

 [image: (missing alt)]

 Table of Contents

 GNU/Linux Rapid Embedded Programming

 Credits

 About the Author

 About the Reviewer

 www.PacktPub.com

 Why subscribe?

 Customer Feedback

 Preface

 What this book covers

 What you need for this book

 Software prerequisite

 Hardware prerequisite

 Who this book is for

 Conventions

 Codes and command lines

 Kernel and logging messages

 File modifications

 Serial & network connections

 Other conventions

 Reader feedback

 Customer support

 Downloading the example code

 Downloading the color images of this book

 Errata

 Piracy

 Questions

 1. Installing the Developing System

 Embedded world terms

 Systems' overview

 The BeagleBone Black

 The SAMA5D3 Xplained

 The Wandboard

 Installing a development system

 Setting up the host machine

 Basic tools

 The cross-compiler

 Setting up the BeagleBone Black

 Serial console for the BeagleBone Black

 U-Boot (with MLO)

 Linux kernel for the BeagleBone Black

 Debian 8 (jessie) for the BeagleBone Black

 Setting up the SAMA5D3 Xplained

 Serial console for SAMA5D3 Xplained

 U-Boot (with boot.bin)

 Linux kernel for SAMA5D3 Xplained

 Debian 8 (jessie) for SAMA5D3 Xplained

 Setting up the Wandboard

 Serial console for the Wandboard

 U-Boot (with SPL)

 Linux kernel for the Wandboard

 Debian 8 (jessie) for the Wandboard

 Setting up the developing system

 BeagleBone Black - USB, networking, and overlays

 SAMA5D3 Xplained - USB and networking

 Wandboard - USB and networking (wired and wireless)

 Common settings

 Summary

 2. Managing the System Console

 Basic OS management

 File manipulation and Co

 echo and cat

 dd

 grep and egrep

 tr and sed

 head and tail

 od and hexdump

 file

 strings

 strace

 Package management

 Searching a software package

 Installing a package

 apt-get and friends versus aptitude

 The deb files

 Managing the kernel messages

 A quick tour into the bootloader

 The environment

 Managing the storage devices

 MMC

 Managing the flash

 GPIO management

 Accessing an I2C device

 Loading files from the network

 The kernel command line

 Summary

 3. C Compiler, Device Drivers, and Useful Developing Techniques

 The C compiler

 Native and foreign machine architecture

 Compiling a C program

 The native compilation

 The cross-compilation

 Compiling a kernel module

 The Kernel and DTS files

 Recompiling the kernel

 The device tree

 What is a device driver?

 Char, block, and net devices

 Modules versus built-in devices

 The modutils

 Writing our own device driver

 The root filesystem (rootfs)

 The /dev directory

 The tmpfs

 The procfs

 The sysfs

 The Network FileSystem (NFS)

 Exporting an NFS on the host

 Setting up the kernel to mount an NFS

 U-Boot and the kernel command line to use a NFS

 Developing into an NFS

 Using an emulator

 Executing a program

 Entering into an ARM rootfs tree

 Summary

 4. Quick Programming with Scripts and System Daemons

 Setting up the system

 System daemons

 Useful and ready-to-use daemons

 System daemons management

 syslogd

 syslogd in Bash

 syslogd in C

 syslogd in PHP

 syslogd in Python

 cron

 xinetd

 sshd

 Apache

 MySQL

 MySQL in Bash

 MySQL in C

 MySQL in PHP

 MySQL in Python

 Scripting languages

 Managing a LED in PHP

 The LAMP solution

 The built-in server solution

 Managing a LED in Python

 Managing a LED in Bash

 Writing a custom daemon

 A daemon in C

 A daemon in PHP

 A daemon in Python

 A daemon in Bash

 Summary

 5. Setting Up an Embedded OS

 MTD versus block devices

 What is an MTD device?

 Managing an MTD device

 Filesystems for flash memories

 JFFS2 versus UBIFS

 Building a JFFS2 filesystem

 Building a UBIFS filesystem

 OpenWrt

 Using the default configuration

 Adding a (quasi) LAMP system

 Adding a custom package

 Yocto

 Using the default recipe

 Adding the graphic support

 Adding a custom recipe

 Summary

 6. General Purposes Input Output signals – GPIO

 What is a GPIO line?

 GPIOs lines on the BeagleBone Black

 GPIOs on the SAMA5D3 Xplained

 GPIOs on the Wandboard

 GPIOs in Linux

 Getting access to GPIOs

 Bash

 C

 Using GPIOs with scripting languages

 PHP

 Python

 Managing GPIO into the kernel

 An input device using GPIOs

 LEDs and triggers

 Summary

 7. Serial Ports and TTY Devices - TTY

 What are TTY, serial, and UART lines?

 The electrical lines

 TTYs on the BeagleBone Black

 TTYs on the SAMA5D3 Xplained

 TTYs on the Wandboard

 Implementations of serial ports

 The serial ports in Linux

 The communication parameters

 Getting access to TTYs

 Distance sensor

 RFID LF reader

 Managing TTY in the kernel with SLIP

 Summary

 8. Universal Serial Bus - USB

 What is the universal serial bus?

 The electrical lines

 USB ports on the BeagleBone Black

 USB ports on the SAMA5D3 Xplained

 USB ports on the Wandboard

 The USB bus in Linux

 Acting as a host

 Acting as a device

 The Multi gadget

 The configfs gadget

 The USB tools

 The raw USB bus

 Accessing as a host

 Summary

 9. Inter-Integrated Circuits - I2C

 What is the Inter-Integrated Circuit bus?

 The electrical lines

 I2C ports on the SAMA5D3 Xplained

 I2C ports on the Wandboard

 The I2C bus in Linux

 The I2C tools

 Getting access to I2C devices

 EEPROM, ADC and IO Expander

 EEPROM

 ADC

 IO Expander

 The temperature/humidity and pressure sensors

 Serial port

 The Raw I2C Bus

 Writing data in C

 Reading data in Python

 Summary

 10. Serial Peripheral Interface - SPI

 What is the Serial Peripheral Interface bus?

 The electrical lines

 SPI ports on the BeagleBone Black

 SPI ports on the SAMA5D3 Xplained

 SPI ports on the Wandboard

 The SPI bus in Linux

 The SPI tools

 Getting access to SPI devices

 LCD display

 Serial port

 The raw SPI bus

 Exchanging data in C

 Exchanging data in Python

 Summary

 11. 1-Wire - W1

 What is the 1-Wire Bus?

 The electrical lines

 1-Wire ports on the BeagleBone Black

 1-Wire ports on the SAMA5D3 Xplained

 1-Wire ports on the Wandboard

 The 1-Wire bus in Linux

 Getting access to 1-Wire devices

 Using the GPIO interface

 Using an external controller

 Summary

 12. Ethernet Network Device - ETH

 What is an Ethernet network device?

 Electrical lines

 Ethernet port on the BeagleBone Black

 Ethernet ports on the SAMA5D3 Xplained

 Ethernet port on the Wandboard

 The Ethernet devices in Linux

 The net tools

 Communicating with a remote device

 A simple TCP client/server application

 Using ready-to-use networking tools

 The raw Ethernet bus

 Simple Ethernet bridging

 Summary

 13. Wireless Network Device - WLAN

 What is a wireless network device?

 The electrical lines

 WLAN device on the BeagleBone Black

 WLAN device on the SAMA5D3 Xplained

 WLAN device on the Wandboard

 WLAN devices in Linux

 Pluggable external WLAN devices

 The Wi-Fi operation modes

 The wireless tools

 The WPA supplicant

 The Hostapd daemon

 Summary

 14. Controller Area Network - CAN

 What is the CAN bus?

 The electrical lines

 CAN ports on the BeagleBone Black

 CAN ports on the SAMA5D3 Xplained

 CAN ports on the Wandboard

 The CAN bus in Linux

 The can-utils package

 The raw CAN bus

 Exchanging data via the CAN bus

 Using the on-board controller

 Using an external controller

 Summary

 15. Sound Devices - SND

 What is a sound device?

 The electrical lines

 Sound on the BeagleBone Black

 Sound on the SAMA5D3 Xplained

 Sound on the Wandboard

 Sound in Linux

 The audio tools

 The ALSA utils

 Madplay

 Mplayer

 Sox

 The USB audio device class

 Managing sound devices

 Adding an audio codec

 A simple oscilloscope

 Summary

 16. Video devices - V4L

 What is a video device?

 The electrical lines

 Video on the BeagleBone Black

 Video on the SAMA5D3 Xplained

 Video on the Wandboard

 Video in Linux

 The video tools

 The USB video class device

 Managing video devices

 Streaming video over the Web

 Capturing motion

 Summary

 17. Analog-to-Digital Converters - ADC

 What is an analog-to-digital converter device?

 The electrical lines

 ADCs on the BeagleBone Black

 ADCs on the SAMA5D3 Xplained

 ADCs on the Wandboard

 ADCs in Linux

 Detecting a gas

 Summary

 18. Pulse-Width Modulation - PWM

 What is a PWM device?

 The electrical lines

 PWMs on the BeagleBone Black

 PWMs on the SAMA5D3 Xplained

 PWMs on the Wandboard

 PWM devices in Linux

 Managing a servo motor

 Summary

 19. Miscellaneous Devices

 Digital sensors

 Water sensor

 Infrared sensor

 Analog sensors

 Moisture sensor

 Pressure sensor

 Light sensor

 GSM/GPRS modem

 Smart card reader

 RFID reader

 Z-Wave

 Z-Wave controllers

 The Z-Wave wall plug sensor

 The Z-Wave multi sensor

 Summary

GNU/Linux Rapid Embedded Programming

GNU/Linux Rapid Embedded Programming

Copyright © 2017 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: March 2017
Production reference: 1240317
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-180-3

www.packtpub.com

Credits

	

Author

Rodolfo Giometti

	

Copy Editor

Dipti Mankame

	

Reviewer

Luca Zulberti

	

Project Coordinator

Judie Jose

	

Commissioning Editor

Kartikey Pandey

	

Proofreader

Safis Editing

	

Acquisition Editor

Narsimha Pai

	

Indexer

Pratik Shirodkar

	

Content Development Editors

Juliana Nair

Rashmi Suvarna

	

Graphics

Kirk D'Penha

	

Technical Editors

Mohd Riyan Khan

Gaurav Suri

	

Production Coordinator

Shantanu N. Zagade

About the Author

Rodolfo Giometti is an engineer, IT specialist, GNU/Linux expert and software libre evangelist.
Author of the books BeagleBone Essentials and BeagleBone Home Automation Blueprints by Packt Publishing and maintainer of the LinuxPPS projects (the Linux's Pulse Per Second subsystem) he still actively contributes to the Linux source code with several patches and new device drivers for industrial applications devices.
During his twenty-year+ experience, he, worked with x86, ARM, MIPS, & PowerPC-based platform.
Now, Rodolfo is the Co-Chief at HCE Engineering S.r.l. and he is the Co-Founder of the Cosino Project, which involves new hardware and software systems for the quick prototyping in industry environment, control automation, and remote monitoring.

I would like to thank my wife, Valentina, and my children, Romina and Raffaele, for their patience during the writing of this book. I also give deep thanks and gratitude to the Packt's guys Vivek Anantharaman, who gave to me the opportunity to write this book, and Rashmi Suvarna and Juliana Nair, who supported me in finishing this book (specially to Juliana Nair who spent her nights in editing the book's layout). Many thanks to Luca Zulberti, and Chris Simmonds for their support and effort in reviewing this book so carefully (specially to Luca Zulberti who so carefully re-checked my English, the code, and all circuitries). Also, a big thanks to Mohd Riyan Khan for his patience in adding all my modifications to the final review of this book.

Finally, I cannot forget to thank my parents. Giving me my first computer when I was a child, allowed me to be doing what I do today.

About the Reviewer

Luca Zulberti has obtained a diploma in 2015 in Electronics at ITIS G. Galilei in Livorno, Italy. He is continuing his studies at the University of Pisa in Electronic Engineering class.
In his spare time, he studies several programming techniques and languages.
He has fun with several embedded systems and he’s interested in Embedded OS development and GNU/Linux programming.
He’s member of the Cosino Project on which he writes some articles and projects.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[image: www.PacktPub.com]

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at: www.amazon.com/dp/ASIN/1786461803.
If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

Preface

Embedded computers have become very complex in the last few years and developers need to easily manage them by focusing on how to solve a problem without wasting time in finding good peripherals or learning how to manage them. The main challenge with experienced embedded programmers and engineers is really how long it takes to turn an idea into reality, and we show you exactly how to do it.
This book shows how to interact with external environments through specific peripherals used in the industry. We will use the latest Linux kernel release 4.x and Debian/Ubuntu distributions (with embedded distributions of OpenWrt and Yocto).
The book will present popular boards based on widely used and easily available CPUs on the components market and widely available from different professional boards makers. After a brief introduction of each boards, the book will show how to set up them in order to run a complete GNU/Linux distribution and then getting access to the system console. After that the book will present how to install a complete developing system on each board in order to be able to add developer's programs.
Readers will be able to take their first steps in programming the embedded platforms, using C, Bash and Python/PHP languages in order to get access to the external peripherals. More about using and programming device driver and accessing the peripherals will be covered to lay a strong foundation. The readers will learn how to read/write data from/to the external environment by using both C programs and a scripting language (Bash/Python) and how to configure a device driver for a specific hardware.
The hardware devices used in the book has been chosen in order to cover all possible connection type we can encounter working with an embedded board so you can find I2C, SPI, USB, 1-Wire, serial, digital and analog devices, etc.
The programming languages used in the book has been chosen according to the rule to find the quickest and easiest solution to solve the current problem, in particular you can find example codes in Bash, C, PHP, Python.
In such chapters were will need to use a daemon, a kernel module or to recompile the whole kernel I've added a short description about what the reader should do and where he/she can get more information regarding the used tools, however some basic skills in managing a GNU/Linux system or the kernel's modules or the kernel itself are required.
What this book covers

This book can be divided into two major parts: the first one, which is introductory to the second one, where you will see how to install the developing systems and the host system and how to get access to the serial console. You'll take a look at some basic bootloader's commands as far as to the C compiler and the cross-compiler and then I'll introduce kernel modules, device drivers and some filesystem internals with a note on the Network File System. Also the machine emulator usage will be presented in order to execute a complete target machine's Debian distribution on a host PC, you'll see the system daemons and script programming in Bash, PHP and Python and then you'll take a look at the flash memories and Linux's Memory Technology Device (MTD) where I'll introduce the JFFS2 and the UBIFS filesystem and two of the most famous embedded distribution used in these days, Yocto and OpenWrt.
Below is a brief introduction of each chapters related to this first part:

Chapter 1
, Installing the Developing System, will present three of the most used development kits for industrial applications: the BeagleBone Black, the SAMA5D3 Xplained and the WandBoard. After a brief introduction of each boards, we'll see how we can set up them in order to run a complete GNU/Linux distribution. We'll see how to install a complete developing system on each board as far as the host system (even on a virtual machine).

Chapter 2
, Managing the System Console, will show to setup our developer kits and (in part) the host PC, then we'll go further in exploring the serial console and the shell running in it. In the end a special section will introduce the bootloader commands.

Chapter 3
, C Compiler, Device Drivers, and Useful Developing Techniques, will focus the readers' attention to the C compiler (with its counter part: the cross-compiler). Then we'll take a look at kernel modules, device drivers and some filesystem internals with a note on the Network File System. In the end we'll see how developers can use an emulator in order to execute a complete target machine's Debian distribution on a host PC.

Chapter 4
, Quick Programming
with scripts and system daemons, will take a look at system daemons (what they are and how to use the most famous and useful ones). Then we'll take a look at script programming by using Bash, PHP and Python languages.

Chapter 5
, Setting up an embedded OS, will start taking a look at flash memories and the software used to manage them, then we'll present the Linux's Memory Technology Device (MTD) and the two major filesystems that can run over them, that is the JFFS2 and the UBIFS. The we'll present two of the most famous embedded distribution used in these days, Yocto and OpenWrt, and how an embedded developer can write an his/her own application and how he/she can add it to them.
The second part then starts in going deeper in presenting all of such peripheral devices that you, as embedded developer, may encounter into your professional life. For each peripheral I'll present where it is available on each embedded kit supported by this book and then how you can get access and use it. For each device kind I'll show to you how you can easily manage it with practical examples.
Below is a brief introduction of each chapters related to the second part:

Chapter 6
, General Purposes Input Output signals - GPIO, will introduce GPIO lines with a short description and then we'll see where they are physically located in our embedded machines. Then we're going to see in detail how we can get access to these lines in a very simple (but poor efficient) manner and then in a smarter (but a bit more complex) way. In the end we'll cover a rapid introduction of the GPIOs management inside the kernel with IRQ management and LED devices support.

Chapter 7
, Serial Ports and TTY Devices - TTY, will introduce serial ports, that is one of the most important peripherals class a computer can have (at least a computer used in the control automation industry). After a brief description about what a serial port or a serial device is, we'll see how we can manage them into a GNU/Linux system in order to use a real serial device. Then we'll take a look at a kernel trick useful to communicate between two embedded systems by using a serial line as they were connected by an Ethernet cable.

Chapter 8
, Universal Serial Bus - USB, will introduce the USB bus, that is a versatile bus, widely used in modern PCs, that allow people to connect an electronic device to a computer: for instance an hard disk, a keyboard or a serial device can be all connected to a computer through the same USB port.

Chapter 9
, Inter-Integrated Circuits - I2C, will introduce the I2C bus which is typically used to connect on-board devices, that is the main computer with devices whose are all placed on the same board. Several devices use the I2C bus to communicate with the CPU and in this chapter will give to you a panoramic as wide as possible of them: we'll see several kinds of different devices with different configurations in order to cover as much as possible the combinations offered by this bus.

Chapter 10
, Serial Peripheral Interface - SPI, will introduce the SPI bus which is another bus kind typically used to connect on-board devices as I2C does. However, and opposed to the I2C bus, this bus can transfer data at higher rates than I2C and, since it's full-duplex, data transfer can take place bidirectionally at the same time. Due these features the SPI bus is normally used to implement an efficient data stream for multimedia applications or digital signal processing and/or telecommunications devices and SD cards.

Chapter 11, 1-Wire - W1, will introduce Ethernet devices whose add the possibility to any equipped device to communicate with other devices even on very long distances. The GNU/Linux based systems offer a really good support of Ethernet devices and their relative networking protocols that's why most of networking devices around the world are based on this technology.

Chapter 12, Ethernet network device - ETH, will introduce the one wire bus which is interesting because it permits to communicate with a remote device using only one wire even if at slower rates. This allows to simplify connections between the CPU and its peripherals giving the designer the possibility to have the most economical and simply way to add electronic devices for identification, authentication and delivery of calibration data or manufacturing information to a computer board.

Chapter 13
, Wireless Network Device - WLAN, will introduce Wireless network devices whose allow the communication between several computers but doing it without using wires. What is really interesting in using these networking interfaces is that a large part of communication protocols used on Ethernet interfaces can be used with these devices too!

Chapter 14
, Controller Area Network - CAN, will introduce the CAN bus that has been specifically designed to allow microcontrollers, computers and devices to communicate with each other in applications without a host computer by having a message-based protocol. The CAN bus is not so famous as Ethernet or WiFi but in the embedded world it is used and is not rare finding SoCs which support it by default.

Chapter 15
, Sound devices - SND, will introduce sound devices with some possible usages of them till to show to the reader how they can use them in order to generate audio how to implement a simple and low cost oscilloscope.

Chapter 16
, Video devices - V4L, will introduce common video acquisition devices with some possible usages of them till to show to the reader how they can turn our embedded kits into a surveillance camera or a remote image recorder.

Chapter 17
, Analog-to-Digital Converters - ADC, will introduce ADCs that can be used to get analogical signals from the environment. The chapter will show how to use them and how to use special software and hardware triggers in order to start conversions at specific timing or when some events occur.

Chapter 18
, Pulse-Width Modulation - PWM, will introduce PWMs that are able to encode a message into a pulsing signal (usually a square waveform) to generate an analog signal by using a digital source, then these messages can be used to control the power supplied to electrical motors or other electronics devices or, as we're going to show into this chapter, to control the position of a servo motor.

Chapter 19
, Miscellaneous devices, will introduce peripherals that can fit in one of the above chapters but that has not reported there for better readability. In this last chapter we're going to present a list of additional peripherals we can encounter into a monitoring or controlling system such as RFID and smart card readers, some digital and analog sensors, GSM/GPRS modem, Z-Wave, etc.

What you need for this book

Following are the requisites for efficient learning.
Software prerequisite

Regarding the software you should have a little knowledge of a non graphical text editor as vi, emacs or nano. Even if you can connect an LCD display, a keyboard and a mouse directly to embedded kits and then use the graphical interface, in this book we assume that you is able to do little modifications to text files by using a text only editor.
The host computer, that is the computer you will use to cross-compile the code and/or to manage your embedded systems, is assumed running a GNU/Linux based distribution. My host PC is running an Ubuntu 15.10 but you can use also a newer Ubuntu Long Term Support (LTS) or a Debian based system too with little modifications or you may use another GNU/Linux distribution but with a little effort from you mainly regarding the cross-compiling tools installation, libraries dependencies and packages management. Foreign systems such as Windows, MacOS or similar are not covered by this book due the fact you should not use low technology systems to develop code for high technology system!
Knowing how a C compiler works and how to manage a Makefile is required.
This book will present some kernel programming techniques but these must cannot be taken as a kernel programming course. You need a proper book for such topic! However each example is well documented and you will find several suggested resources. Regarding the kernel I'd like to state that the version used into this book is 4.4.x.
As a final note I suppose that you known how to connect a GNU/Linux based board on the Internet in order to download a package or a generic file.

Hardware prerequisite

In this book all code is developed for BeagleBone Black board revision C, for SAMA5D3 Xplained revision A or for the WandBoard revision C1 (depending on the board used) but you can use an older revision without any issues, in fact the code is portable and it should work on other systems too (but the DTS files whose must be considered apart)!
Regarding the computer peripherals used in this book I reported in each chapter where I got the hardware and where you can buy it but, of course, you can decide to surf the Internet in order to find a better and cheaper offer. A note where to find the datasheet is also present.
You should not have any difficulties in order to connect the hardware presented in this book with the embedded kits since the connections are very simple and well documented. They don't require any particular hardware skills to be performed from you (apart knowing how to use a solder), however having a minor knowledge in electronics may help.

Who this book is for

If you want to learn how to use embedded machine learning capabilities and get access to a GNU/Linux device driver to collect data from a peripheral or to control a device, this book is for you.
If you are interested in knowing how to easily and quickly get access to different computer peripherals in order to realize a functional control or monitor system based on GNU/Linux for industrial applications, this book is for you.
If you have some hardware or electrical engineering experience and know the basics of C, Bash, and Python and PHP programming in a UNIX environment and want using them into an embedded system, this book is for you.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Codes and command lines

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs and user input are shown as follows: "To get the preceding kernel messages, we can use both the dmesg and tail -f /var/log/kern.log commands."
A block of code is set as follows:
#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello World!\n");

 return 0;
}

You should note that most code in this book has 4 spaces indentation while the example code you can find into the files provided with this book on Github or Packt site, has 8 spaces indentation. So the above code will look like as follow:
#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello World!\n");

 return 0;
}
Obviously they are perfectly equivalent!
Any command line input or output given on one of the embedded kits used in this book is written as follows:

root@bbb:~# make CFLAGS="-Wall -O2" helloworld

cc -Wall -O2 helloworld.c -o helloworld

Then by looking into the prompt string we can deduce which board we're currently using. I use the string bbb for the BeagleBone Black, a5d3 for the SAMA5D3 Xplained and wb for the WandBoard. However I use the generic string arm when I'm referring a generic embedded kit.
Note also that due space reasons into the book you may read very long commands lines as follows:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
 sama5d3_xplained_nandflash_defconfig

Otherwise I have had to break the command line. However in some special cases you can find broken output lines (specially on kernel messages) as follow:

cdc_ether 2-1.1:1.0 usb0: register 'cdc_ether' at usb-0000:00:1d.0-1.1
, CDC Ethernet Device, 62:1e:f6:88:9b:42

Unluckily these lines cannot be easily reported into a printed book so you should consider them as a single line.
Any command line input or output given on my host computer as a non-
privileged user is written as follows:

$ tail -f /var/log/kern.log

When I need to give a command as a privileged user (root) on my host computer the command line input or output is then written as follows:

/etc/init.d/apache2 restart

You should notice that all privileged commands can be executed by a normal user too by using the sudo command with the form:

$ sudo <command>

So the preceding command can be executed by a normal user as:

$ sudo /etc/init.d/apache2 restart

Kernel and logging messages

On several GNU/Linux distribution a kernel message has the usual form:

Oct 27 10:41:56 hulk kernel: [46692.664196] usb 2-1.1: new high-speed USB device number 12 using ehci-pci

Which is a quite long line for this book, that's why the characters from the start of the lines till the point where the real information begin are dropped. So, in the preceding example, the lines output will be reported as follow:

usb 2-1.1: new high-speed USB device number 12 using ehci-pci

However, as just said above, if the line is still too long it will be broken anyway.
Long outputs, repeated or less important lines in a terminal are dropped by replacing them with three dots ... shown as follows:

output begin
output line 1
output line 2
...
output line 10
output end

When the three dots are at the end they mean that the output continues but I decided cut it for space reasons.

File modifications

When you should modify a text file, I'm going to use the unified context diff format since this is a very efficient and compact way to represent a text modification. This format can be obtained by using the diff command with the -u option argument.
As a simple example, let's consider the following text into file1.old:
This is first line
This is the second line
This is the third line
...
...
This is the last line

Suppose we have to modify the third line as highlighted in the following snippet:
This is first line
This is the second line
This is the new third line modified by me
...
...
This is the last line

You can easily understand that reporting each time the whole file for a simple modification it's quite obscure and space consuming, however by using the unified context diff format the preceding modification can be written as follow:
$ diff -u file1.old file1.new
--- file1.old 2015-03-23 14:49:04.354377460 +0100
+++ file1.new 2015-03-23 14:51:57.450373836 +0100
@@ -1,6 +1,6 @@
 This is first line
 This is the second line
-This is the third line
+This is the new third line modified by me
 ...
 ...
 This is the last line

Now the modification is very clear and written in a compact form! It starts with a two-line header where the original file is preceded by --- and the new file is preceded by +++, then follows one or more change hunks that contain the line differences in the file. The preceding example has just one hunk where the unchanged lines are preceded by a space character, while the lines to be added are preceded by a + character and the lines to be removed are preceded by a - character.
Still for space reasons, most patches reported into this book has reduced indentation in order to fit printed pages width, however they are still perfectly readable in a correct form. For the real patch you should refer to the provided files on Github or Packt site.

Serial & network connections

In this book I'm going to mainly use two different kind of connections to interact with the the embedded boards: the serial console, an SSH terminal and an Ethernet connection.
The serial console, that is implemented over the same USB connection used to power up the board, is mainly used to manage the system from the command line. It's largely used to monitoring the system especially to take under control the kernel messages.
An SSH terminal is quite similar to the serial console even if is not exactly the same (for example kernel messages do not automatically appear on a terminal) but it can be used in the same manner as a serial console to give commands and to edit files from the command line.
In the next chapters I'm going to use a terminal on the serial console or over an SSH connection indifferently to give the most of the commands and configuration settings needed to implement all the prototypes explained in this book.
To get access to the serial console from your host PC you can use the minicon command as follow:

$ minicom -o -D /dev/ttyACM0

Or the next one according to the board and/or the USB-to-Serial adapter used:

$ minicom -o -D /dev/ttyUSB0

However in Chapter 1
, Installing the Developing System, this aspects are explained and you should not worry about them. Note also that on some system you may needs the root privileges to get access to the /dev/ttyACM0 device. In this case you can fix this issue or by using the sudo command or, better, by properly add you system's user to the right group by using the command below:

$ sudo adduser $LOGNAME dialout

Then log out and log in again and you should access the serial devices without any problem.
To get access to the SSH terminal you can use the emulated Ethernet connection over the same USB cable used for the serial console. In fact, if your host PC is well configured, when you plug in the USB cable, after a while, you should see a new cable connection with a proper IP address (in case of the BeagleBone Black you should get the address 192.168.7.1, for the SAMA5D3 Xplained the address 192.168.8.1, while address 192.168.9.1 for the WandBoard. See Chapter 1
, Installing the Developing System
). Then, for example, I can use this new connection to get access to the BeagleBone Black by using the following command:

$ ssh root@192.168.7.2

The last available communication channel is the Ethernet connection. It is used mainly to download files from the host PC or the Internet and it can be established by connecting an Ethernet cable to the each embedded kit's Ethernet port and then configuring the port accordingly to the reader's LAN settings.
But it's quite important to point out the you can get connected with the Internet by using also the emulated Ethernet connection over USB presented above. In fact, by using the commands below on the host PC (obviously GNU/Linux based), you'll be able to use it as a router allowing your embedded boards to surf the net as it was connected with its real Ethernet port:

iptables --table nat --append POSTROUTING --out-interface eth1
 -j MASQUERADE
iptables --append FORWARD --in-interface eth4 -j ACCEPT
echo 1 >> /proc/sys/net/ipv4/ip_forward

Then, for instance, on the BeagleBone Black I should set the gateway through the USB cable using the following command:

root@bbb:~# route add default gw 192.168.7.1

Note that the eth1 device is the preferred Internet connection on my host system, while the eth4 device is the BeagleBone Black's device as viewed on my system.

Other conventions

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button moves you to the next screen."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail
feedback@packtpub.com
, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at
www.packtpub.com/authors
.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com
. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support
 and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
	Log in or register to our website using your e-mail address and password.
	Hover the mouse pointer on the SUPPORT tab at the top.
	Click on Code Downloads & Errata.
	Enter the name of the book in the Search box.
	Select the book for which you're looking to download the code files.
	Choose from the drop-down menu where you purchased this book from.
	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
	WinRAR / 7-Zip for Windows
	Zipeg / iZip / UnRarX for Mac
	7-Zip / PeaZip for Linux

The complete set of code can also be downloaded from the following GitHub repository: https://github.com/PacktPublishing/GNU-Linux-Rapid-Embedded-Programming/. We also have other code bundles from our rich catalog of books and videos available at: https://github.com/PacktPublishing/. Check them out!
For this book the example code files can also be downloaded from the author's Github repository at URL
https://github.com/giometti/gnu_linux_rapid_embedded_programming
.
Just use the following command to get it at once:

$ git clone
 https://github.com/giometti/gnu_linux_rapid_embedded_programming.git

The examples are grouped according to the chapters name so you can easily find the code during the reading of the book.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/GNULinuxRapidEmbeddedProgramming.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata
, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support
 and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at
copyright@packtpub.com
 with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com
, and we will do our best to address the problem.

Chapter 1. Installing the Developing System

In this chapter, we will present three of the most used development kits for industrial applications. Respect to the most famous Raspberry Pi, these boards are based on widely used CPUs on custom boards in an industrial environment. In fact, while Raspberry Pi's CPU is not easily available on the components market, the CPUs of the following boards are widely available with different professional board makers.
In the upcoming sections, after a brief introduction of each board, we'll see how we can set them up to run a complete GNU/Linux distribution and then get access to the system console. After that, we will install a complete developing system on each board in order to be able to add our own programs.
A little tutorial about how to set up the host system is also present, and you can use it to set up a GNU/Linux-based working machine or a dedicated virtual one.
This chapter can be skipped if you already have a running embedded system with the relative host PC. However, you should consider reading it anyway due the fact that we'll present an overview of the embedded devices we're going to use in this book. In this chapter, we'll fix some common terms used in this book, and you may learn a different way to install a running system on your boards. Also, last but not least, the system that is already running on your boards may be different from the ones presented here. This means that you may need to change some commands presented in this book accordingly in order to have functional examples.
Embedded world terms

Before putting our hands on our new boards, it is recommended that you acquaint yourselves with some terms that a user should know in order to avoid misunderstandings. People who have already worked with some GNU/Linux and/or embedded systems may skip this part. The developer kits shown here are tiny single-board computers that can be embedded into a device, so the user should be familiar with some terms used in the wonderful world of embedded programming:
	

Term

	

Description

	
Target

	

The target system is the embedded computer that we wish to manage.

Usually, it is an ARM platform, but this is not a fixed rule. In fact, PowerPC and MIPS are other (less) common platforms. Even the x86 platform (a standard PC) can be an embedded computer.

	
Host

	

The host system is the computer we will use to manage the target system. Usually, it is a normal PC (x86 platform or MAC), but even other platforms can be used (for example, years ago, I used a PowerPC-based computer as a host PC).

Normally, the host system is more powerful than the target one since it's usually used for heavy compiling tasks that the target cannot perform at all or for tasks that it takes a long time to perform.

	
Serial console

	

This is the most important communication port in an embedded system.

Using the serial console, the user has complete control of the system.

It's not only indispensable for debugging, but is also the last resort if, by chance, the operating system files are messed up and the board refuses to boot.

Without the serial console, the user can still control the system (if correctly set up), but for the developer/debugger, it's a must-have!

	
Compiler (or native compiler)

	
The native compiler is just a compiler! This is the compiler running on a machine (host or target) that builds the code for the current machine (that is, the compiler running on a PC builds the code for the PC, like the one running on an ARM machine builds the code for ARM itself).

	
Cross-compiler

	
Strictly speaking, the cross-compiler is just a compiler that builds the code for a foreign platform (that is, a cross-compiler can run on a PC in order to generate binaries for an ARM platform). However, usually, by using this term, the embedded developers also mean the complete compilation suite, that is, the compiler, linker, binutils, libc, and so on.

	
Toolchain

	

A toolchain is a set of programming tools that is used to create a software product, that is, another computer program or a set of related programs.

The term toolchain is due the fact that the tools forming a toolchain are executed consecutively as in a chain, so the output of each tool becomes the input for the next one. However, this is not a fixed rule. In fact, the tools in a toolchain are not necessarily executed consecutively.

A simple software development toolchain may consist of a compiler, a linker (plus other binutils), one or more libraries (which provide interfaces to the operating system), and a debugger (used to debug programs).

	
Distribution

	

A distribution (or Linux distribution, often called distro for short) is an operating system made from a software collection based on Linux (the kernel) and several software packages (most from the GNU project or based on a Libre Software license) managed by a package management system.

There are several distributions, and they are available for a wide variety of systems ranging from embedded devices (OpenWrt or Yocto) and personal computers to powerful supercomputers.

	
Root filesystem

	

The root filesystem (or rootfs) is the filesystem contained on the same partition on which the root directory is located.

This is the most important filesystem in an UNIX system, and it's the first one to be mounted by the kernel. All the other filesystems are mounted on it.

	
System on chip

	

A system on chip (SoC) is an integrated circuit that integrates a CPU and different kinds of peripherals (SATA and SD/MMC controller, GPIOs, I2C/SPI/W1 controllers, ADC/DAC converters, audio/video signals, and Ethernet or UART ports) into a single chip.

These chips are widely used in embedded systems where they found their typical application.

	
Microcontroller

	

A microcontroller (MCU) is a small computer on a single integrated circuit (like a SoC) that contains a processor core, memory, and programmable IO peripherals. So, the main difference between a SoC is that it has the flash memory (where the program is stored) as well as a small amount of RAM (to execute the program) included on its chip.

Microcontrollers are designed for embedded applications where the tasks to be accomplished are not too complex. They are also used when we need have time constraints or just because they are cost effective.

	
Flash memory

	

Flash memory is an electronic non-volatile computer storage medium that can be electrically erased and reprogrammed.

In contrast to a normal PC, this kind of memory is widely used on embedded applications as mass storage due the fact it has no moving parts and it has better resistance to a hostile environment.

Now that some important terms have been pointed out, we are ready to step into the next section and discover our developer kits!

Systems' overview

Here is a brief introduction of the developer kits we will use into this book.
The first kit is the BeagleBone Black, which is a low-cost, community-supported development platform for developers and hobbyists. It's able to boot Linux in under 10 seconds and get started on development in few minutes with just a single USB cable. This board is widely used on several prototypes on the Internet, so it's a board that every embedded programmer should know.
The second kit is SAMA5D3 Xplained
, which is a fast prototyping and evaluation platform that comes with a rich set of ready-to-use connectivity, storage peripherals, and expansion headers for easy customization. A USB device connector can be used to power the board as well as for programming and debugging it. This board is very interesting due the fact it uses a very low power-consuming CPU with good performances and with a lot of industrial-oriented peripherals.
The last (but not least) kit is Wandboard, which is a complete computer with high-performance multimedia capabilities, a good peripheral equipment and, in contrast with the other boards, it's composed by a core module and an easy interface board to customize or modify. The board is very interesting because it can be equipped with a multicore CPU and because it comes as a CPU module connected to a carrier board, which allows embedded developers to have a highly hardware-customizable device.
The BeagleBone Black

In the following image, there is a picture of the BeagleBone Black, with a credit card, so that you can have an idea about the real dimensions of the whole system:

[image: The BeagleBone Black]

Here are some interesting URLs where you can read some useful information regarding BeagleBone Black:
	
https://beagleboard.org/black

	
http://beagleboard.org/static/beaglebone/latest/Docs/Hardware/BONE_SRM.pdf

	
http://beagleboard.org/getting-started

	
https://eewiki.net/display/linuxonarm/BeagleBone+Black

The main hardware key features of my BeagleBone Black (revision C) are reported in the following table:
	

Part

	

Specification

	
Main processor

	
ARM processor: Cortex-A8 @ 1Ghz

	
Graphic processor

	
PowerVR SGX

	
SDRAM memory

	
512MB DDR3

	
On-board flash

	
4GB, 8-bit eMMC

	
USB 2.0 ports

	

1 device

1 host

	
Serial port

	
UART0 via 6 pin 3.3 V TTL connector

	
Ethernet

	
1 port 10/100 via RJ45 connector

	
SD/MMC

	
1 slot microSD

	
Video/audio out

	
Micro HDMI

	
Buttons

	

1 for power

1 for reset

1 user controllable

	
LED indicators

	

1 for power

2 on Ethernet port

4 user controllable

	
On-board Wi-Fi/bluetooth

	
None

	
SATA

	
None

	

Expansion

Connectors

	

Power 5V, 3.3V, VDD ADC (1.8V)

GPIOs 3.3V

SPI, I2C, LCD, GPMC, MMC0-1, CAN

7 ADC (1.8V max)

4 timers

4 serial ports

3 PWMs

	
J-TAG connector

	
20 pins J-TAG (not populated)

Then, the following image shows a top view of the BeagleBone Black, where we can see some interesting things:
	The connector J1 used to access the serial console.
	The Ethernet connector.
	The power connector.
	The two expansion connectors P8 and P9, where we can connect the dedicated extension boards and/or custom peripherals (these connectors will be explained in detail in the upcoming chapters).
	The microSD slot.
	The USB host port.
	The reset button does what it says while the power button can be used to turn on/off the board, and the user button, which is user controllable, can be used to do an alternate boot on the microSD card instead of the on-board eMMC.

[image: The BeagleBone Black]

From the preceding image, we can see that the BeagleBone Black doesn't look like a PC, but it can act as a PC! The BeagleBone Black is a fully functional single-board computer and can be readily used as a PC if required by connecting a monitor to the HDMI port and attaching a USB keyboard and mouse through a USB hub. However, it is more suited to embedded applications, where it can act as more than a PC due its expansion connectors, and we can stack up to four expansion boards (named capes) that are useful for several purposes.
In this book, we'll see how we can manage (and reinstall) a complete Debian distribution that allows us to have a wide set of ready-to-run software packages, as a normal PC may have (in fact, the Debian ARM version is equivalent to the Debian x86 version). Then, we'll see how we can use the expansion connectors to connect to the board. Several peripherals are used to monitor/control the external environment.

The SAMA5D3 Xplained

In the following image, as done earlier, there is a picture of the SAMA5D3 Xplained, with a credit card, where we can easily notice that compared to the BeagleBone Black, this board is larger. This is due the fact that we have more connectors and ports mounted on the board. In particular, the expansion connector in the center of the board is Arduino R3 compatible, so we can use its extension boards on it:

[image: The SAMA5D3 Xplained]

Here are some interesting URLs where you can read about SAMA5D3 Xplained:
	
http://www.atmel.com/tools/ATSAMA5D3-XPLD.aspx

	
http://www.atmel.com/images/atmel-11269-32-bit-cortex-a5-microcontroller-sama5d3-xplained_user-guide.pdf

	
http://www.at91.com/linux4sam/bin/view/Linux4SAM/Sama5d3XplainedMainPage

	
https://eewiki.net/display/linuxonarm/ATSAMA5D3+Xplained

Note that there are several versions of the SAMA5D3 Xplained board depending on the CPU version, so we can have SATSAMA5D31, SATSAMA5D33, SATSAMA5D34, SATSAMA5D35, and ATSAMA5D36. Each CPU has the same core, but a different peripheral set.
In this book, we will use ATSAMA5D36, and the main hardware key features of this version are reported in the following table:
	

Part

	

Specification

	
Main processor

	
ARM processor: Cortex-A5 @ 536Mhz

	
Graphic processor

	
LCD controller with graphics accelerator

	
SDRAM memory

	
256MB DDR2

	
On-board flash

	
256MB, NAND flash

	
USB 2.0 ports

	

1 device

2 host

	
Serial port

	
UART0 via 6 pin 3.3 V TTL connector

	
Ethernet

	

1 port 10/100/1000 via RJ45 connector

1 port 10/100 via RJ45 connector

	
SD/MMC

	

1 slot SD/MMCPlus 8-bit

1 slot microSD 4-bit (not soldered)

	
Video/audio out

	
Digital interface

	
Buttons

	

1 for reset

1 for wake up

1 user controllable

	
LED indicators

	

1 for power

2 on each Ethernet port

1 user controllable

	
On-board Wi-Fi/bluetooth

	
Optional WiFi via SDIO expansion

	
SATA

	
None

	

Expansion

Connectors

	

GPIOs 3.3V

SPI, I2C0-1, CAN0-1, VBAT

12 ADC (3.3V max)

2 timers

6 serial ports

2 PWMs

	
J-TAG connector

	
20 pins J-TAG (populated)

The following image shows a top view of the SAMA5D3 Xplained, where we can see some interesting things:
	The connector J23 can be used to access the serial console.
	The USB micro port can be used obviously as a USB device interface, but it is used also as a power supply port and as a SAM-BA USB device and USB CDC connection.
	The two Ethernet connectors.
	The LCD connector.
	The JTAG connector.
	The two USB host ports.
	The expansion connector (note that these connectors are Arduino R3 compatible).
	The reset button can be used to reset the board. The wake up button can be used to turn on/off the board.

[image: The SAMA5D3 Xplained]

This board can also act as a PC, even if it is designed for typical industrial tasks. It can resist in very hostile environment. It has low power consumption and a lot of useful peripherals for professional applications. In contrast to the BeagleBone Black, it has no HDMI connector for external monitor, but it has a dedicated connector for an LCD with touch screen.
Even for this board, we'll install a complete Debian distribution and see how we can use the expansion connectors to connect to the board.

The Wandboard

In the following image, there is a picture of the Wandboard, with the same credit card shown earlier:

[image: The Wandboard]

The board seems quite small, but it's actually composed of two parts: the core module is on top of the interface (or carrier) module (see the following image):

[image: The Wandboard]

Here are some interesting URLs where you can gain some useful information regarding your Wandboard:
	
http://www.wandboard.org/

	
http://www.wandboard.org/images/downloads/wbquad-revb1-userguide.pdf

	
http://wiki.wandboard.org/Main_Page

	
https://eewiki.net/display/linuxonarm/Wandboard

Note that there are several versions of the Wandboard board depending on the CPU version, so we can have the Wandboard Solo, Wandboard Dual, and Wandboard Quad. Each version has a different CPU with the same core but a different peripheral set and core numbers. In fact, the Wandboard is available as a single-, dual-, and quad-core CPU!
In this book, we will use the Wandboard Quad (revision C1), and the main hardware key features of this version are reported in the following table:

	

Part

	

Specification

	
Main processor

	
ARM processor: Quad Cortex-A9 @ 1Ghz

	
Graphic processor

	
Vivante GC 2000 + Vivante GC 355 + Vivante GC 320

	
SDRAM memory

	
2GB DDR3

	
On-board flash

	
None

	
USB 2.0 ports

	

1 OTG

2 host

	
Serial port

	
UART0 via standard RS232 pin9 connector

	
Ethernet

	
1 port 10/100/1000 via RJ45 connector

	
SD/MMC

	
2 slot SD/MMCPlus 8-bit

	
Video/audio out

	

HDMI

Analog audio plus optical S/P DIF

Digital camera connector

	
Buttons

	
1 for reset

	
LED indicators

	

1 for power

2 on Ethernet port

	
On-board Wi-Fi/bluetooth

	
802.11n/4.0

	
SATA

	
1 connector

	

Expansion

connectors

	

GPIOs 3.3V

SPI, I2C0-1, CAN0-1, VBAT

12 ADC (3.3V max)

2 timers

6 serial ports

2 PWMs

	
J-TAG connector

	
8 pins J-TAG (not populated)

The following two images show the bottom and top views of the Wandboard, where we can see some interesting things. Here are the features of the bottom side of the board:
	The RS-232 9-pins connector COM1 can be used to access the serial console
	The USB mini port used as USB OTG connector
	The USB host port
	The secondary microSD connector
	The power connector
	The Ethernet connector
	The audio ports
	The SATA connector
	The HDMI connector

[image: The Wandboard]

On the top side (we split the core module on the left and the interface board on the right) we have:
	The camera interface connector
	The primary microSD
	The Wi-Fi chip
	The four expansion connectors
	The reset button can be used to reset the board

[image: The Wandboard]

This board too can act as a PC, and that's why we will install a complete Debian distribution on it too. This board, as in the case of the BeagleBone Black, has a HDMI connector for external monitor.

Installing a development system

The target of this book is to explain how to get access to the several peripherals present on our boards and how to quickly write programs to manage their data. In order to do it, we need a good developing system. That's why, in this section, we will install a Debian OS on each board.
One of the main advantages of GNU/Linux-based boards is the fact that we can have the same developing environment regardless of the board we decide to use. In order to practically demonstrate this fact, we will install exactly the same OS on each board (even if a preloaded OS may be already present on some boards). To do this, we just need an SD (or microSD) card to store our developing OS and then follow the instructions in the upcoming sections.
However, before putting our hands on the embedded boards, we need to set up our host machine.
Setting up the host machine

As every good embedded developer knows, a host machine is absolutely necessary. Even if the embedded devices are getting more powerful nowadays, there are some resource-consuming tasks where a host machine can help.
The host machine we decide to use could be a normal PC or a virtualized one. The important thing is that it runs a GNU/Linux-based OS! In this book, we will use an Ubuntu 15.10 based system (since this is currently my laptop's configuration), you can decide to use the same (maybe in a virtual machine) or just to use an Ubuntu Long Term Support (LTS) release, such as 16.04 for instance, without any problem or major changes. However, we can also try to replicate some settings and installation commands that we will use during the course of the book into another Linux distribution with little effort.
Basic tools

If we did a clean installation or we have never used our machine as a developing one, then we have to install some useful developing tools before continuing. As the first step, we will install the aptitude tool, which is quite similar to the most famous apt-get command, but it's smarter (note that this is not required since we may still continue using apt-get without any problems). Here is the installing command:

$ sudo apt-get install aptitude

Then, we can install other useful basic tools using the aptitude command as shown here:

$ sudo aptitude install openssh-server tree git device-tree-compiler
lzma lzop libncurses5-dev:amd64 minicom

After all packages have been installed, we can go further and install the cross-compiler with the relative toolchain.

The cross-compiler

Every host machine needs a proper cross-compiler for the target board we wish to work on, so we have to install one. As we can see in the upcoming chapters, we mainly need a cross-compiler to build the bootloader and the kernel, since we can directly compile user-space applications on the target itself due the fact we're using Debian. However, we can use it for several other tasks, for instance, to compile specific drivers and/or to compile user-space applications even if, in this last case, we need to be careful to keep the cross toolchain in step with the target (having compatible library versions, header files, and so on). Otherwise, it would case subtle problems from time to time.
Tip
Note that if we use an embedded distribution such as Yocto or OpenWrt (Chapter 5, Setting Up an Embedded OS), we must use the cross-compiler to compile user-space applications too, since we have no native compiler to execute on the boards.

There are several solutions to install a cross-compiler, starting from installing the one supplied by the used distribution to using a pre-built one. Ubuntu has its own cross-compiler, as shown here, using the following command:

$ apt-cache search gcc-[0-9.]*-arm
gcc-5-arm-linux-gnueabihf - GNU C compiler
gcc-5-arm-linux-gnueabihf-base - GCC, the GNU Compiler Collection (bas
e package)
gcc-4.7-arm-linux-gnueabi - GNU C compiler
gcc-4.7-arm-linux-gnueabi-base - GCC, the GNU Compiler Collection (bas
e package)
gcc-4.7-arm-linux-gnueabihf - GNU C compiler
gcc-4.7-arm-linux-gnueabihf-base - GCC, the GNU Compiler Collection (b
ase package)
gcc-4.8-arm-linux-gnueabihf - GNU C compiler
gcc-4.8-arm-linux-gnueabihf-base - GCC, the GNU Compiler Collection (b
ase package)
gcc-4.9-arm-linux-gnueabi - GNU C compiler
gcc-4.9-arm-linux-gnueabi-base - GCC, the GNU Compiler Collection (bas
e package)
gcc-4.9-arm-linux-gnueabihf - GNU C compiler
gcc-4.9-arm-linux-gnueabihf-base - GCC, the GNU Compiler Collection (b
ase package)
gcc-5-arm-linux-gnueabi - GNU C compiler
gcc-5-arm-linux-gnueabi-base - GCC, the GNU Compiler Collection (base
package)

Note

Downloading the example code

Detailed steps to download the code bundle are mentioned in the Preface of this book.
The code bundle for the book is also hosted on GitHub at: https://github.com/PacktPublishing/GNU-Linux-Rapid-Embedded-Programming/.
We also have other code bundles from our rich catalog of books and videos available at: https://github.com/PacktPublishing/. Check them out!

However in order to have a distro-independent installation, we decide to use a pre-built one. Looking at the available ones, we chose the toolchain from the Linaro project (
http://www.linaro.org/
), which is a de-facto standard. So, let's see how to install it.
First of all, we must download the archive using the following command:

$ wget -c https://releases.linaro.org/components/toolchain/binaries/5.
3-2016.02/arm-linux-gnueabihf/gcc-linaro-5.3-2016.02-x86_64_arm-linux-
gnueabihf.tar.xz

After the download, we need to extract the code using the following command:

$ tar xf gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf.tar.xz

Note
You can put your new toolchain whenever you wish inside the host's filesystem. We put it in the /opt/linaro directory.

Then, we have to set up our environment in order to be able to execute the cross-compiler and other components:

$ export PATH=/opt/linaro/gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnue
abihf/bin/:$PATH

Note
You should not forget to replace the installation directory /opt/linaro with your directory!

Now, we should get the following lines of code:

$ arm-linux-gnueabihf-gcc --version
arm-linux-gnueabihf-gcc (Linaro GCC 5.3-2016.02) 5.3.1 20160113
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is
NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

Note
Each time we log in to our host machine, we have to execute the preceding export command. To avoid it, we can use the following two lines to the .bashrc file (if we use the Bash shell):
 # Setup the cross-compiler export PATH=/opt/linaro/gcc-linaro-5.3-2016.02-x86_ 64_arm-linux-gnueabihf/bin/:$PATH

OK. Now, we're ready to set up our developer kits!

Setting up the BeagleBone Black

Let's start by putting our hands on the first developer kit: the BeagleBone Black. As we can see, it comes with a pre-loaded Debian system on the on-board eMMC. However, since we'd like to have the same OS on all developer kits, let's see how to install a fresh OS on a new microSD and then boot from it.
Serial console for the BeagleBone Black

As already stated (and as any real programmer of embedded devices knows), the serial console is a must-have during the low-level development stages! So, let's see how we can get access to it on our BeagleBone Black.
As shown in the following image, the connector J1 is exposed to the serial console pins. So, using a proper adapter, we can connect it to our host PC. However, since the pins have electrical signals at the TTL level, we need an adapter device to do the job, and we have several possibilities.
The first one is a standard RS232-to-TTL converter shown in the following image:

[image: Serial console for the BeagleBone Black]

Note
The RS232-to-TTL converter can be purchased at: http://www.cosino.io/product/rs-232-serial-adapter or by surfing the Internet.

In this case, we need a PC equipped with a standard RS232 port. Nowadays, it is not easy having one, but we can easily find a RS232-to-USB adapter to solve the problem, or as a second possibility, we can use a standard USB-to-TTL cable shown here:

[image: Serial console for the BeagleBone Black]

The solution allows us to use a more common USB port to do the job.
However, a last solution exists, and it consists of still using an USB-to-TTL converter. However, in contrast with the solution mentioned earlier, this time, we have a micro USB port used in every smartphone. The converter is shown in the following image:

[image: Serial console for the BeagleBone Black]

Note
The devices can be purchased at: http://www.cosino.io/product/usb-to-serial-converter or by surfing the Internet.
The datasheet of this device is available at: https://www.silabs.com/Support%20Documents/TechnicalDocs/cp2104.pdf.

Whichever solution we decide to use, we have to connect the J1 connector with the selected adapter in order to correctly capture the electrical signal. In particular, the relevant pins are reported in the following table. You have to connect the GND (Ground) signal with the adapter's GND pin and then swap TxD (Transmitter) and RxD (Receiver) to correctly establish the serial connection.

	

Connector J1

	

Function

	
Pin 1

	
GND

	
Pin 4

	
TxD

	
Pin 5

	
RxD

Here is the my setup:

[image: Serial console for the BeagleBone Black]

If all connections are OK, we can execute any serial terminal emulator to see the data from the serial console. We will use the minicom tool, and the command to use it is shown here:

$ minicom -o -D /dev/ttyUSB0

You must now verify that the serial port to be used is /dev/ttyUSB0,
 and that its setup is 115200,8N1 without hardware and software flow control (in minicom, these settings can be checked using the
CTRL+A-O
 key sequence and then selecting the serial port setup menu entry).
Note
To correctly get access to the serial console, we may need proper privileges. In fact, we may try to execute the preceding minicom command, and we don't get an output! This is because the minicom command silently exits if we don't have enough privileges to get access to the port.
We can verify our access to privileges by simply using another command on it as shown here:

 $ cat /dev/ttyUSB0

 cat: /dev/ttyUSB0: Permission denied
In this case, the cat command perfectly tells us what's wrong. In this case, we can fix this issue using the sudo command or, even better, by properly adding our system's user to the right group as shown here:

 $ ls -l /dev/ttyUSB0
 crw-rw---- 1 root dialout 188, 0 Jan 12 23:06 /dev
 /ttyUSB0
 $ sudo adduser $LOGNAME dialout

oinThen, log out and log in again, and we can access the serial devices without any problem.

The BeagleBone Black should come with a pre-loaded system, so we should see the booting sequence in the minicom window as soon as we power up the system.
Now, we only need the software to start working with our BeagleBone Black board.

U-Boot (with MLO)

First of all, we have to download the sources and select a proper release to compile. To clone the U-Boot's repository, we can use the following command:

$ git clone https://github.com/u-boot/u-boot

However, instead of using the preceding command, let me suggest that you clone U-Boot's repository into a dedicated directory in the bare form (we use a directory named common) and then clone the BeagleBone Black's files into another subdirectory by referencing the local bare repository to the dedicated one (we use the directory BBB).
To download the bare repository, the commands are as follows:

$ cd common
$ git clone --bare https://github.com/u-boot/u-boot

Then, the new commands to get the BeagleBone Black's sources are as follows:

$ cd BBB
$ git clone --reference ~/Projects/common/u-boot.git
 https://github.com/u-boot/u-boot

In this manner, we can save a lot of disk space since we will use the same sources for all our developer kits.
Now, let's go into the newly created directory and check out a proper U-Boot release:

$ cd u-boot
$ git checkout v2016.03 -b v2016.03

Now, we need some patches to properly support the BeagleBone Black, and we can get and install them using the following commands:

$ wget -c https://rcn-ee.com/repos/git/u-boot-patches/v2016.03/0001-am
335x_evm-uEnv.txt-bootz-n-fixes.patch
$ patch -p1 < 0001-am335x_evm-uEnv.txt-bootz-n-fixes.patch

Now, we're ready to compile. Let's do it with the following commands:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
 am335x_evm_defconfig
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

Now, it's time to install the bootloader into the microSD, and to do this, we have plug a new microSD into our host PC. Then, we have to erase the current partition table and install a new one.
Tip
Note that the microSD should be a class 10 and at least of 4GB size.

However, we first have to discover the microSD associated device. There exist several ways to do it. We usually use the dmesg command after we have plugged in the microSD into my host machine so that we see the following kernel messages:

Attached scsi generic sg3 type 0
[sdd] 7774208 512-byte logical blocks: (3.98 GB/3.71 GiB)
[sdd] Write Protect is off
[sdd] Mode Sense: 0b 00 00 08
[sdd] No Caching mode page found
[sdd] Assuming drive cache: write through
 sdd: sdd1
[sdd] Attached SCSI removable disk

In this way, we know that on our system, the microSD is associated with the device /dev/sdd.
Note
Note that our configuration may vary. In fact, you may discover that the right device to use is /dev/sdb, /dev/sdc or /dev/sde or even a device named /dev/mmcblk0! This last case means that the host PC is using an MMC device instead of a USB adapter to manage its SD or microSD slot. In this special situation, the kernel messages look like this:

 mmc0: cannot verify signal voltage switch

 mmc0: new ultra high speed SDR50 SDHC card at address

 0007

 mmcblk0: mmc0:0007 SD4GB 3.70 GiB

 mmcblk0: p1

However, we can also use the lsblk command that nicely lists all the currently attached block devices into the system as show here:

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
+-sda1 8:1 0 21.5G 0 part
+-sda2 8:2 0 116.4G 0 part
+-sda3 8:3 0 1K 0 part
\-sda5 8:5 0 327.9G 0 part /opt
sdb 8:16 0 931.5G 0 disk
\-sdb1 8:17 0 931.5G 0 part /home
sdc 8:32 0 223.6G 0 disk
\-sdc1 8:33 0 223.6G 0 part /
sdd 8:48 1 3.7G 0 disk
\-sdd1 8:49 1 3.7G 0 part

Now, we can clear the current partition table using the following command:

$ sudo dd if=/dev/zero of=/dev/sdX bs=1M count=10

Note

This is a very important step!

The reader should not forget to replace device /dev/sdX with the device associated with the microSD plugged into their system and follow the next steps carefully or they may damage the host system!

Then, we can install the newly compiled bootloaders:

$ sudo dd if=MLO of=/dev/sdX count=1 seek=1 bs=128k
$ sudo dd if=u-boot.img of=/dev/sdX count=2 seek=1 bs=384k

Now, we can prepare the needed partition for the root filesystem, which will be installed in the upcoming sections. Here are the commands:

$ echo '1M,,L,*' | sudo sfdisk /dev/sdX
$ sudo mkfs.ext4 -L rootfs /dev/sdX1

Note
Since in mkfs.ext4 version 1.43, the options metadata_csum and 64bit are enabled by default. However, we need to make sure that they are disabled; otherwise, U-Boot cannot boot from our ext4 partitions. If this is our case, we need to replace the preceding command with the following one:

 $ sudo mkfs.ext4 -L rootfs

 -O ^metadata_csum,^64bit /dev/sdX1
In order to get the current version of mkfs.ext4, we can use the command with the -V option argument.

Then, mount the newly created partition and copy the bootloaders in it (these will be used soon). Here are the commands:

$ sudo mkdir /media/rootfs
$ sudo mount /dev/sdX1 /media/rootfs/
$ sudo mkdir -p /media/rootfs/opt/backup/uboot/
$ sudo cp MLO /media/rootfs/opt/backup/uboot/
$ sudo cp u-boot.img /media/rootfs/opt/backup/uboot/

Now, we have just to add U-Boot's environment commands to properly load the kernel. We have to put all commands into a file called uEnv.txt in rootfs as follows:

$ sudo mkdir /media/rootfs/boot/
$ sudo cp uEnv.txt /media/rootfs/boot/

The content of the uEnv.txt file is reported here:
loadaddr=0x82000000
fdtaddr=0x88000000
rdaddr=0x88080000

initrd_high=0xffffffff
fdt_high=0xffffffff
mmcroot=/dev/mmcblk0p1

loadximage=load mmc 0:1 ${loadaddr} /boot/vmlinuz-${uname_r}
loadxfdt=load mmc 0:1 ${fdtaddr} /boot/dtbs/${uname_r}/${fdtfile}
loadxrd=load mmc 0:1 ${rdaddr} /boot/initrd.img-${uname_r}; setenv rds
ize ${filesize}
loaduEnvtxt=load mmc 0:1 ${loadaddr} /boot/uEnv.txt ; env import -t ${
loadaddr} ${filesize};
loadall=run loaduEnvtxt; run loadximage; run loadxfdt;
mmcargs=setenv bootargs console=tty0 console=${console} ${optargs} ${c
ape_disable} ${cape_enable} root=${mmcroot} rootfstype=${mmcrootfstype
} ${cmdline}

uenvcmd=run loadall; run mmcargs; bootz ${loadaddr} - ${fdtaddr};

Note
The preceding text can be found in the chapter_01/BBB-uEnv.txt file in the book's example code repository.

Now, it's time to compile the kernel.

Linux kernel for the BeagleBone Black

The kernel sources can be downloaded from the several repositories, and we decided to use the ones from Robert C. Nelson archives instead of the standard Debian repositories because these repositories are really well done, easy to use, and well supported in terms of custom kernel sources for our embedded kits!
The command is here:

$ git clone https://github.com/RobertCNelson/bb-kernel

Then, we have to enter into the newly created directory and choose which version of the kernel we wish to use. There are several choices, and I decided to use the kernel version 4.4 (no specific reasons for that, it's just the release in the middle and you can choose whatever better fits your needs). So, we used the commands here:

$ cd bb-kernel
$ git checkout origin/am33x-v4.4 -b am33x-v4.4

Now, before continuing, we can do something similar to what we did for U-Boot and then pre-download a Linux bare repository from the linux-stable tree into the common directory with the following command:

$ cd common
$ git clone --bare
 https://git.kernel.org/pub/scm/linux/kernel/git/stable/
linux-stable.git

Then, we have to do a little trick to transform the just downloaded data in a form suitable for the build_kernel.sh script we've to use here:

$ mkdir linux-stable
$ mv linux-stable.git/ linux-stable/.git
$ cd linux-stable
$ git config --local --bool core.bare false

In this manner, we converted a bare repository into a normal one, but without checking out any file and saving a lot of disk space!
Now, by properly setting the LINUX_GIT variable into the system.sh file, we can reference the just downloaded repository. The system.sh file can be easily obtained from system.sh.sample as follows:

$ cp system.sh.sample system.sh

Then, we need to properly set the LINUX_GIT and the CC variables (to specify the cross-compiler to be used) as reported in the following patch:
--- system.sh.sample 2016-04-15 18:04:18.178681406 +0200
+++ system.sh 2016-04-18 17:40:11.229958465 +0200
@@ -16,12 +16,14 @@
 #CC=<enter full path>/bin/arm-none-eabi-
 #CC=<enter full path>/bin/arm-linux-gnueabi-
 #CC=<enter full path>/bin/arm-linux-gnueabihf-
+CC=arm-linux-gnueabihf-

 ###OPTIONAL:

 ###OPTIONAL: LINUX_GIT: specify location of locally cloned git tree.
 #
 #LINUX_GIT=/home/user/linux-stable/
+LINUX_GIT=~/Projects/common/linux-stable

 ###OPTIONAL: MMC: (REQUIRED FOR RUNNING: tools/install_kernel.sh)
 #Note: This operates on raw disks, NOT PARTITIONS..

Now, we have to set up our identity into the new git repository with the following commands:

$ git config --global user.name "Rodolfo Giometti"
$ git config --global user.email "giometti@hce-engineering.com"

Then, we can start the compilation with the following command:

$./build_kernel.sh

Note
This step and the subsequent ones are time consuming and require patience, so you should take a cup of your preferred tea or coffee and just wait.

We should see that the correct cross-compiler is set and also the linux-stable repository is correctly referenced. Here is what I gets on my system:

$./build_kernel.sh
+ Detected build host [Ubuntu 15.10]
+ host: [x86_64]
+ git HEAD commit: [72cf1bea12eea59be6632c9e9582f59e7f63ab3d]

scripts/gcc: Using: arm-linux-gnueabihf-gcc (Linaro GCC 5.3-2016.02) 5
.3.1 20160113
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There i
s NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULA
R PUR
POSE.

CROSS_COMPILE=arm-linux-gnueabihf-

scripts/git: Debug: LINUX_GIT is setup as: [/home/giometti/Projects/co
mmon/linux-stable].
scripts/git: [url=https://git.kernel.org/pub/scm/linux/kernel/git/stab
le/linux-stable.git]
From https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stab
le
 * branch HEAD -> FETCH_HEAD

Cloning into '/home/giometti/Projects/BBB/bb-kernel/KERNEL'...
done.
...

After a while, the classic kernel configuration panel should appear. Just confirm the default settings by selecting the < Exit > menu option and then continue.
When finished, we should see several messages as shown here:

...

'arch/arm/boot/zImage' -> '/home/giometti/Projects/BBB/bb-kernel/deplo
y/4.4.7-bone9.zImage'
'.config' -> '/home/giometti/Projects/BBB/bb-kernel/deploy/config-4.4.
7-bone9'
-rwxrwxr-x 1 giometti giometti 7,1M apr 15 18:54 /home/giometti/Projec
ts/BBB/bb-kernel/deploy/4.4.7-bone9.zImage

Building modules archive...
Compressing 4.4.7-bone9-modules.tar.gz...
-rw-rw-r-- 1 giometti giometti 58M apr 15 18:55 /home/giometti/Project
s/BBB/bb-kernel/deploy/4.4.7-bone9-modules.tar.gz

Building firmware archive...
Compressing 4.4.7-bone9-firmware.tar.gz...
-rw-rw-r-- 1 giometti giometti 1,2M apr 15 18:55 /home/giometti/Projec
ts/BBB/bb-kernel/deploy/4.4.7-bone9-firmware.tar.gz

Building dtbs archive...
Compressing 4.4.7-bone9-dtbs.tar.gz...
-rw-rw-r-- 1 giometti giometti 328K apr 15 18:55 /home/giometti/Projec
ts/BBB/bb-kernel/deploy/4.4.7-bone9-dtbs.tar.gz

Script Complete
eewiki.net: [user@localhost:~$ export kernel_version=4.4.7-bone9]

The last line tell us which is the kernel version to be defined into the uEnv.txt file defined earlier when we installed the bootloaders. The command is shown here:

$ sudo sh -c 'echo "uname_r=4.4.7-bone9" >>
 /media/rootfs/boot/uEnv.txt'

Note
The /media/rootfs directory has been already mounted in the previous section.

Now, we should install the kernel, but before doing it, we need the root filesystem, so let's move to the next subsection.

Debian 8 (jessie) for the BeagleBone Black

To install the rootfs directory containing our Debian OS, we can use a pre-built image, and again, we can download it into the common directory to save space. The commands are shown here:

$ cd common
$ wget wget -c https://rcn-ee.com/rootfs/eewiki/minfs/debian-8.4-minim
al-armhf-2016-04-02.tar.xz

Then, we can explore it by using the tar command:

$ tar xf debian-8.4-minimal-armhf-2016-04-02.tar.xz

Note
By the time you read this, new versions could be available or the current one could be missing. Then, we should verify the available versions in the case of errors while downloading the rootfs image used earlier.

When finished, a new directory named debian-8.4-minimal-armhf-2016-04-02 should be available on the current working directory, and to copy it on the microSD, we can use this command:

$ cd debian-8.4-minimal-armhf-2016-04-02/
$ sudo tar xpf armhf-rootfs-debian-jessie.tar
 -C /media/rootfs/

Note
We have already mounted the microSD into /media/rootfs.

When finished, we can add the kernel image and its related files compiled earlier by switching back to the kernel repository and then using these commands:

$ cd BBB/bb-kernel
$ sudo cp deploy/4.4.7-bone9.zImage
 /media/rootfs/boot/vmlinuz-4.4.7-bone9
$ sudo mkdir -p /media/rootfs/boot/dtbs/4.4.7-bone9/
$ sudo tar xf deploy/4.4.7-bone9-dtbs.tar.gz
 -C /media/rootfs/boot/dtbs/4.4.7-bone9/
$ sudo tar xf deploy/4.4.7-bone9-modules.tar.gz
 -C /media/rootfs/

Now, to finish the job, we must set up the filesystem table using the following command:

$ sudo sh -c "echo '/dev/mmcblk0p1 / auto errors=remount-ro 0 1' >
 /media/rootfs/etc/fstab"

Do the networking configuration by executing the following commands:

$ sudo sh -c "echo 'allow-hotplug lo\niface lo inet loopback\n' >
 /media/rootfs/etc/network/interfaces"
$ sudo sh -c "echo 'allow-hotplug eth0\niface eth0 inet dhcp\n' >>
 /media/rootfs/etc/network/interfaces"

Now, we should be ready to boot our new system! Let's unmount the microSD from the host PC and plug it into the BeagleBone Black and power on the board. The umount command line is shown here:

$ sudo umount /media/rootfs/

If everything works well on the serial console, we should see something like this:

U-Boot SPL 2016.03-dirty (Apr 15 2016 - 13:44:25)
Trying to boot from MMC
bad magic
U-Boot 2016.03-dirty (Apr 15 2016 - 13:44:25 +0200)

 Watchdog enabled
I2C: ready
DRAM: 512 MiB
Reset Source: Power-on reset has occurred.
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1
Using default environment

Net: <ethaddr> not set. Validating first E-fuse MAC
cpsw, usb_ether
Press SPACE to abort autoboot in 2 seconds
switch to partitions #0, OK
mmc0 is current device
Scanning mmc 0:1...
...
debug: [console=ttyO0,115200n8 root=/dev/mmcblk0p1 ro rootfstype=ext4
rootwait].
debug: [bootz 0x82000000 - 0x88000000] ...
Kernel image @ 0x82000000 [0x000000 - 0x710b38]
Flattened Device Tree blob at 88000000
 Booting using the fdt blob at 0x88000000
 Using Device Tree in place at 88000000, end 88010a19

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0...
[5.466604] random: systemd urandom read with 17 bits of entropy av
ailable
[5.484996] systemd[1]: systemd 215 running in system mode. (+PAM +
AUDIT +SE)
[5.498711] systemd[1]: Detected architecture 'arm'.

Welcome to Debian GNU/Linux 8 (jessie)!

[5.535458] systemd[1]: Set hostname to <arm>.
[5.861405] systemd[1]: Cannot add dependency job for unit display-
manager.s.
...
[OK] Started LSB: Apache2 web server.
[12.903747] random: nonblocking pool is initialized

Debian GNU/Linux 8 arm ttyS0

default username:password is [debian:temppwd]

arm login:

Note
In order to work, we may need to completely power the BeagleBone Black and then re-power it while keeping the user button pressed. Otherwise, the board will still continue booting from the on-board eMMC.

Great! Everything is working now. We can log in by entering the string root as both username and password.

Setting up the SAMA5D3 Xplained

Now, it's the turn of the SAMA5D3 Xplained. Even this board may have a pre-loaded distribution into its flash memory, but it is an embedded distribution that is not suitable for our purposes. So, as we did for the BeagleBone Black, we will install a fresh Debian OS on a microSD card (in reality, the SAMA5D3 Xplained comes with an SD slot, but we can still use a microSD plugged in an SD adapter).
Serial console for SAMA5D3 Xplained

As shown in the previous section, we have the J23 connector where the serial console pins are exposed. So, again, using a proper adapter, we can connect our host PC with it.
The relevant pins are reported in the table, and you, exactly as you did earlier, have to connect the GND signal with the adapter's GND pin and then swap the TxD and RxD to correctly establish the serial connection.
	

Connector J1

	

Function

	
Pin 6

	
GND

	
Pin 2

	
TxD

	
Pin 3

	
RxD

The next image shows my setup:

[image: Serial console for SAMA5D3 Xplained]

If all connections are OK, we can execute the minicom tool again to see the data from the serial console.
If our SAMA5D3 Xplained comes with a pre-loaded system, we should see the booting sequence in the serial console window. Otherwise, we should simply see the RomBOOT message. In any case, the serial console should be functional.
Note
You should not forget to verify the serial port to be used. You should also see that its setup is 115200,8N1 without hardware and software flow control. See the BeagleBone Black settings earlier.

Now, let's install the software to start working with our SAMA5D3 Xplained board.

U-Boot (with boot.bin)

To obtain the bootloader's sources, we can use the same trick used for BeagleBone Black's sources. However, this time, the bare repository is already downloaded, so we just need to clone a new one with the following commands (to work with this board, we created the A5D3 directory):

$ cd A5D3
$ git clone --reference ~/Projects/common/u-boot.git
 https://github.com/u-boot/u-boot

Now, let's go into the newly created directory and check out a proper U-Boot release to use. Here are the commands used:

$ cd u-boot
$ git checkout v2016.03 -b v2016.03

Now, just as before, we need some patches to properly support the SAMA5D3 Xplained. We can get them using the following commands:

$ wget -c https://rcn-ee.com/repos/git/u-boot-patches/v2016.03/0001-sa
ma5d3_xplained-uEnv.txt-bootz-n-fixes.patch
$ patch -p1 < 0001-sama5d3_xplained-uEnv.txt-bootz-n-fixes.patch

Now, we're ready to compile:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
 sama5d3_xplained_mmc_defconfig
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

Now, let's install the bootloader into the microSD.
Note
As already done earlier, we have to discover the device associated with the microSD (see the the BeagleBone Black subsection).

We can clear the current partition table using the following command:

$ sudo dd if=/dev/zero of=/dev/sdX bs=1M count=50

Note
You should not forget to replace device /dev/sdX with the device associated with the microSD plugged into your system and follow the next steps carefully. Otherwise, it may damage the host system!

Now, we can prepare the needed partitions for the root filesystem, which will be installed in the upcoming sections. Here are the commands:

$ echo -e '1M,48M,0xE,*\n,,,-' | sudo sfdisk /dev/sdX
$ sudo mkfs.vfat -F 16 -n BOOT /dev/sdX1
$ sudo mkfs.ext4 -L rootfs /dev/sdX2

Note
As already stated for the BeagleBone Black, we must notice that since the mkfs.ext4 version 1.43, the metadata_csum and 64bit options are enabled by default. However, we need to make sure that they are disabled. Otherwise, U-Boot cannot boot from our ext4 partitions. If this is our case, we need to replace the preceding command with the following one:

 $ sudo mkfs.ext4 -L rootfs

 -O ^metadata_csum,^64bit /dev/sdX2

Now, we can mount the newly created boot and rootfs partitions in order to be ready to copy the bootloaders and the distro's file into them. Here are the commands:

$ sudo mkdir /media/boot
$ sudo mkdir /media/rootfs
$ sudo mount /dev/sdX1 /media/boot
$ sudo mount /dev/sdX2 /media/rootfs

Then, we can install the newly compiled bootloaders:

$ sudo cp boot.bin /media/boot/
$ sudo cp u-boot.img /media/boot/

Note
This time, we don't need any configuration file for U-Boot (file uEnv.txt).

Now, it's time to compile the kernel.

Linux kernel for SAMA5D3 Xplained

Again, the kernel sources can be downloaded from Robert C. Nelson archives. The command is shown here:

$ git clone https://github.com/RobertCNelson/armv7_devel

Then, we have to enter into the newly created directory and choose which version of the kernel we wish to use. Of course, we choose the same kernel release as we did earlier, and here are the commands:

$ cd armv7_devel/
$ git checkout origin/v4.4.x-sama5-armv7 -b v4.4.x-sama5-armv7

Now, we can redo the previous settings into the system.sh file, and then, we can start the compilation using the following command:

$./build_kernel.sh

Note
This step and the subsequent ones are time consuming and require patience, so you should take a cup of your preferred tea or coffee and just wait.

We should see that the correct cross-compiler is set and also see that the linux-stable repository is correctly referenced. Here is what I get on my system:

$./build_kernel.sh
+ Detected build host [Ubuntu 15.10]
+ host: [x86_64]
+ git HEAD commit: [cc996bf444c2fb5f3859c431fbc3b29fe9ba6877]

scripts/gcc: Using: arm-linux-gnueabihf-gcc (Linaro GCC 5.3-2016.02) 5
.3.1 20160113
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There i
s NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULA
R PUR
POSE.

CROSS_COMPILE=arm-linux-gnueabihf-

scripts/git: Debug: LINUX_GIT is setup as: [/home/giometti/Projects/co
mmon/linux-stable].
scripts/git: [url=https://git.kernel.org/pub/scm/linux/kernel/git/stab
le/linux-stable.git]
From https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stab
le
 * branch HEAD -> FETCH_HEAD

Cloning into '/home/giometti/Projects/A5D3/armv7_devel/KERNEL'...
done.
...

After a while, the classic kernel configuration panel should appear, but this time, we should change the default configuration. In particular, we wish to change the USB Gadget settings as shown in the following screenshot:

[image: Linux kernel for SAMA5D3 Xplained]

Then, save the configuration and continue. When finished, we should see several messages as shown here:

...

'arch/arm/boot/zImage' -> '/home/giometti/Projects/A5D3/armv7_devel/de
ploy/4.4.6-sama5-armv7-r5.zImage'
'.config' -> '/home/giometti/Projects/A5D3/armv7_devel/deploy/config-4
.4.6-sama5-armv7-r5'
-rwxrwxr-x 1 giometti giometti 3,7M apr 15 20:19 /home/giometti/Projec
ts/A5D3/armv7_devel/deploy/4.4.6-sama5-armv7-r5.zImage

Building modules archive...
Compressing 4.4.6-sama5-armv7-r5-modules.tar.gz...
-rw-rw-r-- 1 giometti giometti 328K apr 15 20:19 /home/giometti/Projec
ts/A5D3/armv7_devel/deploy/4.4.6-sama5-armv7-r5-modules.tar.gz

Building firmware archive...
Compressing 4.4.6-sama5-armv7-r5-firmware.tar.gz...
-rw-rw-r-- 1 giometti giometti 1,2M apr 15 20:19 /home/giometti/Projec
ts/A5D3/armv7_devel/deploy/4.4.6-sama5-armv7-r5-firmware.tar.gz

Building dtbs archive...
Compressing 4.4.6-sama5-armv7-r5-dtbs.tar.gz...
-rw-rw-r-- 1 giometti giometti 64K apr 15 20:19 /home/giometti/Project
s/A5D3/armv7_devel/deploy/4.4.6-sama5-armv7-r5-dtbs.tar.gz

Script Complete
eewiki.net: [user@localhost:~$ export kernel_version=4.4.6-sama5-armv7
-r5]

Now, we should install the kernel, but just as we did earlier, we need the root filesystem. So, let's move to the next subsection.

Debian 8 (jessie) for SAMA5D3 Xplained

Like rootfs we can use the one already downloaded for the BeagleBone Black, so let's copy it into the microSD:

$ cd common/debian-8.4-minimal-armhf-2016-04-02/
$ sudo tar xpf armhf-rootfs-debian-jessie.tar -C /media/rootfs/

Note
We have already mounted the microSD into /media/rootfs.

When finished, we can add the kernel image and the related files:

$ cd A5D3/armv7_devel
$ sudo cp deploy/4.4.6-sama5-armv7-r5.zImage /media/boot/zImage
$ sudo mkdir -p /media/boot/dtbs/
$ sudo tar xf deploy/4.4.6-sama5-armv7-r5-dtbs.tar.gz
 -C /media/boot/dtbs/
$ sudo tar xf deploy/4.4.6-sama5-armv7-r5-modules.tar.gz
 -C /media/rootfs/

Now, to finish the job, we must set up the filesystem table using the following commands:

$ sudo sh -c "echo '/dev/mmcblk0p2 / auto errors=remount-ro 0 1' >
 /media/rootfs/etc/fstab"
$ sudo sh -c "echo '/dev/mmcblk0p1 /boot/uboot auto defaults 0 2' >>
 /media/rootfs/etc/fstab"

Also set up the networking configuration by executing the following commands:

$ sudo sh -c "echo 'allow-hotplug lo\niface lo inet loopback\n' >
 /media/rootfs/etc/network/interfaces"
$ sudo sh -c "echo 'allow-hotplug eth0\niface eth0 inet dhcp\n' >>
 /media/rootfs/etc/network/interfaces"
$ sudo sh -c "echo 'allow-hotplug eth1\niface eth1 inet dhcp' >>
 /media/rootfs/etc/network/interfaces"

Now, we should be ready to boot our new system! Let's unmount the microSD from the host PC, plug it into the SAMA5D3 Xplained, and power on the board. The umount command lines are shown here:

$ sudo umount /media/boot/
$ sudo umount /media/rootfs/

If everything works well on the serial console, we should see something as shown here:

RomBOOT
U-Boot SPL 2016.03-dirty (Apr 15 2016 - 19:51:18)
Trying to boot from MMC
reading u-boot.img
reading u-boot.img
U-Boot 2016.03-dirty (Apr 15 2016 - 19:51:18 +0200)
CPU: SAMA5D36
Crystal frequency: 12 MHz
CPU clock : 528 MHz
Master clock : 132 MHz
DRAM: 256 MiB
NAND: 256 MiB
MMC: mci: 0
...
reading /dtbs/at91-sama5d3_xplained.dtb
34694 bytes read in 10 ms (3.3 MiB/s)
reading zImage
3832792 bytes read in 245 ms (14.9 MiB/s)
Kernel image @ 0x22000000 [0x000000 - 0x3a7bd8]
Flattened Device Tree blob at 21000000
 Booting using the fdt blob at 0x21000000
 Loading Device Tree to 2fadc000, end 2fae7785 ... OK
Starting kernel ...
[0.000000] Booting Linux on physical CPU 0x0
...
[2.170000] random: systemd urandom read with 11 bits of entropy av
ailable
[2.180000] systemd[1]: systemd 215 running in system mode. (+PAM +
AUDIT +SEL
INUX +IMA +SYSVINIT +LIBCRYPTSETUP +GCRYPT +ACL +XZ -SECC
OMP -APPARMOR
)
[2.190000] systemd[1]: Detected architecture 'arm'.
Welcome to Debian GNU/Linux 8 (jessie)!
[2.240000] systemd[1]: Set hostname to <arm>.
[2.790000] systemd[1]: Cannot add dependency job for unit display-
manager.se
...
 Starting Update UTMP about System Runlevel Changes...
[OK] Started Update UTMP about System Runlevel Changes.
Debian GNU/Linux 8 arm ttyS0
default username:password is [debian:temppwd]
arm login:

Great! Everything is working now. We can log in by entering the root string as both username and password.

Setting up the Wandboard

This has no pre-loaded distribution. So, as done for the previous boards, we will install a fresh Debian OS on a microSD card.
Serial console for the Wandboard

Like the other boards presented in this book, the Wandboard has the COM1 connector where the serial console pins are exposed. However, in this case, the port is a a standard RS-232 port. So, we don't have the TTL level signal! What we can do now is just connect the COM1 port to our host PC serial port through a null modem cable (a serial cable where the TxD and RxD signals are crossed) or use a USB-to-RS232 adapter and then connect this device to the null modem cable.
The relevant pins are reported in the following table, and just as you did earlier, you have to connect the GND signal with the adapter's GND pin and then swap the TxD and RxD to correctly establish the serial connection.
	

COM1

	

Function

	
Pin 5

	
GND

	
Pin 2

	
TXD

	
Pin 3

	
RXD

In the next image, the pin out of a standard RS-232 9-pins connector is shown:

[image: Serial console for the Wandboard]

This image is my setup (where we used three adapters: two genders changers and one null modem):

[image: Serial console for the Wandboard]

Now, let's install the software to start working with our WindBoard board.

U-Boot (with SPL)

To obtain the bootloader's sources, we can use the same trick used for the other boards, so we just need to clone a new one with the following command:

$ git clone --reference ~/Projects/common/u-boot.git
 https://github.com/u-boot/u-boot

Now, let's go into the newly created directory and check out a proper U-boot release to use. Here are the commands used:

$ cd u-boot

$ git checkout v2016.03 -b v2016.03

Here are the patches for the Wandboard:

$ wget -c https://rcn-ee.com/repos/git/u-boot-patches/v2016.03/0001-wa
ndboard-uEnv.txt-bootz-n-fixes.patch
$ patch -p1 < 0001-wandboard-uEnv.txt-bootz-n-fixes.patch

Now, we're ready to compile. Let's do it using the following commands:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
 wandboard_defconfig
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

Now, let's install the bootloader into the microSD.
Note
As done earlier, we have to discover the device associated with the microSD (see the BeagleBone Black or SAMA5D3 Xplained subsections). On my system, the device is still /dev/sdd.
In this case, we used a 16 GB microSD since we're going to install a lot of software on this board!

Now, we can clear the current partition table using the following command:

$ sudo dd if=/dev/zero of=/dev/sdX bs=1M count=10

Note
You must not forget to replace device /dev/sdX with the device associated with the microSD plugged into your system and follow the next steps carefully. Otherwise, it may damage the host system!

Then, we can install the newly compiled bootloaders:

$ sudo dd if=SPL of=/dev/sdX seek=1 bs=1k
$ sudo dd if=u-boot.img of=/dev/sdX seek=69 bs=1k

Now, we can prepare the needed partition for the root filesystem, which will be installed in the upcoming sections. The commands are shown here:

$ echo '1M,,L,*' | sudo sfdisk /dev/sdX
$ sudo mkfs.ext4 -L rootfs /dev/sdX1

Tip
As already stated for the other boards, we must notice that since the mkfs.ext4 version 1.43, the metadata_csum and 64bit options are enabled by default. However, we need to make sure that they are disabled. Otherwise, U-Boot cannot boot from our ext4 partitions. If this is our case, we need to replace the preceding command with the following one:

 $ sudo mkfs.ext4 -L rootfs

 -O ^metadata_csum,^64bit /dev/sdX1

Now, we can mount the newly created boot and rootfs partition as done earlier. Here are the commands:

$ sudo mkdir /media/rootfs
$ sudo mount /dev/sdX1 /media/rootfs

Then, as done for the SAMA5D3 Xplained, we don't define an environment file uEnv.txt right now, but we will define it later since, in contrast to SAMA5D3 Xplained, we need it.
Now, it's time to compile the kernel.

Linux kernel for the Wandboard

The kernel sources are still the ones from Robert C. Nelson archives. The command is shown here:

$ git clone https://github.com/RobertCNelson/armv7-multiplatform

Then, we have to enter into the newly created directory and choose which version of the kernel we wish to use. Of course, we choose the same kernel release as the one mentioned earlier, and the commands are shown here:

$ cd armv7-multiplatform/
$ git checkout origin/v4.4.x -b v4.4.x

Now, we can redo the previous settings into the system.sh file, and then, we can start the compilation using the following command:

$./build_kernel.sh

Note
This step and the subsequent ones are time consuming and require patience, so you should take a cup of your preferred tea or coffee and just wait.

We should see that the correct cross-compiler is set and also see that the linux-stable repository is correctly referenced. Here is what I get on my system:

$./build_kernel.sh
+ Detected build host [Ubuntu 15.10]
+ host: [x86_64]
+ git HEAD commit: [44cd32b5f0ff74d2705541225c0d7cbdfb59bf50]

scripts/gcc: Using: arm-linux-gnueabihf-gcc (Linaro GCC 5.3-2016.02) 5
.3.1 20160113
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There i
s NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULA
R PUR
POSE.

CROSS_COMPILE=arm-linux-gnueabihf-

scripts/git: Debug: LINUX_GIT is setup as: [/home/giometti/Projects/co
mmon/linux-stable].
scripts/git: [url=https://git.kernel.org/pub/scm/linux/kernel/git/stab
le/linux-stable.git]
From https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stab
le
 * branch HEAD -> FETCH_HEAD

Cloning into '/home/giometti/Projects/WB/armv7-multiplatform/KERNEL'..
.
done.
...

After a while, the classic kernel configuration panel should appear. Just confirm the default settings by selecting the < Exit > menu option and continue.
When finished, we should see several messages as shown here:

...

'arch/arm/boot/zImage' -> '/home/giometti/Projects/WB/armv7-multiplatf
orm/deploy/4.4.7-armv7-x6.zImage'
'.config' -> '/home/giometti/Projects/WB/armv7-multiplatform/deploy/co
nfig-4.4.7-armv7-x6'
-rwxrwxr-x 1 giometti giometti 5,6M apr 17 18:46 /home/giometti/Projec
ts/WB/armv7-multiplatform/deploy/4.4.7-armv7-x6.zImage

Building modules archive...
Compressing 4.4.7-armv7-x6-modules.tar.gz...
-rw-rw-r-- 1 giometti giometti 89M apr 17 18:47 /home/giometti/Project
s/WB/armv7-multiplatform/deploy/4.4.7-armv7-x6-modules.tar.gz

Building firmware archive...
Compressing 4.4.7-armv7-x6-firmware.tar.gz...
-rw-rw-r-- 1 giometti giometti 1,2M apr 17 18:47 /home/giometti/Projec
ts/WB/armv7-multiplatform/deploy/4.4.7-armv7-x6-firmware.tar.gz

Building dtbs archive...
Compressing 4.4.7-armv7-x6-dtbs.tar.gz...
-rw-rw-r-- 1 giometti giometti 3,1M apr 17 18:47 /home/giometti/Projec
ts/WB/armv7-multiplatform/deploy/4.4.7-armv7-x6-dtbs.tar.gz

Script Complete
eewiki.net: [user@localhost:~$ export kernel_version=4.4.7-armv7-x6]

The last line tells us which is the kernel version to be defined in the uEnv.txt file defined earlier when we installed the bootloaders. The command is shown here:

$ sudo sh -c 'echo "uname_r=4.4.7-armv7-x6" >>
 /media/rootfs/boot/uEnv.txt'

Note
The /media/rootfs directory has been already mounted in the previous section.

Now, we should install the kernel, but first, we need the root filesystem. So, let's move to the next subsection.

Debian 8 (jessie) for the Wandboard

Like rootfs we can use the one already downloaded for the BeagleBone Black, so let's copy it into the microSD:

$ cd common/debian-8.4-minimal-armhf-2016-04-02/
$ sudo tar xpf armhf-rootfs-debian-jessie.tar -C /media/rootfs/

Note
We have already mounted the microSD into /media/rootfs.

When finished, we can add the kernel image and the related files:

$ cd WB/armv7-multiplatform/
$ sudo cp deploy/4.4.7-armv7-x6.zImage
 /media/rootfs/boot/vmlinuz-4.4.7-armv7-x6
$ sudo mkdir -p /media/rootfs/boot/dtbs/4.4.7-armv7-x6/
$ sudo tar xf deploy/4.4.7-armv7-x6-dtbs.tar.gz
 -C /media/rootfs/boot/dtbs/4.4.7-armv7-x6/
$ sudo tar xf deploy/4.4.7-armv7-x6-modules.tar.gz
 -C /media/rootfs/

Now, to finish the job, we must set up the filesystem table using the following command:

$ sudo sh -c "echo '/dev/mmcblk0p1 / auto errors=remount-ro 0 1' >
 /media/rootfs/etc/fstab"

We also need to set up the networking configuration by executing the following commands:

$ sudo sh -c "echo 'allow-hotplug lo\niface lo inet loopback\n' >
 /media/rootfs/etc/network/interfaces"
$ sudo sh -c "echo 'allow-hotplug eth0\niface eth0 inet dhcp' >>
 /media/rootfs/etc/network/interfaces"

Now, we should be ready to boot our new system! Let's unmount the microSD from the host PC, plug it into the Wandboard, and power on the board. The umount command line is shown here:

$ sudo umount /media/rootfs/

If everything works well on the serial console, we should see something like this:

U-Boot SPL 2016.03-dirty (Apr 21 2016 - 10:41:24)
Trying to boot from MMC
U-Boot 2016.03-dirty (Apr 21 2016 - 10:41:24 +0200)
CPU: Freescale i.MX6Q rev1.5 at 792 MHz
Reset cause: POR
Board: Wandboard rev C1
I2C: ready
DRAM: 2 GiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1
*** Warning - bad CRC, using default environment
No panel detected: default to HDMI
Display: HDMI (1024x768)
In: serial
Out: serial
Err: serial
Net: FEC [PRIME]
Press SPACE to abort autoboot in 2 seconds
switch to partitions #0, OK
mmc0 is current device
SD/MMC found on device 0
...
debug: [console=ttymxc0,115200 root=/dev/mmcblk0p1 ro rootfstype=ext4
rootwait] ...
debug: [bootz 0x12000000 - 0x18000000] ...
Kernel image @ 0x12000000 [0x000000 - 0x588ba0]
Flattened Device Tree blob at 18000000
 Booting using the fdt blob at 0x18000000
 Using Device Tree in place at 18000000, end 1800f7f8
Starting kernel ...
[0.000000] Booting Linux on physical CPU 0x0
...
[5.569385] random: systemd urandom read with 10 bits of entropy av
ailable
[5.582907] systemd[1]: systemd 215 running in system mode. (+PAM +
AUDIT +SEL
INUX +IMA +SYSVINIT +LIBCRYPTSETUP +GCRYPT +ACL +XZ -SECC
OMP -APPARMOR
)
[5.596522] systemd[1]: Detected architecture 'arm'.
Welcome to Debian GNU/Linux 8 (jessie)!
[5.637466] systemd[1]: Set hostname to <arm>.
...
[OK] Started LSB: Apache2 web server.
Debian GNU/Linux 8 arm ttymxc0
default username:password is [debian:temppwd]
arm login:

Great! Everything is working now. We can log in by entering the root string as both username and password.

Setting up the developing system

Before ending the chapter, let's review each board in order to verify that our newly created operating systems have whatever we need to proceed further in the book.
BeagleBone Black - USB, networking, and overlays

As soon as we log in to our new system, we see that the prompt looks like this:

root@arm:~#

Maybe, we can customize it a bit by changing the hostname from the generic string arm into a more appropriate bbb (which stands for BeagleBone Black). The commands to do the job are shown here:

root@arm:~# echo bbb > /etc/hostname
root@arm:~# sed -i -e's/\<arm\>/bbb/g' /etc/hosts

Now, we have to reboot the system using the classic reboot command, and at the next login, we should get a welcome message:

Debian GNU/Linux 8 bbb ttyS0
default username:password is [debian:temppwd]
bbb login:

After the login, we will get the new prompt:

root@bbb:~#

Then, we will update the distribution repositories and install the aptitude tool as done for the host machine:

root@bbb:~# apt-get update
root@bbb:~# apt-get install aptitude

OK, now it is time to add a useful feature, that is, the possibility to establish a virtual Ethernet connection between our BeagleBone Black and the host PC over the USB cable connected with BeagleBone Black's USB device port and the host. To do this, we have first to install the udhcpd package using the following command:

root@bbb:~# aptitude install udhcpd

Then, we must add the following lines to the /etc/network/interfaces file:
allow-hotplug usb0
iface usb0 inet static
 address 192.168.7.2
 netmask 255.255.255.252
 network 192.168.7.0

Note
Don't forget the tab character to indent the lines!

Then, restart the networking system as follows:

root@bbb:~# /etc/init.d/networking restart

IPv6: ADDRCONF(NETDEV_CHANGE): Black, we should see a message, as shown here, on the serial console:

g_ether gadget: high-speed config #1: CDC Ethernet (ECM)

IPv6: ADDRCONF(NETDEV_CHANGE): usb0: link becomes ready

A new Ethernet device should appear as reported here:

root@bbb:~# ifconfig usb0
usb0 Link encap:Ethernet HWaddr 78:a5:04:ca:c9:f1
 inet addr:192.168.7.2 Bcast:192.168.7.3 Mask:255.255.255.252
 inet6 addr: fe80::7aa5:4ff:feca:c9f1/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:46 errors:0 dropped:0 overruns:0 frame:0
 TX packets:32 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:7542 (7.3 KiB) TX bytes:5525 (5.3 KiB)

OK, now, we have to configure the new Ethernet device on the host and then we can try an ssh connection as shown here:

$ ssh root@192.168.7.2

Note
On my host PC, which is Ubuntu based, before executing the ssh command, we had to properly configure the new Ethernet device by adding a new network connection in the entry Edit Connections... in the system settings menu.

The authenticity of host '192.168.7.2 (192.168.7.2)' can't be establis
hed.
ECDSA key fingerprint is SHA256:Iu23gb49VFKsFs+HMwjza1OzcpzRL/zxFxjFpF
EiDsg.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.7.2' (ECDSA) to the list of known
hosts.
root@192.168.7.2's password:

Now we have to enter the root's password that is root and the trick is done:

The programs included with the Debian GNU/Linux system are free
softwa
re;
the exact distribution terms for each program are
described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the
extent
permitted by applicable law.
Last login: Sat Apr 2 18:28:44 2016
root@bbb:~#

Tip
We may need to modify the ssh daemon configuration if we cannot successfully log in to our system. In fact, the login by the root user may be disabled for security reasons. To enable the login, we have to modify the /etc/ssh/sshd_config file as follows:
 --- /etc/ssh/sshd_config.orig 2016-04-02 18:40:31. 120000086 +0000 +++ /etc/ssh/sshd_config 2016-04-02 18:40:46.05000 0088 +0000 @@ -25,7 +25,7 @@ # Authentication: LoginGraceTime 120 -PermitRootLogin without-password +PermitRootLogin yes StrictModes yes RSAAuthentication yesThen, we have to restart the daemon using the following command:

 root@bbb:~# /etc/init.d/ssh restart

 Restarting ssh (via systemctl): ssh.service.

Now, we have to install the overlay system, that is, the mechanism that allow us to load at run time a part of a new device tree binaries and then change our kernel settings to get access to the board's peripherals (this mechanism will be used in the upcoming chapters, and it'll be more clear to you when we'll start using it).
To install the overlay mechanism, we must clone its repository into our BeagleBone Black as follows:

bbb@arm:~# git clone https://github.com/beagleboard/bb.org-overlays

Then, we must update the device tree compiler (the dtc command) with the following commands:

root@arm:~# cd bb.org-overlays/
root@arm:~/bb.org-overlays# ./dtc-overlay.sh

Tip
This command may take a while to complete. Be patient.

Installing: bison build-essential flex
Get:1 http://repos.rcn-ee.com jessie InRelease [4,347 B]
Get:2 http://repos.rcn-ee.com jessie/main armhf Packages [370 kB]
...
Installing into: /usr/local/bin/
 CHK version_gen.h
 INSTALL-BIN
 INSTALL-LIB
 INSTALL-INC
dtc: Version: DTC 1.4.1-g1e75ebc9

Then, we can install the dtbo files with the following command:

root@arm:~/bb.org-overlays# ./install.sh
 CLEAN src/arm
 DTC src/arm/BB-BONE-WTHR-01-00B0.dtbo
 DTC src/arm/BB-BONE-LCD3-01-00A2.dtbo
 DTC src/arm/BB-PWM2-00A0.dtbo
...
'src/arm/univ-hdmi-00A0.dtbo' -> '/lib/firmware/univ-hdmi-00A0.dtbo'
'src/arm/univ-nhdmi-00A0.dtbo' -> '/lib/firmware/univ-nhdmi-00A0.dtbo'
update-initramfs: Generating /boot/initrd.img-4.4.7-bone9
cape overlays have been built and added to /lib/firmware & /boot/initr
d.img-4.4.
7-bone9, please reboot

OK, now, we can safely reboot the system to test it.
After reboot, to display the current overlay configuration, we can use the following cat command:

root@arm:~# cat /sys/devices/platform/bone_capemgr/slots
0: PF---- -1
1: PF---- -1
2: PF---- -1
3: PF---- -1

Then, we can try to enable the second SPI bus char device using the following command:

root@bbb:~# echo BB-SPIDEV1 > /sys/devices/platform/bone_capemgr/slots
bone_capemgr bone_capemgr: part_number 'BB-SPIDEV1', version 'N/A'
bone_capemgr bone_capemgr: slot #4: override
bone_capemgr bone_capemgr: Using override eeprom data at slot 4
bone_capemgr bone_capemgr: slot #4: 'Override Board Name,00A0,Ove
rride
 Manuf,BB-SPIDEV1'
bone_capemgr bone_capemgr: slot #4: dtbo 'BB-SPIDEV1-00A0.dtbo'
loaded; overlay id#0

Now, two new char devices should appear in the /dev directory:

root@bbb:~# ls -l /dev/spidev*
crw-rw---- 1 root spi 153, 0 Apr 2 19:27 /dev/spidev2.0
crw-rw---- 1 root spi 153, 1 Apr 2 19:27 /dev/spidev2.1

Also, the slots file in sysfs is updated accordingly:

root@bbb:~# cat /sys/devices/platform/bone_capemgr/slots
0: PF---- -1
 1: PF---- -1
 2: PF---- -1
 3: PF---- -1
 4: P-O-L- 0 Override Board Name,00A0,Override Manuf,BB-SPIDEV1

Now, everything should be in place. However, as the last step, we can decide to copy our new system from the microSD card to eMMC in order to boot directly from the on-board eMMC device, thus avoiding pressing the user button each time we power up the board.
To do this, we have to install three new packages (initramfs-tools, dosfstools, and rsync) and then use a script form the Robert C. Nelson archive:

root@bbb:~# wget https://raw.githubusercontent.com/RobertCNelson/boot-
scripts/master/tools/eMMC/bbb-eMMC-flasher-eewiki-ext4.sh

Then, we just need to execute it using the following two commands, and the BeagleBone Black will start rewriting the eMMC contents:

root@bbb:~# chmod +x bbb-eMMC-flasher-eewiki-ext4.sh
root@bbb:~# /bin/bash ./bbb-eMMC-flasher-eewiki-ext4.sh

SAMA5D3 Xplained - USB and networking

Even for the SAMA5D3 Xplained, we can have a pretty prompt. So, let's change it as done for the BeagleBone Black:

root@arm:~# echo a5d3 > /etc/hostname
root@arm:~# sed -i -e's/\<arm\>/a5d3/g' /etc/hosts

Now, we can reboot, and we should get a new welcome message as shown here:

Debian GNU/Linux 8 a5d3 ttyS0
default username:password is [debian:temppwd]
a5d3 login:

Then, we will update the distribution repositories and install the aptitude tool as done for the host machine:

root@a5d3:~# apt-get update
root@a5d3:~# apt-get install aptitude

OK, now, we can try to replicate BeagleBone Black's configuration, allowing an ssh connection via the USB device port. However, this time, we'll do more. In fact, we will install two kinds of different virtual connections over the USB cable: an Ethernet and a serial connection.
Note
This configuration can be done on the BeagleBone Black too.

To do this, we need the USB gadget driver named CDC Composite Device (Ethernet and ACM) (see the kernel configuration settings done earlier for the SAMA5D3 Xplained):

root@a5d3:~# modprobe g_cdc host_addr=78:A5:04:CA:CB:01

The kernel messages we should see on the serial console are reported here, and they show that we have two new devices now:

using random self ethernet address
using random host ethernet address
using host ethernet address: 78:A5:04:CA:CB:01
usb0: HOST MAC 78:a5:04:ca:cb:01
usb0: MAC 22:6c:23:f0:10:62
g_cdc gadget: CDC Composite Gadget, version: King Kamehameha Day 2008
g_cdc gadget: g_cdc ready
g_cdc gadget: high-speed config #1: CDC Composite (ECM + ACM)

In fact, now. we should have a new Ethernet device named usb0:

root@a5d3:~# ifconfig usb0
usb0 Link encap:Ethernet HWaddr da:a0:89:f9:a6:1d
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

And , we should have a new serial port:

root@a5d3:~# ls -l /dev/ttyGS0
crw-rw---- 1 root dialout 250, 0 Apr 2 18:28 /dev/ttyGS0

To force this new setting at every boot, we can add the kernel module name to the auto-loading module system:

root@a5d3:~# echo "g_cdc" >> /etc/modules-load.d/modules.conf
root@a5d3:~# echo "options g_cdc host_addr=78:A5:04:CA:CB:01" >>
 /etc/modprobe.d/modules.conf

Note
The host_addr parameter is needed to allow the host PC to recognize our device and then correctly configure it by forcing a well-known MAC address each time we start the board.

Then, we can reboot the board, and the kernel module should be already present:

root@a5d3:~# lsmod
Module Size Used by
usb_f_acm 3680 1
u_serial 6214 3 usb_f_acm
usb_f_ecm 4430 1
g_cdc 2165 0
u_ether 6869 2 g_cdc,usb_f_ecm
libcomposite 26527 3 g_cdc,usb_f_acm,usb_f_ecm

Good! Now, we can start configuring them.
Regarding the Ethernet device, we can repeat what we did for the BeagleBone Black by adding the following lines to the /etc/network/interfaces file:
allow-hotplug usb0
iface usb0 inet static
 address 192.168.8.2
 netmask 255.255.255.252
 network 192.168.8.0

Tip
In order to avoid conflicts with the BeagleBone Black setting, we used the 192.168.8.X subnetwork for this board instead of 192.168.7.X used for the BeagleBone Black.

Then, we've to restart the networking system as follows:

root@a5d3:~# /etc/init.d/networking restart

Tip
As we did earlier, we may need to enable the root login via ssh by modifying the PermitRootLogin setting in the /etc/ssh/sshd_config file and then restarting the daemon.

Then, we have to install the udhcpd daemon as we did earlier and then replace its current configuration in the /etc/udhcpd.conf file with the following settings:
start 192.168.8.1
end 192.168.8.1
interface usb0
max_leases 1
option subnet 255.255.255.252

Tip
We can save the daemon's old configuration with the following command:

 root@a5d3:~# mv /etc/udhcpd.conf

 /etc/udhcpd.conf.orig

Then, we must enable it by setting the DHCPD_ENABLED variable to yes in the /etc/default/udhcpd file. Then, restart the daemon:

root@a5d3:~# /etc/init.d/udhcpd restart

Now, regarding the serial connection, we can add the ability to do a serial login by adding a new getty service on it with the following commands:

root@a5d3:~# systemctl enable getty@ttyGS0.service
Created symlink from /etc/systemd/system/getty.target.wants/getty@ttyG
S0.service to /lib/systemd/system/getty@.service.
root@a5d3:~# systemctl start getty@ttyGS0.service

Now, we only need to add the following lines to the /etc/securetty file in order to allow the root user to login using this new communication channel:
USB gadget
ttyGS0

OK, now, if we take a look at the host PC's kernel messages, we should see something as like this:

usb 1-1: new high-speed USB device number 3 using ehci-pci
usb 1-1: New USB device found, idVendor=0525, idProduct=a4aa
usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=0
usb 1-1: Product: CDC Composite Gadget
usb 1-1: Manufacturer: Linux 4.4.6-sama5-armv7-r5 with atmel_usba_udc
cdc_ether 1-1:1.0 eth0: register 'cdc_ether' at usb-0000:00:0b.0-1,
CDC Ethernet Device, 78:a5:04:ca:cb:01
cdc_acm 1-1:1.2: ttyACM0: USB ACM device

Then, we can test the networking connection with the ssh command with the following command line on the host PC:

$ ssh root@192.168.8.2
The authenticity of host '192.168.8.2 (192.168.8.2)' can't be establis
hed.
ECDSA key fingerprint is SHA256:OduXLAPIYgNR7Xxh8XbhSum+zOKHBbgv/tnbeD
j2O30.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.8.2' (ECDSA) to the list of known
hosts.
root@192.168.8.2's password:

Now, enter the root's password that is the root string and the job is done:

The programs included with the Debian GNU/Linux system are free
software;
the exact distribution terms for each program are
described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the
extent
permitted by applicable law.
Last login: Sat Apr 2 18:02:23 2016
root@a5d3:~#

Then, the serial connection can be tested using the minicom command as shown here:

$ sudo minicom -o -D /dev/ttyACM0
Debian GNU/Linux 8 a5d3 ttyGS0
default username:password is [debian:temppwd]
a5d3 login:

Now, our SAMA5D3 Xplained is ready, and we can step next to the Wandboard.

Wandboard - USB and networking (wired and wireless)

Again, we like to have a pretty prompt. So, let's change it as we did for the BeagleBone Black:

root@arm:~# echo wb > /etc/hostname
root@arm:~# sed -i -e's/\<wb\>/a5d3/g' /etc/hosts

Now, we can reboot the system, and we should get a new welcome message as shown here:

Debian GNU/Linux 8 wb ttymxc0
default username:password is [debian:temppwd]
wb login:

Then, we will update the distribution repositories and install the aptitude tool as done for the host machine:

root@wb:~# apt-get update
root@wb:~# apt-get install aptitude

OK, now, we can try to replicate BeagleBone Black's configuration by allowing an ssh connection via the USB device port. So, let's install the udhcpd package using the usual aptitude command:

root@wb:~# aptitude install udhcpd

Then, add the following lines to the /etc/network/interfaces file:
allow-hotplug usb0
iface usb0 inet static
 address 192.168.9.2
 netmask 255.255.255.252
 network 192.168.9.0

Note
In order to avoid conflicts with the BeagleBone Black and SAMA5D3 Xplained settings, we used the subnetwork 192.168.9.X for this board instead of 192.168.7.X used for the BeagleBone Black or the 192.168.8.X used for the SAMA5D3 Xplained.

Then, restart the networking system as follows:

root@wb:~# /etc/init.d/networking restart

Note
As we did earlier, we may need to enable the root login via ssh by modifying the PermitRootLogin setting in the /etc/ssh/sshd_config file and then restarting the daemon.

Then, we have to install the udhcpd daemon as we did earlier and then replace its current configuration in /etc/udhcpd.conf file with the following settings:
start 192.168.9.1
end 192.168.9.1
interface usb0
max_leases 1
option subnet 255.255.255.252

Tip
We can save the daemon's old configuration with the following command:

 root@wb:~# mv /etc/udhcpd.conf /etc/udhcpd.conf.orig

Then, we must enable it by setting the DHCPD_ENABLED variable to yes in the /etc/default/udhcpd file. Then, restart the daemon:

root@wb:~# /etc/init.d/udhcpd restart

Now, if we try to connect to the host PC with our Wandboard, we should see the following message on the serial console:

g_ether gadget: high-speed config #1: CDC Ethernet (ECM)
IPv6: ADDRCONF(NETDEV_CHANGE): usb0: link becomes ready

A new Ethernet device should appear as reported here:

root@wb:~# ifconfig usb0
usb0 Link encap:Ethernet HWaddr 62:1e:f6:88:9b:42
 inet addr:192.168.9.2 Bcast:192.168.9.3 Mask:255.255.255.252
 inet6 addr: fe80::601e:f6ff:fe88:9b42/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:30 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:5912 (5.7 KiB)

OK, now, we have to configure the new Ethernet device on the host, and then, we can try an ssh connection as shown here:

$ ssh root@192.168.9.2

Tip
On my host PC that is Ubuntu based, before executing the ssh command earlier, we had to properly configure the new Ethernet device by adding a new network connection in the entry Edit Connections... in the system settings menu.

The authenticity of host '192.168.9.2 (192.168.9.2)' can't be establis
hed.
ECDSA key fingerprint is SHA256:Xp2Bf+YOWL0kDSm00GxXw9CY5wH+ECnPzp0EHp
3+GM8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.9.2' (ECDSA) to the list of known
hosts.
root@192.168.9.2's password:

Now, enter the root's password that is the root string and the job is done:

The programs included with the Debian GNU/Linux system are free
softwa
re;
the exact distribution terms for each program are
described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the
extent
permitted by applicable law.
Last login: Sat Apr 2 17:45:31 2016
root@wb:~#

Ok now, as last step, we have to set up the on-board Wi-Fi chip. To do this, we need to download the firmware. Here are the commands:

root@wb:~# mkdir -p /lib/firmware/brcm/
root@wb:~# cd /lib/firmware/brcm/
root@wb:/lib/firmware/brcm# wget -c
 https://git.kernel.org/cgit/linux/kernel/git/firmware/linux-fi
rmware.git/plain/brcm/brcmfmac4329-sdio.bin
root@wb:/lib/firmware/brcm# wget -c
 https://git.kernel.org/cgit/linux/kernel/git/firmware/linux-fi
rmware.git/plain/brcm/brcmfmac4330-sdio.bin
root@wb:/lib/firmware/brcm# wget -c
 https://rcn-ee.com/repos/git/meta-fsl-arm-extra/recipes-bsp/br
oadcom-nvram-config/files/wandboard/brcmfmac4329-sdio.txt
root@wb:/lib/firmware/brcm# wget -c
 https://rcn-ee.com/repos/git/meta-fsl-arm-extra/recipes-bsp/br
oadcom-nvram-config/files/wandboard/brcmfmac4330-sdio.txt

Then, we have to reboot the system with the usual reboot command. After reboot, if everything works well, we should see a new interface named wlan0 as shown here:

root@wb:~# ifconfig wlan0
wlan0 Link encap:Ethernet HWaddr 44:39:c4:9a:96:24
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Now, we have to verify that it works. So, as the first step, let's try a wireless network scan:

root@wb:~# ifconfig wlan0 0.0.0.0
root@wb:~# iwlist wlan0 scan | grep ESSID
 ESSID:"EnneEnne"

Great, my home network has been recognized!
Note
We may need to connect the external antenna in order to correctly detect all wireless networks around. The external antenna connector is labeled as ANT near the Wi-Fi chip.

For the moment, we can stop the Wi-Fi setup here since it will be restarted later in this book in a proper chapter.

Common settings

Before ending this chapter, let me suggest that you install some basic and common tools we're going to use in this book. We can decide to install these tools now or, when needed, later during the reading of the book.
If we decide to perform this last step and then install these tools right now, we have to connect our boards to the Internet using, for example, an Ethernet cable, and then setting a suitable network configuration for it.
Let me remember that if our embedded kit doesn't automatically take a network configuration and we have a DHCP server in our LAN, we can force this behavior using the dhclient command:

dhclient eth0

If we don't have a running DHCP service, we can manually set up a network configuration using the ifconfig and route commands as shown here:

ifconfig eth0 <LOCAL-IP-ADDR>
route add default gw <GATEWAY-IP-ADDR>

OK, now, to install our tools, we can use the aptitude command again and then wait for the complete installation:

aptitude install autoconf git subversion make gcc libtool
pkg-config
 bison build-essential flex
 strace php5-cli python-pip libpython-dev

Summary

In this chapter, we took a first look at our new embedded developer kits. You learned how to reinstall a fresh Debian OS from scratch on all systems and how to get access to their serial consoles.
In the next chapter, we will continue to experience the serial console in order to well understand how we can use it in every contest, from the early booting stages inside the bootloader to the normal system setup and management.

Chapter 2. Managing the System Console

In the first chapter of this book, we saw how to set up our developer kits and (in part) the host PC. We already got a first login via the serial console by showing you how you can connect a serial (or USB-to-Serial) adapter to each kit; however, in this chapter, we're going to go further into exploring the serial console and the shell running in it.
In this section, you will learn some useful command-line tools to manipulate files and also learn how to manage the distribution's packages. These commands will be used into this book, and even if you may already know them, it's useful to briefly review them.
In the end, a special section will introduce the bootloader commands (U-Boot in our cases) so you may feel more confident in managing this important component of the system. In fact, the serial console is mostly used to set up the running system (that is, the running distribution), but it is used to set up the booting stages and (sometimes) the whole system update!
Again, experienced developers may safely skip this chapter. However, by reading it, you can find useful tips and tricks that can help you in the development stages.
Basic OS management

Now it's time to take a quick tour of some basic system management commands, which may be useful in the next sections.
You should notice that the following commands can be used indifferently into each developer kit presented in this book as is in the host PC as is in any other GNU/Linux-based OS! This is a really important feature of GNU/Linux systems that allows a developer to have the same command set into its working machine as the one in the embedded devices.
For the sake of simplicity, the following examples are executed into the host PC.
File manipulation and Co

One of the main principles of Unix systems is that everything is a file. This means that in a Unix system, (almost) everything can be accessed as a file! So we can use the same commands to read/write a file for every peripheral connected to the system (that is, disks, terminals, serial ports, and so on).
Since this book's main goal is to show you how to get access to the system's peripherals, it's quite obvious that these commands are very important to know. Moreover, in the next chapters, we are going to use several command-line tools to set up our developer kits and their attached peripherals, so in this section, we are going to do a little list of them.
Tip
The following tutorial will not cover all possible file manipulation and tool commands nor all possible usages, so let me encourage those of you curious to get further information by surfing the Internet. A good starting point is at:
http://en.wikipedia.org/wiki/List_of_Unix_commands
.

For each presented command, you should take a look at the relative man pages, which we cannot entirely reproduce here due to spacing reasons because even an experienced developer may learn a lot of useful things by reading them from time to time.
To get the man pages of a generic command, we can try to use the following command line:

$ man <command>

Here, the <command> string is obviously the desired command to visit. If we have to use a different command to get this information, you will be informed accordingly.
echo and cat

Well, in order to manipulate the files, the first commands we can use are echo and cat; the former can be used to put some text into a file and the latter to read the file content:

$ echo 'Some text' > /tmp/foo
$ cat /tmp/foo
Some text

To append some text, instead of rewriting it, we can simply replace the > char with >> in the preceding command, as shown here:

$ echo 'Another line' >> /tmp/foo
$ cat /tmp/foo
Some text
Another line

In the echo command's man pages, we find that the command's description is Echo the STRING(s) to standard output; so, by using the Bash redirection behavior (with the > and >> characters), we can use it to write into a normal file due the fact that even the standard output is a file!
Again, as shown in the cat command in the relative man pages, we find that the description is concatenate files and print on the standard output. Again, what we already said about the echo command is still valid for cat, but looking at its description, we notice another interesting mode to use it, which is that it can be used to concatenate two or more files (the inverse operation of the split command). Let's consider the following commands:

$ ls -lh /bin/bash
-rwxr-xr-x 1 root root 664K Nov 12 2014 /bin/bash
$ split -b 100K /bin/bash bash_
$ ls -lh bash_*
-rw-r--r-- 1 root root 100K Apr 2 17:55 bash_aa
-rw-r--r-- 1 root root 100K Apr 2 17:55 bash_ab
-rw-r--r-- 1 root root 100K Apr 2 17:55 bash_ac
-rw-r--r-- 1 root root 100K Apr 2 17:55 bash_ad
-rw-r--r-- 1 root root 100K Apr 2 17:55 bash_ae
-rw-r--r-- 1 root root 100K Apr 2 17:55 bash_af
-rw-r--r-- 1 root root 64K Apr 2 17:55 bash_ag

We split the /bin/bash program (our shell) into six pieces of 100 KB plus a smaller one of about 64 KB. Then, we can rebuild the original file using cat, as shown here:

$ cat bash_* > bash_rebuilded

Then, we can check the bash_rebuilded file against the original one using the md5sum tool, as follows:

$ md5sum /bin/bash bash_rebuilded
4ad446acf57184b795fe5c1de5b810c4 /bin/bash
4ad446acf57184b795fe5c1de5b810c4 bash_rebuilded

They have the same hash and they have the same content!
Tip
The split and md5sum commands are not covered in this book, but those of you curious may take a look at the relative man pages for further information on these tools:

 $ man split

 $ man md5sum

dd

The dd command is very powerful since it can be used for several different purposes. We already used it in Chapter 1
,
Installing the Developing System
, U-Boot (with MLO)
 and others, where it were used in the following form:

$ sudo dd if=u-boot.img of=/dev/sdb count=2 seek=1 bs=384k

The if option argument defines the input file where you're reading data from, while the of option defines the output file where you're writing data to (note that while the input file is a normal file, the output file is a block device and for our command, they are absolutely interchangeable), and then the bs option defines a block size of 384 KB that shows how many bytes must be read and written at a time, so by specifying the option arguments, count=2 and seek=1, we ask dd to copy only two input blocks skipping one block at the start of the output. This operation is used to place a file at a specified offset into a block device. Take a look at the following figure for a graphical representation of this operation:

[image: dd]

By looking at the command man pages, you should notice that as the seek option is used to skip N blocks of the output, the skip option can be used to do the same into the input file. Also it is useful to note that using the ibs and obs options, we can differentiate the input from the output block size.
Another usage of dd is the following:

$ dd if=/dev/sda of=/dev/sdb

In this case, both the input and output files are not common files but they are block devices; in particular, they are two hard disks, and by using the preceding command, we copy the entire content of the first hard disk to the second one!
Again, using the following command, we can create an image of the first hard disk in the sda_image file:

$ dd if=/dev/sda of=sda_image

On the other hand, we can wipe a disk by writing all zeros on it:

$ dd if=/dev/zero of=/dev/sda

Or, we can safely erase the hard disk content by writing random data into it:

$ dd if=/dev/urandom of=/dev/sda

Tip
The /dev/zero and /dev/urandom files are special files created by the kernel where we can read data from: in the former, we're going to read all zeros, while from the latter, we're going to read (pseudo) random data generated internally by the kernel.
For further information, you can take a look at the man pages of these files (yes, even files might have man pages) using the following commands:

 $ man zero

 $ man urandom

The last note on dd is about the possibility to transform the data read from the input file before writing it to the output file. In the next command, we read data from the standard input, we swap the byte in each word, and then we write the result to the standard output:

$ echo 1234 | dd conv=swab
2143

Or we can convert all characters in the input to the uppercase:

$ echo "test string" | dd conv=ucase
TEST STRING

Tip
There are only a few of the several converting options offered by dd. Refer to the man pages for a complete list.

grep and egrep

Another useful command is grep (and its variant egrep), which can be used to select some text from a file. If you remember, the file created earlier with the echo command can be executed as follows:

$ grep "Another" /tmp/foo
Another line

The output is just the line where the Another word is written.
If we spend some time to take a look at the grep command's man pages, we can see that there are tons of option arguments related to these commands; however, due to space reasons, we're going to report only the ones used in this book.
The first option argument is -r, which can be used to recursively read all files under a specified directory, for instance, the following command searches in which the file under the /etc directory of the Ubuntu release number of my host PC is stored:

$ rgrep -r '15\.10' /etc/ 2>/dev/null
/etc/issue.net:Ubuntu 15.10
/etc/os-release:VERSION="15.10 (Wily Werewolf)"
/etc/os-release:PRETTY_NAME="Ubuntu 15.10"
/etc/os-release:VERSION_ID="15.10"
/etc/apt/sources.list:#deb cdrom:[Ubuntu 15.10 _Wily Werewolf_ - Relea
se amd64 (20151021)]/ wily main restricted
/etc/lsb-release:DISTRIB_RELEASE=15.10
/etc/lsb-release:DISTRIB_DESCRIPTION="Ubuntu 15.10"
/etc/issue:Ubuntu 15.10 \n \l

Tip
Note that the 2>/dev/null setting is used to drop all possible error messages due to invalid reading permissions into the /dev/null file.
As for /dev/zero and /dev/urandom, you can take a look at the man pages of /dev/null using the following command:

 $ man null

Another useful option argument is -i, which is used to ignore the case, so to search for the Ubuntu 15.10 string in both lower case or uppercase (or mixed case), we can use the following command:

$ grep -r -i 'ubuntu 15\.10' /etc/ 2>/dev/null
/etc/issue.net:Ubuntu 15.10
/etc/os-release:PRETTY_NAME="Ubuntu 15.10"
/etc/apt/sources.list:#deb cdrom:[Ubuntu 15.10 _Wily Werewolf_ - Relea
se amd64 (20151021)]/ wily main restricted
/etc/lsb-release:DISTRIB_DESCRIPTION="Ubuntu 15.10"
/etc/issue:Ubuntu 15.10 \n \l

Tip
Note that in most distributions (as Ubuntu or Debian), the grep -r command as an alias named rgrep can be used in place, so the preceding command can be written as follows:

 $ rgrep -i 'ubuntu 15\.10' /etc/ 2>/dev/null

You should take into account that all these commands are based on regular expressions that are not covered in this book, so you should use the man pages for further information on this powerful tool. Here's the command:

$ man 7 regex

tr and sed

If we need to modify a text file or a binary one (normally, we don't use these commands for binary files but we'll soon see that this can be done sometimes) in a quick and dirty manner, we can consider in using these commands.
The tr command can be used to translate or delete characters, and the simplest usage is as follows:

$ echo 'this is a testing string' | tr 'a-z' 'A-Z'
THIS IS A TESTING STRING

We've replaced all lowercases to the corresponding uppercase.
Tip
Note that a more cryptic but equivalent form of the preceding command is as follows:

 $ echo 'this is a testing string' | \

 tr '[:lower:]' '[:upper:]'

Another interesting usage is its usefulness in removing a set of characters. For example, we can remove all non-printable characters from a binary file with the following command:

$ tr -d -c '[:print:]' < /bin/ls

The -d option argument tells tr to to delete the characters specified in the command, while the -c option negates the set. Since the set is defined by '[:print:]', it means that -c transforms all printable characters into all the non-printable characters, and the desired result as shown as follows:

$ tr -d -c '[:print:]' < /bin/ls
ELF>I@@8@8@@@@@@88@8@@@ aah aaTT@T@DDPtdTTATAQtdRtdaa/lib64/ld-linux-x
86-64.so.2GNU GNUL7=K"q2rH?(rstvy{|~Pv2|qX|,cr<OBE9L>bA1 >[ju`=9)F^1=
+Um_{j}?p*$vD(NfKN- q<*6UH8<]u=|nP |6ZZa<Aaj"@F@#@! aahae a`)A&na'Aa5
@a=(Aj!a#@(A0#aJ'A['A'@alibsel

Tip
We drop the command's output after a few lines since it's really quite long.

