

 [image:]

AI-Assisted Programming

Using GitHub Copilot and ChatGPT for Coding

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Tom Taulli

 AI-Assisted Programming

 by
 Tom
 Taulli

 Copyright © 2025 Tom Taulli. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor: Brian Guerin

 	
 Development Editor: Shira Evans

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 October 2024:
 First Edition

 Revision History for the Early Release

 	
 2023-11-28:
 First Release

 	
 2024-01-03:
 Second Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098164560
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 AI-Assisted Programming, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-16456-0

Brief Table of Contents (Not Yet Final)

Chapter 1: A New World for Developers (available)

Chapter 2: How AI Coding Technology Works (available)

Chapter 3: Prompt Engineering (available)

Chapter 4: GitHub Copilot (unavailable)

Chapter 5: Other AI-Assisted Programming Tools (unavailable)

Chapter 6: ChatGPT and Other General-Purpose LLMs (unavailable)

Chapter 7: Ideas, Planning, and Requirements (unavailable)

Chapter 8: Coding (unavailable)

Chapter 9: Debugging, Testing, and Deployment (unavailable)

Chapter 10: Takeaways (unavailable)

 Chapter 1. A New World for Developers

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the first chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@gmail.com.

 While juggling between dense neural network architectures and pixel-wrangling with computer vision at Stanford in 2011 to 2016, Andrej Karpathy also moonlighted at Google. Over there, he tinkered around and whipped up a feature learning system for YouTube videos. Then he decided to become a founding member of OpenAI, and later the Senior Director of AI at Tesla, where he led a team to create the AutoPilot system.

 It’s safe to say he’s one the world’s top coders. He is also a skilled wordsmith with a massive Twitter – or X – following of nearly 800,000 followers. When ChatGPT catapulted onto the scene, he tweeted:

 The hottest new programming language is English.

 He wasn’t kidding. This wasn’t just a poetic ode to coding, but a nod to a future where typing out natural language prompts could conjure up computer code in seemingly any language. It’s like having a bilingual genie in your computer, ready to transcribe your English wishes into code commands.

 Then there came a tweet that echoed the sentiments of many developers:

 Copilot has dramatically accelerated my coding, it’s hard to imagine going back to “manual coding”. Still learning to use it but it already writes ~80% of my code, ~80% accuracy. I don’t even really code, I prompt. & edit.

 Karpathy was tipping his hat to Microsoft’s GitHub Copilot, a fresh brew of AI-assisted programming. But it would not take long until many other tools would sprout up. The pace of innovation was breathtaking.

 Now, for all the coders out there, the landscape might look like a dense jungle. What’s this brave new world of AI tools? Where do they dazzle and where do they fizzle? And how do you wade through this to become a savvy AI-assisted programmer?

 Well, this book will be your guide to help answer these questions – and many more. The spotlight will be on harnessing these tools to not just code faster, but smarter, and with a sprinkle of fun. So, let’s roll up our sleeves and jump into this AI-assisted programming journey.

 Evolution and Revolution

 A key theme of the evolution of programming languages is abstraction. This is a fancy way of describing how systems get easier for developers to use. The tedious details are handled in the background. Developers can then focus on what matters most. This has been a driving force of innovation, allowing for breakthroughs like the Internet, cloud computing, mobile and AI.

 Figure 1-1 highlights the evolution of the abstraction over the decades.

 [image: This diagram shows the evolution of abstraction of programming languages and tools.]
 Figure 1-1. This diagram shows the evolution of abstraction of programming languages and tools.

 Let’s go into further detail starting from the 1940s.

 	Machine Language to Assembly Language

 	
 In the dawn of the computer age, programmers had to wrestle with 0s and 1s to bend machines to their will. But then, assembly language came onto the scene. If offered in alphanumeric instructions, which made coding easier and less error-prone.

 	High-Level Languages

 	
 The 1950s brought us Fortran and COBOL, languages that let programmers code computers using somewhat plain English like DISPLAY, READ, WRITE and IF/THEN/ELSE. A compiler would convert these into the 0’s and 1’s that the computer could understand. As for the code, people who did not have a technical background could generally understand the workflow. The emergence of high-level languages would be a huge catalyst for the computer revolution.

 	Procedural Programming

 	
 Languages like C and Pascal introduced procedural programming, essentially packing complex tasks into neat little boxes called functions. This allowed for reusability and maintainability. This abstraction made managing colossal software projects less of a Herculean task.

 	Object-Oriented Programming (OOP)

 	
 Some of the stars of this type of computer language include C++ and Java. They brought a whole new level of abstraction. OOP allowed programmers to model real-world entities using classes and objects, encapsulating both data and behavior. This abstraction promoted modularity and allowed for more intuitive problem-solving.

 	Scripting Languages and Web Development

 	
 Python, Ruby and JavaScript abstracted many of the lower-level tasks associated with programming. They offered extensive libraries and built-in data structures, simplifying common programming tasks and reducing the amount of code needed to accomplish them.

 	Machine Learning and AI

 	
 With the rise of AI and machine learning, specialized libraries and frameworks like TensorFlow and PyTorch have abstracted away many of the intricate mathematical details. This has enabled developers to focus on model architecture and training processes.

 	AI-Assisted Programming

 	
 Of course, the latest entrant to this abstraction narrative is AI-assisted programming, a la GPT-4, Google’s PaLM and other massive large-language models (LLMs). These are like your backstage crew, ready to pitch in with code generation at your command.

 Let’s see a simple example. For this, we’ll use ChatGPT, which has a robust ability to whip up code. We will use a prompt to ask what we want the system to do. Suppose we have the following:

 In Python, write a program that checks if a given integer is even or odd and print the result.

 Figure 1-2 shows the response from ChatGPT.

 [image: With ChatGPT you can ask the system to create code. The response will not only include a listing but an explanation.]
 Figure 1-2. With ChatGPT, you can ask the system to create code. The response will not only include a listing but an explanation.

 We get the code listing, which even comes with helpful comments. Then there is an explanation of how the program works. You can then press the copy button at the top right and include the code in your IDE and run it.

 Generative AI

 Before we go deeper on how AI-assisted programming tools work, let’s get an overview of generative AI. This is the foundation of these systems.

 Generative AI is a branch of artificial intelligence (AI), which allows for the creation of new and unique content. Figure 1-3 provides a visual of how the different parts relate to each other.

 [image: This shows the relationships of the different types of AI such as generative AI and LLMs.]
 Figure 1-3. This shows the relationships of the different types of AI, such as generative AI and LLMs.

 AI is the big umbrella dedicated to machines that can pull off tasks with a flair of human intelligence. Tucked within AI is machine learning (ML). Instead of marching to the beat of explicit instructions, ML systems come up with insights based on heaps of data. These are generally based on complex algorithms, which allow for predicting or deciding outcomes without being hardcoded.

 Take a step deeper and you get deep learning (DL), a tighter slice of ML that rolls with neural networks stacked with hidden layers, hence the “deep” tag. These stacked models have shown standout results in areas like image and speech recognition.

 Within the corridors of deep learning, you’ll find Generative AI. This is the category devoted to models that create new data that reflects their training data.

 At the innermost circle sits LLMs, the likes of GPT-4, PaLM 2, Claude, and LLaMA. These powerful models – often called “foundation models” – churn out human-esque text based on the cutting-edge algorithm and training on huge amounts of data.

 But generative AI is more than just LLMs. They also have multimodal capabilities. This means they can create images, audio and video.

 In the next chapter, we’ll dive deeper into how generative AI works. But next, let’s now take a look at the pros and cons of AI-assisted programming tools.

 The Benefits

 Essentially, AI-assisted programming tools are crafted to enhance developers’ abilities, enabling them to zero in on advanced problem-solving and innovations, instead of being ensnared in monotonous tasks or complex code details. This is why GitHub’s use of the word “copilot” is spot on. It’s about having that reliable buddy in the cockpit, navigating through the intricate and often monotonous aspects of coding, allowing you to focus on what matters.

 In the upcoming sections, we’ll spotlight the benefits and practical applications of these powerful systems.

 Minimizing Search

 Developers often find themselves playing digital detectives, hunting down pesky bugs or wrapping their heads around cryptic codes. When they bump into a snag, their first instinct is to hit up Google or pay a visit to StackOverflow. A quick search, a snippet of code, and voila, they’re back to their IDE (Integrated Development Environment).

 But sometimes this can turn into an ordeal. The discussion on StackOverflow may wind up being a dead end. You search some more – but nothing seems to be on point. However, there’s one discussion that somewhat helps and you do further research on some related topics. You even search YouTube for a video. After chewing more than 30 minutes, you finally solve the problem.

 Yes, all developers have experienced this. Interestingly enough, the 2022 Developer from StackOverflow, which included responses from more than 70,000 developers, highlights this frustration. It found that 62% of the respondents spent more than 30 minutes a day searching for answers and 25% spent over an hour a day. According to the survey: “For a team of 50 developers, the amount of time spent searching for answers/solutions adds up to between 333-651 hours of time lost per week across the entire team.”

 Now, what if there was a way to slice through this thicket of time-consuming searches and get to the solution pronto? Enter AI-assisted programming, our knight in shining algorithm. Research from Microsoft supports this. It showed that more than 90% of developers who used GitHub Copilot managed to race through their tasks at a faster clip.

 Microsoft even put this to the test in a coder showdown. The company recruited 95 professional developers and split them into two groups. The task was to write an HTTP server in JavaScript. For those who used GitHub Copilot, they completed it 55% faster than those who did not.

 And it’s not just Microsoft singing praises. McKinsey & Co. also conducted a research study. It pulled more than 40 developers from across the U.S. and Asia. They had varying degrees of experience and backgrounds. For the research, there were common software tasks for three main categories: code generation, refactoring and documentation. This study occurred over several weeks.

 The results? When it came to documentation for keeping the code neat and tidy, AI-assisted tools were the standouts, cutting the time spent by half. Drafting new code and refactoring were nearly the same.

 However, for complex tasks, the AI tools didn’t quite hit the high notes. The time trimmed off was shy of 10%.

 But research showed that these results did not impact the overall quality of the code, such as in terms of the bugs, readability and maintainability. In fact, the AI-assisted programming tools provided marginal improvements. But this often was due to the fact that developers iterated with the tools.

 The research provided the following takeaways:

 	Easing routine chores with generative AI

 	
 The tools are great at tackling mundane tasks like auto-filling code functions, aiding in real-time code completion, and auto-documenting code. By handling these tasks, it frees up developers to dive into complex business issues and speedily deploy software features.

 	Smoother code drafts

 	
 Staring at a blank canvas can be daunting, but with generative AI tools, developers can nudge the creative process along by fetching code suggestions with a simple prompt, right within their IDE or separately. Many developers found these AI-based suggestions invaluable, helping overcome the “blank screen problem” and to get into the coding “zone” with a quicker pace.

 	Accelerating tweaks to existing code

 	
 With effective prompts, developers can adapt and improve existing code more swiftly. For instance, they can snag code from online libraries, pop it into a prompt, and then make iterative requests for AI-finessed adjustments based on specified criteria.

 	Enhancing developers’ prep for new challenges

 	
 The technology acts like a fast-track intro course and helps developers get acquainted with unfamiliar coding environments or languages. When tackling something new, these tools step in like a seasoned buddy, shedding light on fresh concepts, dissecting various code bases, and dishing out comprehensive guides on framework usage.

 	Harnessing Multiple Tools

 	
 The research points towards a more effective strategy when multiple tools are brought into play. Picture this: a developer swings one tool for prompts or chats, and another tool jumps in as part of the codebase, dishing out autocomplete options and suggestions. Developers found the first tool to be a whiz at fielding queries during code refactoring, thanks to its conversational finesse. On the flip side, the second tool showed effectiveness in conjuring up new code that was integrated smoothly with the development environment. When these AI tools teamed up for a task, developers saw a time efficiency surge of 1.5 to 2.5 times.

 Your Advisor

 With ChatGPT, you can ask for advice on many types of development activities. Here’s a prompt:

 Please provide detailed tips and best practices for minimizing search time and enhancing productivity when programming. Include strategies related to code organization, documentation, tools, and mindset.

