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Chapter 1. LLM Ingredients: Training Data



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In Chapter 1, we defined LLMs, ruminated on their strengths and limitations, explored current and potential use cases, and presented the scaling laws that seemingly govern progress in this field. In Chapter 2, we dug deep into the trenches to understand the most significant advance in machine learning in recent times, the Transformer architecture which makes modern LLMs possible. Armed with this knowledge, let’s set our sights on utilizing these models to build useful applications!


To set the stage for the rest of this book, in this chapter and the next we will discuss the recipe for pre-training LLMs and the ingredients that go into them in detail. We will also take a journey through the LLM landscape and showcase the different pre-trained models available for our use, both open-source and proprietary. We will classify them according to various criteria including training data domain, architecture type, licensing etc.


But wait, this book is about utilizing pre-trained LLMs to design and build user applications. Why do we need to discuss the nuances of pre-training billion parameter models from scratch, something most machine learning practitioners are never going to do in their lives?


Actually, this information is very important because many of the decisions taken during the pre-training process heavily impact downstream performance. As we will notice in subsequent chapters, failure modes are more easily understandable when you have a comprehension of the training process. Just like we appreciate having ingredients listed on packages at our grocery stores, we would like to know the ingredients that go into making a language model before we use it in serious applications.

Note

There is not much information available in the public realm about some of the proprietary LLMs that are accessible only through an API. This book will provide as much information as has been made public. While the lack of information doesn’t mean that we should avoid using these models, model transparency is something that you might need to take into your calculus while making a final decision regarding what model to use.










Ingredients of an LLM


Let’s start with the ingredients that go into making an LLM.


Broadly speaking, we have:


	
Pre-training data - What’s it trained on? As the old computer science adage ‘Garbage In, Garbage Out’ comes back to bite us,  we will explore popular pre-training datasets and dig into the various pre-processing steps taken to ensure high-quality data is fed to the model. We will also showcase some tools that allow us to probe these datasets and understand how pre-training data composition impacts downstream tasks.



	
Vocabulary and tokenizer - What’s it trained over? In order to build a model over a language, we have to first determine the vocabulary of the language we are modeling, and rules to break down a stream of text into the right vocabulary units (tokenization). Linguistically, humans process language in terms of meaning-bearing words and sentences. Language models process language in terms of tokens. We will explore the downstream impact when there is a mismatch between the two.



	
Learning objective - What is it being trained to do? By pre-training a language model, we aim to imbibe the language model with general skills in syntax, semantics, reasoning and so on, that will hopefully enable it to reliably solve any task you throw at it even if it was not specifically trained on it. We will discuss the various tasks (learning objectives) that pre-trained models are trained on. You might wonder if LLMs are better suited to solving downstream tasks that are similar to the tasks the pre-trained model has been trained to solve. We will test this assumption and discuss the impact various learning objectives have on task performance.



	
Architecture - What’s its internal structure? As mentioned in Chapter 2, most modern language models are based on the Transformer architecture. We will discuss the various architectural backbones- specifically encoder-only models, encoder-decoder models, and decoder-only models, and the rationale used by organizations training LLMs for their choice of architecture type.







Let’s look at how these ingredients fit together in  (Figure 1-1):



[image: LLM Ingredients]
Figure 1-1. Figure depicting how all the ingredients come together to make an LLM.




The language models trained using the process described in this chapter and the next are called base models. Lately, model providers have been augmenting the base model by tuning it on much smaller datasets in order to steer them towards being more aligned with human needs and preferences. Some popular tuning modes are:



	
Supervised instruction fine-tuning, so that the model is better at following human instructions.



	
RLHF (Reinforcement Learning by Human Feedback), so that the model is better aligned with human preferences.



	
Domain-adaptive or task-adaptive continued pre-training, so that the model is better attuned to specific domains and tasks.






to name a few. Based on the specific augmentation carried out, the resulting models are called instruct models, chat models and so on.


We will cover instruct and chat models in Chapter 6, and domain/task-adaptive pre-training in Chapter 8.



[image: Derivative Models]
Figure 1-2. Figure showing the relationship between base models and their derivatives.




LLM Pre-training Challenges

Pre-training an LLM is a very technically challenging task, and requires a lot of computational resources and exceptional technical skills. For example, GPT-4’s technical report credits 343 unique contributors, not including the annotators in Kenya who contributed to their RLHF (Reinforcement Learning with Human Feedback) training. Delving into every aspect of pre-training LLMs is an entire book in itself. In this chapter we will not focus on infrastructure or engineering considerations for pre-training LLMs, nor focus on the nuances of distributed and parallel computing. We will instead focus on aspects of the pre-training process that can directly impact your application’s behavior and performance.


However, if you are curious to read more about the challenges involved in pre-training LLMs, here are some useful resources to quench your thirst -



	
Blog post from Big Science that explains the hardware, types of parallelisms employed, and optimizations used in training BLOOM, an open-source 176B parameter multilingual model.



	
Training chronicles(log book) from BLOOM and OPT, which is a 175B parameter LLM released by Meta, documenting the trials and tribulations faced during training, including hardware failures and how to recover from them, training instabilities, loss spikes and the like.



	
Video featuring Susan Zhang, the lead author of OPT, who discusses the OPT chronicles in detail.



	
The Deep Learning Tuning book by Google, which discusses hyperparameter optimization, multi-host setups, training instabilities and a lot more.
















Pre-training data requirements


Although it has been shown that higher capacity models are relatively more sample efficient, in general neural networks are very sample inefficient, meaning they need tons of examples to learn a task. It is infeasible to create such a large supervised dataset with human annotations, hence the predominant means to pre-train language models is using self-supervised learning, where the target labels exist within your training inputs.


Using this setup, virtually any type of text is fair game to be included in a pre-training dataset, and theoretically any non-textual signal can be encoded in text and included as part of a pre-training dataset.


From our scaling laws discussion in Chapter 1, we know that most current language models are severely undertrained and can benefit from additional performance gains by just training them longer and on more data. Also, as discussed in Chapter 1, the consolidation effect at play in the field raises expectations on what a single language model is expected to do end-to-end. Today a single model is expected to answer factual questions about the world, employ arithmetic and logical reasoning, write code, and come up with creative ideas.


All this means that the data needs for language model pre-training are enormous. Now, the key question is if textual data available in the world actually contains sufficient and relevant signals needed to learn all the skills we want LLMs to learn.


Note that language models that are trained solely on text only have access to the linguistic form i.e the sequence of characters making up a sentence like ‘Walter White tossed the pizza onto the roof’. In order to understand its meaning, the linguistic form has to be mapped to the communicative intent of the writer/speaker. While a section of the research community argues that one cannot learn meaning from form alone, recent language models are increasingly proving otherwise.


In order to have access to the full picture, the linguistic form needs to be grounded to the real world. In the cognitive sciences, grounding is defined as


The process of establishing what mutual information is required for successful communication between two interlocutors

Chandu et al., Grounding ‘grounding’ in NLP




Human text is generally very underspecified, with a lot of communicative intent existing outside the textual context, depending on the reader/listener to use their common sense, world knowledge, ability to detect and understand emotional subtext in order to interpret it.

Note

It is estimated that only around 12% of information we understand from text is explicitly mentioned in text. There are several theories explaining why we communicate thus, including Zipf’s principle of least effort, which states it is “human nature to want the greatest outcome at the least amount of work”.




The field of NLP has seen a lot of work in grounding language models to the real world. Multimodal models that combine different modalities like image, video, speech, text are a promising avenue of research, and are likely to see more widespread usage in the coming years. Imagine a model seeing ‘pizza’ in the training text, but also getting signals on how it looks, how it sounds, and how it tastes!


But do multimodal models really help? Can we achieve the effect of grounding by just feeding the model with massive amounts of diverse text? These are unsolved questions, and there are good arguments in both directions as shown by this debate.


Whether training on massive amounts of text alone can enable language models to learn skills like logical reasoning is another open question. Note that text on the Internet contains a lot of text describing reasoning steps, like theorem proofs, explanations of jokes, step-by-step answers to puzzles and so on. However, there is simply not enough of derivational text going around, which leads us to cover the shortfall by using prompting methods like chain-of-thought (described further in Chapter 5). There is recent evidence that process supervision, where feedback is provided for each step of the problem-solving process, as opposed to outcome supervision, where feedback is provided only on the final solution, helps improve arithmetic reasoning.


A crucial skill that language models have to learn is dealing with the inherently ambiguous nature of language. Following up on the aforementioned Zipf’s principle of least effort, ambiguity enables speakers to manage the efficiency-clarity tradeoff in communication. Earlier language models struggled heavily with modeling ambiguity. As an example, I long used this sentence as a canonical example in my NLP talks to highlight ambiguity in language.


“WWE’s John Cena surprises Make-A-Wish 7-year-old with cancer.”


While GPT-4 seems to get the correct interpretation of this particular sentence, recent work shows that state-of-the-art models like GPT-4 still struggle to deal with ambiguity in general. Whether just scaling up models and data is enough for LLMs to model ambiguity is an open question.


If our only option to resolve all these shortcomings is to scale up dataset sizes, the next question is if we actually have enough data available in the world that is sufficient to enable LLM’s to learn these skills. Are we at risk of running out of training data any time soon? There is a misconception in certain quarters of our field that we are. However, lack of raw data is far away from being a bottleneck in training models. For instance, there are billions of publicly available documents accessible by scraping or via a free API that haven’t yet made it into most pre-training data sets such as parliamentary proceedings, court judgements, and most SEC filings. Moreover, text generated by language models can be used to self-improve them, albeit with the risk that training on LLM-generated data can be detrimental, as the model deviates from the true distribution of the data.


Of course, one could make a distinction between the volume of available high-quality data vs low-quality data and claim that it is high-quality data that is close to exhaustion , but what exactly makes data high-quality is a very nuanced question.

Note

LLMs are underfit, and are usually trained with just one epoch or less (each training example is fed to the model only once, unless duplicates of that example exist across the dataset). However, in recent times, there is increasing evidence that you can safely train for multiple epochs (at least ~5) without being in danger of overfitting. The GALACTICA model from Meta was trained on 4 epochs, and noted improved performance. Recent work from Muennighoff et al. and Xue et al. provide further evidence on this. Therefore, the impending data-apocalypse has been thwarted even further.




Copyright Issues Pertaining to Pre-training Datasets

Can LLMs be trained on copyrighted text without the explicit consent of the copyright holder and without attribution? Can LLMs be trained on text that inadvertantly contains sensitive personal information without legal liabilities? These are all fluid legal and moral questions. In the U.S, the ‘fair use’ doctrine has been used to justify training LLMs on copyrighted text. However, this is currently being tested, and as of this book’s writing, a class action lawsuit has been filed against Github, Microsoft, and OpenAI for using code from Github repositories that were published under restrictive licenses for training Github Copilot, a code completion LLM. The AI community will be watching this case with interest. However, all over the world, laws are fast loosening to permit this type of usage and clear legal hurdles for LLM training and adoption.


As LLM usage expands and they become an integral part of the economy, data used to train them becomes more valuable. Reddit and StackOverflow, both of which have been an important source of data in many influential pre-training datasets, have recently announced they will start charging for data access. Expect more such announcements in future.


What are the copyright implications for people and organizations using these language models downstream? We will discuss this in more detail in Chapter 14, where we will provide more background on the various types of software licenses and their degree of permissibility for commercial usage.












Popular pre-training datasets


A lot of text is not freely available in public. This includes data exposed behind paywalled APIs and login screens, and paywalled books and documents, many of whom may not even be digitized. Larger companies like Google and OpenAI can afford to purchase this data - Elon Musk revealed that Open AI had access to the Twitter database, and Google has access to over 40 million books it has scanned and digitized as part of the Google Books project. Domain specific text is often proprietary and available only to large incumbents (for example Bloomberg trained BloombergGPT partly on their proprietary financial data). However, even for models trained by the largest companies, a significant proportion of training data comes from publicly available data sources.


Next, we will cover some of the most popular general purpose pre-training datasets that are being used to train LLMs. While this is not a comprehensive list, most LLMs, including closed-source ones, have at least a large subset of their training data drawn from these sources. We will defer discussion of domain-specific (catered to a particular field like social media, finance, biomedical etc) datasets to Chapter 8.

Tip

Most general purpose LLMs are trained to be a jack-of-all-trades - to be able to solve tasks from a variety of domains. If the data domain for your use case happens to be represented in a pre-training dataset, you will see some performance improvement on your downstream task, even though the data in the pre-training dataset is unlabeled. This means that if you intend to use LLMs for a specific well-defined use case in a particular domain, then domain-specific models could likely be more preferable. You can also perform continued domain-adaptive or task-adaptive pretraining to leverage this phenomenon. This will be discussed in detail in Chapter 8.




Common Crawl/C4: The Web is the largest source of openly available textual data. Common Crawl is a non-profit that creates and makes available a snapshot of all web crawl data, updated every month. However, as one could imagine, this is an extremely coarse data set and needs to be significantly cleaned before it is ready to use. Most pre-training datasets have a sizeable portion of their data sources from Common Crawl. Google prepared C4 (Colossal Clean Crawled Corpus), a 750GB dataset after applying a set of pre-processing and filtering steps to a Common Crawl snapshot from 2019 and released the code for it. Dodge et al. used this script to reproduce C4 and have made it publicly available. C4 has been used for training several well-known LLMs including all models from the T5 family.


The Pile: The Pile is a 825 GB dataset from Eluether AI, who focused on publishing a dataset that is drawn from more diverse sources. Diversity of data is important since in-domain unlabeled data in pre-training is helpful for downstream performance on that domain, and diverse data sets also enable generalization to previously unseen tasks and domains. To this end, the data from The Pile comes not only from Common Crawl but also PubMed Central, ArXiv, GitHub, the FreeLaw Project, Stack Exchange, the US Patent and Trademark Office, PubMed, Ubuntu IRC, HackerNews, YouTube, PhilPapers, NIH ExPorter, Project Gutenberg, Wikipedia among others. It is one of the most preferred datasets for open-source LLM models today.


ROOTS: The ROOTS dataset is a 1.61 TB multilingual dataset released by BigScience, the open source collaboration that trained BLOOM, which at the time of release was the largest multilingual language model in the world. A large proportion of ROOTS data comes from web domains and datasets that were marked by volunteers from across the world as being highly relevant.


WebText/OpenWebText/OpenWebText2: These refer to a subset of web text, and are limited to text from pages representing outbound links on Reddit that have at least 3 karma, where karma refers to the absolute difference between upvotes and downvotes. The idea is that the wisdom of the crowds will enable only quality links to surface, that contain information that people actually find interesting. Models that have been trained on this data include GPT-2 and GPT-3.


Wikipedia - A full dump of Wikipedia contains valuable encyclopedic text that provides factual knowledge to the model. Wikipedia’s editorial system ensures that the text follows a highly structured format. However, it is not diverse stylistically, with text written in a formal manner. Hence, it is usually combined with a corpus like the BooksCorpus.


BooksCorpus/BooksCorpus2 - Probably the most influential of all pre-training datasets, this dataset was part of the training corpus for well known models like BERT, RoBERTa, GPT-2/3 etc. The BooksCorpus contains over 7,000 free, mostly fiction books written by unpublished authors. It has since been found that several books in the dataset have restrictive copyright licenses. The original corpus is no longer public. 26% of books in the original dataset belonged to the Romance genre. A replication of the BooksCorpus is present in The Pile as BooksCorpus2.


The following table provides a list of some of the most commonly used datasets, their size, year of release, and the means to access them.


Table 1-1. Popular pretraining datasets


	Name
	Data Source(s)
	Size
	Year Released
	Public?
	Models using this dataset





	C4

	Common Crawl

	750GB

	2019

	Yes (reproduced version)

	T5, Flan-T5, UL2, Llama etc




	The Pile

	Common Crawl, PubMed Central, Wikipedia, ArXiv, Project Gutenburg, Stack Exchange, USPTO, Github etc

	825GB

	2020

	Yes

	GPT-Neo/X, GPT-J, Cerebras-GPT, StableLM, Pythia etc




	RedPajama

	Common Crawl, Github, Wikipedia, arXiv, StackExchange etc

	1.2T tokens

	2023

	Yes

	Red Pajama-INCITE, MPT




	BooksCorpus

	Sampled from smashwords.com

	74M sentences

	2015

	Original not available anymore

	Most models including BERT, GPT etc




	OpenWebText2

	outbound reddit links

	65GB

	2020

	Yes

	GPT2, GPT3




	ROOTS

	BigScience Catalogue, Common Crawl, Github

	1.6T tokens

	2022

	No (but available on request)

	BLOOM




	RefinedWeb

	Common Crawl

	5T tokens

	2023

	Yes (600B subset only)

	Falcon




	SlimPajama

	Cleaned from RedPajama

	627B tokens

	2023

	Yes

	N/A







As you can see, most models are trained from the same few datasets. In this chapter, we are limiting our coverage to pre-training datasets for base models. We will cover datasets used to augment base models like instruction tuning datasets, RLHF datasets, prompt datasets etc in Chapter 6.


Exercise

Let’s do some sleuthing. Investigate the C4 dataset and explore its characteristics.



	
Is your personal data present in C4? Use this  tool to find out.



	
Consider a domain of your choice (finance, poetry, biomedical etc), catering to your professional and/or personal interests. What are the popular websites for your domain? To find out what proportion or C4’s data comes from those websites, you can use this tool from The Washington Post.(scroll down until you find the tool the websites in C4’s dataset.)
















Training Data Preprocessing


Once we have collected or procured data, we need to run the data through a preprocessing pipeline in order to create the pre-training dataset. Data preprocessing is the most unglamorous and underappreciated part of the LLM training pipeline, yet perhaps the most important. I would argue that there are a lot of low-hanging gains to be had for LLMs just by focusing more on data pre-processing. As we walk through the data processing pipeline, I hope you come to appreciate the complexity of language text and the difficulty in processing it. Note that since these datasets are enormous, any preprocessing step should also be very efficient (ideally linear time).


Figure 1-3 shows the typical preprocessing steps used to generate a pre-training dataset. The ordering of steps is not fixed, but there are dependencies between some of the steps.



[image: Data preprocessing pipeline]
Figure 1-3. Data collection and pre-processing pipeline




Let’s go through these steps in detail.










Data filtering and cleaning


A majority of text extracted from HTML files is gibberish, like menu text from websites, boilerplate text, and random web page artifacts. There is a significant amount of pornography, toxic, and hateful language on the Web too.
For example, here is how a text sample from an uncleaned version of the C4 dataset looks like:


“Skip to Main Content Skip to Footer Skip to Email Signup Skip to Feedback Form MY REWARDS SIGN OUT SIGN IN & EARN REWARDS 0 Keyboard Controls Welcome to the main navigation. This menu has three levels of product categories. Use and keys to navigate between each category in the current level. Use the key to navigate down a level. Use the key to navigate up a level. Hit the key to be taken to the selected category page. Men What’s Hot New Arrivals Brand That Unites Performance Shop Online Exclusives Express Essentials Vacation Getaway Wedding Tuxedos Military Trend 9 Pieces / 33 Looks The Edit x Express NBA Collection Express + NBA Fashion NBA Game Changers Suiting & Blazers Find”


How useful do you think this text is for language and task learning?


Data from Common Crawl is made available via both raw HTML and WET (web-extracted text) format. While many dataset creators directly use the WET files, the open source organization Eluether AI noticed that the quality of the WET files left much to be desired, with HTML boilerplate still prominent as seen above. To create The Pile, Eleuther AI thus used the justext library to more reliably remove boilerplate text from HTML documents.


Let us explore the effect of using justext with an example.In your Google Colab or jupyter-lab notebook, try this out -


!pip install justext

import requests
import justext

response = requests.get("https://en.wikipedia.org/wiki/Toronto_Transit_Commission")
text = justext.justext(response.content, justext.get_stoplist("English"))
for content in text:
  if content.is_boilerplate:
    print(content.text)


The output displays all the boilerplate that is filtered out from a standard Wikipedia article.


Jump to content
Main menu
Main menu
Navigation
Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
Contribute
Help
Learn to edit
Community portal
Recent changes
Upload file
Languages
Language links are at the top of the page across from the title.
Search
Create account
Log in
Personal tools
…


justext just so happens to be more aggressive in removing content, but this is generally OK for cleaning pre-trained datasets since there is an abundance of text available. Some alternative libraries used for this task include dragnet, html2text, inscriptis, newspaper, and trafilatura. According to the creators of The Pile, dividing the extraction pipeline across multiple libraries can reduce the risk of the resulting dataset being affected by any bias introduced by one of these libraries.


Exercise

Use your favorite news website and open a news article. Use any of the text extraction libraries mentioned, to remove web boilerplate. Is the output desirable on your first try? What kind of additional heuristics might you need?




Pre-training on Raw HTML Documents

Do we really need to filter out HTML tags from raw HTML documents before pre-training? What if we pre-trained on raw HTML documents instead? This outlandish yet creative idea was implemented by Aghajanyan et al. in their HTLM (Hyper-text Language Model) model. The structured format of HTML enables valuable metadata to be encoded with text. For example, the <title> tags could represent the summary, and the <class> tags could provide category information about the text.


Not all of the HTML is useful for pre-training. For example, CSS isn’t very informative for language learning. Therefore, the creators of HTLM convert the raw HTML into a simplified form, by filtering out iframes, headers, footers, forms etc. This process is called minification.


The results presented in their paper show the model is especially good at summarization, because the access to the category tags helps it focus on the salient aspects of the topic under discussion. However, as of this book’s writing, this pre-training paradigm hasn’t caught on yet.