The last usage of tr we may need is the ability to replace binary data. In fact, using the \NNN form (where the NNN number is specified as octal), we can address every ASCII code. A useful aspect of this feature is when we need to fill a file (or a device) with a fixed value; when we talked about dd, we saw that we can wipe a hard disk by filling it with zeros with the following command:

$ dd if=/dev/zero of=/dev/sda

However, if we need to fill it with 255 (that is, 0xff in hexadecimal or 0377 in octal), we can use the following command:

$ dd if=/dev/zero | tr '\000' '\377' | dd of=/dev/sda

On the other hand, the sed command can be used when we need to modify a file holding normal text (for instance, a configuration file) using a single command instead of opening our preferred text editor. As an example, we can recall what we did in
chapter 1, Installing the Developing System, BeagleBone Black: USB, networking, and overlays
 when we had to modify the settings into the /etc/ssh/sshd_config file by replacing the PermitRootLogin without-password line with PermitRootLogin yes. Most probably, we did it using a text editor but we could use the sed command, as follows:

$ sed -i -e 's/^PermitRootLogin without-password$/PermitRootLogin yes/'
/etc/ssh/sshd_config

The -i option tells sed to to edit the file in place, while using the -e option argument, we can specify the script to be executed.
Another useful form is the one we can use to comment out a string by adding a # character at the beginning of the line we want to comment out. For example, in the /etc/ssh/sshd_config file, if we want specify that we don't trust the ~/.ssh/known_hosts file for RhostsRSAAuthentication, we have to uncomment the following line:
#IgnoreUserKnownHosts yes

The command line to do it is as follows:

root@bbb:~# sed -i -e 's/^#IgnoreUserKnownHosts yes$/IgnoreUserKnownHo
sts yes/' /etc/ssh/sshd_config
root@bbb:~# grep IgnoreUserKnownHosts /etc/ssh/sshd_config
IgnoreUserKnownHosts yes

Tip
This time, the command has been executed into BeagleBone Black instead of the host PC, but the result will be perfectly the same in both cases.

Another useful feature is the ability to replace eight consecutive spaces into a single tab character to perfectly indent a file holding our code. The sed command is the following:

$ sed -i -e 's/ /\t/g' code.c

head and tail

These commands can be used to display the beginning or the end of a file. Short examples are as follows:

$ echo -e '1\n2\n\3\n4\n5\n6\n7\n8\n9\n10' > /tmp/bar
$ head -2 /tmp/bar
1
2
$ tail -2 /tmp/bar
9
10

Here, we used the echo command to fill the /tmp/bar file with ten lines holding numbers 1 to 10, one per line, and then we used the head and tail commands to show, respectively, the first and the last two lines of the file.
These commands can be used in several other ways, but in this book, we're going to use mostly the tail command with the -f option arguments in order to display a file that can grow up. This class of files is usually log files and we can use the following command line to display the system's log messages as soon as they arrive:

$ tail -f /var/log/syslog

The command will start displaying the last ten lines (if available) and then it will display any other lines that will be appended to the /var/log/syslog log file.

od and hexdump

Other interesting commands are od and hexdump, which can be used to inspect file content one byte at a time (or in a more complex form). For instance, we can read the preceding /tmp/foo text file one byte at a time using a binary format:

$ od -Ax -tx1 < /tmp/foo
000000 53 6f 6d 65 20 74 65 78 74 0a 41 6e 6f 74 68 65
000010 72 20 6c 69 6e 65 0a
000017

The hexdump quasi equivalent command is as follows:

$ hexdump -C < /tmp/foo
00000000 53 6f 6d 65 20 74 65 78 74 0a 41 6e 74 68 65 |some text .A
nothe|
00000010 72 20 6c 69 6e 65 0a |r line.|
00000017

In the output of the second command, you can also easily note that each byte is the ASCII coding of each letter of the preceding strings.

file

The file command is used to detect a file type:

$ file /tmp/foo
/tmp/foo: ASCII text
$ file /dev/urandom
/dev/urandom: character special
$ file /usr/bin/file
/usr/bin/file: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dy
namically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Lin
ux 2.6.32, BuildID[sha1]=ec8d8159accf4c85fde8985a784638f62e10b4e9, str
ipped

Looking at the preceding output, we discover that the /tmp/foo file we created in previous examples is just an ASCII text file; the /dev/urandom file is a special character file and the /usr/bin/file file (which is where the file command is stored) is an executable for the x86-64 platform.

strings

The strings command is used to find strings in a binary file; for example, we can extract the usage string of the file command using this:

root@beaglebone:~# strings /usr/bin/file | grep Usage
Usage: %s [-bchikLlNnprsvz0] [--apple] [--mime-encoding] [--mime-type]
Usage: file [OPTION...] [FILE...]

strace

This is one of the most powerful debugging commands we can use in a GNU/Linux-based system. Using this command, we can trace all system calls a process does during its execution!
Even if this is not strictly related to file manipulation, we have to present it here due the fact that it can be used to easily debug a program and because we can use it to know which files are managed by a program without writing any extra code. In fact, the power of this command is that it can do its job even if the program is compiled with no debugging symbols at all. As an example, let's suppose we wish to know how the cat program works, which we can do as follows:

$ strace cat /tmp/foo
execve("/bin/cat", ["cat", "/tmp/foo"], [/* 29 vars */]) = 0
brk(0) = 0x2409000
...
open("/tmp/foo", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0664, st_size=23, ...}) = 0
fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0
mmap(NULL, 139264, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f80dc009000
read(3, "Some text\nAnother line\n", 131072) = 23
write(1, "Some text\nAnother line\n", 23Some text
Another line
) = 23
read(3, "", 131072) = 0
munmap(0x7f80dc009000, 139264) = 0
close(3) = 0
close(1) = 0
close(2) = 0
exit_group(0) = ?
+++ exited with 0 +++

In the preceding output, we can read that after a prologue (removed into this output due to spacing reasons), the program execute open() on the /tmp/foo file (which is the file we supplied to cat), which returns the file descriptor number 3, and then it executes read() on that file descriptor returning the file content and, in the end, it executes a write() system call on the file descriptor 1 (that is, the standard output), passing to it the just read buffer. When the program executes another read() and it returns 0 (that is, an End-of-File), the program exits, closing all opened files descriptors. In the end, strace returns the program's exit code as well.

Package management

In the first chapter, we already learned how install a package into our new Debian distribution; however, there are a few more things to add in order to manage the system's packages.
The following commands can be executed indifferently in the host PC or in one of our developer kits (for the next examples, as a developer kit, we used the BeagleBone Black).
Searching a software package

For example, we know that installing the vim (Vi Improved) package can be simply done using the following command:

root@bbb:~# aptitude install vim

In the preceding command, we're assuming that the package containing vim has the same name as that of the software tool. However, this is not always true! For instance, if we wish to install the PHP command-line interface (the tool used to execute PHP scripts from the command line), we may assume the package's name was php-cli, and then we can try to install the package using this command:

root@bbb:~# aptitude install php-cli

But, in this case, we will get the following error message:

Couldn't find package "php-cli". However, the following
packages contain "php-cli" in their name:
 php-google-api-php-client
No packages will be installed, upgraded, or removed.
0 packages upgraded, 0 newly installed, 0 to remove and 3 not upgraded
Need to get 0 B of archives. After unpacking 0 B will be used.

Doh! So, which is the correct package name? Here is where the apt-cache command comes in handy. Just type the following command on the console:

root@bbb:~# apt-cache search php cli

We will get a long list of packages related to the words php and cli (in fact, we can assume that both these words may be in both package names or descriptions). Now we can search which package suits our needs and we can try to filter the output using the grep command, as shown here:

root@bbb:~# apt-cache search php cli | grep '^php[^]*cli'
php-google-api-php-client - Google APIs client library for PHP
php-horde-cli - Horde Command Line Interface API
php-horde-imap-client - Horde IMAP Client
php-horde-socket-client - Horde Socket Client
php5-cli - command-line interpreter for the php5 scripting language
php-seclib - implementations of an arbitrary-precision integer arithme
tic library

Tip
The ^php[^]*cli string is a regular expression, which asks grep to select only those lines whose hold at the beginning of the line is a string starting with php and ending with the cli chars without any space in the middle.

Now, as we can see, the output is now shorter and at a quick glance we can see that the desired package is named php5-cli.
Another useful command is the apt-filecommand, which can be used to find a package holding a specific file even if it is not installed on the system. It's unlikely that this command is installed into our developer kit's default distribution by default, so we must install it ourselves:

root@bbb:~# aptitude install apt-file

When the installation ends, we must update apt-file data through the following command:

root@bbb:~# apt-file update

Now, for example, if we get an error during a compilation where a file, say, libcurses.so is missing, we can obtain the package name holding that file using the apt-file command, as shown here:

root@bbb:~# apt-file search libncurses.so
libncurses-gst: /usr/lib/gnu-smalltalk/libncurses.so
libncurses5: /lib/arm-linux-gnueabihf/libncurses.so.5
libncurses5: /lib/arm-linux-gnueabihf/libncurses.so.5.9
libncurses5-dbg: /usr/lib/debug/lib/arm-linux-
gnueabihf/libncurses.so.
5.9
libncurses5-dbg: /usr/lib/debug/libncurses.so.5
libncurses5-dbg: /usr/lib/debug/libncurses.so.5.9
libncurses5-dev: /usr/lib/arm-linux-gnueabihf/libncurses.so

The preceding message shows us that the desired package name is libncurses5-dev.

Installing a package

A brief note on some pitfalls in installing new packages must be added. We already told you how to install a package; we can use both apt-get and aptitude commands, as reported in the next two commands:

root@arm:~# apt-get install evtest
root@arm:~# aptitude install evtest

The commands can be used interchangeably even if, as reported in the next section, they have several differences. However, for both of them, we can get an error message as follows:

root@arm:~# aptitude install evtest
The following NEW packages will be installed:
 evtest libxml2{a} sgml-base{a} xml-core{a}
0 packages upgraded, 4 newly installed, 0 to remove and 29 not upgrade
d.
Need to get 846 kB of archives. After unpacking 1658 kB will be used.
Do you want to continue? [Y/n/?]
Err http://ftp.us.debian.org/debian/ wheezy/main libxml2 armhf 2.8.0+d
fsg1-7
404 Not Found [IP: 64.50.233.100 80]
Err http://ftp.us.debian.org/debian/ wheezy/main sgml-base all 1.26+nm
u3
404 Not Found [IP: 64.50.233.100 80]
...

In this case, the list of available packages is not updated to their latest version and they must be updated using one of the two commands here:

root@arm:~# apt-get update
root@arm:~# aptitude update

As in the install case, the preceding commands are perfectly equivalent. In fact we have:

root@arm:~# aptitude update
Ign http://ftp.us.debian.org wheezy InRelease
Get: 1 http://ftp.us.debian.org wheezy Release.gpg [2373 B]
Get: 2 http://ftp.us.debian.org wheezy Release [191 kB]
Get: 3 http://ftp.us.debian.org wheezy/main Sources [5984 kB]
...

Then the installation should go till the end without errors:

root@arm:~# aptitude install evtest
The following NEW packages will be installed:
 evtest libxml2{a} sgml-base{a} xml-core{a}
0 packages upgraded, 4 newly installed, 0 to remove and 111 not upgrad
ed.
Need to get 803 kB/848 kB of archives. After unpacking 1621 kB will be
 used.
Do you want to continue? [Y/n/?]
Get: 1 http://ftp.us.debian.org/debian/ wheezy/main libxml2 armhf 2.8.
0+dfsg1-7+
wheezy5 [788 kB]
Get: 2 http://ftp.us.debian.org/debian/ wheezy/main sgml-base all 1.26
+nmu4 [14.
6 kB]
...

As a final note, the next two commands can be used to upgrade all packages to their most recent version:

root@arm:~# apt-get dist-upgrade
root@arm:~# aptitude safe-upgrade

Tip
There are other commands that can be used to upgrade all packages with different behaviors not reported in this book; however, you can take a look at the commands' man pages to get further information on them.

apt-get and friends versus aptitude

Since the first chapter, we suggested that you install the aptitude tool to manage the Ubuntu or Debian packages used in the host PC or our developer kits. We asserted that aptitude is smarter than apt-get; now it's time to explain a bit why.
Looking at the apt-get man pages, we see that this command is a command-line interface to handle packages and may be considered the backend for the other low-level tools of the package management system. In fact, using it, we can easily install or remove a package with its dependencies and/or update a single package or the whole system.
On the other hand, the aptitude command's man pages tells us similar things. In fact, this command is still a high-level interface for the package manager but, as already stated, it's smarter; we can use it for several useful tasks that we do with apt-get or apt-cache and other commands of the same family:
	Easy package installation or removal at once: We can install and remove packages using a single command. For instance, the following command will install packageA, remove packageB, and purge packageC:
$ aptitude install packageA packageB- packageC_

	We can put one or more packages in a hold status, that is, we inform the system to cancel any active installation, upgrade or remove, and prevent this package from being automatically upgraded in the future. The command is the same as earlier, but the package name is followed by the = sign. An example is packageD=.
	We can get very detailed information about one or more packages:
$ aptitude show vim
Package: vim
State: installed
Automatically installed: no
Version: 2:7.4.1689-3ubuntu1
Priority: optional
Section: editors
Maintainer: Ubuntu Developers
 <ubuntu-devel-discuss@lists.ubuntu.com>
Architecture: amd64
Uncompressed Size: 2377 k
Depends: vim-common (= 2:7.4.1689-3ubuntu1),
 vim-runtime (=
2:7.4.1689-3ubuntu1),
 libacl1 (>= 2.2.51-8),libc6 (>= 2.15),
 libgpm2
(>= 1.20.4),
 libselinux1 (>= 1.32), libtinfo5 (>= 6)
Suggests: ctags, vim-doc, vim-scripts
Conflicts: vim:i386
Provides: editor
Provided by: vim-athena (2:7.4.1689-3ubuntu1), vim-athena-py2
 (2:7.4.1689-3ubuntu1),
 vim-gnome (2:7.4.16893ubuntu1),
...
Description: Vi IMproved - enhanced vi editor
 Vim is an almost compatible version of UNIX editor Vi.
 Many new features have been added: multi level undo,
 syntax highlighting,
 command-line history, online help, filename completion,
 block operations,
 folding, Unicode support, and so on.
 This package contains a version of vim compiled with a
 rather standard
 set of
features. This package does not provide a GUI version
 of Vim.
 Refer to the other vim-* packages if you need more (or less).
Homepage: http://www.vim.org/

	We have a very powerful package searching engine! For example, using the following command, we can get a list of all installed packages that have the string editor in their description field:
$ aptitude search '~i?description(editor)'
i dia - Diagram editor
i A dia-common - Diagram editor (common files)
i A dia-libs - Diagram editor (library files)
i A dia-shapes - Diagram editor
i A docbook-xml - standard XML documentation sys
 tem for soft
i ed - classic UNIX line editor
i emacs - GNU Emacs editor (metapackage)
...
i nano - small,friendly text editor
 inspired by Pi
i sed - The GNU sed stream editor
i vim - Vi IMproved - enhanced vi
i vim-common - Vi IMproved - Common files
i A vim-runtime - Vi IMproved - Runtime files
i vim-tiny - Vi IMproved - enhanced vi
i A x11-apps - X applications

	Also, we can use boolean expressions; using the following command, we search all packages that have the firmware string in the name field and wireless in the description one:
$ aptitude search '?and(?name(firmware),?description(wireless))'
p atmel-firmware - Firmware for Atmel at76c50x
 p firmware-b43-installer - firmware installer for the b43
p firmware-b43legacy-installer - firmware installer for the b43l

	We can ask aptitude to explain the reason why a particular package should or cannot be installed on the system or to find a dependency chain leading to a conflict with the target package. If we try to execute this command selecting a package to install, we'll get all related information:
$ aptitude why xvile
i vim Suggests vim-scripts
p vim-scripts Suggests exuberant-ctags
p exuberant-ctags Suggests vim | nvi | vile | emacsen
p vile Depends vile-common (= 9.8q-1build1)
p vile-common Recommends vile | xvile

	We can show all package names that are installed and that are not either essential or automatically installed by dependencies:
$ aptitude search '~i!(~E|~M)' -F '%p'

Note
Refer to the following URL for a detailed guide:
http://algebraicthunk.net/~dburrows/projects/aptitude/doc/en/ch02s03s05.html#tableSearchTermQuickGuide.

	Then, last but not least, aptitude has a text-based menu interface to manage all packages! In fact, if we execute it without any arguments, it starts in its visual interface, as shown in the following figure:

[image: apt-get and friends versus aptitude]

The deb files

Another useful command to manage a package is dpkg. This is a very basic command to manage packages and it should be used by experienced users only since we can damage our system if improperly used!
However, we're going to use it when we have to install a package hold into a deb file using the following command line:

root@bbb:~# dpkg -i <package.deb>

Where <package.deb> is the package's file.

Managing the kernel messages

As already stated, the serial console is very helpful if we need to set up a system from scratch but it's also very useful if we wish to see kernel messages as soon as they are generated. However, using a silly trick, we can get these kernel messages on a terminal emulator through a normal SSH connection too by executing the tail command introduced earlier, as shown here:

root@bbb:~# tail -f /var/log/kern.log

In fact, the tail command executed with the option argument -f will open the target file and will display any new line appended to it. This can be very similar to what happens on a serial console, but you should consider the following:
	If the system is not yet fully functional, we have no network devices to use for the SSH connection.
	Using the tail command, we may miss important kernel messages, that is, an Oops message, due to the fact that the system can become unstable because of some kernel bugs! In this situation, we need to display the errors as soon as they arrive and the tail command cannot do it safely.Note
An Oops is an error, a deviation from correct behavior of the kernel, that produces a kernel panic condition that may allow continued operation but with compromised reliability.
The output produced by these errors is typically called Oops messages. They are special kernel debugging messages that may arrive, for instance, during an interrupt handler causing a system crash and, in this special situation, the tail command will not work as expected. Only the serial console can help the developer!

On the other hand, if we are connected to the serial console, we can capture these special messages since they are displayed on the serial console as soon as they arrive!
Note that this behavior can be disabled by default, and then the easier way to enable it again is using a special file in the procfs filesystem named /proc/sys/kernel/printk.
If we try to read its content, we get the following output:

root@bbb:~# cat /proc/sys/kernel/printk
4 4 1 7

These obscure numbers have a well-defined meaning; in particular, the first one represents the error message level that must be shown on the serial console.
Let me explain this a bit better. Kernel messages are defined in the linux/include/linux/kern_levels.h file.
Note
The procfs (proc filesystem) is one of the most important filesystems we can find in a Linux-based system, so you may spend some time to study it. A good starting point can be found at
http://en.wikipedia.org/wiki/Procfs
.
This file is present in the Linux's source tree, and in the next chapter, we'll learn how to obtain it.

The definitions are as follows:
#define KERN_EMERG KERN_SOH "0" /* system is unusable */
#define KERN_ALERT KERN_SOH "1" /* action must be taken immediat. */
#define KERN_CRIT KERN_SOH "2" /* critical conditions */
#define KERN_ERR KERN_SOH "3" /* error conditions */
#define KERN_WARNING KERN_SOH "4" /* warning conditions */
#define KERN_NOTICE KERN_SOH "5" /* normal but significant condit. */
#define KERN_INFO KERN_SOH "6" /* informational */
#define KERN_DEBUG KERN_SOH "7" /* debug-level messages */

Since the first number in the /proc/sys/kernel/printk file is 4, it means that the only displayed messages will be KERN_EMERG, KERN_ALERT, KERN_CRIT and KERN_ERR.
Now it's quite simple to guess that in order to enable all kernel messages, we must replace the first number 4 with 8 because there are no kernel messages with a lower priority than 7:

root@bbb:~# echo 8 > /proc/sys/kernel/printk

Tip
Kernel messages' priorities start from 0 (the highest) and go up till 7 (the lowest)!

On the other hand, we can disable all kernel messages using the number 0:

root@bbb:~# echo 0 > /proc/sys/kernel/printk

Note that the preceding commands just replace the first number; in fact, if we read the file content again, we get the following output:

root@bbb:~# cat /proc/sys/kernel/printk
0 4 1 7

A quick tour into the bootloader

As stated at the beginning of this chapter, using the serial console, we can get access to the bootloader.
Actually, all the developer kits presented in this book have two bootloaders: a pre-bootloader or Secondary Program Loader (SPL), named MLO for the BeagleBone Black, boot.bin for SAMA5D3 Xplained, and SPL for the Wandboard, which initializes the hardware components, such as the RAM and some mass storage devices, and bootloader named U-Boot for all boards, which is the real bootloader that initializes almost all the peripherals and has support for, among other things, booting over network and a scriptable shell through which basic commands can be given. Now the one million dollar question is: why should a developer be able to manage the bootloader too?
Well the answers are more than one; however, the most important ones are:
	By passing a well-formed command line to the kernel, we can change some functionalities in the running filesystem.
	From the bootloader, we can easily manage a factory restore method (it is usually made with a hidden button in a tiny hole on the system's box. By keeping that button pressed while powering up the system, the user can cause the whole system to reset to its factory defaults).
	Through the bootloader, we can decide which device to use to perform a boot. For instance, we can force a boot from a microSD or from a USB key.

So now let's see how we can get the U-Boot's prompt using one kit since they're running the same U-Boot version (the following messages are from SAMA5D3 Xplained).
Just after the power up, we will see some interesting messages on the serial console:

RomBOOT
U-Boot SPL 2016.03-dirty (Apr 15 2016 - 19:51:18)
Trying to boot from MMC
reading u-boot.img
U-Boot 2016.03-dirty (Apr 15 2016 - 19:51:18 +0200)
CPU: SAMA5D36
Crystal frequency: 12 MHz
CPU clock : 528 MHz
Master clock : 132 MHz
DRAM: 256 MiB
NAND: 256 MiB
MMC: mci: 0
reading uboot.env
** Unable to read "uboot.env" from mmc0:1 **
Using default environment
In: serial
Out: serial
Err: serial
Net: gmac0
Error: gmac0 address not set.
, macb0
Error: macb0 address not set.
Hit any key to stop autoboot: 1

At this time, we have less than 1 second to strike the Enter key to stop the countdown and get the U-Boot prompt shown as follows:

=>

Well, now we can get a list of the available commands using the help command:

=> help
? - alias for 'help'
base - print or set address offset
bdinfo - print Board Info structure
boot - boot default, i.e., run 'bootcmd'
bootd - boot default, i.e., run 'bootcmd'
...
usb - USB sub-system
usbboot - boot from USB device
version - print monitor, compiler and linker version

As you can see, the list is quite long; however, due to spacing reasons, we cannot report or explain all commands, so we'll take a look at the most important ones.
Tip
For further information regarding the U-Boot bootloader, you may take a look at the user manual at
http://www.denx.de/wiki/DULG/Manual
.

The help command can also be used to get more information about a command:

=> help help
help - print command description/usage
Usage:
help
 - print brief description of all commands
help command ...
- print detailed usage of 'command'

Tip
Note that most of the commands will display their helping message when executed without any arguments. Of course, this behavior is not respected by those commands that execute with no arguments.

The environment

Before starting to take a look at the commands, we should first see one of the most important features of U-Boot: the environment. We can store whatever we need to accomplish a safe system boot in the environment. We can store variables, commands, and even complete scripts in it!
To check the environment content, we can use the print command:

=> print
arch=arm
baudrate=115200
board=sama5d3_xplained
board_name=sama5d3_xplained
bootargs=console=ttyS0,115200 root=/dev/mmcblk0p2 ro rootwait
bootcmd=if test ! -n ${dtb_name}; then setenv dtb_name at91-${board_na
me}.dtb; fi; fatload mmc 0:1 0x21000000 /dtbs/${dtb_name}; fatload mmc
 0:1 0x22000000 zImage; bootz 0x22000000 - 0x21000000
bootdelay=1
cpu=armv7
ethact=gmac0
soc=at91
vendor=atmel

Environment size: 412/16380 bytes

If we need to inspect a specific variable, we can use the print command:

=> print baudrate
baudrate=115200

We can also inspect a complete script using the print command again:

=> print bootcmd
bootcmd=if test ! -n ${dtb_name}; then setenv dtb_name at91-${board_na
me}.dtb; fi; fatload mmc 0:1 0x21000000 /dtbs/${dtb_name}; fatload mmc
 0:1 0x22000000 zImage; bootz 0x22000000 - 0x21000000

Tip
The bootcmd command is the default boot command that is executed each time the system starts.

The command output is quite cryptic due the fact that the newline (\n) characters are missing (although U-Boot doesn't need them to correctly interpret a script); however, to make the output more readable, the preceding output has been rewritten here with the necessary newline characters:
if test ! -n ${dtb_name}; then
 setenv dtb_name at91-${board_name}.dtb;
fi;
fatload mmc 0:1 0x21000000 /dtbs/${dtb_name};
fatload mmc 0:1 0x22000000 zImage;
bootz 0x22000000 - 0x21000000

In this case, we cannot properly talk about man pages, but if we use the help command, we can take a kind of them.
Tip
Note that the print command is just a short form of the real command printenv.

To write/modify an environment variable, we can use the setenv command:

=> setenv myvar 12345
=> print myvar
myvar=12345

We can read the variable content by prefixing its name with the
$
 character:

=> echo "myvar is set to: $myvar"
myvar is set to: 12345

In a similar manner, to write a script, we can use this:

=> setenv myscript 'while sleep 1 ; do echo "1 second is passed away..
." ; done'

Tip
Note that we used the two ' characters to delimitate the script commands! This is to prevent U-Boot from doing some variable replacement before storing the script (it's something similar to what we do when we use the Bash shell's variable substitution).

Again, over here, we did not add the newlines; however, this time, the script is quite simple and readable. In fact, with the newline characters, the output should appear as follows:
while sleep 1 ; do
 echo "1 second is passed away..." ;
done

In the end, we can run a by using the run command, as follows:

=> run myscript
1 second is passed away...
1 second is passed away...
1 second is passed away...
...

Note
We can stop the script by hitting
Ctr l
+
C
.
The environment is reset each time the system starts, but it can be altered by modifying the environment file in the microSD (refer to the next section).

In case we made some errors, don't panic! We can edit the variable with this command:

=> env edit myscript
edit: while sleep 1 ; do echo "1 second is passed away..." ; done

Now we can do all the required modifications to the script in an easy manner.

Managing the storage devices

The main goal of a bootloader is to load the kernel into the memory and then execute it; to do that, we must be able to get access to all the storage devices of the board where the kernel can be located. Our boards have several storage devices; however, in this book, we'll see only two of them: MMC (or eMMC) and NAND flash.
MMC

To show MMC (Multi Media Card) management in U-Boot, we are going to use the BeagleBone Black since it has both an eMMC and a microSD port on board. As already stated in the first chapter, we're able to choose our booting device simply using the user button, so it's very important to discover how we can manage these devices, so let's power on our BeagleBone Black and then stop the bootloader by pressing the spacebar within two seconds, as shown here:

U-Boot SPL 2016.03-dirty (Apr 15 2016 - 13:44:25)
Trying to boot from MMC
bad magic
U-Boot 2016.03-dirty (Apr 15 2016 - 13:44:25 +0200)
 Watchdog enabled
I2C: ready
DRAM: 512 MiB
Reset Source: Global warm SW reset has occurred.
Reset Source: Power-on reset has occurred.
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1
Using default environment
Net: <ethaddr> not set. Validating first E-fuse MAC
cpsw, usb_ether
Press SPACE to abort autoboot in 2 seconds
=>

Now, as already done earlier with SAMA5D3 Xplained, we can use the help command to see which are the MMC-related commands. We discover that the MMC support is implemented with the mmcinfo and mmc commands. The former can be used to get some useful information about the microSD/MMC present on the selected MMC slot, while the latter is used to effectively manage the microSD.
Let's look at some examples.
We know that our BeagleBone Black has an onboard eMMC on MMC slot 1, so to get some information about that device, we should first select the MMC slot to be examined using the following command:

=> mmc dev 1
switch to partitions #0, OK
mmc1(part 0) is current device

Then, we can ask for the MMC device information using the mmcinfo command:

=> mmcinfo
Device: OMAP SD/MMC
Manufacturer ID: 70
OEM: 100
Name: MMC04
Tran Speed: 52000000
Rd Block Len: 512
MMC version 4.5
High Capacity: Yes
Capacity: 3.6 GiB
Bus Width: 4-bit
Erase Group Size: 512 KiB
HC WP Group Size: 4 MiB
User Capacity: 3.6 GiB
Boot Capacity: 2 MiB ENH
RPMB Capacity: 128 KiB ENH

In the same manner, we can examine the alternate booting microSD we built in Chapter 1, Installing the Developing System, and that we used to boot the system. Here is the output that appears on my system:

=> mmc dev 0
switch to partitions #0, OK
mmc0 is current device
=> mmcinfo
Device: OMAP SD/MMC
Manufacturer ID: 41
OEM: 3432
Name: SD4GB
Tran Speed: 50000000
Rd Block Len: 512
SD version 3.0
High Capacity: Yes
Capacity: 3.7 GiB
Bus Width: 4-bit
Erase Group Size: 512 Bytes

Now we can examine the microSD partition table by using the following command:

=> mmc part
Partition Map for MMC device 0 -- Partition Type: DOS
Part Start Sector Num Sectors UUID Type
1 2048 7772160 5697a348-01 83 Boot

We get only one partition where our Debian filesystem is located.
Let's examine the / (root) directory using another command that's useful in listing the content of a EXT4 filesystem, which is the command etx4ls, as shown here:

=> ext4ls mmc 0:1
<DIR> 4096 .
<DIR> 4096 ..
<DIR> 16384 lost+found
<DIR> 4096 opt
<DIR> 4096 boot
<DIR> 4096 lib
<DIR> 4096 sys
<DIR> 4096 home
<DIR> 4096 mnt
<DIR> 4096 dev
...
<DIR> 4096 sbin
<DIR> 4096 proc
<DIR> 4096 tmp

We found the root directory of a Debian OS, and we can use the following command to read the contents of the /boot directory:

=> ext4ls mmc 0:1 /boot
<DIR> 4096 .
<DIR> 4096 ..
 726 uEnv.txt
 7408440 vmlinuz-4.4.7-bone9
<DIR> 4096 dtbs
<DIR> 4096 uboot
 9089599 initrd.img-4.4.7-bone9

Now, as an example, in order to import the uEnv.txt file content, we can use the load command:

=> load mmc 0:1 $loadaddr /boot/uEnv.txt
726 bytes read in 28 ms (24.4 KiB/s)

Tip
Note that the value for the loadaddr variable is usually defined in the default environment (that is, the default built in the U-Boot image at the compilation stage) or using the uEnv.txt configuration file.

The command loads a file from the microSD into the RAM, and then we can parse it and store the data into the environment using the env command:

=> env import -t $loadaddr $filesize

Tip
In contrast with the earlier loadaddr variable, the filesize variable is dynamically set after each file manipulation command's execution, for instance, the just used load command.

To save a variable/command in the environment (in a way that the new value is reloaded at the next boot), we can use U-Boot itself, but the procedure is quite complex and, in my humble opinion, the quickest and simplest way to do it is by just putting the microSD on a host PC and then changing the file on it!
In any case, we can take a look at the read data using the md command, as follows:

=> md $loadaddr
82000000: 64616f6c 72646461 3878303d 30303032 loadaddr=0x82000
82000010: 0a303030 61746466 3d726464 38387830 000.fdtaddr=0x88
82000020: 30303030 720a3030 64646164 78303d72 000000.rdaddr=0x
82000030: 38303838 30303030 6e690a0a 64727469 88080000..initrd
82000040: 6769685f 78303d68 66666666 66666666 _high=0xffffffff
82000050: 7464660a 6769685f 78303d68 66666666 .fdt_high=0xffff
82000060: 66666666 636d6d0a 746f6f72 65642f3d ffff.mmcroot=/de
82000070: 6d6d2f76 6b6c6263 0a317030 616f6c0a v/mmcblk0p1..loa
82000080: 6d697864 3d656761 64616f6c 636d6d20 dximage=load mmc
82000090: 313a3020 6c7b2420 6164616f 7d726464 0:1 ${loadaddr}
820000a0: 6f622f20 762f746f 6e696c6d 242d7a75 /boot/vmlinuz-$
820000b0: 616e757b 725f656d 6f6c0a7d 66786461 {uname_r}.loadxf
820000c0: 6c3d7464 2064616f 20636d6d 20313a30 dt=load mmc 0:1
820000d0: 64667b24 64646174 2f207d72 746f6f62 ${fdtaddr} /boot
820000e0: 6274642f 7b242f73 6d616e75 7d725f65 /dtbs/${uname_r}
820000f0: 667b242f 69667464 0a7d656c 64616f6c /${fdtfile}.load

In this manner, we do a memory dump at the address specified by the loadaddr variable, where we just loaded the /boot/uEnv.txt file content.

Managing the flash

The flash memories are very useful when we don't need relatively small storage devices and we want to keep the cost of a board very low.
In the past, they represented the only (and valid) solution for reliable mass memory devices for embedded systems due to the fact that they can work in very hostile environments (temperatures under 0° C or above 80° C and dusty air) and they have no moving parts that dramatically increase the life cycle of the system.
Nowadays, they are almost replaced by eMMC memories, but they are still present on really compact and low-power systems. In this book, the only boards where we can find them are SAMA5D3 Xplained, so let's switch to this board again.
Tip
In reality, eMMC or MMC (which is not a soldered version of an eMMC) is flash memory, but it takes a specific name because there is a flash controller inside the chip that actually manages the internal flash memory. So, using these devices, we can unload our embedded kits' CPUs of the duty to manage the flash.

The flash memory in our board is a NAND flash, which is a technology that uses floating gate transistors (just like the NOR flash) but is connected in a way that resembles a NAND gate.
Tip
For further information on these devices, a good starting point can be found at
https://en.wikipedia.org/wiki/Flash_memory#NAND_flash
.

To get some information on mounted chips, we can use the nand info command, as follows:

=> nand info
Device 0: nand0, sector size 128 KiB
 Page size 2048 b
 OOB size 64 b
Erase size 131072 b
subpagesize 2048 b
options 0x 200
bbt options 0x 8000

In this case, we have just one NAND device, so we don't need to use the nand device command to select one, as we did earlier regarding the MMC devices on our BeagleBone Black.
The check for the bad blocks (that is, those parts of the chip that are broken), we can use the following command:

=> nand bad
Device 0 bad blocks:
00c80000
00ca0000

These blocks will never be used to store our data.
Now the last three useful commands to manage the flash content are nand erase, nand read, and nand write. The first command is split into two subcommands: nand erase.part, which erases an entire MTD partition, and nand erase.chip, which erases the entire chip.
Tip
As you know for sure, a flash device needs the erase command because before writing a block, we must erase it! Refer to
https://en.wikipedia.org/wiki/Flash_memory#Limitations
 for an explanation of the problem.

Then, the nand.read and nand.write commands are used as they are expected, that is, to read or write a flash block. At the moment, we are not going to add examples for these actions since we still have no valid data to store in the flash; however, we're going to show how these commands can be used in the Managing a MTD device section in Chapter 5, Setting up an Embedded OS
.
Also note that in the NAND flash, we can store the current environment in a similar manner as earlier with the MMC/eMMC using the saveenv command; however, in order to work, this command must be correctly configured inside the U-Boot code by the developer.
Tip
These topics are not covered in this book due to space issues and because they are almost accomplished by the board manufacturer, so we can consider them already-fixed-up. However, you can take a look at the configuration that defines CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE and friends in U-Boot's repository for further information.

GPIO management

The General Purpose Input Output (GPIO) signals are input output pins with no special purpose defined; when a developer needs one of them working as an input pin or as an output pin (or another function), they can easily reconfigure the CPU in order to accommodate their needs (GPIOs will be widely presented in Chapter 6, General Purposes Input Output signals - GPIO
).
Managing GPIO from early booting stages can be useful in selecting a specific mode of functioning: for instance, in a system that normally boots from the NAND flash, we can decide to completely erase it rewrite its contents from a file read by the MMC if a GPIO is set; otherwise, we do a normal boot.
The command to manage GPIO is gpio, and to try usage of this command, we can use the BeagleBone Black board where we can use this command to control the user LEDs. As for the other GPIO lines of the BeagleBone Black, they are mapped as follows:
	

Name

	

Label

	

GPIO #

	
USR0

	
D2

	
53

	
USR1

	
D3

	
54

	
USR2

	
D4

	
55

	
USR3

	
D5

	
56

So we can easily deduce that in order to toggle LED USR0, we can use the following commands:

=> gpio toggle 53
gpio: pin 53 (gpio 53) value is 1
=> gpio toggle 53
gpio: pin 53 (gpio 53) value is 0

Of course, we can turn the LED on and off simply using the set and clear options, respectively, while the input option can be used to read the input status of the related GPIO line.
Tip
You can take a look at what these LEDs are for at:
http://beagleboard.org/getting-started
.

Accessing an I2C device

Another useful device class to get access to in early booting stages is I2C devices; in fact, these devices are commonly used to expand the CPU's peripheral set and they can be used for a large variety of purposes that, under some circumstances, must be read or set up during the boot (GPIO will be widely presented in Chapter 9, Inter-Integrated Circuit - I2C
).
As for GPIO, I2C devices are completely managed by the i2c command, and to test this command, we have to continue using the BeagleBone Black since it is the only one that has some onboard I2C devices. The list of this devices can be obtained by some simple steps; first of all, let's display a list of all available I2C buses:

=> i2c bus
Bus 0: omap24_0
Bus 1: omap24_1
Bus 2: omap24_2

By taking a look at the board's schematics, we can discover that the bus where these devices are connected to is omap24_0, so let's set it as the current bus using the following command:

=> i2c dev 0
Setting bus to 0

Now we can ask the system to probe all connected devices for us with the following command:

=> i2c probe
Valid chip addresses: 24 34 50

Great! We found three devices; now we can try to read some data from them; in particular, we can try to read the onboard EEPROM content using the i2c md command at address 50 (which is the hexadecimal EEPROM's address):

=> i2c md 0x50 0x0.2 0x20
0000: aa 55 33 ee 41 33 33 35 42 4e 4c 54 30 30 43 30 .U3.A335BNLT00C0
0010: 33 32 31 34 42 42 42 4b 30 37 31 36 ff ff ff ff 3214BBBK0716....

With the preceding command, we asked to dump data from the device at address 0x50 starting from address 0x0 (expressed as a word thanks to the .2 specifier) displaying 0x20 bytes as the output.
In this output, we can recognize the header (bytes 0xaa 0x55 0x33 0xee) and then the board version.
Tip
More information on the BeagleBone Black's EEPROM contents can be taken from the BeagleBone Black's user manual.

Loading files from the network

Another useful U-Boot feature is the ability to load a file from a network connection. This feature used during the developing stages helps the developer avoid having to continuously plug and unplug the microSD card from the system; in fact, as we saw in the first chapter, the system needs the bootloaders and kernel images to start up and, in case of errors during the development of these components, we will need to replace them frequently till they are OK. Well, supposing that at least the networking function works in our U-Boot release, we can use it to load a new image in the system memory.
Let's suppose that our kernel image is not functioning as well as we need it to be; we can set up U-Boot in order to load the kernel image from the network and then boot it to do all the required tests.
The command used to do this action is tftp. This command uses the Trivial File Transfer Protocol (TFTP) protocol to download a file from a remote server.
Tip
You may get more information on the TFTP protocol at:
https://it.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
.

The remote server, of course, is our host PC where we have to install a proper package with the following command:

$ sudo aptitude install tftpd

Tip
It may happen that during the installation, we get the following message:

 Note: xinetd currently is not fully supported
 by update-inetd.
 Please consult /usr/share/doc/xinetd/README.De
 bian and itox(8).

In this case, we have to add a file named tftp into the /etc/xinetd.d directory by hand. The file should hold the following code:

 # default: yes
 # description: The tftp server serves files using
 # the Trivial File Transfer
 # Protocol. The tftp protocol is often used to
 # boot diskless workstations, download
 # configuration files to network-aware
 # printers, and to start the installation
 # process for some operating systems.
 service tftp
 {
 disable = no
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = -s /srv/tftpboot
 }

Then, we have to create the /srv/tftpboot directory, as follows:

 $ sudo mkdir /srv/tftpboot

Then, restart the xinetd daemon with the usual command, as follows:

 $ sudo /etc/init.d/xinetd restart
 [ok] Restarting xinetd (via systemctl): xinetd.se
 rvice.

When the installation is finished, we should have a new process listening on UDP port 69:

$ netstat -lnp | grep ':\<69\>'
(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
udp 0 0 0.0.0.0:69 0.0.0.0:*

Also, the default tftpd root directory should be /srv/tftpboot, which is obviously empty:

$ ls -l /srv/tftpboot/
total 0

OK; let's copy our kernel image as we did in Debian 8 (jessie) for Wandboard section in Chapter 1
, Installing the Developing System
:

$ sudo cp deploy/4.4.7-armv7-x6.zImage /srv/tftpboot/vmlinuz-4.4.7-arm
v7-x6

Tip
Note that the sudo usage in the preceding command may not be needed in every system. I used it just because my host PC didn't properly install the daemon, as reported in earlier tip section.

Now in our Wandboard, we have to set up the ipaddr environment variable to be able to ping our host PC first. As an example, my host PC has the following network configuration:

$ ifconfig enp0s3
enp0s3 Link encap:Ethernet HWaddr 08:00:27:22:d2:ed
 inet addr:192.168.32.43 Bcast:192.168.32.255 Mask:255.255.
255.0
 inet6 addr: fe80::a00:27ff:fe22:d2ed/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:986 errors:0 dropped:0 overruns:0 frame:0
 TX packets:687 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:226853 (226.8 KB) TX bytes:100360 (100.3 KB)

Tip
Note that on your system, both the Ethernet card name and IP address settings may vary, so you have to change the settings in order to fit your LAN configuration.

Also, my DHCP server leaves the IP addresses from 192.168.32.10 to 192.168.32.40 available for my embedded boards, so we can do the following setting in Wandboard:

=> setenv ipaddr 192.168.32.25

Now, if everything works well, we should be able to ping my host PC:

=> ping 192.168.32.43
Using FEC device
host 192.168.32.43 is alive

Great! At this point, we can try to load a file from the host PC, so we have to assign the TFTP server's IP address to the serverip variable, as follows:

=> setenv serverip 192.168.32.43

Then, we can load our kernel image using the following command:

=> tftpboot ${loadaddr} vmlinuz-4.4.7-armv7-x6
Using FEC device
TFTP from server 192.168.32.43; our IP address is 192.168.32.25
Filename 'vmlinuz-4.4.7-armv7-x6'.
Load address: 0x12000000
Loading: ###
 ###
 ...
 #############################
 688.5 KiB/s
done
Bytes transferred = 5802912 (588ba0 hex)

Perfect, we did it! Now you can use the just download kernel image to continue your developing.
Tip
At the moment, this mode of operation is not explained here, but it will be explained in detail in the next chapter.

Before ending this chapter, let we address the fact that the Wandboard used only one Ethernet port, so it's quite obvious that whatever settings we do in U-Boot are referred to that device, but what happens if we have more that one device? For example, our SAMA5D3 Xplained has two Ethernet ports; how can we manage this setup if we wish to use the tftp command described earlier?
To answer this question, we have to switch the developer kit and power up SAMA5D3 Xplained. After the boot, we have to stop U-Boot and then we have to display the environment:

=> print
arch=arm
baudrate=115200
board=sama5d3_xplained
board_name=sama5d3_xplained
bootargs=console=ttyS0,115200 root=/dev/mmcblk0p2 ro rootwait
bootcmd=if test ! -n ${dtb_name}; then setenv dtb_name at91-${board_na
me}.dtb; fi; fatload mmc 0:1 0x21000000 /dtbs/${dtb_name}; fatload mmc
 0:1 0x22000000 zImage; bootz 0x22000000 - 0x21000000
bootdelay=1
cpu=armv7
ethact=gmac0
soc=at91
vendor=atmel

Environment size: 412/16380 bytes

Looking at the defined variables, we notice that one is named ethact; this is the variable that specifies the currently used Ethernet port. In the preceding output, we read that the system is set to gmac0, which is the gigabit Ethernet port (the port is labeled ETH0/GETH on the board).
So, if we repeat the preceding setup, we should be able to ping our host PC, as did earlier:

=> setenv ipaddr 192.168.32.25
=> ping 192.168.32.43
gmac0: PHY present at 7
gmac0: Starting autonegotiation...
gmac0: Autonegotiation complete
gmac0: link up, 100Mbps full-duplex (lpa: 0x45e1)
host 192.168.32.43 is alive

Tip
If we get the following error, it's because the Ethernet port has no default MAC address:

 *** ERROR: `ethaddr' not set
 ping failed; host 192.168.32.43 is not alive

In this case we, have to set a random one ourselves with the following command:

 => setenv ethaddr 3e:36:65:ba:6f:be

Then, we can repeat the ping command.

Now we can repeat the ping command through the other Ethernet port (the one labeled ETH1 on the board) by changing the ethact variable, as follows:

=> setenv ethact macb0

Tip
The name we have to use is usually specified in the developer kit's documentation.

Now we can repeat the ping command:

=> ping 192.168.32.43
macb0: PHY present at 0
macb0: Starting autonegotiation...
macb0: Autonegotiation complete
macb0: link up, 100Mbps full-duplex (lpa: 0x45e1)
host 192.168.32.43 is alive

Tip
If we got an error regarding the missing definition of the ethaddr variable, we should get the following one, which is related to the eth1addr variable:

 *** ERROR: `eth1addr' not set

 ping failed; host 192.168.32.43 is not alive

This is in case we have to act in the same manner as earlier.

The last note is about the fact that usually, U-Boot will automatically switch the active port in case the autonegotiation fails. If our system has ethact set as gmac0 but the cable is plugged into the ETH1 port, we get the following output:

=> ping 192.168.32.25
gmac0: PHY present at 7
gmac0: Starting autonegotiation...
gmac0: Autonegotiation timed out (status=0x7949)
gmac0: link down (status: 0x7949)
macb0: PHY present at 0
macb0: Starting autonegotiation...
macb0: Autonegotiation complete
macb0: link up, 100Mbps full-duplex (lpa: 0x45e1)
host 192.168.32.43 is alive

Note
We may experience some troubles regarding the networking support with the U-Boot version we're using in this book with SAMA5D3 Xplained. This is because this U-Boot release is not well aligned with the official one from Atmel. If so, don't worry, we can still use the official U-Boot release at:
http://www.at91.com/linux4sam/bin/view/Linux4SAM/Sama5d3XplainedMainPage#Build_U_Boot_from_sources
. That will work for sure!

The kernel command line

Before closing our tour of the bootloader, we should take a look at the way U-Boot uses to pass a command line to the kernel. This data is very important because it can be used to configure the kernel and pass some instruction to the user's programs on the root filesystem.
These arguments are stored in the bootargs variable and its setting depends on the board we are using. For example, if power on our Wandboard and, as done earlier, we stop its bootloader, as shown earlier, wecan see thatthis variable is not set at all:

=> print bootargs
Error: "bootargs" not defined

This is because its content is set up by the booting scripts that are not executed if we stop the boot. On our system, by carefully reading the U-Boot environment, we can discover that sooner or later, the run mmcargs command is called.
Note
This is because U-Boot automatically executes the script held in the bootcmd variable.

This command is written as follows:

=> print mmcargs
mmcargs=setenv bootargs console=${console} ${optargs} root=${mmcroot}
rootfstype
=${mmcrootfstype} ${cmdline}

This is where the kernel command line is built. As a useful exercise, you can now try to understand which are the values used for all the earlier variables; the only thing we wish to add is that we can add our custom settings using the optargs variable.
For instance, if we wish to set the loglevel kernel (that is the lower kernel message priority showed on the serial console, as shown in the
Managing the kernel messages
 section), we can set optargs to this:

=> setenv optargs 'loglevel=8'

And then we ask to continue the boot:

=> boot

Once the system has been restarted, we can verify the new setting by looking into the booting messages of the kernel; we should see a line as shown here:

Kernel command line: console=ttymxc0,115200 loglevel=8 root=/dev/mmcbl
k0p1 ro rootfstype=ext4 rootwait

This can be checked by looking at the procfs file, which holds a copy of the kernel command line, that is, the /proc/cmdline file using the following command:

root@wb:~# cat /proc/cmdline
console=ttymxc0,115200 loglevel=8 root=/dev/mmcblk0p1 ro rootfstype=ex
t4 rootwait

Tip
More information regarding the kernel command line and its parameters can be found in the kernel tree in the Documentation/kernel-parameters.txt file or online at:
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
.

Summary

In this chapter, we took a first look at our newly embedded developer kits. We saw several useful command-line tools that will be used throughout this book, and then we took a long tour into the bootloader, discovering several useful commands to manage some hardware and/or onboard storage devices.
In the next chapter, we will look more closely look into the kernel, its mechanisms, and its recompilation with a deep look into the C compiler usage using both its native form as well as the cross-compiler one.

Chapter 3. C Compiler, Device Drivers, and Useful Developing Techniques

In the previous chapter, we saw how to use the serial console to manage our developer kits and how it can be used to manage the bootloader too. Also, we introduced some device drivers to communicate with the host through a USB cable, and we installed a Debian OS, which is a collection of files in a filesystem, the main and the first filesystem that our embedded systems mount and boot.
In this chapter, we will focus our attention on the C compiler (with its counterpart, the cross-compiler). You will also learn when to use the native or cross-compilation and the differences between them.
Then, we'll see some kernel stuff used later in this book (configuration, recompilation, and the device tree). We'll also look a bit deeper at the device drivers, how they can be compiled, and how they can be put into a kernel module (that is kernel code that can be loaded at runtime). This is because starting from the next chapter, we'll present different kinds of computer peripherals, and for each of them, we'll try to explain how the corresponding device driver works, starting from the compilation stage through the configuration until the final usage. As an example, we'll try to implement a simple driver in order to give you some interesting points of view and some simple advice about kernel programming (which is not covered in this book!).
We will present the root filesystem's internals and spend some words about a particular root filesystem that can be very useful during the early developing stages – the network filesystem. As the final step, we'll propose the usage of an emulator in order to execute a complete target machine's Debian distribution on a host PC.
This chapter still is part of the introduction to this book. Experienced developers who already know these topics well may skip this chapter, but my suggestion is to read the chapter anyway in order to discover which developing tools will be used in the book and, maybe, some new technique to manage your programs.
The C compiler

The C compiler is a program that translates the C language into a binary format that the CPU can understand and execute. This is the basic way (and the most powerful one) to develop programs into a GNU/Linux system.
Despite this fact, most developers prefer using high-level languages other than C due the fact the C language has no garbage collection, no object-oriented programming and other issues, giving up part of the execution speed that a C program offers. However, if we have to recompile the kernel (the Linux kernel is written in C-plus few assemblers) to develop a device driver or to write high-performance applications, then the C language is a must-have.
As we already saw in the preceding chapters, we can have a compiler and a cross-compiler, and until now, we've already used the cross-compiler several times to recompile the kernel and the bootloaders. However, we can decide to use a native compiler too. In fact, using native compilation may be easier but, in most cases, very time consuming. That's why, it's really important to know the pros and cons.
Programs for embedded systems are traditionally written and compiled using a cross-compiler for that architecture on a host PC. In other words, we use a compiler that can generate code for a foreign machine architecture, which means a different CPU instruction set from the compiler host's one.
Native and foreign machine architecture

The developer kits shown in this book are ARM machines, while (most probably) our host machine is an x86 (that is, a normal PC). So, if we try to compile a C program on our host machine, the generated code cannot be used on an ARM machine and vice versa.
Let's verify it! Here's the classic Hello World program:
#include <stdio.h>

int main()
{
 printf("Hello World\n");

 return 0;
}

Now, we will compile it on my host machine using the following command:

$ make CFLAGS="-Wall -O2" helloworld
cc -Wall -O2 helloworld.c -o helloworld

Tip
You should notice here that we've used the make command instead of the usual cc command. This is a perfectly equivalent way to execute the compiler due the fact that even without a Makefile, the make command already knows how to compile a C program.

We can verify that this file is for the x86 (that is the PC) platform using the file command:

$ file helloworld
helloworld: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dyna
mically linked (uses shared libs), for GNU/Linux 2.6.24, BuildID[sha1]
=0f0db5e65e1cd09957ad06a7c1b7771d949dfc84, not stripped

Tip
Note that the output may vary according to your host machine platform.

Now, we can just copy the program into one developer kit (for instance, the the BeagleBone Black) and try to execute it:

root@bbb:~# ./helloworld
-bash: ./helloworld: cannot execute binary file

As we expected, the system refuses to execute the code generated for a different architecture!
On the other hand, if we use a cross-compiler for this specific CPU architecture, the program will run as a charm! Let's verify this by recompiling the code, but paying attention to specify that we wish to use the cross-compiler instead. So, delete the previously generated x86 executable file (just in case) using the rm helloworld command and then recompile it using the cross-compiler:

$ make CC=arm-linux-gnueabihf-gcc CFLAGS="-Wall -O2" helloworld
arm-linux-gnueabihf-gcc -Wall -O2 helloworld.c -o helloworld

Tip
Note that the cross-compiler's filename has a special meaning: the form is <architecture>-<platform>-<binary-format>-<tool-name>. So, the filename arm-linux-gnueabihf-gcc means ARM architecture, Linux platform, GNU EABI Hard-Float (gnueabihf) binary format, and GNU C Compiler (gcc) tool.

Now, we will use the file command again to see whether the code is indeed generated for the ARM architecture:

$ file helloworld
helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), d
ynamically linked (uses shared libs), for GNU/Linux 2.6.32, BuildID[sh
a1]=31251570b8a17803b0e0db01fb394a6394de8d2d, not stripped

If we transfer the file as before on the BeagleBone Black and try to execute it, we will get the following lines of code:

root@bbb:~# ./helloworld
Hello World!

Therefore, we will see that the cross-compiler ensures that the generated code is compatible with the architecture we are executing it on.
Tip
In reality, in order to have a perfectly functional binary image, we have to make sure that the library versions, header files (also the headers related to the kernel), and cross-compiler options match the target exactly or, at least, they are compatible. In fact, we cannot execute cross-compiled code against the glibc on a system having, for example, musl libc (or it can run in an unpredictable manner).
In this case, we have perfectly compatible libraries and compilers, but in general, the embedded developer should perfectly know what they are doing. A common trick to avoid compatibility problems is to use static compilation, but in this case, we get huge binary files.

Now, the question is, when should we use the compiler and when should we use the cross-compiler?
We should compile on an embedded system for the following reasons:
	There would be no compatibility issues as all the target libraries will be available. In cross-compilation, it becomes difficult when we need all the libraries (if the project uses any) in the ARM format on the host PC. So, we not only have to cross-compile the program but also its dependencies. If the same version dependencies are not installed on the embedded system's rootfs, then good luck with troubleshooting!
	It's easy and quick.

We should cross-compile for the following reasons:
	We are working on a large codebase, and we don't want to waste too much time compiling the program on the target, which may take from several minutes to several hours (or it may even be impossible). This reason might be strong enough to overpower the other reasons in favor of compiling on the embedded system itself.
	PCs nowadays have multiple cores, so the compiler can process more files simultaneously.
	We are building a full Linux system from scratch.

In any case, here, I will show you an example of both native compilation and cross-compilation of a software package so that you can understand the differences between them.

Compiling a C program

As the first step, let's see how we can compile a C program. To keep it simple, we'll start compiling a user-space program in the upcoming sections, and we will compile some kernel space code.
Knowing how to compile a C program can be useful because it may happen that a specific tool (most probably) written in C is missing in our distribution or it's present, but with an outdated version. In both cases, we need to recompile it!
To show the differences between a native compilation and a cross-compilation, we will explain both methods. However, a word of caution for you here is that this guide is not exhaustive at all! In fact, the cross-compilation steps may vary according to the software packages we will cross-compile.
The package we will use is the PicoC interpreter. Each real programmer (TM) knows the C compiler, which is normally used to translate a C program into the machine language, but (maybe) not all of them know that a C interpreter exists too!
Tip
Actually, there are many C interpreters, but we focus our attention on PicoC due its simplicity in cross-compiling it.

As we already know, an interpreter is a program that converts the source code into executable code on the fly and does not need to parse the complete file and generate code at once.
This is quite useful when we need a flexible way to write brief programs to resolve easy tasks. In fact, to fix bugs in the code and/or change the program behavior, we simply have to change the program source and then re-execute it without any compilation at all. We just need an editor to change our code!
For instance, if we wish to read some bytes from a file, we can do this using a standard C program, but for this easy task, we can write a script for an interpreter too. The choice of the interpreter is up to the developer, and since we are C programmers, the choice is quite obvious. That's why we have decided to use PicoC.
Note
The PicoC tool is quite far from being able to interpret all C programs! In fact, this tool implements a fraction of the features of a standard C compiler. However, it can be used for several common and easy tasks.
Consider PicoC as an education tool and avoid using it in a production environment!

The native compilation

Well, as the first step, we need to download the PicoC source code from its repository at:
git://github.com/zsaleeba/picoc.git
 into our embedded system (the repository is browseable at: https://github.com/zsaleeba/picoc). This time, we decided to use the BeagleBone Black and the command is as follows:

root@bbb:~# git clone git://github.com/zsaleeba/picoc.git

Note
A screenshot of the preceding repository can be found in the chapter_03/picoc/picoc-git.tgz file of the book's example code repository.

When finished, we can start compiling the PicoC source code using the following lines of code:

root@bbb:~# cd picoc/
root@bbb:~/picoc# make

Tip
If we get the following error, during the compilation we can safely ignore it:

 /bin/sh: 1: svnversion: not found

However, during the compilation we get the following lines of code:

platform/platform_unix.c:5:31: fatal error: readline/readline.h: No su
ch file or
directory
#include <readline/readline.h>
 ^
compilation terminated.
<builtin>: recipe for target 'platform/platform_unix.o' failed
make: *** [platform/platform_unix.o] Error 1

Bad news is that we have got an error! This is because the readline library is missing. Hence, we need to install it to keep this going. Recalling what we said in
Searching a software package section in
Chapter 2
, Managing the System Console, in order to discover which package's name holds a specific tool, we can use the following command to discover the package that holds the readline library:

root@bbb:~# apt-cache search readline

The command output is quite long, but if we carefully look at it, we can see the following lines:

libreadline5 - GNU readline and history libraries, run-time libraries
libreadline5-dbg - GNU readline and history libraries, debugging libra
ries
libreadline-dev - GNU readline and history libraries, development file
s
libreadline6 - GNU readline and history libraries, run-time libraries
libreadline6-dbg - GNU readline and history libraries, debugging libra
ries
libreadline6-dev - GNU readline and history libraries, development fil
es

This is exactly what we need to know! The required package is named libreadline-dev.
Tip
In the Debian distribution, all libraries' packages are prefixed by the lib string, while the -dev postfix is used to mark the development version of a library package. Note also that we choose the libreadline-dev package, intentionally leaving the system to choose to install version 5 or 6 of the library.
The development version of a library package holds all the needed files that allow the developer to compile their software to the library itself and/or some documentation about the library functions.
For instance, into the development version of the readline library package (that is, into the libreadline6-dev package), we can find the header and the object files needed by the compiler. We can see these files using the following command:

 root@bbb:~# dpkg -L libreadline6-dev | \
 egrep '\.(so|h)'
 /usr/include/readline/rltypedefs.h
 /usr/include/readline/readline.h
 /usr/include/readline/history.h
 /usr/include/readline/keymaps.h
 /usr/include/readline/rlconf.h
 /usr/include/readline/rlstdc.h
 /usr/include/readline/chardefs.h
 /usr/lib/arm-linux-gnueabihf/libreadline.so
 /usr/lib/arm-linux-gnueabihf/libhistory.so

So, let's install it:

root@bbb:~# aptitude install libreadline-dev

When finished, we can relaunch the make command to definitely compile our new C interpreter:

root@bbb:~/picoc# make
gcc -Wall -pedantic -g -DUNIX_HOST -DVER="`svnversion -n`" -c -o clib
rary.o clibrary.c
...
gcc -Wall -pedantic -g -DUNIX_HOST -DVER="`svnversion -n`" -o picoc pi
coc.o table.o lex.o parse.o expression.o heap.o type.o variable.o cl
ibrary.o platform.o include.o debug.o platform/platform_unix.o platfor
m/library_unix.o cstdlib/stdio.o cstdlib/math.o cstdlib/string.o cstdl
ib/stdlib.o cstdlib/time.o cstdlib/errno.o cstdlib/ctype.o cstdlib/std
bool.o cstdlib/unistd.o -lm -lreadline

Well, now, the tool is successfully compiled as expected!
To test it, we can use the standard Hello World program again, but with a little modification. In fact, the main() function is not defined as before! This is due to the fact that PicoC returns an error if we use the typical function definition. Here is the code:
#include <stdio.h>

int main()
{
 printf("Hello World\n");

 return 0;
}

Now, we can directly execute it (that is, without compiling it) using our new C interpreter:

root@bbb:~/picoc# ./picoc helloworld.c
Hello World

An interesting feature of PicoC is that it can execute the C source file like a script. We don't need to specify a main() function as C requires and the instructions are executed one by one from the beginning of the file as a normal scripting language does.
Just to show it, we can use the following script that implements the Hello World program as a C-like script (note that the main() function is not defined):
printf("Hello World!\n");
return 0;

If we put the preceding code into the helloworld.picoc file, we can execute it using the following lines of code:

root@bbb:~/picoc# ./picoc -s helloworld.picoc
Hello World!

Note that this time, we add the -s option argument to the command line in order to instruct the PicoC interpreter that we wish to use its scripting behavior.

The cross-compilation

Now, let's try to cross-compile the PicoC interpreter on the host system. However, before continuing, we've to point out that this is just an example of a possible cross-compilation useful to expose a quick and dirty way to recompile a program when the native compilation is not possible. As already reported earlier, the cross-compilation works perfectly for the bootloader and the kernel, while for user-space application, we must ensure that all involved libraries (and header files) used by the cross-compiler are perfectly compatible with the ones present on the target machine. Otherwise, the program may not work at all! In our case, everything is perfectly compatible, so we can go further.
As we did earlier, we need to download the PicoC's source code using the same git command. Then, we have to enter the following command into the newly created picoc directory:

$ cd picoc/
$ make CC=arm-linux-gnueabihf-gcc
arm-linux-gnueabihf-gcc -Wall -pedantic -g -DUNIX_HOST -DVER="`svnvers
ion -n`" -c -o picoc.o picoc.c
...
platform/platform_unix.c:5:31: fatal error: readline/readline.h: No su
ch file or directory
compilation terminated.
<builtin>: recipe for target 'platform/platform_unix.o' failed
make: *** [platform/platform_unix.o] Error 1

Note
We specified the CC=arm-linux-gnueabihf-gcc command-line option to force the cross-compilation. However, as already stated, the cross-compilation commands may vary according to the compilation method used by the single software package.

The system returns a linking error due to the fact that the readline library is missing. However, this time, we cannot install it as before since we need the ARM version (specifically, the armhf version) of this library, and my host system is a normal PC!
Tip
Actually, a way to install a foreign package into a Debian/Ubuntu distribution exists, but it's not a simple task nor is it an argument of this book. A curious reader may take a look at the Debian/Ubuntu
Multiarch at:
https://help.ubuntu.com/community/MultiArch
.

Now, we have to resolve this issue, and we have two possibilities:
	We can try to find a way to install the missing package.
	We can try to find a way to continue the compilation without it.

The former method is quite complex since the readline library has other dependencies, and we may take a lot of time trying to compile them all, so let's try to use the latter option.
Knowing that the readline library is just used to implement powerful interactive tools (such as recalling a previous command line to re-edit it) and since we are not interested in the interactive usage of this interpreter, we can hope to avoid using it. So, looking carefully at the code, we see that the USE_READLINE define exists. Changing the code as shown here should resolve the issue, allowing us to compile the tool without the readline support:

$ git diff
diff --git a/Makefile b/Makefile
index 6e01a17..c24d09d 100644
--- a/Makefile
+++ b/Makefile
@@ -1,6 +1,6 @@
CC=gcc
CFLAGS=-Wall -pedantic -g -DUNIX_HOST -DVER="`svnversion -n`"
-LIBS=-lm -lreadline
+LIBS=-lm
TARGET = picoc
SRCS = picoc.c table.c lex.c parse.c expression.c heap.c type.c \
diff --git a/platform.h b/platform.h
index 2d7c8eb..c0b3a9a 100644
--- a/platform.h
+++ b/platform.h
@@ -49,7 +49,6 @@
 # ifndef NO_FP
 # include <math.h>
 # define PICOC_MATH_LIBRARY
-# define USE_READLINE
 # undef BIG_ENDIAN
 # if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 # define BIG_ENDIAN

Note
The preceding patch can be found in the chapter_03/picoc/picoc-drop-readline.patch file of the book's example code repository.

The preceding output is in the unified context diff format. So, the preceding code means that in the Makefile file, the -lreadline option must be removed from the LIBS variable and that in the platform.h file, the USE_READLINE define must be commented out.
After all the changes are in place, we can try to recompile the package with the same command as we did earlier:

$ make CC=arm-linux-gnueabihf-gcc
arm-linux-gnueabihf-gcc -Wall -pedantic -g -DUNIX_HOST -DVER="`svnvers
ion -n`" -c -o table.o table.c
...
arm-linux-gnueabihf-gcc -Wall -pedantic -g -DUNIX_HOST -DVER="`svnvers
ion -n`" -o picoc picoc.o table.o lex.o parse.o expression.o heap.o ty
pe.o variable.o clibrary.o platform.o include.o debug.o platform/platf
orm_unix.o platform/library_unix.o cstdlib/stdio.o cstdlib/math.o cstd
lib/string.o cstdlib/stdlib.o cstdlib/time.o cstdlib/errno.o cstdlib/c
type.o cstdlib/stdbool.o cstdlib/unistd.o -lm

Great! We did it! Now, just to verify that everything is working correctly, we can simply copy the picoc file into our BeagleBone Black and test it as we did earlier.

Compiling a kernel module

As a special example of cross-compilation, we'll take a look at a very simple code that implements a dummy module for the Linux kernel (the code does nothing, but it prints some messages on the console), and we'll try to cross-compile it.
Let's consider this following kernel C code of the dummy module:
#include <linux/module.h>
#include <linux/init.h>

/* This is the function executed during the module loading */
static int dummy_module_init(void)
{
 printk("dummy_module loaded!\n");
 return 0;
}

/* This is the function executed during the module unloading */
static void dummy_module_exit(void)
{
 printk("dummy_module unloaded!\n");
 return;
}

module_init(dummy_module_init);
module_exit(dummy_module_exit);

MODULE_AUTHOR("Rodolfo Giometti <giometti@hce-engineering.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0.0");

Apart from some defines relative to the kernel tree, the file holds two main functions, dummy_module_init() and dummy_module_exit(), and some special definitions, in particular, module_init() and module_exit(), that address the first two functions as the entry and exit the functions of the current module (that is, the functions that are called at module loading and unloading).
Then, consider the following Makefile:
ifndef KERNEL_DIR
$(error KERNEL_DIR must be set in the command line)
endif
PWD := $(shell pwd)
CROSS_COMPILE = arm-linux-gnueabihf-

This specifies the kernel module to be compiled
obj-m += module.o

The default action
all: modules

The main tasks
modules clean:
 make -C $(KERNEL_DIR) ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- \
 SUBDIRS=$(PWD) $@

Note
The C code of the dummy module (dummy.c) and the Makefile can be found in the chapter_03/module directory of the book's example code repository.

OK, now, to cross-compile the dummy module on the host PC, we can use the following command:

$ make KERNEL_DIR=~/A5D3/armv7_devel/KERNEL/
make -C /home/giometti/A5D3/armv7_devel/KERNEL/ \
 SUBDIRS=/home/giometti/github/chapter_03/module modules
make[1]: Entering directory '/home/giometti/A5D3/armv7_devel/KERNEL'
CC [M] /home/giometti/github/chapter_03/module/dummy.o
Building modules, stage 2.
MODPOST 1 modules
CC /home/giometti/github/chapter_03/module/dummy.mod.o
LD [M] /home/giometti/github/chapter_03/module/dummy.ko
make[1]: Leaving directory '/home/giometti/A5D3/armv7_devel/KERNEL'

Tip
It's important to note that when a device driver is released as a separate package with a Makefile compatible with Linux's file, we can compile it natively too! However, even in this case, we need to install a kernel source tree on the target machine. Not only that, the sources must also be configured in the same manner of the running kernel. Otherwise, the resulting driver will not work at all! In fact, a kernel module will only load and run with the kernel it was compiled against.

The cross-compilation result is now stored in the dummy.ko file. , in fact we have:

$ file dummy.ko
dummy.ko: ELF 32-bit LSB relocatable, ARM, EABI5 version 1 (SYSV), Bui
ldID[sha1]=ecfcbb04aae1a5dbc66318479ab9a33fcc2b5dc4, not stripped

Tip
The kernel modules have been compiled for the SAMA5D3 Xplained, but of course, it can be cross-compiled for the other developer kits in a similar manner.

So, let's copy our new module to the SAMA5D3 Xplained using the scp command through the USB Ethernet connection:

$ scp dummy.ko root@192.168.8.2:
root@192.168.8.2's password:
dummy.ko 100% 3228 3.2KB/s 00:00

Now, if we switch on the SAMA5D3 Xplained, we can use the modinfo command to get some information on the kernel module:

root@a5d3:~# modinfo dummy.ko
filename: /root/dummy.ko
version: 1.0.0
license: GPL
author: Rodolfo Giometti <giometti@hce-engineering.com>
srcversion: 1B0D8DE7CF5182FAF437083
depends:
vermagic: 4.4.6-sama5-armv7-r5 mod_unload modversions
 ARMv7 thumb2 p2v8

Then, to load and unload it to and from the kernel, we can use the insmod and rmmod commands:

root@a5d3:~# insmod dummy.ko
[3151.090000] dummy_module loaded!
root@a5d3:~# rmmod dummy.ko
[3153.780000] dummy_module unloaded!

As expected, the dummy's messages have been displayed on the serial console.
Note
If we are using an SSH connection, we have to use the dmesg or tail -f /var/log/kern.log command to see the kernel's messages.
The modinfo, insmod, and rmmod commands are explained in detail in the following section.

The Kernel and DTS files

The main target of this book is to give several suggestions for rapid programming methods to be used on an embedded GNU/Linux system. However, the main target of every embedded developer is to realize programs to manage peripherals, to monitor or to control devices, and other similar tasks to interact with the real world. So, we mainly need to know the techniques useful to get access to the peripheral's data and settings.
That's why, we need to know how to recompile the kernel and how to configure it.
Recompiling the kernel

Our developer kits are well supported, and in this situation, it is quite rare that we need a complete kernel recompilation. However, knowing how to do this step is quite essential for every embedded developer (it may happen that we need to add some external peripherals or modify the default configuration).
Since we decided to use the Robert C. Nelson repositories, we can still continue using them. However, some words must be spent to clarify some basic commands useful to manage the kernel code even if we use a generic kernel repository.
Referring to the SAMA5D3 Xplained kernel compilation in
SAMA5D3 Xplained section in
Chapter 1
, Installing the Developing System, we used the build_kernel.sh script to operate on the sources. However, this is not the standard way to manage the kernel code. In fact, Robert C. Nelson did a very good job, but we want to learn how to manage the kernel even without using his tools! So, let's take a look at what steps build_kernel.sh follows to do its job.
Like every good program, the main procedure is at the end of the file, and there, we will see the following code:
...
. "${DIR}/version.sh"
export LINUX_GIT

unset FULL_REBUILD
#FULL_REBUILD=1
if ["${FULL_REBUILD}"] ; then
 /bin/sh -e "${DIR}/scripts/git.sh" || { exit 1 ; }

 if ["${RUN_BISECT}"] ; then
 /bin/sh -e "${DIR}/scripts/bisect.sh" || { exit 1 ; }
 fi

 if [! -f "${DIR}/.yakbuild"] ; then
 patch_kernel
 fi
 copy_defconfig
fi
if [! "${AUTO_BUILD}"] ; then
 make_menuconfig
fi
if [-f "${DIR}/.yakbuild"] ; then
 BUILD=$(echo ${kernel_tag} | sed 's/[^-]*//'|| true)
fi
make_kernel
make_modules_pkg
make_firmware_pkg
if grep -q dtbs "${DIR}/KERNEL/arch/${KERNEL_ARCH}/Makefile"; then
 make_dtbs_pkg
fi
echo "-----------------------------"
echo "Script Complete"
echo "${KERNEL_UTS}" > kernel_version
echo "eewiki.net: [user@host:~$ export kernel_version=${KERNEL_UTS}]"
echo "-----------------------------"

So, the following steps are performed:
	FULL_REBUILD : Where the sources are checkout out form the Git repositories and then pached
	AUTO_BUILD: Where we configure the kernel
	make_kernel: Where we effectively build up the kernel and its components (modules, firmware, and device trees)
	make_modules_pkg, make_firmware_pkg, and make_dtbs_pkg: Where we create some packages holding the kernel's modules, the firmware binaries, and the device trees

The first step is not related to kernel compilation since it's needed to get the kernel's sources only.
Tip
At this point, we should notice that in order to avoid download the kernel sources each time we execute the script, we should disable this step by unsetting the FULL_REBUILD variable with the following patch:

 --- a/build_kernel.sh
 +++ b/build_kernel.sh
 @@ -227,8 +227,7 @@ fi
 . "${DIR}/version.sh"
 export LINUX_GIT
 -#unset FULL_REBUILD
 -FULL_REBUILD=1
 +unset FULL_REBUILD
 if ["${FULL_REBUILD}"] ; then
 /bin/sh -e "${DIR}/scripts/git.sh" || { exi
 t 1 ; }

Again, the fourth step is just to pack the modules and other kernel's components, and it's not relevant to us. So, the second and third steps are the ones we have to look at carefully:
The make_menuconfig function is defined here:
make_menuconfig () {
 cd "${DIR}/KERNEL" || exit
 make ARCH=${KERNEL_ARCH} CROSS_COMPILE="${CC}" menuconfig
 if [! -f "${DIR}/.yakbuild"] ; then
 cp -v .config "${DIR}/patches/defconfig"
 fi
 cd "${DIR}/" || exit
}

This tells to us that the command to execute the kernel configuration menu is as follows:
make ARCH=${KERNEL_ARCH} CROSS_COMPILE="${CC}" menuconfig

Of course, we have to specify the KERNEL_ARCH and CROSS_COMPILE variables, but considering what we did before, it's quite obvious that the command changes to this:
make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig

To test it, we can go into the directory where SAMA5D3 Xplained's kernel sources are placed (directory A5D3/armv7_devel/KERNEL) and then execute the make command:

$ cd A5D3/armv7_devel/KERNEL
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig

Great, it works! This is the configuration kernel command to use in every situation. When we look at the make_menuconfig function, we see that the result of the kernel configuration is stored in the .config file. This is the file where every setting we do in the kernel configuration stage is placed.
The make_kernel function is a bit more complex, but the relevant code is shown here:
##uImage, if you really really want a uImage, zreladdr needs to be
##defined on the build line going forward...
##make sure to install your distro's version of mkimage
#image="uImage"
#address="LOADADDR=${ZRELADDR}"

cd "${DIR}/KERNEL" || exit
echo "-----------------------------"
echo "make -j${CORES} ARCH=${KERNEL_ARCH} LOCALVERSION=${BUILD} CROSS_
COMPILE="${CC}" ${address} ${image} modules"
echo "-----------------------------"
make -j${CORES} ARCH=${KERNEL_ARCH} LOCALVERSION=${BUILD} CROSS_COMPIL
E="${CC}" ${address} ${image} modules
echo "-----------------------------"

if grep -q dtbs "${DIR}/KERNEL/arch/${KERNEL_ARCH}/Makefile"; then
 echo "make -j${CORES} ARCH=${KERNEL_ARCH} LOCALVERSION=${BUILD} CR
OSS_COMPILE="${CC}" dtbs"
 echo "-----------------------------"
 make -j${CORES} ARCH=${KERNEL_ARCH} LOCALVERSION=${BUILD} CROSS_CO
MPILE="${CC}" dtbs
 echo "-----------------------------"
fi

We can find the make commands again that do the job. They're reported here:
make -j${CORES} ARCH=${KERNEL_ARCH} LOCALVERSION=${BUILD} CROSS_COMPIL
E="${CC}" ${address} ${image} modules
make -j${CORES} ARCH=${KERNEL_ARCH} LOCALVERSION=${BUILD} CROSS_COMPIL
E="${CC}" dtbs

The former compiles the kernel and its modules, while the latter generates the device tree files (see the next section for further information on the device tree).
Again, we have to substitute the proper values to the variables mentioned earlier, but this is a tricky task. In fact, the CORES variable is just a number equal to the core number of our host PC. KERNEL_ARCH and CROSS_COMPILE must be obviously set to arm and arm-linux-gnueabihf-, while BUILD is just a descriptive string. So, we can choose whatever we wish. The last variables address and image need some more explanation. In fact, we can choose to compile the kernel in two main formats: uImage and zImage. For the former compilation, we need to specify a load address also (the LOADADDR variable), while for the latter, we don't. Since it's the form we used in our developer kits, the two commands mentioned earlier can be rewritten as follows:
make -j8 ARCH=arm LOCALVERSION="dummy" CROSS_COMPILE=arm-linux-gnueabi
hf- zImage modules dtbs

Then, to verify that everything is well configured, we just have to test the command:

$ make -j8 ARCH=arm LOCALVERSION="dummy"
 CROSS_COMPILE=arm-linux-gnueabihf- zImage modules dtbs
CHK include/config/kernel.release
...
LD kernel/built-in.o
LINK vmlinux
LD vmlinux.o
MODPOST vmlinux.o
GEN .version
CHK include/generated/compile.h
UPD include/generated/compile.h
CC init/version.o
LD init/built-in.o
KSYM .tmp_kallsyms1.o
KSYM .tmp_kallsyms2.o
LD vmlinux
SORTEX vmlinux
SYSMAP System.map
Building modules, stage 2.
OBJCOPY arch/arm/boot/Image
Kernel: arch/arm/boot/Image is ready
...

Yes, it works! Now, we're ready to recompile every kernel tree.

The device tree

The device tree is a data structure to describe hardware. That's all. Rather than hard coding every kernel setting into the code, it can be described in a well-defined data structure that is passed to the kernel at boot time.
The difference between the device tree and the kernel configuration file (the .config file) is that while the .config file tells us which components of the kernel are enabled and which are not, the device tree holds their configurations. So, if we wish to add a driver from the kernel's sources to our system, we have to specify it into the .config file. On the other hand, if we wish to specify the driver settings (memory addresses, special settings, and so on), we have to specify them in the device tree.
In all our developer kits, during the boot stage, we can see some messages from U-Boot's serial console as shown here:

...
reading /dtbs/at91-sama5d3_xplained.dtb
34918 bytes read in 11 ms (3 MiB/s)
reading zImage
3810568 bytes read in 244 ms (14.9 MiB/s)
Kernel image @ 0x22000000 [0x000000 - 0x3a2508]
Flattened Device Tree blob at 21000000
 Booting using the fdt blob at 0x21000000
 Loading Device Tree to 2fadc000, end 2fae7865 ... OK
Starting kernel ...
...

Here, we can see that U-Boots loads a DTB file (the binary form of a device tree) and that it passes the file to the kernel.
So, it's time to take a look at how a device tree source (DTS) file is done and how we can generate a device tree binary (DTB) file from it in order to be used to our kernel. As a very simple example, let's see how the LEDs driver (will see this special driver in LEDs and triggers section, Chapter 6
, General Purposes Input Output signals – GPIO
) can be enabled and how it's defined into the default SAMA5D3 Xplained's DTS file.
To enable the LED driver compilation, we must open the Kernel Configuration menu and then navigate to Device Drivers | LED Support sub menu to enable the proper entries, as shown in the following screenshot:

[image: The device tree]

These settings result in the following output in the.config file:

$ grep '^CONFIG_LEDS_' .config
CONFIG_LEDS_CLASS=y
CONFIG_LEDS_GPIO=y
CONFIG_LEDS_PWM=y
CONFIG_LEDS_TRIGGERS=y
CONFIG_LEDS_TRIGGER_TIMER=y
CONFIG_LEDS_TRIGGER_HEARTBEAT=y
CONFIG_LEDS_TRIGGER_GPIO=y

This enabled the de-facto kernel compilation. However, to effectively define the LEDs present into the SAMA5D3 Xplained, we have to use the following code hold in the arch/arm/boot/dts/at91-sama5d3_xplained.dts file from the kernel's tree:
leds {
 compatible = "gpio-leds";

 d2 {
 label = "d2";
 gpios = <&pioE 23 GPIO_ACTIVE_LOW>;
 linux,default-trigger = "heartbeat";
 };

 d3 {
 label = "d3";
 gpios = <&pioE 24 GPIO_ACTIVE_HIGH>;
 };
};

The scope of this book does not explain how the device tree works. However, we must explain the preceding code a bit since we're going to use the device tree in several parts of this book.
Tip
You can get more information on the device tree at the project's home site at:
http://www.devicetree.org/
.

Text between the characters pairs /* and */ are comments, while the leds string on the first line of the preceding code is the label of a new block related to the LEDs driver. In fact, this is specified by the next line where the compatible property is. The gpio-leds string defines the LEDs driver as specified in the drivers/leds/leds-gpio.c file:
static const struct of_device_id of_gpio_leds_match[] = {
 { .compatible = "gpio-leds", },
 {},
};

Then, the sub-blocks labeled as d2 and d3 define two LEDs labeled with the same names. The gpios lines definition follows, that is, the specification of the GPIOs where the LEDs are physically connected.
As a final note, we see that in the d2 block definition, there is specified a special setting:
linux,default-trigger = "heartbeat";

This is to define the trigger to be used for the LED.
Tip
For further information regarding the LEDs driver and its trigger, you can take a look at the Documentation/leds/ directory in the Linux's code repository.

The preceding device tree code is very simple, and it cannot explain all the device tree's components. However, don't worry. Each time, we'll use a device tree settings, we're going to explain it as best as possible.

What is a device driver?

A device driver is a special code that interfaces a physical device into the system and exports it to the user-space processes using a well-defined API. In a UNIX-like OS, where everything is a file, the physical device is represented as a file. Then, the device driver implements all the system calls a process can do on a file.
Tip
The difference between a normal C function and a system call is just the fact that the latter is mainly executed into the kernel while a function executes into the user space only. For example, printf() is a function while write() is a system call. The latter (except for the prologue and epilogue part of a C function) executes into the kernel space, while the former executes into the user space (even if it calls write() to actually write its data to the output stream).
The system calls are used to communicate with the peripherals, with other processes, and to get access to the kernel's internal data. That's why a system call triggers a switch from user space to kernel space where important code is executed, and after execution, the code switched back to user space to execute normal code. For this reason, the code executed in the kernel space is considered a code that is executed in a privileged mode.

As an example, let's consider the GPIO subsystem we already saw in the previous chapter where we talked about U-Boot. In Linux, we can manage these devices easily using some files in sysfs (we'll discuss more in detail in the following paragraphs). For each GPIO lines, we got a directory called /sys/class/gpio/gpioXX/ where we can find the value and direction files. Each read() system calls on the value file (for example, by issuing the cat /sys/class/gpio/gpioXX/value command) and is translated by the kernel in the gpio_read() kernel method that actually does the reading of the gpioXX status.

[image: What is a device driver?]

Tip
At the moment, we cannot still try these commands, so the reader should believe that this is actually what happens! Otherwise, they can skip to Chapter 6
, General Purposes Input Output signals - GPIO
, where GPIOs management is shown.

When we do a read() system call on another file under the /dev directory, the kernel translates the read() system call into the corresponding device driver's method that actually executes the reading.
Note that the system call is always the same (read()), but inside the kernel, the right method is called each time! You should imagine that this mechanism works like an object programming language: read() is a method that operates in a different manner according to the object (device) passed to it.
Tip
For further information on how this complex mechanism exactly works and for everything about the device drivers in Linux, you can take a look at the book Linux Device Drivers, Third Edition available at the bookshop and online at:
http://lwn.net/Kernel/LDD3/
.

Char, block, and net devices

In the Linux kernel, three major device types exist:
	Char device : This kind of device groups all the peripherals that can be accessed as a stream of bytes, such as a file (that is, serial ports, audio devices, and so on). A char driver is in charge of implementing this behavior usually by implementing at least the open(), close(), read(), and write() system calls. Char device drivers have the ioctl() system call that allows the developer to invent any interface necessary (it acts as a general purpose method).
	Block device : This kind of device groups all the peripherals that can host a filesystem, so it is accessed as a block of bytes (usually 512 or a larger power of two).
	Net device : This kind of device groups all the peripherals that can manage a network transaction. In a different manner from char and block devices, these special devices have no related filesystem nodes, such as /dev/ttyACM0 or /dev/sdb1.

A driver interfacing, a char device is usually called char driver, while a driver for a block device is called block driver, and of course, the net driver is the driver for a net device.
Despite these three major groups, in recent kernel releases, we can find several subgroups (or classes) of device drivers that are still based on one of the major groups but that are specialized in managing a particular device type, for example, the real-time clock (RTC) devices that are represented by a dedicated device driver class defined under the /drivers/rtc directory in the Linux source tree. In the same manner, the Pulse Per Second devices (PPS) have a dedicated device driver class defined under the /drivers/pps directory, and the same is the case for the input devices (mice, keyboards, and so on) that are defined under the /drivers/input directory. All these specific device drivers are implemented using the char drivers.
Another way to interact with a device is to use the sysfs filesystem (see the relative section below in this chapter). Strictly speaking, this not regular a device driver, that is, it's not implemented as a char or block or net device, but it uses a different API. It uses an in-memory representation of the device's internals that permits to get access to it in a simple and clean way using the file abstraction (that is everything is a file).

Modules versus built-in devices

The Linux kernel holds by default a lot of device drivers, but it may happen that we need to install into the system a recent one not yet imported into the kernel tree for several reasons (that is, the driver is very new, or nobody asked for its insertion, or just because we write it ourselves!). In this case, we need to know some techniques about how a device driver can be compiled (advanced details about a device driver and how it can be used to exchange data with a peripheral will be explained in detail in the following chapters).
The device driver compilation steps may vary, and two major possibilities exist:
	​The driver's source code is a patch to be applied to the kernel tree.
	​The driver's source code has a standard
Makefile
compatible with Linux'sfile.

The first case is quite simple since after the device driver's patch has been applied, the developer just needs to recompile the kernel. In this case, the driver can be compiled as kernel built-in or as kernel module.
Note
A kernel module is a special binary file that can be inserted in the kernel at runtime when a specific functionality is requested. This prevents us from having a very large kernel image. In fact, we can select which functionalities are required since the boot and which ones can be loaded later on a demand basis.
For example, when a new device is inserted into the system, the kernel may ask for loading a kernel module that holds the corresponding device driver. However, a module may also be built as a monolithic part of the kernel (kernel built-in).

The first case is just a normal kernel recompilation, while the latter case is a bit more complex, but all the complexity is managed by Makefile. The user has to properly configure it and then execute the make command only.
When a device driver code is not merged into the kernel sources, then the driver can be compiled as a kernel module only!
We just saw how to write a simple kernel module. Right now, we've to see the tools to effectively manage such modules.

The modutils

The basic command to load a module into the kernel is insmod. However, another command exists to load a module (and its dependencies), and its name is modprobe.
Actually, there is a group of commands to manage the kernel modules. They are called the modutils. On a Debian or Ubuntu system, the modutils are stored into a package named kmod:

$ apt-cache show kmod
Package: kmod
Priority: important
Section: admin
Installed-Size: 241
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Marco d'Itri <md@linux.it>
Architecture: amd64
Version: 22-1ubuntu4
Depends: libc6 (>= 2.17), libkmod2 (= 22-1ubuntu4), lsb-base (>= 4.1+D
ebian11ubuntu7)
Breaks: oss-compat (= 4)
Filename: pool/main/k/kmod/kmod_22-1ubuntu4_amd64.deb
Size: 89122
MD5sum: bcfb58ca2dbc2f77137193b73c61590d
SHA1: 539d2410d0182f212b78a67b649135507c9fd9bb
SHA256: a65398f087ad47192e728ecbffe92e0363c03d229d72dc1d2f8b409880c9d0
ea
Description-en: tools for managing Linux kernel modules
This package contains a set of programs for loading, inserting, and
removing kernel modules for Linux.
It replaces module-init-tools.
...

The available commands in the preceding package can be listed here:

$ dpkg -L kmod | grep sbin\/
/sbin/insmod
/sbin/depmod
/sbin/modprobe
/sbin/rmmod
/sbin/lsmod
/sbin/modinfo

Let's see a bit of these commands in detail:
	The insmod loads a module into the kernel.
	The lsmod command shows to the user all the current modules loaded into the kernel. By running it on my PC, I get a long listing. So, here are a few lines:
 $ lsmod
 Module Size Used by
 pci_stub 16384 1
 vboxpci 24576 0
 vboxnetadp 28672 0
 vboxnetflt 28672 0
 vboxdrv 454656 3 vboxnetadp,vboxnetflt,vboxpci
 pl2303 20480 0
 ftdi_sio 53248 0

On the first column are reported all the modules currently loaded into my system. The second column is the module size in bytes, while the third column is the use count by other modules or user space accesses, which are listed in the fourth column.

	The modprobe command is more complex than insmod, because it can handle the dependencies of the module, that is, it can load all the modules needed by the user-requested one to run.
	The depmod command can be used to build a dependencies table suitable for the modprobe command.Note
Explaining in detail how this mechanism works is out of the scope of this book. You can take a look at the depmod command's man pages using the man depmod command.

	The rmmod command can be used to unload a module from the system releasing the RAM and other resources taken during its usage.Note
This can be done only if the module is not actually used by other modules in the system. This fact is true when the number in the Used by column in the preceding output of the lsmod command is equal to 0.

Writing our own device driver

We can now try to implement GPIOs management code that allows us to count how many state transactions a single GPIO line does. Actually, what we are going to do is not write a proper device driver, but we're going to write a kernel code that manages a peripheral, which is very close to be a real device driver! Simply speaking, I can use the next example to show you how a kernel functionality can be abstracted as a file.
Let's suppose we need to count some pulses that arrive on our SAMA5D3 Xplained at a certain amount of time. In this case, we can use one GPIO for each pulse source.
Tip
Note that this situation is quite common, and it can be found in some counters' devices! In fact, these devices, that simply count a quantity (water or oil litres, an energy power meter, and so on), return the counting as frequency modulated pulses.

In this situation, we can use a really simple kernel code to implement a new device class under sysfs that we can use to abstract these measurements to the user space. We use kernel code since the pulses can go fast. So, in order to have better responsiveness from our board, we must use interrupts. What we wish to do is install an interrupt handler that is called each time a specified GPIO line changes its status from low to high or from high to low or both. Then, we wish to have some dedicated files where we can read how many pulses have arrives since the last measurement.
As already stated, to simplify the implementation, we're not going to write a regular device driver (char, block or net device), but we're going to use a class instead. Even if this is not a proper driver, this solution allows us to see how a really simple kernel code works without going too deeply into device drivers programming (this topic is not covered by this book).
Using our new driver, you will see a new class named pulse and a new directory per device where you can read the actual counting.
Here is a simple example of the final result:

root@a5d3:~# tree -l -L 2 /sys/class/pulse/
/sys/class/pulse/
+-- oil -> ../../devices/soc0/pulses/pulse/oil
| +-- counter
| +-- counter_and_reset
| +-- device -> ../../../pulses [recurs., not follow]
| +-- power
| +-- set_to
| +-- subsystem -> ../../../../../class/pulse [recurs., not follow]
| \-- uevent
\-- water -> ../../devices/soc0/pulses/pulse/water
 +-- counter
 +-- counter_and_reset
 +-- device -> ../../../pulses [recurs., not follow]
 +-- power
 +-- set_to
 +-- subsystem -> ../../../../../class/pulse [recurs., not follow]
 \-- uevent

8 directories, 8 files

In the preceding example, we have two pulse devices named oil and water, represented by the same name directories, and for each device, three attributes files are named: counter, counter_and_reset, and set_to (the other files named power and subsystem are not of interest to us).
You can now use the counter file to read the counting data, while by using the counter_and_reset file, you can do the same as with the counter file. However, after reading the data, the counter is automatically reset to the value 0. On the other side, using the set_to file, you can initialize the counter to a specific value different from 0.
Now, before continuing to describe the driver, a simple explanation of the code is needed. We have three files, and the first one is Makefile shown here:
ifndef KERNEL_DIR
$(error KERNEL_DIR must be set in the command line)
endif
PWD := $(shell pwd)
CROSS_COMPILE = arm-linux-gnueabihf-

obj-m = pulse.o
obj-m += pulse-gpio.o

all: modules

modules clean:
 $(MAKE) -C $(KERNEL_DIR) ARCH=arm CROSS_COMPILE=$(CROSS_COMPILE) \
 SUBDIRS=$(PWD) $@

Tip
The code is held in the chapter_03/pulse/Makefile file in the book's example code repository.

As we can see, it's quite similar to the one presented earlier. The only difference is in the obj-m variable. In fact, this time, it declares two object files: pulse.o and pulse-gpio.o.
The pulse-gpio.o file can obviously be obtained by compiling the pulse-gpio.c file that holds the definition of the pulse's GPIO sources, because we can suppose that not only the GPIOs can be possible pulse sources.
The relevant part of the pulse-gpio.c file is the pulse_gpio_probe() function, which is reported here:
static int pulse_gpio_probe(struct platform_device *pdev)
{
 struct device *dev = &pdev->dev;
 struct fwnode_handle *child;
 struct pulse_gpio_priv *priv;
 int count, ret;
 struct device_node *np;

 /* Get the number of defined pulse sources */
 count = device_get_child_node_count(dev);
 if (!count)
 return -ENODEV;

 /* Allocate private data */
 priv = devm_kzalloc(dev, sizeof_pulse_gpio_priv(count),
 GFP_KERNEL);
 if (!priv)
 return -ENOMEM;

 device_for_each_child_node(dev, child) {
 int irq, flags;
 struct gpio_desc *gpiod;
 const char *label, *trigger;
 struct pulse_device *new_pulse;

 /* Get the GPIO descriptor */
 gpiod = devm_get_gpiod_from_child(dev, NULL, child);
 if (IS_ERR(gpiod)) {
 fwnode_handle_put(child);
 ret = PTR_ERR(gpiod);
 goto error;
 }
 gpiod_direction_input(gpiod);

 np = to_of_node(child);

 /* Get the GPIO's properties */
 if (fwnode_property_present(child, "label")) {
 fwnode_property_read_string(child, "label",
 &label);
 } else {
 if (IS_ENABLED(CONFIG_OF) && !label && np)
 label = np->name;
 if (!label) {
 ret = -EINVAL;
 goto error;
 }
 }

 flags = 0;
 ret = fwnode_property_read_string(child, "trigger",
 &trigger);
 if (ret == 0) {
 if (strcmp(trigger, "rising") == 0)
 flags |= IRQF_TRIGGER_RISING;
 else if (strcmp(trigger, "fallng") == 0)
 flags |= IRQF_TRIGGER_FALLING;
 else if (strcmp(trigger, "both") == 0)
 flags |= IRQF_TRIGGER_RISING | \
 IRQF_TRIGGER_FALLING;
 else {
 ret = -EINVAL;
 goto error;
 }
 }

 /* Register the new pulse device */
 new_pulse = pulse_device_register(label, dev);
 if (!new_pulse) {
 fwnode_handle_put(child);
 ret = PTR_ERR(new_pulse);
 goto error;
 }

 /* Is GPIO in pin IRQ capable? */
 irq = gpiod_to_irq(gpiod);
 if (irq < 0) {
 ret = irq;
 goto error;
 }

 /* Ok, now we can request the IRQ */
 ret = request_irq(irq, (irq_handler_t) irq_handler,
 flags, PULSE_GPIO_NAME, new_pulse);
 if (ret < 0)
 goto error;

 priv->pulse[priv->num_pulses].dev = new_pulse;
 priv->pulse[priv->num_pulses].irq = irq;
 priv->num_pulses++;
 }

 platform_set_drvdata(pdev, priv);

 return 0;

error:
 /* Unregister everything in case of errors */
 for (count = priv->num_pulses - 1; count >= 0; count--) {
 if (priv->pulse[count].dev)
 pulse_device_unregister(priv->pulse[count].dev);
 if (priv->pulse[count].irq && priv->pulse[count].dev)
 free_irq(priv->pulse[count].irq, priv->pulse[count].dev);
 }

 return ret;
}

This function parses the device tree settings and then defines the new pulse devices according to these settings. As already stated earlier, the device tree is defined into a DTS file. In particular, for the SAMA5D3 Xplained, the file is KERNEL/arch/arm/boot/dts/at91-sama5d3_xplained.dts (see the kernel sources downloaded in SAMA5D3 Xplained section in Chapter 1
, Installing the Developing System, in the A5D3/armv7_devel directory). So, if we modify it as shown here, we can define two pulse devices named oil and water connected to gpio17 (PA17) and gpio19 (PA19), respectively, both exported on the SAMA5D3 Xplained expansion connector:
--- a/arch/arm/boot/dts/at91-sama5d3_xplained.dts
+++ b/arch/arm/boot/dts/at91-sama5d3_xplained.dts
@@ -332,5 +332,22 @@
 label = "d3";
 gpios = <&pioE 24 GPIO_ACTIVE_HIGH>;
 };
+
+ };
+
+ pulses {
+ compatible = "gpio-pulses";
+
+ oil {
+ label = "oil";
+ gpios = <&pioA 17 GPIO_ACTIVE_HIGH>;
+ trigger = "both";
+ };
+
+ water {
+ label = "water";
+ gpios = <&pioA 19 GPIO_ACTIVE_HIGH>;
+ trigger = "rising";
+ };
 };
 };

Tip
The patch is held in the chapter_03/pulse/pulse-gpio_at91-sama5d3_xplained.dts.patch file in the book's example code repository.

You should also notice that while the water pulse device is triggered on the rising edge of the input transaction, the oil one is triggered on both edges.
Using the preceding code into our DTS file, we can expect that pulse_gpio_probe() executes two loops where it reads all the configuration data of each pulse source and then calls the pulse_device_register() function to define the new device into the kernel. After that, it calls the request_irq() function, which is used to declare an interrupt handler (the handler irq_handler() function) connected to the GPIO status where the effective counting takes place. In fact, the handler looks like this:
static irqreturn_t irq_handler(int i, void *ptr, struct pt_regs *regs)
{
 struct pulse_device *pulse = (struct pulse_device *) ptr;

 BUG_ON(!ptr);

 pulse_event(pulse);

 return IRQ_HANDLED;
}

At this point, we must point out three important things:
	​The kernel module does not use the classic module_init() and module_exit() functions used into our kernel module example shown earlier.
	The pulse_gpio_probe() function and its opposite pulse_gpio_remove() calls the functions pulse_device_register() and pulse_device_unregister(), respectively to add and remove a pulse device from the kernel.
	The interrupt handler irq_handler() calls the pulse_event() function to signal to the system that a particular pulse event has arrived.

Regarding the first point, we can observe that the missing functions are actually used by the module_platform_driver() statement, which is defined into the kernel file include/linux/platform_device.h as follows:
#define module_platform_driver(__platform_driver) \
 module_driver(__platform_driver, platform_driver_register, \
 platform_driver_unregister)

Then, module_driver() is defined into the kernel file include/linux/device.h as shown here, where we can see that module_init() and module_exit() are called:
#define module_driver(__driver, __register, __unregister, ...) \
static int __init __driver##_init(void) \
{ \
 return __register(&(__driver) , ##__VA_ARGS__); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \
 __unregister(&(__driver) , ##__VA_ARGS__); \
} \
module_exit(__driver##_exit);

Regarding the second and third points, about the pulse_device_register(), pulse_device_unregister(), and pulse_event() functions, we observed that these functions are defined into the third file composing our driver, that is, the pulse.c file. Here is a snippet of such a file where the functions are defined:
void pulse_event(struct pulse_device *pulse)
{
 atomic_inc(&pulse->counter);
}
EXPORT_SYMBOL(pulse_event);

struct pulse_device *pulse_device_register(const char *name,
 struct device *parent)
{
 struct pulse_device *pulse;
 dev_t devt;
 int ret;

 /* First allocate a new pulse device */
 pulse = kmalloc(sizeof(struct pulse_device), GFP_KERNEL);
 if (unlikely(!pulse))
 return ERR_PTR(-ENOMEM);

 mutex_lock(&pulse_idr_lock);
 /*
 * Get new ID for the new pulse source. After idr_alloc() calling
 * the new source will be freely available into the kernel.
 */
 ret = idr_alloc(&pulse_idr, pulse, 0, PULSE_MAX_SOURCES,
 GFP_KERNEL);
 if (ret < 0) {
 if (ret == -ENOSPC) {
 pr_err("%s: too many PPS sources in the system\n", name);
 ret = -EBUSY;
 }
 goto error_device_create;
 }
 pulse->id = ret;
 mutex_unlock(&pulse_idr_lock);

 devt = MKDEV(MAJOR(pulse_devt), pulse->id);

 /* Create the device and init the device's data */
 pulse->dev = device_create(pulse_class, parent, devt, pulse,
 "%s", name);
 if (unlikely(IS_ERR(pulse->dev))) {
 dev_err(pulse->dev, "unable to create device %s\n", name);
 ret = PTR_ERR(pulse->dev);
 goto error_idr_remove;
 }
 dev_set_drvdata(pulse->dev, pulse);
 pulse->dev->release = pulse_device_destruct;

 /* Init the pulse data */
 strncpy(pulse->name, name, PULSE_NAME_LEN);
 atomic_set(&pulse->counter, 0);
 pulse->old_status = -1;

 dev_info(pulse->dev, "pulse %s added\n", pulse->name);

 return pulse;

error_idr_remove:
 mutex_lock(&pulse_idr_lock);
 idr_remove(&pulse_idr, pulse->id);

error_device_create:
 mutex_unlock(&pulse_idr_lock);
 kfree(pulse);

 return ERR_PTR(ret);
}
EXPORT_SYMBOL(pulse_device_register);

void pulse_device_unregister(struct pulse_device *pulse)
{
 /* Drop all allocated resources */
 device_destroy(pulse_class, pulse->dev->devt);

 dev_info(pulse->dev, "pulse %s removed\n", pulse->name);
}
EXPORT_SYMBOL(pulse_device_unregister);

You can see all the steps done to create the driver data structures into the register function and the respective inverse steps done into the unregister one. Then, the pulse_event()function is just a counter increment.
Also, you should notice that all functions are declared as exported symbols by the code:
EXPORT_SYMBOL(pulse_event);
EXPORT_SYMBOL(pulse_device_register);
EXPORT_SYMBOL(pulse_device_unregister);

This says to the compiler that these functions are special because they can be used by other kernel modules.
At the module initialization (the pulse_init()function), we use class_create() to create our new pulse class and, as the opposite action, at the module exit (the pulse_exit()function), we destroyed it by calling class_destroy().
You should now take attention to the pulse_init()function at line:
pulse_class->dev_groups = pulse_groups;

Using such an assignment, we will declare the three attribute files, count, counter_and_reset, and set_to that are all reported in struct pulse_attrs:
static struct attribute *pulse_attrs[] = {
 &dev_attr_counter.attr,
 &dev_attr_counter_and_reset.attr,
 &dev_attr_set_to.attr,
 NULL,
};

Each entry of the preceding structure is created by the DEVICE_ATTR_XX() function as outlined here:
static ssize_t counter_show(struct device *dev,
 struct device_attribute *attr, char *buf)
{
 struct pulse_device *pulse = dev_get_drvdata(dev);

 return sprintf(buf, "%d\n", atomic_read(&pulse->counter));
}
static DEVICE_ATTR_RO(counter);

This code specifies the attributes of the dev_attr_gpio.attr entry by declaring the file attribute counter as read-only, and when the function body counter_show() is called each time from the user space, we do a read() system call on the file. In fact, as there are read() and write() system calls for files, there are show() and store() functions for sysfs attributes.
As a dual example, the following code declares the attributes of the dev_attr_set_to.attr entry by declaring the file attribute set_to as write-only, and when the set_to_store()function body is called each time from the user space, we do a write() system call on the file:
static ssize_t set_to_store(struct device *dev,
 struct device_attribute *attr,
 const char *buf, size_t count)
{
 struct pulse_device *pulse = dev_get_drvdata(dev);
 int status, ret;

 ret = sscanf(buf, "%d", &status);
 if (ret != 1)
 return -EINVAL;

 atomic_set(&pulse->counter, status);

 return count;
}
static DEVICE_ATTR_WO(set_to);

Tip
Note that the sprintf() and sscanf()functions, which are quite common functions for C programmers, are not the ones implemented into libc. Rather they are homonym functions written ad-hoc for the kernel space to simplify the kernel code development by representing to the developer well-known functions.

You should also notice that for the show() and store() functions we have that:
	​The attribute files are the ones that get/set the data from/to the user space by reading/writing the data into the buffer pointed by the buf pointer.
	All these functions work on the dev pointer that represents the device that is currently accessed, that is, if the user gets access to the device oil, the dev pointer will point to a data structure representing such a device! This recalls the object-oriented programming model, and this magic allows the developer to write a clean and compact code!

At this time, the driver functioning should be clear. The pulse.c (the core of our driver) file defines the basic structures and functions, while the pulse-gpio.c file, by reading the device tree, defines the pulse sources based on GPIOs (note that this solution is quite generic, and it allows the developers to add other kinds of sources into pulse.c using the mechanisms).
Now, to test the code, we should compile it, so let's use the command:

$ make KERNEL_DIR=~/A5D3/armv7_devel/KERNEL/

If everything works well, we should get the two kernel modules pulse.ko and pulse-gpio.ko we defined in Makefile.
Tip
Note that KERNEL_DIR points to the directory where the kernel sources are downloaded into SAMA5D3 Xplained section in Chapter 1
, Installing the Developing System
, so you should set it according to your system configuration.

So, let's copy the two files into the SAMA5D3 Xplained using the scp command:

$ scp *.ko root@192.168.8.2:

Then, load the pulse.ko module with the following command:

root@a5d3:~# insmod pulse.ko

Looking at the kernel messages with dmesg, we should see the following message:

Pulse driver support v. 0.80.0 - (C) 2014-2016 Rodolfo Giometti

Great! The new device class is now defined into the kernel. In fact, looking into the sysfs directory /sys/class/, we see that the new class is up and running:

root@a5d3:~# ls -ld /sys/class/pulse/
drwxr-xr-x 2 root root 0 Apr 2 17:45 /sys/class/pulse/

Now, we should add the two devices oil and water defined into the device tree and enabled by the pulse-gpio.ko module as shown here:

root@a5d3:~# insmod pulse-gpio.ko

Again, using the dmesg command, we should see two new kernel messages:

pulse oil: pulse oil added
pulse water: pulse water added

This is what we expected! Now in the sysfs we now have:

root@a5d3:~# ls /sys/class/pulse/
oil water

Perfect! The system is now ready to count the pulses on the programmed GPIOs, but how we can generate these pulses to test the new driver? Well, this is quite simple. We can use another GPIO as the pulse generator and the script in the chapter_03/pulse_gen.sh file of the book's example code repository to actually generate the pulses. If we connect gpio16 (PA16) to gpio17 (PA17), and in another terminal window, if we run the preceding script with the following command line, we would generate a 4Hz pulse signal from the first GPIO to the second one where the oil counter is connected:

root@a5d3:~# ./pulse_gen.sh a5d3 A16 4

So, if we try to read its data, we get the following line of code:

root@a5d3:~# cat /sys/class/pulse/oil/counter
48

If we try to read the counter file, we see that it increments (more or less) at the speed of 4 pulses per second. However, the functioning may be more clear if we use the following commands that reset the counter first (using the set_to file) and then use the counter_and_reset file to restart the counting after each reading:

root@a5d3:~# echo 0 > /sys/class/pulse/oil/set_to ; \
 while sleep 1 ; do \
 cat /sys/class/pulse/oil/counter_and_reset ; \
 done
7
8
8
8

Tip
Note that we get 8 instead of 4 because the pulse driver counts both high-to-low and low-to-high transactions (try to connect gpio16 (PA16) to the water counter to see 4). Also, note that the 7 is due to the fact that there can be some delays in reading the counting data due to the fact we're using a Bash script to generate the waveform, which is certainly not the best solution (even if it's certainly the quickest).

The root filesystem (rootfs)

The root filesystem (rootfs) is the main filesystem for an UNIX-like operative system. It contains the very critical files needed for the whole system to work (for instance, the init process), so if the root filesystem gets corrupted, the system will not work at all!
The root filesystem is the first filesystem the kernel mounts at boot, and it is never unmounted.
A rootfs can be used on several different types of storage devices (disks, flashes, and so on). A filesystem can stay in the RAM or even over the network, and according to the storage device where it's placed on, it can have different formats. This is because it has to take into account some special feature of the underlying storage media. In a typical GNU/Linux system, a rootfs type can be (mostly) EXT3/EXT4 or JFFS2/UBIFS. The first two formats are the standard Linux filesystems used into hard disks, USB storage devices, microSDs, and other block devices, while the JFFS2 and UBIFS are filesystems used on fla devices (nowadays, NAND flashes).
Tip
sh devices (nowadays, NAND flashes). You might be willing to know the differences between these filesystems so that you can start your studies from
https://en.wikipedia.org/wiki/File_system#Unix_and_Unix-like_operating_systems
.

Apart from the format we're using in our system, we can find the same files and directory set in a root filesystem. Here is the typical listing on both my host PC and one developer kit of this book (see the uname output to distinguish the architecture):

$ uname -a
Linux ubuntu1510 4.2.0-35-generic #40-Ubuntu SMP Tue Mar 15 22:15:45 U
TC 2016 x86_64 x86_64 x86_64 GNU/Linux
$ ls /
bin dev initrd.img lib64 mnt root srv usr vmlinuz.old
boot etc initrd.img.old lost+found opt run sys var
cdrom home lib media proc sbin tmp vmlinuz
root@wb:~# uname -a
Linux wb 4.4.7-armv7-x6 #1 SMP Sun Apr 17 18:41:21 CEST 2016 armv7l GN
U/Linux
root@wb:~# ls /
bin dev home lost+found mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr

As we can see, they're almost the same (apart some files), and we can write the same directories. I can write a complete chapter on these directories and the files they hold, but this not the scope of this book. However, I can spend some paragraphs to explain the directories we're going to refer to in this book.
Tip
To get a complete listing of these directories and their contents and explanations, refer to
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
.

In particular, we'll see the following directories: /dev that is related to the system's devices or peripherals, /proc and /sys that are related to special virtual filesystem where we can get/set some system's settings, and /run and other directories related to the temporary filesystem.
The /dev directory

This is the directory where all devices (apart from the net devices) are mapped, that is, where the block or character special files (used to address all the relative peripherals into the system) are usually placed.
At very beginning of the UNIX era, this directory was simply a standard directory with several block and character files (one per possible device connected to the system). However, during the evolution of UNIX (and Linux), this solution become very inefficient (due the very large peripheral numbers). So, Linux developers implemented different solutions to address this problem until the current one that uses a special temporary filesystem named devtmpfs.
The devtmpfs filesystem is just like the temporary filesystem, but it lets the kernel create a tmpfs instance very early at kernel initialization, before any driver-core device is registered. This is because each device must be mapped here as soon as it is activated by its relative driver.
We can take a look at this using the findmnt command:

root@wb:~# findmnt /dev
TARGET SOURCE FSTYPE OPTIONS
/dev devtmpfs devtmpfs rw,relatime,size=1016472k,nr_inodes=186701,mo
de=7555

The files under /dev in the Wandboard are reported here:

root@wb:~# ls /dev/
apm_bios mapper stdin tty29 tty51 uhid
ashmem mem stdout tty3 tty52 uinput
autofs memory_bandwidth tty tty30 tty53 urandom
binder mmcblk0 tty0 tty31 tty54 vcs
block mmcblk0p1 tty1 tty32 tty55 vcs1
btrfs-control mqueue tty10 tty33 tty56 vcs2
bus net tty11 tty34 tty57 vcs3
char network_latency tty12 tty35 tty58 vcs4
console network_throughput tty13 tty36 tty59 vcs5
cpu_dma_latency null tty14 tty37 tty6 vcs6
cuse port tty15 tty38 tty60 vcsa
disk ppp tty16 tty39 tty61 vcsa1
dri pps0 tty17 tty4 tty62 vcsa2
fb0 psaux tty18 tty40 tty63 vcsa3
fd ptmx tty19 tty41 tty7 vcsa4
full ptp0 tty2 tty42 tty8 vcsa5
fuse pts tty20 tty43 tty9 vcsa6
i2c-0 random tty21 tty44 ttymxc0 vga_arbiter
i2c-1 rfkill tty22 tty45 ttymxc2 watchdog
initctl rtc tty23 tty46 ttyS0 watchdog0
input rtc0 tty24 tty47 ttyS1 xconsole
kmem shm tty25 tty48 ttyS2 zero
kmsg snapshot tty26 tty49 ttyS3
log snd tty27 tty5 ttyS4
loop-control stderr tty28 tty50 ttyS5

We can recognize some known devices such as the serial ports (ttyS0, ttyS1, and so on), the I2C busses (i2c-0 and i2c-1), the real-time clock (rtc), and so on. Other devices are located into sub directories as disks:

root@wb:~# tree /dev/disk/
/dev/disk/
+-- by-id
| +-- mmc-SL16G_0x28a39857 -> ../../mmcblk0
| \-- mmc-SL16G_0x28a39857-part1 -> ../../mmcblk0p1
+-- by-label
| \-- rootfs -> ../../mmcblk0p1
+-- by-path
| +-- platform-2198000.usdhc -> ../../mmcblk0
| +-- platform-2198000.usdhc-part1 -> ../../mmcblk0p1
\-- by-uuid
 \-- d38a7071-3fbf-4782-b406-ff64478c4266 -> ../../mmcblk0p1

4 directories, 6 files

Ot the sound devices:

root@wb:~# tree /dev/snd/
/dev/snd/
+-- by-path
| +-- platform-120000.hdmi -> ../controlC0
| +-- platform-sound -> ../controlC2
| \-- platform-sound-spdif -> ../controlC1
+-- controlC0
+-- controlC1
+-- controlC2
+-- pcmC0D0p
+-- pcmC1D0p
+-- pcmC2D0c
+-- pcmC2D0p
+-- seq
\-- timer

1 directory, 12 files

Tip
You can use your host PC or embedded device to walk around the /dev directory and discover other block or character devices. You can see the device type just using the ls command with the -l option arguments:

 root@wb:~# ls -l /dev/mmcblk0*
 brw-rw---- 1 root disk 179, 0 Jan 1 1970 /dev/mmc
 blk0
 brw-rw---- 1 root disk 179, 1 Jan 1 1970 /dev/mmc
 blk0p1
 root@wb:~# ls -l /dev/ttyS*
 crw-rw---- 1 root dialout 4, 64 Jan 1 1970 /dev/t
 tyS0
 crw-rw---- 1 root dialout 4, 65 Jan 1 1970 /dev/t
 tyS1
 crw-rw---- 1 root dialout 4, 66 Jan 1 1970 /dev/t
 tyS2
 crw-rw---- 1 root dialout 4, 67 Jan 1 1970 /dev/t
 tyS3
 crw-rw---- 1 root dialout 4, 68 Jan 1 1970 /dev/t
 tyS4
 crw-rw---- 1 root dialout 4, 69 Jan 1 1970 /dev/t
 tyS5

The block devices have a b character at the beginning of the first column of the ls output, while the character ones have a c. So, in the preceding output, we can see that /dev/mmcblk0xx are block devices while /dev/ttySx are character ones.

The tmpfs

The temporary filesystem (tmpfs) is a filesystem stored on top of volatile memory instead of a persistent storage device. Due to this fact, on reboot, everything in tmpfs will be lost.
Even if it may look really strange that a vanishing filesystem can be useful, it really is! In fact, it is used where the system needs quick read, write, and delete operations on several files that are to be recreated on every boot. These files are exactly the ones under the /run directory, that is, where (almost) every distribution stores temporary files related to its running services (daemons).
On the Wandboard, we have the following tmpfs filesystems:

root@wb:~# findmnt tmpfs
TARGET SOURCE FSTYPE OPTIONS
/dev/shm tmpfs tmpfs rw,nosuid,nodev
/run tmpfs tmpfs rw,nosuid,nodev,mode=755
/run/lock tmpfs tmpfs rw,nosuid,nodev,noexec,relatime,size=5120k
/sys/fs/cgroup tmpfs tmpfs ro,nosuid,nodev,noexec,mode=755

You may notice that there are other places where tmpfs are used!

The procfs

The proc filesystem (procfs) is a virtual filesystem that holds information about the processes (and other system information) in a hierarchical file structure. This allows the user to find the necessary information quickly by looking at a well-defined point of the system where all information is pretty ordinated.
A virtual filesystem is a filesystem that contains virtual files (files stored nowhere filled with information created on the fly when they get accessed) used to export information about various kernel subsystems, hardware devices, and associated device drivers to user space. In addition to providing this information, these exported virtual files are also used for system configuration and device management.
The standard mount point of this filesystem is the /proc directory, as shown here:

root@wb:~# findmnt proc
TARGET SOURCE FSTYPE OPTIONS
/proc proc proc rw,nosuid,nodev,noexec,relatime

Then, in this directory, we can find all process-related information. For instance, if we wish to have some information about the init process, the first process executed into the system (that is, the process with PID 1), we should have a look at the /proc/1 directory as shown here:

root@wb:~# ls /proc/1
attr cpuset limits net root statm
autogroup cwd loginuid ns sched status
auxv environ map_files oom_adj schedstat syscall
cgroup exe maps oom_score sessionid task
clear_refs fd mem oom_score_adj setgroups timers
cmdline fdinfo mountinfo pagemap smaps uid_map
comm gid_map mounts personality stack wchan
coredump_filter io mountstats projid_map stat

Here is located all information regarding the init process. For example, we can find the environment:

root@wb:~# cat /proc/1/environ ; echo
HOME=/TERM=linux

Tip
The echo command has been used to force a newline (\n) character at the end of the preceding cat command's output.

We can retrieve the command line used to execute the process:

/sbin/initroot@wb:~# cat /proc/1/cmdline ; echo
/sbin/init

Or the init's memory usage:

root@wb:~# cat /proc/1/maps
00010000-000cb000 r-xp 00000000 b3:01 655091 /lib/systemd/systemd
000db000-000eb000 r--p 000bb000 b3:01 655091 /lib/systemd/systemd
000eb000-000ec000 rw-p 000cb000 b3:01 655091 /lib/systemd/systemd
01da2000-01e67000 rw-p 00000000 00:00 0 [heap]
b6cc3000-b6d05000 rw-p 00000000 00:00 0
...

Tip
Here we discover that, in reality, the real init process is systemd. Visit
https://en.wikipedia.org/wiki/Systemd
 for further information.

Or the file descriptors used:

root@wb:~# ls -l /proc/1/fd
total 0
lrwx------ 1 root root 64 Jan 1 1970 0 -> /dev/null
lrwx------ 1 root root 64 Jan 1 1970 1 -> /dev/null
lr-x------ 1 root root 64 Apr 2 19:04 10 -> /proc/swaps
lrwx------ 1 root root 64 Apr 2 19:04 11 -> socket:[13056]
lrwx------ 1 root root 64 Apr 2 19:04 12 -> socket:[13058]
lrwx------ 1 root root 64 Apr 2 19:04 13 -> anon_inode:[timerfd]
lr-x------ 1 root root 64 Apr 2 19:04 19 -> anon_inode:inotify
...

This information can be retrieved for every process running into the system. For instance, we can get the information regarding our Bash shell by discovering its PID first:

root@wb:~# pidof bash
588

Tip
My Wandboard is running just one instance of the Bash process, so I am sure that the preceding PID is referred to my shell.

Then, we can look at /proc/588 directory:

root@wb:~# ls /proc/588/
attr cpuset limits net root statm
autogroup cwd loginuid ns sched status
auxv environ map_files oom_adj schedstat syscall
cgroup exe maps oom_score sessionid task
clear_refs fd mem oom_score_adj setgroups timers
cmdline fdinfo mountinfo pagemap smaps uid_map
comm gid_map mounts personality stack wchan
coredump_filter io mountstats projid_map stat

Now, we can check out the shell's environment by looking at the /proc/588/environ file:

root@wb:~# cat /proc/588/environ ; echo
TERM=vt102LANG=en_US.UTF-8HOME=/rootSHELL=/bin/bashUSER=rootLOGNAME=ro
otPATH=/ul
ocal/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/binMAIL=/
var/mail/rootHUSHLON
=FALSE

However, the procfs, as already shown in Managing the kernel messages section Chapter 2
, Managing the System Console, where we used it to set the kernel console logging level, can be used to get/set other information regarding the system settings in general. For instance, we can get the listing of the currently loaded modules into the kernel by reading the file /proc/modules:

root@wb:~# cat /proc/modules
brcmfmac 254455 0 - Live 0xbf4d0000el
brcmutil 9092 1 brcmfmac, Live 0xbf4c2000
cfg80211 536448 1 brcmfmac, Live 0xbf3e0000
caam_jr 17297 0 - Live 0xbf34a000
snd_soc_fsl_ssi 15476 2 - Live 0xbf342000
...

Alternatively, we can read how many interrupts we have got per CPU since the boot from the /proc/interrupts file:

root@wb:~# cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3
16: 1589 2441 3120 1370 GIC 29 Edge twd
17: 0 0 0 0 GPC 55 Level i.MX Tk
19: 0 0 0 0 GPC 115 Level 120000i
20: 0 0 0 0 GPC 9 Level 130000u
21: 0 0 0 0 GPC 10 Level 134000u
24: 0 0 0 0 GPC 52 Level 200400f
25: 661 0 0 0 GPC 26 Level 202000l
26: 0 0 0 0 GPC 46 Level 202800i
28: 0 0 0 0 GPC 12 Level 204000u
...
303: 0 0 0 0 IPU 23 Edge imx_drm
304: 0 0 0 0 IPU 28 Edge imx_drm
305: 0 0 0 0 IPU 23 Edge imx_drm
306: 0 0 0 0 IPU 28 Edge imx_drm
307: 0 0 0 0 GIC 137 Level 2101000
308: 0 0 0 0 GIC 138 Level 2102001
IPI0: 0 0 0 0 CPU wakeup interrupts
IPI1: 0 0 0 0 Timer broadcast interrupts
IPI2: 1370 4505 5119 9684 Rescheduling interrupts
IPI3: 92 69 55 96 Function call interrupts
IPI4: 0 2 2 0 Single function call interr.
IPI5: 0 0 0 0 CPU stop interrupts
IPI6: 0 0 0 0 IRQ work interrupts
IPI7: 0 0 0 0 completion interrupts
Err: 0

This file is really important when we work with the hardware since we can have an idea whether our device is generating interrupts or not. Also, we can have information regarding the correct interrupt handlers' configurations (we'll see these features in the upcoming chapters when we talk about the peripherals).
Also, we can get the actual device tree configuration by reading the contents of the /proc/device-tree directory as follows:

root@wb:~# ls /proc/device-tree
#address-cells cpus memory #size-cells
aliases display-subsystem model soc
chosen gpu-subsystem name sound
clocks interrupt-controller@00a01000 regulators sound-spdif
compatible __local_fixups__ rfkill __symbols__

Referring to our preceding sample driver, we can retrieve the pulse device's tree settings by reading into the /proc/device-tree/pulses/ directory as shown here (note that this time, we switch back to the SAMA5D3 Xplained):

root@a5d3:~# tree /proc/device-tree/pulses/
/proc/device-tree/pulses/
+-- compatible
+-- name
+-- oil
| +-- gpios
| +-- label
| +-- name
| \-- trigger
\-- water
 +-- gpios
 +-- label
 +-- name
 \-- trigger

2 directories, 10 files

Then, we can check the data by reading the several files. Here are the trigger settings:

root@a5d3:~# cat /proc/device-tree/pulses/oil/trigger ; echo
both
root@a5d3:~# cat /proc/device-tree/pulses/water/trigger ; echo
rising

Here are the GPIO settings (the GPIO number is the eighth byte):

root@a5d3:~# cat /proc/device-tree/pulses/oil/gpios | \
 hexdump -e '16/1 " %3i"' -e '"\n"'
 0 0 0 121 0 0 0 17 0 0 0 0

root@a5d3:~# cat /proc/device-tree/pulses/water/gpios | \
 hexdump -e '16/1 " %3i"' -e '"\n"'
 0 0 0 121 0 0 0 19 0 0 0 0

This is a nice feature to have in a system, but not all kernel developers agree that this information should be stored in the procfs because a proc filesystem should report processes' information only. That's why, the sysfs shown in the next paragraph was born (in reality, this is not the only reason).
Tip
You may get further information by surfing the Internet or just reading the file Documentation/filesystems/procfs.txt from Linux's source tree.