 Figure 1-4 shows the response.

 [image: With ChatGPT you can get useful advice on programming tasks.]
 Figure 1-4. With ChatGPT, you can get useful advice on programming tasks.

 ChatGPT provides five main areas to consider. It recommends using a modular design, maintaining consistent naming, and organizing files logically. It also advises to prioritize clear documentation with comments, docstrings, and READMEs. ChatGPT then goes on to mention using search functions of an IDE, use tools like Git, and bookmark key resources.

 IDE Integration

 Seamless integration with the IDE is crucial for AI-assisted programming. It keeps the development process’ momentum going strong, without the heavy-lifting of mastering a new platform. This means less time scrambling up the learning curve and more time coding. And let’s not forget, less juggling between different platforms or tools means less friction and makes for a smoother coding journey.

 Then there is the advantage of real-time feedback. As developers knit together or tweak code, integrated tools are right there, spotlighting errors, offering up corrections, or suggesting a better way to get things done. This instant back-and-forth of writing, feedback, and tweaking is like having a friendly coach by your side. They will guide you towards cleaner, more efficient code without the hassle of manual reviews or external checks.

 AI-assisted systems can also amp up an IDE by tuning into the broader coding narrative. It gets the gist of variable types, method signatures, and even the project’s structural blueprint to churn out relevant code suggestions. It’s not just about spitting out code, though.

 Table 1-1 introduces some of the top AI-assisted programming tools and the IDEs they support.

 Table 1-1. IDEs Supported by Popular AI-Assisted Programming Tools

 	AI-Assisted Programming Tool
 	IDEs

 	GitHub Copilot
 	Visual Studio Code, Visual Studio, Vim, Neovim, JetBrains Suite, Azure Data Studio​1

 	Tabnine
 	VS Code, WebStorm, PyCharm, Eclipse, IntelliJ Platform, PhpStorm, CLion, Neovim, JupyterLab, Rider, DataGrip, AppCode, Visual Studio 2022, Android Studio, GoLand, RubyMine, Emacs, Vim, Sublime Text, Atom, Jupyter Notebook​2

 	CodiumAI
 	Visual Studio Code, JetBrains (IntelliJ, WebStorm, CLion, PyCharm)​

 	Amazon Whisperer
 	Visual Studio Code, IntelliJ IDEA, AWS Cloud9, AWS Lambda Console, JupyterLab, Amazon SageMaker Studio, JetBrains Suite (IntelliJ, PyCharm, CLion, GoLand, WebStorm, Rider, PhpStorm, RubyMine, DataGrip)​

 Note

 A research study from Microsoft showed that 88% of users of GitHub Copilot felt less frustrated and more focused. A key reason was that staying within the IDE meant less time spent searching. This allowed for the developer to remain in the “flow state.”

 Reflect Your Codebase

 Certain AI-assisted programming tools are tailored to mesh well with specific development environments. Developers have the leeway to fine-tune them, allowing the tool to understand a project’s internal libraries, APIs, best practices, and architectural blueprints. This ensures that the suggestions thrown your way are not only technically solid, but they also dovetail with your project’s unique needs.

 This customization helps in aligning the generated code suggestions with your organization’s established coding standards, quality markers, and security protocols. The focus on fostering high-quality code means that teams can avoid stumbling into deprecated or undesirable code snippets.

 Moreover, this tailored approach is a big benefit for newcomers to a development team. Traditionally, getting them acclimated to a new codebase is a hefty time investment. This sometimes requires months of code exploration, documentation review, and learning the ropes of coding protocols. However, an AI-assisted programming tool can significantly shave off time from this learning curve.

 Code Integrity

 Code integrity is a hallmark of sound software development. It highlights the sturdiness and trustworthiness of the source code in executing its intended function. Think of it as a lens through which the completeness, accuracy, consistency, and fortification of the code are examined. A hiccup in code integrity lays out a welcome mat for bugs and potential security blind spots, which, in turn, could usher in system crashes and data breaches.

 Various factors lead to code integrity including its precision, thoroughness, uniformity, security provisions, and the ease with which it can be maintained. Developers can ramp up code integrity through a medley of approaches like unit and integration testing, peer code reviews, static code analysis, and stringent security assessments.

 It’s worth noting that a growing roster of AI-assisted programming tools are rolling out features aimed at bolstering code integrity. They delve into the finer points of the code, paving the way for the generation of pertinent and sharp unit tests and edge cases.

 Some of these tools come with a “fix-it” recommendation feature, which are vetted in advance to ensure they don’t lead to new problems before they even land in front of developers. This paves the way for developers to review and assimilate these suggestions right within their IDE.

 An added perk of these tools is their ability to swiftly analyze pull requests and spin up succinct summaries of code alterations. They also have the knack to automate the chore of generating release notes, which comes in handy for documenting the evolution in software versions.

 Automatic Documentation Creation

 Documentation is the unsung hero in the software development process. It helps to ensure that the codebase remains legible, maintainable, and scalable, especially as teams morph and projects bloat in complexity. But let’s face it, creating and refreshing this documentation often feels like a trek through a bureaucratic bog—it can be time-guzzling and, occasionally, gets shoved to the backburner.

 Now, cue the entrance of AI-assisted programming tools. These digital scribes can whip up extensive documentation in a fraction of the time – and with a hefty dose of quality and clarity to boot. This is done by leveraging the power of LLMs, which are particularly strong at dealing with language.

 Modernization

 Marc Andreessen’s 2011 bold statement in the Wall Street Journal, “Software Is Eating the World,” has aged like a fine wine. Andreessen, known for his knack of spotting tech trends from miles away and his stellar track record as a successful entrepreneur and venture capitalist, pointed out a ripe moment in tech history.

 He underlined how the infrastructure had come of age and primed global industries for a metamorphosis. The rise of cloud platforms like Amazon Web Services and the widespread growth of broadband internet were game changers. They knocked down the traditional hurdles of server costs and network know-how. This cleared the stage for disruptors like Uber, Netflix, and a slew of social media platforms to rewrite the rulebook of their respective industries.

 Fast forward from Andreessen’s insightful piece, the innovation express has only picked up steam. However, it also brought along a threat of disruption, especially for the large corporations. Many of these behemoths are anchored to legacy systems that are not only pricey but also a gamble to modernize. Their hierarchical setup can act like decision-making speed bumps, and their expansive scale adds layers of complexity to embracing change. Plus, their workforce might not always be on the same page with the latest tech innovations.

 Enter IBM, eyeing this scenario as a goldmine of opportunity and channeling its hefty resources to craft AI-assisted programming tools for its customers. In October 2023, they unveiled the watsonx Code Assistant for Z. This system can translate COBOL to Java on mainframe systems, with the code output elegantly object-oriented.

 IBM’s Watsonx.ai model understands 115 coding languages based on 1.5 trillion tokens. The model has about 20 billion parameters. This is one of the largest AI systems for code development.

 The fact is that there are hundreds of billions of lines of COBOL. But migrating this language to modern ones is no easy feat. It’s common for the COBOL to be decades old and have little or no documentation. If the conversation is not handled properly, the consequences could be severe. Keep in mind that much of the world’s credit card processing is handled with mainframes. The same goes for Uncle Sam’s system for handling school loans.

 Unfortunately, there are many examples of failed migration projects. Consider the California Department of Motor Vehicles, who, despite pouring $208 million into their effort, had to pull the plug within a few years. Ouch.

 Given the high stakes, mainframe developers generally earn higher salaries. But companies still are challenged in recruiting talent. Younger developers are trained on modern languages and perceive mainframe development as a dead end. In the meantime, a growing number of seasoned mainframe developers are retiring.

 For IBM, this means that AI is essential to solve this massive problem. It’s true that code transpilers or translators have been around for decades. In fact, they have often been for mainframe projects. However, what they have been mostly doing is taking COBOL’s spaghetti code, giving it a quick translation, and well, you have Java spaghetti code. Its a modest facelift with barely a dent in improvement or innovation. The Java code still needs a good amount of elbow grease, explaining why many projects stumbled or flat-out face-planted.

 But by using generative AI, IBM says that it has been able to improve the results of a project by a factor of up to ten.

 Other companies are exploring this modernization opportunity. Thomas Dohmke, who is the CEO of GitHub, tweeted: “COBOL still running on main frames is a much bigger societal problem than we think.” In an interview with Fortune, he noted that he has heard more about COBOL in 2023 than during the past three decades. He also said that companies have been asking how to use GitHub Copilot for their migration projects.

 Keep in mind that ChatGPT is also proficient with legacy programming languages. Table 1-2 shows what it supports.

 Table 1-2. Common Legacy Programming Languages

 	Language
 	Description
 	Development Era

 	COBOL
 	Developed for business data processing.
 	Late 1950s - Early 1960s

 	Fortran
 	Designed for scientific and engineering calculations.
 	1950s

 	Pascal
 	Pascal Developed to encourage good software engineering practices.
 	Late 1960s - Early 1970s

 	BASIC
 	Created as an easy-to-learn language for students and beginners.
 	Mid-1960s

 	ALGOL
 	Influenced subsequent languages like Pascal, C, and Java.
 	Late 1950s - Early 1960s

 	Assembly Language
 	Corresponds to the architecture of the CPU it’s designed for, dating back to early programmable computers.
 	Early computing era

 	PL/I
 	Used for scientific, engineering, business and system programming.
 	Early 1960s

 To see how AI-assisted programming can help with legacy languages, let’s suppose you need to work on the following code snippet:

 MODULE ComplexModule
 IMPLICIT NONE
 TYPE :: ComplexType
 REAL :: real, imag
 CONTAINS
 OPERATOR(+) (a, b) RESULT(c)
 TYPE(ComplexType), INTENT(IN) :: a, b
 TYPE(ComplexType) :: c
 c%real = a%real + b%real
 c%imag = a%imag + b%imag
 END OPERATOR
 END TYPE ComplexType
END MODULE ComplexModule

 You do not know what language it is or how it works. The syntax does not lend itself to an intuitive understanding of the workflow.

 Let’s say you go to ChatGPT and enter the following prompt:

 What language is this written in? What does this code snippet do? Also, explain how it works.

 Figure 1-5 shows part of the response.

 [image: This shows ChatGPT s response on interpreting legacy code.]
 Figure 1-5. This shows ChatGPT’s response on interpreting legacy code.

 ChatGPT accurately identifies this as Fortran code. It also shows that it defines a module named ComplexModule, which contains a derived type ComplexType for representing complex numbers, along with an overloaded addition operator + for adding two complex numbers together. Then there is a step-by-step explanation of the code.

 Drawbacks

 Now let’s take a look at the not-so-rosy part of AI-assisted programming tools. Like any fledgling technology – hey, even the first iPhone was a bit clunky – it comes with its share of hiccups, issues and hurdles. The path of innovation is littered with room for polish and fine-tuning.

 Let’s take a look at some of the drawbacks.

 Hallucinations

 For LLMs, hallucinations refer to instances where the model outputs data that appears accurate but is factually incorrect or not grounded in the input data it was trained on. This can pose a significant challenge for software development. Hallucinations can lead to inaccurate code suggestions, generate misleading documentation, and create erroneous testing scenarios. Additionally, they can render debugging inefficient, mislead beginners, and potentially erode trust in AI tools.

 On a positive note, though, there has been notable progress in reducing the occurrence of hallucinations. A substantial amount of academic research has been dedicated to this issue, and AI companies have been employing effective strategies like Reinforcement Learning from Human Feedback (RLHF) to mitigate this problem.

 However, given the intrinsic complexity of LLMs and the enormous amount of data they are based on, completely eradicating hallucinations appears to be a tall order – if not impossible.

 Another aspect to consider is that certain programming languages exhibit higher accuracy rates with AI-assisted tools. Languages such as Python, JavaScript, TypeScript, and Go tend to have better performance in this regard. This is attributed to these languages being well-represented in public repositories, which provides a richer dataset for the AI to learn from, and in turn, offer more accurate and robust suggestions.

