZ = stateT [ int3 (xm, y , z )] ;
float4 stateZPZ = stateT [ int3 (x , yp , z )];
float4 stateZMZ = stateT [ int3 (x , ym, z ) ];
float4 stateZZP = stateT [ int3 (x , y , zp )] ;
float4 stateZZM = stateT [ int3 (x , y , zm )];
//Samplethesourcestateat(x,y,z).
float4 src = source[ int3(x, y , z )];
// Estimate second−order derivatives of state at (x,y,z).
f l oa t 4 stateDXX = statePZZ − 2.0 f∗ sta teZZ Z + stateMZZ ;
f l oa t 4 stateDYY = stateZPZ − 2.0 f∗ s tate ZZZ + stateZMZ ;
fl oa t 4 stateDZZ = stateZZP − 2.0 f∗ sta teZZ Z + stateZZM ;
// Compute a dve ct i on .
float3 tcd =
spaceDelta . xyz∗( c . xyz − timeDelta . xyz∗ stateZZZ . xyz + 0.5 f );
fl oa t4 a dvection = stateTm1 . SampleLevel ( advectionSampler , tcd , 0.0 f ) ;
// Update the state.
updateState [ c . xyz ] = advection +
(viscosityX∗ stateDXX + v i s c o s i t y Y ∗stateDYY +
viscosityZ∗ stateDZZ + timeDelta .w∗ src );
}
LISTING 7.44: HLSL code for updating the 3D ﬂuid state with advection.
The resources for compute shaders are accessed directly by index. The
dimensions of the texture are conveniently accessed by the HLSL function
GetDimensions.TheSV DispatchThreadID system-value semantic provides a nat-
ural tuple into a grid. If a compute shader is called with (x
t
,y
t
,z
t
) threads
(the parameters in the
[numthreads] statement) and (x
g
,y
g
,z
g
) groups (the pa-
rameters passed to the
Dispatch call), then the dispatch ID (c
x
,c
y
,c
z
) satisﬁes
(0, 0, 0) ≤ (c
x
,c
y
,c
z
) < (x
t
,y
t
,z
t
) ∗ (x
g
,y
g
,z
g
)=(x
t
x
g
,y
t
y
g
,z
t
z
g
) (7.75)
In our case, the thread counts are
NUM X THREADS, NUM Y THREADS,
and
NUM Z THREADS. The group counts are dim.x/NUM X THREADS,
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dim.y/NUM Y THREADS,anddim.z/NUM Z THREADS. The dispatch thread ID
c satisﬁes (0,0,0) <= (c.x,c.y,c.z) < (dim.x,dim.y,dim.z). We are guaranteed that
the
x, y,andz values in the shader are within bounds for the state texture.
We need to access the four immediate neighbors to compute centered ﬁnite
diﬀerences, so the computation of
xm, xp, ym, yp, zm,andzp must be clamped
to the image domain.
The external force contributions are provided by the lookup into the
source
texture. The ﬁnite diﬀerence approximations are stored in stateDXX, stateDYY,
stateDZZ; observe that these computations are vectorized for speed—the ﬁrst
three components are for the velocity and the last component is for density.
Recall that advection involves estimating the previous state at a subvoxel
location; see Equation (7.72). That location is (x, y, z) − Δ
t
(u, v, w), where
(x, y, z) is the current voxel center and (u, v, w) is the current velocity. Texture
sampling, though, requires a normalized texture coordinate in [0, 1]
3
.The
shader code
ﬂoat3 tcd = spaceDelta.xyz*(c.xyz - timeDelta.xyz*stateZZ.xyz + 0.5f);
is the conversion to such a coordinate. For an image of width W ,heightH,
and thickness T , the standard graphics mapping for a voxel (x
p
,y
p
,z
p
) ∈
[0,W) × [0,H) × [0,T) to a texture coordinate (x
t
,y
t
,z
t
) ∈ [0, 1)
3
is
(x
t
,y
t
,z
t
)=