Once text is extracted, rudimentary filtering steps based on heuristics are applied. While the details differ across datasets, here are some of the steps typically performed:



	
Boilerplate Removal: Only lines that end with a punctuation, like the period, exclamation and question
mark are retained. This ensures that menu text from websites is removed. Only
lines with greater than a particular threshold of words and documents with
greater than a particular threshold of sentences are retained. The latter helps in
modeling long sequences which is an important capability for language models to
have. Documents containing lorem ipsum… and other boilerplate text are filtered
out.



	
Non-English text removal: Libraries like langdetect, langid, fasttext, pycld2 are used to detect the language of the text. For example, C4 retains text that has > 0.99 probability of English as judged by langdetect. Note that these libraries can also be used to remove boilerplate and web page artifacts since they give a lower probability of English to those texts.



	
SEO text/Spam removal: Documents with a lot of repeated character sequences are removed.
Documents with a low proportion of closed class words are removed. Closed class words in English are function words like of, at, the, is etc. If a page is engaged in keyword stuffing and other SEO tricks, then they would have a lower closed class words ratio.



	
Pornographic/abusive text removal: Documents containing any words from keyword lists like the “List of Dirty, Naughty, Obscene or Otherwise Bad Words” are removed.






Tools like langdetect and langid are helpful for speedy determination of  the language in which text is written at scale, but how do they deal with code-switched text (text with multiple languages, where oftentimes it is English interspersed with a local language)?


You can try it out yourself! Here is an example for Taglish (Tagalog + English, which is a common mode of communication in the Philippines). In your notebook, run


!pip install langdetect

from langdetect import detect_langs()

detect_langs("""Pag-uwi ko galing sa paaralan, sobrang pagod ako dahil sa dami

ng aking ginawa sa buong araw. Ang traffic din sa kalsada, nakaka-stress

talaga! Pero nang makarating ako sa aking tahanan, nabuhayan ako ng loob dahil

sa masarap na amoy ng ulam na inihanda ni nanay. Excited na akong kumain

kasama ang aking pamilya at i-share ang mga kwento ko tungkol sa aking mga

kaibigan, guro, at mga natutunan ko sa school. After dinner, magre-relax muna

ako habang nanonood ng TV, and then magre-review ng lessons bago matulog. Ito

ang routine ko pag-uwi mula sa school, at masaya ako na dumating sa bahay namay

naghihintay na pamilya na handang makinig at suportahan ako sa aking

pag-aaral.""")


Output:


[tl:0.9999984631271781]


detect_langs("""After a long day at school, pagod na pagod talaga ako. The

traffic on the way home didn't help, nakakastress na nga! But upon arriving

home, I felt a sense of relief dahil sa welcoming atmosphere and the delicious
aroma of the ulam na inihanda ni Mommy. Excited na akong mag-share ng

experiences ko today with my family during dinner, kasama ang mga kwento about
my friends, teachers, and interesting lessons sa school. After eating, it's

time for me to chill while watching some TV shows, and then review my lessons

bago ako matulog. This is my daily routine pag-uwi galing school, and I am

grateful na may loving family ako na handang makinig at supportahan ako sa

aking educational journey.""")


Output:


[en:0.9999954357601804]


The second paragraph would get included in the C4 dataset, as per its filtering criteria (probability of English should be greater than .99). Therefore, even datasets that claim to be English-only routinely contain text in other languages, leading to surprising multilingual behavior during inference. Ever wondered why some monolingual models seem to perform well at machine translation? This is a major reason.


The way langdetect is implemented makes it poor at identifying language when short sequences are provided. For example:


detect_langs('I love you too.')


returns


[sk:0.8571379760844766, en:0.14285726700161824]


sk refers to Slovak here.


Exercise

C4 is an English language dataset, with text getting less than 0.99 probability of English in langdetect being removed. However, a lot of non-English data persists in this dataset. If you know a second language, then search for words in that language in C4. In what contexts do these non-English text fragments appear? Could an LLM learn these languages using these leftover fragments?














Selecting Quality Documents


While LLM’s are trained with the intention of making them a jack-of-all-trades, the Internet is a very vast place and not all data is created equal. There are many websites whose content one would be hard pressed to find relevancy to any potential downstream task, however imaginative you might be. Moreover, as we have seen earlier, the data cleaning process is far from optimal. A common way of filtering out less useful documents from Common Crawl is to build a classifier for quality text. The examples for the positive class are from a dataset known to be useful, like say, Wikipedia, and the examples for the negative class would be random documents from common crawl.












Perplexity for quality selection


Perplexity, an intrinsic evaluation measure for language models, has been used in the data-processing stage for document filtering, notably by the creators of CCNet.


Just like the classifier approach, we select documents from data sources (like Wikipedia) that we deem useful as the positive class. We then train a 5-gram language model using KenLM (a library facilitating training of n-gram language models.) over it. Next, we take the dataset we want to filter, and calculate the perplexity of each paragraph in it over the trained language model. The lower the perplexity, the more similar it is to the positive class. We can then discard documents with high perplexity.


Low perplexity may not always be a good thing. Short and repetitive text can have low perplexity. Note that writing style gets factored into perplexity. If the reference language model is trained over Wikipedia, then documents written in an informal style may receive higher perplexity scores. Therefore, it would be beneficial to have a more involved filtering strategy.


To resolve this, the creators of BERTIN introduced the concept of perplexity sampling. In perplexity sampling, instead of just filtering out low-perplexity text, they utilize perplexity scores in a sampling strategy over their dataset. The sampling strategy is to oversample from the middle part of the perplexity probability distribution.














Exploring perplexity with Wikipedia LMs


Download the file https://huggingface.co/edugp/kenlm/blob/main/model.py
After placing the file in your home directory, run this code in a new file


from model import KenlmModel
model = KenlmModel.from_pretrained(“wikipedia”, “en”)
model.get_perplexity(“She was a shriveling bumblebee, and he was a bumbling

banshee, but they accepted a position at Gringotts because of their love for

maple syrup”)


Exercise

Try out sentences in different styles and topics to see how the perplexity varies! In particular get the perplexities of these types of text:



	
Social media text, like Twitter



	
SEO spam



	
Text with a lot of slang






Additionally, you can train a KenLM model on your own domain dataset. Sample a portion of your dataset and train the model using the instructions provided in their Github. You can then take the remaining portion of the dataset, break it into chunks, and calculate the perplexity of each chunk. Which chunks have the highest perplexity? Which chunks have the lowest perplexity? After manually inspecting the results, do you think perplexity sampling is a good measure of quality?



Note

According to an analysis of C4, the Internet domain that contributed the largest proportion of text in the dataset was patents.google.com. Over 10 percent of the text from this domain is in fact machine translated, with patents from countries like Japan being translated from Japanese to English. So a significant amount of pre-training data is already not generated by humans!


Propelled by LLM’s, the Internet is slated to see widespread prevalence of AI-generated text. Recognizing whether text was written by a human or an LLM is a non-trivial task, and certainly not feasible at scale. How this would affect future LLM performance is an open research question.




Despite all the data cleaning steps, the resulting dataset is still not going to be perfect at this level of scale. For example, Eleuther AI reported that the boilerplate sentence “select the forum that you want to visit from the selection below” occurs 180k times in the Pile.














Deduplication


So far we have discussed data extraction and cleaning, language identification, and quality filtering. Let’s now explore the most contentious step in the pipeline - deduplication.


We know that web-crawled text is ridden with a lot of duplicates. Duplicates form a non-trivial portion of the training dataset, so any decision taken about them will have a noticeable impact on the ensuing model.


How do we define a duplicate? We will make a distinction between three kinds:



	
Exact Matches: Two sequences with the same text are exact-match duplicates. They are the easiest to handle.



	
Approximate Matches: In many cases, there are near-duplicates, where sequences of text are identical except for a few characters. Sometimes these sequences are slightly different only due to HTML text extraction artifacts and other filtering processes.



	
Semantic Duplicates: Duplicates that semantically convey the same content but using different wordings. This is usually treated as out of scope.






Duplicates can also be categorized based on the granularity at which they occur.



	
Document-level Duplicates: Duplicate documents are removed during the preparation of most pre-training datasets. However, in some datasets like The Pile, certain subsets (like Wikipedia) are deliberately duplicated,  so that they are seen more often by the model.



	
Sequence-level Duplicates: These are sequences in documents that are repeated across multiple documents. In some cases they can be massively duplicated, like Terms of Service text, copyright notices, website prefaces etc.
















To Deduplicate or to not Deduplicate


The jury is still out on the effectiveness or lack thereof of deduplication.


There is evidence that you can train for four epochs without overfitting. This is equivalent to text being duplicated four times. However, there is still a benefit in removing duplicates that are just boilerplate text and occur thousands of times.


On the other hand, here are a few arguments in support of deduplication:



	
A small subset of the pre-training dataset is usually kept aside for validation/test. Deduplication can ensure the removal/reduction of overlap between the train and test sets, which is essential for an unbiased evaluation. Without sequence-level deduplication, there is a high likelihood of overlap of common text sequences in the train and test sets.



	
Anthropic’s work shows a surprising double descent phenomenon - this means that data that is duplicated only a few times doesn’t negatively impact model performance too much, data that is duplicated too many times doesn’t negatively impact model performance too much, but in the distribution of duplication frequency, there is a peak in the middle where the damage is maximum.



	
Removing duplicate sequences reduces the overall size of the training dataset. However, Lee et al. show that this does not affect the perplexity of the model. Thus, the model can be trained for a shorter period yet with the same benefit.



	
Deduplication can also reduce the tendency of the model to memorize its training data. Memorization is closely linked to model overfitting, and thwarts the ability of the model to generalize. While there are many ways to quantify memorization, we will focus on memorization by generation, where a model is said to have memorized a sequence if it is capable of generating it verbatim. Lee et al. have shown that models trained on datasets that have been deduplicated at the sequence level generate ten times less verbatim training data.





Tip

One advantage of using models trained on publicly available datasets is that you can search through the dataset to see if the text generated by the model exists verbatim in the dataset. For example, the ROOTS search tool can be used to test generations from the BLOOM model, which was trained on ROOTS.




Security Vulnerabilities in LLMs due to Memorization

Memorization makes language models vulnerable to security and privacy attacks. Two demonstrated types of attacks are:



	
Membership inference attack: With just closed-box access to a model, a membership inference attack enables an attacker to determine if a sequence of text has been used to train the model or not.



	
Training data extraction attack: With just closed-box access to a model, the attacker can prompt the model to generate memorized sensitive information. A naive example involves prompting the model with the text  ‘Suhas Pai’s phone number is’ and asking the model to provide the continuation, with the hope that it has memorized Suhas’s number.






Carlini et al. show that larger models memorize more easily and thus are most susceptible to these types of attacks. However, it is hard to estimate how much data is memorized by the model, as some memorized data is output by the model only when prompted with a delicately prepared prefix of a longer length. This makes models harder to audit for privacy guarantees.


Figure 1-4 demonstrates the flow of a rudimentary training-data extraction attack.





[image: Privacy attacks]
Figure 1-4. Privacy Attacks against LLMs



Tip

Deduplication is computationally intensive, especially when it comes to removing near-duplicates. Some of the efficient algorithms used include MinHash, SimHash, Suffix Array etc.
















Removing PII (Personally Identifiable Information)


While deduplication can reduce the likelihood of the model memorizing training data, it is by no means a panacea to the memorization problem. Even information that appears only once in the training set could potentially be memorized (and leaked). While a lot of content in the training data is innocuous (Terms of Service text) and perhaps even desirable to memorize (factual information, like the capital of Canada), memorization of personally identifiable information (PII) is a major concern.


Let us see what PII entails. The formal definition from Cornell Law is -


Information that can be used to distinguish or trace an individual’s identity, either alone or when combined with other personal or identifying information that is linked or linkable to a specific individual.



Based on this definition, non-PII can become PII when another piece of information becomes public, which when combined with the non-PII can be used to uniquely identify an individual.


The legal definition of PII varies by jurisdiction. For example, the GDPR (General Data Protection Regulation) in Europe, says


Protection should be extended to anything used to directly or indirectly identify a person (or data subject). This may be extended to include characteristics that describe “physical, physiological, genetic, mental, commercial, cultural, or social identity of a person.



Most open-source models are trained on publicly available datasets. These datasets might contain PII, but one might be tempted to say ‘well it is already out in the open, so there is no need for privacy protection’. This argument overlooks the importance of consent and discoverability controls. For instance, I might have shared my PII on my blog which resides in an obscure corner of the Internet and is not easily discoverable through search engines, but if it ends up being added to a pre-training dataset, it suddenly brings this data into the spotlight, without my consent. This concept is called contextual integrity - data should only be shared in the original context in which it was shared.


So ideally, we would like to detect PII in the dataset, and then remediate it in some fashion, so that the PII is no longer present in the training data or at least not memorizable. The presence of public-figure PII adds a layer of complexity to this problem. We would like our model to be able to answer factual questions about public figures like their birth date accurately. The privacy expectations for public figures is lower, showcasing how the values of transparency and openness clash with privacy. Determining who is a public figure and what level of privacy they are entitled to is a complex social and technical challenge.


Data that is considered private includes names, addresses, credit card data, government IDs, medical history and diagnosis data, email IDs and phone numbers, identity and affinity groups the person belongs to (religion, race, union membership), geolocation data and so on.


Attacks can be either targeted or untargeted. In an untargeted attack, the attacker just generates a large body of text using the model, and then runs a membership inference attack to determine text within it that is most likely to be memorized. In a targeted attack, the attacker attempts to recover personal information about a particular individual or a group of individuals. Targeted attacks are more difficult to execute, because while language models are good at memorization, they are bad at association - for instance, identifying that an email ID belongs to a person.


Exercise

Use the instructions in the ReadMe to run this code for analyzing privacy attacks on LLMs. It goes without saying, but please do not use this in the real world! Running the code and observing the outputs will give you an understanding of the limitations of this type of attack, and the type of data that is typically memorized by an LM.


Additionally, you can play around with Google’s Training Data Extraction Challenge and make a submission!



Note

Language models are also susceptible to training data poisoning attacks. Since a large portion of training data is sourced from web-crawled text, bad actors have an opportunity to influence the content of the training set. Tramer er al. have shown that one can poison less than 0.1 percent of the training set with data whose effect is to make it easier for other data in the training set to leak more easily.


As LLMs increasingly get used as search engines, the demand for LLM SEO will soon crop up. For example, a company could write content on their web sites in a manner that makes it more likely to be chosen in a pre-training dataset creation process that uses perplexity filtering.




Most pre-training datasets have undergone little to no PII remediation. The Privacy working group (of which I was the co-lead) of the Big Science project that trained the BLOOM model developed a pipeline for PII detection and remediation, which we will discuss next.


Figure 1-5 shows a typical PII processing pipeline.
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Figure 1-5. PII Processing pipeline














PII Detection


The task of PII detection is similar to the NLP task of Named Entity Recognition, introduced in Chapter 1. However, not all named entities constitute PII.
For our task we determined the PII tags to be - PERSON, AGE, NORP (nationality, race, religion, political party affiliation, socio-economic class, union membership), STREET_ADDRESS, CREDIT_CARD, GOVT_ID, EMAIL_ADDRESS, USER_ID, PUBLIC_FIGURE.


We used the PUBLIC_FIGURE tag to identify information about public figures, since we didn’t want to filter them out. We also assigned fictional characters this tag.


Some of the structured tags in this list like emails and government IDs can be identified using regular expressions. For other tags, we annotated datasets which could then be used to train Transformer-based NER-like models. Interestingly, we observed a very high degree of inter-annotator disagreement (same example being annotated differently by different people) that underscored the cultural nuances of the definition of privacy and what constitutes personal information.


Here is the regular expression to detect SSN (U.S Social Security Numbers):


ssn_pattern = r"(?!000|666|333)0*(?:[0-6][0-9][0-9]|[0-7][0-6][0-9]|

[0-7][0-7][0-2])[-\ ](?!00)[0-9]{2}[-\ ](?!0000)[0-9]{4}"


Note that detection is not the same as validation. Not all 9 digit numbers of the form XXX—​XX-XXXX are SSNs!  Validation is the process of checking if a sequence of characters maps to a valid identifier. For example, the Canadian equivalent of SSN, the SIN (Social Insurance Number) contains a checksum digit which can be used to validate it.


from stdnum.ca import sin
sin_pattern = re.compile(r"\d{3}[-\ ]\d{3}[-\ ]\d{3}", flags=re.X)
for match in sin_pattern.findall(text):
    if sin.is_valid(match):
         print(match)


The is_valid() function uses the Luhn checksum algorithm to validate if the sequence of digits maps to a valid SIN. The same algorithm is also used to validate credit cards. Here is the regex for detecting credit card numbers.


from stdnum import luhn
cc_base_pattern =  r"\b \d (?:\d[ -]?){14} \d \b"
cc_full_pattern = r"""4[0-9]{12}(?:[0-9]{3})? |
                      (?:5[1-5][0-9]{2}|222[1-9]|22[3-9][0-9]|2[3-6][0-9]{2}|27[01][0-9]|

                      2720)[0-9]{12} |
                      3[47][0-9]{13} |
                      3(?:0[0-5]|[68][0-9])[0-9]{11} |
                      6(?:011|5[0-9]{2})[0-9]{12} |
                      (?:2131|1800|35\d{3})\d{11}"""


The regular expression for detecting email address is


email_pattern = r"[\w\.=-]+ @ [\w\.-]+ \. [\w]{2,3}"


Exercise

These regular expressions were run on the ROOTS dataset. How effective were they in detecting PII? Find out using the ROOTS search tool. If you search for ‘gmail.com’, you will find that all entries in the search results have been successfully redacted. Alter the spelling a little and see if it still holds true. Can you improve the regular expession?



Note

Removing structured PII data while keeping the number of false positives low is hard enough, but detecting and remediating unstructured data is even harder. Due to the complexity of this task and the uncertainty about its impact on the resulting model performance, we decided to not run the Transformer model based PII pipeline over the ROOTS dataset for training the BLOOM model
















PII Remediation


Once PII has been detected, it can be remediated. Figure 1-6 depicts one of the remediation schemes.
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Figure 1-6. PII Remediation Options




Here is a non-exhaustive list of remediation options:



	
Replace by a special token: For example, a valid phone number can be replaced by the string <phone number>



	
Replace with a random token of the same entity type: For example, replace the name ‘Clarietta Richards’ with ‘Natasha Bridges’, or any other name.



	
Replace with a shuffled token: Entities detected across the dataset can be shuffled.



	
Remove entire document/data source: If the amount of PII detected in a single document or data source is higher than a specific threshold, it is probably best to remove it. For example, pastebin.com is said to contain a lot of inadvertently placed PII, and is recommended to be not included in training datasets.






Each of these techniques can have a varied effect on downstream performance of the model. How does replacing tokens affect training perplexity? Do downstream tasks like Named Entity Recognition get negatively affected when tuned on the resulting model? How does replacement by special tokens compare to replacement with random tokens? This is a relatively underexplored topic and all these questions are still open.


Faker is an excellent library for facilitating random token replacement. It supports random token generation for a variety of PII types including names, addresses, credit card numbers, phone numbers etc.
One danger in using random tokens is that the replacement process can alter the demographic distribution of the dataset - for example, if the replacement names were all or mostly Anglo-Saxon names. Faker has localization support to enable replacement with fake data from the same geography/culture. Let’s explore the library in more detail.


from faker import Faker
fake = Faker(‘en_IN’)   # Indian locale
Faker.seed(0)
for i in range(5):
   print(fake.aadhaar_id)


This code generates 12 digit fake Aadhaar ID’s, which are the Indian equivalent of Social Security Numbers. Note that the generated IDs are all invalid, but still follow the same format. Similarly,


for i in range(5):
   print(fake.address)


generates fake but representative addresses for the selected locale.

Note

Removing PII from training datasets is only one of several solutions to prevent data leakage from models. One promising technique is differential privacy, which introduces randomness in the inputs or outputs to provide theoretical guarantees for privacy preservation. In neural networks, differential privacy is implemented using the DP-SGD algorithm, which involves gradient clipping and noise addition at the end of each update. However, differential privacy significantly slows down training, negatively affects model performance, and disproportionately impacts minority groups in the dataset in terms of model utility degradation. Apart from differential privacy, other methods include adversarial training, model unlearning, retroactive censoring, and ‘memfree’ decoding.
















Test Set Decontamination


Test set decontamination is a crucial data preprocessing step that helps improve LLM evaluations. A pre-training dataset is said to be contaminated if it contains data from the benchmark test sets used to evaluate its performance. Contamination can happen if the test datasets were constructed from web text, or if the dataset was uploaded on the Web after creation. There are two types of contamination:1



	
Input and Label contamination: In this setting, both the questions (inputs) and answers (target labels) exist in the pre-training dataset. Heard about how GPT-4 can solve all kinds of exams? While the creators of GPT-4 did spend a lot of effort on removing data contamination, in practice it is really hard to remove everything.



	
Input contamination: In this setting, only the inputs are present in the pre-training dataset but not the target labels. We will describe the effects of input contamination and how we can leverage it for positive use in Chapter 8 and 9.






Open AI addressed test set contamination in GPT-3 by finding 13-gram overlaps between text in the test/validation set and the train set, and removing 200 characters before and after the matched texts.


Dataset Ordering

After all data pre-processing stages have been completed, the training process can commence. The order in which the data is fed to the model does matter. The area of study to determine the most optimal order is called curriculum learning. To our knowledge, most models do not go beyond some simple ordering heuristics.