 Intellectual Property

 Matthew Butterick boasts a diverse background, embodying roles as a programmer, designer, and lawyer, with a particular penchant for typography. His journey has seen him authoring books on typography, designing fonts, and crafting programs aimed at document editing and layout. However, his encounter with GitHub Copilot in June 2022 didn’t spark joy. Rather, it spurred him to pen a blog titled, “This Copilot Is Stupid and Wants to Kill Me.”

 His discontent didn’t end at blogging. It quickly escalated to launching a class action lawsuit against Microsoft, GitHub, and OpenAI. The bone of contention was an alleged breach of GitHub’s terms of service and privacy policies, with a potential extension to copyright infringement charges.

 This legal tangle underscores a broader, gray area concerning the intellectual property rights over code engineered from AI-assisted programming tools. Given that the output is a cocktail of countless lines of pre-existing code, the question of ownership is a big question mark.

 One argument is “fair use.” However, this legal doctrine is murky and doesn’t extend a clear pathway for AI-generated content. To resolve this matter, there will likely need to be federal legislation or a Supreme Court ruling.

 In the meantime, Microsoft has maneuvered to build a legal firewall for GitHub Copilot customers. It has pledged to stand in defense against legal claims, granted certain prerequisites are satisfied.

 Adding another layer to the legal quagmire is the intersection of AI-assisted programming and open-source software methods. Copyleft licenses, like the General Public License (GPL) versions 2 and 3, require that any derivative work should use the original code’s license terms. This helps to promote a stream of innovation. Yet, this could spell trouble for developers. It could potentially strip them of the rights to shield their application’s intellectual property, or even require that they open source their entire codebase.

 Privacy

 The use of AI-assisted programming tools, often housed in the cloud, begs many data privacy and confidentiality questions. How is the data safeguarded within the company? Is there a chance it might be used as training data?

 The clarity on these queries might vary from one vendor to another. This may mean that some developers will opt to steer clear of AI-assisted programming tools altogether.

 This has been the approach of Anthony Scodary, the co-founder and co-head of engineering at Gridspace. This enterprise, with roots tracing back to Stanford, develops voice bots adept at navigating complex phone conversations. Their technological foundation is laid on speech recognition, speech synthesis, LLMs and dialog systems.

 Rather than hitching a ride on existing AI-assisted programming platforms, Gridspace chose the road less traveled. They engineered their own AI-assisted programming platform, which is based on Docker services within a Kubernetes cluster. Deployed as an IDE plugin, this bespoke system is fine-tuned for its own codebase. “ This has allowed us to avoid sending our IP and data to other companies,” he said. “It has also meant that we have a model that is smaller, more efficient and specialized to our style.”

 This is not to imply that this is the best approach. Each organization has its own views and methods.

 But when it comes to evaluating AI-assisted programming, it’s important to understand the privacy implications.

 Security

 In a research paper -- entitled “Security Weaknesses of Copilot Generated Code in GitHub” – the authors highlighted the security issues with GitHub Copilot. They scrutinized 435 AI-generated code snippets from projects on GitHub and 35.8% had Common Weakness Enumeration (CWE) instances.

 These weren’t limited to just one programming language. They were multilingual missteps spanning 42 different CWE categories. Three of these categories were the usual suspects—OS Command Injection, Use of Insufficiently Random Values, and Improper Check or Handling of Exceptional Conditions. But here’s the kicker: 11 of these CWEs had the dubious honor of making it to the recognized 2022 CWE Top-25 list.

 This is not to imply that AI-assisted programming tools are a huge security risk. Far from it. The fact is that the vendors are continuing to work on ways to improve the guardrails. However, as with any code, a solid dose of security mindfulness is the name of the game.

 Training Data

 The training data for LLMs of AI-assisted programming tools may have notable gaps, which can affect the performance and usefulness of these tools in real-world scenarios. Let’s breakdown some of these:

 	
 Representation Gaps: If certain areas of a programming language or library are not well-represented – or are nowhere to be seen – in open-source projects, the AI may lack enough knowledge about them, leading to less accurate suggestions. The quality of the AI’s output heavily depends on the quality and scope of the training data.

 	
 Quality Inconsistency: To borrow a movie analogy, the open-source code in an LLM is a bit like a box of chocolates, you never know what you’re gonna get. Some projects are the crème de la crème, while others are... let’s say, the burnt toast of the code world. This mishmash can lead to our AI-assisted programming being a bit inconsistent in the quality of suggestions it throws your way.

 	
 Knowledge Cutoff Date: LMs have a cut-off date on the training, like a snapshot in time. This poses challenges when there are new releases, updates, or deprecations in programming languages or libraries.

 	
 Generalization Gap: The generalization gap, the difference between the AI’s performance on the training data and unseen data, can also pose challenges. Of course, the closer the performance of the two, the better. This is the conclusion of a research paper entitled, “Inconsistency, Instability, and Generalization Gap of Deep Neural Network Training.”

 	
 Contextual Understanding: AI can give you suggestions based on what it has seen before. But if it hasn’t seen a scenario quite like yours, it might miss the mark. This is why it’s important not to make assumptions when creating prompts.

 Bias

 Developers often don’t have a solid grasp on AI ethics, likely because this topic isn’t usually part of computer science courses or intensive bootcamp programs. This gap in understanding can lead to algorithms unintentionally carrying biases and the potential misuse of data.

 This issue carries over to AI-assisted programming tools as well. They can unintentionally perpetuate the biases present in the data they were trained on. For example, if asked to create a list of names, they might mainly suggest English names due to the heavy presence of English-centric datasets in their training datasets. This bias can sometimes lead to harmful or inappropriate outputs. There was an instance where, when given the prompt “def race(x):”, the AI filled in a limited and fixed set of race categories. In another troubling case, when tasked with writing code comments for the prompt “Islam,” the AI was found to associate words like “terrorist” and “violent” more frequently compared to when other religious groups were mentioned.

 New Way for Developers

 The McKinsey study suggests that the dawn of AI-assisted programming tools is likely to change how we approach software development. According to the authors, success might hinge on good training, emphasizing best practices and diving into hands-on exercises on things like prompt engineering, coding standards, and quality. It’s also smart to shine a light on the risks tied to generative AI.

 For the newbee developers, especially those with less than a year’s worth of experience under their belts, it’s a good idea to dive into extra coursework that covers the basic principles of programming to ramp up productivity.

 As developers fold these tools into their daily routine, it’s vital to keep the skill-building momentum going with some guidance from the seasoned pros in the team and engaging in community activities. This could mean hanging out in dedicated online forums or having regular team huddles to share practical examples. Such actions can foster a culture of continuous learning, spread the word on best practices across the board and help spot issues early on.

 With the uptick in developer productivity, managers might want to stir the pot a bit when it comes to roles, zeroing in on tasks that pack more value. Upskilling will be on the menu too, to fill in any existing gaps.

 Sure, these pointers aren’t gospel. The realm of AI-assisted programming is still pretty fresh and is changing at a brisk pace. Above all, being ready to roll with the punches is key.

 Career

 While there’s no hard proof that getting AI-Assisted programming will boost up your career outlook, there’s a handful of signs suggesting that this expertise might become a hot ticket in the job market:

 	
 Job Listings: The job boards on places like Indeed are starting to buzz with more listings seeking those with experience in AI-assisted programming tools. The call is out for all ranks, from junior developers to the senior hotshots.

 	
 Productivity Boost: AI-assisted programming tools are turning heads because they’re improving productivity without sacrificing quality. For a developer, this could be a way to move up the ranks in an organization.

 	
 Thumbs-Up from Developers: The chatter among developers is that AI-assisted programming tools are catching on. For example, GitHub Copilot is boasting a strong rating of 4.5 out of 5 stars on G2.com, an independent software review site.

 10X Developer?

 The 10x developer has the power of ten programmers. They’re the Usain Bolt of coding, zipping through problems and churning out solutions before you can say “bug fix.”

 So you might be thinking: Can I too become a 10x developer with the help of AI-assisted programming tools? Well, sorry to say but probably not. While these technologies can make a significant difference, they are mostly not at orders of magnitude improvements.

 Besides, the concept of a 10x developer can stir up stereotypes and biases, making the tech scene feel like an exclusive club. Not to mention, the pressure to be this super coder could lead you straight into the arms of burnout. So while being a 10x developer might sound great, remember it’s probably more like a fantasy.

 Skills of the developer

 According to the McKinsey & Co. study, the effectiveness of AI-assisted development tools often depends on the expertise of the developer.

 Here are some of the considerations:

 	Fixing Errors

 	
 Even though generative AI can be your trusty sidekick, it can goof up too. It falls upon the developer’s shoulders to spot and fix these blunders. Some developers have found themselves playing a loop of corrections with the AI to get to that sweet spot, while others have had to spoon-feed the tool to debug accurately. This can certainly be time consuming. But a veteran developer would know how to avoid going down the rabbit holes.

 	Getting the Office Vibes

 	
 AI-assisted programming tools are pretty solid when it comes to coding but might miss the beat when it comes to the unique flavor of individual projects or company quirks. Again, this is where veteran developers are key. They’ll know how to guide these tools for the best results that align to organizational goals, performance targets and security.

 	Tackling the Tough Stuff

 	
 Assisted AI-programming tools are great with tasks like polishing code, but toss in some complex challenges like blending different coding frameworks, and it might just trip over itself. In these moments, it’s the experienced developers who have to roll up their sleeves.

 Conclusion

 AI-assisted programming tools are certainly the shiny toys in the software creation sandbox. As this technology keeps marching forward, it’s these systems can crank up efficiency, handle boring tasks, and let developers dive into areas that are most important, like high-level problem-solving.

 But there are downsides. Just some include the tangles of intellectual property issues, the maze of open source software licensing, bias and security.

 For the most part, these tools are your virtual assistant, not a replacement. And while they might not be the superheroes, they’re shaping up to be quite powerful for a developer’s toolkit.

 Chapter 2. How AI Coding Technology Works

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the second chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@gmail.com.

 In this chapter, we’ll crack open the hood of AI-assisted programming tools and take a peek at what makes them tick. We’ll briefly wade through the history, take a whirl with transformer models and LLMs, and demo the OpenAI Playground. Then we’ll get some advice on how to evaluate LLMs.

 Grasping what this powerful technology can and can’t do will pave the way for smarter use of AI-assisted programming tools for real-world software projects.

 Key Features

 The market has been buzzing with AI-assisted programming tools such as GitHub Copilot, Tabnine, CodiumAI, and Amazon CodeWhisperer. They all attempt to flaunt their own set of bells and whistles. But there’s a good chunk of capabilities these tools share.

 Here are some of the main capabilities in Table 2-1.

 Table 2-1. Common Functions for AI-Assisted Programming Tools

 	Feature
 	Description

 	Code Suggestions
 	Provides code suggestions based on comments and file context; recommends individual lines or whole functions.

 	Context-aware Completions
 	Offers context-aware code completions and suggestions to aid in coding.

 	Test Generation
 	Analyzes code to generate meaningful tests, map code behaviors, and surface edge cases to ensure software reliability before shipping.

 	User-IDE Interaction
 	Automatically activates and provides guidance as users type code in the IDE; can interact with the code through chat​.

 	Code Analysis
 	Analyzes code snippets, docstrings, and comments to provide reliable code predictions and tag suspicious code

 	Bug Detection and Fixing

 	Identifies potential bugs in code and suggests ways to fix them​.

 	Code Auto-Documentation
 	Automatically adds docstrings and enhances code documentation​.

 	Routine Task Automation
 	Helps in creating code for routine or time-consuming tasks, working with unfamiliar APIs or SDKs, and other common coding scenarios like file operations and image processing​.

 	API and SDK Usage Optimization
 	Aids in making correct and effective use of APIs and SDKs​.

 	Open-source Discovery and Attribution
 	Facilitates discovery and attribution of open-source code and libraries​.

 This list isn’t the be-all and end-all. The pace of innovation has been moving at a rapid clip. However, this list does highlight how these systems can be a big leg up for developers. But for the most part, they are about code suggestions and context-aware completions, which we’ll see in the next section.