The sysfs

The system filesystem (sysfs) is a virtual filesystem that exports information about all kernel subsystems, system's buses, and the hardware devices with their relative device drivers. This filesystem is deeply related to the device tree concept (as shown here) and the power system management, and it mainly resolves the problem to have a unified method of representing driver-device relationships and how to correctly put them in the power-saver mode.
From our point of view, the sysfs is really important since by using it, we can get/set most peripherals settings and we can get access to the peripherals data too.
The default mount point of this filesystem is the /sys directory as shown below:

root@wb:~# findmnt sysfs
TARGET SOURCE FSTYPE OPTIONS
/sys sysfs sysfs rw,nosuid,nodev,noexec,relatime

Just by listing its contents, we can have an idea about its organization:

root@wb:~# ls /sys/
block bus class dev devices firmware fs kernel module power

These directory names are quite self-explanatory. However, some words should be spent talking about the directories we're going to use into this book.
Tip
You may get further information by surfing the Internet or just by reading the file Documentation/filesystems/sysfs.txt from Linux's source tree.

The first directory is /sys/class:

root@wb:~# ls /sys/class/
ata_device drm ieee80211 net rtc udc
ata_link dvb input pci_bus scsi_device uio
ata_port extcon iommu phy scsi_disk vc
backlight firmware leds power_supply scsi_host video4linux
bdi gpio mbox pps sound vtconsole
block graphics mdio_bus ptp spi_master watchdog
bsg hidraw mem pwm switch
devcoredump hwmon misc rc thermal
devfreq i2c-adapter mmc_host regulator timed_output
dma i2c-dev mtd rfkill tty

It stores all devices' information grouped by the device class, that is, a logical set of devices that perform a common task in the system: graphics devices, sound devices, hardware monitor (hwmon) devices, and so on.
Referring to our preceding sample driver, we can retrieve the pulse class settings by reading into the /sys/class/pulse/ directory as shown here (note that we switch back to the SAMA5D3 Xplained again):

root@a5d3:~# tree -L 2 -l /sys/class/pulse/
/sys/class/pulse/
+-- oil -> ../../devices/soc0/pulses/pulse/oil
| +-- counter
| +-- counter_and_reset
| +-- device -> ../../../pulses
| +-- power
| +-- set_to
| +-- subsystem -> ../../../../../class/pulse [recursive, not followed]
| \-- uevent
\-- water -> ../../devices/soc0/pulses/pulse/water
 +-- counter
 +-- counter_and_reset
 +-- device -> ../../../pulses [recursive, not followed]
 +-- power
 +-- set_to
 +-- subsystem -> ../../../../../class/pulse [recursive, not followed]
 \-- uevent

8 directories, 8 files

For instance, we can get information regarding the framebuffer (these devices will not be presented in this book, however they refer to a graphic hardware-independent abstraction layer to show graphical data on a computer display) by taking a look at the /sys/class/graphics/fb0/ directory:

root@wb:~# ls /sys/class/graphics/fb0/
bits_per_pixel console device name rotate subsystem
blank cursor mode pan state uevent
bl_curve dev modes power stride virtual_size

Then, we can get the valid graphic modes using the command here:

root@wb:~# cat /sys/class/graphics/fb0/modes
U:1024x768p-0

Alternatively, we can get some information about a hwmon device (these devices will not be presented in this book, however they are used to monitoring some environment data, such as temperatures, and so on. of the system or external peripheral ones) on the Wandboard in the directory here:

root@wb:~# ls /sys/class/hwmon/hwmon0/
name power subsystem temp1_crit temp1_input uevent

Then, by looking at the hwmon device, we can get the name, the critical temperature, and the current system's temperature using the command here:

root@wb:~# cat /sys/class/hwmon/hwmon0/{name,temp1_crit,temp1_input}
imx_thermal_zone
95000
28318

Tip
Returned data are in m°C, that is they are, respectively, 95°C and 28.318°C.

In the upcoming chapters, when we present the several devices a developer can find in its embedded board and how they can get access to them, we will use this filesystem often.

The Network FileSystem (NFS)

In Chapter 2
, Managing the System Console, Loading files from the network section, we saw how to load a kernel image (with its DTB file) using an Ethernet connection, and we said that this feature is very useful during the kernel developing stages. Well, this feature is quite useless without the kernel's ability to use a filesystem located on another computer (usually the host PC) as a root filesystem, Simply speaking, instead of mounting a filesystem stored on a local disk or flash memory, the system mounts a remote filesystem using a network.
This allows the developer to test both the kernel, its drivers, and the whole root filesystem by downloading them from the network, avoiding the boring step to reprogram the mass memory devices (this actually saves a lot of the developer's time!).
Due to these reasons, this particular type of filesystem is called Network FileSystem (NFS).
Of course, we can use this feature over several different network connections, but only if our system has an Ethernet connection and its kernel has a running driver for it. However, if this is the case, this feature is very useful for several reasons:
	If our kernel still does not support its storage devices, we can use anyway a filesystem with a console where we can log in.
	Even if our system has a small storage device, we can use a complete distribution on it, with all debugging tools ready to be used. For instance, we can use a Debian OS, where we can easily install whatever we need to develop our application, even if our flash memory is very small (64 or 128MB).
	We can modify one or more files by simply modifying them directly on the host and then avoiding rebuilding the filesystem on the local flash or disk.

Well, to better fix these concepts, let's try to mount a remote filesystem on one of our developer kits. As already stated, we can choose whatever we wish, so for this test, we are going to use the Wandboard.
Exporting an NFS on the host

OK, an NFS is a remote filesystem, but it contains exactly all the files a usual filesystem has. So, we can use the filesystem used in Chapter 1
, Installing the Developing System, in Wandboard
 section, to set up the microSD of our developer kits.
We can start by creating a new directory on the host PC and then by putting all files into it:

$ sudo mkdir /opt/armhf-rootfs-debian-jessie
$ cd common/debian-8.4-minimal-armhf-2016-04-02/
$ sudo tar xpf armhf-rootfs-debian-jessie.tar -C /opt/armhf-rootfs-deb
ian-jessie/

After that, the contents of our new NFS is ready in the /opt/armhf-rootfs-debian-jessie directory:

$ ls /opt/armhf-rootfs-debian-jessie/
bin dev home media opt root sbin sys usr
boot etc lib mnt proc run srv tmp var

However, this not enough since we have to teach our host PC in order to export this filesystem over the network. To do this, we can use the nfs-kernel-server package. Despite its name, this package holds all user space programs to manage an NFS, and it has the kernel word in its name because it uses the NFS kernel features to do its job.
Now, let's install the package with the usual aptitude command:

$ sudo aptitude install nfs-kernel-server

When the installation is completed, we have to set up the new service by editing the /etc/exports file. This file states which are the directories to be exported, and by taking a look at its contents we can get a brief idea of what we should do:

$ cat /etc/exports
/etc/exports: the access control list for filesystems which may be
exported to NFS clients. See exports(5).
#
Example for NFSv2 and NFSv3:
/srv/homes hostname1(rw,sync,no_subtree_check)
hostname2(ro,sync,no_subtree_check)
#
Example for NFSv4:
/srv/nfs4 gss/krb5i(rw,sync,fsid=0,crossmnt,no_subtree_check)
/srv/nfs4/homes gss/krb5i(rw,sync,no_subtree_check)
#

So, since our files have been placed in /opt/armhf-rootfs-debian-jessie and we have used the IP address 192.168.32.25, that is, the IP of the host, for our developer kits, we can add the following line to the /etc/exports file:
/opt/armhf-rootfs-debian-jessie 192.168.32.25(rw,sync,no_subtree_check
,no_root_squash)

So, the new file contents should be as follows:

$ tail -3 /etc/exports
/srv/nfs4/homes gss/krb5i(rw,sync,no_subtree_check)
#
/opt/armhf-rootfs-debian-jessie 192.168.32.25(rw,sync,no_subtree_check
,no_root_squash)

Tip
Note that the /etc/exports file supports several different configurations that the ones shown in the preceding lines. You can get further information by stating from the man exports pages:

 $ man exports

You will notice that we added no_root_squash option because as suggested by the exports man pages, this option is required for diskless clients (that is, systems that have no disks at all and they mount the root filesystem over the network). To finish the settings, we have to restart the NFS daemon:

$ sudo /etc/init.d/nfs-kernel-server restart
[ok] Restarting nfs-kernel-server (via systemctl): nfs-kernel-server
.service.

Now, to check if we did everything right, we can check all servers' exported directories using the showmount command:

$ showmount -e localhost
Export list for localhost:
/opt/armhf-rootfs-debian-jessie 192.168.32.25

OK, we can go ahead.

Setting up the kernel to mount an NFS

Now, we have to check whether the Wandboard kernel (or the developer kit's kernel) has all the necessary components to support the mount of an NFS.
First of all, we have to come back in the kernel directory and then recall build_kernel.sh:

$ cd WB/armv7-multiplatform/
$./build_kernel.sh

Once the kernel configuration menu is opened, we have to navigate to Networking support | Networking options and verify that the entry IP: kernel level autoconfiguration and its sub entries are checked as shown here:

[image: Setting up the kernel to mount an NFS]

Then, we must go back to the first page and then enter into the File systems menu. Here, here we must check the Network File Systems entry, and then, enter into its menu and copy the configuration reported in the next screenshot:

[image: Setting up the kernel to mount an NFS]

In reality, we just need support for NFS version 3, but we can safely add other options too.
OK, after all settings are in place, we can exit the kernel configuration menu to start the kernel's compilation. When finished, we can recall what we did in Chapter 2
, Managing the System Console, in Loading files from the network section, to load a kernel image over an Ethernet connection from U-Boot and copy the kernel image and the DTS into the TFTP root directory as shown here:

$ sudo cp deploy/4.4.7-armv7-x6.zImage /srv/tftpboot/vmlinuz-4.4.7-arm
v7-x6
$ sudo mkdir -p /srv/tftpboot/dtbs/4.4.7-armv7-x6/
$ sudo tar xf deploy/4.4.7-armv7-x6-dtbs.tar.gz \
 -C /srv/tftpboot/dtbs/4.4.7-armv7-x6/

Then. we can switch to U-Boot.

U-Boot and the kernel command line to use a NFS

After stopping U-Boot at the boot, we can set up a kernel command line to instruct the kernel to mount a filesystem as its root filesystem over the network.
The parameters we have to add to the kernel command line are as follows:
	root: This specifies the root filesystem device to be used at the first mount. Note that it's not a real device, but just a synonym to tell the kernel to use NFS instead of a real device.
	nfsroot: This specifies where the root filesystem's files are physically located. The syntax is as follows: nfsroot=[<server-ip>:]<root-dir>[,<nfs-options>]

The <server-ip> parameter should point to our host PC (that is, 192.168.32.25), <root-dir> must be replaced with the exported directory (we have /opt/armhf-rootfs-debian-jessie), and <nfs-options> can be used to specify version 3 of the protocol.

	ip: This specifies the networking settings of our embedded device. The syntax is as follows: ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:
 <device>:<autoconf>:<dns0-ip>:<dns1-ip>

So, <client-ip> is the client's IP address (192.168.32.25 for us), <server-ip> is the host PC (192.168.32.43), <gw-ip> is the LAN's gateway (my LAN has 192.168.32.8), <netmask> is the network's netmask (my class C networks has 255.255.255.0), <hostname> should be set to whatever describes your machine (we used wb), <device> is the Ethernet port (eth0 in our case), and <autoconf> must be set to off in order to force static IP assignment. The other parameters can be left void.
Tip
For further information on these kernel parameters, a good starting point is the Documentation/kernel-parameters.txt file and the Documentation/filesystems/nfs/nfsroot.txt file in Linux's repository.

OK, now, we have to define these new settings into U-Boot in order to mount the NFS. There are several ways to do so. Most of them are very tricky. However, we'd like to show a classic way to resolve this issue, So, you can use it even on a different embedded device.
First of all, we have to do a standard boot to check the command line normally used, so let's use the boot command to continue and to see the command line used:

=> boot
switch to partitions #0, OK
mmc0 is current device
SD/MMC found on device 0
Checking for: /uEnv.txt ...
Checking for: /boot/uEnv.txt ...
23 bytes read in 127 ms (0 Bytes/s)
Loaded environment from /boot/uEnv.txt
Checking if uname_r is set in /boot/uEnv.txt...
Running uname_boot ...
loading /boot/vmlinuz-4.4.7-armv7-x6 ...
5802912 bytes read in 405 ms (13.7 MiB/s)
loading /boot/dtbs/4.4.7-armv7-x6/imx6q-wandboard.dtb ...
51193 bytes read in 552 ms (89.8 KiB/s)
debug: [console=ttymxc0,115200 root=/dev/mmcblk0p1 ro rootfstype=ext4
rootwait]
...
debug: [bootz 0x12000000 - 0x18000000] ...
Kernel image @ 0x12000000 [0x000000 - 0x588ba0]
Flattened Device Tree blob at 18000000
 Booting using the fdt blob at 0x18000000
 Using Device Tree in place at 18000000, end 1800f7f8
Starting kernel ...
...
[0.000000] PERCPU: Embedded 13 pages/cpu @eed94000 s23936 r8192 d2
1120 u53248
[0.000000] Built 1 zonelists in Zone order, mobility grouping on.
 Total pages: 522560
[0.000000] Kernel command line: console=ttymxc0,115200 root=/dev/m
mcblk0p1 ro rootfstype=ext4 rootwait
...

Great! The command line is as follows:

console=ttymxc0,115200 root=/dev/mmcblk0p1 ro rootfstype=ext4 rootwait

So, we need to fix up the root with the /dev/nfs option to tell the kernel to use NFS instead of a real device. We also need to remove the rootfstype option and then rewrite the kernel command line with the setenv command as follows:

=> setenv bootargs 'console=ttymxc0,115200 root=/dev/nfs rw nfsroot=19
2.168.32.43:/opt/armhf-rootfs-debian-jessie,v3,tcp ip=192.168.32.25:19
2.168.32.43:192.168.32.8:255.255.255.0:wb:eth0:off:: rootwait'

Then, we can proceed to load the kernel and the DTS file:

=> setenv ipaddr 192.168.32.25
=> setenv serverip 192.168.32.43
=> tftpboot ${loadaddr} vmlinuz-4.4.7-armv7-x6
=> tftpboot ${ftd_addr} dtbs/4.4.7-armv7-x6/imx6q-wandboard.dtb

Tip
It may happen that our U-Boot has a bug and it'll not correctly load the DTB file into proper memory area. If we execute the second tftpboot command, we see something like this:

 => tftpboot ${ftd_addr} dtbs/4.4.7-armv7-x6/imx6q-w

 andboard.dtb

 Using FEC device

 TFTP from server 192.168.32.43; our IP address is 1

 92.168.32.25

 Filename 'dtbs/4.4.7-armv7-x6/imx6q-wandboard.dtb'.

 Load address: 0x12000000

 Loading: ##########

 756.8 KiB/s

 done

 Bytes transferred = 51193 (c7f9 hex)

The load address is 0x12000000 instead of 0x18000000. We must re-execute the preceding two commands by replacing the loadaddr and fdt_addr variables with the respective memory address as follows:

 => tftpboot 0x12000000 vmlinuz-4.4.7-armv7-x6
 => tftpboot 0x18000000 dtbs/4.4.7-armv7-x6/imx6q-w
 andboard.dtb

Note that the file names have been deduced by the following lines of the preceding booting messages:

loading /boot/vmlinuz-4.4.7-armv7-x6 ...
5802912 bytes read in 405 ms (13.7 MiB/s)
loading /boot/dtbs/4.4.7-armv7-x6/imx6q-wandboard.dtb ...
51193 bytes read in 552 ms (89.8 KiB/s)

OK, now, we can do the boot using the following command:

=> bootz ${loadaddr} - ${fdt_addr}
Kernel image @ 0x12000000 [0x000000 - 0x588000]
Flattened Device Tree blob at 18000000
 Booting using the fdt blob at 0x18000000
 Using Device Tree in place at 18000000, end 1800f7f8
Starting kernel ...
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpuset
...
[0.000000] Kernel command line: console=ttymxc0,115200 root=/dev/n
fs rw nfsr
oot=192.168.32.43:/opt/armhf-rootfs-debian-jessie,v3,tcp ip=
192.168.32.25:192.16
8.32.43:192.168.32.8:255.255.255.0:wb:eth0:off:: r
ootwait

OK the kernel has started with the right command line! Let's see what happens then:

[5.456756] fec 2188000.ethernet eth0: Freescale FEC PHY driver [Ge
neric PHY]
(mii_bus:phy_addr=2188000.ethernet:01, irq=-1)
[5.468079] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready
[8.456629] fec 2188000.ethernet eth0: Link is Up - 100Mbps/Full -
flow contr
ol rx/tx
[8.466228] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
[8.486384] IP-Config: Complete:
[8.489623] device=eth0, hwaddr=00:1f:7b:b4:1e:97, ipaddr=192.
168.32.25,
mask=255.255.255.0, gw=192.168.32.8
[8.499920] host=wb, domain=, nis-domain=(none)
[8.504888] bootserver=192.168.32.43, rootserver=192.168.32.43
, rootpath
=
[8.526701] VFS: Mounted root (nfs filesystem) on device 0:17.
[8.533312] devtmpfs: mounted
[8.537150] Freeing unused kernel memory: 1032K (c1058000 - c115a00
0)
[8.857337] random: systemd urandom read with 53 bits of entropy av
ailable
[8.875848] systemd[1]: systemd 215 running in system mode. (+PAM +
AUDIT +SEL
INUX +IMA +SYSVINIT +LIBCRYPTSETUP +GCRYPT +ACL +XZ -SECCOMP
 -APPARMOR)
[8.889511] systemd[1]: Detected architecture 'arm'.
Welcome to Debian GNU/Linux 8 (jessie)!

Yeah! The kernel has been able to mount our NFS and the Debian OS has started.
At the end, we can log in to our system as we did earlier:

Debian GNU/Linux 8 arm ttymxc0
default username:password is [debian:temppwd]
arm login: root
Password:
Linux arm 4.4.7-armv7-x6 #4 SMP Sat May 14 19:35:00 CEST 2016 armv7l
The programs included with the Debian GNU/Linux system are free
software;
the exact distribution terms for each program are
described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
root@arm:~#

Developing into an NFS

Now the question is, Why we should use an NFS during the development?

The answer is because it improves the develop-test-develop stages dramatically! In fact, if we have to replace a wrong version of a program or a complete directory, we can simply do it on the host, without copying anything on the client.
Let's do a simple example by considering what we did with the Hello World program during the cross-compilation. We cross-compiled it on the host, and then, we have to copy it on the target. However, if we use an NFS we can avoid such a copy.
Here is the C program on the target:

root@arm:~# ls
helloworld.c

Here is the same program on the host:

ls /opt/armhf-rootfs-debian-jessie/root/
helloworld.c

Tip
Note that the root's privileges are necessary due the fact that the /opt/armhf-rootfs-debian-jessie/root/ directory is forbidden to everyone but the root!

Then, we can cross-compile it on the host:

cd /opt/armhf-rootfs-debian-jessie/root/
make CC=arm-linux-gnueabihf-gcc CFLAGS="-Wall -O2" helloworld
arm-linux-gnueabihf-gcc -Wall -O2 helloworld.c -o helloworld

Then, program is already on the client too and ready to be used:

root@arm:~# ls
helloworld helloworld.c
root@arm:~# ./helloworld
Hello World

This simple example shows the benefits on a single file. Let's consider it with a more complex program with tons of files.

Using an emulator

We just saw how useful it can be to have all the developer kits' rootfs on the host, but what if we can execute all the programs directly on the host? Referring to the earlier example with the Hello World program, we mean the possibility to compile it on the host and then executing it on the host too.
It is quite obvious that the advantages in this case are minimum, but consider the case where we have a complex program to compile with tons of libraries. Of course, this approach has some disadvantages. First of all, the fact that our x86 CPU has no idea about how to execute the ARM code, so we need a program that emulates the ARM CPU over the x86 one. This emulation needs a lot of CPU resources, and most probably, the execution time is slower than the original one. However, in some circumstances, it may be preferred to emulate the ARM CPU. A very powerful embedded system may have two 4 GB RAMs whereas a real powerful host PC may have 32 GB, without considering the fact that the host's disk can be 10 times quicker than a microSD or flash memory.
Despite wishing that we use an emulator, let's see how we can use it.
The emulator we're going to use is QEMU, a generic machine emulator (and virtualizer). If we take a quick look at QEMU's wiki site at
http://wiki.qemu.org/Main_Page
, we read the first lines:

When used as a machine emulator, QEMU can run OSes and programs made for one machine (e.g. an ARM board) on a different machine (e.g. your own PC). By using dynamic translation, it achieves very good performance.

It's exactly what we need!
Executing a program

As the first (and simple) example, let's see how we can execute the Hello World program on the host. We already cross-compiled it, and we got an ARM executable:

file helloworld
helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dy
namically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux
2.6.32, BuildID[sha1]=9d36da7eb92d0d552bc04a7771f5ebbb14d04497, not st
ripped

OK, now, we need to install the QEMU program, which is split into several packages:

$ apt-cache search qemu | grep '^qemu'
qemu-block-extra - extra block backend modules for qemu-system and qem
u-utils
qemu-kvm - QEMU Full virtualization
qemu-slof - Slimline Open Firmware -- QEMU PowerPC version
qemu-system - QEMU full system emulation binaries
qemu-system-arm - QEMU full system emulation binaries (arm)
qemu-system-common - QEMU full system emulation binaries (common)
qemu-system-mips - QEMU full system emulation binaries (mips)
qemu-system-misc - QEMU full system emulation binaries (miscelaneous)
qemu-system-ppc - QEMU full system emulation binaries (ppc)
qemu-system-sparc - QEMU full system emulation binaries (sparc)
qemu-system-x86 - QEMU full system emulation binaries (x86)
qemu-utils - QEMU utilities
qemu-efi - UEFI firmware for virtual machines
qemu - fast processor emulator
qemu-guest-agent - Guest-side qemu-system agent
qemu-launcher - GTK+ front-end to QEMU computer emulator
qemu-user - QEMU user mode emulation binaries
qemu-user-binfmt - QEMU user mode binfmt registration for qemu-user
qemu-user-static - QEMU user mode emulation binaries (static version)
qemubuilder - pbuilder using QEMU as backend
qemuctl - controlling GUI for qemu
qemulator - transitional dummy package to virtualbriks

However, we just need the qemu-user and libc6-armhf-cross packages, one that stores the emulator itself and the libc libraries for ARM. So, let's install them:

$ sudo aptitude install qemu-user libc6-armhf-cross

When the installation is finished, we can go back where the helloworld program is placed and execute it with QEMU:

cd /opt/armhf-rootfs-debian-jessie/root/
qemu-arm -L /usr/arm-linux-gnueabihf/ helloworld
Hello World

Tip
The root's privileges are not required by QEMU. We need them just because the directory where the program is located is owned by root.

As we can see, this is nice, but if limited to this usage, it can be quite useless. However, this is just the beginning, since QEMU can do much more. In particular, it can emulate a complete embedded system, that is, emulating the whole hardware (CPU, memories, and peripherals), or it can act as a generic CPU that uses the host PC resources.
The differences between these two different approaches is that the former needs a more complete support by QEMU (since it must emulate not only the CPU but all the other peripherals too), while the latter just needs the CPU and system calls emulations. This is just how the qemu-arm programs works, but we want more. We want to avoid specifying special paths for external libraries and/or other kind of dependencies. We'd like to execute a program or, better, a whole root filesystem as an ARM CPU does.
Tip
Due to space reasons and since this is not the main target of this book, we'll show the latter operation mode only. You may wish to emulate a whole ARM system and can take a look at the QEMU documentation.

Entering into an ARM rootfs tree

If we take a look at the qemu-user packages, we get three kinds of them:

$ apt-cache search qemu-user
qemu-user - QEMU user mode emulation binaries
qemu-user-binfmt - QEMU user mode binfmt registration for qemu-user
qemu-user-static - QEMU user mode emulation binaries (static version)

What is really interesting for us is the last one, qemu-user-static. Here the package's description:

$ apt-cache show qemu-user-static
Package: qemu-user-static
Priority: optional
Section: universe/otherosfs
...
Description-en: QEMU user mode emulation binaries (static version)
QEMU is a fast processor emulator: currently the package supports
ARM, CRIS, i386, M68k (ColdFire), MicroBlaze, MIPS, PowerPC, SH4,
SPARC and x86-64 emulation. By using dynamic translation it achieves
reasonable speed while being easy to port on new host CPUs.
.
This package provides the user mode emulation binaries, built
statically. In this mode QEMU can launch Linux processes compiled for
one CPU on another CPU.
.
If binfmt-support package is installed, qemu-user-static package will
register binary formats which the provided emulators can handle, so
that it will be possible to run foreign binaries directly.
...

So, using this package, we can launch Linux processes compiled for one CPU on another CPU. We can also use this static version, and we don't need any external native (x86) libraries. So, we can suppose to use chroot in the ARM rootfs and then start working as we were on an ARM CPU!
Tip
For those that doesn't know what the chroot command does, let me suggest to take a look at its man pages.

OK, maybe these concepts are quite obscure for a newbie, so let's do a demonstration of this fantastic feature.
First of all, let's install the needed package:

$ sudo aptitude install qemu-user-static

Then, we have to copy the binary of the ARM rootfs. Here, we can check that the binary is compiled statically using the ldd program:

$ ldd /usr/bin/qemu-arm-static
 not a dynamic executable
$ sudo cp /usr/bin/qemu-arm-static
 /opt/armhf-rootfs-debian-jessie/usr/bin/

Then, we need to mount some special filesystems on the ARM filesystem before doing chroot. In particular, we need the /dev, /proc and /sys directories due to the fact that they are needed to most of the Linux's standard commands. To do this without mounting them twice, we can use the bind option of the mount command, so we can have the devfs, procfs, and sysfs in more than one place at time.
So, let's duplicate the needed filesystems in our ARM rootfs:

$ for fs in dev proc sys ; do \
 sudo mount -o bind /$fs \
 /opt/armhf-rootfs-debian-jessie/$fs ; \
 done

Then, we have to add some tempfs too (this is Debian specific):

$ sudo mount -t tmpfs -o 'rw,nosuid,nodev,mode=755' tmpfs
 /opt/armhf-rootfs-debian-jessie/run
$ sudo mkdir /opt/armhf-rootfs-debian-jessie/run/lock
$ sudo mount -t tmpfs -o 'rw,nosuid,nodev,noexec,relatime,size=5120k'
 tmpfs /opt/armhf-rootfs-debian-jessie/run/lock

We should copy some networking settings:

$ sudo cp /etc/resolv.conf
 /opt/armhf-rootfs-debian-jessie/etc/resolv.conf

As the last step, we have to jump into the ARM rootfs! In the following commands, we used the uname command before and after the jump in order to show you that we effectively changed the running platform:

giometti@ubuntu1510:~$ uname -a
Linux ubuntu1510 4.2.0-35-generic #40-Ubuntu SMP Tue Mar 15 22:15:45 U
TC 2016 x86_64 x86_64 x86_64 GNU/Linux
giometti@ubuntu1510:~$ sudo chroot /opt/armhf-rootfs-debian-jessie/

root@ubuntu1510:/# uname -a
Linux ubuntu1510 4.2.0-35-generic #40-Ubuntu SMP Tue Mar 15 22:15:45 U
TC 2016 armv7l GNU/Linux

Great! We are running an ARM rootfs on an X86 PC!
Tip
Note that for better readability, we didn't remove the prompt as we did on every command executed into the host PC. So, you can notice that before chroot, the prompt is giometti@ubuntu1510:~$ while it becomes root@ubuntu1510:/# later on.

We can verify that all filesystems we created for this target are in place:

root@ubuntu1510:/# mount
udev on /dev type devtmpfs (rw,nosuid,relatime,size=1005904k,nr_inodes
=251476,mode=755)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
tmpfs on /run type tmpfs (rw,nosuid,nodev,relatime,mode=755)
tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec,relatime,size=51
20k)

We can now execute our helloworld program as we were on the Wandboard:

root@ubuntu1510:/# cd root/
root@ubuntu1510:/root# ls
helloworld helloworld.c
root@ubuntu1510:/root# file helloworld
helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dy
namically linked, interpreter /lib/ld-linux-armhf.so.3,for GNU/Linux 2
.6.32, BuildID[sha1]=9d36da7eb92d0d552bc04a7771f5ebbb14d04497, not str
ipped
root@ubuntu1510:/root# ./helloworld
Hello World

If we correctly set up the networking support, we can proceed in installing new packages as on every ARM machine. So, we can update the current repositories:

root@ubuntu1510:/root# apt-get update
Get:1 http://security.debian.org jessie/updates InRelease [63.1 kB]
Ign http://httpredir.debian.org jessie InRelease
Get:2 http://repos.rcn-ee.com jessie InRelease [4350 B]
Get:3 http://httpredir.debian.org jessie-updates InRelease [142 kB]
Get:4 http://security.debian.org jessie/updates/main armhf Packages [2
92 kB]
Get:5 http://repos.rcn-ee.com jessie/main armhf Packages [375 kB]
Get:6 http://httpredir.debian.org jessie Release.gpg [2373 B]
Get:7 http://httpredir.debian.org jessie Release [148 kB]
Get:8 http://httpredir.debian.org jessie-updates/contrib armhf Package
s [20 B]
Get:9 http://httpredir.debian.org jessie-updates/main armhf Packages [
9276 B]
Get:10 http://security.debian.org jessie/updates/contrib armh
f Package
s [994 B]
Get:11 http://security.debian.org jessie/updates/non-free armhf Packag
es [20 B]
Get:12 http://httpredir.debian.org jessie/main armhf Packages [8834 kB
]
Get:13 http://httpredir.debian.org jessie-updates/non-free armhf Packa
ges [450 B]
Get:14 http://httpredir.debian.org jessie/contrib armhf Packages [44.6
 kB]
Get:15 http://httpredir.debian.org jessie/non-free armhf Packages [74.
5 kB]
Fetched 9992 kB in 1min 2s (160 kB/s)
Reading package lists... Done

Tip
Note that all downloaded repositories are based on the armhf platform instead of x86.

Then, we can install a native ARM compiler:

root@ubuntu1510:/root# apt-get install make gcc

Then, we can natively recompile our Hello World program:

root@ubuntu1510:/root# make helloworld
cc helloworld.c -o helloworld
root@ubuntu1510:/root# file helloworld
helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dy
namically linked, interpreter /lib/ld-linux-armhf.so.3, for GNU/Linux
2.6.32, BuildID[sha1]=e124a6c84b518908a8c6e25365169fc18890dfde, not st
ripped
root@ubuntu1510:/root# ./helloworld
Hello World

Tip
Of course, this demonstration is just a brief introduction about what we can do with QEMU and how we can use this operation mode to develop a complex application. To present all QEMU's features and all modes of functioning, I need to write a dedicated book.

As a final note, we have to remark that when we wish to close this ARM root filesystem emulation, we can simply type the exit program as follows:

root@ubuntu1510:/root# exit
exit
giometti@ubuntu1510:~$

Then, we have to unmount all the previously mounted filesystems:

$ for fs in dev proc sys run/lock run ; do \
 sudo umount /opt/armhf-rootfs-debian-jessie/$fs ; \
 done

Summary

In this chapter, we did a long tour into three of the most important topics of the GNU/Linux embedded programming: the C compiler (and the cross-compiler), the kernel (and the device drivers with the device tree), and the root filesystem. Also, we presented the NFS in order to have a remote root filesystem over the network, and we introduced the emulator usage in order to execute foreign code on the host PC.
In the next chapter, we move our attention from the low-level tools and kernel internals to the very high-level tools and programming techniques. We'll see how we can implement very complex tasks using Bash, PHP, or Python programming or using a dedicated daemon such as Apache, MySQL, and so on.

Chapter 4. Quick Programming with Scripts and System Daemons

In the previous chapter, we dealt with native compilation and cross-compilation and saw that the C language is actually a must-know for an embedded developer; however, sometimes, it's better to use a script or an already written daemon to quickly solve a problem.
In this chapter, we're going to take a look at some common and useful system tools we can use in an embedded system to constantly execute a controlling/monitoring procedure. These kinds of software are usually called daemon. In Unix terminology, a daemon is a computer program that runs as a background process rather than being under the direct control of an interactive user, so they are perfect to execute a controlling/monitoring procedure. In this scenario, we're going to take a look at some existing daemons ready-to-use and that we can use to implement some repetitive and common tasks.
Then, we will look at how to install and use some common scripting languages in our embedded developer kits and how to solve a simple but real problem by writing the solution in different languages (we'll present PHP, Python, and Bash) in order to show you the differences between them and using a system daemon when required.
As a last step, we're going to show how an embedded developer can write an their own daemon in C or using a scripting language such as PHP, Python, and Bash. As for previous introductory chapters, experienced developers may decide to skip this chapter, but right now, it's should be quite clear that in any case, reading it might be really useful!
Setting up the system

Before starting, we must set up our embedded board by installing all the going to use the BeagleBone Black to test the code; however, as already stated earlier, every command or program used here can be used indifferently on the other embedded boards too.
First of all, we have to install the command-line interpreter for the PHP scripting language and the related plugin for the Apache web server. We can do it using the usual aptitude command, as follows:

root@bbb:~# aptitude install php5-cli libapache2-mod-php5

Then, a package for the Python interpreter proves to be useful in creating daemons:

root@bbb:~# aptitude install python-daemon

Then, we have to install the following packages for xinetd:

root@bbb:~# aptitude install xinetd telnet

For MySQL, we need the following packages:

root@bbb:~# aptitude install mysql-client mysql-server

Note
During the installation of the preceding MySQL packages, the system should ask for an administrative root user. This is not the system's root user, but it's the root user of the MySQL server, so we should put a different password from the system's root user (even if it's not required at all).

Then, we need some extra packages to add some libraries to talk with the MySQL daemon in C, PHP, and Python languages. Here is the command to install these packages:

root@bbb:~# aptitude install libmysqlclient-dev php5-mysqlnd
 python-mysqldb

System daemons

As already stated, a daemon is a computer program that runs as a background process; in particular, for a Unix system, the Unix bible Advanced Programming in the UNIX Environment by Richard Stevens says:

Daemons are processes that live for a long time. They are often started when the system is bootstrapped and terminate only when the system is shutdown. We say they run in background, because they don't have a controlling terminal.

This behavior is so important that a special function has been implemented in the glibc library that permits the developer to easily create a daemon process. The function is (obviously) named daemon().
Just to fix this concept, we report a possible implementation of the daemon() function in order to show you which steps a process should carry out in order to turn itself into a daemon:
int daemon(void)
{
 int fd;

 /* Create the daemon grand-child process */
 switch (fork()) {
 case -1:
 return -1; /* error! */
 case 0:
 break; /* child continues... */
 default:
 exit(0); /* parent goes... bye bye!! */
 }

 /* This code is now executed by the shell's grand-child */

 if (setsid() < 0) /* become a session leader */
 return -1;

 if (chdir("/") < 0) /* change working directory */
 return -1;

 umask(0); /* clear file mode creation mask */

 /* In the end close all open file descriptors */
 for (fd = sysconf(_SC_OPEN_MAX); fd > 0; fd--)
 close(fd);

 return 0;
}
The first thing to do for a daemon candidate process is to call fork() and then the exit() system calls. This is because if the daemon is started as a simple shell command with the parent terminate makes, the shell thinks that the command is done and the prompt can be returned to the user. Then, the setsid() call is needed to run the new daemon candidate process in a new session and have no controlling terminal.
The chdir() system call is needed in order to avoid the daemon the candidate process is running on a mounted filesystem and then prevent it from be unmounted. In fact, the current working directory is inherited by the parent and changing it to the root (the slash character "/" in the preceding code) is a trick to prevent this problem. The umask() system call is then used to permit the newly created daemon from creating files with specific permissions without restrictions.
The last step closes all open file descriptors eventually inherited by the grandparent (the shell in this case). By closing all the process communication channels, the daemon cannot be managed by the user anymore; however, in order to make it possible to change some daemon functionalities, it may reopen a dedicated channel (usually a Unix domain socket) when receiving some configuration commands, or it can be designed in such a way that it rereads its configuration file when a special signal arrives.
Note
Details of how a daemon works or how it can be created are out of the scope of this book. You can take a look around the Internet starting with
http://en.wikipedia.org/wiki/Daemon_%28computing%29
 or (better) by reading the Unix bible, Advanced Programming in the UNIX Environment by Richard Stevens.

Useful and ready-to-use daemons

In a GNU/Linux system (and a Unix system in general), there exist a lot of ready-to-use daemons that are used to do real common tasks. The most notable ones are as follows:
	Apache, uhttpd, and lighttpd: The HTTP server daemons.
	atd and crond: The task scheduler daemons.
	ftpd and tftpd: The file transfer daemons.
	inetd and xinetd: The Internet super server daemons.
	named/bind and C: The DNS server daemons.
	nfsd, lockd, mountd, and statd: The NFS daemon and support daemons.
	ntpd: The NTP service daemon.
	portmap, rpcbind: The SunRPC port mappers.
	mysqld, postgresql, and C.: Database server daemons.
	sendmail, exim, postfix, and C.: The mail transfer agent daemons.
	snmpd: The Simple Network Management Protocol (SNMP) daemon.
	syslogd and C.: The system logging daemons.
	systemd: The system management daemon.
	telnetd and sshd/dropbear: Telnet and SSH server daemons.
	vsftpd and Co.: The File Transfer Protocol (FTP) server daemons.

Some of these have already been introduced in previous chapters due to the fact that they have been used in some examples, so we're going to add a little list of other useful daemons the developer may use to simplify their job with a brief explanation on how to use and how to get access to them using one of our developer kits.
For the other daemons, we encourage you to surf the Internet in order to know more about them; they may discover interesting thing.

System daemons management

Each Linux distribution has its own way to manage system daemons; in our systems, we're using Debian, so the way we have to use to manage our daemons is by calling the relative management script (which is placed in the /etc/init.d directory) with proper option arguments. This way of operation is the legacy mode related to the initd daemon, which is present in all Debian releases; however, in our embedded kits, we've installed a recent release that uses the systemd daemon. This new daemon is backward-compatible with initd, but it also introduces a new service management behavior.
Note
We have no space available to go deeply into what initd and systemd are and in what way they differ from each other, so you should start from the next two URLs to get further information on these important daemons:
https://en.wikipedia.org/wiki/Systemd
 and
https://en.wikipedia.org/wiki/Init
.

In this book, we're going to use the legacy mode for two main reasons: the new way is present on latest releases only, while the legacy one can be used everywhere and because I still prefer using it; however, a brief note on the new behavior is reported for sake of completeness. So, as an example, let's start by taking a look at the /etc/init.d directory in order to have a list of the available services:

root@bbb:~# ls /etc/init.d/
alsa-utils hostapd mysql sendsigs
apache2 hostname.sh netscript single
avahi-daemon hwclock.sh networking skeleton
bootlogs killprocs pppd-dns ssh
bootmisc.sh kmod procps sudo
checkfs.sh loadcpufreq rc udev
checkroot-bootclean.sh motd rc.local udhcpd
checkroot.sh mountall-bootclean.sh rcS umountfs
cpufrequtils mountall.sh README umountnfs.sh
cron mountdevsubfs.sh reboot umountroot
dbus mountkernfs.sh rmnologin urandom
halt mountnfs-bootclean.sh rsync xinetd
hdparm mountnfs.sh rsyslog

Tip
With the new behavior, we can use the following command:

 root@bbb:~# service --status-all
 [-] alsa-utils
 [+] apache2
 [+] avahi-daemon
 [-] bootlogs
 [-] bootmisc.sh
 [-] checkfs.sh
 ...

As we can see, there are a lot of available services; however, let's consider the Apache service and try to get its status, and then we have to execute the /etc/init.d/apache2 program with the status option argument, as follows:

root@bbb:~# /etc/init.d/apache2 status
. apache2.service - LSB: Apache2 web server
 Loaded: loaded (/etc/init.d/apache2; generated; vendor preset: enab
led)
 Active: active (running) since Mon 2016-10-10 12:01:10 UTC; 1 day 1
0h ago
 Docs: man:systemd-sysv-generator(8)
 Process: 3315 ExecReload=/etc/init.d/apache2 reload (code=exited, st
atus=0/SUCCESS)
 Process: 1641 ExecStart=/etc/init.d/apache2 start (code=exited, stat
us=0/SUCCESS)
 CGroup: /system.slice/apache2.service
 +-1972 /usr/sbin/apache2 -k start
 +-3371 /usr/sbin/apache2 -k start
 +-3372 /usr/sbin/apache2 -k start
 +-3373 /usr/sbin/apache2 -k start
 +-3374 /usr/sbin/apache2 -k start
 \-3375 /usr/sbin/apache2 -k start
Oct 10 12:01:06 bbb systemd[1]: Starting LSB: Apache2 web server...
Oct 10 12:01:10 bbb apache2[1641]: Starting web server: apache2.
Oct 10 12:01:10 bbb systemd[1]: Started LSB: Apache2 web server.
Oct 11 06:25:07 bbb systemd[1]: Reloading LSB: Apache2 web server.
Oct 11 06:25:08 bbb apache2[3315]: Reloading web server: apache2.
Oct 11 06:25:08 bbb systemd[1]: Reloaded LSB: Apache2 web server.

Tip
With the new behavior, we can use the following command to get the same output as earlier:

 root@bbb:~# service apache2 stop

The service is in the active status, and if we wish to stop it, we can use the same preceding command but by specifying the stop option argument:

root@bbb:~# /etc/init.d/apache2 stop
[ok] Stopping apache2 (via systemctl): apache2.service.

Note
With the new behavior, we can use the following command to stop the daemon:

 root@bbb:~# service apache2 stop

We get no output by executing this command.

We can verify that the service is stopped by executing the status command again. Now, if we wish to restart the daemon, we can use the following command:

root@bbb:~# /etc/init.d/apache2 start
[ok] Starting apache2 (via systemctl): apache2.service.

Note
With the new behavior, we can use the following command to stop the daemon:

 root@bbb:~# service apache2 start

Again, we get no output by executing this command.

A useful trick to stop and start a daemon again-for example, after we've changed its configuration files-is using the restart option argument as follows:

root@bbb:~# /etc/init.d/apache2 restart
[ok] Restarting apache2 (via systemctl): apache2.service.

Note
With the new behavior, we can use the following command to stop the daemon:

 root@bbb:~# service apache2 restart

There's still no output by executing this command.

These commands work in the same manner for all the system daemons we can find in our Debian OS, so we can use them to manage the following daemons too.
syslogd

When we talk about daemons, one of the most important ones is syslogd! The syslogd daemon is a widely used standard for message logging that permits the separation of the software that generates messages from the system that stores them and from the software that reports and analyzes them.
Due to the fact that a daemon has all the communication channels closed by default, this is the most efficient and easy method to report a daemon's activities to the system administrator/developer.
In the Debian system, we've installed into our developer kits at the beginning of this book; the syslogd service is implemented by the rsyslog package, which holds the rsyslogd daemon. However, the scope of this book does not include a detailed explanation on how it works but just how it can be used to efficiently log some messages in order to keep track of our applications or just to debug them. In the next sections, we're going to see how it can be accessed using different programming languages but before we can start seeing how we can configure it in order to log a remote system (which can be very useful when we we work with embedded systems).
If we wish to send log messages from our BeagleBone Black to the host, we have to modify the rsyslog package's /etc/rsyslog.conf configuration file in the host, as follows:
--- /etc/rsyslog.conf.orig 2017-01-14 22:24:59.800606283 +0100
+++ /etc/rsyslog.conf 2017-01-14 22:25:06.208600601 +0100
@@ -15,8 +15,8 @@
 #module(load="immark") # provides --MARK-- message capability

 # provides UDP syslog reception
-#module(load="imudp")
-#input(type="imudp" port="514")
+module(load="imudp")
+input(type="imudp" port="514")

 # provides TCP syslog reception
 #module(load="imtcp")
This will enable the ability to receive log messages from a remote machine via UDP (we can use TCP too). Then, to enable the new configuration, we have to restart the daemon on the host using the next command, as explained earlier:

$ sudo /etc/init.d/rsyslog restart
[ok] Restarting rsyslog (via systemctl): rsyslog.service.

Note
We need the sudo command on the host since the system's daemons can be managed by the root user only.

Then, on the BeagleBone Black, we have to add the following line on the /etc/rsyslog.conf file (usually at the end of the file):
. @192.168.7.1:514

In this manner, we ask to rsyslog to send all log messages to the host at the IP address 192.168.7.1 on port 514 (where our host PC is listening). Again, in order to enable the new configuration, we have to restart the daemon with the same command used on the host, as the one shown here:

root@bbb:~# /etc/init.d/rsyslog restart
[ok] Restarting rsyslog (via systemctl): rsyslog.service.

If everything works well, when we take a look at log messages on the host, we should see the ones from the BeagleBone Black, as reported here:

Jan 14 22:29:01 hulk ntpd[23220]: Soliciting pool server 193.234.225.2
37
Jan 14 22:29:20 hulk ntpd[23220]: Soliciting pool server 2a00:dcc0:dea
d:b9ff:fede:feed:e39:73d7
Oct 11 22:55:05 bbb rsyslogd: [origin software="rsyslogd" swVersion="8
.4.2" x-pid="5540" x-info="http://www.rsyslog.com"] start
Oct 11 22:55:04 bbb systemd[1]: Stopping System Logging Service...
Oct 11 22:55:04 bbb systemd[1]: Stopped System Logging Service.
Oct 11 22:55:04 bbb systemd[1]: Starting System Logging Service...
Oct 11 22:55:05 bbb systemd[1]: Started System Logging Service.
Oct 11 22:55:14 bbb rsyslogd: [origin software="rsyslogd" swVersion="8
.4.2" x-pid="5540" x-info="http://www.rsyslog.com"] exiting on signal
15.

Note
After the system date (which is wrong for the BeagleBone Black), we can see the system's name that is set as hulk for the author's host PC and as bbb for the BeagleBone Black.

syslogd in Bash

From the Bash shell, we can use the logger command, as follows:

root@bbb:~# logger -t mydaemon logging message in bash

This command will generate the following message in the /var/log/syslog file:

root@bbb:~# tail -f /var/log/syslog | grep mydaemon
Apr 2 18:29:03 bbb mydaemon: logging message in bash

syslogd in C

The same message can be also generated in C language using the code in the chapter_04/syslogd/logger.c file in the book's example code repository. The code simply calls three functions to do its job and this is the code snippet:
openlog("mydaemon", LOG_NOWAIT, LOG_USER);
syslog(LOG_INFO, "logging message in C");
closelog();

Just compile and execute it using the following command lines:

root@bbb:~# make logger
cc -Wall -O2 logger.c -o logger
root@bbb:~# ./logger

Then, in the /var/log/syslog file, we should get the following output:

Apr 2 18:33:11 bbb mydaemon: logging message in C

syslogd in PHP

In PHP, we can use the code in the chapter_04/syslogd/logger.php file in the book's example code repository. Again, we just need three functions to do the job, and this is the code snippet:
openlog("mydaemon", LOG_NOWAIT, LOG_USER);
syslog(LOG_INFO, "logging message in PHP");
closelog();

The example program can be executed with the following command:

root@bbb:~# php logger.php

Again, as earlier, we can see the generated message as follows:

Apr 2 18:43:52 bbb mydaemon: logging message in PHP

Note
The complete documentation for the syslog library routine is at:
http://php.net/manual/en/function.syslog.php
.

syslogd in Python

The last example is in Python, and it's stored in the chapter_04/syslogd/logger.py file in the book's example code repository. We use the same three functions again:
syslog.openlog("mydaemon", syslog.LOG_NOWAIT, syslog.LOG_USER)
syslog.syslog(syslog.LOG_INFO, "logging message in Python")
syslog.closelog()

Then, we can execute it with the following command:

root@bbb:~# python logger.py

And, as earlier, it will generate the following message:

Apr 2 18:45:08 bbb mydaemon: logging message in Python

Note
The complete documentation for the syslog library routines is at:
https://docs.python.org/3.4/library/syslog.html
.

cron

This daemon is very useful to execute simple and repetitive tasks in the background; in fact, it executes scheduled shell commands according to a timetable called crontab, which the developer can use to program their tasks.
The crontab must be accessed and updated using the crontab command, and in order to better explain how the cron daemon works, you should take a look at the current crontab of the root user with the following command:

root@bbb:~# crontab -e

Tip
It may happen that	age:

 /usr/bin/select-editor: 1: /usr/bin/select-editor:
 gettext: not found
 'select-editor'.
 /usr/bin/select-editor: 1: /usr/bin/select-editor:
 gettext: not found
 1. /bin/nano <----
 2. /usr/bin/vim.basic
 3. /usr/bin/vim.tiny

 /usr/bin/select-editor: 32: /usr/bin/select-editor:
 gettext: not found
 1-3 [1]:

This is because we haven't chosen a default editor yet; however, we just need to select one in the list and the message will disappear.

When the preceding command is used, the embedded kit will open a text file using the current text editor, where the content is shown as follows:
Edit this file to introduce tasks to be run by cron.

Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task

To define the time you can provide concrete values for
minute (m), hour (h), day of month (dom), month (mon),
and day of week (dow) or use '*' in these fields (for 'any').#
Notice that tasks will be started based on the cron's system
daemon's notion of time and timezones.

Output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless redirected).

For example, you can run a backup of all your user accounts
at 5 a.m every week with:
0 5 * * 1 tar -zcf /var/backups/home.tgz /home/

For more information see the manual pages of crontab(5) and cron(8)

m h dom mon dow command

Tip
Note that the default editor can be changed by setting the EDITOR environment variable as follows:

 root@bbb:~# export EDITOR=nano
Then, the BeagleBone Black will use the nano command to show the file holding crontab.

Just reading the comments into the crontab file, it's quite easy to understand how the daemon works: we have one task per line and the first five fields of each line define at which instant the command in the sixth field must be executed. For example, as reported in the earlier comments, in order to run a backup of all BeagleBone Black's user accounts at 5 a.m. every week, the schedule line should be as follows:
0 5 * * 1 tar -zcf /var/backups/home.tgz /home/

The first five fields do the trick; in fact, the first field tells cron that the command must be run at minute (m) 0, the second set the execution hour (h) at 5 (hours are from 0 to 23), the third and the fourth fields, using the wildcard * character, say respectively that the command must be executed each day of month (dom) and each month (mon), while the fifth says that the command must be executed on the day of week (dow) 1, that is on Monday (numbers 0 or 7 is for Sunday).
Another useful feature is that in the crontab file, the developer can also set some variables to modify the default behavior-for example, the default value for the PATH variable is "/usr/bin:/bin" and we can modify it to add the user's bin directory using the following line:
PATH=~/bin:/usr/bin/:/bin

Note that the ~ character is correctly interpreted by the shell (which is set to SHELL=/bin/bash by default), while the same is not valid for the environmental substitutions or replacement of variables, thus lines such as the following will not work as you might expect; that is, there will not be any substitution:
PATH = $HOME/bin:$PATH
Note
You can get more information by reading the crontab file's man pages using the man command:

 root@bbb:~# man 5 crontab

xinetd

This tool is a network daemon program that specializes in adding networking features to programs that normally do not not have it (we already saw this daemon for the host in Chapter 2
, Managing the System Console, in Loading files from the network section). This daemon is an enhanced version of the standard inetd daemon, but nowadays, it replaces inetd in most distributions.
The xinetd configuration file is /etc/xinetd.conf, which usually looks like the following:
Simple configuration file for xinetd

Some defaults, and include /etc/xinetd.d/

defaults
{

Please note that you need a log_type line to be able to use
log_on_success
and log_on_failure. The default is the following :
log_type = SYSLOG daemon info

}

includedir /etc/xinetd.d

So the real configuration settings are in the /etc/xinetd.d directory, which in turn holds one file per service. In our BeagleBone Black, we have the following listing:

root@bbb:~# ls /etc/xinetd.d/

chargen daytime discard echo time

Each configuration file tells the daemon what program needs to be run when an incoming network connection is received, but before doing it, it redirects the program's stdin, stdout, and stderr streams to the socket used to manage the connection. By doing this, every program that simply writes and reads data to and from the standard Unix streams can talk remotely over a network connection!
Let's look at a simple example and consider the following Bash script:
/bin/bash

while /bin/true; do
 read line

 line=$(echo $line | tr -d '\n\r')
 ["$line" == "quit"] && break;

 echo -e "$line\r"
done

exit 0
Note
The code is hold in the chapter_04/xinetd/echo.sh file in the book's example code repository.

If we try to run it, we get this:

root@bbb:~# ./echo.sh

Now if try to enter the Testing request string, the script will echo it on its stdout (that is, on the terminal window). Then, in order to exit the program, we must enter the quit string. Here's a simple usage:

root@bbb:~# ./echo.sh
Testing request
Testing request
quit
root@bbb:~#

Now if we add the following code held in the chapter_04/xinetd/echo_sh file in the book's example code repository in the /etc/xinetd.d directory, we can test the xinetd functionality:
service at-echo
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /root/echo.sh
}

Using the preceding code, we define a new service named at-echo defined in the /etc/services file, as follows:

root@bbb:~# grep at-echo /etc/services
at-echo 204/tcp # AppleTalk echo
at-echo 204/udp

Then, we specify the TCP protocol and the program to execute when a new connection is established; in our case, we execute /root/echo.sh as the user root when a new TCP connection at port 204 is done. The /root/echo.sh program simply reads a line from stdin and then writes it back to the stdout stream.
Now we must restart the daemon to activate the new settings:

root@bbb:~# /etc/init.d/xinetd restart
[ok] Restarting xinetd (via systemctl): xinetd.service.

As a first step, we can verify that the daemon is really listening on port 204, as expected:

root@bbb:~# netstat -lpn | grep 204
tcp 0 0 0.0.0.0:204 0.0.0.0:* LISTEN 2724/xinetd

We can check whether our settings are OK and even looking at the system's logging messages in the /var/log/syslog file, as follows:

root@bbb:~# tail -f /var/log/syslog
Apr 2 20:28:29 bbb xinetd[2655]: Starting internet superserver: xinet
d.
Apr 2 20:28:29 bbb systemd[1]: Started LSB: Starts or stops the xinet
d daemon..
Apr 2 20:28:30 bbb xinetd[2664]: Reading included configuration file:
 /etc/xine
td.d/chargen [file=/etc/xinetd.conf] [line=14]
...
Apr 2 20:28:30 bbb xinetd[2664]: Reading included configuration file:
 /etc/xine
td.d/echo_sh [file=/etc/xinetd.d/echo_sh] [line=26]
Apr 2 20:28:30 bbb xinetd[2664]: Reading included configuration file:
 /etc/xine
td.d/time [file=/etc/xinetd.d/time] [line=9]
Apr 2 20:28:30 bbb xinetd[2664]: removing chargen
Apr 2 20:28:30 bbb xinetd[2664]: removing chargen
...
Apr 2 20:28:30 bbb xinetd[2664]: removing time
Apr 2 20:28:30 bbb xinetd[2664]: removing time
Apr 2 20:28:30 bbb xinetd[2664]: xinetd Version 2.3.15 started with l
ibwrap loa
davg options compiled in.
Apr 2 20:28:30 bbb xinetd[2664]: Started working: 1 available service

All configuration files are parsed and then only not disabled services are kept so, in the end, only our new service is up and running!
Now we can test our new network service from the host PC using the telnet program, as follows:

$ telnet 192.168.7.2 204
Trying 192.168.7.2...
Connected to 192.168.7.2.
Escape character is '^]'.
Testing request
Testing request
quit
Connection closed by foreign host.

This time, we execute the echo.sh script again but using a remote TCP connection!
Note
The telnet program has been installed in the preceding section with the xinetd daemon.

sshd

This daemon implements the secure shell service that allows us to use a computer's terminal from a remote machine using an encrypted protocol. This daemon is widely used and is very famous, so it doesn't need any presentation or usage examples; however, in this book, we're going to use it in several different ways:
	To copy files to or from a remote machine
	To execute a remote command
	With the X11Forwarding ability

Copying files to or from a remote machine is simple, and the command to be used is scp in the following form:

root@bbb:~# scp local_file giometti@192.168.7.1:/tmp/

The command copies the local_file file to the remote machine's /tmp directory at the address 192.168.7.1. For further scp usage forms, you should take a look at the relative man pages.
Executing a remote command is a useful behavior we can use to get on the local machine the output of a command executed on a remote one (actually, we can also manage the program's input). As a simple example, the following command executes the ls command on the BeagleBone Black from the host PC and then displays the result on the host's terminal:

$ ssh root@192.168.7.2 ls /etc/init.d
root@192.168.7.2's password:
alsa-utils
apache2
avahi-daemon
...

After entering the root's password, we get the BeagleBone Black's /etc/init.d directory content. Again, for further information, the man pages are your best friends.
The last usage we wish to present here (and that will be used in the following chapter) is the X11Forwarding ability, that is, the possibility to execute an X11 application on a remote machine and then see its window on the local machine. Strictly speaking, this behavior can be considered an extended form of the remote commands execution we saw earlier.
Note
In this book, we cannot explain in detail what the X11 protocol is; so, you should consider taking a look at the next URL for further information:

https://en.wikipedia.org/wiki/X_Window_System.

As a simple example, let's try to execute the xcalc graphical application on the BeagleBone Black from the host PC and then display its window on the host's display. First of all, we have to install the xcalc application on the BeagleBone Black with the xauth utility:

root@bbb:~# apt-get install x11-apps xauth

Then, we have to execute the xauth utility in order to build up the required configuration files:

root@bbb:~# xauth
xauth: file /root/.Xauthority does not exist
Using authority file /root/.Xauthority
xauth>

Then, we can use the quit command to close the program and proceed to enable the X11Forwarding ability for the sshd daemon. This can be done by setting the X11Forwarding option to yes in the /etc/ssh/sshd_config file, as shown here:

root@bbb:~# grep X11Forwarding /etc/ssh/sshd_config
X11Forwarding yes

In this case, the option is already enabled, but in case it is not, we have to enable it and then we must restart the daemon in the usual manner in order to enable the new configuration.
Now we're ready; on the host, we can use the following command to log in to the BeagleBone Black:

$ ssh -X root@192.168.7.2

In the preceding command, the -X option argument enables the X11Forwarding, as stated in the ssh man pages. Now we can safely ignore the /usr/bin/xauth: file /root/.Xauthority does not exist warning message and can execute the xcalc application normally:

root@bbb:~# xcalc

If everything works well, the xcalc main window will appear on the host display.

Apache

The Apache HTTP server is (maybe) the most famous and used web server software in the world. It's installed in (almost) every distribution by default, and it can be used for tons of different tasks related to the World Wide Web.
We cannot report all possible configuration settings available for the Apache server here since we'll need a whole book for that; however, we're going to report some settings we're going to use later on in this book.
First of all, we have to verify that the server is up and running in our embedded system, so let's open the web browser in the host PC and point it to the internal IP address 192.168.7.2; if everything works well, we should get something similar to what's shown in the following figure:

[image: Apache]

Now we need to check the PHP support, that is, the ability of the Apache server to execute PHP code. To do that, we have to create a index.php file, as follows, and then put it in the /var/www/html directory:
<?php
 phpinfo();
?>

Then, if we point our web browser to the http://192.168.7.2/index.php URL, we should get the following output:.

[image: Apache]

Note
Note that the PHP support for Apache has been installed in the earlier section, where we've set up the system.
What we've done is just one of the several possibilities the Apache web server offers, and you can read more on The Apache HTTP Server Project at:
https://httpd.apache.org/
.

MySQL

Usually, we consider this daemon to be used on large servers, but it can be efficiently used in an embedded system too! For example, it can be used to implement a common configuration system or a status system where more processes can get/set the configuration data and/or status data. Or, it can be used efficiently to log several events and/or environment data collected from the sensors.
The daemon should already be set up and running, so now, we can see several ways to get access to its internals. From Bash, we can use the mysql command, as shown here:

root@bbb:~# mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 47
Server version: 5.5.47-0+deb8u1 (Debian)
Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

Note
When the BeagleBone Black asks for a password, we should just use the one we set up earlier during the daemon installation.

MySQL in Bash

To use MySQL efficiently, we should create a custom database and then use it to do our job. As an example, we can use the script in the chapter_04/mysql/my_init.sh file in the book's example code repository to generate a custom database called sproject.
The code is quite simple; after a warning message, we use the <<__EOF__ trick to pass a script from the command line to the mysql tool.
Note
An example of the <<__EOF__ trick we refer to is reported as follows:

 mysql -u root -p <<__EOF__
 COMMAND 1
 COMMAND 2
 ...
 COMMAND n
 __EOF__

This trick is often used when we need to supply one or more commands to a program directly in its standard input line (stdin). Using this syntax, we tell the Bash shell to send the lines between the command itself and the line holding the __EOF__ characters directly into the stdin of the executed command.

The script first recreates a new database (eventually deleting all the existing data) and then adds a new status table that we can use to store a system's status data. Here is the code snippet:
Drop all existing data!!!
DROP DATABASE IF EXISTS sproject;

Create new database
CREATE DATABASE sproject;

Grant privileges
GRANT USAGE ON *.* TO user@localhost IDENTIFIED BY 'userpass';
GRANT ALL PRIVILEGES ON sproject.* TO user@localhost;
FLUSH PRIVILEGES;

Select database
USE sproject;

Create the statuses table
CREATE TABLE status (
 t DATETIME NOT NULL,
 n VARCHAR(64) NOT NULL,
 v VARCHAR(64) NOT NULL,
 PRIMARY KEY (n),
 INDEX (n)
) ENGINE=MEMORY;

Note that the table has been created using the MEMORY engine. This engine uses the system's memory to store the information instead of using the mass memory devices (that is, hard disks, microSD cards, and so on). This trick allows us to execute very quick queries to the database, but it can be used where the data is dynamically recreated each time our system restarts due to the fact that they vanish at the system reboot (also, we must consider that the maximum size of the database is limited by the amount of installed memory).
At this point, we can add some entries using the code in the chapter_04/mysql/my_set.sh file in the book's example code repository. We can use it with the following command line:

root@bbb:~# ./my_set.sh T1 23.5

The script uses the SQL
REPLACE command to do the job. The code snippet is just a line of code:
REPLACE INTO status (t, n, v) VALUES(now(), '$name', '$value');

Now, to verify that the data is correctly collected in the database, we can do a simple dump of the status table created earlier using the my_init.sh file. Then, we use the following command to dump all data in the table:

root@bbb:~# ./my_dump.sh
t n v
2016-04-02 18:25:35 T1 23.5

In this case, all the job is done using the SQL
SELECT command. Again, the code snippet is just a line of code:
SELECT * FROM status;

Note
A complete guide to the MySQL internals and SQL language can be found on the MySQL documentation site at:
https://dev.mysql.com/doc/
.

The real power of MySQL is that the preceding actions can be done in different languages, and just to give you some useful hints you can take to start developing your controlling/monitoring system with the BeagleBone Black, we're going to show you how to get access to the sproject database from the C, PHP, and Python languages.
Note
In the next example, we're not going to rewrite the my_init.sh script in different languages since it can be deduced from the other examples, and in any case, it is not a significant example indeed. It's just creating the database, and once used, it is not useful anymore.

MySQL in C

In C language, the my_set script can be implemented as reported in the chapter_04/mysql/my_set.c file in the book's example code repository. The code is quite similar to the Bash one even if it's a bit complex; however, the important parts are the tree calls to the mysql_init(), mysql_real_connect(), and mysql_query()functions. The first two just initiate the connection, while the third executes the query. Here is the code snippet:
/* Get connect to MySQL daemon */
c = mysql_init(NULL);
if (!c) {
 fprintf(stderr, "unable to init MySQL data struct\n");
 return -1;
}

if (!mysql_real_connect(c, "127.0.0.1", "user",
 "userpass", "sproject", 0, NULL, 0)) {
 fprintf(stderr, "unable to connect to MySQL daemon\n");
 ret = -1;
 goto close_db;
}

/* Ok, do the job! */
ret = asprintf(&sql, query, name, value);
if (ret < 0) {
 fprintf(stderr, "unable to allocate memory for query\n");
 goto close_db;
}

ret = mysql_query(c, sql);
if (ret < 0)
 fprintf(stderr, "unable to access the database\n");
To complete our panoramic, we just have to show you how you can retrieve data from the MySQL daemon; to do that, we just need a simple implementation of my_dump as in the chapter_04/mysql/my_dump.c file in the book's example code repository. Note that in this case, the first three steps are quite similar to the my_set case, but now, we have to manage an answer from the MySQL daemon too! To do that, we use the mysql_store_result()function, which stores the received data in the q_res variable, and then, using the mysql_fetch_field(), mysql_num_fields(), and mysql_fetch_row()functions, we can extract the needed information. The code snippet for the relevant part is as follows:
/* Do the dump of the fields' names */
while ((field = mysql_fetch_field(q_res)))
 printf("%s\t", field->name);
printf("\n");

/* Do the dump one line at time */
n = mysql_num_fields(q_res);
while ((row = mysql_fetch_row(q_res))) {
 for (i = 0; i < n; i++)
 printf("%s\t", row[i] ? row[i] : NULL);
 printf("\n");
}

mysql_free_result(q_res);

Well, now we are ready to compile the preceding programs using make:

root@bbb:~# make
cc -Wall -O2 -D_GNU_SOURCE -I/usr/include/mysql my_set.c -lmysqlcli
ent -o my_set
cc -Wall -O2 -D_GNU_SOURCE -I/usr/include/mysql my_dump.c -lmysqlcl
ient -o my_dump

Note
By default, the libraries needed to compile this C program are not installed; however we did this in the earlier section, where we set up the system.

Now we can use them as we did earlier with Bash:

root@bbb:~# ./my_set T1 20
root@bbb:~# ./my_dump
t n v
2016-04-02 18:36:19 T1 20

Note
A complete guide to the MySQL C API can be found at:
http://dev.mysql.com/doc/refman/5.7/en/c-api.html
.

MySQL in PHP

Now it's PHP's turn, and the my_set program is in the chapter_04/mysql/my_set.php file in the book's example code repository. In this case, the code is more compact than in C, but it looks like very similar: we still have a connection stage and then a query execution stage. The involved functions are now mysql_connect(), mysql_select_db(), and mysql_query(). The relevant code is reported in the following snippet:
Get connect to MySQL daemon
$ret = mysql_connect("127.0.0.1", "user", "userpass");
if (!$ret)
 die("unable to connect with MySQL daemon");

$ret = mysql_select_db("sproject");
if (!$ret)
 die("unable to select database");

Ok, do the job!
$query = "REPLACE INTO status (t, n, v) " .
 "VALUES(now(), '$name', '$value');";
$dbres = mysql_query($query);
if (!$dbres)
 die("unable to execute the query");

As in C, the PHP version of my_dump has to manage the answer from the MySQL daemon and the code is in the chapter_04/mysql/my_dump.php file in the book's example code repository. Even in this case, after the query, we get some data back, which we can extract using the mysql_num_fields(), mysql_field_name(), and mysql_fetch_array() functions. Here is the code snippet:
Do the dump of the fields' names
$n = mysql_num_fields($dbres);
for ($i = 0; $i < $n; $i++)
 printf("%s\t", mysql_field_name($dbres, $i));
printf("\n");

Do the dump one line at time
while ($row = mysql_fetch_array($dbres)) {
 for ($i = 0; $i < $n; $i++)
 printf("%s\t", $row[$i]);
 printf("\n");
}

Note
These functions are not supported by the basic PHP language and we need some external libraries that are not installed by default; we did this in the earlier section, where we set up the system.

These programs can now be used as the other programs, as follows:

root@bbb:~# ./my_set.php T1 19.5
root@bbb:~# ./my_dump.php
t n v
2016-04-02 18:42:29 T1 19.5

Tip
A complete guide to the MySQL PHP API can be found at:
http://php.net/manual/it/book.mysql.php
.

MySQL in Python

In Python, the my_set program can be as in the chapter_04/mysql/my_set.py file in the book's example code repository. The program looks a bit different from the previous ones due the usage of the cursor; however, looking carefully at the code, we can see that there are very few differences. The MySQLdb.connect() method does the connection with the MySQL daemon, and the execute()method just executes the query. The following is the code snippet:
Get connect to MySQL daemon
db = MySQLdb.connect(host = "localhost", user = "user",
 passwd = "userpass", db = "sproject")

Create the Cursor object to execute all queries
c = db.cursor()

Ok, do the job!
query = "REPLACE INTO status (t, n, v) " \
 "VALUES(now(), '%s', '%s');" % (sys.argv[1], sys.argv[2])
c.execute(query)

Regarding my_dump, it can be as reported in the chapter_04/mysql/my_dump.py file in the book's example code repository. This time, to retrieve the query's data, we use the fetchall() method, and to get the headers, we use the description attribute. The relevant code is reported in the following snippet:
Save the query result
data = c.fetchall()

Do the dump of the fields' names
for field in c.description:
 print("%s\t" % (field[0])),
print

Do the dump one line at time
n = len(c.description)
for row in data:
 for i in range(0, n):
 print("%s\t" % (row[i])),
 print

Note
The external library needed to execute these programs is not installed by default; however, we did this in the earlier section, where we set up the system.

In the end, we can test these programs using the following commands:

root@bbb:~# ./my_set.py T1 18
root@bbb:~# ./my_dump.py
t n v
2016-04-02 18:49:43 T1 18

Tip
The complete MySQLdb User's Guide is reported at:
http://mysql-python.sourceforge.net/MySQLdb.html
.

Scripting languages

No doubt, embedded developers must know the C language; however, there exist several tasks that can be resolved using a scripting language. In fact, a scripting language such as PHP or Python, or even the Bash language, can be used to implement a task to manage a computer peripheral. This is because these languages have several extensions to do it and because the kernel itself offers the possibility to manage its peripherals using common files (refer to the everything-is-a-file abstraction presented in Chapter 3
, C Compiler, Device Drivers, and Useful Developing Techniques, in What is a Device Driver?
 section and the following sections).
In the next sections, we're going to show a simple example on how we can manage a peripheral using a scripting language exclusively. For the moment, we have to keep our example simple because we haven't presented any peripheral in detail yet; however, in the next chapters, we're going to discover several peripheral kinds in detail, and at that time, we're going to use more complex examples on this topic. Right now, we'll use a simple GPIO line, since even if not explained in detail yet, this is the only peripheral we know how to manage a bit.
For this demonstration, we'll use the BeagleBone Black and a simple LED connected to the expansion connector. The following is the schematic of the connections:

[image: Scripting languages]

Note
The LED anode must be connected to pin 7 of connector P8 (P8.7) and the cathode with the GND or ground (pin 1 or 2 of the same connector). Let's also remember that the flat spot on the LED is the cathode while the rounded one is the anode.
A careful reader with minimum electronic basics will notice that in the preceding schematic, we did not put any resistance in series with the LED to limit the output current from the GPIO pin. Even if it should be always done to avoid damages, it has been done to keep the connection very simple.

Then, to turn the LED on and off, we need to export the corresponding GPIO line, which is gpio66, so the commands are as follows:

root@bbb:~# echo 66 > /sys/class/gpio/export
root@bbb:~# echo out > /sys/class/gpio/gpio66/direction

Now to turn the LED on and off, we simply need to write 1 or 0 in the /sys/class/gpio/gpio66/value file, as follows:

root@bbb:~# echo 1 > /sys/class/gpio/gpio66/value
root@bbb:~# echo 0 > /sys/class/gpio/gpio66/value

OK, now supposing that the GPIO is already exported, let's start to see how we can implement the task to control an LED via the web browser using a scripting language only.
Managing a LED in PHP

Now it's time to learn how to manage our LED using the PHP language. There are two different possibilities to do that: the first one is to use the LAMP (Linux - Apache - MySQL - PHP) system, while the second one is to use the PHP built-in web server.
The LAMP solution

This is the easiest and the most classic way to implement a common web application; we just need a PHP script where we can implement our LED management. So let's start with writing some code!
As a first step, we must create a file in the /var/www/html directory of the BeagleBone Black named turn.php by copying the chapter_04/webled/php/turn.php file in the book's example code repository:
<?php
 # 1st part - Global defines & functions
 define("value_f", "/sys/class/gpio/gpio66/value");

 function pr_str($val)
 {
 echo $val ? "on" : "off";
 }

 # 2nd part - Set the new led status as requested
 if (isset($_GET["led"])) {
 $led_new_status = $_GET["led"];
 file_put_contents(value_f, $led_new_status);
 }

 # 3rd part - Get the current led status
 $led_status = intval(file_get_contents(value_f));

 # 4th part - Logic to change the led status on the next call
 $led_new_status = 1 - $led_status;

 # 5th part - Render the led status by HTML code
?>
<html>
 <head>
 <title>Turning a led on/off using PHP</title>
 </head>

 <body>
 <h1>Turning a led on/off using PHP</h1>
 Current led status is: <? pr_str($led_status) ?>
 <p>

 Press the button to turn the led <? pr_str($led_new_status) ?>
 <p>

 <form method="get" action="/turn.php">
 <button type="submit" value="<? echo $led_new_status ?>"
 name="led">Turn <? pr_str($led_new_status) ?></button>
 </form>

 </body>
</html>
Note
This code does not export the gpio66 directory, so it must be exported as shown in the previous section before running the script!
All the next examples will assume that gpio66 is already exported.

The functioning is quite simple; the first part of the code reads the LED status and stores it in the led_status variable, while the second part is an HTML code with mixed PHP code required to simply report the LED status by echoing the led_status variable. Note that we use a dedicated function to convert a number into the on or off string to display the LED status, while in the second part, we use an HTML form to retrieve the user request, that is, whether we must turn the LED on or off and then execute it.
Note that the user request is done with an HTTP GET request in the http://192.168.7.2/turn.php?led=1 form. The led=1 string means that we ask to turn on the LED, so the code will get this value, and using the PHP
file_put_contents() function, set the LED on by writing 1 in the /sys/class/gpio/gpio66/value file.
The third part reads the GPIO status by simply reading the content of the /sys/class/gpio/gpio66/value file (because everything-is-a-file!), while the fourth one just toggles the LED status from value 0 to 1 or vice versa. The fifth part is the HTML page that the server will return to the user with the current LED status and the needed button to toggle it. The next figure shows the resulting output in the browser:

[image: The LAMP solution]

Tip
It may happen that the code cannot change the LED status; in this case, we should check the /var/log/apache2/error.log file where the Apache web server logs possible errors.
If we see an error message, as reported here, the problem is due to a file permission issue:

 [Sat Apr 02 19:25:07.556803 2016] [:error] [pid 825
] [client 192.168.7.1:59242] PHP Warning:

 file_put_contents(/sys/class/gpio/gpio66/value): fa

 iled to open stream: Permission denied in /var/www/
 html/turn.php on line 13

So, let's check the file permission for the /sys/class/gpio/gpio66/value file:

 root@bbb:~# ls -l /sys/class/gpio/gpio66/value

 -rw-r--r-- 1 root root 4096 Apr 2 18:54 /sys/class
 /gpio/gpio66/value

Only the root user has the right privileges to write in the file, so a possible workaround could be as follows:

 root@bbb:~# chown :www-data /sys/class/gpio/gpio66/

 value

 root@bbb:~# chmod g+rw /sys/class/gpio/gpio66/value

 root@bbb:~# ls -l /sys/class/gpio/gpio66/value

 -rw-rw-r-- 1 root www-data 4096 Apr 2 18:54

 /sys/class/gpio/gpio66/value

This is because the Apache web server runs with the same privileges of the www-data user and the www-data group, but after the preceding changes, our script should work as expected.

The built-in server solution

The PHP built-in web server can be executed with the following command line:

root@bbb:~# php -S 192.168.7.2:8080 -t /var/www/html/
PHP 5.6.19-0+deb8u1 Development Server started at Sat Apr 2
19:36:01 2016
Listening on http://192.168.7.2:8080
Document root is /var/www/html
Press Ctrl-C to quit.

You should notice that we used the 192.168.7.2:8080 listening address, so this time, the web address to be used is http://192.168.7.2:8080/turn.php; otherwise, we will get connected with the Apache server again!
If we wish to avoid specifying port 8080, we should stop the Apache web server as follows:

root@bbb:~# /etc/init.d/apache2 stop
[ok] Stopping apache2 (via systemctl): apache2.service.

And then, we re-run the PHP built-in web server with the following command:

root@bbb:~# php -S 192.168.7.2:80 -t /var/www/html/
PHP 5.6.19-0+deb8u1 Development Server started at Sat Apr 2
19:37:44 2016
Listening on http://192.168.7.2:80
Document root is /var/www/html
Press Ctrl-C to quit.

Now we can execute our script as earlier. Note that the server will log each browser request on the terminal where it's running:

[Sat Apr 2 19:38:17 2016] 192.168.7.1:59462 [200]: /turn.php
[Sat Apr 2 19:38:21 2016] 192.168.7.1:59464 [200]: /turn.php?led=0
[Sat Apr 2 19:38:21 2016] 192.168.7.1:59466 [200]: /turn.php?led=1

Note
As reported in the PHP built-in web server manual at
http://php.net/manual/en/features.commandline.webserver.php
, this tool should be used for testing purposes or for application demonstrations that are run in controlled environments only!

Managing a LED in Python

Now let's try to manage our LED using a Python script. There are several possibilities to get a running web server with Python, but the easiest one is definitely the BaseHTTPServer library. A simple usage of the library is reported in the chapter_04/webled/python/httpd_show_info.py demo script in the book's example code repository, where we show how the server handler processes incoming requests by showing all the fields available at the disposal of the programmer.
In the first part, there is a definition of the server listening address, while the second part defines the GET requests handler, that is, the function to be called each time the browser performs an HTTP GET request.
The third and fourth parts are the most important ones since they implement the web data parsing. Here, we can see how the web requests are managed and how we can use them to do our job! The fourth part simply takes the answering message built by the third part and then sends it back to the browser. Here is a snippet of the relevant function:
def do_GET(self):
 parsed_path = urlparse.urlparse(self.path)

 # 3rd part - Build the answering message
 message_parts = [
 'CLIENT VALUES',
 'client_address -> %s (%s)' % (self.client_address,
 self.address_string()),
 'command -> %s' % self.command,
 'path -> %s' % self.path,
 'real path -> t%s' % parsed_path.path,
 'query -> %s' % parsed_path.query,
 'request_version -> %s' % self.request_version,
 '',
 'SERVER VALUES',
 'server_version -> %s' % self.server_version,
 'sys_version -> %s' % self.sys_version,
 'protocol_version -> %s' % self.protocol_version,
 '',
 'HEADERS RECEIVED',
]

 for name, value in sorted(self.headers.items()):
 message_parts.append('%s -> %s' % (name,
 value.rstrip()))
 message_parts.append('')
 message = '\r\n'.join(message_parts)

 # 4th part - Send the answer
 self.send_response(200)
 self.end_headers()
 self.wfile.write(message)

 return

The last part is executed at the beginning and it sets up the server by creating a new server object by calling the HTTPServer()function and then runs it by calling the serve_forever() method.
To test the code, we can use the following command:

root@bbb:~# python httpd_show_info.py
Starting server at 192.168.7.2:8080, use <Ctrl-C> to stop

If everything works well, we'll see the server running by pointing the browser at the
http://192.168.7.2:8080/?led=1
 address.
The output in the browser should be something similar to what's shown in the following figure:

[image: Managing a LED in Python]

As we can see, there are tons of available data; however to manage our LED, we can just use the query variable, which is where the server stores the HTTP GET request data. So, a possible implementation of our LED management script in Python is reported in the chapter_04/webled/python/httpd.py file in the book's example code repository.
This time, the code is really more complex than earlier. First of all, we should note that in the first part of this new code, we've defined two functions, named put_data() and get_data(). These are used to put/get the gpio66 status. Here is the snippet with these two functions:
def put_data(file, data):
 f = open(file, "w")
 f.write(data)
 f.close()

def get_data(file):
 f = open(file, "r")
 data = f.read()
 f.close()
 return data

The second part is not changed, while the third one has now been changed in order to retrieve the HTTP GET query and set up the new gpio66 status accordingly. Parts four and five are very similar to the respective ones in PHP and the same is for the sixth one too, even if its layout is a bit different (it defines the HTML code to be returned to the browser). Part seven is the same as earlier, while part eight implements the server definition and initialization.
If we execute this new script as done before, we should get the same output as the one we got with the PHP version of this script.
Note
The documentation of the BaseHTTPServer library is at:
https://wiki.python.org/moin/BaseHttpServer
.

Managing a LED in Bash

Both Python and PHP are very powerful languages, and they can be used to solve a lot of complex problems; however, it may happen that the embedded system lacks both! In this case, we can use the C language, or if we like scripting, we can try to use Bash. In fact, even if the Bash scripting language is commonly used to solve system administrator tasks, it can also be used to resolve several issues with some tricks! So let's look at how we can use it in our web LED management problem.
By default, Bash has no networking features; however, as a workaround, we can use the xinetd daemon presented earlier in this chapter. The trick was in correctly setting up the xinetd configuration file in order to address our web LED management problem.
First of all, we should exactly know what the browser asks to a web server; to do that, we can use a modified version of our echo program, as reported here:
#!/bin/bash

Read the browser request
read request

Now read the message header
while /bin/true; do
 read header
 echo "$header"
 ["$header" == $'\r'] && break;
done

And then produce an answer with a message dump
echo -e "HTTP/1.1 200 OK\r"
echo -e "Content-type: text/html\r"
echo -e "\r"

echo -e "request=$request\r"

exit 0

Note
The code is held in the chapter_04/webled/bash/httpd_echo.sh file in the book's example code repository.

This script is quite simple; it first reads the browser's request, and then it starts reading the message header, and when finished, it produces an answer with a message dump, so we can analyze it and understand what they say to each other.
Now we need a new xinetd configuration file to execute our Bash web server, as follows:
service http-alt
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /root/httpd.sh
}

Note
The code is held in the chapter_04/webled/bash/httpd_sh file in the book's example code repository.
Note also that the http-alt service is defined as port 8080 in the /etc/services file:

 root@bbb:~# grep 8080 /etc/services

 http-alt 8080/tcp webcache # WWW caching service

 http-alt 8080/udp

Then, we have to copy the file into the xinetd configuration directory, as follows:

root@bbb:~# cp httpd_sh /etc/xinetd.d/

Now we have to put the program into the httpd_echo.sh file in the /root/httpd.sh file, which is executed by xinetd when a new connection arrives on port 8080:

root@bbb:~# cp httpd_echo.sh /root/httpd.sh

To start our new web server, we have to restart the xinetd daemon:

root@bbb:~# /etc/init.d/xinetd restart
Restarting xinetd (via systemctl): xinetd.service.

At this point, by pointing our web browser at the address http://192.168.7.2:8080/index.html, we will see a message like the following one:

Host: 192.168.7.2:8080
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:46.0) Gecko/201
00101 Firefox/46.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.
8
Accept-Language: it,en-US;q=0.7,en;q=0.3
Accept-Encoding: gzip, deflate
Connection: keep-alive
HTTP/1.1 200 OK
Content-type: text/html
request=GET /index.html HTTP/1.1

The first seven lines are the message header, and then there are two lines with the server's answer, and in the end, there's the dump of the initial request. As we can see, the browser did a HTTP GET version 1.1 request asking for the /index.html file. So, our Bash web server should simply read the browser's request, then skip the header, and in the end, return the contents of the file specified in the request.
A possible implementation is reported as follows:
#!/bin/bash

The server's root directory
base=/var/www/html

Read the browser request
read request

Now read the message header
while /bin/true; do
 read header
 ["$header" == $'\r'] && break;
done

Parse the GET request
tmp="${request#GET }"
tmp="${tmp% HTTP/*}"

Extract the code after the '?' char to capture a variable setting
var="${tmp#*\?}"
["$var" == "$tmp"] && var=""

Get the URL and replace it with "/index.html" in case it is set to "/"
url="${tmp%\?*}"
["$url" == "/"] && url="/index.html"

Extract the filename
filename="$base$url"
extension="${filename##*.}"

Check for file exist
if [-f "$filename"]; then
 echo -e "HTTP/1.1 200 OK\r"
 echo -e "Contant-type: text/html\r"
 echo -e "\r"

 # If file's extension is "cgi" and it's executable the
 # execute it, otherwise just return its contents
 if ["$extension" == "cgi" -a -x "$filename"]; then
 $filename $var
 else
 cat "$filename"
 fi
 echo -e "\r"
else
 # If the file does not exist return an error
 echo -e "HTTP/1.1 404 Not Found\r"
 echo -e "Content-Type: text/html\r"
 echo -e "\r"
 echo -e "404 Not Found\r"
 echo -e "The requested resource was not found\r"
 echo -e "\r"
fi

exit 0

Note
The code is held in the chapter_04/webled/bash/httpd.sh file in the book's example code repository.

So we only have to replace the /root/httpd.sh file with this file:

root@bbb:~# cp httpd.sh /root/httpd.sh

Now, after restarting the daemon, we can try our new web server written in the Bash language simply by pointing our web browser to the BeagleBone Black's IP address, as done earlier, and we'll get the same output we got earlier when we used the Apache web server. Nice, isn't it?
Note
Something different exists, in fact, we don't have the Debian logo. This is because our script can't manage binary files as images. This is left to you as an exercise.

Before going on, let's spend some words on how the web server works. After reading the browser's request, we have to parse it in order to extract some useful information for the next steps; in fact, we have to check whether the request is a normal file or a CGI script; in this last case, we have to execute the file instead of reading it with the cat command. Here is the relevant code:
If file's extension is "cgi" and it's executable the execute it,
otherwise just return its contents
if ["$extension" == "cgi" -a -x "$filename"]; then
 $filename $var
else
 cat "$filename"
fi
echo -e "\r"

That is, instead of using the cat command to simply return the file content, we first verify that the file has the cgi extension and whether it's executable; in this case, we simply execute it. Note that before doing this, we need to extract the code after the ? character in order to get the variable settings when we use a URL in the
http://192.168.7.2:8080/?led=1
 form. This task is done by the var="${tmp#*\?}" code.
OK, now the final version of the web server is ready, but to complete the server side actions, we need to add a CGI functionality. A possible GCI implementation is held in the chapter_04/webled/bash/turn.cgi file in the book's example code repository, and here is a snippet of the relevant functions where the LED status is managed:
2nd part - Set the new led status as requested
if [-n "$1"] ; then
 eval $1 ;# this evaluate the query 'led=0'
 led_new_status = $led
 echo $led_new_status > $value_f
fi

led_status=$(cat $value_f)

led_new_status=$((1 - $led_status))

Now everything is really in place! Let's copy the turn.cgi file into the /var/www/html directory and then point the browser as we did for the PHP and the Python version of our LED management code; we should get a function similar to the earlier one.
Note
The Bash web server presented here is not a strictly compliant web server or a safe one! Even if it can work in most cases, it's just a simple demonstration program and it shouldn't be used in a production environment!

In these Bash examples, we used some special syntax that may be obscure for most of you (especially for beginners). Maybe looking at a Bash tutorial may help. A good starting point is at
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
.

Writing a custom daemon

In this last section, we'll learn how to write our own daemon in several programming languages using a skeleton that can be used to quickly develop really complex daemons. Due to the lack of space, we cannot add all the possible features a daemon has, but the presented skeletons will have whatever you need to know about daemon creation.
All example code will implement a daemon with the following command line usage:

usage: mydaemon [-h] [-d] [-f] [-l]
-h - show this message
-d - enable debugging messages
-f - do not daemonize
-l - log on stderr

The -h option argument will show the help message, while -d will enable the debugging messages. The -f option argument will prevent the daemon from running in the background, and the -l option will print the logging messages to the standard error channel. Apart from the -h option argument, the other arguments are very useful during the debugging stages if used together in the form:

./mydaemon -d -f -l

The developer can run the daemon in the foreground with the debugging messages enabled and printed on the current terminal.
A daemon in C

In C language, a daemon skeleton can be written as in the chapter_04/mydaemon/my_daemon.c file in the book's example code repository. The most important steps here are from the openlog() function call and the daemon_body() one. In fact, the two signal() system calls are used to set up the signal handlers, while the whole job is done by the daemon() function call (refer to the beginning of this chapter). Here is the relevant code:
/* Open the communication with syslogd */
loglevel = LOG_PID;
if (logstderr)
 loglevel |= LOG_PERROR;
openlog(NAME, loglevel, LOG_USER);

/* Install the signals traps */
sig_h = signal(SIGTERM, sig_handler);
if (sig_h == SIG_ERR) {
 fprintf(stderr, "unable to catch SIGTERM");
 exit(-1);
}
sig_h = signal(SIGINT, sig_handler);
if (sig_h == SIG_ERR) {
 fprintf(stderr, "unable to catch SIGINT");
 exit(-1);
}
dbg("signals traps installed");

/* Should run as a daemon? */
if (daemonize) {
 ret = daemon(!daemonize, 1);
 if (ret) {
 fprintf(stderr, "unable to daemonize the process");
 exit(-1);
 }
}

daemon_body();

Now we can compile the code using make and then we can execute it using the following command line:

root@bbb:~# make
cc -Wall -O2 -D_GNU_SOURCE mydaemon.c -o mydaemon
root@bbb:~# ./mydaemon
root@bbb:~#

We notice that it seems that nothing happens since the prompt is returned! However, after looking at the system log files, we can see the daemon's activity:

root@bbb:~/mydaemon# tail -f /var/log/syslog
Apr 2 22:35:01 bbb mydaemon[3359]: I'm working hard!
Apr 2 22:35:02 bbb mydaemon[3359]: I'm working hard!
Apr 2 22:35:03 bbb mydaemon[3359]: I'm working hard!

The daemon can now be stopped using the killall command, as follows:

root@bbb:~# killall mydaemon

A daemon in PHP

In PHP, creating a daemon is a bit more complex due the fact that there is no dedicated function to daemonize a running process; however, the task is still quite simple, as shown in the chapter_04/mydaemon/my_daemon.php file in the book's example code repository. As for the C example, the important steps are all after the openlog() function call; the pcntl_signal() functions are used to install the signal handlers, while the daemon is created using the pcntl_fork(), exit(), chdir() and fclose()functions, as already explained at the beginning of this chapter. Here is the code snippet:
openlog(NAME, $loglevel, LOG_USER);

Install the signals traps
pcntl_signal(SIGTERM, "sig_handler");
pcntl_signal(SIGINT, "sig_handler");
dbg("signals traps installed");

Start the daemon
if ($daemonize) {
 dbg("going in background...");
 $pid = pcntl_fork();
 if ($pid < 0) {
 die("unable to daemonize!");
 }
 if ($pid) {
 # The parent can exit...
 exit(0);
 }
 # ... while the children goes on!

 # Set the working directory to /
 chdir("/");

 # Close all of the standard file descriptors as we are running
 # as a daemon
 fclose(STDIN);
 fclose(STDOUT);
 fclose(STDERR);
}

daemon_body();

Note
The documentation of the pcntl_fork() function is online at:
http://php.net/manual/en/function.pcntl-fork.php
.

In this case, the daemon can be executed using the following command line, and we get the same output as the earlier one:

root@bbb:~# ./mydaemon.php

We can check it by using again the tail command:

root@bbb:~# tail -f /var/log/syslog
Apr 2 22:36:59 bbb mydaemon.php[3365]: I'm working hard!
Apr 2 22:37:00 bbb mydaemon.php[3365]: I'm working hard!
Apr 2 22:37:01 bbb mydaemon.php[3365]: I'm working hard!

Then, to stop it, we use the killall utility again:

root@bbb:~# killall mydaemon.php

A daemon in Python

In Python, the task is easier than in C due to the fact that we have a dedicated library to daemonize the running process.
The code is in the chapter_04/mydaemon/my_daemon.py file in the book's example code repository. As earlier, the relevant part is after the syslog.openlog() method call; we simply create a dedicated context with the daemon.DaemonContext()method, and then within that context, we execute our daemon_body() function. The relevant code is reported as follows:
Open the communication with syslogd
loglevel = syslog.LOG_PID
if logstderr:
 loglevel |= syslog.LOG_PERROR
syslog.openlog(NAME, loglevel, syslog.LOG_USER)

Define the daemon context and install the signals traps
context = daemon.DaemonContext(
 detach_process = daemonize,
)
context.signal_map = {
 signal.SIGTERM: sig_handler,
 signal.SIGINT: sig_handler,
}
dbg("signals traps installed")

Start the daemon
with context:
 daemon_body()

Note
The documentation of the Python standard daemon process library is at:
https://www.python.org/dev/peps/pep-3143/
.

The daemon is launched as earlier with the following command line:

root@bbb:~# ./mydaemon.py

Again, we can check the functioning with tail:

root@bbb:~# tail -f /var/log/syslog
Apr 2 22:47:59 bbb mydaemon.py[4339]: I'm working hard!
Apr 2 22:48:00 bbb mydaemon.py[4339]: I'm working hard!
Apr 2 22:48:01 bbb mydaemon.py[4339]: I'm working hard!

Then, we use killall to stop the daemon:

root@bbb:~# killall mydaemon.py

A daemon in Bash

As a last example, we present the daemon implementation of a Bash script. This example is not as relevant as the previous ones since it is very rare to implement a daemon as a Bash script; however, it's interesting in order to show you how Bash scripting can be powerful.
The Bash demon code is reported in the chapter_04/mydaemon/my_daemon.sh file in the book's example code repository. In this case, the relevant code is after the trap command, which is used to install the signals handler, and it's all concentrated in the line with the eval command. The daemon_body() function is called in such a way that the stdin and stdout channels are redirected to the /dev/null file, while the stderr is redirected if no option is supplied, while the background or foreground execution mode is selected by the respective command-line option argument. The relevant code is as follows:
Install the signals traps
trap sig_handler SIGTERM SIGINT
dbg "signals traps installed"

Start the daemon
if [-n "$daemonize"] ; then
 dbg "going in background..."

 # Set the working directory to /
 cd /
fi
[-z "$logstderr"] && tmp="2>&1"
eval daemon_body </dev/null >/dev/null $tmp $daemonize

Note
To get more information on the background process execution, standard input/output redirection and other Bash-related stuff used in this example, you can take a look at Bash's man pages using the usual command:

$ man bash

In this case, we can run the daemon in the debugging mode and then look at its output directly on the terminal:

root@bbb:~# ./mydaemon.sh -d -f -l
mydaemon.sh: signals traps installed
mydaemon.sh: start main loop
mydaemon.sh: I'm working hard!
mydaemon.sh: I'm working hard!
mydaemon.sh: I'm working hard!

This time, we can stop the daemon by simply pressing the
CRTL + C
 keys sequence, and this is the output:

^Cmydaemon.sh: signal trapped!
root@bbb:~#

Summary

In this chapter, we took a long tour into several tools that an embedded developer can use to simplify their job. We saw some system daemons with some practical usage modes, and we also talked about some famous scripting languages and how we can use them to implement some tasks involving the system's peripherals.
In the next chapter, we will completely switch our standard mode of operation by presenting two of the major embedded distributions we can use in order to reduce the rootfs memory footprint. In fact, a standard Debian distribution may need from 512MB to 1GB or more, while an embedded distribution needs from 4MB or 5MB to less then 100 MB even with several running services!

Chapter 5. Setting Up an Embedded OS

Having a Debian OS or another major distribution running on an embedded computer is absolutely the best thing a developer can have. However, there are some situations that don't allow us to be so lucky! In fact, due to cost reasons, reduced sizes, or other minor issues, the available mass memory useful to store our rootfs (plus the bootloaders and the kernel) is very limited, and we cannot use our preferred distribution.
This is where an embedded OS comes in handy, allowing us to work with tiny mass memory's sizes, from 256 MB to 16 MB or less, by still having a reasonable set of ready-to-use programs and already made customization mechanisms.
In this chapter, we'll look at the flash memories (especially the NAND ones), and the software used to manage them and that allows the developer to see these storage devices more or less as a normal disk. So, we will present Linux's Memory Technology Device (MTD) and the two major filesystems that can run over them, that is, JFFS2 and UBIFS.
Then, we'll present two of the most famous embedded distributions used in these days: Yocto and OpenWrt. We'll then show how you can download, compile, and then install them over the SAMA5D3 Xplained board, which is the only one that has a NAND flash onboard.
As the last step, for each embedded distribution, we will show you how an embedded developer can write their own application and how they can add it to Yocto and OpenWrt in order to extend them.
MTD versus block devices

There are several different kinds of embedded systems, especially today, since they're cheap. So, it's very important to know which device best fits our needs before starting the coding. As far as the name suggests, the embedded computers are embedded into the device they have to control or monitor. Often, these devices are placed into hostile environments: industrial plants (with dust and vibrations); open environment (extreme temperatures or rains); or aboard of trucks, cars, trains and other automotive systems.
In these scenarios, we have to carefully choose the hardware components that compose our embedded computer. Even if it's quite obvious, we cannot use a normal hard disk to store our data. More subtle is the fact that we cannot even choose a microSD! In fact, we can easily find these devices in every electronic store. However, they are not suitable for environments with vibrations (they are not soldered, and the contacts may get damaged) nor in places with very hot or cold temperatures (they usually are designed for standard, human-compatible environments). Also, they still have some problems regarding the device lifetime and possible corruption at power off. No way! We have to consider a different solution!
A possible (and relatively cheap) solution is to use flash memories. These special kinds of memories are obviously non-volatile, and they consist of one or more chips with very large temperature ranges that can be soldered on the board. The disadvantage in using these devices is that they cannot be accessed as a normal block device. That's why, in a Linux-based system, they are known as MTD devices.
What is an MTD device?

In Chapter 3
, C Compiler, Device Drivers, and Useful Developing Techniques, in Char, block, and net device section, we introduced block devices, that is, devices accessed in blocks of data and that support a filesystem. The MTD devices are based on the flash memory technology (NOR or NAND and other variants) that can be get accessed as a block device, where we can mount on a special filesystem, but also as a character device because flash memories must be managed in a special way in order to function well. It seems complex but it's not. Let's explain these concepts a bit better, and everything will be clearer.
We already introduced flash memories into Chapter 1
, Installing the Developing System, in Embedded world terms section, but what we omitted there is the fact that these devices need special management methods to work well. In fact, flash memories need the bad block detection, error detection and recovery, and a wear leveling system.
The bad block detection is a mechanism that informs the systems that a particular block of the flash is damaged and it cannot be used anymore. This is very important because for a flash device, this event is far from rare! In fact, repetitive erases and writes may damage a block, and in this scenario, when we write a new data block, we must discard it and then choose a new one. On the other hand, when we read a block, we need a way to recover the situation: this is where error detection and recovery comes in handy. The flash memory uses a supplement storage data to save some extra information that can be used later when an error occurs (in particular, NAND memories use the ECC data to do it).
Note
See more information about flashes, bad block detection, error detection and recovery, NAND flashes, and their ECC data at:
https://en.wikipedia.org/wiki/Flash_memory
.

Detecting an error or a bad block is not enough to correctly manage these devices. In fact, they also need a good wear leveling system, that is, a mechanism that erases (and then writes) over the whole storage area to reduce possible errors. In fact, flash memories can get damaged each time our embedded system writes or yet reads (in the case of the NAND technology) data block on them, and this probability gets higher as far as the frequency of these operations increases. That's why, the wear leveling system avoids frequent writes or reads on the same area in order to increase the lifetime of these devices.
Tip
You can get more information on the wear leveling system at:
https://en.wikipedia.org/wiki/Wear_leveling
.

All these aspects are to present the fact that the MTD devices (which are on top of flash devices) must implement several mechanisms to work efficiently, and that's why, in the Linux kernel, we have a dedicated devices class into the drivers/mtd directory of the Linux repository.
In the kernel's configuration menu, we read the following:

Memory Technology Devices are flash, RAM and similar chips, often used for solid state filesystems on embedded devices.

So, MTD are used to support solid state filesystems, and they are referred by the files /dev/mtd0, /dev/mtd1, /dev/mtdblock0 , /dev/mtdblock1, and so on and in a normal GNU/Linux filesystem (we'll see the differences between these two types of MTD devices soon). The MTD layer abstracts the different flash technologies to the user-level applications as shown in the following diagram:

[image: What is an MTD device?]

However, it is very important to point out that these solid state filesystems are not referred to USBkeys nor to microSDs and other similar devices. This is because even if they have flash memories inside them, they are abstracted to the system as normal block devices, thanks to a Flash Translation Layer (FTL) that implements in hardware the wear leveling system, and the bad block detection and the error detection and recovery systems. Usually, USBkeys, microSDs, and other similar devices are called managed flash devices.
Tip
More information on FTL can be retrieved at:
https://en.wikipedia.org/wiki/Flash_file_system#FTL
.

Simply speaking, while the MTD devices need a FTL in software (in our case, implemented into the Linux kernel), the USBkeys, microSD, and so on don't need it at all since they have a FTL system inside them. These aspects are more important when we need a highly reliable system due the fact USBkeys, microSDs and so on may still have problems with wear leveling and possible corruptions at power off (the last two aspects are manufacture dependent).
Note
A good explanation about the differences between the flash devices and the usual block devices (hard disks and so on) is reported at:
http://www.linux-mtd.infradead.org/faq/general.html#L_mtd_vs_hdd
, where we can read that a block device has the read and write operations only while a flash device has the erase one too. Also, for the block devices, sectors are devoid of the wear-out property, while for the flash devices, the erase block operations wear out and become bad and unusable after about 103 (for MLC NAND) and 105 (NOR, SLC NAND) erase cycles.

Managing an MTD device

At this point, we have to introduce the tools needed to manage an MTD device in order to be able to put a filesystem on top of it. For this purpose, we have no choices than using the SAMA5D3 Xplained board since it's the only one that has a flash memory onboard (actually, the BeagleBone Black also has a flash device onboard, but it's an eMMC, which is a managed flash device, and it's not useful for our purposes). However, what reported below can be used on every GNU/Linux system equipped with such devices (and with the proper drivers, of course).
During the boot of the SAMA5D3 Xplained, we can notice the following kernel messages:

atmel_nand 60000000.nand: Use On Flash BBT
atmel_nand 60000000.nand: Using dma0chan4 for DMA transfers.
nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xda
nand: Micron MT29F2G08ABAEAWP
nand: 256 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB si4
atmel_nand 60000000.nand: minimum ECC: 4 bits in 512 bytes
atmel_nand 60000000.nand: Initialize PMECC params, cap: 4, secto2
atmel_nand 60000000.nand: Using NFC Sram read
Bad block table found at page 131008, version 0x01
Bad block table found at page 130944, version 0x01
nand_read_bbt: bad block at 0x000000c80000
nand_read_bbt: bad block at 0x000000ca0000
6 ofpart partitions found on MTD device atmel_nand
Creating 6 MTD partitions on "atmel_nand":
0x000000000000-0x000000040000 : "at91bootstrap"
0x000000040000-0x0000000c0000 : "bootloader"
0x0000000c0000-0x000000180000 : "bootloader env"
0x000000180000-0x000000200000 : "device tree"
0x000000200000-0x000000800000 : "kernel"
0x000000800000-0x000010000000 : "rootfs"

These messages are all referred to the flash and MTD support. In particular, we need a driver for the flash controller and one for the particular flash chips (when we use the NAND flashes, the driver is named Open NAND Flash Interface (ONFI)).
After some description messages, we must note that the MTD partitions defined in the system is as follows:
	

MTD Device

	

Memory Offsets

	

Partition Name

	

mtd0

	

0x000000000000-0x000000040000

	

at91bootstrap

	

mtd1

	

0x000000040000-0x0000000c0000

	

bootloader

	

mtd2

	

0x0000000c0000-0x000000180000

	

bootloader

	

mtd3

	

0x000000180000-0x000000200000

	

device tree

	

mtd4

	

0x000000200000-0x000000800000

	

kernel

	

mtd5

	

0x000000800000-0x000010000000

	

rootfs

This data can be also extracted from the /proc/mtd file in the procfs filesystem:

root@a5d3:~# cat /proc/mtd
dev: size erasesize name
mtd0: 00040000 00020000 "at91bootstrap"
mtd1: 00080000 00020000 "bootloader"
mtd2: 000c0000 00020000 "bootloader env"
mtd3: 00080000 00020000 "device tree"
mtd4: 00600000 00020000 "kernel"
mtd5: 0f800000 00020000 "rootfs"

Alternatively, we can take a look at the SAMA5D3 Xplained DTS file in the Linux source tree as reported in the following snippet of the arch/arm/boot/dts/sama5d3xcm.dtsi file:
nand0: nand@60000000 {
 nand-bus-width = <8>;
 nand-ecc-mode = "hw";
 atmel,has-pmecc;
 atmel,pmecc-cap = <4>;
 atmel,pmecc-sector-size = <512>;
 nand-on-flash-bbt;
 status = "okay";

 at91bootstrap@0 {
 label = "at91bootstrap";
 reg = <0x0 0x40000>;
 };

 bootloader@40000 {
 label = "bootloader";
 reg = <0x40000 0x80000>;
 };

 bootloaderenv@c0000 {
 label = "bootloader env";
 reg = <0xc0000 0xc0000>;
 };

 dtb@180000 {
 label = "device tree";
 reg = <0x180000 0x80000>;
 };

 kernel@200000 {
 label = "kernel";
 reg = <0x200000 0x600000>;
 };

 rootfs@800000 {
 label = "rootfs";
 reg = <0x800000 0x0f800000>;
 };
};

It's quite obvious that changing these settings can change SAMA5D3 Xplained's flash partitioning. This possibility is quite useful when we have to organize our mass memory due to the fact that we can divide a single chip into several logical partitions.
Note
For more information on all MTD-related concepts, you can take a look at the Linux Memory Technology Devices home page at:
http://www.linux-mtd.infradead.org
.

However, for our purposes, these settings are quite correct, in particular, regarding the partition labeled rootfs where our new embedded OS will be placed.
At this point, we have to introduce the mtd-utils package where all the needed tools are placed. On our Debian OS, everything is already installed (otherwise, the aptitude command is the solution), and using the following command, we can take a list of such tools:

root@a5d3:~# dpkg -L mtd-utils | grep bin/ | sort
/usr/sbin/docfdisk
/usr/sbin/doc_loadbios
/usr/sbin/flashcp
/usr/sbin/flash_erase
/usr/sbin/flash_eraseall
/usr/sbin/flash_lock
/usr/sbin/flash_otp_dump
/usr/sbin/flash_otp_info
/usr/sbin/flash_otp_lock
/usr/sbin/flash_otp_write
/usr/sbin/flash_unlock
/usr/sbin/ftl_check
/usr/sbin/ftl_format
/usr/sbin/jffs2dump
/usr/sbin/jffs2reader
/usr/sbin/mkfs.jffs2
/usr/sbin/mkfs.ubifs
/usr/sbin/mtd_debug
/usr/sbin/mtdinfo
/usr/sbin/nanddump
/usr/sbin/nandtest
/usr/sbin/nandwrite
/usr/sbin/nftldump
/usr/sbin/nftl_format
/usr/sbin/recv_image
/usr/sbin/rfddump
/usr/sbin/rfdformat
/usr/sbin/serve_image
/usr/sbin/sumtool
/usr/sbin/ubiattach
/usr/sbin/ubiblock
/usr/sbin/ubicrc32
/usr/sbin/ubidetach
/usr/sbin/ubiformat
/usr/sbin/ubimkvol
/usr/sbin/ubinfo
/usr/sbin/ubinize
/usr/sbin/ubirename
/usr/sbin/ubirmvol
/usr/sbin/ubirsvol
/usr/sbin/ubiupdatevol

These commands have different usage - the ones starting with the flash string are strictly related to the MTD device in general, the ones that start with the ubi string are UBIFS related, and the ones that start with jffs2 are related to the JFFS2 filesystem (see the next section).
Note
These tools are not documented well (they've no man pages too!). So, the curios reader has to surf the Internet to find useful information on their usage. However, in this chapter, we will present some commands that are useful enough to start.

As the first step, let's take a look at the commands to erase and then correctly write a MTD device (remember that each flash memory, in order to be written, must be erased before). So, to erase the mtd0 device on the SAMA5D3 Xplained board, we have to use the following command:

root@a5d3:~# flash_erase /dev/mtd0 0 0
Erasing 128 Kibyte @ 20000 -- 100 % complete

Then, to write some data in the same device, we have a different way, depending on the flash technology the device is composed of. This is because these flash devices have different write modes.
On our SAMA5D3 Xplained board, we have a NAND device, so the command to use is nandwrite. So, to write data on the just erased mtd0 device, we have to use this command:

root@a5d3:~# nandwrite -q -m -p /dev/mtd0 boot.bin

We will explain the command soon in the upcoming sections.
You can continue experiencing other commands using the --help option argument to take the command's documentation.

Filesystems for flash memories

In a GNU/Linux system, the two major filesystems developed to manage flash memory devices are the JFFS2 and UBIFS. They are quite different from each other, but they have the same goal: implementing a good Flash Transition Layer.
JFFS2 versus UBIFS

This book cannot explain in detail all the differences between the JFFS2 and UBIFS filesystems due to the fact that these aspects are really complicated. However, we can spend some words in trying to give an idea about what these filesystems offer to the embedded developer.
First of all, we have to notice that the UBIFS filesystem, in reality, doesn't talk directly with the MTD core, but it has another layer in the middle named Unsorted Block Image (UBI) as shown in the following diagram:

[image: JFFS2 versus UBIFS]

In the diagram, we can also notice that while JFFS2 uses the /dev/mtdX block devices, the UBIFS introduces the UBI volume concept. These UBI volumes are used to abstract the Physical Erase Blocks (known as PEB) of a MTD device into the Logical Erase Blocks (known as LEB) that allow a UBI volume to have the following major advantages:
	UBI volume has no bad LEBs due to the fact that the UBI layer transparency handles the bad PEBs.
	The LEBs do not wear out due to the fact that the UBI spreads the read/write/erase operations evenly across the whole flash device, implementing a transparency wear leveling system.
	UBI volumes are dynamic, and they can be created, deleted, and resized at run time.

For these reasons, using this layer, the Unsorted Block Image File System (UBIFS) can better manage the NAND flash bad blocks and provide wear leveling. However, the real advantage in using UBIFS rather than JFFS2 is that it supports the write caching and that it errs on the pessimistic side of free space calculation.
Tip
More information on UBIFS's write caching can be found at:
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_writeback
, while information on free space calculation is located at:
http://www.linux-mtd.infradead.org/faq/ubifs.html#L_df_report
.

Besides these technical aspects, and simply speaking, the main advantage of UBIFS against JFFS2 is that the former scales better for larger flash memories. It also has a faster mounting, quicker access to large files, and improved write speeds. However, we still can find systems using the JFFS2 due its proven stability and a very wide usage (before the arriving of UBIFS). That's why, we present both it in this book anyway.
Tip
You can get more information on these aspects at:
http://www.linux-mtd.infradead.org/doc/general.html
, and especially at:
http://www.linux-mtd.infradead.org/doc/jffs2.html
 for JFFS2 and at
http://www.linux-mtd.infradead.org/doc/ubifs.html
 and
http://www.linux-mtd.infradead.org/doc/ubi.html
 for UBIFS and its UBI middle layer.

Building a JFFS2 filesystem

To build a JFFS2 filesystem, we have two main ways: the first one is by doing it directly on the target board while the second one is by doing it on the host PC. Of course, the latter is the most used one since we can generate a binary image that can be written directly into the flash with a JTAG.
Tip
The JTAGs usage is not covered into this book. However, it may be important due to the fact that using it, we can easily set up an embedded system without really running it and then simplifying large systems production. For more information on these topics and how to set up a JTAG system and then use it on an embedded system, a good starting point is
http://openocd.org
.

Let's start by verifying that our system supports JFFS2 filesystems by looking at /proc/filesystems as shown here:

root@a5d3:~# grep jffs2 /proc/filesystems
nodev jffs2

If we get no output, it means that our system lacks the support for this filesystem and then we have to install it by recompiling the kernel as reported in Chapter 1
, Installing the Developing System, in Linux kernel for SAMA5D3 Xplained
 section and modifying the kernel configuration by going to File systems | Miscellaneous filesystems | Journalling Flash File System v2 (JFFS2) support. We need just to enable it as built in, leaving the other parameters at their defaults.
Now, to create a JFFS2 filesystem on the SAMA5D3 Xplained, we have first of all to erase the flash partition with the flash_erase command. By taking a look at flash_erase's help message, we notice that we can erase and then create a JFFS2 filesystem at the same time if we use the --jffs2 option argument, so the actual command is shown here:

Erasing 128 Kibyte @ 0 -- 0 % complete flash_erase: Cleanmarker writ
ten at 0
Erasing 128 Kibyte @ 20000 -- 0 % complete flash_erase: Cleanmarker
written at 20000
Erasing 128 Kibyte @ 40000 -- 0 % complete flash_erase: Cleanmarker
written at 40000
Erasing 128 Kibyte @ 60000 -- 0 % complete flash_erase: Cleanmarker
written at 60000
...
flash_erase: Skipping bad block at 00480000
flash_erase: Skipping bad block at 004a0000
...
flash_erase: Skipping bad block at 0f780000
flash_erase: Skipping bad block at 0f7a0000
flash_erase: Skipping bad block at 0f7c0000
flash_erase: Skipping bad block at 0f7e0000
Erasing 128 Kibyte @ f7e0000 -- 100 % complete

Note
During the execution, the command detects and signals every encountered bad blocks.

OK, that's all! Just mount the new JFFS2 partition with the usual mount command by specifying the partition's type using the -t option argument:

root@a5d3:~# mount -t jffs2 /dev/mtdblock5 /mnt/

Note
To erase the partition, we used the /dev/mtd5 character device, but to mount the partition, we used the /dev/mtdblock5 block device! These devices, even if of different kinds, both refer to the same physical device area. However, the character device is needed during the erasing stage because for a block device, the erasing method does not make sense, while the mount command requires to work on a block device.

Now, in the /mnt directory, we can write some files, and they will be stored in our NAND flash where they will remain across a complete reboot:

root@a5d3:~# mount -t jffs2 /dev/mtdblock5 /mnt/
root@a5d3:~# echo "some text" > /mnt/just_a_file
root@a5d3:~# ls -l /mnt/
total 1
-rw-r--r-- 1 root root 10 Apr 2 17:44 just_a_file
root@a5d3:~# umount /mnt/
root@a5d3:~# mount -t jffs2 /dev/mtdblock5 /mnt/
root@a5d3:~# cat /mnt/just_a_file
some text

Tip
In the preceding example, we didn't reboot the system, but we just unmounted and then remounted the partition, which is (almost) the same.

Now, let's see how we can do the same on the host PC. This time, we need the mtd-utils package to be installed on the host PC too. So, let's install it with the usual aptitude command and then select the JFFS2-related commands:

$ dpkg -L mtd-utils | grep jffs2
/usr/share/man/man1/mkfs.jffs2.1.gz
/usr/sbin/jffs2dump
/usr/sbin/jffs2reader

OK, our command is obviously mkfs.jffs2. The command takes several options, but most of them are optional, while the only required ones (with two still optional but useful arguments within square brackets) are shown here:

mkfs.jffs2 --root=<root_filesystem> \
--pagesize=<page_size> --eraseblock=<erase_block_size> \
[--pad] [--little-endian] --output=<output_file>

By looking at the help message of mkfs.jffs2, we can discover what the preceding options are useful for, However, regarding the optional arguments, the --pad option can actually be omitted, but we keep it to remark that the output image must be padded until the end of the sector (this is because for a flash device, the sector must be completely rewritten and correctly filled with 0xFF). The --little-endian option is to remark the endianness of the output file since if both --little-endian and --big-endian are not specified, the system will create an output file of the same endianness of the host and, in some rare cases, this may create malfunctioning (especially if we work with hosts and clients with different endianness).
Now, to execute the mkfs.jffs2 command in order to create our new JFFS2 filesystem, we need to know what is the page size and the erase block size to be put on the relative commands. We have two possible ways out: we can ask our hardware guys or we can get this information from the kernel itself. In fact, by looking at the kernel boot messages, we can get the information we need:

nand: 256 MiB, SLC, erase size: 128 KiB, page size: 2048, OOB si4

OK, now, we have just to create a dedicated directory and then create a file in it just for testing purposes:

$ mkdir mtd5_dir
$ echo "some text" > mtd5_dir/just_a_file

So, the command to create our filesystem is here:

$ mkfs.jffs2 --root=mtd5_dir --pagesize=2048 --eraseblock=128
--pad --little-endian -output=mtd5.jffs2

Now, we have to move the file into our SAMA5D3 Xplained and then write it into the /dev/mtd5 flash partition:

root@a5d3:~# flash_erase /dev/mtd5 0 0
Erasing 128 Kibyte @ 460000 -- 1 % complete flash_erase: Skipping bad
 block at 00480000
flash_erase: Skipping bad block at 004a0000
Erasing 128 Kibyte @ f760000 -- 99 % complete flash_erase: Skipping ba
d block at 0f780000
flash_erase: Skipping bad block at 0f7a0000
flash_erase: Skipping bad block at 0f7c0000
flash_erase: Skipping bad block at 0f7e0000
Erasing 128 Kibyte @ f7e0000 -- 100 % complete
root@a5d3:~# nandwrite /dev/mtd5 mtd5.jffs2
Writing data to block 0 at offset 0x0

Note
First of all, don't forget to unmount the previous JFFS2 filesystem before erasing and then rewriting the data on the /dev/mtd5 partition! Then, note that this time, we didn't use the -j option argument for the flash_erase command as done before since now, the data we're going to write into the partition is already formatted as the JFFS2 filesystem. In the end, note also that the filesystem image is really small and it's not as large as the partition size where it is stored into. This is because the JFFS2 filesystem is capable of occupying the whole partition as soon as the system is running, and the reads/writes are performed on the flash device (this is a great feature for the system production since it dramatically reduces the setup time).

Now, we have to mount the partition and check whether the file we have created on the host PC is there:

root@a5d3:~# mount -t jffs2 /dev/mtdblock5 /mnt/
root@a5d3:~# cat /mnt/just_a_file
some text

OK, our job was correct.

Building a UBIFS filesystem

Now, let's try to redo what we did in the preceding section, but with the UBIFS this time. So, erase the mtd5 partition again (after unmounting the relative mtdblock5 device!), but this time, without any special argument options:

root@a5d3:~# flash_erase /dev/mtd5 0 0

After that, we have to do a more complicated procedure to do our job. In fact, we have to format the partition as we did with hard disks, but this time, the formatting command takes the character device instead of a block one (as the fdisk command does, for instance). The command to be used is ubiformat. The command takes several option arguments, but this time, we just need --yes to skip several questions where we have to answer yes in any case:

root@a5d3:~# ubiformat --yes /dev/mtd5
ubiformat: mtd5 (nand), size 260046848 bytes (248.0 MiB),
1984 eraseblocks of 1s
libscan: scanning eraseblock 1983 -- 100 % complete
ubiformat: 1978 eraseblocks are supposedly empty
ubiformat: 6 bad eraseblocks found, numbers: 36, 37, 1980, 1981, 1982,
1983
ubiformat: formatting eraseblock 1983 -- 100 % complete

OK, now, the partition has been formatted, and we are ready to attach the mtd5 device to the UBI subsystem. This is the first real difference between UBIFS and JFFS2 (and other usual filesystems) since UBIFS requires that each partition is placed under the control of the UBI layer presented earlier. The command is ubiattach.
Our command is the one in the first example. However, we wish to keep the number 5 for the new UBI device for better readability since we're going to use the fifth MTD device. So, the command is as follows:

root@a5d3:~# ubiattach --dev-path=/dev/mtd5 --devn=5
ubi5: attaching mtd5
ubi5: scanning is finished
ubi5: attached mtd5 (name "rootfs", size 248 MiB)
ubi5: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
ubi5: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
ubi5: VID header offset: 2048 (aligned 2048), data offset: 4096
ubi5: good PEBs: 1978, bad PEBs: 6, corrupted PEBs: 0
ubi5: user volume: 0, internal volumes: 1, max. volumes count: 18
ubi5: max/mean erase counter: 0/0, WL threshold: 4096, image seq4
ubi5: available PEBs: 1940, total reserved PEBs: 38, PEBs reserv4
ubi5: background thread "ubi_bgt5d" started, PID 2027
UBI device number 5, total 1978 LEBs (251158528 bytes, 239.5 MiB),
 available 19)

Tip
The output reported after the ubiattach command with the prefix ubi5: is not generated by the command itself. They're kernel messages, so they are not visible if we give the command outside the serial console. If this is the case, you can read these messages with the usual dmesg or tail -f command. That we can use the --mtdn option argument to specify the MTD device, just in case the character device is missing (this is useful in reduced systems where we have no automatic device nodes generation support at all as udev & Co.). In this case, the command is as follows:

root@a5d3:~# ubiattach --mtdn=5 --devn=5

We can now get the UBI status using the ubinfo command. The command usage is very simple, so using it with the --all option argument, we can get the information needed:

root@a5d3:~# ubinfo --all
UBI version: 1
Count of UBI devices: 1
UBI control device major/minor: 10:59
Present UBI devices: ubi5
ubi5
Volumes count: 0
Logical eraseblock size: 126976 bytes, 124.0 KiB
Total amount of logical eraseblocks: 1978 (251158528 bytes, 239.5
MiB)
Amount of available logical eraseblocks: 1940 (246333440 bytes, 234.9
MiB)
Maximum count of volumes 128
Count of bad physical eraseblocks: 6
Count of reserved physical eraseblocks: 34
Current maximum erase counter value: 0
Minimum input/output unit size: 2048 bytes
Character device major/minor: 249:0

Now, we need to take another step. We have to create the UBI volume related to our partition and the command to use is ubimkvol. So, the command to do our job is as follows:

root@a5d3:~# ubimkvol /dev/ubi5 --maxavsize -N rootfs
Set volume size to 246333440
Volume ID 0, size 1940 LEBs (246333440 bytes, 234.9 MiB), LEB size 126
976 bytes (124.0 KiB), dynamic, name "rootfs", alignment 1

Now, everything is in place. We just need to mount our new UBIFS partition with the usual mount command, but with proper arguments:

root@a5d3:~# mount -t ubifs ubi5:rootfs /mnt
UBIFS (ubi5:0): default file-system created
UBIFS (ubi5:0): background thread "ubifs_bgt5_0" started, PID 1738
UBIFS (ubi5:0): UBIFS: mounted UBI device 5, volume 0, name "rootfs"
UBIFS (ubi5:0): LEB size: 126976 bytes (124 KiB), min./max. I/O unit s
izes: 2048 bytes/2048 bytes
UBIFS (ubi5:0): FS size: 244682752 bytes (233 MiB, 1927 LEBs), journal
 size 12316672 bytes (11 MiB, 97 LEBs)
UBIFS (ubi5:0): reserved for root: 4952683 bytes (4836 KiB)
UBIFS (ubi5:0): media format: w4/r0 (latest is w4/r0), UUID 02B4EDD6-1
8CE-4FFF-88A4-4350C4126351, small LPT model

Note
As shown in preceding code, the messages with prefix UBIFS came from the kernel. In the mount, we didn't specify a block device in the usual form /dev/blockdev, but we use the volume name instead.

OK, now, we can test the new UBIFS partition as we did earlier by creating a file in it and then verifying that it is still there across an unmount:

root@a5d3:~# echo "some text" > /mnt/just_a_file
root@a5d3:~# ls /mnt/
just_a_file
root@a5d3:~# umount /mnt/
UBIFS (ubi5:0): un-mount UBI device 5
UBIFS (ubi5:0): background thread "ubifs_bgt5_0" stops
root@a5d3:~# ls /mnt/
root@a5d3:~# mount -t ubifs ubi5:rootfs /mnt
UBIFS (ubi5:0): background thread "ubifs_bgt5_0" started, PID 1749
UBIFS (ubi5:0): UBIFS: mounted UBI device 5, volume 0, name "rootfs"
UBIFS (ubi5:0): LEB size: 126976 bytes (124 KiB), min./max. I/O unit s
izes: 2048 bytes/2048 bytes
UBIFS (ubi5:0): FS size: 244682752 bytes (233 MiB, 1927 LEBs), journal
 size 12316672 bytes (11 MiB, 97 LEBs)
UBIFS (ubi5:0): reserved for root: 4952683 bytes (4836 KiB)
UBIFS (ubi5:0): media format: w4/r0 (latest is w4/r0), UUID 02B4EDD6-1
8CE-4FFF-88A4-4350C4126351, small LPT model
root@a5d3:~# cat /mnt/just_a_file
some text

Tip
For completeness, we left all kernel messages with the UBIFS prefix for documentation purposes, but you should remember that they are not displayed if the commands are executed outside the serial console.