x
p
+1/2
W
,
y
p
+1/2
H
,
z
p
+1/2
T

(7.76)
The term
c.xyz - timeDelta.xyz*stateZZ.xyz is in voxel coordinates. Adding 0.5f
and multiplying by spaceDelta.xyz = (1/dim.x, 1/dim.y,1/dim.z) = (1/W,1/H,1/T)
converts the voxel coordinates to texture coordinates. As always in compute
shaders you must specify the miplevel, which requires a call to the HLSL
function
SampleLevel rather than Sample.
The ﬁnal statement is the update step and is also vectorized for speed.
7.11.3.4 Applying the State Boundary Conditions
The compute shaders are allowed to compute values on the image bound-
aries. Because we cannot guarantee the order in which GPU threads are called,
we cannot enforce boundary values until all state information is computed on
the image domain. Thus, enforcing the boundary conditions is a postprocess-
ing task. Multiple shaders are used for this task and use ping-pong buﬀers.
The shaders are executed in pairs.
The boundary condition n(x) · u(x,t) = 0 may be applied on the grid
solely by setting the appropriate velocity components to zero at the boundary
cells. However, this introduces some discontinuity in the velocity near the
boundary. To counteract this, a zero-derivative condition is also applied. The
grid cells adjacent to the boundary are copied to the boundary ﬁrst, then the
appropriate components are set to zero. The details are tedious and mimic
those shown in Equation (7.68), so they are not discussed here. You can go
directly to the HLSL ﬁle to see the shader implementations.
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7.11.3.5 Computing the Divergence of Velocity
The class
ComputeDivergence manages the simple shader for computing the
divergence of the velocity vector. This involves centered ﬁnite diﬀerence esti-
mates. Listing 7.45 shows the compute shader; the
Parameters constant buﬀer
is omitted.
// From ComputeDivergence . h l s l :
Texture3D<float4> state ;
RWTexture3D<float> divergence ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , NUM Z THREADS ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
uint3 dim;
s t a te . G et D im en si o ns ( dim . x , dim .y , dim . z ) ;
int x=int(c.x);
int y=int(c.y);
int z=int(c.z);
int xm = max ( x −1, 0 ) ;
int xp = min ( x +1, dim .x −1);
int ym = max ( y −1, 0 ) ;
int yp = min ( y +1, dim .y −1);
int zm = max ( z −1, 0 ) ;
int zp = min ( z +1, dim . z −1);
float3 velocityGradient =
{
state [ int3(xp , y, z )]. x − state[int3(xm, y, z)].x,
state [ int3(x, yp , z )]. y − state [ int3(x, ym, z )].y,
state [ int3(x, y, zp)]. z − state [ int3(x, y, zm)]. z
} ;
divergence [c . xyz ] = dot( halfDivDelta . xyz , velocityGradient );
}
LISTING 7.45: HLSL code for computing the divergence of the velocity for
3D ﬂuids.
7.11.3.6 Solving the Poisson Equation
The class
SolvePoisson manages the shaders for solving the Poisson equa-
tion ∇
2
φ = −∇ · u with boundary condition φ = 0. As noted previously,
the solver is implicit and uses Gauss-Seidel iteration with ping-pong buﬀers.
The ﬁrst buﬀer must be zeroed, which is accomplished by a compute shader
ZeroPoisson.hlsl. The compute shader SolvePoisson.hlsl is called thirty-two times,
each time swapping buﬀer pointers to avoid memory copies. Listing 7.46 shows
the compute shaders for solving the equation; the
Parameters constant buﬀer
is omitted.
// From ZeroPoisson . hlsl :
RWTexture3D<float> poisson ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , NUM Z THREADS ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
poisson [c .xyz] = 0.0f ;
}
// From SolvePoisson . hlsl :
Texture3D<float> divergence ;
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Texture3D<float> poisson ;
RWTexture3D<float> outPoisson ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , NUM Z THREADS ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
uint3 dim;
d i v e r g e nc e . G et Di m en s io n s ( dim . x , dim . y , dim . z ) ;
int x=int(c.x);
int y=int(c.y);
int z=int(c.z);
int xm = max ( x −1, 0 ) ;
int xp = min ( x +1, dim .x −1);
int ym = max ( y −1, 0 ) ;
int yp = min ( y +1, dim .y −1);
int zm = max ( z −1, 0 ) ;
int zp = min ( z +1, dim . z −1);
// Sa mple t h e d iv e r g e n ce a t ( x , y , z ) .
float div = divergence [ int3(x, y , z )];
// Sample Poisson values at (x ,y) and immediate neighbors .
float poisPZZ = poisson [ int3(xp , y , z )];
