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The book will be of interest to students and professionals in the field of automotive engineering, mechatronics, and robotics, with a special focus on kinematics, dynamics, and machine design.






  
    

Kinematics and Dynamics of Mechanical Systems Implementation in MATLAB® and Simscape Multibody™


Third Edition


Kevin Russell, John Q. Shen, and Raj S. Sodhi


[image: Logo: Published by CRC Press, Taylor and Francis Group, London, New York. CRC Press is an imprint of Taylor and Francis Group, an Informa business, Humanity and Social Sciences Publishers Book]





  
    

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.


Third edition published 2023


by CRC Press


6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742


and by CRC Press


4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN


CRC Press is an imprint of Taylor & Francis Group, LLC


© 2023 Kevin Russell, John Q. Shen and Raj S. Sodhi


First edition published by CRC Press 2015


Second edition published by CRC Press 2019


Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.


Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.


For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk


Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.


ISBN: 9781032328317 (hbk)


ISBN: 9781032328324 (pbk)


ISBN: 9781003316961 (ebk)


DOI: 10.1201/9781003316961


Typeset in Palatino


by codeMantra






  
    



In memory of Willie J. Russell and Ella Russell.


Kevin Russell







To my wife Lili Qiu, my daughters Catherine Shen and Christine Shen who have been supporting me in all aspects so that I can bring forth the exciting new contents using future-proof technologies.


John Q. Shen







This book is affectionately dedicated to my wife Rani, my daughters Preeti and Shelly and my son-in-law, Andrew.


Raj S. Sodhi









  
    

Contents


Preface


Authors


1. Introduction to Kinematics


1.1 Kinematics


1.2 Kinematic Chains and Mechanisms


1.3 Mobility, Planar, and Spatial Mechanisms


1.4 Types of Mechanism Motion


1.5 Kinematic Synthesis


1.6 Units and Conversions


1.7 Software Resources


1.8 Summary


References


Additional Reading


2. Mathematical Concepts in Kinematics


2.1 Introduction


2.2 Complex Numbers and Operations


2.2.1 Complex Number Forms


2.2.2 Complex Number Addition


2.2.3 Complex Number Multiplication and Differentiation


2.3 Vector and Point Representation


2.4 Linear Simultaneous Equations, Matrices, and Matrix Operations


2.4.1 Linear Simultaneous Equation Systems and Matrices


2.4.2 Matrix Transpose, Addition, Subtraction, and Multiplication


2.4.3 The Identity Matrix and Matrix Inversion


2.5 Intermediate and Total Spatial Motion


2.6 General Transformation Matrix


2.7 Summary


References


Additional Reading


Problems


3. Fundamental Concepts in Kinematics


3.1 Types of Planar and Spatial Mechanisms


3.1.1 Planar Four-Bar Mechanism


3.1.2 Slider-Crank Mechanism


3.1.3 Geared Five-Bar Mechanism


3.1.4 Planar Multiloop Six-Bar Mechanisms


3.1.5 Spatial Four-Bar Mechanisms


3.2 Links, Joints, and Mechanism Mobility


3.3 Number Synthesis


3.4 Grashof’s Criteria and Transmission Angle


3.5 Circuit Defect


3.6 Mechanism Inversion


3.7 Passive Degree of Freedom and Paradoxes


3.8 Summary


References


Problems


4. Kinematic Analysis of Planar Mechanisms


4.1 Introduction


4.2 Numerical Solution Method for Two Simultaneous Equations


4.3 Link Velocity and Acceleration Components in Planar Space


4.4 Four-Bar Mechanism Analysis


4.4.1 Displacement Equations


4.4.2 Velocity Equations


4.4.3 Acceleration Equations


4.4.4 Kinematics of Coupler Locations of Interest


4.4.5 Instant Center, Centrodes, and Centrode Generation


4.5 Slider-Crank Mechanism Analysis


4.5.1 Displacement Equations


4.5.2 Velocity Equations


4.5.3 Acceleration Equations


4.5.4 Centrode Generation


4.6 Geared Five-Bar Mechanism Analysis


4.6.1 Displacement Equations


4.6.2 Velocity Equations


4.6.3 Acceleration Equations


4.6.4 Kinematics of Intermediate Link Locations of Interest


4.7 Watt II Mechanism Analysis


4.8 Stephenson III Mechanism Analysis


4.8.1 Displacement Equations


4.8.2 Velocity Equations


4.8.3 Acceleration Equations


4.8.4 Kinematics of Intermediate Link Locations of Interest


4.9 Time and Driver Angular Velocity


4.10 Mechanism Configurations


4.11 Constructing Cognates


4.12 Planar Mechanism Kinematic Analysis and Modeling in Simscape Multibody™


4.13 Summary


References


Additional Reading


Problems


5. Dimensional Synthesis


5.1 Introduction


5.2 Branch and Order Defects


5.3 Planar Four-Bar Motion Generation: Three Precision Positions


5.4 Order- and Branch-Defect Elimination


5.5 Path Generation versus Motion Generation


5.6 Stephenson III Motion Generation: Three Precision Positions


5.7 Planar Four-Bar Function Generation: Three Precision Points


5.8 Planar Four-Bar Function Generation: FSPs and MSPs


5.9 Mechanism Dimensions: From Dimensional Synthesis to Kinematic Analysis


5.10 Summary


References


Additional Reading


Problems


6. Static Force Analysis of Planar Mechanisms


6.1 Introduction


6.2 Static Loading in Planar Space


6.3 Four-Bar Mechanism Analysis


6.4 Slider-Crank Mechanism Analysis


6.5 Geared Five-Bar Mechanism Analysis


6.6 Watt II Mechanism Analysis


6.7 Stephenson III Mechanism Analysis


6.8 Planar Mechanism Static Force Analysis and Modeling in Simscape Multibody™


6.9 Summary


References


Additional Reading


Problems


7. Dynamic Force Analysis of Planar Mechanisms


7.1 Introduction


7.2 Dynamic Loading in Planar Space


7.3 Four-Bar Mechanism Analysis


7.4 Slider-Crank Mechanism Analysis


7.5 Geared Five-Bar Mechanism Analysis


7.6 Watt II Mechanism Analysis


7.7 Stephenson III Mechanism Analysis


7.8 Mass Moment of Inertia and Computer-Aided Design Software


7.9 Planar Mechanism Dynamic Force Analysis and Modeling in Simscape Multibody™


7.10 Summary


References


Additional Reading


Problems


8. Design and Kinematic Analysis of Gears


8.1 Introduction


8.2 Gear Types


8.3 SPUR-Gear Nomenclature and Relationships of Mating Gears


8.3.1 Spur-Gear Nomenclature


8.3.2 Pressure Angle and Involute Tooth Profile


8.3.3 Gear Center Distance and Contact Ratio


8.3.4 Gear-Tooth Interference and Undercutting


8.3.5 Backlash


8.4 Helical-Gear Nomenclature


8.5 Gear Kinematics


8.5.1 Spur Gears and Gear Trains


8.5.2 Planetary Gear Trains


8.5.3 Rack and Pinion Gears


8.5.4 Helical Gears


8.5.5 Bevel Gears


8.5.6 Worm Gears


8.6 Summary


References


Additional Reading


Problems


9. Design and Kinematic Analysis of Disk Cams


9.1 Introduction


9.2 Follower Types


9.3 Follower Motion


9.3.1 Rise, Fall, and Dwell


9.3.2 Displacement, Velocity, Acceleration, and Jerk


9.3.3 Constant Velocity Motion


9.3.4 Constant Acceleration Motion


9.3.5 Simple Harmonic Motion


9.3.6 Cycloidal Motion


9.3.7 Polynomial Motion


9.4 Disk Cam Design and Pressure Angle


9.5 Summary


References


Additional Reading


Problems


10. Kinematic Analysis of Spatial Mechanisms


10.1 Introduction


10.2 RRSS Mechanism Analysis


10.2.1 Displacement Equations


10.2.2 Velocity Equations


10.2.3 Acceleration Equations


10.3 RSSR Mechanism Analysis


10.3.1 Displacement Equations


10.3.2 Velocity Equations


10.3.3 Acceleration Equations


10.4 Four-Revolute Spherical Mechanism Analysis


10.5 Planar Four-Bar Kinematic Analysis Using RRSS and RSSR Kinematic Equations


10.6 Spatial Mechanism Kinematic Analysis and Modeling in Simscape Multibody™


10.7 Summary


References


Problems


11. Introduction to Robotic Manipulators


11.1 Introduction


11.2 Terminology and Nomenclature


11.3 Robotic Manipulator Mobility and Types


11.4 The General Transformation Matrix


11.5 Forward Kinematics


11.5.1 Definition and Application


11.5.2 P-P-P


11.5.3 R-P-P


11.5.4 R-R-P


11.5.5 R-R-R


11.5.6 R-R-C


11.6 Inverse Kinematics


11.6.1 Definition and Application


11.6.2 P-P-P


11.6.3 R-P-P


11.6.4 R-R-P


11.6.5 R-R-R


11.6.6 R-R-C


11.7 Robotic Manipulator Kinematic Analysis and Modeling in Simscape Multibody™


11.8 Summary


References


Additional Reading


Problems


Appendix A: User Information and Instructions for MATLAB®


A.1 Required MATLAB Toolkits


A.2 Description of MATLAB Operators and Functions


A.3 Preparing and Running Files in MATLAB and Operations in Simscape Multibody


A.4 Description of Simscape Multibody Functions


A.5 Rerunning MATLAB and Simscape Multibody Files with Existing *.csv Files


A.6 Minimum Precision Requirement for Appendix File User Input


Appendix B: User Instructions for Chapter 4 MATLAB® Files


B.1 Planar Four-Bar Mechanism


B.2 Planar Four-Bar Fixed and Moving Centrode Generation


B.3 Slider-Crank Mechanism


B.4 Geared Five-Bar Mechanism (Two Gears)


B.5 Geared Five-Bar Mechanism (Three Gears)


B.6 Watt II Mechanism


B.7 Stephenson III Mechanism


Appendix C: User Instructions for Chapter 6 MATLAB® Files


C.1 Planar Four-Bar Mechanism


C.2 Slider-Crank Mechanism


C.3 Geared Five-Bar Mechanism (Two Gears)


C.4 Geared Five-Bar Mechanism (Three Gears)


C.5 Watt II Mechanism


C.6 Stephenson III Mechanism


Appendix D: User Instructions for Chapter 7 MATLAB® Files


D.1 Planar Four-Bar Mechanism


D.2 Slider-Crank Mechanism


D.3 Geared Five-Bar Mechanism (Two Gears)


D.4 Geared Five-Bar Mechanism (Three Gears)


D.5 Watt II Mechanism


D.6 Stephenson III Mechanism


Appendix E: User Instructions for Chapter 9 MATLAB® Files


E.1 S, V Profile Generation and Cam Design: Constant Velocity Motion


E.2 S, V, A Profile Generation and Cam Design: Constant Acceleration Motion


E.3 S, V, A, J Profile Generation and Cam Design: Simple Harmonic Motion


E.4 S, V, A, J Profile Generation and Cam Design: Cycloidal Motion


E.5 S, V, A, J Profile Generation and Cam Design: 3-4-5 Polynomial Motion


E.6 S, V, A, J Profile Generation and Cam Design: 4-5-6-7 Polynomial Motion


Appendix F: User Instructions for Chapter 10 MATLAB® Files


F.1 RRSS Mechanism


F.2 RSSR Mechanism


Appendix G: User Instructions for Chapter 11 MATLAB® Files


G.1 R-P-P Robotic Manipulator Forward Kinematics


G.2 R-R-P Robotic Manipulator Forward Kinematics


G.3 R-R-R Robotic Manipulator Forward Kinematics


G.4 R-R-C Robotic Manipulator Forward Kinematics


G.5 R-P-P Robotic Manipulator Inverse Kinematics


G.6 R-R-P Robotic Manipulator Inverse Kinematics


G.7 R-R-R Robotic Manipulator Inverse Kinematics


G.8 R-R-C Robotic Manipulator Inverse Kinematics


Appendix H: User Instructions for Chapter 4 MATLAB® and Simscape Multibody™ Files


H.1 Planar Four-Bar Mechanism


H.2 Slider-Crank Mechanism


H.3 Geared Five-Bar Mechanism (Two Gears)


H.4 Geared Five-Bar Mechanism (Three Gears)


H.5 Watt II Mechanism


H.6 Stephenson III Mechanism


Appendix I: User Instructions for Chapter 6 MATLAB® and Simscape Multibody™ Files


I.1 Planar Four-Bar Mechanism


I.2 Slider-Crank Mechanism


I.3 Geared Five-Bar Mechanism (Two Gears)


I.4 Geared Five-Bar Mechanism (Three Gears)


I.5 Watt II Mechanism


I.6 Stephenson III Mechanism


Appendix J: User Instructions for Chapter 7 MATLAB® and Simscape Multibody™ Files


J.1 Planar Four-Bar Mechanism


J.2 Slider-Crank Mechanism


J.3 Geared Five-Bar Mechanism (Two Gears)


J.4 Geared Five-Bar Mechanism (Three Gears)


J.5 Watt II Mechanism


J.6 Stephenson III Mechanism


Appendix K: User Instructions for Chapter 10 MATLAB® and Simscape Multibody™ Files


K.1 RRSS Mechanism


K.2 RSSR Mechanism


Appendix L: User Instructions for Chapter 11 MATLAB® and Simscape Multibody™ Files


L.1 R-P-P Robotic Manipulator Forward Kinematics


L.2 R-R-P Robotic Manipulator Forward Kinematics


L.3 R-R-R Robotic Manipulator Forward Kinematics


L.4 R-R-C Robotic Manipulator Forward Kinematics


Index






  
    

Preface


Kinematics is the study of motion without considering forces. In comparison to other engineering design disciplines such as statics, where motion and governing loads are considered according to Newton’s first law and dynamics, where motion and governing loads are considered according to Newton’s second law, kinematics is the most fundamental engineering design discipline. Courses pertaining to the kinematics of mechanical systems are core requirements of university undergraduate mechanical engineering curricula.