One technique is to start the training with shorter training sequences and then gradually increase the sequence lengths. This can be done by either truncating initial sequences to fit a certain length, or by simply reordering the dataset so that shorter sequences are ordered first.


Researchers have also experimented with introducing more common words to the model first, by replacing rarer words occurring in early training examples with their part-of-speech tag or with hypernyms (for example, the hypernym of magenta is color).




Now that we have discussed all the important data collection and pre-processing steps for preparing a pre-training dataset, let us see how individual datasets differ in terms of the preprocessing steps they have undergone.

Tip

Big Science has developed a visualization tool that helps you understand the effect of various preprocessing functions on the pre-training dataset. Use the Process Pipeline Visualizer to sequentially run through the preprocessing pipeline yourself!




Table 1-2 provides a list of the popular pre-training datasets, and the kind of preprocessing they went through.


Table 1-2. Pretraining Datasets and their Preprocessing Pipeline


	Name
	Extraction and Cleaning
	Quality Filtering
	Deduplication
	Language Identification
	Models trained with this dataset





	C4

	Remove pages containing word in blocklist, remove code, remove short lines and pages

	-

	Deduplication of 3-sentence spans

	langdetect

	T5, Flan-T5, UL2, Llama etc




	The Pile

	justext library for text extraction

	fasttext classifier

	Document level, with MinHashLSH

	pycld2

	GPT-Neo/X, GPT-J, Cerebras-GPT, StableLM, Pythia etc




	CCNet

	-

	Perplexity filtering

	Paragraph level deduplication

	fasttext

	F




	RedPajama

	Ccnet pipeline

	Classifier distinguishing between Wikipedia text and random C4 text

	Paragraph level deduplication (for Common Crawl)

	fasttext

	Red Pajama-INCITE, MPT




	CleanPajama

	low-length filter, NFC normalization

	-

	MinHashLSH

	-

	-




	RefinedWeb

	URL filtering by blocklists, trafilatura library for text extraction, repetitive content removal

	-

	Fuzzy document level deduplication with MinHash, Exact sequence-level deduplication

	fasttext

	Falcon




	ROOTS

	removal of documents with low ratio of closed class words, high ratio of blocklist words, high ratio of character/word repetition

	Perplexity filtering

	SimHash, Suffix Array

	fasttext

	BLOOM

















Leveraging Pre-training Dataset Characteristics


How well do LLM’s do on arithmetic and logical reasoning? The prospects of a very large number of use cases depend on the answer being a positive one. We will investigate this question in more detail in Chapter 11.


But for now, I would like you to dwell a moment on this fascinating observation - there is a correlation between a model’s performance on a given input example and the pre-training corpus frequency of the words present in that input.


Razeghi et al. observed this with the GPT-J model - when asked arithmetic questions like addition, subtraction, multiplication etc, the model gets it right sometimes, and wrong other times.If you plot a graph of pre-training frequencies of the numbers versus the performance for arithmetic operations using those numbers, there is a clearly visible trend. The more frequent a number appears in the pre-training dataset, the better the model is at arithmetic operations involving that number.


The effect is most drastic for multiplication tasks. As shown in Figure 1-7, the model is more correct at multiplication operations involving the number 24 than ones involving the number 23, and the frequency of the numbers in the dataset show a large difference between the term frequency for these numbers.



[image: Avg.Accuracy vs Term Frequency]
Figure 1-7. Plot of average accuracy plotted against term frequency, using the Snoopy tool. Image taken from Razeghi et al.




The authors investigate this phenomenon using three types of frequencies.
Consider the input


Q: What is 40 times 51? A:


The frequencies calculated are


	
Unigram frequency: For example, the number of times the number ‘40’ occurs in the dataset



	
Input term co-occurrence: Two input terms co-occurring within a window size of 5. For the current example, it is (40, 51)



	
Input and output term co-occurrence: Two input terms and the output term co-occurring within a window size of 5. For the current example, it is (40, 51, 2040)







The unigram frequencies alone cause noticeable performance gaps. This phenomenon can be replicated across other types of tasks and datasets as well.
This means that Open AI’s technique of finding 13-gram overlaps between text in the training set and in benchmark sets isn’t enough to eliminate input contamination.


If your task is well-defined, doesn’t have drastic data drifts, then input contamination may not really be such a bad thing. You can then leverage frequency statistics to design inputs to the model that are more likely to give the right answer!

Tip

You can explore this phenomenon on your own by using the Snoopy tool. Snoopy is a tool built by Radeghi et al. for analyzing the impact of pre-training term frequencies on model performance. It uses The Pile, the dataset used to train most open-source models including GPT Neo-X, for analysis. You can experiment with a variety of benchmark tasks.




Exercise

Using the Snoopy tool, try out different benchmark datasets from the drop down dataset and explore the effect of term frequency (both unigram and co-occurrence) on model accuracy. For which tasks is this phenomenon least prevalent? Why could it be?












Bias and Fairness Issues in Pre-training Datasets


A multitude of ethical questions arise during the productization of large language models. The existence of significant bias and fairness issues in these models often lead to a no-ship condition for a large number of use cases. We will give these issues their due coverage in Chapter 12. For now, in this section we will go through some bias and fairness issues specifically related to the collection and filtering of pre-training data.


The scale of data that LLMs are fed with means that they are not just constructing models of language, but also of the world we inhabit. This gives rise to the question - ‘Do we want to model the world the way it is or do we want to model the world the way we would like it to be?’ The Internet is filled with hate, violence, and abusive language and is often used as an outlet for humanity’s worst impulses. The text in it implicitly encodes long existing biases against groups of people. For example, in The Pile, an analysis of word co-occurrence statistics shows the word ‘radical’ co-occurs with the word ‘Muslim’ substantially more than it does for other religions.


The phenomenon of bias amplification makes these problems all the more critical. It has been shown that large language models amplify the biases that are encoded in their pre-training data - they make biased predictions against groups of people at higher rates than what the training data statistics would suggest.


So, can we ‘fix’ our training data such that we can model a world that encodes our values and principles which downstream applications will inherit? There is substantial debate in the research community around this. Opponents argue it is hard to identify and fix all societal  biases encoded in the data since there are so many dimensions of bias that intersect in complex ways. Values are not universal and model providers would like to be value-neutral in order to cater to all sections of society


However, as Anna Rogers describes in her paper, this question is already moot. Data curation is already happening, whether we like it or not, and the values and interests of model providers are already being encoded into the models. For example, only a small proportion of available data is ‘selected’ to be part of the pre-training set. This selection process is not value-neutral, even if one might explicitly not think in terms of them.


For example, Wikipedia is one of the more popular datasets used in training LLMs. While this might be a no-brainer to include, let’s explore the implications. Wikipedia is edited by volunteers, a very large proportion of them being men. Since the determination of whether a topic is reputable enough to deserve a Wikipedia page rests with the editors who are largely made up of men, we see disparities like obscure male football players from lower level leagues getting their own pages while a disproportionate number of biography articles about women are slated for deletion.


Similarly, the highly influential WebText dataset is sourced from Reddit outbound links. Reddit is a predominantly male site, with 74% of users being men. Naturally, links posted on Reddit are more likely to be catered to male interests.


Bias can also be introduced during the data filtering stages. Earlier, we noted that keyword lists are often used to filter out pornographic material and abusive text. However, using a naive keyword list is a lazy approach that not only has problems with effectiveness (false negatives), but also inadvertently causes disproportionately filtering out positive text written by or about minority communities, as well as text written in dialects like African-American English and Hispanic-aligned English. The fact that words in English have multiple senses has resulted in certain documents about breastfeeding being filtered out of the C4 dataset.


Overall, whether a word is hateful, abusive, or toxic depends on the social context, the intentions of the reader, and the intended audience. Keyword based methods simply do not capture this nuance. The question of whether it is more effective to handle these issues at the pre-training stage or further downstream is an open area of research. We will explore techniques that can be employed downstream in Chapter 12.


The authors of the Pythia model experimented by replacing masculine pronouns with feminine ones for the last 7 percent of training tokens and noticed a ‘de-biasing’ impact on downstream tasks.


We will further explore bias, fairness, and safety issues and how to integrate these values while designing LLM applications in Chapter 11.










Summary


In this chapter, we outlined the key ingredients of a language model - the pre-training data, the vocabulary and tokenizer, the language objective, and the model architecture. We walked through the steps involved in creating a pre-training dataset in detail, including language identification, text extraction and cleaning, quality filtering, deduplication, PII removal, and test set decontamination. We also provided a list of commonly used pre-training datasets and the steps taken for pre-processing each of them.


Now that you have a good idea about the data side of LLMs, it is time to explore the model side. In the next chapter, we will provide details on the remaining ingredients of the language model - the vocabulary and tokenizer, learning objective, and model architecture.



1 from A Case Study on the Colossal Clean Crawled Corpus, Dodge et al., EMNLP 2021



    
  

  
    
    
      
Chapter 2. LLM Ingredients: Tokenization, Learning Objectives & Architectures



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In Chapter 3, we dug into the datasets that are used to train the language models of today. Hopefully this foray has underscored how influential pre-training data is to the resulting model. In this chapter, we will go through the remaining ingredients: vocabulary and tokenization, learning objectives, and model architecture.








Vocabulary and Tokenization


What do you do first when you start learning a new language? You start acquiring its vocabulary, expanding it as you gain more proficiency in the language. Let’s define vocabulary here as


All the words in a language that are understood by a specific person



The average native English speaker is said to have a vocabulary ranging between 20,000-35,000 words. Similarly, every language model has its own vocabulary, with most vocabulary sizes ranging anywhere between 5,000 to 500,000 tokens.


As an example, let us explore the vocabulary of the GPT Neo-X 20B model.
Open the file tokenizer.json and ctrl+f for ‘vocab’. You can see that the words comprising the language model vocabulary don’t entirely look like English language words that appear in a dictionary. These word-like units are called ‘types’, and the instantiation of a type (when it appears in a sequence of text) is called a token.

Note

In recent times, and especially in industry, I have hardly heard anyone use the term ‘type’ except in older NLP textbooks. The term token is broadly used to refer to both the vocabulary units and when it appears in a text sequence. We will henceforth use the word ‘token’ to describe both concepts, even though I personally am not the biggest fan of it.




In the vocabulary file, we see that next to each token is a number, which is called the input id or the token index. The vocabulary size of GPT Neo-X is just above 50,000.


The first few hundred tokens are all single character tokens, starting from special characters, digits, capital letters, small letters, and accented characters. Longer words appear later on in the vocabulary. There are a lot of tokens that correspond to just a part of a word, called a subword, like ‘impl’, ‘inated’, and so on.


Let’s Ctrl + F for ‘office’. We get nine results -


"Ġoffice": 3906
"Ġofficer": 5908
"Ġofficers": 6251
"ĠOffice": 7454
"ĠOfficer": 12743
"Ġoffices": 14145
"office": 30496
"Office": 33577
"ĠOfficers": 37209


The Ġ character refers to a space before the word. For instance, in the sentence ‘He stopped going to the office’, the space before the letter ‘o’ is considered part of the token.
You can see that the tokens are case-sensitive - there is a separate token for ‘office’ and ‘Office’. Most models these days have case-sensitive vocabularies. Back in the day, BERT came with both a cased and an uncased version.


Cased vocabularies are almost always better, especially when you are training on such a huge body of text such that most tokens are seen by the model enough times so as to learn meaningful embeddings for them. For instance, there is a definite semantic difference between ‘web’ and ‘Web’ and it is good to have separate tokens for them.


Let’s search for some numbers. Ctrl+F for ‘93’. There are only three results


"93": 4590
"937": 47508
"930": 48180


It seems like not all numbers get their own tokens! Where is the token for 934? It is impractical to give every number its own token, especially if you want to limit your vocabulary size to just 50,000. As discussed in Chapter 2, the vocabulary size determines the size of the embedding layer and we do not want to see it become too large. We will discuss the impact of missing tokens later in this section.


Popular names and places get their own token. There is a token representing Boston, Toronto, and Amsterdam but none representing Mesa or Chennai. There is a token representing Ahmed and Donald, but none for Suhas or Maryam.


You might have noticed that tokens like


"]);": 9259


exist, indicating that GPT Neo-X is also primed to process programming languages.


Exercise

Go through the tokenizer.json file and explore the vocabulary in detail. Specifically,



	
What are some unexpected tokens you see?



	
What are the top ten longest tokens?



	
Are there tokens representing words from other languages?








How are vocabularies determined? Surely, there was no executive committee holding emergency meetings burning midnight oil, with members making impassioned pleas to include the number 937 in the vocabulary at the expense of 934?


Let us revisit the definition of a vocabulary


All the words in a language that are understood by a specific person



Since we want our language model to be an expert at English, we can just include all words in the English dictionary as part of its vocabulary. Problem solved?


Not nearly. What do you do when you communicate with the language model using a word that it has never seen? This happens a lot more often than you think. New words get invented all the time, words have multiple forms - ‘understanding’, ‘understanding’, ‘understandable’ etc, multiple words can be combined into a single word, and so on. Moreover, there are millions of domain-specific words (biomedical, chemistry etc)


The Definition of a Word

What exactly is a word, anyway? It is surprisingly very hard to answer this. Conceptually, you could say that a word is the smallest unit of text that has a self-contained meaning. This is not exactly true. For example, the word ‘snowball’ has components that have self-contained meanings of their own.  Algorithmically, you can say that a word is just a sequence of characters separated by white space. This isn’t always true either. For example, the word ‘Hong Kong’ is generally regarded as a single word, even if it is separated by white space. Meanwhile the word ‘can’t’ could potentially be regarded as two or three words, even if there is no white space separating them.



Note

The twitter account ‘NYT first said’ tweets out words when they appear in the New York Times for the first time, excluding proper nouns. An average of 5 new words appear in the American paper of record for the first time each day. On the day I wrote this section, the words were ‘unflippant’, ‘dumbeyed’, ‘dewdrenched’, ‘faceflat’, ‘saporous, and ‘dronescape’. Many of these words might never get added to a dictionary.




A token that doesn’t exist in the vocabulary is called an OOV (Out-of-vocabulary) token. In Chapter 2, we saw how each token is assigned an embedding in the Transformer architecture. The architecture is fixed, and the number of embeddings in the embedding layer equals the size of the vocabulary of the model. Traditionally, OOV tokens were represented using a special <UNK> token. The <UNK> token is a placeholder for all tokens that don’t exist in the vocabulary. All OOV tokens share the same embedding (and encode the same meaning), which is undesirable. Moreover, the <UNK> token cannot be used in generative models. You don’t want your model to output something like


‘As a language model, I am trained to <UNK> sequences, and output <UNK> text’.


To solve the OOV problem, one possible solution could be to represent tokens in terms of characters instead of words. Each character has its own embedding, and as long as all valid characters are included in the vocabulary, there will never be a chance of encountering an OOV token. However, there are many downsides to this. The number of tokens needed to represent the average sentence becomes much larger. For example, the previous sentence contains 13 tokens with a word tokenization scheme but 81 tokens with a character tokenization scheme. As seen in Chapter 2, the sequence length of a Transformer is limited, and the expanded number of tokens makes both training and inference slower, and reduces the amount of context that can be provided to a model in zero-shot or few-shot settings. Therefore, character-based tokens cannot be adapted without a significant change to the Transformer architecture. There have been attempts to do this including CANINE, ByT5, CharFormer, which we will discuss later in this section.


So, the middle ground and the best of both worlds (or the worst of both worlds, the field hasn’t come to a consensus yet) is using subwords. Subwords are the predominant mode of representing vocabulary units in the language model space today. The GPT Neo-X vocabulary we explored earlier uses subword tokens. Figure 2-1 shows the Open AI tokenizer playground that demonstrates how words are split into their constituent subwords.



[image: Subword Tokens]
Figure 2-1. Subword Tokens












Tokenizer


A tokenizer has two responsibilities -


	
In the tokenizer pre-training stage, the tokenizer is run over a body of text to generate a vocabulary.



	
While processing input during both training and inference, free-form raw text is run through the tokenizer algorithm to break down the text into tokens. Figure 2-2 depicts the roles played by a tokenizer








[image: Tokenizer Workflows]
Figure 2-2. Tokenizer Workflow




When we feed raw text to the tokenizer, it breaks down the text into tokens that are part of the vocabulary, and maps the tokens to their token indices. The sequence of token indices (input ids) are then fed to the language model where they are mapped to their corresponding embeddings. Let us explore this process in detail.


This time, let’s experiment with the FlanT5 model. You need a Google Colab Pro or equivalent system to be able to run it.


!pip install transformers accelerate sentencepiece
from transformers import T5Tokenizer, T5ForConditionalGeneration


tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-xl")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl", device_map="auto")


input_text = "what is 937 + 934?"
encoded_text = tokenizer.encode(input_text)
tokens = tokenizer.convert_ids_to_tokens(encoded_text)
print(tokens)


The output is


['▁what', '▁is', '▁9', '37', '▁+', '▁9', '34', '?', '</s>']


The encoder() function tokenizes the input text and returns the corresponding token indices. The token indices are mapped to the tokens they represent using the convert_ids_to_tokens() function.


As you can see, the Flan-T5 tokenizer doesn’t have dedicated tokens for the numbers 937 or 934. Therefore, it splits the numbers into ‘9’ and ‘37’. The </s> token is a special token indicating the end of the string. The ‘_’ means that the token is preceded by a space.


Let’s try another example.


input_text = "Insuffienct adoption of corduroy pants is the reason this

economy is in the dumps!!!"
encoded_text = tokenizer.encode(input_text)
tokens = tokenizer.convert_ids_to_tokens(encoded_text)
print(tokens)


The output is


['▁In', 's', 'uff', 'i', 'en', 'c', 't', '▁adoption', '▁of', '▁cord', 'u',

'roy', '▁pants', '▁is', '▁the', '▁reason', '▁this', '▁economy', '▁is', '▁in',

'▁the', '▁dump', 's', '!!!', '</s>']


I had made a deliberate typo with the word ‘Insufficient’. Note that subword tokenization is rather brittle with typos. But at least the OOV problem has been dealt with by breaking down the words into subwords. The vocabulary also doesn’t seem to have an entry for the word ‘corduroy’, thus confirming its poor sense of fashion. Meanwhile, there is a separate token for three contiguous exclamation points, which is different from the token that represents a single exclamation point. Semantically, they do convey slightly different meanings.

Note

Very large models trained on a massive body of text are more robust to misspellings.  A lot of misspellings already occur in the training set. For example, even the rare misspelling ‘Insuffienct’ occurs 14 times in the C4 pre-training dataset. The more common misspelling ‘insufficent’ occurs over 1100 times. Larger models can also infer the misspelled word from its context. Smaller models like BERT are quite sensitive to misspellings.




If you are using models from Open AI, you can explore their tokenization scheme using the tiktoken library. (no relation to the social media website).


Using tiktoken, let’s see the different vocabularies available in the Open AI ecosystem.


!pip install tiktoken

import tiktoken
tiktoken.list_encoding_names()


The output is


['gpt2', 'r50k_base', 'p50k_base', 'p50k_edit', 'cl100k_base']


The numbers like 50k/100k are presumed to be the vocabulary size. Open AI hasn’t revealed much information about these. Their documentation does state that cl100k_base is used by GPT-4 and GPT 3.5 (chatGPT), while p50k_base is used by the Codex models, and the Instruct versions of GPT-3.


encoding = tiktoken.encoding_for_model("gpt-4")
input_ids = encoding.encode("Insuffienct adoption of corduroy pants is the

reason this economy is in the dumps!!!")
tokens = [encoding.decode_single_token_bytes(token) for token in input_ids]


The output is


[b'Ins', b'uff', b'ien', b'ct', b' adoption', b' of', b' cord', b'uro', b'y',

b' pants', b' is', b' the', b' reason', b' this', b' economy', b' is', b' in',

b' the', b' dumps', b'!!!']


As you can see there is not much of a difference between the tokenization used by GPT-4 and GPT Neo-X.


Exercise

Using tiktoken, find the difference between p50k_base, the encoding used for GPT 3.5 (chatGPT), and cl100k_base, the encoding used for GPT-4. What are the 50,000 extra tokens in the GPT-4 vocabulary representing?



Tip

While adapting LLM’s to your use case, If you see strange behavior from the model on a subset of your inputs, it is worthwhile to check how they have been tokenized. While you cannot definitively diagnose your problem just by analyzing the tokenization, it is often helpful in analysis. In my experience, a non-negligible amount of LLM failures can be attributed to the way the text was tokenized. This is especially true if your target domain is different from the pre-training domain.




Tokenization-free Models

As discussed in Chapter 1, the consolidation effect has resulted in end-to-end architectures. However, one last hold-out is the tokenization step. You have seen in the code earlier that the tokenization is used as a pre-processing step to prepare the input to be fed into the model. The input to the model is the sequence of token indices and not raw text. But what if we make the model truly end-to-end by removing the tokenization step? Is it possible to directly feed raw text to the model and have it output results?


There have been forays into the world of tokenization-free language modeling, with models like CANINE, ByT5, and CharFormer.



	
CANINE accepts Unicode codepoints as input. But there are 1,114,112 possible code points, rendering the vocabulary and resulting embedding layer size infeasible. To resolve this, CANINE uses hashed embeddings so that the effective vocabulary space is much smaller.



	
ByT5 accepts input in terms of bytes, so there are only 259 embeddings in the embedding matrix (including a few special tokens), thus reducing the embedding layer size drastically.