float poisMZZ = poisson [ int3(xm, y , z )];
float poisZPZ = poisson [ int3(x, yp , z )];
float poisZMZ = poisson [ int3(x, ym, z )];
float poisZZP = po i ss on [ i n t3 (x , y , zp ) ] ;
float poisZZM = poi s s o n [ i nt 3 ( x , y , zm ) ] ;
float4 temp = { poisPZZ + poisMZZ , poisZPZ + poisZMZ ,
poisZZP + poisZZM , d i v } ;
outPoisson [ c . xyz ] = dot( epsilon , temp);
}
LISTING 7.46: HLSL code for solving the Poisson equation for 3D ﬂuids.
The boundary conditions are enforced via postprocessing shaders. These
are simple, writing zeros to the desired locations and using temporary buﬀers
to avoid memory copies. Listing 7.47 shows the shader code.
// From EnforcePoissonBoundary. h lsl :
RWTexture3D<float> image ;
[ numthreads (1 , NUM
Y THREADS , NUM Z THREADS ) ]
void WriteXFace ( ui nt 3 c : SV
DispatchThreadID)
{
uint3 dim;
im ag e . G et D im e ns i on s ( dim . x , dim . y , dim . z ) ;
image[ uint3 (0, c.y, c.z)] = 0.0f ;
image[ uint3(dim.x−1, c.y, c.z)] = 0.0f;
}
RWTexture3D<float> image ;
[ numthreads (NUM
X THREADS , 1 , NUM Z THREADS ) ]
void WriteYFace ( ui nt 3 c : SV
DispatchThreadID)
{
uint3 dim;
im ag e . G et D im e ns i on s ( dim . x , dim . y , dim . z ) ;
image[ uint3(c .x , 0, c.z )] = 0.0f ;
image[ uint3(c .x , dim.y−1, c . z ) ] = 0 . 0 f ;
}
RWTexture3D<float> image ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , 1 ) ]
void WriteZFace ( ui nt 3 c : SV
DispatchThreadID)
{
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uint3 dim;
im ag e . G et D im e ns i on s ( dim . x , dim . y , dim . z ) ;
image[ uint3(c .x , c.y, 0)] = 0.0 f ;
image[ uint3(c .x , c.y, dim.z−1)] = 0. 0 f ;
}
LISTING 7.47: HLSL code for enforcing the boundary conditions after solv-
ing the Poisson equation.
7.11.3.7 Updating the Velocity to Be Divergence Free
The gradient of φ, the solution to the Poisson equation, must be added
back to the velocity vector. This process is managed by class AdjustVelocity.
The shader code is shown in Listing 7.48; the
Parameters constant buﬀer is
omitted.
// From AdjustVelocity. hlsl :
Texture3D<float4> inState;
Texture3D<float> poisson ;
RWTexture3D<float4> outState ;
[ numthreads (NUM
X THREADS , NUM Y THREADS , NUM Z THREADS ) ]
void CSMai n ( u int 3 c : S V
DispatchThreadID)
{
uint3 dim;
i n S ta t e . G et D im en s io n s ( dim .x , dim . y , dim . z ) ;
int x=int(c.x);
int y=int(c.y);
int z=int(c.z);
int xm = max ( x −1, 0 ) ;
int xp = min ( x +1, dim .x −1);
int ym = max ( y −1, 0 ) ;
int yp = min ( y +1, dim .y −1);
int zm = max ( z −1, 0 ) ;
int zp = min ( z +1, dim . z −1);
// Sample the state at (x,y,z).
float4 state = inState [c. xyz ];
// Sample Poisson values at immediate neighbors of (x,y ,z ).
float poisPZZ = poisson [ int3(xp , y , z )];
float poisMZZ = poisson [ int3(xm, y , z )];
float poisZPZ = poisson [ int3(x, yp , z )];
float poisZMZ = poisson [ int3(x, ym, z )];
float poisZZP = po i ss on [ i n t3 (x , y , zp ) ] ;
float poisZZM = poi s s o n [ i nt 3 ( x , y , zm ) ] ;
float4 diff = { poisPZZ − poisMZZ , po i sZ PZ − poisZMZ ,
poisZZP − poisZZM , 0.0 f } ;
outState [c . xyz ] = state + halfDivDelta ∗ diff ;
}
LISTING 7.48: HLSL code for updating the velocity to be divergence free.
The gradient is estimated using centered ﬁnite diﬀerences and the result is
structured to use vectorized computations for speed.
7.11.3.8 Screen Captures from the Simulation
The 3D ﬂuid simulation is clamped to run at 60 frames per second. The
screen captures shown in Figure 7.13 were taken at various times during the
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FIGURE 7.13: Screen captures from the 3D ﬂuid simulation. The captures
were taken at various time intervals with increasing time from left to right
and then top to bottom.
simulation. The coloring of the density is based on the velocity vectors. The
semitransparency is obtained via alpha blending, where the geometric primi-
tives are nested boxes and the boxes are drawn from innermost to outermost.
Naturally, screen captures are not suﬃcient to convey the actual real-time
behavior. You will have to run it yourself.
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compatibility.js
/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */
/* Copyright 2012 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/* globals VBArray, PDFJS */