 Code Suggestions and Context-Aware Completions vs. IntelliSense

 The magic of smart code completion, also known as auto-completion or IntelliSense, is something many IDEs bring to the table. They lend developers a hand by suggesting, filling in, and spotlighting bits of code as they hammer away at the keyboard. This technology has actually been around since the late 1950s with the inception of spell checkers.

 But the breakthrough came in the mid-1990s. Microsoft’s Microsoft Visual Basic 5.0 provided real-time suggestions and completions, with an emphasis on basic syntax and function signature. This greatly improved productivity and reduced errors.

 So you might be wondering: How does something like IntelliSense stack up against AI-assisted programming tools? True, IntelliSense has a smattering of AI and machine learning under its belt.

 Yet, there’s a line in the sand. AI-assisted tools are powered by generative AI. They serve up not just code but a buffet of documentation, planning documents, and helpful guides, among other things. Thanks to generative AI, these tools get the knack of churning out, tweaking, and understanding human-like text based on the given context, making them champs at translation, summarization, text analytics, topic modeling, and answering queries.

 Engaging with these tools can sometimes be like having a casual chat with your code. With an LLM at their core, they catch the drift of the context and intent from your input.

 Generative AI and Large-Language Models (LLMs)

 Diving into AI-assisted programming tools doesn’t require you to be a whiz in the nitty-gritty of generative AI technology. However, having a bird’s eye view of it can be quite handy. It’ll steer you towards evaluating the responses, capabilities, and limitations of these tools in a sharper way.

 Transparency isn’t just a buzzword here. For a new technology to really catch on, having a clear picture of what’s under the hood is crucial. It’s all about trust. In the coding world, reliability and accountability aren’t just fancy extras, they’re the bread and butter.

 As we venture into the upcoming sections, we’ll skim the surface of generative AI and LLMs to give you a clearer picture.

 Evolution

 The story of generative AI has its roots stretching back several decades, with one of its earliest examples being ELIZA, the pioneering chatbot, brought to life by MIT professor Joseph Weizenbaum in the mid-60s. ELIZA was crafted to mimic chats with a psychotherapist (you can still find it online). Sure, it was basic, running on a rule-based algorithm and mostly parroting back user input.

 Yet many folks found ELIZA a more pleasant chatter than a real therapist, and some were even fooled into thinking they were communicating with a human. This curious occurrence, dubbed the “ELIZA effect,” showcased how easily people can imagine a human-like understanding label on a computer program.

 However, the journey of generative AI wasn’t exactly a sprint. The tech gears at its core were quite basic and this progress was more of a slow crawl. But come the 2010s, the scene hit a turning point. The technology world was now boasting hefty compute power, flashy hardware systems like GPUs (Graphics Processing Units), a treasure trove of data, and the fine-tuning of sophisticated models like deep learning. And just like that, generative AI was back in the fast lane.

 For generative AI, there emerged different methods:

 	Variational Autoencoders (VAEs)

 	
 This technology made its debut in 2013, thanks to Diederik P. Kingma and Max Welling and their paper, “Auto-Encoding Variational Bayes.” Their VAE model consisted of lower-dimensional latent space from more complex, higher-dimensional data, all without supervision. This also included an encoder-decoder structure. When we say higher-dimensional data, we’re talking about data with many features, each being a dimension—think of a 28x28 pixel image in a 784-dimensional space. The lower-dimensional latent space is like a compact version of this data, holding onto the crucial information while shedding the extra dimensions. This is important because it eases up on the computational load, fights off the curse of dimensionality, and makes the data easier to visualize and interpret. This leap from a higher to a lower-dimensional space is called dimensionality reduction and it simplifies the data to its bare essentials. Unlike their cousins, the traditional autoencoders, that spit out a single value for each latent attribute, the encoder in a VAE gives you a probability distribution. The decoder then picks samples from this distribution to rebuild the data. This neat trick of offering a range of data in the latent space rather than a single value opens up the door to create new data or images.

 	Generative Adversarial Networks (GANs)

 	
 This is a class of AI algorithms used in unsupervised machine learning, introduced by Ian Goodfellow and his colleagues in 2014. At the heart of GANs are two neural networks, dubbed the generator and the discriminator, that go head-to-head in a game-like showdown. The generator churns out new data nuggets, while the discriminator plays the judge, distinguishing the real from the fake data. With each round, the generator ups its game, crafting data that’s eerily similar to real instances. This clever setup has swung open doors to new possibilities across the board. It has led to the AI that has created realistic images, voice recordings, and a whole lot more.

 These types of generative AI would be important building blocks for the breakthrough in the category: the transformer model. This is what has made the power of LLMs a reality.

 The Transformer Model

 Before transformers made a splash, the go-to method for Natural Language Processing (NLP) was the Recurrent Neural Network (RNN). These networks were crafted to tackle sequential or time-series data. They would keep tabs on a hidden state to remember bits from previous steps in a sequence—a handy feature for things like language modeling, speech recognition, and sentiment analysis. The RNNs take it step by step, processing one piece of the sequence at a time, updating their hidden state based on the current input and what’s been processed before, hence the “recurrent” tag. But they hit a snag when faced with long sequences. They got tripped up by the vanishing or exploding gradient problem. This made it hard for them to keep track of long-term relationships in the data.

 Enter the transformer, flipping the script entirely. Unlike the step-by-step approach of RNNs, transformers breeze through data in parallel and tap into attention mechanisms to keep tabs on relationships between different bits in the input sequence, no matter where they’re placed. This switch in the architectural blueprint lets transformers handle both short and long sequences with ease. It also sidesteps the gradient woes. Plus, their parallel processing capabilities mesh nicely with sophisticated chip architectures like GPUs or TPUs (Tensor Processing Units).

 A group of Google researchers created the transformer and published the core architecture in a pathbreaking paper, “Attention Is All You Need,” in 2017. Figure 2-1 is a visual of the main parts of the model.

 [image: This is the architecture of the transformer model which is at the heart of LLMs.]
 Figure 2-1. This is the architecture of the transformer model, which is at the heart of LLMs.

 The transformer model is like a brilliant linguist, adept at unraveling the intricacies of language. Its magic unfolds in two primary stages: encoding and decoding. Each is composed of its own set of layers. During the encoding stage, the model reads and comprehends the input text, as a linguist would understand a sentence in a foreign language. On the other hand, the decoding stage involves generating a new piece of text or translation based on the understanding acquired in the encoding stage, much like a linguist translating that sentence into your native language.

 At the heart of the transformer is a mechanism called attention, which allows it to assess the relevance of each word in a sentence concerning others, assigning an “attention score” to each. For example, in the sentence “The cat sat on the mat”, when focusing on the word “sat”, the words “cat” and “mat” might receive higher attention scores due to their direct relation to the action of sitting.

 One notable feature of this model is the self-attention mechanism. This allows it to look at an entire sentence, understand the relationships between words, and retain these relationships over long stretches of text. This grants the transformer a form of long-term memory and enables it to focus on all the words or “tokens” (a whole word or part of a word) that have appeared so far, thereby understanding the broader context.

 However, despite these capabilities, the transformer initially lacks the ability to recognize the order of words in a sentence, which is crucial for understanding the meaning. Here, positional encoding steps in. It acts like a GPS to provide the model with the information about the position of each word within the sentence and aids in making sense of phrases like “the cat chases the mouse” versus “the mouse chases the cat”.

 Adding to the sophistication, the transformer employs a multi-head attention mechanism. Envision the model having multiple pairs of eyes, each pair examining the sentence from a unique angle and focusing on different aspects or relationships between the words. For instance, one pair might focus on understanding actions, another on identifying characters, and yet another on recognizing locations. This multi-view approach enables the transformer to grasp a richer understanding of the text.

 Furthermore, each stage of the transformer encompasses layers of a feedforward neural network, a straightforward network that aids in processing relationships between words. This further enhances the understanding and generation of text.

 A transformer is in the form of a pretrained model. It has already been trained on an enormous amount of data and is ready for use or further fine tuning. Once pretrained, the model can be accessed as an Application Programming Interface (API), allowing for immediate use in various language processing tasks. Companies or individuals can rapidly integrate this model into their systems. Moreover, the pretrained LLM can be further honed to excel in specialized domains, such as medical or legal text analysis, by fine-tuning it on domain-specific data. This eliminates the need for developing a complex language model from the ground up. This can save a substantial amount of time, effort, and resources. The pretrained model, with its foundational language understanding, acts as a springboard for the development of generative AI applications.

 Note

 Building and operating an LLM is costly. During early 2023, GitHub Copilot was losing an average of more than $20 a month per user, according to the Wall Street Journal. In some cases, some users were at $80 per month. However, as the infrastructure is scaled for generative AI, this should reduce the costs in the coming years.

 OpenAI Playground

 The OpenAI Playground is a generative AI sandbox that provides access to various models developed by OpenAI. It allows for model customization and this is done with an intuitive graphical interface.

 The OpenAI Playground makes it easier to understand the strengths and weaknesses of the various LLMs. Moreover, it enables real-time testing and adjustments of models in response to different inputs, like temperature.

 However, OpenAI charges for use of the platform. This is based on the number of tokens used, as seen in Table 2-2.

 Table 2-2. The Costs of OpenAI LLMs

 	Model
 	Input
 	Output

 	GPT-4/8K context
 	$0.03/1K tokens
 	$0.06/1K tokens

 	GPT-4/32K context
 	$0.06/1K tokens
 	$0.12/1Ktokens

 	GPT-3.5-Turbo/4K context
 	$0.0015/1K tokens
 	$0.002/1K tokens

 	GPT-3.5-Turbo/16 context
 	$0.003/1K tokens
 	$0.004/1K tokens

 For example, suppose you are using the GPT-32/8K context LLM. You have a prompt with 1,000 tokens and the response to this from the model is 2,000 tokens. Then the cost will be 6 cents for the input and 24 cents for the output.

 When you first sign up for an OpenAI account, you will get a $5 free credit that can be used for the OpenAI Playground. This also includes the use for calls to the API.

 Next, let’s take a more detailed look at tokens. OpenAI has a tool called the Tokenizer and you can find it in Figure 2-2.

 [image: The OpenAI Tokenizer displays the tokens for an excerpt of text.]
 Figure 2-2. The OpenAI Tokenizer displays the tokens for an excerpt of text.

 I have entered the following for analysis:

 ChatGPT is unbelievable! 🎉 I love it.

 In the tokenization -- which is highlighted with colors -- the word ChatGPT is composed of three tokens. The breakdown is “Chat,” “G,” and “PT.” The word “unbelievable” has two tokens. As for the emoji, it consists of three tokens. Each punctuation market will be a token. For spaces, these are included with an adjacent word.

 The Tokenizer is for GPT-3. Keep in mind that tokens are often different among the LLMs.

 Note

 As a rule of thumb, about 1,000 tokens is equivalent to 750 words.

 Using the Platform

 When you go to the OpenAI Playground, you get access to a dashboard. You can see it in Figure 2-3.

 [image: This is the dashboard for the OpenAI Playground.]
 Figure 2-3. This is the dashboard for the OpenAI Playground.

 On the left side of the screen, there are helpful tips on how to get started. There are also resources on the menu at the top. You can access the documentation, API reference and examples of prompts.

 The middle of the screen has the main workflow for the interactions with an LLM.

 	System

 	
 This is where you provide some context for the LLM. An example would be: “You are an expert in Python programming.” The system prompt is the first message in a session, setting the stage for the interaction. Customizing the system prompt allows for greater control over how the model behaves in the conversation, which can be particularly useful to ensure that it stays within desired parameters or contexts.

 	User

 	
 This is the main instruction of the prompt. For example, this is where you can ask the LLM to carry out a coding task.

 	Add Message

 	
 This allows you to have an ongoing chat with the LLM.

 Let’s try an example. Suppose you’re working on a Python project and you’re having trouble understanding how to implement the Tkinter library to get user input. You can enter the following:

 System Message: “You are a Python expert specialized in Tkinter.”