While a central understanding of classical kinematics will continue to remain relevant in engineering and subsequently, a necessary focus in undergraduate engineering education, it is becoming increasingly important that an undergraduate also acquire a central understanding of static and dynamic mechanism analysis. Such an understanding prepares an undergraduate student to conduct more thorough analyses and produce more relevant solutions in mechanism design. In addition, a central understanding of the design and analysis of robotic manipulators has become essential in modern-day undergraduate engineering education due to the expanding use of robotic systems today.


It has become very efficient and extremely practical to utilize mathematical analysis software to conduct engineering analyses in recent years. Of all the mathematical analysis software options available (which are numerous), the authors chose MATLAB®. MATLAB is a high-level language and an interactive environment for numerical computation, visualization, simulation, and programming. Using MATLAB, one can analyze data, develop algorithms, and create models and applications without data type checking, compiling, and linking (tasks common in programming languages such as C++ and Java).


During the time of the initial release and second edition of this textbook, the MATLAB toolbox SimMechanics™ provided a graphical multi-body simulation environment for 2D and 3D mechanical systems including linkages, robots, cam systems, and gear systems. Since that time, however, SimMechanics has been discontinued and replaced with Simscape Multibody™. Like its predecessor, the user models the multi-body system (using blocks representing bodies, joints, constraints, and motion/force actuator elements) and then Simscape Multibody formulates and solves the governing equations of motion and force for the complete mechanical system. An automatically generated 3D animation lets you visualize the system dynamics. Both the animation geometry and rendering quality are much improved in Simscape Multibody for more enhanced 2D and 3D visualization. MATLAB and Simscape Multibody can be used for a broad range of applications including the kinematics, synthesis, statics, and dynamics of mechanical systems. Both MATLAB and now Simscape Multibody are well established (and often the de facto standard for mathematical analysis and simulation) in colleges and universities.


There is currently a variety of textbooks available in mechanism kinematics-each book differing from the others primarily in terms of the breadth and depth of kinematics topics presented and the software packages used to implement the concepts and methods presented. In light of the need to go beyond classical kinematics in undergraduate engineering education and fill the gap between theory and the application of theory for real-world problems, this textbook was produced. This textbook introduces the fundamental concepts of mechanism kinematics, synthesis, statics and dynamics for planar and spatial linkages, cam systems, gear systems and robotic manipulators by realistic illustrations and practical problems. Also, the commercial software MATLAB and its mechanical simulation toolbox Simscape Multibody are thoroughly integrated in the textbook for ease of concept implementation (both during and after one’s undergraduate years).


To improve both the practicality of the concepts covered and the clarity in their presentation, the third edition of Kinematics and Dynamics of Mechanical Systems: Implementation in MATLAB and Simscape Multibody includes the following updates:




	the inclusion of MATLAB and now Simscape Multibody file input in textbook examples.





In prior editions of the authors’ textbook, MATLAB’s former mechanical simulation toolbox SimMechanics was integrated in Chapters 4–11 and Appendices A and H–L. Considering the release of MATLAB’s new mechanical simulation toolbox, Simscape Multibody, this new toolbox has been integrated in the noted textbook sections in the third edition. In addition, a new library of MATLAB, and now Simscape Multibody, files have been produced and are available for download with this textbook. These files are available for download at the publisher’s web page https://www.routledge.com/p/book/9781032328317 under the Downloads tab. These files can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip. This new content improves the clarity of the reader regarding the preparation of textbook problems for use in MATLAB and Simscape Multibody as well as maintains textbook compatibility with the latest MATLAB releases.


This textbook was written to accommodate students with no working knowledge of MATLAB. In terms of MATLAB knowledge, the ideal user should know how to launch MATLAB and have access to the MATLAB software package itself. Any version of MATLAB after 2013 is suitable to run the MATLAB and Simscape Multibody files associated with this textbook (provided all the required toolkits listed in Appendix A.1 are installed).


The intended uses of this textbook are the following:




	as a sole text for an undergraduate course in mechanical system kinematics


	as a sole text for an undergraduate mechanical design course (where mechanisms are then analyzed using Statics/Dynamics, Stress Analysis, Machine Design, CAE, etc.)


	as a reference text for mechanical engineering research


	as a reference text for the application of MATLAB and Simscape Multibody in mechanical engineering.





Because our goal is to produce a textbook with sufficient breadth, depth, and implementation resources to be an effective resource for 21st century undergraduate engineering education, we look forward to any feedback you may have. For e-mail correspondence, we can be reached at kevin.russell@njit.edu. We hope you enjoy utilizing this work as much as we have enjoyed producing it.


K. Russell


John Q. Shen


R. S. Sodhi
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1 Introduction to Kinematics


DOI: 10.1201/9781003316961-1






Concept Overview


In this chapter, the reader will gain a central understanding regarding




	Kinematics and its use in engineering design


	Distinctions between kinematic chains and mechanisms


	Planar and spatial mechanism mobility


	Types of mechanism motion


	Distinctions between kinematic analysis and kinematic synthesis


	Categories of kinematic synthesis









1.1 Kinematics


Kinematics is the study of motion without considering forces. In a kinematic analysis, positions, displacements, velocities and accelerations are calculated for mechanical system components without regard to the loads that actually govern them. In comparison to other engineering design studies such as statics, where motion and governing loads are considered according to Newton’s first law, and dynamics, where motion and governing loads are considered according to Newton’s second law, kinematics is the most fundamental engineering design study. It is often necessary in the design of a mechanical system to not only consider the motion of its components, but also the following:




	Static or dynamic loads acting on the components (considered in statics and dynamics)


	Component material stress and strain responses to the loads (considered in stress analysis)


	Required component dimensions for the working stresses (considered in machine design)





Because of this, static, dynamic, stress, and machine design analyses often follow a kinematic analysis.


Figure 1.1 includes kinematics, statics and dynamics, stress analysis and machine design in an ascending order of progression. This order follows the intended order of use of these studies in mechanical design. After a mechanical system has first been determined to be kinematically feasible, the static or dynamic loads acting on the system components are considered next. After static or dynamic feasibility has been achieved, the stresses and strains produced in the mechanical system components are then considered. Lastly, machine design principles and methodologies are employed to ensure the material and dimensions of the mechanical system components (and subsequently the entire mechanical system) are satisfactory for the known working stresses.*




[image: ]

FIGURE 1.1 Kinematics in relation to other associated engineering design studies.



As illustrated in Figure 1.1, kinematics is the most fundamental of the engineering design study listed. When a design is not kinematically sound, evidence of this will often appear in the other engineering design studies. For example, a discontinuous displacement profile calculated in a kinematic analysis would be revealed as excessive acceleration in a dynamic analysis, which, in turn, could produce excessive dynamic forces. These excessive dynamic forces would likely produce high stresses. These high stresses may require a material selection or component dimensions that make the overall component design impractical for the intended design application. Kinematic feasibility, therefore, must be established first before considering the follow-on engineering design studies in Figure 1.1.






1.2 Kinematic Chains and Mechanisms


This textbook focuses primarily on the kinematic analysis and kinematic synthesis of mechanical systems or mechanisms, as they are commonly called.† A kinematic chain, an overarching classification that includes mechanisms, is an assembly of links interconnected by joints where the motion of one link compels the motion of another link (which compels the motion of another link, and so on depending on the number of mechanism links).‡ Complex mechanical systems, such as an automobile engine, for example, can be comprised of multiple kinematic chains, while a single kinematic chain can constitute an entire mechanical system in the case of a simple tool. Figure 1.2 illustrates a commonly used kinematic chain: a pair of pliers. Moving the lower handle (link L3) toward the upper handle (link L1) or vice versa compels the motion of the remaining links, including the lower grip (link L4), which produces a gripping action. Having links compel the motion of each other link in a controlled manner is important because the fundamental objective in the design of a mechanical system is to provide a controlled output motion in response to a supplied input motion.


* In addition to engineering design factors pertaining to kinematics, statics, dynamics, and machine design—also called traditional engineering factors—nontraditional or modern engineering factors (including producibility, cost, environmental impact, disposal, aesthetics, ergonomics, and human factors) are often equally important.

† The distinctions between kinematic analysis and kinematic synthesis are first presented in Section 1.5.

‡ Because a mechanism is an assembly of links, it is also called a linkage. Links are generally assumed to be nondeforming or rigid in kinematics.



[image: ]

FIGURE 1.2 Pliers in (a) open and (b) closed positions.



One characteristic that distinguishes mechanisms from other kinematic chains is that the former has at least one “grounded” link [1]. A grounded link is one that is attached to a particular frame of reference. Some mechanisms have links that are permanently grounded through friction, gravity, or fastening members (e.g., bolts, screws, and welds), whereas with our pliers example, the grounded link can be established according to one’s own preferences.






1.3 Mobility, Planar, and Spatial Mechanisms


The mobility or the number of degrees of freedom of a mechanism is the number of independent parameters required to uniquely define its position in space. Knowing the mobility of a mechanism is particularly important when formulating equation systems for the kinematic analysis or synthesis of the mechanism. This is because the equation systems must include enough parameters to fully define the motion of each mechanism component. To fully define the position of a body in two-dimensional or planar space at an instant in time requires three independent parameters. To demonstrate this principle, we will consider the parking automobile example in Figure 1.3a where the X-Y coordinate frame is affixed to the parking space. At any instant in time, the position of the automobile can be measured with respect to the X-Y coordinate frame given three independent parameters. The X and Y coordinates of any point on the automobile are two of the three parameters required to define the planar position of a body. Because the parking automobile also rotates in the coordinate frame, its angular position is also required to fully define its position in the X-Y coordinate frame. Therefore, the three parameters required to define a planar position are the X and Y coordinates of a location on the body and the orientation angle of the body. Because three independent parameters are required to define the position of the body in the X-Y plane, an individual mechanism link restricted to planar motion can have a mobility of up to three or up to three degrees of freedom.




[image: ]

FIGURE 1.3 (a) Parking automobile and (b) aircraft in flight.



To fully define the position of a body in three-dimensional space at an instant in time requires six independent parameters. To demonstrate this principle, we will consider the flying aircraft example in Figure 1.3b where the X-Y-Z coordinate frame is affixed in space. At any instant in time, the position of the aircraft can be measured with respect to the X-Y-Z coordinate frame given six independent parameters. The X, Y, and Z coordinates of any point on the aircraft are three of the six parameters required to define the spatial position of a body. Because the aircraft also rotates about each coordinate frame axis, these three angular positions are also required to fully define its position in the X-Y-Z coordinate frame.* Therefore, the six parameters required to define a spatial position are the X, Y, and Z coordinates of a location on the body and the orientation angles of the body about the X, Y, and Z axes. Because six independent parameters are required to define the position of the body in X-Y-Z space, an individual mechanism link restricted to spatial motion can have a mobility of up to six, or up to six degrees of freedom.


Figure 1.4a illustrates a pair of pliers. As indicated by the overlapping plane, the motion exhibited by this mechanism is restricted to 2D space. A pair of pliers is an example of a commonly used planar mechanism. Each link in this particular mechanism has a single degree of freedom—which is consistent with the previously stated condition that a maximum mobility of three is possible with a body in planar motion.




[image: ]

FIGURE 1.4 (a) Pliers in plane and (b) robotic manipulator in spatial workspace.



In comparison to the pair of pliers, Figure 1.4b illustrates a particular type of robotic manipulator— the RPP robotic manipulator (presented in Chapter 11). As indicated by the overlapping cylindrical volume, this mechanism can exhibit motion in 3D space.† Robotic manipulators are examples of commonly used spatial mechanisms. Each link in this particular robotic manipulator has a single degree of freedom—which is also consistent with the previously stated condition that a maximum mobility of six is possible with a body in spatial motion.


* As shown in Figure 1.3b, the three aircraft rotation angles are called the roll, pitch, and yaw angles and are about the X, Y, and Z axes, respectively.

† The space (2D or 3D) that encompasses all of the possible positions achieved by a mechanism is called its workspace.





1.4 Types of Mechanism Motion


The motion exhibited by any mechanism link in 2D or 3D space can be classified as one of four types of motion. These four types are illustrated in Figure 1.5. In pure rotation (Figure 1.5a), a link rotates at a constant radius about a fixed axis. A link travels along a linear path in pure translation (Figure 1.5b).* Complex motion is a type of planar motion that includes both link rotations and translations simultaneously (Figure 1.5c). Any two spatial link positions can be expressed as a rotation about and a translation along a spatial axis (called a screw axis). This type of spatial motion is called screw motion (Figure 1.5d). Pure rotation and translation can be exhibited by mechanisms in both 2D and 3D space while only mechanisms in 2D space can exhibit complex motion and only mechanisms in 3D space can exhibit screw motion.
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FIGURE 1.5 Links in (a) pure rotation, (b) pure translation, (c) complex, and (d) screw motion.