'use strict';

// Initializing PDFJS global object here, it case if we need to change/disable
// some PDF.js features, e.g. range requests
if (typeof PDFJS === 'undefined') {
  (typeof window !== 'undefined' ? window : this).PDFJS = {};
}

// Checking if the typed arrays are supported
// Support: iOS<6.0 (subarray), IE<10, Android<4.0
(function checkTypedArrayCompatibility() {
  if (typeof Uint8Array !== 'undefined') {
    // Support: iOS<6.0
    if (typeof Uint8Array.prototype.subarray === 'undefined') {
        Uint8Array.prototype.subarray = function subarray(start, end) {
          return new Uint8Array(this.slice(start, end));
        };
        Float32Array.prototype.subarray = function subarray(start, end) {
          return new Float32Array(this.slice(start, end));
        };
    }

    // Support: Android<4.1
    if (typeof Float64Array === 'undefined') {
      window.Float64Array = Float32Array;
    }
    return;
  }

  function subarray(start, end) {
    return new TypedArray(this.slice(start, end));
  }

  function setArrayOffset(array, offset) {
    if (arguments.length < 2) {
      offset = 0;
    }
    for (var i = 0, n = array.length; i < n; ++i, ++offset) {
      this[offset] = array[i] & 0xFF;
    }
  }

  function TypedArray(arg1) {
    var result, i, n;
    if (typeof arg1 === 'number') {
      result = [];
      for (i = 0; i < arg1; ++i) {
        result[i] = 0;
      }
    } else if ('slice' in arg1) {
      result = arg1.slice(0);
    } else {
      result = [];
      for (i = 0, n = arg1.length; i < n; ++i) {
        result[i] = arg1[i];
      }
    }

    result.subarray = subarray;
    result.buffer = result;
    result.byteLength = result.length;
    result.set = setArrayOffset;

    if (typeof arg1 === 'object' && arg1.buffer) {
      result.buffer = arg1.buffer;
    }
    return result;
  }

  window.Uint8Array = TypedArray;
  window.Int8Array = TypedArray;