 User Message: “I want to create a simple GUI using Tkinter to get a user’s name and age. How can I do that?”

 The LLM will generate the code listing. But suppose you want to add validation for the input. You can press the Add button and enter the following: “How can I ensure the age entered is a number and not text?”

 The LLM will respond with the code for this, using a try-except block to convert the age input to an integer.

 Granted, this is like using ChatGPT – but with some more structure. Yet the real power is the ability for customization. You’ll find the features on the right side of the screen.

 	Mode

 	
 This shows the type of interaction with the LLM. Chat is the default. The other approaches -- Complete and Edit -- are being deprecated.

 	Model

 	
 You can select a variety of models and can even use your own fine-tuned LLMs. This can allow for a model that is focused on the unique needs of your coding. You can find more information about this here.

 	Temperature

 	
 This adjusts for the randomness or creativity of the generated content, which ranges from 0 to 2. The lower the value, the more deterministic and focused are the responses. Table 2-3 shows suggested temperature levels for different types of development tasks.

 Table 2-3. Suggested Temperature Levels for Certain Types of Programming Tasks

 	Tasks Category
 	Temperature Value
 	Description

 	Code Generation
 	0.2 – 0.3
 	Ensures more deterministic, accurate code adhering to common conventions for reliable and understandable outcomes.

 	Code Review
 	0.2 or Lower
 	Focuses on well-established best practices and standards for precise feedback.

 	Bug Fixing
 	0.2 or lower
 	Produces more accurate and straightforward solutions to identified issues.

 	Creative Problem Solving
 	0.7 – 1.0
 	Explores a broader range of possible solutions, useful in brainstorming or innovative problem-solving.

 	Learning and Experimentation
 	0.7 – 1.0
 	Provides a wider variety of examples and solutions for understanding different approaches to problem-solving.

 	Data Analysis and Visualization
 	0.2 or Lower
 	Generates accurate and meaningful visualizations or analyses.

 	Optimization Tasks
 	Varied
 	A balance between exploration (higher temperature) and exploitation (lower temperature) for efficient solutions.

 However, if you use a fairly high value for the temperature, the results can be nonsensical. Here’s a sample prompt when using a value of 2.

 In Python, what are the steps to migrate data from a CSV file to a MySQL database?

 Figure 2-4 shows the output.

 [image: This shows the output when using a temperature of 2 for the LLM. The results are mostly nonsensical.]
 Figure 2-4. This shows the output when using a temperature of 2 for the LLM. The results are mostly nonsensical.

 As you can see, this makes little sense!

 Now, let’s continue to look at the other features you can adjust:

 	Maximum Length

 	
 This is the maximum number of tokens to generate content, which includes the prompt and response. The amount depends on the model you use.

 	Stop Sequence

 	
 This indicates where the LLM should stop creating further text. The idea is to specify a particular string or sequence of characters that, when detected in the generated text, will signal the model to halt the process.

 	Top P

 	
 This is also known as nucleus sampling. This technique selects words based on a cumulative probability threshold, denoted by p, which can range from 0 to 1. In simpler terms, instead of choosing from the top few most likely next words, it considers a broader or narrower range of possible next words based on the specified p value. A lower p value results in a smaller, more focused set of words to choose from, leading to more predictable and coherent text. A higher p value, on the other hand, allows for a wider set of possible next words, leading to more diverse and creative text generation.

 	Frequency Penalty

 	
 This helps to tackle a common problem with LLMs, which is repetitive phrases or sentences. The value ranges from 0 to 2. The higher the value, the less repetition. However, when you go over 1, the text generation can get unpredictable and even nonsensical.

 	Presence Penalty

 	
 This also has a value of 0 to 2. A higher value will allow the LLM to include a wider variety of tokens, which means having a more diverse vocabulary or use of concepts.

 With the frequency penalty, presence penalty and top P, OpenAI recommends selecting one approach for your task. Yet don’t shy away from experimentation. The path to optimizing LLMs isn’t paved with strict rules, thanks to the intricate dance of complexities involved.

 Evaluating LLMs

 Assessing LLMs is a hefty task. These behemoths are usually black boxes that can seem impossible to understand. The competitive fight among AI firms only worsens this. It’s become par for the course to see scant details on the datasets these models are trained on, the number of parameters tuning their behavior, and the hardware that powers them.

 But there is some good news, thanks to some researchers at Stanford. They’ve created a scoring system dubbed the Foundation Model Transparency Index to size up the openness of LLMs. This yardstick, shaped by a hundred criteria, is their bid to usher some clarity into the murky waters of LLM transparency.

 The ranking is based on a percentage scale. Unfortunately, the results are far from encouraging. Table 2-4 shows the rankings. But no major LLM is close to achieving “adequate transparency,” according to the researchers. The mean score is only 37%.

 Table 2-4. Rankings of top LLMs in Terms of Transparency of Their Models

 	Company
 	Model
 	Rank

 	Meta
 	LLaMA 2
 	53%

 	BigScience
 	BLOOMZ
 	50%

 	OpenAI
 	GPT-4
 	47%

 	Stability.ai
 	Stable Diffusion 2
 	47%

 	Anthropic
 	Claude 2
 	37%

 	Google
 	BigScience
 	37%

 	Cohere
 	Command
 	32%

 	AI21Labs
 	Jurassic 2
 	26%

 	Inflection
 	Inflection-1
 	23%

 	Amazon
 	Titan
 	11%

 The flexibility of LLMs to handle various domains and tasks, such as software development, is a notable advantage. However, it also complicates the evaluation process as it requires domain-specific evaluation metrics and benchmarks to ensure the model’s effectiveness and safety in those particular applications.

 Despite all this, there are some guidelines to consider to help with evaluating LLMs. Here are some of the metrics:

 	BERTScore

 	
 This is a metric designed to evaluate text generation models by comparing generated text to reference text using BERT embeddings. Although primarily used for natural language text, it can be extended or adapted for code generation tasks, especially when the code is annotated or commented in natural language.

 	Perplexity

 	
 This is a common metric for evaluating probabilistic models like LLMs. It quantifies how well the probability distribution predicted by the model aligns with the actual distribution of the data. In the context of code generation, lower perplexity values indicate that the model is better at predicting the next token in a sequence of code.

 	BLEU (Bilingual Evaluation Understudy)

 	
 Originally developed for machine translation, BLEU is also used in code generation to compare the generated code with reference code. It computes n-gram precision scores to quantify the similarity between the generated and reference texts, which can help in evaluating the syntactic correctness of the generated code. A higher n-gram precision score indicates better agreement between the generated and reference text for that specific sequence of n words.

 	ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

 	
 This is another metric borrowed from natural language processing that can be used to evaluate code generation models. It calculates the overlap of n-grams between the generated and reference texts, providing insights into how well the generated code aligns with the expected output.

 	MBXP

 	
 This is a benchmark designed specifically for evaluating code generation models across multiple programming languages. It uses a scalable conversion framework to transpile prompts and test cases from original datasets into target languages, thereby facilitating a comprehensive multi-lingual evaluation of code generation models.

 	HumanEval

 	
 This is a benchmark to evaluate the code generation capabilities of LLMs by measuring their functional correctness in synthesizing programs from docstrings. This benchmark is crucial for the continuous development and enhancement of AI models in code generation. While different models display varying levels of proficiency on HumanEval, an extended version called HUMANEVAL+ has been key in identifying previously undetected incorrect code generated by popular LLMs.

 	Multilingual HumanEval or HumanEval-X

 	
 This is an extension of the original HumanEval benchmark. Multilingual HumanEval evaluates LLMs code generation and translation capabilities across over ten programming languages. It employs a conversion framework to transpile prompts and test cases from Python into corresponding data in target languages, creating a more comprehensive benchmark for multilingual code generation and translation.

 Another area for the evaluation of an LLM is looking at the number of parameters – which can be in the hundreds of billions. So the more, the better, right? Not necessarily. There should be a nuanced approach to this. First of all, the costs of scaling the parameters can be enormous, in terms of compute power and energy usage. This could make an LLM uneconomical for monetizing applications. Next, as the parameter count balloons, so does the complexity of the model, which could potentially lead to overfitting. Overfitting occurs when the model learns to perform exceedingly well on the training data but fumbles when exposed to unseen data. This dilutes its generalization capability.

 Another issue is the need for vast and diverse training datasets to feed the insatiable appetite of these models for data. However, obtaining and curating such extensive datasets is not only resource-intensive but also poses challenges pertaining to data privacy and bias. What’s more, the evaluation of these behemoths becomes increasingly intricate with the surge in parameters. The evaluation metrics need to be more comprehensive and diverse to accurately gauge the model’s performance across a myriad of tasks.

 Finally, fine-tuning can be a better way to get more out of models without the need for large increases in the parameter size of the underlying LLM.

 Types of LLMs

 There are various types of LLMs and a prominent category is open-source LLMs. Anyone can use, tweak or share them. The transparency means you can see how these models tick. Plus, open source LLMs allow developers to collaborate on creating innovations as well as develop add-ons and of course, fix pesky bugs.

 And the best part? They don’t come with a price tag.

 But open source LLMs are not all rainbows and unicorns. There’s usually no dedicated team to swoop in and fix issues or roll out regular updates. So, if you hit a snag, you might have to roll up your sleeves and dive into the forums for some help.

 The quality and performance of open-source models can sometimes feel like a rollercoaster. Then there are the nagging security issues. Since everything is available, this can allow hackers to insert nefarious code. So caution can go a long way.

 Lastly, when it comes to user guides and documentation, open-source LLMs might have you wishing for more. The guides can sometimes feel like they were written in hieroglyphics, especially when you’re new or when you stumble upon a head scratcher.

 Table 2-5 shows some of the top open source LLMs.

 Table 2-5. Top Open Source LLMs

 	Model
 	Developer
 	Parameters
 	Noteworthy Features

 	GPT-NeoX-20B
 	EleutherAI
 	20 Billion
 	Trained on “The Pile” dataset, capable of various NLP tasks such as story generation, chatbots, and summarization​

 	LLaMA 2
 	Meta
 	7B to 70B
 	Trained on 2 trillion tokens, double the context length of LLaMA 1

 	OPT-175B
 	Meta
 	175B
 	Part of a suite of models, trained with lower carbon footprint compared to GPT-3

 	BLOOM
 	BigScience
 	176B
 	Trained on ROOTS corpus and designed for transparency with disclosed training data details and evaluation methods​

 	Falcon-40B
 	Technology Innovation Institute (TII)
 	40B
 	Trained on 1,000B tokens

 	Dolly 2.0
 	Databricks
 	12B
 	Based on EleutherAI’s Pythia model family and delivers ChatGPT-like instruction-following interactivity

 Closed-source or proprietary LLMs, on the other hand, are much more secretive. They mostly keep their code, training data and model structures under tight wraps. However, the companies that develop these complex systems usually have enormous amounts of capital. Table 2-6 shows the capital raises for these firms in 2023.

 Table 2-6. Venture Capital Raised by Top LLM Developers

 	Company
 	Funding

 	Anthropic
 	$1.25 billion

 	OpenAI
 	$10 billion

 	Cohere
 	$270 million

 	InflectionAI
 	$1.3 billion

 With the resources, these companies can hire the world’s best data scientists and build sophisticated infrastructure. The result is that the LLMs are often state-of-the-art in terms of performance. They are also built for scale and the rigorous needs of enterprises, such as for security and privacy.

 As for the downsides, there is the problem with trust. How do these models come up with their responses? What about hallucinations and bias? Details on these questions can be sketchy.

 Then there is the risk that these mega AI operators will become a monopoly. This can mean that a customer can be locked into an ecosystem. Lastly, closed-source LLMs might be more prone to stagnation as they might not benefit from the diverse input and scrutiny that open-source projects usually enjoy.

 Conclusion

 In this chapter, we pulled back the curtain on generative AI and LLMs. We got a glimpse of some of the fascinating history, such as with ELIZA, and then focused on one of the biggest breakthroughs in AI: the transformer model. We also tried out the OpenAI Playground and showed how to customize the LLM.

