

 [image:]

Hands-On Generative AI with Transformers and Diffusion Models

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Pedro Cuenca, Apolinário Passos, Omar Sanseviero, and Jonathan Whitaker

 Hands-On Generative AI with Transformers and Diffusion Models

 by
 Pedro
 Cuenca,
 Apolinário
 Passos,
 Omar
 Sanseviero, and
 Jonathan
 Whitaker

 Copyright © 2024 Pedro Cuenca, Apolinário Passos, Omar Sanseviero, and Jonathan Whitaker. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 Nicole Butterfield

 	
 Development Editor:
 Jill Leonard

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 September 2024:
 First Edition

 Revision History for the Early Release

 	
 2023-03-16:
 First Release

 	
 2024-01-19:
 Second Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098149246
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Hands-On Generative AI with Transformers and Diffusion Models, the cover
 image, and related trade dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-14924-6

Brief Table of Contents (Not Yet Final)

Chapter 1: An Introduction to Generative Media (unavailable)

Chapter 2: Compressing Information (unavailable)

Chapter 3: Transformers (available)

Chapter 4: Diffusion Models (available)

Chapter 5: Stable Diffusion (available)

Chapter 6: Fine-tuning LMs (unavailable)

Chapter 7: Fine-tuning Stable Diffusion (unavailable)

Chapter 8: Creative Applications (unavailable)

Chapter 9: Generative Models for Audio (unavailable)

Preface

Generative AI is a revolutionary technology that has jumped from lab demos to real-world applications that impact hundreds of millions of people. It has the power to create new content, such as images, text, audio, and videos. It can enhance creativity, augment data, and so much more.

This book is for anyone who wants to learn about this fascinating new field, not just for experts. We won’t focus on building models from scratch or diving straight into complicated mathematics. Instead, we’ll use existing models to tackle real-world problems while building a solid intuition around how the techniques work and giving foundations to keep exploring independently. This very hands-on approach will help you get up and running quickly and efficiently with generative AI. You’ll learn how to use pre-trained models, adapt them for your needs, and generate new data with them. You’ll also learn how to evaluate the generated data’s quality and diversity and handle ethical and social issues that may arise from using generative AI.

Who Is This Book For?

With so many exciting things you might have seen about generative AI, it’s normal to be excited or worried about it! You may want to understand how a program can generate images. Or perhaps you want to train a model to tweet with the same style as you do? Or are you curious about how products such as ChatGPT work? With generative AI, we can do that and many other things:

	
Write summaries of news articles

	
Generate images based on a description

	
Teach a model the concept of "your cat" and have it generate novel images with it (such as "your cat in an astronaut suit“)

	
Increase the quality of an image

	
Transcribe your meetings

	
Generate synthetic speech with your voice style

No matter the reason, you have decided to learn about generative AI.

Prerequisites

This book assumes that you are comfortable programming in Python and have foundations of what Machine Learning is and basic usage of a framework such as PyTorch or TensorFlow. Having practical experience with training models is not required, but will be helpful to understand the content with more depth. The following resources provide a good foundation for the topics covered in this book:

	
Hands-On Machine Learning with Scikit-Learn and TensorFlow, by Aurélien Géron (O’Reilly)

	
Deep Learning for Coders with fastai and PyTorch, by Jeremy Howard and Sylvain Gugger (O’Reilly)

If you feel intimidated by it, don’t worry! The book chapters will provide strong intuition and a hands-on approach to help you get started.

What you will learn

The book is divided into three parts:

	
In Part 1, we’ll introduce the fundamental building blocks of generative AI. You’ll see how to leverage a pre-trained transformer model to work with text, explore ways to compress information, and learn how diffusion models can generate images.

	
Part 2 is all about fine-tuning, showcasing ways to take pre-existing models and adapt them to your needs. We’ll show how to teach a diffusion model a new concept, customize a transformer model in various ways, and explore advanced techniques for working with large models on limited hardware.

	
In Part 3, we’ll extend the ideas from the previous parts, generating new modalities such as audio and getting creative with new applications.

How to read this book

We designed the book to be read in order, but we have kept the chapters as self-contained as possible so you can jump around to the parts that interest you most. Many of the ideas covered in this book apply to multiple modalities, so even if you are only interested in one particular domain (such as image generation), you may still find it valuable to skim through the other chapters, too.

We’ve included exercises and code examples throughout the book, which are designed to help you get hands-on with the material. Try to complete these exercises as you go along, and where possible, see if you can adapt the examples to your use cases. Trying things out for yourself will help you build a much deeper understanding of the material.

Software and Hardware Requirements

Code is essential to the content, so we highly recommend you run the code examples while reading it. Also, try to make changes and explore! Dealing with transformers and diffusion models is a compute-intensive task, so having access to a computer with an NVIDIA GPU will be needed. There are multiple online options that you can use, such as Google Colaboratory and Kaggle Notebooks.

Follow these instructions to setup your environment and follow along:

	
Everything should work on any Google Colab instance. We recommend you use GPU runtimes for chapters with training loops.

	
If you want to run the code in your computer, please install a Python 3.10 virtual environment using your preferred method. As an example, you can do it with conda like this:

conda create -n genaibook python=3.10
conda activate genaibook

We recommend a cuda GPU for chapters with training loops. The mps device might work on Macs with Apple Silicon, but we haven’t tested it yet.

	
Install a set of support utilities and helper functions we use throughout the book:

pip install genaibook

This will in turn install PyTorch, matplotlib, NumPy, and other essentials.

	
Install transformers, diffusers and related libraries:

pip install transformers diffusers accelerate
pip install datasets[audio] evaluate sentencepiece

We’ll eventually provide a public repository with all the code examples as Jupyter Notebooks you can run interactively.

SOTA: A Moving Target

State Of The Art (SOTA) refers to the best-known performance on a given task. In the field of generative AI, the SOTA is constantly changing as new models are developed and new techniques are discovered. This book will provide you with a solid grounding in the fundamentals of generative AI, but by the time you read it, new models will have been released that outperform the ones we discuss here.

Rather than trying to chase the ever-shifting "best“, we’ve tried to focus on general principles that will help you to understand how the models work in a way that will be useful even as the field continues to evolve. New models rarely come out of nowhere and often build on the ideas of previous models. By understanding the fundamentals, you’ll be better equipped to understand the latest developments as they happen.

Chapter 1. Transformers

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the third chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

Many trace the most recent wave of advances in generative AI to the introduction of a class of models called transformers in 2017. Their most well-known application is the powerful Large Language Models (LLMs), such as Llama and GPT-4, used by hundreds of millions daily. Transformers have become a backbone for modern AI applications, powering everything from chatbots and search systems to machine translation and content summarization. They’ve even branched out beyond text, making waves in fields like computer vision, music generation, and protein folding. In this chapter, we’ll explore the core ideas behind transformers and how they work, with a focus on one of the most common applications: language modeling.

Before we delve into the nitty-gritty of transformers, let’s take a step back and understand what language modeling is. At its core, a Language Model (LM) is a probabilistic model that learns to predict the next word (or token) in a sequence based on the preceding or surrounding words. Doing so captures language’s underlying structure and patterns, allowing it to generate realistic and coherent text. For example, given the sentence "I began my day eating“, a language model might predict the next word as "breakfast" with a high probability.

So, how do transformers fit into this picture? Unlike traditional language models that use fixed-sized sliding windows or recurrent neural networks (RNNs), transformers are designed to handle long-range dependencies and complex relationships between words more efficiently and expressively. For example, imagine that you want to use an LM to summarize a news article, which might contain hundreds or even thousands of words. Traditional LMs struggle with long contexts, so the summary might skip critical details from the beginning of the article. Transformer-based LMs, however, show strong results in this task. Besides high-quality generations, transformers have other properties, such as efficient parallelization of training, scalability, and knowledge transfer, making them popular and well-suited for multiple tasks. At the heart of this innovation lies the self-attention mechanism, which allows the model to weigh the importance of each word in the context of the entire sequence.

To help us build intuition about how language models work, we’ll use code examples that interact with existing models, and we’ll describe the relevant pieces as we find them.

Let’s get to it!

A Language Model in Action

In this section, we will load and interact with an existing (pre-trained) transformer model to get a high-level understanding of how they work. We’ll use the GPT-2 model, which made headlines in 2019 for its (then) impressive text-generation capabilities. Although small and almost quaint by today’s standards, GPT-2 is nevertheless a good illustration of how these language models work. The same principles apply to the larger (over 100 times larger!) and more powerful models that have since been released.

Tokenizing Text

Let’s begin our journey to generate some text based on an initial input. For example, given the phrase "it was a dark and stormy“, we want the model to generate some words to continue it. Models can’t receive text directly as input; their input must be data represented as numbers. To feed text into a model, we must first find a way to turn sequences into numbers. This process is called tokenization, a crucial step in any NLP pipeline.

An easy option would be to split the text into individual characters and assign each a unique numerical ID. This scheme could be helpful for languages such as Chinese, where each character carries much information. In languages like English, this creates a very small token vocabulary, and there will be very few unknown tokens (characters not found during training) when running inference. However, this method requires many tokens to represent a string, which is bad for performance and erases some of the structure and meaning of the text – a downside for accuracy. Each character carries very little information, making it hard for the model to learn the underlying structure of the text.

Another approach could be to split the text into individual words. While this lets us capture more meaning per token, it has the downsides that we need to deal with more unknown words (e.g., typos, slang, etc.), we need to deal with different forms of the same word (e.g., "run“, "runs“, "running“, etc.), and we might end with a very large vocabulary, which could easily be over half a million words for languages such as English. Modern tokenization strategies strike a balance between these two extremes, splitting the text into subwords that capture both the structure and meaning of the text while still being able to handle unknown words and different forms of the same word.

Characters that are usually found together (like most frequent words) can be assigned a single token that represents the whole word or group. Long or complicated words, or words with many inflections, may be split into multiple tokens, where each one usually represents a meaningful section of the word. There is no single "best" tokenizer; each language model comes with its own one. The differences between tokenizers reside in the number of tokens supported and the tokenization strategy.

Let’s see how the GPT-2 tokenizer handles a sentence to see this in action. We’ll first load the tokenizer corresponding to GPT-2. Then, we’ll run the input text (also called prompt) through the tokenizer to encode the string into numbers representing the tokens. We’ll use the decode method to convert each ID back into its corresponding token for demonstration purposes.

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("gpt2")
input_ids = tokenizer("It was a dark and stormy", return_tensors="pt").input_ids
input_ids

tensor([[1026, 373, 257, 3223, 290, 6388, 88]])

for t in input_ids[0]:
 print(t, "\t:", tokenizer.decode(t))

tensor(1026) : It
tensor(373) : was
tensor(257) : a
tensor(3223) : dark
tensor(290) : and
tensor(6388) : storm
tensor(88) : y

As you can see, the tokenizer splits the input string into a series of tokens and assigns a unique ID to each. Most words are represented by a single token, but "stormy" is represented by two tokens: one for ” storm” (including the space before the word) and one for the suffix "y“. This allows the model to learn that "stormy" is related to "storm" and that the suffix "y" is often used to turn nouns into adjectives. With a vocabulary of around 50,000 tokens, the GPT-2 tokenizer can efficiently represent almost any input text and averages about 1.3 tokens per word.

Note

Even though we usually talk about training tokenizers, this has
nothing to do with training a model. Model training is stochastic
(non-deterministic) by nature, whereas we train a tokenizer using a
statistical process that identifies which subwords are the best to pick
for a given dataset. How to choose the subwords is a design decision of
the tokenization algorithm. Therefore, tokenization training is
deterministic. We won’t dive into different tokenization strategies, but
some of the most popular subword approaches are Byte-level BPE, used in
GPT-2, WordPiece, and SentencePiece.

Predicting Probabilities

GPT-2 was trained as a causal language model (also known as auto-regressive), which means it was trained to predict the next token in a sequence given the preceding tokens. The transformers library has high-level tools that enable us to use such a model to generate text or perform other tasks quickly. It is helpful to understand how the model makes its predictions by directly inspecting them on this language-modeling task. We begin by loading the model.

from transformers import AutoModelForCausalLM

gpt2 = AutoModelForCausalLM.from_pretrained(
 "gpt2", pad_token_id=tokenizer.eos_token_id
)

Note

Note the use of AutoTokenizer and AutoModelForCausalLM. The
transformers library supports hundreds of models and their
corresponding tokenizers. Rather than learning the name of each
tokenizer and model class, we will use AutoTokenizer and
AutoModelFor*.

For the automatic model, we need to specify for which task we’re using
the model, such as classification (AutoModelForSequenceClassification)
or object detection (AutoModelForObjectDetection). In the case of
GPT-2, we’ll use the class corresponding to the causal language modeling
task. When using the automatic classes, transformers will pick an
adequate default class based on the configuration of a model. For
example, under the hood, they will use GPT2Tokenizer and
GPT2LMHeadModel.

If we feed the tokenized sentence from the previous section through the model, we get a result back with 50,257 values for each token in the input string:

outputs = gpt2(input_ids)
outputs.logits.shape # An output for each input token

torch.Size([1, 7, 50257])

The first dimension of the output is the number of batches (1 because we just ran a single sequence through the model). The second dimension is the sequence length, or the number of tokens in the input sequence (7 in our case). The third dimension is the vocabulary size. We get a list of ~50 thousand numbers for each token in the original sequence. These are the raw model outputs, or logits, that correspond to the tokens in the vocabulary. For every input token, the model predicts how likely each token in the vocabulary is to continue the sequence up to that point. With our example sentence, the model will predict logits for "It“, "It was“, "It was a“, and so on. Higher logits’ values mean the model considers the corresponding token a more likely continuation of the sequence. The following table shows the input sequences, the most likely token ID, and its corresponding token.

Logits are the raw output of the model (a vector of numbers such as [0.1, 0.2, 0.01, …]). We can use the logits to select the most likely token to continue the sequence. However, we can also convert the logits into probabilities, as we’ll see soon.

	Input Sequence
	ID of most likely next token
	Corresponding token

	It

	318

	is

	It was

	257

	a

	It was a

	845

	very

	It was a dark

	1755

	night

	It was a dark and

	4692

	cold

	It was a dark and storm

	88

	y

	It was a dark and stormy

	1755

	(let’s figure this one!)

Let’s focus on the logits for the entire input sentence and see how to predict the next word of the sentence. We can find the index of the token with the highest value using the argmax method:

final_logits = gpt2(input_ids).logits[0][-1] # The last set of logits
final_logits.argmax() # The position of the maximum

tensor(1755)

1755 corresponds to the ID of the token the model considers most likely to follow the input string "It was a dark and stormy“. Decoding this token, we can see that this model knows a few story tropes:

tokenizer.decode(final_logits.argmax())

' night'

So ” night” is the most likely token! This makes sense considering the beginning of the sentence we provided as input. The model learns how to pay attention to other tokens using an algorithm called self-attention, which is the fundamental building block of transformers. Intuitively, self attention allows the model to identify how much each token contributes to the meaning of the phrase.

Note

Transformer models contain many of these attention layers, each one
specializing in some aspect of the input. Contrary to heuristics
systems, these aspects or features are learned during training, instead
of being specified beforehand.

Let’s now see which other tokens were potential candidates by selecting the top 10 values:

import torch

top10_logits = torch.topk(final_logits, 10)
for index in top10_logits.indices:
 print(tokenizer.decode(index))

 night
 day
 evening
 morning
 afternoon
 summer
 time
 winter
 weekend
,

We’ll need to convert logits into probabilities to see how confident the model is about each prediction. We’d do that by comparing each value with all the other predicted values and normalizing so all the numbers sum up to 1. That’s precisely what the softmax operation does! The following code uses softmax to print out the top 10 most likely tokens and their associated probabilities according to the model:

top10 = torch.topk(final_logits.softmax(dim=0), 10)
for value, index in zip(top10.values, top10.indices):
 print(f"{tokenizer.decode(index):<10} {value.item():.2%}")

 night 46.18%
 day 23.46%
 evening 5.87%
 morning 4.42%
 afternoon 4.11%
 summer 1.34%
 time 1.33%
 winter 1.22%
 weekend 0.39%
, 0.38%

Try this with different input texts - do you tend to agree with the model’s predictions? What happens if you feed in a longer or shorter input string? What happens if you provide in a string that is not a grammatically correct sentence?

Generating Text

Once we know how to get the model’s predictions for the next token in a sequence, it is easy to generate text by repeatedly feeding the model’s predictions back into itself. We can call gpt2(ids), generate a new token ID, add it to the list, and call the function again. To make it more convenient to generate multiple words, transformers auto-regressive models have a generate method ideal for this case. Let’s explore an example.

output_ids = gpt2.generate(input_ids, max_new_tokens=20)
decoded_text = tokenizer.decode(output_ids[0])

print("Input IDs", input_ids[0])
print("Output IDs", output_ids[0])
print(f"Generated text: {decoded_text}")

Input IDs tensor([1026, 373, 257, 3223, 290, 6388, 88])
Output IDs tensor([1026, 373, 257, 3223, 290, 6388, 88, 1755, 13,
 383, 2344, 373, 19280, 11, 290, 262, 15114, 547,
 7463, 13, 383, 2344, 373, 19280, 11, 290, 262])
Generated text: It was a dark and stormy night. The wind was blowing,
and the clouds were falling. The wind was blowing, and the

When we ran the gpt2 forward method in the previous section, it returned a list of logits for each input token. Then, we had to calculate the probabilities and pick the most likely token. generate abstracts this logic away. It makes multiple forward passes, predicts the next token repeatedly, and appends it to the input sequence. generate provides us with the token IDs of the final sentence, including both the input and new tokens. Then, with the decoder, we can convert it back to text.