  // we don't need support for set, byteLength for 32-bit array
  // so we can use the TypedArray as well
  window.Uint32Array = TypedArray;
  window.Int32Array = TypedArray;
  window.Uint16Array = TypedArray;
  window.Float32Array = TypedArray;
  window.Float64Array = TypedArray;
})();

// URL = URL || webkitURL
// Support: Safari<7, Android 4.2+
(function normalizeURLObject() {
  if (!window.URL) {
    window.URL = window.webkitURL;
  }
})();

// Object.defineProperty()?
// Support: Android<4.0, Safari<5.1
(function checkObjectDefinePropertyCompatibility() {
  if (typeof Object.defineProperty !== 'undefined') {
    var definePropertyPossible = true;
    try {
      // some browsers (e.g. safari) cannot use defineProperty() on DOM objects
      // and thus the native version is not sufficient
      Object.defineProperty(new Image(), 'id', { value: 'test' });
      // ... another test for android gb browser for non-DOM objects
      var Test = function Test() {};
      Test.prototype = { get id() { } };
      Object.defineProperty(new Test(), 'id',
        { value: '', configurable: true, enumerable: true, writable: false });
    } catch (e) {
      definePropertyPossible = false;
    }
    if (definePropertyPossible) {
      return;
    }
  }

  Object.defineProperty = function objectDefineProperty(obj, name, def) {
    delete obj[name];
    if ('get' in def) {
      obj.__defineGetter__(name, def['get']);
    }
    if ('set' in def) {
      obj.__defineSetter__(name, def['set']);
    }
    if ('value' in def) {
      obj.__defineSetter__(name, function objectDefinePropertySetter(value) {
        this.__defineGetter__(name, function objectDefinePropertyGetter() {
          return value;
        });
        return value;
      });
      obj[name] = def.value;
    }
  };
})();


// No XMLHttpRequest#response?
// Support: IE<11, Android <4.0
(function checkXMLHttpRequestResponseCompatibility() {
  var xhrPrototype = XMLHttpRequest.prototype;
  var xhr = new XMLHttpRequest();
  if (!('overrideMimeType' in xhr)) {
    // IE10 might have response, but not overrideMimeType
    // Support: IE10
    Object.defineProperty(xhrPrototype, 'overrideMimeType', {
      value: function xmlHttpRequestOverrideMimeType(mimeType) {}
    });
  }
  if ('responseType' in xhr) {
    return;
  }

  // The worker will be using XHR, so we can save time and disable worker.
  PDFJS.disableWorker = true;

  Object.defineProperty(xhrPrototype, 'responseType', {
    get: function xmlHttpRequestGetResponseType() {
      return this._responseType || 'text';
    },
    set: function xmlHttpRequestSetResponseType(value) {
      if (value === 'text' || value === 'arraybuffer') {
        this._responseType = value;
        if (value === 'arraybuffer' &&
            typeof this.overrideMimeType === 'function') {
          this.overrideMimeType('text/plain; charset=x-user-defined');
        }
      }
    }
  });

  // Support: IE9
  if (typeof VBArray !== 'undefined') {
    Object.defineProperty(xhrPrototype, 'response', {
      get: function xmlHttpRequestResponseGet() {
        if (this.responseType === 'arraybuffer') {
          return new Uint8Array(new VBArray(this.responseBody).toArray());
        } else {
          return this.responseText;
        }
      }
    });
    return;
  }

  Object.defineProperty(xhrPrototype, 'response', {
    get: function xmlHttpRequestResponseGet() {
      if (this.responseType !== 'arraybuffer') {
        return this.responseText;
      }
      var text = this.responseText;
      var i, n = text.length;
      var result = new Uint8Array(n);
      for (i = 0; i < n; ++i) {
        result[i] = text.charCodeAt(i) & 0xFF;
      }
      return result.buffer;
    }
  });
})();