	
CharFormer also accepts input in terms of bytes, and passes it to a gradient-based subword tokenizer module, that constructs latent subwords.


















Tokenization Pipeline


Figure 2-3 depics the sequence of steps performed by a tokenizer.



[image: HuggingFace Tokenizers pipeline]
Figure 2-3. HuggingFace Tokenizers Pipeline




If you are using the tokenizers library from HuggingFace, your input text is run through a multi-stage tokenization pipeline. This pipeline is composed of four components -



	
Normalization



	
Pre-tokenization



	
Tokenization



	
Post-processing






Note that different models will have different steps executed within these 4 components.












Normalization


Different types of normalization applied include



	
Converting text to lowercase (if you are using an uncased model)



	
Stripping off accents from characters, like from the word Peña



	
Unicode normalization






Let’s see what kind of normalization is applied on the uncased version of BERT:


tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
print(tokenizer.backend_tokenizer.normalizer.normalize_str('Pédrò pôntificated at üs:-)')


The output is


pedro pontificated at us:-)


As we see, the accents have been removed and the text has been converted to lowercase.


There isn’t much normalization done in tokenizers for more recent models.














Pre-tokenization


Before we run the tokenizer on the text, we can optionally perform a pre-tokenization step. As mentioned earlier, most tokenizers today employ subword tokenization. A common step is to first perform word tokenization and then feed the output of it to the subword tokenization algorithm. This step is called pre-tokenization.


Pre-tokenization is a relatively easy step in English compared to many other languages, since you can start off with a very strong baseline by just splitting text on whitespace. There are outlier decisions to be made - how to deal with punctuation, multiple spaces, numbers etc. In HuggingFace the regular expression


\w+|[^\w\s]+


is used to split on whitespace.


Let’s run the pre-tokenization step of the T5 tokenizer.


tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str("I'm starting to

suspect - I am 55 years old!   Time to vist New York?")


The output is


[("▁I'm", (0, 3)),
 ('▁starting', (3, 12)),
 ('▁to', (12, 15)),
 ('▁suspect', (15, 23)),
 ('▁-', (23, 25)),
 ('▁I', (25, 27)),
 ('▁am', (27, 30)),
 ('▁55', (30, 33)),
 ('▁years', (33, 39)),
 ('▁old!', (39, 44)),
 ('▁', (44, 45)),
 ('▁', (45, 46)),
 ('▁Time', (46, 51)),
 ('▁to', (51, 54)),
 ('▁vist', (54, 59)),
 ('▁New', (59, 63)),
 ('▁York?', (63, 69))]


Along with the pre-tokens (or word tokens), the character offsets are returned.


The T5 pre-tokenizer splits only on whitespace, doesn’t collapse multiple spaces into one, does’t split on punctuation or numbers. The behavior can be vastly different for other tokenizers.














Tokenization


After the optional pre-tokenization step, the actual tokenization step is performed. Some of the important algorithms in this space are BPE (Byte Pair Encoding),  Byte BPE, WordPiece, and Unigram LM. The tokenizer comprises a set of rules that is learned during a pre-training phase over a pre-training dataset. Now let’s go through these algorithms in detail.














BPE (Byte Pair Encoding)


This algorithm is the simplest and most widely used tokenization algorithm.


Training stage


We take a training dataset, run it through the normalization and pre-tokenization steps discussed earlier, and record the unique tokens in the resulting output and their frequencies. We then construct an initial vocabulary consisting of the unique characters that make up these tokens. Starting from this initial vocabulary, we continue adding new tokens using merge rules. The merge rule is simple - we merge the most frequent consecutive pairs of tokens. The merges continue until we reach the desired vocabulary size.


Let’s explore this with an example. Imagine our training dataset is composed of six words, each appearing just once.


‘bat’, ‘cat’, ‘cap’, ‘sap’, ‘map’, ‘fan’


The initial vocabulary is then made up of


‘b’, ‘a’, ‘t’, ‘c’, ‘p’, ‘s’, ‘m’, ‘f’, ‘n’


The frequencies of contiguous token pairs are


‘ba’ - 1, ‘at’ - 2, ‘ca’ - 2, ‘ap’ - 3, ‘sa’ - 1, ‘ma’ - 1, ‘fa’ - 1, ‘an’ - 1


The most frequent pair is ‘ap’, so the first merge rule is to merge ‘a’ and ‘p’. The vocabulary now is


‘b’, ‘a’, ‘t’, ‘c’, ‘p’, ‘s’, ‘m’, ‘f’, ‘n’, ‘ap’


The new frequencies are -


‘ba’ - 1, ‘at’ - 2, ‘cap’ - 1, ‘sap’ - 1, ‘map’ - 1, ‘fa’ - 1, ‘an’ - 1


Now,the most frequent pair is ‘at’, so the next merge rule is to merge ‘a’ and ‘t’.This process continues until we reach the vocabulary size.


Inference stage


After the tokenizer has been trained, it can be used to divide the text into appropriate subword tokens and feed the text into the model. This happens in a similar fashion as the training step. After normalization and pre-tokenization of the input text, the resulting tokens are broken into individual characters and all the merge rules are applied in order. The tokens remaining after all merge rules have been applied are the final tokens which are then fed to the model.


You can open the vocabulary file for GPT Neo-X again and ctrl+f ‘merges’ to see the merge rules. As expected, the initial merge rules join single characters with each other. At the end of the merge list, you can see larger subwords like ‘out’ and ‘comes’ being merged into a single token.


Exercise

Implement the BPE algorithm by yourself, using a domain dataset of your choice. What tokens do you end up with and how does it differ from the vocabulary of the popular language models? This also gives you a clue on how effective general-purpose LM’s will be for your use case.



Note

Since all unique individual characters in the tokenizer training set will get their own token, it is guaranteed that there will be no OOV tokens as long as all tokens seen during inference in future are made up of characters that were present in the training set. But Unicode consists of over a million code points and around 150,000 valid characters, which would not fit in a vocabulary of size 30000. This means that if your input text contained a character that wasn’t in the training set, that character would be assigned an  <UNK> token. To resolve this, a variant of BPE called Byte-level BPE is used. Byte-level BPE starts with 256 tokens, representing all the characters that can be represented by a byte. This ensures that every Unicode character can be encoded just by the concatenation of the constituent byte tokens. Hence it also ensures that we will never encounter an <UNK> token. GPT-n models use this tokenizer.
















WordPiece


WordPiece is similar to BPE, so we will highlight only the differences.


Instead of the frequency approach used by BPE, WordPiece uses the maximum likelihood approach. The frequency of the token pairs in the dataset is normalized by the product of the frequency of the individual tokens. The pairs with the resulting highest score are then merged.


score = freq(a,b)/(freq(a) * freq(b))


This means that lower frequency terms are joined first.


In WordPiece, merge rules are not used. Instead, for each pre-tokenized token in the input text, the tokenizer finds the longest subword from the vocabulary in the token and splits on it. For example, if the token is ‘understanding’ and the longest subword in the dictionary within this token is ‘understand’, then it will be split into ‘understand’ and ‘ing’.














Postprocessing


The final stage of the tokenizer pipeline is the postprocessing stage. This is where model specific special tokens are added. Common tokens include [CLS] or the classification token used in many language models, and [SEP], a separator token used to separate parts of the input.


The Curious Case of SolidMagiGoldkarp.

There are weird tokens that end up being part of a language model’s vocabulary, due to the way the tokenization algorithms work. One such token is ‘SolidMagiGoldkarp’, representing a now-deleted Reddit user who was one of the site’s most active posters because of his quest to count to infinity. This was a token in the GPT-2 tokenizer. The same tokenizer was used in GPT-3 models but the pre-training dataset of the model had changed, so now a token existed for SolidMagiGoldkarp but there was no signal in the pre-training dataset to learn from. This leads to some anomalous and hilarious behavior in GPT-N models.




Exercise

Token archaeology is a new hobby for many LLM enthusiasts. This involves finding rare tokens in the vocabulary of language models, and unearthing its origin. This is not just fun and games though, as knowing the origin of rare tokens can give you an insight into the characteristics of the pre-training dataset. Using tiktoken, find some rare vocabulary terms in GPT-3.5 or GPT-4’s vocabulary. Can you figure out their origins?
















Special Tokens


Depending on the model, there are a few special tokens that are added to the vocabulary to facilitate processing. These tokens include



	
<PAD> - to indicate padding, in case the size of the input is lesser than the maximum sequence length.



	
<EOS> - to indicate the end of the sequence. Generative models stop generating after outputting this token.



	
<UNK> - to indicate an OOV term






As we have seen, if our data is domain-specific like healthcare, scientific literature etc, tokenization from a general-purpose tokenizer will be unsatisfactory. GALACTICA by Meta introduced several domain specific tokens in their model and special tokenization rules



	
[START_REF] and [END_REF] for wrapping citations.



	
<WORK> token to wrap tokens that make up an internal working memory, used for reasoning and code generation



	
Numbers are handled by assigning each digit in the number its own token



	
[START_SMILES], [START_DNA], [START_AMINO], [END_SMILES], [END_DNA], [END_AMINO] for protein sequences, DNA sequences, and amino acid sequences respectively.





Note

Why is the vocabulary size so large? Surely, having a smaller vocabulary size would be more convenient as the size of the embedding matrix would be smaller. However, the smaller the vocabulary, the more number of tokens needed to represent a sequence, which would make the model slower in both training and inference.














Learning Objectives


Now that we have discussed the pre-training dataset and vocabulary, let us move on to the next ingredient of the language model - the Learning Objective.
Language models are pre-trained in a self-supervised manner. The scale of data we need to train them makes it prohibitively expensive to perform supervised learning, where (input, output) examples need to come from humans. Instead, we use a form of training called self-supervision, where the data itself contains the target labels. The goal of self-supervised learning is to learn a task which acts as a proxy for learning the syntax and semantics of a language, as well as skills like reasoning, arithmetic and logical manipulation, and other cognitive tasks, and (hopefully) eventually leading up to general human intelligence. How does this work?


For example, let’s take the canonical language modeling task - predicting the next word that comes in a sequence. Consider the sequence


'Tammy jumped over the'


and the language model is asked to predict the next token. The total number of possible answers is the size of the vocabulary. There are a lot of valid continuations to this sequence - like (hedge, fence, barbecue, sandcastle etc), but there are many continuations to this sequence that would violate English grammar rules like (is, of, the). During the training process, after seeing billions of sequences, the model will know that it is highly improbable for the word the to be followed by the word is or of, regardless of the surrounding context. Thus, you can see how just predicting the next token is such a powerful tool - in order to correctly predict the next token you can eventually learn more and more complex functions that you can encode in your model connections. However, whether this paradigm is all we need to develop general intelligence is an open question.


Self-supervised learning objectives used for pre-training LLMs can be broadly classified (non-exhaustively) into three types:



	
FLM (Full Language Modeling)



	
MLM (Masked Language Modeling)



	
PrefixLM (Prefix Language Modeling)






Let’s explore these in detail.










Full Language Modeling


Figure 2-4 shows the canonical FLM objective at work



[image: Full Language Modeling]
Figure 2-4. Full Language Modeling




This is the canonical language modeling objective of learning to predict the next token in a sequence.This is currently the simplest and most common training objective, used by GPT-4 and a vast number of open-source models. The loss is computed for every token the model sees, i.e every single token in the training set that is being asked to be predicted by the language model provides a learning signal for the model, making it very efficient.


Let us explore an example, using the GPT-Neo model.


Suppose we continue pre-training the GPT-Neo model from its publicly available checkpoint, using the full language modeling objective. Let’s say the current training sequence is


'Language models are ubiquitous'


You can run this code


import torch
from transformers import AutoTokenizer, GPTNeoForCausalLM


tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")


input_ids = tokenizer("Language models are", return_tensors="pt")
gen_tokens = model.generate(**input_ids, max_new_tokens =1,

output_scores=True, return_dict_in_generate=True)
output_scores = gen_tokens["scores"]
scores_tensor = output_scores[0]
sorted_indices = torch.argsort(scores_tensor[0], descending=True)[:20]


for index in sorted_indices:
    token_id = index
    token_name = tokenizer.decode([token_id.item()])
    token_score = scores_tensor[0][index].item()
    print(f"Token: {token_name}, Score: {token_score}")


This code tokenizes the input text Language models are and feeds it to the model by invoking the generate() function. The function predicts the continuation, given the sequence ‘Language models are’. It outputs only one token and stops generating because max_new_tokens is set to 1. The rest of the code enables it to output the top 20 list of tokens with the highest score, prior to applying the softmax at the last layer.


The top 20 tokens with the highest prediction score are


Output: Token:  a, Score: -1.102203369140625
Token:  used, Score: -1.4315788745880127
Token:  the, Score: -1.7675716876983643
Token:  often, Score: -1.8415470123291016
Token:  an, Score: -2.4652323722839355
Token:  widely, Score: -2.657834053039551
Token:  not, Score: -2.6726579666137695
Token:  increasingly, Score: -2.7568516731262207
Token:  ubiquitous, Score: -2.8688106536865234
Token:  important, Score: -2.902832508087158
Token:  one, Score: -2.9083480834960938
Token:  defined, Score: -3.0815649032592773
Token:  being, Score: -3.2117576599121094
Token:  commonly, Score: -3.3110013008117676
Token:  very, Score: -3.317342758178711
Token:  typically, Score: -3.4478530883789062
Token:  complex, Score: -3.521362781524658
Token:  powerful, Score: -3.5338563919067383
Token:  language, Score: -3.550961971282959
Token:  pervasive, Score: -3.563507080078125


Every word in the top 20 seems to be a valid continuation of the sequence. The ground truth is the token ‘ubiquitous’, which we can use to calculate the loss and initiate the backpropagation process for learning.


As an another example, consider the text sequence


'I had 25 eggs. I gave away 12. I now have 13'


Run the same code as previously, except for this change.


input_ids = tokenizer("'I had 25 eggs. I gave away 12. I now have", return_tensors="pt")


The top 20 output tokens are:


Token:  12, Score: -2.3242850303649902
Token:  25, Score: -2.5023117065429688
Token:  only, Score: -2.5456185340881348
Token:  a, Score: -2.5726099014282227
Token:  2, Score: -2.6731367111206055
Token:  15, Score: -2.6967623233795166
Token:  4, Score: -2.8040688037872314
Token:  3, Score: -2.839219570159912
Token:  14, Score: -2.847306728363037
Token:  11, Score: -2.8585362434387207
Token:  1, Score: -2.877161979675293
Token:  10, Score: -2.9321107864379883
Token:  6, Score: -2.982785224914551
Token:  18, Score: -3.0570476055145264
Token:  20, Score: -3.079172134399414
Token:  5, Score: -3.111320972442627
Token:  13, Score: -3.117424726486206
Token:  9, Score: -3.125835657119751
Token:  16, Score: -3.1476120948791504
Token:  7, Score: -3.1622045040130615


The correct answer has the 17th highest score. A lot of numbers appear in the top 10, showing that the model is more or less random guessing the answer, which is not surprising for a smaller model like GPT-Neo


The Open AI API provides the ‘logprobs’ parameter that allows you to specify the number of tokens along with their log probabilities that need to be returned. This is available for GPT-3, but not yet for ChatGPT. The tokens returned are in order of their log probabilities.


import openai
openai.api_key = <Insert your Open AI key>


openai.Completion.create(
  model="text-davinci-003",
  prompt="I had 25 eggs. I gave away 12. I now have ",
  max_tokens=1,
  temperature=0,
  logprobs = 10
)


This code calls the older ‘text-davinci-003’ (GPT-3) model, asking it to generate a maximum of one token.The output is


"top_logprobs": [
          {
            "\n": -0.08367541,
            " 13": -2.8566456,
            "____": -4.579212,
            "_____": -4.978668,
            "________": -6.220278
          }


GPT-4 is pretty confident that the answer is 13, and rightfully so. The rest of the top probability tokens are all related to output formatting.

Tip

During inference, we don’t necessarily need to generate the token with the highest score. There are several decoding strategies that allow you to generate more diverse text. We will discuss these strategies in Chapter 4.




Exercise

Ask the text-davinci-003 model to solve individual crossword clues in the  Washington Post Daily Crossword. You may have to iterate with the prompt. A good start would be ‘Solve this crossword and answer in one word. The clue is <X> and it is a <Y> letter word. The answer is ‘. Set max_tokens = 3 to account for formatting tokens. Analyze the logprobs output. Is it dangerously close to getting it right/wrong? How many clues does it answer correctly?














Prefix Language Modeling


Prefix LM is similar to the FLM setting. The difference is that FLM is fully causal, i.e in a left-to-right writing system like English, tokens do not attend to tokens to the right (future). In the prefix LM setting, a part of the text sequence, called the prefix, is allowed to attend to future tokens in the prefix. The prefix part is thus non-causal. For training prefix LMs, a random prefix length is sampled, and the loss is calculated over only the tokens in the suffix.












Masked Language Modeling


Figure 2-5 shows the canonical MLM objective at work



[image: Masked Language Modeling in BERT]
Figure 2-5. Masked Language Modeling in BERT




In the MLM setting, rather than predict the next token in a sequence, we ask the model to predict masked tokens within the sequence. In the most basic form of MLM implemented in the BERT model, 15% of tokens are randomly chosen to be masked and are replaced with a special mask token, and the language model is asked to predict the original tokens.












T5


The T5 model creators used a modification of the original MLM objective. In this variant, 15% of tokens are randomly chosen to be removed from a sequence. Consecutive dropped-out tokens are replaced by a single unique special token called the sentinel token. The model is then asked to predict and generate the dropped tokens, delineated by the sentinel tokens.


As an example, consider this sequence


'Tempura has always been a source of conflict in the family due to unexplained reasons'


Let’s say we drop the tokens ‘has’, ‘always’, ‘of’, ‘conflict’. The sequence is now


'Tempura <S1> been a source <S2> in the family due to unexplained reasons'


with S1, S2 being the sentinel tokens. The model is expected to output


‘<S1> has always <S2> of conflict <E>’


The output sequence is terminated by another sentinel token indicating the end of the sequence.


Generating only the dropped tokens and not the entire sequence is computationally more efficient and saves training time. Note that unlike in Full Language Modeling, the loss is calculated over only a small proportion of tokens (the masked tokens) in the input sequence.


Let’s explore this on HuggingFace


from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("t5-3b")
model = T5ForConditionalGeneration.from_pretrained("t5-3b")

input_ids = tokenizer("Tempura <extra_id_0>  been a source <extra_id_1> in the
family due to unexplained reasons", return_tensors="pt").input_ids
targets = tokenizer("<extra_id_0> has always <extra_id_1> of conflict

<extra_id_2>", return_tensors="pt").input_ids
loss = model(input_ids=input_ids, labels=labels).loss


The targets can be prepared using a simple templating function.


Exercise

Play around with different masking strategies. Specifically,



	
Change the masking rate. What happens if you mask 30% or 50% of tokens?



	
Change the masking strategy. Can you do better than random masking? What heuristics would allow you to mask tokens that would contribute more towards learning?








More generally, masked language modeling can be interpreted as a denoising autoencoder. You corrupt your input by adding noise(masking, dropping tokens), and then you train a model to regenerate the original input. BART takes this to the next level by using 5 different types of span corruptions:



	
Random token masking ala BERT. Figure 2-6 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives1]
Figure 2-6. Random token masking in BART





	
Random token deletion. The model needs to predict the positions in the text where tokens have been deleted. Figure 2-7 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives2]
Figure 2-7. Random token deletion in BART





	
Text spans are sampled from text, with span lengths coming from a Poisson distribution. This means 0 length spans are possible. The spans are deleted from the text and replaced with a single mask token. Therefore the model now has to also predict the number of tokens deleted. Figure 2-8 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives3]
Figure 2-8. Span masking in BART





	
Sentences in the input document are shuffled.The model is taught to arrange them in the right order. Figure 2-9 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives4]
Figure 2-9. Document shuffling objective in BART





	
The document is rotated so that it starts from an arbitrary token. The model is trained to detect the correct start of the document. Figure 2-10 depicts the corruption and denoising steps.







[image: BART Denoiser Objectives5]
Figure 2-10. Document rotation objective in BART
















Which learning objectives are better?


It has been shown that models trained with FLM are better at generation, and models trained with MLM are better at classification tasks. However, it is inefficient to use different language models for different use cases. The consolidation effect continues to take hold, with the introduction of UL2, a new paradigm that combines the best of different learning objective types in a single model.












UL2


UL2 mimics the effect of PLMs, MLMs, and PrefixLMs in a single paradigm called Mixture of Denoisers.


The denoisers used are -



	
R-Denoiser - This is similar to the T5 span corruption task. Spans between length 2-5 tokens are replaced by a single mask token. Figure 2-11 depicts the workings of the R-denoiser.







[image: UL2's Mixture of Denoisers1]
Figure 2-11. UL2’s R-Denoiser





	
S-Denoiser - Similar to prefix LM, the text is divided into a prefix and a suffix. The suffix is masked, while the prefix has access to bidirectional context. Figure 2-12 depicts the workings of the S-denoiser.







[image: UL2's Mixture of Denoisers2]
Figure 2-12. UL2’s S-Denoiser





	
X-Denoiser - This stands for extreme denoising, where a large proportion of text is masked (often over 50%). Figure 2-13 depicts the workings of the X-denoiser.







[image: UL2's Mixture of Denoisers3]
Figure 2-13. UL2’s X-Denoiser
















Architecture


After covering the pre-training dataset, tokenization, and the learning objective, the final piece of the puzzle is the model architecture itself.