There are many possible strategies to perform generation. The one we just did, picking the most likely token, is called greedy decoding. Although this approach is straightforward, it can sometimes lead to suboptimal outcomes, especially in generating longer text sequences. Greedy decoding can be problematic because it doesn’t consider the overall probability of a sentence, focusing only on the immediate next word. For instance, given the starting word Sky and the choices blue and rockets for the next word, greedy decoding might favor Sky blue since blue initially seems more likely following Sky. However, this approach might overlook a more coherent and probable overall sequence like Sky rockets soar. Therefore, greedy decoding can sometimes miss out on the most likely overall sequence, leading to less optimal text generation.

Rather than one token at a time, techniques such as beam search explore multiple possible continuations of the sequence and return the most likely sequence of continuations. It keeps the most likely num_beams of hypotheses during generation and chooses the most likely one.

beam_output = gpt2.generate(
 input_ids,
 num_beams=5,
 max_new_tokens=30,
)

print(tokenizer.decode(beam_output[0], skip_special_tokens=True))

It was a dark and stormy night.

"It was dark and stormy," he said.

"It was dark and stormy," he said.

As you noticed, the output includes many repetitions of the same sequence. There are multiple parameters we can control to perform better generations. Let’s see two examples:

	
repetition_penalty - how much to penalize already generated tokens, avoiding repetition. A good default value is 1.2.

	
bad_words_ids - a list of tokens that should not be generated (e.g., to avoid generating offensive words).

Let’s see what we can achieve by penalizing repetition:

beam_output = gpt2.generate(
 input_ids,
 num_beams=5,
 repetition_penalty=1.2,
 max_new_tokens=38,
)

print(tokenizer.decode(beam_output[0], skip_special_tokens=True))

It was a dark and stormy night.

"There was a lot of rain," he said. "It was very cold."

He said he saw a man with a gun in his hand.

Much better! Which generation strategy to use? As often in Machine Learning… it depends! Beam search works well when the desired length of the text is somewhat predictable. This is the case for tasks such as summarization or translation but not for open-ended generation, where the output length can vary greatly, leading to repetition. Although we can inhibit the model to avoid repeating itself, doing so can also lead to performing worse. Also note that beam search will be slower than greedy search as it needs to run inference for multiple beams simultaneously, which can be an issue for large models.

When we generate with greedy search and beam search, we push the model to generate text with a distribution of high-probability next words. Interestingly, high-quality human language does not follow a similar distribution! Human text tends to be more unpredictable. An excellent paper about this counter-intuitive observation is The Curious Case of Neural Text Degeneration. The authors conjecture that human language disfavors predictable words - people optimize against stating the obvious. The paper proposes a method called nucleus sampling.

With sampling, we pick the next token by sampling from the probability distribution of the next tokens. This means that sampling is not a deterministic generation process. If the next possible tokens are night (60%), day (35%), and apple (5%), rather than choosing night (with greedy search), we will sample from the distribution. In other words, there will be a 5% chance of picking "apple" even if it’s a low-probability token and leads to a nonsensical generation. Sampling avoids creating repetitive text, hence leading to more diverse generations. Sampling is done in transformers using the do_sample parameter.

from transformers import set_seed

set_seed(70)

sampling_output = gpt2.generate(
 input_ids,
 do_sample=True,
 max_length=34,
 top_k=0, # We'll come back to this parameter
)

print(tokenizer.decode(sampling_output[0], skip_special_tokens=True))

It was a dark and stormy day until it broke down the big canvas on my
sleep station, making me money dilapidated, and, with a big soothing m
ug

Of course, we risk generating low-probability tokens, so we can mitigate this by using a probability distribution "softened" by a temperature parameter. A temperature higher than one will increase the randomness of the distribution. A temperature between 0 and 1 will reduce the randomness, increasing the probability of the more likely tokens. A temperature of 0 will move all the probability to the most likely next token, which is equivalent to greedy decoding. Compare the effect of this temperature parameter on the generated text in the following example.

from transformers import set_seed

set_seed(70)

sampling_output = gpt2.generate(
 input_ids,
 do_sample=True,
 temperature=0.7,
 max_length=40,
 top_k=0,
)

print(tokenizer.decode(sampling_output[0], skip_special_tokens=True))

It was a dark and stormy day at the U.S. embassy in Moscow. Everyone w
as talking about money, the economy, and, of course, the economic situ
ation in Russia. But it

sampling_output = gpt2.generate(
 input_ids,
 do_sample=True,
 temperature=0.001,
 max_length=40,
 top_k=0,
)

print(tokenizer.decode(sampling_output[0], skip_special_tokens=True))

It was a dark and stormy night. The Rhino was in the middle of a storm
, and the wind was blowing in the direction of the windmill. The windm
ill was a small, dark

sampling_output = gpt2.generate(
 input_ids,
 do_sample=True,
 temperature=3.0,
 max_length=40,
 top_k=0,
)

print(tokenizer.decode(sampling_output[0], skip_special_tokens=True))

It was a dark and stormy mixShot sliding new bamboo and presentation l
aced & laced veileduese drug camouflage 451 carc downloading participa
nts / pay250 skeletonfitting back Rin MetallëHo Audit Firenews competi
tor Transformers

Well, the first test is much more coherent than the second one. The second, which uses a very low temperature, is repetitive (similar to greedy decoding). Finally, the third sample, with an extremely high temperature, gives gibberish text.

One parameter you likely noticed is top_k. What is it? Top-K sampling is a simple sampling approach in which only the K most likely next tokens are considered. For example, using top_k=5, the generation method will first filter the most likely five tokens and redistribute the probabilities so they add to one.

sampling_output = gpt2.generate(
 input_ids,
 do_sample=True,
 max_length=40,
 top_k=10,
)

print(tokenizer.decode(sampling_output[0], skip_special_tokens=True))

It was a dark and stormy summer night, and the air was cold, but we ha
d a good view of the sky, which was covered with the moon and the star
s, with a little mist

Hmm…this could be better. An issue with Top-K Sampling is that the number of relevant candidates in practice could vary greatly. If we define top_k=5, some distributions will still include tokens with very low probability, while others will consist of only high-probability tokens.

The final generation strategy we’ll visit is Top-p sampling (also known as nucleus sampling). Rather than sampling the K words with the highest probability, we will use all the most likely words whose cumulative probability exceeds a given value. If we use a top_p=0.94, we’ll first filter only to keep the most likely words that cumulatively have a probability of 0.94 or higher. We then redistribute the probability and do regular sampling. Let’s see it in action!

sampling_output = gpt2.generate(
 input_ids,
 do_sample=True,
 max_length=40,
 top_p=0.92,
 top_k=0,
)

print(tokenizer.decode(sampling_output[0], skip_special_tokens=True))

It was a dark and stormy night. I would sleep in a dank dungeon, but i
f I didn't sleep with Jasper in it, it had to end right here. Jasper w
as old and

Both Top-K and Top-p are commonly used in practice. They can even be combined to filter out low-probability words but have more generation control. The issue with the stochastic generation methods is that the generated text doesn’t necessarily contain coherence.

We’ve seen three different generation methods: greedy search, beam-search decoding, and sampling (with temperature, Top-K, and Top-p providing further control). Those are lots of approaches! If you want to further experiment with generation, here are some suggestions to experiment with:

	
Experiment with different parameter values. How does increasing the number of beams impact the quality of your generation? What happens if you reduce or increase your top_p value?

	
One approach to reduce repetition in Beam Search is introducing penalties for n-grams (word sequence of n words). This can be configured using no_repeat_ngram_size, which avoids repeating the same n-gram. For example, if you use no_repeat_ngram_size=4, the generation will never contain the exact four consecutive words.

	
A newer method, contrastive search, can generate long, coherent output while avoiding repetition. This is achieved by considering both the probabilities predicted by the model and the similarity with the context. This can be controlled via penalty_alpha and top_k.1

If all of this sounds too empirical, it’s because it is! Generation is an active area of research, with new papers coming up with different proposals, such as more sophisticated filtering. No single rule works for all models, so it’s always important to experiment with different techniques.

Zero-Shot Generalization

Generating language is a fun and exciting application of transformers, but writing fake articles about unicorns2 is not the reason why they are so popular. To predict the next token well, these models must learn a fair amount about the world. We can take advantage of this to perform various tasks. For example, instead of training a model dedicated to translation, we can prompt a sufficiently powerful language model with an input like:

Translate the following sentence from English to French:
Input: The cat sat on the mat.
Translation:

I typed this example with GitHub Copilot active, and it helpfully suggested "Le chat était assis sur le tapis" as a continuation of the above prompt - a perfect illustration of how a language model can perform tasks not explicitly trained for. The more powerful the model, the more tasks it can perform without additional training. This flexibility makes transformers quite powerful and has made them so popular in recent years.

To see this in action for ourselves, let’s put GPT-2 to use as a classification model. Specifically, we’ll classify movie reviews as positive or negative - a classic benchmark task in the NLP field. We’ll use a zero-shot approach to make things interesting, which means we won’t provide the model with any labeled data. Instead, we’ll prompt the model with the text of a review and ask it to predict the sentiment. Let’s see how it does!

To do this, we’ll insert the review into a prompt template that provides context for the model and helps it understand what we’re asking it to do. After feeding the prompt through the model, we’ll look at its prediction for the next token and see which possible token is assigned a higher probability: "positive" or "negative“? To do that, let’s find the IDs corresponding to those tokens.

Check the token IDs for the words ' positive' and ' negative'
(note the space before the words)
tokenizer.encode(" positive"), tokenizer.encode(" negative")

([3967], [4633])

Once we have the IDs, we can now run inference with the model and see which token has a higher probability:

def score(review):
 """Predict whether it is positive or negative

 This function predicts whether a review is positive or negative
 using a bit of clever prompting. It looks at the logits for the
 tokens ' positive' and ' negative' (note the space before the
 words), and returns the label with the highest score.
 """
 prompt = f"""Question: Is the following review positive or
negative about the movie?
Review: {review} Answer:"""
 input_ids = tokenizer(prompt, return_tensors="pt").input_ids
 final_logits = gpt2(input_ids).logits[0, -1]
 if final_logits[3967] > final_logits[4633]:
 print("Positive")
 else:
 print("Negative")

We can try out this zero-shot classifier on a few fake reviews to see how it does:

score("This movie was terrible!")

Negative

score("That was a delight to watch, 10/10 would recommend :)")

Positive

score("A complex yet wonderful film about the depravity of man") # A mistake

Negative

In the supplementary material, you’ll find a dataset of labeled reviews and code to assess the accuracy of this zero-shot approach. Can you tweak the prompt template to improve the model’s performance? Can you think of other tasks that could be performed using a similar approach?

Few-Shot Generalization

Despite the release of ChatGPT and the quest for the perfect prompts, zero-shot generalization (or prompt tuning) is not the only way to bend powerful language models to perform arbitrary tasks.

Zero-shot is the extreme application of a technique called few-shot generalization, in which we provide the language model a few examples about the task we want it to perform and then ask it to provide similar answers for us. By showing some examples, we try to influence a generation by increasing the probability that the continuation text follows the same structure and pattern as our prompt.

Let’s see an example. We’ll use a more robust model this time: GPT-Neo 1.3B.3

model = AutoModelForCausalLM.from_pretrained(
 "EleutherAI/gpt-neo-1.3B", pad_token_id=tokenizer.eos_token_id
)

prompt = """\
Translate English to Spanish:

English: I do not speak Spanish.
Spanish: No hablo español.

English: See you later!
Spanish: ¡Hasta luego!

English: Where is a good restaurant?
Spanish: ¿Dónde hay un buen restaurante?

English: What rooms do you have available?
Spanish: ¿Qué habitaciones tiene disponibles?

English: I like soccer
Spanish:"""
inputs = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(
 inputs,
 do_sample=False,
 max_new_tokens=10,
)

print(tokenizer.decode(output[0], skip_special_tokens=True))

Translate English to Spanish:

English: I do not speak Spanish.
Spanish: No hablo español.

English: See you later!
Spanish: ¡Hasta luego!

English: Where is a good restaurant?
Spanish: ¿Dónde hay un buen restaurante?

English: What rooms do you have available?
Spanish: ¿Qué habitaciones tiene disponibles?

English: I like soccer
Spanish: Me gusta el fútbol

We state the task we want to achieve and provide four examples to set the context for the model. Hence, this is a 4-shot generalization task. Then, we ask the model to generate more text to follow the pattern and provide the requested translation. Some ideas to explore:

	
Would this work with fewer examples?

	
Would it work without the task description?

	
How about other tasks?

	
How does GPT-2 score in this setting?

Note

GPT-2, given its size and training process, is not very good at few-shot
tasks, and it’s even worse at zero-shot generalization. How is it
possible that we managed to use it for sentiment classification in our
previous example? We cheated a bit: we didn’t look at the text generated
by the model, just checked whether the probability for ” Positive” was
larger than the ” Negative ” probability. Understanding how models work
under the hood can unlock powerful applications even with small models.
Remember to think about your problem; don’t be afraid to explore!

GPT-2 is an example of a base model. Some base models in the style of GPT-2 have zero-shot and few-shot capabilities that we can use at inference time. Another approach is to fine-tune a model: we take the base model and keep training it a bit longer on domain or task-specific data. We rarely need the extreme generalization capabilities showcased by the most powerful models in the world; if you only want to solve a particular task, it will usually be cheaper and better to fine-tune and deploy a smaller model specialized on a single task. It’s also important to note that base models are not conversational; although you can write a very nice prompt that will help make a chatbot with a base model, it’s often more convenient to fine-tune the base model with conversational data, hence improving the conversational capabilities of the model. That’s precisely what we’ll do in Chapter 5.

Architecture of a Transformer Language Model

After our brief experiments using language models, we are ready to introduce an architecture diagram for transformer-based language generation models. The high-level pieces involved include:

	
Tokenization. The input text is broken down into individual tokens (which can be words and subwords). Each token has a corresponding ID used to index the token embeddings.

	
Embedding. The tokens are mapped to vectors called embeddings. These embeddings capture the semantic meaning of each token. How to map a token to an embedding is learned during training.

	
Positional Encoding. Provides information about where each token occurs in a sentence, because the same token appearing in different places can have different meanings. The self-attention algorithm does not have a notion of order, so we enrich the token embeddings so the original order information is preserved.

	
Self-Attention. Each word generated considers the relevance of previous words to form coherent and contextually appropriate text. This allows the model to focus dynamically on different parts of the input sequence for each generated token.

	
Feed-Forward Neural Network. The self-attention output is passed through a feed-forward neural network, further refining the representation.

	
Prediction. An additional layer processes the final representation into a task-dependent final output. In the case of text generation, this involves selecting the next token with the highest probability.

The true power of transformers comes from stacking multiple layers (or blocks) of these components, allowing the model to learn increasingly complex and abstract relationships between the input tokens. This architecture has enabled transformers to achieve unprecedented performance in various tasks and domains, and you’ll see them cropping up again and again –not only in the rest of this book, but also in the discipline as a whole–.

Transformer Models Genealogy

Sequence-To-Sequence Tasks

The architecture shown at the start of this chapter, called a Decoder-based transformer, has a single stack of transformer blocks that process an input sequence. This is a popular approach today, but the original transformer paper, attention is all you need,4 used a more complicated architecture called the Encoder-Decoder architecture, which is still in common use today.

The transformer paper focused on machine translation as the example sequence-to-sequence task. The best results in machine translation at the time were achieved by recursive neural networks (RNNs) that used LSTM or GRU blocks (don’t worry if you’re unfamiliar with them). The paper demonstrated better results by focusing solely on the attention method and showed that scalability and training were much easier. These factors –excellent performance, stable training, and easy scalability– are why transformers took off and were adapted to multiple tasks, as the next section explores in more depth.

In encoder-decoder models, like the original transformer model described in the paper, one stack of transformer blocks, called encoder, processes an input sequence into a set of rich representations, which are then fed into another stack of transformer blocks, called decoder, that decodes them into an output sequence. This approach to convert one sequence into a different one is called sequence-to-sequence or seq2seq and is naturally well suited for tasks such as translation, summarization, or question-answering.

For example, you feed an English sentence through the encoder of a translation model, which generates a rich embedding that captures the meaning of the input. Then, the decoder generates the corresponding French sentence using this embedding. The generation happens in the decoder one token at a time, as we saw when generating sequences earlier in the chapter. However, the predictions for each successive token are informed not just by the previous tokens in the sequence being generated but also by the output from the encoder.

The mechanism by which the output from the encoder side is incorporated into the decoder stack is called cross-attention. It resembles self-attention, except that each token in the input (the sequence being processed by the decoder) attends to the context from the encoder rather than other tokens in its sequence. The cross-attention layers are interleaved with self-attention, allowing the decoder to use both contexts within its sequence and the information from the encoder.

After the transformer paper, existing sequence-to-sequence models, such as Marian NMT, incorporated these techniques as a central part of their architecture. New models were developed using these ideas. A notable one is BART (short for "Bidirectional and Auto-Regressive Transformers" 5). During pre-training, BART corrupts input sequences and attempts to reconstruct them in the decoder output. Afterward, BART is fine-tuned for other generation tasks, such as translation or summarization, leveraging the rich sequence representations achieved during pre-training. Input corruption, by the way, is one of the key ideas behind diffusion models, as we’ll see in Chapter 3.

Another notable sequence-to-sequence model is T5.6 T5 approaches the multitude of NLP tasks in a general way by formulating 60 of them as text-to-text transformations. No custom layers or code are required for different tasks, training uses the same hyperparameters, and the model learns from a very diverse dataset.

We just discussed encoder-decoder and decoder-only architectures. A common question is why one might need an encoder-decoder model for tasks like translation if decoder-only models like GPT-2 show good results. Encoder-decoder models are designed to translate an entire input sequence to an output sequence, making them well-suited for translation. In contrast, decoder-only models focus on predicting the next token in a sequence. Initially, decoder-only models like GPT-2 were less capable in zero-shot learning scenarios than later models like GPT-3, but this was due to more than just the absence of an encoder. The improvement in zero-shot capabilities in advanced models like GPT-3 is also due to larger training data, better training techniques, and increased model sizes. While encoders in seq2seq models play a crucial role in understanding the full context of input sequences, advancements in decoder-only models have made them more effective and versatile, even for tasks traditionally relying on seq2seq models.