 Some of the key nuggets of this chapter include learning about tokens, the advantages of piggybacking on pre-trained models, the do’s and don’ts when it comes to sizing up LLMs, eyeballing metrics like perplexity and BLEU scores, and weighing open source versus proprietary models.

 Chapter 3. Prompt Engineering

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the third chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@gmail.com.

 Prompt engineering is a subfield of machine learning and natural language processing (NLP). The main goal is to figure out how to talk to LLMs in just the right way, so that they generate the answer we’re looking for.

 Think of it like this: you know how when you ask someone for advice, you’ve got to give them a bit of context and be clear about what you need? It’s like that with LLMs. You’ve got to craft your question or prompt carefully. Sometimes, you might even drop some hints or extra information in your question to make sure the LLM gets what you’re asking.

 This is not just about asking one-off questions either. Sometimes it’s like having a whole conversation with the LLM, going back and forth, tweaking your questions until you get that golden nugget of information you need.

 Keep in mind that prompt engineering has become a red-hot job category. According to data from Willis Towers Watson, the average yearly earnings of a prompt engineer hover around $130,000, though this figure might be on the conservative side. Companies often sweeten the deal by offering enticing equity packages and bonuses to lure top talent.

 In this chapter, we’ll dive deep into the world of prompt engineering and unpack helpful strategies and tricks of the trade.

 Art and Science

 Prompt engineering is a mix between art and science. On one hand, you’ve got to choose the right words and tone to get the AI to respond how you want. It’s about guiding the conversation in a certain direction. It takes a bit of intuition and a creative touch to finesse your language and tease out those really detailed and nuanced replies.

 Yes, this can be tricky, especially for software developers. Normally, you follow a set of rules, write your code, and it either works or the compiler tells you what you did wrong. It’s logical and predictable.

 But prompt engineering? Not so much. It’s more freeform and unpredictable.

 Then again, there is quite a bit of science for prompt engineering too. This is where you need to understand the nuts and bolts of how AI models work, as we did in Chapter 2. Here, you need precision, predictability, and being able to replicate your results. Often this means you’ve got to experiment, try out different prompts, analyze the results, and tweak things until you get the right response.

 With prompt engineering, don’t expect to find any magic solutions that work every time. Sure, there are plenty of courses, videos, and books that claim to have all the “secrets” of prompt engineering. But take those with a grain of salt—you might end up disappointed.

 Plus, the world of AI and machine learning is always changing, with new models and techniques popping up all the time. So, the idea of having one definitive technique for prompt engineering? That’s a moving target.

 Challenges

 Prompt engineering can be frustrating. Even the tiniest change in how you phrase your prompt can make a huge difference in what the LLM spits out. It’s because of the advanced technology under the hood, which is based on probabilistic frameworks.

 Here are some of the challenges with prompt engineering:

 	Wordiness

 	
 LLMs can be chatterboxes. Give them a prompt, and they might just run with it, giving you a wordy response when all you wanted was a quick answer. They have a tendency to throw in a bunch of related ideas or facts, making the response longer than necessary. If you prefer them to get straight to the point, a simple trick is to ask them to keep it “concise.”

 	Non-Transferability

 	
 This means that a prompt that works nicely with one LLM might not be as effective with another. In other words, if you’re switching from ChatGPT to Bard or GitHub Copilot, you might need to tweak your prompts.

 	Length Sensitivity

 	
 LLMs can get overwhelmed with long prompts and might start to miss the mark. They could overlook or misinterpret parts of your input. It’s as if the LLM’s attention span dwindles and the responses may not be sharp.

 	Ambiguity

 	
 If your prompt is vague or unclear, the LLM might get confused and serve up responses that are way off base or just plain make-believe. Clarity is key.

 Despite all this, there are ways to help improve the results. And this is what we’ll cover in this chapter.

 The Prompt

 A way to create a prompt is to break it down into four main components, which you can see in Figure 3-1.

 [image: This chart shows the four main components of a prompt.]
 Figure 3-1. This chart shows the four main components of a prompt.

 First, the content specifies the persona or role for the LLM to take when providing a response. Next, there are the instructions for LLM, such as summarization and then there is the input content. This is when you want the LLM to process information to create a better response. Finally, you can show how you want to format the content.

 Keep in mind that you do not need all of these components. You might just need one to get a good response. But as a general rule, it’s better to provide more details for the LLM.

 Let’s now look at each of the components.

 Context

 Context for a prompt is where you begin with a sentence or two about setting the stage. Often this is about specifying the role or persona for the AI to play in providing the response.

 For instance, if you want to debug a piece of code, you might use this as the context:

 You are an experienced software engineer specializing in debugging Java applications.

 Or suppose you want to learn about optimization techniques for a particular algorithm, you could set the stage by stating:

 You are a senior software developer with expertise in algorithm optimization.

 Adding context helps the LLM get in the right mindset for your prompt.

 Instructions

 At the very least, your prompt should have one clear instruction. True, there’s nothing stopping you from adding more. But you need to be careful. If you load up your prompt with a bunch of queries, it can throw the LLM for a loop and make it harder to get the answer you’re looking for.

 Let’s break down why that happens. First off, when you have multiple instructions, things can get a bit fuzzy. If they’re not clear or if they seem to clash with each other, the LLM might get confused about which one to focus on or how to balance them all out.

 Next, more instructions mean more for the LLM to juggle. It’s got to process and understand each part of your prompt and then figure out how to weave them all into a coherent response. That’s a lot of mental gymnastics, and sometimes it can lead to mistakes or answers that are off.

 And don’t forget, LLMs go through instructions one at a time, in order. So, the way you line up those queries can influence how they’re interpreted and what kind of answer you get back.

 Given all this, a pro tip is to keep it simple. Instead of throwing a whole list of questions at the LLM all at once, try breaking them down into a series of smaller prompts. It’s like having a back-and-forth chat instead of delivering a monologue.

 There are also numerous types of instructions for a prompt. In the next few sections, we’ll show some of the main ones for software development.

 Summarization

 Summarization can condense a longer piece of text into a shorter version while keeping the main ideas and points intact. This is particularly useful for getting a quick understanding of documents.

 For a software developer, summarization can be a handy tool in various scenarios in Table 3-1.

 Table 3-1. Summarization Prompts for Coding Tasks

 	Use Case
 	Description
 	Example Prompt

 	Code Documentation
 	A concise overview of extensive documentation highlighting key functionalities, dependencies, and structures.
 	Summarize the main points of the following documentation to provide a quick overview of the codebase.

 	Bug Reports
 	Quick identification of main issues reported by users in numerous or lengthy bug reports.
 	Summarize the common issues reported in the following bug reports to identify the main problems to be addressed.

 	Research Papers
 	Quick insights from lengthy research papers or technical articles to stay updated with the latest research or technologies.
 	Provide a summary of the key findings and technologies discussed in the following research paper.

 	Change Logs
 	Understanding the key changes in a new version of a software library or tool from lengthy change logs.
 	Summarize the key changes in the following change log of version 1.1.2.

 	Email Threads
 	Extraction of key points of discussions or decisions from long email threads.
 	Summarize the main points of discussion from the following email thread.

 Another type of summarization is topic modeling. This involves a statistical model that discovers the abstract “topics” that occur in a collection of documents. Here are some prompts for developers:.

 Identify the main topics discussed in the following text: {text}

 Extract the keywords from the following text to infer the main topics: {text}

 Suggest tags for the following text based on its content: {text}

 Text Classification

 Text classification is when we give a computer a bunch of text and it learns to tag it with labels. A flavor of this is sentiment analysis. An example is when you have a list of tweets and the LLM can figure out what is positive or negative connotation. For developers, sentiment analysis can be a useful tool to gauge user feedback about an application.

 Some sample prompts include:

 Can you analyze these customer reviews and tell me if the sentiment is generally positive, negative, or neutral? {text}

 Here’s a thread from our user forum discussing the latest update. Could you summarize the overall sentiment for me? {text}

 I’ve compiled a list of feedback from our app store page. Can you categorize the comments by sentiment? {text}

 Evaluate the sentiment of these blog post comments regarding our product announcement. What’s the consensus? {text}

 Recommendation

 You can instruct an LLM to provide recommendations. Developers can use this to improve the caliber of responses for activities like squashing bugs, refining code, or using APIs more effectively.

 Check out these example prompts you might use:

 The following code snippet is throwing a NullPointerException when I try to call some Method(). Can you help identify the potential cause and suggest a fix?

 Here is a function I wrote to sort a list of integers. Can you recommend any optimizations to make it run faster or be more readable?

 Having an LLM make recommendations can be powerful. It can greatly save time and provide ideas you may not have thought about. This technique is particularly beneficial when dealing with intricate or nuanced tasks.

 But there are downsides. One potential hitch with an LLM is that it might boil down the responses too much and miss the nuances. Also, keep in mind that the model’s knowledge is frozen at a certain point in time, so it might not be up-to-date with the very latest information or trends.

 If anything, recommendations are a way to kick things off. But you’ll want to dive in and do some more digging on your own to get the full picture.

 Translation

 Localization, or l10n, is essentially the adjusting software to meet the linguistic and cultural norms of a specific area. It allows your software to speak the local lingo and understand the regional quirks, which is key to broadening your market and cultivating a closer connection with your audience. This can lead to a ripple effect of benefits: users are happier because the software feels tailor-made for them, and happy users can mean a healthier bottom line for your business.

 Beyond user satisfaction, localization can be your ace in competitive markets. It gives you a leg up when local alternatives may fall short or simply don’t exist. Plus, by aligning your software with the local ways, including compliance with regional regulations, you’re not just making your software a choice but often the only choice for those markets.

 On the flip side, localisation is not without its challenges. Localization can be both expensive and time-intensive. It requires meticulous quality assurance to maintain the software’s integrity in different languages. Additionally, software development doesn’t stand still. It’s a continuous cycle of updates and new features, each of which may require its own set of localization efforts. This ongoing process adds layers of complexity and additional costs to the project.

 Yet, this is where LLMs can come to the rescue. Advanced systems are capable of translating between numerous languages. They can serve as a powerful tool in a developer’s toolkit.

 Table 3-2 shows some prompts:

 Table 3-2. Examples of Prompts for Language Translation

 	Task Type
 	Description
 	Sample Prompt

 	UI Text Translation
 	Translating buttons, menu items, error messages, dialog boxes, etc.
 	Translate the following UI text to French: Save, Exit, File, Edit, Help

 	Documentation Translation
 	Translating user guides, help files, and other documentation.
 	Translate the following user manual paragraph to Spanish: {text}

 	Error Message Translation
 	Translating error messages that the software might generate.
 	Translate the following error messages to German: File not found, Access denied, Network connection lost

 	Tooltip Translation
 	Translating tooltips that provide additional information when a user hovers over an item.
 	Translate the following tooltips to Japanese: Click to save, Click to open a new file, Click to print

 Even so, it’s crucial to approach the multilingual capabilities of LLMs with a degree of caution.

 They aren’t foolproof. These models may sometimes miss the mark on the subtleties, idiomatic expressions, and cultural contexts unique to each language. The nuances of language are complex, and getting them right is about more than just direct translation—it’s about conveying the right meaning in the right way.

 Handling specific terms or names can be tricky, especially when there isn’t a neat equivalent in another language. Then there’s the challenge of getting the tone and style right. It’s not just about the words, but how you say them, and this can change a lot from one language or culture to the next.

 Having a language specialist take a look at the content could save you from some headaches down the line.

 Input of Content

 When crafting prompts, it’s helpful to use special symbols like ### or “"” to clearly separate instructions from the actual content or information you want the LLM to work on. These symbols act like boundaries or markers, making it clear where the instructions end and where the content begins.

 Consider a scenario where a software developer needs assistance in summarizing key points from a lengthy piece of documentation regarding a new API they are integrating. Here’s how you can structure the prompt:

 Extract the key implementation steps for the API from the text below:

 Documentation: “"”

 {API documentation text here}

 “"”

 Using the “"” delimiters is a neat way to split the instruction from the API documentation text. It gives the LLM a clearer picture of what needs to be done and increases the chances of getting a crisp summary of the main steps to take. Plus, these delimiters tidy up the prompt, making it easier to read, which is a real lifesaver for longer or more complex text inputs.