// window.btoa (base64 encode function) ?
// Support: IE<10
(function checkWindowBtoaCompatibility() {
  if ('btoa' in window) {
    return;
  }

  var digits =
    'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=';

  window.btoa = function windowBtoa(chars) {
    var buffer = '';
    var i, n;
    for (i = 0, n = chars.length; i < n; i += 3) {
      var b1 = chars.charCodeAt(i) & 0xFF;
      var b2 = chars.charCodeAt(i + 1) & 0xFF;
      var b3 = chars.charCodeAt(i + 2) & 0xFF;
      var d1 = b1 >> 2, d2 = ((b1 & 3) << 4) | (b2 >> 4);
      var d3 = i + 1 < n ? ((b2 & 0xF) << 2) | (b3 >> 6) : 64;
      var d4 = i + 2 < n ? (b3 & 0x3F) : 64;
      buffer += (digits.charAt(d1) + digits.charAt(d2) +
                 digits.charAt(d3) + digits.charAt(d4));
    }
    return buffer;
  };
})();

// window.atob (base64 encode function)?
// Support: IE<10
(function checkWindowAtobCompatibility() {
  if ('atob' in window) {
    return;
  }

  // https://github.com/davidchambers/Base64.js
  var digits =
    'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=';
  window.atob = function (input) {
    input = input.replace(/=+$/, '');
    if (input.length % 4 === 1) {
      throw new Error('bad atob input');
    }
    for (
      // initialize result and counters
      var bc = 0, bs, buffer, idx = 0, output = '';
      // get next character
      buffer = input.charAt(idx++);
      // character found in table?
      // initialize bit storage and add its ascii value
      ~buffer && (bs = bc % 4 ? bs * 64 + buffer : buffer,
        // and if not first of each 4 characters,
        // convert the first 8 bits to one ascii character
        bc++ % 4) ? output += String.fromCharCode(255 & bs >> (-2 * bc & 6)) : 0
    ) {
      // try to find character in table (0-63, not found => -1)
      buffer = digits.indexOf(buffer);
    }
    return output;
  };
})();

// Function.prototype.bind?
// Support: Android<4.0, iOS<6.0
(function checkFunctionPrototypeBindCompatibility() {
  if (typeof Function.prototype.bind !== 'undefined') {
    return;
  }

  Function.prototype.bind = function functionPrototypeBind(obj) {
    var fn = this, headArgs = Array.prototype.slice.call(arguments, 1);
    var bound = function functionPrototypeBindBound() {
      var args = headArgs.concat(Array.prototype.slice.call(arguments));
      return fn.apply(obj, args);
    };
    return bound;
  };
})();

// HTMLElement dataset property
// Support: IE<11, Safari<5.1, Android<4.0
(function checkDatasetProperty() {
  var div = document.createElement('div');
  if ('dataset' in div) {
    return; // dataset property exists
  }

  Object.defineProperty(HTMLElement.prototype, 'dataset', {
    get: function() {
      if (this._dataset) {
        return this._dataset;
      }

      var dataset = {};
      for (var j = 0, jj = this.attributes.length; j < jj; j++) {
        var attribute = this.attributes[j];
        if (attribute.name.substring(0, 5) !== 'data-') {
          continue;
        }
        var key = attribute.name.substring(5).replace(/\-([a-z])/g,
          function(all, ch) {
            return ch.toUpperCase();
          });
        dataset[key] = attribute.value;
      }

      Object.defineProperty(this, '_dataset', {
        value: dataset,
        writable: false,
        enumerable: false
      });
      return dataset;
    },
    enumerable: true
  });
})();