Encoder-only models

As we’ve seen, the original transformer model was based on an encoder-decoder architecture that has been further explored in models such as BART or T5. In addition, the encoder or the decoder can be trained and used independently, giving rise to distinct transformer families. The first sections of this chapter explored decoder-only, or autoregressive models. These models are specialized in text generation using the techniques we described and have shown impressive performance, as demonstrated by ChatGPT, Claude, Llama, or Falcon.

Encoder models, on the other hand, are specialized in obtaining rich representations from text sequences and can be used for tasks such as classification or to prepare semantic embeddings (usually a vector of a few hundred numbers) for a multitude of documents that can be used in retrieval systems. The best-known transformer encoder model is probably BERT7, which introduced the masked language model objective that was later picked up and further explored by BART.

Causal language modeling predicts the next token given the previous ones - it’s what we did with GPT-2! The model can only attend to the context on the left of a given token. A different approach used in encoder models is called masked language modeling (MLM). Masked language modeling, proposed in the famous BERT paper, pre-trains a model to learn to "fill in the blanks“. Given an input text, we randomly mask some tokens, and the model must predict the hidden tokens. Unlike causal language modeling, MLM uses both the sequence at the masked token’s left and right, hence the B of "bidirectional" in BERT’s name. This helps create strong representations of the given text. Under the hood, these models use the encoder part of the transformer’s architecture.

from transformers import pipeline

fill_masker = pipeline(model="bert-base-uncased")
fill_masker("The [MASK] is made of milk.")

[{'score': 0.19546695053577423,
 'token': 9841,
 'token_str': 'dish',
 'sequence': 'the dish is made of milk.'},
 {'score': 0.1290755718946457,
 'token': 8808,
 'token_str': 'cheese',
 'sequence': 'the cheese is made of milk.'},
 {'score': 0.10590697824954987,
 'token': 6501,
 'token_str': 'milk',
 'sequence': 'the milk is made of milk.'},
 {'score': 0.04112089052796364,
 'token': 4392,
 'token_str': 'drink',
 'sequence': 'the drink is made of milk.'},
 {'score': 0.03712352365255356,
 'token': 7852,
 'token_str': 'bread',
 'sequence': 'the bread is made of milk.'}]

What happens under the hood? The encoder receives the input sequence and generates a contextualized representation for each token. This representation is a vector of numbers that captures the meaning of the token in the context of the entire sequence. The encoder is usually followed by a task-specific layer that uses the representations to perform tasks such as classification, question answering, or masked language modeling. The encoder is trained to generate representations that are useful for understanding-heavy tasks.

Between encoder-only, decoder-only, and encoder-decoder models, we’ve seen a large number of new open and closed language models, such as GPT-4, Mistral, Falcon, Llama 2, Qwen, Yi, Claude, Bloom, PaLM, and hundreds more. Yann LeCun posted this delightful genealogy diagram in Twitter, taken from a survey paper8 shows transformers’ rich and fruitful impact on the NLP landscape as of 2024.

The Power of Pre-training

The key Insights of Transformers

Having access to existing models is quite powerful. In the previous sections, we explored using GPT2 and GPT-NeoX to generate text and perform zero-shot classification. Transformer models have shown state-of-the-art performance across many other language tasks, such as text classification, machine translation, and answering questions based on an input text. Why do transformers work so well?

The first insight is the usage of the attention mechanism, as hinted in the chapter introduction. Previous NLP methods, such as recurrent neural networks, struggled to handle long sentences. Attention mechanisms allow the transformers model to attend to long sequences and learn long-range relationships. In other words, transformers can estimate how relevant some tokens are to other tokens.

The second key aspect is their ability to scale. The transformer architecture has an implementation optimized for parallelization, and research has shown that these models can scale to handle high-complexity and high-scale datasets. Although initially designed for text data, the transformer architecture can be flexible enough to support different data types and handle irregular inputs.

The third key insight is the ability to do pre-training and fine-tuning. Traditional approaches to a task, such as movie review classification, were limited by the availability of labeled data. A model would be trained from scratch on a large corpus of labeled examples, attempting to predict the label from the input text directly. This approach is often referred to as supervised learning. However, it has a significant drawback: it requires a large amount of labeled data to train effectively. This is a problem because labeled data is expensive to obtain and time-consuming to label. There might not even be any available data in many domains!

To address this, researchers began looking for a way to pre-train models on existing data that could then be fine-tuned (or adjusted) for a specific task. This approach is known as transfer learning and is the foundation of modern ML in many fields, such as Natural Language Processing and Computer Vision. Initial works in NLP focused on finding domain-specific corpora for the language model pre-training phase, but papers such as ULMFiT9 showed that even pre-training on generic text such as Wikipedia could yield impressive results when the models were fine-tuned on downstream tasks. This set the stage for the rise of transformers, which turned out to be highly well-suited to learning rich representations of language.

The idea of pre-training is to train a model on a large unlabeled dataset and then fine-tune it to a new target task, for which one would require much less labeled data. Before graduating to NLP, transfer learning had already been very successful with the Convolutional Neural Networks that form the backbone of modern Computer Vision. In this scenario, one first trains a large model with a massive amount of labeled images in a classification task. Through this process, the model learns common features that can be leveraged on a different but related problem. For example, we can pre-train a model on thousands of classes and then fine-tune it to classify whether a picture is of a hot dog.

With transformers, things are taken further with self-supervised pre-training. We can pre-train a model on large, unlabeled text data. How? Let’s think about causal models such as GPT. The model predicts which is the next word. Well, we don’t need any labels to obtain training data! Given a corpus of text, we can mask the tokens after a sequence and train the model to learn to predict them. Like in the computer vision case, pre-training gives the model a meaningful representation of the underlying text. We can then fine-tune the model to perform another task, such as generating text in the style of our Tweets or a specific domain (e.g., your company chat). Given the model has already learned a representation of language, fine-tuning will require much less data than if we trained from scratch.

For many tasks, a rich representation of the input is more important than being able to predict the next token. For example, if you want to fine-tune a model to predict the sentiment of a movie review, masked language models would be more powerful. Models such as GPT-2 are designed to optimize for text generation rather than for building powerful representations of the text. On the other hand, models such as BERT are ideal for this task. As briefly mentioned before, the last layer of an encoder model outputs a dense representation of the input sequence, called embedding. This embedding can then be leveraged by adding a small, simple network on top of the encoder and fine-tuning the model for the specific task. As a concrete example, we can add a simple linear layer on top of the BERT encoder output to predict the sentiment of a document. We can take this approach to tackle a wide range of tasks:

	
Token classification. Identify each entity in a sentence, such as a person, location, or organization.

	
Extractive question answering. Given a paragraph, answer a specific question and extract the answer from the input.

	
Semantic search. The features generated by the encoder can be handy to build a search system. Given a database of a hundred documents, we can compute the embeddings for each. Then, we can compare the input embeddings with the documents’ ones at inference time, hence identifying the most similar document in the database.10

	
And many others, including text similarity, anomaly detection, named entity linking, recommendation systems, and document classification.

from transformers import pipeline

classifier = pipeline(model="distilbert-base-uncased-finetuned-sst-2-english")
classifier("This movie is disgustingly good !")

[{'label': 'POSITIVE', 'score': 0.9998536109924316}]

This classification model can analyze reviews and do the same as in the zero-shot classification section. The second challenge of this chapter explores this approach to achieve better results.

Transformers recap

We’ve seen three types of architectures. Encoder-based architectures, such as BERT, DistilBERT, and RoBERTa, are ideal for tasks that require understanding the entire input (sentence classification, token classification, etc.). Decoder-based models, such as GPT-2, Falcon, and Llama, are ideal for new text generation. Encoder-decoder models, or seq2seq, such as BART and T5, are great for tasks that require generating new sentences based on a given input, such as summarization or translation.

"Wait!" - you might say - "I can do all of these tasks with ChatGPT or Llama“. That’s true - given the vast (and growing) amount of training data, computing, and training optimizations, the quality of generative models is significantly increasing, and the zero-shot capabilities have improved considerably compared to a few years ago. Although decoder-only models provide good results, the current consensus is that, provided the resources, fine-tuning a model for your specific task and domain will work better than using an out-of-the-box pre-trained model. For example, if you want to use a GPT model in real-time in a game to generate character dialogs, it will perform better if you first fine-tune it with similar data. If you want to use a model to extract different entities from your dataset of chemistry papers, it might make sense first to fine-tune an encoder-based model with chemistry papers to achieve this.

The success of seq2seq models are a consequence of their capability to encode variable-length input sequences into an embedding, which summarizes the input information. The decoder part of the model can then leverage the context for performing the generation. Decoder-only models have gained interest in recent years thanks to their simplicity, scalability, efficiency, and parallelization. The three types of models are widely used in the industry depending on the task - no single golden model is used for everything.

Limitations

At this point, you might wonder what the issues are with transformers. Let’s briefly go over some of the limitations:

	
Transformers are very large. Research has consistently shown that larger models perform better. Although that’s quite exciting, it also brings concerns. First, some of the most powerful models require dozens of millions of U.S. dollars to train - just in computing power! That means that only a small set of institutions can train very large base models, limiting the kind of research that institutions without those resources can do. Second, using such amounts of computing power can also have ecological implications - those millions of GPU hours are, of course, powered by lots of electricity! Third, even if some of these models are open-sourced, running them might require many GPUs! Chapter 5 will explore some techniques to use these LLMs even if you don’t have multiple GPUs at home. Even then, deploying them in resource-constrained environments is a frequent challenge.

	
Sequential processing: If you recall the decoder section, we had to process all the previous tokens for each new token. That means generating the token 10,000 in a sequence will be much slower than generating the first. In computer science terms, transformers have quadratic time complexity with respect to the input length, making it challenging to scale them to very long documents or use these models in some real-time scenarios.

	
Fixed input size: Transformer models can handle a maximum number of tokens, which depends on the base model. Some transformers can only handle 512 tokens, while new techniques allow to scale to a hundred thousand tokens. This is an essential thing to look into when picking a pre-trained model! You cannot simply pass entire books to transformers, expecting they will be able to summarize them.

	
Limited interpretability: Transformers are often criticized for their lack of interpretability.

All of the above are very active research areas - people have been exploring how to train and run models with less computing power (e.g., QLoRA, which we’ll explore in Chapter 5), make generation faster (e.g., flash attention and assisted generation), enable unconstrained input sizes (e.g., RoPE and attention sinks), and interpret the attention mechanisms.

One big concern that requires diving into is the presence of biases in models. If the training data used to pre-train transformers contains biases, the model can learn and perpetuate them. This is a broader issue in machine learning but is also relevant to transformers. Let’s revisit the fill-mask pipeline. Let’s say we want to predict the most likely profession. As you can see below, the results are very different if we use the word "man" vs. "woman“!

unmasker = pipeline("fill-mask", model="bert-base-uncased")
result = unmasker("This man works as a [MASK] during summer.")
print([r["token_str"] for r in result])

result = unmasker("This woman works as a [MASK] during summer.")
print([r["token_str"] for r in result])

['farmer', 'carpenter', 'gardener', 'fisherman', 'miner']
['maid', 'nurse', 'servant', 'waitress', 'cook']

Why does this happen? To enable pre-training, researchers usually require large amounts of data, leading to scraping all the content they can find. This content might be of all kinds of quality, including toxic content (which can be, to some extent, filtered out). The base model might end up engraining and perpetuating these biases when being fine-tuned! Similar concerns exist for conversational models, where the final model might generate toxic content learned from the pre-training dataset.

Beyond Text

Transformers have been used for many tasks representing data as text. A clear example is code generation – rather than training a language model with English data, we can use lots of code, and, by the same principles we just learned, it will learn how to auto-complete code. Another example is using transformers to answer questions from a table, such as a spreadsheet.

As transformer models have been so successful in the text domain, considerable interest has sparked in other communities to adapt these techniques to other modalities. This has led to Transformer models being used for tasks such as image recognition, segmentation, object detection, video understanding, and more.

Convolutional Neural Networks have been widely used as the go-to state-of-the-art models for most computer vision techniques. With the introduction of Vision Transformers (ViT)11, there has been a switch in recent years to explore how to tackle vision tasks with attention and transformers-based techniques. ViTs don’t discard CNNs entirely: In the image processing pipeline, CNNs extract feature maps of the image to detect high-level edges, textures, and other patterns. The feature maps obtained from the CNNs are then divided into fixed-size, non-overlapping patches. These patches can be treated similarly to a sequence of tokens, so the attention mechanism can learn the relationships between patches in different places.

Unfortunately, ViTs required more data (300 million images!) and compute than CNNs to get good results. Further work has happened in recent years; for example, DeiT was able to use transformer-based models with mid-sized datasets (1.2M images) thanks to using augmentation and regularization techniques common in CNNs. DeiT also uses a distillation approach involving a "teacher" model (a CNN in this case). Other models such as DETR, SegFormer, Swin Transformer, and DINO have pushed the field further, supporting many tasks such as image classification, object detection, image segmentation, video classification, document understanding, image restoration, super-resolution, and others.

As we’ll see in Chapter 9, transformer models can also be used for audio tasks, such as transcribing audio or generating synthetic speech or music. Under the hood, the same fundamental principles of pre-training and attention mechanisms persist, but each modality has different data types, requiring different approaches and modifications.

Other modalities where transformers are being explored are:

	
Graphs: An excellent introductory read is Introduction to Graph Machine Learning by Fourrier, 2023.12Using transformers for graphs is still very exploratory, but there are some exciting early results. Some examples of tasks that involve graph data are predicting the toxicity of molecules, predicting the evolution of systems, or generating new plausible molecules.

	
3D data: For example, perform segmentation of data that can be represented in 3D, such as LiDAR point clouds in autonomous driving or CT scans for organ segmentation. Another example is estimating an object’s 6 degrees of freedom, which can be helpful in robotics applications.

	
Time series: Analyzing stock price or performing weather forecasting.

	
Multimodal: Some transformer models are designed to process our output multiple types of data (such as text, images, and audio) together. This opens new possibilities, such as multimodal systems where you can speak, write, or provide pictures and have a single model to process them. Another example is visual question answering, where a model can answer questions about provided images.

Project Time: Using LMs to generate text

We used the generate method in the generation section to perform different decoding techniques. To better understand how it works under the hood, it’s time to implement it ourselves! We’ll use the generate method as a reference but implement it from scratch. We’ll also explore using the generate method to perform different decoding techniques.

Your goal is to fill the code in the following function. Rather than use gpt2.generate(), the idea is to iteratively call gpt2(), passing the previous tokens as input. You have to implement greedy search when do_sample=False, sampling when do_sample=True, and Top-K sampling when do_sample=True and top_k is not None.

def generate(
 model, tokenizer, input_ids, max_length=50, do_sample=False, top_k=None
):
 """Generate a sequence without using model.generate()

 Args:
 model: The model to use for generation.
 tokenizer: The tokenizer to use for generation.
 input_ids: The input IDs
 max_length: The maximum length of the sequence. Defaults to 50.
 do_sample: Whether to use sampling. Defaults to False.
 top_k: The number of tokens to sample from. Defaults to 0.
 """
 # Write your code here
 # Begin by the simplest approach, greedy decoding.
 # Then add sampling and finally top-k sampling.

Summary

Congratulations! You now have learned to load and use transformers for various tasks! You also understood how transformers model sequence data such as text and how this property lets them "learn" valuable representations that we can use to generate or classify new sequences. As the scale of these models increases, so do their capabilities - to the point where massive models with hundreds of billions of parameters can now perform many tasks previously thought impossible for computers.

We can pick powerful existing pre-trained models and modify them for specific domains and use cases thanks to fine-tuning. The trend towards larger and more capable models has caused a shift in how people use them. Task-specific models are often out-competed by general-purpose LLMs, and most people now interact with these models via APIs and hosted solutions or directly via slick chat-based user interfaces. At the same time, thanks to the release of large and powerful open-access models, such as Llama, there is a strong wave in the researchers’ and practitioners’ ecosystems aiming to run high-quality models directly in consumer computers, resulting in privacy-first solutions. This trend extends beyond inference: novel training approaches that allow individuals to fine-tune these models without many computational resources have emerged in recent years. Chapter 5 delves into both traditional and novel fine-tuning techniques.

Although we covered how transformers work and we’ll dive into their training, diving into the internals of these models (for example, the math behind attention mechanisms) or how to pre-train a model from scratch is outside the scope of this book. Luckily for us, there are excellent resources to learn about this:

	
The Illustrated Transformer by Jay Alammar is a beautiful visual guide that explains transformers in a detailed and intuitive way.

	
We recommend reading the Natural Language Processing with Transformers book if you want to dive deeper into the internals of fine-tuning these models for multiple specific tasks.

	
Hugging Face has a free, open-source course which teaches how to solve different NLP tasks.

If you want to dive more into the GPT family of models, we suggest to review the following papers:

	
Improving Language Understanding by Generative Pre-Training. This is the original GPT paper, published in 2018 by Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. It introduced the idea of using a Transformer-based model pre-trained on a large corpus of text to learn general language representations and then fine-tuning it on specific downstream tasks. The paper also showed that the GPT model achieved state-of-the-art results on several natural language understanding benchmarks at the time.

	
Language Models are Unsupervised Multitask Learners, published in 2019 by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. It presented GPT-2, a Transformer-based model with 1.5 billion parameters pre-trained on a large corpus of web text called WebText. The paper also demonstrated that GPT-2 could perform well on various natural language tasks without fine-tuning, such as text generation, summarization, translation, reading comprehension, and commonsense reasoning. Finally, it discussed large-scale language models’ potential ethical and social implications.

	
Language Models are Few-Shot Learners, published in 2020 by Tom B. Brown and others. This paper shows that scaling up language models dramatically improves their ability to perform new language tasks from only a few examples or simple instructions without fine-tuning or gradient updates. The paper also presents GPT-3, an autoregressive language model with 175 billion parameters, which achieves strong performance on many NLP datasets and tasks.