Well, now, as for JFFS2, we will create our UBIFS partition on the host PC. We can use the mtd5_dir directory created earlier and reshown here:

$ ls -l mtd5_dir/
total 4
-rw-rw-r-- 1 giometti giometti 10 giu 12 12:04 just_a_file
$ cat mtd5_dir/just_a_file
some text

This time, the command to be used is mkfs.ubifs. As for mkfs.jffs2, we have a lot of option arguments, but for our purposes the command to be used is quite similar:

$ mkfs.ubifs --root=mtd5_dir --min-io-size=2048 --leb-size=124KiB
--max-leb-cnt=2048 --output=mtd5.ubifs

At this point, the real question is: how can we calculate the values for the option arguments --min-io-size, --leb-size, and --max-leb-cnt?
Well, the answer is not easy, since we have to know a bit more in depth how UBIFS works. However, the right thing to do is just creating the UBIFS filesystem on the target machine and then get these parameters directly from the UBIFS subsystem itself! In fact, if we take a look at the earlier mount command, we can see that the kernel tells us these values:

UBIFS (ubi5:0): background thread "ubifs_bgt5_0" started, PID 1749
UBIFS (ubi5:0): UBIFS: mounted UBI device 5, volume 0, name "rootfs"
UBIFS (ubi5:0): LEB size: 126976 bytes (124 KiB), min./max. I/O unit s
izes: 2048 bytes/2048 bytes
UBIFS (ubi5:0): FS size: 244682752 bytes (233 MiB, 1927 LEBs), journal
 size 12316672 bytes (11 MiB, 97 LEBs)

For --min-io-size and --leb-size, the values are exposed earlier, while for --max-leb-cnt, we have to consider that this option defines the maximum filesystem size (more strictly, the maximum UBI volume size). So, we must specify a value large enough to avoid to allocate too few LEBs for correctly mapping our mtd5 device. The last line of the preceding messages tells us that we need 1927 LEBs for user data and 97 LEBs for journaling data, so we need at least 2024 LEBs and a safe value for --max-leb-cnt can be 2048, which is the nearest power of 2 (for better performance).
Now, we have to create a UBI image suitable for the MTD layer where we put the UBIFS partition we just created and the command to be used is ubinize. Before executing the command, we have to create a proper INI file useful to describe our UBI image, so in our special case, the file looks like this:
[rootfs-volume]
mode=ubi
image=mtd5.ubifs
vol_id=5
vol_size=233MiB
vol_type=dynamic
vol_name=rootfs
vol_flags=autoresize

The mode parameter is currently fixed to ubi, while image must point to the UBIFS image created earlier. Then, the other parameters are quite obvious apart from vol_size, vol_type and vol_flags, so let's explain them a bit.
The vol_type and vol_flags specify that the UBI volume can be dynamically allocated, and it can grow in size if the available space is present. So, in vol_size, we can specify the minimum volume size and, when the system will attach the volume, it will increase dynamically until the maximum available size (we will verify this feature soon in this section).
OK, let's execute the ubinize command:

$ ubinize -v --min-io-size=2048 --peb-size=128KiB
--sub-page-size=2048 --output=mtd5.ubi mtd5.ini
ubinize: LEB size: 126976
ubinize: PEB size: 131072
ubinize: min. I/O size: 2048
ubinize: sub-page size: 2048
ubinize: VID offset: 2048
ubinize: data offset: 4096
ubinize: UBI image sequence number: 949373716
ubinize: loaded the ini-file "mtd5.ini"
ubinize: count of sections: 1
ubinize: parsing section "jffs2-volume"
ubinize: mode=ubi, keep parsing
ubinize: volume type: dynamic
ubinize: volume ID: 5
ubinize: volume size: 251658240 bytes
ubinize: volume name: rootfs
ubinize: volume alignment: 1
ubinize: autoresize flags found
ubinize: adding volume 5
ubinize: writing volume 5
ubinize: image file: mtd5.ubifs
ubinize: writing layout volume
ubinize: done

Again, we have to spend some words on the several values we have used in the ubinize command line. The -v option argument is just for having a verbose output. The really important parameters are --min-io-size, which has the same meaning of the mkfs.ubifs command, --peb-size, which specifies the size of the physical erase blocks (note that with mkfs.ubifs, we have specified the LEB's size instead), and --sub-page-size, which depends on the NAND device used (but usually is equivalent to the minimum input/output unit size).
Tip
The UBIFS image is slightly bigger than the JFFS2 one even if they hold the same files:

 $ ls -lh mtd5.{jffs2,ubi}

 -rw-r--r-- 1 giometti giometti 128K giu 12 12:05 mt

 d5.jffs2

 -rw-rw-r-- 1 giometti giometti 2,0M giu 14 16:14 mt

 d5.ubi

Now, as we did for JFFS2, we have to move the UBIFS image on the SAMA5D3 Xplained and then put it on the /dev/mtd5 partition. However, this time we cannot use the nandwrite utility to write UBI data due the fact it doesn't properly format the flash partition for UBIFS. To do it we have to use the ubiformat as reported below::

root@a5d3:~# flash_erase /dev/mtd5 0 0
root@a5d3:~# ubiformat /dev/mtd5 -s 2048 -O 2048 -f mtd5.ubi

OK, now, we have to attach our UBI volume as we did earlier:

root@a5d3:~# ubiattach --dev-path=/dev/mtd5 -devn=5
ubi5: attaching mtd5
ubi5: scanning is finished
gluebi (pid 1713): gluebi_resized: got update notification for unknown
 UBI device 5 volume 5
ubi5: volume 5 ("rootfs") re-sized from 1925 to 1940 LEBs
ubi5: attached mtd5 (name "rootfs", size 248 MiB)
ubi5: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
ubi5: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
ubi5: VID header offset: 2048 (aligned 2048), data offset: 4096
ubi5: good PEBs: 1978, bad PEBs: 6, corrupted PEBs: 0
ubi5: user volume: 1, internal volumes: 1, max. volumes count: 128
ubi5: max/mean erase counter: 1/0, WL threshold: 4096, image sequence
number: 1394936512
ubi5: available PEBs: 0, total reserved PEBs: 1978, PEBs reserved for
bad PEB handling: 34
ubi5: background thread "ubi_bgt5d" started, PID 1717
UBI device number 5, total 1978 LEBs (251158528 bytes, 239.5 MiB), ava
ilable 0 LEBs (0 bytes), LEB size 126976 bytes (124.0 KiB)

Note
As said earlier, at the attach time, the system discovers that it can enlarge the volume from 1925 to 1940 LEBs, that is, the maximum available space, and then, it proceeds to carry on the operation:

 gluebi (pid 1713): gluebi_resized: got update notif

 ication for unknown UBI device 5 volume 5

 ubi5: volume 5 ("rootfs") re-sized from 1925 to 194

 0 LEBs

 ubi5: attached mtd5 (name "rootfs", size 248 MiB)

Note also that the messages with the ubi5: prefix are kernel messages.

Great! Now, the last step is to mount the partition and then verify that all data is in place:

root@a5d3:~# mount -t ubifs ubi5:rootfs /mnt
UBIFS (ubi5:5): background thread "ubifs_bgt5_5" started, PID 174
UBIFS (ubi5:5): UBIFS: mounted UBI device 5, volume 5, name "roo"
UBIFS (ubi5:5): LEB size: 126976 bytes (124 KiB), min./max. I/O s
UBIFS (ubi5:5): FS size: 244936704 bytes (233 MiB, 1929 LEBs), j)
UBIFS (ubi5:5): reserved for root: 0 bytes (0 KiB)
UBIFS (ubi5:5): media format: w4/r0 (latest is w4/r0), UUID 8A2Bl
root@a5d3:~# ls /mnt/
just_a_file
root@a5d3:~# cat /mnt/just_a_file
some text

Tip
Note that the messages with the USBIFS prefix are kernel messages.

OK, everything is good.

OpenWrt

As stated at the OpenWrt home site:

OpenWrt is described as a Linux distribution for embedded devices.

Based on the Linux kernel, this distribution is primarily used on devices to route network traffic due to the fact that it is born because the Linksys released the source code of the firmware for their WRT54G series of wireless routers under the GNU/GPL license (that's why, the WRT into the name). Then, other chipsets, manufacturers, and device types have been included in turning the initial project into a valid and rock-solid software product.
OpenWrt's main components are the Linux kernel, the uClibc (or musl) C library, and BusyBox. All components have been optimized for size in order to fit into very small memory devices (bare but functional OpenWrt footprint is around 4 MB!). This distribution is known as the best distribution for embedded networking devices.
The distribution has its building system based on a (modified) Buildroot system that automates the building process, thanks to a set of makefiles and patches. The main tool used to manage the distribution is make.
Note
More information on the OpenWrt distribution can be retrieved from the project's home page at:
https://openwrt.org
.

In the upcoming sections, we will build a minimal image from scratch, and then, we'll show you how you can add some included packages and how to add a new (and simple) package in order to expand the distribution.
Using the default configuration

To install the base system for our SAMA5D3 Xplained board, we can use the OpenWrt default configuration we will show here. However, as the first step, we need to download the sources. This can be done with the git command as follows:

$ git clone git://git.openwrt.org/15.05/openwrt.git

Then move into the just created openwrt directory and execute the configuration menu as below:

$ cd openwrt
$ make menuconfig

It may happen that the command ends with an error:

Build dependency: Please install zlib. (Missing libz.so or zlib.h)
Build dependency: Please install the openssl library (with development
 headers)
Build dependency: Please install GNU 'awk'
Build dependency: Please install the Subversion client
/home/giometti/A5D3/openwrt/include/prereq.mk:12: recipe for target 'p
rereq' failed
Prerequisite check failed. Use FORCE=1 to override.
/home/giometti/A5D3/openwrt/include/toplevel.mk:140: recipe for target
 'staging_dir/host/.prereq-build' failed
make: *** [staging_dir/host/.prereq-build] Error 1

In this case, we have to manually add all missing dependencies to be able to compile our new OpenWrt distribution, so in the preceding error, our host PC tells us that several packages are missing. Then, we have to install them using the following command:

$ sudo aptitude install libz-dev libssl-dev gawk subversion

Tip
How we can deduce the missing packages' names from the output of the preceding configuration command is not a an act of magic, but we used the package management tools of the Ubuntu/Debian OS described at Chapter 2
, Managing the System Console, in Packages management section.

Then, we can relaunch the command and, if all packages are in place, we should get a configuration menu similar to the one we got during the kernel configuration in Chapter 1
, Installing the Developing System, in SAMA5D3 Xplained section. Now, we must select our SAMA5D3 Xplained board by setting Atmel AT91 in the Target System entry, SAMA5D3 (Cortex-A5) for the Subtarget entry, and Atmel AT91SAMA5D3XPLAINED in Target Profile, as shown in the following screenshot:

[image: Using the default configuration]

Before starting the compilation, we need to do a little patch at the OpenWrt sources. In fact, by default, the system will generate a single file for both the SAMA5D3 Xplained's kernel image and the DTB configuration file (the DTB file is actually appended to the kernel image), but since we want two separate files, in order to flash them into their matching MTD partitions, we must apply the following patch:

--- a/target/linux/at91/image/Makefile
+++ b/target/linux/at91/image/Makefile
@@ -50,7 +50,7 @@ Image/Build/Kernel/AT91SAM9G35EK=$(call MkuImageDtb,
9g35ek,at91sam9g35ek)
 Image/Build/Kernel/AT91SAM9M10G45EK=$(call MkuImageDtb,9m10g45ek,at91
sam9m10g45ek)
 Image/Build/Kernel/AT91SAM9X25EK=$(call MkuImageDtb,9x25ek,at91sam9x2
5ek)
 Image/Build/Kernel/AT91SAM9X35EK=$(call MkuImageDtb,9x35ek,at91sam9x3
5ek)
-Image/Build/Kernel/AT91SAMA5D3XPLAINED=$(call MkuImageDtb,sama5,at91-
sama5d3_xplained)
+Image/Build/Kernel/AT91SAMA5D3XPLAINED=$(call MkOftree,sama5,at91-sam
a5d3_xplained)
 # CalAmp
 Image/Build/Kernel/LMU5000=$(call MkuImageDtb,lmu5000,lmu5000)
 # Calao

Now, we are ready, so let's launch the compilation using the following make command:

$ make
 make[1] world
 make[2] toolchain/install
 make[3] -C toolchain/gdb prepare
 make[3] -C toolchain/gdb compile
 make[3] -C toolchain/gdb install
...

Note
The compilation is very time consuming, so you should consider to take your time to have your preferred coffee! If we got some error, we can use the following command line to enable all compilation messages and force just one task to see what caused the error:

 $ make -j1 V=s
In any case, we can use only the V=s settings to normally compile the system, but enabling all messages in order to see what's happening.

When the compilation has finished, we should get the following messages:

...
make[2] package/install
make[3] package/preconfig
make[2] target/install
make[3] -C target/linux install
make[2] package/index
$

Now, we can see the compilation results under the bin/at91/ directory as shown here:

$ cd bin/at91/
$ ls
md5sums
openwrt-at91-sama5d3-AT91SAMA5D3XPLAINED-rootfs.tar.gz
openwrt-at91-sama5d3-root.ext4
openwrt-at91-sama5d3-root.jffs2-128k
openwrt-at91-sama5d3-root.jffs2-64k
openwrt-at91-sama5d3-root.ubi
openwrt-at91-sama5d3-root.ubifs
openwrt-at91-sama5d3-sama5-oftree.dtb
openwrt-at91-sama5d3-sama5-uImage
openwrt-at91-sama5d3-uImage
openwrt-at91-sama5d3-zImage
packages
sha256sums

The files we have to move to the SAMA5D3 Xplained are:
	file openwrt-at91-sama5d3-zImage - the kernel,
	file openwrt-at91-sama5d3-sama5-oftree.dtb - the DTB and
	file openwrt-at91-sama5d3-root.ubi - the rootfs.

The following command will copy all these files into a dedicated directory of our embedded board:

$ scp openwrt-at91-sama5d3-zImage
openwrt-at91-sama5d3-sama5-oftree.dtb
openwrt-at91-sama5d3-root.ubi root@192.168.8.2:nand/

Tip
Note that the nand directory must be already present into the SAMA5D3 Xplained root user's home directory.

Now, we have to compile the bootloader. The OpenWrt has the possibility to do it for us, but this option seems disabled for our board! Then, keep calm and remember that we already compiled the SAMA5D3 Xplained's bootloader into Chapter 1
, Installing the Developing System, in SAMA5D3 Xplained section. We can now redo the same steps, but this time, with two major differences:
	We have to use the sama5d3_xplained_nandflash_defconfig target in order to compile our U-Boot image for the NAND flash.
	We have to write the result image into the flash itself.

Let's see one step at time. First of all, we have to go into the directory we used to download the U-Boot's source code and reconfigure it for the NAND flash:

$ cd A5D3/u-boot
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-
 sama5d3_xplained_nandflash_defconfig
#
configuration written to .config
#

Then, we have to re-compile it with the usual command:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

Again, the two bootloaders image files boot.bin and u-boot.img (the board has two bootloaders remember? See Chapter 1
, Installing the Developing System, in SAMA5D3 Xplained section) are created, but this time, they are suitable to be used on the NAND instead of on the microSD. So, let's place them on the SAMA5D3 Xplained into the dedicated directory as we did earlier:

$ scp boot.bin u-boot.img root@192.168.8.2:nand/

Now, under the /root/nand directory on the SAMA5D3 Xplained, we should have all the needed files, and then, we have only to write them into the NAND flash to have a running OpenWrt system. However, before continuing, you should notice that we used the kernel and the rootfs from OpenWrt while the bootloaders have been generated outside OpenWrt! This fact can lead to some misconfigurations that can produce an unbootable system. The problem is about the flash partitioning. In fact, we must be sure that we write all data into the correct place. Let's see how.
Since we will use our Debian OS to set up the OpenWrt image files, we must check the current partitioning. This can be done with the following command:

root@a5d3:~# cat /proc/mtd
dev: size erasesize name
mtd0: 00040000 00020000 "at91bootstrap"
mtd1: 00080000 00020000 "bootloader"
mtd2: 000c0000 00020000 "bootloader env"
mtd3: 00080000 00020000 "device tree"
mtd4: 00600000 00020000 "kernel"
mtd5: 0f800000 00020000 "rootfs"

The preceding output states a NAND partitioning as reported into the following table:
	

MTD Device

	

Label

	

Starting offset

	

Length

	

mtd0

	

at91bootstrap

	

0x00000000

	

0x00040000 (256 KB)

	

mtd1

	

bootloader

	

0x00040000

	

0x00080000 (512 KB)

	

mtd2

	

bootloader env

	

0x000c0000

	

0x000c0000 (768 KB)

	

mtd3

	

device tree

	

0x00180000

	

0x00080000 (512 KB)

	

mtd4

	

kernel

	

0x00200000

	

0x00600000 (6 MB)

	

mtd5

	

rootfs

	

0x00800000

	

0x0f800000 (248 MB)

In this scenario, we must be sure that:
	U-Boot will load the kernel and the DTB file at the right positions.
	the kernel has a compatible setting, that is, the rootfs must be placed into a partition from offset 0x00800000 and 248 MB length at maximum.

These settings must be done into the U-Boot, so we have to stop it the first time we try to execute our OpenWrt to check the current U-Boot's configuration. On the other hand, we are quite sure that boot.bin will safely load u-boot.img due to the fact that they derive from the same compilation and that the former has the correct settings to do it.
Tip
You can verify it by looking at the CONFIG_SYS_NAND_U_BOOT_OFFS value in the include/configs/sama5d3_xplained.h file in the U-Boot's repository.

OK, let's start by flashing the bootloaders, erasing the mtd2 partition, just to be sure to work with a void-saved environment:

root@a5d3:~# flash_erase -q /dev/mtd0 0 0
root@a5d3:~# flash_erase -q /dev/mtd1 0 0
root@a5d3:~# flash_erase -q /dev/mtd2 0 0
root@a5d3:~# nandwrite -q -m -p /dev/mtd0 nand/boot.bin
root@a5d3:~# nandwrite -q -m -p /dev/mtd1 nand/u-boot.img

Then, we can flash the DTB and the kernel images:

root@a5d3:~/nand# flash_erase -q /dev/mtd3 0 0
root@a5d3:~/nand# flash_erase -q /dev/mtd4 0 0
root@a5d3:~# nandwrite -q -m -p /dev/mtd3 nand/openwrt-at91-sama5d3-sa
ma5-oftree.dtb
root@a5d3:~# nandwrite -q -m -p /dev/mtd4 nand/openwrt-at91-sama5d3-zI
mage

And the last step is the rootfs image. However, this time, we cannot use the nandwrite utility due to the fact that it doesn't properly format the flash partition for UBIFS. To do this, we have to use the ubiformat as reported here:

root@a5d3:~# flash_erase -q /dev/mtd5 0 0
root@a5d3:~# ubiformat /dev/mtd5 -s 2048 -O 2048
 -f nand/openwrt-at91-sama5d3-root.ubi

Now, we have to stop the system with the halt command, and then, we must remove the microSD and press the reset button (see Chapter 1
, Installing the Developing System, in SAMA5D3 Xplained section). If everything works well, we should see the following messages on the serial console:

RomBOOT
U-Boot SPL 2016.03-dirty (Jun 15 2016 - 16:19:44)
Trying to boot from NAND
U-Boot 2016.03-dirty (Jun 15 2016 - 16:19:44 +0200)
CPU: SAMA5D36
Crystal frequency: 12 MHz
CPU clock : 528 MHz
Master clock : 132 MHz
DRAM: 256 MiB
NAND: 256 MiB
MMC: mci: 0
*** Warning - bad CRC, using default environment
In: serial
Out: serial
Err: serial
Net: gmac0
Error: gmac0 address not set.
, macb0
Error: macb0 address not set.
Hit any key to stop autoboot: 1

We have to be quick and stop the autoboot by pressing a key, and then, we can show the U-Boot environment:

=> print
arch=arm
baudrate=115200
board=sama5d3_xplained
board_name=sama5d3_xplained
bootargs=console=ttyS0,115200 earlyprintk mtdparts=atmel_nand:256k(boo
tstrap)ro,512k(uboot)ro,256K(env),256k(env_redundent),256k(spare),512k
(dtb),6M(kernel)ro,-(rootfs) rootfstype=ubifs ubi.mtd=7 root=ubi0:root
fs
bootcmd=nand read 0x21000000 0x180000 0x80000;nand read 0x22000000 0x2
00000 0x600000;bootz 0x22000000 - 0x21000000
bootdelay=1
cpu=armv7
ethact=gmac0
soc=at91
vendor=atmel
Environment size: 484/131067 bytes

The relevant settings here are in the bootcmd and bootargs variables. The first variable defines the commands to load the kernel and the DTB file, and they are correct, while bootargs defines a slightly different settings regarding the UBIFS settings (ubi.mtd) and the flash partitioning for the kernel (mtdparts), so they must be fixed up. Recalling the preceding table, the correct values per the mtdparts and ubi.mtd settings are shown here:
mtdparts=atmel_nand:256k(at91bootstrap)ro,512k(bootloader)ro,768K(boot
loader env),512k(device tree),6M(kernel)ro,-(rootfs)
ubi.mtd=5

So, we can use the setenv command to do the job:

=> setenv bootargs 'console=ttyS0,115200 earlyprintk mtdparts=atmel_na
nd:256k(at91bootstrap)ro,512k(bootloader)ro,768K(bootloader env),512k(
device tree),6M(kernel)ro,-(rootfs) rootfstype=ubifs ubi.mtd=5 root=ub
i0:rootfs rw'

Note
The usage of the ' character to delimit the variable content!

Then, we can save the new environment with the saveenv command:

=> saveenv
Saving Environment to NAND...
Erasing redundant NAND...
Erasing at 0x100000 -- 100% complete.
Writing to redundant NAND... OK

Now, everything is in place, and we can safely reset the system:

=> reset
resetting ...
RomBOOT

U-Boot SPL 2016.03-dirty (Jun 15 2016 - 16:19:44)
Trying to boot from NAND

U-Boot 2016.03-dirty (Jun 15 2016 - 16:19:44 +0200)

CPU: SAMA5D36
Crystal frequency: 12 MHz
CPU clock : 528 MHz
Master clock : 132 MHz
DRAM: 256 MiB
NAND: 256 MiB
MMC: mci: 0
In: serial
Out: serial
Err: serial
Net: gmac0
Error: gmac0 address not set.
, macb0
Error: macb0 address not set.

Hit any key to stop autoboot: 0

NAND read: device 0 offset 0x180000, size 0x80000
 524288 bytes read: OK
NAND read: device 0 offset 0x200000, size 0x600000
 6291456 bytes read: OK
Kernel image @ 0x22000000 [0x000000 - 0x155680]
Flattened Device Tree blob at 21000000
 Booting using the fdt blob at 0x21000000
 Loading Device Tree to 2fadc000, end 2fae6abc ... OK

Starting kernel ...

Uncompressing Linux... done, booting the kernel.
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 3.18.29 (giometti@ubuntu1510) (gcc versio
n 4.8.3 (OpenWrt/Linaro GCC 4.8-2014.04 r49378)) #2 Wed Jun 15 16:07:
48 CEST 2016
[0.000000] CPU: ARMv7 Processor [410fc051] revision 1 (ARMv7), cr=
10c53c7d
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing
instruction cache
[0.000000] Machine model: SAMA5D3 Xplained
[0.000000] Memory policy: Data cache writeback
[0.000000] AT91: Detected soc type: sama5d3
[0.000000] AT91: Detected soc subtype: sama5d36
...

Great! The kernel has been correctly loaded, and now, we should wait until the rootfs is mounted:

...
[1.850000] UBIFS: mounted UBI device 0, volume 0, name "rootfs", R
/O mode
[1.850000] UBIFS: LEB size: 126976 bytes (124 KiB), min./max. I/O
unit sizes: 2048 bytes/2048 bytes
[1.860000] UBIFS: FS size: 244936704 bytes (233 MiB, 1929 LEBs), j
ournal size 9023488 bytes (8 MiB, 72 LEBs)
[1.870000] UBIFS: reserved for root: 0 bytes (0 KiB)
[1.880000] UBIFS: media format: w4/r0 (latest is w4/r0), UUID E598
066D-054B-44EB-BD77-EF8321F5F8A7, small LPT model
[1.920000] VFS: Mounted root (ubifs filesystem) readonly on device
 0:10.
[1.920000] Freeing unused kernel memory: 136K (c0396000 - c03b8000
)
[2.230000] init: Console is alive
...

OK! The rootfs has been correctly mounted, so it's time to wait for the console login message:

...
[3.250000] init: - preinit -
/etc/preinit: .: line 1: can't open '/lib/at91.sh'
[3.400000] procd: - early -
[4.070000] procd: - ubus -
[5.100000] procd: - init -
Please press Enter to activate this console.

We got it! Now, if we strike the
Enter
 key, we get the following message:

BusyBox v1.23.2 (2016-06-15 13:48:20 CEST) built-in shell (ash)
 _______ ________ __
| |.-----.-----.-----.| | | |.----.| |_
| - || _ | -__| || | | || _|| _|
|_______|| __|_____|__|__||________||__| |____|
 |__| W I R E L E S S F R E E D O M

CHAOS CALMER (Chaos Calmer, r49378)

* 1 1/2 oz Gin Shake with a glassful
* 1/4 oz Triple Sec of broken ice and pour
* 3/4 oz Lime Juice unstrained into a goblet.
* 1 1/2 oz Orange Juice
* 1 tsp. Grenadine Syrup

root@OpenWrt:/#

Before ending the paragraph, let me show you the actual flash memory occupation:

root@OpenWrt:/# df -h
Filesystem Size Used Available Use% Mounted on
rootfs 215.4M 2.1M 213.3M 1% /
ubi0:rootfs 215.4M 2.1M 213.3M 1% /
tmpfs 124.9M 56.0K 124.8M 0% /tmp
tmpfs 512.0K 0 512.0K 0% /dev

Around 2MB, so cute!

Adding a (quasi) LAMP system

As you can easily verify using the just created OpenWrt distribution, its base system is very small and it's also quite useless. That's why we will show you how you can add a (quasi) LAMP system. In fact, we will install a lighttpd web server (that's why, the quasi word) with PHP support and a MySQL server.
To do our job, we should consider that the OpenWrt supports the feeds. They are external repositories based on git repositories useful to add additional packages without touching the main distribution. The feeds are managed by the feeds command placed in the scripts directory. So, first of all, we have to update all feeds' repositories with this command:

$./scripts/feeds update -a

Then, we can use the next command to search for the package holding the lighttpd web server:

$./scripts/feeds search lighttpd
Search results in feed 'packages':
lighttpd A flexible and lightweight web server
...
lighttpd-mod-cgi CGI module
lighttpd-mod-cml Cache Meta Language module
lighttpd-mod-compress Compress output module
lighttpd-mod-evasive Evasive module
lighttpd-mod-evhost Exnhanced Virtual-Hosting module
lighttpd-mod-expire Expire module
lighttpd-mod-extforward Extract client module
lighttpd-mod-fastcgi FastCGI module
...

Then, to install it (belong other useful modules, we can use the following command:

$./scripts/feeds install lighttpd lighttpd-mod-cgi lighttpd-mod-fastcgi

For the PHP language, we can do the same:

$./scripts/feeds search php5
Search results in feed 'packages':
php5 PHP5 Hypertext preprocessor
php5-cgi PHP5 Hypertext preprocessor (CGI & FastCGI)
php5-cli PHP5 Hypertext preprocessor (CLI)
php5-fastcgi FastCGI startup script
...
php5-mod-mysql MySQL shared module
php5-mod-mysqli MySQL Improved Extension shared module
php5-mod-opcache OPcache shared module
php5-mod-openssl OpenSSL shared module
php5-mod-pcntl PCNTL shared module
php5-mod-pdo PHP Data Objects shared module
php5-mod-pdo-mysql PDO driver for MySQL shared module
php5-mod-pdo-pgsql PDO driver for PostgreSQL shared module
php5-mod-pdo-sqlite PDO driver for SQLite 3.x shared module
...

Then, the installation command can be as follows:

$./scripts/feeds install php5 php5-cgi php5-cli php5-fastcgi
php5-mod-mysql php5-mod-mysqli php5-mod-pdo-mysql

Now, we know the trick, so for MySQL, the commands are as follows:

$./scripts/feeds search mysql
Search results in feed 'packages':
freeradius2-mod-sql-mysql MySQL module
libdbd-mysql MySQL database server driver for libdbi
libmysqlclient MySQL client library
libmysqlclient-r MySQL client library threadsafe
libzdb A thread-safe multi database connection poo
l library
lighttpd-mod-mysql_vhost Mysql virtual hosting module
luasql-mysql Lua SQL binding for MySQL
mysql-server MySQL Server
php5-mod-mysql MySQL shared module
php5-mod-mysqli MySQL Improved Extension shared module
php5-mod-pdo-mysql PDO driver for MySQL shared module
...
$./scripts/feeds install libmysqlclient libmysqlclient-r mysql-server

Now, we have to enable the compilation of these new packages, and in order to do it, we have to re-execute the make menuconfig command. Then, when the configuration menu appears, we have to choose the entry Network and then Web Servers/Proxies and then enable the lighttpd entry. Hit the
Enter
 key on that entry to enter into the lighttpd menu where we have to select lighttpd-mod-cgi and lighttpd-mod-fastcgi as shown in the following screenshot:

[image: Adding a (quasi) LAMP system]

Tip
Note that instead of the Linux configuration menu you saw into Chapter 1
, Installing the Developing System, Linux kernel for SAMA5D3 Xplained, this menu has a slightly different meaning for packages selection (even if they look like the same). In the Linux menu, a kernel component is selected as built-in with an * character, while we select it as module with an M. In this menu, using an M character, we select the program for compilation and packaging only. In other words, we get the program's package in the bin/at91/packages directory only, while using *, we select the program to be placed in the final rootfs image too.

Then, to enable the PHP support, we must go back to the main menu, then select the Languages entry, and then enter into the PHP entry. Then, we have to enable the PHP language support as built-in, and we must enable the PHP plugins for CGI and MySQL, as shown in the following screenshot:

[image: Adding a (quasi) LAMP system]

The last settings are for MySQL, so let's go back to the main menu and select the Utilities entry, then database, and just enable the mysql-server entry as built-in.
That's all! Now, we have to re-execute the make command and wait for the end of the compilation. When finished, we'll get a new kernel and a new image to be flashed as shown earlier. So, we have to restart our Debian on the SAMA5D3 Xplained, and then erase and flash the kernel and rootfs filesystem's partitions using the following commands:

root@a5d3:~# flash_erase -q /dev/mtd3 0 0
root@a5d3:~# flash_erase -q /dev/mtd4 0 0
root@a5d3:~# flash_erase -q /dev/mtd5 0 0
root@a5d3:~# nandwrite -q -m -p /dev/mtd3 nand/openwrt-at91-sa
ma5d3-sama5-oftree.dtb
root@a5d3:~# nandwrite -q -m -p /dev/mtd4 nand/openwrt-at91-sa
ma5d3-zImage
root@a5d3:~# nandwrite -q -m -p /dev/mtd5 nand/openwrt-at91-sa
ma5d3-root.ubi

Now, just restart the system, and the new OpenWrt image should start as before, This time, we can see that it's slightly bigger (even if is still really small, less than 9MB):

root@OpenWrt:/# df -h
Filesystem Size Used Available Use% Mounted on
rootfs 215.4M 8.7M 206.7M 4% /
ubi0:rootfs 215.4M 8.7M 206.7M 4% /
tmpfs 124.9M 64.0K 124.8M 0% /tmp
tmpfs 512.0K 0 512.0K 0% /dev

To get access to the internal web server, we have to set up the networking settings. The default configuration can be retrieved by looking at the /etc/config/network file:

root@OpenWrt:/# cat /etc/config/network
config interface loopback
 option ifname lo
 option proto static
 option ipaddr 127.0.0.1
 option netmask 255.0.0.0
config interface lan
 option ifname eth0
 option type none
option proto static
option ipaddr 192.168.1.1
 option netmask 255.255.255.0
config interface debug
 option ifname usb0
 option type none
 option proto static
 option ipaddr 172.18.0.18
 option netmask 255.255.255.0

We see that only one Ethernet device is configured and also the usb0 device is present, but with a different configuration than our Debian. We can choose several solutions. However we decided to set up the eth0 network device with DHCP, so the relative new settings are shown here:

config interface lan
option ifname eth0
option type none
 option proto dhcp

When all our networking settings are in place, we have to restart the networking systems using the following command:

root@OpenWrt:/# /etc/init.d/network restart
[1225.880000] macb f0028000.ethernet eth0: link down
[1227.490000] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready
[1227.880000] macb f0028000.ethernet eth0: link up (100/Full)
[1227.880000] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready

Great, now, we can see our new IP address with the usual ifconfig command:

root@OpenWrt:/# ifconfig eth0
eth0 Link encap:Ethernet HWaddr C6:4C:E4:F8:C4:11
 inet addr:192.168.32.51 Bcast:192.168.32.255 Mask:255.255.2
55.0
 inet6 addr: fe80::c44c:e4ff:fef8:c411/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:4212 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4137 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:376053 (367.2 KiB) TX bytes:424302 (414.3 KiB)
 Interrupt:49 Base address:0x8000

OK, now, let's check the lighttpd default configuration in the /etc/lighttpd/lighttpd.conf file as shown here:

root@OpenWrt:/# cat /etc/lighttpd/lighttpd.conf
server.modules = (
)
server.document-root = "/www"
server.upload-dirs = ("/tmp")
server.errorlog = "/var/log/lighttpd/error.log"
server.pid-file = "/var/run/lighttpd.pid"
server.username = "http"
server.groupname = "www-data"
index-file.names = ("index.php", "index.html",
 "index.htm", "default.htm",
 "index.lighttpd.html")
static-file.exclude-extensions = (".php", ".pl", ".fcgi")
...

Our web server seems OK. However, you should notice that the default root directory is /www rather than /var/www as for Debian. Then, we have to verify the CGI support configuration, which is placed in the /etc/lighttpd/conf.d/30-cgi.conf file:

root@OpenWrt:/# cat /etc/lighttpd/conf.d/30-cgi.conf
###
##
CGI modules

##
http://www.lighttpd.net/documentation/cgi.html
##
server.modules += ("mod_cgi")
##
Plain old CGI handling
##
For PHP don't forget to set cgi.fix_pathinfo = 1 in the php.ini.
##
cgi.assign = (".pl" => "/usr/bin/perl",
 ".cgi" => "/usr/bin/perl",
 ".rb" => "/usr/bin/ruby",
 ".erb" => "/usr/bin/eruby",
 ".py" => "/usr/bin/python")
...

Nope, this time, we need to apply the following patch since the .php extension is missing in the cgi.assign array:

--- /etc/lighttpd/conf.d/30-cgi.conf.orig
2016-06-19 11:16:12.930534015 +0200
+++ /etc/lighttpd/conf.d/30-cgi.conf
2016-06-19 11:15:18.686718936 +0200
@@ -16,6 +16,7 @@
 ".cgi" => "/usr/bin/perl",
 ".rb" => "/usr/bin/ruby",
 ".erb" => "/usr/bin/eruby",
+ ".php" => "/usr/bin/php-cgi",
 ".py" => "/usr/bin/python")
 ##

After the modifications are in place, let's restart the server:

root@OpenWrt:/# /etc/init.d/lighttpd restart

Then, we have to point our web browser at the IP address of our SAMA5D3 Xplained board, and we should see something similar to the following screenshot:

[image: Adding a (quasi) LAMP system]

Now, it's time to verify the MySQL, and we can try the usual command line to log in as MySQL's root user:

root@OpenWrt:/# mysql -u root
ERROR 2002 (HY000): Can't connect to local MySQL server through socket
 '/var/run/mysqld.sock' (2)

Tip
The preceding command and the following ones are typical commands used to manage the MySQL from the command line. You can refer to Chapter 4, Quick Programming with Scripts and System Daemons, MySQL or to the online documentation of The MySQL Command-Line Tool at:
http://dev.mysql.com/doc/refman/5.7/en/mysql.html
 to get more information on these commands.

The database is not running, so let's try to restart the daemon to see what's wrong:

root@OpenWrt:/# /etc/init.d/mysqld start
/etc/init.d/mysqld: Error: datadir '/mnt/data/mysql/' in /etc/my.cnf
doesn't exist

This is a typical error due the fact that, by default, MySQL takes as datadir the /mnt/data/mysql/ directory, which is usually mounted on a separate filesystem (usually, a microSD storage). No problem. We can change the configuration in the /etc/my.cnf file, so we can take a look at that file where we notice the following warnings:
[client]
port = 3306
socket = /var/run/mysqld.sock

[mysqld]
user = root
socket = /var/run/mysqld.sock
port = 3306
basedir = /usr

############ Don't put this on the NAND #############
Figure out where I are going to put the databases
And run mysql_install_db --force
datadir = /mnt/data/mysql/

######### This should also not go on the NAND #######
tmpdir = /mnt/data/tmp/
...

This is because the system heavily uses these directories for disk I/O activity, but since our system has nothing other than NAND, we have no choices (usually, these directories are pointing at an external filesystem on microSD or USB key. However, don't forget that also those devices are based on NAND flashes!). So, a reasonable solution for these directories' settings can be as follows:
datadir = /var/data/mysql/
tmpdir = /tmp/

Then, as suggested earlier, we have to execute mysql_install_db as shown here:

root@OpenWrt:/# mysql_install_db --force
Installing MySQL system tables...
OK
Filling help tables...
OK
To start mysqld at boot time you have to copy
support-files/mysql.server to the right place for your system
PLEASE REMEMBER TO SET A PASSWORD FOR THE MySQL root USER !
To do so, start the server, then issue the following commands:
/usr/bin/mysqladmin -u root password 'new-password'
/usr/bin/mysqladmin -u root -h OpenWrt password 'new-password'
Alternatively you can run:
/usr/bin/mysql_secure_installation
which will also give you the option of removing the test
databases and anonymous user created by default. This is
strongly recommended for production servers.
See the manual for more instructions.
You can start the MySQL daemon with:
cd /usr ; /usr/bin/mysqld_safe &
You can test the MySQL daemon with mysql-test-run.pl
cd /usr/mysql-test ; perl mysql-test-run.pl
Please report any problems with the /usr/scripts/mysqlbug script!

Now, the starting command that failed before should now work without any errors:

root@OpenWrt:/# /etc/init.d/mysqld start

Then, we can retry the root login as we did earlier:

root@OpenWrt:/# mysql -u root
Welcome to the MySQL monitor. Commands end with ; or g.
Your MySQL connection id is 1
Server version: 5.1.73 Source distribution
Copyright (c) 2000, 2013, Oracle and/or its affiliates.
All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or 'h' for help. Type 'c' to clear the
current input statement.
mysql>

OK, everything is working, so let's try a little demo with our new (quasi) LAMP system. However, before starting, it is better to add a password for MySQL's root user. So, use the quit command to exit from the previous tools and execute the following command:

root@OpenWrt:/# mysqladmin -u root password 'myroot'

Note
In the preceding command, we used the myroot password, but of course, you can choose whatever you want in order to fit your needs.

Since now, to log in to MySQL from the command line, we must use the following command and then insert the new password when asked for:

root@OpenWrt:/# mysql -u root -p

Now, we have to copy the chapter_05/phpdemo/demo_init.sh and chapter_05/phpdemo/demo_set.sh files from the book's example code repository to the /root directory on our SAMA5D3 Xplained:

$ scp demo_init.sh demo_set.sh root@192.168.32.51:/root/

Then, still from the same repository, the chapter_05/phpdemo/demo_dump.php file in the /www directory:

$ scp demo_dump.php root@192.168.32.51:/www/

Tip
It may happen that the scp command will not accept any root password and then refuse to copy the files. In this case, we have to reset the root's password using the passwd command:

 root@OpenWrt:/# passwd

 Changing password for root

 Enter the new password (minimum of 5, maximum of 8

 characters)

 Please use a combination of upper and lower case le

 tters and numbers.

 New password:

 Re-enter new password:

 passwd: password changed.

Then, redo the command.

Then, we can set up the demo database using the demo_init.sh command:

root@OpenWrt:~# ./demo_init.sh
Warning, all data will be dropped!!! [CTRL-C to stop or ENTER to
continue]
Enter password:

Of course we have to enter here the MySQL root's password we set up before. Once the database has been set up we have only to add data to it and the command to do it is shown below:

root@OpenWrt:~# ./demo_set.sh temp 21.5

Tip
These commands are quite similar to the ones used in Chapter 4
, Quick Programming with Scripts and System Daemons, in MySQL in Bash section, so you can refer to those pages to know how the commands are functioning.

Now, to display the data, we have only to point our web browser to the demo_dump.php file at SAMA5D3 Xplained's IP address, and the result is reported in the next screenshot:

[image: Adding a (quasi) LAMP system]

Of course, if we add new data and then reload the page, we'll get different results:

root@OpenWrt:~# ./demo_set.sh lamp on

[image: Adding a (quasi) LAMP system]

Tip
You should take a look at the demo_dump.php file since it's quite similar to the my_dump.php file presented in Chapter 4
, Quick Programming with Scripts and System Daemons, in
MySQL in PHP section, where we used the standard PHP's mysql API. However, in demo_dump.php, we used the newest mysqli API, which is going to supersede the old one in few releases.

Adding a custom package

As the last example on OpenWrt, let's see how we can add a new package to our new system. We'll use the famous Hello World example, and we'll see how we can add it into our current distribution and how we can install it on our running system.
The trick is to create a new feed named applications where we can put all our new programs. So, let's create a new directory named helloworld within applications as shown here:

$ cd A5D3/
$ mkdir -p applications/helloworld
$ cd applications/helloworld/

Then, we have to create Makefile where we will define our new applications to be added to OpenWrt:
include $(TOPDIR)/rules.mk

Define package's name, version, release and the default package's
build directory.
PKG_NAME:=helloworld
PKG_VERSION:=1.0.0
PKG_RELEASE:=1
PKG_BUILD_DIR:=$(BUILD_DIR)/$(PKG_NAME)-$(PKG_VERSION)

include $(INCLUDE_DIR)/package.mk

Define package's section and category inside the OpenWRT system.
These information are used to manage the package and to display
it inside the comfiguration menu
define Package/$(PKG_NAME)
 SECTION:=apps
 CATEGORY:=Applications
 TITLE:=The Hello World program
 MAINTAINER:=Rodolfo Giometti <giometti@hce-engineering.com>
endef

Define package's description (long version)
define Package/$(PKG_NAME)/description
 This package holds a program that display the "hello world" message
endef

Set up the build directory in order to be use by the compilation
stage.
Our data are not downloaded from a remote site by we have them
already into the "src" directory, so let's copy them accordingly
define Build/Prepare
 mkdir -p $(PKG_BUILD_DIR)
 $(CP) ./src/* $(PKG_BUILD_DIR)/
endef

Define the package's installation steps after the compilation
stage has done
define Package/$(PKG_NAME)/install
 $(INSTALL_DIR) $(1)/usr/bin
 $(CP) $(PKG_BUILD_DIR)/$(PKG_NAME) $(1)/usr/bin
endef

The OpenWRT's main entry
$(eval $(call BuildPackage,$(PKG_NAME)))

Note
The preceding code can be found in the
chapter_05/openwrt-helloworld/Makefile
 file in the book's example code repository.

The content of the file is quite self-explicative. However, the reader should notice that everything is defined using several make macros. The OpenWrt system already has some default macros for the main building steps: downloading, compilation, installation, and so on. Our job is to integrate these default macros with our own ones in order to do the correct steps to build the new package inside the distribution.
Tip
For further information on these topics, you can take a look at:
https://wiki.openwrt.org/doc/devel/packages?s[]=define&s[]=package
.

Then, we have to create a src directory where we can put our code:

$ mkdir src/
$ cd src/
$ ls
helloworld.c Makefile

The two files Makefile and helloworld.c are obviously the makefile useful to compile the usual helloworld.c C program.
Note
The preceding files can be found in the chapter_05/openwrt-helloworld/src/ directory in the book's example code repository.

When finished, the tree layout of our new feed looks like this:

$ tree applications
applications
\-- helloworld
 +-- Makefile
 \-- src
 +-- helloworld.c
 \-- Makefile
2 directories, 3 files

OK, now, we can come back to the OpenWrt root directory and then modify the feeds.conf file as shown here:

--- a/feeds.conf.default
+++ b/feeds.conf.default
@@ -12,4 +12,4 @@ src-git management https://github.com/
openwrt-management/packages.git;for-15.05
#src-svn desktop svn://svn.openwrt.org/openwrt/feeds/desktop
#src-svn xfce svn://svn.openwrt.org/openwrt/feeds/xfce
#src-svn lxde svn://svn.openwrt.org/openwrt/feeds/lxde
-#src-link custom /usr/src/openwrt/custom-feed
+src-link applications /home/giometti/A5D3/applications

Tip
Note that /home/giometti/A5D3/applications is relative to my configuration, but you have to fix it up to suit your needs.

Now, we have to update our new repository by adding the new feed:

$./scripts/feeds update applications
Updating feed 'applications' from
'/home/giometti/Projects/A5D3/openwrt/applications' ...
Create index file './feeds/applications.index'
Collecting package info: done
Collecting target info: done

Then, we can verify that the new package is now available under the new feed:

$./scripts/feeds search hello
Search results in feed 'applications':
helloworld The Hello World program

Then, to install the new helloworld package, we can use the following command:

$./scripts/feeds install -f helloworld
Overriding package 'helloworld'

Tip
Note that the -f option argument can be necessary if a package with the same name is already present.

Now, if we execute the make menuconfig command again, a new entry labeled Applications should be present in the configuration menu. Just select it and then enable our new helloworld program as shown in the following screenshot:

[image: Adding a custom package]

Great! Now, we can use the make command again to compile our new package or, just to avoid a long wait, we can use these commands to compile the program and then install it respectively:

$ make package/helloworld/compile
make[1] package/helloworld/compile
make[2] -C package/libs/toolchain compile
make[2] -C /home/giometti/A5D3/applications/helloworld compile
$ make package/helloworld/install
make[1] package/helloworld/install
make[2] -C /home/giometti/A5D3/applications/helloworld install

We can now reflash the system, but we can just install the new package into our running system! In fact, we should find a new package file relative to our Hello World program in the bin/at91/packages directory as follows:

$ tree bin/at91/packages/applications
bin/at91/packages/applications
\-- helloworld_1.0.0-1_at91.ipk
0 directories, 1 file

So, let's move it into our SAMA5D3 Xplained with the usual scp:

$ scp bin/at91/packages/applications/helloworld_1.0.0-1_at91.ipk
 root@192.168.32.51:/root/

Then, we can install it with the opkg command (the OpenWrt equivalent packages management command of Debian ones):

root@OpenWrt:~# opkg install helloworld_1.0.0-1_at91.ipk
Installing helloworld (1.0.0-1) to root...
Configuring helloworld.
root@OpenWrt:~# helloworld
Hello World

Yocto

As stated on the Yocto home site:

The Yocto Project is an open source collaboration project that provides templates, tools and methods to help you create custom Linux-based systems for embedded products regardless of the hardware architecture.

The Yocto Project is more than a distribution. It's intended to be a workgroup having the goal to produce tools and processes that will enable the creation of Linux distributions for embedded devices that are independent of the underlying architecture. The Yocto Project was announced by the Linux Foundation in 2010, and in the upcoming years, it aligned itself with OpenEmbedded, an existing framework with similar goals, with the result being The OpenEmbedded-Core Project.
Yocto's main components are the Linux kernel, the glibc C library, BusyBox, and matchbox (for the windowing system). This distribution is used as base distribution by the most important System-on-Chip manufactures. The distribution has its building system based on bitbake tool that automates the building process, thanks to a set of recipes and patches.
Note
More information on the Yocto Project can be retrieved from the project's homepage at:
https://www.yoctoproject.org
.

In the upcoming sections, we will build a minimal image from scratch, and then, we'll show you how you can add the QT graphic libraries and how to add a new (simple) package in order to expand the distribution.
Using the default recipe

To install the base system for our SAMA5D3 Xplained board, we can use the Yocto default recipe we're going to show here. However, as the first step, we need to download the sources. This can be done with the git command:

$ git clone git://git.yoctoproject.org/poky -b jethro

Then, we have to add the meta-openembedded git repository:

$ git clone git://git.openembedded.org/meta-openembedded -b jethro

Then, add the meta-qt5 git repository to support the QT libraries (we're not using them in this first step, but we're going to use them soon, so let's do this step too):

$ git clone git://github.com/meta-qt5/meta-qt5.git -b jethro

And, as the last repository, we need meta-atmel to support our SAMA5D3 Xplained board:

$ git clone git://github.com/linux4sam/meta-atmel.git -b jethro

Note
For all repositories, we've selected the jethro branch but you can use the one which fits your needs.

OK, now, everything is in place, so let's move into the poky directory and initialize the Yocto build environment as shown here, where the oe-init-build-env file holds the environment settings needed to execute the compilation tools and build-atmel is the name of the directory where we wish to build our code:

$ cd poky
$ source oe-init-build-env build-atmel
You had no conf/local.conf file. This configuration file has therefore
been
created for you with some default values. You may wish to edit it
to use a
different MACHINE (target hardware) or enable parallel build
options to take
advantage of multiple cores for example. See the file
for more information as
common configuration options are commented.
You had no conf/bblayers.conf file. The configuration file has been
created for
you with some default values. To add additional metadata
layers into your
configuration please add entries to this file.
The Yocto Project has extensive documentation about OE including a
reference
manual which can be found at:
http://yoctoproject.org/documentation
For more information about OpenEmbedded see their website:
http://www.openembedded.org/
Shell environment set up for builds.
You can now run 'bitbake <target>'
Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
adt-installer
meta-ide-support
You can also run generated qemu images with a command like 'runqemu
qemux86'

As you can see, the system is telling us that we need two valid local configuration files, so we have to modify the existing conf/local.conf file as shown in the patch here:
--- ./conf/local.conf.orig 2016-06-15 14:27:11.081528459 +0200
+++ ./conf/local.conf 2016-06-15 14:27:56.653819242 +0200
@@ -34,7 +34,7 @@
 #MACHINE ?= "edgerouter"
 #
 # This sets the default machine to be qemux86 if no other machine is
 # selected:
-MACHINE ??= "qemux86"
+MACHINE ??= "sama5d3-xplained"
 #
 # Where to place downloads
@@ -47,7 +47,7 @@
 #
 # The default is a downloads directory under TOPDIR which is the
 # build directory.
-#DL_DIR ?= "${TOPDIR}/downloads"
+DL_DIR ?= "${TOPDIR}/downloads"

 # Where to place shared-state files
@@ -85,7 +85,7 @@
 # Ultimately when creating custom policy, people will likely end up
 # subclassing these defaults.
 #
-DISTRO ?= "poky"
+DISTRO ?= "poky-atmel"
 # As an example of a subclass there is a "bleeding" edge policy
 # configuration where many versions are set to the absolute latest
 # code from the upstream source control systems. This is just
 # mentioned here as an example, its not
@@ -104,7 +104,7 @@
 # - 'package_rpm' for rpm style packages
 # E.g.: PACKAGE_CLASSES ?= "package_rpm package_deb package_ipk"
 # We default to rpm:
-PACKAGE_CLASSES ?= "package_rpm"
+PACKAGE_CLASSES ?= "package_ipk"

 #
 # SDK/ADT target architecture
@@ -137,7 +137,7 @@
 # There are other application targets that can be used here too, see
 # meta/classes/image.bbclass and meta/classes/core-image.bbclass for
 # more details. We default to enabling the debugging tweaks.
-EXTRA_IMAGE_FEATURES = "debug-tweaks"
+EXTRA_IMAGE_FEATURES = "debug-tweaks ssh-server-openssh package-manag
ement"

 #
 # Additional image features

In this manner, we set the SAMA5D3 Xplained board and other minor settings regarding:
	where to store the downloaded files with the DL_DIR define.
	which is the distribution version to use with the DISTRO define (in our example, it's set to poky-atmel, which is the official Atmel distribution based on Yocto).
	the software packages formats by setting the PACKAGE_CLASSES define to package_ipk in order to support the opkg format as OpenWrt.

Also note that we add the SSH server support and the IPK management system by adding the ssh-server-openssh and package-management settings to the EXTRA_IMAGE_FEATURES variable. Then, we have to replace (or modify) the conf/bblayers.conf file to add all the needed layers we downloaded earlier as shown here:
LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar('FILE', True)) + '/../../..')}"

BBLAYERS ?= "
 ${BSPDIR}/meta-atmel
 ${BSPDIR}/meta-qt5
 ${BSPDIR}/poky/meta
 ${BSPDIR}/poky/meta-yocto
 ${BSPDIR}/poky/meta-yocto-bsp
 ${BSPDIR}/meta-openembedded/meta-oe
 ${BSPDIR}/meta-openembedded/meta-networking
 ${BSPDIR}/meta-openembedded/meta-python
 ${BSPDIR}/meta-openembedded/meta-ruby
 ${BSPDIR}/meta-openembedded/meta-multimedia
 "
BBLAYERS_NON_REMOVABLE ?= "
 ${BSPDIR}/poky/meta
 ${BSPDIR}/poky/meta-yocto
 "

Apart from the first settings, the real important part here is BBLAYERS and BBLAYERS_NON_REMOVABLE that define the layers that the bitbake program should traverse in order to find the recipes to build the whole distribution. Each layer holds a specific part of the distribution, and it is usually based on other layers in such a way to have a well modular and stratified system.
Note
For further information on the layer concept and related information, you can take a look at the Yocto Project Development Manual at: http://www.yoctoproject.org/docs/2.1/dev-manual/dev-manual.html.

Now, if we re-execute the source command, we should get no errors:

$ source oe-init-build-env build-atmel
Shell environment set up for builds.
You can now run 'bitbake <target>'
Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
adt-installer
meta-ide-support
You can also run generated qemu images with a command like 'runqemu
qemux86'

Great! Now, our first target is core-image-minimal, and to get it compiled, we have to execute the following command as suggested from the preceding message:

$ bitbake core-image-minimal
WARNING: Unable to get checksum for linux-at91 SRC_URI entry defconfig
: file could not be found
Parsing recipes: 3% |# | ETA: 00:04:52

Tip
It may happen that we get the following error:

 $ bitbake core-image-minimal

 ERROR: OE-core's config sanity checker detected a

 potential misconfiguration.

 Either fix the cause of this error or at your o

 wn risk disable the checker (see sanity.conf).

 Following is the list of potential problems / a
 dvisories:

 Please install the following missing utilities:

 makeinfo,chrpath

 Summary: There was 1 ERROR message shown, returning

 a non-zero exit code.

In this case, as for OpenWrt, some dependency package is missing. In the preceding example, we can fix the error by installing the packages texinfo e chrpath using the usual aptitude or apt-get command.

If everything goes well, after the parsing stage, we should get something like this:

Parsing of 1924 .bb files complete (0 cached, 1924 parsed). 2470 targe
ts, 377 skipped, 0 masked, 0 errors.
NOTE: Resolving any missing task queue dependencies

Build Configuration:
BB_VERSION = "1.28.0"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "Ubuntu-15.10"
TARGET_SYS = "arm-poky-linux-gnueabi"
MACHINE = "sama5d3-xplained"
DISTRO = "poky-atmel"
DISTRO_VERSION = "2.0.2"
TUNE_FEATURES = "arm armv7a vfp thumb callconvention-hard cortexa5
"
TARGET_FPU = "vfp"
meta-atmel = "jethro:4765d7064e4916784c15095347eda21cc10aabb4"
meta-qt5 = "jethro:ea37a0bc987aa9484937ad68f762b4657c198617"
meta
meta-yocto
meta-yocto-bsp = "jethro:ddbc13155f4db5d98976dc93b586c0be4fc740d1"
meta-oe
meta-networking
meta-python
meta-ruby
meta-multimedia = "jethro:cb7e68f2a39fa6f24add48fc7b8d38fb7291bb44"

Then, the compilation will start using one thread per available CPU:

NOTE: Preparing RunQueue
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks
Currently 2 running tasks (42 of 1634):
0: xz-native-5.2.1-r0 do_fetch (pid 19217)
1: m4-native-1.4.17-r0 do_configure (pid 19305)
...

Note
The compilation is very time consuming, so you should consider to take time to have your preferred coffee!

When the compilation is finished, we should get the compilation result in the tmp/deploy/images/sama5d3-xplained/ directory as shown here:

$ ls tmp/deploy/images/sama5d3-xplained/
at91bootstrap.bin
at91bootstrap-sama5d3_xplained.bin
BOOT.BIN
core-image-minimal-sama5d3-xplained-20160618162845.rootfs.manifest
core-image-minimal-sama5d3-xplained-20160618162845.rootfs.tar.gz
core-image-minimal-sama5d3-xplained-20160618162845.rootfs.ubi
core-image-minimal-sama5d3-xplained-20160618162845.rootfs.ubifs
core-image-minimal-sama5d3-xplained.manifest
core-image-minimal-sama5d3-xplained.tar.gz
core-image-minimal-sama5d3-xplained.ubi
modules--4.1+git0+6546e3c770-r0-sama5d3-xplained-20160618162845.tgz
modules-sama5d3-xplained.tgz
README_-_DO_NOT_DELETE_FILES_IN_THIS_DIRECTORY.txt
sama5d3_xplained-nandflashboot-uboot-3.8.4.bin
ubinize.cfg
u-boot.bin
u-boot-sama5d3-xplained.bin
u-boot-sama5d3-xplained-v2015.01-at91-r0.bin
zImage
zImage--4.1+git0+6546e3c770-r0-at91-sama5d3_xplained-20160618162845.dt
b
zImage--4.1+git0+6546e3c770-r0-at91-sama5d3_xplained_pda4-201606181628
45.dtb
zImage--4.1+git0+6546e3c770-r0-at91-sama5d3_xplained_pda7-201606181628
45.dtb
zImage--4.1+git0+6546e3c770-r0-at91-sama5d3_xplained_pda7b-20160618162
845.dtb
zImage--4.1+git0+6546e3c770-r0-sama5d3-xplained-20160618162845.bin
zImage-at91-sama5d3_xplained.dtb
zImage-at91-sama5d3_xplained_pda4.dtb
zImage-at91-sama5d3_xplained_pda7b.dtb
zImage-at91-sama5d3_xplained_pda7.dtb
zImage-sama5d3-xplained.bin

They seem a lot of files, but in reality, most of them are just symbolic links to real image files that are only the following ones:

$ find . -type f
./zImage--4.1+git0+6546e3c770-r0-sama5d3-xplained-20160618162845.bin
./zImage--4.1+git0+6546e3c770-r0-at91-sama5d3_xplained-20160618162845.
dtb
./zImage--4.1+git0+6546e3c770-r0-at91-sama5d3_xplained_pda4-2016061816
2845.dtb
./ubinize.cfg
./zImage--4.1+git0+6546e3c770-r0-at91-sama5d3_xplained_pda7b-201606181
62845.dtb
./core-image-minimal-sama5d3-xplained-20160618162845.rootfs.ubifs
./modules--4.1+git0+6546e3c770-r0-sama5d3-xplained-20160618162845.tgz
./README_-_DO_NOT_DELETE_FILES_IN_THIS_DIRECTORY.txt
./zImage--4.1+git0+6546e3c770-r0-at91-sama5d3_xplained_pda7-2016061816
2845.dtb
./u-boot-sama5d3-xplained-v2015.01-at91-r0.bin
./core-image-minimal-sama5d3-xplained-20160618162845.rootfs.tar.gz
./sama5d3_xplained-nandflashboot-uboot-3.8.4.bin
./core-image-minimal-sama5d3-xplained-20160618162845.rootfs.ubi
./core-image-minimal-sama5d3-xplained-20160618162845.rootfs.manifest

For our purposes, the needed files are:
	sama5d3_xplained-nandflashboot-uboot-3.8.4.bin - that is the prebootloader, that is the boot.bin file we used into Chapter 1, Installing the Developing System, U-Boot (with boot.bin).
	u-boot-sama5d3-xplained-v2015.01-at91-r0.bin - that is the U-Boot image.
	zImage-at91-sama5d3_xplained.dtb - the DTB file.
	zImage-sama5d3-xplained.bin - the kernel image.
	core-image-minimal-sama5d3-xplained.ubi - that is the rootfs of our Yocto distribution (in the UBIFS format).

Tip
This time, the embedded distribution has compiled the bootloaders also.

OK, now, as done before for OpenWrt, we only have to move these files into our SAMA5D3 Xplained running the Debian OS (that is, we only have to reinsert the microSD and then restart the system) and then re-flash the NAND memory partitions again. So, let's start by copying the images on the SAMA5D3 Xplained board:

$ scp sama5d3_xplained-nandflashboot-uboot-3.8.4.bin
u-boot-sama5d3-xplained-v2015.01-at91-r0.bin
zImage-at91-sama5d3_xplained.dtb
zImage-sama5d3-xplained.bin
core-image-minimal-sama5d3-xplained.ubi
 root@192.168.8.2:nand/

Then, on the SAMA5D3 Xplained, we have to erase and then reprogram the flash as done earlier, but using the Yocto files:

root@a5d3:~# flash_erase -q /dev/mtd0 0 0
root@a5d3:~# flash_erase -q /dev/mtd1 0 0
root@a5d3:~# flash_erase -q /dev/mtd2 0 0
root@a5d3:~# flash_erase -q /dev/mtd3 0 0
root@a5d3:~# flash_erase -q /dev/mtd4 0 0
root@a5d3:~# flash_erase -q /dev/mtd5 0 0
root@a5d3:~# nandwrite -q -m -p /dev/mtd0 nand/sama5d3_xplained-nandfl
ashboot-uboot-3.8.4.bin
root@a5d3:~# nandwrite -q -m -p /dev/mtd1 nand/u-boot-sama5d3-xplained
-v2015.01-at91-r0.bin
root@a5d3:~# nandwrite -q -m -p /dev/mtd3 nand/zImage-at91-sama5d3_xpl
ained.dtb
root@a5d3:~# nandwrite -q -m -p /dev/mtd4 nand/zImage-sama5d3-xplained
.bin
root@a5d3:~# nandwrite -q -m -p /dev/mtd5 nand/core-image-minimal-sama
5d3-xplained.ubi

When finished, we have to redo the steps we did for OpwnWRT, that is, stopping the system and then resetting it and rebooting without the microSD.
Tip
For some unknown reasons, it may happen that when we reboot the system, it will refuse to boot showing the usual RomBOOT message. In this case, the prebootloader image is corrupted, but we can recover it using the one we used for OpenWrt to successfully boot Yocto. We just need to re-erase the first partition and then put into it the OpenWrt's prebootloader image that should already be into the current nand directory:

 root@a5d3:~/nand# flash_erase -q /dev/mtd0 0 0

 root@a5d3:~/nand# nandwrite -q -m -p /dev/mtd0 boo

 t.bin

If everything works well after the reset, we should get the following output:

U-Boot SPL 2016.03-dirty (Jun 15 2016 - 16:19:44)
Trying to boot from NAND
U-Boot 2015.01-linux4sam_5.2-00004-g0bb0194 (Jun 18 2016 - 17:53:07)
CPU: SAMA5D36
Crystal frequency: 12 MHz
CPU clock : 528 MHz
Master clock : 132 MHz
I2C: ready
DRAM: 256 MiB
NAND: 256 MiB
MMC: mci: 0
*** Warning - bad CRC, using default environment
In: serial
Out: serial
Err: serial
Read from EEPROM @ 0x58 failed
Read from EEPROM @ 0x59 failed
Net: gmac0
Error: gmac0 address not set.
, macb0
Error: macb0 address not set.
Hit any key to stop autoboot: 0
NAND read: device 0 offset 0x180000, size 0x80000
 524288 bytes read: OK
NAND read: device 0 offset 0x200000, size 0x600000
 6291456 bytes read: OK
Kernel image @ 0x22000000 [0x000000 - 0x363c18]
Flattened Device Tree blob at 21000000
 Booting using the fdt blob at 0x21000000
 Loading Device Tree to 2fb32000, end 2fb3d83f ... OK
Starting kernel ...
Booting Linux on physical CPU 0x0
Linux version 4.1.0-linux4sam_5.3-00050-g6546e3c (giometti@ubuntu1510)
 (gcc vers
ion 5.2.0 (GCC)) #1 Sat Jun 18 18:40:31 CEST 2016
CPU: ARMv7 Processor [410fc051] revision 1 (ARMv7), cr=10c53c7d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cac
he
Machine model: SAMA5D3 Xplained
...

Great, as we can see Yocto has a kernel release 4.1 instead of the 3.18 of the OpenWrt.
Then we can verify that the flash has a compatible partitioning compared with the Debian's one:

...
8 cmdlinepart partitions found on MTD device atmel_nand
Creating 8 MTD partitions on "atmel_nand":
0x000000000000-0x000000040000 : "bootstrap"
0x000000040000-0x0000000c0000 : "uboot"
0x0000000c0000-0x000000100000 : "env"
0x000000100000-0x000000140000 : "env_redundent"
0x000000140000-0x000000180000 : "spare"
0x000000180000-0x000000200000 : "dtb"
0x000000200000-0x000000800000 : "kernel"
0x000000800000-0x000010000000 : "rootfs"
...

Yes, it's perfectly compatible since all the main partitions (kernel, DTB, and rootfs) are into their correct positions. In fact, here, we can see that the UBIFS is correctly mounted:

ubi0: attaching mtd7
ubi0: scanning is finished
gluebi (pid 1): gluebi_resized: got update notification for unknown UB
I device 0 volume 0
ubi0: volume 0 ("rootfs") re-sized from 38 to 1940 LEBs
ubi0: attached mtd7 (name "rootfs", size 248 MiB)
ubi0: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
ubi0: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
ubi0: VID header offset: 2048 (aligned 2048), data offset: 4096
ubi0: good PEBs: 1978, bad PEBs: 6, corrupted PEBs: 0
ubi0: user volume: 1, internal volumes: 1, max. volumes count: 128
ubi0: max/mean erase counter: 1/0, WL threshold: 4096, image sequence
number: 607988663
ubi0: available PEBs: 0, total reserved PEBs: 1978, PEBs reserved for
bad PEB handling: 34
ubi0: background thread "ubi_bgt0d" started, PID 645
...
UBIFS (ubi0:0): UBIFS: mounted UBI device 0, volume 0, name "rootfs",
R/O mode
UBIFS (ubi0:0): LEB size: 126976 bytes (124 KiB), min./max. I/O unit s
izes: 2048 bytes/2048 bytes
UBIFS (ubi0:0): FS size: 244936704 bytes (233 MiB, 1929 LEBs), journal
 size 9023488 bytes (8 MiB, 72 LEBs)
UBIFS (ubi0:0): reserved for root: 0 bytes (0 KiB)
UBIFS (ubi0:0): media format: w4/r0 (latest is w4/r0), UUID 4F641563-5
796-4C7F-A57B-5D78E29FE530, small LPT model
VFS: Mounted root (ubifs filesystem) readonly on device 0:13.
devtmpfs: mounted
Freeing unused kernel memory: 188K (c068b000 - c06ba000)
random: nonblocking pool is initialized
INIT: version 2.88 booting
Starting udev
udevd[677]: starting version 182
...

Then, at the end of the boot stage, we finally get the login prompt:

...
INIT: Entering runlevel: 5
Configuring network interfaces... udhcpc (v1.23.2) started
Sending discover...
macb f0028000.ethernet eth0: link up (100/Full)
Sending discover...
Sending select for 192.168.32.57...
Lease of 192.168.32.57 obtained, lease time 268435455
/etc/udhcpc.d/50default: Adding DNS 192.168.32.8
done.
Starting OpenBSD Secure Shell server: sshd
generating ssh RSA key...
generating ssh ECDSA key...
generating ssh DSA key...
generating ssh ED25519 key...
done.
Starting syslogd/klogd: done
Poky (Yocto Project Reference Distro) 2.0.2 sama5d3-xplained /dev/ttyS0
sama5d3-xplained login:

Here, we just need to enter the root user, and we'll get the prompt without entering any password:

sama5d3-xplained login: root
root@sama5d3-xplained:~#

Now, we can take a look at the flash storage occupation as we did for OpenWrt:

root@sama5d3-xplained:~# df -h
Filesystem Size Used Available Use% Mounted on
ubi0:rootfs 215.4M 2.9M 212.5M 1% /
devtmpfs 91.2M 0 91.2M 0% /dev
tmpfs 123.3M 96.0K 123.2M 0% /run
tmpfs 123.3M 92.0K 123.2M 0% /var/volatile

Again, the footprint is very minimal, less than 3MB!
Now, before continuing, let's verify the networking support, so just plug an Ethernet cable and then execute the ifconfig command:

root@sama5d3-xplained:~# ifconfig
eth0 Link encap:Ethernet HWaddr BA:A0:13:9E:7A:99
 inet addr:192.168.32.57 Bcast:192.168.32.255 Mask:255.255.
255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:190 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:46940 (45.8 KiB) TX bytes:684 (684.0 B)
 Interrupt:51 Base address:0x8000

OK! The networking settings are set to DHCP. At this point, we can keep the current settings or we can modify them by modifying the /etc/network/interfaces file and the restarting the networking system with this command:

root@sama5d3-xplained:~# /etc/init.d/networking restart

Here is reported a snapped of the default version of the /etc/network/interfaces file where you can see the DHCP settings and the static IP ones:
Wired or wireless interfaces
auto eth0
iface eth0 inet dhcp
iface eth1 inet dhcp

Ethernet/RNDIS gadget (g_ether)
... or on host side, usbnet and random hwaddr
iface usb0 inet static
 address 192.168.7.2
 netmask 255.255.255.0
 network 192.168.7.0
 gateway 192.168.7.1

Adding the graphic support

One of the main advantages in using the Yocto distribution is that it natively supports the QT graphic library, and we can add a very impressive Graphic User Interface (GUI) in a quick and easy manner.
Tip
For more information on the QT graphic library, you can go to the project homesite at:
https://www.qt.io
.

In this section, we will see how we can add this graphic support to our SAMA5D3 Xplained using the same Yocto code we just downloaded earlier. The only thing we have to do more is just add the following settings to the conf/local.conf file in order to avoid the compilation of non Software Libre into our image. It's quite obvious that we need an LCD to be connected to our board to run this demo, but you can buy it where they brought the SAMA5D3 Xplained.
OK, the modification for the conf/local.conf file is as follows:

--- conf/local.conf.orig 2016-06-05 19:04:17.788202448 +0200
+++ conf/local.conf 2016-06-19 10:36:50.574587468 +0200
@@ -237,3 +237,6 @@
track the version of this file when it was generated.
 # This can safely be ignored if
this doesn't mean anything to you.
CONF_VERSION = "1"
+
+LICENSE_FLAGS_WHITELIST += "commercial"
+SYSVINIT_ENABLED_GETTYS = ""

Note
Refer to Atmel in order to have more information on the licenses involved in this demo. I am programmer, not a lawyer!

Once the modification is in place, we just need to re-execute bitbake with the atmel-qt5-demo-image target in order to start the QT compilation:

$ bitbake atmel-qt5-demo-image

Note
If the previous Yocto image compilation was time consuming, this one is even more time consuming! So, consider to have more coffees.

When finished, the results are still in the tmp/deploy/images/sama5d3-xplained/ directory, but this time, the rootfs image files have been named with the atmel-qt5-demo-image-sama5d3-xplained prefix as shown here:

$ cd tmp/deploy/images/sama5d3-xplained/
$ ls atmel-qt5-demo-image-sama5d3-xplained*
atmel-qt5-demo-image-sama5d3-xplained-20160619195155.rootfs.manifest
atmel-qt5-demo-image-sama5d3-xplained-20160619195155.rootfs.tar.gz
atmel-qt5-demo-image-sama5d3-xplained-20160619195155.rootfs.ubi
atmel-qt5-demo-image-sama5d3-xplained-20160619195155.rootfs.ubifs
atmel-qt5-demo-image-sama5d3-xplained.manifest
atmel-qt5-demo-image-sama5d3-xplained.tar.gz
atmel-qt5-demo-image-sama5d3-xplained.ubi

Now, we have to flash a new DTB file, kernel image, and rootfs, so the scp command to transfer the new images on the SAMA5D3 Xplained is here:

$ scp zImage-at91-sama5d3_xplained_pda7.dtb
zImage-sama5d3-xplained.bin
atmel-qt5-demo-image-sama5d3-xplained.ubi
 root@192.168.8.2:nand/

Note
We have several DTB files. You must select the right one in order to fit your LCD hardware.

Then, on the SAMA5D3 Xplained, we have to execute these commands:

root@a5d3:~# flash_erase -q /dev/mtd3 0 0
root@a5d3:~# flash_erase -q /dev/mtd4 0 0
root@a5d3:~# flash_erase -q /dev/mtd5 0 0
root@a5d3:~# nandwrite -q -m -p /dev/mtd3 nand/zImage-at91-sama5d3_xpl
ained_pda7.dtb
root@a5d3:~# nandwrite -q -m -p /dev/mtd4 nand/zImage-sama5d3-xplained
.bin
root@a5d3:~# nandwrite -q -m -p /dev/mtd5 nand/atmel-qt5-demo-image-sa
ma5d3-xplained.ubi

Note
The last command is quite slow due to the fact that the new image is bigger than before. The graphic libraries take a lot of space.

If everything goes well, at the new reboot on the LCD, we should see something similar to the following image:

[image: Adding the graphic support]

Just to show the differences between having or not having a graphical support below if the NAND usage on my system:

root@sama5d3-xplained:~# df -h
Filesystem Size Used Avail Use% Mounted on
ubi0:rootfs 216M 176M 40M 82% /
devtmpfs 92M 0 92M 0% /dev
tmpfs 124M 124K 124M 1% /run
tmpfs 124M 160K 124M 1% /var/volatile

As we can see, if we can largely stay below 16MB before, now, the NAND usage is more that 170MB!
Note
We can avoid compiling this demo and then get it already done to be flashed on the Atmel Linux4SAM demo archives page at
http://www.at91.com/linux4sam/bin/view/Linux4SAM/Sama5d3XplainedMainPage#Demo_archives
.Note also that at that link, we can find information regarding the LCDs available on the boards and the relative DTB files names.

Adding a custom recipe

Now, as the last step we'd like to add a custom program to our new Yocto distribution, so we can do the same as for OpenWrt by adding the classic Hello World example. However, this time, doing it is really easy since Yocto gives us a powerful tool to add a new layer that already holds the Hello World program!
As already stated earlier, Yocto has been composed of several layers, and in order to add our custom applications, it's preferred that we do it by creating a new layer. To do so, we can use the yocto-layer script that drastically simplifies the developer's job, so here is a snippet of the help message of its create command (the help message has been generated using the command line ./scripts/yocto-layer help create).
OK, so let's go to the poky directory where we downloaded all Yocto's repositories and then execute the script as shown here:

$ cd ..
$./poky/scripts/yocto-layer create applications
Please enter the layer priority you'd like to use for the layer: [defa
ult: 6]
Would you like to have an example recipe created? (y/n) [default: n] y
Please enter the name you'd like to use for your example recipe: [defa
ult: example] helloworld
Would you like to have an example bbappend file created? (y/n) [defaul
t: n] y
Please enter the name you'd like to use for your bbappend file: [defau
lt: example] helloworld
Please enter the version number you'd like to use for your bbappend fi
le (this should match the recipe you're appending to): [default: 0.1]
New layer created in meta-applications.
Don't forget to add it to your BBLAYERS (for details see meta-applicat
ions\README).

In the preceding output, the highlighted text are the answers we gave to the command. Notice that we forced both the names of the example recipe and the bbappend file to helloworld.
Well, now, we have a new meta-applications directory where a new recipe tree has been created, as shown here:
$ ls
meta-applications/ meta-atmel/ meta-openembedded/ meta-qt5/ poky/
$ tree meta-applications/
meta-applications/
+-- conf
| \-- layer.conf
+-- COPYING.MIT
+-- README
+-- recipes-example
| +-- example
| +-- helloworld-0.1
| | +-- example.patch
| | \-- helloworld.c
| \-- helloworld_0.1.bb
\-- recipes-example-bbappend
 \-- example-bbappend
 +-- helloworld-0.1
 | \-- example.patch
 \-- helloworld_0.1.bbappend

7 directories, 8 files

Now, we can take a look at the new files and, in particular, the helloworld_0.1.bb file, which holds the recipe that defines the new package's compilation steps, which are reported here:

This file was derived from the 'Hello World!' example recipe in the
Yocto Project Development Manual.

SUMMARY = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0b
cf8506ecda2f7b4f302"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
 ${CC} helloworld.c -o helloworld
}

do_install() {
 install -d ${D}${bindir}
 install -m 0755 helloworld ${D}${bindir}
}

You should notice that even in this case, the recipe files have a similar structure like the OpenWrt's makefiles. We have several default actions (download, compile, install, and so on) that can be redefined according to our needs.
Tip
For more information on how to write a new recipe (or whatever we wish to add), we can take a look at:
http://www.yoctoproject.org/docs/2.1/dev-manual/dev-manual.html#new-recipe-writing-a-new-recipe
.

Now, we only have to add our new meta directory to the conf/bblayers.conf file as shown here:
--- conf/bblayers.conf.orig 2016-06-19 19:13:52.380757585 +0200
+++ conf/bblayers.conf 2016-06-19 19:14:07.476705872 +0200
@@ -18,6 +18,7 @@
 ${BSPDIR}/meta-openembedded/meta-python
 ${BSPDIR}/meta-openembedded/meta-ruby
 ${BSPDIR}/meta-openembedded/meta-multimedia
+ ${BSPDIR}/meta-applications
 "

 BBLAYERS_NON_REMOVABLE ?= "

OK, everything is in place, and we can compile our new package by executing the bitbake command as follows:

$ bitbake helloworld
Loading cache: 100% |###| ETA:
 00:00:00
Loaded 2464 entries from dependency cache.
Parsing recipes: 100% |###| Time
: 00:00:02
Parsing of 1925 .bb files complete (1917 cached, 8 parsed). 2471 targe
ts, 353 skipped, 0 masked, 0 errors.
NOTE: Resolving any missing task queue dependencies
Build Configuration:
BB_VERSION = "1.28.0"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "Ubuntu-15.10"
TARGET_SYS = "arm-poky-linux-gnueabi"
MACHINE = "sama5d3-xplained"
DISTRO = "poky-atmel"
DISTRO_VERSION = "2.0.2"
TUNE_FEATURES = "arm armv7a vfp thumb callconvention-hard cortexa5
"
TARGET_FPU = "vfp"
meta-atmel = "jethro:4765d7064e4916784c15095347eda21cc10aabb4"
meta-qt5 = "jethro:ea37a0bc987aa9484937ad68f762b4657c198617"
meta
meta-yocto
meta-yocto-bsp = "<unknown>:<unknown>"
meta-oe
meta-networking
meta-python
meta-ruby
meta-multimedia = "jethro:cb7e68f2a39fa6f24add48fc7b8d38fb7291bb44"
meta-applications = "<unknown>:<unknown>"
NOTE: Preparing RunQueue
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks
NOTE: Tasks Summary: Attempted 378 tasks of which 365 didn't need to b
e rerun and all succeeded.

Note
Note that bitbake now sees our new layers!

When the compilation has been finished, the new package is ready to be installed in the tmp/deploy/ipk/ directory:

$ ls tmp/deploy/ipk/cortexa5hf-vfp/helloworld*.ipk
tmp/deploy/ipk/cortexa5hf-vfp/helloworld_0.1-r0_cortexa5hf-vfp.ipk
tmp/deploy/ipk/cortexa5hf-vfp/helloworld-dbg_0.1-r0_cortexa5hf-vfp.ipk
tmp/deploy/ipk/cortexa5hf-vfp/helloworld-dev_0.1-r0_cortexa5hf-vfp.ipk

So, let's copy it into Yocto using the scp command:

$ scp tmp/deploy/ipk/cortexa5hf-vfp/helloworld_0.1-r0_cortexa5hf-vfp.i
pk
root@192.168.32.57:/tmp/

Then, on the SAMA5D3 Xplained, we have to install the package with the usual opkg command, and then, we can execute it as shown here:

root@sama5d3-xplained:~# opkg install /tmp/helloworld_0.1-r0_cortexa5h
f-vfp.ipk
Installing helloworld (0.1-r0) on root.
Configuring helloworld.
root@sama5d3-xplained:~# helloworld
Hello World!

Summary

In this chapter, you saw how to manage flash devices using Linux's MTD devices, and the we discovered how to put JFFS2 and UBIFS filesystems over them. The filesystems were both created onboard and by using the host PC in such a way that we have different ways to do it.
Then, you learned how to download, compile, and then install an embedded distribution from scratch. In particular we saw OpenWrt and Yocto, that is, the currently most widely used embedded distributions on the Internet.
In the upcoming chapters, we'll start putting our hands on several kinds of computer peripherals, and we're going to see how we can get access to them using our embedded boards.

Chapter 6. General Purposes Input Output signals – GPIO

From this chapter, we're going to look more deeply at all the computer peripherals that we can use on our embedded machines, and since the most important and used peripherals are GPIO lines, let's start from them.
The GPIO signals are used for tons of different usages; in fact, even in previous chapters, in order to introduce the basic concepts of embedded computer programming, we could not avoid using them! However, earlier we just used them superficially; now we're going to show their usage in more detail.
First of all, we'll introduce the GPIO lines with a short description, and then we'll see where they are physically located in our embedded machines. Then, we're going to see in detail how we can get access to these lines in a very simple (but efficient) manner and then in a smarter (but a bit more complex) way.
The last step will cover a rapid introduction of the GPIOs management inside the kernel, so we'll look at how we can request and manage these peripherals as simple GPIOs or as a more specific manner as LED devices. In the first part, we'll take a look at GPIOs-related IRQs management, while regarding the LED devices, we'll take a look at the concept of trigger in more detail.
What is a GPIO line?

A General Purposes Input Output (GPIO) line is a pin of a microcontroller or CPU or other integrated circuit whose behavior is controllable by the user at runtime. So, a GPIO pin has no predefined usage, but the developer has the ability to set it for input or output usage (for simpler implementations) or as an IRQ source or other functionalities.
In general, a GPIO line can:
	Be enabled/disabled.
	Be configured as input or output.
	Have readable/writable output values (typically, high is 1 and low is 0).
	Have readable input values (typically, high is 1 and low is 0).
	Have default pulled-up or pulled-down input values.
	Have input values to be used as IRQ source.

The GPIO lines are so generic that if adequately used in a dedicated program, they can be used to emulate another digital interface controller; in fact, inside the Linux kernel, we can find several kinds of peripheral controllers emulated via GPIO (the most famous and used are the keyboard, I2C and W1 controllers; in particular, the latter will be shown in this book in Chapter 11
,
1-Wire - W1
, in Using the GPIO interface section).
Tip
This technique is called bit banging and it's used to implement several Linux device drivers. The advantage in using it is the fact we can emulate pieces of hardware, but as is obvious, the downside is the amount of CPU cycles consumed, which in turn limits the maximum throughput of the interface.

Apart from this fact, the main usage for these lines is controlling signals (reset, power enable, suspend, card detect, and so on) and managing relays, LEDs, switches, buttons, and so on; that is, everywhere, we have to read or write two statuses: high or low, open or close, 0 or 1.
GPIOs are also related with the pinmux functionality, which controls the CPU's physical I/O pins and allows the developer to alter the direction and input/drive characteristics as well as configure the pin peripheral multiplexer selection. In fact, our embedded kits are equipped with SoCs that have on-chip tons of peripherals and a limited (even if very high) number of available pins, so it's quite normal that most peripherals share some pins with the result that the developer cannot use these peripherals at the same time. In this scenario, the GPIOs subsystem is considered a normal peripheral that can share their pins with the other; that's why we have to deal with the pinmux functionality and its son: pinctrl.
We can get access to pinctrl under the /sys/kernel/debug/pinctrl directory, and as an example, on SAMA5D3 Xplained, we have the following:

root@a5d3:~# ls /sys/kernel/debug/pinctrl/
ahb:apb:pinctrl@fffff200 pinctrl-devices pinctrl-handles
pinctrl-maps

Here, the relevant file is the ahb:apb:pinctrl@fffff200 directory, which holds the status of the SAMA5D3 Xplained's pinmux system. Looking into it, we see the following files:

root@a5d3:~# cat /sys/kernel/debug/pinctrl/ahb\:apb\:pinctrl\@fffff200
/
gpio-ranges pinconf-groups pingroups pinmux-pins
pinconf-config pinconf-pins pinmux-functions pins

In the gpio-ranges file, we can find all GPIOs defined in the system divided per gpiochip; in fact, SAMA5D3 Xplained has five gpiochips:

root@a5d3:~# cat /sys/kernel/debug/pinctrl/ahb\:apb\:pinctrl\@fffff200
/gpio-ranges
GPIO ranges handled:
0: fffff200.gpio GPIOS [0 - 31] PINS [0 - 31]
1: fffff400.gpio GPIOS [32 - 63] PINS [32 - 63]
2: fffff600.gpio GPIOS [64 - 95] PINS [64 - 95]
3: fffff800.gpio GPIOS [96 - 127] PINS [96 - 127]
4: fffffa00.gpio GPIOS [128 - 159] PINS [128 - 159]

In file pins, we have the complete list of all the defined pins with their identification number and name string:

root@a5d3:~# cat /sys/kernel/debug/pinctrl/ahb:apb:pinctrl@fffff200/pi
ns
registered pins: 160
pin 0 (pioA0) ahb:apb:pinctrl@fffff200
pin 1 (pioA1) ahb:apb:pinctrl@fffff200
pin 2 (pioA2) ahb:apb:pinctrl@fffff200
pin 3 (pioA3) ahb:apb:pinctrl@fffff200
...

Tip
Note that SAMA5D3 Xplained doesn't use the usual naming as gpio0, gpio1, gpio2, among others but pioA0, pioA1, and so on instead, where the pioA prefix is referred to the port name where the pin is attached to. SAMA5D3 Xplained has five ports named from A to E, so we also have pioB0, pioB1, ..., pioC0, pioC1, ..., pioD0, pioD1, ..., PE0, pioE1, ..., pioE31.

Each pin can be associated with a specific function, which can be listed by looking into the pingroups file. The following is reported part of the output we can get on SAMA5D3 Xplained, where we can see that pioB0 can be associated with two functions:

root@a5d3:~# cat /sys/kernel/debug/pinctrl/ahb\:apb\:pinctrl\@fffff200
/pingroups
...
group: pwm0_pwmh0-1
pin 32 (pioB0)
...
group: macb0_data_rgmii
pin 32 (pioB0)
pin 33 (pioB1)
pin 34 (pioB2)
pin 35 (pioB3)
pin 36 (pioB4)
pin 37 (pioB5)
pin 38 (pioB6)
pin 39 (pioB7)
...

To learn how the current pinmux is set, we can take a look at the pinmux-pins file. On SAMA5D3 Xplained, we see the following (again, the output has been reduced for space reasons):

root@a5d3:~# cat /sys/kernel/debug/pinctrl/ahb\:apb\:pinctrl\@fffff200
/pinmux-pins
Pinmux settings per pin
Format: pin (name): mux_owner gpio_owner hog?
pin 0 (pioA0): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 1 (pioA1): (MUX UNCLAIMED) (GPIO UNCLAIMED)
...
pin 17 (pioA17): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 18 (pioA18): f801c000.i2c (GPIO UNCLAIMED) function board group i2
c2_pu
pin 19 (pioA19): f801c000.i2c (GPIO UNCLAIMED) function board group i2
c2_pu
pin 20 (pioA20): f002c000.pwm (GPIO UNCLAIMED) function pwm0 group pwm
0_pwmh0-0
pin 21 (pioA21): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 22 (pioA22): f002c000.pwm (GPIO UNCLAIMED) function pwm0 group pwm
0_pwmh1-0
...

Here, we can see which are unclaimed pins, which are claimed as GPIOs, and which ones are claimed for such peripherals.
Tip
You can get further and more detailed information regarding pixmux and pinctrl at:
https://www.kernel.org/doc/Documentation/pinctrl.txt
.

GPIOs lines on the BeagleBone Black

As already mentioned in
Chapter 1, Installing the Developing System, in The BeagleBone Black section, the BeagleBone Black has two expansion connectors where several signals are exposed and where we can find several GPIO pins, as reported in the following table:

[image: GPIOs lines on the BeagleBone Black]

In reality, almost all exported pins can be programmed for GPIO functionalities thanks to a pinmux (pin multiplexer) that can physically connect a CPU's pin to different internal peripherals. However, these settings are usually not needed and they are machine-dependent, so in this case, the developer has to know in detail how the CPU is composed and how it can be programmed in order to correctly set up pinmux.
Note
A complete BeagleBone Black's connector description and a quick introduction on the pins configuration for different usage is available at: http://elinux.org/Beagleboard:Cape_Expansion_Headers.

GPIOs on the SAMA5D3 Xplained

On SAMA5D3 Xplained, the GPIOs are exposed on the expansion connector, as already mentioned in Chapter 1, in Installing the Developing System, in The SAMA5D3 Xplained section, and in this case, each pin is named PA1, PA2, ..., PB1, ... PC1 and so on and can be used as a GPIO line.
Tip
Even for SAMA5D3 Xplained, almost every pin can be reprogrammed for different usages by correctly setting up its pinmux.

The pin name and GPIO name association is reported in the following table:

	

Pin

	

GPIO #

	

Pin

	

GPIO #

	

Pin

	

GPIO #

	

Pin

	

GPIO #

	
PA16

	
16

	
PB15

	
47

	
PE9

	
137

	
PE17

	
145

	
PA17

	
17

	
PB25

	
57

	
PE10

	
138

	
PE20

	
148

	
PA18

	
18

	
PB26

	
58

	
PE11

	
139

	
PE24

	
152

	
PA19

	
19

	
PB27

	
59

	
PE12

	
140

	
PE25

	
153

	
PA20

	
20

	
PC16

	
80

	
PE13

	
141

	
PE26

	
154

	
PA21

	
21

	
PC17

	
81

	
PE14

	
142

	
PE29

	
157

	
PA22

	
22

	
PC26

	
90

	
PE15

	
143

	
PE31

	
159

	
PA23

	
23

	
PD30

	
126

	
PE16

	
144

	
	

To quickly translate a pin name to GPIO number, let's consider the L2V() function as the one that associates the letter A as 0, B as 1, and so on. Then, the formula to convert the pin name into the corresponding GPIO number is as follows:

GPIOnum = L2V(PINletter) * 32 + PINnum

For example, the PE17 pin has PINletter=E and PINnum=17, so L2V(E)=4 and then this:

GPIOnum = 4 * 32 + 17 = 145

So, the pin named PE17 corresponds to GPIO number 145.
Tip
Refer to the SAMA5D3 Xplained user manual at:
http://www.atmel.com/Images/Atmel-11269-32-bit-Cortex-A5-Microcontroller-SAMA5D3-Xplained_User-Guide.pdf
 for further information.

GPIOs on the Wandboard

The Wandboard has ten GPIOs and only eight of them are routed on the expansion connector JP4, and the pin name to GPIO number association is reported in the following table:

	

Pin

	

GPIO #

	

Pin

	

GPIO #

	
4

	
75

	
12

	
200

	
6

	
91

	
14

	
90

	
8

	
191

	
16

	
72

	
10

	
24

	
18

	
100

Tip
A more detailed list of the Wandboard's GPIOs is reported on its Wiki page at:
http://wiki.wandboard.org/index.php/External_gpios
 and on the Wandboard user guide at
http://wandboard.org/images/downloads/wandboard-user-guide-20130208.pdf
. Even for the Wandboard, almost every pin can be reprogrammed for different usages by correctly setting up its pinmux.

GPIOs in Linux

In a Linux system, GPIO lines can be managed through the sysfs using simple Bash commands; this is the easiest technique we can use to get access to these peripherals. In the following examples, we are going to use the Wandboard but we can redo them on the other systems too but using different GPIO lines, of course.
The sysfs interface to manage the GPIOs are under the /sys/class/gpio/ directory, and if we take a look at its content, we can see the following files:

root@wb:~# ls /sys/class/gpio/
export gpiochip128 gpiochip192 gpiochip64 unexport
gpiochip0 gpiochip160 gpiochip32 gpiochip96

Files named gpiochip0, gpiochip32, and so on are related to the GPIO controller chips that are the entities that actually manage a GPIOs group. In our case, the Wandboard groups GPIOs by 32 and then each gpiochip takes its name according to the first managed GPIO number. So, gpiochip0 manages GPIOs from 0 to 31, gpiochip32 manages GPIOs from 32 to 63, and so on.
If we take a look at the gpiochip64 directory, we get the following file list:

root@wb:~# ls /sys/class/gpio/gpiochip64/
base device label ngpio power subsystem uevent

The ngpio file holds the number of GPIOs managed, which is 32:

root@wb:~# cat /sys/class/gpio/gpiochip64/ngpio
32

In the base, we have the number of the first GPIO managed, which for gpiochip64 is obviously 64:

root@wb:~# cat /sys/class/gpio/gpiochip64/base
64

Tip
A GPIO controller chip is the circuitry that controls the statuses of the GPIO lines physically connected to it. It's something similar to the relation between the I2C or SPI controllers and the devices connected to them.

However, for our purposes, the most important files here are export and unexport, which are used to ask the kernel to export or unexport control of a GPIO to user space by writing its number to this file.
For example, if we wish to control the gpio91 of our Wandboard, we must use the following command:

root@wb:~# echo 91 > /sys/class/gpio/export
root@wb:~# ls /sys/class/gpio/
export gpiochip0 gpiochip160 gpiochip32 gpiochip96
gpio91 gpiochip128 gpiochip192 gpiochip64 unexport

As we can see, the gpio91 entry is now available in /sys/class/gpio/. On the other hand, if we don't need gpio91 anymore, we can remove its entry using the inverse command:

root@wb:~# echo 91 > /sys/class/gpio/unexport
root@wb:~# ls /sys/class/gpio/
export gpiochip128 gpiochip192 gpiochip64 unexport
gpiochip0 gpiochip160 gpiochip32 gpiochip96

You should note that in case a GPIO is reserved for other purposes and we try to export it, we'll get an error:

root@wb:~# echo 70 > /sys/class/gpio/export
-bash: echo: write error: Invalid argument

These errors can be related to the fact that a GPIO is already exported or because it's already requested by the kernel or because the GPIO is not available due a special pinmux configuration. You can look at the /sys/kernel/debug/gpio file, which shows which GPIOs are already used and which are not. On the Wandboard, we have the following:

root@wb:~# cat /sys/kernel/debug/gpio
GPIOs 0-31, platform/209c000.gpio, 209c000.gpio:
gpio-2 (|cd) in hi
gpio-26 (|wl_reg_on) out hi
gpio-29 (|wl_host_wake) in hi
gpio-30 (|wl_wake) out hi
GPIOs 32-63, platform/20a0000.gpio, 20a0000.gpio:
gpio-62 (|spi_imx) out hi
GPIOs 64-95, platform/20a4000.gpio, 20a4000.gpio:
gpio-73 (|cd) in lo
gpio-93 (|phy-reset) out hi
GPIOs 96-127, platform/20a8000.gpio, 20a8000.gpio:
GPIOs 128-159, platform/20ac000.gpio, 20ac000.gpio:
gpio-148 (|bt_host_wake) in hi
gpio-149 (|bt_on) out hi
gpio-158 (|bt_wake) out hi
gpio-159 (|wl_ref_on) out hi
GPIOs 160-191, platform/20b0000.gpio, 20b0000.gpio:
gpio-160 (|wl_rst_n) out hi
GPIOs 192-223, platform/20b4000.gpio, 20b4000.gpio:

OK, now let's export gpio91 and then examine its control files; in fact, the newly created gpio91 entry is a directory that holds several files:

root@wb:~# echo 91 > /sys/class/gpio/export
root@wb:~# ls /sys/class/gpio/gpio91/
active_low device direction edge power subsystem uevent value

Here, the important files are direction, value, edge, and active_low, which in turn mean this:
	direction: This selects between the GPIO line directions in or out. If read, it returns either the strings in or out and if written as out, it defaults to initializing the value as low (strings low and high can be used to ensure glitch-free operations when we configure the GPIO at a desired status).
	value: If set as input, it returns the GPIO line input status, while if set as output, it forces the GPIO line status to either 0 (for low) or 1 (for high). Note that if the pin can be configured as the IRQ line and if it has been configured to generate interrupts (refer to the description of edge), we can use poll() on that file to know whenever the interrupt was triggered (refer to the following).
	edge: This reads as either none, rising, falling, or both. By writing these strings, we can select the signal edges that will make poll() on the value file return. This file is not present if the corresponding GPIO cannot generate interrupts.
	active_low: This returns as either 0 (false) or 1 (true), and by writing any nonzero value, we can invert the value attribute both for reading and writing.

Getting access to GPIOs

Now let's look at how we can get access to GPIOs using both the command line (using Bash) and then using the C language.
Bash

Now it's time for an example. A very simple usage is the following one, where we use the gpio91 of the Wandboard to turn an LED on and off. The circuitry is reported in the following figure:

[image: Bash]

To control the LED, we must set the line as the output, so we should write out in the /sys/class/gpio/gpio91/direction file, but if we wish to set the LED to a precise state by default, it is better to write low, as show here:

root@wb:~# echo low > /sys/class/gpio/gpio91/direction

Note
You can now observe that the low value is the default for the out setting, but the preceding setting increases the code readability since it states the intention of the developer exactly.

OK, the LED is still off and we can turn it on and off by writing 1 and 0 in the file value, as shown in the following commands:

root@wb:~# echo 1 > /sys/class/gpio/gpio91/value
root@wb:~# echo 0 > /sys/class/gpio/gpio91/value

After the preceding command, the LED is off again, and if we take a look at /sys/class/gpio/gpio91/active_low, we get the following:

root@wb:~# cat /sys/class/gpio/gpio91/active_low
0

This means that the GPIO is not active low, but if we modify this behavior, everything will change:

root@wb:~# echo 1 > /sys/class/gpio/gpio91/active_low

Now the LED is still off, but the behavior of the value file has been changed in such a way that to turn the LED on and off, we must write 0 and 1 (inverse logic):

root@wb:~# echo 0 > /sys/class/gpio/gpio91/value

The LED is on and we can turn it off using the following command:

root@wb:~# echo 1 > /sys/class/gpio/gpio91/value

Now we can try to read the GPIO status when it's set from an external signal. To do that, we can connect a switch to gpio24, as shown in the next figure, in order to move the input status from 0 (GND) to 1 (Vcc).

[image: Bash]

Tip
Note that Vcc pin must be connected to 3.3V (which is on the JP3 connector) and not to 5V (which is present on the JP4 connector)! Also consider the R resistor as a value of 10KΩ .

When the B button is not pressed, the GPIO input is set to Vcc, so to the logical 1, while when the B button is pressed, the GPIO input moves to GND, that is, the logical 0. Now let's export the GPIO as input and then read its status to verify the logical 1 when the button is not pressed:

root@wb:~# echo 24 > /sys/class/gpio/export
root@wb:~# echo in > /sys/class/gpio/gpio24/direction
root@wb:~# cat /sys/class/gpio/gpio24/value
1

OK, now let's press the button and then re-read the GPIO status:

root@wb:~# cat /sys/class/gpio/gpio24/value
0

Perfect! However, we wish to not have this inverse logic but have a direct logic instead. To do that, we can use the active_low file by setting it to 1:

root@wb:~# echo 1 > /sys/class/gpio/gpio24/active_low

Now, if we re-read the GPIO when the button is not pressed, we get the following:

root@wb:~# cat /sys/class/gpio/gpio24/value
0

While when we press the button, the result is as follows:

root@wb:~# cat /sys/class/gpio/gpio24/value
1

Before ending this section, we must consider a little note regarding the SAMA5D3 Xplained GPIOs naming as stated at the beginning of this section. This is because the way the SAMA5D3 Xplained names the GPIOs after the export is a bit different than earlier. Just to show the difference, let's switch to that board and try to export gpio22, which is the GPIO line connected to pin PA22, and see the name of the new entry related to our GPIO:

root@a5d3:~# echo 22 > /sys/class/gpio/export
root@a5d3:~# ls /sys/class/gpio/
export gpiochip128 gpiochip64 pioA22
gpiochip0 gpiochip32 gpiochip96 unexport

As we can see, this time, the new entry is not named gpio22, as is in the Wandboard, but the new directory is named pioA22 in order to reflect the pin name. Apart from this little difference, whatever was said earlier for the files in the GPIO's control directory is still valid; in fact, we can find the same files as earlier in it:

root@a5d3:~# ls /sys/class/gpio/pioA22/
active_low device direction edge power subsystem uevent value

C

Now it's time to go further, so let's look at an example on how to manage the GPIOs inside a C program in a way that we can use the poll() system call to know which is the GPIO that has changed its internal status. Using the C language, the developer can have a quicker responsiveness of the GPIO reads and writes with respect to the Bash scripting; however, for the best performance, we must switch to the kernel space (refer to the next section) but using the C programming, we can resolve a large variety of common tasks.
In this example, to change the GPIOs statuses, we can use several techniques, but the easiest and quickest one is the solution used earlier with the button. In fact, we can imagine replicating the preceding connections for two buttons and then using the code in the chapter_05/gpio-poll/gpio-poll.c file in the book's example code repository to capture the button pressing.
Before starting the test, let's spend some time on explaining the code. First of all, take a look at the following:
#define NAME program_invocation_short_name
#define SYSFS_GPIO_DIR "/sys/class/gpio"
#define POLL_TIMEOUT (1 * 1000) /* in ms */

/* Some useful GPIO defines */
#define GPIO_IN 0
#define GPIO_OUT 1
#define GPIO_NONE "none"
#define GPIO_RISING "rising"
#define GPIO_FALLING "falling"
#define GPIO_BOTH "both"

In the first group, we have generic definitions, where we should notice SYSFS_GPIO_DIR, which is used to address the usual sysfs directory for GPIOs management. Then, in the second group, we have some useful constants to be used with the Linux GPIO subsystem.
Then, we have the GPIO number for the GPIO name conversion function. This is needed in order to keep the Atmel nonstandard names we saw earlier in count:
#ifdef _ATMEL_GPIOS

char *lut[] = {
 [57] = "pioB25",
 [58] = "pioB26",
 [59] = "pioB27",
};

#else /* ! _ATMEL_GPIOS */

char *lut[] = {
 [24] = "gpio24",
 [91] = "gpio91",
 [191] = "gpio191",
 [200] = "gpio200",
};

#endif /* _ATMEL_GPIOS */

char *gpio2name(int gpio)
{
 BUG_ON(gpio < 0);

 /* Check for gpio index out of range or if the corresponding entry
 * into the lut[] array is not defined
 */
 if (gpio >= ARRAY_SIZE(lut) || lut[gpio] == NULL) {
 err("unable to get GPIO%d name! "
 "Consider to fix up the lut[] array", gpio);
 BUG();
 }

 return lut[gpio];
}

The lut[] look-up-table is defined in a different manner according to the _ATMEL_GPIOS definition, which is automatically added (or not) to the compiler's CFLAGS by Makefile with the following code:
MACHINE = $(shell awk '/Hardware/ { print $$3 }' < /proc/cpuinfo)
ifeq ($(MACHINE),Atmel)
 CFLAGS += -D_ATMEL_GPIOS
endif

Note
The preceding code is held in the chapter_05/gpio-poll/Makefile file in the book's example code repository.

The code is simple, since it takes the hardware manufacturer name from the /proc/cpuinfo file. In fact, on the Wandboard, at the end, it looks like this:

root@wb:~# cat /proc/cpuinfo | tail -3
Hardware : Freescale i.MX6 Quad/DualLite (Device Tree)
Revision : 0000
Serial : 0000000000000000

On the SAMA5D3 Xplained, it looks like this instead:

root@a5d3:~# cat /proc/cpuinfo | tail -3
Hardware : Atmel SAMA5
Revision : 0000
Serial : 0000000000000000

In this scenario, the gpio2name() function will take the correct look-up-table settings according to the underlying machine.
The look-up-table is probably not the perfect or most efficient solution, but it allow us the ability to restrict the set of possible usable GPIO lines that can be very useful in order to block undesired access to other GPIO lines; for this purpose, the function returns a BUG() condition if the gpio index is out of range or the corresponding entry in the lut[] array is NULL.
After the GPIOs conversion function, the GPIOs management functions follow, and as an example, we'll report some of them here with a little explanation. The gpio_export() function, which is used to export a GPIO line, is as follows:
int gpio_export(unsigned int gpio)
{
 int fd, len;
 char *buf;

 fd = open(SYSFS_GPIO_DIR "/export", O_WRONLY);
 if (fd < 0)
 return fd;

 len = asprintf(&buf, "%d", gpio);
 BUG_ON(len < 0);

 write(fd, buf, len);
 close(fd);

 free(buf);
 return 0;
}

As we can see, the function simply does what we did earlier using the echo command to write into the /sys/class/gpio/export file. Then following is reported in gpio_set_dir(), which is used to set the GPIO's direction:
int gpio_set_dir(unsigned int gpio, unsigned int out_flag)
{
 int fd, len;
 char *buf;

 len = asprintf(&buf, SYSFS_GPIO_DIR "/%s/direction",
 gpio2name(gpio));
 BUG_ON(len < 0);

 fd = open(buf, O_WRONLY);
 if (fd < 0) {
 free(buf);
 return fd;
 }

 if (out_flag)
 write(fd, "out", 4);
 else
 write(fd, "in", 3);

 free(buf);
 close(fd);

 return 0;
}

Again, the function does the same as we did earlier with the /sys/class/gpio/gpioXX/direction file. Then, as a last example, gpio_get_value() can be used to read the GPIO's status in the same manner as we did with the /sys/class/gpio/gpioXX/value file:
int gpio_get_value(unsigned int gpio, unsigned int *value)
{
 int fd, len, n;
 char *buf;
 char ch;

 len = asprintf(&buf, SYSFS_GPIO_DIR "/%s/value", gpio2name(gpio));
 BUG_ON(len < 0);

 fd = open(buf, O_RDONLY);
 if (fd < 0)
 return fd;

 n = read(fd, &ch, 1);

 *value = ch != '0' ? 1 : 0;

 free(buf);
 close(fd);

 return n;
}

Now you should also note that an extra GPIO function is defined-that is, gpio_fd_open() which is used to open() a GPIO's value file and then get the corresponding file descriptor. This is needed later when we have to set up the poll() system call's data structures.
The usage() function just writes out the command's usage message and a list of the supported GPIOs we added in the lut[] array.
Then comes the main() function. First of all, we register all signal handlers and clean up the function needed to clean whatever we can get dirty (the clean up function and the SIGTERM and SIGINT handlers are used to restore the GPIOs settings under the /sys/class/gpio directory as earlier, so we simply un-export all previously exported GPIO lines), and then we check the command-line option arguments as usual:
/* Register signal handlers in order to do some clean up stuff
 * at exit time...
 */
atexit(cleanup);
sig_h = signal(SIGTERM, sighand_exit); /* clean up on SIGTERM */ if (sig_h == SIG_ERR) {
 err("unable to catch SIGTERM");
 exit(EXIT_FAILURE);
}
sig_h = signal(SIGINT, sighand_exit);
if (sig_h == SIG_ERR) {
 err("unable to catch SIGINT");
 exit(EXIT_FAILURE);
}

/* Check the command line */
while (1) {
 /* `getopt_long' stores the option index here. */
 int option_index = 0;

 c = getopt_long(argc, argv, "hd",
 long_options, &option_index);

 /* Detect the end of the options. */
 if (c == -1)
 break;

 switch (c) {
 case 0:
 /* If this option set a flag, do nothing else now */
 BUG_ON(long_options[option_index].flag == NULL);

 break;

 case 'h': /* --help */
 usage();

 case 'd': /* --debug */
 enable_debug++;

 break;

 case ':':
 /* "getopt_long" already printed an error message */
 exit(EXIT_FAILURE);

 case '?':
 /* "getopt_long" already printed an error message */
 err("unrecognized option "%s"", argv[optind - 1]);
 exit(EXIT_FAILURE);

 default:
 BUG();
 }
}
dbg("debug is on (level=%d)", enable_debug);

However, after checking the command-line option arguments, we have to read the two numbers of the GPIOs line we wish to use for our test:
/*
 * Parse any remaining command line arguments (not options)
 */

argc -= optind;
argv += optind;
if (argc < 2)
 usage();

for (i = 0; i < 2; i++) {
 ret = sscanf(argv[i], "%d", &gpio[i]);
 if (ret != 1) {
 err("invalid entry "%s"", argv[i]);
 exit(EXIT_FAILURE);
 }
 info("got GPIO%d named as %s", gpio[i],
 gpio2name(gpio[i]));
}

Now in the gpio[] array, we have the numbers of the GPIOs to be used for our test and then we have to set up the relative settings in order to program them as input pins sensible to the falling edge of the input waveform. The following is the code:
for (i = 0; i < 2; i++) {
 ret = gpio_export(gpio[i]);
 if (ret < 0) {
 err("unable to export GPIO%d", gpio[i]);
 exit(EXIT_FAILURE);
 }

 ret = gpio_set_dir(gpio[i], GPIO_IN);
 if (ret < 0) {
 err("unable to set direction for GPIO%d", gpio[i]);
 exit(EXIT_FAILURE);
 }

 ret = gpio_set_edge(gpio[i], GPIO_FALLING);
 if (ret < 0) {
 err("unable to set edge for GPIO%d", gpio[i]);
 exit(EXIT_FAILURE);
 }

 ret = gpio_fd_open(gpio[i]);
 if (ret < 0) {
 err("unable to open GPIO%d", gpio[i]);
 exit(EXIT_FAILURE);
 }
 gpio_fd[i] = ret;
}

In the preceding code, we can recognize the same steps we did in the earlier example with the Bash commands plus the last call of the gpio_fd_open() function we need in order to get the two file descriptors of the relative /sys/class/gpio/gpioXX/value files to be used with poll().
Now we can move on to analyzing the main loop:
while (1) {
 /* Set up the fdset data structs */
 memset((void*) fdset, 0, sizeof(fdset));
 for (i = 0; i < 2; i++) {
 fdset[i].fd = gpio_fd[i];
 fdset[i].events = POLLPRI;
 }

 /* Do the poll() with timeout */
 ret = poll(fdset, 2, POLL_TIMEOUT);
 BUG_ON(ret < 0);
 if (ret == 0) {
 /* No IRQs received!
 * If debug is enabled then print GPIOs statuses,
 * otherwise just print a dot "."
 */
 if (enable_debug) {
 for (i = 0; i < 2; i++) {
 ret = gpio_get_value(gpio[i], &val);
 BUG_ON(ret < 0);
 dbg("read() GPIO%d=%d", gpio[i], val);
 }
 } else {
 printf(".");
 fflush(stdout);
 }
 } else {
 /* IRQ received! Print out the new GPIO status */
 for (i = 0; i < 2; i++) {
 if (fdset[i].revents & (POLLPRI | POLLERR)) {
 ret = lseek(fdset[i].fd, SEEK_SET, 0);
 BUG_ON(ret < 0);
 ret = read(fdset[i].fd, &v, 1);
 BUG_ON(ret < 1);

 if (ret == 1) {
 info("poll() GPIO%d=%c", gpio[i], v);
 }
 }
 }
 }
}

The code here is quite simple; first of all, we set up the poll() data structures, as requested in its man pages (a screenshot is reported here). Then, we call the poll() system call and examine its return value. In case of time-out, no interrupts are received; we simply print out a dot character (or some debugging information if enabled), but in case of interrupt, poll() will return the GPIO it has by printing the corresponding status. Note that in order to correctly read the status, we need to perform a lseek() before using the read() system call to read the data!
Now let's try the code. We have to compile it first with the usual make command directly on the Wandboard, and then we can start our test by calling the usage message:

root@wb:~/gpio-poll# ./gpio-poll -h
usage: gpio-poll [--help|-h] [--debug|-d] gpio1# gpio2#
Supported GPIOs are:
 GPIO24 named as gpio24
 GPIO91 named as gpio91
 GPIO191 named as gpio191
 GPIO200 named as gpio200

If we try to compile and then execute the same program in the SAMA5D3 Xplained, we should get the following output instead:

root@a5d3:~/gpio-poll# ./gpio-poll -h
usage: gpio-poll [--help|-h] [--debug|-d] gpio1# gpio2#

 Supported GPIOs are:
 GPIO57 named as pioB25
 GPIO58 named as pioB26
 GPIO59 named as pioB27

Then supposing we connected our two buttons (using the preceding circuitry) to gpio91 and gpio24, we have to execute the following command:

root@wb:~/gpio-poll# ./gpio-poll 91 24
gpio-poll: got GPIO91 named as gpio91
gpio-poll: got GPIO24 named as gpio24
gpio-poll: poll() GPIO91=1
gpio-poll: poll() GPIO24=1
...

Then, the program will continue printing dot characters until we press a button, and in that case, we get the following:

......gpio-poll: poll() GPIO91=0
..gpio-poll: poll() GPIO24=0

The GPIOs statuses moved to 0, which means that the relative buttons have been pressed!
It's interesting to note that if we leave the program running and, using another terminal window, we take a look at the /sys/class/gpio directory, we can find that its content has been changed according to the GPIOs used:

root@wb:~# ls /sys/class/gpio/
export gpio91 gpiochip128 gpiochip192 gpiochip64 unexport
gpio24 gpiochip0 gpiochip160 gpiochip32 gpiochip96
root@wb:~# cat /sys/class/gpio/gpio*/direction
in
in
root@wb:~# cat /sys/class/gpio/gpio*/value
1
1

However, when we stop the program by hitting the
Ctrl-C
 keboard keys sequence, everything comes back to the initial status.

Using GPIOs with scripting languages

Having the possibility to manage the GPIO lines in a scripting language in an easy manner allows us to have a powerful tool to speed up simple tasks involving these peripherals. That's why in this section, we're going to see how the GPIO lines can be managed in both PHP and Python scripting languages in a manner similar to what we did in C.
However, in order to keep the code simple, we suppose that the GPIO lines gpio24 and gpio91 have been exported in some way already. For example, we can properly set them up with the following well-known commands:

root@wb:~# echo 24 > /sys/class/gpio/export
root@wb:~# echo in > /sys/class/gpio/gpio24/direction
root@wb:~# echo falling > /sys/class/gpio/gpio24/edge
root@wb:~# echo 91 > /sys/class/gpio/export
root@wb:~# echo in > /sys/class/gpio/gpio91/direction
root@wb:~# echo falling > /sys/class/gpio/gpio91/edge

Now the GPIO lines are ready to be used by the next two programs that are going to use their poll() equivalent functions to do their job. Both PHP and Python functions are based on the select() system call, which is equivalent to poll(). Even if related to the C language, but for sake of completeness and due to the fact the PHP and Python version are very similar.
PHP

Once the GPIO lines are set up as input and are sensible to the falling edge, the PHP code to manage them with the select() system call is as follows:
#!/usr/bin/php
<?php
 define("gpio24", "/sys/class/gpio/gpio24/value");
 define("gpio91", "/sys/class/gpio/gpio91/value");

 # Get the GPIOs streams
 $stream24 = fopen(gpio24, 'r');
 $stream91 = fopen(gpio91, 'r');

 while (true) {
 # Set up stream sets for the select()
 $read = NULL;
 $write = NULL;
 $exept = array($stream24, $stream91);

 # Wait for IRQs (without timeout)...
 $ret = stream_select($read, $write, $exept, NULL);
 if ($ret < 0)
 die("stream_select: error");

 foreach ($exept as $input => $stream) {
 # Read the GPIO status
 fseek($stream, 0, SEEK_SET);
 $status = intval(fgets($stream));

 # Get the filename from "/sys/class/gpio/gpioXX/value"
 $meta_data = stream_get_meta_data($stream);
 $gpio = basename(dirname($meta_data["uri"]));

 printf("$gpio status=$statusn");
 }
 }
?>

Note
The code is placed in the chapter_05/gpio-poll.php file in the book's example code repository

The code is still very simple; first, we get two streams related to the two GPIOs using the fopen() function, and then we simply call the stream_select() function, which internally uses select() to work (as we can see, this function is very similar to its counterpart in C). With stream_select(), we simply iterate on the $exept streams set in order to see which is the GPIO that generated the IRQ.
Note
We set the timeout parameter to NULL in order to disable it and keep the code as simple as possible.

If we try to test the code, we get the following:

root@wb:~# ./gpio-poll.php
gpio24 status=1
gpio91 status=1

Then, if we try to push the buttons, we get the following output:

gpio24 status=0
gpio91 status=0

Tip
Note that even in this case, we can get multiple output lines even if we just press the button or an output, as follows, due to the signal bounce problem reported earlier:

 gpio24 status=1

 gpio91 status=1

Python

Regarding the Python language, the code to manage the GPIO lines with the select() system call is as follows:
#!/usr/bin/python

from __future__ import print_function
import os
import sys
import select

gpio24 = "/sys/class/gpio/gpio24/value"
gpio91 = "/sys/class/gpio/gpio91/value"

Get the GPIOs streams
stream24 = open(gpio24, 'r');
stream91 = open(gpio91, 'r');

while True :
 # Set up stream sets for the select()
 read = []
 write = []
 exept = [stream24, stream91]

 # Wait for IRQs (without timeout)...
 r, w, e = select.select(read, write, exept)
 for i, input in enumerate(e) :
 # Read the GPIO status
 input.seek(0, 0)
 status = input.read().rstrip("n")

 # Get the filename from "/sys/class/gpio/gpioXX/value"
 path = os.path.dirname(input.name)
 gpio = os.path.basename(path)

 print("%s status=%s" % (gpio, status))

Note
The code is placed in the chapter_05/gpio-poll.py file in the book's example code repository.

Again, the code is simple. After getting the two streams as earlier using the open() function we pass to call the select.select() method in a similar manner as earlier. When a new IRQ is received by one or more exept streams, we iterate on them, showing the relative GPIO status.
Tip
In order to disable the timeout and keep the code as simple as possible, this time, we completely omit it.

As we can see, the Python select.select() function is very similar to its counterpart in C.
Now if we start the program, we should get the preceding output:

root@wb:~# ./gpio-poll.py
gpio24 status=1
gpio91 status=1

Then, as soon as we press a button, we get the following output:

gpio91 status=0
gpio24 status=0

Tip
Even in this case, we can have the bouncing problems reported earlier.

Managing GPIO into the kernel

Having the ability to manage one or more GPIO lines from the user space is really important because it drastically simplifies the developer's job, but in some circumstances, that is not enough to solve a task. As you already saw in Chapter 3
, C Compiler, Device Drivers, and Useful Developing Techniques, Writing our own Device Driver
, where we introduced a kernel driver involving two GPIO lines, it was clear that if the pulse events go over a certain frequency, a user-space application is not suitable anymore and the management must be moved into the kernel.
However, the speed is not the only reason why we should move into the kernel space; another good reason is the abstraction level that the kernel offers to developers. In fact, we already saw that, for example, a simple GPIO line can be abstracted as an LED device with the ability to be managed by several triggers (refer to Chapter 3
, C Compiler, Device Drivers, and Useful Developing Techniques, The Device Tree, for a simple example and then the next section for a more detailed explanation). Also, a GPIO line can be abstracted as an input device (that is, a keyboard) or as a more complicated device. For the input device, we're going to look at an example, while for the latter case, you can take a look at Chapter 11
, 1-Wire - W1, Using the GPIO interface
, where we implemented a one-wire (W1) controller using a GPIO.
An input device using GPIOs

In this section, we're going to present a kernel code that emulates the behavior of the gpio-poll.c program in kernel space plus a special behavior: the generation of keyboard events. This is to demonstrate how easy it can be to capture a GPIO status event inside the kernel. In fact, in this environment, we don't need to use the poll() system call, nor do we need to implement a main loop at all; we just need to register an IRQ handler and the kernel will do the rest for us!
These events are generated and managed by the input devices, which are a device class dedicated to all peripherals that can generate events from keyboards, mouse, touchscreen, and other user input devices.
Tip
You can take a look at:
https://www.kernel.org/doc/Documentation/input/input.txt
 for further information.

The code used here is in the chapter_06/gpio-irq/gpio-irq.c file in the book's example code repository, and it can be compiled in the same manner as we did in Chapter 3
, C Compiler, Device Drivers, and Useful Developing Techniques, Writing our own Device Driver
 for the pulse kernel module:

$ make KERNEL_DIR=~/WB/armv7-multiplatform/KERNEL/

If everything works well, we should get a new kernel module called gpio-irq.ko. However, before testing it, it is better to take a look at its code in order to understand how it works.
First of all, just note that this time, we didn't used a DTS file as in Chapter 3, C Compiler, Device Drivers, and Useful Developing Techniques, Writing our own Device Driver
, but we preferred using a module parameter named gpios to declare the GPIO lines to be used. In the following code, we can learn how to declare the gpio parameter as a (maximum) two-cell array. Also, we can see the definition of an additional parameter (debug) to set up the debugging level. In this manner, we can declare the GPIOs to be used for our test from the command line, as we did with the user-space program earlier:
static int debug;
module_param(debug, int, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP);
MODULE_PARM_DESC(int, "Set to 1 to enable debugging messages");

static int ngpios;
static int gpios[2] = { -1 , -1 };
module_param_array(gpios, int, &ngpios,
 S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP);
MODULE_PARM_DESC(gpios, "Defines the GPIOs number to be used as a "
 "list of numbers separated by commas.");

This code will generate the following output when we use the modinfo utility on the kernel module:

$ modinfo gpio-irq.ko
filename: /home/giometti/github/chapter_06/gpio-irq/gpio-irq.ko
version: 0.0.1
license: GPL
description: GPIO IRQ module
author: Rodolfo Giometti <giometti@hce-engineering.com>
srcversion: F23DF96F9CCBAE41BEE6F59
depends:
vermagic: 4.4.7-armv7-x6 SMP mod_unload modversions ARMv7 p2v8
parm: debug:int
parm: int:Set to 1 to enable debugging messages
parm: gpios:Defines the GPIOs number to be used as a list of
 numbers separated by commas. (array of int)

Then, we should skip all the code until the end (keep calm; we're going to go back soon), where we can find the basic module_init() and module_exit()functions of our module:
static int __init gpioirq_init(void)
{
 int i;
 int ret;

 /* Check the supplied GPIOs numbers */
 if (ngpios != 2) {
 usage();
 ret = -EINVAL;
 goto exit;
 }

 /* Request the GPIOs and then setting them up as needed */
 for (i = 0; i < 2; i++) {
 dbg("got GPIO%d", gpios[i]);

 /* Is the GPIO line free? */
 ret = gpio_request(gpios[i], NAME);
 if (ret) {
 err("unable to request GPIO%dn", gpios[i]);
 goto free_gpios;
 }
 keys[i].gpio = gpios[i];

 /* If so then setting it as input */
 gpio_direction_input(gpios[i]);

 /* Is GPIO in pin IRQ capable? */
 ret = gpio_to_irq(gpios[i]);
 if (ret < 0) {
 err("GPIO%d is not IRQ capablen", gpios[i]);
 ret = -EINVAL;
 goto free_gpios;
 }
 keys[i].irq = ret;

 /* Then request the IRQ */
 ret = request_irq(keys[i].irq, (irq_handler_t) irq_handler,
 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
 NAME, &keys[i]);
 if (ret < 0) {
 err("unable to request IRQ%d for GPIO%dn",
 keys[i].irq, keys[i].gpio);
 ret = -EINVAL;
 goto free_gpios;
 }
 dbg("GPIO%d (key="%s") mapped on IRQ %d",
 keys[i].gpio, keys[i].name, keys[i].irq);
 }

 /* Allocate the input device */
 b_dev = input_allocate_device();
 if (!b_dev) {
 err("cannot allocate memory");
 ret = -ENOMEM;
 goto free_gpios;
 }
 b_dev->evbit[0] = BIT_MASK(EV_KEY);
 b_dev->name = NAME;
 b_dev->dev.parent = NULL;
 b_dev->id.bustype = BUS_HOST;
 b_dev->id.vendor = 0x0001;
 b_dev->id.product = 0x0001;
 b_dev->id.version = 0x0001;

 /* Define the keys mapping */
 for (i = 0; i < 2; i++)
 set_bit(keys[i].btn, b_dev->keybit);

 /* Register the input device */
 ret = input_register_device(b_dev);
 if (ret) {
 err("cannot register input device");
 goto free_dev;
 }

 info("input GPIO IRQ module loaded");

 return 0;

free_dev:
 input_free_device(b_dev);

free_gpios:
 for (; i >= 0; i--) {
 if (keys[i].irq >= 0)
 free_irq(keys[i].irq, &keys[i]);
 if (keys[i].gpio >= 0)
 gpio_free(keys[i].gpio);
 }

exit:
 return ret;
}

static void __exit gpioirq_exit(void)
{
 int i;

 input_unregister_device(b_dev);

 for (i = 0; i < 2; i++) {
 dbg("freeing IRQ %d for GPIO%d...", keys[i].irq,
 keys[i].gpio);
 free_irq(keys[i].irq, &keys[i]);
 gpio_free(keys[i].gpio);
 }

 info("input GPIO IRQ module released");
}

module_init(gpioirq_init);
module_exit(gpioirq_exit);

The module_exit() function just releases all kernel resources requested in the module_init() function and basically calls the input_unregister_device(), free_irq(), and gpio_free() functions, while the core of the code is in the module_init() function. In fact, after a little command-line parameter checking, it basically calls four main functions:
	gpio_request(): This requests a GPIO line inside the kernel to avoid someone usage.
	gpio_direction_input(): This sets the GPIO direction (as the input in our example).
	request_irq(): This requests a handler for the IRQ related to a GPIO (the function used to get the IRQ number from the corresponding GPIO line is gpio_to_irq()).
	input_register_device(): This registers the new input device into the system (note that we used input_allocate_device() just to allocate the required data structure).Tip
You should notice that in the kernel code, it is very important to release whatever we request; otherwise, it will be lost until the next reboot! This problem doesn't occur in the user-space program, where all resources are released when the program exists.