As mentioned in Chapter 2, most modern language models are based on the Transformer architecture. Recall that the original Transformer architecture is made up of an encoder and a decoder. In practice, there are three major types of architecture backbones used:



	
Encoder-only



	
Encoder-Decoder



	
Decoder-only














Encoder-only architectures


Encoder-only architectures were all the rage when Transformer-based language models first burst on the scene. Iconic language models from yesteryears (circa 2018) that use encoder-only architectures include BERT, RoBERTa, etc.


There aren’t really many encoder-only LLM’s being trained these days. Some reasons are:



	
It is relatively harder to train them.



	
The masked language modeling objective typically used to train them provides a learning signal in only a small percentage of tokens (the masking rate), thus needing a lot more data in order to reach the same level of performance as decoder-only models.



	
For every downstream task, you need to train a separate task specific head, making usage inefficient.






The creators of UL2 recommend that encoder-only models should be considered obsolete. While I personally wouldn’t go that far, I generally agree with the arguments made above against using encoder-only LLMs. However, if you already have a satisfactory pipeline for your use case built around encoder-only models, I would say if it ain’t broke, why fix it?


If you still want to explore encoder-only models, here are some rules of thumb you can follow.



	
RoBERTa performs better than BERT most of the time, since it is trained a lot longer on more data, and adopts best practices learned after the release of BERT.



	
DeBERTa is currently regarded as the most well performing encoder-only model, and also the largest one available (1.5B parameters)



	
The distilled versions of encoder-only models like DistillBERT etc, are not too far off from the original models in terms of performance, and should be considered if you are operating under resource constraints.






Several embedding models are built from encoder-only models. For example, perhaps one of the most important libraries in the field of NLP, considered the Swiss Army Knife of NLP tools, sentence-transformers, still provides encoder-only model based embedding models that are very widely used. ‘all-mpnet-base-v2’,  based on an encoder-only model called MPNet, and fine- tuned on several task datasets, is still competitive with much larger embedding models.












Encoder-Decoder Architectures


This is the original architecture of the Transformer, as it was first proposed. The T5 series of models uses this architectural type.


In encoder-decoder models, the input is text and the output is also text. A standardized interface ensures that the same model and training procedure can be used for multiple tasks. The inputs are handled by an encoder, and the outputs by the decoder.












Decoder-only Architectures


A majority of LLMs trained today use decoder-only models. Decoder-only models came into fashion starting from the original GPT model from Open AI. Decoder-only models excel at zero shot and few shot learning.


Decoder models can be causal and non causal. Non causal models have bidirectionality over the input sequence, while the output is still autoregressive (you cannot look ahead)

Tip

While the field is still evolving, there has been some compelling evidence for the following results:



	
Decoder-only models are the best choice for zero-shot and few-shot generationization



	
Encoder-decoder models are the best choice for multi-task fine tuning.






The best of both worlds is to combine the two - Start with auto-regressive training, and then in an adaptation step, pre-train further with a non-casual setup using a span corruption objective.














Putting it all Together


The recipe for training each model is slightly different. As we have seen, at every step of the way there are a multitude of high-impact decisions to be made.


I often get this question from NLP practitioners -  ‘Hey, I am tackling this <insert niche usecase> problem, what language model do you think I should use? There are hundreds of pre-trained models available out there and I have no idea how to choose among them.’ Truth be told, there are dozens of factors that can impact your choice, and sometimes it may not even be the most immediate or right question to ask. In subsequent chapters I will demonstrate how you can navigate tradeoffs and make an informed decision regarding your choice of model, and the various ways you can utilize them in your tasks.

Note

Depending on your task, the exact choice of pre-trained model used may not be as important as other data-related choices you need to make. Even in the era of GPT-4, your domain expertise and data cleaning skills are crucial for building successful applications. That being said, throughout the book, we will showcase scenarios where the choice of model can play a crucial role.












Summary


In this chapter, we discussed vocabularies and tokens, and delved into the different tokenization algorithms currently used. We also discussed the tasks that a language model is pre-trained on, and how they are a proxy to learning syntax and semantics. We also discussed the various architectural backbones of the Transformer.


Now that we know the recipe and ingredients behind LLMs, we will next learn how to utilize them to solve our own tasks. We will discuss techniques like fine-tuning, in-context learning, and zero-shot learning. We will also show how to evaluate LLMs for our use cases, and how to select the right model that suits our needs.





    
  

  
    
    
      
Chapter 3. Adapting LLMs To Your Use Case



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In this chapter, we will continue with our journey through the LLM landscape, exploring the various LLMs available for commercial use and provide pointers on how to choose the right LLM for your task. We will also examine how to load LLMs of various sizes and run inference on them. We will then decipher various decoding strategies for text generation. We will also investigate how to interpret the outputs and intermediate results from language models, surveying various interpretability tools including LIT-NLP.








Navigating the LLM Landscape


Seemingly there is a new LLM being released every few days, many of them claiming to be state-of-the-art. Most of these LLMs are not too different from each other, so you need not necessarily spend too much time tracking new LLM releases. The accompanying Github repo to this book attempts to keep a track of the major releases here, but I don’t promise it will be complete.


Nevertheless, it is a good idea to have a broad understanding of the different types of LLM providers out there, the kinds of LLMs being made available, and the copyright and licensing implications. Therefore, let’s now explore the LLM landscape from this lens and understand the choices at our disposal.










Who are the LLM providers?


LLM providers can be broadly categorized into the following types:



	
Companies providing proprietary LLMs: These include companies like Open AI (GPT), Google (PaLM), Anthropic (Claude), Cohere, AI21 etc. who train proprietary LLMs and make them available as an API endpoint (LLM-as-a-service). Many of these companies have also partnered with cloud providers who facilitate access to these models as a fully managed service. The relevant offerings from the major cloud providers are AWS Bedrock and Sagemaker JumpStart by Amazon, Vertex AI by Google, and Azure Open AI by Microsoft.



	
Companies providing open-source LLMs: These include companies who make the LLM weights public and monetize through providing deployment services (Together AI), companies whose primary business would benefit from more LLM adoption (Cerebras), and research labs who have been releasing LLMs since the early days of Transformers (Microsoft, Google, Meta, Salesforce, etc.). Note that companies like Google have released both propreitary and open-source LLMs.



	
Self-organizing open-source collectives and community research organizations: This includes the pioneering community research organization Eleuther AI, and Big Science. These organizations rely on donations for compute infrastructure.



	
Academia and government: Due to the high capital costs, not many LLMs have come out of academia so far. Examples of LLMs from government/academia include the Abu Dhabi government funded Technology Innovation Institute, which released the Falcon model, and Tsinghua University, which released the GLM model.






Note that open-source models exist on a continuum in terms of the permissibility of their licenses. Models can be as restrictive as being allowed to be used for academic purposes only, all the way up to being fully permitted for commercial use without attribution.


Table 3-1 shows the various players in the LLM space, the category of entity they belong to, and the various pre-trained models they have published.


Table 3-1. LLM Providers


	Name
	Category
	Pre-trained Models Released





	Google

	Company

	BERT, MobileBERT,  T5, Flan-T5, ByT5, Canine, UL2, Flan-UL2, Pegasus PaLM, PaLMV2, ELECTRA, Tapas, Switch




	Microsoft

	Company

	DeBERTa, DialoGPT, BioGPT, MPNet




	Open AI

	Company

	GPT-2, GPT-3, GPT-3.5, GPT-4




	Amazon

	Company

	Titan




	Anthropic

	Company

	Claude, Claude-2




	Cohere

	Company

	Cohere Command, Cohere Base




	Meta

	Company

	RoBERTa, Llama, Llama2, BART, OPT, Galactica




	Salesforce

	Company

	CTRL, Xgen, EinsteinGPT




	MosaicML

	Company (Acquired by Databricks)

	MPT




	Cerebras

	Company

	Cerebras-GPT, BTLM




	Databricks

	Company

	Dolly-V1, Dolly-V2




	Stability AI

	Company

	StableLM




	Together AI

	Company

	RedPajama




	Ontocord AI

	Non-profit

	MDEL




	Eleuther AI

	Non-profit

	Pythia, GPT-Neo, GPT Neo-X, GPT-J




	Big Science

	Non-profit

	BLOOM




	Tsinghua University

	Academic

	GLM




	Technology Innovation Institute

	Academic

	Falcon




	UC Berkeley

	Academic

	OpenLlaMA




	Adept AI

	Company

	Persimmon




	Mistral AI

	Company

	Mistral




	AI21 Labs

	Company

	Jurassic




	X.AI

	Company

	Grok

















Model flavors


Each model is usually released with multiple variants. It is customary to release different-sized variants of the same model. As an example, Llama2 comes in 7B, 13B, and 70B sizes, where these numbers refer to the number of parameters in the model.


These days, LLM providers augment their pre-trained models in various ways to make them more amenable to user tasks. The augmentation process typically involves fine-tuning the model in some way, often incorporating human supervision. Some of these fine-tuning exercises can cost millions of dollars in terms of human annotations. We will refer to pre-trained models that have not undergone any augmentation as base models.


Here are some of the popular augmentation types:












Instruct-models


Instruct-models, or Instruction-tuned models, are specialized in following instructions written in natural language. While base models possess powerful capabilities, they are akin to a rebellious teenager; effectively interacting with them is possible only after tediously engineering the right prompts through trial-and-error, which tend to be brittle. This is because the base models are trained on either denoising objectives or next-word prediction objectives, which is different from the tasks users typically want to solve. By instruction-tuning the base model, the resulting model is able to more effectively respond to human instructions and be helpful.


A typical instruction-tuning dataset consists of a diverse set of tasks expressed in natural language, along with input-output pairs. In Chapter 6, we will explore various techniques to construct instruction-tuning datasets, and demonstrate how to perform instruction-tuning on a model.


Here is an example from a popular instruction-tuning dataset called FLAN.


Input:


“What is the sentiment of the following review? The pizza was ok but the service was terrible. I stopped in for a quick lunch and got the slice special but it ended up taking an hour after waiting several minutes for someone at the front counter and then again for the slices. The place was empty other than myself, yet I couldn’t get any help/service. OPTIONS: - negative - positive”


Target:


“Negative”


In this example, the input consists of an instruction ‘What is the sentiment of the following review’ expressed in a way that humans would naturally express, along with the input and output. The input is the actual review and the output is the solution to the task, either generated by a model or annotated by a human.


Figure 3-1 demonstrates the instruction-tuning process



[image: Instruction tuning process]
Figure 3-1. Instruction-tuning process




This form of fine-tuning is also called Supervised Fine-tuning (SFT). In addition to improving the ability of a model to respond effectively to user tasks, SFT-based approaches can also be used to make it less harmful, by training on safety datasets that help align model outputs with the values and preferences of the model creators.


More advanced techniques to achieve this alignment include reinforcement learning-based methods like RLHF(Reinforcement Learning from Human Feedback) and RLAIF (Reinforcement Learning from AI Feedback).


In RLHF training, human annotators select or rank candidate outputs based on certain criteria, like helpfulness and harmlessness. These annotations are used to iteratively train a reward model which ultimately leads to the LLM being more controllable, for example, by refusing to answer inappropriate requests from users.


Figure 3-2 shows the RLHF training process.



[image: RLHF]
Figure 3-2. Reinforcement Learning from Human Feedback




We will cover RLHF in detail in Chapter 6, including algorithms like PPO (Proximal Policy Optimization) and Rejection Sampling, as well as pointers on how to facilitate the human feedback process.


Instead of human feedback, one can also leverage LLMs to choose between outputs based on their adherence to a set of principles (don’t be racist, don’t be rude etc). This technique was introduced by Anthropic and is called RLAIF. In this technique, humans only provide a desired set of principles and values (referred to as Constitutional AI), and the LLM is tasked with determining whether its outputs adhere to these principles.


Examples of instruction-tuned models include Open AI’s GPT-3.5-turbo-instruct, Cohere’s Command model, MPT-Instruct, RedPajama-Instruct etc.














Chat-models


Chat-models are a type of instruction-tuned models that are optimized for multi-turn dialog. Examples include ChatGPT, Llama2-Chat, MPT-Chat, OpenAssistant etc. In Chapter 6 we will discuss how to generate and structure dialog datasets including the ChatML format used by many models.














Long-context models


As discussed in Chapter 2, Transformer-based LLMs have a limited context length. To recap, context length typically refers to the sum of the number of input and output tokens processed by the model per invocation. Typical context lengths of modern LLMs range from 2,000 to 8,000 tokens, with some models like Anthopic’s Claude 2 supporting as much as 100,000 tokens. Some models are released with a long-context variant - for example GPT 3.5 comes with a default 4k context size but also has a 16k context size variant. MPT also has a long-context variant that has been trained on 65k context length but can potentially be used for even longer contexts during inference.

Tip

There is no free lunch with long-context models. It has been shown that recall is negatively impacted with longer context. LLMs tend to forget things in the middle of the context window. This is because of the characteristics of the documents that LLMs are trained on, wherein the most relevant context of a document necessary to predict the next token is more often found near the beginning or end of the context. In my experiments, I have noticed that 3k context size is the tipping point beyond which performance starts to degrade. You also can’t just stuff your entire context with instructions - LLMs can only handle a limited set of instructions in a prompt beyond which performance drops.
















Domain-adapted or task-adapted models


LLM providers also might perform fine-tuning on specific tasks like summarization or financial sentiment analysis. They may also produce distilled versions of the model, where a smaller model is fine-tuned on outputs from the larger model for a particular task. Examples include FinBERT, which is fine-tuned on financial sentiment analysis datasets, and UniversalNER, which is distilled using named-entity-recognition data.


Table 3-2 shows the various LLMs available, the licenses under which they are published, their pricing, the sizes they are available in, and the flavors in which they are available. Note that the LLM may be instruction-tuned or chat-tuned by a different entity than the one that pre-trained the LLM.


Table 3-2. List of available LLMs


	Name
	Availability
	Pricing
	Sizes
	Variants





	GPT-4

	Propreitary

	$0.03 per 1000 input tokens,$0.06 per 1000 output tokens. Price of 32K context model is double.

	Unknown

	GPT-4 32K context, GPT-4 8K context




	GPT-3.5 Turbo

	Propreitary

	$0.0015 per 1000 input tokens,$0.002 per 1000 output tokens.

	Unknown

	GPT-3.5 4k context, GPT-3.5 16K context




	Claude Instant

	Propreitary

	$1.63 per million input tokens, $5.51 per million output tokens

	Unknown

	-




	Claude2

	Propreitary

	$11.02 per million input tokens, $32.68 per million output tokens

	Unknown

	-




	MPT

	Open-source, commercial use

	Free

	1B, 7B, 30B

	MPT 65K storywriter




	CerebrasGPT

	Open-source, commercial use

	Free

	111M, 256M, 590M, 1.3B, 2.7B, 6.7B, 13B

	CerebrasGPT




	Stability LM

	Open-source, commercial use

	Free

	Common Crawl

	7




	Red Pajama

	Open-source, commercial use

	Free

	3B, 7B

	RedPajama-INCITE-Instruct, RedPajama-INCITE-Chat




	GPT Neo-X

	Open-source, commercial use

	Free

	20B

	-




	BLOOM

	Open-source, restricted use

	Free

	176B

	BLOOMZ




	LLama

	Open-source, no commercial use

	Free

	7B, 13B, 33B, 65B

	-




	LLama2

	Open-source, commercial use

	Free

	7B, 13B, 70B

	Llama2-Chat







Instruction tuning can have side effects

Is it beneficial to always prefer using an instruction-tuned variant over the base model for your tasks? In most cases, yes. However, keep in mind that any tuning on top of a base model inevitably causes some regressions, thus losing access to some of the capabilities possessed by the base model.


An example of this was demonstrated by Chung et al. They noticed that instruction-tuning using the FLAN dataset worsened chain-of-thought capabilities (explained later in this chapter), which are crucial for reasoning tasks. However, they also observed that adding chain-of-thought data to their instruction-tuning datasets increased the reasoning capabilities of the model compared to the base variant.


The side effects of instruction-tuning are not well explored, so it is a good idea to experiment with the base model and see if you are losing out on any capabilities.


Similarly, RLHF-tuned models are calibrated to respond to user queries in accordance with the principles, values, and ethics of the LLM provider. These may not be the same values that you or your organization hold.


In all these cases you can perform your own instruction-tuning and RLHF training on the base model, details of which we will explore in Chapter 6. In that chapter, we will also analyze when it is worthwhile to perform your own instruction-tuning/RLHF.
















How to choose an LLM for your task


Given the plethora of options available, how do you ensure you choose the right LLM for your task? Depending on your situation, there are a multitude of criteria to consider, including



	
Cost - This includes not only inference costs, but also engineering costs associated with maintenance, monitoring, optimization etc (collectively termed as LLMOps).



	
Time Per Output Token(TPOT) - This is a metric used to measure the speed of text generation as experienced by the end user.



	
Time To First Token - This is a metric that measures the time it takes for the user to view the first output token after they issue a query. This includes the time taken by the LLM to process the input and generate the first token. The importance of this metric depends on whether you intend to interact with the LLM in real-time (rather than processing requests in bulk batches).



	
Task performance - How stringent the performance requirements are. For instance, is it worth spending extra resources to move up accuracy from 93.5 to 93.9?



	
Type of tasks - The nature of the tasks the LLM will be used for, like summarization, question answering, classification etc.



	
Capabilities required - Examples of capabilities include arithmetic reasoning, logical reasoning, planning, task decomposition etc. A lot of these capabilities, to the extent that they actually exist or approximate, are emergent properties of an LLM as discussed in Chapter 1, and are not exhibited by smaller sized models.



	
Licensing - You can use only those models that allow your mode of usage. Even models that explicitly allow commercial use can have restrictions on certain types of use cases. For example, the BigScience Open RAIL-M license restricts the usage of the LLM in use cases pertaining to law enforcement, immigration or asylum processes etc.



	
MLOps bandwidth - Whether you have adequate engineering/MLOps bandwidth in your team.



	
In-house ML talent - The degree of in-house ML talent also determines how much customization you are able to afford.



	
Other non-functional criteria - This includes safety, security, privacy etc. Cloud providers and startups are already implementing solutions that can address these issues.






Figure 3-3 shows a flow chart that illustrates how these critieria interact with each other and how you can make a decision regarding the kind of LLM you might want to choose for your task.



[image: Flowchart for choosing an LLM]
Figure 3-3. Flowchart for choosing an LLM












Open-source vs Proprietary LLMs


The open-source vs propreitary debate has been going on in the field of software for several decades now, and we are seeing it become relevant in the field of LLMs as well. The biggest advantage of open-source models are the transparency and flexibility they provide, and not necessarily the cost.
Self-hosting open-source LLMs can incur a lot of engineering overhead and compute/memory costs, and using managed services might not always be able to match propreitary models in terms of latency, throughput, and inference cost. Moreover, many open-source LLMs are not easily accessible through managed services and other third-party deployment options. This situation is bound to change dramatically as the field matures, but in the meanwhile, run through your calculations for your specific situation to determine the costs incurred for using each (type of) model.


The flexibility provided by open-source models helps with debuggability, interpretability, and the ability to augment the LLM with any kind of training/fine-tuning you choose, instead of the restricted avenues made available by the LLM provider. This allows you to more substantially align the LLM towards your preferences and values instead of the ones decided by the LLM provider.


Not all open-source models are fully transparent. Several for-profit companies that release open-source LLMs do not make the training datasets public. For instance, Meta hasn’t disclosed all the details of the training datasets used to train the Llama2 model. Knowing which datasets are used to train the model can help you assess whether there is test set contamination, and understand what kind of knowledge you can expect the LLM to possess.


As of this book’s writing, propreitary LLMs like GPT-4 represent the state-of-the-art and haven’t been matched by any open-source counterpart yet.

Tip

Always check if the model provider has a active developer community on Github/Discord/Slack, and that the development team is actively engaged in those channels, responding to user comments and questions. I recommend preferring models with active developer communities, provided they satisfy your primary criteria.




Is GPT-4 getting worse over time?

Is GPT-4 getting worse over time? This question feels like the Which color is this dress? question.1 There are a lot of developers who swear by their experience of noticing quality degradation of GPT-4. However, opponents of this theory suggest that this is just a perception, as the novelty of GPT-4 washes over.


So what is the truth? Firstly, note that as discussed in Chapter 1, capabilities and behavior are two separate concepts. The behavior of the LLM is influenced by the prompting strategy used. Unfortunately, when models get updated, the previously optimized prompts may not be optimal anymore. This phenomenon is called prompt drift. Therefore, while the capabilities of the LLM might have remained the same or even improved, using prompts that are not optimized for the new model causes a degradation in behavior.


Secondly, any kind of training/fine-tuning over an existing model comes with side effects. It is impossible to update a model in a way such that the updated version is strictly better than the original version for every possible input.


The hope is that LLM players update models transparently, and allow users access to the older version of the models, at least for a grace period.














LLM Evaluation


In order to evaluate LLMs on their task performance, there exist a lot of benchmark datasets that test a wide variety of skills. Not all skills are relevant to your use case, so you can choose to focus on specific benchmarks that test the skills you need the LLM to perform well on.


The leaderboard on these benchmark tests changes very often, especially if only open-source models are being evaluated, but that does not mean you need to change the LLMs you use every time there is a new leader on the leaderboard. Usually, the differences between the top models are quite marginal. The choice of LLM probably isn’t the most important criteria determining the success of your task, and you are better off spending that bandwidth working on understanding and cleaning your data which is still the most important component of the project.