Exercises

	
What’s the role of the attention mechanism in text generation?

	
In which cases would a character-based tokenizer be preferred?

	
What happens if you use a tokenizer different from the one used with the model?

	
What’s the risk of using no_repeat_ngram_size when doing generation? (hint: think of city names)

	
What would happen if you combine Beam-search and sampling?

	
Imagine you’re using a LLM that generates code in a code editor by doing sampling. What would be more convenient? A low temperature or a high temperature?

	
What’s the importance of fine-tuning, and why is it different than zero-shot generation?

	
Explain the difference and application of encoder, decoder, and encoder-decoder transformers.

Challenges

	
Use a summarization model (you can do pipeline(“summarization)) to generate summaries of a paragraph. How does it compare with the results of using zero-shot? Can it be beaten by providing few-shot examples?

	
In the zero-shot supplementary material, we calculate the confusion matrix using zero-shot classification. Explore using the distilbert-base-uncased-finetuned-sst-2-english encoder model that can do sentiment analysis. What results do you get?

	
Let’s build a FAQ system! Sentence transformers are powerful models that can determine how similar multiple texts are. While the transformer encoder usually outputs an embedding for each token, sentence transformers output an embedding for the whole input text, allowing us to determine if the two texts are similar based on their similarity score. Let’s look at a simple example using the sentence_transformers library.

from sentence_transformers import SentenceTransformer, util

sentences = ["I'm happy", "I'm full of happiness"]
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")

Compute embedding for both lists
embedding_1 = model.encode(sentences[0], convert_to_tensor=True)
embedding_2 = model.encode(sentences[1], convert_to_tensor=True)

util.pytorch_cos_sim(embedding_1, embedding_2)

tensor([[0.6003]], device='cuda:0')

Write a list of five questions and answers about a topic. Your goal will be to build a system that, given a new question, can give the user the most likely answer. How can we use sentence transformers to solve this? The supplemental material contains the solution, but although challenging, we suggest trying it first before looking there!

References

	
Brown, Tom B., et al. Language Models Are Few-Shot Learners. arXiv, 22 July 2020. arXiv.org, http://arxiv.org/abs/2005.14165

	
Devlin, Jacob, et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv, 24 May 2019. arXiv.org, http://arxiv.org/abs/1810.04805

	
Dosovitskiy, Alexey, et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv, 3 June 2021. arXiv.org, http://arxiv.org/abs/2010.11929

	
Fourrier. Clémentine, "Introduction to Graph Machine Learning" Hugging Face Blog, https://huggingface.co/blog/intro-graphml

	
Holtzman, Ari, et al. The Curious Case of Neural Text Degeneration. arXiv, 14 Feb. 2020. arXiv.org, http://arxiv.org/abs/1904.09751

	
Howard, Jeremy, and Sebastian Ruder. Universal Language Model Fine-Tuning for Text Classification. arXiv, 23 May 2018. arXiv.org, http://arxiv.org/abs/1801.06146

	
Lewis, Mike, et al. BART: Denoising Sequence-to-Sequence Pre-Training for Natural Language Generation, Translation, and Comprehension. arXiv, 29 Oct. 2019. arXiv.org, http://arxiv.org/abs/1910.13461

	
Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1, no. 8 (2019): 9.

	
Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).

	
Raffel, Colin, et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv, 28 July 2020. arXiv.org, http://arxiv.org/abs/1910.10683

	
T. Lan, “Generating human-level text with contrastive search in Transformers,” Hugging Face Blog, https://huggingface.co/blog/introducing-csearch

	
Vaswani, Ashish, et al. Attention Is All You Need. arXiv, 1 Aug. 2023. arXiv.org, http://arxiv.org/abs/1706.03762

	
Yang, Jingfeng, et al. Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. arXiv, 27 Apr. 2023. arXiv.org, http://arxiv.org/abs/2304.13712

1 An excellent deep dive into contrastive search is the "Generating Human-level Text with Contrastive Search" blog post (https://huggingface.co/blog/introducing-csearch).
2 The first example in the GPT-2 release blog post was famously a news story about unicorns (https://openai.com/research/better-language-models).
3 This model was trained and open-sourced by EleutherAI using their implementation of the GPT-3 architecture; see https://huggingface.co/EleutherAI/gpt-neo-1.3B
4 Vaswani et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
5 Lewis et al. "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension"
6 Raffel, Colin, et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv, 28 July 2020. arXiv.org, http://arxiv.org/abs/1910.10683
7 Devlin, Jacob, et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv, 24 May 2019. arXiv.org, http://arxiv.org/abs/1810.04805
8 Yang, Jingfeng, et al. Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. arXiv, 27 Apr. 2023. arXiv.org, http://arxiv.org/abs/2304.13712
9 Howard, Jeremy, and Sebastian Ruder. Universal Language Model Fine-Tuning for Text Classification. arXiv, 23 May 2018. arXiv.org, http://arxiv.org/abs/1801.06146
10 This oversimplifies how semantic search works, but we’ll get a chance to build a simple search system using semantic embeddings in the challenge section of this chapter.
11 Dosovitskiy, Alexey, et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv, 3 June 2021. arXiv.org, http://arxiv.org/abs/2010.11929
12 The "Introduction to Graph Machine Learning" blog post (https://huggingface.co/blog/intro-graphml) is a great resource to jump into the topic.

Chapter 2. Diffusion Models

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the fourth chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

The field of image generation became widely popular with Ian Goodfellow’s introduction of Generative Adversarial Nets (GANs) in 2014. The key ideas of GANs led to a big family of models that could quickly generate high-quality images. However, despite their success, GANs posed challenges, requiring many parameters and help to generalize effectively. These limitations sparked parallel research endeavors, leading to the exploration of diffusion models—a class of models that would redefine the landscape of high-quality, flexible image generation.

In late 2020, a little-known class of models called diffusion models began causing a stir in the Machine Learning world. Researchers figured out how to use these diffusion models to generate higher-quality images than those produced by GANs. A flurry of papers followed, proposing improvements and modifications that pushed the quality up even further. By late 2021, models like GLIDE showcased incredible results on text-to-image tasks. Just a few months later, these models had entered the mainstream with tools like DALL-E 2 and Stable Diffusion. These models made it easy for anyone to generate images just by typing in a text description of what they wanted to see.

In this chapter, we will dig into how these models work. We’ll outline the key insights that make them so powerful, generate images with existing models to get a feel for how they work, and then train our own to deepen this understanding further. The field is still rapidly evolving, but the topics covered here should give you a solid foundation to build on, which will be extended further in Chapters 5, 7, and 8, which take these ideas even further.

The high-level idea of diffusion models is that they receive images blurred with noise and learn to denoise them, outputting a clear image. When diffusion models are trained, the dataset contains images with different amounts of noise (even when the input is pure noise)! In inference, we can begin with pure noise, and the model will generate an image that matches the training distribution. The model does multiple iterations to accomplish this, correcting itself and leading to impressively high-quality generations!

The Key Insight: Iterative Refinement

So, what is it that makes diffusion models so powerful? Previous techniques, such as VAEs or GANs, generate their final output via a single forward pass of the model. This means the model must get everything right on the first try. If it makes a mistake, it can’t go back and fix it. Diffusion models, on the other hand, generate their output by iterating over many steps. This iterative refinement allows the model to correct mistakes made in previous steps and gradually improve the output. To illustrate this, let’s look at an example of a diffusion model in action.

We can load a pre-trained model using the Hugging Face diffusers library. The library provides a high-level pipeline that can be used to create images directly.

import torch
from diffusers import DDPMPipeline

We can set the device to either use our GPU or use our CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Load the pipeline
image_pipe = DDPMPipeline.from_pretrained("google/ddpm-celebahq-256")
image_pipe.to(device)

Sample an image
image_pipe().images[0]

Loading pipeline components...: 0%| | 0/2 [00:00<?, ?it/s]

 0%| | 0/1000 [00:00<?, ?it/s]

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-3-output-3]

The pipeline does not show us what is under the hood, so let’s dive into its internals. If you run the code, you will notice that generation took 1,000 steps. This diffusion pipeline has to go through 1,000 refinement steps (and forward passes!) to get to the final image. This is one of the major drawbacks of the vanilla diffusion models compared to the GANs - they require many steps to generate high-quality images, making the models slow at inference time.

We can re-create this sampling process step by step to understand better what is happening under the hood. At the beginning of the diffusion process, we initialize our sample x with a batch of four random images (in other words, we sample some random noise). We’ll run 30 steps to progressively denoise the input images and end up with a sample from the real distribution.

Let’s generate some images! On the left, you can see the input at a given step (beginning with the random noise). You can see the model’s prediction for the final images on the right. The results of the first row are not particularly good! Instead of jumping right to that final predicted image in a given diffusion step, we only modify the input x by a small amount in the direction of the prediction (shown on the left). We then feed this new, slightly better x through the model again for the next step, hopefully resulting in a slightly improved prediction, which can be used to update x a little more, and so on. With enough steps, the model can produce some impressively realistic images.

from genaibook.core import plot_noise_and_denoise

The random starting point is a batch of 4 images
Each image is 3-channel (RGB) 256x256 pixel image
image = torch.randn(4, 3, 256, 256).to(device)

Set the specific number of diffusion steps
image_pipe.scheduler.set_timesteps(num_inference_steps=30)

Loop through the sampling timesteps
for i, t in enumerate(image_pipe.scheduler.timesteps):
 # Get the prediction given the current sample x and the timestep t
 # As we're running inference, we don't need to calculate gradients,
 # so we can use torch.no_grad().
 with torch.no_grad():
 # We need to pass in the timestep t so that the model knows what
 # timestep it's currently at. We'll learn more about this in the
 # coming sections.
 noise_pred = image_pipe.unet(image, t)["sample"]

 # Calculate what the updated x should look like with the scheduler
 scheduler_output = image_pipe.scheduler.step(noise_pred, t, image)

 # Update x
 image = scheduler_output.prev_sample

 # Occasionally display both x and the predicted denoised images
 if i % 10 == 0 or i == len(image_pipe.scheduler.timesteps) - 1:
 plot_noise_and_denoise(scheduler_output, i)

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-4-output-1]

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-4-output-2]

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-4-output-3]

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-4-output-4]

Note

Don’t worry if that chunk of code looks intimidating - we’ll explain how
this all works throughout this chapter. For now, focus on the conceptual
idea.

This core idea of learning how to refine a "corrupted" input gradually can be applied to a wide range of tasks. This chapter will focus on unconditional image generation, generating images that resemble the training data distribution. For example, we can train an unconditional image generation model with a dataset of butterflies so it can also generate new, high-quality images. This model would not be able to create images different than the distribution of its training dataset, so don’t expect it to generate dinosaurs! In Chapter 4, we’ll do a deep dive into diffusion models conditioned on text, but we can do many other things! Diffusion models have been applied to audio, video, text, 3D objects, protein structures, and other domains. While most implementations use some variant of the denoising approach we’ll cover here, emerging approaches that apply different types of "corruption" (always combined with iterative refinement) may move the field beyond the current focus on denoising diffusion. Exciting times!

Training a Diffusion Model

In this section, we’re going to train a diffusion model from scratch to gain a better understanding of how they work. We’ll start by using components from the diffusers library. As the chapter progresses, we’ll gradually demystify how each component works. Training a diffusion model is relatively straightforward compared to other generative models. To train a model, we repeatedly:

	
Load some images from the training data.

	
Add noise in different amounts. Remember, we want the model to do a good job estimating how to "fix" (denoise) both extremely noisy images and images that are close to perfect, so we want a dataset with diverse amounts of noise.

	
Feed the noisy versions of the inputs into the model.

	
Evaluate how well the model does at denoising these inputs.

	
Use this information to update the model weights.

To generate new images with a trained model, we begin with a completely random input and repeatedly feed it through the model, updating the input on each iteration by a small amount based on the model prediction. As we’ll see, several sampling methods streamline this process to generate good images with as few steps as possible.

The Data

For this example, we’ll use a dataset of images from the Hugging Face Hub- specifically, this collection of 1000 butterfly pictures1. Later on, in the projects section, you will see how to use your own data.

from datasets import load_dataset

dataset = load_dataset("huggan/smithsonian_butterflies_subset", split="train")

We must prepare the data before using it to train a model. Images are typically represented as a grid of pixels with color values between 0 and 255 for each of the three color channels (Red, Green, and Blue). To process these and make them ready for training, we:

	
Resize them to a fixed size.

	
(Optional) Add some augmentation by randomly flipping them horizontally, making the model more robust and allowing us to train with more data.2

	
Convert them to a PyTorch tensor (representing the color values as floats between 0 and 1).

	
Normalize them to have a mean of 0, with values between -1 and 1.

We can define these transformations using torchvision.transforms:

from torchvision import transforms

image_size = 64

Define data augmentations
preprocess = transforms.Compose(
 [
 transforms.Resize((image_size, image_size)), # Resize
 transforms.RandomHorizontalFlip(), # Randomly flip (data augmentation)
 transforms.ToTensor(), # Convert to tensor (0, 1)
 transforms.Normalize([0.5], [0.5]), # Map to (-1, 1)
]
)

The datasets library provides a convenient method, set_transform, which allows us to specify transformations that will be applied on the fly as the data is used. Finally, we can wrap the dataset with a DataLoader, a loading utility that makes it easy to iterate over batches of data, simplifying our training code.

batch_size = 16

def transform(examples):
 examples = [preprocess(image) for image in examples["image"]]
 return {"images": examples}

dataset.set_transform(transform)

train_dataloader = torch.utils.data.DataLoader(
 dataset, batch_size=batch_size, shuffle=True
)

We can check that this worked by loading a batch and inspecting the images.3

from genaibook.core import show_images

batch = next(iter(train_dataloader))

We map back to (0, 1) for display
show_images(batch["images"][:8] * 0.5 + 0.5)

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-9-output-1]

Adding Noise

How do we gradually corrupt our data? The most common approach is to add noise to the images. We will add different amounts of noise to the training data, as the goal is to train a robust model to denoise no matter how much noise is in the input. The amount of noise we add is controlled by a noise schedule. Different papers and approaches tackle this in different ways, which we’ll explore later in the chapter. For now, let’s see one common approach in action based on the DDPM paper.4 In diffusers, adding noise is handled by an object called a Scheduler, which takes in a batch of images and a list of timesteps and determines how to create the noisy versions of those images:

from diffusers import DDPMScheduler

We'll learn about beta_start and beta_end in the next sections
scheduler = DDPMScheduler(
 num_train_timesteps=1000, beta_start=0.001, beta_end=0.02
)
timesteps = torch.linspace(0, 999, 8).long()

We load 8 images from the dataset and
add increasing amounts of noise to them
x = batch["images"][:8]
noise = torch.rand_like(x)
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x * 0.5 + 0.5).clip(0, 1))

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-10-output-1]

During training, we’ll pick the timesteps at random. The scheduler takes some parameters (beta_start and beta_end), which it uses to determine how much noise should be present for a given timestep. We will cover schedulers in more detail in their section.

The UNet

The UNet is a convolutional neural network invented for tasks such as image segmentation, where the desired output has the same shape as the input. It consists of a series of downsampling layers that reduce the spatial size of the input, followed by a series of upsampling layers that increase the spatial extent of the input again. The downsampling layers are typically followed by a skip connection that connects the downsampling layer’s output to the upsampling layer’s input. This allows the upsampling layers to "see" the higher-resolution representations from earlier in the network, which is helpful for tasks with image-like outputs where this high-resolution information is beneficial.

The UNet architecture used in the diffusers library is more advanced than the original UNet proposed in 2015,5 with additions like attention and residual blocks. We’ll take a closer look later, but the key idea here is that it can take in an input and produce a prediction that is the same shape. In diffusion models, the input can be a noisy image, and the output can be the predicted noise. With this information, we can now denoise the input image. For diffusion models, the UNet typically also takes the timestep as additional conditioning, which we will explore in the UNet deep dive section.

Here’s how we might create a UNet and feed our batch of noisy images through it:

from diffusers import UNet2DModel

Create a UNet2DModel
model = UNet2DModel(
 in_channels=3, # 3 channels for RGB images
 sample_size=64, # Specify our input size
 # The number of channels per block affects the model size
 block_out_channels=(64, 128, 256, 512),
 down_block_types=(
 "DownBlock2D",
 "DownBlock2D",
 "AttnDownBlock2D",
 "AttnDownBlock2D",
),
 up_block_types=("AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D"),
).to(device)

Pass a batch of data through to see it works
with torch.no_grad():
 out = model(noised_x.to(device), timestep=timesteps.to(device)).sample

out.shape

torch.Size([8, 3, 64, 64])

Note that the output is the same shape as the input, which is exactly what we want.

Training

Now that we have our data and model ready, let’s train it! For each training step, we:

	
Load a batch of images.

	
Add noise to the images. The amount of noise added depends on a specified number of timesteps: the more timesteps, the more noise. As mentioned, we want our model to denoise images with little noise and images with lots of noise. To achieve this, we’ll add random amounts of noise, so we’ll pick a random number of timesteps.

	
Feed the noisy images into the model.

	
Calculate the loss. In this case, we’ll use Mean Squared Error (MSE) between the model’s prediction and the target. The goal of the UNet model is to predict the noise in the input image, so the MSE is calculated between the UNet prediction and the noise added in step 2. This is called the noise or epsilon objective.

	
Backpropagate the loss and update the model weights with the optimizer.