Pure rotation and pure translation are commonly called circular motion and linear motion, respectively. As the names imply, circular motion is exhibited about a circular path and linear motion is exhibited along a linear path. The conversion of circular motion to linear motion (and vice versa) is commonly required for the operation of mechanical systems. Sometimes we are given a circular motion (e.g., from a hand crank, engine, or electric motor) and we desire a linear output motion. On the other hand, we may be given a linear motion and we desire a circular output motion. The circular and linear motion may be constant, oscillatory, or even intermittent.


Several of the noted linear and circular input–output motion combinations appear in the valve train assembly illustrated in Figure 1.6.† The valve train assembly is comprised of four major components: the cam, rod, rocker, and valve (Figure 1.6a). Figure 1.6b includes the motion produced by these four components. The initial input in this assembly is produced by the cam.‡ The constantly rotating cam produces an oscillating translational rod motion. The oscillating translational rod motion produces an oscillating rotational rocker motion (as the name “rocker” implies). Lastly, the oscillating rotational rocker motion produces an oscillating translational valve motion. It is the oscillating valve motion that governs the timing in which air and fuel are brought into an internal combustion engine and exhaust products are removed from the engine.


* Pure rotation at a radius of infinity becomes pure translation.

† The valve train assembly is an integral assembly in the internal combustion engine.

‡ The kinematics and design of radial cam systems are introduced in Chapter 9.
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FIGURE 1.6 (a) Valve train assembly and (b) motion of assembly components.







1.5 Kinematic Synthesis


In a kinematic analysis, the mechanism link dimensions are known and the motion characteristics such as positions, displacements, velocities, and accelerations are calculated. Understanding the kinematic behavior of a given mechanism is the scope of a kinematic analysis. In comparison to kinematic analysis, in kinematic synthesis the problem is considered in reverse. Here, the mechanism required to fulfill a predetermined motion is produced.


There are two categories in kinematic synthesis. One category involves the determination of the type of mechanism needed to accomplish a given purpose. This category is called type synthesis [2]. Number synthesis falls into this category. In number synthesis (presented in Section 3.3), mechanisms are produced that match a given mechanism mobility.


The other category in kinematic synthesis involves the determination of the mechanism dimensions needed to achieve a given motion sequence. This category is called dimensional synthesis [3]. Motion generation and function generation fall into this category. In motion generation, mechanism dimensions required to achieve coupler-link positions are determined, while the achievement of crank and follower-link displacement angles is the objective in function generation. Both motion generation and function generation are presented in Chapter 5.




Example 1.1


Problem Statement: Figure E.1.1 illustrates two positions of a mechanism used to compact trash bundles. By rotating the driving link from its initial position (Figure E.1.1a) to its final position (Figure E.1.1b), the compacting ram is displaced from its initial position to its final position. During compaction, a reaction force is applied to the compacting ram. The mechanism is maintained in a state of static equilibrium by a torque applied to the driving link and the compacting ram reaction force. Describe how the principles of kinematics, statics, stress analysis, and machine design can be used to evaluate the structural integrity of the coupling link (Figure E.1.1) during compaction.
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FIGURE E.1.1 (a) Initial and (b) final positions of compacting mechanism.



Known Information: Figure E.1.1, background knowledge of kinematics, statics, stress analysis, and machine design principles.


Solution Approach: The mechanism in Figure E.1.1 can be modeled as a slider-crank mechanism.*


Kinematic Analysis: Given the dimensions of this particular slider-crank mechanism, the driving link angular rotation required to achieve the final compacting position can be calculated from the slider-crank mechanism displacement equations.


Static Analysis: A static equilibrium equation can be formulated to calculate the columnar force that acts on the coupling link [4].† Equations for static equilibrium are formulated according to Newton’s first law.


Stress Analysis: Given the columnar force on the coupling link, along with its cross-section dimensions and material properties, the normal stress of this link can be calculated. Additionally, the buckling load for this link (which is essentially a column with pinned ends) can also be calculated [5].


* Kinematic displacement, velocity, and acceleration equations for the slider-crank mechanism are introduced in Chapter 4.

† Static force analysis for planar mechanisms is introduced in Chapter 6.

Machine Design: Based on the values calculated for the normal stress and buckling load for the coupling link, it may be necessary to modify its cross-section dimensions or its material type to achieve an acceptable degree of structural integrity for use in the trash compacting mechanism.








1.6 Units and Conversions


Many of the example problems and end-of-chapter problems presented throughout this textbook are unitless because specific dimension units are not required to calculate correct solutions. With such problems, the calculated result can, in fact, be scaled to match the desired unit system. However, there are other problems here, particularly those where force and mass are included, where a particular system of units is not only desired, but required for calculating correct solutions. Among the problems throughout this textbook were units are specified, both the International System of Units (SI) and United States System of Units (US) are used. Table 1.1 includes common quantities used throughout this textbook and their associated unit conversions between SI and US units.






TABLE 1.1 Common Textbook Quantities and Unit Conversions (from US to SI Units)





	Quantity

	US Unit

	Conversion

	SI Unit










	Mass

	1 pound-mass (lbm)

	= 0.4536

	kilograms (kg)






	Force

	1 pound-force (lbf)

	= 4.4482

	newtons (N)






	Length

	1 foot (ft)

	= 0.3048

	meters (m)






	Length

	1 inch (in)

	= 25.4001

	millimeters (mm)






	Work

	1 horsepower (hp)

	= 745.6999

	watts (W)






	Angular velocity

	1 revolution/minute (rpm)

	= 0.1047

	radian/second (rad/s)






	Angular velocity

	1 degree/second (°/s)

	= 0.0174

	radian/second (rad/s)






	Velocity

	1 foot/second (ft/s)

	= 0.3048

	meters/second (m/s)






	Velocity

	1 inch/second (in/s)

	= 25.4001

	millimeters/second (mm/s)






	Torque

	1 pound-foot (lb-ft)

	= 1.3558

	newton-meters (N-m)















1.7 Software Resources


The commercial mathematical software package MATLAB™ and its mechanical modeling and simulation toolbox Simscape Multibody™ are thoroughly integrated in this textbook for applied kinematic analysis [6]. Both software resources are well established (and often the de facto standard for mathematical analysis and simulation) in many colleges and universities worldwide. A library of MATLAB and Simscape Multibody files developed for this textbook is available for download at https://www.routledge.com/p/book/9781032328317.* With these files, the user can calculate solutions for the equation systems presented throughout this textbook and conduct mechanical simulations to independently verify or evaluate equation system results.† The MATLAB and Simscape Multibody resources that accompany this text provide a virtual test bed to utilize the equation systems and methodologies presented in Chapters 2–11. This textbook also includes a variety of example problems where solutions are calculated directly through MATLAB’s command window (see Appendix A.3).






1.8 Summary


Kinematics—the study of motion without considering governing forces—is the most fundamental engineering study in mechanical system design. In mechanical system design, kinematic feasibility should be determined before considering other engineering design studies such as statics, dynamics, stress analysis, and machine design.


Mechanical systems are comprised of kinematic chains—an assembly of interconnected links where the motion of one link compels the motion of another link in a controlled manner. Achieving controlled output motion in response to a supplied input motion is the fundamental objective in mechanical system design. Kinematic chain is an overarching classification that includes mechanisms (also called linkages). The presence of an established ground link is a primary characteristic that distinguishes mechanisms from kinematic chains.


* This library can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† This textbook also includes example problems where solutions are calculated directly through MATLAB’s command window (see Appendix A.2).

The mobility or the number of degrees of freedom of a mechanism is the number of independent parameters required to uniquely define its position in space. Knowing the mobility of a mechanism is important when formulating equation systems for mechanism kinematic or synthesis. This is because the equation systems must include enough variables to fully define the motion of each mechanism component. An individual link restricted to planar motion can have up to three degrees of freedom and an individual link restricted to spatial motion can have up to six degrees of freedom.


A mechanism link in 2D or 3D space can exhibit pure rotation, pure translation, complex motion, or screw motion. In pure rotation, a link rotates at a constant radius about a fixed axis. A link travels along a linear path in pure translation. Complex motion is a type of planar motion that includes simultaneous link rotations and translations. Screw motion is a type of spatial motion that includes simultaneous link rotations about and translations along a spatial axis called a screw axis.


Circular motion and linear motion are two types of motion often exhibited in mechanical systems. Sometimes we are given a circular motion and desire an output linear motion. On the other hand, we may be given a linear motion and desire a circular output motion. In mechanical systems, the circular and linear motion may be constant, oscillatory, or even intermittent.


In a kinematic analysis, the mechanism link dimensions are known and the motion characteristics such as positions, displacements, velocities, and accelerations are calculated. In comparison to kinematic analysis, the problem is considered in reverse in kinematic synthesis. Here, the mechanism required to fulfill specific predetermined motions is produced. One category in kinematic synthesis, called type synthesis, involves the determination of the type of mechanism needed to accomplish a given purpose. Number synthesis (presented in Chapter 3) falls into this category. In number synthesis, mechanisms are produced that match a given mechanism mobility.


The other category in kinematic synthesis, called type synthesis, involves the determination of the mechanism dimensions needed to achieve a given motion sequence. Motion generation and function generation (presented in Chapter 5) fall into this category. In motion generation, mechanism dimensions required to achieve coupler-link positions are determined while achieving crank and follower-link displacement angles is the objective in function generation.


The mathematical software packages MATLAB and Simscape Multibody are fully integrated throughout the remaining textbook chapters for applied kinematic analysis. A library of MATLAB and Simscape Multibody files for this textbook is available for download at https://www.routledge.com/p/book/9781032328317. This library can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip. Example problems are also solved in this textbook through MATLAB’s command window.
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2 Mathematical Concepts in Kinematics


DOI: 10.1201/9781003316961-2






Concept Overview


In this chapter, the reader will gain a central understanding regarding




	Characteristics of vectors, complex vectors, and complex vector forms


	The formulation of vector-loop displacement, velocity, and acceleration equations using complex vectors


	Characteristics of point-based vectors and their application in mechanism motion equations


	Characteristics of linear simultaneous equations and their representation in matrix form


	Fundamental matrix operations and the identity matrix


	Matrix inversion and its application in solving linear simultaneous equations


	Intermediate and total spatial motion and their application in mechanism kinematics


	The general transformation matrix and its application in the kinematic analysis of robotic manipulators









2.1 Introduction


This chapter introduces the mathematical concepts and methodologies with which the reader should become familiar to gain a solid understanding of the equation systems formulated or presented in Chapters 4 through 11. These mathematical concepts relate to the representation of complex numbers and complex number operations, intermediate and total spatial motion, and the general transformation matrix.






2.2 Complex Numbers and Operations




2.2.1 Complex Number Forms


Vectors are commonly used in the formulation of mechanism equation systems because, being quantities that have both magnitude and direction, they can appropriately define mechanism motion (specifically, the motion of linkage-based mechanisms). One way to represent a two-dimensional vector (a vector that lies on a plane) is with a complex number. A complex number is comprised of a real component and an imaginary component.


Figure 2.1 illustrates a vector V1 in two-dimensional complex space. The real and imaginary components of this vector are V1x and V1y, respectively. Vector V1 has the magnitude V1, where V1=V1x2+V1y2, and its direction angle is θ, where θ=tan−1(V1y/V1x). The real and imaginary components of V1 can also be expressed as V1 cos θ1 and V1 sin θ1, respectively, due to the vector direction angle.* Vector V1 can be expressed in the following four forms:


V1=V1x+iV1y=V1(cosθ1+isinθ1)=V1eiθ1 (2.1)


where i=−1 and is called the imaginary unit.† The second form in Equation 2.1 is the rectangular form of the vector V1—the complex number. The third and last forms in Equation 2.1 are the polar forms of V1 (the last form being the polar exponential form).‡




[image: ]

FIGURE 2.1 A vector in two-dimensional complex space.





Example 2.1


Problem Statement: Calculate the magnitude and direction angle of vector V1, where V1 = 1.5 + i2.


Known Information: Vector V1 and Section 2.2.1.


Solution Approach 1 (using MATLAB® functions): Figure E.2.1 includes the calculation procedure in MATLAB’s command window. After specifying the given values for the real and imaginary components of V1, this vector is then defined. The magnitude and direction angle of V1 are produced using MATLAB functions.
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FIGURE E.2.1 Example 2.1 calculation procedure (for Solution Approach 1) in MATLAB.



Solution Approach 2 (using manual calculations in MATLAB): Figure E.2.2 includes the calculation procedure in MATLAB’s command window where the magnitude and direction angle of V1 were produced using manual calculations.
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FIGURE E.2.2 Example 2.1 calculation procedure (for Solution Approach 2) in MATLAB.





* Therefore, V1x = V1 cos θ1 and V1y = V1 sin θ1.

† Therefore, i2 = −1, i3 = −i and i4 = 1 (which are also 90° counterclockwise rotations each in the 2D complex space).