// HTMLElement classList property
// Support: IE<10, Android<4.0, iOS<5.0
(function checkClassListProperty() {
  var div = document.createElement('div');
  if ('classList' in div) {
    return; // classList property exists
  }

  function changeList(element, itemName, add, remove) {
    var s = element.className || '';
    var list = s.split(/\s+/g);
    if (list[0] === '') {
      list.shift();
    }
    var index = list.indexOf(itemName);
    if (index < 0 && add) {
      list.push(itemName);
    }
    if (index >= 0 && remove) {
      list.splice(index, 1);
    }
    element.className = list.join(' ');
    return (index >= 0);
  }

  var classListPrototype = {
    add: function(name) {
      changeList(this.element, name, true, false);
    },
    contains: function(name) {
      return changeList(this.element, name, false, false);
    },
    remove: function(name) {
      changeList(this.element, name, false, true);
    },
    toggle: function(name) {
      changeList(this.element, name, true, true);
    }
  };

  Object.defineProperty(HTMLElement.prototype, 'classList', {
    get: function() {
      if (this._classList) {
        return this._classList;
      }

      var classList = Object.create(classListPrototype, {
        element: {
          value: this,
          writable: false,
          enumerable: true
        }
      });
      Object.defineProperty(this, '_classList', {
        value: classList,
        writable: false,
        enumerable: false
      });
      return classList;
    },
    enumerable: true
  });
})();

// Check console compatibility
// In older IE versions the console object is not available
// unless console is open.
// Support: IE<10
(function checkConsoleCompatibility() {
  if (!('console' in window)) {
    window.console = {
      log: function() {},
      error: function() {},
      warn: function() {}
    };
  } else if (!('bind' in console.log)) {
    // native functions in IE9 might not have bind
    console.log = (function(fn) {
      return function(msg) { return fn(msg); };
    })(console.log);
    console.error = (function(fn) {
      return function(msg) { return fn(msg); };
    })(console.error);
    console.warn = (function(fn) {
      return function(msg) { return fn(msg); };
    })(console.warn);
  }
})();

// Check onclick compatibility in Opera
// Support: Opera<15
(function checkOnClickCompatibility() {
  // workaround for reported Opera bug DSK-354448:
  // onclick fires on disabled buttons with opaque content
  function ignoreIfTargetDisabled(event) {
    if (isDisabled(event.target)) {
      event.stopPropagation();
    }
  }
  function isDisabled(node) {
    return node.disabled || (node.parentNode && isDisabled(node.parentNode));
  }
  if (navigator.userAgent.indexOf('Opera') !== -1) {
    // use browser detection since we cannot feature-check this bug
    document.addEventListener('click', ignoreIfTargetDisabled, true);
  }
})();

// Checks if possible to use URL.createObjectURL()
// Support: IE
(function checkOnBlobSupport() {
  // sometimes IE loosing the data created with createObjectURL(), see #3977
  if (navigator.userAgent.indexOf('Trident') >= 0) {
    PDFJS.disableCreateObjectURL = true;
  }
})();

// Checks if navigator.language is supported
(function checkNavigatorLanguage() {
  if ('language' in navigator &&
      /^[a-z]+(-[A-Z]+)?$/.test(navigator.language)) {
    return;
  }
  function formatLocale(locale) {
    var split = locale.split(/[-_]/);
    split[0] = split[0].toLowerCase();
    if (split.length > 1) {
      split[1] = split[1].toUpperCase();
    }
    return split.join('-');
  }
  var language = navigator.language || navigator.userLanguage || 'en-US';
  PDFJS.locale = formatLocale(language);
})();

(function checkRangeRequests() {
  // Safari has issues with cached range requests see:
  // https://github.com/mozilla/pdf.js/issues/3260
  // Last tested with version 6.0.4.
  // Support: Safari 6.0+
  var isSafari = Object.prototype.toString.call(
                  window.HTMLElement).indexOf('Constructor') > 0;