Here’s what all of that looks like in code. Training will take a while, so this is a great moment to pause, review the chapter’s content, or get some food!

from torch.nn import functional as F

num_epochs = 50 # How many runs through the data should we do?
lr = 1e-4 # What learning rate should we use
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
losses = [] # Somewhere to store the loss values for later plotting

Train the model (this takes a while!)
for epoch in range(num_epochs):
 for batch in train_dataloader:
 # Load the input images
 clean_images = batch["images"].to(device)

 # Sample noise to add to the images
 noise = torch.randn(clean_images.shape).to(device)

 # Sample a random timestep for each image
 timesteps = torch.randint(
 0,
 scheduler.config.num_train_timesteps,
 (clean_images.shape[0],),
 device=device,
).long()

 # Add noise to the clean images according
 # to the noise magnitude at each timestep
 noisy_images = scheduler.add_noise(clean_images, noise, timesteps)

 # Get the model prediction for the noise
 # The model also uses the timestep as an input
 # for additional conditioning
 noise_pred = model(noisy_images, timesteps, return_dict=False)[0]

 # Compare the prediction with the actual noise
 loss = F.mse_loss(noise_pred, noise)

 # Store the loss for later plotting
 losses.append(loss.item())

 # Update the model parameters with the optimizer based on this loss
 loss.backward(loss)
 optimizer.step()
 optimizer.zero_grad()

from matplotlib import pyplot as plt

plt.subplots(1, 2, figsize=(12, 4))

plt.subplot(1, 2, 1)
plt.plot(losses)
plt.title("Training loss")
plt.xlabel("Training step")

plt.subplot(1, 2, 2)
plt.plot(range(400, len(losses)), losses[400:])
plt.title("Training loss from step 400")
plt.xlabel("Training step");

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-15-output-1]

The loss curve trends downwards as the model learns to denoise the images. The curve is somewhat noisy - the loss is not very stable. This is because each iteration uses different numbers of noising time steps. It is hard to tell whether this model will be good at generating samples by looking at the mean squared error of the noise predictions, so let’s move on to the next section and see how well it does.

Sampling

Now that we have a model, let’s do inference and generate some images. The diffusers library uses the idea of pipelines to bundle together all of the components needed to generate samples with a diffusion model6:

pipeline = DDPMPipeline(unet=model, scheduler=scheduler)
ims = pipeline(batch_size=4).images
show_images(ims, nrows=1)

 0%| | 0/1000 [00:00<?, ?it/s]

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-17-output-2]

Offloading the job of creating samples to the pipeline doesn’t show us what is going on under the hood. So, let’s do a simple sampling loop showing how the model gradually refines the input image based on the code in the pipeline’s call method.

Random starting point (4 random images):
sample = torch.randn(4, 3, 64, 64).to(device)

for t in scheduler.timesteps:
 # Get the model prediction
 with torch.no_grad():
 noise_pred = model(sample, t)["sample"]

 # Update sample with step
 sample = scheduler.step(noise_pred, t, sample).prev_sample

show_images(sample.clip(-1, 1) * 0.5 + 0.5, nrows=1)

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-18-output-1]

This is the same code we used at the beginning of the chapter to illustrate the idea of iterative refinement, but now you better understand what is happening here. If you look at the implementation of the DDPMPipeline in the diffusers library, you’ll see that the logic closely resembles our implementation above!

We start with a completely random input, which the model then refines in a series of steps. Each step is a small update to the input based on the model’s prediction for the noise at that timestep. We’re still abstracting away some complexity behind the call to pipeline.scheduler.step(); later, we will dive deeper into different sampling methods and how they work.

Evaluation

Evaluating generative models is complex - it’s a subjective task in nature. For example, given an input prompt "image of a cat with sunglasses“, there are many potential correct generations. A common approach is to combine qualitative evaluation (e.g., by having humans compare generations) and quantitative metrics, which provide a framework for evaluation but don’t necessarily correspond to high image quality.

FID scores (Fréchet Inception Distance) can evaluate generative model performance. FID scores compare how similar two image datasets are. Using a pretrained neural network, they measure how closely generated samples match real samples by comparing statistics between feature maps extracted from both datasets. The lower the score, the better the quality and realism of generated images produced by a given model. FID scores are popular due to their ability to provide an "objective" comparison metric for different types of generative networks without relying on human judgment.

[image:]
Figure 2-1. image.png

As convenient as FID scores are, there are important caveats to be aware of:

	
FID scores are designed to compare two distributions. Because of this, it assumes that we have access to a source dataset for comparison. A second issue is that you cannot calculate the FID score of a single generation. If we have one image, there’s no way to calculate its FID score.

	
The FID score for a given model depends on the number of samples used to calculate it, so when comparing models, we need to make sure both reported scores are calculated using the same number of samples. The common practice is to use 50,000 samples for this purpose, although to save time, you may evaluate a smaller number of samples during development and only do the complete evaluation once you’re ready to publish the results.

	
FID can be sensitive to many factors. For example, a different number of inference steps will lead to a very different FID. The scheduler (DDPM in this case) will also affect FID.

	
When calculating FID, images are resized to 299px square images. This makes it less useful as a metric for extremely low or high-resolution images. There are also minor differences between how resizing is handled by different deep learning frameworks, which can result in slight differences in the FID score!

	
The network used as a feature extractor for FID is typically a model trained on the ImageNet classification task7. When generating images in a different domain, the features learned by this model may be less useful. A more accurate approach is to first train a classification network on domain-specific data, making comparing scores between different papers and techniques harder. For now, the ImageNet model is the standard choice.

	
If you save generated samples for later evaluation, the format and compression can affect the FID score again. Avoid low-quality JPEG images where possible.

Even if you account for all these caveats, FID scores are just a rough measure of quality and do not perfectly capture the nuances of what makes images look more "real“. The evaluation of generative models is an active research area. Standard metrics like Kernel Inception Distance (KID) and Inception Score share similar issues with FID. So, use these metrics to get an idea of how one model performs relative to another, but also look at the actual images generated by each model to get a better sense of how they compare. Human preference is still the gold standard for quality in what is ultimately a fairly subjective field! For example, the Parti Prompts dataset contains 1600 prompts of varying difficulties and categories and allows comparing text-to-image models such as the ones we’ll explore in Chapter 4.

In Depth: Noise Schedules

In the training example above, one of the steps was to "add noise in different amounts“. We achieved this by picking a random timestep between 0 and 1000 and then relying on the scheduler to add the appropriate amount of noise. Likewise, during inference, we again relied on the scheduler to tell us which timesteps to use and how to move from one to the next, given the model predictions. Choosing how much noise to add is a crucial design decision that can drastically affect the performance of a given model. In this section, we’ll see why this is the case and explore different approaches used in practice.

Why Add Noise?

At the start of this chapter, we said that the key idea behind diffusion models is that of iterative refinement. During training, we corrupt an input by different amounts. During inference, we begin with a maximally corrupted input (that is, a pure noise image) and iteratively de-corrupt it, expecting to end up with a nice final result eventually.

So far, we’ve focused on one specific kind of corruption: adding Gaussian noise. One reason for this is the theoretical underpinnings of diffusion models - if we use a different corruption method, we are no longer technically doing diffusion! However, a paper titled Cold Diffusion8 dramatically demonstrated that we do not necessarily need to constrain ourselves to this method just for theoretical convenience. They showed that a diffusion-model-like approach works for many different corruption methods. That means that rather than using noise, we can use other image transformations. For example, models such as Muse, MaskGIT, and Paella have used random token masking or replacement as equivalent corruption methods.

Nonetheless, adding noise remains the most popular approach for several reasons:

	
We can easily control the amount of noise added, giving a smooth transition from "perfect" to "completely corrupted“. This is not the case for something like reducing the resolution of an image, which may result in "discrete" transitions.

	
We can have many valid random starting points for inference, unlike some methods, which may only have a limited number of possible initial (fully corrupted) states, such as a completely black image or a single-pixel image.

So, for now, we’ll add noise as our corruption method. Next, let’s look at how we add noise to our images.

Starting Simple

We have some images x, and we’d like to add some random noise to them.

x = next(iter(train_dataloader))["images"][:8]
noise = torch.rand_like(x)

One way we could do this is to linearly interpolate (”lerp" for short) between them by some amount. This gives us a function that smoothly transitions from the original image x to pure noise as the amount varies from 0 to 1:

def corrupt(x, noise, amount):
 amount = amount.view(-1, 1, 1, 1) # make sure it's broadcastable
 return (
 x * (1 - amount) + noise * amount
) # equivalent to x.lerp(noise, amount)

Let’s see this in action on a batch of data, with the amount of noise varying from 0 to 1:

amount = torch.linspace(0, 1, 8)
noised_x = corrupt(x, noise, amount)
show_images(noised_x * 0.5 + 0.5)

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-23-output-1]

This is doing what we want: smoothly transitioning from the original image to pure noise. We’ve created a noise schedule with the continuous time approach, where we represent the full path on a time scale from 0 to 1. Other approaches use a discrete time approach, with some large integer number of timesteps used to define the noise scheduler. We can wrap our function into a class that converts from continuous time to discrete timesteps and adds noise appropriately:

class SimpleScheduler:
 def __init__(self):
 self.num_train_timesteps = 1000

 def add_noise(self, x, noise, timesteps):
 amount = timesteps / self.num_train_timesteps
 return corrupt(x, noise, amount)

scheduler = SimpleScheduler()
timesteps = torch.linspace(0, 999, 8).long()
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images(noised_x * 0.5 + 0.5)

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-24-output-1]

Now that we have something we can directly compare to the schedulers used in the diffusers library, such as the DDPMScheduler we used during training. Let’s see how it compares:

scheduler = DDPMScheduler(beta_end=0.01)
timesteps = torch.linspace(0, 999, 8).long()
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x * 0.5 + 0.5).clip(0, 1))

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-25-output-1]

As you can see, although not exactly the same, the results are similar enough that we could explore training the model with our noise scheduler.

The Maths

Let’s dive into the underlying maths that explains how noise is added to the original images. One thing to remember is that there are many competing notations and approaches in the literature. For example, in some papers, the noise schedule is parametrized continuously, so t runs from 0 (no noise) to 1 (fully corrupted), as we did in our corrupt function. Other papers use a discrete time approach in which the timesteps are integers and run from 0 to some large number T, typically 1000. It is possible to convert between these two approaches the way we did with our SimpleScheduler class - make sure you’re consistent when comparing different models. We’ll stick with the discrete-time approach here.

A good place to start for going deeper into the maths is the DDPM paper or the annotated implementation.9

Let’s kick things off by defining how to do a single noise step to go from timestep t-1 to timestep t. As discussed, the idea will be to add some Gaussian noise with unit variance (
 ϵ
) to the previous step’s image.

 𝐱 t
 =
 𝐱 t-1
 +
 ϵ

Of course, we want to control how much noise we add to the image, so let’s introduce
 β t
.
 β t
 is defined for all timesteps t and specifies how much noise should be added at each step. In other words,
 x
 is a mix of
 𝐱 t-1
 and some random noise scaled by
 β t
.

 𝐱 t
 =

 1
 -
 β t

 𝐱 t-1
 +

 β t

 ϵ

We can go further and define this as a distribution. What the following equation tells us is that the noise
 𝐱 t
 belongs to a distribution with a mean of

 1
 -
 β t

 𝐱 t-1

 and a variance of
 β t
. In other words, the random noise added has a unity-variance noise scaled by

 β t

.

 q

 (
 𝐱 t
 |
 𝐱 t-1
)

 =
 𝒩

 (
 𝐱 t
 ;

 1
 -
 β t

 𝐱 t-1
 ,
 β t
 𝐈
)

 .

Amazing! We’ve now defined a distribution to sample
 x
 conditioned on the previous value. To get the noisy input at timestep t, we could begin at t=0 and repeatedly apply this single step, which would be very inefficient. Instead, we can find a formula to move to any timestep t in one go by doing the reparameterization trick. The idea is as follows:
 β t
 is defined by a schedule and can be precomputed independently of the values of the samples. We can then define

 α t
 =
 1
 -
 β t

 and
 α ¯
 as the cumulative product of all the
 α
 values up to the time
 t
,

 α ¯ t
 :
 =
 Π s=1 t
 α s

. With these tools and notation, we can redefine the distribution and how to sample at a particular time.

 q

 (
 𝐱 t
 |
 𝐱 t-1
)

 =
 𝒩

 (
 𝐱 t
 ;
 α ¯ t
 𝐱 t-1
 ,

 (
 1
 -
 α ¯ t
)

 𝐈
)

 .

 x t
 =

 α ¯ t

 x 0
 +

 1
 -
 α ¯ t

 ϵ

So,
 x t
 is the addition of
 x 0
 (scaled by

 α ¯ t

) and
 ϵ
 (scaled by

 1
 -
 α ¯ t

). Note that we can now calculate a sample directly without looping over all previous timesteps, making it much more efficient for training diffusion models.

In the diffusers library, the
 α ¯
 values are stored in scheduler.alphas_cumprod. Knowing this, we can plot the scaling factors for the original image
 x 0
 and the noise
 ϵ
 across the different timesteps for a given scheduler. The diffusers library allows us to control the beta values by defining its initial value (beta_start), final value (beta_end), and how the values will step, for example, linearly (beta_schedule="linear"). The following image shows that the noise is scaled up more as we have more timesteps, as expected.

from genaibook.core import plot_scheduler

plot_scheduler(
 DDPMScheduler(beta_start=0.001, beta_end=0.02, beta_schedule="linear")
)

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-26-output-1]

Our SimpleScheduler just linearly mixes between the original image and noise, as we can see if we plot the scaling factors (equivalent to

 α ¯ t

 and

 (
 1
 -
 α ¯ t
)

 in the DDPM case):

plot_scheduler(SimpleScheduler())

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-27-output-1]

A good noise schedule will ensure the model sees a mix of images at different noise levels. The best choice will differ based on the training data. Visualizing a few more options, note that:

	
Setting beta_end too low means we never completely corrupt the image, so the model will never see anything like the random noise used as a starting point for inference.

	
Setting beta_end extremely high means that most of the timesteps are spent on almost complete noise, resulting in poor training performance.

	
Different beta schedules give different curves. The cosine schedule is popular, as it smoothly transitions from the original image to the noise.

Let’s visualize these!

fig, (ax) = plt.subplots(1, 1, figsize=(8, 5))
plot_scheduler(
 DDPMScheduler(beta_schedule="linear"),
 label="default schedule",
 ax=ax,
 plot_both=False,
)
plot_scheduler(
 DDPMScheduler(beta_schedule="squaredcos_cap_v2"),
 label="cosine schedule",
 ax=ax,
 plot_both=False,
)
plot_scheduler(
 DDPMScheduler(beta_start=0.001, beta_end=0.003, beta_schedule="linear"),
 label="Low beta_end",
 ax=ax,
 plot_both=False,
)
plot_scheduler(
 DDPMScheduler(beta_start=0.001, beta_end=0.1, beta_schedule="linear"),
 label="High beta_end",
 ax=ax,
 plot_both=False,
)

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-28-output-1]

Note

All of the schedules shown here are called Variance Preserving (VP),
meaning that the variance of the model input is kept close to 1 across
the entire schedule. You may also encounter Variance Exploding (VE)
formulations where noise is added to the original image in different
amounts (resulting in high-variance inputs). Our SimpleScheduler is
almost a VP schedule, but the variance is not quite preserved due to the
linear interpolation.

As with many diffusion-related topics, there is a constant stream of new papers exploring the topic of noise schedules, so by the time you read this, there will likely be an extensive collection of options to try out!

Effect of Input Resolution and Scaling

One aspect of noise schedules that has mostly been overlooked until recently is the effect of the input size and scaling. Many papers test potential schedulers on small-scale datasets and at low resolution and then use the best-performing scheduler to train their final models on larger images. The problem with this can be seen if we add the same amount of noise to two images of different sizes:

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-29-output-1]

Images at high resolution tend to contain a lot of redundant information. This means that even if a single pixel is obscured by noise, the surrounding pixels have enough information to reconstruct the original image. This is different for low-resolution images, where a single pixel can contain a lot of information. Adding the same amount of noise to a low-resolution image will result in a much more corrupted image than adding the equivalent amount of noise to a high-resolution image.

Two independent papers from early 2023 thoroughly investigated this effect. Each used the new insights to train models capable of generating high-resolution outputs without requiring any of the tricks that have previously been necessary. Simple diffusion10 introduced a method for adjusting the noise schedule based on the input size, allowing a schedule optimized on low-resolution images to be appropriately modified for a new target resolution. The other paper11 performed similar experiments and noted another critical variable: input scaling. That is, how do we represent our images? If the images are represented as floats between 0 and 1, they will have a lower variance than the noise (typically unit variance). Thus, the signal-to-noise ratio will be lower for a given noise level than if the images were represented as floats between -1 and 1 (which we used in the training example above) or something else. Scaling the input images shifts the signal-to-noise ratio, so modifying this scaling is another way to adjust when training on larger images.

In Depth: UNets and Alternatives

Let’s address the actual model that makes the all-important predictions! To recap, this model must be capable of taking in a noisy image and outputting its noise, hence enabling denoising the input image. This requires a model that can take in an image of arbitrary size and output an image of the same size. Furthermore, the model should be able to make precise predictions at the pixel level while capturing higher-level information about the image. A popular approach is to use an architecture called a UNet. UNets were invented in 2015 for medical image segmentation and have since become a popular choice for various image-related tasks.

Like the AutoEncoders and VAEs we looked at in the previous chapter, UNets are made up of a series of downsampling and upsampling blocks. The downsampling blocks are responsible for reducing the image size, while the upsampling blocks are responsible for increasing the image size. The downsampling blocks typically comprise a series of convolutional layers, followed by a pooling or downsampling layer. The upsampling blocks generally include a series of convolutional layers, followed by an upsampling or transposed convolution layer. The transposed convolution layer is a particular type of convolutional layer that increases the size of the image rather than reducing it.

Regular AutoEncoders and VAE are not good choices for this task because they are less capable of making precise predictions at the pixel level since they must reconstruct the images from the low-dimensional latent space. In a UNet, the downsampling and upsampling blocks are connected by skip connections, which allow information to flow directly from the downsampling blocks to the upsampling blocks. This allows the model to make precise predictions at the pixel level while also capturing higher-level information about the image as a whole.

A Simple UNet

To better understand the structure of a UNet, let’s build a simple UNet from scratch.