Let’s now look at a few popular ways in which the field is evaluating LLMs.












Eleuther AI LM Evaluation Harness


Through the LM Evaluation Harness, Eleuther AI supports benchmarking on over 400 different benchmark tasks, evaluating skills as varied as open-domain question answering, arithmetic and logical reasoning, linguistic tasks, machine translation, toxic language detection etc. You can use this tool to evaluate any model on the HuggingFace Hub, a platform containing thousands of pre-trained and fine-tuned models, on the benchmarks of your choice.


Here is an example from one of the benchmark tasks called bigbench_formal_fallacies_syllogisms_negation.


 {
            "input": "\"Some football fans admire various clubs, others love

            only a single team. But who is a fan of whom precisely? The

            following argument pertains to this question: First premise: Mario

            is a friend of FK \u017dalgiris Vilnius. Second premise: Being a

            follower of F.C. Copenhagen is necessary for being a friend of FK

            \u017dalgiris Vilnius. It follows that Mario is a follower of F.C.

            Copenhagen.\"\n Is the argument, given the explicitly stated

            premises, deductively valid or invalid?",

            "target_scores": {

                "valid": 1,

                "invalid": 0
            }


In this task, the model is asked to spot logical fallacies by deducing whether the presented argument is valid given the premises.


Let’s evaluate a few models on this task. Follow the instructions here to install the harness. Now, you can run the code


python main.py \
    --model hf-causal \
    --model_args pretrained=tiiuae/falcon-7b \
    --tasks bigbench_formal_fallacies_syllogisms_negation \
    --device cuda:0


Try this for a few other 7B models, including Llama2, MPT, Cerebras, Red Pajama, with both the base versions and the instruction-tuned versions. What do you find?


There is limited support for evaluation of closed-source models using this harness. For example, here is how you would evaluate Open AI models.


export OPENAI_API_SECRET_KEY=<Key>
python main.py \
    --model gpt3 \
    --model_args engine=gpt-3.5-turbo \
    --tasks bigbench_formal_fallacies_syllogisms_negation


How does GPT-3.5 compare to open-source models on this task?














HuggingFace Open LLM Leaderboard


The Open LLM leaderboard uses Eleuther AI’s LM evaluation harness to evaluate the performance of models on 4 benchmark tasks. The 4 tasks are:


	
MMLU (Massive Multitask Language Understanding) - This test evaluates the LLM on knowledge-intensive tasks, drawing from fields like US history, biology, mathematics and more than 50 other subjects in a multiple choice framework.



	
ARC (AI2 Reasoning Challenge) - This test evaluates the LLM on multiple-choice grade school science questions, that need complex reasoning as well as world knowledge to answer them.



	
Hellaswag - This test evaluates commonsense reasoning by providing the LLM with a situation and asking it to predict what might happen next out of the given choices, based on commonsense.



	
TruthfulQA - This test evaluates the LLM’s ability to provide answers that don’t contain falsehoods.







Figure 3-4 shows a snapshot of the LLM leaderboard as of the day of the book’s writing. We can see that



	
Larger models perform better.



	
Instruction-tuned or fine-tuned models perform better.







[image: Snapshot of the Open LLM Leaderboard]
Figure 3-4. Snapshot of the Open LLM Leaderboard




The validity of these benchmarks are in question as complete test set decontamination is not guaranteed. Model providers are also optimizing to solve these benchmarks, thus reducing the value of these benchmarks to serve as reliable estimators of general-purpose performance.














HELM (Holistic Evaluation of Language Models)


HELM is an evaluation framework by Stanford that aims to calculate a wide variety of metrics over a range of benchmark tasks. 59 metrics are calculated overall, testing accuracy, calibration, robustness, fairness, bias, toxicity, efficiency, summarization performance, copyright infringement, disinformation, and more. The tasks tested include question answering, summarization, text classification, information retrieval, sentiment analysis, and toxicity detection.


Figure 3-5 shows a snapshot of the HELM leaderboard as of the day of the book’s writing. We can see that for a given task, the leaders differ across different evaluation criteria (efficiency, bias, accuracy etc.)



[image: Snapshot of the HELM Leaderboard]
Figure 3-5. Snapshot of the HELM Leaderboard




Benchmark evaluation is unreliable

There are multiple ways in which you can evaluate the same task. For example, consider the MMLU task. Questions in the MMLU task have four choices as answers - A, B, C, D. How do we evaluate performance on a multiple-choice question answering task?


	
You can pick the token that has the highest output probability out of the four options (A, B, C, D)



	
You can pick the token that has the highest output probability from the entire vocabulary and use that to match it with the correct answer to the question (not the label).



	
You can produce a normalized sum of the probabilities of the token sequence generated by the model, where the expected token sequence is the label followed by the answer text, and use that to match it with the correct answer (label followed by answer text)







Each of these types of calculations can produce a vastly different result, and can lead to different leaders in the leaderboard. HuggingFace published a blog post about this after people noticed discrepancies in their numbers versus third-party evaluations.
















ELo Rating


Now that we have seen the limitations of quantitative evaluation, let us explore how we can most effectively incorporate human evaluations. One promising framework is the Elo Rating system, used in chess to rank players.


LMSYS ORG (Large Model Systems Organization) has implemented an evaluation platform based on the ELo rating system called the Chatbot Arena. Chatbot Arena solicits crowdsourced evaluations by inviting people to choose between two randomized and anonymized LLMs by chatting with them side-by-side. The leaderboard is found here, with models like GPT-4 and Claude holding a clear advantage over the rest.


Figure 3-6 shows a snapshot of the Chatbot Arena leaderboard as of the day of the book’s writing. We can see that propreitary models by Open AI and Anthropic dominate the rankings, followed by chat-tuned models like Vicuna and Guanaco.



[image: Snapshot of the Chatbot Arena Leaderboard]
Figure 3-6. Snapshot of the Chatbot Arena Leaderboard




ELo Ratings can be biased too

ELo ratings are not a panacea to the problem of generating holistic evaluations. Human biases can meaningfully impact the overall ratings even if the LLMs are being evaluated in an anonymous manner.


According to Wu et al., these biases include



	
Humans tend to prefer longer texts.



	
Humans tend to overlook subtle factuality and consistency issues if the style is authoritative or convincing.



	
Humans can be indecisive, and tend to grant ties instead of choosing a winner.



	
The order in which the LLM answers are presented can influence human ratings. This can be rectified by providing the answers to the user in a randomized fashion.






Wu et al. propose a multi-ELo rating system that asks humans to evaluate the LLM across three different dimensions: helpfulness, accuracy, and language.




Interpreting benchmark results

How do you interpret evaluation results presented in research papers? Try to methodologically ask as many questions as possible, and see if the answers are covered in the paper or other material. As an example, let us take the Llama2-chat evaluation graphs presented in the Llama2 paper. In particular, study Figure 1 and 3, which demonstrate how Llama2-chat compares with respect to helpfulness and safety against other chat models. Some of the questions that come to mind are:


	
How does the evaluation dataset look like? Do we have access to it?



	
What is the difficulty level of the test set? Maybe the model is competitive with respect to chatGPT for easier examples but how does it do with more difficult examples?



	
What proportion of examples in the test set can be considered difficult?



	
What are the kinds of scenarios covered in the test set? What degree of overlap do these scenarios have with the chat-tuning sets?



	
What definition do they use for safety?



	
Can there be a bias in the evaluation due to the fact that the models are evaluated on the basis of a particular definition of safety, which Llama2 was also trained to adhere with, while other models may have different definitions of safety?







Rigorously interrogating the results this way helps you develop a deeper understanding of what is being evaluated, and whether it is in alignment with the capabilities you need from the language model for your own tasks.



Warning

Do not trust evaluations performed by GPT-4 or any other LLM. We have no idea what criteria it uses for evaluation nor do we know what biases it possesses.




Robust evaluation of LLMs is further complicated by the sensitivity of the prompts and the probabilistic nature of generative models. For example, I often see papers claiming that GPT-4 does not have reasoning capabilities, while not using any prompting techniques for evaluation. In many of these cases, it turns out that GPT-4 can in fact perform the task if prompted with chain-of-thought prompting. While evaluation prompts need not be heavily engineered, using rudimentary techniques like chain-of-thought should be standard practice and not using it means that the model capabilities are being underestimated.














Accessing and loading LLMs


You can either access LLMs through APIs or by loading them yourself. Let us explore each of these modes in detail.










Accessing Open AI LLMs


Let’s take Open AI GPT-3.5/GPT-4 as an example. Most other propreitary models expose similar parameters through their API.


GPT-3.5 and GPT-4 can be accessed through the Chat completion API. Here is an example:


import os
import openai
openai.api_key = <INSERT YOUR KEY HERE>

output = openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[
    {"role": "system", "content": "You are an expert storywriter."},
    {"role": "user", "content": "Write me a short children's story
    about a dog and an elephant stopping
    being friends with each other."}
  ]
)

print(output.choices[0].message)


Roles can be either system, user, or assistant, with assistant referring to the model responses. If you are are having a chat session with the LLM you will need to add the entirety of the conversation history in the messages array in the form of a sequence of user and assistant messages.

Note

What is the difference between the system and user roles? Which instructions should go into the system prompt and which ones into the user prompt? System prompts are used for dictating the high-level overarching behavior of an LLM, like You are a financial expert well versed in writing formal reports. If you are allowing your users to directly interact with the LLM, then the system prompt can be used to provide your own instruction to the LLM along with the user request. In my experiments I have noticed that it doesn’t matter much if you place your instructions in the system prompt vs user prompt. What does matter is the length and size of your instruction. Instructions at the end of the prompt are more likely to be adhered to.




Here are some of the parameters made available by Open AI:


n - This refers to the number of generations the model has to make for each input. As an example, if we used n=5 in the given example, it would generate five different children’s stories.

Tip

For most tasks, I would advice generating multiple generations; i.e. n>1 and then using a postprocessing function (which could involve an LLM call) to choose the best one. This is because of the probabilistic nature of LLMs, where an answer might be wrong/bad just based on an unlucky token sampling. You might have to balance this process against your budget limitations.




stop and max_tokens - These are used to limit the length of the generated output. stop allows you to specify end tokens which if generated, would stop the generation process. An example stop sequence is the newline token. If you ask the model to adhere to a particular output format, like a numbered list of sentences, then in order to stop generating after a particular number of sentences have been output, you can just provide the number as a stop parameter.


presence_penalty and frequency_penalty - These are used to limit the repetitiveness of the generated output. By penalizing the logits of the language model outputs for tokens that have already appeared in the output so far, we can ensure that the model isn’t repeating the same topic repeatedly. These parameters can be used while performing more creative tasks.


logit bias - We have seen we can reduce the probability or prevent certain tokens from being generated. Can we do the opposite and make it more probable that some tokens will be generated? The logit bias parameter can be used to do that. In fact, it is also able to reduce the probability of a token being generated, if you provide negative values to the parameter.


top_p and temperature - Both these parameters relate to decoding strategies. Generative models produce a distribution of token probabilities, and will use these probabilities to generate the next token. There are many strategies to choose the next token to generate given the probabilities for each token. We will discuss them in detail later in the chapter.












Loading LLMs and running inference on them


If you have access to GPUs, you can load LLMs in memory and run inference on them. Choosing a GPU depends on cost, the size of the model, whether you are training the model or just running inference, and support for optimizations. Tim Dettmers has developed a great flowchart that you can use to figure out which GPU best serves your needs.


Let’s figure out the amount of GPU RAM needed to load an LLM of a given size. LLMs can be loaded in various precisions:


	
Float32 - 32-bit floating point representation, each parameter occupies 4 bytes of storage



	
Float16 - 16-bit floating point representation. Only 5 bits are reserved for the exponent as opposed to 8 bits in Float32. This means that using Float16 comes with overflow/underflow problems for very large and small numbers.



	
bfloat16 (BF16) - 16-bit floating point representation. Just like Float32, 8 bits are reserved for the exponent, thus alleviating the underflow/overflow problems observed in Float16



	
Int8 - 8-bit integer representation. Running inference in 8-bit mode is around 20 percent slower than running in Float16



	
FP8, FP4 - 8-bit and 4-bit floating point representation.







We will explore these formats in detail in Chapter 9. Generally, running inference on a model with 7B parameters will need around 7GB of GPU RAM if running in 8-bit mode, and around 14GB if running in BF16. If you intend to fine-tune the whole model, you will need a lot more memory. We will discuss the memory requirements for fine-tuning models in Chapter 6.












HuggingFace Accelerate


You can run inference on models even if they don’t fit in the GPU RAM. accelerate library by HuggingFace facilitates this by loading parts of the model into CPU RAM if the GPU RAM is filled up, and then loading parts of the model into disk if the CPU RAM is also filled up. This video shows how accelerate operates under the hood. This whole process is abstracted from the user, so all you need to load a large model is to run the following code:


!pip install transformers accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20B")
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neox-20B")


input_ids = tokenizer("Language models are", return_tensors="pt")
gen_tokens = model.generate(**input_ids, max_new_tokens =1)












Decoding strategies


Now that we have learned how to load and run inference on a model, let’s understand how to effectively generate text in the autoregressive setting. Several decoding strategies have been devised in the past few years. Let’s go through them in detail.










Greedy decoding


The simplest form of decoding is to just generate the token that has the highest probability. The drawback of this approach is that it causes repetitiveness in the output. Here is an example


input = tokenizer('The keyboard suddenly came to life. It ventured up the',

return_tensors='pt').to(torch_device)
output = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))


You will notice that the output starts getting repetitive. Therefore, greedy decoding is not suitable unless if you are generating really short sequences, like a token just providing a classification output.


Figure 3-7 shows an example of greedy decoding using the FLAN-T5 model. Note that we missed out on some great sequences because one of the desired tokens has slightly lower probability, ensuring it never gets picked.



[image: Greedy decoding]
Figure 3-7. Greedy decoding














Beam Search


One of the most popular alternatives to greedy decoding is beam search. In beam search, the model uses a beam (sequences of tokens) to determine the cumulative probability of the sequences of tokens and picks the beam with the highest probability. In HuggingFace, the num_beams parameter of the model.generate() function determines the size of the beam. Here is how the decoding code would look like if we used beam search:


output = model.generate(**inputs, max_new_tokens=50, num_beams = 3)
print(tokenizer.decode(output[0], skip_special_tokens=True))


Figure 3-8 shows an example of beam search using the FLAN-T5 model. Note that the repetitiveness problem hasn’t really been solved using beam search. The text also sounds very constricted and un-humanlike, due to the complete absence of lower probability words.



[image: Beam Search]
Figure 3-8. Beam Search




To resolve these issues, we will need to start introducing some randomness and begin sampling from the probability distribution to ensure not just the top 2-3 tokens get generated all the time.












Top-K sampling


In top-k sampling, the model samples from a distribution of just the K tokens of the output distribution that have the highest probability. The probability mass is redistributed over the K tokens and the model samples from this distribution to generate the next token. HuggingFace provides the top_k parameter in its generate function.


output = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_k=40)
print(tokenizer.decode(output[0], skip_special_tokens=True))


Figure 3-9 shows an example of top-k sampling using the FLAN-T5 model. Note that this is a vast improvement from greedy or beam search. However, top-p leads to problematic generations when used in cases where the probability is dominated by a few tokens, meaning that tokens with very low probability end up being included in the top-K.



[image: Top-K Sampling]
Figure 3-9. Top-K Sampling














Top-P sampling


Top-p sampling solves the problem with top-k sampling by making the number of candidate tokens dynamic. Top-p involves choosing the smallest number of tokens whose cumulative distribution exceeds a given probability p. As seen earlier in the chapter, top-p sampling is available for GPT3.5 and GPT-4 models. Here is how you can implement this in HuggingFace


output = model.generate(**inputs, max_new_tokens=50, top_p=0.9)
print(tokenizer.decode(output[0], skip_special_tokens=True))


Figure 3-10 shows an example of top-p sampling using the FLAN-T5 model.
Top-p sampling, also called nucleus sampling, is the most popular sampling strategy used today.



[image: Top-P Sampling]
Figure 3-10. Top-P Sampling














Model debugging and interpretability


Now that we are comfortable with loading LLMs and generating text using them, we would like to be able to understand model behavior and explore the examples for which the model fails. Google’s open-source tool called LIT-NLP is a handy tool that supports visualizations of model behavior as well as various debugging workflows.


Figure 3-11 shows an example of LIT-NLP in action, providing interpretability for a T-5 model running a summarization task.



[image: lit-NLP]
Figure 3-11. LIT-NLP




Here are some features available in LIT-NLP that help you debug your models:



	
Visualization of the attention mechanism.



	
Salience maps, which show parts of the input that is most paid attention to by the model.



	
Visualization of embeddings.



	
Counterfactual analysis that shows how your model behavior changes after a change to the input like adding or removing a token.














Summary


In this chapter, we journeyed through the LLM landscape and took note of the various options we have at our disposal. We learned how to determine the criteria most relevant to our tasks and choose the right LLM accordingly. We explored the various LLM benchmarks and showed how to interpret their results. We learned how to load LLMs and run inference on them, along with efficient decoding strategies. Finally, we showcased interpretability tools like LIT-NLP that can help us understand what is going on behind the scenes in the Transformer architecture.


In the next chapter, we will go through advanced fine-tuning methods like PEFT (Parameter Efficient Fine Tuning). We will showcase various types of PEFT techniques including prefix tuning, adapters, LoRA (Low Rank Adaptation), QLoRA (Quantized Low Rank Adaptation). We will discuss instruction-tuning and show the different techniques to create your own instruction tuning datasets. We will also enter the world of reinforcement learning and learn how to conduct RLHF training to train our own chat-models.



1 If you haven’t had endless arguments with your friends and family about the color of the dress, now would be the time to do so. For more context, see https://en.wikipedia.org/wiki/The_dress



    
  

  
    
    
      
Chapter 4. Interfacing LLMs with External Tools



A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 7th chapter of the final book. Please note that the GitHub repo will be made active later on.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at mcronin@oreilly.com.




In order to effectively harness the power of LLMs in your organization, they have to be integrated into the existing data and software ecosystem. Unlike traditional software components and data stores, LLMs can generate autonomous actions to interact with other components of the ecosystem, thus bringing a degree of flexibility never seen before in the world of software. This flexibility unlocks a whole host of use cases that were previously considered impossible.


There is another reason why we need LLMs to interact with software and external data.
As we know too well, LLMs are not yet a mature technology. In Chapter 1, we devoted an entire section to discuss limitations of current LLMs. To recap some key points:



	
Since it is expensive to retrain LLMs or keep them continuously updated, they have a knowledge cutoff date and thus possess no knowledge of more recent events.



	
Most LLMs perform poorly at mathematical operations beyond rudimentary arithmetic.



	
They can’t provide factuality guarantees or accurate citations of their outputs.



	
Feeding them your own data is a challenge - fine-tuning is non-trivial and in-context learning is limited by the length of the effective context window. (Revisit Chapter 6. for details on why long-context models are not the panacea to the limited-context problem)






As we have been noticing throughout the book, the consolidation effect is leading us to a future (unless we hit a technological wall) where many of the aforementioned limitations might be addressed within the model itself. But we need not necessarily wait for that moment to arrive - many of these limitations can be addressed today by offloading the tasks/subtasks to external tools.


In this chapter, we will describe the various LLM interaction paradigms and provide guidance on how to adopt them in your application. Broadly speaking, there are two types of external entities that LLMs need to interact with - data stores and tools (software/models). We will describe each of them in detail and showcase how they can be used in tandem to build powerful applications. We will show how to make the best use of libraries like LangChain and LllamaIndex, which have vastly simplified LLM integrations. We will also push the limits of what today’s LLMs are capable of, by demonstrating how they can be deployed as an agent that can make autonomous decisions.








LLM Interaction Paradigms


Suppose you have a task you want the LLM to solve. There are several possible ways in which this can pan out.


	
The LLM uses its own memory and capabilities encoded in its parameters to solve it.



	
You feed the LLM all the context it needs to solve the task within the prompt, and the LLM uses the provided context and its capabilities to solve it.



	
The LLM doesn’t have the requisite information or skills to process this task, so you update the model parameters (fine-tuning etc., as discussed in detail in Chapters 5 and 6) so that it is able to develop the skills and knowledge to solve it.



	
You don’t know apriori what context is needed to solve the task, so you use mechanisms to automatically fetch the relevant context and insert it into the prompt. (The Passive approach)



	
You provide explicit instructions to the LLM on how to interact with external tools and data stores in order to solve your task, which the LLM follows. (The Explicit approach)



	
The LLM breaks down the task into multiple subtasks if needed, and interacts with its environment to gather the information/knowledge needed to solve the task, and delegates subtasks to external models and tools when it doesn’t have the requisite capabilities to solve that subtask. (The Agentic approach)







As you can see, options 4-6 involve the LLM interacting with its environment. Let’s go through the three interaction paradigms (Passive, Explicit, Agentic) in detail.










The Passive Approach


Figure 4-1 shows the typical workflow of an application that involves an LLM passively interacting with a data store.



[image: Passive Interaction]
Figure 4-1. An LLM passively interacting with a data store.




A large number of use cases involve leveraging LLMs to make use of your own data. Examples include building a question answering assistant over your company’s internal knowledge base that is spread over a bunch of Notion documents, or an airline chatbot that responds to customer queries about flight status or booking policies.