‡ The vector polar forms are the result of Euler’s formula. In this formula, etθ = cos θ + i sin θ.



MATLAB includes a library of functions covering a wide range of conventional calculation methods. A table of the MATLAB functions used in this textbook is included in Appendix A.2. From here on, this textbook will primarily utilize MATLAB functions. There will be occasional examples, however, where manual calculation methods will be utilized to give the reader greater insight into the calculation method or to convey specific techniques in MATLAB.






2.2.2 Complex Number Addition


Equation systems for mechanisms can be formulated by producing vector loops for the mechanisms and taking the sum of the individual vectors in the loops [1]. Figure 2.2 illustrates a loop comprised of vectors V1, V2, V3, and V4 in two-dimensional complex space. Taking the sum of the vectors in a clockwise loop produces


V1+V2+V3−V4=0 (2.2)
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FIGURE 2.2 A vector loop in two-dimensional complex space.



If we conclude from Figure 2.2 that V1=V1eiθ1, V2=V2eiθ2, V3=V3eiθ3, and V4=V4eiθ4, each vector in the loop can be expressed in polar form as


V1(cosθ1+isinθ1)+V2(cosθ2+isinθ2)+V3(cosθ3+isinθ3) −V4(cosθ4+isinθ4)=0 (2.3)


and in rectangular form as


(V1x+iV1y)+(V2x+iV2y)+(V3x+iV3y)−(V4x+iV4y)=0 (2.4)*


After grouping and separating the real and imaginary terms in Equation 2.4, the two equations in Equation 2.5 are produced. The imaginary unit in the second equation (being common among all equation terms) can be removed if preferred.


V1x+V2x+V3x−V4x=0i(V1y+V2y+V3y−V4y)=0 (2.5)




Example 2.2


Problem Statement: Determine if the sum V1 + V2 + V3 + V4 of the following vectors forms a closed loop: V1 = 1.5 + i2, V2 = −i0.5, V3 = −1.25 − i2.25, and V4 = 0.25 − i0.25.


Known Information: Vectors V1, V2, V3, V4, and Section 2.2.2.


Solution Approach: Figure E.2.3 includes the calculation procedure in MATLAB’s command window. After specifying the given vectors and calculating the vector sum, it can be seen that the vectors do not form a closed loop since the vector sum (called Sum in Figure E.2.3) is not zero.
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FIGURE E.2.3 Example 2.2 solution calculation procedure in MATLAB.





* It may be more convenient to use the rectangular form of complex numbers for vector addition.





2.2.3 Complex Number Multiplication and Differentiation


The product of two complex numbers (e.g., vectors V1=V1eiθ1 and V2=V2eiθ2) in polar exponential form is


V1V2=V1eiθ1V2eiθ2=V1V2ei(θ1+θ2)=V1V2[cos(θ1+θ2)+isin(θ1+θ2)] (2.6)*


The first derivative with respect to time of a complex number (vector V1=V1eiθ1, for example) is


dV1dt=idθ1dtV1eiθ1=iθ˙1V1 (2.7)


where vector V1 represents a rigid link (a link having a fixed length).† The second derivative of Equation 2.7 is


d2V1dt2=(dθ1dt)2V1eiθ1+id2θ1dt2V1eiθ1=V1(iθ¨1−θ˙12) (2.8)


The multiplication and differentiation of complex numbers are used in the formulation of vector-loop equations for higher-order mechanism motion quantities such as velocity and acceleration [2].


* It may be more convenient to use the polar exponential form of complex numbers for vector multiplication (or differentiation).

† If V1 represented a link having a length that changes over time, its derivative would also include the vector length derivative term dV1/dt or V˙1.



Example 2.3


Problem Statement: Formulate an equation system for vector V for the vector loop illustrated in Figure E.2.4. In this vector loop, W = Weiα and X = Xeiδ. Also, formulate equation systems for the first and second derivatives of V (V˙and V¨, respectively) manually and symbolically in MATLAB. Assume all vectors represent rigid links.
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FIGURE E.2.4 Vector loop in two-dimensional complex space.



Known Information: Figure E.2.4, Sections 2.2.2 and 2.2.3.


Solution Approach: Initial Formulation:


Taking a clockwise vector-loop sum for the vector loop in Figure E.2.4 and solving for vector V produces


V=W+X=Weiα+Xeiδ (2.9)


After expanding the polar exponential form of V, Equation 2.10 is produced, and Equation 2.11 is produced after grouping and separating the real and imaginary terms.


V=W(cosα+isinα)+X(cosδ+isinδ)=Wx+iWy+Xx+iXy (2.10)


Vx=Wcosα+Xcosδ=Wx+XxVy=Wsinα+Xsinδ=Wy+Xy (2.11)


First Derivative Formulation:


Taking the first derivative of Equation 2.9 produces


V˙=iα˙Weiα+iδ˙Xeiδ (2.12)


Figure E.2.5 includes this calculation procedure in MATLAB’s command window. On observation, it can be seen that Equation 2.12 agrees perfectly with the first derivative produced symbolically in MATLAB. In Figure E.2.5, the terms alpha(t) and diff(alpha(t),t) represent the terms α, and α˙; respectively, in Equation 2.12 and the terms delta(t) and diff(delta(t),t) represent the terms δ and δ˙, respectively.




[image: ]

FIGURE E.2.5 Example 2.3 vector first-order differentiation procedure in MATLAB.



After expanding the polar exponential form of V˙, Equation 2.13 is produced, and Equation 2.14 is produced after grouping and separating the real and imaginary terms.


V˙=α˙W(icosα−sinα)+δ˙X(icosδ−sinδ)=iα˙Wx−α˙Wy+iδ˙Xx−δ˙Xy (2.13)


V˙x=−α˙Wsinα−δ˙Xsinδ=−α˙Wy−δ˙XyV˙y=α˙Wcosα+δ˙Xcosδ=α˙Wx−δ˙Xx (2.14)


Second Derivative Formulation:


Taking the second derivative of Equation 2.9 produces


V¨=−α˙2Weiα+iα¨Weiα−δ˙2Xeiδ+iδ¨Xeiδ (2.15)


Figure E.2.6 includes this calculation procedure in MATLAB’s command window. On observation, it can be seen that Equation 2.15 agrees perfectly with the second derivative produced symbolically in MATLAB. In Figure E.2.6, the terms diff(alpha(t), t, t) and diff(delta(t), t, t) represent the terms α¨ and δ¨, respectively, in Equation 2.15.
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FIGURE E.2.6 Example 2.3 vector second-order differentiation procedure in MATLAB.



After expanding the polar exponential form of V¨, Equation 2.16 is produced, and Equation 2.17 is produced after grouping and separating the real and imaginary terms.


V¨=−α˙2W(cosα+isinα)+α¨W(icosα−sinα)−δ˙2X(cosδ+isinδ)    + δ¨X(icosδ−sinδ)=−α˙2Wx−iα˙2Wy+iα¨Wx−α¨Wy−δ˙2Xx−iδ˙2Xy+iδ¨Xx−δ¨Xy (2.16)


V¨x=−α˙2Wcosα−α¨Wsinα−δ˙2Xcosδ−δ¨Xsinδ=−α˙2Wx−α¨Wy−δ˙2Xx−δ¨XyV¨y=−α˙2Wsinα−α¨Wcosα−δ˙2Xsinδ−δ¨Xcosδ=−α˙2Wy+α¨Wx−δ˙2Xy+δ¨Xx (2.17)






Example 2.4


Problem Statement: Calculate the vector product VW where V = V1(cos θ1 + i sin θ1) and W = W1(cos α1 − i sin α1). Also formulate VW symbolically in MATLAB.


Known Information: Vectors V, W, and Section 2.2.3.


Solution Approach: Equation 2.18 includes the basic form of the product VW. Equation 2.19 includes the vector product with the trigonometric identities for cos (α1−θ1) and sin (α1−θ1) included.


VW=V1W1(cosθ1cosα1−icosθ1sinα1+isinθ1cosα1+sinθ1sinα1) (2.18)


VW=V1W1(cos(α1−θ1)−isin(α1−θ1)) (2.19)


Figure E.2.7 includes the calculation procedure for VW in MATLAB’s command window.
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FIGURE E.2.7 Example 2.4 solution calculation procedure in MATLAB.











2.3 Vector and Point Representation


Vectors as well as points can be used to formulate equation systems for mechanisms. Both the magnitude and direction can be calculated for a vector, given the coordinates of its endpoints. Vector V and its endpoints p1 and p2 in two-dimensional and three-dimensional space are illustrated in Figure 2.3. In terms of point coordinates, the vector magnitude V can be expressed in 2D space as


V=‖p2−p1‖=(p2x−p1x)2+(p2y−p1y)2 (2.20)


where p1 = [p1x, p1y]T and p2 = [p2x, p2y]T.* The direction of this vector is expressed in the x- and y-components p2x − p1x and p2y − p1y, respectively.
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FIGURE 2.3 Point and vector representations in (a) 2D and (b) 3D space.



In 3D space, the vector magnitude can be expressed as


V=‖p2−p1‖=(p2x−p1x)2+(p2y−p1y)2+(p2z−p1z)2 (2.21)


where p1 = [p1x, p1y, p1z]T and p2 = [p2x, p2y, p2z]T. The direction of this vector is expressed in the x-, y-, and z-components as p2x− p1x, p2y− p1y, and p2z− p1z, respectively. Point-based vectors are used in the spatial mechanism equation systems in Chapter 10 [3].




Example 2.5


Problem Statement: Calculate the magnitude and orientation angle of vector V where this 2D vector is comprised of points p1 = (1.25, −5) and p2 = (−2, 9.65). Also calculate the magnitude and orientation angle of vector V where this 3D vector is comprised of points p1 = (1.25, −5, 0) and p2 = (−2, 9.65, 6).


Known Information: Planar and spatial points p1 and p2, and Section 2.3.


Solution Approach: Figure E.2.8 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.2.8 Example 2.5 solution calculation procedure in MATLAB.





* The length of a vector V is often called the norm of V and is denoted by ||V||.





2.4 Linear Simultaneous Equations, Matrices, and Matrix Operations




2.4.1 Linear Simultaneous Equation Systems and Matrices


A linear equation is an equation that includes linear or first-order variables.* A system of linear equations (or a linear system) is collection of linear equations including the same variables. If a common solution is sought among a system of linear equations, it is called a set of simultaneous equations. An arbitrary set of linear simultaneous equations is given in Equation 2.22. Variables x1, x2, x3, and x4 are included among the four linear equations and true x1, x2, x3, and x4 solutions for these simultaneous equations must satisfy each equation in the set.


x1−2x2+ x3−3x4=12x1+x2+2x3−2x4=−2−x1+2x2−4x3+x4=13x1− 3x4=3 (2.22)


A set of linear simultaneous equations can be expressed in matrix form. A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. This form can be particularly convenient when solving for the variables in a simultaneous equation set. When expressed in matrix form, Equation 2.20 becomes


[1−21−3212−2−12−41300−3]{x1x2x3x4}=[1−213]    or   [A]x=b (2.23)


where


[A]=[A]4×4=[1−21−3212−2−12−41300−3], x=x4×1={x1x2x3x4} and b=b4×1=[1−213]


Matrix [A] includes the variable coefficients and is subsequently called the coefficient matrix. For simultaneous equation sets having n equations and n variables, the coefficient matrix will always be square—having n rows and n columns ([A]n × n).


* A first-order variable is one that is of degree 1. Considering a first-order variable we will arbitrarily define as x, examples of variables that are not first order include xn and x1/n (where n > 1), cos (x), and log (x).

Matrices x and b, which include the equation variables and remaining quantities, respectively, are called column matrices or column vectors. For simultaneous equations sets having n equations and n variables, the column matrices will always have n rows and one column (xn × 1 and bn × 1).


Therefore, considering Equation 2.24, a general set of linear simultaneous equations having n equations and n variables,


a11x1+a12x2+a13x3+⋯+a1nxn=b1a21x1+a22x2+a23x3+⋯+a2nxn=b2a31x1+a32x2+a33x3+⋯+a3nxn=b3⋮an1x1+an2x2+an3x3+⋯+annxn=bn (2.24)


the matrix form expression of the this equation set becomes


[a11a12a13⋯a1na21a22a23⋯a2na31a32a33⋯a3n⋮⋮⋮⋮an1an2an3⋯ann]{x1x2x3⋮xn}=[b1b2b3⋮bn] (2.25)


where


[A]=[A]n×n=[a11a12a13⋯a1na21a22a23⋯a2na31a32a33⋯a3n⋮⋮⋮⋮an1an2an3⋯ann],  x=xn×1={x1x2x3⋮xn} and b=bn×1=[b1b2b3⋮bn]






2.4.2 Matrix Transpose, Addition, Subtraction, and Multiplication


This section presents the most common matrix operations used in this textbook. One operation, which is used in this textbook for column matrices, is called the transpose. In this matrix operation, the rows and columns of a matrix are interchanged. Considering the column matrices in Equations 2.25, the transposes of x and b become


xT=x1×n=[x1   x2   x3   ⋯   xn]     and      bT=b1×n=[b1   b2   b3  ⋯    bn]


where the superscript T in xT and bT denotes the transpose operation. The transpose of a column matrix produces a row matrix or row vector.