 Format

 In your prompt, you can tell the LLM how to format the output. Here’s an example:

 Create a Python function that takes a list of user objects (each object containing a user’s id and name) and returns a JSON object that maps user ids to names. Format the output as JSON.

 This is what ChatGPT generated:

 {
 "code": "def map_user_ids_to_names(users):\n user_map = {user['id']: user['name'] for user in users}\n return user_map",
 "example_usage": {
 "input": [
 {"id": 1, "name": "Alice"},
 {"id": 2, "name": "Bob"},
 {"id": 3, "name": "Charlie"}
],
 "output": {
 "1": "Alice",
 "2": "Bob",
 "3": "Charlie"
 }
 }
}

 There are other ways you can format the output. Table 3-3 shows some options:

 Table 3-3. Prompts for Formatting Output

 	Format Type
 	Sample Prompt

 	Table
 	Create a table comparing the syntax, performance, and use cases of Python, Java, and C++.

 	List
 	List the steps to troubleshoot a slow-loading web page.

 	Markdown/HTML
 	Explain the differences between GET and POST HTTP methods in Markdown.

 	Text Hierarchy
 	Provide a structured outline of the software development life cycle (SDLC) including its phases and key activities in each phase.

 	LaTeX Formatting
 	Express the time complexity of the binary search algorithm in LaTeX notation.

 With a prompt, you can also specify the length for the response. You could have “Provide a brief summary” or “Write a detailed explanation” to guide the LLM. Or you could be more specific, such as with that the response should be no more than 300 words. Although, the LLM may exceed the limit. But it will at least be in the general range.

 Best Practices

 We’ll next take a look at some of the best practices for cooking up prompts that will help get the answers you want. But don’t take these as gospel. These suggestions are more like general advice – which can be somewhat subjective -- rather than hard and fast rules. As you spend more time chatting with LLMs, you’ll probably stumble upon your own helpful ways of asking questions that work for you. It’s all part of the journey of prompt engineering.

 Be Specific

 Crafting the right prompts can be like finding the sweet spot in a good conversation. It’s maybe the most crucial step to hitting it off with these text-generating systems. The more details, the better. You also need to be clear. Otherwise the LLM may make assumptions or even hallucinate.

 First, let’s take a look at some prompts that are too vague.

 Can you fix the bug?

 Develop a feature to enhance data security.

 Can you build a tool to automate the process?

 Optimize the code.

 We need a function to process transactions.

 Instead, the following are much more detailed and should get better results:

 Develop a Python function to parse dates from strings. The function should be able to handle the formats YYYY-MM-DD, MM/DD/YYYY, and Month DD, YYYY. It should return a datetime object. Provide a script that demonstrates the function handling at least three examples of each format correctly, along with a document explaining any dependencies, the logic used in the function, and instructions on how to run the script.

 Develop a SQL query to retrieve a list of customers who made purchases above $500 in the last quarter of 2022 from our database. The query should return the customer’s full name, email address, total amount spent, and the date of their last purchase. The result should be sorted by the total amount spent in descending order. Please ensure that the query is optimized for performance.

 Acronyms and Technical Terms

 It’s crucial to be clear with technical terms and acronyms while drafting a prompt. This jargon can often mean different things and could lead to unhelpful responses. It’s a good idea to spell out acronyms and give clear definitions or explanations for any technical terms used.

 For example, suppose you are using ChatGPT to help resolve a database connection issue. A poorly crafted prompt might be: “Having DB connection issues. How to fix it?” In this prompt, “DB” is ambiguous as it might refer to different database systems like MySQL, PostgreSQL, or others, and the nature of the connection issue is not clarified.

 A more effective prompt would be: “I am encountering a connection timeout issue while trying to connect to my PostgreSQL database using JDBC. How can I resolve this?” This prompt clearly spells out the database system in use, the method of connection, and the specific issue encountered.

 Note

 Mark Twain once wrote, “The difference between the almost right word and the right word is really a large matter. ’tis the difference between the lightning bug and the lightning.” In a way, the same thing can be said about writing a prompt.

 Zero and Few Shot Learning

 Zero-shot learning is where you provide one prompt and get the answer you want. Often, this works fine. But given the complexities of programming languages and frameworks, there are times when you need to nudge the LLM.

 You can do this with few-shot learning. This refers to an LLM’s capability to understand and perform a task with very few examples or training data. This is a significant advantage.

 After all, traditional machine learning models may require a large amount of training data to perform adequately on a task. This capability is primarily because of the extensive pre-training on a diverse range of internet text that the LLM undergoes before it is fine-tuned for a specific task.

 We’ll take a look at an example of few-shot learning. Consider a scenario where we want to generate a function that normalizes a given list of numbers. It will scale the values in the list to a range of [0, 1]. For this, we have a list of a few examples of the inputs and normalized outputs.

 Here’s the prompt:

 Based on the following examples of normalizing a list of numbers to a range of [0, 1]:

 1. Input: [2, 4, 6, 8] Output: [0, 0.3333, 0.6667, 1]

 2. Input: [5, 10, 15] Output: [0, 0.5, 1]

 3. Input: [1, 3, 2] Output: [0, 1, 0.5]

 Generate a function in Python that takes a list of numbers as input and returns a list of normalized numbers.

 With ChatGPT, it will “learn” from the data and come up with some code:

 def normalize(numbers):
 min_value = min(numbers)
 max_value = max(numbers)
 if min_value == max_value:
 return [0] * len(numbers) # Handle the case where all numbers are the same
 else:
 return [(x - min_value) / (max_value - min_value) for x in numbers]
Test the function with one of the examples
print(normalize([2, 4, 6, 8])) # Output: [0.0, 0.3333333333333333, 0.6666666666666666, 1.0]

 Leading Words

 The concept of “leading words” refers to specific keywords or phrases that can guide an LLM toward creating a particular kind of output. It can be using just one code word.

 This is an example:

 # Create a simple python function that

 # 1. Prompts me for a temperature in Fahrenheit

 # 2. Converts Fahrenheit to Celsius

 def

 Using the word “def” as a leading word can inform the model that it should begin writing a Python function. Other examples of this could include the following, in Table 3-4.

 Table 3-4. Examples of Leading-Word Prompts

 	Context
 	Leading Word

 	JavaScript Function
 	Function

 	HTML Element
 	<button

 	CSS Styling
 	P {

 	SQL Insert Query
 	INSERT INTO

 	Java Method Creation
 	public

 Chain of Thought (CoT) Prompting

 In 2022, Google researchers introduced chain of thought (CoT) prompting in their paper, “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.”

 This is a method designed to enhance the reasoning abilities of LLMs by breaking down a complex problem into different steps. It’s actually similar to few-shot learning, which allows for nudging the model.

 CoT prompting can be very useful in software code generation tasks. Let’s see an example. Suppose you want to create a web application with a user registration and login functionality using Flask, a Python web framework. Table 3-5 shows the CoT prompting steps:

 Table 3-5. Chain-of-Thought Prompt Examples

 	Action Description
 	Prompt

 	Understand the Requirement
 	I need to create a web application using Flask. The application should have a user registration and login functionality. Where should I start?

 	Setup Flask Application
 	Let’s begin by setting up a basic Flask application. How can I do that?

 	Create User Model
 	Now that the Flask application is set up, I need to create a user model for handling registration and login. How should I structure this model?

 	Implement Registration
 	With the user model in place, how can I implement a registration page with the necessary fields?

 	Implement Login
 	Now let’s move on to creating a login page. How can I ensure secure login?

 	Session Management
 	After a user logs in, how should I manage user sessions to keep them logged in as they navigate through the app?

 	Logout Implementation
 	Finally, how can I implement a logout functionality to securely log users out of the application?

 Leading Questions

 Leading questions in a prompt can often fetch wonky responses from the LLM. It’s better to stay neutral and unbiased. Also, avoiding assumptions is a good practice to follow.

 This is a prompt that has a leading question:

 Isn’t it true that migrating to a microservices architecture will always improve system scalability?

 A more balanced prompt would be:

 What are the advantages and potential challenges of migrating to a microservices architecture in terms of system scalability?

 Ask for Examples and Analogies

 Suppose you do not know the concept of inheritance in object-oriented programming. You go to ChatGTP and enter this prompt:

 Explain inheritance that is used in object-oriented programming.

 You will get a detailed response. But you may want to get something more understandable. A good way to do this is by asking the LLM for an analogy.

 Explain inheritance that is used in object-oriented programming by using an analogy.

 This is the response from ChatGPT:

 Think of inheritance like a family tree, where children inherit certain traits and properties from their parents and potentially, grandparents.

 Then there is more detail – that continues with the analogy – to explain the key elements of inheritance.

 Reducing Hallucinations

 In Chapter 2, we saw that prompting an LLM can lead to a response that is a hallucination. This is when the content generated is false or misleading. Yet the LLM expresses the response as if it were true. This can be particularly challenging for software development, which requires accuracy.

 No doubt, applying the lessons in this chapter can help to mitigate the issues. But even a well-crafted prompt can still spin up hallucinations.

 There are numerous reasons for this:

 	Lack of ground truth verification

 	
 LLMs generate responses based on patterns learned from training data without the ability to verify the accuracy or reality of the information.

 	Overfitting and memorization

 	
 LLMs might memorize incorrect or misleading information in their training datasets, especially if such data is repetitive or common.

 	Bias in Training data

 	
 If the training data contains biases, inaccuracies, or falsehoods, the model will likely replicate these in its outputs.

 	Extrapolation and speculation

 	
 Sometimes, LLMs might extrapolate from the patterns they’ve seen in the data to generate information about topics or questions that were not adequately covered in the training data.

 	Lack of context or misinterpretation

 	
 LLMs can misinterpret or lack the necessary context to accurately respond to certain prompts. They may not fully understand the nuances or implications of certain queries.

 	Slang and idioms

 	
 They can create ambiguity that may lead the model to misinterpret the intended meaning, especially if it hasn’t seen enough examples of the slang or idiom in context during training.

 Then how to reduce hallucinations? A big part of this is about not asking open-ended questions like, “What are the different ways to optimize a database?”

 This type of prompt encourages the LLM to resort to speculation or overgeneralization. The model may also misinterpret the intent of the question or the desired format of the answer, leading to responses that may veer off-topic or contain fabricated information. There may actually be a cascade of hallucinations.

 A technique is to provide a set of predefined options and ask the AI to choose from them. The prompt could be rephrased as “Which of the following is a method to optimize a database: indexing, defragmenting, or compressing?”

 Another example could be asking the LLM for a certain type of conclusion. A sample prompt is: “Is the following syntax correct for initializing an array in Java? Provide a ‘yes’ or ‘no’ response.”

 Or you can include multiple steps in the prompt. This will better guide the model through a structured process and narrow down the possibilities of straying off course.

 Here’s a prompt:

 Step 1: Create a Fibonacci sequence generator

 Step 2: Use the iterative method.

 Step 3: Write a Python function named generate_fibonacci that takes an integer n as an argument

 Step 4: The function returns the first n numbers in the Fibonacci sequence as a list.

 Security and Privacy

 Being watchful of security and privacy while crafting prompts is key. It should be in the company rule book. Steering clear of any sensitive or personal info – like PII (Personally Identifiable Information) – in the prompts is crucial. For example, instead of a prompt saying “How would you fix a login issue reported by John Doe at john.doe@example.com?”, it’s wiser to go with something like “How would you tackle a login issue reported by a user?” to keep things on the privacy up-and-up.

 It’s also smart to steer clear of spilling any sensitive system details in the prompts. Instead of asking, “How to fix a database connection error on our production server at IP 192.168.1.1?”, a more generic prompt like “How to fix a generic database connection error?” is safer.

 Moreover, making sure your prompts don’t accidentally nudge folks towards shady practices is key. A prompt like “How to detect and prevent SQL injection?” is fine from a security viewpoint, unlike a prompt like “How to exploit SQL vulnerabilities in a website?” which might stir up some bad intentions.