In order to allow the LLM to access external information, we need two types of components - retrieval engines and a data stores. A retrieval engine can be powered by an LLM itself, or it can be as simple as a keyword matching algorithm. The data store(s) can be a repository of data, like a database, knowledge graph, vector database, or even just a collection of text files. Data in the data store is represented and indexed in a manner that makes retrieval more efficient.


When a user issues a query, the retrieval engine uses the query to find the documents or text segments that are most relevant to answering this query. After ensuring that it fits into the context window of the LLM, it is fed to the LLM along with the query.The LLM is expected to answer the query given the relevant context provided in the prompt.


We will discuss various forms of data stores and retrieval mechanisms later in the chapter. We call this a passive interaction approach because the LLM itself is not actively involved in the selection of the context. This paradigm is often used for building QA assistants or chatbots, where external information is required to understand the context of the conversation.












The Explicit Approach


Figure 4-2 demonstrates the Explicit approach to interface LLMs with external tools.



[image: Explicit Approach]
Figure 4-2. The Explicit interaction approach in action.




In this approach, we provide the LLM with explicit instructions on how and when to invoke external information and tools. The LLM just follows the instructions mentioned in the query. This approach is recommended when the interaction sequence is fixed, limited and preferably only a single step. An example would be an AI data analyst asistant where you provide queries in natural language and ask the LLM to generate SQL code that can be run over a database.

Note

Keep in mind that LLMs don’t have session memory, i.e. they are stateless. Every query is a brand new interaction with the LLM. To simulate session memory, you need to feed all the previous interactions with the LLM in the context of your next query. Yes, this is highly inefficient. Yes, this means you will consume a lot of tokens. But this is what we have to work with.














The Agentic Approach


Figure 4-3 shows how we can turn an LLM into an autonomous agent that can solve complex tasks by itself.



[image: Agentic Approach]
Figure 4-3. A typical LLM Agent workflow




The agentic approach, or the Holy Grail approach as I would like to call it, turns an LLM into an autonomous agent that can solve tasks on its own. Here is a typical workflow of an agent:


	
The user formulates their requirements in natural language, optionally providing the format in which they want the LLM to provide the answer.



	
The LLM decomposes the user query into manageable subtasks



	
The LLM synchronously or asynchronously solves each subtask of the problem. Where possible, the LLM uses its own memory and knowledge to solve a specific subtask. For subtasks where the LLM cannot answer on its own, it chooses a tool to invoke from a list of tools available to it. Where possible, the LLM uses the outputs from solutions of already executed subtasks as inputs to other subtasks.



	
The LLM synthesises the final answer using the solutions of the subtasks, generating the output in the requested output format.







This paradigm is general enough to capture just about any use case. It is also a risky paradigm - we are giving the LLM too much responsibility and agency. At this juncture, I would not recommend using this paradigm for any critical applications.

Note

Why am I calling for caution in deploying agents? Oftentimes, humans underestimate the accuracy requirements for applications. For a lot of use cases, getting right 99% of the time is still not good enough, especially when the failures are unpredictable. The 99% problem is also the one plaguing self-driving cars from getting on the road. This doesn’t mean we can’t deploy autonomous LLM agents at all - we just need clever product design that can shield the user from their failures. We will discuss this more in Chapter 14.




To better understand the agentic paradigm, let me share an example query for the agent I am developing at my company, which operates in the financial domain. Consider this question:


Who was the CFO of Apple when its stock price was at its lowest point in the last 10 years?



Here is how the LLM agent can answer this question. Each item in the numbered list corresponds to a step in the chain, the sequence of actions it takes. The system prompt contains a list of available tools and external data stores and their descriptions.


	
First, it decomposes the task into multiple subtasks.



	
To calculate the date range, it needs the current date. If this is not included in the system prompt, it generates code for returning the system time, which is then executed by a code interpreter.



	
Using the current date, it finds the other end of the date range by executing a simple arithmetic operation by itself, or by generating code for it. Step 2 and 3 could also be combined into a single program.



	
It finds a database table that contains stock price information in the data store list. It retrieves the schema of the table and inserts it into the prompt and generates a SQL query for finding the date when the stock price was at its minimum in the last 10 years.



	
With the date in hand, it needs to find the CFO of Apple on that date. It can generate code to call a search engine API to see if there is an explicit mention of the CFO on that particular date.



	
If the search engine query fails to provide a result, it finds a financial API in its tools list and retrieves and inserts the API documentation into its context. It then generates code for an API call to retrieve the list of CFOs and their tenure durations.



	
Finally, it uses its arithmetic reasoning skills to find the duration that matches the date of the lowest stock price, and retrieves the corresponding CFO.



	
It generates the output text with the answer. If there is a requested format, it tries to adhere to that.







As you can see, this is a very powerful paradigm but it is also a very complicated chain involving several LLM calls. Note that it takes several Google searches for even a financial domain expert to find the answer to this question. There are several opportunities for the LLM to fail in this chain, and the earlier it fails the harder it is to recover from it.


Task decomposition is a particularly challenging problem and will be explored further in Chapter 13. However, task decomposition is only needed for the Agentic approach. Let’s now explore how to facilitate interaction between LLMs and external data stores.

Note

Projects like BabyAGI, AutoGPT, HuggingGPT (also called Microsoft JARVIS), are notable demos of autonomous LLM agents. Unsurprisingly, none of them are stable enough to be used in production as of now. However, as of today the agentic approach can still be production-ready in limited use cases where accuracy and latency requirements are lax.




Exercise

The accompanying Github for the book contains an AutoGPT-style implementation. Use your GPT-4 key to run the agent code and explore the limitations and potential of autonomous LLM agents. Be careful and set up Open AI billing alerts - a single task might consume a lot of tokens! Try asking the agent ‘Which football team had the 5th highest number of goals scored in the Premier League during the year that Jackie Chan turned 60?' and debug the actions taken by it.














Retrieval


Now that we have seen how the three interaction paradigms work, let’s discuss Retrieval, a common mode of interaction.


External data can be of just about any type - text files, database tables, knowledge graphs, and so on. Data can range from propreitary domain-specific knowledge bases to intermediate results and outputs generated by LLMs.


As shown in Figure 4-2, a typical solution is to calculate some kind of similarity measure between the user query and the data segments in the data store to find the segments that most match the user query  i.e. provides the most relevant context that can be used to satisfy the user query. This process is called retrieval. The retrieval function often returns a ranked list of results in order of relevance rather than a single result. This process is called text ranking. This context is then fed into the LLM prompt along with the user query, and the LLM uses the information provided in the context to answer the user query. This two step-process has traditionally been called the retriever-reader framework.


While structured data can live in databases,  unstructured data needs to be first processed in order to make it amenable for retrieval. This usually involves parsing text from the document, splitting it into manageable chunks, associating metadata with each segment, storing a representation of it, and indexing it for easy access.

Tip

Unstructured text needs to be split into manageable chunks to facilitate effective retrieval and to allow you to insert matching chunks into the LLM context window. Chunks can be as short as individual sentences, but can also be paragraphs, sections, or even documents, with ideally each chunk containing text about a semantically coherent topic. Make the best use of your knowledge of the document structure to inform the splitting process, or even run topic models on your documents apriori to splitting. If there aren’t hard topic boundaries in the source document, then ensure some overlap between contiguous chunks. Pay more attention to this process - I have seen many retrieval projects fail because the textual units were not well-defined.




If it makes sense for your use case to have the units of text as sentences,
NLTK’s Punkt tokenizer is a tried and tested tool for tokenizing text into sentences. Note that sentence tokenization is not a trivial task especially if you have domain-specific text. Naive splitting on end marks (periods, question marks and abbreviations) can only get you so far; for example, abbreviations play spoil sport, among others. You can train the Punkt tokenizer unsupervised over a large body of your target text to ensure it learns your domain-specific rules, as well as provide explicit rules and exceptions yourself. The accompanying Github repo to this book contains one such example.
Other tools for sentence tokenization include spaCy, Stanza, and ClarityNLP.










Retrieval Techniques


Which retrieval technique should you use? The answer depends on the following considerations



	
The expected nature of user queries (how complex and abstract they can be)



	
The expected degree of vocabulary mismatch between user queries and target documents



	
Latency and compute limitations



	
The metrics to optimize for (precision/recall/NDCG etc)






Depending on the nature of user queries, keyword matching/probabilistic retrieval techniques like BM25 can be a very strong baseline and can potentially even be good enough for your application. To get around the rigidity of having to match the exact keywords, query-expansion and document-expansion techniques can be employed, which we will discuss later in this chapter. In recent times, embedding based methods (bi-encoders) have become extremely popular.


The retrieval process can be broken into a two-stage or multi-stage process, where the initial stages retrieve a list of chunks that are deemed relevant to the query, followed by one or more reranking stages that takes the list of chunks and sort them by relevance. The reranker is generally a more complex model, usually an encoder or encoder-decoder language model like BERT or T5, that we would generally find expensive to run over the entire dataset. (which is why we don’t use it for the initial retrieval stage).


Let’s go into the different retrieval techniques in detail.

Note

The IR (information retrieval) research field has been studying these problems for a long time. Now that retrieval is more relevant than ever in the field of NLP, I am noticing a lot of efforts to reinvent the wheel rather than reusing insights from the IR field. For insights in retrieval research, check out papers from leading IR research conferences like SIGIR, ECIR, TREC etc.














Keyword Match and Probabilistic Methods


There are several traditional methods and frameworks that can be used to perform the first-stage (or depending on the use case, the entirety) of the retrieval process. Lucene/ ElasticSearch supports Tf-IDf (Term frequency - inverse document frequency), BM-25 (the current default in ElasticSearch 8.9), DFI (Divergence from Independence), DFR (Divergence from Randomness), IB (Information-based), Dirichlet Similarity, and Jelinek Mercer Similarity. Each of these measures has several tunable parameters. For more insight on these techniques and how to select the parameter values, check out this video. The accompanying Github repo to this book also showcases the differences between these methods.












Embeddings


We introduced the concept of embeddings in Chapter 2. Let’s now see how they can be used for retrieval.


Embeddings are generated for each of the chunks in the data collection. When a new query comes in, an embedding of the query is generated. The query embedding is compared against the chunk embeddings and the ones that have the highest cosine similarity are selected as candidates to be included in the LLM context or to the next stage of the retrieval process. This process is called semantic search, since the embeddings capture meaning of the underlying text.


Embeddings can be generated using both open-source libraries and paywalled API’s. SBERT (sentence-transformers) is a very well known library for generating embeddings, and provides access to embedding models that still performs competitively with respect to the state of the art, even if the model sizes are much smaller.

Note

There is a distinction between symmetric semantic search and asymmetric semantic search. If the query text is of similar size as the chunk text, then it is symmetric. If the query text is much smaller than the chunk text, as with search engine and question-answering assistant queries, then it is asymmetric. Different models exist for symmetric and asymmetric semantic search. In some models, the query and chunk texts are encoded using separate models.




As a simple illustrative example, consider two chunks of text, each representing a sentence.


chunks = ['The President of the U.S is Joe Biden',
'Ramen consumption has increased in the last 5 months']


Given the query ‘president of usa’ we can encode the query and the chunks using SBERT.


from sentence_transformers import SentenceTransformer, util
sbert_model = SentenceTransformer('msmarco-distilbert-base-tas-b')

chunk_embeddings = sbert_model.encode(chunks, show_progress_bar=True, device='cuda', normalize_embeddings=True, convert_to_tensor=True)

query_embedding = sbert_model.encode(query, device='cuda', normalize_embeddings=True, convert_to_tensor=True)
matches = util.semantic_search(query_embedding, chunk_embeddings, score_function=util.dot_score)


The output is:


[[{'corpus_id': 0, 'score': 0.8643729090690613},
  {'corpus_id': 1, 'score': 0.6223753690719604}]]

Tip

If you set normalize_embeddings to True, it will normalize the embeddings to unit length. This will ensure that you can compute dot product instead of cosine similarity, which is faster. The creators of SBERT provide separate models trained on dot product and cosine similarity and they mention that dot product models tend to prefer longer chunks during retrieval.




The embedding models provided by SBERT are based-on encoder-only models, by mean pooling (averaging) the encoder outputs. The underlying models are BERT, RoBERTa, MPNet etc., and are typically fine-tuned on paraphrasing/question-answering/natural language inference datasets. These models have smaller maximum sequence lengths (typically 512 tokens), and the embedding dimension size is typically 768, so you will only be able to encode a relatively short sequence in a chunk.

Warning

There is no such thing as infinite compression! Embedding sizes are fixed, so the longer your chunk the lesser information can be encoded in its embedding. Managing this tradeoff differs by use case.




Recently, decoder-based embedding models have started gaining prominence, like the SGPT family of models. Open AI exposes a single embedding endpoint for both search and similarity. Open AI embeddings have a much larger maximum sequence length (8192 tokens), and a much larger dimension size (1536). Cohere and Aleph Alpha are some other embedding providers. Aleph Alpha provides more flexibility in the way the final embedding is created from the encoder output including:



	
Mean pooling, where the average is taken across all token outputs in the sequence



	
Weighted mean, where more weight is given to the last few tokens



	
Last token , where the embedding is just the encoder output of the last token. (called [CLS] token if you are using the BERT model)






Which option should you use? It is not always clear and depends on your data. It doesn’t hurt to experiment a bit. But the differences in performance are not expected to be very large.

Tip

Whether the last token (or the first token), contains good representations of the entire sequence depends a lot on the pre-training and the fine tuning objective. BERT’s pre-training objective (next sentence prediction) ensures that the [CLS] token is much richer in representation than say Roberta, which doesn’t use the next sentence prediction objective and thus its <s> start sequence token isn’t as informative.




Training Embedding Models

Embeddings generated from base LLM models generally don’t perform well. For these models, it has been shown that term frequencies from the pre-training set have an impact on the embedding geometry, leading to distorted cosine similarities. This has led to the cosine similarity between high frequency words to underestimate the similarity between them. To make the models generate usable embeddings, they need to be fine-tuned either in a supervised or an unsupervised/self-supervised manner.


The most promising approach for training sentence embeddings has been to use contrastive learning. In contrastive learning, we take three sentences - an anchor sentence, a sentence that it is very similar to, and a sentence that it is dissimilar to. We then train the model such that it keeps the similar sentences closer in the embedding space and pushes the embeddings of the dissimilar sentences farther apart in the embedding space.


While a similar sentence can be generated by just adding noise/dropping words in the original sentence and comparing them together, it is not very clear what the best dissimilar sentences would be. This page shows several techniques used for unsupervised learning of sentence embedding models. The accompanying Github repo to this book shows various techniques to train or fine-tune your own embedding models.



Tip

Training or fine-tuning your own embedding model using your data is relatively inexpensive but can potentially come with a lot of benefits. For example, I trained an embedding model on financial text which cost less than $2000 in compute costs but ended up performing better than Open AI embeddings for my use case.




For many applications, embedding similarity is just not enough. To see why semantic search based on cosine similarity of embeddings is limited in what it can do, let’s look at an example.


The semantic similarity task is underspecified. To start with, there are several notions of similarity. For example, are two sentences that have opposite meanings but are talking about similar topics semantically similar? What about sentences or passages that have multiple facets of meanings?


Consider the query


query = [‘Who resigned from Edison Corporation in 2019?’]


Ideally, we would like to match sentences talking about resignations from Edison Corporation in 2019. But can naive cosine similarity capture this, even if the embedding model was fine-tuned on question-answering datasets?


Let’s say we are matching the query against these chunks


chunks = ['Hajian is an expert in cooking pineapple salsa.',

 'Hajian resigned his job at Apple.',

"Edison Corporation is the world's largest movie distributor",

'Roman resigned his job at Apple',

'Roman resigned his job at Edison corporation',

 'Hajian left Edison Corporation in 2017',

'Roman joined Edison Corporation in 2019',

'Hajian did not resign from Edison Corporation']


We generate embeddings and calculate similarities


model = SentenceTransformer('all-mpnet-base-v2')
chunk_embeddings = model.encode(chunks, show_progress_bar=True, device='cuda', normalize_embeddings=True, convert_to_tensor=True)

query_embedding = model.encode(query, device='cuda', normalize_embeddings=True, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, chunk_embeddings, score_function=util.dot_score)


The output is


[[{'corpus_id': 5, 'score': 0.710587739944458},

  {'corpus_id': 7, 'score': 0.7007321715354919},

  {'corpus_id': 4, 'score': 0.6919746994972229},

  {'corpus_id': 6, 'score': 0.6464899182319641},

  {'corpus_id': 1, 'score': 0.467547744512558},

  {'corpus_id': 2, 'score': 0.4549838900566101},

  {'corpus_id': 3, 'score': 0.4215250313282013},

  {'corpus_id': 0, 'score': 0.015120428055524826}]]


Note that sentences like ‘Roman joined Edison Corporation in 2019’ and ‘Hajian did not resign from Edison Corporation’ have a high similarity score. If we use a similarity threshold of 0.6, then sentences 4,5,6,7 are included in the prompt along with the query to the LLM, and the LLM will correctly answer the question.


As you might have wondered, the precision-recall tradeoff needs to be handled with care, especially since we have a limited context window to feed candidate chunks into the LLM. Read more about precison and recall metrics here.


Exercise

Check how the similarities for these sentences fare when using OpenAI and Cohere embeddings. What do their similarity scores look like? Is it better or worse than what we see here?




So far we have seen that embedding models are specialized for solving a specific task - like semantic search or paraphrasing. A recent development ties together embedding models and the concept of instruction-tuning, which we discussed in Chapter 6. Imagine if you could use the same embedding model to generate different embeddings for the same chunk, based on the task it is going to be used for. These embeddings are called Instructor Embeddings. Instructor Embeddings allow you to optionally specify the domain, text type (whether it is a sentence, paragraph etc), task, along with the text during encoding.


Here is an example:


!pip install InstructorEmbedding

from InstructorEmbedding import INSTRUCTOR
model = INSTRUCTOR('hkunlp/instructor-large')

customized_embeddings = model.encode(
[['Represent the question for retrieving supporting documents:',
  'Who is the CEO of Apple'],
 ['Represent the sentence for retrieval:',
  'Tim Cook is the CEO of Apple'],
 ['Represent the sentence for retrieval:',
  'He is a musically gifted CEO'],
)


The creators of InstructorEmbedding recommend using the prompt Represent the question for retreiving supporting documents for queries, and Represent the sentence for retrieval for the chunks.


Another way in which the principle of instruction-tuning can be applied to retrieval is with description-based retrieval, where the query can be the description of the text that needs to be retrieved, rather than an instantiation (example) of the text that needs to be retrieved. Ravfogel et al. have published description-based retrieval models that in my experience are very effective. Note that these models have a dual-encoder setup - separate models are used to encode the query and documents. Check out the accompanying Github repo to this book for examples on how to use these models.


Evaluating Embedding Models

There are a dizzying number of embedding models available. Which one should you use? MTEB (Massive Text Embedding Benchmark) is a benchmark that can help you make the decision. MTEB covers a diverse set of tasks and benchmarks both latency and task performance, enabling you to reason about the tradeoff.


Check out the the current leaderboard, which is updated regularly. While there is no clear winner across all tasks, you can see that Instructor Embeddings generally perform very well, and the SBERT models based on MPNet and MiniLM perform strongly on retrieval tasks. Open AI’s ‘text-embedding-ada-002’ is also in the upper echelons in terms of task performance.
Your final decision should generally balance pricing, latency and performance tradeoffs.














Vector Databases


Depending on your application, you may have to deal with millions or billions of vectors, with the need to add new vectors every day and associate metadata tags to them. Vector databases facilitate this. Both open-source and paid options are available. Weviate, Milvus, Pinecone, Chroma, Qdrant, Redis are some of the popular vector databases. More established players like ElasticSearch, Redis, and Postgres have also started providing vector databases support.


Table 4-1 shows the vector databases, the features they provide, whether they provide hosting or not, along with pricing and licensing information.


Table 4-1. Vector Databases and their Properties


	Vector Database Name
	Access
	Hosting
	Pricing
	Other Notes





	Annoy

	Open-Source

	In-memory

	Free, but you need to generate embeddings outside the tool

	Allows you to use static files as indexes




	Chroma

	Open-Source

	In-memory

	Free

	Bare bones and easiest to get set up with




	DeepLake

	Open-Source

	In-memory

	Free

	Supports data versioning, multimodal data




	ElasticSearch

	Open-Source, managed service on Elastic Cloud Available

	In-memory and Elastic Cloud

	Free, paid service starts from $95 a month

	Comes with a lot of logging, monitoring features




	Milvus

	Open-Source, managed service on Zilliz Cloud

	Cloud-native, Zillus Cloud

	Free, around 0.2$ an hour

	



	PGVector

	Open-source, managed service on AWS, Heroku etc

	database extension

	Bundled with Postgres

	Integrated with SQL database




	Pinecone

	Closed

	AWS/Google Cloud

	Starting at $70 a month

	Provides many enterprise features




	Qdrant

	Open-Source

	Self-hosted

	Free

	Supports distributed deployment




	Redis

	Open-source, with enterprise support on Redis Cloud

	Self-hosted, Redis Cloud

	Free + Redis Cloud

	Provides many enterprise features




	Weviate

	Open-Source

	Cloud-native

	Free

	Known for being extremely fast







Let’s now have a look at how vector DB’s work. Probably the simplest one to get started with is Chroma, which is open-source, and can run locally on your machine or can be deployed on AWS.