[image:]
Figure 2-2. UNet

We’ll design a UNet that works with single-channel images (e.g., grayscale images), which we could use to build a diffusion model for datasets such as MNIST. We’ll use three layers in the downsampling path and another three in the upsampling path. Each layer consists of a convolution followed by an activation function and an upsampling or downsampling step, depending on whether they are in the encoding or decoding path. The skip connections, as mentioned, directly connect the downsampling blocks to the upsampling ones. There are multiple ways to implement the skip connections.

One approach, which we’ll use here, is to add the output of the downsampling block to the input of the corresponding upsampling block. Another method is concatenating the downsampling block’s output to the upsampling block’s input. We could even add some additional layers in the skip connections! Let’s keep things simple for now with the initial approach. Here’s what this network looks like in code:

from torch import nn

class BasicUNet(nn.Module):
 """A minimal UNet implementation."""

 def __init__(self, in_channels=1, out_channels=1):
 super().__init__()
 self.down_layers = nn.ModuleList(
 [
 nn.Conv2d(in_channels, 32, kernel_size=5, padding=2),
 nn.Conv2d(32, 64, kernel_size=5, padding=2),
 nn.Conv2d(64, 64, kernel_size=5, padding=2),
]
)
 self.up_layers = nn.ModuleList(
 [
 nn.Conv2d(64, 64, kernel_size=5, padding=2),
 nn.Conv2d(64, 32, kernel_size=5, padding=2),
 nn.Conv2d(32, out_channels, kernel_size=5, padding=2),
]
)
 self.act = nn.SiLU()
 self.downscale = nn.MaxPool2d(2)
 self.upscale = nn.Upsample(scale_factor=2)

 def forward(self, x):
 h = []
 for i, l in enumerate(self.down_layers):
 x = self.act(l(x))
 if i < 2: # For all but the third (final) down layer:
 h.append(x) # Storing output for skip connection
 x = self.downscale(x) # Downscale ready for the next layer

 for i, l in enumerate(self.up_layers):
 if i > 0: # For all except the first up layer
 x = self.upscale(x) # Upscale
 x += h.pop() # Fetching stored output (skip connection)
 x = self.act(l(x))

 return x

If you take an input image of shape (1, 28, 28), the path through the model would be as follows:

	
The image goes through the downscaling block. The first layer will make it of shape [32, 28, 28].

	
The image is then downscaled with max pooling, making it of shape [64, 14, 14].

	
We have another layer and downscaling, making it of shape [64, 7, 7].

	
There is a third layer in the downscaling block, but no downscaling this time.

	
We do the same process but in inverse, upscaling to [32, 14, 14] and [1, 28, 28].

A diffusion model trained with this architecture on MNIST produces the following samples (code included in the supplementary material but omitted here for brevity):

[image:]
Figure 2-3. Loss and generations of a basic UNet

Improving the UNet

This simple UNet works for this relatively easy task. How can we handle more complex data?

	
Add more parameters. This can be accomplished by using multiple convolutional layers in each block, using a larger number of filters in each convolutional layer, or making the network deeper.

	
Add normalization, such as batch normalization. Batch normalization can help the model learn more quickly and reliably by ensuring that the outputs of each layer are centered around 0 and have a standard deviation of 1.

	
Add regularization, such as dropout. Dropout helps prevent overfitting to the training data, which is essential when working with smaller datasets.

	
Add attention. Introducing self-attention layers allows the model to focus on different parts of the image at different times, which can help the UNet learn more complex functions. Adding transformer-like attention layers also lets us increase the number of learnable parameters. The downside is that attention layers are much more expensive to compute than regular convolutional layers at higher resolutions, so we typically only use them at lower resolutions (e.g., the lower-resolution blocks in the UNet).

For comparison, here are the results on MNIST when using the UNet implementation in the diffusers library, which features all of the above improvements:

[image:]
Figure 2-4. Loss and generations of an advanced UNet

Alternative Architectures

More recently, several alternative architectures have been proposed for diffusion models. These include:

	
Transformers. The Diffusion Transformers paper12 showed that a transformer-based architecture can train a diffusion model with excellent results. However, the compute and memory requirements of the transformer architecture remain a challenge for very high resolutions.

	
UViT. The UViT architecture from the Simple Diffusion paper aims to get the best of both worlds by replacing the middle layers of the UNet with a large stack of transformer blocks. A key insight of this paper is that focusing most of the compute at the lower resolution blocks of the UNet allows for more efficient training of high-resolution diffusion models. For very high resolutions, they do some additional pre-processing using something called a wavelet transform to reduce the spatial resolution of the input image while keeping as much information as possible through additional channels, again reducing the amount of compute spent on the higher spatial resolutions.

	
Recurrent Interface Networks. The RIN paper13 takes a similar approach, first mapping the high-resolution inputs to a more manageable and lower-dimensional latent representation, which is then processed by a stack of transformer blocks before being decoded back out to an image. Additionally, the RIN paper introduces the idea of recurrence where information is passed to the model from the previous processing step. This can benefit the iterative improvement that diffusion models are designed to perform.

It remains to be seen whether transformer-based approaches completely supplant UNets as the go-to architecture for diffusion models or whether hybrid approaches like the UViT and RIN architectures will be the most effective.

In Depth: Objectives and Pre-Conditioning

We’ve discussed diffusion models taking a noisy input and learning to denoise it. At first glance, you might assume that the network’s natural prediction target is the image’s denoised version, which we’ll call x0. However, we compared the model prediction in the code with the unit-variance noise used to create the noisy version (often called the epsilon objective, eps). The two appear mathematically identical since if we know the noise and the timestep, we can derive x0 and vice versa. While this is true, the objective choice has some subtle effects on how large the loss is at different timesteps and, thus, which noise levels the model learns best to denoise. Predicting noise is easier for the model than directly predicting the target data. This is because the noise follows a known distribution at each step, and predicting the difference between two steps is often simpler than predicting the absolute values of the target data.

To gain some intuition, let’s visualize some different objectives across different timesteps:

[image: 01_03_diffusion_models_intro_files/figure-asciidoctor/cell-33-output-1]

At extremely low noise levels, the x0 objective is trivially easy, while predicting the noise accurately is almost impossible. Likewise, at extremely high noise levels, the eps objective is straightforward, while predicting the denoised image accurately is almost impossible. If we use the x0 objective, our training will put less weight on lower noise levels. Neither case is ideal, and so additional objectives have been introduced that have the model predict a mix of x0 and eps at different timesteps. The velocity (v) objective is one such objective, which is defined as

 v
 =

 α ¯

 ·
 ϵ
 +

 1
 -
 α ¯

 ·
 x 0

. The eps objective remains one of the most preferred approaches, but it’s important to be aware of its disadvantages and the existence of other objectives.

Note

A group of researchers at NVIDIA worked to unify the different
formulations of diffusion models into a consistent framework with a
clear separation of design choices. This allowed them to identify
changes in the sampling and training processes, resulting in better
performance, leading to what is known as k-diffusion. If you’re
interested in learning more about the different objectives, scalings,
and nuances of the diffusion model formulations, we recommend reading
the EDM paper for a more in-depth discussion.14

Summary

We started the chapter using high-level pipelines to run inference of diffusion models. We ended up training our diffusion model from scratch and diving into each component. Let’s do a brief recap.

The goal is to train a model, usually a UNet, that receives noisy images as input and can predict the noise part of that image. When training our model, we add noise in different magnitudes according to a random number of timesteps. One of the challenges we saw was that to add noise at a high number of steps, 900, for example, we would need to do a high number of noise iterations. To fix this, we use the reparameterization trick, which allows us to obtain the noisy input at a specific timestep directly. The model is trained to minimize the difference between the noise predictions and the actual input noise. For inference, we do an iterative refinement process in which the model refines the initial random input. Rather than keeping the final prediction of a single diffusion step, we iteratively modify the input x by a small amount in the direction of that prediction. This, of course, is one of the reasons why doing inference with diffusion models tends to be slow and becomes one of its main disadvantages compared to models like GANs.

This picture has many moving parts, so explain the concepts to ensure a solid understanding. The diffusion world is fast-moving, so many advances exist (e.g., the scheduler, the model, the training techniques, and so on). This chapter focused on foundations that will allow us to jump to conditional generation (e.g., generating an image conditioned on an input prompt) and provide a background for you to dive deeper into the diffusion world. Some of the readings through this chapter can help you dive deeper.

For additional readings, we suggest to review:

	
The Annotated Diffusion Model: This blog post does a technical write-up of the DDPM paper. It can be accessed at https://huggingface.co/blog/annotated-diffusion

	
Lilian Weng’s write-up is excellent for a deeper dive into the math. It can be accessed at https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

	
The Denoising Diffusion Probabilistic Models paper itself.

	
Karras work on unifying the formulations of diffusion models.

	
Simple diffusion, which explains how to adjust the sample schedule for different sizes.

Exercises

	
Explain the diffusion inference algorithm.

	
What’s the role of the noise scheduler?

	
When creating a training dataset of images, which characteristics are important to watch?

	
Why do we randomly flip training images?

	
How can we evaluate the generations of diffusion models?

	
How do the values of beta_end impact the diffusion process?

	
Why do we use UNets rather than VAEs as the main model for diffusion?

	
What benefits and challenges are faced when incorporating techniques from transformers (like attention layers or a transformer-based architecture) to diffusion?

Challenges

	
Show that

 𝐱 t
 =

 1
 -
 β t

 𝐱 t-1
 +

 β t

 ϵ

is equivalent to

 x t
 =

 α ¯ t

 x 0
 +

 1
 -
 α ¯ t

 ϵ

Note that this is not a trivial example. We recommend reviewing What are Diffusion Models? for guidance.

	
This chapter uses the DDPM scheduler, sometimes requiring hundreds or thousands of steps to achieve high-quality results. Recent research has explored achieving good generations with as few steps as possible, down to even one or two! The diffusers library contains multiple schedulers such as the DDIMScheduler from the Denoising Diffusion Implicit Models paper15 Create some images using the DDIMScheduler. This chapter’s sampling section required 1000 steps with the +DDPMScheduler+. How many steps are you required to generate images with similar quality? Experiment switching the scheduler for the google/ddpm-celebahq-256 and compare both schedulers.

References

	
Bansal, Arpit, et al. Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise. arXiv, 19 Aug. 2022. arXiv.org, http://arxiv.org/abs/2208.09392

	
Chen, Ting. On the Importance of Noise Scheduling for Diffusion Models. arXiv, 21 May 2023. arXiv.org, http://arxiv.org/abs/2301.10972

	
Ho, Jonathan, et al. Denoising Diffusion Probabilistic Models. arXiv, 16 Dec. 2020. arXiv.org, http://arxiv.org/abs/2006.11239

	
Hoogeboom, Emiel, et al. Simple Diffusion: End-to-End Diffusion for High Resolution Images. arXiv, 26 Jan. 2023. arXiv.org, http://arxiv.org/abs/2301.11093

	
Jabri, Allan, et al. Scalable Adaptive Computation for Iterative Generation. arXiv, 13 June 2023. arXiv.org, http://arxiv.org/abs/2212.11972

	
Karras, Tero, et al. Elucidating the Design Space of Diffusion-Based Generative Models. arXiv, 11 Oct. 2022. arXiv.org, http://arxiv.org/abs/2206.00364

	
Peebles, William, and Saining Xie. Scalable Diffusion Models with Transformers. arXiv, 2 Mar. 2023. arXiv.org, http://arxiv.org/abs/2212.09748

	
Rogge, Niels, and Rasul, Kashif, "The Annotated Diffusion Model" Hugging Face Blog, https://huggingface.co/blog/annotated-diffusion

	
Ronneberger, Olaf, et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv, 18 May 2015. arXiv.org, http://arxiv.org/abs/1505.04597

	
Song, Jiaming, et al. Denoising Diffusion Implicit Models. arXiv, 5 Oct. 2022. arXiv.org, https://arxiv.org/abs/2010.02502.

1 A subset of a dataset compiled by Ceyda Cinarel with butterflies extracted from the Smithsonian Institute and can be accessed at https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset
2 Using data augmentation is a common practice for different Computer Vision tasks. Flipping is just one technique of augmentation with image data. Other techniques are translating, scaling, and rotating.
3 We used images larger than 64×64 to print beautiful butterflies in the book instead of pixelated ones.
4 Ho, Jonathan, et al. Denoising Diffusion Probabilistic Models. arXiv, 16 Dec. 2020. arXiv.org, http://arxiv.org/abs/2006.11239.
5 Ronneberger, Olaf, et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv, 18 May 2015. arXiv.org, http://arxiv.org/abs/1505.04597.
6 The images were generated by the model we trained at a resolution of 64x64 and upscaled, so they’ll look pixelated
7 ImageNet is one of the most popular Computer Vision benchmarks. It contains millions of images in thousands of categories, making it a popular dataset for training and benchmarking base models
8 Bansal, Arpit, et al. Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise. arXiv, 19 Aug. 2022. arXiv.org, http://arxiv.org/abs/2208.09392
9 The annotated implementation is an excellent blog post (https://huggingface.co/blog/annotated-diffusion), which explains and implements the whole diffusion process from scratch.
10 Hoogeboom, Emiel, et al. Simple Diffusion: End-to-End Diffusion for High Resolution Images. arXiv, 26 Jan. 2023. arXiv.org, http://arxiv.org/abs/2301.11093.
11 Chen, Ting. On the Importance of Noise Scheduling for Diffusion Models. arXiv, 21 May 2023. arXiv.org, http://arxiv.org/abs/2301.10972.
12 Peebles, William, and Saining Xie. Scalable Diffusion Models with Transformers. arXiv, 2 Mar. 2023. arXiv.org, http://arxiv.org/abs/2212.09748.
13 Jabri, Allan, et al. Scalable Adaptive Computation for Iterative Generation. arXiv, 13 June 2023. arXiv.org, http://arxiv.org/abs/2212.11972.
14 Karras, Tero, et al. Elucidating the Design Space of Diffusion-Based Generative Models. arXiv, 11 Oct. 2022. arXiv.org, http://arxiv.org/abs/2206.00364.
15 Song, Jiaming, et al. Denoising Diffusion Implicit Models. arXiv, 5 Oct. 2022. arXiv.org, https://arxiv.org/abs/2010.02502.

Chapter 3. Stable Diffusion

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the fifth chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

In the previous chapter, we introduced diffusion models and the underlying idea of iterative refinement. By the end of the chapter, we could generate images, but training the model was time-consuming, and we had no control over the generated images. In this chapter, we’ll see how to go from this to text-conditioned models that can efficiently generate images based on text descriptions, with a model called Stable Diffusion (SD) as a case study. Before we get to SD, though, we’ll look at how conditional models work and review some of the innovations that led to the text-to-image models we have today.

Adding Control: Conditional Diffusion Models

Before we deal with the problem of generating images from text descriptions (a challenging task!), let’s focus on something slightly easier first. We’ll see how we can steer our model outputs towards specific types or classes of images. We can use a method called conditioning, where the idea is to ask the model to generate not just any image but an image belonging to a pre-defined class.

Model conditioning is a simple but effective idea. We’ll start from the diffusion model we used in Chapter 4, with just a few changes. First, rather than using the butterflies dataset, we’ll switch to a dataset that has classes. We’ll use Fashion MNIST, a dataset with thousands of images of clothes associated with a label from 10 different classes. Then, crucially, we’ll run two inputs through the model. Instead of just showing it what real images look like, we’ll also tell it the class every image belongs to. We expect the model to learn to associate images and labels to understand the distinctive features of sweaters, boots, and the like.

Note that we are not interested in solving a classification problem – we don’t want the model to tell us which class the image belongs to. We still want it to perform the same task as in Chapter 4: Please generate plausible images that look like they came from this dataset. The only difference is that we are giving it additional information about those images. We’ll use the same loss function and training strategy, as it’s the same task as before.

Preparing the Data

We need a dataset with distinct groups of images. Datasets intended for computer vision classification tasks are ideal for this purpose. We could start with something like the ImageNet dataset, which contains millions of images across 1000 classes. However, training models on this dataset would take an extremely long time. When approaching a new problem, starting with a smaller dataset is a good idea to ensure everything works as expected. This keeps the feedback loop short so we can iterate quickly and ensure we’re on the right track.

We could choose MNIST for this example, as in Chapter 4. To make things just a little bit different, we’ll choose Fashion MNIST instead. Fashion MNIST, developed and open-sourced by Zalando, is a replacement for MNIST that shares similar characteristics: a compact size, black-and-white images, and ten classes. The main difference is that classes correspond to different types of clothing instead of being digits, and the images contain more detail than simple handwritten digits.

Let’s look at some examples.

from datasets import load_dataset

from genaibook.core import show_images

fashion_mnist = load_dataset("fashion_mnist")
clothes = fashion_mnist["train"]["image"][:8]
classes = fashion_mnist["train"]["label"][:8]
show_images(clothes, titles=classes, figsize=(4, 2.5))

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-4-output-1]

So class 0 corresponds to a t-shirt, 2 is a sweater, and 9 is a boot 1. We prepare our dataset and dataloader similarly to how we did it in Chapter 4, with the main difference that we’ll also include the class information as input. Instead of resizing, we’ll pad our image inputs (28 × 28 pixels) to 32 × 32, as we did in Chapter 4.

import torch
from torchvision import transforms

preprocess = transforms.Compose(
 [
 transforms.RandomHorizontalFlip(), # Randomly flip (data augmentation)
 transforms.ToTensor(), # Convert to tensor (0, 1)
 transforms.Pad(2), # Add 2 pixels on all sides
 transforms.Normalize([0.5], [0.5]), # Map to (-1, 1)
]
)

def transform(examples):
 images = [preprocess(image) for image in examples["image"]]
 return {"images": images, "labels": examples["label"]}

train_dataset = fashion_mnist["train"].with_transform(transform)

train_dataloader = torch.utils.data.DataLoader(
 train_dataset, batch_size=256, shuffle=True
)

Creating a Class-Conditioned Model

The UNet from the diffusers library allows providing custom conditioning information. Here, we create a similar model to the one we used in Chapter 4, but we add a num_class_embeds argument to the UNet constructor. This argument tells the model we’d like to use class labels as additional conditioning. We’ll use ten as that’s the number of classes in Fashion MNIST.

from diffusers import UNet2DModel

model = UNet2DModel(
 in_channels=1, # 1 channel for grayscale images
 out_channels=1,
 sample_size=32,
 block_out_channels=(32, 64, 128, 256),
 num_class_embeds=10, # Enable class conditioning
)

To make predictions with this model, we must pass in the class labels as additional inputs to the +forward+ method:

x = torch.randn((1, 1, 32, 32))
with torch.no_grad():
 out = model(x, timestep=7, class_labels=torch.tensor([2])).sample
out.shape

torch.Size([1, 1, 32, 32])

Note

We also pass something else to the model as conditioning: the timestep!
That’s right, even the model from Chapter 4 can be considered a
conditional diffusion model! We condition it on the timestep, expecting
that knowing how far we are in the diffusion process will help it
generate more realistic images.