  // Older versions of Android (pre 3.0) has issues with range requests, see:
  // https://github.com/mozilla/pdf.js/issues/3381.
  // Make sure that we only match webkit-based Android browsers,
  // since Firefox/Fennec works as expected.
  // Support: Android<3.0
  var regex = /Android\s[0-2][^\d]/;
  var isOldAndroid = regex.test(navigator.userAgent);

  if (isSafari || isOldAndroid) {
    PDFJS.disableRange = true;
    PDFJS.disableStream = true;
  }
})();

// Check if the browser supports manipulation of the history.
// Support: IE<10, Android<4.2
(function checkHistoryManipulation() {
  // Android 2.x has so buggy pushState support that it was removed in
  // Android 3.0 and restored as late as in Android 4.2.
  // Support: Android 2.x
  if (!history.pushState || navigator.userAgent.indexOf('Android 2.') >= 0) {
    PDFJS.disableHistory = true;
  }
})();

// Support: IE<11, Chrome<21, Android<4.4, Safari<6
(function checkSetPresenceInImageData() {
  // IE < 11 will use window.CanvasPixelArray which lacks set function.
  if (window.CanvasPixelArray) {
    if (typeof window.CanvasPixelArray.prototype.set !== 'function') {
      window.CanvasPixelArray.prototype.set = function(arr) {
        for (var i = 0, ii = this.length; i < ii; i++) {
          this[i] = arr[i];
        }
      };
    }
  } else {
    // Old Chrome and Android use an inaccessible CanvasPixelArray prototype.
    // Because we cannot feature detect it, we rely on user agent parsing.
    var polyfill = false, versionMatch;
    if (navigator.userAgent.indexOf('Chrom') >= 0) {
      versionMatch = navigator.userAgent.match(/Chrom(e|ium)\/([0-9]+)\./);
      // Chrome < 21 lacks the set function.
      polyfill = versionMatch && parseInt(versionMatch[2]) < 21;
    } else if (navigator.userAgent.indexOf('Android') >= 0) {
      // Android < 4.4 lacks the set function.
      // Android >= 4.4 will contain Chrome in the user agent,
      // thus pass the Chrome check above and not reach this block.
      polyfill = /Android\s[0-4][^\d]/g.test(navigator.userAgent);
    } else if (navigator.userAgent.indexOf('Safari') >= 0) {
      versionMatch = navigator.userAgent.
        match(/Version\/([0-9]+)\.([0-9]+)\.([0-9]+) Safari\//);
      // Safari < 6 lacks the set function.
      polyfill = versionMatch && parseInt(versionMatch[1]) < 6;
    }

    if (polyfill) {
      var contextPrototype = window.CanvasRenderingContext2D.prototype;
      contextPrototype._createImageData = contextPrototype.createImageData;
      contextPrototype.createImageData = function(w, h) {
        var imageData = this._createImageData(w, h);
        imageData.data.set = function(arr) {
          for (var i = 0, ii = this.length; i < ii; i++) {
            this[i] = arr[i];
          }
        };
        return imageData;
      };
    }
  }
})();

// Support: IE<10, Android<4.0, iOS
(function checkRequestAnimationFrame() {
  function fakeRequestAnimationFrame(callback) {
    window.setTimeout(callback, 20);
  }

  var isIOS = /(iPad|iPhone|iPod)/g.test(navigator.userAgent);
  if (isIOS) {
    // requestAnimationFrame on iOS is broken, replacing with fake one.
    window.requestAnimationFrame = fakeRequestAnimationFrame;
    return;
  }
  if ('requestAnimationFrame' in window) {
    return;
  }
  window.requestAnimationFrame =
    window.mozRequestAnimationFrame ||
    window.webkitRequestAnimationFrame ||
    fakeRequestAnimationFrame;
})();

(function checkCanvasSizeLimitation() {
  var isIOS = /(iPad|iPhone|iPod)/g.test(navigator.userAgent);
  var isAndroid = /Android/g.test(navigator.userAgent);
  if (isIOS || isAndroid) {
    // 5MP
    PDFJS.maxCanvasPixels = 5242880;
  }
})();
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