Simply speaking, in the module_init() function, we have to request the GPIOs, setting the input direction and then requesting the IRQ handlers; after that, we have to allocate the new input device, setting its basic data (name, version, and so on) with the definition of its key mapping, and in the end, we have to register the input device in order to enable the code of our new keyboard.
After all settings, the other interesting part is, of course, the IRQ handler, where all the magic occurs and that looks like this:
static irqreturn_t irq_handler(int i, void *ptr, struct pt_regs *regs)
{
 struct keys_s *key = (struct keys_s *) ptr;
 int status;

 /* Get the gpio status */
 status = !!gpio_get_value(key->gpio);
 dbg("IRQ on GPIO%d status=%d", key->gpio, status);

 /* Report the button event */
 input_report_key(b_dev, key->btn, status);
 input_sync(b_dev);

 return IRQ_HANDLED;
}

Note that during the IRQ registration, we passed a pointer to the request_irq() function to the specific cell of the keys array structure holding the GPIO data related to the IRQ currently requested, so at IRQ time, we can get back the GPIO number that is responsible for the IRQ event. The struct keys_s is defined as follows and opportunely filled, it can be used to get all the required information:
static struct keys_s keys[2] = {
 [0] = {
 .name = "0",
 .btn = KEY_0,
 .gpio = -1,
 .irq = -1,
 },

 [1] = {
 .name = "1",
 .btn = KEY_1,
 .gpio = -1,
 .irq = -1,
 },
};

It defines two keys named 0 and 1 that will generate events related to buttons KEY_0 (keyboard button 0) and KEYS_1 (keyboard button 1), so using them, we can notify the kernel, for instance, when key 0 has been pressed or released.
So, when we press a button, we generate an IRQ that is captured by the kernel that, in turn, executes the irq_handler() interrupt handler with the proper data, and especially with the correct pointer to one element of the preceding keys array. Then, we can get the GPIO line status by simply using the gpio_get_value() function, and then we can report the button press/release event to the upper layers using the input_report_key()/input_sync() functions.
OK, now we can perform our test; if we kept the same circuitry as earlier with the two buttons, we can load the kernel module using the following command:

root@wb:~# insmod gpio-irq.ko debug=1 gpios=91,24
gpio_irq: got GPIO91
gpio_irq: got GPIO24
gpio_irq: GPIO24 (key="1") mapped on IRQ 56
input: gpio_irq as /devices/virtual/input/input0
gpio_irq: input GPIO IRQ module loaded

Tip
The preceding output can be seen only in the serial console! If we're executing the code in an SSH terminal, we must use the usual dmesg or tail -f /var/log/kern.log commands to see them.
Also, even if in the serial console, it may happen that we get the last input GPIO IRQ module loaded message only. In this case, we have to increase the kernel logging level with the following command, as described in Chapter 2, Managing the System Console, in Managing the kernel messages section:

root@wb:~# echo 8 > /proc/sys/kernel/printk

At this time, we can verify that our GPIOs have been really requested by our module, and we can do that by looking into file /sys/kernel/debug/gpio the, as follows:

root@wb:~# grep gpio_irq /sys/kernel/debug/gpio
gpio-24 (|gpio_irq) in hi
gpio-91 (|gpio_irq) in hi

Also, we can verify that the corresponding IRQ lines are also reserved by looking into /proc/interrupts file:

root@wb:~# grep gpio_irq /proc/interrupts
 56: 0 0 0 0 gpio-mxc 24 Edge gpio_irq
127: 0 0 0 0 gpio-mxc 27 Edge gpio_irq

Then, we can verify that the new input device named /sys/devices/virtual/input/input0 is present, so we can take a first look at the /sys/class/input/ directory:

root@wb:~# ls /sys/class/input/
event0 input0 mice
root@wb:~# ls /sys/class/input/input0/
capabilities id name power subsystem uniq
event0 modalias phys properties uevent

OK, let's look at the name of the device to verify that it's really the one we just added:

root@wb:~# cat /sys/class/input/input0/name
gpio_irq

Tip
Note that the event device connected to the input one is named event0, and the corresponding device file under the /dev directory has the same name:

 root@wb:~# ls /dev/input/

 event0 mice

Great! Our settings are OK. However, before starting to press the buttons to generate IRQs, it's interesting to note that nothing has changed in /sys/class/gpio/:

root@wb:~# ls /sys/class/gpio/
export gpiochip128 gpiochip192 gpiochip64 unexport
gpiochip0 gpiochip160 gpiochip32 gpiochip96

However, if we try to export both GPIOs number 91 or 24 now, we get an error due to the fact that these resources have been reserved to our module:

root@wb:~# echo 91 > /sys/class/gpio/export
-bash: echo: write error: Device or resource busy

Now we can start pressing our buttons, and we should get something as what we got earlier in the kernel messages:

gpio_irq: IRQ on GPIO91 status=0
gpio_irq: IRQ on GPIO91 status=1
gpio_irq: IRQ on GPIO24 status=0
gpio_irq: IRQ on GPIO24 status=1

However, nothing happens and so, to see the generated keys from our new keyboard, we have to connect a display/LCD, or we can use the evtest utility to show the events generated by a generic input device; this is because input events on the embedded kit are not managed by an SSH terminal or the serial console since they are connected to the remote host.
Remembering that the event device related to our new keyboard is event0, we can use the following command:

root@wb:~# evtest /dev/input/event0
Input driver version is 1.0.1
Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x1
Input device name: "gpio_irq"
Supported events:
Event type 0 (EV_SYN)
Event type 1 (EV_KEY)
Event code 2 (KEY_1)
Event code 11 (KEY_0)
Properties:
Testing ... (interrupt to exit)

As we can see, here is all the information we set in our kernel module.
Tip
The evtest, if not present, can be installed using the usual package management tools, as follows:

 root@wb:~# aptitude install evtest

Now, if we press our buttons again, we should see something like this:

gpio_irq: IRQ on GPIO91 status=0
gpio_irq: IRQ on GPIO91 status=1
Event: time 1459622898.213967, type 1 (EV_KEY), code 11 (KEY_0), value
 1
Event: time 1459622898.213967, -------------- EV_SYN ------------
gpio_irq: IRQ on GPIO24 status=0
gpio_irq: IRQ on GPIO24 status=1
Event: time 1459622900.972430, type 1 (EV_KEY), code 2 (KEY_1), value 1
Event: time 1459622900.972430, -------------- EV_SYN ------------

Tip
You should keep in mind that the lines starting with the gpio_irq: string come from the kernel messages, while the ones starting with the Event: string are generated by the evtest command.

When we press and release a button, we get the related key event as expected.

LEDs and triggers

As already shown in previous chapters, there are two different ways to manage an LED in a Linux-based system. The first one is using a GPIO, and the second one is also using a GPIO but defining it as an LED device. The GPIO solution can be implemented using whatever we just saw earlier, and it's the easiest and quickest way to do that. However, this is suitable for just turning the LED on and off; in fact, if we have to do more complicated management, this solution is not the best to use, and we have to switch to the second one, that is, we have to use an LED device.
These devices are obviously implemented using GPIOs, but it's the kernel that directly manages them according to the user settings. In fact, these can be simply turned on and off, but they can also be connected to a trigger that is able to manage them in several special ways.
To simplify the illustration of the LED subsystem, let's switch to the BeagleBone Black board and let's take a look at the /sys/class/leds/ directory, where all LEDs in the system are defined:

root@bbb:~# ls /sys/class/leds/
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usr1 beaglebone:green:usr3

By default, here are the four user LEDs defined that the BeagleBone Black board has on board. Just to see which are the available triggers, we can read the trigger file under of one of the preceding directories (the entries under /sys/class/leds/ as directory as is the entries under the directory /sys/class/gpios/ seen earlier):

root@bbb:~# cat /sys/class/leds/beaglebone:green:usr0/trigger
none rc-feedback kbd-scrollock kbd-numlock kbd-capslock kbd-kanalock k
bd-shiftlock kbd-altgrlock kbd-ctrllock kbd-altlock kbd-shiftllock kbd
-shiftrlock kbd-ctrlllock kbd-ctrlrlock nand-disk usb-gadget usb-host
mmc0 mmc1 timer oneshot [heartbeat] backlight gpio cpu0 default-on

The active one is the trigger between the square brackets, so in the preceding output, the LED named beaglebone:green:usr0 is managed by the heartbeat trigger.
Before learning how to manage the LEDs and their triggers, let's look at a little description of the most used triggers defined in the kernel:
	none: This defines no trigger at all.
	kbd*: This signals specific keyboard key events.
	usb-gadget and usb-host: These signal the USB gadget or the host activity.
	mmc*: This signals the MMCs activity.
	timer: This turns the LEDs on and off with specified timing.
	oneshot: This signals that an event has happened.
	heartbeat : This does a heartbeat pulsing with a period length in dependency of the current (1 min) load.
	backlight: This signals the blank and unblack screen events.
	gpio: This signals a GPIO activity.
	cpu*: This signals CPU activity.
	default-on: This sets an LED in its on status by default.

Tip
For further information regarding the LEDS driver and its triggers, you can take a look at the Documentation/leds/ directory in the Linux code repository.

To change the current trigger, we have to write the trigger name in the same trigger file as earlier, but instead of modifying the on-board BeagleBone Black's LEDs settings, let's define two new LEDs using the following DTS overlay. Using this technique, we can replace, or add, pieces of the current kernel configuration with another setting in such a way that we can have a dynamic kernel configuration that can change according to the current developer's needs:
fragment@1 {
 arget = <&ocp>;

 __overlay__ {
 c6_leds {
 compatible = "gpio-leds";
 pinctrl-names = "default";
 pinctrl-0 = <&bb_led_pins>;

 yellow_led {
 label = "c6:yellow";
 gpios = <&gpio2 5 0>;
 linux,default-trigger = "none";
 default-state = "off";
 };

 red_led {
 label = "c6:red";
 gpios = <&gpio2 4 0>;
 linux,default-trigger = "none";
 default-state = "off";
 };
 };
 };
};

Note
The complete DTS file can be found in the chapter_06/BB-LEDS-C6-00A0.dts file in the book's example code repository.

In the preceding code, we define pins P8.9 and P8.10 as two LED devices that have the none trigger by default. Now, if we compile the DTS with the next command, we'll be able to enable the new settings:

root@bbb:~# dtc -O dtb -o /lib/firmware/BB-LEDS-C6-00A0.dtbo
 -b 0 -@ BB-LEDS-C6-00A0.dts

Tip
Also note that if you want to try this on another board, you have to put the c6_leds DTS snippet in the proper DTS file of the board and recompile it in the kernel tree.

OK, let's enable the new overlay, and we should get the following output:

root@bbb:~# echo BB-LEDS-C6 > /sys/devices/platform/bone_capemgr/slots
bone_capemgr: part_number 'BB-LEDS-C6', version 'N/A'
bone_capemgr: slot #4: override
bone_capemgr: Using override eeprom data at slot 4
bone_capemgr: slot #4: 'Override Board Name,00A0,Override Manuf,BB-LED
S-C6'
bone_capemgr: slot #4: dtbo 'BB-LEDS-C6-00A0.dtbo' loaded; overlay id
#0

Now /sys/class/leds/ should have changed as follows:

root@bbb:~# ls /sys/class/leds/
beaglebone:green:usr0 beaglebone:green:usr2 c6:red
beaglebone:green:usr1 beaglebone:green:usr3 c6:yellow

Now if we take a look at the default trigger, we can verify that it's the none one; as an instance, the c6:red directory looks like the following:

root@bbb:~# ls /sys/class/leds/c6:red/
brightness device max_brightness power subsystem trigger uevent

Now, in order to turn the LED on and off, we can write values 255 or 0 in the /sys/class/leds/c6:red/brightness file in a manner similar to what we do for GPIOs, but the interesting thing here is the ability to use a trigger! For instance, if we wish to blink at 1 Hz with the duty cycle at 50%, we can use the timer trigger, as follows:

root@bbb:~# echo timer > /sys/class/leds/c6:red/trigger

Now if we look at the directory, the files have been changed, as follows:

root@bbb:~# ls /sys/class/leds/c6:red/
brightness delay_on max_brightness subsystem uevent
delay_off device power trigger

And now we have to set only the delay_on and delay_off files accordingly (the numbers are in milliseconds):

root@bbb:~# echo 500 > /sys/class/leds/c6:red/delay_on
root@bbb:~# echo 500 > /sys/class/leds/c6:red/delay_off

On the other side we can use the trigger cpu0 to see the CPU activity:

root@bbb:~# echo cpu0 > /sys/class/leds/c6:red/trigger

Now we should see the LED blinking poorly, but if we execute a task to load the CPU, the situation should drastically change. For example, let's try to execute the following command line:

root@bbb:~# while true ; do echo test ; done

Now the LEDs is always on!
Another interesting trigger is oneshot, which is very useful in signaling an event. For instance, we can imagine single blink of 200ms on and then staying off for 1s each time an event occurs. To do that, we have to enable the trigger and then program the relative delays:

root@bbb:~# echo oneshot > /sys/class/leds/c6:red/trigger
root@bbb:~# echo 200 > /sys/class/leds/c6:red/delay_on
root@bbb:~# echo 1000 > /sys/class/leds/c6:red/delay_off

Now, to signal the event, we see that in /sys/class/leds/c6:red/, a new file called shot is present:

root@bbb:~# ls /sys/class/leds/c6:red/
brightness delay_on invert power subsystem uevent
delay_off device max_brightness shot trigger

So, if we write into that file, we signal that a new event has arrived:

root@bbb:~# echo 1 > /sys/class/leds/c6:red/shot

The LED should do a quick one-time blinking and then not do any blinking for more for 1 second even if we repeat the writing.
You can now try to repeat this command for the yellow LED and then combine the settings for both the LEDs in order to better understand the trigger usage.

Summary

The GPIO lines are really important and versatile computer peripherals, and their usage is quite essential for every embedded computer. In this chapter, we discovered several ways to manage these devices in both user and kernel-space, presenting different techniques to use them.
In the next chapter, we're going to discover another most important embedded computer peripheral, that is, the serial line! Until now, we simply used it to support the kernel (and bootloaders) serial console only, but it can be used in tons of different way; in fact, even in its age (these kinds of devices are practically the only ones still surviving until the beginning of the computer era), the serial lines (or serial ports) are still present, especially in devices for industrial applications.

Chapter 7. Serial Ports and TTY Devices - TTY

In the previous chapter, we saw how to manage LED or generic GPIO lines within the kernel using the sysfs API. However, this was just a really simple example of kernel programming used to show to you how implementing a device driver can be simple. Unfortunately, this technique gets complex very quickly according to the peripheral complexity.
Starting from this chapter, we will see a bit in detail how several computers' peripherals can be connected to our embedded computers and how we can manage them in order to interact with the environment from the user space. That is, we will show you how you can get access to some peripherals by enabling and configuring the correct driver. In this case, we don't have to write a driver from scratch, but knowing how a driver works, we can try to correctly use an already written one.
In this chapter, we will present serial ports, one of the most important peripheral class a computer can have (at least a computer used in the control automation industry). After a brief description about what a serial port or serial device is, we'll see how we can manage them in a GNU/Linux system in order to use a real serial device. Then, we'll take a look at a kernel trick useful to communicate between two embedded systems using a serial line as they were connected by an Ethernet cable.
What are TTY, serial, and UART lines?

Early user terminals connected to computers through a serial line were electromechanical teleprinters or teletypewriters (TeleTYpewriter, TTY), and since then, TTY has continued to be used as the name for such text-only console and the relative serial port. In fact, in a GNU/Linux system, a serial port is usually referred to in the /dev directory with the /dev/ttyS0, /dev/ttyS1, /dev/ttyUSB0, or /dev/ttyUSB1 device for the USB emulated devices, as we already saw in the previous chapters.
So a serial port is not a peripheral, but it is just a serial communication interface through which information transfers in or out one bit at a time. This communication is implemented by modern computers via a Universal Asynchronous Receiver/Transmitter (UART) device, which has a side connected to the main CPU and the other side with a circuitry, that is, a physical interface (Phy in the following diagram) useful to translate the electronic signals in a suitable form for transmission:

[image: What are TTY, serial, and UART lines?]

In this scenario, all the terms TTY, serial, and UART refer to the same interface, which is one of the most important communication ports we can have in an embedded device! In fact, since the first chapter, we have discovered that we can get the full control of our embedded system only by getting access to its serial console (which normally runs over a serial port even if, in our embedded kits, it has been emulated via a USB device).
In the industry market we can find tons of peripherals that use a serial port to communicate with the CPU. That's why, we must know how this communication interface works and how we can get access to its connected devices in order to exchange data with them.
A peripheral using a serial port to communicate with the CPU is normally called a serial peripheral or serial device.
The electrical lines

Serial port lines are reported in the following table:

	

Name

	

Description

	

TxD (Transmitted Data
)

	
Carries data from DTE to DCE

	

RxD (Received Data
)

	
Carries data from DCE to DTE

	

DTR (Data Terminal Ready
)

	
Indicates the presence of DTE to DCE

	

DCD (Data Carrier Detect
)

	
DCE is connected to the telephone line

	

DSR (Data Set Ready
)

	
DCE is ready to receive commands or data

	

RI (Ring Indicator
)

	
DCE has detected an incoming ring signal on the telephone line

	

RTS (Request To Send
)

	
DTE requests the DCE to prepare to receive data

	

CTS (Clear To Send
)

	
DCE is ready to accept data

	

GND

	
Common ground

Note that most of the preceding lines are control ones and are not strictly required for a simple communication channel, so they can be left unconnected (recall what we did in Chapter 1
, Installing the Developing System, Setting up the systems, when we connected a serial adapter to the BeagleBone Black, to the SAMA5D3 Xplained, and to the Wandboard to get access to their serial consoles).
The required signals are TxD, RxD, and, of course, GND. So, in our upcoming examples, we will use these three signals only.
Tip
The Data Terminal Equipment (DTE) is the device with the male connector, that is, the PC, while the Data Communication Equipment (DCE) is the device with the female connector, that is, the controlled device.
You may get more information regarding these control lines on the Internet and a good starting point is
http://en.wikipedia.org/wiki/Flow_control_%28data%29#Hardware_flow_control
.

TTYs on the BeagleBone Black

As already mentioned in Chapter 1
, Installing the Developing System, The BeagleBone Black
, the BeagleBone Black has two expansion connectors where several signals are exposed and where we can find 4.5 serial UARTs as reported in the following table:

[image: TTYs on the BeagleBone Black]

The UART0 is reserved for the serial console, and as we already well know, it has a dedicated connector, while the 4.5 serial UARTs are due to the fact that UART3 has a single direction brought to the expansion header.
Tip
A complete BeagleBone Black's connector's description and a quick introduction about the pin's configuration for different usage are available at:
http://elinux.org/Beagleboard:Cape_Expansion_Headers
.

Usually (and especially in older kernel releases), in the BeagleBone Black, the serial ports are named /dev/ttyO0, /dev/ttyO1 and so on, and by default, these serial lines (except UART0, that is, the /dev/ttyO0 device) are not enabled. So, in order to be used, they must be enabled before getting access to them. However, in our kernel, the situation is quite different since all serial ports' /dev/ttyO prefixes have been replaced with the more standard /dev/ttyS
. So, from now on, we will name the serial ports with the devices /dev/ttyS0, /dev/ttyS1, and so on.
Tip
You should notice that during the boot, the following kernel message informs us about this name changing:

 WARNING: Your 'console=ttyO0' has been replaced by

 'ttyS0'

If we do log in to the system, we can list all serial devices using the following command:

root@bbb:~# ls -l /dev/ttyS*
crw------- 1 root tty 4, 64 Apr 2 17:53 /dev/ttyS0
crw-rw---- 1 root dialout 4, 65 Apr 2 17:42 /dev/ttyS1
crw-rw---- 1 root dialout 4, 66 Apr 2 17:42 /dev/ttyS2
crw-rw---- 1 root dialout 4, 67 Apr 2 17:42 /dev/ttyS3
crw-rw---- 1 root dialout 4, 68 Apr 2 17:42 /dev/ttyS4
crw-rw---- 1 root dialout 4, 69 Apr 2 17:42 /dev/ttyS5

It seems that all serial ports are enabled, but in reality, if we try to get access to one of them, apart from the first one, we would get the following error:

root@bbb:~# stty -F /dev/ttyS2
stty: /dev/ttyS2: Input/output error

In fact, we can verify that all devices, apart from the first one, are not defined and then disabled:

root@bbb:~# grep '0x' /sys/class/tty/ttyS*/iomem_base
/sys/class/tty/ttyS0/iomem_base:0x44E09000
/sys/class/tty/ttyS1/iomem_base:0x0
/sys/class/tty/ttyS2/iomem_base:0x0
/sys/class/tty/ttyS3/iomem_base:0x0
/sys/class/tty/ttyS4/iomem_base:0x0
/sys/class/tty/ttyS5/iomem_base:0x0

As expected, /dev/ttyS0 is the only available serial port.
To enable the other serial ports, we need to modify the kernel settings in order to ask it to enable the serial port we wish to use. Which ports to enable depends on the pins we'd like to use to connect our device. Then, the following table may help us in choosing them:
	

Device

	

TxD

	

RxD

	

RTS

	

CTS

	

Name

	
ttyS1

	
P9.24

	
P9.26

	
	
	
UART1

	
ttyS2

	
P9.21

	
P9.22

	
P8.38

	
P8.37

	
UART2

	
ttyS4

	
P9.13

	
P9.11

	
P8.33

	
P8.35

	
UART4

	
ttyS5

	
P8.37

	
P8.38

	
	
	
UART5

The overlays related to serial ports are available in the /lib/firmware/ directory as shown here:

root@BeagleBone:~# ls /lib/firmware/BB-UART*.dtbo
/lib/firmware/BB-UART1-00A0.dtbo
/lib/firmware/BB-UART2-00A0.dtbo
/lib/firmware/BB-UART2-RTSCTS-00A0.dtbo
/lib/firmware/BB-UART4-00A0.dtbo
/lib/firmware/BB-UART4-RTSCTS-00A0.dtbo
/lib/firmware/BB-UART5-00A0.dtbo

All devices are usable for our scope, so we choose to use the /dev/ttyS2 device. In order to activate it, we can use this command:

root@bbb:~# echo BB-UART2 > /sys/devices/platform/bone_capemgr/slots

In the kernel messages, we should see the following activity:

bone_capemgr: part_number 'BB-UART2', version 'N/A'
bone_capemgr: slot #4: override
bone_capemgr: Using override eeprom data at slot 4
bone_capemgr: slot #4: 'Override Board Name,00A0,Override Manuf,BB-UAR
T2'
48024000.serial: ttyS2 at MMIO 0x48024000 (irq = 188, base_baud = 3000
000) is a 8250
bone_capemgr: slot #4: dtbo 'BB-UART2-00A0.dtbo' loaded; overlay id #0

Now, the /dev/ttyS2 device should be available, as shown here, by rechecking the iomem_base files:

root@bbb:~# grep '0x' /sys/class/tty/ttyS*/iomem_base
/sys/class/tty/ttyS0/iomem_base:0x44E09000
/sys/class/tty/ttyS1/iomem_base:0x0
/sys/class/tty/ttyS2/iomem_base:0x48024000
/sys/class/tty/ttyS3/iomem_base:0x0
/sys/class/tty/ttyS4/iomem_base:0x0
/sys/class/tty/ttyS5/iomem_base:0x0

Now, the serial port can get accessed without any error:

root@bbb:~# stty -F /dev/ttyS2
speed 9600 baud; line = 0;
-brkint -imaxbel

TTYs on the SAMA5D3 Xplained

On the SAMA5D3 Xplained, the TTYs are exposed on the expansion connector as already mentioned in Chapter 1
, Installing the Developing System, The SAMA5D3 Xplained section. However, these signals are usually multiplexed with the standard GPIOs function. This behavior is named alternate function, and it must be considered each time we wish to use a pin for a different usage.
Tip
These alternate functions can be found in almost all embedded systems such as the BeagleBone Black and the Wandboard.

The SAMA5D3 Xplained board has 3 UARTs (one is a debug port named BDGU and the other two are generic UARTs) and 4 USARTs (Universal Synchronous/Asynchronous Receiver/Transmitter). The pin name and UART signal name association is reported in this table:

	

Pin

	

Signal

	

Pin

	

Signal

	

Pin

	

Signal

	

Pin

	

Signal

	
PA30

	
UART1_RxD

	
PB30

	
DBGU_RxD

	
PD17

	
USART0_RxD

	
PE23

	
USART2_CTS

	
PA31

	
UART1_TxD

	
PB31

	
DBGU_TxD

	
PD18

	
USART0_TxD

	
PE24

	
USART2_RTS

	
PB26

	
USART1_CTS

	
PC29

	
UART0_RxD

	
PE16

	
USART3_CTS

	
PE25

	
USART2_RxD

	
PB27

	
USART1_RTS

	
PC30

	
UART0_TxD

	
PE17

	
USART3_RTS

	
PE26

	
USART2_TxD

	
PB28

	
USART1_RxD

	
PD15

	
USART0_CTS

	
PE18

	
USART3_RxD

	
	

	
PB29

	
USART1_TxD

	
PD16

	
USART0_RTS

	
PE19

	
USART3_TxD

	
	

Tip
A USART controller is a type of a serial interface device that can be programmed to communicate asynchronously or synchronously. Visit
https://en.wikipedia.org/wiki/Universal_Synchronous/Asynchronous_Receiver/Transmitter
 for further information.

On the SAMA5D3 Xplained, only one UART (apart from the one used to support the serial console) and two USARTs are enabled by default as reported in the next table:
	

Device

	

TxD

	

RxD

	

Name

	

/dev/ttyS0

	
J23.2

	
J23.3

	

DBGU

	

/dev/ttyS1

	
J20.5

	
J20.6

	

USART0

	

/dev/ttyS2

	
J20.3

	
J20.4

	

USART1

	

/dev/ttyS5

	
P18.7

	
P18.8

	

UART0

Tip
Look at the SAMA5D3 Xplained user manual at:
http://www.atmel.com/Images/Atmel-11269-32-bit-Cortex-A5-Microcontroller-SAMA5D3-Xplained_User-Guide.pdf
 for further information.

If we wish to use the other peripheral, we have to do some software and hardware modifications.

TTYs on the Wandboard

The Wandboard has several TTYs, but all of them are reserved for special purposes and they cannot be used. Only one port is free (UART2), but unfortunately, it's not routed to any expansion connectors, and it can be accessed only by some test points (TP) on the board as reported in the next table:
	

Pin

	

Signal

	

Pin

	

Signal

	
TP63

	
UART2_CDC

	
TP121

	
UART2_CTS

	
TP65

	
UART2_DSR

	
TP123

	
UART2_TxD

	
TP66

	
UART2_DTR

	
TP125

	
UART2_RxD

	
TP68

	
UART2_RI

	
TP126

	
UART2_RTS

Tip
A more detailed list of the Wandboard's TTYs is reported on its user guide at:
http://wandboard.org/images/downloads/wandboard-user-guide-20130208.pdf
.

To use these signals, we need to physically solder some wires on these test points. Since this is not an easy task for unskilled people, we'll not use the built-in Wandboard's serial ports in this book.

Implementations of serial ports

While interfaces such as Ethernet or USB send data as a serial stream, the term serial port usually identifies hardware compliant to the RS-232 or RS-422/RS-485 standard.
In modern computers, serial ports have been replaced by USB-to-serial devices due to the fact that a RS-232 port can be easily emulated by a dedicated USB device. However, standard serial ports hardware still exists in the embedded and industrial world. The reason is quite simple: serial ports are easy to use and easy to implement (they require little supporting software from the CPU). So, serial ports are still used in applications such as industrial automation systems and remote monitoring or in some scientific instruments. It's quite easy to find industrial devices (not only a normal peripheral, but just a complete system) that use one or more serial ports to communicate with other systems.
As already stated, the most used serial port implementations are RS-232, RS-422, and RS-485. RS-232 was so widely used that it has been used in every PC until the USB devices made it obsolete, but it's still quite common to find a standard RS-232 port on an embedded computer nowadays.
RS-422 and RS-485 are still serial interfaces just like RS-232, but with some electrical differences in order to allow long-distance communication, provide high-noise immunity, and have multi-slave communication support.
Note
Explaining all serial port devices is out of the scope of this book. However, you may take a first look at
http://en.wikipedia.org/wiki/Serial_port
.
In this book, we'll consider the RS-232 implementation only.

As we already saw earlier, a special case of serial ports that can be found on an embedded computer is the TTL UARTs (Universal Asynchronous Receiver/Transmitter) or USARTs (Universal Synchronous/Asynchronous Receiver/Transmitter). These devices are integrated circuit designed for implementing the interface for serial ports on PCs and embedded computers, and they are often connected to the RS-232 (or 422/485) interface by proper hardware. However, they can be found also as raw connection with a TTL interface. Serial communication at a Transistor-Transistor Logic (TTL) level will always remain between the limits of GND and Vcc, which is often 5V or 3.3V. A logic high (typically referred to as 1) is represented by Vcc, while a logic low (typically referred to as 0) is GND.
This special case of serial port is usually used for in-board serial communications where the CPU communicates with a GPRS/GPS modem, several RFID readers, and so on, and in some cases, to exchange data with an external co-processor or DSP.

The serial ports in Linux

Despite all the preceding serial ports' names, in a GNU/Linux system, all these devices are seen in the same manner (actually some differences still remain, but they are special cases), that is, they are all represented by the the devices named /dev/ttyXXX, where the XXX string may vary according to the specific serial port implementations. For instance, the historical (and standard) names of PCs' UARTserial ports are /dev/ttyS0, /dev/ttyS1, but (as seen in the previous chapters) the USB-to-serial adapters can be named as /dev/ttyUSB0, /dev/ttyUSB1 or /dev/ttyACM0, /dev/ttyACM1.
As seen earlier, the tty prefix comes from the very old abbreviation of teletypewriter and was originally associated only with the physical connection to a UNIX system. Now that the name also represents any serial port style device as serial ports, USB-to-serial converters, tty virtual devices, and so on.
The Linux tty driver core (that is implemented using a char driver) is responsible for controlling both the flow of data across a tty device and the format of the data. This is obtained using a LDISC (line discipline), which is a mid layer between the upper layer (the device seen from the user space) and the lower hardware driver (the code that communicates with the hardware) that specify how the data must be processed. For example, the standard line discipline processes the data it receives according to the requirements of a UNIX terminal. So, on input, it handles special characters such as the interrupt character (typically
Ctrl+C
) and the erase and kill characters (typically Backspace or Delete, and
Ctrl+U
, respectively), and on output, it replaces all the LF characters with a CR/LF sequence.
Due to this fact, we cannot simply open a tty device and then start reading and writing data to it. In fact, the sent or received data will be modified by the current line discipline, so we must configure the tty device properly in order to get the right data flow. Typically, we want a clean data flow, and this mode can be achieved by setting the port into the raw mode.
In our example, we'll show you how to manage this situation.

The communication parameters

Before starting to use a serial port in order to communicate with an external serial device, we must know the communication parameters it uses, that is, which are the specific configuration settings of the serial data we wish to transfer. So, we must know the speed, data-bits, parity, and stop-bits settings.
For the speed, only fixed values are typically allowed. In fact, we must choose from 75, 110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 bit/s.
Tip
In reality, other speed settings can be used. You should carefully read the datasheet of the serial device to check the allowed baud rates.

Regarding data bits, the usual setting is 8 (that is, 8 bits are used to transfer the information) even if we can choose from 6 (rarely used), 7 (for ASCII), 8, or 9 (rarely used). In the upcoming examples, I'm going to use the value 8 for this setting.
The parity bits and stop bits are deeply related to the serial communication protocol that we have not exposed here. So, you should forgive us if we don't spend much words on them. In the next example, we're going to use the None value for parity bits and 1 for stop bit.
Tip
You may get more information on parity bits and stop bits on the Internet and a good starting point is
http://en.wikipedia.org/wiki/Serial_port#Parity
.

A concise way to represent the serial communication settings is, for instance, 115200,8N1, which means 115200 bit/s, 8 data bits, No parity bit, and 1 stop bit.
Well, these communications settings are exactly the ones we will use in the upcoming examples.

Getting access to TTYs

There're several ways to get access to a serial port in a GNU/Linux system, starting from the minicom program we used to interact with the system's serial console from the host PC. However, since in a UNIX system, everything is a file, we can use generic tools such as echo and cat too! However, they are not enough due the fact that we have to set up several communication settings before starting the data transmission. To do this, we can use the stty command already introduced earlier, which allow us to set up all tty devices' parameters.
Its usage is not as tricky as we may think. However, after the first approach, everything should become easier. For instance, if we wish to display the current serial port settings, we can use the following command where we use the -F option argument to specify the device to operate on:

root@bbb:~# stty -F /dev/ttyS2
speed 9600 baud; line = 0;
-brkint -imaxbel

Tip
The long and complete form is the one we can get using the -a command-line option argument.

Then, we can change the communication speed using the following command:

root@bbb:~# stty -F /dev/ttyS2 115200
root@bbb:~# stty -F /dev/ttyS2
speed 115200 baud; line = 0;
-brkint -imaxbel

Also, we can force the raw mode using the next command line:

root@bbb:~# stty -F /dev/ttyS2 raw
root@bbb:~# stty -F /dev/ttyS2
speed 115200 baud; line = 0;
min = 1; time = 0;
-brkint -icrnl -imaxbel
-opost
-isig -icanon

Tip
For further information regarding the stty command usage, you can refer to the Linux Network Administrators Guide at:

http://www.tldp.org/LDP/nag2/x-087-2-serial-configuration.html
.

Distance sensor

OK, using the stty command, we can set up the communication parameters. However, now, it's time to see how we can do a very simple communication with a serial device using Bash's commands. To do so, let's start using the next device, which is a sonar range finder (or ultrasonic distance sensor), with the SAMA5D3 Xplained board:

[image: Distance sensor]

Note
The devices can be purchased at:
http://www.cosino.io/product/ultrasonic-distance-sensor
 or by surfing the Internet.
The datasheet of this device is available at:
http://www.maxbotix.com/documents/XL-MaxSonar-EZ_Datasheet.pdf
.

This device is really interesting due to the fact that it has several output channels useful to retrieve the measured distance. In particular, it can give us the measurement via an analog voltage channel and via a serial port; the former communication channel is not of our interest at the moment while the latter definitely is.
Let's take a look at the datasheet section where the serial output capability of our sensor is described. In particular, we read:

... the Pin 5 output delivers asynchronous serial with an RS232 format, except voltages are 0-Vcc. The output is an ASCII capital "R", followed by three ASCII character digits representing the range in centimeters up to a maximum of 765, followed by a carriage return (ASCII 13). The baud rate is 9600, 8 bits, no parity, with one stop bit. Although the voltage of 0-Vcc is outside the RS232 standard, most RS232 devices have sufficient margin to read 0-Vcc serial data. If standard voltage level RS232 is desired, invert, and connect an RS232 converter...

So, the information can be sent over a RS-232 line if we use a circuitry to invert the TTL levels of the TX signal of the sensor. The connections with the SAMA5D3 Xplained board are reported in the next diagram:

[image: Distance sensor]

Tip
I used the resistor values R1-2,2KΩ , R2=10KΩ and a BC546 transistor (T).

The functioning is quite simple; the inverting circuitry it's just a logical NOT port. When a logical 0 (a voltage near 0V) is applied to Vin, the transistor (T) is interdict. So, no current can pass through it. So, there is no voltage loss on resistor R2, and the Vout is 3.3V (a logical 1). On the other side, when a logical 1 (a voltage near 3.3V) is applied to Vin, the transistor (T) is turned on and a current can now flow through it and the Vout drops down to a voltage near 0V (a logical 0).
If we decide to use this setup for the distance sensor, from the software point of view, the job is simpler since no calibration is needed at all due to the fact that the sensor will return to us the distance in a digital format. In fact, we can get the distance simply by reading it from the serial port /dev/ttyS1 once we set the right communication speed with the stty command reported here:

root@a5d3:~# stty -F /dev/ttyS1 9600

Then, the data can be displayed in real time with this command:

root@a5d3:~# cat /dev/ttyS1
R123
R123
...

Note
You can stop reading using the
Ctrl-C
 keys.

In this example, the measured distance is 123cm.
Even if getting access to a serial port (or to a serial device connected to it) from Bash is very useful, as we well know, for the best performance, we need to use the C language. As any other char device, we can set up the serial port using the ioctl() system call (see Chapter 3
, C Compiler, Device Drivers, and Useful Developing Techniques, Char, block and net device
). However, in order to simplify the developer's job, the libc provides us with some specific functions useful to manage the serial port configuration settings. The most used functions are tcgetattr(), cfsetispeed(), cfsetospeed(), and cfmakeraw(). The first one is used to get the current settings, the second and third ones are used to set up the communication speed, while the last one is used to set the current serial port into its raw mode in order to avoid data computation by the current line discipline (as discussed earlier).
In order to show how these functions work, let's consider the following code implementing the steps we did earlier using the stty and cat commands in order to receive the ASCII data from the distance sensor:
/* Open the serial device */
ret = open_serial(device);
if (ret < 0) {
 err("unable to open the serial device");
 exit(EXIT_FAILURE);
}
fd = ret;

/* Set up the serial device by setting the user defined baudrate
 * and the raw mode
 */
ret = set_serial(fd, baudrate);
if (ret < 0) {
 err("unable to setup the serial device");
 exit(EXIT_FAILURE);
}

/*
 * Do the job
 */

while (1) {
 /* Read the data from the serial port */
 ret = read(fd, buf, ARRAY_SIZE(buf));
 if (ret < 0) {
 err("error reading from the serial port");
 exit(EXIT_FAILURE);
 }
 n = ret;

 /* Check for End-Of-File condition */
 if (n == 0)
 break;

 /* Write the just read data to the stdout replacing the
 * non printable characters with a "."
 */
 for (i = 0; i < n; i++) {
 if (buf[i] == '\n' || buf[i] == '\r' ||
 isprint((int) buf[i]))
 ret = printf("%c", buf[i]);
 else
 ret = printf(".");
 if (ret < 0) {
 err("error reading from the serial port");
 exit(EXIT_FAILURE);
 }
 }

 /* Flush out the data */
 fflush(stdout);
}

close_serial(fd);

Note
The complete code is in the chapter_07/scat/scat.c file in the book's example code repository.

The code uses the open_serial() function to open the serial port requested by the user (it simply calls the open() system call), and then, it calls the set_serial() function that sets up the communication speed using the cfsetispeed()/cfsetospeed() functions and then sets the port in raw mode using the cfmakeraw() function. The code of the set_serial() function is reported here:
int set_serial(int fd, int rate)
{
 struct termios term;

 int ret;

 /* Sanity checks */
 switch (rate) {
 case 9600 :
 rate = B9600;
 break;

 case 19200 :
 rate = B19200;
 break;

 case 38400 :
 rate = B38400;
 break;

 case 57600 :
 rate = B57600;
 break;

 case 115200 :
 rate = B115200;
 break;

 default : /* error */
 return -1;
 }

 ret = tcgetattr(fd, &term);
 if (ret < 0)
 return ret;

 ret = cfsetispeed(&term, rate);
 if (ret < 0)
 return ret;
 ret = cfsetospeed(&term, rate);
 if (ret < 0)
 return ret;

 cfmakeraw(&term);
 term.c_cc[VTIME] = 0;
 term.c_cc[VMIN] = 1;
 ret = tcsetattr(fd, TCSANOW, &term);

 return 0;
}

Then, the following steps are done using the usual read() and write() system calls as we are operating on a file.
Now, to test the code, we just need to compile it with the usual make command:

root@a5d3:~/scat# make
cc -Wall -O2 -D_GNU_SOURCE scat.c -o scat

Then, we can execute it using this command line:

root@a5d3:~/scat# ./scat -D /dev/ttyS1
R125

The distance data should now be visible in the output.

RFID LF reader

For the next example, we can use the following RFID LF reader that sends its data through a serial port at TTL 3.3V level with the BeagleBone Black board:

[image: RFID LF reader]

Note
The device can be purchased at:
http://www.cosino.io/product/lf-rfid-low-voltage-reader
 or by surfing the Internet.
The datasheet is available at:
http://www.id-innovations.com/httpdocs/ISO11785%20OEM%20module%20serise%20ID2-12-20.pdf
.

It can be directly connected to our BeagleBone Black at the following pins of the expansion connector P9, as shown in this diagram:

[image: RFID LF reader]

After all pins have been connected, the tags data will be available at the /dev/ttyS2 device, and in order to quickly verify it, we have to enable the serial port as we did earlier and then using the following commands to set up the communication parameters and to physically read the data:

root@bbb:~# stty -F /dev/ttyS2 9600 raw
root@bbb:~# cat /dev/ttyS2

Then, approaching a tag to the reader, we should hear a beep and the corresponding tag's ID should appear to the command line as follows:

root@bbb:~# cat /dev/ttyS2
.6F007F4E1E40

Looking at the datasheet, we can see that the output data sequence is done as follows:
	
STX (02h)

	
DATA (10 ASCII)

	
CHECK SUM (2 ASCII)

	
CR

	
LF

	
ETX (03h)

So, the 6F007F4E1E string is the data, while the 40 string is the checksum.
Tip
Even in this case, we can use the preceding scat program in order to read the RFID data. The command is shown here:

 root@bbb:~# ./scat -D /dev/ttyS2

 .6F007F4E1E40

The same steps can be now replied using the Python language and a possible implementation is in the chapter_07/rfid_lf.py file in the book's example code repository. To execute it, we have to use the following command line:

root@bbb:~# ./rfid_lf.py /dev/ttyS2
6F007F4E1E40

Tip
It may happen that we get the following error:

 root@bbb:~# ./rfid_lf.py /dev/ttyS2

 Traceback (most recent call last):

 File "./rfid_lf.py", line 8, in <module>

 import serial

 ImportError: No module named serial

In this case, we just need to install the Python serial support with the next command and then re-execute the rfid_lf.py program:

 root@bbb:~# aptitude install python-serial

The main function is reader(), which uses the ser object to read the data from the RFID reader:
def reader(ser):
 while True:
 line = ser.readline()
 line = filter(lambda x: x in string.printable, line)
 print(line.replace("\n", "")),

The function is really simple. In fact, ser.realined() gets the tag data. The filter() function just does some filtering actions to get human-readable characters, while the print() function displays the results.
The ser object is initialized into the main function as follows:
ser = serial.Serial(
 port = dev,
 baudrate = 9600,
 bytesize = 8,
 parity = 'N',
 stopbits = 1,
 timeout = None,
 xonxoff = 0,
 rtscts = 0
)

In the preceding code, we can find all the serial settings we did before with the stty command.

Managing TTY in the kernel with SLIP

We're not going to see any kernel code; let's see a nice kernel trick to use a serial communication line like it was an Ethernet cable! This can be done if we abstract the serial port as an Ethernet interface, that is, by defining a special Ethernet device that will use a serial cable to send and receive its data. This communication is done using the SLIP protocol.
The Serial Line Internet Protocol (SLIP) is an encapsulation of the Internet protocol designed to work over serial ports. Even if largely replaced by the Point-to-Point Protocol (PPP), which is better engineered, SLIP is still the preferred way of encapsulating IP packets due to its very small overhead and simple implementation.
Note
Visit
https://en.wikipedia.org/wiki/Serial_Line_Internet_Protocol
 for further information.

In order to do so, we need two embedded devices connected to each other through their serial ports. So, let's suppose we connect the BeagleBone Black with the SAMA5D3 Xplained using one of their UART ports as reported in the following diagram:

[image: Managing TTY in the kernel with SLIP]

In this scenario, in the BeagleBone Black's serial communication port is /dev/ttyS4, while in the SAMA5D3 Xplained is the one named /dev/ttyS2.
Now, to test the connection, we can use the usual Bash commands, so first of all, let's enable the port on the BeagleBone Black:

root@bbb:~# echo BB-UART4 > /sys/devices/platform/bone_capemgr/slots

Then, we use the stty command to set the port to a reasonable communication speed and the raw mode:

root@bbb:~# stty -F /dev/ttyS4 115200 raw

Now, we have to set our two ports with the same communications settings. So, we have to copy the current configuration to the SAMA5D3 Xplained board as shown here. The first stty command on the BeagleBone Black gets all port settings in a format readable by the command itself to be used on the second board:

root@bbb:~# stty -g -F /dev/ttyS4
0:4:1cb2:8a38:3:1c:7f:15:4:0:1:0:11:13:1a:0:12:f:
17:16:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0

Then, on the SAMA5D3 Xplained, we can use the following command to set the same configuration parameters:

root@a5d3:~# stty -F /dev/ttyS2
0:4:1cb2:8a38:3:1c:7f:15:4:0:1:0:11:13:1a:0:
12:f:17:16:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0

Then, we can use the cat command on the BeagleBone Black to display the ASCII data we're going to receive from the SAMA5D3 Xplained. On the other side, we can use the usual echo command to send to the BeagleBone Black the data to exchange:

root@bbb:~# cat /dev/ttyS4
root@a5d3:~# echo TEST MESSAGE > /dev/ttyS2

On the BeagleBone Black, we should get the following lines of code:

root@bbb:~# cat /dev/ttyS4
TEST MESSAGE

Of course, this communication method can be used as is, but it's obviously not very useful. The real advantage would be in action if we're able to use an Ethernet communication over this serial channel, and the solution is using the SLIP protocol.
The Linux implementation of the SLIP protocol is under the drivers/net/slip/ directory in Linux's source repository. If we take a look at the main slip.c file, we see that the module initialization function is slip_init(), which is reported here:
static int __init slip_init(void)
{
 int status;

 if (slip_maxdev < 4)
 slip_maxdev = 4; /* Sanity */

 printk(KERN_INFO "SLIP: version %s (dynamic channels, max=%d)"
#ifdef CONFIG_SLIP_MODE_SLIP6
 " (6 bit encapsulation enabled)"
#endif
 ".\n", SLIP_VERSION, slip_maxdev);
#if defined(SL_INCLUDE_CSLIP)
 printk(KERN_INFO "CSLIP: code copyright 1989 Regents
 of the University of California.\n");
#endif
#ifdef CONFIG_SLIP_SMART
 printk(KERN_INFO "SLIP linefill/keepalive option.\n");
#endif

 lip_devs =
 kzalloc(sizeof(struct net_device *)*slip_maxdev, GFP_KERNEL);
 if (!slip_devs)
 return -ENOMEM;

 /* Fill in our line protocol discipline, and register it */
 status = tty_register_ldisc(N_SLIP, &sl_ldisc);
 if (status != 0) {
 printk(KERN_ERR "SLIP: can't register line discipline
 (err = %d)\n", status);
 kfree(slip_devs);
 }
 return status;
}

As we can see, the function is very simple, and the main operation it does is calling the kernel function tty_register_ldisc(), which is used to register a new line discipline into the kernel. Once the new line discipline is successfully defined into the kernel, all the serial data passing through the designed serial port is managed by the line discipline, which, in turn, encapsulates the Ethernet traffic over the serial communication channel.
Note
For further information regarding the tty drivers, the line disciplines, and for everything about the serial drivers in Linux, you can take a look at the book Linux Device Drivers, Third Edition available at the bookshop and online at:
http://lwn.net/Kernel/LDD3/
.

Now that we know what the SLIP protocol is, we can try to establish our Ethernet communication using the serial one we tested earlier.
First of all, we have to verify and enable the SLIP support into the kernel. To do this, we must recall what we did in Chapter 1
, Installing the Developing System, Setting up the systems, regarding the kernel reconfiguration, and we have to select the entries Device Drivers, Network device support, and SLIP (serial line) support on the kernel menu and enable the CSLIP compressed headers, Keepalive and linefill, and Six bit SLIP encapsulation sub options, as shown in the following screenshot:

[image: Managing TTY in the kernel with SLIP]

Then, we have to save, recompile, and then reinstall the kernel. When the new kernel is up and running, we have to use the slattach command to change the default line discipline with the one implementing SLIP:

root@bbb:~# slattach -p slip -s 9600 /dev/ttyS4 &
[1] 1193
SLIP: version 0.8.4-NET3.019-NEWTTY (dynamic channel.
CSLIP: code copyright 1989 Regents of the University of Californ.
SLIP linefill/keepalive option.

Tip
The output reported after the slattach command with the prefix SLIP or CSLIP is not generated by the command itself, but they're kernel messages, so they are not visible if we give the command outside the serial console. If this is the case, you can read these messages with the usual dmesg or tail -f command useful to read the kernel messages.

Then, a new Ethernet interface named sl0 should now be available:

root@bbb:~# ifconfig sl0
sl0 Link encap:Serial Line IP
 POINTOPOINT NOARP MULTICAST MTU:296 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

At this point, we have to perform the same steps on the SAMA5D3 Xplained board:

root@a5d3:~# slattach -p slip -s 9600 /dev/ttyS2 &
[1] 1703
root@a5d3:~# ifconfig sl0
sl0 Link encap:Serial Line IP
 POINTOPOINT NOARP MULTICAST MTU:296 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Then, we have to configure two new interfaces in such a way they have the same subnet. On the BeagleBone Black, we do the following:

root@bbb:~# ifconfig sl0 192.168.100.1 pointopoint 192.168.100.2

On the SAMA5D3 Xplained, we do the same settings, but swap the IP addresses:

root@a5d3:~# ifconfig sl0 192.168.100.2 pointopoint 192.168.100.1

Now, the two boards should be connected, and we can test the new Ethernet-over-serial communication channel using the ping command:

root@a5d3:~# ping 192.168.100.2
PING 192.168.100.2 (192.168.100.2) 56(84) bytes of data.
64 bytes from 192.168.100.2: icmp_seq=1 ttl=64 time=0.244 ms
64 bytes from 192.168.100.2: icmp_seq=2 ttl=64 time=0.141 ms
64 bytes from 192.168.100.2: icmp_seq=3 ttl=64 time=0.140 ms
...

Great! It works. However, it is not finished here. Since the sl0 interfaces are generic Ethernet devices, we can log in from the SAMA5D3 Xplained to the BeagleBone Black using the ssh command as shown here:

root@a5d3:~# ssh root@192.168.100.2
The authenticity of host '192.168.100.2 (192.168.100.2)' can't be
 established.
ECDSA key fingerprint is
73:9a:d3:0b:ce:9c:f2:32:83:ab:a9:9a:11:47:82:68.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.100.2'
(ECDSA) to the list of known hosts.
root@192.168.100.2's password:
The programs included with the Debian GNU/Linux system are free
software; the exact distribution terms for each program are
described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sat Apr 2 17:42:28 2016 from 192.168.8.1
root@a5d3:~#

Now, the serial channel works like an Ethernet one (apart from the communication speed and the fact that it's limited to a point-to-point conversation).

Summary

Serial ports and serial devices are two of the most important concepts of an embedded computer, but tons of other peripherals exist. You should try to modify the example programs in this chapter in order to fit your needs, or you can go directly to the upcoming sections where we'll introduce new devices.
You've seen how to set up the communication parameters from the command line or using the C or Python language, and you saw how to manage the data flow from the serial devices. Also, we took a look at the SLIP line discipline in order to establish an Ethernet-over-serial port communication.
In the next chapter, we will take a look at the USB that allows people to connect several kinds of electronic devices to a computer through the same port, for instance, a hard disk, a keyboard, or a serial device, as just seen in this chapter.

Chapter 8. Universal Serial Bus - USB

Now, it's time to take a look at the Universal Serial Bus, that is, a versatile bus widely used in modern PCs that allows people to connect an electronic device to a computer. For instance, a hard disk, a keyboard, or a serial device (as seen in the previous chapter) can be all connected to a computer through the same USB port.
After a brief introduction about what this bus is and how it works, we'll show you the different types of USB devices and how they are supported in the Linux kernel. We'll see how our embedded kits can act as USB hosts in order to manage a barcode reader and how we can use the BeagleBone Black as a USB device in order to exchange data with a host PC. In this case, we will show the multi gadget and the configfs one which allows the developer to switch between different functions dynamically.
What is the universal serial bus?

The Universal Serial Bus (USB) is a computer bus used by a CPU and its peripherals to communicate to each other. In every USB communication, at least one USB host and one USB device exists. The former is the one that effectively directs the traffic flow to devices, while the latter is the one that simply answers all the host's requests.
Practically, the USB host periodically queries all connected USB devices in order to discover if they want to send a message to it. So, the host is smart enough to understand which kind of peripheral the user has connected in, and it can reconfigure the system in order to correctly manage it. This magic happens each time a USB device is first connected to a USB host, thanks to the enumeration process.
The enumeration starts by sending a reset signal to the USB device (at this stage, the data rate of the USB device is automatically determined), and after the reset, all the information of the USB device is read by the host and then the peripheral device is unequivocally identified. At this stage, if the system has a proper device driver to manage the peripheral, it will load the driver and then the device is set to a configured state. If the USB host is restarted, the enumeration process is repeated for all connected devices.
Tip
You can get further information on USB internals on the Internet where a good starting point would be:
http://simple.wikipedia.org/wiki/Universal_Serial_Bus
.

For instance, if we connect a USB keyboard to the Wandboard and we monitor the kernel messages, we should see something like this:

usb 1-1: new low-speed USB device number 2 using ci_hdrc

Here, the enumeration process ends when the device number 2 is assigned to the new device. Then, the system continues reading the information of the new device:

usb 1-1: New USB device found, idVendor=046d, idProduct=c312
usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=0
usb 1-1: Product: USB Multimedia Keyboard
usb 1-1: Manufacturer: LITEON Technology

At this point, the host has read all the information, and then, it sets the device configuration. In particular, we should notice the vendor ID (idVendor) and the product ID (idProduct) numbers; these are the ones that specify the device function into the kernel.
Now, the kernel has all that it needs to try to load a proper device driver, in fact, we see in the kernel messages:

input: LITEON Technology USB Multimedia Keyboard as
/devices/soc0/soc/2100000.aips-bus/2184200.usb/ci_hdrc.1/usb1/1-1/1-
1:1.0/0003:046D:C312.0001/input/input0
hid-generic 0003:046D:C312.0001: input,hidraw0: USB HID v1.10 Keyboard
[LITEON Technology USB Multimedia Keyboard] on usb-ci_hdrc.1-1/input0

OK, after this stage, the input driver
input0 is loaded. It is the right one to manage a keyboard.
The electrical lines

USB port lines are reported in the following table:
	

Name

	

Description

	
D+

	
Data positive

	
D-

	
Data negative

	
Vcc

	
Power line at 5V

	
GND

	
Common ground

Tip
Note that this table refers to USB 1.1 and USB 2.0 standards only, since starting from USB 3.x, more signals have been added.

As a special feature, the USB bus includes the Vcc signal too. This is because it can power the devices directly from the bus.

USB ports on the BeagleBone Black

The BeagleBone Black has two accessible ports: one USB host port and one USB device port we've already used in
Chapter 1, Installing the Developing System The BeagleBone Black. Both ports are USB 2.0 compliant.

USB ports on the SAMA5D3 Xplained

On the SAMA5D3 Xplained, accessible ports are two USB host ports and one USB device port we've already used in
Chapter 1, Installing the Development System

USB ports on the Wandboard The SAMA5D3 Xplained. All ports are USB 2.0 compliant.

USB ports on the Wandboard

The Wandboard has a configuration similar to the BeagleBone Black, that is, it has two accessible ports: one USB host port and one USB device port we've already used in
Chapter 1, Installing the Development System The Wandboard (in reality, this port can act as an OTG USB port, but this feature is not covered by this book).
Both ports are USB 2.0 compliant (even if the USB host connector is USB 3.0 compliant, we never plugged USB 3.0 devices to it).

The USB bus in Linux

As already stated, both USB host and USB device exist, and the same is valid for the Linux kernel where we can find dedicated device drivers for both types. The only difference is that in the kernel, USB devices are named USB gadgets to avoid misunderstanding with the typical meaning of the word device.
USB hosts are all those devices that act as a master in a USB communication. Typically, a PC or an embedded computer acts as a master, but an embedded computer can act as a USB gadget too! If you recall what we saw in
Chapter 1, Installing a Development System
, where we described how to set up our embedded devices, embedded kits were the USB gadgets while the host PC was the USB host.
The USB communication is very simple: there is a master that polls the various peripheral devices. This poll is done using several channels called endpoints that can carry data in one direction only, either from the host computer to the device (so, the endpoint is called OUT endpoint) or from the device to the host computer (so, the endpoint is called IN
endpoint).
Along with the direction, a USB endpoint can be also classified by considering how the data is transmitted by it. So, there're four different endpoint types:
	Control: Control endpoints are commonly used to configure the device and/or retrieve information about the device. Every USB device must have a control endpoint called endpoint 0 which is used by the USB subsystem to configure the device as soon as it has inserted into the system.These endpoints are used for asynchronous data transfers.

	Interrupt: Interrupt endpoints are used to emulate the interrupt line we can find in every CPU. It can transfer small amounts of data at a fixed rate every time the USB host asks the device for data. Due to their specific task, these transfers are guaranteed by the USB protocol to always have enough reserved bandwidth to make it through.These endpoints are used for synchronous data transfers.

	Bulk: Bulk endpoints are used to transfer large amounts of data (a lot more than interrupt endpoints), and they are very common for devices that need to transfer any data that must get through with no data loss, but with no guarantee by the USB protocol to always make it through in a specific amount of time.These endpoints used for asynchronous data transfers are definitely not suitable for real-time data, such as audio and video devices, but they are used in printers, and storage and network devices.

	Isochronous endpoints exist to fill the gap left by the bulk endpoints, which is the ability to transfer large amounts of data in real time. The data loss may happen; only transfer time is guaranteed.These endpoints used for synchronous data transfers are common in audio and video devices.

Acting as a host

All our embedded machines have a USB host port, so of course, they can act as hosts. Nothing special to do here since the proper driver is already up and running in the default kernel configurations, and we can have several possibilities. We can use USB keys or external hard disks as storage devices, or we can use an USB to serial converter (as we saw in the first chapter), a USB keyboard or mouse as the input device, a USB Wi-Fi dongle, and so on (the list can be very long!).
As a real, simple, and educational example, we will see how to use a USB barcode reader with the Wandboard, but, of course, we can use another system we wish to use since the procedure is almost the same.
There are tons of device classes, and all of them work in the same manner. However, we have to choose one, so we will use this device:

[image: Acting as a host]

Note
The device can be purchased at:

http://www.cosino.io/product/usb-barcode-reader
 or by surfing the Internet.

This device class simply acts as a normal USB keyboard. In fact, the result of using this device is that the string, corresponding to the just read the barcode ID, appears in the system as it was inserted through a keyboard. OK, it's simpler showing how it works than explaining it!
When we connect the reader to the Wandboard, we should see something like this in the kernel messages:

usb 1-1: new low-speed USB device number 2 using ci_hdrc
usb 1-1: New USB device found, idVendor=0d3d, idProduct=0001
usb 1-1: New USB device strings: Mfr=0, Product=2, SerialNumber=0
usb 1-1: Product: USBPS2
input: USBPS2 as /devices/soc0/soc/2100000.aips-
bus/2184200.usb/ci_hdrc.1/usb1/1-1/1-1:1.0/0003:0D3D:0001.0001
/input/input0

hid-generic 0003:0D3D:0001.0001: input,hidraw0: USB HID
v1.00 Keyboard [USBPS2] on usb-ci_hdrc.1-1/input0
input: USBPS2 as /devices/soc0/soc/2100000.aips-
bus/2184200.usb/ci_hdrc.1/usb1/1-1/1-1:1.1/0003:0D3D:0001.0002/
input/input1
hid-generic 0003:0D3D:0001.0002: input,hidraw1: USB HID v1.00
Mouse [USBPS2] on usb-ci_hdrc.1-1/input1

Tip
Note that the output may differ a bit even if we are using the same device. I'm showing in this example due to the fact that there are different versions of the same reader.

As we can see the system thinks a keyboard has been connected in and, as reported into the kernel messages, the new input device input1 should appears in the /sys/class/input directory:

root@wb:~# ls /sys/class/input/input1/
capabilities event1 modalias name power subsystem uniq
device id mouse0 phys properties uevent

Ok, the device is up and running! Now, to test it, we can use two ways: the first one is using the evtest tool already seen in Chapter 6
, General Purposes Input Output signals GPIO An input device by using GPIOs, which is useful to test every input device. We can just run it, as shown here, and then choose the right device:

root@wb:~# evtest
No device specified, trying to scan all of /dev/input/event*
Available devices:
/dev/input/event0: USBPS2
/dev/input/event1: USBPS2
Select the device event number [0-1]:

Our device is /dev/input/event0, so let's enter 0 and we should get the following output:

Input driver version is 1.0.1
Input device ID: bus 0x3 vendor 0xd3d product 0x1 version 0x100
Input device name: "USBPS2"
Supported events:
 Event type 0 (EV_SYN)
 Event type 1 (EV_KEY)
 Event code 1 (KEY_ESC)
 Event code 2 (KEY_1)
...
 Event code 240 (KEY_UNKNOWN)
 Event type 4 (EV_MSC)
 Event code 4 (MSC_SCAN)
 Event type 17 (EV_LED)
 Event code 0 (LED_NUML)
 Event code 1 (LED_CAPSL)
 Event code 2 (LED_SCROLLL)
 Event code 3 (LED_COMPOSE)
 Event code 4 (LED_KANA)
Key repeat handling:
 Repeat type 20 (EV_REP)
 Repeat code 0 (REP_DELAY)
 Value 250
 Repeat code 1 (REP_PERIOD)
 Value 33
Properties:
Testing ... (interrupt to exit)

Now, we can try to read whatever we wish. However, as an example, we can try to read this barcode:

[image: Acting as a host]

In this case, we should get the following output:

Event: time 1468839598.795172, type 4 (EV_MSC), code 4 (MSC_SCAN),
value 700e1
Event: time 1468839598.795172, type 1 (EV_KEY), code 42
(KEY_LEFTSHIFT), value 1
Event: time 1468839598.795172, -------------- EV_SYN ------------
Event: time 1468839598.803175, type 4 (EV_MSC), code 4 (MSC_SCAN),
value 70017
Event: time 1468839598.803175, type 1 (EV_KEY), code 20 (KEY_T),
value 1
Event: time 1468839598.803175, -------------- EV_SYN ------------
Event: time 1468839598.811160, type 4 (EV_MSC), code 4 (MSC_SCAN),
value 70017
Event: time 1468839598.811160, type 1 (EV_KEY), code 20 (KEY_T),
value 0
...
Event: time 1468839599.003167, type 4 (EV_MSC), code 4 (MSC_SCAN),
value 70008
Event: time 1468839599.003167, type 1 (EV_KEY), code 18 (KEY_E),
value 1
Event: time 1468839599.003167, -------------- EV_SYN ------------
Event: time 1468839599.011159, type 4 (EV_MSC), code 4 (MSC_SCAN),
value 70008
Event: time 1468839599.011159, type 1 (EV_KEY), code 18 (KEY_E),
value 0
Event: time 1468839599.011159, -------------- EV_SYN ------------
Event: time 1468839599.019168, type 4 (EV_MSC), code 4 (MSC_SCAN),
value 70028
Event: time 1468839599.019168, type 1 (EV_KEY), code 28 (KEY_ENTER),
value 1
Event: time 1468839599.019168, -------------- EV_SYN ------------
Event: time 1468839599.027176, type 4 (EV_MSC), code 4 (MSC_SCAN),
value 70028
Event: time 1468839599.027176, type 1 (EV_KEY), code 28 (KEY_ENTER),
value 0
Event: time 1468839599.027176, -------------- EV_SYN ------------

If we try to read the keys sequence, we can recognize that the input device has received the test barcode input string followed by an
Enter
 key. However, even if this a good way to test the device, it's definitely not the best way to use the device. So, we can use the second method, that is, using the code held in the chapter_08/key_read.py file in the book's example code repository. This program uses the Python evdev library that can be installed using the following command line:

root@wb:~# pip install evdev

The program is really simple, and the most interesting part is where we use the evdev library to read the data. A snippet of such code is reported here:
 # Now read data from the input device printing only letters and
 numbers
 # Try to open the input device
 try:
 dev = InputDevice(args[0])
 except:
 print("invalid input device", args[0], file=sys.stderr)
 sys.exit(1);

 # Now read data from the input device printing only letters and
 numbers
 while True:
 r, w, x = select([dev], [], [])
 for event in dev.read():
 # Print key pressed events only
 if event.type == ecodes.EV_KEY and
 event.value==1:
 print(keys[event.code], end = "")
 sys.stdout.flush() # needed by print()

Using the InputDevice() function, we get an input device handler of the device passed in by the user. Then, we wait for an input event (EV_KEY) with select(), and when it arrives, we read and decode it. In the end, we just print its data using the keys lookup table.
If we run the program using the following command and we retry to scan the preceding barcode, we should get the following output:

root@wb:~# ./key_read.py /dev/input/event0
.test..barcode.

Tip
Note that we should press
CTRL+C
 keys to kill the process.

Acting as a device

Acting as a host is, of course, very important due to the fact that we can easily expand our embedded platform in a reasonable and easy way. However, from the developer's point of view, an interesting functionality that a GNU/Linux embedded system can offer is the possibility to act as a USB device using the USB gadget subsystem. This permits us to use our embedded system as, for example, a USB key to store a complete filesystem or allow a serial/Ethernet communication between another PC over a normal USB cable.
In the first chapter for the SAMA5D3 Xplained and the Wandboard, we already used the USB serial communication in order to get connected with Linux's serial console. In these special cases, we used the serial port and the Ethernet port of the CDCgadget, that is, the /dev/ttyACM0 serial device and the usb0 Ethernet device. However, several other gadgets' devices can be used into our embedded board. In particular, we can use the old style (legacy) gadgets and the new style (function) gadgets. The former are available under the /lib/modules/$(uname -r)/kernel/drivers/usb/gadget/legacy directory, while the latter are under the /lib/modules/$(uname -r)/kernel/drivers/usb/gadget/function directory.
However, first of all, we have to verify and enable the USB gadget's support to the kernel. To do this, we must recall what we did in Chapter 1
, Installing the Developing System Setting up the developing system regarding the kernel reconfiguration. We have to select the entries Device Drivers, USB support, and USB Gadget Support in the kernel menu and enable all the sub options, as shown in the following screenshot:

[image: Acting as a device]

Then, we have to save, recompile, and then reinstall the kernel. When finished, these directories contain the result on the Wandboard:

root@wb:~# ls /lib/modules/$(uname
-r)/kernel/drivers/usb/gadget/{function,legacy}
/lib/modules/4.4.7-armv7-x6/kernel/drivers/usb/gadget/function:
u_ether.ko usb_f_fs.ko usb_f_obex.ko usb_f_ss_lb.ko
usb_f_acm.ko usb_f_hid.ko usb_f_phonet.ko usb_f_uac1.ko
usb_f_ecm.ko usb_f_mass_storage.ko usb_f_printer.ko usb_f_uac2.ko
usb_f_ecm_subset.ko usb_f_midi.ko usb_f_rndis.ko usb_f_uvc.ko
usb_f_eem.ko usb_f_ncm.ko usb_f_serial.ko u_serial.ko
/lib/modules/4.4.7-armv7-x6/kernel/drivers/usb/gadget/legacy:
g_acm_ms.ko g_ether.ko g_midi.ko g_printer.ko tcm_usb_gadget.ko
gadgetfs.ko g_ffs.ko g_multi.ko g_serial.ko
g_audio.ko g_hid.ko g_ncm.ko g_webcam.ko
g_cdc.ko g_mass_storage.ko g_nokia.ko g_zero.ko

Tip
You can take a look at the Linux USB Gadget API Framework at http://www.linux-usb.org/gadget/ (the guide is a bit outdated, but it still remains a good starting point). Then, they can switch to the Documentation/usb directory in Linux's source tree.

Legacy gadgets are still well functioning, even if the function ones are recommended for the new applications.
In the next two sections, we will present one legacy but still usable gadget, the Multi gadget, and then a very interesting function gadget that can change its configuration dynamically at user request.
Note that after these kernel modifications, we need to reconfigure the system in order to ask the kernel to auto load the g_cdc gadget. The commands are shown here:

root@wb:~# echo "g_cdc" >> /etc/modules-load.d/modules.conf
root@wb:~# echo "options g_cdc host_addr=62:1e:f6:88:9b:42" >>
/etc/modprobe.d/modules.conf

The Multi gadget

The Multi gadget (and its subset, the CDC gadget) implement at once a USB storage, and a serial and an Ethernet communication channel.
Tip
Note that on some boards, this gadget cannot be used due to the limited available endpoints of the USB device controller of the running CPU. On our SAMA5D3 Xplained, we get the following lines of code:

root@a5d3:~# modprobe -r g_cdc

root@a5d3:~# modprobe g_multi

modprobe: ERROR: could not insert 'g_multi': Invalid argument

With the corresponding kernel message given here:

g_multi 500000.gadget: failed to start g_multi: -22

First of all, we must unload the default gadget driver g_cdc that is loaded at boot. We can verify that g_cdc is running by using the lsmod command to list all the currently loaded modules:

root@wb:~# lsmod | grep g_cdc
g_cdc 4151 0
u_ether 14413 2 g_cdc,usb_f_ecm
libcomposite 53784 3 g_cdc,usb_f_acm,usb_f_ecm

Now, to unload it, we can use the modprobe command with the -r option argument as shown here:

root@wb:~# modprobe -r g_cdc

OK, now, we can create a new file that will represent our USB storage. Using the following command line, we create a zero filled file of 64 MB size:

root@wb:~# dd if=/dev/zero of=/opt/mass_storage bs=1M count=64
64+0 records in
64+0 records out
67108864 bytes (67 MB) copied, 0.557685 s, 120 MB/s

Now, everything is in place. Just reload the g_multi driver with the following command line that specifies to the kernel that the storage file is now the one we just created and that specifies a device Ethernet address as the one we used with g_cdc:

root@wb:~# modprobe g_multi host_addr=62:1e:f6:88:9b:42
file=/opt/mass_storage ro=0

After executing the preceding command, we should see something like this on the kernel messages:

using random self ethernet address
using random host ethernet address
using host ethernet address: 62:1e:f6:88:9b:42
using random self ethernet address
using random host ethernet address
using host ethernet address: 62:1e:f6:88:9b:42
usb0: HOST MAC 62:1e:f6:88:9b:42
usb0: MAC 8e:b9:5e:db:9c:4b
Mass Storage Function, version: 2009/09/11
LUN: removable file: (no medium)
LUN: file: /opt/mass_storage
Number of LUNs=1
g_multi gadget: Multifunction Composite Gadget
g_multi gadget: userspace failed to provide iSerialNumber
g_multi gadget: g_multi ready
IPv6: ADDRCONF(NETDEV_UP): usb0: link is not ready
g_multi gadget: high-speed config #2: Multifunction with CDC ECM
IPv6: ADDRCONF(NETDEV_CHANGE): usb0: link becomes ready

On the host PC, we should see these kernel messages (if we have plugged in the USB cable):

usb 2-1.1: new high-speed USB device number 57 using ehci-pci
usb 2-1.1: New USB device found, idVendor=1d6b, idProduct=0104
usb 2-1.1: New USB device strings: Mfr=3, Product=4, SerialNumber=0
usb 2-1.1: Product: Multifunction Composite Gadget
usb 2-1.1: Manufacturer: Linux 4.4.7-armv7-x6 with 2184000.usb

Here, the new composite device has been detected and enumerated, while these are the kernel messages related to the new Ethernet device:

cdc_ether 2-1.1:2.0 usb0: register 'cdc_ether' at usb-0000:00:1d.0-1.1, CDC Ethernet Device, 62:1e:f6:88:9b:42
cdc_acm 2-1.1:2.2: ttyACM0: USB ACM device

Then, a mass storage device is detected:

usb-storage 2-1.1:2.4: USB Mass Storage device detected
scsi host7: usb-storage 2-1.1:2.4
scsi 7:0:0:0: Direct-Access Linux File-Stor Gadget 0404 PQ:
0 ANSI: 2
sd 7:0:0:0: Attached scsi generic sg3 type 0
sd 7:0:0:0: [sdd] 131072 512-byte logical blocks: (67.1 MB/64.0 MiB)
sd 7:0:0:0: [sdd] Write Protect is off
sd 7:0:0:0: [sdd] Mode Sense: 0f 00 00 00
sd 7:0:0:0: [sdd] Write cache: enabled, read cache: enabled,
doesn't support DPO or FUA
sd 7:0:0:0: [sdd] Attached SCSI disk

As we can see preceding the host PC has found a 64 MB disk with an invalid partition table. This is quite obvious due the fact that the device is filled by zeros.
So, we just need to format the new disk by creating a FAT disk on the Wandboard:

mkfs.vfat -i WB -I /dev/sdd
mkfs.fat 3.0.28 (2015-05-16)

Now, to test the new storage device, we can mount it and then write a test file on it:

mount /dev/sdd /mnt/
echo TEST_PC > /mnt/file_pc.txt
ls /mnt/
file_pc.txt*

Now, we can unmount the disk and then mount it on the Wandboard filesystem in order to re-read the preceding file:

root@wb:~# mount -o loop /opt/mass_storage /mnt/
root@wb:~# ls /mnt/
file_pc.txt
root@wb:~# cat /mnt/file_pc.txt
TEST_PC

A dual action can now be done within the Wandboard by creating another file with the following command:

root@wb:~# echo TEST_WB > /mnt/file_wb.txt

Now, the disk can be unmounted and then remounted on the host PC in order to verify that the new file is present.

The configfs gadget

In early gadgets implementations, there was the GadgetFS, which is a monolithic kernel driver that provides an interface to implement user-space gadgets (this gadget is still present in the legacy directory). Then, a successive rewrite of GadgetFS, the FunctionFS, was released to support user-space gadget functions that can be combined into a USB-composite gadget. Then, the gadget configfs is the last version of this infrastructure. This is an interface that allows the definition of arbitrary functions and configurations to define an application specific USB composite device from the user space. The trick is quite interesting since this new filesystem allows user-space instantiation of kernel object.
Let's see how it works by replying to the multi gadget. First of all, we have to unload the g_cdc module loaded at boot and then mount the new filesystem into a proper directory. By default, this directory is /sys/kernel/config:

root@wb:~# mount -t configfs none /sys/kernel/config

Tip
If we get the following error, it means that the filesystem is already mounted and we can safely skip the preceding command:

mount: none is already mounted or /sys/kernel/config busy

Then, we have to go into the configfs directory relative to the USB gadget devices:

root@wb:~# cd /sys/kernel/config/usb_gadget/

The trick now is the fact that we can create new gadget devices just by creating new directories! In fact, to build up our first gadget device, we can use the following command:

root@wb:/sys/kernel/config/usb_gadget# mkdir g1

Then, we have to enter our new directory or device to see its attributes:

root@wb:/sys/kernel/config/usb_gadget# cd g1
root@wb:/sys/kernel/config/usb_gadget/g1# ls
bcdDevice bDeviceClass bDeviceSubClass configs idProduct os_desc UDC
bcdUSB bDeviceProtocol bMaxPacketSize0 functions idVendor strings

As we can see here, we can find several files whose names recall the USB devices' attributes, so as the first step, we can set our vendor and product IDs as the ones of the Multi gadget:

root@wb:/sys/kernel/config/usb_gadget/g1# echo 0x1d6b > idVendor
root@wb:/sys/kernel/config/usb_gadget/g1# echo 0x0104 > idProduct

A gadget also needs its serial number, manufacturer, and product strings. In order to have a place to store them, a strings subdirectory must be created for each language. For example, the following command defines the English language strings (code 0x409):

root@wb:/sys/kernel/config/usb_gadget/g1# mkdir strings/0x409

Then, we will set the strings values:

root@wb:/sys/kernel/config/usb_gadget/g1# echo "0" >
strings/0x409/serialnumber
root@wb:/sys/kernel/config/usb_gadget/g1# echo
"Linux 4.4.7-armv7-x6 with 2184000.usb" > strings/0x409/manufacturer
root@wb:/sys/kernel/config/usb_gadget/g1# echo
"Multifunction Composite Gadget" > strings/0x409/product

Now, we have to create a configuration for our gadget. Each gadget will consist of a number of configurations that correspond to directories to be created with their strings and attributes:

root@wb:/sys/kernel/config/usb_gadget/g1# mkdir
configs/multi.1
root@wb:/sys/kernel/config/usb_gadget/g1# mkdir
configs/multi.1/strings/0x409
root@wb:/sys/kernel/config/usb_gadget/g1# echo "USB Multi config" >
configs/multi.1/strings/0x409/configuration
root@wb:/sys/kernel/config/usb_gadget/g1# echo 120 >
configs/multi.1/MaxPower

The gadget will provide some functions, and for each function, its corresponding directory must be created in the same manner as done earlier. Also, we must consider that each function provides its specific set of attributes that must be properly set. In our case, to add the Ethernet over USB function, we have to use these commands:

root@wb:/sys/kernel/config/usb_gadget/g1# mkdir functions/ecm.usb0
root@wb:/sys/kernel/config/usb_gadget/g1# echo '62:1e:f6:88:9b:42' >
functions/ecm.usb0/host_addr

In the preceding command, we set the host_addr attribute as we did before for the g_cdc gadget. Then, it's the turn of the mass storage function:

root@wb:/sys/kernel/config/usb_gadget/g1# mkdir
functions/mass_storage.1
root@wb:/sys/kernel/config/usb_gadget/g1# echo /opt/mass_storage >
functions/mass_storage.1/lun.0/file

Again, the file attribute must be set to point the file we're going to use as storage memory (we used the same file earlier). Then, the last step is the turn of the serial channel where we did not set any attribute due to the fact that we leave the default settings:

root@wb:/sys/kernel/config/usb_gadget/g1# mkdir functions/acm.1

At this moment, our gadget is created. Also, we have a number of configurations specified and a number of functions available. What remains to do is specifying which function is available in which configuration (the same function can be used in multiple configurations) for each gadget. This is achieved by creating the symbolic links as shown here:

root@wb:/sys/kernel/config/usb_gadget/g1# ln -s
functions/ecm.usb0 configs/multi.1
root@wb:/sys/kernel/config/usb_gadget/g1# ln -s
functions/mass_storage.1 configs/multi.1
root@wb:/sys/kernel/config/usb_gadget/g1# ln -s
functions/acm.1 configs/multi.1

Now, our new gadget is really ready. We just need to activate it by bounding it to a USB Device Controller (UDC). The list of available controllers is in the /sys/class/udc/ directory:

root@wb:/sys/kernel/config/usb_gadget/g1# ls /sys/class/udc/
ci_hdrc.0

In the Wandboard, we have just one UDC, so the command to enable the gadget is shown here:

root@wb:/sys/kernel/config/usb_gadget/g1# cd ..
root@wb:/sys/kernel/config/usb_gadget# echo "ci_hdrc.0" > g1/UDC

If everything works well in the kernel of the Wandboard, we should see the following messages:

usb0: HOST MAC 62:1e:f6:88:9b:42
usb0: MAC 9e:4a:8e:06:94:81
IPv6: ADDRCONF(NETDEV_UP): usb0: link is not ready
configfs-gadget gadget: high-speed config #1: multi
IPv6: ADDRCONF(NETDEV_CHANGE): usb0: link becomes ready

Also, on the host PC, we should see the new USB device, which is a clone of g_multi:

$ lsusb -v -d 1d6b:0104
Bus 002 Device 013: ID 1d6b:0104 Linux Foundation Multifunction
Composite Gadget
Couldn't open device, some information will be missing
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 0 (Defined at Interface level)
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x1d6b Linux Foundation
 idProduct 0x0104 Multifunction Composite Gadget
 bcdDevice 4.04
 iManufacturer 1
 iProduct 2
 iSerial 3
 bNumConfigurations 1
...

In the kernel messages of the host PC, we should see the next message where we can verify that all the three functions are active:

usb 2-1.1: new high-speed USB device number 13 using ehci-pci
usb 2-1.1: New USB device found, idVendor=1d6b, idProduct=0104
usb 2-1.1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 2-1.1: Product: Multifunction Composite Gadget
usb 2-1.1: Manufacturer: Linux 4.4.7-armv7-x6 with 2184000.usb
usb 2-1.1: SerialNumber: 0
cdc_ether 2-1.1:1.0 usb0: register 'cdc_ether' at
usb-0000:00:1d.0-1.1, CDC Ethernet Device, 62:1e:f6:88:9b:42
usb-storage 2-1.1:1.2: USB Mass Storage device detected
scsi host10: usb-storage 2-1.1:1.2
cdc_acm 2-1.1:1.3: ttyACM0: USB ACM device
cdc_ether 2-1.1:1.0 enp0s29u1u1: renamed from usb0
IPv6: ADDRCONF(NETDEV_UP): enp0s29u1u1: link is not ready
scsi 10:0:0:0: Direct-Access Linux File-Stor Gadget 0404
PQ: 0 ANSI: 2
sd 10:0:0:0: Attached scsi generic sg3 type 0
sd 10:0:0:0: [sdd] 131072 512-byte logical blocks: (67.1 MB/64.0 MiB)
sd 10:0:0:0: [sdd] Write Protect is off
sd 10:0:0:0: [sdd] Mode Sense: 0f 00 00 00
sd 10:0:0:0: [sdd] Write cache: enabled, read cache: enabled,
doesn't support DPO or FUA
sdd:
sd 10:0:0:0: [sdd] Attached SCSI removable disk
FAT-fs (sdd): Volume was not properly unmounted. Some data may
be corrupt. Please run fsck.

Now, we can verify that everything works like the multi gadget we tested earlier. When finished, we can disable the new device using this command here that unbounds the UDC to the gadget:

root@wb:/sys/kernel/config/usb_gadget# echo "" > g1/UDC

Here are the kernel activities on the Wandboard just after the execution of the command:

configfs-gadget gadget: unbind function 'cdc_ethernet'/ed055ac0
configfs-gadget gadget: unbind function 'Mass Storage Function'
/ed20e880
configfs-gadget gadget: unbind function 'acm'/ed0231c0

At this point, it is quite clear that this feature is very powerful, but the real power is about the ability to define multiple gadgets and the easy switch between them! As an example, let's define another gadget device that we will use in the next section and then see how we can switch between them. As a new device, we will define a clone of the gadget zero (g_zero, see the next section) but with a little difference, We will use the loopback function, that is, whatever we write into the OUT endpoint will be returned to us by the IN one.
First of all, let's create the new gadget and then set up its attributes:

root@wb:/sys/kernel/config/usb_gadget# mkdir g2
root@wb:/sys/kernel/config/usb_gadget# cd g2
root@wb:/sys/kernel/config/usb_gadget/g2# echo 0x1a0a > idVendor
root@wb:/sys/kernel/config/usb_gadget/g2# echo 0xbadd > idProduct
root@wb:/sys/kernel/config/usb_gadget/g2# mkdir strings/0x409
root@wb:/sys/kernel/config/usb_gadget/g2# echo "0" >
strings/0x409/serialnumber
root@wb:/sys/kernel/config/usb_gadget/g2# echo "Linux
4.4.7-armv7-x6 with 2184000.usb" > strings/0x409/manufacturer
root@wb:/sys/kernel/config/usb_gadget/g2# echo "Loopback Gadget" >
strings/0x409/product

Then, let's define the configuration:

root@wb:/sys/kernel/config/usb_gadget/g2# mkdir configs/zero.1
root@wb:/sys/kernel/config/usb_gadget/g2# mkdir configs/zero.1/
strings/0x409
root@wb:/sys/kernel/config/usb_gadget/g2# echo "USB g_zero
config" > configs/zero.1/strings/0x409/configuration

Then, let's add the loopback function and connect it to the gadget configuration:

root@wb:/sys/kernel/config/usb_gadget/g2# mkdir functions/Loopback.1
root@wb:/sys/kernel/config/usb_gadget/g2# ln -s functions/Loopback.1
configs/zero.1

OK, now, the new gadget is defined and we can enable it as we did earlier:

root@wb:/sys/kernel/config/usb_gadget/g2# cd ..
root@wb:/sys/kernel/config/usb_gadget# echo "ci_hdrc.0" > g2/UDC

If everything works well, here is the relative kernel message from the Wandboard:

configfs-gadget gadget: high-speed config #1: zero

On the host PC, we should see something like this:

$ lsusb -v -d 1a0a:badd
Bus 002 Device 034: ID 1a0a:badd USB-IF non-workshop USB
OTG Compliance test device
Couldn't open device, some information will be missing
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 0 (Defined at Interface level)
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x1a0a USB-IF non-workshop
 idProduct 0xbadd USB OTG Compliance test device
 bcdDevice 4.04
 iManufacturer 1
 iProduct 2
 iSerial 3
 bNumConfigurations 1
 Configuration Descriptor:
 bLength 9
 bDescriptorType 2
 wTotalLength 32
 bNumInterfaces 1
 bConfigurationValue 1
 iConfiguration 4
 bmAttributes 0x80
 (Bus Powered)
 MaxPower 500mA
 Interface Descriptor:
 bLength 9
 bDescriptorType 4
 bInterfaceNumber 0
 bAlternateSetting 0
 bNumEndpoints 2
 bInterfaceClass 255 Vendor Specific Class
 bInterfaceSubClass 0
 bInterfaceProtocol 0
 iInterface 5
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x81 EP 1 IN
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
 wMaxPacketSize 0x0200 1x 512 bytes
 bInterval 0
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x01 EP 1 OUT
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
 wMaxPacketSize 0x0200 1x 512 bytes
 bInterval 0

This time, we've reported the lsusb command-line output since we like to point out the gadget structure: it has one OUT endpoint and one IN endpoint as the gadget zero does.
Now, switching between the two gadgets is quite simple, and the command lines needed are shown here with the relative kernel messages in order to see each command's effect:

root@wb:/sys/kernel/config/usb_gadget# echo "" > g2/UDC
root@wb:/sys/kernel/config/usb_gadget# echo "ci_hdrc.0" > g1/UDC
configfs-gadget gadget: high-speed config #1: multi
root@wb:/sys/kernel/config/usb_gadget# echo "" > g1/UDC
configfs-gadget gadget: unbind function 'cdc_ethernet'/ed204dc0
configfs-gadget gadget: unbind function 'Mass Storage
Function'/ed689a00
configfs-gadget gadget: unbind function 'acm'/ed204e80
root@wb:/sys/kernel/config/usb_gadget# echo "ci_hdrc.0" > g2/UDC
configfs-gadget gadget: high-speed config #1: zero

The USB tools

USB devices connected to our system can be listed and inquired by some specific utilities in the usbutils package (the package should be already installed, in case we can done it in the usual ways).
If we can even use sysfs to inspect connected devices, using these tools, the developer can simplify their job. For example, to get a list of connected USB devices, we can use the following command line:

root@bbb:~# lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

In this example, on our BeagleBone Black, we get the root hub only (the root hub is a phony device and represents the USB bus itself into the system. It always has a device number of one on whatever bus it sits on and a fixed manufacturer, that is, Linux Foundation, with ID 0x1d6b). However, if we plug in a USB device into the host port (for example, a USB key), we get the following lines of code:

root@bbb:~# lsusb
Bus 001 Device 003: ID 058f:6387 Alcor Micro Corp. Flash Drive
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Now, we can inquire a specific device by its vendor:product couple or the bus:devnum one as follows:

root@bbb:~# lsusb -d 058f:6387
Bus 001 Device 003: ID 058f:6387 Alcor Micro Corp. Flash Drive
root@bbb:~# lsusb -s 001:003
Bus 001 Device 003: ID 058f:6387 Alcor Micro Corp. Flash Drive

Then we can use the -v option argument to get a verbose output reporting a lot of information of the device:

root@bbb:~# lsusb -v -d 058f:6387
Bus 001 Device 003: ID 058f:6387 Alcor Micro Corp. Flash Drive
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 0 (Defined at Interface level)
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x058f Alcor Micro Corp.
 idProduct 0x6387 Flash Drive
 bcdDevice 1.03
 iManufacturer 1 Generic
 iProduct 2 Miss Storage
 iSerial 3 9B4B5BCC
 bNumConfigurations 1
 Configuration Descriptor:
 bLength 9
 bDescriptorType 2
 wTotalLength 32
 bNumInterfaces 1
 bConfigurationValue 1
 iConfiguration 0
 bmAttributes 0x80
 (Bus Powered)
 MaxPower 100mA
 Interface Descriptor:
 bLength 9
 bDescriptorType 4
 bInterfaceNumber 0
 bAlternateSetting 0
 bNumEndpoints 2
 bInterfaceClass 8 Mass Storage
 bInterfaceSubClass 6 SCSI
 bInterfaceProtocol 80 Bulk-Only
 iInterface 0
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x01 EP 1 OUT
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
 wMaxPacketSize 0x0200 1x 512 bytes
 bInterval 0
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x82 EP 2 IN
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
 wMaxPacketSize 0x0200 1x 512 bytes
 bInterval 0
Device Qualifier (for other device speed):
 bLength 10
 bDescriptorType 6
 bcdUSB 2.00
 bDeviceClass 0 (Defined at Interface level)
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 bNumConfigurations 1
Device Status: 0x0000
 (Bus Powered)

In the preceding output, we can discover that our device is compatible with USB 2.0 version. We can see its description data, its power consumption, and that is has two bulk endpoints.
A similar tool (even if less common in an embedded device) is usb-devices, which can be used to get a compact (even if quite detailed) list of connected devices as shown here:

root@bbb:~# usb-devices
T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=480 MxCh= 1
D: Ver= 2.00 Cls=09(hub) Sub=00 Prot=01 MxPS=64 #Cfgs= 1
P: Vendor=1d6b ProdID=0002 Rev=04.04
S: Manufacturer=Linux 4.4.7-bone9 musb-hcd
S: Product=MUSB HDRC host driver
S: SerialNumber=musb-hdrc.1.auto
C: #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
T: Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 3 Spd=480 MxCh= 0
D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
P: Vendor=058f ProdID=6387 Rev=01.03
S: Manufacturer=Generic
S: Product=Miss Storage
S: SerialNumber=9B4B5BCC
C: #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.)
Sub=06 Prot=50 Driver=usb-storage

In this output, we find less information as the previous one, but just enough to understand how our devices are connected to the system and how they are working (or not).

The raw USB bus

In some circumstances, a USB device may lack a dedicated device driver. In this case, a GNU/Linux system simply enumerates it, and then, no driver is loaded at all. In this situation, the user cannot get access to the new USB device in any usual manner, except by using raw commands directly over the bus. Simply speaking, it consists of directly sending the USB messages to the new device and then managing the answers without using any dedicated driver at all.
You should note that if this new device has no available driver, then it cannot be seen from the system as any usual device (that is, a keyboard or a storage disk), so we have no /dev/event2 or /dev/sdb entries to use! However, even if this situation may appear quite strange and difficult, in reality, it's not so terrible. In fact, for very simple devices, we can implement a simple management code in user space using the libusb library on the host PC.
Tip
We can use the libusb library on the BeagleBone Black too if we decide to use it as a USB host and attach a device to the BeagleBone Black and be able to control it.

Accessing as a host

As a simple demonstration about using this technique, let's look at the following example that runs on the host PC, acting as a USB host, and that uses the USB gadget driver g_zero (gadget Zero) on our Wandboard, acting as a USB gadget. This particular device has two bulk endpoints, one for input and one for output. They can receive and send special messages when requested, respectively.
Well, let's see how we can interact with this special gadget from the user space. To do this, we must unload the g_cdcdriver and then load the g_zero driver with the following command line:

root@wb:~# modprobe -r g_cdc
root@wb:~# modprobe g_zero
zero gadget: Gadget Zero, version: Cinco de Mayo 2008
zero gadget: zero ready
zero gadget: high-speed config #3: source/sink

On the host PC, all the USB devices managed by the g_multi driver should now disappear, and a new device should be on the scene. In fact, looking at host PC kernel messages, we should see the following lines of code:

usb 2-1.1: new high-speed USB device number 58 using ehci-pci
usb 2-1.1: New USB device found, idVendor=1a0a, idProduct=badd
usb 2-1.1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 2-1.1: Product: Gadget Zero
usb 2-1.1: Manufacturer: Linux 4.4.7-armv7-x6 with 2184000.usb
usb 2-1.1: SerialNumber: 0123456789.0123456789.0123456789

Also, using the lsusb command, we can read its attributes as shown here:

$ lsusb -v -d 1a0a:badd
Bus 002 Device 033: ID 1a0a:badd USB-IF non-workshop
USB OTG Compliance test device
Device Descriptor:
 bLength 18
 bDescriptorType 1
 bcdUSB 2.00
 bDeviceClass 255 Vendor Specific Class
 bDeviceSubClass 0
 bDeviceProtocol 0
 bMaxPacketSize0 64
 idVendor 0x1a0a USB-IF non-workshop
 idProduct 0xbadd USB OTG Compliance test device
 bcdDevice 4.04
 iManufacturer 1
 iProduct 2
 iSerial 3
 bNumConfigurations 2
 Configuration Descriptor:
 bLength 9
 bDescriptorType 2
 wTotalLength 69
 bNumInterfaces 1
 bConfigurationValue 3
 iConfiguration 4
 bmAttributes 0xe0
 Self Powered
 Remote Wakeup
 MaxPower 500mA
 Interface Descriptor:
 bLength 9
 bDescriptorType 4
 bInterfaceNumber 0
 bAlternateSetting 0
 bNumEndpoints 2
 bInterfaceClass 255 Vendor Specific Class
 bInterfaceSubClass 0 udev

 bInterfaceProtocol 0
 iInterface 0
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x81 EP 1 IN
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
 wMaxPacketSize 0x0200 1x 512 bytes
 bInterval 0
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x01 EP 1 OUT
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
 wMaxPacketSize 0x0200 1x 512 bytes
 bInterval 0

Tip
Note that the output is longer than the one reported earlier, but the data that we need in this test is just the preceding output.

OK, the gadget is connected with the host PC, so let's move on it and get the testing code compiled into the chapter_08/usb_sendrecv/usb_sendrecv.c file in the book's example code repository. However, we need the libusb package on the host PC to compile it, so let's install the package with the following command:

$ sudo aptitude install libusb-1.0-0-dev

Now, we can compile the code using the usual make command as well.
If we take a look at the following code, we can see that after initializing the library with the libusb_init() function, we open the device using libusb_open_device_with_vid_pid() with the proper vendor (VENDOR_ID) and product IDs (PRODUCT_ID) for the gadget Zero. Then, after claiming the device's interface 0, we start the data bulk transfers using the libusb_bulk_transfer() function:
/* Send an all-zeros message to endpoint 0x01 */
ret = libusb_bulk_transfer(handle, 0x01, buffer,
 sizeof(buffer), &n, 100);
if (ret) {
 fprintf(stderr,
 "error sending message to device ret=%d\n", ret);
 exit(-1);
}
printf("%d bytes transmitted successfully\n", n);

/* Receive an all-zeros message from endpoint 0x81 */
ret = libusb_bulk_transfer(handle, 0x81, buffer,
 sizeof(buffer), &n, 100);
if (ret) {
 fprintf(stderr,
 "error receiving message from device ret=%d\n", ret);
 exit(-1);
}
if (n != sizeof(buffer)) {
 fprintf(stderr,
 "error receiving %d bytes while expecting %d\n",
 n, sizeof(buffer));
 exit(-1);
}
printf("%d bytes received successfully\n", n);

Tip
Note that the USB device interfaces are not covered in this book (see USB specifications for detailed info). However, you should know that using such interfaces ,we can create a composite device like the Wandboard, which exposes serial interface, mass storage device, and network interface all on the same device.

In the preceding code, we should notice that in the first call of libusb_bulk_transfer(), we send an all-zero message to the BeagleBone Black through the 0x01 endpoint, that is, the OUT endpoint. Then, with the same function, we receive an all-zeros message from the BeagleBone Black through the 0x81 endpoint, that is, the IN endpoint.
Now, we can test the communication with the g_zero driver from the user space by running the program as shown here:

$ sudo ./usb_sendrecv
usb_sendrecv: g_zero device found
usb_sendrecv: 4096 bytes transmitted successfully
usb_sendrecv: 4096 bytes received successfully
string=

Tip
Note that we need the sudo command in order to run the program as a privileged user since, by default, the raw access to the bus is not allowed to a normal user. However, this behavior can be changed by writing a proper udev rule, but unfortunately, this topic is out of the scope of this book.

The same test can now be done with the clone device we defined earlier. In this case, we should see that whatever we send to the OUT endpoint will came back through the IN one. For this purpose, the preceding code prints the first characters of the buffer used to exchange the data. In fact, it's defined as follows:
 uint8_t buffer[4096] = "TEST STRING\n";

When we used the gadget Zero, the returned string is of course all zeros, so the printed string is void, but with the loopback function used into the gadget Zero clone, the return should be different. In fact, if we remove the legacy gadget Zero and we enable the clone one on the Wandboard, we get the following lines of code:

root@wb:/sys/kernel/config/usb_gadget# modprobe -r g_zero
root@wb:/sys/kernel/config/usb_gadget# echo "ci_hdrc.0" > g2/UDC
configfs-gadget gadget: high-speed config #1: zero

On the host PC, we get the following results:

$ sudo ./usb_sendrecv
usb_sendrecv: g_zero device found
usb_sendrecv: 4096 bytes transmitted successfully
usb_sendrecv: 4096 bytes received successfully
string=TEST STRING

Now, the returning data holds TEST STRING as expected.

Summary

The USB has become the ubiquitous standard for peripheral connections, and the discoveries are endless. If you are interested, you can explore more about these possibilities. In this chapter, we started to discover the USB by giving you some interesting starting points by showing how the Wandboard (but the same considerations can be done for every GNU/Linux embedded system) can be used as a USB host in order to manage one or more devices, or as a USB device to emulate a USB peripheral. Also, we discovered how to manage a USB peripheral when a dedicated driver is not present by using a raw access to the bus and how to use two legacy gadget drivers or the new configfs mechanism.
In the upcoming chapters, we'll present some peripherals kinds that are not so common as serial ports and USB devices since they are not directly accessible on a normal PC. Only an embedded device permits us to really discover and manage them. In these chapters, we will take a look at the I2C devices.

Chapter 9. Inter-Integrated Circuits - I2C

In the previous chapter, we explored the serial ports and the USB bus (with the relative devices), that is, peripherals that are typically used to connect a computer to another computer or to a device that is external to the main computer. Starting from this chapter, we will present some communication buses that are typically used to connect on-board devices, that is, the main computer with devices that are all placed on the same board.
One of the most important device class is the Inter-Integrated Circuit, which is abbreviated with the acronym I2C (or I2C). Several devices use the I2C bus to communicate with the CPU, and in this chapter, we will give you a panoramic view of them: we'll see several kinds of different devices with different configurations in order to cover the combinations offered by this bus as much as possible. For all of them, we'll see how these devices can be connected to our embedded kits and the drivers we can use to get access to their data using different techniques. Then, we will see how we can directly get access to the I2C bus in order to manage a simple device from the user space.
What is the Inter-Integrated Circuit bus?

The Inter-Integrated Circuit (I2C) is a multi-master, multi-slave, serial computer bus invented in order to simplify the board schematics. Thanks to the fact that it needs two wires only (apart the GND) to do its job, it's widely used into embedded computers to connect on-board sensor/actuators chips to the main CPU.
Despite the fact that the I2C bus is multi-master, a typical configuration is a single master device (the CPU) connected to several slave devices (the sensors/actuators) where, as for the USB bus, the master directs all transfers. However just a main difference should be outlined: a I2C device can have a dedicated interrupt line to the CPU that can be used to signal that a message must be read by the master (in the USB bus the interrupt messages go over the bus too!). So, a simple I2C connections need two wires only while, in case of interrupt lines, they need three or more lines.
Note
For further reading on the working of I2C bus the reader can start from the URL:

http://en.wikipedia.org/wiki/I%C2%B2C
.

The electrical lines

The I2C bus lines are reported in the table below:
	

Name

	

Description

	
SCL - Serial Clock

	
The bus clock signal

	
SDA - Serial Data

	
The bus data signal

	
GND

	
Common Ground

The (eventual) interrupt line has not be reported since, strictly speaking, it's not part of the I2C protocol. It is usually implemented as a dedicated interrupt line connected to a CPU's interrupt capable pin (GPIO lines). Also the GND line has been added just because it's needed for electrical reasons since the I2C protocol just talks about the SCL and SDA signals only.
In case of multiple devices connection the I2C devices can be connected in parallel as in the figure below:

[image: The electrical lines]

Figure 1: I2C ports on the BeagleBone Black
Note
The pull-up resistances Rp can be omitted in most cases because the I2C controllers often integrate them in the SoC and keep them activated by default.

The BeagleBone Black has three I2C buses (each managed by a dedicated I2C master), but one is not exported at all on the expansion connectors and one is already utilized for reading EEPROMs on cape add-on boards (so we can consider it as reserved, even if we can still use it being aware to not interfere with the capes manager). This situation is summarized in the table below:

[image: The electrical lines]

Note
The BeagleBone Black's capes mechanism is not covered into this book but the curious reader can take a look on the Internet for further information maybe starting from this URL:
http://elinux.org/Beagleboard:Cape_Expansion_Headers#Cape_EEPROM_Contents.

Note that under some BeagleBone Black's Linux releases these buses are named in the order they are enumerated, so their names may have nothing to do with the physical names. That's why in the above table the Memory address column has been added which reports the memory addresses where the I2C controllers are mapped too. Then by checking the mapping in /sys/bus/i2c/devices we can easily recognize the right name of each bus. For example, on our board running the kernel installed into the first chapter, that is Linux 4.4.7, the buses have correct names, that is i2c0 bus is mapped to the file /dev/i2c-0 and i2c2 is mapped to the file /dev/i2c-2 as shown below:

root@bbb:~# ls -l /sys/bus/i2c/devices/i2c-*
lrwxrwxrwx 1 root root 0 Apr 2 19:57 /sys/bus/i2c/devices/i2c-0 -> ../../../devic
es/platform/ocp/44e0b000.i2c/i2c-0
lrwxrwxrwx 1 root root 0 Apr 2 19:57 /sys/bus/i2c/devices/i2c-2 -> ../../../devi
ces/platform/ocp/4819c000.i2c/i2c-2

So, on our system, we can see that both buses have a reasonable name but this cannot be a fixed rules, so keep attention at the I2C connections!
In our next example we will manage a real device using the raw access to the bus, so we need to use the free bus and, in order to do it, we have to enable it.
The magic to do it is by using something similar to what we saw for the serial ports of our BeagleBone Black in the
TTYs on the BeagleBone Black section, in Chapter 7, Serial Ports and TTY Devices - TTY we can use the following command:

root@bbb:~# echo BB-I2C1 > /sys/devices/platform/bone_capemgr/slots

This should cause kernel messages activity reported below:

bone_capemgr: part_number 'BB-I2C1', version 'N/A'
bone_capemgr: slot #4: override
bone_capemgr: Using override eeprom data at slot 4
bone_capemgr: slot #4: 'Override Board Name,00A0,Override Manuf,BB-I2C1'
omap_i2c 4802a000.i2c: bus 1 rev0.11 at 100 kHz
bone_capemgr bone_capemgr: slot #4: dtbo 'BB-I2C1-00A0.dtbo' loaded; overlay id #0

At this point the new bus should be present:

root@bbb:~# ls -l /sys/bus/i2c/devices/i2c-*
lrwxrwxrwx 1 root root 0 Apr 2 19:57 /sys/bus/i2c/devices/i2c-0 -> ../../../devi
ces/platform/ocp/44e0b000.i2c/i2c-0
lrwxrwxrwx 1 root root 0 Apr 2 20:04 /sys/bus/i2c/devices/i2c-1 -> ../../../devi
ces/platform/ocp/4802a000.i2c/i2c-1
lrwxrwxrwx 1 root root 0 Apr 2 19:57 /sys/bus/i2c/devices/i2c-2 -> ../../../devi
ces/platform/ocp/4819c000.i2c/i2c-2

I2C ports on the SAMA5D3 Xplained

The SAMA5D3 Xplained has three I2C buses exported on different connectors. The interesting thing here is the fact that the manufacturer developed a modified (but compatible) version of the I2C bus for its boards named Two-wire Serial Interface (TWI). In fact, as reported into a dedicated application note we can read the following:

The TWI is compatible with Philips I2C protocol. The bus allows simple, robust, and cost effective communication between integrated circuits in electronics. The strengths of the TWI bus is that it is capable of addressing up to 128 devices using the same bus, arbitration, and the possibility to have multiple masters on the bus.

This means that, whenever we read a document from the manufacturer of the SAMA5D3 Xplained about the I2C protocol we should keep in mind that when we read TWI we should think about I2C.
Available lines are reported in the table following:
	
Name

	
SDA

	
SCL

	
TW0

	
J15.9 - SDA0

	
J15.10 - SCL0

	
TW1

	
J20.7 - SDA

	
J15.8 - SCL

	
TW2

	
J15.9 - PA18

	
J15.9 - PA19

Also controllers listed into the sysfs are shown following:

root@a5d3:~# ls -l /sys/bus/i2c/devices/i2c-*
lrwxrwxrwx 1 root root 0 Jul 20 15:15 /sys/bus/i2c/devices/i2c-0 -> ../../../devi
ces/soc0/ahb/ahb:apb/f0014000.i2c/i2c-0
lrwxrwxrwx 1 root root 0 Jul 20 15:15 /sys/bus/i2c/devices/i2c-1 -> ../../../devi
ces/soc0/ahb/ahb:apb/f0018000.i2c/i2c-1
lrwxrwxrwx 1 root root 0 Jul 20 15:15 /sys/bus/i2c/devices/i2c-2 -> ../../../devi
ces/soc0/ahb/ahb:apb/f801c000.i2c/i2c-2

I2C ports on the Wandboard

The Wandboard has, by default, two I2C buses (even if on the user manual has been reported three - the third bus must be enabled via DTS file and it is not covered in this book) and relative connections are summarized in the table below:
	
Name

	
SDA

	
SCL

	
I2c-0

	
JP2.7 - I2C1_SDA

	
JP2.9 - I2C1_SCL

	
I2c-1

	
JP2.11 - I2C2_SDA

	
JP2.13 - I2C2_SCL

As for other two boards above controllers are reported into the sysfs as shown following:

root@wb:~# ls -l /sys/bus/i2c/devices/i2c-*
lrwxrwxrwx 1 root root 0 Jul 18 16:27 /sys/bus/i2c/devices/i2c-0 -> ../../../devi
ces/soc0/soc/2100000.aips-bus/21a0000.i2c/i2c-0
lrwxrwxrwx 1 root root 0 Jul 18 16:27 /sys/bus/i2c/devices/i2c-1 -> ../../../devi
ces/soc0/soc/2100000.aips-bus/21a4000.i2c/i2c-1

The I2C bus in Linux

Each I2C device has a well defined 7 bits address that the master must use in order to communicate with a device. This address is not assigned at runtime as for the USB devices, it's assigned by the board designer by setting some chip's pins.
Note
Typically the chip manufacturer set most significant 3 or 4 bits and the board designer can set remaining bits in order to suite his/her needs. I2C bus specifications are controlled by NXP (Philips) and they are the ones who allocate addresses to I2C devices.

Another thing to be outlined regarding the I2C bus is that for each message the master must specify if the message wants read or write data from the slave. This special action is done by adding a final bit (least significant bit) to the slave address, the master uses a 0 to write data and a 1 to read data from the slave.
As for the USB bus we still have two main actors: master and slave. So in the kernel we find both the device driver types.
Regarding I2C master device there is nothing special to do here since the proper driver is already up and running into our embedded kits' default kernel configurations, but regarding I2C devices to be connected with them we can have several possibilities: external memories, I/O extenders, sensors, converters, etc. (the list can be very long!).
Note
Note that on some embedded system the on-chip I2C controller can be programmed to work as a master or as a slave device (even if this functionality must be supported by the respective driver). Strictly speaking the developer can choose if his/her I2C controller can be used to master the communication with other I2C devices or to act as a I2C device instead and then working as a simple slave. However it's quite rare that an embedded system is used in the latter case, that's why in this book we don't talk about this possibility.

The I2C tools

This are stored into the package i2c-tools and they are a set of utility programs we can use to easily manipulate an I2C device in user-space. They rely on the I2C /dev interface driver stored into the file drivers/i2c/i2c-dev.c in the Linux's sources repository tree.
Note
See the file Documentation/i2c/dev-interface into the Kernel's repository for further information about this special driver.

If our device is not managed by the kernel, that is, if we have not defined any driver that actually control it we can use the above driver with the followings utilities to get access to its registers.
First of all we can use the i2cdetect command to get a list of all available I2C buses. For instance on the Wandboard we get the following:

root@wb:~# i2cdetect -l
i2c-0 i2c 21a0000.i2c I2C adapter
i2c-1 i2c 21a4000.i2c I2C adapter

Then with the same command we can get a list of all connected device with a specified bus. Still working on the Wandboard we can get a list of all devices connected with its first bus i2c-0 by using the command below:

root@wb:~# i2cdetect -y 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- 5a -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Note
Note that in this screenshot we have connected a device to our board, in fact if no I2C devices are present we'll get the string -- for every addresses.

Then we can use the command i2get or i2cset to read from or write data to a device into a specified register. For instance to read a word of data from the device above at location 0x07 we can do as below:

root@wb:~# i2cget -y 0 0x5a 0x07 wp
0x3b9e

The last useful tool is i2cdump which can dump at once all content of each device's registers. Following is an example by still using the same device at address 0x5a:

root@wb:~# i2cdump -y 0 0x5a w
 0,8 1,9 2,a 3,b 4,c 5,d 6,e 7,f
00: 2e33 00b8 4328 1ad6 0015 bbe4 3b45 3b87
08: 0000 0000 0000 0000 053a 0000 432d 0000
10: 000e 1b58 040e 0008 000c 0002 0000 0000
18: 01ff 0000 0551 0005 01ba 013e 0546 01b3
20: 9993 62e3 0201 f71c ffff 9fb4 8d05 8ddd
28: 906f 95b2 a8b7 2200 8643 20a8 be5a 0000
30: 0000 7e0f 460b 800a 0000 1d2d 00d1 3517
38: 0000 0000 1a46 8011 540a 2185 408c b100
40: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
48: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
50: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
58: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
60: XXXX XXXX 445e XXXX XXXX 3c82 0000 45cd
68: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
70: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
...
d8: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
e0: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
e8: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
f0: 0000 001f 0000 0039 00b3 001f 0000 008a
f8: 00ba 45d1 000f fa10 3b0a 001c 0000 XXXX

As we can see some registers gives no data and then, in this case, they are marked with the XXXX string.

Getting access to I2C devices

Now we are ready to manage real I2C devices. We can find tons of supported devices into the Linux kernel tree whose are usually grouped according to their specific operations so, for instance, all I2C real-time clock chips are under the directory drivers/rtc/ while I2C EEPROMs are under directory drivers/misc/eeprom/, and so on of the Linux's source repository.
In the next section we're going to see several different kinds of devices all connected to the main CPU through the I2C bus, also we're going to use different embedded kits to test them, but as said before, every commands can be easily repeated on every GNU/Linux based boards with a similar configuration.
EEPROM, ADC and IO Expander

As first example we're going to use the following development board carrying five I2C devices:

[image: EEPROM, ADC and IO Expander]

Note
The device can be purchased at the following link (or by surfing the Internet):

http://www.cosino.io/product/i2c-sensors-board

On this board we have an EEPROM, an ADC, a DAC, a temperature sensor and an I/O expander so it's perfect to show to the reader how the I2C bus works and how above device classes can be accessed within our BeagleBone Black.
First of all we must do the electrical connections so, in the figure following, we reported the connection between the BeagleBone Black's pins and the I2C developing board's pins.

[image: EEPROM, ADC and IO Expander]

Now, if everything has been well connected, we have to enable the i2c1 bus (if not already enabled) and then we can use the i2cdetect command to scan all the connected devices:

root@bbb:~# echo BB-I2C1 > /sys/devices/platform/bone_capemgr/slots
root@bbb:~# i2cdetect -y -r 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 49 -- -- -- 4d -- --
50: 50 51 52 53 54 55 56 57 -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If we take a closer look at the I2C board we can see that each device has reported its I2C address.

[image: EEPROM, ADC and IO Expander]

Note
Note that the EEPROM has up to 7 valid I2C address.

The table below reports the correspondences between 7 bits and 8 bits notations:
	
Device

	
I2C address as reported on the board

	
I2C address as reported by Linux

	
EEPROM

	
0xAx

	
0x5x

	
Temperature sensor

	
0x92

	
0x49

	
12-bit ADC

	
0x9A

	
0x4d

	
10-bit DAC

	
0x90

	
0x48

	
8-bit I/O Expander

	
0x40

	
0x20

Note
The 8-bit address is just the corresponding 7-bit one plus one zeroed bit as LSB.

So we can easily verify that all devices are now available. However we have not finished yet, in fact even if all the devices are detected not all of them are available as device files into the BeagleBone Black's /dev directory or in sysfs due the fact the system has not loaded the proper device drivers yet. To do so we must first load a proper driver and than write a suitable configuration file for the kernel in order to enable it. However, before seeing these steps by using some examples let's starting from the EEPROM which is not affect by this problem since it has an already up and running driver.
EEPROM

The EEPROM mounted on our I2C developer board is based on the chip family named AT24 so the corresponding driver is already statically compiled into the kernel due the fact the BeagleBone Black cape's management system uses an EEPROM based on that chip.
Note
The user guide of this device is available at:

http://www.atmel.com/Images/doc5121.pdf
.

We can verify it by listing the currently enabled AT24 devices on our BeagleBone Black with the following command:

root@bbb:~# ls /sys/bus/i2c/drivers/at24/
0-0050 2-0054 2-0055 2-0056 2-0057 bind uevent unbind

On the bus i2c-0 at address 0x50 there is a device, let's inspect it:

root@bbb:~# ls /sys/bus/i2c/drivers/at24/0-0050
0-00500 driver eeprom modalias name of_node power subsystem uevent
root@bbb:~# cat /sys/bus/i2c/drivers/at24/0-0050/name
24c256

Yes! It's an EEPROM device based on the AT24 family. So the driver is already up and running but we've to enable it into the kernel by using a proper DTS file or by using an user-space command dedicated to this scope.
Note
In reality there are several ways to declare an I2C device all reported into the file Documentation/i2c/instantiating-devices in the Linux's sources repository. However only above two methods will be discussed in this book due the fact other one are poor practical or old techniques.

Regarding the DTS method the reader can find into the file chapter_09/BB-EEPROM-A24-00A0.dts in the book's example code repository. In the snippet below is reported the main configuration settings:
/* Set the desired clock frequency */
clock-frequency = <400000>;

/* Define the EEPROM device as based on at24c256
 * and with I2C address 0x50
 */
eeprom: eeprom@50 {
 compatible = "at24,24c02";
 reg = <0x50>;
};

This special syntax is suitable for the command dtc (Device Tree Compiler) and defines our I2C device according to the hardware settings. Now we should compile it by using the command following:

root@bbb:~# dtc -O dtb -o /lib/firmware/BB-EEPROM-A24-00A0.dtbo
 -b 0 -@ BB-EEPROM-A24-00A0.dts

After that we can enable our new EEPROM by using a command similar with the one used above to setup a new kernel configuration:

root@bbb:~# echo BB-EEPROM-A24 >
 /sys/devices/platform/bone_capemgr/slots

Now looking at BeagleBone Black's kernel messages we should see the following activity:

bone_capemgr: part_number 'BB-EEPROM-A24', version 'N/A'
bone_capemgr: slot #5: override
bone_capemgr: Using override eeprom data at slot 5
bone_capemgr: slot #5: 'Override Board Name,00A0,Override Manuf,BB-EEPROM-A24'
at24 1-0050: 256 byte 24c02 EEPROM, writable, 1 bytes/write
bone_capemgr: slot #5: dtbo 'BB-EEPROM-A24-00A0.dtbo' loaded; overlay id #1

Now our new EEPROM should now be enabled:

root@bbb:~# ls /sys/bus/i2c/drivers/at24/

0-0050 1-0050 2-0054 2-0055 2-0056 2-0057 bind uevent unbind

The new directory is 1-0050 which represent our EEPROM, in the file name we can read the device name as preceding:

root@bbb:~# cat /sys/bus/i2c/drivers/at24/1-0050/name
24c02

While we can use the file eeprom to read/write our desired data. For instance we can write a string and then we can reread it by using the commands following:

root@bbb:~# echo "Testing message" >
 /sys/bus/i2c/drivers/at24/1-0050/eeprom
root@bbb:~# strings /sys/bus/i2c/drivers/at24/1-0050/eeprom
Testing message

Note
The command strings has been used in order to discard all non ASCII characters due the fact the cat command will read all the EEPROM content and not only the string we wrote!

The second method to enable the EEPROM's driver is by using user-space method, that is by writing the device name and its I2C address into the file new_device relative to the controller where the device is connected to. Let's do an example relative to this device by first removing the EEPROM device:

root@bbb:~# cat /sys/devices/platform/bone_capemgr/slots
0: PF---- -1
1: PF---- -1
2: PF---- -1
3: PF---- -1
4: P-O-L- 0 Override Board Name,00A0,Override Manuf,BB-I2C1
5: P-O-L- 1 Override Board Name,00A0,Override Manuf,BB-EEPROM-A24
root@bbb:~# echo -5 > /sys/devices/platform/bone_capemgr/slots
bone_capemgr: Removed slot #5

We can verify that the EEPROM is no longer available just re-looking at the content of the /sys/bus/i2c/drivers/at24/ directory:

root@bbb:~# ls /sys/bus/i2c/drivers/at24/
0-0050 2-0054 2-0055 2-0056 2-0057 bind uevent unbind

Now we can use the file new_device which takes two parameters: the name of the I2C device and the address of the I2C device (a number, typically expressed in hexadecimal starting with 0x, but can also be expressed in decimal). In our case we have the following:

root@bbb:~# echo 24c02 0x50 > /sys/bus/i2c/devices/i2c-1/new_device
at24 1-0050: 256 byte 24c02 EEPROM, writable, 1 bytes/write
i2c i2c-1: new_device: Instantiated device 24c02 at 0x50

Now the device 1-0050 is present again:

root@bbb:~# ls /sys/bus/i2c/drivers/at24/
0-0050 1-0050 2-0054 2-0055 2-0056 2-0057 bind uevent unbind
root@bbb:~# cat /sys/bus/i2c/drivers/at24/1-0050/name

24c02

Now, in order to verify that the device is just the same as before, we can read again into the eeprom file where we wrote out testing string:

root@bbb:~# strings /sys/bus/i2c/drivers/at24/1-0050/eeprom
Testing message

As expected the device holds the our string.
Now, to delete the device, we can use the file delete_device which takes a single parameter: the address of the I2C device:

root@bbb:~# echo 0x50 > /sys/bus/i2c/devices/i2c-1/delete_device
i2c i2c-1: delete_device: Deleting device 24c02 at 0x50

Note
Note that since no two devices can live at the same address on a given I2C address on the same bus, the address is sufficient to uniquely identify the device to be deleted.

ADC

Now we can take a look at the ADC chip which is based on a chip named MCP3221 and managed by the driver mcp3021.c. This driver should be included into a standard kernel distribution, however the reader can verify this situation by looking into the following directory for the file name mcp3021.ko as reported following:

root@bbb:~# find /lib/modules/$(uname -r)/kernel/drivers
 -name mcp3021.ko
/lib/modules/4.4.7-bone9/kernel/drivers/hwmon/mcp3021.ko

Note
The user guide of this device is available at:

http://ww1.microchip.com/downloads/en/DeviceDoc/21732D.pdf
.

If we get no output from the find command we have to recompile the kernel as described into Chapter 1, Installing the Development System,
to add the missing driver. In this case, to enable the driver compilation we must surf into the kernel configuration menu and enable the following setting: Device Drivers | Hardware Monitoring support | Microchip MCP3021 and compatibles. After the driver recompilation we have to reinstall the kernel as usual.
When the driver is in place we need the proper kernel configuration only. As done before we can use the dtc utility on the file chapter_09/BB-ADC-MCP322-00A0.dts in the book's example code repository. The file is very similar with the EEPROM's one presented above and it's self-explanatory, however a snippet is below in order to outline important lines:
/* Set the desired clock frequency */
clock-frequency = <400000>;

/* Define the ADC device as based on mcp3221
 * and with I2C address 0x4d
 */
adc: adc@4d {
 compatible = "mcp3221";
 reg = <0x4d>;
};

Well, let's compile it as preceding:

root@bbb:~# dtc -O dtb -o /lib/firmware/BB-ADC-MCP322-00A0.dtbo
 -b 0 -@ BB-ADC-MCP322-00A0.dts

Then we can enable the ADC by using the following command:

root@bbb:~# echo BB-ADC-MCP322 >
 /sys/devices/platform/bone_capemgr/slots

The kernel activity in this case is reported following:

bone_capemgr: part_number 'BB-ADC-MCP322', version 'N/A'
bone_capemgr: slot #6: override
bone_capemgr: Using override eeprom data at slot 6
bone_capemgr: slot #6: 'Override Board Name,00A0,Override Manuf,BB-ADC-MCP322'
bone_capemgr: slot #6: dtbo 'BB-ADC-MCP322-00A0.dtbo' loaded; overlay id #2

If everything works well the ADC data can now be accessed by using the following command:

root@bbb:~# cat /sys/bus/i2c/drivers/mcp3021/1-004d/in0_input
125

Data read above is just a random value due the fact the input pin is floating, if we wish to get well defined data we can try to connect the Ain pin to GND and then to Vcc, so we should get an output as following:

root@bbb:~# cat /sys/bus/i2c/drivers/mcp3021/1-004d/in0_input
0
root@bbb:~# cat /sys/bus/i2c/drivers/mcp3021/1-004d/in0_input
4095

We get exactly the expected values due the fact the GND corresponds to 0 and Vcc is the maximum allowed value and it corresponds to 4095 (that is 212-1).
Tip
To convert between the raw data value and the input voltage present at Ain pin, the reader can use the formula:
Vout = Vcc * (raw_value / 4096)
Where Vcc is the maximum value in volt that the system can read, raw_value is the current read value and Vout is the converted voltage value.

IO Expander

Now we can take a look at the IO Expander chip which is based on a chip named MCP23008 and managed by the driver gpio-mcp23s08.c. This driver should be included into a standard kernel distribution, however the reader can verify this situation by looking into the following directory for the file name gpio-mcp23s08.ko as reported following:

root@bbb:~# find /lib/modules/$(uname -r)/kernel/drivers
 -name gpio-mcp23s08.ko
/lib/modules/4.4.7-bone9/kernel/drivers/gpio/gpio-mcp23s08.ko

Note
The user guide of this device is available at following URL:

http://ww1.microchip.com/downloads/en/DeviceDoc/21919e.pdf
.

If we get no output from the find command we have to re-compile the kernel as described into Chapter 1,
Installing the Development System, setting up the systems to add the missing driver. To enable the driver compilation we must surf into the kernel configuration menu and enable the following setting: Device Drivers | GPIO Support | SPI or I2C GPIO expanders | Microchip MCP23xxx I/O expander. After the driver recompilation we have to reinstall the kernel as usual.
When the driver is in place we need the proper kernel configuration only. As done before we can use the dtc utility on the file chapter_09/BB-IOEXP-MCP23-00A0.dts in the book's example code repository. Following is reported a snippet to outline the important lines:
/* Set the desired clock frequency */
clock-frequency = <400000>;

/* Define the IO Expander device as based on mcp23xxx
 * and with I2C address 0x20
 */
gpio: gpio@20 {
 compatible = "microchip,mcp23008";
 reg = <0x20>;
 gpio-controller;
 #gpio-cells = <2>;
};

Even if very similar to the above DTS files, this time we should notice two entries with prefix gpio-, the gpio-controller string marks the device node as a GPIO controller while the #gpio-cells defines that it needs two cells to store its data: the first cell is the pin number while second cell is used to specify flags (even if currently unused).
Well, let's compile it as preceding:

root@bbb:~# dtc -O dtb -o /lib/firmware/BB-IOEXP-MCP23-00A0.dtbo
 -b 0 -@ BB-IOEXP-MCP23-00A0.dts

Then we can enable the IO Expander by using the following command:

root@bbb:~# echo BB-IOEXP-MCP23 >
 /sys/devices/platform/bone_capemgr/slots

The kernel activity in this case is reported following:

bone_capemgr: part_number 'BB-IOEXP-MCP23', version 'N/A'
bone_capemgr: slot #7: override
bone_capemgr: Using override eeprom data at slot 7
bone_capemgr: slot #7: 'Override Board Name,00A0,Override Manuf,BB-IOEXP-MCP23'
bone_capemgr: slot #7: dtbo 'BB-IOEXP-MCP23-00A0.dtbo' loaded; overlay id #3

If everything works well a new gpiochip device can now be accessed into the GPIO directory into the sysfs (see Chapter 6,
General Purposes Input Output Signals - GPIO
):

root@bbb:~# ls /sys/class/gpio/
export gpiochip0 gpiochip32 gpiochip504 gpiochip64 gpiochip96 unexport

The gpiochip504 directory holds the following:

root@bbb:~# cat /sys/class/gpio/gpiochip504/label
mcp23008
root@bbb:~# cat /sys/class/gpio/gpiochip504/base
504
root@bbb:~# cat /sys/class/gpio/gpiochip504/ngpio
8

Into the label file we find, as expected, the name of our chip while into the base and ngpio files we have respectively the base number and the count of our new GPIOs. So, for example, if we wish to read data from the GP1 line of the MCP23008 chip we have to use the commands below (note that 505 is 504 plus 1, that is the GPIOs' base number plus GP1 line number):

root@bbb:~# echo 505 > /sys/class/gpio/export
root@bbb:~# echo in > /sys/class/gpio/gpio505/direction
root@bbb:~# cat /sys/class/gpio/gpio505/value
0

Tip
The careful reader can notice that this chip can act also as interrupt controller, in fact it can generate different IRQs according to its input statuses. However this is not covered into this book but the reader can take a look at file Documentation/devicetree/bindings/gpio/gpio-mcp23s08.txt into the kernel's sources tree for further information.