!pip install chromadb

import chromadb
chroma_client = chromadb.Client()

collection = chroma_client.create_collection(name="mango_science")
chunks = ['353 varieties of mangoes are now extinct',
'Mangoes are grown in the tropics']
metadata = [{"topic": "extinction", "chapter": "2"}, {"topic": "regions", "chapter": "5"}]
unique_ids = [str(i) for i in range(len(chunks))]

collection.add(
   documents=chunks,
   metadatas=metadata,
   ids=unique_ids
  )
results = collection.query(
   query_texts=["Where are mangoes grown?"],
   n_results=2,
   where={"chapter": { "$ne": "2"}},
   where_document={"$contains":"grown"}
)


Most vector databases offer the following:



	
Approximate nearest neighbor search, to reduce latency



	
Ability to filter using metadata, like the where option in Chroma



	
Ability to integrate keyword search, like the where_document option in Chroma



	
Support Boolean search operations, so that multiple search clauses can be combined with AND or OR operations



	
Ability to update or delete entries in the database in real time.





Tip

If you are working with less than a million vectors, vector databases might not be necessary, especially if you are not going to constantly add new vectors to your collection.














Rerankers


In a multi-stage retrieval workflow, the later stages comprise the rerankers, which take the top-k most relevant chunks as determined by the earlier stages, and reranks them in order of relevance. The reranker is usually a language model fine-tuned on the specific task. You can use BERT-like models for building a relevance classifier, where given a query and a chunk, the model outputs the probability of the chunk being relevant to answering the query. These models are called cross-encoders, as they capture the interaction between query and document in the same model.


The input sequence for BERT is of the format


[CLS] query_text [SEP] chunk_text [SEP]


These days, more advanced models like ColBERT are used for reranking. The accompanying Github repo to the book contains a tutorial on how to effectively use ColBERTv2 and similar models for reranking.


In ColBERT-style models, both queries and documents are encoded independently into a set of vectors, by taking the BERT output embeddings for each token in the query or document and down-projecting them. At query time, the cosine similarity between each query token embedding and all the token embeddings of the document are calculated. For each query token embedding, the maximum cosine similarity between the document token embeddings are taken and summed. This type of architecture is called late interaction, since the query and document are not encoded together but interact together only later in the process. Late interaction saves times as compared to traditional cross-encoders, as document embeddings can be created and stored in advance.


In general, retrieval is a hard task and does not adequately compensate the limitations of LLMs. Companies adopting this paradigm are realizing that retrieval is becoming the limiting factor that imposes a ceiling on the maximum performance they can get from LLMs.












LlamaIndex


LlamaIndex facilitates the interfacing of external data stores with LLMs. Let’s explore how to use it to our advantage. In this book, we will be using LlamaIndex version 0.7.20

Warning

While using libraries like LlamaIndex and LangChain which use LLMs under the hood, verify what LLMs are being used as default before running data-heavy workloads on it. For example, as of today LlamaIndex uses ‘text-davinci-003’ as the default model, which is 10 times more expensive than ‘gpt-3.5-turbo’ (the chatGPT model).




To our relief, changing the underlying model is pretty easy -


from llama_index import LLMPredictor, ServiceContext
from langchain import OpenAI

llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo"))
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)


You can then pass the service_context while invoking LlamaIndex features.












Indices


LlamaIndex provides several types of index data structures for organizing your data for efficient retrieval. The most powerful aspect of this feature is the capacity for compositionality - you can build indices on top of other indices! We will soon see why this is useful. Meanwhile, here are some of the index types they support:


List Index - Each chunk of text is called a Node in LlamaIndex parlance. A list index is simply a sequential list of nodes, ex:  a long document split into multiple chunks and arranged contiguously. I strongly recommend you to do the splitting yourself by utilizing your knowledge of the document structure and topic boundaries. Here is how you would create a node by yourself, and set the relationships between different nodes.


Figure 4-4 shows how each chunk is represented by a Node and connected to each other sequentially.



[image: List Index]
Figure 4-4. List Index in LlamaIndex




from llama_index.data_structs.node import Node, DocumentRelationship, GPTListIndex
node1 = Node(text="This is the first chunk", doc_id=1)
node2 = Node(text="This is the second chunk", doc_id=2)
node1.relationships[DocumentRelationship.NEXT] = node2.get_doc_id()
node2.relationships[DocumentRelationship.PREVIOUS] = node1.get_doc_id()
nodes = [node1, node2]
index = GPTListIndex(nodes, service_context = service_context)

Tip

For some applications, you might be starting off with too much data, or there might be data that is not very likely to be relevant to a user. In these cases, you can perform ‘lazy loading’ of embeddings. You can leverage a List Index for this. Creating a List Index doesn’t involve a call to the underlying LLM or Embedding model. Instead, it supports creating embeddings dynamically at query time.




Vector Store Index - This index type uses a vector store at the backend for storing text along with its embeddings and associated metadata. By default, LlamaIndex uses an in-memory vector store. It supports integration with major vector databases like Chroma, Qdrant, Milvus, Weviate, Pinecone etc.


Keyword Table Index - This is similar to an inverted index used in search engines. Keywords are extracted from Nodes, such that each keyword is potentially mapped to multiple nodes. Note that keywords could include phrases as well. LLamaIndex provides three different methods for building keyword indices.


	
GPTKeywordTableIndex - Uses an LLM to extract keywords



	
GPTRAKEKeywordTableIndex - Uses a heuristics algorithm (RAKE) for extracting keywords



	
GPTSimpleKeywordTableIndex - Uses regular expressions to extract all words and then removes stop words.







For each keyword, the associated nodes are sorted in the order of the number of times the keyword appears in the index.

Warning

GPTKeywordTableIndex (LLM driven keyword extraction) is very expensive!




Tree Index - The tree index is built in a bottom-up fashion by building leaf nodes from chunks, and then constructing their parent nodes by generating summaries of the leaf node texts. The default number of children for each node is 10. As an example, if you are working with a long document, the intermediate levels of the tree could contain chapter summaries etc. By default, LlamaIndex uses the underlying LLM for generating summaries, but you can add your own summaries as well. If you are updating or inserting a new node, the summaries might have to be regenerated.


Figure 4-5 shows the structure of a tree index, and what data each node represents.



[image: Tree Index]
Figure 4-5. Tree Index in LlamaIndex
















Compositional Indices


Pay close attention to the ‘information architecture’ of your data. Most data can be organized conceptually in a hierarchical fashion. For example, Wikipedia pages are organized in terms of hierarchical categories. Exploiting this structure while building indices will make retrieval more effective and efficient. Here are some points you need to take into account while designing your compositional indices.


	
The type of expected user queries and their distribution.



	
Where you land on the precision vs recall tradeoff for your use case.



	
The number of LLM tokens/embeddings needed to construct the indices.



	
The average number of node traversals needed to complete retrieval.







Some common compositional strategies include - creating tree indices for individual documents and creating a list index over them, creating a keyword index over tree indices, and creating a list index over a vector store index.


Figure 4-6 shows a List Index on top of a Tree Index. The Tree Index can represent splitting a document into multiple chunks and indexing them in a tree form. The List index connects multiple such documents easily, thus enabling the LLM to perform cross-document information retrieval.



[image: Compositional Index]
Figure 4-6. Compositional Index in LlamaIndex
















Retrieval & Response


Once we have created our indices, we can start processing user queries. A typical processing pipeline of a user query consists of the following stages:


	
Query post-processing (Optional)



	
Retrieval



	
Retrieval Post-processing (Optional)



	
Response Synthesis







Figure 4-7 depicts the retrieval and response pipeline. Let’s go through each step in detail.



[image: Retrieval and Response]
Figure 4-7. Retrieval-Response pipeline in the Passive Approach




Query Post-processing - User queries can be edited and augmented, both to increase the likelihood of retrieving relevant data chunks and to increase the likelihood of the LLM to come up with the right answer (prompt hacking).


The query can be rephrased to ensure higher recall. If you are using a non-embedding based method for retrieval like keyword matching, regular expressions, or BM25, you can use traditional query expansion methods. Naive query expansion would involve adding synonyms of keywords in your query and other topic information.


If you are using embedding based methods, you can use techniques that utilize LLMs for query expansion. Two such examples are Query2Doc and HyDE.


Query2Doc involves generating a pseudo-document for the user query in a few-shot setting. For instance, in the 2-shot setting, we can use the prompt


‘Write a passage that answers the given query
Query: <query 1>
Passage: <passage 1>

Query: <query 2>
Passage: <passage 2>

Query: <User Query>
Passage:


The passage generated by the LLM is then concatenated to the query. We know that LLMs are susceptible to hallucination, and the generated passage might be factually incorrect and laughably so. But that doesn’t matter to us, because as long as we get enough token and semantic overlaps with the correct answer, we can construct an embedding that would be very similar to the embedding of the real chunk that contains the answer.


Hence, with Query2Doc we have rephrased the query to include the query + LLM generated pseudo-passage.


HyDE is a very similar technique, and is implemented natively by LlamaIndex. The original implementation of HyDE uses a zero-shot setting, and replaces the original query with the generated passage, which it calls a ‘Hypothetical Document’. The Hypothetical Document is then run through a Contriever model to generate embeddings.


Using HyDE in LlamaIndex is as simple as


from llama_index.indices.query.query_transform import  (HyDEQueryTransform)

query = "what does critical audit matter mean?"
hyde = HyDEQueryTransform(include_original=True)


If include_original is set to true, then the hypothetical document is appended to the original query.


LlamaIndex also supports query decomposition with the DecomposeQueryTransform class. This uses an LLM to decompose a complex query into multiple subqueries. The hope is that the relevant context for each subquery can be more easily retrieved, and the retrieval output from all subqueries can finally be combined together and fed to the LLM.


System Prompts

LlamaIndex uses LLMs in many different scenarios - generating keywords for building keyword indices, selecting the child node to traverse in a tree index, query expansion just to name a few.  In order to perform these tasks, it uses default prompts that are defined here.


For example, here is the prompt they use for tree traversal


“Some choices are given below. It is provided in a numbered list (1 to {num_chunks}),where each item in the list corresponds to a summary.\n
---------------------\n {context_list}\n---------------------\n. Using only the choices above and not prior knowledge, return the top choices (no more than {branching_factor}, ranked by most relevant to least) that are most relevant to the question: {query_str}\n”. Provide choices in the following format: ANSWER: <numbers> and explain why these summaries were selected in relation to the question.\n”


The branching factor indicates the maximum number of child nodes that will be traversed. num_chunks is the number of children of the current node, and context_list is the summary texts of all the children. Note that this prompt asks it to provide an explanation of why these summaries were generated. You can save some tokens by forgoing the explanation if you want.




Exercise

The prompt Given the context information and not prior knowledge, answer the question: is phrased this way to force the model to use only the retrieved information to answer the question and not use its own memory, which is susceptible to hallucination. The most effective prompt to reduce hallucinations differs by model. Try this yourself - do you notice any hallucinations when using this prompt? On what models is this prompt effective? You can experiment with variations of this prompt yourself. But note that you can’t just prompt your way out of hallucinations, and be very vary of any product that claims to do so!




Retrieval - the next step after post-processing the query (which is an optional step) is to retrieve the relevant Nodes from the indices. The retrieval process varies across index types.



	
For ListIndex, either all nodes are retrieved, or you can generate embeddings of the nodes on the fly and retrieve the top-k nodes that are most similar to the query embedding.



	
Similarly, the VectorIndex returns the top-k nodes as per the embedding similarity.



	
For the KeywordTableIndex, keywords are extracted from the query and the matching nodes are returned.



	
For the TreeIndex, the tree is traversed top-down starting from the root node to find the leaf nodes that are relevant to the query. Note that an LLM is used at each level to determine which children to choose to traverse, based on the similarity between the query and the summary of each child.






Retrieval Postprocessing LlamaIndex provides you with the flexibility to exclude or rerank retrieved nodes before feeding them into the LLM.
While you can build your own custom postprocessor for your application needs, LlamaIndex comes with some default postprocessors you can use



	
Keyword filtering - Exclude nodes that contain particular keywords or mandate the existence of keywords in a node



	
Similarity threshold - Filter out nodes with an embedding similarity below a threshold. The threshold varies by embedding model and is dependent on your data domain, so you will have to empirically arrive at it. It is highly recommended to use a threshold, failing which you might have to deal with a lot of irrelevant results.



	
Nearby nodes - Include previous or next nodes if you are using a list index, so that you can get additional context. This is especially useful if you used simpler document splitting techniques



	
Temporal filtering - Order returned nodes by most recent date and chooses the top-k.






Response Synthesis - After node retrieval and filtering, LlamaIndex calls the LLM with the query and the text from the selected nodes. Three modes of LLM interaction are supported.


default - The default mode uses a strategy called create-and-refine. If three Nodes are retrieved, then


	
It would first call the LLM with the query + text from first node



	
It would then call the LLM with the query + text from second node + output from first call + instruction asking it to refine the first output



	
It would then call the LLM with the query + text from third node + output from second call + instruction asking it to refine the second output







compact - in this mode, the prompt is stuffed with text from as many nodes as can fit into the context window. If all nodes don’t fit into the context window, the create-and-refine strategy is used. This reduces the number of calls to the LLM and the number of refine steps. Reducing the number of refine steps could potentially reduce the quality of the final output.


tree_summarize - Given the retrieved nodes, a tree is dynamically composed bottom up, with the parent nodes being summaries of the child nodes. The root node is returned as the answer. This is useful if you just want a summary of the matching nodes and don’t need specific answers to questions.














Token Budgeting


GPT-4 and similar models can be really expensive if you have a high volume of usage/high amount of data. LlamaIndex (and LangChain) provides a cost analyzer that allows you to keep track of the number of tokens spent during both indexing and query time.


You can use the MockLLMPredictor, and MockEmbedding classes to predict the number of tokens that will be used, before actually using them. This allows you to intervene and run token optimizations before interacting with the LLM.


Let’s see the MockLLMPredictor in action


from llama_index import GPTKeywordIndex, MockLLMPredictor

mock_llm= MockLLMPredictor(max_tokens=256)
service_context = ServiceContext.from_defaults(llm_predictor=mock_llm)
index = GPTKeywordIndex.from_documents(documents, service_context=service_context)
print(mock_llm.last_token_usage)

Tip

Language models (even the older ones like BERT etc) are relatively insensitive to word order. For many tasks, removing stop words barely affects performance! This can be a way to reduce your token budget.
















Data Loading & Parsing


To build a retrieval system, you will first have to load and parse the data into a suitable format. Frameworks like LangChain and LlamaIndex with their Document Loaders and Data Connectors features respectively can make pulling data from sources like Slack, Notion etc easier. However, you probably will write your own data loaders so that you can exploit your specialized knowledge about the format and content of your data.


As an example, let’s see how we can use LangChain’s ArxivLoader to load and extract text from scientific papers.


!pip install langchain arxiv pymupdf

from langchain.document_loaders import ArxivLoader

docs = ArxivLoader(query="LLM Agents", load_max_docs=10, load_all_available_meta=True).load()


Note that the query field is free text, and can include a list of arXiv IDs or a text query like ‘LLM Agents’.


You can access the metadata of each document using


docs[0].metadata


When you issue a query, it is the content in the metadata that is searched.


The parsed text is present in


docs[0].page_content

Tip

Text extraction is a crucial but often difficult, unglamorous, and overlooked aspect of the pipeline. For example, even with the presence of dozens of PDF extraction libraries, many of which use deep learning models under the hood, extracting text from PDF along with all the formatting metadata like subtitles and paragraph boundaries is not 100% accurate. Similarly, removing boilerplate text and artifacts from the document format is not trivial in many cases. The structure and format of the text is important metadata for a retrieval engine. I would strongly recommend spending more time to assess the quality of the text you are extracting and the impact of it on downstream task performance.




Exercise

Load and parse text from this page containing the text of a debate in the Canadian Parliament. You can use a library like Unstructured for more custom processing, and libraries like justext for removing boilerplate. How effective do you find these libraries?














External Tools


So far we have seen how we can augment LLM’s with retrieval. Retrieval augmented LLMs alleviate some of the limitations of LLMs we mentioned at the beginning of this chapter, opening the door to using LLMs’ over your own data, while reducing hallucination risks.


Now, let’s discuss how LLMs can interact with the broader software ecosystem. This includes



	
code interpreters/compilers, which the LLM can offload computation to for tasks or subtasks that it is not good at.



	
APIs’, which can be queried for information



	
Other LLMs and machine learning models






We will henceforth refer to these as tools. In almost all cases, the LLM generates code in order to communicate with these tools - for example code representing a mathematical operation that it wants offloaded to a Python interpreter, code representing an API call to extract information in response to a query, SQL queries to access databases and so on.


We can build applications by processing inputs using a complex sequence of operations involving LLMs and multiple tools. We will call this sequence of operations a chain.


LangChain provides a useful framework for implementing chains. It is the most popular library that came out of the recent LLM boom. We will dive into the parts of the library that help in tool interaction.

Tip

At some point, you might start questioning yourself - Why am I even using LangChain/LlamaIndex?. You are not alone! The abstraction provided by these frameworks reduce flexibility and increase code boilerplate. A lot of abstractions are very thin wrappers over established tools like the Requests library. Overall, frameworks like Langchain is great for experimentation, especially if you are not a machine learning expert. However, they are not a necessary component of a production-ready LLM application.




For an introduction to LangChain, check out their docs. In this chapter, we will focus only on the chains and tools features.


The first chain we will explore is the LLM-Requests chain. The workflow for this chain is


	
The Requests library is used to fetch some data from the URL



	
The data is fed to an LLM which parses it and returns results.







As an example, consider an application that takes a user query, uses the Requests library to query Google, and then feeds the results to the LLM which parses it and returns the right answer.


from langchain.chains import LLMRequestsChain, LLMChain
from langchain.prompts import PromptTemplate

search_template = """Extract the answer to the question '{query}' using the Google Search results.
Provide at least one well formed sentence.
Use the format
Extracted:<answer or "Search Engine results do not contain the answer">
google search results: {requests_result},
Extracted:"""

requests_prompt = PromptTemplate(
    input_variables=["query", "requests_result"],
    template=search_template
)

llm = OpenAI(model_name='gpt-3.5-turbo', temperature=0)
requests_chain = LLMRequestsChain(llm_chain = LLMChain(llm=llm, prompt=requests_prompt))

query = 'How is the weather in Toronto going to be tomorrow? In Celsius'

inputs = {
            "query": query,

            "url": "https://www.google.com/search?q=" + '+' + query
        }

results = requests_chain.run(inputs)


The output is


'Tomorrow, the highest temperature in Toronto will be 16°C (60.8°F), while the lowest temperature will be 9°C (48.2°F).'


You can see how simple it is for the LLM to gain access to real-time information like the weather!


Next, we will see the LLM Math chain, that allows you to offload mathematical operations to a Python interpreter. The workflow of this chain is


	
The user specifies a mathematical expression in natural language eg: ‘what is 30 percent of 124?’



	
The LLM converts the text into python code.



	
The code is run using Python’s numexpr library (not Python REPL because of code injection issues)



	
The result is parsed by the LLM and fed back to the user.







Here is the code


from langchain.chains import LLMMathChain
llm_math = LLMMathChain.from_llm(OpenAI())

llm_math.run("What is 34 percent of 123?")


The output is 41.82, as expected. If you try to use the chain for non-math use cases, it will fail.


llm_math.run("Who is the prime minister of canada 14-3 years ago?")

ValueError: unknown format from LLM: This does not involve a math problem, so it cannot be translated into an
expression for use with the numexpr library.


This is because the prompt for the LLMMathChain is ‘Translate a math problem into a expression that can be executed using Python’s numexpr library. Use the output of running this code to answer the question.’

Warning

Be very vary of running code generated by LLMs. Users can induce the model to generate malicious code!




API’s can be called using the API chain.


from langchain.chains import APIChain
llm_math = APIChain.from_llm_and_api_docs(llm, docs, verbose=True


The docs variable should contain the relevant API documentation. Note that you will have to ensure that they fit within the context length, so you will need to write some logic for including only the relevant documentation in the docs. One solution is to store the API docs in a data store and then perform retrieval over it to fetch the relevant documentation.


Similarly, the SQLDatabaseChain enables you to query a database. Again, you should have sufficient guard rails to ensure that the LLM doesn’t inadvertently generate code that will update the database. The workflow is


	
Decide the tables which contain the information requested in the query



	
Generate a SQL query for retrieving the results



	
Parse the results and return the answer to the user.






Note

What is the difference between LangChain and LlamaIndex? I hear this question a lot. They have a lot of overlapping features, but in the end I find them quite complementary. LangChain is good at…well, building chains and LLM agents (the Explicit and the Agentic paradigm), while LlamaIndex has really good support for retrieval augmentation.




Tool use is perhaps the most exciting paradigm in terms of LLM application development, and thus deserves a more comprehensive treatment. In Chapter 13, we will explore tool use in detail, including showing how to fine-tune an LLM with a tool-learning dataset, as well as showing how to create a tool-learning dataset for your own tools.










Summary


In this Chapter, we have seen how LLMs can be integrated into the software ecosystem, helping them be ubiquitous. We explored the different modes of interaction with external tools and data stores, and discussed some of the most useful tools and data stores one can employ as of today. We covered retrieval augmented models in detail, emphasising the role of embeddings and vector databases. We also had a brief look at LLM agents. In Chapter 13, We will learn more about operationalizing LLM agents, including creating tool-following datasets and fine-tuning your LLM with it.


In the next chapter, we will learn more about designing LLM applications over domain-specific data that is vastly different from the pre-training data seen by LLMs. We will cover various domain adaptation techniques and provide pointers on how to choose between them depending on your application needs and your target domain.
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