Internally, the timestep and the class label are turned into embeddings that the model uses during its forward pass. At multiple stages throughout the UNet, these embeddings are projected onto a dimension that matches the number of channels in a given layer. The embeddings are then added to the outputs of that layer. This means the conditioning information is fed to every block of the UNet, giving the model ample opportunity to learn how to use it effectively.

Training the Model

Adding noise works just as well on greyscale images as on the butterflies from Chapter 4. Let’s look at the impact of noise as we do more noising timesteps.

from diffusers import DDPMScheduler

scheduler = DDPMScheduler(
 num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02
)
timesteps = torch.linspace(0, 999, 8).long()
batch = next(iter(train_dataloader))
x = batch["images"][0].expand([8, 1, 32, 32])
noise = torch.rand_like(x)
noised_x = scheduler.add_noise(x, noise, timesteps)
show_images((noised_x * 0.5 + 0.5).clip(0, 1))

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-8-output-1]

Our training loop is also almost the same as in Chapter 4, except that we now pass the class labels for conditioning. Note that this is just additional information for the model, but it doesn’t affect how we define our loss function in any way. This is a great moment to kick off the training and get a tea, coffee, or drink of your choice!

Note

We’ll also display some progress during training using the Python
package tqdm. We can’t resist sharing this quote from their
documentation (https://tqdm.github.io):

tqdm means “progress” in Arabic (taqadum, تقدّم) and is an
abbreviation for “I love you so much” in Spanish (te quiero
demasiado).

from torch.nn import functional as F
from tqdm import tqdm

num_epochs = 25
lr = 3e-4
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
scheduler = DDPMScheduler(
 num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02
)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, eps=1e-5)
losses = [] # somewhere to store the loss values for later plotting

Train the model (this takes a while!)
for epoch in (progress := tqdm(range(num_epochs))):
 for step, batch in (
 inner := tqdm(
 enumerate(train_dataloader),
 position=0,
 leave=True,
 total=len(train_dataloader),
)
):
 # Load the input images and classes
 clean_images = batch["images"].to(device)
 class_labels = batch["labels"].to(device)

 # Sample noise to add to the images
 noise = torch.randn(clean_images.shape).to(device)

 # Sample a random timestep for each image
 timesteps = torch.randint(
 0,
 scheduler.config.num_train_timesteps,
 (clean_images.shape[0],),
 device=device,
).long()

 # Add noise to the clean images according to the timestep
 noisy_images = scheduler.add_noise(clean_images, noise, timesteps)

 # Get the model prediction for the noise - note the use of class_labels
 noise_pred = model(
 noisy_images,
 timesteps,
 class_labels=class_labels,
 return_dict=False,
)[0]

 # Compare the prediction with the actual noise:
 loss = F.mse_loss(noise_pred, noise)

 # Display loss
 inner.set_postfix(loss=f"{loss.cpu().item():.3f}")

 # Store the loss for later plotting
 losses.append(loss.item())

 # Update the model parameters with the optimizer based on this loss
 loss.backward(loss)
 optimizer.step()
 optimizer.zero_grad()

import matplotlib.pyplot as plt

plt.plot(losses)

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-10-output-1]

Sampling

We now have a model that expects two inputs when making predictions: the image and the class label. We can create samples by beginning with random noise and then iteratively denoising, passing in whatever class label we’d like to generate:

def generate_from_class(class_to_generate, n_samples=8):
 sample = torch.randn(n_samples, 1, 32, 32).to(device)
 class_labels = [class_to_generate] * n_samples
 class_labels = torch.tensor(class_labels).to(device)

 for _, t in tqdm(enumerate(scheduler.timesteps)):
 # Get model pred
 with torch.no_grad():
 noise_pred = model(sample, t, class_labels=class_labels).sample

 # Update sample with step
 sample = scheduler.step(noise_pred, t, sample).prev_sample

 return sample.clip(-1, 1) * 0.5 + 0.5

Generate t-shirts (class 0)
images = generate_from_class(0)
show_images(images, nrows=2)

1000it [00:13, 75.05it/s]

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-13-output-2]

Now generate some sneakers (class 7)
images = generate_from_class(7)
show_images(images, nrows=2)

1000it [00:13, 76.91it/s]

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-14-output-2]

...or boots (class 9)
images = generate_from_class(9)
show_images(images, nrows=2)

1000it [00:13, 76.29it/s]

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-15-output-2]

As you can see, the generated images are far from perfect. They’d get much better if we explored the architecture and trained for longer. But it’s amazing that the model learned the shapes of different types of clothing and realized that shape 9 looks different than shape 0 just by sending this information alongside the training data. To put it slightly differently, the model is used to seeing the number 9 accompanying boots. When we ask it to generate an image and provide the 9, it responds with a boot.

Improving Efficiency: Latent Diffusion

Now that we can train a conditional model, we need to scale it up and condition it on text instead of class labels, right?… Right? Well, not quite. As image size grows, so does the computational power required to work with those images. This is especially pronounced in self-attention, where the amount of operations grows quadratically with the number of inputs. A 128px square image has four times as many pixels as a 64px square image, requiring 16 times the memory and computing in a self-attention layer. This is a problem for anyone who’d like to generate high-resolution images!

Latent diffusion tries to mitigate this issue using a separate model called a Variational Auto-Encoder (VAE). As we saw in Chapter 2, VAEs can compress images to a smaller spatial dimension. The rationale is that images tend to contain a large amount of redundant information. Given enough training data, a VAE can learn to produce a much smaller representation of an input image and then reconstruct the image with high fidelity based on this small latent representation. The VAE used in Stable Diffusion takes in 3-channel images and produces a 4-channel latent representation with a reduction factor of 8 for each spatial dimension. A 512px input square image (3x512x512=786,432 values) will be compressed down to a 4x64x64 latent (16,384 values).

By applying the diffusion process on these smaller latent representations rather than on full-resolution images, we can get many of the benefits that would come from using smaller images (lower memory usage, fewer layers needed in the UNet, faster generation times, etc.) and still decode the result back to a high-resolution image once we’re ready to view it. This innovation dramatically lowers the cost to train and run these models. The paper that introduced this idea, Latent Diffusion Models2, demonstrated the power of this technique by training models conditioned on segmentation maps, class labels, and text. The impressive results led to further collaboration between the authors and partners such as RunwayML, LAION, StabilityAI, and EleutherAI to train a more powerful model version, which became Stable Diffusion.

Stable Diffusion: Components in Depth

Stable Diffusion is a text-conditioned latent diffusion model. Thanks to its popularity, hundreds of websites and apps let you use it to create images with no technical knowledge required. It’s also very well-supported by libraries like diffusers, which let us sample an image with SD using a user-friendly pipeline:

from diffusers import AutoencoderKL, StableDiffusionPipeline

vae = AutoencoderKL.from_pretrained(
 "stabilityai/sd-vae-ft-ema", torch_dtype=torch.float16
).to(device)
pipe = StableDiffusionPipeline.from_pretrained(
 "runwayml/stable-diffusion-v1-5",
 vae=vae,
 torch_dtype=torch.float16,
 variant="fp16",
).to(device)

pipe("Watercolor illustration of a rose").images[0]

 0%| | 0/50 [00:00<?, ?it/s]

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-18-output-2]

This section will explore all the components that make this possible.

The Text Encoder

So, how does Stable Diffusion understand text? Earlier on, we showed how feeding additional information to the UNet allows us to have some control over the types of images generated. Given a noisy version of an image, the model is tasked with predicting the denoised version based on additional clues such as a class label. In the case of SD, the additional clue is the text prompt. At inference time, we feed in the description of an image we’d like to generate and some pure noise as a starting point, and the model does its best to denoise the random input into something that matches the caption.

For this to work, we need to create a numeric representation of the text that captures relevant information about what it describes. To accomplish this, we’ll use a text encoder which turns an input string into text embeddings, which are then fed into the UNet along with the timestep and the noisy latents.

[image: images/ch_4_stable_diffusion/simplified_unet]

To do this, SD leverages a pre-trained transformer model based on CLIP, introduced in Chapter 2. The text encoder is a transformer model that takes in a sequence of tokens and produces a vector for each token. In the case of the first version of Stable Diffusion (SD 1 to 1.5), where they used the original CLIP from OpenAI, the text encoder maps to a 768-dimensional vector. As the original dataset of CLIP is unknown, the community trained an open-source version called OpenCLIP, which was trained on a dataset from LAION. Stable Diffusion 2 uses the text encoder from OpenCLIP, which generates 1024-dimensional vectors for each token.

Instead of combining the vectors of all tokens into a single representation, we keep them separate and use them as conditioning for the UNet. This allows the UNet to use the information in each token separately rather than just the overall meaning of the prompt. Because we’re extracting these text embeddings from the internal representation of the CLIP model, they are often called the encoder hidden states. Let’s dive deeper into how the text encoder works under the hood. This is the same process as the encoder models we saw in Chapter 3.

[image: text encoder diagram]

Diagram showing the text encoding process which transforms the input prompt into a set of text embeddings (the encoder_hidden_states) which can then be fed in as conditioning to the UNet.

The first step to encode text is to follow a process called tokenization. This converts a sequence of characters into a sequence of numbers, each representing a group of various characters. In the following example, we see how the tokenization of a phrase works with Stable Diffusion’s tokenizer. Each token in the prompt is assigned a unique token number (for example, "photograph" happens to be 8853 in the tokenizer’s vocabulary). There are also additional tokens that provide additional context, such as where the sentence ends.

prompt = "A photograph of a puppy"

Turn the text into a sequence of tokens:
text_input = pipe.tokenizer(
 prompt,
 padding="max_length",
 max_length=pipe.tokenizer.model_max_length,
 truncation=True,
 return_tensors="pt",
)

See the individual tokens
for t in text_input["input_ids"][0][:8]: # We'll just look at the first 7
 print(t, pipe.tokenizer.decoder.get(int(t)))

tensor(49406) <|startoftext|>
tensor(320) a</w>
tensor(8853) photograph</w>
tensor(539) of</w>
tensor(320) a</w>
tensor(6829) puppy</w>
tensor(49407) <|endoftext|>
tensor(49407) <|endoftext|>

Once the text is tokenized, we can pass it through the text encoder to get the final text embeddings that will be fed into the UNet:

text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
print("Text embeddings shape:", text_embeddings.shape)

Text embeddings shape: torch.Size([1, 77, 768])

Classifier-free guidance

Despite all the efforts to make the text conditioning as helpful as possible, the model still tends to default to relying primarily on the noisy input image rather than the prompt when making its predictions. In a way, this makes sense - many captions are only loosely related to their associated images, so the model learns not to rely too heavily on the descriptions! However, this is undesirable when generating new images - if the model doesn’t follow the prompt, we may get images that don’t relate to our description.

To mitigate this, we introduce guidance. Guidance provides more control to the sampling process. One option is to modify the loss function to favor a specific direction. For example, if we want to bias the generations towards a particular color, we could change the loss function to incorporate it. We could use CLIP in the loss function in text-conditioned models by comparing the difference between the prompt text and the generated image embeddings.

Another alternative is to use a trick called Classifier-Free Guidance (CGF), which combines the generations of conditional and unconditional diffusion models. During training, text conditioning is sometimes kept blank, forcing the model to learn to denoise images with no text information whatsoever (unconditional generation). Then, we make two predictions at inference time: one with the text prompt as conditioning and one without. We can then use the difference between these two predictions to create a final combined prediction that pushes even further in the direction indicated by the text-conditioned prediction according to some scaling factor (the guidance scale), hopefully resulting in an image that better matches the prompt. To incorporate the guidance, we can modify the noise prediction by doing something like noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond). This small change works surprisingly well and allows us to have much better control of the generations. We’ll dive into the implementation details later in the chapter, but let’s take a look at how to use it:

images = []
prompt = "An oil painting of a collie in a top hat"
for guidance_scale in [1, 2, 4, 12]:
 torch.manual_seed(0)
 image = pipe(prompt, guidance_scale=guidance_scale).images[0]
 images.append(image)

 0%| | 0/50 [00:00<?, ?it/s]

 0%| | 0/50 [00:00<?, ?it/s]

 0%| | 0/50 [00:00<?, ?it/s]

 0%| | 0/50 [00:00<?, ?it/s]

from genaibook.core import image_grid

image_grid(images, 1, 4)

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-22-output-1]

Images generated from the prompt "An oil painting of a collie in a top hat" with CFG scale 1, 2, 4 and 12 (left to right)

As you can see, higher values result in images that better match the description, but going too high may start to oversaturate the image.

The VAE

The VAE is tasked with compressing images into a smaller latent representation and reconstructing them again. The VAE used with Stable Diffusion is a truly impressive model. We won’t go into the training details here, but in addition to the usual reconstruction loss and KL divergence described in Chapter 2, the VAE uses an additional patch-based discriminator loss to help the model learn output plausible details and textures. This adds a GAN-like component to the training and helps avoid the slightly blurry outputs typical in previous VAEs. Like the text encoder, the VAE is usually trained separately and used as a frozen component during the diffusion model training and sampling process.

[image:]
Figure 3-1. VAE architecture

Let’s load an image and see what it looks like after being compressed and decompressed by the VAE:

from genaibook.core import load_image, show_image

im = load_image(
 "https://huggingface.co/datasets/genaibook/images/resolve/main/llama.jpeg",
 size=(512, 512),
)
show_image(im);

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-23-output-1]

with torch.no_grad():
 tensor_im = transforms.ToTensor()(im).unsqueeze(0).to(device) * 2 - 1
 latent = vae.encode(tensor_im.half()) # Encode the image to a distribution
 latents = latent.latent_dist.sample() # Sampling from the distribution
 # This scaling factor was introduced by the SD authors to reduce the
 # variance of the latents. Can be accessed via vae.config.scaling_factor
 latents = latents * 0.18215

latents.shape

torch.Size([1, 4, 64, 64])

Plot the individual channels of the latent representation
show_images(
 [l for l in latents[0]],
 titles=[f"Channel {i}" for i in range(latents.shape[1])],
 ncols=4,
)

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-25-output-1]

with torch.no_grad():
 image = vae.decode(latents / 0.18215).sample
image = (image / 2 + 0.5).clamp(0, 1)
show_image(image[0].float());

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-26-output-1]

When generating images from scratch, we create a random set of latents as the starting point. We iteratively refine these noisy latents to generate a sample, and then the VAE decoder is used to decode these final latents into an image we can view. The encoder is only used if we’d like to start the process from an existing image, something we’ll explore in Chapter 7.

The UNet

The UNet used in Stable Diffusion is similar to the one in Chapter 4 for generating images. Instead of taking in a 3-channel image as the input, we take in a 4-channel latent. The timestep embedding is fed the same way as the class conditioning was in the example at the start of this chapter. But this UNet also needs to accept the text embeddings as additional conditioning. Scattered throughout the UNet are cross-attention layers. Each spatial location in the UNet can attend to different tokens in the text conditioning, bringing in relevant information from the prompt. The diagram below shows how this text conditioning (as well as the timestep-based conditioning) is fed in at different points.

[image:]
Figure 3-2. UNet diagram

The UNet for Stable Diffusion versions 1 and 2 has around 860 million parameters. The UNet in the more recent SDXL has even more, at about 2.6 billion, and it uses additional conditioning information.

Stable Diffusion XL

During Summer 2023, a new and better version of Stable Diffusion was released: Stable Diffusion XL (or SDXL3). It uses the same principles described in this chapter, with various improvements across all system components. Some of the most exciting changes include:

	
Larger text encoder to capture better prompt representations. It uses the output from two text encoders and concatenates the representations.

	
Condition on everything. In addition to the timestep (that carries information about the amount of noise) and the text embeddings, SDXL uses the following additional conditioning signals:

	
Original image size. Instead of discarding small images in the training set (they account for almost 40% of the total training data used to train SDXL!), small images are upscaled and used during training. However, the model also receives information about the image sizes it’s seeing. This way, it learns that upscaling artifacts are not supposed to be part of large images and is encouraged to produce better quality during inference.

	
Cropping coordinates. Input images are usually randomly cropped during training because all the images in a batch must have the same size. Random crops may produce undesired effects, such as cutting subject heads or completely removing subjects from the image, even though they may be described in the text prompt! After the model is trained, if we request an uncropped image (by setting the crop coordinates to (0, 0)), the model is more likely to produce subjects centered in the frame.

	
Target aspect ratio. After initial pre-training on square images, SDXL was fine-tuned on various aspect ratios, and the information about the original aspect ratio was used as another conditioning signal. As in the other conditioning cases, this enables the generation of much more realistic landscape and portrait images with fewer artifacts than before.

	
Larger resolution. SDXL is designed to produce images with a resolution of 1024×1024 pixels (or non-square images with a total number of pixels of approximately 1024^2). Like the aspect ratio, this feature was achieved during a fine-tuning phase.

	
The UNet is about three times as large. The cross-attention context is larger to account for the increase in the amount of conditioning.