The temperature/humidity and pressure sensors

Now it's time so see other two interesting environment sensors useful, for example, to build up a weather station but also useful to show to the reader how we can connect more than one I2C device at the same time. The first device is a combo temperature/humidity sensor while the second one is barometric sensor and they will be tested by using the SAMA5D3 Xplained board.
The temperature and humidity sensor is in the figure following and it's based on the HTU21D chip:

[image: The temperature/humidity and pressure sensors]

Note
The devices can be purchased at the following link (or by surfing the Internet):

http://www.cosino.io/product/humidity-sensor
.
The datasheet of this device is available at:

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/BreakoutBoards/HTU21D.pdf
.

While the barometric sensor, based on the T5403 chip, is reported in the figure following:

[image: The temperature/humidity and pressure sensors]

Note
The devices can be purchased at the following link (or by surfing the Internet):

http://www.cosino.io/product/barometric_sensor
.
The datasheet of this device is available at:

http://www.epcos.com/inf/57/ds/T5400.pdf
 and an useful application note is at
http://www.epcos.com/inf/57/ds/T5400.pdf
.

These devices are very simple and the I2C connections for both are reported following:

[image: The temperature/humidity and pressure sensors]

Now, to verify connections, we can use the i2cdetect command as follow:

root@a5d3:~# i2cdetect -y 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: 40 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- 77

Note
Note that we may need to disable on-board pull-up resistors by clearing the soldered jumper on our sensor board. In fact all I2C controllers on our embedded kits have the internal pull-up required by the I2C bus specifications and under some circumstances the pull-up on the sensor board may interfere with it.
It may happen that we get the UU string in place of 40 or 77 but the device is connected anyway! However it may happen also that we have no 40 nor UU strings at all due some hardware issues regarding the first device, in this case we can use the command i2cget as follow in order to force an I2C activity on the device.

root@a5d3:~# i2cget -y 0 0x40 0xe7 b
0x02

Note
OK, the device is connected, while if we get the following output we must recheck the connections.

root@a5d3:~# i2cget -y 0 0x40 0xe7 w
Error: Read failed

Now to enable devices we can use the user-space method presented above, however we're going to use a proper DTS settings since we wish to specify the bus clock also. A possible implementation can be found into the file chapter_09/A5D3-IIO-HTU21D+T5403-dts.patch in the book's example code repository while following is a snippet:
--- a/arch/arm/boot/dts/at91-sama5d3_xplained.dts
+++ b/arch/arm/boot/dts/at91-sama5d3_xplained.dts
@@ -68,6 +68,17 @@
 i2c0: i2c@f0014000 {
 pinctrl-0 = <&pinctrl_i2c0_pu>;
 status = "okay";
+ clock-frequency = <400000>;
+
+ htu21: htu21@40 {
+ compatible = "htu21";
+ reg = <0x40>;
+ };
+
+ t5403: t5403@77 {
+ compatible = "t5403";
+ reg = <0x77>;
+ };
 };

 i2c1: i2c@f0018000 {

Note that we put two devices inside the i2c0 block but, of course, we can have more if we connect more devices.
Now we can take a look at drivers which should be included into a standard kernel distribution, however the reader can verify this situation by looking into the following directory for file names htu21.ko and t5403.ko as reported following:

root@a5d3:~# find /lib/modules/$(uname -r)/kernel/drivers
 -name htu21.ko -o -name t5403.ko
/lib/modules/4.4.6-sama5-armv7-r5/kernel/drivers/iio/pressure/t5403.ko
/lib/modules/4.4.6-sama5-armv7-r5/kernel/drivers/iio/humidity/htu21.ko

If we get no output from the find command we have to recompile the kernel as described into Chapter 1,
Installing the Development System, to add the missing drivers. To enable the drivers compilation we must surf into the kernel configuration menu and enable the following setting: Device Drivers | Industrial I/O support and then, for the first device the entries Humidity sensors | Measurement Specialties HTU21 humidity & temperature sensor while, for the second device the entries Pressure sensors | EPCOS T5403 digital barometric pressure sensor driver. After the driver recompilation we have to reinstall the kernel as usual.
Note

Industrial I/O (IIO) devices are the defacto Linux's sensor devices whose allow developers in having a standard and common interface for different types of embedded sensors. These devices are not covered into this book due space reasons (even if they are used in some examples) so curious reader can get further information at URL:

https://wiki.analog.com/software/linux/docs/iio/iio
.

After the reboot we should see that both devices at addresses 0x40 and 0x77 on the first I2C bus has been added:

root@a5d3:~# ls /sys/bus/i2c/devices/
0-0040 0-0077 i2c-0 i2c-1 i2c-2

Then inside the 0-0040 directory we should find the following:

root@a5d3:~# ls /sys/bus/i2c/devices/0-0040/
driver iio:device2 modalias name of_node power subsystem uevent

It may happen that the device is not detected at boot time so, in the above listing, the entry iio:device2 is missing which means that the no driver has been loaded. In this case we can force the module loading by using the modprobe command as following:

root@a5d3:~# modprobe htu21
[239.920000] htu21 0-0040: Serial number : 48540017999f3211

Note
Then we can force the module loading at boot time by adding the module name to the file /etc/modules-load.d/modules.conf as we did into Chapter 1,
Installing the Development System
.

And a similar result should be for the directory 0-0077:

root@a5d3:~# ls /sys/bus/i2c/devices/0-0077/
driver iio:device1 modalias name of_node power subsystem uevent

Now we have two new IIO devices that can be read to get the environment data.
Note
The reader should carefully note here that the new devices are named iio:device1 and iio:device2; in fact the iio:device0 is a voltage regulator already defined into the standard DTS file of the SAMA5D3 Xplained.

As example below are the commands we can use to read the temperature, humidity and pressure data:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device2/in_temp_input
30638
root@a5d3:~# cat /sys/bus/iio/devices/iio\:device2/in_humidityrelative
_input
58250
root@a5d3:~# cat /sys/bus/iio/devices/iio\:device1/in_pressure_input
101.459000

Just for completeness the temperature is given in thousandths of celsius degrees (m° C), the humidity is given as of relative humidity percentage (m%RH) while the pressure is given in kilopascal (kPa).

Serial port

Now let's see how we can easily add another serial port to our system by using the device below based on chip SC16IS750, also this device is useful to show how we can use an IRQ line with a I2C device:
Note
The device can be purchased at the following link (or by surfing the Internet):

http://www.cosino.io/product/i2c-uart-io-expander-board
.
The user guide of this device is available at
 http://www.nxp.com/documents/data_sheet/SC16IS740_750_760.pdf.

First of all we must do the electrical connections so, in the figure following, we reported the connection between SAMA5D3 Xplained's pins and I2C board's pins.

[image: Serial port]

We can verify that all connects are OK with the following command:

root@a5d3:~# i2cdetect -y 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- 4d -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

However to verify all connections, that is not only the I2C related ones such as the IRQ line, we need to fully enable the driver and to do so we need a proper DTS file. A possible implementation can be found into the file chapter_09/A5D3-TTY-SC16IS7-dts.patch in the book's example code repository while following is reported a snippet:
--- a/arch/arm/boot/dts/at91-sama5d3_xplained.dts
+++ b/arch/arm/boot/dts/at91-sama5d3_xplained.dts
@@ -29,6 +29,12 @@
 main_xtal {
 clock-frequency = <12000000>;
 };
+
+ sc16is7xx_ck: sc16is7xx_ck {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <14745600>;
+ };
 };

 ahb {
@@ -68,6 +74,14 @@
 i2c0: i2c@f0014000 {
 pinctrl-0 = <&pinctrl_i2c0_pu>;
 status = "okay";
+
+ sc16is750: sc16is750@4d {
+ compatible = "nxp,sc16is750";
+ reg = <0x4d>;
+
+ clocks = <&sc16is7xx_ck>;
+ interrupts-extended = <&pioA 22 IRQ_TYPE_EDGE_FALLING>;
+ };
 };

 i2c1: i2c@f0018000 {

Note that we have to define clocks and interrupts-extended entries to define base clock settings and the GPIO line we choose as IRQ source.
Now we can take a look at driver which should be included into a standard kernel distribution, however the reader can verify this situation by looking into the following directory for the file name sc16is7xx.ko as reported following:

root@a5d3:~# find /lib/modules/$(uname -r)/kernel/drivers
 -name sc16is7xx.ko
/lib/modules/4.4.6-sama5-armv7-r5/kernel/drivers/tty/serial/sc16is7xx.
ko

If we get no output from the find command we have to re-compile the kernel as described into Chapter 1,
Installing the Development System, to add the missing driver. To enable the driver compilation we must surf into the kernel configuration menu and enable the following setting: Device Drivers | Character devices | Serial drivers | SC16IS7xx serial support and enable the I2C interface version as a module.
Note
Note that even if the driver sc16is7xx.ko is present it may be configured to support the SPI bus only! In this case the recompilation is a must.

After the driver recompilation we have to reinstall the kernel as usual. Note that with this step we're going to install the DTS with our modifications also but, if the running kernel already has the driver, we must install the DTS and then reboot the system.
After the reboot we should see that the device at address 0x4d on the first I2C bus has been added:

root@a5d3:~# ls /sys/bus/i2c/devices/
0-004d i2c-0 i2c-1 i2c-2

Then inside the 0-004d directory we should find the following:

root@a5d3:~# ls /sys/bus/i2c/devices/0-004d/
driver gpio modalias name of_node power subsystem tty uevent

Into the file name we should find the name of the chip we're using:

root@a5d3:~# cat /sys/bus/i2c/devices/0-004d/name
sc16is750

While the directory tty tells to us that a new tty device is now present into the system. In fact by looking into it we get the output following:

root@a5d3:~# ls /sys/bus/i2c/devices/0-004d/tty/
ttySC0

Great! This means that the new tty device should now be accessible at the file /dev/ttySC0.
Note
A careful reader should notice also that inside the /sys/bus/i2c/devices/0-004d directory is present also an entry named gpio. This because our chip is also a GPIO extender (see the same device kind above) and the driver also supports it.

root@a5d3:~# ls /sys/bus/i2c/devices/0-004d/gpio/
gpiochip504

The fact that the device is an I2C one is now perfectly masked by the kernel and for the user-space process we have a new serial port and we can do whatever we did into Chapter 7,
Serial Ports and TTY Devices - TTY
:

root@a5d3:~# stty -F /dev/ttySC0
speed 9600 baud; line = 0;
-brkint -imaxbel

Looking at the connections above we saw that the new serial port is connected to the serial port /dev/ttyS1 (see Chapter 7,
Serial Ports and TTY Devices - TTY, on the SAMA5D3 Xplained) and then we can test the new device by simply exchanging some data these two ports (see Chapter 7,
Serial Ports and TTY Devices - TTY, getting access to TTYs and following):

root@a5d3:~# stty -F /dev/ttyS1 115200 raw
root@a5d3:~# stty -F /dev/ttySC0 115200 raw
root@a5d3:~# cat /dev/ttyS1 &
[1] 2085
root@a5d3:~# echo TEST STRING > /dev/ttySC0
TEST STRING

The above example is very basic: firstly we set the same configuration for both two ports and then on the first one we put the cat process in sleeping mode waiting for incoming data, then on the second port we write a message, by using the echo command, which is then displayed on the terminal. Note that the TEST STRING is the output of the background cat process!

The Raw I2C Bus

Now, as done for USB bus we should take a look at how we can get direct access to the I2C bus. In the same manner as for USB devices when one of them hasn't a dedicated driver it can be managed directly from the user space. The only problem may arise if the I2C device can generate interrupts, in this case we cannot manage these signals from the user-space and a kernel driver must be used. However this is a rare case and the presented technique can be used in most cases.
Writing data in C

As first example we're going to write some data to the DAC chip named TC1321 which is mounted on the development board we used above connected to the BeagleBone Black board.
Note
The datasheet is available at the URL:

http://ww1.microchip.com/downloads/en/DeviceDoc/21387C.pdf

By looking at the chip's datasheet we see that its functioning is very simple: it has one 16-bit register at offset 0x00 where we can write digital data to be converted. In fact the register has the format reported below:

[image: Writing data in C]

So, for example, is we wish to write the hexadecimal value 0x41 into the DAC we must build the 16-bit hexadecimal value 0x0140 (that is 0x41 shifted by six positions to the left).
Recalling what we did at the beginning of this chapter we have to create the I2C bus device we should use in order to get access to the bus. We can do it by using the command:

root@bbb:~# echo BB-I2C1 > /sys/devices/platform/bone_capemgr/slots

Now the device /dev/i2c-1 is ready and we can run on it the program into the file chapter_09/i2c_dac/i2c_dac.c in the book's example code repository. The program can be compiled directly on the BeagleBone Black by using the command make as usual.
Two functions below named reg2value() and value2reg() are used to convert the data exchanged with the chip, while the following function main() is the core part of the program:
static void reg2value(unsigned char b1, unsigned char b2, int *val)
{
 *val = (b1 << 2) | (b2 >> 6);
}

static void value2reg(int val, unsigned char *b1, unsigned char *b2)
{
 *b1 = val >> 2;
 *b2 = val << 6;
}

The code snipped below shows the main part of the main() function's body where we can see that, after opening the device /dev/i2c-2, whose corresponds to our I2C bus, we set the I2C address of the device we wish to talk to by using the ioctl() system call:
 /* Select the I2C bus to talk with */
 ret = ioctl(fd, I2C_SLAVE, I2C_SLAVE_ADDR);
 if (ret < 0) {
 fprintf(stderr, "%s: cannot acquire access to address 0x%x\n",
 NAME, I2C_SLAVE_ADDR);
 exit(1);
 }

After that the code has two different behaviors according to the command line used. If the user uses the command line following:

root@bbb:~# ./i2c_dac 100

The program will write the value 100 to the DAC's register by using the code following:
 /* Convert the user's value into a suitable form for the DAC */
 value2reg(val, &wbuf[1], &wbuf[2]);

 /* Write the data to the device */
 ret = write(fd, wbuf, sizeof(wbuf));
 if (ret != sizeof(wbuf)) {
 fprintf(stderr, "%s: failed to write: %m\n", NAME);
 exit(1);
 }

On the other case we can use the command following:

root@bbb:~# ./i2c_dac
100

Then the program will read the DAC's register by using the following code:
 ret = read(fd, rbuf, sizeof(rbuf));
 if (ret != sizeof(rbuf)) {
 fprintf(stderr, "%s: failed to read: %m\n", NAME);
 exit(1);
 }

 /* Convert the just read data to a readable form */
 reg2value(rbuf[0], rbuf[1], &val);

Now, to do a simple check to verify if the above code is really working, we can shortcut the pin labeled Ain of the ADC to the pin labeled Vout of the DAC (see the picture of the I2C board above). In this situation we can write an analog voltage on the DAC and then read it back by using the ADC:

root@bbb:~# ./i2c_dac 100
root@bbb:~# cat /sys/bus/i2c/drivers/mcp3021/1-004d/in0_input
296
root@bbb:~# ./i2c_dac 500
root@bbb:~# cat /sys/bus/i2c/drivers/mcp3021/1-004d/in0_input
1472

Note that digital values read from the ADC and written into the DAC do not perfectly correspond due electrical reasons and due the fact they have different resolutions, however we can notice that, more or less, 1472 if five times 296 as 500 is respect to the value 100.
Before closing this section we should put some words about the ioctl() interface of I2C devices. In fact, as described into Linux's documentation into file Documentation/i2c/dev-interface, we can use several ioctl() arguments and, in particular, the I2C_RDWR looks really interesting. By using it we can combine read and write transactions without any stop bit in between and this functionality is fundamental due the fact some chips refuses to work if that bit is present. This mode of operation is often used to address internal registers of an I2C chip, in fact to get access a register we have first of all to do a dummy write by writing zero bytes at the register's address to select it and then we do a read to get register's content.
To better explain it and as simple example lets consider the procedure below to read a generic register:
int get_i2c_register(int fd,
 unsigned char addr, unsigned char reg,
 unsigned char *val)
{
 unsigned char inbuf, outbuf;
 struct i2c_rdwr_ioctl_data pkt;
 struct i2c_msg msg[2];

 /* Setup the first message as a write */
 outbuf = reg;
 msg[0].addr = addr;
 msg[0].flags = 0;
 msg[0].len = sizeof(outbuf);
 msg[0].buf = &outbuf;

 /* Setup the second message as a read.
 * Data will get returned here
 */
 msg[1].addr = addr;
 msg[1].flags = I2C_M_RD/* | I2C_M_NOSTART*/;
 msg[1].len = sizeof(inbuf);
 msg[1].buf = &inbuf;

 /* Send the request to the system and get the result back */
 pkt.msgs = msg;
 pkt.nmsgs = 2;
 ret = ioctl(fd, I2C_RDWR, &pkt);
 if (ret < 0) {
 perror("Unable to send data");
 return ret;
 }
 *val = inbuf;

 return 0;
}

In this procedure we use a two cells array of struct i2c_msg where we set up the write and read transactions and the we send them to the ioctl() by using the struct i2c_msg. Note that if the I2C device supports more complex transactions we can manage them by adding more cells to the array configured as necessary.

Reading data in Python

As second example we're going to read some data from the infrared temperature sensor below base chip named MLX90614.

[image: Reading data in Python]

Note
The device can be purchased at the following link (or by surfing the Internet):

http://www.cosino.io/product/contactless-temperature-sensor
.
The user guide of this device is available at
 https://www.sparkfun.com/datasheets/Sensors/Temperature/SEN-09570-datasheet-3901090614M005.pdf
.

This device is really interesting since it's capable to measure the temperature of an object without touching it! In fact it is an infrared thermometer with a 17 bits resolution in wide temperature ranges: -40° C to 85° C for the ambient temperature and -70° C to 382.2° C for the object temperature.
The measured value is the average temperature of all objects in the field-of-view of the sensor so it's quite obvious that we can use it to measure the environment temperature as for as the human body temperature, we simply need to approach the sensor to our body and the trick is done.
Another important feature of this sensor is the fact it is a digital device, that is data can be retrieved by using a digital connection which is immune to disturbs from the environment even on a (relative) long distances, so we can consider to put it on a hand piece for a more practical usage.
The needed connections are reported in the table below and they are referred to the Wandboard.

[image: Reading data in Python]

Now, if everything has been well connected, by using the i2cdetect command, we should get something as following:

root@wb:~# i2cdetect -y 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- 5a -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Where we can see that a device at address 0x5a has answered.
Note
Note that we may got different address due the fact some devices uses different addresses, in this case all following commands must be modified accordingly.

By looking at the datasheet we discover that the temperature can be retrieved by reading at the device location 0x07, so by using the i2cget command we can do:

root@wb:~# i2cget -y 0 0x5a 0x07 wp
0x3b9e

The output value, which is a hexadecimal number in Kelvin degrees(° K), can be converted in Celsius degrees (° C) by the following formula after converting it in a decimal value:

celsius_degree = raw_value10 * 0.02 - 273.15

Where raw_value10 is the register content base 10. So we can use the following command:

echo "$(printf "ibase=16; %X\n" $(i2cget -y 0 0x5a 0x07 wp) | bc) * 0.02 - 273.15" | bc
32.19

The bc command may be not installed into the default distribution so, in case, it can be installed by using the usual packages management commands as following:

aptitude install bc

Note
The reader can also get further information regarding this command and its usage by surfing the Internet or, more quickly, by using the man command in order to display the bc's man pages.

Now to do same steps very quickly by using a scripting language as Python. First of all we need the python-smbus package which can be installed in the usual way by using aptitude or apt-get commands, then we have to consider the code into file chapter_09/i2c_temp.py in the book's example code repository which is also reported following:
#!/usr/bin/python

from __future__ import print_function
import os
import sys
import smbus

Defines
BUS = 0
ADDRESS = 0x5a
REG = 0x07

Open the I2C bus /dev/i2c-X
bus = smbus.SMBus(BUS)

Read a single register
raw_value = bus.read_word_data(ADDRESS, REG)

Convert the data in C degrees and then display it
degrees = raw_value * .02 - 273.15
print("%0.2f" % degrees)

The code is very simple and we can easily see how it works: the call smbus.SMBus() is used to generate a new object related to the first I2C bus of the Wandboard while the method read_word_data() is used to read the desired data as we did above with the i2cget command.
Tip
The System Management Bus (SMBus) is subset of I2C that defines the protocol use more strictly and, sometimes they are used interchangeably even if they are not the same thing. The reader can get more information by starting from the URL:

https://en.wikipedia.org/wiki/System_Management_Bus
.

If we execute the command we get the temperature as shown below:

root@wb:~# ./i2c_temp.py
30.79

Summary

In this chapter we learnt about the I2C bus and how we can use specific Linux device drivers to access I2C devices of different kinds. We discovered how to enable them by using a proper DTS file or directly form the user-space. We also explored how we could write our own I2C driver as a user-space application in both C or Python languages.
However, even if the I2C bus is widely used in every embedded computer and a large variety of I2C peripherals exist, another on-board bus can be found on most systems, that is the SPI bus and its devices, so it's time to go to the next chapter.

Chapter 10. Serial Peripheral Interface - SPI

As we have already seen in the previous chapter, the I2C bus is widely used to connect on-board devices with the main CPU, but another bus with similar features exists: the (SPISerial Peripheral Interface (SPI). However, and opposed to the I2C bus, this bus can transfer data at higher rates than I2C, and since it's full-duplex, data transfer can take place bidirectionally at the same time. Due to these features, the SPI bus is normally used to implement an efficient data stream for multimedia applications (LCDs/video) or digital signal processing and/or telecommunications devices (Ethernet, WLAN, CAN, Serial Ports, and so on) and SD cards. However, despite this fact, it can be used to communicate with standard sensors, ADC/DAC converters, GPIOs controllers, and other similar devices.
In order to demonstrate the versatility of the SPI bus, in this chapter, we will present several different kinds of devices connected to the main CPU by this bus.
What is the Serial Peripheral Interface bus?

The SPI bus is a full-duplex, single-master, multi-slave, synchronous serial data bus and, as the I2C bus, it's used for on-board connection of sensor chips with the main CPU. This bus require at least (apart the GND signal) three wires plus one chip select signal per slave, this line is typically called Slave Select (SS) or Chip Select (CS) and usually it's active low (that is the master must set it to 0 to enable the desired slave chip).

Some terms need to be explained here:
	Full-duplex:It means transmitting and receiving are at the same time on the bus.
	Synchronous: It means that the clock is sent along with the data (in this case, it is the master that provides the clock).
	Single-master and multi-slave: It mean that on the bus, there is one master only that directs the communication, while more than one slave can be connected on the bus.
	Serial data:It means data is transmitted one bit at a time over the bus.

The communication starts when the bus master configures the clock using a frequency supported by connected slave devices. Then, the master selects a slave using the proper select line. For each SPI clock cycle, the master sends a bit on the MOSI line and the slave reads it (the MOSI line represents the output line of the master), while the slave sends a bit on the MISO line and the master reads it (the MOSI line represents the input line of the master). Note that this sequence is maintained even in the case of one-directional data transfers. The most important thing is that each slave on the bus that is not activated for data transmission must drop both the input clock and MOSI signals, and must not drive MISO at all in order to not interfere with the selected slave output. It's quite obvious that in an SPI communication, the master must select one slave at a time only.
Here is quite clear that respecting to I2C, whereas the bus is request/reply sharing a single line apart the clock, the SPI bus has two communications happening in parallel: the slave writes while the master is writing at the same time. That's why, we have separate MOSI/MISO lines.
Typically, SPI communications are 8-bit wide, even if other sizes are also common: 16-bit words for touchscreen controllers or audio codecs, or 12-bit words for many digital-to-analog (DAC) or analog-to-digital (ADC) converters.
Note
The intricate details of how the SPI bus works is out of the scope of this book. If interested, you can visit
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
 for further information.

The electrical lines

The SPI bus lines are reported in the following table:
	

Name

	

Description

	

SCLK (Serial clock)

	
The bus clock signal

	

MOSI (Master Out Slave In)

	
The bus data signal (Master Output Slave Input)

	

MISO (Master In Slave Out)

	
The bus data signal (Master Input Slave Output)

	

SS (Slave Select)

	
Chip or slave select signal (one per slave)

	

GND

	
Common ground

Note
It's quite common that an SPI controller has few SS lines (usually two or three). So, when more SPI devices are needed at once, a trick must be used. The solution is to generate the necessary SS signals using common GPIO lines managed by the driver instead of by the controller hardware itself.
Despite the fact that this behavior can permit a very large number of devices to be connected to a single master, it slows down the whole bus' performance because signals are driven in software rather than in hardware. Also, note that this feature must be supported by the SPI master controller's device driver!

Multiple devices must be connected in parallel, but SS signals must be routed to one slave at time.

[image: The electrical lines]

SPI ports on the BeagleBone Black

The BeagleBone Black has two SPI buses, and they are summarized in this table:
	

Name

	

MISO

	

MOSI

	

SCLK

	

SS0

	

SS1

	

spi0

	
P9.21

	
P9.18

	
P9.22

	
P9.17

	
Not available

	

spi1

	
P9.29

	
P9.30

	
P9.31

	
P9.20 or P9.28

	
P9.19 or P9.42

To enable these buses, we can use similar commands as we did in the previous chapters, so the following command enables the spi0 bus:

root@bbb:~# echo BB-SPIDEV0 > /sys/devices/platform/bone_capemgr/slots
bone_capemgr bone_capemgr: part_number 'BB-SPIDEV0', version 'N/A'
bone_capemgr bone_capemgr: slot #4: override
bone_capemgr bone_capemgr: Using override eeprom data at slot 4
bone_capemgr bone_capemgr: slot #4: 'Override Board Name,00A0, Overrid
e Manuf,BB-SPIDEV0'
bone_capemgr bone_capemgr: slot #4: dtbo 'BB-SPIDEV0-00A0.dtbo' loaded
; overlay id #0

Relative kernel messages have been reported just after the command line. The next one (with relative kernel messages) enables the spi1 bus:

root@bbb:~# echo BB-SPIDEV1 > /sys/devices/platform/bone_capemgr/slots
bone_capemgr bone_capemgr: part_number 'BB-SPIDEV1', version 'N/A'
bone_capemgr bone_capemgr: slot #5: override
bone_capemgr bone_capemgr: Using override eeprom data at slot 5
bone_capemgr bone_capemgr: slot #5:
'Override Board Name,00A0,Override Manuf,BB-SPIDEV1'
bone_capemgr bone_capemgr: slot #5:
dtbo 'BB-SPIDEV1-00A0.dtbo' loaded; overlay id #1

Note that our BeagleBone Black's default configuration reserves the spi1 bus to the HDMI support. So, if we try to enable it with the preceding command, we may get the following error:

root@bbb:~# echo BB-SPIDEV1 > /sys/devices/platform/bone_capemgr/slots
-bash: echo: write error: File exists

Then, in the kernel messages, we can read the following reasons:

bone_capemgr bone_capemgr: slot #5: BB-SPIDEV1 conflict P9.31 (#3:BB-B
ONELT-HDMI) bone_capemgr
bone_capemgr: slot #5: Failed verification

The solution to this situation is to disable the HDMI support by editing the U-Boot settings in the /boot/uEnv.txt file and then enabling the following line by uncommenting it:
optargs=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN
If we have no capemgr.disable_partno entry to disable the HDMI support, we can obtain the same result by forcing the loading of the device tree file named am335x-boneblack-overlay.dtb by adding the next line to the U-Boot configuration file:
fdtfile=am335x-boneblack-overlay.dtb

Then, we only have to reboot the system. Note that in the latter case, at boot time, we should see the following U-Boot message, telling us that the right DTB file is being loaded:

loading /boot/dtbs/4.4.7-bone9/am335x-boneblack-overlay.dtb ...

Once we have fixed this issue we can check if no errors are reported, then SPI devices are now available:

root@bbb:~# ls -l /sys/bus/spi/devices/
total 0
lrwxrwxrwx 1 root root 0 Apr 2 20:40 spi1.0 -> ../../../devices/platform/ocp/48030000.spi/spi_master/spi1/spi1.0
lrwxrwxrwx 1 root root 0 Apr 2 20:40 spi1.1 -> ../../../devices/platform/ocp/48030000.spi/spi_master/spi1/spi1.1
lrwxrwxrwx 1 root root 0 Apr 2 20:40 spi2.0 -> ../../../devices/platform/ocp/481a0000.spi/spi_master/spi2/spi2.0
lrwxrwxrwx 1 root root 0 Apr 2 20:40 spi2.1 -> ../../../devices/platform/ocp/481a0000.spi/spi_master/spi2/spi2.1

Note
The effective bus numbering is shifted by one, so bus number 0 is named spi1.X and number 1 is named spi2.X.

Then, relative char devices are now present in the /dev directory as usual:

root@bbb:~# ls -l /dev/spidev*
crw-rw---- 1 root spi 153, 0 Apr 2 20:35 /dev/spidev1.0
crw-rw---- 1 root spi 153, 1 Apr 2 20:35 /dev/spidev1.1
crw-rw---- 1 root spi 153, 2 Apr 2 20:36 /dev/spidev2.0
crw-rw---- 1 root spi 153, 3 Apr 2 20:36 /dev/spidev2.1

Tip
While writing this chapter, the author discovered that the SPI overlay is buggy in the kernel release used in this book to test the SPI devices presented. Due this reason, no SPI pins are correctly configured during the execution of the preceding echo BB-SPIDEV0 and echo BB-SPIDEV0 commands.
This malfunctioning can be recognized by taking a look at the /sys/kernel/debug/pinctrl/44e10800.pinmux/pinmux-pins file where the actual configuration of the BeagleBone Black's pins is reported. After echo commands, we can execute the grep command to verify that everything is working. If so, the following output should appear:

 root@bbb:~# echo BB-SPIDEV0 > /sys/devices/platform

 /bone_capemgr/slots

 root@bbb:~# grep spi0 /sys/kernel/debug/pinctrl/44e

 10800.pinmux/pinmux-pins

 pin 84 (44e10950.0): 48030000.spi (GPIO UNCLAIMED)

 function pinmux_bb_spi0_pins group pinmux_bb_spi0_p

 ins

 pin 85 (44e10954.0): 48030000.spi (GPIO UNCLAIMED)

 function pinmux_bb_spi0_pins group pinmux_bb_spi0_p

 ins

 pin 86 (44e10958.0): 48030000.spi (GPIO UNCLAIMED)

 function pinmux_bb_spi0_pins group pinmux_bb_spi0_p

 ins

 pin 87 (44e1095c.0): 48030000.spi (GPIO UNCLAIMED)

 function pinmux_bb_spi0_pins group pinmux_bb_spi0_p

 ins

However, if grep returns no output, then the running kernel is buggy, and the only way to enable the SPI bus (as a workaround) is by forcing the loading of the overlay file at boot time by adding the following line to the u-boot configuration file /boot/uEnv.txt:

 cape_enable=bone_capemgr.enable_partno=BB-SPIDEV0

You should now pay attention to the fact that the SPI device /dev/spidev1.0 is not referred to the whole bus like for the I2C bus. Rather it points to the SPI device connected to the first chip select line, while the /dev/spidev1.1 device points to the SPI device connected to the second chip select line!
Also, note that this setting, which allows the user to have a raw access to the bus, is quite generic and will be used in the next section where we'll describe how to manage a simple SPI device using this raw access mode.

SPI ports on the SAMA5D3 Xplained

The SAMA5D3 Xplained has two SPI buses exposed on expansion connectors. However, the spi0 bus is reserved to get access to an optional NOR flash. So, if we wish to use this bus, we have to reprogram the CPU internal pins multiplexer to reroute SPI signals (for space reasons, this operation is not reported in this book, but it consists of changing the pinctrl-0 attribute for the spi0 entry).
Available lines are reported in this table:
	

Name

	

MISO

	

MOSI

	

SCLK

	

SS0

	

spi1

	
J15.12 - SPI1_MISO

	
J15.11 - SPI1_MOSI

	
J15.13 - SPI1_SPCK

	
J15.10 - NPCS0

Note that even if we have one chip select (CS) signal only by default, we can add more than just one device by modifying and then recompiling the SAMA5D3 Xplanied's DTS file arch/arm/boot/dts/at91-sama5d3_xplained.dts into the Linux tree. We have to modify the following section by adding up to four GPIO pins to act as four chip select lines. The default settings are shown here:
spi1: spi@f8008000 {
 cs-gpios = <&pioC 25 0>;
 status = "okay";
};

So, for example, we can add the pin A22 as a third chip select line by modifying the settings:
spi1: spi@f8008000 {
 cs-gpios = <&pioC 25 0>, <0>, <&pioA 22 0>;
 status = "okay";
};

Also, if we wish to have the spidev device as we did for the BeagleBone Black, we have to modify the spi1 section as follows:
spi1: spi@f8008000 {
 cs-gpios = <&pioC 25 0>, <0>, <&pioA 22 0>;
 status = "okay";

 spi@0 {
 compatible = "spidev";
 reg = <0>;
 spi-max-frequency = <1000000>;
 };

 spi@2 {
 compatible = "spidev";
 reg = <2>;
 spi-max-frequency = <1000000>;
 };
};

After the new DTS has been converted into the relative DTB and the board has been rebooted, we should get our new SPI controllers listed into the sysfs, as shown here:

root@a5d3:~# ls -l /sys/bus/spi/devices/
total 0
lrwxrwxrwx 1 root root 0 Jan 1 2007 spi32765.0 -> ../../../devices/s
oc0/ahb/ahb:apb/f8008000.spi/spi_master/spi32765/spi32765.0
lrwxrwxrwx 1 root root 0 Jan 1 2007 spi32765.2 -> ../../../devices/s
oc0/ahb/ahb:apb/f8008000.spi/spi_master/spi32765/spi32765.2

You should now notice that for the SAMA5D3 Xplained, specifically adding the spidev device into the DTS file in latest kernel releases will cause kernel warning messages as follows:

spidev spi32765.0: buggy DT: spidev listed directly in DT
------------[cut here]------------
WARNING: CPU: 0 PID: 1 at drivers/spi/
spidev.c:719 spidev_probe+0x141/0x154()
Modules linked in:
CPU: 0 PID: 1 Comm: swapper Not tainted 4.4.6-sama5-armv7-r5 #12
Hardware name: Atmel SAMA5
[<c00122bd>] (unwind_backtrace) from [<c0010393>] (show_stack+0xb/0xc)
[<c0010393>] (show_stack) from [<c0018ac7>] (warn_slowpath_common
...

This is done intentionally by the kernel developers as reported into the comment of the commit that introduced this behavior:

spi: spidev: Warn loudly if instantiated from DT as "spidev"
Since spidev is a detail of how Linux controls a device rather
 than a
description of the hardware in the system we should never
 have a node
described as "spidev" in DT, any SPI device could be a
 spidev so this
is just not a useful description.
In order to help prevent users from writing such device trees
 generate a
warning if spidev is instantiated as a DT node without
 an ID in the match
table.
Signed-off-by: Mark Brown <broonie@kernel.org>

Like the i2c char device discussed in Chapter 9
,
Inter-Integrated Circuits - I2C, the spidev one doesn't talk directly to any hardware. So, kernel developers are encouraging people to work around this behavior by adding their specific devices to the list of compatible strings (however, this technique is not be discussed in this book for space reasons and because it's a minor issue).

SPI ports on the Wandboard

The Wandboard has exported only one SPI bus (even if the CPU has four), and relative connections are summarized in the following table:
	

Name

	

MISO

	

MOSI

	

SCLK

	

SS0

	

SS1

	

spi1

	
JP4.9 - CSPI1_MISO

	
JP4.7 - CSPI1_MOSI

	
J4.11 - CSPI1_SPCK

	
J4.13 - CSPI1_CS0

	
J4.15 - CSPI1_CS1

However, by default, this bus is not enabled. To enable it, we have to modify the Wandboard's arch/arm/boot/dts/imx6qdl-wandboard.dtsi DTS file into the Linux tree by adding a proper section as follows, and then recompiling and reinstalling it:
&ecspi1 {
 fsl,spi-num-chipselects = <2>;
 cs-gpios = <&gpio2 30 0>, <&gpio4 10 0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi1_1>;
 status = "okay";

 spidev@0 {
 compatible = "spidev";
 reg = <0>;
 spi-max-frequency = <16000000>;
 };

 spidev@1 {
 compatible = "spidev";
 reg = <1>;
 spi-max-frequency = <16000000>;
 };
};

Note
Also, note that the pins multiplexer settings named pinctrl_ecspi1_1 must be defined into the Wandboard's DTS file. The full patch is reported in chapter_10/imx6qdl-wandboard-spidev.dtsi.patch in the book's example code repository.

As for the other two boards, if everything works well, after the reboot, our new SPI controllers are reported into the sysfs, as shown here:

root@wb:~# ls -l /sys/bus/spi/devices/
total 0
lrwxrwxrwx 1 root root 0 Jul 22 13:23 spi0.0 -> ../../../devices/soc0/
soc/20000aips-bus/2000000.spba-bus/2008000.ecspi/spi_master/spi0/spi0.
0
lrwxrwxrwx 1 root root 0 Jul 22 13:23 spi0.1 -> ../../../devices/soc0/
soc/2000000.aips-bus/2000000.spba-bus/2008000.ecspi/spi_master/spi0/sp
i0.1

The SPI bus in Linux

As in the I2C case, the SPI bus has the concept of master and slave device too. Again, regarding the SPI master device, there is nothing special to do here since the proper driver is already up and running in our embedded kits' default kernel configurations (as seen earlier). However, to be connected with SPI devices, we can have several possibilities: external memories, I/O extenders, sensors, serial ports, and so on (the list can be very long!).
As seen earlier, we can also have a generic spidev driver to get access to the raw bus functionalities, but this time, we have no prebuild tools to manage it! The only things we can do is write our own program, maybe take some basic tools provided into the kernel's tree (see the next section for an example) as examples to manage our device through the spidev driver.
Note
For further information on the API in Linux for SPI, we can take a look at the Documentation/spi/spidev file in Linux's sources repository.

The SPI tools

In complete analogy to the I2C case, even for SPI, we have some basic tools to manage it. However, as stated earlier, this time, these tools are not into a dedicated Debian package, but they are stored directly in the Documentation/spi/ directory of Linux's sources repository. Honestly, these SPI tools offer a poor support against the I2C counterpart. However, they can be used for basic functionalities and taken as examples to build our own programs.
As shown here, the available programs are just two:

$ ls Documentation/spi/*.c
Documentation/spi/spidev_fdx.c
Documentation/spi/spidev_test.c

Both of them can be compiled on the host PC (or directly on our embedded kits) using the following command:

$ make CC=arm-linux-gnueabihf-gcc
 CFLAGS="-Wall -O2" spidev_fdx spidev_test
arm-linux-gnueabihf-gcc -Wall -O2 spidev_fdx.c -o spidev_fdx
arm-linux-gnueabihf-gcc -Wall -O2 spidev_test.c -o spidev_test

Note
Of course, if we decide to compile them natively, the CC=arm-linux-gnueabihf-gcc setting must be omitted.

The spidev prefix suggests that they must be used with the spidev device, and once placed into our embedded kit, they can be executed with the following command lines. The first one is the command line of spidev_fdx:

root@bbb:~# ./spidev_fdx -h
usage: ./spidev_fdx [-h] [-m N] [-r N] /dev/spidevB.D

Then comes the command line of spidev_test:

root@bbb:~# ./spidev_test -h
./spidev_test: invalid option -- 'h'
Usage: ./spidev_test [-DsbdlHOLC3]
-D --device device to use (default /dev/spidev1.1)
-s --speed max speed (Hz)
-d --delay delay (usec)
-b --bpw bits per word
-l --loop loopback
-H --cpha clock phase
-O --cpol clock polarity
-L --lsb least significant bit first
-C --cs-high chip select active high
-3 --3wire SI/SO signals shared
-v --verbose Verbose (show tx buffer)
-p Send data (e.g. "1234\xde\xad")
-N --no-cs no chip select
-R --ready slave pulls low to pause
-2 --dual dual transfer
-4 --quad quad transfer

The spidev_fdx can be used to send and receive simple messages from the SPI device, while spidev_test can be used to do several functional tests on our SPI bus, in particular, we can use it to verify that our SPI controller is well configured. As a practical example, considering what we saw earlier about the possible buggy spidev support for BeagleBone Black's kernel 4.4 release, we can do a specific test to verify that our system has the correct SPI settings.
Let's suppose we want to test the spidev1 device. Then, we have to connect relative MOSI and MISO pins together (that is, pins P9.29 and P9.30) and then execute the spidev_test command as follows:

root@bbb:~# ./spidev_test --device /dev/spidev2.0
spi mode: 0x0
bits per word: 8
max speed: 500000 Hz (500 KHz)
RX | FF FF FF FF FF FF 40 00 00 00 00 95 FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF F0 0D |@....+..................+.

The command's output tells us that in this case, the data transfer is correct. Otherwise, if we get the following output, it means something went wrong:

root@bbb:~# ./spidev_test --device /dev/spidev2.0
spi mode: 0x0
bits per word: 8
max speed: 500000 Hz (500 KHz)
RX | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 |

Getting access to SPI devices

Now, we are ready to manage real SPI devices. We can find tons of supported devices in Linux's tree that are usually grouped according to their specific operations in complete analogy to the I2C case.
In the next section, we will see several different kinds of devices all connected to the main CPU through the SPI bus. Also, we will use different embedded kits to test them, but as said earlier, every command can be easily repeated on every GNU-/Linux-based boards with a similar configuration.
LCD display

As the first example, we will use the following tiny LCD display, which can be used in simple applications because it's cheap and well supported by BeagleBone Black's kernel:

[image: LCD display]

Note
The device can be purchased at
http://www.cosino.io/product/color-tft-lcd-1-8-160x128
 or by surfing the Internet.
The LCD is based on the chip ST7735R, which has its datasheet at:
https://www.adafruit.com/datasheets/ST7735R_V0.2.pdf.

First of all, we must do the following electrical connections:

[image: LCD display]

You can note that we used SPI-dedicated pins, plus some GPIOs lines. This configuration is quite typical in SPI connections, since it's more efficient using additional lines to specify special data, which means using proper SPI messages to manage the device. In our LCD, we use the D/C (Data/Command) line to specify which data is simple graphical data and which data is special commands for the LCD instead. The meaning of the RESET line is obvious, while the LITE line is used to manage the backlight intensity (note that this line should not be a simple GPIO, but it should be a PWM line in order to be able to control the backlight intensity; in fact, if used as a normal GPIO, the intensity will stay at a maximum level all the time, or it can be completely turned off).
Tip
The PWM lines are special lines that can generate a Pulse Width Modulated signal (see Chapter 18, Pulse-Width Modulation - PWM
).

Now, we should verify that the correct driver is available in our system. We can do this by using the following command:

root@bbb:~# zcat /proc/config.gz | grep -i st7735
CONFIG_FB_TFT_ST7735R=m

In our kernel configuration, the driver is present as a module, but it's OK having it statically linked into the kernel too. In this case, the output should be something like this:

CONFIG_FB_TFT_ST7735R=y

Tip
If we get no output, then we must enable the driver into the kernel configuration menu: Device Drivers | Staging drivers | Support for small TFT LCD display modules | FB driver for the ST7735R LCD Controller. We then need to recompile the kernel (in Chapter 1, Installing the Development System).
You should notice that the driver we're using is under the Staging drivers section, which holds standalone drivers (and other kernel stuff) that are not ready to be merged into the main portion of the Linux kernel tree for various technical reasons. They can be used, but at complete risk of the developer/user! For further information regarding staging drivers, go to
https://lwn.net/Articles/324279/
.

Now, we have to enable the spidev1 device using the usual echo command as follows:

root@bbb:~# echo BB-SPIDEV1 > /sys/devices/platform/bone_capemgr/slots

Note
If the kernel has the bug reported earlier, the only way we have to correctly enable the SPI bus is by adding the next line to the /boot/uEnv.txt file:

 cape_enable=bone_capemgr.enable_partno=BB-SPIDEV1

In any case, the HDMI support must be disabled to be able to use the spidev1 device!

Now, if everything was done correctly, we should be able to execute the preceding command without errors:

root@bbb:~# modprobe fbtft_device busnum=2 name=adafruit18 gpios=dc:117,reset:115

Kernel messages should be as follows:

fbtft: module is from the staging directory, the quality is unknown, y
ou have been warned.
fbtft_device: module is from the staging directory, the quality is unk
nown, you have been warned.

Here, we have two warnings related to the fact that we've just loaded two staging drivers. Then, we should see the following code snippet:

spidev spi2.1: spidev spi2.1 16000kHz 8 bits mode=0x00
spidev spi2.0: spidev spi2.0 16000kHz 8 bits mode=0x01
spidev spi2.0: Deleting spi2.0

We saw have the selection of the spidev1 device (remember the numbering shift). Here is the selection of the GPIOs we need to control our LCD:

fbtft_device: GPIOS used by 'adafruit18':
fbtft_device: 'dc' = GPIO117
fbtft_device: 'reset' = GPIO115

Then, the last messages are as follows:

spidev spi2.1: spidev spi2.1 16000kHz 8 bits mode=0x00
spi spi2.0: fb_st7735r spi2.0 32000kHz 8 bits mode=0x00
fb_st7735r: module is from the staging directory, the quality is unkno
wn, you have been warned.
Console: switching to colour frame buffer device 16x20
graphics fb0: fb_st7735r frame buffer, 128x160, 40 KiB video memory, 4
 KiB DMA buffer memory, fps=20, spi2.0 at 32 MHz

At this point, the device is finally activated, and now, we see that the BeagleBone Black has a new color framebuffer device of 128x160 pixels, represented in the user space by the /dev/fb0 device.
Note
Framebuffer devices are not covered by this book, so if you need more information regarding them, you can start reading the Documentation/fb/framebuffer.txt file in the kernel's repository.

Also, the Console: switching to colour frame buffer device 16x20 message tells us that we have a console 16 x 20 characters wide! In fact, the LCD displays a normal login message, as shown in the following image:

[image: LCD display]

Serial port

Now, let's see how we can easily add another serial port to our system using the same device used in Chapter 9
, Inter-Integrated Circuits - I2C
, that is, the chip SC16IS750, which implements a serial port controller. The electrical connections between SAMA5D3 Xplained's pins and board's pins are reported here:

[image: Serial port]

This time, the only way we have to test connections is by just loading the driver. So, we need a proper DTS file, and a possible implementation can be found in the chapter_10/A5D3-TTY-SC16IS7-dts.patch file in the book's example code repository. However, a snippet is also reported here:
 main_xtal {
 clock-frequency = <12000000>;
 };
+
+ sc16is7xx_ck: sc16is7xx_ck {
+ compatible = "fixed-clock";
+ #clock-cells = <0>;
+ clock-frequency = <14745600>;
+ };
 };

 ahb {
@@ -159,6 +165,15 @@
 spi1: spi@f8008000 {
 cs-gpios = <&pioC 25 0>;
 status = "okay";
+
+ sc16is750: sc16is750@0 {
+ compatible = "nxp,sc16is750";
+ reg = <0>;
+ spi-max-frequency = <15000000>;
+
+ clocks = <&sc16is7xx_ck>;
+ interrupts-extended = <&pioA 22 IRQ_TYPE_EDGE_FALLING>;
+ };
 };

 adc0: adc@f8018000 {

Note that as in the case of I2C, we have to define clocks and interrupts-extended entries to define base clock settings and the GPIO line we choose as IRQ source.
Now, we can take a look at the driver that should be included in a standard kernel distribution. However, you can verify this situation by looking into the following directory for the file name sc16is7xx.ko as reported here:

root@a5d3:~# find /lib/modules/$(uname -r)/kernel/drivers
 -name sc16is7xx.ko
/lib/modules/4.4.6-sama5-armv7-r5/kernel/drivers/tty/serial/sc16is7xx.
ko

If we get no output from the find command, we have to recompile the kernel as described into Chapter 1
, Installing the Developing System, Setting up the systems to add the missing driver. To enable the driver compilation, we must navigate to the kernel configuration menu and enable the following settings: Device Drivers | Character devices | Serial drivers | SC16IS7xx serial support. Then, we need to enable the SPI interface version as a module.
Note
Even if the sc16is7xx.ko driver is present, it may be configured to support the I2C bus only! In this case, the recompilation is necessary.

After the driver recompilation, we have to reinstall the kernel as usual with the DTS holding our modifications. However, if the running kernel already has the driver, we just need to install the DTS and then reboot the system. If we did everything correctly, we should see that a new SPI device has been added:

root@a5d3:~# ls /sys/bus/spi/devices/
spi32765.0

Then, inside the spi32765.0 directory, we should find the following files:

root@a5d3:~# ls /sys/bus/spi/devices/spi32765.0
driver gpio modalias of_node power statistics
subsystem tty uevent

The tty directory suggests that a new TTY device is now present into the system. In fact, by looking into it, we will get the following output:

root@a5d3:~# ls /sys/bus/spi/devices/spi32765.0/tty/
ttySC0

Great! This means that the new TTY device should now be accessible in the /dev/ttySC0 file.
Tip
You can note that as far as the analogous I2C example in Chapter 9
, Inter-Integrated Circuits - I2C
, into the /sys/bus/spi/devices/spi32765.0 directory is present also an entry named gpio due the GPIO extender functionalities the chip has and that the driver also supports:

 root@a5d3:~# ls /sys/bus/spi/devices/spi32765.0/gpio/
 gpiochip504

The fact that the device is an SPI one is now perfectly masked by the kernel, and for the user-space process, we have a new serial port and we can do whatever we did in Chapter 7
, Serial Ports and TTY Devices - TTY
:

root@a5d3:~# stty -F /dev/ttySC0
speed 9600 baud; line = 0;
-brkint -imaxbel

As in the previous chapter, the new serial port is connected to the serial port /dev/ttyS1 (see Chapter 7
, Serial Ports and TTY Devices - TTY
), and then, we can test the new device, as done earlier by simply exchanging some data between these two ports (see Chapter 7
, Serial Ports and TTY Devices - TTY
):

root@a5d3:~# stty -F /dev/ttyS1 115200 raw
root@a5d3:~# stty -F /dev/ttySC0 115200 raw
root@a5d3:~# cat /dev/ttyS1 &
[1] 1714
root@a5d3:~# echo TEST STRING > /dev/ttySC0
TEST STRING

The raw SPI bus

As for USB and I2C buses the SPI bus supports the raw access in order to directly send and receive messages from the SPI slaves, so it's time to show a little example about how we can do it on our Wandboard.
As for other raw accesses, the only problem is that it interrupts management. In this case, we cannot manage these signals from the user space. A kernel driver must be used.
Exchanging data in C

To show how we can manage the raw SPI bus, we are going to manage a really simple device using the Wandboard, that is, the thermocouple to digital converter based on the MAX31855 chip:

[image: Exchanging data in C]

Note
The device can be purchased at:
http://www.cosino.io/product/thermocouple-max31855
 or by surfing the Internet.
The datasheet of the MAX31855 is available at:
 https://datasheets.maximintegrated.com/en/ds/MAX31855.pdf.

Electrical connections are reported in this image:

[image: Exchanging data in C]

By looking at the chip's datasheet, we see that its functioning is very simple: it has one 32-bit register where we can read the temperature information. The register has the format reported here:

[image: Exchanging data in C]

So, to read the temperature data, we have to read the preceding register and extract the data from bits D30-D18. Note that we should check bit D16 also in order to know if the peripheral is into a faulting state or not.
Note
Note that D30 corresponds to value 210, while D18 to 2-2, so the data into bits D30-D18 must be divided by 4 to get the real temperature data.
You can notice that this chip can give us more information, but we decide to keep our example as simple as possible for better readability. But of course, you can improve it to fully retrieve all the necessary information.

The SPI device to be used is spidev0.0 we enabled earlier in the Wandboard section. Then, the code to read thermocouple data is reported in chapter_10/spi_thermo/spi_thermo.c in the book's example code repository. A screenshot of this program is reported here where it's easy to see that we simply open the SPI device file /dev/spidev0.0 and then we do a read. The remaining code is just for decoding the data read:
/* Open the SPI bus device connected to the thermocouple chip */
fd = open(SPI_DEV, O_RDWR);
if (fd < 0) {
 fprintf(stderr, "%s: cannot get access to SPI bus\n", NAME);
 exit(1);
}

/* Read the 32-bit data */
ret = read(fd, &data, 4);
if (ret < 0) {
 fprintf(stderr, "%s: cannot read data from SPI device\n", NAME);
 exit(1);
}
if (ret != 4) {
 fprintf(stderr, "%s: short read\n", NAME);
 exit(1);
}

Now, we can compile the code using the make command as usual. If everything works well, we can read the environment temperature using the following command:

root@wb:~# ./spi_thermo
25.50

Exchanging data in Python

To show another possibility about how to manage the raw SPI bus, we can use the board reported in the following figure, which is based on two SPI chips: the CLT01-38SQ7, which provides an 8-line protected input termination, and the VNI8200XP chip, which provides an 8-line monolithic output driver. The board has been designed to be plugged onto any CPU board having the Arduino UNO R3 connectors, and it can be used to build basic PLC (Programmable Logic Controller) applications, where the feature of managing eight analog inputs and eight outputs through the SPI bus is needed.

[image: Exchanging data in Python]

Tip
The device is by STMicroelectronics and can be purchased on several e-commerce sites on the Internet. The datasheet of the whole board is at:
http://www.st.com/content/ccc/resource/technical/document/user_manual/group0/9c/25/64/62/4f/bc/4d/9f/DM00213568/files/DM00213568.pdf/jcr:content/translations/en.DM00213568.pdf.
The datasheet of the single chips are available at: http://www.st.com/content/ccc/resource/technical/document/datasheet/5f/67/d9/9c/7a/e2/4a/55/DM00218826.pdf/files/DM00218826.pdf/jcr:content/translations/en.DM00218826.pdf and
 http://www.st.com/content/ccc/resource/technical/document/user_manual/group0/9c/25/64/62/4f/bc/4d/9f/DM00213568/files/DM00213568.pdf/jcr:content/translations/en.DM00213568.pdf.

To manage the board, we're going to use the SAMA5D3 Xplained board that has the Arduino UNO R3 connectors. However, since some pins conflict with the Ethernet port's ones, we're going to use some wires to connect the board instead of disabling the Ethernet port.
The connections needed to talk with on-board SPI chips are shown here:

[image: Exchanging data in Python]

Before starting to write the code, we need to take a look at chips' datasheets in order to know how these work and then which data should be sent over the SPI channels we're going to use. Note that one chip is for the digital input, while the other one is for the digital output. However, in any case, we have to write and read data through both chips.
The important information regarding how to talk with these chips is that messages are 16 bits long, and they are arranged in this table. For the CLT01-38SQ7 we have:

[image: Exchanging data in Python]

Here, IN1 to IN8 bits are our digital line's statuses, and the other bits are control statuses (see the datasheet for further information). Then, for the VNI8200XP we have:

[image: Exchanging data in Python]

Again, IN0 to IN7 bits are our digital lines statuses, and the other bits are control statuses (see the datasheet for further information).
Note that in both cases, both chips will send us an answer to each data transfer where we can extract useful information regarding the success of the last operation and the chips' status (again, we cannot explain these aspects in detail, and the datasheet is the only reference for you).
DTS modifications to enable the communication between the CPU and these chips are reported in the patch snippet here, and it's more or less the one we already saw earlier regarding the spidev1 bus:
 };

 spi1: spi@f8008000 {
- cs-gpios = <&pioC 25 0>;
+ cs-gpios = <&pioC 25 0>, <&pioC 16 0>;
 status = "okay";
+
+ vni8200xp@0 {
+ compatible = "spidev";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ };
+
+ clt01_38sq7@1 {
+ compatible = "spidev";
+ reg = <1>;
+ spi-max-frequency = <1000000>;
+ };
 };

 adc0: adc@f8018000 {

Note
The complete patch can be found in the chapter_10/A5D3-digital-IO-spi.patch file in the book's example code repository.

Now, we need to install a new Python library to manage our spidev device. Then, we can ask the pip command for help, as shown here:

root@a5d3:~# pip search spidev
max7219 - A library to drive a MAX7219 LED
 serializer using
hardware spidev
SPIlib - A small library to use the SPIdev
 linux interface
spidev - Python bindings for Linux SPI access
 through
spidev
Adafruit-PureIO - Pure python (i.e. no native extensions)
 access to
 Linux IO including I2C and SPI.
 Drop in
 replacement for smbus and spidev
 modules.
spi - Pure Python SPI Interface using spidev
RPimax7219 - A small library to drive a MAX7219 LED
 serializer
 using hardware spidev

Note
In order to execute the pip command and then install a new Python package through it, we must first install the python-pip and libpython-dev packages as usual.

OK, the library is spidev, and using the next command line, we can install it into our SAMA5D3 Xplained board:

root@a5d3:~# pip install spidev

Note
The home site of the spidev Python library is at:
https://pypi.python.org/pypi/spidev
.

Now, a possible implementation of the code to read and write data to our devices is reported here:
def do_write(data):
 spi = spidev.SpiDev()
 spi.open(32765, 0) # the SPI device for output

 # Do some SPI settings
 spi.max_speed_hz = 1000000
 spi.bits_per_word = 16

 # Compute the checksum
 p0 = data ^ (data >> 1)
 p0 = p0 ^ (p0 >> 2)
 p0 = p0 ^ (p0 >> 4)
 p0 = p0 & 1;
 p1 = data ^ (data >> 2)
 p1 = p1 ^ (p1 >> 4)
 p2 = p1 & 1
 p1 = p1 & 2
 p1 = p1 >> 1
 np0 = not p0
 tmp = (p2 << 3) | (p1 << 2) | (p0 << 1) | np0
 tmp = 0x01
 dbg("p2.p1.p0.np0=0x%01x" % (tmp))

 # Do the write
 dbg("write=0x%04x" % ((data << 8) | tmp))
 data = spi.xfer2([tmp, data])

 # Decode answer
 faults = data[1]
 ok = 1 if data[0] & 0b10000000 else 0
 twarn = 0 if data[0] & 0b01000000 else 1
 pc = 1 if data[0] & 0b00100000 else 0
 pg = 0 if data[0] & 0b00010000 else 1
 p = data[0] & 0b00001111
 dbg("faults=0x%02x ok=%d twarn=%d pc=%d
 pg=%d p2.p1.p0.np0=0x%01x" %
 (faults, ok, twarn, pc, pg, p))

 spi.close()

def do_read():
 spi = spidev.SpiDev()
 spi.open(32765, 1) # the SPI device for input

 # Do some SPI settings
 spi.max_speed_hz = 1000000
 spi.bits_per_word = 16

 data = spi.xfer2([0, 0])
 dbg("read=0x%04x" % ((data[1] << 8) | data[0]))

 spi.close()

 # Compute the checksum and extract alarms
 uva = 1 if data[0] & 0b10000000 else 0
 ota = 1 if data[0] & 0b01000000 else 0
 pc = (data[0] >> 2) & 0b00001111
 ok = 1 if (data[0] & 0b00000011) == 1 else 0

 dbg("inputs=0x%02x uva=%d ota=%d pc=0x%x ok=%d" %
 (data[1], uva, ota, pc, ok))

 return data[1]

Note
The complete code is reported in chapter_10/digital.py in the book's example code repository.

The do_write() and do_read() functions basically call the spidev.SpiDev() method to create the object representing our SPI bus. Then, we use the open() and close() methods as usual, while the xfer2() method is used to both send and receive data through the SPI channel. Simply speaking, the command sequence for both functions is (more or less) like this:
spi = spidev.SpiDev() # create the object
spi.open(AA, BB) # open the /dev/spidevAA.BB
spi.xxxxxxxx = xxxxxxxx # do some SPI settings
data_in = spi.xfer2(data_out) # do data transfer
spi.close() # close the device

In particular, note that during the reading we simply used some dummy values ([0, 0]) since each time we call the xfer2() method, we do a full duplex transfer (both MOSI and MISO channels are active at the same time). Then, we write and read data simultaneously.
At this point, to read the input's status, we can use the following command:

root@a5d3:~# ./digital.py -d r
digital.py : read=0x00fd
digital.py : inputs=0x00 uva=1 ota=1 pc=0xf ok=1
0x00

To write the output, we can use the following lines of code:

root@a5d3:~# ./digital.py -d w 0x80
digital.py : p2.p1.p0.np0=0x1
digital.py : write=0x8001
digital.py : faults=0x00 ok=1 twarn=1 pc=0
 pg=1 p2.p1.p0.np0=0x5

Both commands have been executed with the debugging messages turned on (using the -d option argument). So, you can see each single parameter we must take into account when we manage these devices.
Tip
For space reasons, we cannot explain in detail how these devices work, but you can easily get them by reading chips' datasheets.
To completely enable digital outputs, we have to properly manage an extra control line; otherwise, outputs are stuck at low level. A trick we can use is to connect the OUT_EN watchdog signal of the VNI8200XP chip to the chip select of CLT01-38SQ7. Then, we can refresh it using the following lines of code:

 # while sleep .04 ; do \

 ./spidev_fdx -r 4 /dev/spidev32765.1 > \

 /dev/null; \

 done

Here, the /dev/spidev32765.1 device corresponds to the CLT01-38SQ7 chip.

Summary

As you can see, the SPI bus is quite powerful, since while it implements an efficient data stream, it can also be easily managed with a large variety of different slave devices.
In the next chapter, we'll see another available bus for our embedded kits that allows us to communicate with some sensors using only one wire! It's time to move on to the next chapter and discover the 1-Wire bus.

Chapter 11. 1-Wire - W1

After looking at the most frequently used buses that a developer can find on an embedded computer (USB, I2C, and SPI), it's time to present a less famous, but not less important communication bus: the 1-Wire bus (pronounced as one-wire and usually abbreviated with W1 or OW).
Even if this bus is quite slow compared to other buses, it's interesting because it permits to communicate with a remote device using only one wire! This allows to simplify connections between the CPU and its peripherals, giving the designer the possibility to have the most economical and simply way to add electronic devices for identification, authentication, and delivery of calibration data or manufacturing information to a computer board.
What is the 1-Wire Bus?

The one-wire (1-Wire) bus is a half-duplex, single-master, multi-slave, asynchronous serial data bus designed to work with one wire only. In reality, for electrical reasons, the wires are at least two: one wire that carries a low-speed data signal with the power supply (data/power line) and the other one that is the ground (GND). However, despite this feature, most devices have three wires: the data signal, the GND, and the power supply (Vcc).
Tip
You should remember that half-duplex communication is when transmitting and receiving are not at the same time on the bus (the data can flow in one direction only), while asynchronous means that no clock is sent along with the data.

[image: What is the 1-Wire Bus?]

When a device has two wires only, it must include an in-built energy-storage mechanism (usually a capacitor) to store charge to power itself during periods when data is really exchanged. The device takes its power from the data pin instead of the regular power pin, and due to this reason, this functioning method is called parasite mode. The drawback of this feature is that the communication with this kind of device is slower. In fact, as shown in the figure below, in parasite mode, the data line must be pulled high prior to the beginning of the data transfer for at least an amount of time sufficient to charge the internal capacitor on the device. When the capacitor is charged, it can power the device to permit the data exchange.
On a 1-Wire bus, there is always one master, which typically is a microcontroller, and several slaves. The master initiates each communication activity on the bus, so the slaves can only act when addressed. Each slave has a unique 64-bit serial number that the master uses to address a well-defined device over the bus.
Since the slaves' addresses are not known by the master, the master uses an enumeration protocol (a particular broadcast message) to discover all connected devices called singulation. Once all devices are detected, the master can send a selection command with the address of a particular device, so the next command is executed only by the addressed device.
What is interesting about this bus is that every single slave can be disconnected and then reconnected without any problems for both the slave and the master. In fact, the master can detect a new slave and also discover when a slave has been removed. On the other hand, a slave can store its configuration into a non-volatile memory and start to work again as soon as it is reconnected to the bus.
Note
The details of how the 1-Wire bus works is out of the scope of this book. If interested, you visit
http://en.wikipedia.org/wiki/1-Wire
 for further information.

The electrical lines

1-Wire bus lines are reported in the following table:
	

Name

	

Description

	
data - Data (and power when no Vcc)

	
The bus data signal

	
GND

	
Common ground

	
Vcc (optional)

	
Optional power supply

Multiple devices must be connected in parallel as shown in the following diagram:

[image: The electrical lines]

Tip
The pull-up resistor is required to maintain logic 1 when the bus is not driven because 1-Wire devices have open-drain outputs (the reason for using open-drain outputs is to allow multiple devices on the same bus). The value of 4.7KΩ is most likely chosen to ensure a sufficiently small rise time with common cable lengths (the real parameter that governs the maximum allowed resistor value is the rise time of the signal determined by bus resistance and capacitance, and it should be carefully determinate for better performances).

1-Wire ports on the BeagleBone Black

The BeagleBone Black does not have 1-Wire controllers available. However, we can use a normal GPIO pin as an emulated 1-Wire controller. This is because the communication is quite slow for a normal CPU, and Linux can emulate the protocol very well.
For example, using the following DTS overlay settings, we can add an emulated 1-Wire controller on GPIO P8.11:
fragment@0 {
 target = <&am33xx_pinmux>;

 __overlay__ {
 bb_w1_pins: pinmux_bb_w1_pins {
 pinctrl-single,pins = <0x34 0x37>;
 };
 };
};

fragment@1 {
 target = <&ocp>;

 __overlay__ {
 #address-cells = <1>;
 #size-cell = <0>;
 status = "okay";

 /* Setup the pins */
 pinctrl-names = "default";
 pinctrl-0 = <&bb_w1_pins>;

 /* Define the new one-wire master as based on w1-gpio
 * and using GPIO1_13
 */
 onewire@0 {
 compatible = "w1-gpio";
 gpios = <&gpio1 13 0>;
 };
 };
};

Note
The complete DTS settings can be retrieved from the chapter_11/BB-W1-GPIO-00A0.dts file in the book's example code repository.

The first fragment defines GPIO settings, while the second one initializes the w1-gpio driver, which is the one needed to create our emulated 1-Wire controller.
The DTS file can be now compiled and installed with the following command lines:

root@bbb:~# dtc -O dtb -o /lib/firmware/BB-W1-GPIO-00A0.dtbo
 -b 0 -@ BB-W1-GPIO-00A0.dts
root@bbb:~# echo BB-W1-GPIO > /sys/devices/platform/bone_capemgr/slots
bone_capemgr bone_capemgr: part_number 'BB-W1-GPIO', version 'N/A'
bone_capemgr bone_capemgr: slot #5: override
bone_capemgr bone_capemgr: Using override eeprom data at slot 5
bone_capemgr bone_capemgr: slot #5: 'Override Board Name,00A0, Overrid
e Manuf,BB-W1-GPIO'
bone_capemgr bone_capemgr: slot #5: dtbo 'BB-W1-GPIO-00A0.dtbo' loaded
; overlay id #1

Tip
In the preceding output, we've reported related kernel messages too.

Now, our new 1-Wire controller should be presented into the kernel, and it should be listed in the /sys/bus/w1/devices/ directory, as shown here:

root@bbb:~# ls -l /sys/bus/w1/devices/
total 0
lrwxrwxrwx 1 root root 0 Oct 10 12:08 w1_bus_master1 -> ../../../devic
es/w1_bus_master1

1-Wire ports on the SAMA5D3 Xplained

The SAMA5D3 Xplained does not have 1-Wire controllers, but we can add an emulated one as we did earlier.

1-Wire ports on the Wandboard

The Wandboard does not have 1-Wire controllers, but we can add an emulated one as we did earlier.

The 1-Wire bus in Linux

These devices have a strange support in Linux, that is, they are fully managed by the sysfs interface and no special files are present in the /dev directory as usual.
Note
In reality, there is another communication method between the 1-Wire core and the user space, which is not covered in this book. You can get further information by reading the Documentation/w1/w1.netlink file in the kernel's repository.

For each master, there exists a dedicated directory (as seen earlier) where several files are located, and this directory can be used to set up our controller. Here is an example from the controller emulated earlier:

root@bbb:~# ls /sys/bus/w1/devices/w1_bus_master1/
00-800000000000 w1_master_attempts w1_master_search
driver w1_master_max_slave_count w1_master_slave_count
power w1_master_name w1_master_slaves
subsystem w1_master_pointer w1_master_timeout
uevent w1_master_pullup w1_master_timeout_us
w1_master_add w1_master_remove

Each file has a well-defined functionality, and the most important ones are reported in the short list here:
	w1_master_search: Sets the number of searches left to do.
	w1_master_add: Manually registers a slave device.
	w1_master_remove: Manually removes a slave device.
	w1_master_timeout: The delay in seconds between searches.
	w1_master_timeout_us: The delay in microseconds between searches.
	w1_master_slave_count: The number of slaves found.
	w1_master_slaves: The names of slaves, one per line.

If we have a 1-Wire bus that never changes (that is, we don't add or remove devices), we can set w1_master_search to 0 (that is, searching is disabled) and then manually add serial numbers of each slave device using the w1_master_add device file (of course, the usage of both w1_master_add and w1_master_remove device files generally only makes sense when searching is disabled).
Tip
In the case of an unchangeable bus, another smart trick can also be setting w1_master_search to a small positive number in such a way as to do an initially small number of bus searches in order to detect all slaves and then stop new searches. This allows the system to automatically detect all slaves so that you don't lose time in unneeded searches.

Using files w1_master_timeout and w1_master_timeout_us, we can specify the interval at which bus searches occur (either of which may be 0) for as long as w1_master_search remains greater than 0 or is -1.
Tip
The value of -1 for w1_master_search means continual searching.

Each search attempt decrements w1_master_search by 1 until it reaches 0 and then stops.
Note
See the Documentation/w1/w1.generic file in the kernel's repository for more information on the 1-Wire's device files usage.

Getting access to 1-Wire devices

In the next section, we will manage a 1-Wire device using both an emulated 1-Wire controller and a real one connected by I2C to the main CPU.
Using the GPIO interface

To show you how the 1-Wire bus works, we can use a really simple chip: the temperature sensor DS18B20. There are two possible ways or modes by which the chip can be powered: a parasite version (that is, the one that works in the parasite mode) with two wires only and a normal version with a dedicated power pin, which uses three wires instead. In our example, we will use the three wires and a waterproof version of this chip. There is a special packaging of the chip so that it can be used in hostile environments (look at the following image to see the packaging version of the two chips):

[image: Using the GPIO interface]

Note
The device can be purchased at
http://www.cosino.io/product/waterproof-temperature-sensor or by surfing the Internet.
The datasheet is available at
http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
.

[image: Using the GPIO interface]

First of all, we have to set up electrical connections. The preceding diagram shows the correspondence between BeagleBone Black's pins and sensor's cables (R=4.7KΩ).
Now, we can take a look at the driver, which should be included in a standard kernel distribution. However, you can verify this situation by looking into the following directory for the file name w1_therm.ko:

root@bbb:~# find /lib/modules/$(uname -r)/kernel/drivers
 -name w1_therm.ko
/lib/modules/4.4.7-bone9/kernel/drivers/w1/slaves/w1_therm.ko

If we get no output from the find command, we have to recompile the kernel as described in Chapter 1
, Installing the Development System, to add the missing driver. To enable the driver compilation, we must surf the kernel configuration menu and enable the following settings: Device Drivers | Dallas's 1-wire support | 1-wire Slaves | Thermal family implementation. We then need to enable the driver compilation as a module.
Once connected, the sensor is automatically detected, and it should be listed in the /sys/bus/w1/devices/ directory, as shown here:

root@bbb:~# ls -l /sys/bus/w1/devices/
total 0
lrwxrwxrwx 1 root root 0 Oct 10 12:18 28-000004b541e9 -> ../../../devi
ces/w1_bus_master1/28-000004b541e9
lrwxrwxrwx 1 root root 0 Oct 10 12:08 w1_bus_master1 -> ../../../devic
es/w1_bus_master1

In the preceding output, we see that our sensor has the 1-Wire ID set to 28-000004b541e9. Note that in the case of multiple 1-Wire buses, we can discover where they are connected by looking at each controller's directory as displayed here:

root@bbb:~# ls -l /sys/bus/w1/devices/w1_bus_master1/
total 0
drwxr-xr-x 3 root root 0 Oct 10 12:18 28-000004b541e9
lrwxrwxrwx 1 root root 0 Oct 10 12:22 driver -> ../../bus/w1/driver
s/w1_master_driver
drwxr-xr-x 2 root root 0 Oct 10 12:22 power
lrwxrwxrwx 1 root root 0 Oct 10 12:08 subsystem -> ../../bus/w1
-rw-r--r-- 1 root root 4096 Oct 10 12:08 uevent
-rw-rw-r-- 1 root root 4096 Oct 10 12:22 w1_master_add
-r--r--r-- 1 root root 4096 Oct 10 12:22 w1_master_attempts
-rw-rw-r-- 1 root root 4096 Oct 10 12:22 w1_master_max_slave_count
-r--r--r-- 1 root root 4096 Oct 10 12:22 w1_master_name
-r--r--r-- 1 root root 4096 Oct 10 12:22 w1_master_pointer
-rw-rw-r-- 1 root root 4096 Oct 10 12:22 w1_master_pullup
-rw-rw-r-- 1 root root 4096 Oct 10 12:22 w1_master_remove
-rw-rw-r-- 1 root root 4096 Oct 10 12:12 w1_master_search
-r--r--r-- 1 root root 4096 Oct 10 12:22 w1_master_slave_count
-r--r--r-- 1 root root 4096 Oct 10 12:22 w1_master_slaves
-r--r--r-- 1 root root 4096 Oct 10 12:22 w1_master_timeout
-r--r--r-- 1 root root 4096 Oct 10 12:22 w1_master_timeout_us

Obviously, our controller's name is w1_bus_master1, and the files in the same directory are all related to it, for instance, files w1_master_slave_count and w1_master_slaves. As mentioned earlier, we can find how many slaves have been detected by the controller and the corresponding slaves list using these files, respectively:

root@bbb:~# cat /sys/bus/w1/devices/w1_bus_master1/w1_master_slave_cou
nt
1
root@bbb:~# cat /sys/bus/w1/devices/w1_bus_master1/w1_master_slaves
28-000004b541e9

OK, now, let's come back to our temperature sensor. In order to get the temperature's environment, we can take a look at the slave's directory:

root@bbb:~# ls -l /sys/bus/w1/devices/28-000004b541e9/
total 0
lrwxrwxrwx 1 root root 0 Oct 10 12:23 driver -> ../../../bus/w1/dri
vers/w1_slave_driver
-r--r--r-- 1 root root 4096 Oct 10 12:23 id
-r--r--r-- 1 root root 4096 Oct 10 12:23 name
drwxr-xr-x 2 root root 0 Oct 10 12:23 power
lrwxrwxrwx 1 root root 0 Oct 10 12:23 subsystem -> ../../../bus/w1
-rw-r--r-- 1 root root 4096 Oct 10 12:18 uevent
-r--r--r-- 1 root root 4096 Oct 10 12:23 w1_slave

In the id file, we can read the device's ID in a raw binary format:

root@bbb:~# od -tx1 /sys/bus/w1/devices/28-000004b541e9/id
0000000 28 e9 41 b5 04 00 00 0b
000001o

In the name file, we can read the device's ID as string:

root@bbb:~# cat /sys/bus/w1/devices/28-000004b541e9/name
28-000004b541e9

However, the file where we can find the temperature we wish to get is w1_slave. In fact, if we read it, we get the following code snippet:

root@bbb:~# cat /sys/bus/w1/devices/
28-000004b541e9/w1_slave
80 01 00 04 1f ff 10 10 b1 : crc=b1 YES
80 01 00 04 1f ff 10 10 b1 t=24500

The desired temperature is then 24500, which is in m° C, that is, 24.5° C.

Using an external controller

Now, let's see how we can manage the preceding device using a real 1-Wire controller connected to the main CPU using the I2C bus (Chapter 9
, Inter-integrated Circuits - I2C
). This can be useful when we need to unload the CPU in emulating the controller via a GPIO pin.
The controller we're going to use is shown here:

[image: Using an external controller]

Note
Note that the device has been mounted on a special adapter useful to simplify the wired connections. This is because the case is very small, and we cannot use simple wires to connect the device to the Wandboard as usual.
The datasheet is available at
https://datasheets.maximintegrated.com/en/ds/DS2482-100.pdf
.

Connections for both the temperature sensor and the controller to the Wandboard are reported in the following diagram (R=4.7KΩ):

[image: Using an external controller]

If everything works well, we should see the controller device on the first I2C bus as shown here:

root@wb:~# i2cdetect -y 0
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- 18 -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

The driver to manage the controller should be included in a standard kernel distribution. However, you can verify this situation by looking into the following directory for the file name ds2482.ko:

root@wb:~# find /lib/modules/$(uname -r)/kernel/drivers
 -name ds2482.ko
/lib/modules/4.4.7-armv7-x6/kernel/drivers/w1/masters/ds2482.ko

If we get no output from the find command, we have to recompile the kernel as described in Chapter 1
, Installing the Development System, to add the missing driver. To enable the driver compilation, we must surf the kernel configuration menu and enable the following settings: Device Drivers | Dallas's 1-wire support | 1-wire Bus Masters | Maxim DS2482 I2C to 1-Wire bridge. Then, we need to enable the driver compilation as a module.
OK, if the driver is already present, we can easily enable it using this command line:

root@wb:~# echo ds2482 0x18 > /sys/bus/i2c/devices/i2c-0/new_device
i2c i2c-0: new_device: Instantiated device ds2482 at 0x18

Tip
Note that the driver can also be enabled by adding a proper definition into the DTS file as explained in Chapter 9
, Inter-integrated Circuits - I2C
.

If everything works well, we should see the 1-Wire device:

root@wb:~# ls -l /sys/bus/w1/devices/
total 0
lrwxrwxrwx 1 root root 0 Jul 22 19:29 28-000004b541e9 -> ../../../devi
ces/w1_bus
_master1/28-000004b541e9
lrwxrwxrwx 1 root root 0 Jul 22 19:29 w1_bus_master1 -> ../../../devic
es/w1_bus_
master1

Now, the 1-Wire device can be accessed:

root@wb:~# cat /sys/bus/w1/devices/28-000004b541e9/w1_slave
30 01 00 04 1f ff 10 10 df : crc=df YES
30 01 00 04 1f ff 10 10 df t=19000

Summary

In this chapter, we discovered the 1-Wire bus and how it can be used in order to get data from a simple temperature sensor device. We used a 1-Wire controller emulated by the GPIO interface and a more complex I2C device, which implements a complete 1-Wire controller. In both cases, we discovered that device management is almost the same and it's very simple.
In the next chapter, we're going to see another kind of bus that allows us to exchange data with several remote computers and that is at the base of almost every local computer network: Ethernet devices.

Chapter 12. Ethernet Network Device - ETH

An embedded computer can do several things, but having the possibility to communicate with other devices (even over long distances) is a powerful feature we have to deal with, and Ethernet devices offer an easy and powerful way to do it. The GNU/Linux-based systems offer a really good support for Ethernet devices and their relative networking protocols. That's why, most of networking devices around the world are based on this technology.
In this chapter, we will briefly look at the very basics of Ethernet devices in the Linux kernel and, of course, into our embedded kits. Then, we'll see a simple TCP/IP client/server implementation and how to interact with these programs using ready-to-use tools.
In the end, we'll briefly expose an example about how to set up a bridge on a multi-Ethernet equipped board.
What is an Ethernet network device?

A computer network (or more simply, a network) is a telecommunications equipment that allows computers to exchange data with each other. In a computer network, several computers exchange data with each other using a data link, which can be made of cable media or wireless media. More specifically, the Ethernet network is a family of wired computer-networking technologies commonly used in Local Area Network (LAN) where every device communicating over it divides a stream of data into shorter pieces called frames that contain a lot of information useful for data communication as the source and destination addresses, error-checking data, and so on. Then, obviously, there is also the data link layer (as per the OSI model) where the information are stored.
In a GNU/Linux system, an Ethernet device is a computer peripheral that is used to get access to an Ethernet network and then to exchange data with other Ethernet-equipped computers. In a GNU/Linux system, these devices are usually called eth0, eth1, and so on, even if some exceptions may exist (some of these special cases will be presented in this chapter). In any case, these devices are not present in the /dev directory as usual; that's why, they are so special.
Another feature that made Ethernet devices special is the fact that they can receive messages even if they never requested them! For example, let's consider a ping message. The receiving host never waits for an incoming ping message; it simply arrives.
Thanks to these aspects (and others not mentioned here), the Ethernet devices (and more generally, all networking devices) have a special device class in the Linux kernel named net device (see Chapter 5
, Setting Up an Embedded OS, in Char, block and net device section).
Note
For further details on Ethernet networks and how they work, you can visit
https://en.wikipedia.org/wiki/Ethernet
.

Electrical lines

The Ethernet bus lines are not presented in this book as per other devices because they are not relevant to connect an Ethernet-equipped computer to a network. In fact, an Ethernet port is usually pre-mounted on a computer, and we just need to plug in a cable. Note also that due to very high communication frequencies involved in Ethernet communications, a handmade connection may result in no communications at all! So, you should avoid doing experimentation if you do not really they know what to do.
However, for the sake of completeness, a typical Ethernet port is shown in the following image. In this book, we will assume that all connections are made using this port with an Ethernet cable and, if needed, an Ethernet switch in the middle:

[image: Electrical lines]

Ethernet port on the BeagleBone Black

The BeagleBone Black has one Ethernet port, which is a standard 100 Mb/s port. Here are the related kernel messages at boot:

net eth0: initializing cpsw version 1.12 (0)
net eth0: phy found : id is : 0x7c0f1
IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready

Ethernet ports on the SAMA5D3 Xplained

The SAMA5D3 Xplained has two Ethernet ports. One port is a standard 100 Mb/s port, while the other one is a 1000 MB/s (gigabit). Here are the related kernel messages at boot:

macb f0028000.ethernet: invalid hw address, using random
libphy: MACB_mii_bus: probed
macb f0028000.ethernet eth0: Cadence GEM rev 0x00020119 at 0xf0028000
irq 50 (6e:65:bc:82:d1:b3)
macb f0028000.ethernet eth0: attached PHY driver [Micrel KSZ9031 Gigab
it PHY] (mii_bus:phy_addr=f0028000.etherne:07, irq=-1)
macb f802c000.ethernet: invalid hw address, using random
libphy: MACB_mii_bus: probed
macb f802c000.ethernet eth1: Cadence MACB rev 0x0001010c at 0xf802c000
 irq 51 (36:da:fb:48:48:81)
macb f802c000.ethernet eth1: attached PHY driver [Micrel KSZ8081 or KS
Z8091] (mii_bus:phy_addr=f802c000.etherne:01, irq=-1)
IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready
IPv6: ADDRCONF(NETDEV_UP): eth1: link is not ready

Ethernet port on the Wandboard

The Wandboard has one Ethernet port, which is a 1000 MB/s (gigabit) port. Here are the related kernel messages at boot:

libphy: fec_enet_mii_bus: probed
fec 2188000.ethernet eth0: registered PHC device 0
fec 2188000.ethernet eth0: Freescale FEC PHY driver [Generic PHY]
(mii
_bus:phy_addr=2188000.ethernet:01, irq=-1)
IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready

The Ethernet devices in Linux

As already stated earlier, in a GNU/Linux system, Ethernet devices are usually called eth0, eth1, and so on, even if some exceptions may exist. In fact, as we already saw in Chapter 1
, Installing the Developing System
, a virtual Ethernet connection (that is, an Ethernet port emulated over a USB connection) is called usb0, usb1, and so on. Also, in Chapter 7
, Serial Ports and TTY Devices - TTY, Managing TTY into the Kernel with SLIP, we found that SLIP devices are called sl0, sl1, and so on.
Note
Other examples can be found in The Linux Documentation Project at:
http://www.tldp.org/LDP/nag2/x-087-2-hwconfig.tour.html
.

Another example of special naming can be the ones created by USB Ethernet adapters like the one shown here:

[image: The Ethernet devices in Linux]

If we try to connect one of these devices to our host PC, we should get something similar to the following kernel messages:

New USB device found, idVendor=0b95, idProduct=7720
New USB device strings: Mfr=1, Product=2, SerialNumber=3
Product: AX88772
Manufacturer: ASIX Elec. Corp.
SerialNumber: 000415
asix 2-1.2:1.0 eth1: register 'asix' at usb-0000:00:1d.0-1.2, ASIX AX8
8772 USB 2.0 Ethernet, 00:0e:c6:87:73:9f
asix 2-1.2:1.0 enx000ec687739f: renamed from eth1
IPv6: ADDRCONF(NETDEV_UP): enx000ec687739f: link is not ready
asix 2-1.2:1.0 enx000ec687739f: link down
IPv6: ADDRCONF(NETDEV_UP): enx000ec687739f: link is not ready

Then, the new Ethernet device is now named enx000ec687739f, as shown by the ifconfig command:

$ ifconfig enx000ec687739f
enx000ec687739f Link encap:Ethernet HWaddr 00:0e:c6:87:73:9f
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Tip
The ifconfig command is now deprecated even if it's still available on all systems (especially on embedded distributions). It should be replaced by the ip command (see next section), and the equivalent command of the above one is reported here:

 $ ip link show enx000ec687739f

 4: enx000ec687739f: <NO-CARRIER,BROADCAST,MULTICAST

 ,UP> mtu 1500 qdisc pfifo_fast state DOWN mode DEFA

 ULT group default qlen 1000

 link/ether 00:0e:c6:87:73:9f brd ff:ff:ff:ff:ff

 :ff

However, whatever the name is, the common thing is that these devices are not reported under the /dev directory. They cannot be accessed with the usual open() or close() system call, and they must be managed using special system calls and by dedicated networking tools (see the client/server example that follows).

The net tools

These tools are stored in the net-tools package, and they are a set of utility programs we can use to easily manipulate Ethernet devices. Inside this package, there are several programs, and few of them are specifically for Ethernet devices.
One of the most important Ethernet-related networking tool is ifconfig, which is used to configure a network interface. We already used it several times in this book to discover the available network interfaces on our system or just to set up our IP address.
Even if the ifconfig command can solve quite all the network settings, it's now deprecated, and a more powerful tool exists to replace it: the ip command (which is in the iproute2 package). This command can be used for every task we can do with ifconfig and much more! Just as a simple example, here is a command to show the list of active network addresses in the SAMA5D3 Xplained using the ip command:

root@a5d3:~# ip address list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN gr
oup default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen
10
 link/can
3: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast
 state DOWN group default qlen 1000
 link/ether 6e:65:bc:82:d1:b3 brd ff:ff:ff:ff:ff:ff
 inet6 fe80::6c65:bcff:fe82:d1b3/64 scope link
 valid_lft forever preferred_lft forever
4: eth1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast
 state DOWN group default qlen 1000
 link/ether 36:da:fb:48:48:81 brd ff:ff:ff:ff:ff:ff
5: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qle
n 1
 link/sit 0.0.0.0 brd 0.0.0.0
6: usb0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast s
tate UP group default qlen 1000
 link/ether ba:f7:1b:43:ae:9c brd ff:ff:ff:ff:ff:ff
 inet 192.168.8.2/30 brd 192.168.8.3 scope global usb0
 valid_lft forever preferred_lft forever
 inet6 fe80::b8f7:1bff:fe43:ae9c/64 scope link
 valid_lft forever preferred_lft forever

Note
For further information on the iproute2 tools, a good starting point is
https://wiki.linuxfoundation.org/networking/iproute2
.

Another useful tool is the mii-tool command that can be used to check the Ethernet interface status, especially the status of a network interface's Media Independent Interface (MII) unit, which most Ethernet adapters use to auto-negotiate the link speed and duplex mode setting. Using this tool, we can easily check whether the cable is plugged in or not and the current connection speed:

root@a5d3:~# mii-tool
eth0: negotiated 1000baseT-HD flow-control, link ok
eth1: no link

Tip
Another tool similar to mii-tool and that can be used to manage Ethernet devices is the ethtool command, which is held in the same package.

Communicating with a remote device

Since the scope of this book is not to provide details on networking programming, we're not going to spend too much time in showing the several available communication protocols or in explaining the details of the following example codes. However, we're going to show you how you can use an Ethernet port to quickly establish a networking communication.
A simple TCP client/server application

Just as a simple example of network communication, we can use two simple Python programs that implement a TCP/IP client and server examples. These examples are not so useful to show you how you can write a server or a client (there are tons of these examples on the Internet). However, they are useful to show you how you can easily interact with several ready-to-use tools (presented in the next section) that can speed up the development stage of every networking task.
The first program is named tcp_srv.py, and it implements a TCP/IP server. Here is its relevant code:
Check the user input
try:
 port = int(args[0])
except ValueError, err:
 error("invalid number for <port>:", args[0])
 sys.exit(1)
if port < 0 or port > 65535:
 error("invalid number for port, must be [0, 65535]:", args[0])
 sys.exit(1)

Create a TCP/IP socket object
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET,
 socket.SO_REUSEADDR, 1) # avoid error: Address already in use
server_address = (host, port)
s.bind(server_address)
info("starting up on %s port %s" % s.getsockname())

Now we can listen for an incoming client connection
s.listen(5)

The main loop
while True:
 info("waiting for new connection...")

 # Establish connection with the client
 c, addr = s.accept()
 info("got connection from ", addr)

 # Send back an hello message
 c.send("Thank you for connecting!\n")

 # Close the connection
 c.close()
 info("connection closed!")

As we can see, after a brief check of the user input, we used the socket.socket() method to create the s TCP/IP socket, and then, we used the setsockopt(), bind(), and listen()methods to properly set up a TCP/IP server listening on the desired port.
To execute the program now, we can use the following command line, which is referred to a host PC (but on every embedded kit, it's just the same):

$./tcp_srv.py 12345
tcp_srv.py : starting up on 0.0.0.0 port 12345
tcp_srv.py : waiting for new connection...

The server is now running and waiting for a new connection.
The second program is named tcp_cli.py and implements a TCP/IP client. Here is its relevant code:
Check the user inputs
host = args[0]
try:
 port = int(args[1])
except ValueError, err:
 error("invalid number for <port>:", args[1])
 sys.exit(1)
if port < 0 or port > 65535:
 error("invalid number for port, must be [0, 65535]:", args[0])
 sys.exit(1)

Create a TCP/IP socket object
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect with the server
info("starting new connection...")
s.connect((host, port))

Print the server's hello message
info("server says:", s.recv(1024))

Close the connection
s.close()
info("connection closed!")

Note
The full code of both programs can be found in the chapter_12/tcp_srv.py and chapter_12/tcp_cli.py files in the book's example code repository.

This time, the code is simpler since we just need to use the socket.socket() method again to create the s socket, but now, we will use the connect()method to establish the connection with the server.
At this time, the code flow is simple. We will use the send() and recv()methods to send and receive the data to the other peers, and when finished, we will close the connection with the close() method.
If we try to contact the server using our new client, we would get the following lines of code:

$./tcp_cli.py localhost 12345
tcp_cli.py : starting new connection...
tcp_cli.py : server says: Thank you for connecting!
tcp_cli.py : connection closed!

On the other hand, on the server, we will see the following output:

tcp_srv.py : starting up on 0.0.0.0 port 12345
tcp_srv.py : waiting for new connection...
tcp_srv.py : got connection from ('127.0.0.1', 46938)
tcp_srv.py : connection closed!
tcp_srv.py : waiting for new connection...

Using ready-to-use networking tools

When we need to test a networking connection, we need some tools to quickly and safely do this job. In most cases, we can avoid writing new code or we can drastically reduce this task just using some dedicated tools. As an example, we can use the simple TCP/IP server tcp_srv.py as the client and the telnet program in such a way as to establish a connection:

$ telnet localhost 12345
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Thank you for connecting!
Connection closed by foreign host.

Since the telnet program is (more or less) a TCP/IP client, we get a behavior similar to using the tcp_cli.py client.
Another useful tool to test our server is netcat, which is universally known as the hacker's Swiss army knife for network applications. The power of netcat is the fact that it supports several networking protocols, and it can act as a client or a server! To use it as a client to interact with our server, we can use the following command line, where nc is the netcat program itself:

$ nc localhost 12345
Thank you for connecting!

If we wish to use it as tcp_srv.py replacement, we can use the following command line:

$ while true ; do \
 echo 'Thank you for connecting!' | nc -p 12345 -l ; \
 done

Then, on the other side, we can reuse our new client tcp_cli.py as follows:

$./tcp_cli.py localhost 12345
tcp_cli.py : starting new connection...
tcp_cli.py : server says: Thank you for connecting!
tcp_cli.py : connection closed!

As we can see, the functioning is just the same!
Finally, we should remember the xinetd daemon we saw in Chapter 4
, Quick Programming with Scripts and System Daemons, Useful and Ready-to-Use Daemons - xinetd
. This daemon opens a TCP/IP connection as our server does, and then, it can be accessed in a similar way as we did here using the telnet or nc program for our client tcp_cli.py (you can try and verify it!).

The raw Ethernet bus

Like the USB and other communication buses presented in this book, even the Ethernet bus can be accessed in a raw mode. However, this method is not reported in this book because it's complex and it may need a dedicated book to be correctly explained! However, you can start your studies of the raw Ethernet programming by visiting
https://en.wikipedia.org/wiki/Raw_socket
.
A simple example of raw sockets will be presented in Chapter 14
, Controller Area Network - CAN, The raw CAN bus when we'll implement a simple CAN communication between two devices.

Simple Ethernet bridging

Since our SAMA5D3 Xplained board has two Ethernet ports on board, it's quite interesting presenting a brief example of how we can set up a networking bridge on it in such a way as to connect two separate LANs into a single one. The idea is to set up our board in such a way that it can work as if it was (more or less) an Ethernet switch so that two separate LANs are physically merged into a bigger one in a transparent manner (that is, no special settings should be done on the networked devices on both LANs).
Note
For further information regarding what a bridge is, you should start by visiting
https://en.wikipedia.org/wiki/Bridging_(networking)
.

First of all, we need the package named bridge-utils, which holds the needed commands to enable the bridging functionality. The package holds the brctl command, which is used to set up our bridge (if it is missing, we can install the package using the usual installation commands).
Creating the bridge is quite simple. First of all, we have to create a bridge interface, that is, a virtual network device that the kernel recognizes as a bridge:

root@a5d3:~# brctl addbr br0

Tip
You should notice here that br0 is just another name for the network interface device class.
If we get the following error, the bridging support is missing in our kernel. So, we have to recompile it by enabling the item Networking support | Networking options | 802.1d Ethernet Bridging and then rebooting the system:

 root@a5d3:~# brctl addbr br0

 add bridge failed: Package not installed

To show bridges defined in our system, we will use the brctl command again:

root@a5d3:~# brctl show
bridge name bridge id STP enabled interfaces
br0 8000.000000000000 no

Now, we simply have to add Ethernet devices that we wish to add to part of our new bridge:

root@a5d3:~# brctl addif br0 eth0
root@a5d3:~# brctl addif br0 eth1

Done! The bridge is now fully functional:

root@a5d3:~# brctl show
bridge name bridge id STP enabled interfaces
br0 8000.9e3a4f189100 no eth0
eth1

Now, we just have to plug in Ethernet cables, and our LANs will be merged into a big one!
Tip
It's still possible to get access to our embedded kit using the br0 interface. We just need to assign to it an IP address in the usual manner (ifconfig, ip, and so on) and then use it as a normal Ethernet device.
Note that in this case, the two Ethernet interfaces should have no IP addresses or any services running on them (as DHCP or similar servers) because the only functional interface is now br0.
You should also note that we can create a bridge using the ip command too. The commands are shown here:

 root@a5d3:~# ip link add name br0 type bridge

 root@a5d3:~# ip link set dev br0 up

 root@a5d3:~# ip link set dev eth0 master br0

 root@a5d3:~# ip link set dev eth1 master br0

Summary

Ethernet devices offer tons of different possibilities to connect local and remote devices to each other, and embedded developers can use them for tons of different usages. In fact, the GNU/Linux-based systems offer full and complete support for these devices in both hardware and software. So, developers have to focus their attention on the final target only without losing their time in developing low-level communication protocols.
In the next chapter, we'll see another important networking device class similar to Ethernet devices: wireless networking devices that are commonly known as Wi-Fi.

Chapter 13. Wireless Network Device - WLAN

The Ethernet connection discussed in the previous chapter allows several devices to talk each other. However, we need a wired connection to do that job. In this chapter, we will take a look at the wireless network devices that allow communication between several computers, but doing it without using wires. What is really interesting in using these networking interfaces is that a large part of communication protocols used on Ethernet interfaces can be used with these devices too!
We'll take a brief look at the basics of wireless devices in the Linux kernel and, of course, in our embedded kits. Then, we'll see an example of how we can do an encrypted connection with a normal access point using a wireless device attached to our embedded kits or how we can use our embedded kits to implement an access point.
What is a wireless network device?

A Wireless Local Area Network (WLAN), or wireless network device, more simply, Wi-Fi, is a computer network that links more devices using a wireless connection method within a limited area (usually a home, office, school, and so on). These kinds of connections allow people to move around the radio coverage and still be connected to the network. Under this point of view, they are an evolution of the Ethernet network seen in the previous chapter, since even in this case, every device communicating over it divides a stream of data into shorter pieces called frames that contain several pieces of information useful for data communication.
As for the Ethernet, a wireless network device is a computer peripheral that is used to get access to a wireless network and then to exchange data with other wireless network equipped computers. In a GNU/Linux system, these devices are usually called wlan0, wlan1 and so on even if some exceptions may exist (in some circumstances, it may happen that they are even called eth0, eth1 and so on just to point out how these two device kinds are very similar from the user's point of view). Also, these device are not present in the /dev directory due to the fact that they are net devices (see Chapter 5
, Setting Up an Embedded OS, Char, block and net device section).
The most relevant difference between these devices and Ethernet ones (even some minor differences are in place) are how they must be managed in the system in order to get connected into the wireless network and to properly exchange data with the other networked computer (this topic will be explained soon in the upcoming sections).
Note
For further details of WLANs and how they work, you can visit
https://en.wikipedia.org/wiki/Wireless_LAN
.

The electrical lines

As for the Ethernet, WLAN's bus lines are not presented in this book for the same reasons discussed in the previous chapter. However, here is an image of the wireless chip mounted on the Wandboard in order to show you how a wireless network device can appear on an embedded computer board:

[image: The electrical lines]

Note
To be able see the chip as in the figure, we must remove the screwed heatsink on Wandboard's CPU module.

WLAN device on the BeagleBone Black

The BeagleBone Black has no premounted wireless LAN devices, so they must be added using an available bus such as USB, SDIO, SPI, and so on.

WLAN device on the SAMA5D3 Xplained

Like the BeagleBone Black, the SAMA5D3 Xplained has no wireless LAN devices premounted. However, it has a dedicated extended board to be inserted into the MMC slot, providing a wireless device (look at the following section).

WLAN device on the Wandboard

As already stated earlier, the Wandboard has one wireless LAN device, which is a 802.11n capable port. Here are the related kernel messages at boot:

brcmfmac: brcmf_c_preinit_dcmds: Firmware version = wl0: Oct 25 2011 1
9:34:12 version 5.90.125.104
brcmfmac: brcmf_cfg80211_reg_notifier: not a ISO3166 code

Tip
We already encountered and set up Wandboard's wireless device in Chapter 1
, Installing the Developing System,Wireless support & Co. on the Wandboard.

WLAN devices in Linux

WLAN devices (or Wi-Fi) are usually identified in the GNU/Linux system with wlan0, wlan1, and so on, and they can be added to an existing system in several ways. The Wandboard comes with its own Wi-Fi chip but it's quite common (especially for cost reasons) that an embedded computer has no Wi-Fi at all. So, in this case, we can provide a wireless connection to our embedded kit using an available CPU's communication bus, such as the USB bus and (sometimes) the SDIO or SPI bus.
Pluggable external WLAN devices

As a simple example, in the following image, there is a picture of a USB WLAN device that can be connected with every computer that has a USB host port:

[image: Pluggable external WLAN devices]

Note
The device can be purchased at:
http://www.cosino.io/product/usb-realtek-wifi-adapter
 or by surfing the Internet.

If we try to connect one of these devices to our host PC, we should get following kernel messages:

usb 2-1.1: new high-speed USB device number 13 using ehci-pci
usb 2-1.1: New USB device found, idVendor=7392, idProduct=7811
usb 2-1.1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 2-1.1: Product: 802.11n WLAN Adapter
usb 2-1.1: Manufacturer: Realtek
usb 2-1.1: SerialNumber: 00e04c000001
rtl8192cu: Chip version 0x10
rtl8192cu: MAC address: 80:1f:02:8f:75:8d
rtl8192cu: Board Type 0
rtl_usb: rx_max_size 15360, rx_urb_num 8, in_ep 1
rtl8192cu: Loading firmware rtlwifi/rtl8192cufw_TMSC.bin
ieee80211 phy1: Selected rate control algorithm 'rtl_rc'
usbcore: registered new interface driver rtl8192cu
usbcore: registered new interface driver rtl8xxxu
rtl8192cu 2-1.1:1.0 wlx801f028f758d: renamed from wlan1
IPv6: ADDRCONF(NETDEV_UP): wlx801f028f758d: link is not ready
rtl8192cu: MAC auto ON okay!
rtl8192cu: Tx queue select: 0x05
IPv6: ADDRCONF(NETDEV_UP): wlx801f028f758d: link is not ready

The new wireless device is now named wlx801f028f758d as shown by the iwconfig command:

$ iwconfig wlx801f028f758d
wlx801f028f758d IEEE 802.11bgn ESSID:off/any
 Mode:Managed Access Point: Not-Associated Tx-Power=20 dBm
 Retry short limit:7 RTS thr=2347 B Fragment thr:off
 Power Management:off

Another example of a WLAN device is the one shown in the following image:

[image: Pluggable external WLAN devices]

Tip
The image presents the same device in both its top and bottom views in order to show the Wi-Fi chip (in the bottom-right corner) and its SDIO bus connections (in the top-left corner).

This is a Wi-Fi device that uses the SDIO bus to communicate with the host CPU, and it's designed for the SAMA5D3 Xplained (and MMC slot compatible boards). Since it uses the SDIO bus, we cannot use our Debian stored into the microSD to test it because it uses the same bus. So, we have to use an embedded distribution like the one we presented in Chapter 5
, Setting Up an Embedded OS,OpenWrt
 or Chapter 5
, Setting Up an Embedded OS, Yocto
, where we must install the proper drivers (the latest Yocto releases support this device by default).

The Wi-Fi operation modes

Once the WLAN device is connected to our main CPU and it's up and running, we have to manage it in order to get connected to the wireless network. We already know that we can have several wireless connection kinds. However, the major two are the station (STA) mode and the Access Point (AP) mode . The first mode is also known as the client mode and it's the usual mode of functioning (that is, every wireless LAN chip supports this mode of functioning). When our device uses this mode, our computer acts as a station. On the other side, the second mode of functioning allows several stations to get connected to each other in a common wireless network by accepting them according to certain credentials. In this mode, a computer uses its wireless device as a common access point where the other devices can be accredited and then get connected in a common network (possibly protected with some encryption way from the other ones).
In the usual way of speaking, a station asks for a new connection to an access point, which, in turn, allows it to speak with other already connected stations.
Note
For more examples and details about the WLAN modes of connections, you can start reading at:
https://en.wikipedia.org/wiki/Wireless_access_point
.

In a GNU/Linux-based system, the STA and AP modes are managed by specific programs. We're going to show you how the STA mode works using the Wandboard (however, the same steps can be performed on the other embedded kit once we have installed a wireless device on them) in a dedicated section that follows.

The wireless tools

These tools are a collection of user-space utilities written to support the configuration of the WLAN devices and some related aspects of networking using the Linux Wireless Extension.
Note
The Linux Wireless Extension is a generic API that allows a driver to expose to the user-space configuration and statistics specific to common WLAN devices. Further information on this topic can be accessed at:
http://www.labs.hpe.com/personal/Jean_Tourrilhes/Linux/Tools.html
.

They are held in the wireless-tools package, and they should be already installed in the Wandboard (otherwise, we can install them as usual).
One of the most important tools of this collection is iwconfig, which is used to manipulate the basic wireless parameters. As reported in the command's description, the iwconfig command is very similar to ifconfig. In fact, it can be used in a similar manner to get basic information of our WLAN, as shown here:

root@wb:~# iwconfig wlan0
wlan0 IEEE 802.11abgn ESSID:off/any
 Mode:Managed Access Point: Not-Associated
 Retry short limit:7 RTS thr:off Fragment thr:off
 Encryption key:off
 Power Management:on

Using it, we can get or set several basic information of our WLAN, and for instance, we can get connected to an open wireless network (that is without any authentication method) named open_wireless_ESSID just using the following command:

root@wb:~# iwconfig wlan0 essid <OPEN_WIRELESS_ESSID>

However, we can do it because we know the network's name (remember that the wireless network's name is usually called Extended Service Set Identification (ESSID)), but in case we don't know it, which are the available networks to be connected to? Well, in this case, the iwlist wireless tool comes to help us. In fact, we can use it to do a scan of available networks in the air using the next command:

root@wb:~# iwlist wlan0 scan

Tip
If we get the following output, it means that we have to bring up the network device from before:

 wlan0 Interface doesn't support scanning : Netw

 ork is down

The command to set up the device is shown here (note that wlan0 is a network device after all):

 root@wb:~# ifconfig wlan0 up

If some wireless network is in the air around us, we should get the following output:

wlan0 Scan completed :
 Cell 01 - Address: 64:D1:A3:40:C3:B5
 Channel:2
 Frequency:2.417 GHz (Channel 2)
 Quality=31/70 Signal level=-79 dBm
 Encryption key:on
 ESSID:"EnneEnne2"
 Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 9 Mb/s
 18 Mb/s; 36 Mb/s; 54 Mb/s
 Bit Rates:6 Mb/s; 12 Mb/s; 24 Mb/s; 48 Mb/s
 Mode:Master
 Extra:tsf=0000000000000000
 Extra: Last beacon: 40ms ago
 IE: Unknown: 0009456E6E65456E6E6532
 IE: Unknown: 010882848B961224486C
 IE: Unknown: 030102
 IE: Unknown: 2A0104
 IE: Unknown: 32040C183060
 IE: Unknown: 2D1A0E1017FFFF00000
 10000000000000000000000000C0
 IE: Unknown: 3D16020506000000000000000000
 0000000000000000000
 IE: IEEE 802.11i/WPA2 Version 1
 Group Cipher : CCMP
 Pairwise Ciphers (1) : CCMP
 Authentication Suites (1) : PSK
 IE: Unknown: DD180050F2020101000003A40000
 27A4000042435E00620
 IE: Unknown: 0B05040020127A
 IE: Unknown: 4A0E14000A002C01C800140005001900
 IE: Unknown: DD07000C4304000000
 IE: Unknown: 0706434E20010D10
 IE: Unknown: DDB90050F204104A0001101044000102
 103B00010310470

Tip
The command's output can be much longer than the one shown earlier due to the presence of more detected networks. However, the output format for each of them is similar to the preceding format.

The iwlist then gives us more information than iwconfig as well explained by its man pages.
Even if the iwconfig command (and other wireless tools) can solve quite all the network settings, in complete analogy as the Ethernet devices, a more powerful tool exists. This tool is the iw command (which is held in the package of the same name and that can be installed as usual), and it can be used for every task we can perform with iwconfig and much more!
Just as a simple example, here is a command to show the list of available wireless network devices in the Wandboard:

root@wb:~# iw dev
phy#0
 Interface wlan0
 ifindex 4
 wdev 0x1
 addr 44:39:c4:9a:96:24
 type managed

Another useful usage of iw is the following command line that shows all capabilities of our wireless device:

root@wb:~# iw phy phy0 info
Wiphy phy0
 max # scan SSIDs: 10
 max scan IEs length: 2048 bytes
 Retry short limit: 7
 Retry long limit: 4
 Coverage class: 0 (up to 0m)
 Device supports roaming.
 Supported Ciphers:
 * WEP40 (00-0f-ac:1)
 * WEP104 (00-0f-ac:5)
 * TKIP (00-0f-ac:2)
 * CCMP (00-0f-ac:4)
 * CMAC (00-0f-ac:6)
 Available Antennas: TX 0 RX 0
 Supported interface modes:
 * IBSS
 * managed
 * AP
 * P2P-client
 * P2P-GO
 * P2P-device
 Band 1:
 Capabilities: 0x1020
 HT20
 Static SM Power Save
 RX HT20 SGI
 No RX STBC
 Max AMSDU length: 3839 bytes
 DSSS/CCK HT40
 Maximum RX AMPDU length 65535 bytes (exponent: 0x003)
 Minimum RX AMPDU time spacing: 16 usec (0x07)
 HT TX/RX MCS rate indexes supported: 0-7
 Bitrates (non-HT):
 * 1.0 Mbps
 * 2.0 Mbps (short preamble supported)
 * 5.5 Mbps (short preamble supported)
 * 11.0 Mbps (short preamble supported)
 * 6.0 Mbps
 * 9.0 Mbps
 * 12.0 Mbps
 * 18.0 Mbps
 * 24.0 Mbps
 * 36.0 Mbps
 * 48.0 Mbps
 * 54.0 Mbps
 Frequencies:
 * 2412 MHz [1] (20.0 dBm)
 * 2417 MHz [2] (20.0 dBm)
 * 2422 MHz [3] (20.0 dBm)
 * 2427 MHz [4] (20.0 dBm)
 * 2432 MHz [5] (20.0 dBm)
 * 2437 MHz [6] (20.0 dBm)
 * 2442 MHz [7] (20.0 dBm)
 * 2447 MHz [8] (20.0 dBm)
 * 2452 MHz [9] (20.0 dBm)
 * 2457 MHz [10] (20.0 dBm)
 * 2462 MHz [11] (20.0 dBm)
 ...

Note
The command's output has been broken for space reasons, but it continues for several lines!
Also, note Supported interface modes reported by the preceding command. It tells us that our wireless device can act as a station, access point, and others modes such as P2P, which is also known as WiFi Direct mode (
https://en.wikipedia.org/wiki/Wi-Fi_Direct):

 * IBSS

 * managed

 * AP

 * P2P-client

 * P2P-GO

 * P2P-device

The WPA supplicant

Wireless tools are very useful for simple settings. However, for normal usage, they are not enough. In fact, in a normal wireless connection, we have to use some sort of encryption in order to protect our data that flows through the air! To do it, we need special tools for each mode of functioning discussed earlier. As an example, we will show how we can set up a station on our Wandboard using the WPA as an encryption method.
When acting as a station, that is, as a computer that wishes to get connected to a wireless network having an authentication protocol, we need a wireless supplicant. A supplicant is a program that is responsible for making login requests to a wireless network by passing the login and encryption credentials to the authentication server (that is, the access point). A good wireless supplicant for GNU/Linux-based systems is the tool named WPA-Supplicant, which can be easily installed in our Debian by getting the wpasupplicant package.
Note

WPA stands for Wi-Fi Protected Access and it means that the program was written in order to support this authentication method. However, WPA-Supplicant supports the latest WPA2 as far as several older wireless authentication methods are concerned. They are explained at:
https://en.wikipedia.org/wiki/Wpa_supplicant
.

After the package installation, we get two main programs: the wpa_supplicant command and wpa_cli. The former is our supplicant, while the latter is its controlling tool.
OK, now, it's time to try a connection. After the program installation, we need to supply a very basic configuration file by adding the following lines to the /etc/wpa_supplicant.conf file:
ctrl_interface=/var/run/wpa_supplicant
update_config=1

Then, we have to execute the supplicant using this command line:

root@wb:~# wpa_supplicant -B -Dnl80211 -iwlan0
 -c/etc/wpa_supplicant.conf

At this point, we can control wpa_supplicant using the wpa_cli command, so let's start by asking WPA-Supplicant to do a wireless network scan in order to discover possible available networks to get connected to:

root@wb:~# wpa_cli scan
Selected interface 'wlan0'
OK

Then, let's retrieve the scan's results with this command:

root@wb:~# wpa_cli scan_results
Selected interface 'wlan0'
bssid / frequency / signal level / flags / ssid
64:d1:a3:40:c3:b5 2417 -82 [WPA2-PSK-CCMP][WPS][ESS] EnneEnne2

Tip
Each time we execute a command, the supplicant shows us the Selected interface 'wlan0' message. This is because we never selected a default interface. We can do it using the -i option argument as done in the following commands.

Well, at this point, we can get connected to the EnneEnne2 network using the following commands:

root@wb:~# wpa_cli -iwlan0 add_network
0
root@wb:~# wpa_cli -iwlan0 set_network 0 ssid '"EnneEnne2"'
OK
root@wb:~# wpa_cli -iwlan0 set_network 0 psk '"EnneEnne password"'
OK
root@wb:~# wpa_cli -iwlan0 select_network 0
OK

Tip
The ' and " characters that delimit our network's credentials strings.
Also, note that in the preceding command, we selected the network 0 because this is the number that WPA-Supplicant assigned to our network when we used the add_network command.

If everything works well, we should see the following kernel message notifying us that the wireless network is up and running:

IPv6: ADDRCONF(NETDEV_CHANGE): wlan0: link becomes ready

Then, we can ask our supplicant about the interface connection status with this command:

root@wb:~# wpa_cli -iwlan0 status
bssid=64:d1:a3:40:c3:b5
freq=2417
ssid=EnneEnne2
id=0
mode=station
pairwise_cipher=CCMP
group_cipher=CCMP
key_mgmt=WPA2-PSK
wpa_state=COMPLETED
p2p_device_address=44:39:c4:9a:96:24
address=44:39:c4:9a:96:24
uuid=9ccc6c2b-a494-52df-9676-fb423dc39728

At this point the connection is done and we have to configure network's parameters only as we do with any other network device. Then to do it, if we know our LAN's parameters, we can use the ifconfig command (and related ones) or we can use the DHCP service (if available) as follow:

root@wb:~# dhclient wlan0

Now the interface should be configured:

root@wb:~# ifconfig wlan0
wlan0 Link encap:Ethernet HWaddr 44:39:c4:9a:96:24
 inet addr:192.168.32.52 Bcast:192.168.32.255 Mask:255.255
.255.0
 inet6 addr: fe80::4639:c4ff:fe9a:9624/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:175 errors:0 dropped:59 overruns:0 frame:0
 TX packets:30 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:26451 (25.8 KiB) TX bytes:4927 (4.8 KiB)

The Hostapd daemon

As already stated earlier, acting as a station is one of the possible way of operation of a common wireless device, but another important one is the access point mode. This mode of functioning can be enabled using the hostapd daemon implemented by the hostapd program.
The hostapd daemon (held in the package of the same name, hostapd) is a special daemon for wireless access point and authentication servers. It can be used to create a wireless hot spot on a GNU/Linux-based computer using compatible wireless interfaces that support the kernel's mac80211 subsystem (and other specific and old drivers such as Host AP, MadWifi, Prism54, and so on).
Note
For further information regarding hostapd and the mac80211 subsystem, you can visit
https://wireless.wiki.kernel.org/en/users/documentation/hostapd
.

To show you how to use the hostapd daemon, we can use the BeagleBone Black with the USB pluggable external wireless LAN device shown earlier. We can reproduce a simple access point device to allow Wi-Fi devices to get connected with it and then surf the Internet. The trick is to use hostapd to accept connections from wireless clients, use the Ethernet port to get access to the Internet, and then use the Linux's bridging functionality (already presented in Chapter 12
, Ethernet Network Device - ETH, Simple Ethernet bridging
) to exchange network packets from the wireless port to the Ethernet one and vice versa.
First of all, we have to install the needed software, that is, the hostapd, bridge-utils, and iw packages using usual manners (the apt-get or aptitude command). Then, let's start by verifying that our USB wireless LAN device supports the AP mode using the iw command as done earlier:

root@bbb:~# iw dev
phy#0
 Interface wlx801f028f758d
 ifindex 4
 wdev 0x1
 addr 80:1f:02:8f:75:8d
 type managed

OK, the BeagleBone Black supports the wireless device, and then, we can get its information:

root@bbb:~# iw phy phy0 info
Wiphy phy0
 max # scan SSIDs: 4
 max scan IEs length: 2257 bytes
 RTS threshold: 2347
 Retry short limit: 7
 Retry long limit: 4
 Coverage class: 0 (up to 0m)
 Device supports RSN-IBSS.
 Supported Ciphers:
 * WEP40 (00-0f-ac:1)
 * WEP104 (00-0f-ac:5)
 * TKIP (00-0f-ac:2)
 * CCMP (00-0f-ac:4)
 * 00-0f-ac:10
 * GCMP (00-0f-ac:8)
 * 00-0f-ac:9
 * CMAC (00-0f-ac:6)
 * 00-0f-ac:13
 * 00-0f-ac:11
 * 00-0f-ac:12
 Available Antennas: TX 0 RX 0
 Supported interface modes:
 * IBSS
 * managed
 * AP
 * AP/VLAN
 * monitor
 * mesh point
 * P2P-client
 * P2P-GO
 ...

Great, one of the supported interface modes is AP, so we can go further and configure the hostapd daemon.
Tip
The driver used for this wireless device is held in the rtl8192cu.ko module, and it can be enabled in Linux's configuration menu by navigating to Device Drivers | Network device support | Wireless LAN | RTL8723AU/RTL8188[CR]U/RTL819[12]CU (mac80211) support.

The hostapd.conf configuration file should be placed in the /etc/hostapd/ directory with the following content:
ssid=BBBAccessPoint
wpa_passphrase=BBBpassphrase

ctrl_interface=/var/run/hostapd
interface=wlx801f028f758d
bridge=br0
driver=nl80211
hw_mode=g
channel=6
wpa=2

beacon_int=100
hw_mode=g
ieee80211n=1
wme_enabled=1
ht_capab=[SHORT-GI-20][SHORT-GI-40][HT40+]
wpa_key_mgmt=WPA-PSK
wpa_pairwise=CCMP
max_num_sta=8
wpa_group_rekey=86400

Note
The file can be retrieved from the chapter_13/hostapd.conf file in the book's example code repository.

In the preceding listing, we should notice the following relevant settings:
	interface is set equal to the wlx801f028f758d value, which is the name of the wireless device we wish to use as access point.
	ssid is the public name of our new wireless network. When everything will be up and running, we should see this name on our smartphone's wireless selection panel.
	wpa_passphrase is the passphrase we have to insert to get connected to the new wireless network.
	wpa sets (and force) the WPA encryption protocol.
	driver selects the cfg80211 (and mac80211) based drivers.

The last note is for the bridge setting that specifies that once the hostapd daemon is up and running, it should automatically add the wireless interface to a bridge named br0.
Now, to start the daemon, we should use the next command line:

root@bbb:~# hostapd /etc/hostapd/hostapd.conf &
[1] 2427
root@bbb:~# Configuration file: /etc/hostapd/hostapd.conf
[755.090539] rtl8192cu: MAC auto ON okay!
[755.129917] rtl8192cu: Tx queue select: 0x05
[755.689681] IPv6: ADDRCONF(NETDEV_UP): wlx801f028f758d: link is not
 ready
[755.721302] device wlx801f028f758d entered promiscuous mode
wlx801f028f758d: interface state UNINITIALIZED->HT_SCAN
20/40 MHz operation not permitted on channel pri=6 sec=10 based on ove
rlapping BSSes
Using interface wlx801f028f758d with hwaddr 80:1f:02:8f:75:8d and ssid
 "BBBAccessPoint"
[757.557555] IPv6: ADDRCONF(NETDEV_CHANGE): wlx801f028f758d: link be
comes ready
wlx801f028f758d: interface state HT_SCAN->ENABLED
wlx801f028f758d: AP-ENABLED

This is the command's output where we should see that the AP is now enabled.
Tip
We execute the daemon in the background using the Bash & option just to be able to show you the daemon's messages. In fact, the best way to execute the daemon is using the -B option argument, which automatically starts the daemon in the background mode.

Once we execute the preceding command, if everything works well, we should have our new bridge with the wireless device already attached, as reported here (see Chapter 12
, Ethernet Network Device - ETH, Simple Ethernet bridging for further information regarding the brctl commands):

root@bbb:~# brctl show br0
bridge name bridge id STP enabled interfaces
br0 8000.801f028f758d no wlx801f028f758d

Now, in order to allow packet flow from the smartphone to the Internet through the wireless AP and the Ethernet port, we have just to add the eth0 interface. The command is as follows:

root@bbb:~# brctl addif br0 eth0

If we re-execute the show command, we should get the correct (and final) bridge's configuration:

root@bbb:~# brctl show br0
bridge name bridge id STP enabled interfaces
br0 8000.78a504cac9fe no eth0
wlx801f028f758d

Tip
The user should remember to not execute these commands from an SSH connection involving the eth0 interface; Otherwise, the connection will be lost!

If we wish to get access to the BeagleBone Black from the network, we can now assign an IP address to the bridge as follows:

root@bbb:~# ifconfig br0 192.168.32.25
br0: port 2(eth0) entered forwarding state
br0: port 2(eth0) entered forwarding state
br0: port 1(wlx801f028f758d) entered forwarding state
br0: port 1(wlx801f028f758d) entered forwarding state
br0: port 2(eth0) entered forwarding state
br0: port 1(wlx801f028f758d) entered forwarding state

The preceding kernel messages displayed after the ifconfig command line show that the bridge is up and running.
Now, to allow a normal smartphone to be able to use our new AP to surf the Internet, we have to set up a DHCP server to pass to it valid networking settings such as an IP address, some name servers, a gateway and so on. To do so, we can use the already installed DHCP daemon named udhcpd, which we used in Chapter 1
, Installing the Developing System, Setting up the developing system
. Since this daemon supports just one interface at a time, we have to use a custom configuration file and then execute another instance of the daemon using the following command line:

root@bbb:~# udhcpd -f udhcpd.conf.br0

The content of the udhcpd.conf.br0 file can be retrieved from the chapter_13/udhcpd.conf.br0 file in the book's example code repository. However, for completeness, it is reported here as well:
udhcpd configuration file for bridging

start 192.168.32.100
end 192.168.32.200

interface br0
max_leases 10

option dns 8.8.8.8 8.8.4.4
option subnet 255.255.255.0
option router 192.168.32.41
option lease 864000 # 10 days of seconds

You should notice that both the start and end options can be used to define a range of available IP addresses for wireless clients, while the interface setting can be used to address the bridge interface where we can send DHCP replies.
OK, now, everything should be in place, and we can try to use our new access point to surf the Internet with a smartphone. So, let's select the BBBAccessPoint wireless network and enter the BBBpassphrase passphrase to get connected with the Beaglebone Black. Then, we should see these logging messages:

hostapd: wlx801f028f758d: STA c4:9a:02:46:5a:3f
IEEE 802.11: authenticated
hostapd: wlx801f028f758d: STA c4:9a:02:46:5a:3f
IEEE 802.11: associated (aid 1)
hostapd: wlx801f028f758d: STA c4:9a:02:46:5a:3f
RADIUS: starting accounting session 7428D613-00000000
hostapd: wlx801f028f758d: STA c4:9a:02:46:5a:3f WPA:
pairwise key handshake completed (RSN)

Also, if we take a look at the udhcpd file's output, as reported here, we should see that the daemon has supplied an IP address to our smartphone as expected:

Sending OFFER of 192.168.32.129
Sending ACK to 192.168.32.129

Summary

WLAN devices are versatile network devices that allow several computers to communicate with each other without using wires and then allow them to move around without obstacles. Despite this fact, their management is more complex then Ethernet ports, and additional tools must be used to manage them, especially when protected connections are needed. However, GNU/Linux-based systems have a dedicated tool for every need!
In the next chapter, we'll see another important networking device class heavily used in the automotive industry, the CAN bus. It is another kind of networking mechanism that uses a simple protocol that can be used to exchange data between a complex computer and a simple microcontroller.

Chapter 14. Controller Area Network - CAN

After looking at the most frequently used buses to exchange data with a remote device (or a remote computer), we should take a look at another communication bus that is widely used in the automotive industry (but is also used in many other contexts), that is, the CAN bus.
Originally implemented for multiplex electrical wiring within automobiles, this bus has been specifically designed to allow microcontrollers, computers, and devices to communicate with each other in applications without a host computer by having a message-based protocol. This bus is not as famous as the Ethernet or Wi-Fi. However, in the embedded world, it is used, and it is not rare to find SoCs that support it by default. That's why, we have dedicated a complete chapter to this bus.
What is the CAN bus?