When adding or subtracting column matrices, the cells in each matching row are added or subtracted. Considering the column matrices in Equations 2.25, the sum x + b and difference x − b become


x+b=xn×1+bn×1=[x+b]n+1=[x1+b1x2+b2x3+b3⋮xn+bn]     and      x−b=xn×1−bn×1=[x−b]n+1=[x1−b1x2−b2x3−b3⋮xn−bn]


When calculating the product of a matrix and a scalar quantity (e.g., k[A], where k is a scalar quantity), the product of each cell in the matrix and the scalar quantity is taken (distributing the constant throughout the matrix). For the product of a square matrix and a column matrix, each row in the square matrix is multiplied by the column matrix. Considering the square and column matrices in Equations 2.25, the product [A]x becomes


[A]x=[A]n×nxn×1=([A]x)n×1=[a11x1+a12x2+a13x3+⋯+a1nxna21x1+a22x2+a23x3+⋯+a2nxna31x1+a32x2+a33x3+⋯+a3nxn⋮+an1x1+an2x2+an3x3+⋯+annxn]


For the product of two column matrices, the first matrix is transposed so that the product of a row matrix and a column matrix is what is actually taken.* Considering the column matrices in Equations 2.25, the product of x and b becomes


(x)T(b)=(x1×n)(bn×1)={(x)(b)}1+1=x1b1+x2b2+x3b3+⋯+xnbn


It can be observed that the product of a row vector and a column vector is a single scalar quantity.




Example 2.6


Problem Statement: For the given matrices:


v=[2.5−210.5],w=[−5−10.75−3],  and   [A]=[32−1153213132−6−42−2]


calculate vT, wT, vT + wT, [A]vT, and (v)(w)T.


* The transpose of the first matrix is taken to make the number of columns in the first matrix equal to the number of rows in the second matrix—a requirement for the multiplication of any two matrices.

Known Information: Given matrices and Section 2.4.2 equations.


Solution Approach: Figure E.2.9 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.2.9 Example 2.6 solution calculation procedure in MATLAB.





Considering the product of two general matrices [A] and [B] (as shown in Matrix (2.27)) where [A] = [A]m × n and [B] = [B]n × o, the entry in each cell in the product [A][B] (which is labeled ABij in Matrix (2.27)) is given by


ABij=ai1b1j+ai2b2j+ai3b3j+⋯ainbnj (2.26)*


[A][B]=[a11a12⋯a1na21a22⋯a2n⋮⋮⋮ai1ai2⋯ain⋮⋮⋮am1am2⋯amn][b11b12⋯b1j⋯b1ob21b22⋯b2j⋯b2o⋮⋮⋮⋮bn1bn2⋯bnj⋯bno]=[AB11AB12⋯AB1j⋯AB1oAB21AB22⋯AB2j⋯AB2o⋮⋮⋮⋮ABi1ABi2⋯ABij⋯ABio⋮⋮⋮⋮ABm1ABm2⋯ABmj⋯ABmo] (2.27)


* Equation (2.26) is the result of the product of a row in matrix [A] and the corresponding column in matrix [B].

The subscript i in Equation (2.26) corresponds to the rows in matrix [A] and the subscript j in the same equation corresponds to the columns in matrix [B]. The subscript pair ij in Equation (2.26) corresponds to the cells in the matrix product [A][B]. Matrix (2.27) includes matrices [A], [B] and [A][B] with an arbitrary row i, column j and cell ij shaded.


When calculating the product of three or more matrices, the product is calculated from right to left. Therefore to calculate the product of matrices [A], [B] and [C], for example, the product [B][C] is first calculated and the result is multiplied by [A] (or [A][B][C] = [A]([B][C])).




Example 2.7


Problem Statement: Calculate the matrix products [A][B] and [A][B][C] where


[A]=[a11a12a21a22], [B]=[b11b12b21b22]    and    [C]=[c11c12c21c22]


Known Information: Given matrices


Solution Approach: Figure E.2.10 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.2.10 Example 2.7 solution calculation procedure in MATLAB.









2.4.3 The Identity Matrix and Matrix Inversion


The unit matrix or identity matrix (denoted by I) is a square matrix having the number 1 along its main diagonal (with all other cells having the number 0).* The identity matrix is the matrix equivalent of the number 1. The general form of the identity matrix can be expressed as


I=[100⋯0010⋯0001⋯0⋮⋮⋮⋱⋮000⋯1] (2.28)


* The main diagonal runs from the top-left matrix corner to the bottom-right matrix corner.

As noted in Section 2.4.1, expressing a set of linear simultaneous equations in matrix form may be particularly convenient when solving for the variables in the equation set. Considering the matrix form [A]x = b, the column vector of variables x is the result of the product [A]−1b [A]−1b or x = [A]−1b where the superscript −1 in [A]−1 represents the inverse of [A]. Assuming [A] is invertible, its inverse can be defined as


[A]−1=1det[A]adj[A] (2.29)


where det and adj are the determinant and adjoint (two matrix functions) of [A]. Equation 2.29 is used in Cramer’s rule—a formula for the solution of linear simultaneous equations having n equations and n unknown variables.


This textbook does not include descriptions of the determinant and adjoint functions. This is in part because the procedures for manually calculating the determinant and adjoint of a matrix become increasingly involved for matrices having dimensions beyond 2 × 2. Another reason is that matrix inversion is a simple procedure in the mathematical analysis software MATLAB. For those interested in becoming more familiar with the determinant and adjoint functions (as well as Cramer’s rule), we recommended that you refer either to online resources or to textbooks that include the fundamentals of linear algebra.*


* Linear algebra is the branch of mathematics concerning vector spaces and linear mappings between such spaces.

The order of operations used in computer programming and arithmetic operations for scalar quantities also applies to matrix operations. If we recall, this order is as follows: (1) parentheses, (2) exponents, (3) multiplication, (4) division, (5) addition, and (6) subtraction.




Example 2.8


Problem Statement: Calculate [A]−1 where


[A]=[a11a12a13a21a22a23a31a32a33]


Known Information: Given matrix.


Solution Approach: Figure E.2.11 includes the calculation procedure in MATLAB’s command window. It can be observed from scale of [A]−1 in Figure E.2.11 that manually producing the inverse of even this 3 × 3 matrix will be quite involved.
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FIGURE E.2.11 Example 2.8 solution calculation procedure in MATLAB.







Example 2.9


Problem Statement: Calculate [A]−1 and the unknown variables in Equation 2.22.


Known Information: Equation 2.22.


Solution Approach: Figure E.2.12 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.2.12 Example 2.9 solution calculation procedure in MATLAB.











2.5 Intermediate and Total Spatial Motion


Matrix 2.30 is a general spatial angular displacement matrix. In this matrix, the rotation angle is represented by the variable δ and the rotation axis is represented by the vector u (Figure 2.4).*


[Rδ,u]=[ux2v(δ)+cos(δ)uxuyv(δ)−uzsin(δ)uxuzv(δ)+uysin(δ)uxuyv(δ)+uzsin(δ)uy2v(δ)+cos(δ)uyuzv(δ)−uxsin(δ)uxuzv(δ)−uysin(δ)uyuzv(δ)−uxsin(δ)uz2v(δ)+cos(δ)] (2.30)
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FIGURE 2.4 Spatial rotation of an arbitrary body.



In Matrix 2.30, v(δ) = 1 −cos (δ).


* By specifying a rotation axis of u = (0,0,1), Matrix 2.30 is restricted to rotations in two-dimensional space (as well as Matrices 2.35 and 2.39). In this condition, the z-components of the point coordinates could all be specified as zero.

Figure 2.5 illustrates two interconnected members in three-dimensional space. In this system of interconnected members, point p1 rotates about the axis u0 by an angle θ and point q1 rotates about the axis u1 by an angle β.* Because both members are interconnected, point q1 and axis u1 also rotate about the axis u0. Point p0, like axis u0, is fixed or grounded in space. An equation for the rotation of p1 about u0—or the total displacement of p1 (which will be labeled p)—can be expressed as


p=[Rθ,u0](p1−p0)+p0 (2.31)
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FIGURE 2.5 Spatial motion of a two-body system.



and an equation for the rotation of u1 about u0—or the total displacement of u1 (which will be labeled u)—can be expressed as


u=[Rθ,u0]u1 (2.32)


* Because Matrix 2.30 is a 3 × 3 matrix, points p0, p1, q1 and axes u0 and u1 are 3 × 1 column matrices (where vector rows 1, 2, and 3 include the x-, y-, and z-components, respectively).

An equation for the intermediate displacement of q1 about u0 (which will be labeled q′) can be expressed as


q′=[Rθ,u0](q1−p0)+p0 (2.33)


Equation 2.33 is included in Equation 2.34 to calculate the total displacement of q1 about u0 (which will be labeled q).


q=[Rβ,u](q′−p)+p (2.34)


Matrix 2.35 is a general spatial angular velocity matrix. In this matrix, the angular velocity is represented by the variable δ· and the rotation axis is represented by the vector u.


[Vδ˙,u]=[0−uzδ˙uyδ˙uzδ˙0−uxδ˙−uyδ˙uxδ˙0] (2.35)


The velocity of p1 in reference to u0—or the total velocity of p1 (which will be labeled p˙)—can be expressed as


p˙=[Vθ˙,u0](p1−p0) (2.36)


An equation for the intermediate velocity of q1 in reference to u0 (which will be labeled q˙′) can be expressed as


q˙′=[Vθ˙,u0](q1−p0) (2.37)


where the variable q is included from Equation 2.34. Equation 2.37 is included in Equation 2.38 to calculate the total velocity of q1 in reference to u0 (which will be labeled q˙)


q˙=[Vβ˙,u](q−p)+q′˙ (2.38)


where the variable p is included from Equation 2.31.


Matrix 2.39 is a general spatial angular acceleration matrix. In this matrix, the angular velocity and acceleration are represented by the variables δ˙ and δ¨, respectively, and the rotation axis is represented by the vector u from Equation 2.32. In Matrix 2.39, it is assumed that u˙=0, since u1 typically has a fixed orientation with respect to its associated links [4].*


[Aδ¨,δ˙,u]=[(ux2−1)δ˙2uxuyδ˙2−u˙zδ˙−uzδ¨uxuzδ˙2+u˙yδ˙+uyδ¨uxuyδ˙2+u˙zδ˙+uzδ¨(uy2−1)δ˙2uyuzδ˙2−u˙xδ˙−uxδ¨uxuzδ˙2−u˙yδ˙−uyδ¨uxuzδ˙2−u˙xδ˙+uxδ¨(uz2−1)δ˙2] (2.39)


* In the RRSS and 4R spherical mechanisms in Chapter 10, the condition ￼ holds true.

The acceleration of p1 in reference to u0—or the total acceleration of p1 (which will be labeled p¨)—can be expressed as


p¨=[Aθ¨,θ˙,u0](p−p0) (2.40)


where the variable p is included from Equation 2.31. An equation for the intermediate acceleration of q1 in reference to u0 (which will be labeled q¨′) can be expressed as


q¨′=[Aβ¨,β˙,u0](q−p0) (2.41)


where the variable q is included from Equation 2.34. Equation 2.41 is included in Equation 2.42 to calculate the total acceleration of q1 in reference to u0 (which will be labeled q¨). In Equation 2.42, the variables p and q are included from Equations 2.31 and 2.34, respectively.


q¨=q′¨+[Aβ¨,β˙,u](q−p)+2[Vθ˙,u0]{[Vβ˙,u](q−p)} (2.42)


The intermediate and total spatial displacement velocity and acceleration equations appear in the spatial mechanism equation systems in Chapter 10 [3].




Example 2.10


Problem Statement: For the two-body system in Figure 2.5, calculate the displaced values of points p1 and q1 and axis u1. The dimensions and rotation angles in this system are as follows: p0 = (0, 0, 0), p1 = (0, 1, 0), u0 = (0, 0, 1), u1 = (0.7071, 0, 0.7071), q1 = (0.25, 1.3536, −0.25), θ = 30°, and β = −15°.


Known Information: Given dimensions, rotation angles, Matrix 2.30 and Equations 2.31 through 2.34.


Solution Approach: Figure E.2.13 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.2.13 Example 2.10 solution calculation procedure in MATLAB.









2.6 General Transformation Matrix


Matrices 2.43 through 2.45 are rotation matrices about the x-, y-, and z-axes of a global coordinate frame, respectively. Given the rotation angle value, the product of any of these matrices and coordinates of a point (in a 3 × 1 column matrix) are the coordinates of the rotated point.


[Rδx]=[1000cosδx−sinδx0sinδxcosδx] (2.43)


[Rδy]=[cosδy0sinδy010−sinδy0cosδy] (2.44)


[Rδz]=[cosδz−sinδz0sinδzcosδz0001] (2.45)


The product of the three matrices can be expressed as Matrix 2.46, which can accommodate simultaneous rotations about the x-, y-, and z-axes (by rotation angles δx, δy, and δz, respectively).