 Besides sticking to security and privacy rules, embracing diversity and inclusion when making prompts is important. Getting a solid grasp on bias, which often reflects the training data, is key. It’s a good call to use neutral and inclusive language to avoid any discriminatory or exclusionary phrases in the prompts. Also, getting feedback from a diverse group of people on your prompt crafting can help. This not only improves the fairness and inclusivity when interacting with the LLM, but also helps get a more accurate and well-rounded understanding of the topics at hand.

 Autonomous AI Agents

 We’ve seen how you can nudge these LLMs to map out the steps for a process. That’s at the heart of code generation.

 But AI agents can crank it up a notch. They don’t just follow prompts. They get creative with LLMs to figure out a game plan for whatever goal you toss at them and they tap into specialized databases like Pinecone and ChromaDb. They handle complex word embeddings, which the models understand.

 Autonomous AI agents are based on academic research and are usually part of open source projects. Their real power is automation. To see how, let’s take an example.

 Suppose you set the objective as follows:

 Create a basic web application with a user login system.

 Table 5-6 shows a process an autonomous agent may go through:

 Table 3-6. Process for an Autonomous Agent

 	Phase
 	Tasks

 	Create Tasks
 	

 	User Interface (UI) Design

 	Sketch the basic layout of the dashboard.

 	Select color schemes and fonts.

 	Design icons and other graphical elements.

 	API Integration for Weather Data
 	

 	Search the internet for reliable weather data APIs.

 	Determine the data points to be displayed.

 	Write code to fetch and update weather data.

 	Location Selection Functionality
 	

 	Create a search bar or dropdown for users to select their location.

 	Connect this to the API code.

 	Error Handling
 	
 	Handle errors like failed API calls or invalid location entries.

 	Prioritizing Tasks
 	

 	Prioritize setting up the API integration.

 	Focus on the UI.

 	Work on location selection functionality and error handling.

 	Iteration
 	

 	Review the generated code and the current state of the weather dashboard.

 	Identify any remaining tasks or new tasks that have arisen during execution.

 	Repeat the create, prioritize, and execute steps.

 This technology is at the forefront and holds much promise. However, it’s not without its fair share hurdles:

 	Resource hogs

 	
 Agents can guzzle down large amounts of compute power. This can put the squeeze on your processors and databases, leading to more wait time, less reliability, and a slump in how things run as time goes on.

 	Infinite loops

 	
 Sometimes agents get stuck running in circles—thanks to a lack of progression or a repetitive reward system.

 	Experimental

 	
 Agents can be rough around the edges. They might come with a few bugs or unexpected behaviors and might not be quite ready for the big leagues depending on what you need them for.

 	Amnesia

 	
 Agents may simply forget certain steps or instructions.

 	Task list length

 	
 Got a laundry list of tasks? That might trip up these agents.

 	Extraneous details

 	
 Agents might get sidetracked by the little things that don’t matter, which could send them down the wrong path when picking tools to use.

 Another innovation that bolsters LLMs is RAG (Retrieval Augmented Generation). This is where an generative AI application – say written in a framework like LangChain – accesses external sources of data. These are usually vector databases. They provide more grounding of the model in specific knowledge, which should enhance the responses.

 This can be particularly useful when handling complex software development tasks. These are some of the scenarios:

 	Tackling bugs and glitches

 	
 When developers encounter bugs or errors, RAG dig up fixes and workarounds from all over the web like forums or bug databases. It can the whip up some tailor-made solutions or code patches that fit your problem.

 	Spicing up Code Reviews

 	
 RAG can pull in all the coding best practices, standards, and must-follow rules from a company’s internal resources. This means it can help streamline your code reviews, dishing out tips and tricks to make your code shine.

 	Revving up testing

 	
 When it’s time to put your code through its paces, RAG can be your pit crew. It finds all sorts of test scenarios and patterns, tweaks them to suit your project’s needs, and helps you roll out test cases or scripts faster.

 Note

 In some cases, an LLM will indicate an issue with a prompt. For example, suppose you have this: “Write a REST API using assembler.” This is how ChatGPT responded: “Creating a REST API using an assembler language is highly unconventional and complex due to the low-level nature of assembler languages. These languages are usually used for tasks that require fine-grained control over hardware, or for scenarios where performance is a critical concern.”

 Conclusion

 Again, crafting the perfect prompt like mixing science with a splash of creativity. It’s all about mixing the right ingredients—some creativity, a bit of gut feeling, and a structured approach—to cook up prompts that get LLMs to serve up what you want. No magic recipe exists, but if you’re clear, throw in a few examples, and lay out your prompts well, you’re on track for better answers.

 It’s a process, really. You try something, see how it goes, tweak it, and try again. And like any skill, you get better the more you work it out with different topics and tasks.

 About the Author

 Tom Taulli (@ttaulli) is a consultant to various companies, such as Aisera, a venture-backed generative AI startup. He has written several books like AI Basics and Generative AI, which covers ChatGPT, GPT-4, and other large-language models (LLMs). Tom has also taught IT courses for O’Reilly, UCLA, andPluralSight. For these, he has provided lessons in using Python to create deep learning and machine learning models. He has also taught on topics like NLP (Natural Language Processing).

 OEBPS/Images/cover.png
OREILLY"

Al-Assisted
Programming

Using GitHub Copilot and ChatGPT for Coding

Early
Release

RAW &
UNEDITED

Tom Taulli

OEBPS/Images/untitled_427231_04.png
viode

UsER In Python, what are the steps to migrate data from a CSV file to a MySQL database? © chat
Model
ASSISTANT To migrate data from a CSV file to a MySQL database in Python, you can follow the up-parced-
enathom-passesting Django Livequestion-doendregionificance PostgreSQL orth pathway gPLaF e
InchinstructionsocMonths JObjectaci compost{
Temperature 2

0SBay231.Dao-gumboK attent™>#.awtegACY Chair'Subeoma harness install Stepsavs
Kostenlose RougeSC +=work Benedaan>,

(Package plantsMusic model Lookup resistant neurFant Monkample]?.526 Nature.attrs- Maximum length 256
background Ravweight senablSQL TrailP)findViewByld equexterity dominantentric Fa stresses

occajes-special-Fi chick variantsistant039&Use upgrade votes*{(-(Gab his nurseFAQFrame

activateOpp'$comput(; coordin provides-pathlongrightarrowh ampkill Wrap 1BA P e
dzieciillabric snosci bone continuationOk ye=db.exec So GCBOlove Day.modelssecured

technologyRefs ForCanBeConvertedToForeach enc articulatedFreeOp;"></xmILUAT grads

versSeatsil Blhotmailging.theta.graphicschain interoper094rk glamour R Four salary-

enteréstoulder?Fa_XDECREF IA Turing$this Monaco agreementSpy pitch109Purpose TopP 1
defectiveelled_FIELDS}
connexionMusized.DaoTextLabel JackLeading])(Grade/debug-folder Frequency penalty o
foldersprincipal_event:,
*(sidebardynamic PyQt hemorrhImage.allowed. TextField

Presence penalty o

OEBPS/Styles/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/Images/untitled_427231_02.png
Tokenizer

Learn about language model tokenization

OpenAl's large language models (sometimes referred to as GPT's) process text using tokens,
which are common sequences of characters found in a set of text. The models learn to
understand the statistical relationships between these tokens, and excel at producing the next
token in a sequence of tokens.

“You can use the tool below to understand how a piece of text might be tokenized by a language
model, and the total count of tokens in that piece of text.

It's important to note that the exact tokenization process varies between models. This tool was
built for early GPT-3 models and will not be accurate for newer models but can still be a useful
when learning about how language models work.

GPT-3

ChatGPT is unbelievable! & I love it.

Clear Show example

Tokens Characters

13 38
ChatGPT is unbelievable! ¢ I love it.

TEXT TOKENIDS

OEBPS/Images/new_world_for_developers_289698_01.png
2022 and Beyond: Al-Assisted Programming
(GitHub Copilot/ChatGPT)

2010s: Machine Learning and Al
(TensorFlow/PyTorch)

1990s: Scripting Languages (Python/Ruby)

The evolution of abstraction

1980s: Object Oriented Programming (C++/Java)

1970s: Procedural Programming (C/Pascal)

1950s: High-Level Languages (Fortran/COBOL)

1940s: Machine Language to Assembly Language

OEBPS/Images/new_world_for_developers_289698_03.png
Artificial Intelligence

Machine Learning

Deep Leamning

Generative Al

Large-Language Model

OEBPS/Images/new_world_for_developers_289698_05.png
The given code snippet is written in Fortran, a high-level programming language used
primarily for numerical and scientific computing. The code defines amodule named
“ComplexModule ", which contains a derived type “ComplexType " for representing complex
numbers, along with an overloaded addition operator “+" for adding two complex numbers

together. Here's a detailed breakdown of how the code works:

Module Declaration:

MODULE ComplexModule

IMPLICIT NONE

END MODULE ComplexModule

* The “MODULE" keyword is used to begin the definition of a module named
“ComplexModule”

* "IMPLICIT NONE' is a statement that ensures all variables must be explicitly declared,
which helps to prevent bugs from undeclared or mistyped variable names.

* "END MODULE ComplexModule™ marks the end of the module definition.

Derived Type Declaration:

fortran

TYPE :: ComplexType
REAL :: real, imag

END TYPE ComplexType

* The “TYPE" keyword begins the definition of a derived type named ComplexType .
* Inside the derived type definition, two real numbers “real® and “imag" are declared to
hold the real and imaginary parts of a complex number, respectively.

* “END TYPE ComplexType™ marks the end of the derived type definition.

OEBPS/Images/prompt_engineering_731295_01.png
Context

\
'

Instructions for the LLM

!

Input of Content

/f

Format

OEBPS/Images/untitled_427231_03.png
[e— s

it
e e——

Epe—

o B

OEBPS/Images/new_world_for_developers_289698_02.png
(I‘\i In Python, write a program that checks if a given integer is even or odd and prints the result.

Certainly! Here's a simple Python program that checks if a given integer is even or odd and

prints the result:

Here's how the program works:

It prompts the user to enter an integer using the “input() " function and stores the input in
the variable “num*

It checks if the remainder of dividing “num" by 2is equal to O using the *%" (modulo)
operator. If the remainder is O, the number is even; otherwise, it's odd

It prints the result to the console, indicating whether the number is even or odd.

You can run this program by copying and pasting it into a Python environment or IDE. When

you input an integer, it will tell you whether that integer is even or odd

OEBPS/Images/untitled_427231_01.png

OEBPS/Images/new_world_for_developers_289698_04.png
Please provide detailed tips and best practices for minimizing search time and enhancing
productivity when programming. Include strategies related to code organization,
documentation, tools, and mindset.

Certainly! Mini
Here are some strategies and best practices to consider:

izing search time is crucial for enhancing productivity when programming.

1. Code Organization:

* Modular Design: Break your code into smaller, reusable modules or functions. This not only
makes the code more maintainable but also easier to find specific functionalities when
needed.

* Consistent Naming Conventions: Use clear and consistent naming conventions for
variables, functions, classes, and files. This makes it easier to remember and search for
‘specific parts of your code.

* Directory Structure: Organize your code files in a logical directory structure. Group related
files together, such as all models in one folder, views in another, etc.

2. Documentation:

* Code Comments: While it's said that "good code is its own best documentation,” adding
comments to complex or non-intuitive parts of your code can save you (or another
developer) time in the future.

* Use Docstrings: For functions, classes, and modules, provide docstrings (in languages that
support them) that briefly explain the purpose, parameters, and return values.

* Maintain a README: For every project, maintain a README file that provides an overview

of the project, its structure, and how to run or use it. This serves as a quick reference guide.

3. Tools:

* Integrated Development Environment (IDE): Use an IDE with powerful search capabilities.
Features like "Go to Definition,” "Find Usages," and "Search Across Files" can drastically
reduce search times. S Rogenerate
e Verslon Contiok USe Version Contiol svEteme ke GiaTooks IKEE St Lo o S Can ey,