	
Improved VAE. It uses the same architecture as the original Stable Diffusion, but it’s trained on a larger batch size and uses the EMA (exponential moving average) technique to update the weights.

	
Refiner model. In addition to the base model, SDXL includes an additional refiner model that works on the same latent space as the base model. However, this model was trained on high-quality images only during the first 20% of the noise schedule. This means it knows how to take an image with a small amount of noise and create high-quality textures and details.

Other researchers and the open-source community had already explored many of these techniques, thanks to the original Stable Diffusion being open-sourced. SDXL combines many of these ideas to achieve an impressive improvement in image quality, with the cost of running the model being slower and using more memory. Our main takeaways are that the principles we covered (conditioning, in particular) are great general tools to guide the behavior of generative models and that open-source releases can make exploration faster.

Putting it All Together: Annotated Sampling Loop

Now that we know what each component does let’s combine them to generate an image without relying on the pipeline. Here are the settings we’ll use:

Some settings
prompt = [
 "Acrylic palette knife painting of a flower"
] # What we want to generate
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
seed = 42 # Seed for random number generator

The first step is to encode the text prompt. Because we plan to do classifier-free guidance, we’ll create two sets of text embeddings: one with the prompt embedding and one representing an empty string, which is the unconditional input. Although we’ll go with unconditional input here, this setup provides lots of flexibility. For example, we can:

	
encode a negative prompt instead of the empty string. Adding a negative prompt allows us to guide the model to avoid going in a direction. In Exercise 6 of this chapter, you’ll play with negative prompts

	
combine multiple prompts with different weights. Prompt weighting allows us to emphasize or de-emphasize certain parts of a prompt.

Tokenize the input
text_input = pipe.tokenizer(
 prompt,
 padding="max_length",
 max_length=pipe.tokenizer.model_max_length,
 truncation=True,
 return_tensors="pt",
)

Do the same for the unconditional input (a blank string)
uncond_input = pipe.tokenizer(
 "",
 padding="max_length",
 max_length=pipe.tokenizer.model_max_length,
 return_tensors="pt",
)

Feed both embeddings through the text encoder
with torch.no_grad():
 text_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
 uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]

Concatenate the two sets of text embeddings embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

Next, we create our random initial latents and set up the scheduler to use the desired number of inference steps:

Prepare the Scheduler
pipe.scheduler.set_timesteps(num_inference_steps)

Prepare the random starting latents
latents = (
 torch.randn(
 (1, pipe.unet.config.in_channels, height // 8, width // 8),
)
 .to(device)
 .half()
)
latents = latents * pipe.scheduler.init_noise_sigma

Now we loop through the sampling steps, getting the model prediction at each stage and using this to update the latents:

for i, t in enumerate(pipe.scheduler.timesteps):
 # Create two copies of the latents to match the two text embeddings (unconditional and conditional)
 latent_model_input = torch.cat([latents] * 2)
 latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)

 # Predict the noise residual for both sets of inputs
 with torch.no_grad():
 noise_pred = pipe.unet(
 latent_model_input, t, encoder_hidden_states=text_embeddings
).sample

 # Split the prediction into unconditional and conditional versions:
 noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)

 # Perform classifier-free guidance
 noise_pred = noise_pred_uncond + guidance_scale * (
 noise_pred_text - noise_pred_uncond
)

 # Compute the previous noisy sample x_t -> x_t-1
 latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample

Notice the classifier-free guidance step. Our final noise prediction is noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond), pushing the prediction away from the unconditional prediction towards the prediction based on the prompt. Try changing the guidance scale to see how this affects the output.

By the end of the loop, the latents should represent a plausible image that matches the prompt. The final step is to decode the latents into an image using the VAE so that we can see the result:

Scale and decode the image latents with the VAE
latents = 1 / vae.config.scaling_factor * latents
with torch.no_grad():
 image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)

show_image(image[0].float());

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-31-output-1]

If you explore the source code for the StableDiffusionPipeline, you’ll see that the code above closely matches the call method used by the pipeline. Hopefully, this annotated version shows that nothing too magical is happening behind the scenes! Use this as a reference when we encounter additional pipelines that add tricks to this foundation.

Open Data, Open Models

The LAION-5B dataset4 is comprised of over 5 billion image URLs and their respective associated captions (image-caption pairs). The dataset was created by first taking all image URLs found in CommonCrawl (an open repository of web-crawled data, similar to how Google indexes the internet for its search) and then using CLIP to keep only the image-caption pairs with high similarity between text and image.

This dataset was created by and for the open-source community, which saw the need for an open-access dataset of this kind. Before the LAION initiative, only a handful of research labs at large companies had access to image-text pair datasets. These organizations kept their datasets’ details to themselves, making their results impossible to validate or replicate. By creating a publicly available source of URL and caption indexes, LAION enabled a wave of smaller communities and organizations to train models and perform research that would otherwise have been impossible.

Latent Diffusion was one such model, trained on a previous version of the LAION dataset with 400M image-text pairs by CompVis5. The release of the LAION-trained latent diffusion model marked the first time a robust text-to-image model was available for all the research community.

The success of latent diffusion showed the potential of this approach, which was realized by the follow-up work, Stable Diffusion, a collaboration between Compvis and two incipient companies at the time: Stability AI and Runway ML. Training a model like SD required a significant amount of GPU time. Even leveraging the freely available LAION dataset, only a few could afford the GPU-hours investment. This is why the public release of the model weights and code was such a big deal - it marked the first time a powerful text-to-image model with similar capabilities to the best closed-source alternatives was available to all.

Stable Diffusion’s public availability has made it the go-to choice for researchers and developers exploring this technology over the past years. Hundreds of papers build upon the base model, adding new capabilities or finding innovative ways to improve its speed and quality. Apart from research papers, a diverse community not necessarily from a Machine Learning background has been hacking with the models to enable new creative workflows, optimize for faster inference, and so much more! Innumerable startups have found ways to integrate these rapidly improving tools into their products, spawning an entire ecosystem of new applications.

[image: 01_04_Stable_Diffusion_files/figure-asciidoctor/cell-32-output-1]

The months after the introduction of Stable Diffusion demonstrated the impact of sharing these technologies in the open, with many further quality improvements and customization techniques that we will explore in chapters 7 and 8. SD was competitive in quality with the commercial alternatives of the time, such as DALL-E and MidJourney, and thousands of people have spent their time making it better and building upon that open foundation. We hope this example encourages others to follow suit and share their work with the open-source community in the future!

Note

Apart from being used to train Stable Diffusion, LAION-5B has been used
by many other research efforts. One example is OpenCLIP, an effort from
the LAION community to train high-quality (state-of-the-art) open-source
CLIP models and replicate similar quality to the original one. A
high-quality open-source CLIP model benefits many tasks, such as image
retrieval and zero-shot image classification. Having transparency in the
data used to train the model also enables researching the impact of
scaling up the models, correctly reproducing results, and making
research more accessible.

The LAION organization’s and datasets’ impact has been tremendous in advancing research and empowering experimentation in the open-source community. However, the huge success of text-to-image generative models and downstream commercial applications based on such models have raised concerns about the data source in those datasets.

Because the dataset comprises links to images crawled from the internet, it contains millions of URLs pointing to images that may contain copyrighted material, such as photographs, works of art, comics, illustrations, etc. Research has also found that such dataset also includes private sensitive information, such as personally identifiable medical imagery, that was publicly available online6.

Using such a dataset to train generative AI models can also inject the model with the capability of producing content that reinforces or exacerbates societal biases7 and be used to produce explicit adult content. However, those open models are trained on open datasets, so such biases and problematic content can be studied, analyzed, and mitigated.8

While some countries have fair-use exceptions regarding copyright law for research usage, and others have precedents that seem favorable regarding using scraped data to train machine learning models, what happens when a research model trained on such materials is used commercially and at scale for generative AI? This complex subject is currently being litigated in courts in different jurisdictions in the United States and Europe, with angles that relate to copyright law, fair use for research applications, privacy, the economic impact of AI tools on creative jobs, and others. We don’t claim to have an answer for such complex matters, but such legal gray area is moving the research and open source community away from open using open datasets; for Stable Diffusion XL, the dataset used to train it was not disclosed, despite the open source model weights.

The construction of a new large-scale text-image dataset that puts consent, safety, and licensing in the center stage would also be an excellent resource for the research and open source communities and legal certainty for commercial downstream applications.

Summary

This chapter shows how conditioning gives us new ways to control the images generated by diffusion models. We’ve seen how a text encoder can condition a diffusion model on a text prompt, enabling powerful text-to-image capabilities. And we’ve explored how all of this comes together in the Stable Diffusion model by digging into the sampling loop and seeing how the different components work together.

In Chapter 7 of the book, you’ll learn how to fine-tune Stable Diffusion to add new knowledge or capabilities to the model. For example, we’ll see how, by showing pictures of your pet, Stable Diffusion can learn the concept of "your pet" and generate novel images in new scenarios, such as "your pet on the moon“!

Later, in Chapter 8, we’ll show some of the capabilities we can add to diffusion models to take them beyond simple image generation. For example, we’ll explore inpainting, which allows us to mask a part of the image and then fill that part. Chapter 8 also explores techniques to edit images based on a prompt.

Exercises

	
How does the training process of a class-conditioned diffusion model differ from a non-conditioned model, particularly in terms of the input data and the loss function used?

	
How does the timestep embedding influence the quality and evolution of the images during the diffusion process?

	
Explain the difference between latent diffusion and normal diffusion. What are the trade-offs of using latent diffusion?

	
How is the text prompt incorporated into the model?

	
What is the difference between classifier-based and classifier-free guidance? What is the benefit of classifier-free guidance?

	
What is the effect of using a negative prompt? Experiment with it using pipe(…, negative_prompt=““). How are you able to guide the image using Stable Diffusion?

	
Let’s say you want to remove white hats from any generated image. How can you use negative prompts for this? Try implementing this using the high-level pipeline and adapting the end-to-end inference example (hint: it only requires modifying the random part of the classifier-free conditioning).

	
What happens in SDXL if you use (256, 256) instead of (1024, 1024) as the "original size" conditioning signal? What happens if you use crop coordinates other than (0, 0)? Can you explain why?

Challenges

	
Blue Guidance. Let’s say we want to bias generated images to a specific color, such as blue. How can we do that? The first step is to define a conditioning function we’d like to minimize, which, in this case, will be a color loss.

def color_loss(images, target_color=(0.1, 0.5, 0.9)):
 """Given a target color (R, G, B) return a loss for how far away on average
 the images' pixels are from that color."""
 target = (
 torch.tensor(target_color).to(images.device) * 2 - 1
) # Map target color to (-1, 1)
 target = target[
 None, :, None, None
] # Get shape right to work with the images (b, c, h, w)
 error = torch.abs(
 images - target
).mean() # Mean absolute difference between the image pixels and the target color
 return error

Given this loss function, write a sampling loop (no training is needed!) that modifies x in the direction of the loss function. To simplify things, we recommend using the unconditional DDPMPipeline from Chapter 4.

References

	
Ho, Jonathan, and Tim Salimans. Classifier-Free Diffusion Guidance. arXiv, 25 July 2022. arXiv.org, http://arxiv.org/abs/2207.12598

	
Luccioni, Alexandra Sasha, et al. Stable Bias: Analyzing Societal Representations in Diffusion Models. arXiv, 20 Mar. 2023. arXiv.org, http://arxiv.org/abs/2303.11408

	
Podell, Dustin, et al. SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis. arXiv, 4 July 2023. arXiv.org, http://arxiv.org/abs/2307.01952 Rombach, Robin, et al. High-Resolution Image Synthesis with Latent Diffusion Models. arXiv, 13 Apr. 2022. arXiv.org, http://arxiv.org/abs/2112.10752

	
Schramowski, Patrick, et al. Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models. arXiv, 26 Apr. 2023. arXiv.org, http://arxiv.org/abs/2211.05105

	
Schuhmann, Christoph, et al. LAION-5B: An Open Large-Scale Dataset for Training next Generation Image-Text Models. arXiv, 15 Oct. 2022. arXiv.org, http://arxiv.org/abs/2210.08402

	
Xiao, Han, et al. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv, 15 Sept. 2017. arXiv.org, http://arxiv.org/abs/1708.07747.

1 Here’s a list of the ten categories in Fashion MNIST: https://www.kaggle.com/datasets/zalando-research/fashionmnist.
2 Rombach, Robin, et al. High-Resolution Image Synthesis with Latent Diffusion Models. arXiv, 13 Apr. 2022. arXiv.org, http://arxiv.org/abs/2112.10752
3 Podell, Dustin, et al. SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis. arXiv, 4 July 2023. arXiv.org, http://arxiv.org/abs/2307.01952.
4 See the official blog post for more info https://laion.ai/blog/laion-5b/
5 At the time, the Computer Vision Group at Heidelberg University, currently it is a research group at LMU Munich, https://github.com/CompVis
6 An article about this came out in 2022 soon after the release of Stable Diffusion - https://arstechnica.com/information-technology/2022/09/artist-finds-private-medical-record-photos-in-popular-ai-training-data-set/
7 Luccioni, Alexandra Sasha, et al. Stable Bias: Analyzing Societal Representations in Diffusion Models. arXiv, 20 Mar. 2023. arXiv.org, http://arxiv.org/abs/2303.11408
8 Schramowski, Patrick, et al. Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models. arXiv, 26 Apr. 2023. arXiv.org, http://arxiv.org/abs/2211.05105.

 About the Authors

 Pedro Cuenca is a machine learning engineer who works on diffusion software, models, and applications at Hugging Face.

 Apolinário Passos is a machine learning art engineer at Hugging Face, working across teams on multiple machine learning for art and creativity use cases.

 Omar Sanseviero is a lead machine learning engineer at Hugging Face, where he works at the intersection of open source, community, and product. Previously, Omar worked at Google on Google Assistant and TensorFlow.

 Jonathan Whitaker is a data scientist and deep learning researcher focused on generative modeling. Besides his research and consulting work, his main focus is on sharing knowledge, which he does via the DataScienceCastnet YouTube channel and various free online resources he has created.

 OEBPS/Images/text_encoder.png
ENCODER_HIDDEN_STATES
(AKA outputtext embeddings)

Positional Embeddings

1 t t

TEXT MODEL (STACK OF TRANSFORMER BLOCKS)
TRANSFORMER BLOCK

1

TRANSFORMER BLOCK

TRANSFORMER BLOCK

Feed.Forward Network

Mult-head Atiention

Taencrvessng | | ToenEnnein | | Tk Embosg
1 i i
<Istartoftext|> A photo

INPUT SEQUENCE (TOKENIZED)

OEBPS/Images/cell-4-output-3.png
Current x (step 20) Predicted denoised images (step 20

OEBPS/Images/cell-33-output-1.png
[—

OEBPS/Images/cell-31-output-1.png

OEBPS/Images/unet.png
e~

OEBPS/Images/cell-32-output-1.png

OEBPS/Styles/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/Images/cell-18-output-1.png

OEBPS/Images/cell-15-output-1.png
12

&

]

02

Training loss

Training loss from step 400

oz

006

004

o002

o 40 60 800 1000 1200 1400 1600
“Taining step.

%o w0 e om0 1m0 100
Taining step.

1500

OEBPS/Images/cover_ER.png
OREILLY"

Hands-On

Generative Al with
Transformers and
Diffusion Models

Early
Release

RAW &
UNEDITED

Pedro Cuencaq,
Apolindrio Passos,
Omar Sanseviero &

Jonathan Whitaker

OEBPS/Images/cell-4-output-2.png
Current x (step 10)

Predicted denoised images (step 10)

| BORe

OEBPS/Images/cell-4-output-4.png
Current x (step 29)

Predicted denoised images (step 29)

-~

OEBPS/Images/basic_unet_generations.png
Loss over time

CAaRIIOTN
Y- NT
DM DN T
R N N S)
R0 D e
nE DTSN~
AN e
NQET AP

s & 8 %

o0

008
006
004
002
000

OEBPS/Images/simplified_unet.png
Text embeddings.
(@7, 1024)

Noisy Latents
(4,64,69)

Timestep

Noise Prediction
(4,64,69)

OEBPS/Images/vae.png
put Image
(3,512,512)

vag
encoder

atents
(¢.64,69)

vae
decoder

ded Image
(3.512,512)

OEBPS/Images/cell-22-output-1.png

OEBPS/Images/advanced_unet_generations.png
Generated Samples

Loss over time

TOEQAAK O
NSV L RS T
Qv e hAavoh
QoPFaNnoa
M Qoo drgand
DO®A NS>
®ErOACQAY>
NS HnOan

OEBPS/Images/cell-3-output-3.png

OEBPS/Images/cell-9-output-1.png

OEBPS/Images/cell-29-output-1.png
Original

OEBPS/Images/cell-28-output-1.png
10

08

06

04

02

00

—— default schedule
—— cosine schedule
—— Low beta_end
High beta_end

600 800 1000

OEBPS/Images/cell-8-output-1.png

OEBPS/Images/cell-27-output-1.png
10

0.8

0.6

0.4

02

0.0

— V@ equivalent

—— V{1 -&) equivalent

600 800 1000

OEBPS/Images/cell-13-output-2.png

OEBPS/Images/cell-23-output-1.png

OEBPS/Images/cell-24-output-1.png

OEBPS/Images/cell-26-output-1.png

OEBPS/Images/sd_unet.png

OEBPS/Images/cell-25-output-1.png
Channel 1 Channel 2 Channel 3

OEBPS/Images/cell-10-output-1.png
10

0.8

0.6

0.4

02

0.0

0

1000

2000

3000

4000

5000

6000

OEBPS/Images/cell-18-output-2.png

OEBPS/Images/fim.png
Image
(3,299, 299)

Feature Maps

OEBPS/Images/cell-15-output-2.png

OEBPS/Images/cell-14-output-2.png
-1l

OEBPS/Images/cell-17-output-2.png

OEBPS/Images/cell-4-output-1.png
lﬁd!