The Controller Area Network (CAN) bus is a half-duplex, multi-master, multi-slave, asynchronous serial data bus designed for connecting Electronic Control Units (ECU), also known as nodes, using two wires bus. From the electrical point of view, data is sent on these wires in a differential mode (as the USB bus does), so we can send the information across long distances with a large quantities of connected devices.
Each node is able to send and receive messages, but not simultaneously, and a message (or frame) consists primarily of the identifier (or ID, which represents the priority of the message) and up to 8 (or 64, in the case of extended messages) data bytes followed by some acknowledge and other control data.
To do its job, each node requires:
	A CPU (microprocessor or host processor), which decides what received messages mean and which messages want to transmit.
	A CAN controller, which is often an integral part of the CPU (but it can be added as an external peripheral too).
	A transceiver, which converts the data stream from CAN bus levels (differential levels) to levels that the CAN controller uses (usually, the normal TXD and RXD couple). The transceiver also has protective circuitry to protect the CAN controller.

Note
Details on how the CAN bus works are out of the scope of this book. If you are interested, you can visit
https://en.wikipedia.org/wiki/CAN_bus
 for further information.

The electrical lines

The CAN bus lines are reported in the table here:
	

Name

	

Description

	
CAN-Hi

	
The positive data level

	
CAN-Low

	
The negative data level

In the case of multiple devices connection, they must be connected in parallel, as shown in the diagram here:

[image: The electrical lines]

Tip
The two resistors at the two ends of the bus are just terminators, and they are required depending on how long the bus wires are (specific reasons are due to the transmission line theory).

Differential signals we saw in the preceding diagram (CAN-Hi and CAN-Low) allow us to have really long wires. However, in this book, we'll see a special CAN communication layout that doesn't use the transceiver and that can be used for short communication ranges (<< 1m). To achieve this, we need to know a little about what the transceiver does. It can output a high or a low level to the bus (representing 1 and 0 symbols), but 0 dominates 1, so if two transceivers try to speak at the same time, and one is saying 1 and the other is saying 0, then 0 wins.
We can recreate the same situation simply using some diodes, as shown in the following diagram:

[image: The electrical lines]

Tip
The resistor value depends on the value of supply voltage (Vcc) and some internals of the used controllers. So, the preceding diagram should be taken as an example of functioning only.

In this case, electrical lines are the ones reported in the following table:
	

Name

	

Description

	

RxD

	
The data receiver line

	

TxD

	
The data transmitter line

	

GND

	
Common ground

Note
You can get further information on these connections in the document at
http://www.mikrocontroller.net/attachment/28831/siemens_AP2921.pdf
.

CAN ports on the BeagleBone Black

The BeagleBone Black has two CAN controllers available (without transceivers), can0 and can1. However, can0 cannot be used without breaking the Cape management. That's why, we're not going to use it. The available bus is summarized in this table:
	

Name

	

RxD

	

TxD

	

can1

	
P9.24

	
P9.26

The main DTS settings to enable the can1 signals are reported in the following code. The first fragment defines pins settings, while the second one enables the CAN controller:
/* Define the pins usage */
exclusive-use =
 /* the pin header P9 uses */
 "P9.24",
 "P9.26",
 /* Hardware IP cores in use */
 "uart1";

fragment@0 {
 target = <&am33xx_pinmux>;

 __overlay__ {
 dcan1_pins_s0: dcan1_pins_s0 {
 pinctrl-single,pins = <
 0x180 0x12 /* d_can1_tx, SLEWCTRL_FAST |
 INPUT_PULLUP | MODE2 */
 0x184 0x32 /* d_can1_rx, SLEWCTRL_FAST |
 RECV_ENABLE | INPUT_PULLUP
 | MODE2 */
 >;
 };
 };
};

fragment@1 {
 target = <&dcan1>;

 __overlay__ {
 #address-cells = <1>;
 #size-cells = <0>;

 status = "okay";
 pinctrl-names = "default";
 pinctrl-0 = <&dcan1_pins_s0>;
 };
};

Note
The complete DTS settings can be retrieved from the chapter_14/BB-DCAN1-00A0.dts file in the book's example code repository.

The DTS file can be now compiled and installed with the following command lines:

root@bbb:~# dtc -O dtb -o /lib/firmware/BB-DCAN1-00A0.dtbo
 -b 0 -@ BB-DCAN1-00A0.dts
root@bbb:~# echo BB-DCAN1 > /sys/devices/platform/bone_capemgr/slots
bone_capemgr bone_capemgr: part_number 'BB-DCAN1', version 'N/A'
bone_capemgr bone_capemgr: slot #5: override
bone_capemgr bone_capemgr: Using override eeprom data at slot 5
bone_capemgr bone_capemgr: slot #5: 'Override Board Name,00A0, Overrid
e Manuf,BB-DCAN1'
bone_capemgr bone_capemgr: slot #5: dtbo 'BB-DCAN1-00A0.dtbo' loaded;
overlay id #1
CAN device driver interface
c_can_platform 481d0000.can: c_can_platform device registered (regs=fa
1d0000, irq=186)

Tip
In the preceding output, we've reported the related kernel messages too.

Now, a new network device should be present:

root@bbb:~# ifconfig can0
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00
 NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:186

CAN ports on the SAMA5D3 Xplained

The SAMA5D3 Xplained has two CAN controllers available (without transceivers), can0 and can1. However, can0 is the only one enabled by default, while the other can be enabled by properly modifying the DTS file (however, this is not shown in this book since we're not going to use it). The available bus is summarized in this table:
	

Name

	

RxD

	

TxD

	

can0

	
J21.8 - CANRX0

	
J21.8 - CANTX0

At boot time, we can read the following information in kernel messages:

at91_can f000c000.can: device registered (reg_base=d0982000, irq=50)

Then, we can see that the can0 interface is already present:

root@a5d3:~# ifconfig can0
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00
 NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:50

CAN ports on the Wandboard

The Wandboard has no CAN bus controllers available.

The CAN bus in Linux

As seen earlier, every CAN controller is represented in the system as a network device, and it can be listed as any other Ethernet or Wi-Fi device using the ifconfig command (or equivalent). The reason is that a CAN bus is just a network of several machines that are able to talk to each other into a LAN.
So, as we already saw earlier, we can use all networking commands on these devices. Here are two examples using both ifconfig and ip commands:

root@a5d3:~# ifconfig can0
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00
 NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:50
root@a5d3:~# ip link show can0
2: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN mode
DEFAULT group default qlen 10
 link/can

In particular, using the ip command, we can add a special type of CAN interface, the virtual one:

root@a5d3:~# ip link add dev vcan0 type vcan

Tip
Notice that the preceding command may return the following error:

 RTNETLINK answers: Operation not supported

This is because the kernel misses the virtual CAN device's support. In this case, we can try to load the corresponding kernel module using the next command:

 root@a5d3:~# modprobe vcan

However, if we still get an error message, we have to enable the compilation of this support by surfing in the kernel configuration menu and enabling the following settings: Networking support | CAN bus subsystem support | CAN Device Drivers | Virtual Local CAN Interface (vcan). Then, after the boot, we have to redo the modprobe command.

Now, we have a new CAN device:

root@a5d3:~# ip link show vcan0
7: vcan0: <NOARP> mtu 16 qdisc noop state DOWN mode
DEFAULT group default qlen 1
link/can

However, this is a virtual CAN device (or vcan device), and it can be used to send CAN frames around in memory. These devices are useful for simulation and testing. In fact, we can use them as a normal CAN device as shown in the upcoming sections.
Tip
These devices are similar to the loopback Ethernet device; in fact, they are allocated into the system memory only.

The can-utils package

Using the C language to read or write data to a CAN device is, of course, the best way to do it. However, there is a quicker way, that is, using the can-utils package. It can be installed as usual, and it holds lots of useful programs we can use to manage our CAN devices.
Note
The package's repository is at
https://gitorious.org/linux-can/can-utils
.

The main two utilities for a basic CAN bus usage are cansend and candump. The first one is used to send a single CAN frame through a CAN device, and its syntax is reported here:

cansend --help
Usage: cansend <device> <can_frame>.

Tip
Unluckily, the CAN tools have no man pages, and all the related documentation must be retrieved from the Internet or using the internal help messages.

Here is a usage example where we send a message on the can0 interface with 0x5AA as identifier and 0xde, 0xad, 0xbe, and 0xef as data bytes (note that this tool always assumes that the values are given in hexadecimal):

cansend can0 5AA#deadbeef

We can also use the extended form where the data is 0xde, 0xad, 0xbe, 0xef, 0x11, 0x22, 0x33, and 0x22:

cansend can0 5AA#deadbeef11223344

On the other side, to listen to traffic on the bus, we can use candump, where, to display all traffic in real time on the can0 device, we can use the next command:

candump can0

This time, the command's help message is a bit more clean and tells us what we can do with this command. So, here is the code block:

Usage: candump [options] <CAN interface>+
 (use CTRL-C to terminate candump)
Options: -t <type> (timestamp: (a)bsolute/(d)elta/(z)ero/(A)bsolute w date)
 -c (increment color mode level)
 -i (binary output - may exceed 80 chars/line)
 -a (enable additional ASCII output)
 -S (swap byte order in printed CAN data[]
 - marked with '`')
 -s <level> (silent mode - 0: off 1: animation 2: silent)
 -b <can> (bridge mode - send received frames to <can>)
 -B <can> (bridge mode - like '-b' with disabled loopback)
 -u <usecs> (delay bridge forwarding by <usecs> microseconds)
 -l (log CAN-frames into file.Sets '-s 2' by default)
 -L (use log file format on stdout)
 -n <count> (terminate after receipt. of <count> CAN frames)
 -r <size> (set socket receive buffer to <size>)
 -d (monitor dropped CAN frames)
 -e (dump CAN error frames in human-readable format)
 -x (print extra message infos, rx/tx brs esi)
 -T <msecs> (terminate after <msecs> without any reception)
Up to 16 CAN interfaces with optional filter sets can be specified
on the commandline in the form: <ifname>[,filter]*
Comma separated filters can be specified for each given CAN interface:
 <can_id>:<can_mask> (matches when <can_id> & mask == can_id & mask)
 <can_id>~<can_mask> (matches when <can_id> & mask != can_id & mask)
 #<error_mask> (error filter, see include/linux/can/error.h)
CAN IDs, masks and data content are given and expected in hexadecimal
values.
When can_id and can_mask are both 8 digits, they are assumed to be 29
bit EFF.
Without any given filter all data frames are received ('0:0' default
filter).
Use interface name 'any' to receive from all CAN interfaces.

The interesting things here are that the comma-separated filters can be specified for each given CAN interface. In fact, using them, we can select useful messages transmitted over the CAN bus. For instance, to show only messages with the 0x123 identifier, we will use the following command:

candump can0,0x123:0x7FF

To show messages with the 0x123 or 0x456 identifier, we can use the following command:

candump can0,0x123:0x7FF,0x456:0x7FF

The candump command can take also more than one CAN device:

candump can0,0x123:0x7FF,0x456:0x7FF can2,0x5AA:0x7FF can3 can8

In the preceding command, we ask to dump messages from CAN devices can0, can2, can3, and can8 with several filters.
Note the usage of can_mask and error_mask. In fact, using these parameters, we can select several identifiers doing the selection bit per bit and per message type! For instance, using the next command, we can dump only error frames but no data frames:

candump any,0~0,#FFFFFFFF

On the other hand, using the next one, we can dump error frames and also all data frames:

candump any,0:0,#FFFFFFF

The raw CAN bus

In a Linux-based system, we can use the SocketCAN implementation to manage these devices and then exchange data between them. It uses the Berkeley socket API and the Linux network stack (and raw sockets) to implement CAN device drivers as network interfaces to allow programmers familiar with network programming to easily learn how to use CAN sockets.
Note
See the Documentation/networking/can.txt file in the kernel's repository for more information.

Here is a simplified example in C language regarding how to open a SocketCAN socket:
int s;
char *ifname;
struct sockaddr_can addr;
struct can_frame frame;
struct ifreq ifr;
int ret;

/* Open the PF_CAN socket */
s = socket(PF_CAN, SOCK_RAW, CAN_RAW);
if (s < 0) {
 perror("Error while opening socket");
 exit(-1);
}

/* Find the CAN device */
strcpy(ifr.ifr_name, ifname);
ret = ioctl(s, SIOCGIFINDEX, &ifr);
if (ret < 0) {
 perror("ioctl");
 exit(-1);
}
printf("%s: %s at index %d\n", NAME, ifname, ifr.ifr_ifindex);

/* Bind the socket */
addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;
ret = bind(s, (struct sockaddr *)&addr, sizeof(addr));
if (ret < 0) {
 perror("bind");
 exit(-1);
}

Tip
A socket can also be bound to all CAN interfaces, and (in this case, the interface index must be 0) then, the socket receives CAN frames from every enabled CAN interface. In this special condition, in order to detect the originating CAN interface, the recvfrom()system call may be used instead of the read() one. On the other hand, to send the sendto()system call on such a socket, you need to specify the outgoing interface.

At this point, we can send and receive CAN frames, which are defined by struct can_frame:
struct can_frame {
 canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */
 __u8 can_dlc; /* frame payload length in byte (0 .. 8) */
 __u8 __pad; /* padding */
 __u8 __res0; /* reserved / padding */
 __u8 __res1; /* reserved / padding */
 __u8 data[8] __attribute__((aligned(8)));
};

In our program, we do the following:
/* Fill the frame data */
frame.can_id = 0x123;
frame.can_dlc = 2;
frame.data[0] = 0x11;
frame.data[1] = 0x22;

Then, the write() sequence is shown here:
/* Send the frame */
n = write(s, &frame, sizeof(struct can_frame));
if (ret < 0) {
 perror("write");
 exit(-1);
}
printf("%s: wrote %d bytes\n", NAME, n);

Note
The complete code can be retrieved from the chapter_14/socketcan/socketcan_send.c file in the book's example code repository, and it can be compiled as usual on the target machine using the provided Makefile.

To test the code, we can execute the following commands in a terminal in order to enable the virtual CAN interface created earlier and then, wait for new messages:

root@a5d3:~# sudo ip link set up vcan0
root@a5d3:~# candump vcan0

Then, on another terminal, we can execute our program in the vcan0 interface as shown here:

root@a5d3:~# ./socketcan_send vcan0
socketcan_send: vcan0 at index 7
socketcan_send: wrote 16 bytes

As we can see, the commands found the vcan0 interface, and then wrote 16 bytes into it. On the other terminal, the output of candump should appear as shown here:

root@a5d3:~# candump vcan0
vcan0 123 [2] 11 22

Exchanging data via the CAN bus

In this section, we will see how we can use the CAN bus on our embedded kits using the transceiver-less connection only (in fact, using a transceiver is trivial; we just have to add one without any other software modifications). We'll see how to use both on-chip controllers on an external one connected via SPI to the main CPU.
Using the on-board controller

To do a transceiver-less communication with the on-board controller, we have to use the BeagleBone Black and the SAMA5D3 Xplained boards connected as shown in the following diagram. The circuitry has been realized considering what we said regarding the transceiver-less issues:

[image: Using the on-board controller]

Note
The resistor is set as R=100KΩ.

At this point, we have to enable our CAN interfaces as described earlier for both the BeagleBone Black and the SAMA5D3 Xplained. For the first board ,we can set up the interface as shown here:

root@bbb:~# ip link set can0 up type can bitrate 50000
 loopback off triple-sampling on

Tip
Note that in order to be able to do the setting, the device must be disabled. If not, we can use the next command to do it:

 root@bbb:~# ifconfig can0 down

Then, we can inspect the new status:

root@bbb:~# ip -details -statistics link show can0
4: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state
UNKNOWN mode DEFAULT group default qlen 10
 link/can promiscuity 0
 can <TRIPLE-SAMPLING> state ERROR-ACTIVE
 (berr-counter tx 0 rx 0) restart-ms 0
 bitrate 50000 sample-point 0.875
 tq 1250 prop-seg 6 phase-seg1 7 phase-seg2 2 sjw 1
 c_can: tseg1 2..16 tseg2 1..8 sjw 1..4 brp 1..1024 brp-inc 1
 clock 24000000
 re-started bus-errors arbit-lost error-warn error-pass bus-off
 0 0 0 0 0 0
 RX: bytes packets errors dropped overrun mcast
 0 0 0 0 0 0
 TX: bytes packets errors dropped carrier collsns
 0 0 0 0 0 0

OK, now, we can enable the CAN device:

root@bbb:~# ifconfig can0 up

Now, on the other board, we have to perform similar steps, that is, we must set up the network device as follows:

root@a5d3:~# ip link set can0 up type can bitrate 50000
 triple-sampling on

Tip
Again, in order to be able to do the setting, the device must be disabled.
Note that this time, the command is a bit different from the earlier one due to the fact that SAMA5D3 Xplained's controller doesn't support the loopback off option argument.

Again, we can take a look at our device settings:

root@a5d3:~# ip -details -statistics link show can0
2: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast
state UNKNOWN mode DEFAULT group default qlen 10
 link/can promiscuity 0
 can <TRIPLE-SAMPLING> state ERROR-ACTIVE
 (berr-counter tx 0 rx 0) restart-ms 0
 bitrate 50000 sample-point 0.866
 tq 1333 prop-seg 6 phase-seg1 6 phase-seg2 2 sjw 1
 at91_can: tseg1 4..16 tseg2 2..8 sjw 1..4 brp 2..128 brp-inc 1
 clock 66000000
 re-started bus-errors arbit-lost error-warn error-pass bus-off
 0 0 0 0 0 0
 RX: bytes packets errors dropped overrun mcast
 0 0 0 0 0 0
 TX: bytes packets errors dropped carrier collsns
 0 0 0 0 0 0

Then, we have to enable the device as usual:

root@a5d3:~# ifconfig can0 up

Well, if everything is set up correctly, we should be able to send some data back and through both boards as shown here. On the BeagleBone Black, we start the receiving the command on interface can0 and filtering the data having the identifier 0x5AA:

root@bbb:~# candump can0,5AA:7FF

Then, on the SAMA5D3 Xplained, we use the sending command using the correct identifier and some random data (in the next example, the hexadecimal number 0xdeadbeef):

root@a5d3:~# cansend can0 5AA#deadbeef

Then, on the first device, we get the following lines of code:

root@bbb:~# candump can0,5AA:7FF
 can0 5AA [4] DE AD BE EF

Using an external controller

In systems that don't have any CAN controller at all, we can add one using an external chip connected with a dedicated bus to the CPU. As an example, let's see how we can install and use the MCP2515 chip as an external CAN controller connected to the Wandboard by the SPI bus (Chapter 10, Serial Peripheral Interface - SPI).
The MCP2515 chip is reported in the image here:

[image: Using an external controller]

Note
Note that the device has different package kinds, and in order to simplify their circuitry, you should get the 18-lead PDIP/SOIC package (the one in the figure), which is easily pluggable into a breadboard.
The datasheet is available at http://ww1.microchip.com/downloads/en/DeviceDoc/21801G.pdf.

We're going to use this chip in order to try to establish a transitive-less CAN communication channel between the Wandboard and the BeagleBone Black. The needed connections between the MCP2515 and the Wandboard are reported in this diagram, and you can refer to the previous chapter in order to see how to connect the RxD and TxD signals to the CAN bus, as we did for the SAMA5D3 Xplained.

[image: Using an external controller]

Note
The capacitor is set as C=27pF, and crystal X1 has the frequency F=4MHz.
Note that the ground (common GND) must be connected to BeagleBone Black's one.

In the preceding circuitry, we used a crystal to generate the needed clock for the MCP2515. However, using this solution may be difficult on a breadboard. That's why, we can use a little trick to override this problem. In fact, we can use one of BeagleBone Black's PWM generators in place of the external oscillators as reported in the following diagram (see the
PWMs on the BeagleBone Black
 section, in Chapter 18, Pulse-Width Modulation - PWM for further information regarding these devices):

[image: Using an external controller]

In the preceding circuitry, the signal labeled as from the external PWM is the PWM signal generated by BeagleBone Black's pin P9.22 and goes directly to the OSC1 pin of the MCP2515 chip. Now, to enable the PWM signal at 4MHz from the BeagleBone Black for the CAN controller, we have to use the following command sequence on the BeagleBone Black:

root@bbb:~# echo BB-PWM0 > /sys/devices/platform/bone_capemgr/slots
root@bbb:~# echo 0 > /sys/class/pwm/pwmchip0/export
root@bbb:~# echo 250 > /sys/class/pwm/pwmchip0/pwm0/period
root@bbb:~# echo 125 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle
root@bbb:~# echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable

Note
As BeagleBone Black's PWMs are not really precise, we have to verify that the generated signal has the desired frequency. Otherwise, we would get a non-functional system. For instance, using an oscilloscope, we can discover that we have to use value 240 for period in order to get a precise 4MHz PWM signal! So, you should verify the actual value of your generated signal and then modify the value to be written in period accordingly.

Now, to enable the controller's driver, we have to set up the corresponding driver and then properly modify the kernel configuration in Wandboard's DTS file. The driver to manage the controller should be included in a standard kernel distribution. However, you can verify this situation by looking into the following directory for the file name mcp251x.ko:

root@wb:~# find /lib/modules/$(uname -r)/kernel/drivers
 -name mcp251x.ko
/lib/modules/4.4.7-armv7-x6/kernel/drivers/net/can/spi/mcp251x.ko

If we get no output from the find command, we have to recompile the kernel as described in the
Setting up the developing systems
 section, in Chapter 1, Installing the Developing System, to add the missing driver (if not statically linked, of course). To enable the driver compilation, we must surf the kernel configuration menu and then enable the following setting: Networking support | CAN bus subsystem support | CAN Device Drivers |CAN SPI interfaces | Microchip MCP251x SPI CAN controllers.
Regarding the DTS settings, we have to do the following modifications to the SPI section:
&ecspi1 {
 fsl,spi-num-chipselects = <1>;
 cs-gpios = <&gpio2 30 0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi1_1>, <&pinctrl_can_int>;
 status = "okay";

 can@0 {
 compatible = "microchip,mcp2515";
 reg = <0>;
 spi-max-frequency = <1000000>;

 clocks = <&clk_4MHz>;

 interrupt-parent = <&gpio3>;
 interrupts = <27 IRQ_TYPE_EDGE_FALLING>;
 };
};

Note that now, we're using just one chip select, and the pinctrl-0 settings should appear as follows, where we've added the IRQ line labeled pinctrl_can_int:
pinctrl_ecspi1_1: ecspi1grp-1 {
 fsl,pins = <
 MX6QDL_PAD_EIM_D17__ECSPI1_MISO 0x100b1
 MX6QDL_PAD_EIM_D18__ECSPI1_MOSI 0x100b1
 MX6QDL_PAD_EIM_D16__ECSPI1_SCLK 0x100b1
 MX6QDL_PAD_EIM_EB2__GPIO2_IO30 0x000f0b0
 >;
};

pinctrl_can_int: cangrp-1 {
 fsl,pins = <
 MX6QDL_PAD_EIM_D27__GPIO3_IO27 0x80000000
 >;
};

Note
The patch for the DTS settings can be retrieved from the chapter_14/imx6qdl-wandboard-mcp2515.dtsi.patch file in the book's example code repository.

OK, if the driver is correctly configured (and we supplied the proper clock - see the note above), we should see a new can0 device in our Wandboard:

root@wb:~# ifconfig can0
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00
 NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

At this point, we can configure it as we did in the previous section and then try to exchange data with the BeagleBone Black. Here are the commands that you can use:

root@wb:~# ip link set can0 up type can bitrate 50000 loopback off
 triple-sampling on
root@wb:~# ifconfig can0 up
root@wb:~# candump can0,5AA:7FF
can0 5AA [4] DE AD BE EF

Summary

In this chapter, we discovered the CAN bus and how we can connect our embedded kits together in order to exchange data between them. We presented the CAN utilities we can use to quickly get access to the CAN bus, and we discussed a bit regarding the possibility to do a transceiver-less connection for a short-range communication.
In the next chapter, we will look at a group of devices that was rarely used in the past on an embedded computer. However, since the past few days, these devices are becoming one of the most important peripherals an embedded system must have. They are the multimedia devices.

Chapter 15. Sound Devices - SND

Computers had the ability to manage audio since the beginning because sound is a good communication media, starting from human conversation to a more sophisticated mechanism to give feedback for an action to the user, playing an alarm, or even doing voice recognition in order to input commands. Also, don't forget gaming purposes, which form a huge market!
Embedded computers follow all innovations regarding this technology like a normal computer. For some implementations, the audio quality is even better than standard PCs. In fact, some embedded devices are used as Hi-Fi sound systems.
In this chapter, we will present sound devices in embedded kits and some possible usages of these devices to show you how you can use them to implement a simple and low-cost oscilloscope.
What is a sound device?

A sound (or audio) device is a computer peripheral that provides input and output of audio signals to and from a computer under the control of specific programs. Typical uses of sound cards include providing the audio component for multimedia applications, such as music, but they can also be used as input devices (by voice recognition) or sophisticated audio broadcasting for large plants, voice-recognition systems for control automation, music/audio processing, surveillance systems, and, with some limitations, even as a sophisticated ADC/DAC system useful to elaborate electrical signals (as an oscilloscope can do; look at Chapter 17,
Analog-to-Digital Converters - ADC
 for more information regarding DACs).
Data sent to a device for output or data collected from the sound device are stored in a file in several formats (as WAV, MP3, or other audio format) or sent over the network as an audio stream (music or radio streaming).
Even if it may appear as an easy task, managing audio signals is not so simple because usually, the user requires a high-quality level of the audio reproduced (or captured) by a computer. That's why, even if a normal DAC/ADC couple is needed to manage audio signals, we prefer using a dedicated peripheral. It's also quite common to have this audio signal processing as an external peripheral rather than an internal one. Then, we usually have a CPU with an engine capable of only sending to or receiving data from an external device in some standard format (usually, the PCM). In fact, the audio playing or capturing process involves several processing steps:
	Applying some audio filters to reduce noise or increase the audio quality (let's think of equalization, for instance).
	Mixing of multiple audio sources (this is quite common during playback).
	Using accurate DAC/ADC timings in order to correctly sample the signals (human ears are able to detect weak audio).

These steps are performed by an external device called audio codec, which is physically connected to the microphone or loudspeakers. So, the audio data comes back and forth to the user space through the CPU's audio interface.
Just to give an idea about how these devices can be implemented, here is a simple blocks schematic:

[image: What is a sound device?]

In order to have an idea regarding what we can find inside an audio codec, let's take a look at the datasheet of the Maxim Integrated MAX98090 chip, a complete audio codec we can connect to an embedded CPU. In the following screenshot, there is a blocks diagram taken from that document, explaining whatever we can find in it:

[image: What is a sound device?]

Note
The datasheet is available at
https://datasheets.maximintegrated.com/en/ds/MAX98090.pdf
.

The CPU sends and receives from the codec the audio data through a special audio bus, usually a serial bus called Inter-IC Sound (I2S), while to control the audio codec, the CPU uses an I2C bus with some GPIOs (see the following diagram for more details). A simplified internal representation of an audio codec with the data and control paths still taken from the MAX98090's datasheet is reported here (really, it's not a joke! It's really a simplified version):

[image: What is a sound device?]

As we can see, inside an audio codec, there is more than one ADC/DAC couple, because for humans, the audio quality is very important, especially if our application is designed for Hi-Fi applications. So, apart from the sample rate and the quantization bits number, we have to control a lot of other settings!
The electrical lines

As shown earlier, connecting an audio codec with the audio port of a CPU means using several different lines depending mainly on how the CPU's audio port is built. However, a very common configuration is made by some GPIOs: an I2C bus and an I2S bus. The first two buses are well described in Chapter 6, General Purposes Input Output signals - GPIO
 and Chapter 9, Inter-Integrated Circuits - I2C
, while the I2S bus is briefly explained here.
The I2S bus is a serial bus used for connecting digital audio devices together, where the clock and serial data are separated and they consist of (usually) three plus one lines:
	There is a bit clock line, officially called continuous serial clock (SCK) but usually called bit clock (BCLK). It pulses once for each discrete bit of data on data lines. It is the product of the audio sample rate, the number of bits per channels, and, of course, the number of channels. So, for instance, for a stereo audio sampled at 44.1KHz at 16 bits, the BCLK frequency is given by the following formula:
 Bit Clock frequency = 44100 * 16 * 2 = 1412200Hz = 1.4122MHz

	There is a word clock line, officially called Word Select (WS) but usually called Left-Right Clock (LRCLK). It is used to select which channel (left or right) is currently involved in the communication.
	There is a data line officially called Data Line (DATA SD). This line is sometime spitted into two separate lines, usually called DAC Line (DACL) or ADC Line (ADCL), that are used to send or receive audio data.
	Even if not defined by the protocol, a usual I2S implementation may also include another line called master clock (MCLK) that is commonly included for synchronizing the internal operation of ADC/DAC converters.Note
You can get more information regarding the I2S bus by looking at its specifications at
http://www.semiconductors.philips.com/acrobat_download/various/I2SBUS.pdf
.

For the sake of simplicity, in the next listing, we're going to report only I2S lines for each audio port defined in our embedded kits.

Sound on the BeagleBone Black

The BeagleBone Black has one I2S port available on expansion connectors, and the pins' layout is reported in the following table:
	

Name

	

Pin

	

MCLK

	
P9.25

	

LRCK

	
P9.29

	

BCLK

	
P9.31

	

DATA

	
P9.28

Sound on the SAMA5D3 Xplained

The SAMA5D3 Xplained has one I2S port available on expansion connectors, and the pins' layout is reported in the following table:
	
Name

	
Pin

	

TF0/WS

	
J19.5

	

TK0/SCK

	
J19.4

	

TD0/DATA

	
J17.1

	

RF0

	
J21.1

	

RK0

	
J21.3

	

RD0

	
J21.2

You should notice that we've presented six lines instead of the usual four discussed earlier. This is because in reality, on SAMA5D3 Xplained's CPU, the I2S bus is emulated by a device called Synchronous Serial Controller (SSC), which can emulate many other serial protocols generally used in audio and telecommunication applications. However, in the preceding table, we reported the typical I2S signal names in order to show the correspondence between relevant signals.
Note
More information on the SSC device can be retrieved directly from the SAMA5D3 datasheet at
http://www.atmel.com/Images/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet.pdf
.

Sound on the Wandboard

The Wandboard comes by default with a ready-to-use audio codec mounted on its baseboard. The codec used is the SGTL5000 connected to the main CPU via its I2C and I2S buses, plus some clock sources as reported by the Wandboard schematic available at
http://www.wandboard.org/images/downloads/wand-rev-c1.pdf
.
For completeness, here is a simplified schematic about the codec internals taken from the chip's datasheet available at
http://www.nxp.com/assets/documents/data/en/data-sheets/SGTL5000.pdf
:

[image: Sound on the Wandboard]

Note
We're not going to report the electrical lines list in this book because we cannot directly access them in order to test different codecs.

To see some information regarding the Wandboard's sound card, we can use the following command where we discover that the SGTL5000 audio codec is not the unique sound device available on board. In fact, using the following command, we can get a list of them:

root@wb:~# cat /proc/asound/cards
 0 [DWHDMI]: dw-hdmi-ahb-aud - DW-HDMI
 DW-HDMI rev 0x0a, irq 19
 1 [imx6wandboardsg]: imx6-wandboard- - imx6-wandboard-sgtl5000
 imx6-wandboard-sgtl5000
 2 [imxspdif]: imx-spdif - imx-spdif
 imx-spdif

As we can see, we have two other sound devices than the one implemented by the SGTL5000 chip. The first one named DWHDMI is related to the HDMI interface (not covered in this book), the second one named imx6wandboardsg is the one based on the chip SGTL5000, while the last one named imxspdif is related to the S/PDIF interface (not covered into this book).
Note
For further information regarding the HDMI interface, you can start reading from https://en.wikipedia.org/wiki/HDMI, while a useful URL for the S/PDIF is
https://en.wikipedia.org/wiki/S/PDIF
.

The sound cards list can also be taken from the sysfs as well as using the following command:

root@wb:~# ls /sys/class/sound/card*
/sys/class/sound/card0:
controlC0 device id number pcmC0D0p power subsystem uevent
/sys/class/sound/card1:
controlC1 device id number pcmC1D0c pcmC1D0p power subsystem
uevent
/sys/class/sound/card2:
controlC2 device id number pcmC2D0p power subsystem uevent

Then, reading into each id files, into each cardN directory, we can find again all names of each card as shown here:

root@wb:~# cat /sys/class/sound/card*/id
DWHDMI
imx6wandboardsg
imxspdif

Sound in Linux

The sound support in Linux bears with the Open Sound System (OSS), which is also available for several UNIX-like systems. However, around 1998, this system lacked some important functionalities for a good sound system, such as MIDI hardware support, multiple audio channel mixing, and full duplex operations. That's why, a new API was born trying to solve these issues: the Advanced Linux Sound Architecture (ALSA).
Starting from kernel release 2.6, the ALSA replaced the OSS architecture even if, during that time, several improvements were into the OSS implemented too.
The ALSA architecture has hardware MIDI support, multiple audio channel mixing, and full duplex operations, and it's designed to work well on multiprocessor systems since it's thread safe. The ALSA's API is really complex (especially compared with the OSS one), but it allows developers to do incredible things with it, especially using the related user-space library named alsa-lib and ALSA plugins (a simple example will be presented in this chapter).
Even if ALSA has completely replaced the OSS, it has an optional emulation layer for OSS in such a way that every program written for it can be used as is on ALSA. This layer can be used with a special tool named aoss available in the alsa-oss package (see the end of this chapter for a practical example on how to use this tool).
In the ALSA system, there're several cards (usually up to eight), numbered starting at 0. Each of them is a physical (or logical) kernel device capable of input/output audio data. They are mapped one-to-one with the hardware. These devices can be addressed by their index number or by their IDs (a normal string). Then, each card has one or more devices (numbered starting at 0), which are capable of specific actions such as audio playback, audio capture, control, timer, mixer, or sequencer. Also, each device may have sub devices (numbered starting at 0) that represent some relevant sound endpoint, such as a speaker pair or microphone.
The audio playback and audio capture functionalities are quite self-explanatory, while for the others, we can add that a control is used to configure the sound card, for example, setting sampling rate, reading status and querying available settings, and so on. A timer provides access to timing hardware on the sound card. A mixer selects the input and output sources on the sound card and volumes (it's a higher level control interface), while a sequencer is related to the MIDI layer.
You can see a simple example of this identification method using the Wandboard and the aplay/arecord commands (see how to install and use them). They can be used as shown here to list the playback and capture devices defined into the system:

root@wb:~# aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: DWHDMI [DW-HDMI], device 0: DW HDMI [dw-hdmi-ahb-audio]
 Subdevices: 1/1
 Subdevice #0: subdevice #0
card 1: imx6wandboardsg [imx6-wandboard-sgtl5000], device 0: HiFi sgtl
5000-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0
card 2: imxspdif [imx-spdif], device 0: S/PDIF PCM snd-soc-dummy-dai-0
 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0
root@wb:~# arecord -l
**** List of CAPTURE Hardware Devices ****
card 1: imx6wandboardsg [imx6-wandboard-sgtl5000], device 0: HiFi sgtl
5000-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

An application typically describes sound output by combining these specifications together in the following forms (which are case-sensitive):
	<interface>:<card>,<device>,<subdevice>
	<interface>:CARD=X,DEV=Y,SUBDEV=Z

Here, the names CARD, DEV, and SUBDEV are the concepts just explained earlier, while an interface is a description of an ALSA protocol for accessing the sound card; They are also known with the name of plugin, and other possible names are hw, plughw, dmix, and so on. The name hw is used to have a direct access to the kernel device, without software mixing or stream adaptation support. The name plughw is used when mixing or channel duplication is required or for sample value conversion and, when necessary, resampling.
The dmix plugin (with several other plugins) is used to allow mixing of audio data, and it is usually enabled when we need a quick and easy manner to mix up two audio streams into the same device. As a simple example, let's see how we can use it on a system having one sound card and where we wish to play two audio files at the same time (look at the upcoming paragraphs for further information regarding how the following commands work). For simplicity, we're going to play the same audio file twice at the same time. However, this test works perfectly with two different files. If we execute the two commands one after the other (with the first one executed in the background by adding the & option), we get the busy error as follows:

root@bbb:~# aplay tone-sine-1000hz.wav &
[1] 1216
Playing WAVE 'tone-sine-1000hz.wav' : Signed 16 bit Little Endian, Rat
e 44100 Hz, Stereo
root@bbb:~# aplay tone-saplay tone-sine-1000hz.wav
aplay: main:722: audio open error: Device or resource busy

The first instance of the aplay command locks the default device. So, when the second one asks for it again, we get the error. This is because the audio device cannot be accessed by more than one device at a time. However, if we add a dmix plugin on top of it, we can resolve the problem. To do it, we have to modify an ALSA configuration file, placed in the .asoundrc file in the user's home directory, as shown here:
pcm.!default {
 type plug
 slave.pcm "dmixer"
}

pcm.dmixer {
 type dmix
 ipc_key 1024
 slave {
 pcm "hw:1,0"
 period_time 0
 period_size 1024
 buffer_size 4096
 rate 44100
 }
 bindings {
 0 0
 1 1
 }
}

ctl.dmixer {
 type hw
 card 1
}

These settings add the dmix plugin and redefine the default audio card to dmixer on top of it.
Tip
For the sake of completeness, the original .asoundrc contents are shown here:

 pcm.!default {
 type hw
 card 1
 }
 ctl.!default {
 type hw
 card 1
 }

These settings are used to define card 1 as the default device instead of the usual card 0.
You can get further information regarding the .asoundrc file (note the dot at the beginning) and its usage on the ALSA Project site at
http://www.alsa-project.org/main/index.php/Asoundrc
.

Now, if we re-execute the preceding two commands, we get the desired output without errors:

root@bbb:~# aplay tone-sine-1000hz.wav &
[1] 1231
Playing WAVE 'tone-sine-1000hz.wav' : Signed 16 bit Little Endian, Rat
e 44100 Hz, Stereo
root@bbb:~# aplay tone-sine-1000hz.wav
Playing WAVE 'tone-sine-1000hz.wav' : Signed 16 bit Little Endian, Rat
e 44100 Hz, Stereo

Note
Other ALSA plugins exist and many more topics should be presented regarding the ALSA world. However, they cannot be presented here because this is not in the scope of this book. You can learn them or get further information on the ALSA architecture on ALSA's project site at
http://www.alsa-project.org
.

The audio tools

Just to remark that audio support in Linux is a big chunk of code. Let's see a brief list of the most famous tools dedicated to audio management and manipulation we can find in almost every GNU/Linux-based system.
The ALSA utils

The first toolset we can use to manage audio devices (the ones based on the ALSA specifications) is alsa-utils, which is held in the package of the same name and can be installed as usual into our embedded kits. This toolset is composed of several programs, but two of the most important ones are aplay and arecord (we mentioned earlier). So, let's see a bit more in detail how they work.
How we can imagine by looking at their names basic usages for of these programs is to play and record an audio file. However, they can also be used to detect available ALSA sound cards in the system, especially the playback and capture devices.
We already saw that if we execute the aplay program on the Wandboard, we get the following list:

root@wb:~# aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: DWHDMI [DW-HDMI], device 0: DW HDMI [dw-hdmi-ahb-audio]
 Subdevices: 1/1
 Subdevice #0: subdevice #0
card 1: imxspdif [imx-spdif], device 0: S/PDIF PCM snd-soc-dummy-dai-0
 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0
card 2: imx6wandboardsg [imx6-wandboard-sgtl5000], device 0:HiFi sgtl5
000-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

We get the three sound cards we know the Wandboard is equipped with, but we also get the information we need to precisely address the card we wish to work with in all the alsa-utils programs. As an example, using the next arecord command, we can ask for a list of the captured hardware settings for the last card device, that is, the sound card device identified by the HiFi sgtl5000-0 label:

root@wb:~# arecord -D hw:2 --dump-hw-params
Recording WAVE 'stdin' : Unsigned 8 bit, Rate 8000 Hz, Mono
HW Params
of device "hw:2":

ACCESS: MMAP_INTERLEAVED RW_INTERLEAVED
FORMAT: S16_LE S24_LE S20_3LE
SUBFORMAT: STD
SAMPLE_BITS: [16 32]
FRAME_BITS: [16 64]
CHANNELS: [1 2]
RATE: [8000 96000]
PERIOD_TIME: (166 2048000]
PERIOD_SIZE: [16 16384]
PERIOD_BYTES: [128 65535]
PERIODS: [2 255]
BUFFER_TIME: (333 4096000]
BUFFER_SIZE: [32 32768]
BUFFER_BYTES: [128 65536]
TICK_TIME: ALL

arecord: set_params:1233: Sample format non available
Available formats:
- S16_LE
- S24_LE
- S20_3LE

Alternatively, if we wish to display the audio mixer of this last card, we can use the following command:

root@wb:~# alsamixer -c imx6wandboardsg

In particular, with the alsamixer command, which is useful to get access to the sound card's internal mixer, we can use the following two forms to correctly address the card:

root@wb:~# alsamixer -c 2
root@wb:~# alsamixer -D hw:2

It's important for you to notice that the -c option argument is usually used to address a card number (or identification), while the -D option argument is usually used to address a device identification. We can omit these option arguments with a simple trick in order to redefine the default audio device. In fact, all commands, when not specified, open the default device, and redefining it will do the trick. To do it, we can again use the .asoundrc file (or its system wide version, which is the /etc/asound.conf file) with the following settings:
pcm.!default {
 type hw
 card 2
}

ctl.!default {
 type hw
 card 2
}

Starting from now, every command we're going to use without the -c or -D option argument will address card number 2 by default. As an example, the following command will now play the audio to the second device:

root@wb:~# aplay tone-sine-1000hz.wav

Now, you should take a look at alsamixer's man pages, especially at the MIXER VIEWS section (reported here). In fact, this section describes very well how a mixer is rendered on a standard terminal and how we can manage it:

MIXER VIEWS
 	The top-left corner of alsamixer is the are to show some basic
							information: the card name, the mixer chip name, the current
							view mode and the currently selected mixer item. When the mixer
							item is switched off, [Off] is displayed in its name.
							Volume bars are located below the basic information area.
							You can scroll left/right when all controls can't be put in a
							single screen. The name of each control is shown in the bottom
							below the volume bars. The currently selected item is drawn in
							red and/of emphasized.

 Each mixer control with volume capability shows a box and the
							current volume filled in that box. The volume percentages are
							displayed below the volume bar for left and right channels. For
							a mono control, only one value is shown there.
 When a mixer control has capture capability, the capture flag
								appears below the volume bar, too. When the capture is turned
								off, ------- is shown. CAPTURE in red appears when the capture
								switch is turned on. In addition, L and R letters appear in
								left and right side to indicate that left and the right
								channels are turned on.
 Some controls have the enumeration list, and don't show boxes
								but only texts which indicate the currently active item. You
								can change the item via up/down keys.

In the next screenshot, you can see (a part of) the sound card device HiFi sgtl5000-0 we get when we execute the alsamixer command:

[image: The ALSA utils]

The alsamixer tool is very useful if we have to directly manage sound card's mixing controls. However, a more flexible mixer tool exists that allow us to modify mixing controls within a script. This tool is amixer. It has been specifically designed for the command-line usage as reported into its man pages too:

DESCRIPTION
 amixer allows command-line control of the mixer for the ALSA
								soundcard driver. amixer supports multiple soundcards.

 amixer with no arguments will display the current mixer
								settings for the default soundcard and device. This is a good
								way to see a list of the simple mixer controls you can use.

If we execute the amixer command into the Wandboard on the same sound card as we did earlier, asking for the list of the card's (simple) controls, we should get something similar to the following output:

root@wb:~# amixer -c 2 scontrols
Simple mixer control 'Headphone',0
Simple mixer control 'Headphone Mux',0
Simple mixer control 'Headphone Playback ZC',0
Simple mixer control 'PCM',0
Simple mixer control 'Mic',0
Simple mixer control 'Capture',0
Simple mixer control 'Capture Attenuate Switch (-6dB)',0
Simple mixer control 'Capture Mux',0
Simple mixer control 'Capture ZC',0

Then, we can get and modify the current settings of the control named PCM using the following commands:

root@wb:~# amixer -c 2 sget 'PCM'
Simple mixer control 'PCM',0
 Capabilities: pvolume
 Playback channels: Front Left - Front Right
 Limits: Playback 0 - 192
 Mono:
 Front Left: Playback 144 [75%]
 Front Right: Playback 144 [75%]
root@wb:~# amixer -c 2 sset 'PCM' 25,25
Simple mixer control 'PCM',0
 Capabilities: pvolume
 Playback channels: Front Left - Front Right
 Limits: Playback 0 - 192
 Mono:
 Front Left: Playback 25 [13%]
 Front Right: Playback 25 [13%]

Tip
Note that by specifying the 25,25 couple, we can set both left and right channels at once.

Another useful tool is speaker-test that can be used to test a sound card by generating testing signals such as pink noise, sine waves, or even human voice. As a simple example, we can test our device HiFi sgtl5000-0 by playing a sine waveform at 1KHz with this command:

root@wb:~# speaker-test -D hw:2 --test sine --frequency 1000
 --nloops 1 --channels 2
speaker-test 1.0.28
Playback device is hw:2
Stream parameters are 48000Hz, S16_LE, 2 channels
Sine wave rate is 1000.0000Hz
Rate set to 48000Hz (requested 48000Hz)
Buffer size range from 64 to 16384
Period size range from 32 to 8192
Using max buffer size 16384
Periods = 4
was set period_size = 4096
was set buffer_size = 16384
 0 - Front Left
 1 - Front Right
Time per period = 5.647299

Moving back to the beginning, we told that using aplay, we can play an audio file. In fact, we can play a WAV file as follows:

root@wb:~# aplay -D hw:2 tone-sine-1000hz.wav
Playing WAVE 'tone-sine-1000hz.wav' : Signed 16 bit Little Endian, Rat
e 44100 Hz, Stereo

Note
The file can be found in the chapter_15/tone-sine-1000hz.wav file in the book's example code repository.

On the other side, we can record a sound file using the next command until we press the
Ctrl + C
 keys sequence:

root@wb:~# arecord -D hw:2 --rate=44100 --format S16_LE mic.wav
Recording WAVE 'mic.wav' : Signed 16 bit Little Endian, Rate 44100 Hz,
Mono

Tip
Otherwise, we can use the -d option argument to specify a recording duration time.

Note that in order to record something from the MIC input, the mixer settings should be set as follows before executing the command:

root@wb:~# amixer -c 2 sget 'Mic'
Simple mixer control 'Mic',0
 Capabilities: volume volume-joined
 Playback channels: Mono
 Capture channels: Mono
 Limits: 0 - 3
 Mono: 3 [100%] [40.00dB]
root@wb:~# amixer -c 2 sget 'Capture'
Simple mixer control 'Capture',0
 Capabilities: cvolume
 Capture channels: Front Left - Front Right
 Limits: Capture 0 - 15
 Front Left: Capture 12 [80%]
 Front Right: Capture 12 [80%]
root@wb:~# amixer -c 2 sget 'Capture Mux'
Simple mixer control 'Capture Mux',0
 Capabilities: enum
 Items: 'MIC_IN' 'LINE_IN'
 Item0: 'MIC_IN'
root@wb:~# amixer -c 2 sget 'Mic' 'Capture Mux'
Simple mixer control 'Mic',0
 Capabilities: volume volume-joined
 Playback channels: Mono
 Capture channels: Mono
 Limits: 0 - 3
 Mono: 3 [100%] [40.00dB]

Before ending this section, it is useful to notice that an interesting usage of these commands is also reported here, where we can use both at the same time in order to directly hear what we're currently recording:

root@wb:~# arecord -D hw:2 --rate=44100 --format S16_LE
 --channels=2 | \
 aplay -D hw:2 --rate=44100 --format S16_LE
Recording WAVE 'stdin' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
Playing WAVE 'stdin' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

Tip
You should notice that we used --channels=2 in order to convert the mono input into two channels. Otherwise, we'll hear the sound in the headphone from one channel only.

Madplay

Both the aplay and arecord programs support hardware-related (and basic) sound formats only. As an example, if we try to play an MP3 file, we get the following error:

root@wb:~# aplay -D hw:2 tone-sine-1000hz.mp3
Playing raw data 'tone-sine-1000hz.mp3' : Unsigned 8 bit, Rate 8000
Hz, Mono
aplay: set_params:1233: Sample format non available
Available formats:
- S16_LE
- S24_LE
- S20_3LE

Note
The file can be found in the chapter_15/tone-sine-1000hz.mp3 file in the book's example code repository.

The aplay command simply doesn't recognize the MP3 format! To solve this issue, we can use another useful tool named madplay, which is held in the package of the same name. Using madplay, we are now able to play an MP3 file too. However, this is not so easy. In fact, if we use the following command, most probably, we hear nothing from the speakers:

root@wb:~# madplay tone-sine-1000hz.mp3

This is because the madplay utility doesn't allow the user to specify which sound card should be used for playback. It always uses the default sound card defined into the system. To solve this issue, we can use the following command line where we ask madplay to send its output to the stdout pipe (instead of a sound device) and then we can use aplay to effectively send the audio stream to the correct audio device:

root@wb:~# madplay tone-sine-1000hz.mp3 -o wave:- | aplay -D hw:2
MPEG Audio Decoder 0.15.2 (beta) - Copyright (C) 2000-2004 Robert
Leslie et al.
Playing WAVE 'stdin' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

Note that with madplay, the trick used earlier with the /etc/asound.conf file will not work because madplay doesn't use it.
Note
The madplay command's main site is
http://www.underbit.com/products/mad/
.

Mplayer

Another very useful tool we can use to play almost every audio (and video) file format is mplayer. The program is held in the mplayer2 package and it can be installed as usual.
Once installed, we can take a look at its man pages (a very long document) in order to see how it works. However, as a simple example, to play an M4A file on our Wandboard, we can use the following command line:

root@wb:~# mplayer --ao=alsa:device=hw=2 tone-sine-1000hz.m4a

Note
The file can be found in the chapter_15/tone-sine-1000hz.m4a file in the book's example code repository.

Here is reported a snippet of the man pages of mplayer where we can see tons of different commands lines and possibilities it offers to the developers:

mplayer [options] [file|URL|playlist|-]
mplayer [options] file1 [specific options] [file2] [specific options]
mplayer [options] {group of files/options} [group-specific options]
mplayer [br]://[title][/device] [options]
mplayer [dvd|dvdnav]://[title|[start_title]-end_title][/device][opts]
mplayer vcd://track[/device]
mplayer tv://[channel][/input_id] [options]
mplayer radio://[channel|frequency][/capture] [options]
mplayer pvr:// [options]
mplayer dvb://[card_number@]channel [options]
mplayer mf://[filemask|@listfile] [-mf options] [options]
mplayer [cdda|cddb]://track[-endtrack][:speed][/device] [options]
mplayer cue://file[:track] [options]
mplayer [file|mms[t]|http|http_proxy|rt[s]p|ftp|udp|unsv|icyx|noicyx|s
mb]
:// [user:pass@]URL[:port] [options]
mplayer sdp://file [options]
mplayer mpst://host[:port]/URL [options]
mplayer tivo://host/[list|llist|fsid] [options]

In the end, we should notice that mplayer is sensible to the ALSA configuration file /etc/asound.conf. So, if you have defined this file as shown earlier, the command should work correctly even if executed without the option argument --ao.
Note
The main site of mplayer is at http://www.mplayerhq.hu.

Sox

The last tool we're going to present here is sox, the Swiss Army knife of audio manipulation, which is held in the package of the same name. Once installed, we can take a look at its man pages, where it is made clear that it can not only play an audio file, but it can also manipulate it! Here are the lines of code:

SoX reads and writes audio files in most popular formats and
						can optionally apply effects to them. It can combine multiple
						input sources, synthesise audio, and, on many systems, act as
						a general purpose audio player or a multi-track audio recorder.
						It also has limited ability to split the input into multiple
						output files.
All SoX functionality is available using just the sox command.
						To simplify playing and recording audio, if SoX is invoked as
						play, the output file is automatically set to be the default
						sound device, and if invoked as rec, the default sound device
						is used as an input source.
Additionally, the soxi(1) command provides a convenient way to
						just query audio file header information.
The heart of SoX is a library called libSoX. Those interested
						in extending SoX or using it in other programs should refer to
						the libSoX manual page: libsox(3).
SoX is a command-line audio processing tool, particularly
						suited to making quick, simple edits and to batch processing.
						If you need an interactive, graphical audio editor, use
						audacity(1).

As we can see in the preceding description, sox can be used for tons of different usages in manipulating audio files. As simple examples, let's see some typical usages.
First of all, we can play a supported audio file format simply using these command lines:

root@wb:~# sox tone-sine-1000hz.wav -t alsa hw:2
tone-sine-1000hz.wav:
 File Size: 1.76M Bit Rate: 1.41M
 Encoding: Signed PCM
 Channels: 2 @ 16-bit
Samplerate: 44100Hz
Replaygain: off
 Duration: 00:00:10.00
In:78.9% 00:00:07.89 [00:00:02.11] Out:348k [====|====] Hd:2.4 Clip:0

Tip
Using the /etc/asound.conf settings as done earlier to define the default audio device, we can omit the hw:2 specification or directly use the -d option argument, which is a placeholder for the default device.

Note that in building the command line, ordering of options is important! In fact, apart from optional arguments, the command syntax is as follows:

sox infile1 [[infile2] ...] outfile

So, in the preceding command, the infile1 argument is tone-sine-1000hz.wav, while outfile is -t alsa hw:2, that is, the sound device. In fact, if we specify a normal file, then sox will simply proceed in converting the audio input file into a different one according to the output file extension. As an example, the following command will convert a WAV file into a Sun/NeXT audio data file:

root@wb:~# sox tone-sine-1000hz.wav tone-sine-1000hz.au
root@wb:~# file tone-sine-1000hz.au
tone-sine-1000hz.au: Sun/NeXT audio data: 16-bit linear PCM, stereo,
44100 Hz

Tip
If involved files have no extensions at all, we can force the audio files using the -t option argument as follows:

 root@wb:~# sox tone-sine-1000hz.wav -t au tone-sine

 -1000hz

 root@wb:~# file tone-sine-1000hz

 tone-sine-1000hz: Sun/NeXT audio data: 16-bit linea

 r PCM, stereo, 44100 Hz

Another usage of sox is to generate specific audio files. As an example, here is a command line to generate a 5.5 second audio file sampled at 8KHz, signed 16 bits, containing a sine wave swept from 100 to 1000Hz:

root@wb:~# sox -r 8000 -e unsigned -b 16
 -n output.wav synth 00:00:05.5 sine 100-1000
root@wb:~# file output.wav
output.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16
bit, mono 8000 Hz

Then, the file can be heard with the following command:

root@wb:~# sox output.wav -t alsa hw:2
output.wav:
 File Size: 88.0k Bit Rate: 128k
 Encoding: Signed PCM
 Channels: 1 @ 16-bit
Samplerate: 8000Hz
Replaygain: off
 Duration: 00:00:05.50
In:100% 00:00:05.50 [00:00:00.00] Out:44.0k [|]
Hd:0.0 Clip:0
Done.

The file can also be displayed with a spectrogram using this command line:

root@wb:~# sox output.wav -n spectrogram

The output graph is shown here:

[image: Sox]

With sox, audio files can be mixed too. If we generate another file as we did earlier, but holding frequencies from 500 to 2KHz and then we mix them together using the following commands, we get the spectrogram in the next figure:

root@wb:~# sox -r 8000 -e unsigned -b 16
 -n output2.wav synth 00:00:05.5 sine 500-2000
root@wb:~# sox --combine mix output.wav output2.wav output-mix.wav
root@wb:~# sox output-mix.wav -n spectrogram

[image: Sox]

At this point, if we hear the resulting audio file, we can notice that the original ones have been actually mixed. However, the audio is mono... no problem!. With sox, we can turn it into stereo with the following command:

root@wb:~# sox output-mix.wav -c 2 output-mix-stereo.wav

Then, we can hear the file or generate a new spectrogram:

root@wb:~# sox output-mix-stereo.wav -n spectrogram

Here is the resulting figure:

[image: Sox]

On the other hand, we can combine the two original files, one per channel, instead of mixing them using the following command:

root@wb:~# sox --combine merge output.wav output2.wav output-mer.wav

Then, we will get the relative spectrogram:

[image: Sox]

The inverse operation, that is, converting from stereo to mono, can be done in several ways:
	By averaging both channels:

root@wb:~# sox output-mer.wav output-mono.wav remix 1-2

	Just using one channel a at time:

root@wb:~# sox output-mer.wav output-mono.wav remix 1
root@wb:~# sox output-mer.wav output-mono.wav remix 2

Tip
The spectrograms of the last files are not displayed because they're replicas of the preceding figures.

Regarding the ability to record an audio signal, we can use this command:

root@wb:~# sox --rate=44100 --channels=1
 -t alsa hw:2 mic.wav trim 0 10
Input File : 'hw:2' (alsa)
Channels : 1
Sample Rate : 44100
Precision : 16-bit
Sample Encoding: 16-bit Signed Integer PCM
In:0.00% 00:00:10.03 [00:00:00.00] Out:441k [===|===] Hd:4.6 Clip:0
Done.

Tip
The trim 0 10 effect at the end of the command is used as a trick to record for 10 seconds; otherwise, we have to hit the
Ctrl + C
 key sequence.

Then, we can do some interesting things on the just recorded file. First of all, we can increase or decrease the volume if we notice a wrong audio level using the -v option argument. For example, with the next command, we will play the file, decreasing the volume:

root@wb:~# sox -v 0.1 mic.wav -t alsa hw:2

Alternatively, we can change the sample rate:

root@wb:~# sox mic.wav --rate=8000 mic-8000.wav
sox WARN rate: rate clipped 36398 samples; decrease volume?
sox WARN dither: dither clipped 31940 samples; decrease volume?
root@wb:~# file mic-8000.wav
mic-8000.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 16
bit, mono 8000 Hz

Tip
Warnings are due to the new re-sampling rate, which implies some clipping.

Then, we can speed up the playback or play backward:

root@wb:~# sox mic.wav -t alsa hw:2 speed 2.0

root@wb:~# sox mic.wav -t alsa hw:2 reverse

We can continue for a long time in applying these alterations!
Note
The main site of sox is at
http://sox.sourceforge.net
.

The USB audio device class

A special audio device class is represented by the USB audio device class, which describes devices capable of streaming audio. This class is really important due to the fact that it allows a single driver to work with various USB sound devices and interfaces on the market (however, many USB sound cards do not conform to the standard and require proprietary drivers from the manufacturer). The Linux kernel has a support for this device class and the driver. If not enabled into the running kernel, it can be enabled into the kernel configuration menu using the path Device Drivers | Sound card support | Advanced Linux Sound Architecture | USB sound devices | USB Audio/MIDI driver.
As an example, let's try to connect one of these devices to our BeagleBone Black. They can be found almost everywhere over the Internet, and here is an image of the one used in the upcoming examples:

[image: The USB audio device class]

Once the device is connected to our embedded kit, we should see the following kernel messages:

usb 1-1: new full-speed USB device number 2 using musb-hdrc
usb 1-1: New USB device found, idVendor=0d8c, idProduct=013c
usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=0
usb 1-1: Product: USB PnP Sound Device
input: USB PnP Sound Device as /devices/platform/ocp/47400000.usb/ 474
01c00.usb/musb-hdrc.1.auto/usb1/1-1/1-1:1.3/0003:0D8C:013C.0001/input/
input1
hid-generic 0003:0D8C:013C.0001: input,hidraw0: USB HID v1.00 Device [
USB PnP Sound Device] on usb-musb-hdrc.1.auto-1/input3
usbcore: registered new interface driver snd-usb-audio

Tip
The device presented here is quite complete since it implements, with the audio device, an input device as well. These companion devices are usually used to support additional functionalities as special action buttons to change the volume or to mute the speakers.

Now, we can use the aplay command shown earlier to show the new sound device:

root@bbb:~# aplay -l
**** List of PLAYBACK Hardware Devices ****
card 1: Device [USB PnP Sound Device], device 0: USB Audio [USB Audio]
 Subdevices: 1/1
 Subdevice #0: subdevice #0

Then, using the alsamixer tool, we can show the mixer settings as shown here:

[image: The USB audio device class]

Tip
Notice that the alsamixer tool has been executed with the command line here:

 root@bbb:~# alsamixer -c 1

This is because the kernel numbered our device as Card 1, and since the default device is always Card 0, if we do not use the -c option argument, we'll get the following error:

 root@bbb:~# alsamixer

 cannot open mixer: No such file or directory

However, we can use the .asoundrc file to solve the issue.

As you can verify, the mixing controls displayed earlier are the only ones available for this device because this device class is really simple. Another way to verify it is using the amixer tool as shown here:

root@bbb:~# amixer -c 1 scontrols
Simple mixer control 'Speaker',0
Simple mixer control 'Mic',0
Simple mixer control 'Auto Gain Control',0

Managing sound devices

Now, it's time to see how we can practically manage a sound device and how we can add an addition audio codec to the system using the CPU's audio interface directly.
Adding an audio codec

In order to show how we can connect a codec to an embedded kit, we can use the development board reported in the following image, which is based on the chip WM8731:

[image: Adding an audio codec]

Note
The devices can be purchased at
http://www.cosino.io/product/audio-codec-i2si2c
 or by surfing the Internet.

Here is the URL where we can get the datasheet of the board:

http://download.mikroe.com/documents/add-on-boards/other/audio-and-voice/audio-codec-proto/audio-codec-proto-manual-v100.pdf.
While the datasheet of the codec chip WM8731 is found here:
https://www.cirrus.com/jp/pubs/proDatasheet/WM8731_v4.9.pdf.

To do this test, we will use the SAMA5D3 Xplained board, and here is the circuitry needed to connect the board:

[image: Adding an audio codec]

Then, we need to do the next modifications to the SAMA5D3 Xplained's DTS file:
--- a/arch/arm/boot/dts/at91-sama5d3_xplained.dts
+++ b/arch/arm/boot/dts/at91-sama5d3_xplained.dts
@@ -61,6 +61,12 @@
 status = "okay";
 };

+ ssc0: ssc@f0008000 {
+ pinctrl-0 = <&pinctrl_ssc0_tx &pinctrl_ssc0_rx>;
+ status = "okay";
+ };
+
+
 can0: can@f000c000 {
 status = "okay";
 };
@@ -68,6 +74,11 @@
 i2c0: i2c@f0014000 {
 pinctrl-0 = <&pinctrl_i2c0_pu>;
 status = "okay";
+
+ wm8731: wm8731@1a {
+ compatible = "wm8731";
+ reg = <0x1a>;
+ };
 };

 i2c1: i2c@f0018000 {
@@ -333,4 +344,17 @@
 gpios = <&pioE 24 GPIO_ACTIVE_HIGH>;
 };
 };
+
+ sound {
+ compatible = "atmel,sam9x5-wm8731-audio";
+ atmel,model = "wm8731 @ SAMA5D3 Xplained";
+ atmel,audio-routing =
+ "Headphone Jack", "RHPOUT",
+ "Headphone Jack", "LHPOUT",
+ "LLINEIN", "Line In Jack",
+ "RLINEIN", "Line In Jack";
+
+ atmel,ssc-controller = <&ssc0>;
+ atmel,audio-codec = <&wm8731>;
+ };
 };

Note
The patch can also be found in the chapter_15/audio-codec-wm8731.patch file in the book's example code repository.

With this patch, we enabled the ssc0 device, which is the audio interface used by the CPU to exchange the audio data. We defined a new chip at address 0x1a in the I2C bus i2c0 (this connection is used to control the mixer settings and other configuration controls), and then, as the last step, we defined the sound section where scc0 and WM8731 are glued. This last section is then read by a special kernel code, which is the one that actually defines the new audio device into the kernel.
This glue code is device specific, that is, we need a specific file for each codec we wish to use in the system. It is needed to correctly set up the sound driver by connecting the driver of the CPU's audio interface, in this case, the driver of the SSC, which is in the sound/soc/atmel/atmel_ssc_dai.c file, and the driver of the codec, in this case, the sound/soc/codecs/wm8731.c file. In this case, we're lucky since this special code is already available in the kernel's tree, and it is the sound/soc/atmel/sam9x5_wm8731.c file. Here is a snippet of the relevant code of the sam9x5_wm8731_driver_probe() function:
card->dev = &pdev->dev;
card->owner = THIS_MODULE;
card->dai_link = dai;
card->num_links = 1;
card->dapm_widgets = sam9x5_dapm_widgets;
card->num_dapm_widgets = ARRAY_SIZE(sam9x5_dapm_widgets);
dai->name = "WM8731";
dai->stream_name = "WM8731 PCM";
dai->codec_dai_name = "wm8731-hifi";
dai->init = sam9x5_wm8731_init;
dai->dai_fmt = SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_NB_NF
 | SND_SOC_DAIFMT_CBM_CFM;

ret = snd_soc_of_parse_card_name(card, "atmel,model");
if (ret) {
 dev_err(&pdev->dev, "atmel,model node missing\n");
 goto out;
}

ret = snd_soc_of_parse_audio_routing(card, "atmel,audio-routing");
if (ret) {
 dev_err(&pdev->dev, "atmel,audio-routing node missing\n");
 goto out;
}

codec_np = of_parse_phandle(np, "atmel,audio-codec", 0);
if (!codec_np) {
 dev_err(&pdev->dev, "atmel,audio-codec node missing\n");
 ret = -EINVAL;
 goto out;
}

dai->codec_of_node = codec_np;

cpu_np = of_parse_phandle(np, "atmel,ssc-controller", 0);
if (!cpu_np) {
 dev_err(&pdev->dev, "atmel,ssc-controller node missing\n");
 ret = -EINVAL;
 goto out;
}
dai->cpu_of_node = cpu_np;
dai->platform_of_node = cpu_np;

priv->ssc_id = of_alias_get_id(cpu_np, "ssc");

ret = atmel_ssc_set_audio(priv->ssc_id);
if (ret != 0) {
 dev_err(&pdev->dev,
 "ASoC: Failed to set SSC %d for audio: %d\n",
 ret, priv->ssc_id);
 goto out;
}

of_node_put(codec_np);
of_node_put(cpu_np);

ret = snd_soc_register_card(card);
if (ret) {
 dev_err(&pdev->dev,
 "ASoC: Platform device allocation failed\n");
 goto out_put_audio;
}

dev_dbg(&pdev->dev, "ASoC: %s ok\n", __func__);

return ret;

As we can see, the probing code first defines some basic settings as the names of the driver, stream and the Digital Audio Interface (DAI), the digital interface format and so on. Then, it parses the DTS settings we defined into the sound section shown earlier using the snd_soc_of_parse_card_name(), snd_soc_of_parse_audio_routing(), and of_parse_phandle() functions. In the end, it calls the snd_soc_register_card() function in order to register a new sound card into the system.
OK, now, we have to recompile the kernel, install it, and then reboot. If everything works well, we should see the following kernel messages during the boot:

sam9x5-snd-wm8731 sound: wm8731-hifi <-> f0008000.ssc mapping ok
...
ALSA device list:
 #0: wm8731 @ SAMA5D3 Xplained

Tip
It may be possible that we get the following error:

 ssc f0008000.ssc: Missing dma channel for stream: 0

 ssc f0008000.ssc: ASoC: pcm constructor failed: -22

 sam9x5-snd-wm8731 sound: ASoC: can't create pcm WM8

 731 PCM :-22

 sam9x5-snd-wm8731 sound: ASoC: failed to instantiat

 e card -22

 sam9x5-snd-wm8731 sound: ASoC: Platform device allo

 cation failed

 sam9x5-snd-wm8731: probe of sound failed with error

 -22

If so, we can solve the issue by disabling some DMA channels in order to reserve at least two for the sound interface. This is because the audio cannot work without DMA channels as the SPI controller does. The patch is shown here:

 --- a/arch/arm/boot/dts/at91-sama5d3_xplained.dts

 +++ b/arch/arm/boot/dts/at91-sama5d3_xplained.dts

 @@ -58,6 +58,7 @@

 spi0: spi@f0004000 {

 cs-gpios = <&pioD 13 0>, <0>, <0>, <&pioD 1

 6 0>;

 + dmas = <0>, <0>; /* disable audio DMAs */

 status = "okay";

 };

Now, we should list the new sound device as follows:

root@a5d3:~# aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Xplained [wm8731 @ SAMA5D3 Xplained], device 0: WM8731 PCM
wm8731-hifi-0
 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

Now, to enable the headphone output, we have to execute the following amixer command:

root@a5d3:~# amixer sset 'Output Mixer HiFi' on
Simple mixer control 'Output Mixer HiFi',0
 Capabilities: pswitch pswitch-joined
 Playback channels: Mono
 Mono: Playback [on]

At this point, we're ready to play our audio file as shown here:

root@a5d3:~# aplay tone-sine-1000hz.wav
Playing WAVE 'tone-sine-1000hz.wav' : Signed 16 bit Little Endian, Rat
e 44100 Hz, Stereo

Tip
It may be possible that the tone is a bit higher than usual. In this case, we should verify that everything is OK using the time command:

 Playing WAVE 'tone-sine-1000hz.wav' : Signed 16 bit

 Little Endian, Rate 44100 Hz, Stereo

 real 0m7.755s

 user 0m0.220s

 sys 0m0.040s

Since the audio file tone-sine-1000hz.wav is 10 seconds long, if it is played in 7.755 s, as shown earlier, it means that obviously something is wrong. This is because most probably, the audio board used for the test has an on-board crystal at 16.9344MHz instead of the right one at 12.288MHz. So, in this case, we can fix the issue by modifying the MCLK_RATE define as follows:

 --- a/sound/soc/atmel/sam9x5_wm8731.c

 +++ b/sound/soc/atmel/sam9x5_wm8731.c

 @@ -32,7 +32,7 @@

 #include "atmel_ssc_dai.h"

 -#define MCLK_RATE 12288000

 +#define MCLK_RATE 16934400

 #define DRV_NAME "sam9x5-snd-wm8731"

A simple oscilloscope

Now, let's see a fantastic way to use a sound card! Since this is fundamentally a DAC, we can imagine to use it to sample an electronic signal and then to display it as a normal oscilloscope can do. Of course, we cannot emulate a real oscilloscope due to the fact that sound cards have specific circuitry designed for signals audible by humans and suitable for a limited frequency range, but we can get an interesting application in any case.
To implement our oscilloscope, we can use our Wandboard and a special program called xoscope, which is held in the same package. Also, we need another tool that will be used as a wrapper to masquerade Wandboard's ALSA imx6wandboardsg device as on OSS device. This is because the xoscope program is a bit old, and it doesn't support ALSA API by default. The tool is aoss, and it is held in the alsa-oss package, so we can use the next command to install the necessary programs:

root@wb:~# aptitude install alsa-oss xoscope

When installation ends, we can take a look at the man page of aoss in order to know how we can use this tool (here is the relevant snippet):

aoss is a simple wrapper script which facilitates the use of the ALSA
OSS compatibility library. It just sets the appropriate LD_PRELOAD
path
 and then runs the command.

This is useful in cases where routing settings (which can be made in
your .asoundrc file) need to be applied to commands that use the OSS
API.

Examples of asoundrc configuration:

pcm.dsp0 { type plug slave.pcm "hw:0,0" }

or

pcm.dsp0 { type plug slave.pcm "dmix" }

In the above configuration examples, the pcm.dsp0 definition is used
to
 wrap calls do /dev/dsp0. You can also wrap usage of /dev/dsp1,
/dev/dsp2, etc. by defining pcm.dsp1, pcm.dsp2, etc..

The PCM name to open can be given explicitly via ALSA_OSS_PCM_DEVICE
environment variable, too. This overrides the default dsp0, etc.

Note on mmap: aoss mmap support might be buggy. Your results may vary
when trying to use an application that uses mmap'ing to access the OSS
device files.

As we can see, to use the tool, we just need to use proper settings in the well-known .asoundrc file. So, for the Wandboard, we have to use the next command to set up the file:

root@wb:~# echo 'pcm.dsp0 { type plug slave.pcm "hw:2,0" }'
 > ~/.asoundrc

Then, we have to connect a signal source to our Wandboard. We can use a microphone as we did earlier or, better, we can use another kit to generate a well-known waveform. For instance, we can use the BeagleBone Black equipped with the USB sound device and then connect its headphone output to the MIC input of the Wandboard. At this point, using the sox tool as shown here, we can generate a sine waveform at 100Hz:

root@bbb:~# sox -r 44100 -e signed -b 16 -n
 -t alsa hw:1 synth 01:00:00.0 sin 100
 Encoding: Signed PCM
 Channels: 1 @ 16-bit
Samplerate: 44100Hz
Replaygain: off
 Duration: unknown
In:0.00% 00:00:18.02 [00:00:00.00] Out:791k [!=====|=====!] Hd:0.0 Clip:291

Tip
Note that we specified a duration of 1 hour, which should be sufficient to do all our tests.

Now, everything is in place, and we can execute our xoscope program as follows:

root@wb:~# aoss xoscope

Tip
This tool uses the X-Window protocol to plot its user interface, so we have to execute it into a graphical environment. However, since we never used any graphical outputs in this book, we need a way to render the GUI of xoscope. We can use an SSH tunnel to forward the X-Window protocol over the network from the Wandboard to our host PC simply by doing a login with the -X option argument as shown here (see Chapter 4, Quick Programming with Scripts and System Daemons):

 $ ssh -X root@192.168.9.2

this manner, every tool that needs a graphical X-Window compatible display can be executed on the Wandboard, but rendered on the host PC.

If everything works well, we should see something similar to the following screenshot:

[image: A simple oscilloscope]

To fix the sine wave into the display, as in every normal oscilloscope, we have to regulate the time base using a trigger. So, let's use the menu entry Scope | Slower Time Base until we reach 5ms/div and the Trigger | Rising to enable the trigger. Then, the sine wave should be fixed and well displayed as shown here:

[image: A simple oscilloscope]

Now, we can play a bit with our oscilloscope by modifying its settings or trying to display other signals. For instance, if we stop the preceding command in the BeagleBone Black and execute the next one, we should see a square waveform:

root@bbb:~# sox -r 44100 -e signed -b 16 -n
 -t alsa hw:1 synth 01:00:00.0 square 100

Then, the display should change as in the next screenshot.

[image: A simple oscilloscope]

Tip
You should now understand that the square waveform displayed is not perfect because both the Wandboard and BeagleBone Black's sound cards are designed to human-audible signals and they cannot allow all the necessary frequencies for a square wave to pass.

Summary

Audio devices may appear to be simple devices, but as shown in this chapter, they are very complex, and embedded devices can use them for several different tasks. Also, we presented a complete class of audio tools useful to do a lot of different signal manipulation. We also saw that using the ALSA drivers, we can use these tools in the same manner even on different audio devices.
In the next chapter, we'll see another important devices class. This is a class of devices that allows developers to manage images. This is the class of video devices.

Chapter 16. Video devices - V4L

Even if not widely diffused, capturing video images or recording videos can be integrated into an embedded device to accomplish several different tasks, such as remote monitoring, video surveillance, image processing, and so on.
In this chapter, after a brief explanation about how these devices are defined in a GNU/Linux system, we're going to see a simple usage of common video-acquisition devices and how we can turn our embedded kit into a surveillance camera or a remote image recorder.
What is a video device?

A video-capture device is a device that is able to convert an analog video signal (such as that produced by a video camera, analog TV tuners, or other analog sources) to digital video. Then, the resulting digital data can be stored in a file (as AVI, MJPEG, or other image formats), sent over the network as a video stream (as MJPEG or H264, for instance), or simply displayed on local display.
Tip
However, as we'll see in the upcoming sections, for Linux, video devices are those devices that are capable of generating a video image (as digital TV tuners), regardless of whether they are digital or analog devices.

An embedded device can be equipped with a video device for several reasons. However, the main one is usually for video surveillance purposes or video monitoring. The basic usage can be simply sending the images to a remote user, but more often, in these last days, it's not rare that the embedded system can do some analysis on the video stream in order to detect motion or other relevant events.
Special electronic circuitry is required to capture video from analog video sources, and in an embedded system, this circuitry is usually inside the CPU (more rarely, it may be external too). However, in any case, what we really have is a video engine capable only of the last steps of video acquisition, that is, the collection of the video data in some standard color space format (RGB or YCbCr) and its eventual conversion into some high-level video format (MJPEG or H264). In fact, the video-capture process involves several processing steps:
	Digitalization of the analog signal, usually from a charge-coupled device (CCD) image sensor, by an analog-to-digital converter to produce a raw digital data stream.
	Separation of the luminance and chrominance, and its demodulation to produce color difference video data.
	Adjustment of brightness, contrast, saturation, and hue.
	Standard color space transformation as RGB and YCbCr.

These steps are done by an external device called video codec, which is physically connected to the CCD image sensor. Then, the video data is passed to the CPU's video interface, which, in turn, makes it available at user space. In the case of a simple video interface, such as the Image Sensor Interface (ISI) controller of SAMA5D3 Xplained's CPU, the video data is passed to the user space as is (with minor processing steps) or to the LCD controller in order to be shown to the user. On the other hand, in the case of a more complex video interface, such as the Image Processing Unit (IPU) of Wandboard's CPU (CAMERA1 interface), the video data can also be resampled via some hardware engine and converted into MJPEG or H264 for video streaming over the network (this operation can also be done via software, but, of course, in this case, the main CPU is more loaded).
Just to give an idea about how these devices can be implemented, the following diagram shows a simple blocks schematic:

[image: What is a video device?]

The CPU directly controls the video codec, which, in turn, controls the video CCD image sensor. Signals the CPU usually need to control the video codec are a video data bus, an I2C bus, and some GPIOs.
In order to have an idea regarding what we can find inside a video codec, let's take a look at a product brief document of the Omnivision OV7740 chip, a good video codec we can connect to an embedded CPU. Here is a blocks diagram taken from that document explaining whatever we can find in it:

[image: What is a video device?]

Note
The document is available at http://www.ovt.com/download/sensorpdf/83/OmniVision_OV7740.pdf.

The diagram explains how the codec works. The CPU receives from the codec the raw video data through a parallel bus (DATA[9:0]), while it controls the codec using some control signals as we described earlier (the SCCB slave interface is the I2C interface).

Other interesting figures to see are the block diagrams of the internals of the two video engines mentioned earlier. The first one in the following diagram is the simplified schematic of the IPU of Wandboard's CPU taken from its datasheet:

[image: What is a video device?]

Note
The datasheet is available at
http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
.

In the diagram, we can see how a camera (or video) interface is connected with several blocks implementing the video engine functionalities. Also, it is evident how the video interface is related to the display interface (which controls the computer's displays) because the images we capture are not only for storage or remote viewing, but they can also be displayed on the computer local screen after some manipulations (as color adjustments, resizing, cropping, and so on).

Then, the next diagram is the simplified schematic of the ISI of SAMA5D3 Xplaioned's CPU taken from its datasheet:

[image: What is a video device?]

Here, we see that the CMOS sensor (the CCD) sends the raw video data to the video engine, which, in turn, does some minor computations (clipping plus color conversion), and then, the data is available in the user space. In this case, the video interface is simpler than before, even if it is suitable for (more limited) video streaming, storage, and so on.
It should be now clear to you that these functionalities are very specific to the CPU we decide to use, so the best thing to do, in order to understand how they work into our system, is to just start reading the datasheet of the system we're going to use.
The electrical lines

Video lines are not presented in this book as per other devices due to three main reasons; the first two are the usual ones we reported in other chapters:
	Due to very high communication frequencies involved, we can get a non-functional system if we try to connect a CCD by wires.
	They are not useful or relevant to understand how a video device works.

While the third one (the last but not least) is that every system (or each SoC) has its own electrical lines! In fact, even if manufacturers are moving forward towards a common solution, there still exist a lot of differences (and not only in hardware).
 That's why, in order to keep the discussion simple, we're not going to present the specific solution implemented in the CPUs of our embedded kits, but we're going to present a quite standard solution using a USB camera device. In fact, this is the only video device that works the same on all systems.

Video on the BeagleBone Black

The BeagleBone Black has no video inputs.

Video on the SAMA5D3 Xplained

The SAMA5D3 Xplained has an input video called ISI available on the expansion connectors, and the relative pins are summarized in the table:
	

Name

	

Pin

	

Name

	

Pin

	

D0

	
J19.12

	

D8

	
J18.1

	

D1

	
J19.5

	

D9

	
J18.5

	

D2

	
J19.14

	

D10

	
J20.1

	

D3

	
J19.11

	

D11

	
J20.2

	

D4

	
J19.16

	

Hsync

	
J15.10

	

D5

	
J19.13

	

Vsync

	
J15.9

	

D6

	
J19.18

	

PCK

	
J15.2

	

D7

	
J19.15

	
	

Tip
Some signals can be mapped on different pins (see the SAMA5D3 Xplained User Guide for further information).

Pins D0-D11 are the image data, while Hsync (horizontal sync), Vsync (vertical sync), and PCK (pixel clock) are control signals.
To enable the ISI support, we have to enable the corresponding driver in Device Drivers | Multimedia support | V4L platform devices | ATMEL Image Sensor Interface (ISI) support, and if everything works well, we should get a new video device mapped in the /dev/video0 file.

Video on the Wandboard

The Wandboard has a dedicated input video connector (camera interface or camera header) named CAMERA1 (see figure in the The Wandboard section, Chapter 1,
Installing the Developing System
). The connector has a complex pinout as shown here:
	

Name

	

Pin

	

Name

	

Pin

	
CSI_CLK0P

	
1

	
DSI_D1P

	
16

	
CSI_CLK0M

	
2

	
DSI_D1M

	
17

	
CSI_D0P

	
4

	
DSI_D0P

	
19

	
CSI_D0M

	
5

	
DSI_D0M

	
20

	
CSI_D1P

	
7

	
DSI_CLK0P

	
22

	
CSI_D1M

	
8

	
DSI_CLK0M

	
23

	
CSI_D2P

	
10

	
I2C2_SCL

	
25

	
CSI_D2P

	
11

	
I2C2_SDA

	
26

	
CSI_D3P

	
13

	
GPIO_3_CLK02

	
29

	
CSI_D3M

	
14

	
GPIO6

	
30

Tip
Note that in the preceding table, there are video signals only. Missing pins are just powering pins.

As we can see, signals are quite different from the ones of SAMA5D3 Xplained. However, thanks to the kernel's hardware abstraction, once we connect a camera board and enable the corresponding driver, we still should get a new video device mapped in the /dev/video0 file.
You should notice that on the connector, there are other signals such as GPIOs and the I2C signals. This is because, as we saw earlier, a video device is normally a video data bus and a controlling bus, which is usually composed by GPIOs (to enable/disable or reset the video system) and I2c signals for the video settings (video size, format, and other settings).

Video in Linux

In a GNU/Linux-based system, all video devices are managed by a standard API called Video4Linux (Video for Linux), which is a collection of device drivers to support real-time video capture. It supports many USB webcams, TV tuners, and similar devices in such a way that they have a common interface so that users can get access to to the underlying hardware in the same manner independently and programmers can easily add video support to their applications. The Video4Linux (V4L2) API is currently in its second version, which can be referred as Video4Linux2. Using the name Video4Linux only is not erroneous since the first release of the API was dropped several years ago from the kernel main line.
In a GNU/Linux-based system, each Video4Linux device appears in the system as a /dev/video0, /dev/video1 file. For example, to our BeagleBone Black, we have connected a webcam, and the video file we get is as follows:

root@bbb:~# ls -l /dev/video*
crw-rw---- 1 root video 81, 0 Oct 10 12:03 /dev/video0

A simple list of available video devices can be obtained from the sysfs as show here:

root@bbb:~# ls /sys/class/video4linux/
video0

Into each videoX directory, we can get some information about the corresponding device:

root@bbb:~# cat /sys/class/video4linux/video0/name
Microsoft LifeCam VX-800

The video tools

Even if using the sysfs interface to manage video devices in a more efficient manner, we can use a dedicated tool set named v4l-utils in the package by the same name, which can be installed as usual into the system if it is missing.
The main program in the package is v4l2-ctl that can be used to get a lot of information regarding a video device. Just to show the power of this command, let's try to explore all capabilities of a video device assuming we know about nothing of it. First of all, we can detect connected video devices using the --list-devices option argument as shown here:

root@bbb:~# v4l2-ctl --list-devices
USB 2.0 Camera (usb-musb-hdrc.1.auto-1):
 /dev/video0
 /dev/video1

Then, we have discovered that our device has been composed of two video devices mapped into the system with the /dev/video0 and /dev/video1 files. Then, we can get some information regarding the device driver we're currently using to manage this device. This can be done using the --info option argument as shown here:

root@bbb:~# v4l2-ctl -d /dev/video0 --info
Driver Info (not using libv4l2):
 Driver name : uvcvideo
 Card type : USB 2.0 Camera
 Bus info : usb-musb-hdrc.1.auto-1
 Driver version: 4.4.7
 Capabilities : 0x84200001
 Video Capture
 Streaming
 Extended Pix Format
 Device Capabilities
 Device Caps : 0x04200001
 Video Capture
 Streaming
 Extended Pix Format

Tip
Note that the preceding output is the same if we use the /dev/video0 or /dev/video1 device since they are relying on the same hardware.

Here, some video capabilities are exposed, but to get more verbose and complete listing, we have to use the --all option argument:

root@bbb:~# v4l2-ctl -d /dev/video0 --all
Driver Info (not using libv4l2):
 Driver name : uvcvideo
 Card type : USB 2.0 Camera
 Bus info : usb-musb-hdrc.1.auto-1
 Driver version: 4.4.7
 Capabilities : 0x84200001
 Video Capture
 Streaming
 Extended Pix Format
 Device Capabilities
 Device Caps : 0x04200001
 Video Capture
 Streaming
 Extended Pix Format
Priority: 2
Video input : 0 (Camera 1: ok)
Format Video Capture:
 Width/Height : 1920/1080
 Pixel Format : 'MJPG'
 Field : None
 Bytes per Line: 0
 Size Image : 4147789
 Colorspace : Unknown (00000000)
 Flags :
Crop Capability Video Capture:
 Bounds : Left 0, Top 0, Width 1920, Height 1080
 Default : Left 0, Top 0, Width 1920, Height 1080
 Pixel Aspect: 1/1
Selection: crop_default, Left 0, Top 0, Width 1920, Height 1080
Selection: crop_bounds, Left 0, Top 0, Width 1920, Height 1080
Streaming Parameters Video Capture:
 Capabilities : timeperframe
 Frames per second: 25.000 (25/1)
 Read buffers : 0
 brightness (int) : min=-64 max=64 step=1
 default=0 value=0
 contrast (int) : min=0 max=64 step=1
 default=32 value=32
 saturation (int) : min=0 max=128 step=1
 default=60 value=60
 hue (int) : min=-40 max=40 step=1
 default=0 value=0
 white_balance_temperature_auto (bool) : default=1 value=1
 gamma (int) : min=72 max=500
 step=1 default=100
 value=100
 gain (int) : min=0 max=100 step=1
 default=0 value=0
 power_line_frequency (menu) : min=0 max=2 default=1
 value=1
 white_balance_temperature (int) : min=2800 max=6500 step=1
 default=4600 value=4600
 flags=inactive
 sharpness (int) : min=0 max=6 step=1
 default=3 value=3
 backlight_compensation (int) : min=0 max=2 step=1
 default=1 value=1
 exposure_auto (menu) : min=0 max=3 default=3
 value=3
 exposure_absolute (int) : min=1 max=5000 step=1
 default=156 value=156
 flags=inactive
 exposure_auto_priority (bool) : default=0 value=0
 brightness (int) : min=-64 max=64 step=1
 default=0 value=0
 contrast (int) : min=0 max=64 step=1
 default=32 value=32
 saturation (int) : min=0 max=128 step=1
 default=60 value=60
 hue (int) : min=-40 max=40 step=1
 default=0 value=0
white_balance_temperature_auto (bool) : default=1 value=1
 gamma (int) : min=72 max=500 step=1
 default=100 value=100
 gain (int) : min=0 max=100 step=1
 default=0 value=0
 power_line_frequency (menu) : min=0 max=2 default=1
 value=1
 white_balance_temperature (int) : min=2800 max=6500 step=1
 default=4600
 value=4600 flags=inactive
 sharpness (int) : min=0 max=6 step=1
 default=3
 value=3
 backlight_compensation (int) : min=0 max=2 step=1
 default=1
 value=1

The same command can be used on the second device, but with a different output. In fact, if we use the preceding command on the /dev/video1 device, we would get some differences:

...
Format Video Capture:
 Width/Height : 1920/1080
 Pixel Format : 'H264'
 Field : None
 Bytes per Line: 3840
 Size Image : 0
 Colorspace : SRGB
 Flags :
...

This tells to us that the video device /dev/video0 is capable of generating MJPEG pixel format, while for /dev/video1, the pixel format is H264.
However, the use of v4l2-ctl is not only to get information, but also to do some settings in a video device. For instance, to modify the brightness of the /dev/video0 device, which is currently set to 0, we can use the following commands:

root@bbb:~# v4l2-ctl -d /dev/video0 --get-ctrl=brightness
brightness: 0
root@bbb:~# v4l2-ctl -d /dev/video0 --set-ctrl=brightness=10
root@bbb:~# v4l2-ctl -d /dev/video0 --get-ctrl=brightness
brightness: 10

The USB video class device

A special video class device is represented by the USB video class (UVC) device , which is a USB device class that describes devices capable of streaming videos, such as webcams, digital camcorders, and so on. They are so important and widely used that they deserve a special section in this chapter to present them.
As said earlier, the CPUs used in most embedded systems usually have an internal video interface, but in some circumstances, these interfaces cannot be used. Examples would be when we need not overload the CPU to video related duties or when the CCD sensor is too distance from where the CPU is located and the data communication is difficult because of the parallel bus used. Well, in these cases, we can use a webcam that supports this standard.
The Linux kernel supports this device class in both kernel side (the uvcvideo device driver) and in user space with the uvcdynctrl utility. The driver, if not enabled into the running kernel, can be enabled into the kernel configuration menu, and enable the following setting: Device Drivers | Multimedia support | Media USB Adapters | USB Video Class (UVC).
The uvcdynctrl utility it can be installed as usual from the package by the same name.
To show some usage of this tool with an UVC device, we can use a normal webcam based on these specifications (it can be found almost everywhere over the Internet). Once it is connected to our BeagleBone Black device through the USB host port, we should get some kernel messages:

usb 1-1: new high-speed USB device number 2 using musb-hdrc
usb 1-1: New USB device found, idVendor=05a3, idProduct=9422
usb 1-1: New USB device strings: Mfr=2, Product=1, SerialNumber=3
usb 1-1: Product: USB 2.0 Camera
usb 1-1: Manufacturer: Sonix Technology Co., Ltd.
usb 1-1: SerialNumber: SN0001
uvcvideo: Found UVC 1.00 device USB 2.0 Camera (05a3:9422)
input: USB 2.0 Camera as /devices/platform/ocp/47400000.usb/47401c00.u
sb/musb-hdrc.1.auto/usb1/1-1/1-1:1.0/input/input1
usbcore: registered new interface driver uvcvideo USB Video Class driv
er (1.1.1)
usbcore: registered new interface driver snd-usb-audio

Tip
The device presented here is quite complete since it implements, with the video device, an input device and a sound one as well. These companion devices are usually used to support additional functionalities such as special action buttons and environmental sound recording.
It may happen that the your device does not have these companion devices. However, the important thing is that it defines, at least, the USB video device. So, uvcvideo will print the Found UVC 1.00 device USB 2.0 Camera (XXXX:YYYY) message as done earlier.

Now, since a UVC device is a video device anyway, we can use v4l2-ctl to detect it:

root@bbb:~# v4l2-ctl --list-devices
USB 2.0 Camera (usb-musb-hdrc.1.auto-1):
 /dev/video0
 /dev/video1

Then, we can used all the commands we saw earlier, but, of course, it's now time for the uvcdynctrl utility. So, let's use it to detect our UVC webcam, as shown here:

root@bbb:~# uvcdynctrl --list
Listing available devices:
 video1 USB 2.0 Camera
 Media controller device /dev/media1 doesn't exist
ERROR: Unable to list device entities: Invalid device or device cannot
 be opened. (Code: 5)
 video0 USB 2.0 Camera
 Media controller device: /dev/media0
 Entity 1: USB 2.0 Camera. Type: 65537, Revision: 0, Flags: 1, Grou
p-id: 0, Pads: 1, Links: 0
 Device node
 Entity: 1, Pad 0, Flags: 1
 Entity 2: USB 2.0 Camera. Type: 65537, Revision: 0, Flags: 0, Grou
p-id: 0, Pads: 1, Links: 0
 Device node
 Entity: 2, Pad 0, Flags: 1
 Entity 3: Extension 4. Type: 131072, Revision: 0, Flags: 0, Group-
id: 0, Pads: 2, Links: 2
 Subdevice: Entity: 3, Pad 0, Flags: 1
 Entity: 3, Pad 1, Flags: 2
 Out link: Source pad { Entity: 3, Index: 1, Flags: 2 } => Sink p
ad { Entity: 1, Index: 0, Flags: 1 }
 Out link: Source pad { Entity: 3, Index: 1, Flags: 2 } => Sink p
ad { Entity: 2, Index: 0, Flags: 1 }
 Entity 4: Extension 3. Type: 131072, Revision: 0, Flags: 0, Group-
id: 0, Pads: 2, Links: 1
 Subdevice: Entity: 4, Pad 0, Flags: 1
 Entity: 4, Pad 1, Flags: 2
 Out link: Source pad { Entity: 4, Index: 1, Flags: 2 } => Sink p
ad { Entity: 3, Index: 0, Flags: 1 }
 Entity 5: Processing 2. Type: 131072, Revision: 0, Flags: 0, Group
-id: 0, Pads: 2, Links: 1
 Subdevice: Entity: 5, Pad 0, Flags: 1
 Entity: 5, Pad 1, Flags: 2
 Out link: Source pad { Entity: 5, Index: 1, Flags: 2 } => Sink p
ad { Entity: 4, Index: 0, Flags: 1 }
 Entity 6: Camera 1. Type: 131072, Revision: 0, Flags: 0, Group-id:
 0, Pads: 1, Links: 1
 Subdevice: Entity: 6, Pad 0, Flags: 2
 Out link: Source pad { Entity: 6, Index: 0, Flags: 2 } => Sink p
ad { Entity: 5, Index: 0, Flags: 1 }

In this listing, we get a lot of information regarding our webcam. In particular, we can see that with the two video devices /dev/video0 and /dev/video1, the tool is looking for the other two devices named /dev/media0 and /dev/media1, which are media controller devices. File /dev/media1 is not found because both video devices /dev/video0 and /dev/video1 rely on the same hardware device, and using /dev/media0, we can manage both.
Due to space reasons, we're not going to present the Media controller device in this book. However, a little explanation is given here, redirecting you to the Linux Media Subsystem Documentation at
https://linuxtv.org/downloads/v4l-dvb-apis/index.html
 for further information.
Media devices are strictly related to video devices, and they have been introduced to resolve the problem of introducing a relationship between the several subparts a video device may have. In fact, since UVC cameras nowadays include microphones, video capture hardware, and so on and SoC camera interfaces also perform memory-to-memory operations similar to video codecs, the current approach of modeling each sub device as a separate device (as ALSA, input, and so on) will not scale, and these devices aim to solve this problem. Again, the Linux Media Subsystem Documentation will explain this problem at
https://linuxtv.org/downloads/v4l-dvb-apis/uapi/mediactl/media-controller-intro.html
.
These devices can be easily managed with the media-ctl utility of v4l2-ctl (see the previous section). So, for instance, the preceding device can be better explored using the next command:

root@bbb:~# media-ctl -d /dev/media0 --print-topology
Media controller API version 0.1.0
Media device information

driver uvcvideo
model USB 2.0 Camera
serial SN0001
bus info 1
hw revision 0x100
driver version 4.4.7
Device topology
- entity 1: USB 2.0 Camera (1 pad, 1 link)
 type Node subtype V4L flags 1
 device node name /dev/video0
 pad0: Sink
 <- "Extension 4":1 [ENABLED,IMMUTABLE]
- entity 2: USB 2.0 Camera (1 pad, 1 link)
 type Node subtype V4L flags 0
 device node name /dev/video1
 pad0: Sink
 <- "Extension 4":1 [ENABLED,IMMUTABLE]
- entity 3: Extension 4 (2 pads, 3 links)
 type V4L2 subdev subtype Unknown flags 0
 pad0: Sink
 <- "Extension 3":1 [ENABLED,IMMUTABLE]
 pad1: Source
 -> "USB 2.0 Camera":0 [ENABLED,IMMUTABLE]
 -> "USB 2.0 Camera":0 [ENABLED,IMMUTABLE]
- entity 4: Extension 3 (2 pads, 2 links)
 type V4L2 subdev subtype Unknown flags 0
 pad0: Sink
 <- "Processing 2":1 [ENABLED,IMMUTABLE]
 pad1: Source
 -> "Extension 4":0 [ENABLED,IMMUTABLE]
- entity 5: Processing 2 (2 pads, 2 links)
 type V4L2 subdev subtype Unknown flags 0
 pad0: Sink
 <- "Camera 1":0 [ENABLED,IMMUTABLE]
 pad1: Source
 -> "Extension 3":0 [ENABLED,IMMUTABLE]
- entity 6: Camera 1 (1 pad, 1 link)
 type V4L2 subdev subtype Unknown flags 0
 pad0: Source
 -> "Processing 2":0 [ENABLED,IMMUTABLE]

OK, now, to get a list of the available controls for the /dev/video0 device, we can use the uvcdynctrl command as follows:

root@bbb:~# uvcdynctrl -d /dev/video0 --clist
Listing available controls for device /dev/video0:
 Brightness
 Contrast
 Saturation
 Hue
 White Balance Temperature, Auto
 Gamma
 Gain
 Power Line Frequency
 White Balance Temperature
 Sharpness
 Backlight Compensation
 Exposure, Auto
 Exposure (Absolute)
 Exposure, Auto Priority

While with the next command, we can get the available video formats:

root@bbb:~# uvcdynctrl -d /dev/video0 --formats
Listing available frame formats for device /dev/video0:
Pixel format: MJPG (Motion-JPEG; MIME type: image/jpeg)
 Frame size: 1920x1080
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 1280x720
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 640x480
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 640x360
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 320x240
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 320x180
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 1920x1080
 Frame rates: 30, 25, 20, 15, 10, 5
Pixel format: YUYV (YUYV 4:2:2; MIME type: video/x-raw-yuv)
 Frame size: 1920x1080
 Frame rates: 5
 Frame size: 1280x720
 Frame rates: 10, 5
 Frame size: 640x480
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 640x360
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 320x240
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 320x180
 Frame rates: 30, 25, 20, 15, 10, 5
 Frame size: 1920x1080
 Frame rates: 5

Like the v4l2-ctl command, this utility allows us to modify the current device settings. In fact, as shown earlier, we can set the brightness using the following commands:

root@bbb:~# uvcdynctrl -d /dev/video0 --get=Brightness
0
root@bbb:~# uvcdynctrl -d /dev/video0 --set=Brightness 10
root@bbb:~# uvcdynctrl -d /dev/video0 --get=Brightness
10

Managing video devices

Now, it's time to show some possible usages of video devices using two interesting software tools with normal USB cameras because our embedded kits have no premounted CCD sensors.
Streaming video over the Web

In this section, we're going to show you how we can stream video data over the network using the BeagleBone Black with an UVC camera. The necessary software is a tool named mjpg-streamer, which must be compiled into our embedded kit. Let' install the sources with this command:

root@bbb:~# svn checkout svn://svn.code.sf.net/p/
mjpg-streamer/code/ mjpg-streamer-code

Tip
The svn tools (subversion) is held in the package named subversion, which can be installed as usual.

Once downloaded, we have to install some packages to get a successful compilation of the tool:

root@bbb:~# apt-get install libjpeg-dev imagemagick libv4l-dev

Then, we simply have to enter the newly created directory and then use the make tool with a specific command line:

root@bbb:~# cd mjpg-streamer-code/mjpg-streamer/
root@bbb:~/mjpg-streamer-code/mjpg-streamer# make USE_LIBV4L2=true

Once the compilation has finished, to install the tool, we can use the following command:

root@bbb:~/mjpg-streamer-code/mjpg-streamer# make install
 DESTDIR=/usr/

OK, now, the tool is successfully installed, and then, we can take a look at its command line:

root@bbb:~# mjpg_streamer -h

Usage: mjpg_streamer
 -i | --input "<input-plugin.so> [parameters]"
 -o | --output "<output-plugin.so> [parameters]"
 [-h | --help]........: display this help
 [-v | --version].....: display version information
 [-b | --background]...: fork to the background, daemon mode
--
Example #1:
 To open an UVC webcam "/dev/video1" and stream it via HTTP:
 mjpg_streamer -i "input_uvc.so -d /dev/video1" -o "output_http.so"
--
Example #2:
 To open an UVC webcam and stream via HTTP port 8090:
 mjpg_streamer -i "input_uvc.so" -o "output_http.so -p 8090"
--
Example #3:
 To get help for a certain input plugin:
 mjpg_streamer -i "input_uvc.so --help"
--
In case the modules (=plugins) can not be found:
 * Set the default search path for the modules with:
 export LD_LIBRARY_PATH=/path/to/plugins,
 * or put the plugins into the "/lib/" or "/usr/lib" folder,
 * or instead of just providing the plugin file name, use a complete
 path and filename:
 mjpg_streamer -i "/path/to/modules/input_uvc.so"
--

We can now verify that it's perfect for us because this utility supports UVC devices! And a possible command line can be the next one:

root@bbb:~# mjpg_streamer -i "input_uvc.so -d /dev/video0
 -n -f 30 -r VGA"
 -o "output_http.so -p 80 -w /usr/www/"
MJPG Streamer Version: svn rev: 3:172
 i: Using V4L2 device.: /dev/video0
 i: Desired Resolution: 640 x 480
 i: Frames Per Second.: 30
 i: Format............: MJPEG
 o: www-folder-path...: /usr/www/
o: HTTP TCP port.....: 80
o: username:password.: disabled
o: commands..........: enabled

Tip
It may be possible that we get the following error:
bind: Address already in use In this case, it means that the TCP port 80 we've selected in the preceding command is already in use by another program (most probably, the default web server). To verify it, we can use these lines of code:

 root@bbb:~# netstat -lnp | grep '\<80\>'

 tcp6 0 0 :::80 :::* LISTEN 789/apache2

In our example, the apache2 program is holding the port 80. We can now simply disable it as shown in Chapter 4, Quick Programming with Scripts and System Daemons, System daemons management, or we can choose another free port to be specified with option argument -p.

Before continuing, we should spend some time to explain the preceding command line. With the option argument -i , we specified the input plugin, while with -o, we specified the output plugin. As input plugin, we specified input_uvc.so, which must be used on UVC devices, with some option arguments where their meaning can be displayed with the next command:

root@bbb:~# mjpg_streamer -i "input_uvc.so --help"
MJPG Streamer Version: svn rev: 3:172

 Help for input plugin..: UVC webcam grabber

 The following parameters can be passed to this plugin:
 [-d | --device].......: video device to open (your camera)
 [-r | --resolution]...: the resolution of the video device,
 can be one of the following strings:
 QSIF QCIF CGA QVGA CIF VGA
 SVGA XGA SXGA
 or a custom value like the following
 example: 640x480
[-f | --fps]..........: frames per second
[-y | --yuv]..........: enable YUYV format and disable MJPEG mode
[-q | --quality]......: JPEG compression quality in percent
 (activates YUYV format, disables MJPEG)
[-m | --minimum_size].: drop frames smaller then this limit, useful
 if the webcam produces small-sized garbage
 frames
may happen under low light conditions
[-n | --no_dynctrl]...: not initalize dynctrls of Linux-UVC driver
[-l | --led]..........: switch the LED "on", "off", let it "blink"
 or leave
 it up to the driver using the value
 "auto"

Now, almost all option arguments used for the input_uvc.so plugin are clear, apart from -n, which has been used to suppress the unnecessary commands, which may return error messages as the one shown here:

Adding control for Pan (relative)
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device

Regarding the output plugin, which is output_http.so, we can do in a similar manner as above in order to get its option arguments' meanings:

root@bbb:~# mjpg_streamer -o "output_http.so --help"
MJPG Streamer Version: svn rev: 3:172

 Help for output plugin..: HTTP output plugin

 The following parameters can be passed to this plugin:
 [-w | --www]...........: folder that contains webpages in
 flat hierarchy (no subfolders)
 [-p | --port]..........: TCP port for this HTTP server
 [-c | --credentials]...: ask for "username:password" on connect
 [-n | --nocommands]....: disable execution of commands

OK, now that the command line is clear, we simply have to point our web browser on BeagleBone Black's IP address to get an output as shown in the following screenshot:
Tip
Note that latest versions of mjpg_streamer are buggy because they display no images at all. If this is your case, the solution is to apply the patch reported in the chapter_16/input_uvc.patch file in the book's example code repository:

 root@bbb:~/mjpg-streamer-code/mjpg-streamer# \

 patch -p0 < input_uvc.patch

Then, we have to recompile and reinstall the tool:

 root@bbb:~/mjpg-streamer-code/mjpg-streamer# \

 make clean &&

 make USE_LIBV4L2=true &&

 make install DESTDIR=/usr/

The homepage shows us how mjpg_streamer is powerful. In fact, just using an HTML page, we can put in it a static picture grabbed by the webcam. We just need to reload the page to update the view. This action of requesting one single picture from the image input, as reported in the preceding screenshot, is done using an HTTP request containing the GET parameter action=snapshot.
However, we want a video stream, so we have to click on the Stream item on the top-left main menu. Here is the output:

[image: Streaming video over the Web]

Again, we have another HTML page describing what we have to do in order to get a video streaming. We just need to add the code:

Note that we can get a stream or a snapshot without using any HTML page at all by simply using these two URLs:
	http://192.168.7.2/?action=snapshot for a snapshot.
	http://192.168.7.2/?action=stream for a video streaming.

Tip
Note that the IP address used earlier is the one we can use with the USB Ethernet connection. If you are using a different connection with your embedded kit, you have to fix it accordingly.

Capturing motion

In this section, we wish to suggest another video device's usage that can be implemented into an embedded device, that is, the ability to capture (or detect) motion. If we use a video camera (or simply a webcam) in a room we wish to monitor and then send the captured video to a remote supervisor, we can also imagine doing some computation on the captured video frames in order, for example, to automatically detect when the scene changes and then to activate an alarm.
To do this special task, a good program we can use is motion that can use webcams as the ones we presented earlier. In fact, as reported at the project's homepage:
Motion is a program that monitors the video signal from cameras. It is able to detect if a significant part of the picture has changed; in other words, it can detect motion [Motion WebHome]
The project homepage is at
http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome
.

The program is a command-line-driven tool written in C and made for the Video4Linux interface. It can run as a daemon with a rather small footprint and low CPU usage, and it can call user configurable triggers when certain events occur. Using these triggers, it can generate either pictures (jpeg or netpbm) or videos (mpeg or avi). The motion program is operated mainly via configuration files, but the end video streams can be viewed from a web browser.
This tool is held in the package by the same name, and then, it can be installed in the usual way into our Wandboard:

root@wb:~# aptitude install motion

Once installed, let's take a look at the system's log messages where we should see something like this:

wb motion[869]: Not starting motion daemon, disabled
via /etc/default/motion ... (warning).

The daemon is disabled by default because it must be correctly configured before enabling it. So, to configure it, we have to modify at least the /etc/motion/motion.conf file and, in case of multiple video devices, the per video device configuration files named /etc/motion/thread1.conf, /etc/motion/thread2.conf, and so on. In fact, the daemon creates one thread per input video device used, and all special settings referring to it must be done inside the corresponding file.
Since we're using just one webcam, we can verify that the tool detects it by running the daemon in the debugging mode with the following command line:

[0] [NTC] [ALL] conf_load: Processing thread 0 - config file /etc/moti
on/motion.conf
[0] [ALR] [ALL] conf_cmdparse: Unknown config option "sdl_threadnr"
[0] [NTC] [ALL] motion_startup: Motion 3.2.12+git20140228 Started
[0] [NTC] [ALL] motion_startup: Logging to syslog
[0] [NTC] [ALL] motion_startup: Using log type (ALL) log level (NTC)
[0] [NTC] [ENC] ffmpeg_init: ffmpeg LIBAVCODEC_BUILD 3670272 LIBAVFORM
AT_BUILD 3670272
[0] [NTC] [ALL] main: Motion running in setup mode.
[0] [NTC] [ALL] main: Thread 1 is from /etc/motion/motion.conf
[0] [NTC] [ALL] main: Thread 1 is device: /dev/video0 input -1
[0] [NTC] [ALL] main: Stream port 8081
[0] [NTC] [ALL] main: Waiting for threads to finish, pid: 911
[1] [NTC] [ALL] motion_init: Thread 1 started , motion detection Enabl
ed
[1] [NTC] [VID] vid_v4lx_start: Using videodevice /dev/video0 and inpu
t -1
[0] [NTC] [STR] httpd_run: motion-httpd testing : IPV4 addr: 127.0.0.1
 port: 8080
[0] [NTC] [STR] httpd_run: motion-httpd Bound : IPV4 addr: 127.0.0.1 p
ort: 8080
[0] [NTC] [STR] httpd_run: motion-httpd/3.2.12+git20140228 running, ac
cepting connections
[0] [NTC] [STR] httpd_run: motion-httpd: waiting for data on 127.0.0.1
 port TCP 8080
[1] [NTC] [VID] v4l2_get_capability:

cap.driver: "uvcvideo"
cap.card: "Microsoft LifeCam VX-800"
cap.bus_info: "usb-ci_hdrc.1-1"
cap.capabilities=0x84200001

[1] [NTC] [VID] v4l2_get_capability: - VIDEO_CAPTURE
[1] [NTC] [VID] v4l2_get_capability: - STREAMING
[1] [NTC] [VID] v4l2_select_input: name = "Camera 1", type 0x00000002,
 status 00000000
[1] [NTC] [VID] v4l2_select_input: - CAMERA
[1] [WRN] [VID] v4l2_select_input: Device doesn't support VIDIOC_G_STD
[1] [NTC] [VID] v4l2_set_pix_format: Config palette index 17 (YU12) do
esn't work.
[1] [NTC] [VID] v4l2_set_pix_format: Supported palettes:
[1] [NTC] [VID] v4l2_set_pix_format: (0) YUYV (YUYV 4:2:2)
[1] [NTC] [VID] v4l2_set_pix_format: 0 - YUYV 4:2:2 (compressed : 0) (
0x56595559)
[1] [NTC] [VID] v4l2_set_pix_format Selected palette YUYV
[1] [NTC] [VID] v4l2_do_set_pix_format: Testing palette YUYV (320x240)
[1] [NTC] [VID] v4l2_do_set_pix_format: Using palette YUYV (320x240) b
ytesperlines 640 sizeimage 153600 colorspace 00000000
[1] [NTC] [VID] v4l2_scan_controls: found control 0x00980900, "Brightn
ess", range -10,10
[1] [NTC] [VID] v4l2_scan_controls: "Brightness", default 2, curre
nt 2
[1] [NTC] [VID] v4l2_scan_controls: found control 0x00980901, "Contras
t", range 0,20
[1] [NTC] [VID] v4l2_scan_controls: "Contrast", default 10, curren
t 10
[1] [NTC] [VID] v4l2_scan_controls: found control 0x00980902, "Saturat
ion", range 0,10
[1] [NTC] [VID] v4l2_scan_controls: "Saturation", default 4, curre
nt 4
[1] [NTC] [VID] v4l2_scan_controls: found control 0x00980903, "Hue", r
ange -5,5
[1] [NTC] [VID] v4l2_scan_controls: "Hue", default 0, current 0
[1] [NTC] [VID] v4l2_scan_controls: found control 0x00980910, "Gamma",
 range 100,200
[1] [NTC] [VID] v4l2_scan_controls: "Gamma", default 130, current
130
[1] [NTC] [VID] v4l2_scan_controls: found control 0x00980913, "Gain",
range 32,48
[1] [NTC] [VID] v4l2_scan_controls: "Gain", default 34, current 34
[1] [NTC] [VID] vid_v4lx_start: Using V4L2
[1] [NTC] [ALL] image_ring_resize: Resizing pre_capture buffer to 1 it
ems
[1] [NTC] [STR] http_bindsock: motion-stream testing : IPV4 addr: 127.
0.0.1 port: 8081
[1] [NTC] [STR] http_bindsock: motion-stream Bound : IPV4 addr: 127.0.
0.1 port: 8081
[1] [NTC] [ALL] motion_init: Started motion-stream server in port 8081
 auth Disabled

As we can see from the preceding output, we can get a lot of useful information about the daemon status. First of all, we notice that each line begins with a number into square brackets that address per thread's output. The number 0 is for the motion main thread, while number 1 is for the first thread connected with the webcam (the /dev/video0 device) and so on if more input video devices are used.
Then, we see the daemon specifically says regarding our webcam:

[1] [NTC] [VID] v4l2_get_capability:

cap.driver: "uvcvideo"
cap.card: "Microsoft LifeCam VX-800"
cap.bus_info: "usb-ci_hdrc.1-1"
cap.capabilities=0x84200001

[1] [NTC] [VID] v4l2_get_capability: - VIDEO_CAPTURE
[1] [NTC] [VID] v4l2_get_capability: - STREAMING
[1] [NTC] [VID] v4l2_select_input: name = "Camera 1", type 0x00000002,
 status 00000000
[1] [NTC] [VID] v4l2_select_input: - CAMERA
[1] [WRN] [VID] v4l2_select_input: Device doesn't support VIDIOC_G_STD
[1] [NTC] [VID] v4l2_set_pix_format: Config palette index 17 (YU12) do
esn't work.
[1] [NTC] [VID] v4l2_set_pix_format: Supported palettes:
[1] [NTC] [VID] v4l2_set_pix_format: (0) YUYV (YUYV 4:2:2)
[1] [NTC] [VID] v4l2_set_pix_format: 0 - YUYV 4:2:2 (compressed : 0) (
0x56595559)
[1] [NTC] [VID] v4l2_set_pix_format Selected palette YUYV
[1] [NTC] [VID] v4l2_do_set_pix_format: Testing palette YUYV (320x240)
[1] [NTC] [VID] v4l2_do_set_pix_format: Using palette YUYV (320x240) b
ytesperlines 640 sizeimage 153600 colorspace 00000000

The current palette setting (YU12) is not valid for our webcam, and the system says that it is going to use YUYV. This is not an error. However, we wish to correctly set up the correct video palette in order to remove that warning. To do so, we notice that in the /etc/motion/motion.conf file, we see the following settings (the text is just a snippet of the whole file, which is really long!):
Videodevice to be used for capturing (default /dev/video0)
for FreeBSD default is /dev/bktr0
videodevice /dev/video0

v4l2_palette allows to choose preferable palette to be use by motion
to capture from those supported by your videodevice. (default: 17)
E.g. if your videodevice supports both V4L2_PIX_FMT_SBGGR8 and
V4L2_PIX_FMT_MJPEG then motion will by default use
V4L2_PIX_FMT_MJPEG.
Setting v4l2_palette to 2 forces motion to use V4L2_PIX_FMT_SBGGR8
instead.

Values :
V4L2_PIX_FMT_SN9C10X : 0 'S910'
V4L2_PIX_FMT_SBGGR16 : 1 'BYR2'
V4L2_PIX_FMT_SBGGR8 : 2 'BA81'
V4L2_PIX_FMT_SPCA561 : 3 'S561'
V4L2_PIX_FMT_SGBRG8 : 4 'GBRG'
V4L2_PIX_FMT_SGRBG8 : 5 'GRBG'
V4L2_PIX_FMT_PAC207 : 6 'P207'
V4L2_PIX_FMT_PJPG : 7 'PJPG'
V4L2_PIX_FMT_MJPEG : 8 'MJPEG'
V4L2_PIX_FMT_JPEG : 9 'JPEG'
V4L2_PIX_FMT_RGB24 : 10 'RGB3'
V4L2_PIX_FMT_SPCA501 : 11 'S501'
V4L2_PIX_FMT_SPCA505 : 12 'S505'
V4L2_PIX_FMT_SPCA508 : 13 'S508'
V4L2_PIX_FMT_UYVY : 14 'UYVY'
V4L2_PIX_FMT_YUYV : 15 'YUYV'
V4L2_PIX_FMT_YUV422P : 16 '422P'
V4L2_PIX_FMT_YUV420 : 17 'YU12'

v4l2_palette 17

Tuner device to be used for capturing using tuner as source (default
/dev/tuner0)
This is ONLY used for FreeBSD. Leave it commented out for Linux
; tunerdevice /dev/tuner0

The video input to be used (default: -1)
Should normally be set to 0 or 1 for video/TV cards, and -1 for USB
cameras
input -1

The videodevice and input settings are correct, but v4l2_palette is not, and to fix it, we must replace value 17 with the more appropriate 15. Now, if we rerun the daemon as we did earlier, the configuration error disappears.
Now, we can verify the video captured by the webcam by directly seeing a video stream. To do it motion set up several web servers to be used to monitor the main thread (numbered with 0) and the per camera threads (numbered from 1 to N). Since we're using just one webcam, we have to check the main configuration file only where we can find the following settings regarding thread 0:

HTTP Based Control

TCP/IP port for the http server to listen on (default: 0 = disabled)
webcontrol_port 8080

Restrict control connections to localhost only (default: on)
webcontrol_localhost on

Output for http server, select off to choose raw text plain
(default: on)
webcontrol_html_output on

Authentication for the http based control. Syntax username:password
Default: not defined (Disabled)
; webcontrol_authentication username:password

So, to enable an HTTP access with the daemon, we have to modify webcontrol_localhost to off in order to allow a remote control connection. Also, for thread 1 (and next ones), we have the following settings:

Live Stream Server

The mini-http server listens to this port for requests
(default: 0 = disabled)
stream_port 8081

Quality of the jpeg (in percent) images produced (default: 50)
stream_quality 50

Output frames at 1 fps when no motion is detected and increase to
the rate given by stream_maxrate when motion is detected (default:
off)
stream_motion off

Maximum framerate for stream streams (default: 1)
stream_maxrate 1

Restrict stream connections to localhost only (default: on)
stream_localhost on

Limits the number of images per connection (default: 0 = unlimited)
Number can be defined by multiplying actual stream rate by desired
number of seconds
Actual stream rate is the smallest of the numbers framerate
and stream_maxrate
 stream_limit 0

Set the authentication method (default: 0)
0 = disabled
1 = Basic authentication
2 = MD5 digest (the safer authentication)
stream_auth_method 0

Authentication for the stream. Syntax username:password
Default: not defined (Disabled)
; stream_authentication username:password

Again, to enable local HTTP access we have to modify setting stream_localhost to off. Now if we rerun the daemon we can verify that two motion web servers are running at ports 8080 and 8081 by using the command line below into a different terminal:

root@wb:~# netstat -pnl | grep motion
tcp 0 0 0.0.0.0:8080 0.0.0.0:* LISTEN 1037/motion
tcp 0 0 0.0.0.0:8081 0.0.0.0:* LISTEN 1037/motion

Tip
Note that port number 8081 has been used by default as far as if we had a second camera that will use port 8082 and so on. However, this numbering can be altered using per-camera configuration files.

Now, we can use a normal browser to connect with the main thread (thread number 0), but most important for us is to check the video stream from the webcam at URL http://192.168.9.2:8081, as shown in the following screenshot:

[image: Capturing motion]

Tip
Note that in this last test, we executed the daemon without the -s switch in order to disable the setup mode, that is, using the following command line:

 root@wb:~# motion -n

This is because we noticed that in the setup mode, the webcams work with a very bad video output (it is unknown whether this is a bug or a feature).

On the other side, the control thread can be controlled via the web browser at http://192.168.9.2:8080. In the following screenshot, there is the main page:

[image: Capturing motion]

Then, if we click on the All | Config | list menu entries, we reach http://192.168.9.2:8080/0/config/list, where we can get a page with all configuration settings of the main thread, as in the following screenshot:

[image: Capturing motion]

Tip
Note that we are able to change each setting just by clicking on the relative link and then entering the new value. However, we're not going to use these interfaces to set up the system in this book.

Now, our motion-detection system is ready. In fact, if we point the webcam into a room and then move in front of it, we can notice that the daemon will generate several events with the relative images as shown here:

[1] [NTC] [EVT] event_newfile: File of type 8 saved to: /var/lib/motio
n/01-20161024204255.avi
[1] [NTC] [ALL] motion_detected: Motion detected - starting event 1
[1] [NTC] [EVT] event_newfile: File of type 1 saved to: /var/lib/motio
n/01-20161024204255-00.jpg
[1] [NTC] [EVT] event_newfile: File of type 1 saved to: /var/lib/motio
n/01-20161024204255-01.jpg
[1] [NTC] [EVT] event_newfile: File of type 1 saved to: /var/lib/motio
n/01-20161024204256-00.jpg
[1] [NTC] [EVT] event_newfile: File of type 1 saved to: /var/lib/motio
n/01-20161024204256-01.jpg
[1] [NTC] [ALL] motion_loop: End of event 1

Now, the main settings have been done, but some fine settings are still to be done in order, for instance, to send an e-mail message with an attached picture whenever a motion event occurs. However, these are left to you in order to best fit their needs.

Summary

Video devices are complex devices to manage video streams that can be used in several control and surveillance applications as far as automation systems useful for industry and/or home automations. We've seen how they are defined in a GNU/Linux-based system and how we can easily add one of these devices to an embedded computer even if its CPU has no dedicated video interfaces.
In the next chapter, we'll see another important (even if very simple) device class that every control automation device that interacts with the environment should have: the ADC.

Chapter 17. Analog-to-Digital Converters - ADC

In this chapter, we will present a specific peripheral type that can be used to get analogical signals from the environment. Our embedded kits are digital devices, but to interact with the environment, we need the ability to convert information from our world (the analogical one) to the digital world.
In particular, we will see the ADC class, which belongs to the Industrial I/O (IIO) devices and its specific sysfs interface. We'll see how we can use special software and hardware triggers in order to start conversions at a specific time or when some events occur.
What is an analog-to-digital converter device?

An analog-to-digital converter (ADC) is a device that can convert an analog signal into a digital one. The conversion involves quantization of the input, and instead of continuously performing the conversion, an ADC does the conversion periodically by sampling the input at specific moments. The result is a sequence of digital values (having a well-defined resolution, that is, the number of bits used to represent the converted digital value) that have been converted from a continuous time and continuous amplitude analog signal to a discrete time and discrete amplitude digital signal.
As a simple example, in the following graph, there is an 8-level ADC coding scheme where the input signal Vin is referred to with the Vref signal (the maximum allowed input value) and then encoded into a binary number:

[image: What is an analog-to-digital converter device?]

Tip
The small circles mean that the analog values at 1/8, 2/8, and so on are mapped using the bigger value. For example, if Vin/Vref = 1/8, the corresponding binary code is set to 001 instead of 000.
Note also that in this coding scheme, the input value Vin/Vref = 1 is not allowed.

In this example, the resolution res is 3 bits, and it's quite obvious to say that the binary representation code N (in base 10) of the input signal is given by the following formula, where the Integer() function returns the integer part of its argument:

N = Integer(Vin/Vref * 2res)

Tip
These formulas are simplifications of the real transfer function of ADC devices, so it cannot be taken as is for a production environment. In this case, you should refer to the real converter device's datasheet.

These conversions are also characterized by another important parameter: the sampling rate (or sampling frequency). In fact, a continuously varying (band-limited signal) can be sampled at intervals of T seconds, the sampling time (the inverse of the sampling frequency), and then, the original signal can be exactly reproduced from the discrete time values by an interpolation formula. In order to exactly specify this sampling time, we can use two modes:
	By software (software-triggered), where the program executes the ADC conversions by itself at a specified timing.
	By hardware (hardware-triggered), where the program sets the ADC converter in such a way that it can auto-generate a sampling frequency.

This last sampling mode can be divided into two more functions:
	Internal triggered, where the ADC conversions are triggered according to an internal clock.
	External triggered, where the ADC conversions are triggered according to an external signal. It's quite easy to find a dedicated input pin in an embedded device where we can connect a fixed timed signal (such as a PWM signal - see Chapter 18, Pulse-Width Modulation - PWM) that can be used to trigger the ADC convention events.

Note
You can find details on ADCs at
https://en.wikipedia.org/wiki/Analog-to-digital_converter
.