[R]=[Rδz][Rδy][Rδx]=[R11R12R13R21R22R23R31R32R33]==[cosδycosδz(sinδxsinδycosδz−cosδxsinδz)(cosδxsinδycosδz+sinδxsinδz)cosδysinδz(sinδxsinδysinδz+cosδxcosδz)(cosδxsinδysinδz−sinδxcosδz)−sinδysinδxcosδycosδxcosδy] (2.46)


Including the elements of Matrix 2.46 into a 4 × 4 matrix that also considers translations along the x-, y-, and z-axes (in the fourth matrix column) produces


[T]ji=[R11R12R13ΔxR21R22R23ΔyR31R32R33Δz0001] (2.47)


Matrix 2.47 is a general transformation matrix for calculating point coordinates given in one coordinate frame (which we will call Frame j) in reference to another coordinate frame (which we will call Frame i) or


i{p}=[T]jij{p} (2.48)


In Equation 2.48, the coordinates in Frame j or j{p} are j{p} = [px py pz 1]T. Matrix 2.47 is general because it can accommodate all six possible degrees of freedom (x-y-z rotations and x-y-z translations). The rotation angles δx, δy, δz and translation values Δx, Δy, and Δz in Matrix 2.47 are the angular and linear displacement values required to align Frame i to Frame j.


As an example, Figure 2.6 illustrates a Coordinate Frame i (where i = 1) and an arbitrary Coordinate Frame j (where j = 2). Using rotation angles δx = 20°, δy = 40°, δz = 60° (Figures 2.7a, b, c, respectively) and translation values Δx = 2, Δy = Δz = 1 (Figure 2.7d), Frame 1 is aligned with Frame 2. As a result, when these rotation and translation values are used in Equation 2.48, any point coordinates given in reference to Frame 2 will be calculated in reference to Frame 1. Transformation matrices are used in in Chapter 11 for the kinematic analysis of robotic manipulators [5].
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FIGURE 2.6 Coordinate frames i and j (where i = 1 and j = 2).
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FIGURE 2.7 (a–c) Coordinate frame rotations about and (d) translations along axes X1, Y1, and Z1.





Example 2.11


Problem Statement: The coordinates of point p1 in Reference Frame 2 of a robotic system are 2{p1} = [2, 5, −1, 1]T (see Figure E.2.14). Calculate the coordinates of this point in Reference Frame 1 of the system (1{p1}). The location of the origin of Frame 2 with respect to Frame 1 is Δ = (5, 10, −2) and the orientation angles of Frame 2 with respect to Frame 1 are δx = 0°, δy = 15°, and δz = 30°.
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FIGURE E.2.14 Robotic system with reference frames.



Known Information: Given frame rotation and displacement values and Equation 2.48.


Solution Approach: Figure E.2.15 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.2.15 Example 2.11 solution calculation procedure in MATLAB.









2.7 Summary


Vectors (quantities having both magnitude and direction) are commonly used in the formulation of equation systems for mechanisms. One way to represent a two-dimensional vector is with a complex number. A complex number is comprised of both a real component and an imaginary component. Equation systems for mechanisms can be formulated by producing vector loops for the mechanisms and taking the sum of the individual vector terms in the loops. First and second derivatives of vector-loop equations are taken to calculate mechanism velocities and accelerations.


In addition to vectors, points can also be used to formulate mechanism displacement, velocity, and acceleration equations. In fact, a vector can be produced from the coordinates of two points in 2D or 3D space. Point-based vectors appear in such spatial mechanism equation systems as intermediate and total displacement, velocity, and acceleration equations.


A linear equation is an equation that includes linear or first-order variables. A system of linear equations (or a linear system) is collection of linear equations including the same variables. If a common solution is sought among a system of linear equations, it is called a set of simultaneous equations.


A set of linear simultaneous equations having n equations and n variables can be expressed in matrix form. A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. This form can be particularly convenient when solving for the variables in a simultaneous equation set. Cramer’s rule is a popular matrix-based formula for the solution of linear simultaneous equations having n equations and n unknown variables.


The transformation matrix, commonly used in the analysis of robotic systems, is used to calculate point coordinates given in one reference frame (Frame j) in terms of another reference frame (Frame i). The general spatial transformation matrix can consider up to all six possible degrees of freedom (x, y, and z rotations and translations).
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Problems




	Formulate an equation system for the vector loop illustrated in Figure P.2.1. Consider that vector Vj always lies along the real axis.
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FIGURE P.2.1 Vector loop (three vectors where Vj changes length) in complex space.




	Formulate an equation system for the vector loop illustrated in Figure P.2.2. Consider that vector Vj always lies along the real axis and vector V3 is always perpendicular to the real axis.
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FIGURE P.2.2 Vector loop (four vectors where Vj changes length) in complex space.




	Calculate the first derivative of the vector-loop equation solution from Problem 2. Consider only angles α1, α2 and vector Vj from Problem 2 to be time-dependent.


	Calculate the second derivative of the vector-loop equation solution from Problem 2. Consider only angles α1, α2 and vector Vj from Problem 2 to be time-dependent.


	Formulate an equation system for the vector loop illustrated in Figure P.2.3.
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FIGURE P.2.3 Vector loop (four vectors) in complex space.




	Calculate the first derivative of the vector-loop equation solution from Problem 5. Consider only angles α1, α2, and α3 from Problem 5 to be time-dependent.


	Calculate the second derivative of the vector-loop equation solution from Problem 5. Consider only angles α1, α2, and α3 from Problem 5 to be time-dependent.


	Formulate an equation system for the vector loop illustrated in Figure P.2.4.
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FIGURE P.2.4 Vector loop (five vectors) in complex space.




	Calculate the first derivative of the vector-loop equation solution from Problem 8. Consider only angles α1, α2, α3, and α4 from Problem 8 to be time-dependent.


	Calculate the second derivative of the vector-loop equation solution from Problem 8. Consider only angles α1, α2, α3, and α4 from Problem 8 to be time-dependent.











  
    



3 Fundamental Concepts in Kinematics


DOI: 10.1201/9781003316961-3






Concept Overview


In this chapter, the reader will gain a central understanding regarding




	Kinematic and design distinctions among select planar and spatial mechanisms


	Mechanism components and mechanism construction


	Mechanism mobility, Gruebler’s equation and number synthesis


	Grashof criteria and the circuit defect


	The transmission angle and its relationship with follower-link forces


	Mechanism inversion


	The passive degree of freedom and paradoxes to Gruebler’s equation









3.1 Types of Planar and Spatial Mechanisms




3.1.1 Planar Four-Bar Mechanism


Figure 3.1a illustrates a planar four-bar mechanism. The four interconnected links in this mechanism are the crank (the driving link), coupler, follower, and ground.* A supplied input rotation to the crank link compels the motion of the coupler and follower links. Both the crank and follower links are connected to the ground link (or are grounded) and undergo pure rotation (as indicated by the arrows).† The planar four-bar mechanism is one of the most widely utilized kinematic chains in everyday devices (Figure 3.1b, c, and d) including locking pliers, folding chairs, and doorways.
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FIGURE 3.1 (a) Planar four-bar mechanism as (b) lock pliers, (c) folding chair, and (d) doorway linkages.







3.1.2 Slider-Crank Mechanism


Figure 3.2a illustrates a slider-crank mechanism. The four interconnected links in this mechanism are the crank (the driving link), coupler, slider, and ground. A supplied input rotation to the crank link compels the motion of the coupler and slider links. In this mechanism, the crank link undergoes pure rotation, the slider undergoes pure translation and the coupler undergoes complex motion. The slider-crank mechanism can be theoretically described as a planar four-bar mechanism having a follower link of infinite length (Figure 3.2b) [1]. The slider-crank mechanism is also among the most widely utilized kinematic chains in everyday applications. Among the many everyday applications for the slider-crank mechanism is the crankshaft-connecting rod–piston linkage: a fundamental subsystem of the internal combustion engine (Figure 3.3).


* Because mechanisms are comprised of links, they are also called linkages.

† The coupler undergoes complex motion—a combination of simultaneous rotation and translation (see Section 1.4).
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FIGURE 3.2 (a) Slider-crank mechanism and (b) four-bar mechanism as slider-crank mechanism.
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FIGURE 3.3 Slider-crank mechanism as crankshaft-connecting rod–piston linkage.
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FIGURE 3.4 Geared five-bar mechanism.







3.1.3 Geared Five-Bar Mechanism


Figure 3.4 illustrates a geared five-bar mechanism. This mechanism is comprised of five interconnected links where the crank and output link are generally coupled to each other through a gear pair or gear train.* Because the crank and output links are indirectly interconnected, the supplied input motion to the crank compels the motion of the output and intermediate links. Both the crank and output links of the geared five-bar mechanism undergo pure rotation while the two intermediate links undergo complex motion.


* Coupling the motion of the crank and output links reduces the resulting mechanism to a single degree of freedom. In addition to using gears for coupling the crank and output links, other options include using pulley-belt systems, chain-sprocket systems or drive motors.

Though not as commonly utilized in everyday devices as the planar four-bar or slider-crank mechanisms, one advantage the planar five-bar mechanism has over the four-bar mechanism is that it can trace paths of higher orders than the latter. This means that the intermediate links of the geared five-bar mechanism have the capacity to trace paths of more complex curvature than the paths traced by the coupler link of the planar four-bar linkage. Using Equation 3.1 (published by Wunderlich in 1963) to calculate the order (m) of a coupler curve produced by a mechanism having n links connected by revolute joints, we can determine that while a planar four-bar mechanism has a maximum curve order of six, the planar five-bar mechanism has a maximum order of 10 (or 10.392 to be more exact) [2].


m=2[3(n2−1)] (3.1)






3.1.4 Planar Multiloop Six-Bar Mechanisms


Attaching a grounded link pair or a dyad (the link pair c-d-e in Figure 3.5) to the coupler of the planar four-bar mechanism produces a planar multiloop six-bar mechanism. This particular type of multiloop planar six-bar mechanism is called a Stephenson type III mechanism [3]. This mechanism includes three links that undergo pure rotation and two links that undergo complex motion.
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FIGURE 3.5 Planar multiloop six-bar mechanism (Stephenson III six-bar mechanism).



The five types of planar multiloop six-bar mechanisms are illustrated in Figure 3.6. These types are grouped into two classifications: Watt and Stephenson. The supplied input motion to the crank (e.g., Link 2 in Figure 3.6) compels the motion of the remaining links. Though not as commonly utilized in everyday devices as the planar four-bar or slider-crank mechanisms, Watt and Stephenson mechanisms include two to three intermediate links that undergo complex motion. This property enables these mechanisms to deliver both dual and simultaneous motion and path generation capabilities.* As shown in this figure, both Stephenson and Watt mechanisms include two to three links that undergo pure rotation (as indicated by the arrows in this figure) as well as two to three links that undergo complex motion. The Watt II and Stephenson III mechanisms are the planar multiloop mechanisms of choice for analysis throughout this textbook.
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FIGURE 3.6 Watt and Stephenson mechanism types.







3.1.5 Spatial Four-Bar Mechanisms


Planar mechanisms are restricted to motion in two-dimensional or planar space. Spatial mechanisms can exhibit three-dimensional or spatial motion. Spatial mechanism motion is predominantly determined by the degrees of freedom of the mechanism joints used and the spatial orientation of the joints.


Because spatial mechanisms have the capability to exhibit spatial motion, they offer a greater variety of possible motions and are structurally more general than planar mechanisms. However, because the equations for spatial mechanism analysis and synthesis are often much larger in scale and greater in complexity than those for planar mechanisms (not to mention the actual design of spatial mechanisms vs. planar mechanisms), their real-world applications are often limited. In practice, it is not uncommon to find complicated planar mechanism solutions when, in fact, a simpler spatial mechanism solution is also possible. It is, therefore, an ongoing task to devise simple methods of calculation, to produce design aids with diagrams, and to set design standards for spatial mechanisms [4].


Like planar mechanisms, there are also many different types of spatial mechanisms. This textbook considers three types of four-bar spatial mechanisms: the revolute-revolute-spherical-spherical or RRSS, the revolute-revolute-revolute-revolute spherical or 4R spherical, and the revolute-spherical-spherical-revolute or RSSR mechanisms (Figure 3.7a, b, and c, respectively) [5,6]. The RRSS, 4R spherical, and RSSR are among the more basic four-bar spatial mechanisms in terms of the types of joints used and the required linkage assembly conditions for motion.
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FIGURE 3.7 Spatial (a) RRSS, (b) 4R spherical, and (c) RSSR mechanisms.



* Motion and path generation (mechanism design for prescribed mechanism link positions and path points, respectively) are introduced in Chapter 5.







3.2 Links, Joints, and Mechanism Mobility


As explained in Chapter 1, a mechanism is an assembly of links and joints. The attachment points to adjacent links are called nodes. A link that has two nodes is called a binary link, and a ternary link has three nodes. The Stephenson III six-bar mechanism in Figure 3.8 includes a ternary link as ground and a movable intermediate ternary link. The remaining links in this mechanism are all binary.
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FIGURE 3.8 Link types in the Stephenson III mechanism.



Adjacent mechanism links are interconnected at their nodes by joints. Joint types differ by both the number and type of degree(s) of freedom (DOF). Six mechanism joint types are illustrated in Figure 3.9. For planar mechanisms, the revolute joint is more commonly used than any other joint. Although the revolute joint is by far the dominant joint type used in practice, as well as in the mechanisms in this textbook, Figure 3.9 includes other common joint types. The revolute joint (R) has one rotational DOF, the prismatic joint (P) has one translational DOF, the cylindrical joint (C) has 2 DOFs—one rotational and one translational—and the spherical joint (S) has three rotational DOFs. The term lower pair describes joints like the R, P, C, and S joints where surface contact occurs (e.g., a ball surrounded by a socket for the S joint or a pin surrounded by a hole for the R joint). Lower pairs are also called full joints [7].
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FIGURE 3.9 Six mechanism joint types.



Also illustrated in Figure 3.9 are the cam joint and the gear joint (G). Because the cam joint includes rolling-sliding contact (between the cam and follower surfaces), it has two degrees of freedom.* Because the gear joint includes rolling-sliding contact between the surfaces of the gear teeth, it also has two degrees of freedom. The term higher pair describes joints like the cam and the G joints where line contact occurs (e.g., a convex surface on a flat surface for the cam joint or two curved convex surfaces in contact for the G joint).† Higher pairs are also called half joints [7].


Gruebler’s equation (Equations 3.2 and 3.3) is used to determine the mobility (the DOF) of a mechanism. Equation 3.2 calculates the mobility of a planar mechanism. Since any individual planar mechanism link can have no more than three degrees of freedom, the maximum mobility of a planar mechanism with L links is 3L. Because the ground link is fully constrained, its mobility is subtracted from the maximum mechanism mobility, giving 3(L−1). Each 1-DOF joint type removes two degrees of freedom, giving −2J1, and each 2-DOF joint type removes one degree of freedom, giving –J2 (where J1 and J2 are the total number of 1-and 2-DOF joints, respectively).


* This joint pertains to the classical radial cam (or disk cam) and follower type presented in Chapter 9.

† The term “higher pair” also describes joints where point contact occurs (e.g., two spheres in contact or a sphere on a flat surface).



Equation 3.3 calculates the mobility of a spatial mechanism. Since any individual spatial mechanism link can have no more than six degrees of freedom, the maximum mobility of a spatial mechanism with L links is 6L. Because the ground link is fully constrained, its mobility is subtracted from the maximum mobility, giving 6(L−1). Each 1-DOF joint type removes five degrees of freedom, giving −5J1. Likewise, each 2- and 3-DOF joint type removes four and three degrees of freedom, respectively. In this textbook, J4 = J5 = 0, since 4- and 5-DOF joints are not utilized.


DOFPLANAR=3(L−1)−2J1−J2 (3.2)


DOFSPATIAL=6(L−1)−5J1−4J2−3J3−2J4−J5 (3.3)


As explained in Section 1.2, the fundamental objective in mechanical system design is to produce specific controlled output motions for supplied input motions. Output motion control is maximized when the mechanical system has a single degree of freedom. Knowing the mobility of a mechanism enables the designer to determine if additional constraints are needed to reach the desired mobility (and if so, how many constraints are needed).




Example 3.1


Problem Statement: Determine the mobility of the planar and spatial mechanisms illustrated in Figure E.3.1.


Known Information: Figure E.3.1, Equations 3.2 and 3.3.
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FIGURE E.3.1 Planar (a) and spatial (b) mechanisms.



Solution Approach: The planar mechanism illustrated in Figure E.3.1 includes eight links, eight revolute joints, and two prismatic joints (therefore, L = 8, J1 = 10, and J2 = 0). The spatial linkage illustrated in Figure E.3.1 includes six links, three revolute joints, three spherical joints, and one cylindrical joint (therefore, L = 6, J1 = 3, J2 = 1, J3 = 3, and J4J5 = 0). Figure E.3.2 includes the calculation procedure in the MATLAB® command window using Gruebler’s planar and spatial mechanism equations (Equations 3.2 and 3.3).
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FIGURE E.3.2 Example 3.1 solution calculation procedure in MATLAB.









3.3 Number Synthesis


Given the number of mechanism links and the number and order of mechanism joints, mechanism mobility is calculated from Gruebler’s equation. An inverse application of Gruebler’s equation can also be considered. For example, Gruebler’s equation is useful in determining mechanism link and joint combinations (which result in alternate mechanism solutions) for a given mobility [8]. Number synthesis involves the determination of alternate mechanism solutions for a given mobility. Expressing Gruebler’s equations for planar and spatial mechanisms as functions of links and joints or as


f(L,J1,J2)=DOFPLANAR (3.4)


f(L,J1,J2,J3,J4,J5)=DOFSPATIAL (3.5)


shows that, for a given mobility, an indefinite number of link and joint combinations—alternate mechanisms—exist. Number synthesis offers not only a means to assist in the creative design of mechanisms, but Equations 3.4 and 3.5 could also be implemented systematically [9,10]. By progressively increasing or decreasing the link and joint variables in Gruebler’s equation for a given mobility, tables of concept mechanism solutions are produced.


While the number of mechanism links and joints required to achieve a specified mobility are determined through number synthesis, the specific mechanism design is not determined. With number synthesis, the user determines the specific mechanism design that incorporates the calculated links and joints.




Example 3.2


Problem Statement: Compile a table of single-DOF planar mechanisms having two, three, and four links.


Known Information: Equation 3.2, DOFPLANAR = 1, L = 2, 3, and 4.


Solution Approach: For each value of variable L, variable J1 is incrementally increased, and for each value of L and J1, the corresponding value for the remaining unknown J2 in Equation 3.2 is calculated. Using this systematic procedure, the resulting mechanism solutions in Table E.3.1 are calculated.






TABLE E.3.1 Two-, Three-, and Four-Link Single-DOF Planar Mechanisms





	Mechanism Solution

	L

	J1

	J2










	1

	2

	0

	2






	2

	2

	1

	0






	3

	3

	0

	5






	4

	3

	1

	3






	5

	3

	2

	1






	6

	4

	0

	8






	7

	4

	1

	6






	8

	4

	2

	4






	9

	4

	3

	2






	10

	4

	4

	0











Figure E.3.3 illustrates example mechanism configurations corresponding to mechanism solutions 1, 2, 5, 9, and 10 in Table E.3.1. Each of the mechanism solutions in this table does not necessarily represent a single mechanism configuration. For example, for mechanism solution 9 in Table E.3.1, two mechanism configurations are provided in Figure E.3.3.
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FIGURE E.3.3 Example two-, three-, and four-link single-DOF planar mechanism configurations.









3.4 Grashof’s Criteria and Transmission Angle


Grashof’s criteria are used to determine the link rotation behavior or link rotatability of four-bar mechanisms. These criteria are based on the lengths of the crank, coupler, follower, and ground links. Table 3.1 includes all of the Grashof and non-Grashof mechanism classifications. For the link length relationships in this table, the variables S and L are the shortest and longest mechanism link lengths, respectively, and the remaining two link lengths are the variables P and Q.






TABLE 3.1 Grashof and Non-Grashof Mechanisms





	Grashof Type

	Link Length Relationship

	Shortest Link










	Crank-rocker

	S + L < P + Q

	Crank






	Double-crank (drag-link)

	S + L < P + Q

	Ground






	Double-rocker

	S + L < P + Q

	Coupler






	Change point

	S + L = P + Q

	Any






	Non-Grashof Type

	Link Length Relationship

	






	Triple-rocker

	S + L > P + Q

	Any











Figure 3.10 illustrates the link rotations for the crank-rocker, double-crank (also called drag-link), double-rocker, and triple-rocker mechanisms. As illustrated, only the crank link can undergo a complete rotation in a crank-rocker mechanism while both the crank and follower links can undergo complete rotations in a double-crank mechanism. In the double-rocker mechanism, the shortest link—the coupler link—is the driving link and undergoes a complete rotation, while no link rotates completely in the triple-rocker.* During the motion of a change point mechanism (not illustrated), specifically, twice per revolution, all of the links become simultaneously aligned. During this (theoretical) state, the output behavior of the change point mechanism is unpredictable [11].
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FIGURE 3.10 Link rotations of Grashof mechanisms: (a) crank-rocker, (b) drag-link (double-crank), (c) double-rocker, and (d) non-Grashof triple-rocker.



Unlike the crank-rocker and drag-link mechanisms, the driving link in the double-rocker mechanism is not grounded. This characteristic can make the double-rocker mechanism less practical for design applications. When considering the double-rocker mechanism, the designer must overcome the technical challenges of affixing a drive system to a movable joint (and operating such a drive system).*


* Figure 3.10c illustrates the path achieved by the shortest link in the double-rocker when a driver is applied to the labeled joint (of the shortest link).

* Affixing a drive system (such as a motor or manual crank) to a grounded link joint (and operating such a system) can be more easily accomplished than to a nongrounded joint.

When force and torque transmission between the crank and follower links are of concern in four-bar mechanism design, knowing the transmission angle is critical. The transmission angle is the angle between the coupler and follower links. Figure 3.11a illustrates a planar four-bar mechanism and the transmission angle τ. When an input torque Tin is applied to the crank link, this link transmits force to the coupler which subsequently transmits force to the follower Ffollower. One component of this follower force (Ffollower sin (τ) in Figure 3.11b) is normal to the follower link and results in the output torque Tout. The other force component (Ffollower cos (τ)) is a columnar load acting along the length of the follower. Both follower force components are functions of the transmission angle. Attempts are often made to minimize the columnar component of the follower force in four-bar mechanism design, particularly in applications where the forces and torques transmitted are substantial.* A transmission angle of 90° is optimum because the resulting follower force has only a normal component (Ffollower cos (τ) when τ = 90°). A transmission angle range of 90°± 50° is generally preferred by designers [12]. It can be observed from the equations in Figure 3.11b that as the transmission angle decreases, the columnar load component increases and the normal load component decreases.
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FIGURE 3.11 Planar four-bar mechanism with transmission angle and crank and follower loads.



Follower-link forces are not governed by the transmission angle in dynamic force analyses (to be presented in Chapter 7). This is because body forces exist in the mechanism links due to gravity and link acceleration. Follower-link forces are also not governed by the transmission angle in static-force analyses (to be presented in Chapter 6) where link body forces (due to gravity) are comparable to link external loads. The ideal condition where transmission angles do govern follower-link forces is under static loading where the external link loads far exceed the link body forces. As the external static loads exceed the static body forces in a planar four-bar linkage, the transmission angle-based calculation of the follower forces becomes more accurate.




Example 3.3


Problem Statement: The link lengths for three planar four-bar mechanisms are given in Figure E.3.4 (all identical to the link dimensions given in Mechanism 1) and the driving links are labeled with rotation arrows. Determine the Grashof type for each mechanism.


Known Information: Figure E.3.4 and Table 3.1.
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FIGURE E.3.4 Planar four-bar mechanism configurations (with dimensionless link lengths given for Mechanism 1).



Solution Approach: Because the shortest link in Mechanism 1 is the ground link and the Grashof condition S + L < P + Q is true, this mechanism is a Grashof double-crank. Because the shortest link in Mechanism 2 is the crank link and the Grashof condition S + L < P + Q is true, this mechanism is a Grashof crank-rocker. Because the shortest link in Mechanism 3 is the coupler link and the Grashof condition S + L < P + Q is true, this mechanism is a Grashof double-rocker.




* Unlike follower normal loads (which links having revolute joints are designed to accommodate), follower columnar loads (FFOLLOWER cos τ in Figure 3.11b) can result in follower buckling or excessive bearing forces in the follower revolute joints.





3.5 Circuit Defect


While a Grashof mechanism is capable of producing full crank rotation, a non-Grashof mechanism is not. For the latter mechanism type, the crank can only rotate to the mechanism’s binding position. When the binding position is reached, the mechanism “locks up” or is physically precluded from further movement (i.e., further movement in the given crank direction). Crank rotation beyond the binding position is only possible through mechanism disassembly.


Figure 3.12 illustrates a non-Grashof triple-rocker and one of its binding positions. The binding position is reached when link a0–a1 rotates by an angular displacement β. Because the mechanism locks up at β, further mechanism motion in the counterclockwise direction is only possible when the mechanism is disassembled and reassembled beyond the infeasible region shown in Figure 3.12.*
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FIGURE 3.12 Planar four-bar mechanism (a non-Grashof triple-rocker) with circuit defect.



* For a given non-Grashof mechanism, the lock-up position can vary based on the designated crank link (e.g., link b0–b1 could be a crank link) as well as the crank rotation direction (clockwise instead of counterclockwise rotation).

If a mechanism is incapable of achieving a desired crank rotation (as, subsequently, a desired mechanism position) due to a lock-up condition, it has what is called a circuit defect.* Circuit defects are considered to be fatal to linkage operation (due to mechanism disassembly being required for full crank rotation).






3.6 Mechanism Inversion


The motion of a mechanism can vary, based on which joints are grounded. As illustrated in Figure E.3.4, the planar four-bar mechanisms given are all identical in terms of link length (and even identical in terms of initial link orientation), but vary only in terms of the joints that are grounded. The mechanisms in Figure E.3.4 are all inversions of each other because they are otherwise identical mechanisms that have different grounded joints.


Figure 3.13 illustrates all of the inversions of the planar four-bar, slider-crank, and 4R spherical mechanisms. Because the motion of a mechanism can vary based on which joints are grounded, producing mechanism inversions is a systematic method to produce mechanisms that have unique motions, but include the same general linkage hardware.