The electrical lines

ADC converter's lines are reported in the table:
	

Name

	

Description

	
ADC input

	
The ADC input signal

	
ADC trigger

	
The ADC trigger signal (optional)

	
GND

	
Common ground

ADCs on the BeagleBone Black

The BeagleBone Black has seven ADCs available on the expansion connectors, and the relative pins are summarized in the table here:
	

Name

	

ADC output

	

ain0

	
P9.39

	

ain1

	
P9.40

	

ain2

	
P9.37

	

ain3

	
P9.38

	

ain4

	
P9.33

	

ain5

	
P9.36

	

ain6

	
P9.35

To enable the ADCs, we can use the following command line:

root@bbb:~# echo BB-ADC > /sys/devices/platform/bone_capemgr/slots
bone_capemgr: part_number 'BB-ADC', version 'N/A'
bone_capemgr: slot #5: override
bone_capemgr: Using override eeprom data at slot 5
bone_capemgr: slot #5: 'Override Board Name,00A0,Override Manuf,BB-ADC
bone_capemgr: slot #5: dtbo 'BB-ADC-00A0.dtbo' loaded; overlay id #1

Tip
Related kernel messages are also reported for completeness.

If everything works well, a new directory named iio:device0 should appear in the /sys/bus/iio/devices/ directory as show here:

root@bbb:~# ls /sys/bus/iio/devices/
iio:device0

Note
One important notice regarding BeagleBone Black's ADCs is about the maximum voltage we can apply to each input pin. In fact, it must be between 0 and 1.8V reference voltage; otherwise, serious damages may occur to the CPU!

ADCs on the SAMA5D3 Xplained

The SAMA5D3 Xplained has 10 ADCs available on the expansion connectors, and the relative pins are summarized in the table here (TRG is the trigger pin):
	

Name

	

ADC output

	

Name

	

ADC output

	

TRG

	
J21.6

	

ain5

	
J17.6

	

ain0

	
J17.1 [*]

	

ain6

	
J17.7

	

ain1

	
J17.2

	

ain7

	
J17.8

	

ain2

	
J17.3

	

ain8

	
J21.1 [*]

	

ain3

	
J17.4

	

ain9

	
J21.2 [*]

	

ain4

	
J17.5

	
	

Tip
Note that the pins marked with [*] are only available on the expansion connectors after a hardware modification of the board (a resistor must be moved-refer to the SAMA5D3 Xplained's User Guide for further information).
Also, note that the SAMA5D3 Xplained can use part of these ADCs to manage a resistive touchscreen device, and in this case, the maximum available number of ADCs is lower (again, see the SAMA5D3 Xplained's User Guide for further information).

The ADCs should be already enabled by default, and the directory named iio:device0 should be present in the /sys/bus/iio/devices/ directory as shown here:

root@a5d3:~# ls /sys/bus/iio/devices/
iio:device0 trigger0 trigger1 trigger2 trigger3

The other files named trigger0, trigger1, and so on are related to the trigger we can use with our ADCs in order to start data capturing (see the upcoming sections for further information on how to use them).

ADCs on the Wandboard

The Wandboard has no ADCs available on its expansion connectors.

ADCs in Linux

To explain the functioning of ADCs in a GNU/Linux-based system, let's use the SAMA5D3 Xplained board since its ADC support is more complete than the BeagleBone Black's (however, during the explanation, each difference with the BeagleBone Black will be pointed out).
If we take a look at the iio:device0 directory's content in the SAMA5D3 Xplained, we will find the listing shown here:

root@a5d3:~# ls /sys/bus/iio/devices/iio\:device0/
buffer in_voltage1_raw in_voltage6_raw name trigger
dev in_voltage2_raw in_voltage7_raw of_node uevent
in_voltage0_raw in_voltage3_raw in_voltage8_raw power
in_voltage10_raw in_voltage4_raw in_voltage9_raw scan_elements
in_voltage11_raw in_voltage5_raw in_voltage_scale subsystem

Files in the in_voltageX_raw form can be used to read a single ADC input from a particular channel. This interface can be used, as shown here:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/in_voltage0_raw
1662

Tip
It may be possible that you get the following error while trying to read from each ADC channel:

 root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/

 in_voltage0_raw

 cat: /sys/bus/iio/devices/iio:device0/in_voltage0_r

 aw: Connection timed out

This is because the currently used board has a buggy initialization of the analog-to-digital power section of the CPU (named VDDANA), which is not correctly powered by the default PMIC configuration. To solve the problem, you will have to send a couple of I2C commands to the PMIC to set its output5 pin to 3.3V:

 root@a5d3:~# i2cset -y 1 0x5b 0x54 0x39 &&

 i2cset -y 1 0x5b 0x55 0xc1

See The I2C tools in Chapter 9, Inter-Integrated Circuits - I2C, regarding i2cset command usage.

The returned number represents the raw value of the actual read voltage. To get the value in volt, we can use the content of the in_voltage_scale file that holds the scale factor to be applied to the in_voltageX_raw after the addition of in_voltageX_offset (if present; otherwise, we consider it as 0) in order to obtain the microvolts. The formula for the generic in_voltageX input is shown here:

in_voltageX = in_voltage_scale * in_voltageX_raw + in_voltageX_offset

Tip
The BeagleBone Black has none of these files, so the formula to get the ADCs' data in microvolts is shown here, where R is just the read raw value:

V = 3300 * R/4095

This mode of reading data from the ADCs is named one-shot mode (or software-triggered). However, a more interesting mode to get data from the ADCs is the continuous mode (or hardware-triggered). Regarding this usage, the important files are held in the buffer and scan_elements directories; in buffer, we find the files here:

root@a5d3:~# ls /sys/bus/iio/devices/iio\:device0/buffer/
enable length watermark

Using these files, we can manage the buffer where our samples are stored during the continuous mode of the ADC. In fact, in length, we can store the number of scans contained by the buffer, while with enable, we actually start the buffer capture up. With watermark, we can specify the maximum number (positive integer) of scan elements to wait for, so when we do a blocking read() to get sampled data, it will wait until the minimum between the requested read amount and the low water mark value is available.
In the scan_elements directory, we find these files:

root@a5d3:~# ls /sys/bus/iio/devices/iio\:device0/scan_elements/
in_timestamp_en in_voltage1_index in_voltage5_type
in_timestamp_index in_voltage1_type in_voltage6_en
in_timestamp_type in_voltage2_en in_voltage6_index
in_voltage0_en in_voltage2_index in_voltage7_en
in_voltage0_index in_voltage2_type in_voltage7_index
in_voltage0_type in_voltage3_en in_voltage7_type
in_voltage10_en in_voltage3_type in_voltage8_en
in_voltage10_index in_voltage4_en in_voltage8_index
in_voltage10_type in_voltage4_index in_voltage8_type
in_voltage11_index in_voltage4_type in_voltage9_en
in_voltage11_type in_voltage5_en in_voltage9_index
in_voltage1_en in_voltage5_index in_voltage9_type

Here, each ADC has its own tern of files:
	in_voltageX_en: which defines whether channel X is enabled or not.
	in_voltageX_index: which defines the index of channel X in the buffer's chunks.
	in_voltageX_type : which states how the ADC stores its data in buffer for channel X.

By reading this last file, it returns a string like this:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/scan_elements/in_vo
ltage0_type
le:u12/16>>0

Here, string le represents the datum endianness (here, little endian), character u is the sign of the value returned (it could be either u for unsigned or s for signed), number 12 is the number of relevant bits of information, and 16 is the actual number of bits used to store the datum. In the end, 0 is the number of right shifts needed to correctly get the datum within the buffer.
Note
See the Documentation/ABI/testing/sysfs-bus-iio file in Linux's tree repository for further information regarding the ADC interface into the IIO devices.

You must have noticed that another tern is present, that is, the in_timestamp_en, in_timestamp_index and in_timestamp_type files. These are related to the ability to have a timestamp to each captured data. The files' content is similar to the voltage files earlier; however, the resolution is a bit different:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/scan_elements/in_ti
mestamp_type
le:s64/64>>0

As a simple example, let's try to continuously read data (that is, using a hardware trigger) from three ADCs with timestamping. So, we need to enable buffer and the channels to be used:

root@a5d3:~# echo 1 >
 /sys/bus/iio/devices/iio\:device0/scan_elements/in_timestamp_en
root@a5d3:~# echo 1 >
 /sys/bus/iio/devices/iio\:device0/scan_elements/in_voltage0_en
root@a5d3:~# echo 1 >
 /sys/bus/iio/devices/iio\:device0/scan_elements/in_voltage2_en
root@a5d3:~# echo 1 >
 /sys/bus/iio/devices/iio\:device0/scan_elements/in_voltage4_en

Then, we will set up the buffer length to 100 and a watermark to half buffer:

root@a5d3:~# echo 100 >
 /sys/bus/iio/devices/iio\:device0/buffer/length
root@a5d3:~# echo 50 >
 /sys/bus/iio/devices/iio\:device0/buffer/watermark

Now, we can simply enable the capture by writing 1 in the enable file in the buffer directory. Then, all captures are exposed in the /dev/iio:device0 character device. To stop the capture, we have to write 0 in the same file.
To do quick tests on the buffer from the command line, we can use the tool present in the tools/iio/ directory within the Linux's sources repository. Just copy the directory's content in the SAMA5D3 Xplained board and use the make command:

root@a5d3:~# cd iio/
root@a5d3:~/iio# make

Tip
If we get the following error during compilation, it means we missed the needed include files:

 iio_event_monitor.c:28:30: fatal error: linux/iio/e

 vents.h: No such file or directory

 #include <linux/iio/events.h>

 ^

 compilation terminated.

To solve the issue, we can manually install them by creating /usr/include/linux/iio and then copying the necessary files from the host PC using, as an example, the scp command:

 root@a5d3:~# mkdir /usr/include/linux/iio

 root@a5d3:~# scp giometti@192.168.32.54:BBB/bb-kern

 el/KERNEL/include/uapi/linux/iio/{events,types}.h /

 usr/include/linux/iio/

If everything works well, we should have two new programs, and the first one is lsiio, which can be used to get a list of IIO devices currently defined in the system:

root@a5d3:~/iio# ./lsiio
Device 000: f8018000.adc
Trigger 000: f8018000.adc-dev0-external-risin"
Trigger 001: f8018000.adc-dev0-external-falli"
Trigger 002: f8018000.adc-dev0-external-any
Trigger 003: f8018000.adc-dev0-continuous

The second one is generic_buffer, which is the tool we can use to test our ADCs in the continuous mode. Here is the code block showing its help message.

root@a5d3:~/iio# ./generic_buffer
Device name not set
Usage: generic_buffer [options]...
Capture, convert and output data from IIO device buffer
 -c <n> Do n conversions
 -e Disable wait for event (new data)
 -g Use trigger-less mode
 -l <n> Set buffer length to n samples
 -n <name> Set device name (mandatory)
 -t <name> Set trigger name
 -w <n> Set delay between reads in us (event-less mode)

Then, the command line to get 10 samples once from iio:device0 (our ADCs) using the continuous trigger (the Trigger 003 above) is shown here with its output:

root@a5d3:~/iio# ./generic_buffer -n f8018000.adc
 -t f8018000.adc-dev0-continuous
 -l 10 -c 1
iio device number being used is 0
iio trigger number being used is 3
/sys/bus/iio/devices/iio:device0 f8018000.adc-dev0-continuous
1178.466797 279.052734 103.271484 1478100858118937669
270.996094 279.052734 103.271484 1478100858118993305
270.996094 159.667969 103.271484 1478100858119010638
270.996094 159.667969 94.482422 1478100858119032638
225.585938 159.667969 94.482422 1478100858119052214
225.585938 156.005859 94.482422 1478100858119074820
225.585938 156.005859 93.017578 1478100858119096032
222.656250 156.005859 93.017578 1478100858119115790
222.656250 156.005859 93.017578 1478100858119136699
222.656250 156.005859 94.482422 1478100858119157729

Tip

The analogous command line for the BeagleBone Black is as follows:

 root@bbb:~/iio# ./generic_buffer -n TI-am335x-adc

 -g -l 10 -c 1

Note that, in this case, we have to use the -g option argument because the BeagleBone Black has no available triggers.

By taking a look at the timestamp column (the last one) of the preceding output, we notice that the period is (more or less) 20 milliseconds, and it cannot be directly modified. In fact, the new read starts when the previous one ends. In this case, the sampling is not much useful (apart from for debugging purposes), However, an elegant solution to this problem exists: we can use a PWM signal routed to the trigger pin and then select, for example, the external falling trigger (Trigger 001). Then, using this trick, we can simply set the sampling period by setting the PWM period (see the example in the next section).
Before moving to the new section, it is interesting to take a look at the relevant code of the preceding program in order to understand how it works to collect data. Here is the main loop with some initialization functions:
/* Setup ring buffer parameters */
ret = write_sysfs_int("length", buf_dir_name, buf_len);
if (ret < 0)
 goto error;

/* Enable the buffer */
ret = write_sysfs_int("enable", buf_dir_name, 1);
if (ret < 0) {
 fprintf(stderr, "Failed to enable buffer: %s\n", strerror(-ret));
 goto error;
}

scan_size = size_from_channelarray(channels, num_channels);
data = malloc(scan_size * buf_len);
if (!data) {
 ret = -ENOMEM;
 goto error;
}

ret = asprintf(&buffer_access, "/dev/iio:device%d", dev_num);
if (ret < 0) {
 ret = -ENOMEM;
 goto error;
}

/* Attempt to open non blocking the access dev */
fp = open(buffer_access, O_RDONLY | O_NONBLOCK);
if (fp == -1) { /* TODO: If it isn't there make the node */
 ret = -errno;
 fprintf(stderr, "Failed to open %s\n", buffer_access);
 goto error;
}

for (j = 0; j < num_loops; j++) {
 if (!noevents) {
 struct pollfd pfd = {
 .fd = fp,
 .events = POLLIN,
 };

 ret = poll(&pfd, 1, -1);
 if (ret < 0) {
 ret = -errno;
 goto error;
 } else if (ret == 0) {
 continue;
 }

 toread = buf_len;
 } else {
 usleep(timedelay);
 toread = 64;
 }

 read_size = read(fp, data, toread * scan_size);
 if (read_size < 0) {
 if (errno == EAGAIN) {
 fprintf(stderr, "nothing available\n");
 continue;
 } else {
 break;
 }
 }
 for (i = 0; i < read_size / scan_size; i++)
 process_scan(data + scan_size * i, channels, num_channels);
}

As we can see, after ring buffers initialization and enable, we attempt to open the /dev/iio:deviceX char device where we can get access to the desired ADC. Then, we start the loop where we can use the poll() system call to detect where some data are ready to be read and then we pass to collect them with read().

Detecting a gas

In order to show a simple ADC usage (with a little help of a PWM source), we will see how we can detect a dangerous gas using an analogue sensor that is shown here:

[image: Detecting a gas]

Note
The devices can be purchased at or
 http://www.cosino.io/product/mq-2-gas-sensor
 by surfing the Internet.
We can get the datasheet of each GAS sensor at http://gas-sensor.ru/pdf/combustible-gas-sensor.pdf.

This sensor acts as a variable resistor according to the gas concentration, so they can be easily read with a normal ADC. Looking carefully at the datasheet of the gas sensor, we can see exactly how this sensors varies its internal resistance according to the gas concentration (in reality, it depends on environment humidity and temperature too; but for an indoor functioning, we can consider these values as constants). so if we put it in series with a resistor and apply a constant voltage, we can get an output voltage that is proportional to the actual gas concentration.
In the following diagram, there is a possible schematic where the gas sensor is connected to 3.3V power supply from the SAMA5D3 Xplained board and where the RL resistor is formed by three resistors of the same value of 6.8KΩ in order to have RL≈20KΩ:

[image: Detecting a gas]

Tip
Note that the gas sensors have six pins labeled in pairs as A, B, and H. While the A and B pair pins are shortened, the H labeled pairs must be connected one end to the input voltage (3.3V in our case) and the other end to the GND (see the datasheet for further information).

Another important issue regarding these sensors is the calibration we should perform before using them. This last adjustment is very important. In fact, as reported in the MQ-2 datasheet, we read the following recommendation:

Resistance value of MQ-2 is difference to various kinds and various concentration gases. So, when using this components, sensitivity adjustment is very necessary. We recommend that you calibrate the detector for 1000 ppm liquified petroleum gas (LPG), or 1000ppm iso-butane (i-C4H10) concentration in air and use value of load resistance that (RL) about 20K (5K to 47K) .

This step can be done by replacing resistor RL with a varistor and then fine-tuning its resistance. However, for simplicity, we can use a normal resistor of about 20KΩ.
The last note on the preceding circuitry is about the connection between pin J19.16 and pin J21.6. This is because we're going to use a PWM signal to driver the sampling frequency of the ADC. In fact, we can image to use a PWM signal with a period of T=0.5s (half second) and a duty cycle of 50 percent. Then, using the ADC's external falling trigger (see the available list shown earlier), we can have a sampling rate of 2Hz (see Chapter 18
, Pulse-Width Modulation - PWM, for further information regarding this devices).
OK, now, everything is in place, and we can set up the PWM as just stated. First of all, we need to enable the pwm0 device with the echo command:

root@a5d3:~# echo 0 > /sys/class/pwm/pwmchip0/export

Then, we have to write proper values into the files period and duty cycle (all values are in nanoseconds, and the duty cycle is specified as a time and not in percentage):

root@a5d3:~# echo 500000000 > /sys/class/pwm/pwmchip0/pwm0/period
root@a5d3:~# echo 250000000 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle

Then, we only have to enable the PWM output:

root@a5d3:~# echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable

OK, now, a 2Hz PWM signal should be present at the ADC's trigger pin, so we have to only correctly set up the ADC in order to use the hardware trigger:

root@a5d3:~# echo 1 >
 /sys/bus/iio/devices/iio\:device0/scan_elements/in_timestamp_en
root@a5d3:~# echo 1 >
 /sys/bus/iio/devices/iio\:device0/scan_elements/in_voltage7_en
root@a5d3:~/iio# ./generic_buffer -n f8018000.adc
 -t f8018000.adc-dev0-external-falling
 -l 20 -c 100

Finally, just use the generic_buffer utility we presented earlier. Instead of using the continuous trigger, we use the external falling trigger. By specifying the value 100 for the option argument -c, we decide to sample the sensor data for 100 samples, that is 50s.
Here is the output on my system:

root@a5d3:~/iio# ./generic_buffer -n f8018000.adc
 -t f8018000.adc-dev0-external-falling
 -l 20 -c 100
iio device number being used is 0
iio trigger number being used is 26478
/sys/bus/iio/devices/iio:device0 f8018000.adc-dev0-external-falling
804.931641 1478100875444651544
796.142578 1478100875944588271
803.466797 1478100876444588392
804.199219 1478100876944585786
792.480469 1478100877444585120
802.734375 1478100877944584210
799.804688 1478100878444583301
794.677734 1478100878944582816
799.072266 1478100879444581483
800.537109 1478100879944583119
796.875000 1478100880444578392
799.804688 1478100880944578331
801.269531 1478100881444580331
798.339844 1478100881944576088
867.919922 1478100882444575603
1676.513672 1478100882944574634
2184.814453 1478100883444573300
2302.001953 1478100883944572391
2330.566406 1478100884444570997
2334.960938 1478100884944573360
2310.791016 1478100885444569663
2277.832031 1478100885944568936
2243.408203 1478100886444571239
2215.576172 1478100886944565966
2190.673828 1478100887444564996
2167.968750 1478100887944564027
2146.728516 1478100888444563057
2123.291016 1478100888944562693
2105.712891 1478100889444562087
2079.345703 1478100889944560632
2057.373047 1478100890444559541
2033.935547 1478100890944558996
2011.230469 1478100891444557905
1987.792969 1478100891944556389
...

Tip

It may be possible that you may get this error in executing the generic_buffer utility:

 root@a5d3:~/iio# ./generic_buffer -n f8018000.adc

 -t f8018000.adc-dev0-external-falling

 -l 20 -c 100

 iio device number being used is 0

 iio trigger number being used is 26478

 /sys/bus/iio/devices/iio:device0 f8018000.adc-dev0-

 external-falling

 Failed to write current_trigger file

This is because the acquisition is still running. It may happen for several reasons, but if you are trying this test, the reason could be that generic_buffer has been stopped before the end by using, for instance, the Ctrl + C key sequence. In this case, the program didn't disable the acquisition, and so, the error.To solve the issue, we just need to disable the current running acquisition using this command line and then restart the program:

 root@a5d3:~/iio# echo 0 > /sys/bus/iio/devices/iio\

 :device0/buffer/enable

First of all, we can notice that looking at timestamps, the sampling intervals are quite regular (time is represented in nanoseconds). Then, we see that without any gas in the air, the raw value is around 800 (this value can be converted into a voltage as described earlier or in ppm according to the sensor's datasheet). However, when we approach the lighter to the sensor and then open it, the read values quickly move over 2000 and then slowly drop down when we close it.
The functioning is quite clear; however, for better readability of the read data, we can plot them using the gnuplot utility on the host PC with the command output:

$ gnuplot mq2.plot
 Rectangular grid drawn at x y tics
 Major grid drawn with lt 0 linewidth 1.000
 Minor grid drawn with lt 0 linewidth 1.000
 Grid drawn at default layer

Tip
Note that in order to execute this command, you need the gnuplot command, which can be installed using the usual command:

 # aptitude install gnuplot

Also, you can get further information on gnuplot on the gnuplot homepage at http://gnuplot.sourceforge.net.

The utility takes the mq2.plot file as its input. It defines the plotting directive as shown here:
set terminal png size 800,600 enhanced font "Helvetica,20"
set output 'mq2.png'
set xdata time
set autoscale
set nokey
set grid lw 1
show grid
set xlabel "\nTime"
set ylabel 'raw'
set format x "%.9f"
set xtics rotate
plot "mq2.log" using ($2/1000000000):($1) with lines

Note
The mq2.plot file can be found in the chapter_17/mq2.plot file in the book's example code repository.

You should notice that the code, in the last command plot, refers to the mq2.log file, which must hold the data to be plotted. To create this file, we can simply copy and paste the generic_buffer output into the file, or we can use Bash's output redirection directive (remember to remove the first lines).
 If the files are correctly made, your should get a plot similar to the following one:

[image: Detecting a gas]

Summary

In this chapter, we saw ADC converters and their usage in a practical application, such as detecting dangerous gas using a proper gas sensor. We saw how to use them for a single analog-to-digital conversion as is and how to use them in continuous conversions driven by a software or hardware clock (or event) source.
In the next chapter, we'll see another important device class that can generate an analog output from a digital one, even if in a square waveform, useful to control several devices: PWM devices.

Chapter 18. Pulse-Width Modulation - PWM

Using the pulse-width modulation (PWM) technique, we can encode a message into a pulsing signal (usually a square waveform) to generate an analog signal using a digital source as a microcontroller. Then, these messages can be used to control the power supplied to electrical motors or other electronics devices or, as we're going to show into this chapter, to control the position of a servo motor.
Using a few Bash commands, we'll see how an embedded developer can use PWM signal generators, available in GNU/Linux systems, to set a specific axis position of a servo motor.
What is a PWM device?

A PWM generator is a device that can generate a PWM signal according to its internal settings. The output of a PWM generator is just a sequence of pulse signals as a square waveform with well-defined characteristics:

[image: What is a PWM device?]

By referring to the preceding graph, where we have a simple PWM waveform, we can define the following parameters:
	Amplitude (A): This is the difference between the maximum output value (ymax) and the minimum one (ymin).
	Period (T): This is the duration of one cycle of the output square waveform.
	Duty-cycle (dc): This is the ratio in percentage between the high state time (thigh) and the period (T).

In our example in the preceding graph, the amplitude is 5V (ymax=5V and ymin=0V), the period is 1ms (the wave is periodic, and it repeats itself every 0.001 seconds), and the duty-cycle is 25 percent (thigh=0.25ms and T=1ms).
Note
You can find details about PWM at
https://en.wikipedia.org/wiki/Pulse-width_modulation
.

The electrical lines

PWM generator lines are reported in the table here:
	

Name

	

Description

	
PWM output

	
The PWM output signal

	

GND

	
Common ground

PWMs on the BeagleBone Black

The BeagleBone Black has eight PWM generators available on expansion connectors, and their relative pins are summarized in this table:
	

PWM generator

	

PWM chip

	

PWM name

	

PWM output

	

ehrpwm0A

	

pwmchip0

	

pwm0

	
P9.22 (or P9.31)

	

ehrpwm0B

	

pwmchip0

	

pwm1

	
P9.21 (or P9.29)

	

ehrpwm1A

	

pwmchip2

	

pwm0

	
P9.14 (or P8.36)

	

ehrpwm1B

	

pwmchip2

	

pwm1

	
P9.16 (or P8.34)

	

ehrpwm2A

	

pwmchip4

	

pwm0

	
P8.19 (or P8.45)

	

ehrpwm2A

	

pwmchip4

	

pwm1

	
P8.13 (or P8.46)

	

ecappwm0

	
	
	
P9.42

	

ecappwm2

	
	
	
P9.28

Tip
Note that some pins may have their output lines multiplexed with another device, so they cannot be used without disabling the conflicting device.
Also, note that the last two PWM generators have no PWM chip or PWM name because they don't have a predefined DTS file to enable them. We warn you that we're not going to use these last two devices, so you will not find any suggestions for these devices in this book.

To enable PWM generators, we have to use one of these DTS files:

root@bbb:~# ls /lib/firmware/BB-*PWM*.dtbo
/lib/firmware/BB-PWM0-00A0.dtbo /lib/firmware/BB-PWM2-00A0.dtbo
/lib/firmware/BB-PWM1-00A0.dtbo

The BB-PWM0-00A0.dtbo file refers to the generators named ehrpwm0A and ehrpwm0B, while BB-PWM1-00A0.dtbo refers to ehrpwm1A and ehrpwm1B, and BB-PWM2-00A0.dtbo to ehrpwm2A and ehrpwm2B.
As an example, let's enable the first PWMs couple using this command line:

root@bbb:~# echo BB-PWM0 > /sys/devices/platform/bone_capemgr/slots
bone_capemgr: part_number 'BB-PWM0', version 'N/A'
bone_capemgr: slot #5: override
bone_capemgr: Using override eeprom data at slot 5
bone_capemgr: slot #5: 'Override Board Name,00A0,Override Manuf,BB-PWM
bone_capemgr: slot #5: dtbo 'BB-PWM0-00A0.dtbo' loaded; overlay id #1

Tip
The related kernel messages are also reported for completeness.

Then, a new directory named pwmchip0 should appear, as shown here:

root@bbb:~# ls /sys/class/pwm/
pwmchip0

PWMs on the SAMA5D3 Xplained

The SAMA5D3 Xplained has four PWM generators available on expansion connectors, and their relative pins are summarized in this table:
	

PWM generator

	

PWM chip

	

PWM name

	

PWM
output

	
0

	

pwmchip0

	

pwm0

	
J19.16

	
1

	

pwmchip0

	

pwm1

	
J19.15 [*]

	
2

	

pwmchip0

	

pwm2

	
J19.18

	
3

	

pwmchip0

	

pwm3

	
J19.17 [*]

Tip
Note that pins marked with [*] are already enabled in the DTS, while the other two are not. So, a DTS modification is needed if these two pins are needed (refer to the SAMA5D3 Xplained's User Guide for further information).

PWM generators are already enabled by default in the DTS file, so the pwmchip0 directory should already be present, as shown here:

root@a5d3:~# ls /sys/class/pwm/
pwmchip0

PWMs on the Wandboard

The Wandboard has no PWMs available on its expansion connectors.

PWM devices in Linux

Let's use the BeagleBone Black to see how a PWM device works (the steps that follow are almost the same for the SAMA5D3 Xplained and other GNU/Linux supporting these devices). We saw earlier that for each PWM generator, we have a well-defined directory in /sys/class/pwm/. In our case, we have the directory named pwmchip0. Then, by taking a look at its contents, we can find the following items:

root@bbb:~# ls /sys/class/pwm/pwmchip0/
device/ export npwm power/ subsystem/ uevent unexport

You can notice that this representation is quite similar to the GPIO controllers we saw in the GPIOs in Linux section, in Chapter 6, General Purposes Input Output signals – GPIO
. So, the export and unexport files are used to export and unexport the PWMs, respectively, while in npwm, we have the number of PWM lines we can manage within the PWM chip. As expected, in the command line here, we see that we can manage two PWM signals within the pwmchip0 controller:

root@bbb:~# cat /sys/class/pwm/pwmchip0/npwm
2

To enable the first PWM line, we can use this command line:

root@bbb:~# echo 0 > /sys/class/pwm/pwmchip0/export

Then, in complete analogy with GPIOs, a new file appears:

root@bbb:~# ls /sys/class/pwm/pwmchip0/pwm0/
duty_cycle enable period polarity power uevent

The period file defines the PWM signal's period in nanoseconds, while duty_cycle defines the duty-cycle by setting the high state time (thigh). In the end, the enable file is just used to enable the controller to generate the PWM wave. The command lines define a PWM signal with a period of 250ns and a duty-cycle of 50 percent (thigh=125ns):

root@bbb:~# echo 250 > /sys/class/pwm/pwmchip0/pwm0/period
root@bbb:~# echo 125 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle
root@bbb:~# echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable

With the polarity file, we can invert the waveform polarity (that is, by swapping the high state and low state) by writing the inversed string into it (normal is the default setting).
Note
See the Documentation/pwm.txt file in Linux's tree repository for further information regarding the PWM interface.

Managing a servo motor

To show you how to use a PWM generator in order to manage a peripheral, we can use a servo motor. This is a really simple motor where we can set a specific gear position by setting a proper duty-cycle of the PWM signal (another example of how to use a PWM in order to generate a clock signal has been reported in the
Using an external controller section, in Chapter 14, Controller Area Network - CAN, and the
Detecting a gas section, in Chapter 17, Analog-to-Digital Converters - ADC
).
In the following image, you can see the servo motor used in this example:

[image: Managing a servo motor]

Note
The device can be purchased at
http://www.cosino.io/product/nano-servo-motor
 or by surfing the Internet.
The datasheet is at
 http://hitecrcd.com/files/Servomanual.pdf
.

First of all, we've to setup the electrical connections. In the following diagram, the correspondence between BeagleBone Black's pins and the servo motor's cables are shown:

[image: Managing a servo motor]

By taking a look at the datasheet, we can discover that the servo can be managed using a periodic square waveform of 20ms period and a high state time (thigh) between 0.9ms and 2.1ms, with 1.5ms as (more or less) the center.
So, once connected, we can set the center position using the following settings:

root@bbb:~# echo 20000000 > /sys/class/pwm/pwmchip0/pwm0/period
root@bbb:~# echo 1500000 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle
root@bbb:~# echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable

Then, we can move the gear totally clockwise using this command:

root@bbb:~# echo 2100000 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle

We can move it totally anticlockwise using this command:

root@bbb:~# echo 900000 > /sys/class/pwm/pwmchip0/pwm0/duty_cycle

Summary

In this chapter, you learned what a PWM signal is and how it can be easily generated using a PWM generator with few Bash commands. We also saw a practical example of how we can manage a servo motor using the sysfs interface that Linux offers to us to do this job.
In the next chapter, we're going to close this book by presenting a list of different kinds of devices that an embedded GNU/Linux developer may encounter in their professional life by explaining how they can easily manage them using our embedded kits.

Chapter 19. Miscellaneous Devices

In this book, we've presented several device kinds, each of them divided in a well-defined class. However, for the sake of completeness, there are other peripherals we can use with our embedded kits that can fit in one of those classes, but they have not been discussed here for better readability. That's why, we decided to add this last chapter where we will present a list of additional peripherals we can encounter in a monitoring or controlling system.
Each presented device can be connected with the three embedded kits as described in the previous chapters according to their interfaces. However, we will present a possible circuitry for at least one kit, so you should refer to it to get useful information regarding the electronic connections to be done for the other kits.
Digital sensors

Digital sensors are devices that are capable of setting a GPIO input status in two possible states, on or off, according to the state of the measured entity. Then, these two states have to be converted into the corresponding logic 1 and 0 statuses with a proper circuitry.

Water sensor

A water sensor is a device capable of detecting the water presence near the circuitry by exploiting the water conductivity. In the following image, you can see one of the devices:

[image: Water sensor]

Note
The device can be purchased at
http://www.cosino.it/product/water-sensor
 or by surfing the Internet.

This is a really simple device that implements the circuitry in the following diagram, where the resistor (R) has been added to limit the current when the water closes the circuit:

[image: Water sensor]

When a single drop of water touches two or more teeth of the comb in the schematic, the circuit is closed and the output voltage (Vout) drops from Vcc (logic 1) to a value near 0V (logic 0).
To test this device with our SAMA5D3 Xplained, we have to realize the simple circuitry shown here:

[image: Water sensor]

After all connections are in place, we have to enable pin PB25, which is connected with the SIG signal, as a GPIO input line with the following command (see the GPIOs in Linux section , in Chapter 6,
General Purposes Input Output signals - GPIO
):

root@a5d3:~# echo 57 > /sys/class/gpio/export
root@a5d3:~# echo in > /sys/class/gpio/pioB25/direction

Then, we can read the GPIO status when the sensor is in the water and when it is not using the following two commands:

root@a5d3:~# cat /sys/class/gpio/pioB25/value
0
root@a5d3:~# cat /sys/class/gpio/pioB25/value
1

Now, we're able to know when we're experiencing a water leakage around our device!

Infrared sensor

An infrared sensor is a device that is capable of detecting the infrared light. There are several types of infrared devices. However in this book, we will present phototransistors.
Note
You can take a look at
https://en.wikipedia.org/wiki/Photodiode#Other_modes_of_operation
 for more information on these devices.

The phototransistor we're going to use here is reported in the following figure (actually, the phototransistor is the device with the red dot; the other one is an infrared emitter, which is not presented here).

[image: Infrared sensor]

Tip
Note that the image shows only the top part of the above infrared devices. In reality, they look similar to a normal diode.
The devices can be purchased at http://www.cosino.io/product/infrared-emitter-detector
 or by surfing the Internet.
The datasheet is available athttps://www.sparkfun.com/datasheets/Components/LTR-301.pdf
.

The functioning of a phototransistor is reported in the diagram. When there is no infrared light (IR), the transistor is in its off state, and it acts as an open circuit, so the Vout is set to Vcc (logic 1). However, when the infrared light arrives, the transistor switches to its on state, and the Vout drops to a value around 0V (logic 0):

[image: Infrared sensor]

In the following diagram, you can see the connections with the SAMA5D3 Xplained that we need to do in order to use the sensor:

[image: Infrared sensor]

Tip
The IR is the transistor with the red dot, which has its collector at the longer pin, while the emitter at the shorter one. The resistor R is 6.8KΩ .

To test the functionality, we have to enable pin PB25 as the GPIO input as in the previous section. However, now, we have to also set it sensible to the falling edge with the following command line (see the GPIOs in Linux section , in Chapter 6,
General Purposes Input Output signals - GPIO
):

root@a5d3:~# echo falling > /sys/class/gpio/pioB25/edge

Then, we can use the gpio-poll.php script we used in the PHP section, in Chapter 6,
General Purposes Input Output signals - GPIO
 to wait on the select() system call for the GPIO status changed from high to low state due to IR detection. Here is the complete script where we've some changes at the beginning where the GPIOs stream is defined:
#!/usr/bin/php
<?php
 define("gpio24", "/sys/class/gpio/pioB25/value");

 # Get the GPIOs streams
 $stream24 = fopen(gpio24, 'r');

 while (true) {
 # Set up stream sets for the select()
 $read = NULL;
 $write = NULL;
 $exept = array($stream24);

 # Wait for IRQs (without timeout)...
 $ret = stream_select($read, $write, $exept, NULL);
 if ($ret < 0)
 die("stream_select: error");

 foreach ($exept as $input => $stream) {
 # Read the GPIO status
 fseek($stream, 0, SEEK_SET);
 $status = intval(fgets($stream));

 # Get the filename from "/sys/class/gpio/gpioXX/value"
 $meta_data = stream_get_meta_data($stream);
 $gpio = basename(dirname($meta_data["uri"]));

 printf("$gpio status=$status\n");
 }
 }
?>

Now, to generate IR signals, we can use a normal TV remote pointed to the IR sensor. So, when we press a button, we should get the following output, where each state change is reported:

root@a5d3:~# ./gpio-poll.php
pioB25 status=1
pioB25 status=1
pioB25 status=1
pioB25 status=1
pioB25 status=0
pioB25 status=0
pioB25 status=1
pioB25 status=1
pioB25 status=1
pioB25 status=1
pioB25 status=0
pioB25 status=1
...

To stop the script, just hit
Ctrl+C
.

Analog sensors

Analog sensors are devices that are capable of returning an analog signal that is proportional to the measured entity. Then, the analog signal should be converted into a digital one using proper circuitry or, for simplicity, an AD.
Moisture sensor

A moisture sensor is a device that can change its internal resistance according to the wet intensity of the soil moisture:

[image: Moisture sensor]

Note
The device can be purchased at
http://www.cosino.io/product/moisture-sensor
 or by surfing the Internet.
The user guide of this device is available at
http://seeedstudio.com/wiki/Grove_-_Moisture_Sensor
.

This device is quite similar to the water sensor presented in the preceding section since the functioning is still based on the water conductivity. However, its shape is different because we are interested to know the soil humidity level in place of the water present status.
The connections to the SAMA5D3 Xplained are reported in the following diagram:

[image: Moisture sensor]

After all the connections are in place, we can read the moisture level in water (that is, the maximum moisture level) by putting the sensor into a cup of water and then executing the following command:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw
1309

Then, we can read the moisture level in air (that is, the minimum moisture level) by removing the sensor from the water and then rerunning the preceding command in the following manner:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw
0

So, higher the moisture level, higher is the returned value.

Pressure sensor

A pressure (or force) sensor is a device that can change its internal resistance when a pressure (or force) is applied. It is also known as a force-sensitive resistor (FSR).
Note
You can get more information at
https://en.wikipedia.org/wiki/Force-sensing_resistor
.

In the following diagram, you can see one of these devices (pressure sensor):

[image: Pressure sensor]

Note
The device can be purchased at
http://www.cosino.io/product/pressure-sensor or by surfing the Internet.
The user guide of this device is available at
https://www.pololu.com/file/download/fsr_datasheet.pdf?file_id=0J383
.

As explained earlier, this device can detect (and measure) a force acting on its active surface. In a few words, it can report a pressure intensity by varying its internal resistance. From the datasheet. we can discover that this resistance may vary from over 1 MΩ , when no force is present, to a few hundred ohms when a force is applied.
The connections needed to test the device with our SAMA5D3 Xplained are shown in the following figure:

[image: Pressure sensor]

Tip
In the diagram, R is 6.8KΩ, where Rp is the pressure sensor's internal resistor, which is represented by a variable resistor.

The circuitry simply connects the pressure sensor with SAMA5D3 Xplained's ADC input ain1 in such a way that when nothing is on the sensor we have that Rp gets a value very greater than R so we measure a value near 0V. On the other hand, when something is on the sensor, its internal resistance Rp drops to a few ohms, so we measure higher values to Vcc.
OK, if everything works well and we have nothing on the sensor, we should get the following output when we read from the ADC:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw
0

However, if we simply try to put a finger on it and then re-read from the sensor, we get an higher value:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw
3704

So, higher the pressure on the sensor, higher is the returned value.

Light sensor

A light sensor is a device that can detect the intensity of the light that reaches it. There are several kinds of light sensors, and in this chapter, we will present the ones named photoresistors. A photoresistor is a device that can change its internal resistance according to the incident light intensity. In other words, it exhibits photoconductivity: more light is present and less resistance is measured.
Note
You can get more information on photoresistors at
https://en.wikipedia.org/wiki/Photoresistor
.

Here is one of these devices:

[image: Light sensor]

Note
The device can be purchased at http://www.cosino.io/product/photoresistor or by surfing the Internet.The user guide of this device is available at
https://www.sparkfun.com/datasheets/Sensors/Imaging/SEN-09088-datasheet.pdf
.

This device functioning is quite similar to the pressure sensor presented earlier. So, even in this case, we can use the same circuitry as we did earlier to manage it with the SAMA5D3 Xplained board (you can just replace the pressure sensor with this light sensor).
Once all connections are in place, we can measure the normal light level intensity with the following command:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw
2381

Now, we can verify that the internal resistance changes by first covering the sensor with a finger, or better, with a cup, and then re-reading from the ADC to get the following output:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw
469

On the other hand, if we turn on a lamp over the sensor, we would get the following output:

root@a5d3:~# cat /sys/bus/iio/devices/iio\:device0/in_voltage1_raw
3685

So, higher the environment light, higher is the returned value from the ADC.

GSM/GPRS modem

A GSM/GPRS modem is a device used to establish communication between two computers using the GSM-GPRS system. Global System for Mobile communication (GSM) is an architecture used for mobile communication in most of the countries. On the other hand, General Packet Radio Service (GPRS) is an extension of GSM that enables higher data transmission rate. Usually, these devices are assembled together with power supply circuit and communication interfaces such as RS-232, USB, and so on.
In order to work, these devices require a subscriber identity module (SIM) card just like mobile phones to activate communication with the network, and once the SIM is inserted, they can perform the following main operations:
	Manage SMS messages.
	Do voice calls.
	Establish Internet connections.

To do their job, these devices use the AT commands to interact with a processor or controller, which are communicated through serial communication (or via a USB-emulated serial line). These commands are sent by the controller/processor, while the modem sends back the result after it receives a command.
Tip
For more information on the AT commands, you can take a look at
https://en.wikipedia.org/wiki/Hayes_command_set
.

The device we're going to evaluate with our Wandboard is the USB device shown here:

[image: GSM/GPRS modem]

Note
The device can be purchased at or
http://www.cosino.it/product/usb-gsmgprs-module-2
 by surfing the Internet.
The AT commands list for this device is available at
http://simcom.ee/documents/SIM800H/SIM800%20Series_AT%20Command%20Manual_V1.09.pdf
.

You can now notice that this device has a non-standard USB connector, so we have to find a trick to connect it to our Wandboard. The quick-and-dirty solution can be in using a USB plug type. It is an adapter from an old USB device, soldered with male connectors, as shown in the following image, in such a way that we can plug each signal line in the desired input pin:

[image: GSM/GPRS modem]

The needed connections are reported in the following diagram reporting the board's USB connector and the relative USB signals to be routed to the Wandboard:

[image: GSM/GPRS modem]

Tip
The connector pinout can be retrieved at
https://en.wikipedia.org/wiki/USB
 in the Pin out box on the right.

If connections are done well, once we connect the device to the Wandboard's USB host port, we should get an output as follows:

usb 1-1: new full-speed USB device number 2 using ci_hdrc
usb 1-1: New USB device found, idVendor=0403, idProduct=6015
usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-1: Product: FT230X Basic UART
usb 1-1: Manufacturer: FTDI
usb 1-1: SerialNumber: DN017HQF
usbcore: registered new interface driver usbserial
usbcore: registered new interface driver usbserial_generic
usbserial: USB Serial support registered for generic
usbcore: registered new interface driver ftdi_sio
usbserial: USB Serial support registered for FTDI USB Serial Device
ftdi_sio 1-1:1.0: FTDI USB Serial Device converter detected
usb 1-1: Detected FT-X
usb 1-1: FTDI USB Serial Device converter now attached to ttyUSB0

OK, the USB connection works, but now, we need some packages to manage our GSM, so let's install them using this command:

root@wb:~# aptitude install gsm-utils ppp libftdi-dev

Then, we have to download the code to manage the powering of the device. The commands to download the code and then compile it are shown here:

root@wb:~# git clone https://github.com/cosino/peripherals.git
root@wb:~# cd peripherals/WI400/
root@wb:~/peripherals/WI400# make

Once compiled, the new tool can be executed as reported in the following example:

root@wb:~/peripherals/WI400# ./wi400_ctrl -h
usage: wi400_ctrl [on | off]

You should notice that if executed without any arguments, the tool returns the current modem status:

root@wb:~/peripherals/WI400# ./wi400_ctrl
modem is off

Tip
If we execute the command in the serial console, most probably, we'll get the preceding output mixed with the kernel messages shown here, which also suggest to us that a new serial device is now present:

 ftdi_sio ttyUSB0: FTDI USB Serial Device converter

 now disconnected

 ftdi_sio 1-1:1.0: device disconnected

 ftdi_sio 1-1:1.0: FTDI USB Serial Device converter

 usb 1-1: Detected FT-X

 usb 1-1: FTDI USB Serial Device converter now attac

 hed to ttyUSB0

This modem presents itself as a serial line over the USB bus (usually, the /dev/ttyUSB0 device). However, if we try to send some commands over such communication line, we'll get no response because the modem is turned off. So, let's turn it on:

root@wb:~/peripherals/WI400# ./wi400_ctrl on
modem is on

Now, the modem is ready, so we can try to talk with it by asking information regarding the SIM card we inserted before turning it on. To do this job, we can use the gsmctl tool, which has been designed to manage GSM devices. Here is t command to get as much information as possible from the modem:

root@wb:~# gsmctl -X -d /dev/ttyUSB0 ALL

Tip
Note that the command may take a while for answering. In any case, if we get the next answer, it means we have to insert a SIM card into the modem:

 gsmctl[ERROR]: ME/TA error 'SIM not inserted' (cod

 e 10)

While if we get the next message, then we have to supply the PIN number to unlock the SIM:

 gsmctl[ERROR]: ME/TA error 'SIM PIN required' (cod

 e 11)

In this last case, we can supply the requested PIN number with this command:

 root@wb:~# gsmctl -X -d /dev/ttyUSB0

 -I "+CPIN=NNNN"

Here, in place of the NNNN string, we have to put the PIN number of our SIM card. Note that we can get a SIM busy error just after the PIN insertion. However, this is not an error, and we can verify that everything is OK just using the following command and obtaining the READY message:

 root@wb:~# gsmctl -X -d /dev/ttyUSB0 PIN

 <PIN0> READY

The output of the command is shown here:

root@wb:~# gsmctl -X -d /dev/ttyUSB0 ALL
<ME0> Manufacturer: SIMCOM_Ltd
<ME1> Model: SIMCOM_SIM800H
<ME2> Revision: Revision:1308B02SIM800H32
<ME3> Serial Number: 862950023936530
<FUN> Functionality Level: 1

Tip
It could be possible that during this execution, we get the following error message:

 gsmctl[ERROR]: expected ')' (at position 26 of std:

 :string '(2,"I TIM","TIM","22201"),(1,"vodafone IT"

 ,"voda IT","22210"),(1,"22288","22288","22288"),,(0

 -4),(0-2)')

This can safely be ignored.

Now, the GSM modem is operative, and we can send an SMS message with another tool designed for this purpose: gsmsendsms and the command to send an SMS with the Hello World! text is shown here, where you just need to replace the NNNNNNNNNNNN string with a proper phone number:

root@wb:~# gsmsendsms -X -d /dev/ttyUSB0 +NNNNNNNNNNNN 'Hello world!'

Another usage for this modem is to establish an Internet connection, but to do so, we have to use another tool, the Point-to-Point Protocol (PPP) daemon, which is held in the package named ppp.
Tip
Due to space reasons, we cannot explain what the PPP protocol is, so you can get more information on it at
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
.

Once installed, we have to configure it by adding a file named myisp (or any suitable name for our Internet Service Provider) in the /etc/ppp/peers/ directory as follows:
Set up the network's APN value.
connect "/usr/sbin/chat -v -f /etc/chatscripts/gprs -T my_APN_value"

The GSM device
/dev/ttyUSB0

Speed of the serial line.
115200

Assumes that your IP address is allocated dynamically by the ISP.
noipdefault

Try to get the name server addresses from the ISP.
usepeerdns

Use this connection as the default route to the internet.
defaultroute

Makes PPPD "dial again" when the connection is lost.
persist

Do not ask the remote to authenticate.
noauth

No hardware flow control on the serial link
nocrtscts

No modem control lines
local

Enable debugging messages
debug

Note
The file is stored in the chapter_19/gsm/myisp file in the book's example code repository.

You should modify the my_APN_value string with the right Access Point Name (APN) value according to their Internet Service Provider (ISP).
Now, to verify that the connection is working correctly, before enabling it, we can set up a messages monitor using this command in another terminal:

root@wb:~# tail -f /var/log/syslog | grep pppd

In this manner, we can see all messages the pppd program (that is, the PPP daemon) sends to the logging system. OK, now, we can enable the connection using the following command:

root@wb:~# pon myisp

Then, on the messages monitor, we should see something like this:

pppd[10320]: pppd 2.4.6 started by root, uid 0
pppd[10320]: Script /usr/sbin/chat -v -f /etc/chatscripts/gprs -T ibox
.isp.it finished (pid 10321), status = 0x0
pppd[10320]: Serial connection established.
pppd[10320]: using channel 4
pppd[10320]: Using interface ppp0
pppd[10320]: Connect: ppp0 <--> /dev/ttyUSB0

These messages tell us that the GSM's serial port is now connected with the ppp0 interface and then, going forward in reading the messages, we should see these lines at the end:

pppd[10320]: local IP address 10.69.201.218
pppd[10320]: remote IP address 10.64.64.64
pppd[10320]: primary DNS address 10.205.41.16
pppd[10320]: secondary DNS address 10.204.57.104
pppd[10320]: Script /etc/ppp/ip-up started (pid 10329)
pppd[10320]: Script /etc/ppp/ip-up finished (pid 10329), status = 0x0

In these lines, we can easily read our new networking settings. In fact, if we use the ifconfig command (or ip, see The net tools, in Chapter 12, Ethernet Network Device - ETH
) as follows, we can verify that the ppp0 interface is up and running:

root@wb:~# ifconfig ppp0
ppp0 Link encap:Point-to-Point Protocol
 inet addr:10.69.201.218 P-t-P:10.64.64.64 Mask:255.255.255
.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
 RX packets:11 errors:0 dropped:0 overruns:0 frame:0
 TX packets:12 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:3
 RX bytes:542 (542.0 B) TX bytes:496 (496.0 B)

Also, our new Internet connection is working as expected, and for instance, we can use the ping command to the communication:

root@wb:~# ping www.google.com
PING www.google.com (216.58.214.132) 56(84) bytes of data.
64 bytes from fra16s06-in-f132.1e100.net (216.58.214.132): icmp_seq=1
ttl=50 time=641 ms
64 bytes from fra16s06-in-f132.1e100.net (216.58.214.132): icmp_seq=2
ttl=50 time=575 ms
64 bytes from fra16s06-in-f132.1e100.net (216.58.214.132): icmp_seq=3
ttl=50 time=533 ms

To stop the PPP daemon, we can simply use the poff command:

root@wb:~# poff

In the monitor, we should now read the next message, signaling the daemon ending:

pppd[10320]: Exit.

Smart card reader

A smart card and a smart card reader are complex devices that are used everywhere nowadays, starting from our credit cards to the smartphones. The term smart card implies a set of technologies, including integrated circuits, microprocessors, memories, antennas, and so on in the same integrated circuit to form a microchip that is the heart of a smart card. On the other hand, a smart card reader is complex device that can communicate with the smart card and save data on it or return data to a computer.
These devices can be used where the identification can be done by inserting a credit card (or something similar) somewhere for identification. These are not wireless.
Tip
You can get more information regarding the smart card world by taking a look at
 https://en.wikipedia.org/wiki/Smart_card
.

The device we're going to evaluate with our Wandboard is the USB device reported here, which has a slot where the smart card can be inserted:

[image: Smart card reader]

Note
The device can be purchased at
http://www.cosino.io/product/smartcard-reader-isoiec-7816
 or by surfing the Internet.The device is based on the chip Maxim 73S1215F, and its datasheet is available at
http://datasheets.maximintegrated.com/en/ds/73S1215F.pdf
.

This device, as the GSM in the preceding section, has a non-standard USB connector, so we have to use a similar trick to get it connected to our Wandboard. Then, the electrical connections are the same as the ones shown earlier. Once we connect the device to the Wandboard's USB host port, we should get an output as shown here:

usb 1-1: New USB device found, idVendor=1862, idProduct=0001
usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
usb 1-1: Product: TSC12xxF CCID-DFU Version 2.10
usb 1-1: Manufacturer: Teridian Semiconductors
usb 1-1: SerialNumber: 123456789

OK, the connections are done, but now, we need some packages to manage our smart card reader. So, let's install them using the following command:

root@wb:~# aptitude install pcsc-tools pcscd libccid

Once finished, the pcsc tool is ready to work.
Note
You may take a look at
http://ludovic.rousseau.free.fr/softwares/pcsc-tools/
 for further information on this tool.

Once installed, we have to execute the pcsc_scan command to try to detect connected devices:

root@wb:~# pcsc_scan
PC/SC device scanner
V 1.4.23 (c) 2001-2011, Ludovic Rousseau <ludovic.rousseau@free.fr>
Compiled with PC/SC lite version: 1.8.11
Using reader plug'n play mechanism
Scanning present readers...
Waiting for the first reader...

Tip
If we get the following error instead of the preceding output, we can try to restart the daemon with the /etc/init.d/pcscd restart command and then execute the pcsc_scan tool again:

 SCardEstablishContext: Service not available.

OK, the daemon started correctly, but it still didn't recognize our device. In this case, we have to patch the /etc/libccid_Info.plist configuration file as shown here:
--- /etc/libccid_Info.plist.orig 2016-10-24 17:48:15.956215450 +0000
+++ /etc/libccid_Info.plist 2016-10-24 17:51:50.106215475 +0000
@@ -377,6 +377,7 @@
 <string>0x08C3</string>
 <string>0x15E1</string>
 <string>0x062D</string>
+ <string>0x1862</string>
 </array>

 <key>ifdProductID</key>
@@ -652,6 +653,7 @@
 <string>0x0402</string>
 <string>0x2007</string>
 <string>0x0001</string>
+ <string>0x0001</string>
 </array>

 <key>ifdFriendlyName</key>
@@ -927,6 +929,7 @@
 <string>Precise Biometrics Precise 200 MC</string>
 <string>RSA RSA SecurID (R) Authenticator</string>
 <string>THRC Smart Card Reader</string>
+ <string>TSC12xxF Reader</string>
 </array>

Note
The patch is stored in the chapter_19/smartcard/add_TSC12xxF_reader.patch file in the book's example code repository.

After all the modifications are in place, we have to restart the daemon, and then, the output should change as shown here:

root@wb:~# /etc/init.d/pcscd restart
Restarting pcscd (via systemctl): pcscd.service.

Now, we can start the pcsc_scan command again, and the output should change as follows:

root@wb:~# pcsc_scan
PC/SC device scanner
V 1.4.23 (c) 2001-2011, Ludovic Rousseau <ludovic.rousseau@free.fr>
Compiled with PC/SC lite version: 1.8.11
Using reader plug'n play mechanism
Scanning present readers...
0: TSC12xxF Reader (123456789) 00 00
1: TSC12xxF Reader (123456789) 00 01
2: TSC12xxF Reader (123456789) 00 02
3: TSC12xxF Reader (123456789) 00 03
4: TSC12xxF Reader (123456789) 00 04
Mon Oct 24 17:52:15 2016
Reader 0: TSC12xxF Reader (123456789) 00 00
 Card state: Card removed,
Reader 1: TSC12xxF Reader (123456789) 00 01
 Card state: Card removed,
Reader 2: TSC12xxF Reader (123456789) 00 02
 Card state: Card removed,
Reader 3: TSC12xxF Reader (123456789) 00 03
 Card state: Card removed,
Reader 4: TSC12xxF Reader (123456789) 00 04
 Card state: Card removed,

Great! Now, we can verify that the reader is working by inserting a card into the socket so that the tool should print something as follows:

Mon Oct 24 17:55:47 2016
Reader 0: TSC12xxF Reader (123456789) 00 00
 Card state: Card inserted,
 ATR: 3B BE 11 00 00 41 01 38 00 00 00 00 00 00 00 00 01 90 00
ATR: 3B BE 11 00 00 41 01 38 00 00 00 00 00 00 00 00 01 90 00
+ TS = 3B --> Direct Convention
+ T0 = BE, Y(1): 1011, K: 14 (historical bytes)
 TA(1) = 11 --> Fi=372, Di=1, 372 cycles/ETU
 10752 bits/s at 4 MHz, fMax for Fi = 5 MHz => 13440 bits/s
 TB(1) = 00 --> VPP is not electrically connected
 TD(1) = 00 --> Y(i+1) = 0000, Protocol T = 0

+ Historical bytes: 41 01 38 00 00 00 00 00 00 00 00 01 90 00
 Category indicator byte: 41 (proprietary format)
Possibly identified card (using /usr/share/pcsc/smartcard_list.txt):
3B BE 11 00 00 41 01 38 00 00 00 00 00 00 00 00 01 90 00
 ACS (Advanced Card System) ACOS-1

OK, the device is functioning. In fact, we've detected the card insertion/removal with the corresponding ATR identifier!
However, the pcsc_scan tool is not suitable for production, so let's try a more versatile Python program to better manage the card's reading. To do so, we have to install the python-pyscard and python-daemon packages with the usual commands, and then, we can consider the following code snippet:

Smart Card Observer

class printobserver(CardObserver):
 def update(self, observable, (addedcards, removedcards)):
 for card in addedcards:
 logging.info("->] " + toHexString(card.atr))
 for card in removedcards:
 logging.info("<-] " + toHexString(card.atr))

The daemon body

def daemon_body():
 # The main loop
 logging.info("INFO waiting for card... (hit CTRL+C to stop)")

 try:
 cardmonitor = CardMonitor()
 cardobserver = printobserver()
 cardmonitor.addObserver(cardobserver)

 while True:
 sleep(1000000) # sleep forever

 except:
 cardmonitor.deleteObserver(cardobserver)

Note
The complete code is stored in the chapter_19/smart_card/smart_card.py file in the book's example code repository.

The program defines a cardmonitor object and then adds its observer with the addObserver() method in order to be called when a card is inserted or removed.
If executed, the program gives an output as shown here:

root@wb:~# ./smart_card.py
INFO:root:INFO waiting for card... (hit CTRL+C to stop)

Then, if we insert a card, we get the following output:

INFO:root:->] 3B BE 11 00 00 41 01 38 00 00 00 00 00 00 00 00 01 90 00

While when we extract it, the output changes:

INFO:root:<-] 3B BE 11 00 00 41 01 38 00 00 00 00 00 00 00 00 01 90 00

In this manner, we can detect each user action with the corresponding ATR parameter involved.
Tip
Note that implementation is very minimal since we limit our attention to the ATR parameter, which cannot be used to uniquely identify a smart card under all circumstances.

RFID reader

The evolution of smart cards is the Radio-Frequency IDentification (RFID) devices that can be used to identify people or objects in a contactless form, starting from few centimeters until several meters. The RFID readers and the corresponding tags (or transponders) are high-technology radio devices that can exchange data with each other in order to accomplish identification tasks.
Tip
You can get more information regarding the RFID world by taking a look at
https://en.wikipedia.org/wiki/Radio-frequency_identification
.

There are several classes of RFID readers according to the frequencies in which they work. Some of them are:
	RFID low frequency (LF) readers can be used where the identification tasks need no wires, but where the distance between the object to identify and the reader is no more than few centimeters. These devices are usually very simple as the ones we presented in Chapter 7, Serial Ports and TTY Devices - TTY. The reader is connected with the host by a serial port, and it simply returns a string each time a tag is detected.

	RFID ultra high frequency (UHF) readers can detect tags in a wireless mode like the LF reader, but at a distance of several meters. These devices can be more complex than the earlier ones, like the one we're going to use in this section. The reader still uses a serial connection to talk with the host, but it implements a more elaborate protocol to exchange data.

As a RFID UHF reader, we can use the following device that sends its data through a serial port at TTL 3.3V level:

[image: RFID reader]

Note
The device can be purchased at
http://www.cosino.io/product/uhf-rfid-long-range-reader
 or by surfing the Internet.
The product's information from the manufacturer is available at
http://www.caenrfid.it/en/CaenProd.jsp?mypage=3&parent=59&idmod=818
.

The reader can be directly connected to our SAMA5D3 Xplained using these connections:

[image: RFID reader]

Tip
Since the RFID reader used in this circuitry needs a high input current, we need to power up the SAMA5D3 Xplained board with an external power supply in order to have a properly functional system.

After all pins have been connected, the tag's data will be available at the /dev/ttyS1 device, but to get them, we need extra software too. In fact, these readers require a special protocol to communicate with the host, so we need to install a special C library to do the trick.
We need to download, compile, and then install three libraries: libmsgbuff, libavp
, and the libcaenrfid.
First of all, we need some prerequisite packages, so let's install them:

root@a5d3:~# apt-get install debhelper dctrl-tools

Now, we can start downloading the first library with the following command:

root@a5d3:~# git clone http://github.com/cosino/libmsgbuff.git

Note
A compressed archive of this package is stored in the chapter_19/rfid/libmsgbuff.tgz file in the book's example code repository.

Now, we have to enter the new directory libmsgbuff and execute the autogen.sh command as shown here:

root@a5d3:~/libmsgbuff# ./autogen.sh

Then to compile the library we can use the command line below:

root@a5d3:~/libmsgbuff# ./debian/rules binary
...
dpkg-deb: building package `libmsgbuff0' in `../libmsgbuff0_0.60.0_arm
hf.deb'.
dpkg-deb: building package `libmsgbuff-dev' in `../libmsgbuff-dev_0.60
.0_armhf.deb'.

OK, now, the packages are ready, and we can install them using the dpkg command:

root@a5d3:~/libmsgbuff# dpkg -i ../libmsgbuff0_0.60.0_armhf.deb
 ../libmsgbuff-dev_0.60.0_armhf.deb
...
Setting up libmsgbuff0 (0.60.0) ...
Setting up libmsgbuff-dev (0.60.0) ...

Now, it's the turn of the second library. The steps are the same as the earlier ones. First, download the sources:

root@a5d3:~# git clone http://github.com/cosino/libavp.git

Note
A compressed archive of this package is stored in the chapter_19/rfid/libavp.tgz file in the book's example code repository.

Then, execute the autogen.sh script in the library's directory:

root@a5d3:~/libavp# ./autogen.sh

Then, start the compilation:

root@a5d3:~/libavp# ./debian/rules binary
...
dpkg-deb: building package `libavp0' in `../libavp0_0.80.0_armhf.deb'.
dpkg-deb: building package `libavp-dev' in `../libavp-dev_0.80.0_armhf
.deb'.

In the end, execute the dpkg command to install the packages:

root@a5d3:~/libavp# dpkg -i ../libavp0_0.80.0_armhf.deb
 ../libavp-dev_0.80.0_armhf.deb

OK, for the last library, the procedure is similar, but with a little note. First, download the code and execute the autogen.sh script:

root@a5d3:~# git clone http://github.com/cosino/libcaenrfid.git
root@a5d3:~# cd libcaenrfid/
root@a5d3:~/libcaenrfid# ./autogen.sh

Note
A compressed archive of this package is stored in the chapter_19/rfid/libcaenrfid.tgz file in the book's example code repository.

Then, we need to create two new files for BeagleBone Black's architecture (which is named armhf in Debian). The commands are as follows:

root@a5d3:~/libcaenrfid# cp src/linux-gnueabi.c src/linux-gnueabihf.c
root@a5d3:~/libcaenrfid# cp src/linux-gnueabi.h src/linux-gnueabihf.h

Now, we can execute the usual package-generation command followed by the installation one as shown here:

root@a5d3:~/libcaenrfid# ./debian/rules binary
...
dpkg-deb: building package `libcaenrfid0' in `../libcaenrfid0_0.91.0_a
rmhf.deb'.
dpkg-deb: building package `libcaenrfid-dev' in `../libcaenrfid-dev_0.
91.0_armhf.deb'.
root@a5d3:~/libcaenrfid# dpkg -i ../libcaenrfid0_0.91.0_armhf.deb
 ../libcaenrfid-dev_0.91.0_armhf.deb

Well, at this point, the necessary libraries are in place, so we can compile our program to get access to the RFID UHF reader. A snippet of a possible implementation of the main() function is reported here:
int main(int argc, char *argv[])
{
 int i;
 struct caenrfid_handle handle;
 char string[] = "Source_0";
 struct caenrfid_tag *tag;
 size_t size;
 char *str;
 int ret;

 if (argc < 2)
 usage();

 /* Start a new connection with the CAENRFIDD server */
 ret = caenrfid_open(CAENRFID_PORT_RS232, argv[1], &handle);
 if (ret < 0)
 usage();

 /* Set session "S2" for logical source 0 */
 ret = caenrfid_set_srcconf(&handle, "Source_0",
 CAENRFID_SRC_CFG_G2_SESSION, 2);
 if (ret < 0) {
 fprintf(stderr, "cannot set session 2 (err=%d)\n", ret);
 exit(EXIT_FAILURE);
 }

 while (1) {
 /* Do the inventory */
 ret = caenrfid_inventory(&handle, string, &tag, &size);
 if (ret < 0) {
 fprintf(stderr, "cannot get data (err=%d)\n", ret);
 exit(EXIT_FAILURE);
 }

 /* Report results */
 for (i = 0; i < size; i++) {
 str = bin2hex(tag[i].id, tag[i].len);
 if (!str) {
 fprintf(stderr,
 "cannot allocate data (err=%d)\n", ret);
 exit(EXIT_FAILURE);
 }

 printf("%.*s %.*s %.*s %d\n",
 tag[i].len * 2, str,
 CAENRFID_SOURCE_NAME_LEN, tag[i].source,
 CAENRFID_READPOINT_NAME_LEN,
 tag[i].readpoint,
 tag[i].type);

 free(str);
 }

 /* Free inventory data */
 free(tag);
 }

 caenrfid_close(&handle);

 return 0;
}

Note
The complete code is stored in the chapter_19/rfid/rfid_uhf.c file in the book's example code repository.

The program simply uses the caenrfid_open() function to establish a connection with the reader and then the caenrfid_inventory() function to detect the tags. The caenrfid_set_srcconf() function is used to set an internal special functioning (session S2) in order to avoid multiple readings of the same tag. In the internal while loop, we continuously repeat the inventory, and if there are some results to print (size greater than 0), we proceed to format the output to be printed accordingly to the tags data.
The program can be compiled with the make command and used as follows:

root@a5d3:~# ./rfid_uhf /dev/ttyS1

The program answers with no output if there are no tags near the reader's antenna, but if we approach some tags, we get something as follows:

root@a5d3:~# ./rfid_uhf /dev/ttyS1
e2801130200020d1dda500ab Source_0 Ant0 3
e280113020002861dd9100ab Source_0 Ant0 3
e280113020002491ddbc00ab Source_0 Ant0 3
e280113020002441ddbc00ab Source_0 Ant0 3
e2801130200024a1ddbc00ab Source_0 Ant0 3
e280113020002431ddbc00ab Source_0 Ant0 3
e280113020002801dd9100ab Source_0 Ant0 3
e2801130200028c1dd9100ab Source_0 Ant0 3

Z-Wave

The Z-Wave technology is oriented for the residential control and automation market, and its main goal is to minimize the power consumption because almost all Z-Wave devices work on battery. However, despite this fact, Z-Wave provides reliable and low-latency transmission of small data packets at data rates up to 100 kbit/s!
The Z-Wave communication protocol allows us, using a proper controller, to manage several home automation sensors and actuators in a wireless manner, so we don't need to modify our pre-existent plant. Also, we can easily add a power consumption measuring system or several environment sensors with a minor impact to the actual home layout.
Note
For more information on Z-Wave, a good starting point is
https://en.wikipedia.org/wiki/Z-Wave
.

Z-Wave controllers

There are several kinds of Z-Wave controllers. However, the most widely used are the ones on a USB dongle, such as the one shown in the following image:

[image: Z-Wave controllers]

Note
The device can be purchased at
http://www.cosino.io/product/usb-z-wave-controller
 or by surfing the Internet.
A reference design is available at
 http://z-wave.sigmadesigns.com/wp-content/uploads/UZB_br.pdf
.

Once connected with BeagleBone Black's USB host port, we should get the following kernel messages:

usb 1-1: new full-speed USB device number 2 using musb-hdrc
usb 1-1: New USB device found, idVendor=0658, idProduct=0200
usb 1-1: New USB device strings: Mfr=0, Product=0, SerialNumber=0
cdc_acm 1-1:1.0: ttyACM0: USB ACM device
usbcore: registered new interface driver cdc_acm
cdc_acm: USB Abstract Control Model driver for USB modems and ISDN adapters

Looking at the third-last line, we can discover that the Z-Wave controller has been connected to the device file /dev/ttyACM0. So, the device is correctly connected, but to really test it, we need to install a proper management software. To do so, we can use an open source implementation of the Z-Wave protocol named Open Z-Wave, where we can find a lot of suitable software to test a Z-Wave network.
Note
The home page of the Open Z-Wave project is at
http://www.openzwave.com
.

With the following command, we can download the code we need in our prototype:

root@bbb:~# git clone https://github.com/OpenZWave/open-zwave

Note
A compressed archive of this package is stored in the chapter_19/zwave/open-zwave.tgz file in the book's example code repository.

Then, we need some extra packages to compile the necessary tools, so let's install them with one of the usual installation commands as shown here:

root@bbb:~# aptitude install libudev-dev libjson0
 libjson0-dev libcurl4-gnutls-dev

Now, just enter the openzwave directory and simply use the make command as shown here:

root@bbb:~/open-zwave# make

Tip
The compilation is quite slow, so be patient.

When finished, go back to the upper directory and download another repository with the following command:

root@bbb:~# git clone https://github.com/OpenZWave/open-zwave-control-
panel

Note
A compressed archive of this package is stored in the chapter_19/zwave/open-zwave-control-panel.tgz file in the book's example code repository.

Then, after downloading, we have to install an extra package to proceed with the compilation, so let's use the aptitude command (or equivalent) again:

root@bbb:~/openzwave# aptitude install libmicrohttpd-dev

Now, enter the open-zwave-control-panel directory and modify Makefile as shown here:
--- Makefile.orig 2016-10-10 13:45:16.590209754 +0000
+++ Makefile 2016-10-10 13:46:43.660209764 +0000
@@ -34,15 +34,15 @@

 # for Linux uncomment out next three lines
 LIBZWAVE := $(wildcard $(OPENZWAVE)/*.a)
-#LIBUSB := -ludev
-#LIBS := $(LIBZWAVE) $(GNUTLS) $(LIBMICROHTTPD) -pthread $(LIBUSB) -lresolv
+LIBUSB := -ludev
+LIBS := $(LIBZWAVE) $(GNUTLS) $(LIBMICROHTTPD) -pthread $(LIBUSB) -lresolv

 # for Mac OS X comment out above 2 lines and uncomment next 5 lines
 #ARCH := -arch i386 -arch x86_64
 #CFLAGS += $(ARCH)
 #LIBZWAVE := $(wildcard $(OPENZWAVE)/cpp/lib/mac/*.a)
-LIBUSB := -framework IOKit -framework CoreFoundation
-LIBS := $(LIBZWAVE) $(GNUTLS) $(LIBMICROHTTPD) -pthread $(LIBUSB) $(ARCH) -lresolv
+#LIBUSB := -framework IOKit -framework CoreFoundation
+#LIBS := $(LIBZWAVE) $(GNUTLS) $(LIBMICROHTTPD) -pthread $(LIBUSB) $(ARCH) -lresolv

 %.o : %.cpp
 $(CXX) $(CFLAGS) $(INCLUDES) -o $@ $<

Then, run the make command:

root@bbb:~/openzwave/openzwave-control-panel# make

When the compilation is finished, the ozwcp program should be available, so let's execute it using the command lines here:

root@bbb:~/open-zwave-control-panel# ln -s ../open-zwave/config .
root@bbb:~/open-zwave-control-panel# ./ozwcp -d -p 8080
2016-10-10 13:49:35.752 Always, OpenZwave Version 1.4.2277 Starting Up
webserver starting port 8080

Tip
Note that the ln command is just used once to create a proper link with the Open Z-Wave configuration directory config, which is located in the open-zwave directory.
If we get the following error in executing the program, it means that most probably, your web server is holding port 8080, so we have to disable it:

 Failed to bind to port 8080: Address already in use

Well, now, we should point the web browser on our host PC to the http://192.168.7.2:8080 address to get the following screenshot:

[image: Z-Wave controllers]

OK, now, we have to enter the path name /dev/ttyACM0 in the Device name field and then press the Initialize button to start the communication. If everything works well, we should see that a new device is listed in the Devices tab, as shown in the following screenshot:

[image: Z-Wave controllers]

Now, the controller is up and running, so we can continue installing the Z-Wave slaves.

The Z-Wave wall plug sensor

The first Z-Wave slave is the wall plug shown in the following image:

[image: The Z-Wave wall plug sensor]

Note
The device can be purchased at
http://www.cosino.io/product/z-wave-wall-plug or by surfing the Internet.
A reference manual is available at
 http://www.fibaro.com/manuals/en/FGWPx-101/FGWPx-101-EN-A-v1.00.pdf
.

The device is wireless, and once connected to a powered plug, it's self-powered, so we don't need special connections to set it up. However, we need some home appliance connected to it, as shown in the following image, for the power-consumption measurements:

[image: The Z-Wave wall plug sensor]

Now, to test this device and its communication with the controller, we can use the ozwcp program again. Just click on the Select an operation menu entry in the Controller tab, select the Add Device entry, and then press the Go button. On the left-hand side, we should see the Add Device: waiting for a user action message, so let's power up the device by putting it into a wall plug and then strike the button on the device in order to start the pairing procedure (like a bluetooth device does).
Tip
Note that a newer version of this device doesn't require us to press the button to start the pairing procedure. It just starts automatically after the first plug.

If everything works well, a new device should appear in the Devices tab, as shown in the following screenshot:

[image: The Z-Wave wall plug sensor]

Now, we can change some device's settings by selecting the new device and then clicking on the Configuration option under the devices listing tab. A panel for settings similar to the following screenshot should appear:

[image: The Z-Wave wall plug sensor]

The Z-Wave multi sensor

The second Z-Wave slave is the multi sensor shown in the following image:

[image: The Z-Wave multi sensor]

Note
The device can be purchased at
http://www.cosino.io/product/z-wave-multi-sensor or by surfing the Internet.
A reference manual is available at http://aeotec.com/z-wave-sensor/47-multisensor-manual.html.

To power the device, we can use four batteries or a USB cable connected as in the following image. Then, to test the device and its communication with the controller, we can use again the ozwcp program, so just click on the Select an operation menu entry in the Controller tab and select the Add Device entry. Then, press the Go button in order to repeat a pairing procedure again (the pairing button is the black button near the sensitivity regulator under the battery pack cover):

[image: The Z-Wave multi sensor]

Again, if everything works well, a new device should appear in the Devices tab, as shown in the following screenshot. We can change some device's settings by selecting the new device and then clicking on the Configuration option under the devices listing tab as shown in the screenshot here:

[image: The Z-Wave multi sensor]

Summary

In this earlier chapter, we discovered a group of peripheral devices that can be connected with our embedded kits using a technique we presented in the previous chapters.
You should now have an idea of some basic examples of several computer peripherals that can be connected and used with a GNU/Linux-based embedded system.

graphics/image_15_016.jpg
nel Trigger Scope Help

Rising Trigger @ 0 fps: 11

Soundcard Left Mix (2)Help
Line RUN

[Channel 5

Channel 2 Channel 6
1/1
0@0 . Y S N S

Right Mix R

Channel 3]] | J Channel 7

. A A
Channel 4 R - Channel 8

5 ms/div

ab

graphics/5607_table-1-1.jpg
Bit0 |Bic1 [Bit2 |Bie3 |Bit4 |Bit5 |Bit6 |Bit7 |BicS [Bito |Biel0 Bit1l |Bit12 |Bit13 [Bit |Bit
Lse 1 |15

MSE

1 [0 [pca|pcs |pc2 |pet [OTA[UV NI |2 N3 |IN4 |INS
A

N6 |IN7 |INS

graphics/image_04_005.jpg
http://192....8080/7led=1 x

€ 192.168.7.2 e Search w8 +y &

Hercr@¥r - servicesv | [Noinformation available]

CLIENT VALUES

client_address -> ('192.168.7.1', 41254) (192.168.7.1)
command -> GET

path -> /?led=1

real path -> t/

query -> led=1

request_version -> HTTP/1.1

SERVER VALUES

server_version -> BaseHTTP/0.3
sys_version -> Python/2.7.9
protocol_version -> HTTP/1.0

HEADERS RECEIVED

accept -> text/html,application/xhtml+xml,application/xml;q=0.9,*
/*;0=0.8

accept-encoding -> gzip, deflate

accept-language -> it,en-US;q=0.7,en;q=0.3

connection -> keep-alive

host -> 192.168.7.2:8080

user-agent -> Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:46.0)
Gecko/20100101 Firefox/46.0

graphics/5607_table-1.jpg
[Data register = first byte [Data register = second byte

D |ps |p7 |Ds D5 D+ D3 D2 [D1 [Do |- |- |-

MsB X |x [x |x |x |x |x [x [LsB |- |- |

graphics/image_19_023.jpg
OpenzWave Contro

192.168.7.2:8 e ||Q search w8 + A =

Herergrr + servicesv |

OpenZWave Control Panel I

Controller interface Controller Status Backup Controller
ke = Womeld [siosoash save
Contoertiode | 5U P—
Roset || SoftReset Ciose | [witatze

Network

Selectan operation:

Controller

Add Device

'Add Device: command has completed successtuly.
Functions

Selectan operation:

Devices
Node ld Basic Type Generic Type Product Name Location Value LastHeard Status
18R Static Controller Static PC Controller Sigma Designs UZB Z-Wave USB Adapler 45031 PM Ready
sLeR Routing Siave Binary Switch FIBARO System FGWPE Wall Plug on 451:09PM Ready
10L8R Routing Siave Routing Binary Sensor oft 45032PM Dead
Gonfiguration
Information

Log output

graphics/image_05_006.jpg
€ © 192.168.32.51

¢ ||Qse

Adaver@¥ + servicesv | [Noinformation available]

PHP Version 5.6.17

System

Linux OpenWrt 3.18.28 #5 Thu Jun 16 17:24:09 CEST 2016 armv7l

Bulld Date

Jun 15 2016 21:24:50

Configure Command

“libexecdir=ust/lib'"—sysconf usr/man’
infodir=ust/info’ disable-nls' "—enable-cli' —enable-cgi' —enable-fpm’ '—enable-shared’ disable.static'
disable-rpath' disable-debug’ “—without-pear’ with-config-fle-path=/etc' "_with-config-fle-scan-dir=/etc
Iphp5' *—disable-short.tags' *with-zlib=/home/giometi/Projects/ASD3/openwrtjopenwrt/staging_di/target-
arm_cortex-a5_uClibc.0.8.33.2_eabifusr’ "—with-zlib-dir=/home/giometti/Projects/ASD3/openwrtjopenwrt
Istaging_dir/target-arm_cortex-a5_uClibc-0.9.33.2_eabi/usr’ “—with-pre-regex=/home/giometti/Projects
JASD3/openwrtiopenwristaging_dir/target-arm_cortex-a5_uClibc-0.9.33.2_eabilusr' *—disable-phar’
disable-calendar' "—disable-ctype’ without-curl' disable-fileinfo’ without-gettext _disable-dom’
disable-exif' '—disable-ftp' "-without-gd" '-without-gmp' disable-hash' "-without-iconv' "disable-json’
without-Idap’ *disable-mbstring’ "without-mcrypt' ‘with-mysql=shared /home/giometti/Projects
/ASD3/openwrt/openwrtistaging dir/target-arm_cortex-a5_uClibc-0.9.33.2_eabi/usr’ “with-
mysali=shared, fnome/giometti/Projects/ASD3/apenwrt/openwrt/staging_dr/target-arm_cortex-a5_uclibe-
0.9.33.2_eabi/ust/bin/mysal_config’ "—disable-opcache’ "_without-openss!"*disable-pcnt' —enabe-
pdo=shared" “with-pdo-mysal=shared, /home/giometti/Projects/ASD3/openwrtjopenwrt/staging_dir/target-
arm_cortex-a5_uClibc-0.9.33.2_eabifusr’ "-with-pdo-pgsal=shared /nome/giometti/Projects/ASD3/openwrt
[openwrtistaging_dir/target-arm_cortex-as_uClibc-0.9.33.2_eabi/usr’ "~without-pdo-salite’ “—without-pgsal
"—disable-sessior’ disable-shmop' disable-simplexmi"—disable-soap' ‘disable-sockets' "—without-
salite3" disable-sysvmsg’ disable-sysvsem" disable-sysvshm’ disable-fokenizer ‘disable-xml
disable xmireader *disable xmiwriter' disable-zip' disable-fiter’ *_disable-libxml" ‘—with-system-
tzdata’ "bulld_allas=x86_64-linux-gnu’ ‘host alias=arm-openwrtlinux" ‘target_alia
‘CC=arm-openwrt linux-uclibcgnueabi-gec' ‘CFLAGS=-0s “pipe’
caller-saves' “fhonour-copts' *-Wno-error=unused-but set-variable' -Wno-error=unused-result’ “mfloat-
abi=soft' *\/home/giometti/Projects/ASD3/openwrtjopenwrt/staging_dir/target-arm_cortex-a5_uClibc-
0.9.33.2_eabi/ust/lb/libiconv-stub/include’ “/home/giometti/Projects/ASD3/openwrt/openwrtjstaging_dir
[target atm _cortex-a5_uClibc-0.9.33.2_eabi/usr/lib/libintl-stub/include’ ‘LDFLAGS=-L/home/glometti/Projects
JASD3/openwrtiopenwrt/staging_dir/target-arm_cortex-a5_uClibc-0.9.33.2_eabilusr/lib "Lihome/giometti
[Projects/ASD3/openwrt/openwristaging_dir/target-arm_cortex-a5_uClibc'0..33.2_eabifliv' “Ljhome
Iglometti/Projects/ASD3/openwrt/openwrt/staging_dir/todlchain-arm_cortex-a5_gcc-4.8-linaro_uClibc-.
0.9.33.2_eabi/us/lib’ "Lihome/giometti/Projects/ASD3/openwrt/openwrt/staging_dir/toolchair-arm_cortex-
a5_gec4.8.inaro_uClibc-0.8.33.2_eabifliv' Ljhome/giometti/Projects/ASD3/openwrtjopenwrt/staging_dir
[target-arm_cortex-a5_uClibc-0.933.2_eabi/usr/lib/libicony-stublib' “L/home/giometti/Projects
JASD3/openwrtiopenwitstaging_dir/target-arm_cortex-a5_uClibc-0.9.33.2_eabi/usr/Iib/libintlstub/lib'
‘CPPFLAGS =—I/home/giometti/Projects/ASD3/openwrt/openwrtjstaging_dir/target-arm_cortex-a5_uClibc-
0.9.33.2_eabi/us/include “/home/giometti/Projects/ASD3/openwrt/openwrt/staging_dir/target-arm_cortex-
25_uClibe-0.9.33.2_eabi/include’ /home/giometti/Projects/ASD3/openwrt/openwrt/staging_dir/toolchain-
arm_cortexa5_gcc-4.8-linaro_uClibc-0.9.33.2_eabi/ustfinclude’ -/home/giomett/Projects/ASD3/openwrt
[openwrtistaging_dir/toolchain-arm_cortex-a5_gec-4.8-inaro_uClibc-0.9.33.2_eabifinclude’ “/home/giometti
[Projects/ASD3/openwrt/openwrtistaging_dir/target-arm_cortex-a5_uClibc.0.9.33.2_eabi/usr/lib/ibiconv-
stub/include’ “I/home/glometti/Projects/ASD3/openwrt/openwrt/staging_dir/target-arm_cortex-a5_uClibc-
stublinclude’ ‘CXX=arm-openwrt-inux-uclibegnueabl-g-++' ‘CXXFLAGS=-0s
mtune=cortex-a5' -fno-caller-saves' “fhonour-copts' “Wno-error=unused-
no-error=unused-result' “mfloat-abi=soft' -/home/giomett/Projects/ASD3/openwrt
[openwrtistaging_dir/target-arm_cortex-as_uClibc-0.9.33.2_eabi/usr/lib/libicony-stubinclude “ljhome
Iglometti/Projects/ASD3/openwriiopenwrtjstaging_dir/target-arm_cortex-a5_uClibc-0.9.33.2_eabi/us/lib
Mibintl-stub/include’

Server AP CGlrastCGl
Virtual Directory Support disabled
Configuration File (php.ini) Path Jetc
Loaded Configuration File Jetc/php.int
Scan this dir for additional ini files Jetclphps

‘Additional .ini files parsed

Jetc/phpS/mysaql.ni, /etc/phpS/mysali.ini, /etc/phpS/pdo. ni, /etc/phpS/pdo_mysal.ini, /etc/phpS
Jpdo_pasal.ini

graphics/image_15_002.jpg
ANALOG
MICROPHONE

OR

i ANALOG
MICROPHONE

3

o

DIGITAL
MICROPHONE —

LINEINPUT | |

LINEINPUT ¢ |

< LINE OUTPUT

BATTERY 18V 1.2V 128/TDM 12c
STEREO DIGITAL STEREO LINE OUTPUT
MICOPHONE CLASS AB AMPLIFIER
POWER DIGITAL AUDIO CONTROL (SINGLE ENDED)
MANAGEMENT INTERFACE REGISTERS . TOR e
[}
MICROPHONE 1 SPEAKER LEFT
H preawpipGA CLASS D AMPLIFIER
(DIFFERENTIAL)
(DIFFERENTIAL) P —
* DIGITAL BIQUAD FILTER
MICROPHONE 2 L > (RecORD) SPEAKER LEFT
| PREAMPIPGA + 7-BAND PARAMETRIC CLASS D AMPLIFIER
DIFFERENTIAL DIFFERENTIAL)
() STEREO || EQUALIZER (PLAYBACK) |, stereo (
ADG || * DYNAMICRANGE CONTROL [~'(
| LINE INPUT APGA (PLAYBACK) SPEAKER RIGHT
[~] (DIFFERENTIAL OR [* DIGITALFILTERING CLASS D AMPLIFIER
SINGLE-ENDED) * DIGITAL GAIN/LEVEL (DIFFERENTIAL)
CONTROL
[LINEINPUTB PGA STEREO HEADPHONE
(DIFFERENTIAL OR [CLASS HAMPLIFIER
SINGLE-ENDED) (SINGLE ENDED)
JACK DETECTION MAX98090 CHARGE PUMP

1 HEADPHONES

¢

RECEIVER/
EARPIECE

OR :

)

SPEAKER
LEFT/RIGHT

OR
HEADSET

graphics/image_14_001.jpg
CAN-Low

graphics/image_04_002.jpg
phpinfo()

€

192.168.7.2/index

_Herergwr + services~ | [Noinformation available]

@«
>
®

1]

¢ ||Q search

System Linux bbb 4 4.7-boned #1 Fr Apr 15 18:50:41 CEST 2016 armv71
Build Date. Mar 25 2016 05:30:04

Server API ‘Apache 2.0 Handler

Virtual Directory Support disabled

Configuration File (php.ini) Path JetciphpS/apache2

Loaded Configuration File JetciphpS/apache2/phpini

‘Scan this dir for additional .inifiles. JetciphpSiapachezicontd

‘Additional .ni fles parsed

Jetc/phpS/apachezcont./05-opcache.n, etc/phpSapache2/cont/10-mysaind.ni, fetc/phpS/apache2/cont.d
710.pdo.in, fetc/phpS/apache2icont A20-json.in,fetc/php5/apache2/cont /20-mysalini.Jetc/phps/apache2
Jcontd20-mysalini, fetc/phpS/apache2icont d/20-pdo_mysal.ni fetc/phpS/apache2icont d/20-readine.ini

PHP API 20131106
PHP Extension 20131226

Zend Extension 220131226

Zend Extension Bulld API2ZOI31226NTS

PHP Extension Bulld API20131226,TS

Debug Build no

Thread safety disabled

Zend Signal Handling disabled

Zend Memory Manager enabled

Zend Multibyte Support provided by mbstring

1PV Support enabled

Dirace Support enabled

Registered PP Streams itps, ftps, compress 2ib, compress bzip2, php, file, glob, data, tp,ftp, phar, Zip

Registered Stream Socket Transports.

tcp,udp, unx, udg s, ssiv3, ts, sv10, tsvL 1, tsvi2

Registered Stream Filters.

2l bzip2.¥, Convertconw., string 1ot 13, string foupper, string tolower, string strp_tags, convert*,
consumed, dechunk

graphics/B05607_09_01.jpg
+5v

Rp

sCL

Ry
P | Device 1

Device 2

Device 3

SDA

graphics/B05607_19_06.jpg
3.3V

graphics/image_03_004.jpg
Arrow keys navigate the menu. <Enter> selects submenus —--> (or empty
subnenus ----). Highlighted letters are hotkeys. Pressing <¥>
includes, > excludes, <> modularizes features. Press <Escr<Esc> to
exit, <2 for Help, </> for Search. Legend: [*] built-in [

SN client support
<> NES client support for NES version 2

<> NFS client support for NFS version 3

0] NFS client support for the NFSV3 ACL protocol extension
<> NS client support for NFS version 4

[*] Provide swap over NFS support

[*] NS client support for NFsva.1
[*] WS client support for NESVA.2

(kernel.org) Nesva.1 Inplenentation 1D Domain
[1 NSva.1 client support for migration

csel <Exit> <Help> <Save> < load >

graphics/image_10_004-1.jpg

graphics/image_15_011.jpg
AlsaMixer v1.0..

Help
Systen infornation
Select sound card
Exit

£ A
-20.13, -20.13]

19015

graphics/B05607_08_02.jpg
Test Barcode

graphics/B05607_15_12.jpg

graphics/B05607_19_08.jpg
17

3.3V

SIG
n.c.
Vcc
GND

Moisture
sensor

graphics/image_01_010.jpg

graphics/B05607_18_03.jpg
3.3V

graphics/5607_table-2.jpg
Bit0 |Bic1 [Bit2 |Bie3 |Bit4 |Bit5 |Bit6 |Bit7 |BicS [Bito |Biel0 Bit1l |Bit12 |Bit13 [Bit |Bit
Lse 1 |15

MSE

o [P0 [P1 |2 ™o [Nt |2 [N3 [N |INs N6 N7

graphics/activity.jpg

graphics/image_08_003.jpg
USB Gadget Support

Arrow keys navigate the menu. <Enter> selects subnenus ---> (or empty
Subnenus ----). Highlighted letters are hotkeys. Pressing <¥>
includes, > excludes, <> modularizes features. Press <Escr<Esc> to
exit, <25 for Help, </> for Search. Legend: [*] built-in []

|-} Us8 Gadget Support]
['] Debugging nessages (DEVELOPHENT)
Debugging information Files (DEVELOPHENT)
1 bebugging infornation files in debugfs (DEVELOPENT)
(508) Maxinun VBUS Power usage (2-500 na)
(2) Number of storage pipeline buffers
USB Peripheral Controller --->
<% USB Gadget Drivers
4> USB functions configurable through configfs
Generic serial bulk injout
Abstract Control Model (COC ACH)
Object Exchange Model (COC OBEX)
Network Control odel (CDC NCH)
Ethernet Control. Model (CDC ECH)
Ethernet Control Nodel (CDC ECH) subset
ANDIS
ernet Emulation Model (EEM)
Phonet protocol
Mass storage
Loopback and sourcesink function (for testing)
Function filesysten (FunctionFs)
fudio Class 1.0
Audio Class 2.0
MIDI function
HID function
US8 Hebcan function
Printer function
Gadget Zero (DEVELOPHENT)
HIP Test Device
Audio Gadget
UAC 1.8 (Legacy)
Ethernet Gadget (with CDC Ethernet support)
RNDIS support
Ethernet Emulation Model (EEM) support
Network Control odel (NCH) support
Gadget Filesysten
Function Filesysten
Include configuration with COC ECH (Ethernet)
Tude configuration with RNDIS (Ethernet)
Tude ‘pure’ configuration
Mass Storage Gadget
USB Gadget Target Fabric Module
Serial Gadget (with CDC ACH and CDC OBEX support)
MIDI Gadget
Printer Gadget
0C Conposite Device (Ethernet and ACH)
Nokia conposite gadget
DC Conposite Device (ACH and mass storage)
Miltifunction Composite Gadget
FNDIS + COC Sertal + Storage configuration
DC Ethernet + CDC Serial + Storage configuration
HID Gadget
HCI Debug Device Gadget
USB Webcan Gadget

<Exit> <Help> <Save> < load >

graphics/image_15_009.jpg
02 0 08 0:8 1 1:2 14 16 158 2 22 24 26 28 3 32 34 36 38 4 42 4 46 4B § 52 54

Frequency (kHz)

110

-120
dBFS

I = z
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 42 44 4 4B 5 52 6

Tine (s)
Created by So

graphics/image_16_004.jpg
Hsync/Line enable | Timing Signals
Vsync/Frame &nabl Interface - | [configuration| [APB
Camera T | Registers Interface
Interrupt
Controller j———— Camera 1
Interrupt RequestLine |
APB
CCIR-656 !
Embedded Timing From i Clock Domain
Decoder(SAV/EAV) Rx buffers S T e s e
Pixel ! AHB
Previ th Clock Domain! Clock Domain
CMOS Sensor Frame Rate| review path-—— 1
Pixel input Clipping + Color Rx Direct
up to 12 bits] Conversion (| 2D1Mmage | | Pxel || pispiay | Camera
YCbCra22 - N YCC to RGB Formatter FIFO c
o Pixel Sampling ore Master
8:8:8 Module T Video L1 Interface
Arbiter Scatter
Clipping + Color Packed Rx Direct Mode
—>| Conversion fr——| Capture
Senwersien, Formatter | FFFO > Support
CMOS Sensor 4
Pixel Clock Codec path — T
_— codec_on |

input

APB bus

AHB bus

graphics/image_15_005.jpg
AlsaMixer vi.|

Cord: tnx6-wandboard-sgt15000 F1: help
Chip! F2: Systen infornation
View: F3:[Playback] F4: Capture F5: ALL F6: Select sound card
“ter: Headphone [dB gain: -20.00, -20.00] Esc: Bxit

graphics/B05607_14_06.jpg
19

P2

JP4

20

3.3V

. TXCAN VDD H

RXCAN
CLKOUT/SOF
/TXORTS
/TX1RTS
[TX2RTS
0SC2
0SC1
VSS

CAN
controller

/RESET
/CS

SO

Sl

SCK
/INT
/RXOBF
/RX1BF

to the
CAN bus

from the
external PWM

to the
common GND

graphics/image_01_004.jpg
USB hosts Ethernets

USER button

Serial console

Expansion L $ TAG
connector it ol g fii - 2

Wake Up button

Reset button

USB device

graphics/image_05_008.jpg
http://192...0_dump.php x

€ ©192.168.32.51,

Heergwe services~ | [Noinformation available]

OpenWRT PHP demo

t

2016-06-16 15:50:30

2016-06-16 16:22:32

graphics/image_19_004.jpg

graphics/image_17_004.jpg
2400

2200 -

2000 -

1800 |

1600 |
1400

mel

1200

1000
800
600

§G2'6e

0c:6e

GL:Ge

0L:ge

S0:G€

00:6€

SGve

0S've

Svive

ov've

Seve

Time

graphics/image_11_005.jpg

graphics/image_19_013.jpg

graphics/action.jpg

graphics/B05607_13_02.jpg

graphics/image_12_001-1.jpg

graphics/5607_table.jpg
GPIO pins on connector P§

GPIO pins on connector P9

Pin [GPIO [Pin |GPIO [Pin |GPIO [Pin |GPIO#
#

7 |66 14 |26 12 |60 41 |20

s |67 15 |47 15 |48

5 oo 16 |46 23 |as

10 |68 17 5 |17

1 |as 18 |65 7 |15

12 |44 26 |61 30 |12

graphics/B05607_01_06.jpg

graphics/image_01_015.jpg
1 2 3 4 5

6 7 8 9

graphics/image_15_006.jpg
L0 02 0 06 0 1 12 44 L6 LB 2 22 24 26 28 3 %2 314 35 3 4 42 44 46 4B 5 52 54

o

Frequency (kHz)

02 04 08 08 o2 26 3 32 34 36 38 4 42 44 46 48 5 52 54
Tine (s)

Created by SoX

110

-120
aBFS

graphics/B05607_01_13.jpg
.
33V (€p, s

[

graphics/B05607_09_08.jpg
] 1]
e 4 4 1 _{2c/sp oND 12 —
T 20
- ax 14 5 |
8 5 ™
— scL-sck
5 {spavss scieis7so — 5|
)
| 2
_ 6 1 2
_ RN [V [22 1 C
ns |
—, 4
10 18
19
s+ -
35 36

graphics/image_03_003.jpg
Arrow keys navigate the menu. <Enter> selects submenus --> (or empty
subnenus ----). Highlighted letters are hotkeys. Pressing <¥>
includes, > excludes, <> modularizes features. Press <Escr<Esc> to
exit, <25 for Help, </> for Search. Legend: [*] built-in [

9] equal cost multipath

1 : verbose route nonitoring
[*] 1P: kernel level autoconfiguration
1 : DHCP support

1 800TP support

RARP support
tumneling

GE demul tiplexer
GRE tumnels over I

+ nulticast routing

csel <Exit> <Help> <Save> < load >

graphics/image_04_001.jpg
Apache2 Debian Defau... x

€ © 19216872 e llas wBe

Herergwr services~ | [No information available]

Apache2 Debian Default Page

This is the default welcome page used to test the correct operation of the Apache2 server after installation
on Debian systems. If you can read this page. it means that the Apache HTTP server installed at this site

iis working properly. You should replace this file (located at /var/wai/htnl/index. html) before
continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means that
the site is currently unavailable due to maintenance. If the problem persists, please contact the site's
administrator.

Configuration Overview

Debian's Apache? default configuration is different from the upstream default configuration, and split into
several files optimized for interaction with Debian tools. The configuration system is fully documented
in /usr/share/doc/apache2/README.Debian.gz. Refer to this for the full documentation.
Documentation for the web server itself can be found by accessing the manual if the apache2-doc
package was installed on this server.

The configuration layout for an Apache2 web server installation on Debian systems is as follows:

/etc/apache2/
|-~ apachez.conf

1 ‘-~ ports.conf
|-~ mods-enabled

| |-- *.load

| e chal
|-~ conf-enabled

| ‘-~ *.conf
|-- sites-enabled
|

- *.conf

graphics/image_10_002.jpg

graphics/image_01_007.jpg
HDMI

*Ethernet

Audio

SATA Serial Console (COM1)

USB host

Secondary
microSD

USB device

graphics/image_11_002.jpg
e
WASTER

i

e
SLAVE

e
SLAVE2

ano)

graphics/5607_7_1.jpg
(GPIO Pins on Connector P8

(GPIO Pins on Connector P9

Pin [Signal [Pin [Signal [Pin [Signal |Pin [Signal
51 |vaRTs crs[n [varTs RIS |11 [UARTY RsD|20 [UARTICTS
3 |[UART4RTS[3 [UARTIRTS[13 [UARTY D[22 [UART2ReD
55 |uaRTsCTS[3s |uaRTs CTS |19 [UARTIRTS|2¢ [UARTITsD

graphics/note.jpg

graphics/image_19_011.jpg

graphics/image_11_003.jpg
Standard case Waterproof case

graphics/image_14_004.jpg

graphics/image_08_001.jpg

graphics/image_15_004.jpg
—LINEIN_R.
MP3/FM Input -
—LINEIN_L-
MIC IN/Speech ——MIC_IN
Recognition |e—MiC_BIA
—I12S_DI
Application [«-I2S_LRCLK
Processor |e—I25_SCLK
[«—12S_DOUT-

—SYS_MCLK:

HP_R—
HP_L—|

Headphone

LINEOUT_R—>|
LINEQUT_L—

Speaker
Amp/Docking
Station/FMTX

graphics/image_19_019.jpg
“L Openzwave Contro.

D 192.168.7. e ||Q search w8 3 A
Herergrr + servicesv |

OpenZWave Control Panel

Controller interface Controller Status Backup Controller

Device name Home Id save

uss 0 Gontroller Mode:
Node Gount
Reset | | SoftReset Glose | Initalize
SUC Node
Network

S —

Controller

sooctanoperaton:

Functions

S

Devices

Node ld Basic Type Generic Type Product Name Location Value Last Heard Status

Configuration

Information

Log output

graphics/image_05_009.jpg
Arrou keys navigate the menu. <Enters selects subnenus ---> (or enpty submenus

). Highlighted letters are hotkeys. Pressing <V> includes, <N excludes, <H>
modularizes features. Press <Esco<Esc> to exit, <t for Help, </> for Search.
Legend: [*] built-in [] excluded <> module < > nodule capable

s <Exit> <Help> <Save> < load >

graphics/image_13_001.jpg
222

o L AL

SEraszry
W 2vy
Y wrevy

EEsivy
Gapivy

cEaotry 3
b
B

graphics/image_19_016.jpg

graphics/B05607_17_03-1.jpg
3.3V

graphics/B05607_19_14.jpg
N < ©O 0

=S|~

VBus
D

D+

GND

graphics/B05607_01_16.jpg

graphics/B05607_05_02-2.jpg

graphics/Chap9-5607-table-1.jpg
[Name [sDa scL [Memory address
fzc0 Not exported oxs4E0B000
21 PotsarPozs [Po.17orP924|oxusozacn0
ez Po20arPo22 |Po.19 orP921[oxisiocoon

graphics/B05607_06_02-1.jpg
19

P4

20

LED

graphics/image_19_018.jpg

graphics/image_10_006.jpg

graphics/image_12_002.jpg

graphics/B05607_17_01-1.jpg

graphics/B05607_07_05.jpg
22

P9

N

45

46

RFID
reader

>
GND
vcc

graphics/image_02_002.jpg
Mot Installed Packages (57315)

Obsolete and Locally Created Packages (79)
Virtual Packages (10950)

Tasks (53368)

These packages have been added to Ubuntu since the last tine you cleared the
List of “new packages (choose "Forget new packages™ fron the Actions menu to
enpty this List).

This group contains 23459 packages.

graphics/B05607_09_06.jpg

graphics/Mapt_logo.jpg
Viapt

graphics/B05607_14_03.jpg
3.3V

°
O
k=
o
=3
<
m
o
n
<
=
<
)

BeagleBone Black

graphics/B05607_13_03.jpg
GLiY [
Vi [] .
iy [mw] [ATWIL C1000-MR110PB
criyfis] | || FCC ID:VWA4ATWILC1000
?_‘m = 'l MAC ID: FBFO05F14505

oim.n..,‘.m | E E.oﬁ:sa»u

L4

601 Y [w)
ﬁ |

oL

USRS S 8

n
il

a0

s amas
__aND 00A

,V . (® @)
| N | S '

®°
@

1¥vNn ©SNa30

J2l GN83da

#% E305654 W®
JX02 94V-0 35 1S

261,96/64
09000299

WILC1000 SD
> A00-
SN12

graphics/B05607_10_03-1.jpg
LITE
MISO
SscK
MosI
TFT_CS
CARD_CS
D/C
RESET
vee

GND

SPI color
TFT LCD

3.3v
q
1 2
4 4
— I 11
| — 2_
_ | 3
2
5
—_ — 6_
—{po 7
25 | 8
27 28 9
30 10
31 |
45| [46

graphics/image_05_003.jpg
Arrow keys navigate the menu. <Enter> selects submenus --> (or empty
subnenus ----). Highlighted letters are hotkeys. Pressing <¥>
includes, > excludes, <> modularizes features. Press <Escr<Esc> to
exit, <25 for Help, </> for Search. Legend: [*] built-in [

ubtarget (SAMASDS (Cortex-AS)) --->

arget Profile (Atnel AT9ISAMASDSXPLAINED) --->
arget Inages --->

Tobal build settings —-->

dvanced configuration options (for developers) (NEW)
uild the Openrt Inage Builder (NEW)

wild the Openirt SDK (NEW)

ackage the Openirt-based Toolchain (NEW)

mage configuration (NEW) --->

ase systen --->

oot Loaders

eveloprent --->

ernel podules --->

anguages --->

ibraries -—->

Network --->

tilities --->

csel <Exit> <Help> <Save> < load >

graphics/B05607_01_02.jpg
Power Ethernet

\ / Power button

- Reset button

“elementiu

Serial Console (J1)

= Expansion
connector (P8)

Expansion —

connector (P9)

User button

/N

USB port microSD

graphics/B05607_03_02-1.jpg
cat /sys/class/gpio/gpioNN/value

gpioNN status

User space

Kernel space

Device Drivers managment
GPIO subsystem

gpioNN status gpio_read(NN)

frmmmmem———-

graphics/image_01_001.jpg
PISA LIVORNO

BANCOMAT

L
/
| Maestro,

00401303 Sy

=
o
E
2
©

graphics/image_16_006.jpg
B MJPG-streamer

€ 192.168.7.2, w8 »
Adaver@¥ + servicesv | [Noinformation available]
MPGStreamer Demo Pages
aressorcapendysrearn) Stream
apkcaton
Display the stream
Home
SEic | Hins
SUEBM This example shows stream. £ works with few browsers ke Firefox for example. Tosee a
imple example click here. You may have toreload this page by pressng F5 one or more
Jva | times
Jvasaipt

VideolAN | Sourcesnippet

Control

Versionnfo:
¥0.1 (Okt 22, 2007)

© The MJPG-streamer team | Design by Andreas Vikiund

graphics/IMG-20170323-WA0005.jpg

graphics/image_19_001.jpg

graphics/B05607_11_04.jpg
45

46

3.3V

11

45

46

graphics/image_01_009.jpg

graphics/B05607_10_05-1.jpg
| 1
) 1
— 1 2cspl onp 224
114 2
EX A 14| 5 |0
=, 2 n1si Rx [
NC-50 > 8
2 2 scLsck — —
1 SC1615750 — 8
/IRQ —
| 1 1 — [L2
— FEu I 22| [O] [
3 —
4 — —
5
ns [
-] 18
10 e
+ -
s_| [

graphics/image_11_001.jpg
Parasite Mode

Data/Power

< ><€ >
Time to charge Time for data transfer
internal Capacitor

Normal Mode

Power

< >

Time for data transfer

graphics/image_19_026.jpg

graphics/image_16_008.jpg
Motion 3.2.12+git2014... %

€ © 192.168.9.2: ¢ ||Q searc

Heergwe services~ | [Noinformation available]

Motion 3.2.12+git20140228 Running [1] Threads
All

graphics/B05607_19_09.jpg

graphics/image_03_001.jpg
Arrow keys navigate the menu. <Enter> selects submenus --> (or empty
subnenus ----). Highlighted letters are hotkeys. Pressing <¥>
includes, > excludes, <> modularizes features. Press <Escr<Esc> to
exit, <25 for Help, </> for Search. Legend: [*] built-in [

<55 LED Class support
<> LED Flash Class Support
2 LED drivers **
> LED Support for Broadcon BOMG328
> LED Support for Broadcon BOA6358
> LD Backlight driver for L3530
> LED support for LM3642 Chip
S LED driver for PCASS32 dismer
> LED Support for GPIO connected LEDs
> LED Support for N.S. LP3944 (Fun Light) I2C chip

s <Exit> <Help> <Save> < load >

cover/cover.jpg
GNU/Linux
Rapid Embedded
Programming

Your one-stop solution to embedded programming
on GNU/Linux

L

graphics/image_15_007.jpg
02 04 08 0:8 1 12 14 16 158 2 22 24 26 28 F 32 34 36 38 4 42 44 46 4B § 52 54

Frequency (kHz)

110

-120
aBFS

0 02 04 05 08 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 § 52 64
Tine (s)

Created by SoX

graphics/image_16_003.jpg
Displays

-
2
@
2]
H

8

2

s
38

(LVDS, VGA, TVE)

[l csl(Camera SMFC (Sensor
Iy Sensor IF) ::I:: Multi FIFO Ctrl)
e
VDI (Video |«
IPU De-Interlacer)
L o o IDMAC
mage] (mage
™ (@5l Converter) DMA 64-bit
Controller) | AXI
I DP (Display
nc [« Frocessol [« purc (Display
(Display Cont) Multi FIFO Ctrl)
CM (Control IRT (image |«
Module) Rotator)
zz-nul AHB

ARM platform

Memory

graphics/B05607_07_02.jpg

graphics/B05607_07_01-7.jpg
Serial line

Serial device /dev/ttySO

Computer

graphics/B05607_19_02.jpg
Vcc

/

Teeth of the comb

Vout

graphics/image_19_024.jpg
L OpenzWave Contro

192.168.7.2:8080

Herergrr + servicesv |

1°LBR tatic Controller Static PC Controller
9LBR Routing Siave Binary Switch
10LBR Routing Siave Routing Binary Sensor

Current Values

Information

Sigma Designs UZB Z-Wave USB Adapter

FIBARO System FGWPE Wall Plug

Always on function:
Remember device status after power fallure:
Reaction to alarms:

Wall Plug’s response to alarm frames:

Alarm duration:

Immediate power report:

‘Standard power load reporting:

Power reporting frequency:

Reporting changes I energy consumed by controlled devices:

Time perlod between reports on power load and energy consumption.:

Metering energy consumed by the Wall Plug Htself:

DOWN value:

UPvalue:

Action in case of exceeding defined power values:

Power load, which when exceeded, makes the LED ring flash violet.:

LED ring fllumination colour when controlled device is on:

LED ring fllumination colour when controlled device is off:

LED ring illumination colour at the Z-Wave network alarm detection. :

e |[ase w8
45031 PM

on 45138 PM

off 45032PM

function inactive

Wall Plug memorizes is state after a power failure v

ALARMALL v

No reaction -

600

‘Submit

80

Submit

‘Submit

30

Submit

10

‘Submit

3600

‘Submit

function inactive

300

Submit

500

Submit

2and 3 combined -

25000

Submit

Using ful spectrum of available colorus v

illumination tumed off completely -

1 ED rina fiashes rad / biue /white v

4 A

Ready
Ready

Dead

graphics/B05607_10_01-1.jpg
Slave

Master

Shift Register

MOSI

Shift Register

graphics/image_19_022.jpg

graphics/image_19_027.jpg
OpenzWave Contro

@ | |Q search w8 ¥ & =

D 192.168.7.2:8

Herergrr + servicesv |

OpenZWave Control Panel

Controller interface Controller Status Backup Controller

tyACMO Homeld | c4056054 save.
uss =) ControllerMode | SUC Changes need saving,
Node Count | 3
Reset || SoftReset Close || Initalize

SUCNode | 1

Network

Selectan operation:

Controller
‘Add Device v
'Add Device: command has completed successtuly.
Functions

Selectan operation:

Devices

Node ld Basic Type Generic Type Product Name Location Value LastHeard Status
1°LBR tatic Controller Static PC Controller Sigma Designs UZB Z-Wave USB Adapter 45031 PM Ready
9LeR Routing Siave Binary Switch FIBARO System FGWPE Wall Plug on 456:30 PM Ready

10LBR Routing Siave Routing Binary Sensor ‘Acotec DSBOS5 Multisensor on 45734PM Ready

.

Temperature: 5

Configuration
c

Information Luminance: 7

lux
Relative Humidity: 5,

%

graphics/image_14_002.jpg
cAN
node A

RO TD

CAN
node B
RO TD

cAN
node C

RO TD

33

5V

graphics/B05607_15_13.jpg
na

n7

(=) 1= [N (= [} FNY 3 [N

J21

SCK
MISO
MOsI
ADCL
DACL
SDA
SCL
3.3v
GND

Audio
Codec

10

115

35,

J19

36

graphics/B05607_01_05.jpg
BANCOMAT

graphics/image_09_004.jpg
r.U
B@_‘:_:::
3B

G

graphics/B05607_15_01.jpg
Audio interface

Y . CoDEC Loudspeaker
Audio data E E E

for the i E Audio 125 data >i° 1 -
userspace : Control 12C data :

Control GPIO data '

Microphone

graphics/image_09_002.jpg

graphics/B05607_18_02.jpg

graphics/B05607_19_03.jpg
3.3V

SIG
n.c.
Vcc
GND

Water
sensor

graphics/image_19_025.jpg

graphics/image_19_015.jpg

graphics/image_07_004.jpg

graphics/image_15_003.jpg

graphics/image_10_007.jpg
1_| 2

— e

w_| [e
1
3
4
5

1_| | 2 6

P4

20

MAX31855

graphics/image_15_014.jpg
nel Trigger

Soundcard

Line

Scope

No Trigger

fps: 10
RUN

Channel 2
1/1
0@0

Right Mix

Channel 3

Channel 4

100 ps/div

ab

Hel,

(?)Help

Channel 5

Channel 6

Channel 7

Channel 8

graphics/image_16_007.jpg
(JPEGImage, 320 x

192.168.9.2:

ercrasr

Transferring data from

graphics/image_05_007.jpg
http://192...0_dump.php x

€ ©192.168.32.51,

Heergwe services~ | [Noinformation available]

OpenWRT PHP demo

graphics/image_05_004.jpg
Arrow keys

Lighttpd
navigate the menu.

A flex

<Enters selects subnenus

Highlighted letters are hotkeys. Pressing <¥> includes
Press <Esc<Esc> to exit, <2> for Help, </> for Search.

<> nodule

<> nodule capable

Le and Lightaeight web s
> (or enpty subnenus ----).
, > excludes, > rodularizes features.
Legend: [*] built-in [] excluded

SSL support
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Light tpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Light tpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod
Lighttpd-nod

accessiog.
alias.

auth.

cai

L

conpress.
evhost.
expire.
extforuard
Fastegl
Fly_streaning.
ragnet.
mysql_vhost.
proxy’
Fedirect.
reurite.
Frdtool
scgt.
Secdomnioad.
Setenv.
sinple vhost
status.
trigger ba’dl.
userdir
usertrack.
webdav.

<Exits < Help>

. Access restrictions
Access Logging
~birectory alias
Authentication
a1
~Cache Heta Language
- Conpress output
Evasive
Hosting
- Bxpire
Extract client
FastCGl
RV streaning
+ Magnet
hysql Virtual hosting
Proxy
CURL redirection
- URL rewriting
RRDtool
- scal
Secure and fast donload
~Environnent varisble setting
Sinple virtual hosting
sst
*Server status display module
rigger before download nodule
User directory nodule
+ User tracking nodule
- WebDAY module

<Saves < Load >

graphics/B05607_19_05.jpg
Vcc

IR receiver

Vout

graphics/B05607_19_10.jpg
3.3V

graphics/B05607_01_03.jpg

graphics/B05607_11_06.jpg
3.3V

ADO

1-wire AD1
GND controllerpCcTLZ

I SCL SDA -

graphics/image_04_004.jpg
Turning aled on/off us... x

€ 192.168.7.2 e e w8 +

Herer@¥ + servicesv | [Noinformation available]

Turning a led on/off using PHP

Current led status is: on

Press the button to turn the led off

Turn off

graphics/image_09_010.jpg

graphics/B05607_09_10.jpg
P2

20

2 1

19

P4

. -
PWM/SDA SCL/Vz

MLX90614

VDD Vss
.
3

graphics/B05607_09_07.jpg
3.3V

HTU21D

GND

VCC
SCL/SCLK
SDA/MOSI
MISO
RST/&SS
SEL

EOC

N

-3

5403

0 N O U

graphics/image_15_015.jpg
nel Trigger Scope Help

Rising Trigger @ 0 fps: 11

Soundcard Left Mix (2)Help
Line RUN
[Channel 5
Channel 2 Channel 6
1/1
0@0
Right Mix ANANANANEAN
Channel 3 \ Channel 7
Channel 4 R - Channel 8

5 ms/div

ab

graphics/B05607_19_17.jpg
5V

O 00 N O U1 b W N

+5V

/RESET

GPI/O O

GPI/O 1

GPI/O 2

GPI/O 3 RFID
TST_REC Reader
USB_PUP

RXD

TXD

GND

GND

graphics/image_19_012.jpg

graphics/image_01_011.jpg

graphics/B05607_18_01.jpg
Amplitude

>

mmm e ...

LT Ll
P L. L T A T LT L

6.0V
5.0V
4.0V
3.0v
2.0v
1.0V
0.0v

2ms

1ms

Oms

<>

High

Low

1 Cycle

graphics/image_16_009.jpg
Motion 3.2.12+git2014.

€) ©192.168.9.2:8080/C

» | =

Heergwe services~ | [Noinformation available]
<-back

Thread 0

¢ daemon = off
process id file = /var/run/motion/motion.pid
setup_mode = off
logfile = (not defined)
log_level = 6
log_type = all
videodevice = /dev/video0
v412 palette = 15
input = -1

.
.
* norm =0
.
.

frequency = 0
rotate = 0

width = 320
height = 240

minimum frame time = 0
netcam url = (not defined)
netcam userpass = (not defined)

graphics/image_19_020.jpg
L OpenzWave Contro.

192.168.7.2:8080

Herergrr + servicesv |

OpenZWave Control Panel

Controller interface Controller Status Backup Controller

Devicename | /deutyACMD Homeld | c4056054 save.
uss =) ControllerMode | SUC Changes need saving,
Node Count | 3

Reset || SoftReset Close || Initalize
SUCNode | 1

Network

Selectan operation:

Controller

Selectan operation: -

Functions

Selectan operation:

Devices

Node ld Basic Type Generic Type Product Name Location Value LastHeard Status
1°LBR Static Controller Static PC Controler Sigma Designs UZB Z-Wave USB Adapter 356:10 PM Ready
9LeR Routing Siave Binary Switch off 356:05 PM Probe.

10LBR Routing Siave Routing Binary Sensor off 356:09 PM Probe.

Configuration

Information

Log output

2016-10-10 13:54:44.257 Always, OpenZwave Version 1.4.2277 Starting Up
2016-10-10 13:56:04.775 Info. Settina Up Provided Network Kev for Secure Communications

graphics/image_15_008.jpg
02 0 08 08 1 12 14 16 158 2 22 24 26 28 F 32 34 36 38 4 42 4 46 4B § 52 54

=3
40

-5

50

Frequency (kHz)

70

110

-120
dBFS

0 02 004 006 08 1 12 14 L6 18 2 22 204 206 28 3 32 34 36 38 4 42 44 48 48 5 52 64
Tine (s)

Created by So

graphics/image_07_007.jpg
Arrow keys navigate the menu. <Enter> selects submenus --> (or empty
subnenus ----). Highlighted letters are hotkeys. Pressing <¥>
includes, > excludes, <> modularizes features. Press <Escr<Esc> to
exit, <25 for Help, </> for Search. Legend: [*] built-in [

PP (point-to-point protocol) support
LIP (serial Line) support

SLIP conpressed headers

ecpalive and Linefill

x bit SLIP encapsulation

S8 Network Adspters --->

fireless LAN —-->

|4+ Enble WiMAX (Networking options) to see the WINAX driv
TN

1 ISDN support

csel <Exit> <Help> <Save> < load >

graphics/B05607_09_03.jpg
12C sensors

graphics/B05607_16_01.jpg
<

Video interface

¢ Raw Video data

Control 12C data

e Y
H
Video data E
for the H
userspace Video
: Engine
'
'
'

Control GPIO data
_—

graphics/56071234.jpg
14-bit Thermocouple Data Res | Fault | 12-bit Internal Temperature Res | SCV [sCG

D3t D30 Dis |D17|Di6 | D15 D14 D+ |D3 [D2 |D1

Sign MSB | X|LsB |- |X X MsB X [LsB |- |x |X

graphics/B05607_04_03-1.jpg
46

graphics/list.jpg

graphics/image_01_008.jpg
Expansion connectors

WiFi J-TAG

Camera
interface

microSd

Reset button

graphics/B05607_14_05.jpg
19

P2

JP4

20

3.3V

RXCAN

CLKOUT/SOF

/TXORTS
/TX1RTS
[TX2RTS
0SC2
0SC1
VSS

CAN
controller

. TXCAN VDD H

/RESET
/CS

SO

Sl

SCK
/INT
/RXOBF
/RX1BF

to the
CAN bus

[
| to the

common GND

graphics/image_05_005.jpg
PP
Arrow keys navigate the menu. <Enter> selects subnenus —--> (or empty subnenus ----).
Highlighted letters are hotkeys. Pressing <¥> includes, <> excludes, > modularizes features.
Press <Esc<Esc> to exit, <2> for Help, </> for Search. Legend: [*] built-in [] excluded

<> nodule < > nodule capable.

<t ohps PHPS Hypertext preprocessor

[] PHPs Filter support (NEH)
PHPS LIBXHL support (NEW

[[] Use systen tinezone data instead of php's built-in database (NEW)

Bty PHPS, Hypertext preprocessor (CGI & FastCG)

<> phps. PHPS Hypertext preprocessor (CLT)
ohos. FastCCl stortup script
ohps-fi PAPS Fypertext preprocessor (FPH) (NEW)
ohos. 3 Calendar shared nodule (NEW)
ohps. Ctype shared nodule (NEW)
ohos. 5 CURL shared nodule (NEW)
ohos. DOW shared nodule (NEW)
ohos. g EXIF shared nodule (NEW)
ohps. £ Fiieinfo shared nodule (NEW)
ohos. FIP shared nodule (NEW)
ohos. 9 G graphics shared module (NEW)
ohos. Gettext shared nodule (NEW)
ohps. 4P shared nodule (NEW)
ohos. 5 Hash shared nodule (NEW)
ohos. iConv shared nodule (NEW)
ohpS-nod-3son. J50N shared nodule (NEW)
ohps. L0AP shared nodule (NEW)
ohpS-nod-mbstring. #BString shared nodule (NEW)
Rhosiped;sbetiin Merypt shared nodule (NEW)
ohps-nod-nysal MySQL shared nodule
ohps-nod-nysqli. ySQL Tmproved Extension shared module
ohps-nod-opcache. Opcache shared nodule (NEW)
ohps-nod-openssl OpenssL shared rodule (NEW)
ohos. PONTL shared nodule (NEW)
ohos. PP Data Objects shared nodule
ohos. PD0 driver for MySQL shared module
ohos. P00 driver for PostgreSQL shared nodule
ohos. PDO driver for SQLite 3.x shared module (NEW)
ohps. PostgreSQL shared nodule (NEW)
ohos. Session shared nodule (NEW)
ohos. Shared Memory shared module (NEW)
ohos. SinpleXL shared nodule (NEW)
ohps. 5 S0P shared nodule (NEW)
ohos. Sockets shared nodule (NEW)
ohos. SLite3 shared nodule (NEW)
ohos. Systen U nessages shared nodule (NEW)
ohps. $ysten V shared nemory shared nodule (NEW)
ohos. Systen V senaphore shared nodule (NEW)
ohos. Tokenizer shared nodule (NEW)
ohos. XL shared module (NEW)
ohps. XhlReader shared nodule (NEW)
ohos. XMLiriter shared nodule (NEW)
s 7P shared nodule (NEW)

<Exit> <Help> <Save> < load >

graphics/image_10_008-1.jpg

graphics/image_19_007.jpg

graphics/image_02_001-1-300x184.jpg
[= slocksize 384k8
iput e

output e

graphics/image_16_002.jpg
0V7740

image sensor core image sensor processor image output
interface

column
sample/hold

image
array

DATA[%:0]

=
-

row select
black level
calibration
digital gain
formatter

control register bank

L}

sces
timing generator
PLL and system control logic slave
interface
) 7 I 7
|] Y Iy
= z z U ow o Lt
= EZ 243 g8
o = Gy ER G &
= = 7740_PB_1

graphics/B05607_10_10-1.jpg
J15
14

Digital 10
board

graphics/image_15_010.jpg

graphics/B05607_07_06.jpg
BeagleBone Black

SAMA5D3 Xplained

graphics/image_01_014.jpg
IS8 Gadget Support
Arrow keys navigate the menu. <Enter> selects subnenus ---> (or empty
subnenus --—-). Highlighted Letters are hotkeys. Pressing <¥>
includes, i excludes, <> nodularizes features. Press <Esc-<Esc> to
exit, <> for Help, </> for Search. Legend: [*] built-in []

- USB Gadget Support
ebugging messages (DEVELOPHENT)
Debugging information files (DEVELOPHENT)
ebugging information files in debugfs (DEVELOPMENT
Mexinun VBUS Power usage (2-500 na)
Nomber of storage pipeline buffers
UsB Peripheral Controller --->
USB Gadget Drivers
UsB functions configurable through configfs
Gadget Zero (DEVELOPMENT)
hudio Gadget
Ethernet Gadget (with COC Ethernet support.
FNDTS support
hernet Enulation Model (EEM) support
Network Control Nodel. (NCH) support
Gadget Filesysten
unction Filesysten
Include configuration with COC ECH (Ethernet:
Include configuration with RNDIS (Ethernet:
Include ‘pure’ configuration
Mass Storage Gadget
Serial Gadget (with COC ACM and CDC OBEX support
MIDI Gadget
Printer Gadget
CDC Composite Device (Ethernet and ACH)
DC Conposilte Device (ACH and mass storage)
Miltifunction Conposite Gadget
RNDIS + CDC Serial + Storage configuration
C Ethernet + CDC Serial + Storage configuration
HID Gadget
HCI Debug Device Gadget

}E—USB Webcan Gadge

34353440

TE44440

o

<Exit> <Help> <Save> < Lload>

graphics/image_19_021.jpg

graphics/image_05_010.jpg

graphics/image_17_002.jpg

graphics/B05607_07_03.jpg
Sonar
Range
Tx Finder

VCC
GND

graphics/B05607_06_03.jpg
19

19

1P3

P4

graphics/reference.jpg

graphics/B05607_09_05.jpg

graphics/B05607_05_01-2.jpg
/dev/mtdX /dev/mtdblockX