* A mechanism link loop (like loops in electrical and fluid flow systems) is also called a circuit.
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FIGURE 3.13 Planar four-bar, 4R spherical, and slider-crank mechanism inversions.







3.7 Passive Degree of Freedom and Paradoxes


There are cases where the mobility values calculated from Equations 3.2 and 3.3 are misleading. For example, although Equation 3.3 produces a mobility value of 2 for the spatial RRSS and RSSR mechanisms, the RRSS mechanism is capable of controlled coupler motion and the RSSR is capable of controlled follower motion. The extra degree of freedom for these mechanisms is the free rotation of the S-S links about their length axes (Figure 3.14) and is called a passive degree of freedom. Because this degree of freedom is highly localized (limited to a single link) for these mechanisms, they have no effect on the kinematics of their links of interest (the coupler link for the RRSS and the follower link for the RSSR).
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FIGURE 3.14 Passive DOF in spatial (a) RRSS and (b) RSSR mechanisms.



There are also cases where the mobility values calculated from Equations 3.2 and 3.3 are incorrect. For example, Equation 3.3 produces a mobility of –2 for the 4R spherical mechanism (which has a true mobility of 1) and Equation 3.2 produces a mobility of 0 for the pair of rolling cylinders in Figure 3.15 (which has a true mobility of 1). Mechanisms having true mobility values that violate Gruebler’s equation are called paradoxes or maverick mechanisms [13,14]. Because Gruebler’s equation cannot guarantee true mobility results for all mechanisms, it may be necessary for the user to validate the mobility of a mechanism (through kinematic analyses, for example).
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FIGURE 3.15 Rolling cylinder pair (with no sliding contact).







3.8 Summary


The planar four-bar mechanism is one of the most widely utilized kinematic chains in everyday devices. The four interconnected links in this mechanism are the crank, coupler, follower, and ground links. The crank and follower links in the planar four-bar mechanism undergo pure rotation while the coupler link undergoes complex motion. The slider-crank mechanism is another commonly used kinematic chain, particularly in internal combustion engines. The four interconnected links in this mechanism are the crank, coupler, slider, and ground links. The crank link in the slider-crank mechanism undergoes pure rotation while the slider link undergoes pure translation. In the geared five-bar mechanism, the crank link and output link are coupled by a gear pair. Though not as commonly utilized in everyday devices as planar four-bar mechanisms, one advantage the planar five-bar mechanism has over the four-bar mechanism is that its intermediate links can trace paths of higher orders than the latter.


Attaching a dyad to the coupler of the planar four-bar mechanism produces the Stephenson III mechanism. Attaching the crank and follower of two planar four-bar mechanisms produces the Watt II mechanism. Both mechanisms are particular types of multiloop planar six-bar mechanisms. There are two classifications for planar multiloop six-bar mechanisms: Watt and Stephenson. Although these mechanisms are not as commonly utilized as planar four-bar mechanisms in everyday devices, they include at least two links that undergo complex motion—giving them greater capacities in kinematic synthesis than planar four-bar mechanisms.


Planar mechanisms are restricted to motion in two-dimensional or planar space. Spatial mechanisms can exhibit three-dimensional or spatial motion. Because spatial mechanisms have the capacity to exhibit spatial motion, they offer a greater variety of possible motions and are structurally more general than planar mechanisms. This textbook considers three types of four-bar spatial mechanisms: the revolute-revolute-spherical-spherical or RRSS, the revolute-revolute-revolute-revolute spherical or 4R spherical, and the revolute-spherical-spherical-revolute or RSSR mechanisms. The RRSS, 4R spherical, and RSSR are among the more basic four-bar spatial mechanisms in terms of the types of joints used and the required linkage assembly conditions for motion.


Mechanism links are interconnected by joints. Both the planar four-bar, geared five-bar, Watt, and Stephenson mechanisms include revolute joints: joints having a single rotational degree of freedom. The prismatic joint has a single translational degree of freedom and is used where 1-DOF sliding contact is needed. The cylindrical joint and spherical joint are other joint types utilized in spatial mechanisms. The cylindrical joint has a rotational and a translational degree of freedom, while the spherical joint has three rotational degrees of freedom. Joints having two degrees of freedom include the cam joint and gear joint, which both include rolling-sliding contact.


Gruebler’s equation is used to calculate mechanism mobility or degrees of freedom (DOF). Determining the mobility of a mechanism enables the designer to determine if additional constraints are needed to reach the desired mobility, and if so, how many constraints are needed. In number synthesis, Gruebler’s equations are implemented systematically to determine alternate mechanism solutions for a given mobility. Grashof’s criteria are used to determine the link rotation behavior of four-bar mechanisms. Determining link rotation behavior is important in design, particularly when coupling a drive system to the crank link.


While a Grashof mechanism is capable of producing full crank rotation, a non-Grashof mechanism cannot. For the latter mechanism type, the crank can only rotate to the mechanism’s binding position. Crank rotation beyond the binding position is only possible through mechanism disassembly. This defect associated with non-Grashof mechanisms is called a circuit defect. Circuit defects are considered to be fatal to linkage operation (due to mechanism disassembly being required for full crank rotation).


Knowing the transmission angle (the angle between the coupler and follower links) behavior is important when force and torque transmission between the crank and follower links are of concern in four-bar mechanism design. As the transmission angle decreases, the magnitude of the columnar load on the follower link increases and the magnitude of the load normal to the follower decreases (and vice versa). A transmission angle range of 90° ± 50° is generally preferred by designers.


The motion of a mechanism can vary, based on which joints are grounded. Mechanisms of identical type and link dimensions, but different grounded links, are inversions of each other. Because the motion of a mechanism can vary based on which joints are grounded, producing mechanism inversions is a systematic method to produce mechanisms that have unique motions, but include the same general linkage hardware.


There are cases where the mobility values calculated by Gruebler’s equation are misleading. The follower link of the spatial RRSS mechanism and the coupler link of the spatial RSSR mechanism have a passive degree of freedom: the free rotation of these links about their length axes. For example, although Gruebler’s equation produces a mobility value of 2 for both mechanisms, the RRSS mechanism is capable of controlled coupler motion and the RSSR is capable of controlled follower motion.


There are also cases where the mobility values calculated by Gruebler’s equation are incorrect. For example, Gruebler’s equation produces a mobility value of –2 for the 4R spherical mechanism (which has a true mobility of 1). Mechanisms having true mobility values that violate Gruebler’s equation are called paradoxes or maverick mechanisms. Because Gruebler’s equation cannot guarantee true mobility results for all mechanisms, it may be necessary for the user to validate the mobility of a mechanism.
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Problems




	Planar four-bar linkages have many everyday applications (some are illustrated Figure 3.1). Identify and describe four additional everyday applications for the planar four-bar linkage.


	



	Why is it important to know if a mechanism has a single degree of freedom?


	Why is a crank-rocker mechanism more useful than a double-rocker mechanism?


	Should the transmission angle for the planar four-bar linkage be close to 0°? Explain.






	For the two linkages illustrated in Figure P.3.1, which (if any) of the links can undergo a complete rotation relative to the other links? How do you know?
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FIGURE P.3.1 Planar four-bar linkages with dimensionless link lengths.




	Repeat Problem 3 where one linkage has link lengths of 2.35 (ground), 3.25 (coupler), 2.25 and 2.15 cm and another linkage has link lengths of 2.75 (ground), 3.25 (coupler), 1.15 and 1.75 cm.


	Determine the number of links and the mobility of each of the three planar mechanisms in Figure P.3.2.
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FIGURE P.3.2 Planar mechanisms.




	For the planar four-bar linkage illustrated in Figure P.3.3, L2/L1 = 1.5 and L3/L1 = 1.2. Find the range of L0/L1 required for a drag-link mechanism.
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FIGURE P.3.3 Planar four-bar linkage.




	Repeat Problem 6 for a crank-rocker mechanism where L2/L1 = 2.75 and L3/L1 = 2.95.


	Compile a table of 1 DOF spatial mechanisms having two, three and four links (let J4 = J5 = 0 in Equation 3.3). Illustrate some of these mechanism solutions.


	Compile a table of 1 DOF spatial mechanisms having five links (let J4 = J5 = 0 in Equation (3.3)). Illustrate some of these mechanism solutions.


	Figure P.3.4 illustrates nine spatial mechanisms that include revolute (R), prismatic (P), cylindrical (C), and spherical (S) joints. Calculate the mobility of these mechanisms.
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FIGURE P.3.4 Spatial mechanisms comprised of R, P, C, and S joints.




	Figure P.3.5 illustrates five spatial robots that include revolute (R), prismatic (P), and cylindrical (C) joints. Calculate the mobility of these robots.
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FIGURE P.3.5 Spatial robots comprised of R, P, and C joints.




	Euler’s buckling load (F) for a columnar member with pinned ends is

F = π2EIL2


where E, I, and L are the modulus of elasticity, moment of inertia, and length, respectively, of the columnar member. Formulate an equation from Euler’s equation and Figure P.3.6 to calculate the transmission angle corresponding to the follower-link buckling load. Calculate the transmission angle for a follower length of 12 in (0.3048 m), a ¼ in (0.635 cm) square follower cross section, a modulus of elasticity (for aluminum) of 10,000,000 psi (68.05 GPa), and a follower load (Ffollower) of 250 lbf (1112.05 N).
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FIGURE P.3.6 Planar four-bar mechanism with transmission angle and crank and follower loads.




	Maverick Mechanisms are mechanisms that defy Grubler’s Equation (Grubler’s Equation will produce misleading results for maverick mechanisms). Passive Degrees of Freedom are localized DOFs that have no effect on the overall mechanism kinematics. Determine which mechanisms in Figure P.3.4 are maverick mechanisms and locate the passive DOFs from among the mechanisms in Figure P.3.4.


	Compile a table of 2 DOF planar mechanisms having four and five links (considering cam or gear joints as J2). Illustrate one four-bar mechanism solution and one five-bar mechanism solution.


	Compile a table of 2 DOF planar mechanisms having six and seven links (considering cam or gear joints as J2). Illustrate one six-bar mechanism solution and one seven-bar mechanism solution.











  
    



4 Kinematic Analysis of Planar Mechanisms


DOI: 10.1201/9781003316961-4






Concept Overview


In this chapter, the reader will gain a central understanding regarding




	Link velocity and acceleration components in planar space


	The Newton–Raphson method for a set of two simultaneous equations


	Vector-loop-based displacement, velocity, and acceleration equation formulation and solution


	Kinematics of mechanism link locations of interest


	Instant centers in relative planar motion


	Instant center generation and application in velocity analysis


	Centrode generation and application in coupler motion replication


	Configurations of closed-loop mechanisms


	Relationships between general angular velocity and time


	Cognate construction and application









4.1 Introduction


In a kinematic analysis, positions, displacements, velocities, and accelerations of mechanism links are determined either qualitatively or quantitatively. In a quantitative kinematic analysis, equations that fully describe the motion of the mechanism links are used. Qualitative methods include constructing and measuring mechanism schematics and polygons to determine the positions, velocities, and accelerations of mechanism links. As intended by the authors, the kinematic analysis methods presented in this textbook are all quantitative. Kinematic equations for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms are formulated in this chapter. Displacement equations are formulated by taking the sum of the closed vector loop(s) in each mechanism (as introduced in Section 2.2.2) [1]. Taking the first and second derivatives of the vector-loop displacement equations introduces mechanism link velocity and acceleration variables, respectively, and, ultimately, produces mechanism velocity and acceleration equations, respectively.


As noted in Section 3.1.4, the Watt II and Stephenson III mechanisms (Figure 3.6) are the planar multiloop mechanisms of choice for analysis in this textbook. Both mechanisms have two links that exhibit complex motion. As illustrated in Figure 3.6, Watt II and Stephenson III mechanisms are comprised of a planar four-bar mechanism and an additional dyad.*


Because the Watt II and Stephenson III mechanisms include the planar four-bar mechanism, the displacement, velocity, and acceleration equations for these planar multiloop mechanisms will include some of the variables and output from the planar four-bar mechanism equations. Displacement equations for the additional dyads in the Watt II and Stephenson III mechanisms are produced by formulating vector-loop equations that include these dyads. Taking the first and second derivatives of the resulting vector-loop displacement equations produces velocity and acceleration equations.






4.2 Numerical Solution Method for Two Simultaneous Equations


The displacement equations presented in this chapter form sets of two nonlinear simultaneous equations (where each set includes two unknown variables). Unlike linear simultaneous equations, which can be solved algebraically (see Section 2.4), nonlinear simultaneous equations cannot be solved in this way. Using a root-finding method (a method for calculating the unknown variables in a set of nonlinear equations), such equation sets can be solved numerically [2]. The Newton– Raphson method is one of the most common root-finding methods. A Newton–Raphson method flowchart for a set of two simultaneous equations is illustrated in Figure 4.1.†
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FIGURE 4.1 Newton–Raphson method flowchart (for two equations with two unknowns).



Given a set of two simultaneous equations ( f1 and f2) having two unknowns (V1 and V2), where f1(V1, V2) = 0 and f2(V1, V2) = 0, Figure 4.1 begins with initial values for the unknown variables being specified. The unknown variable residuals δV1 and δV2 are then calculated (by computing the negative product of the inverted Jacobian and the column matrix of f1(V1, V2) and f2(V1, V2)). Updated values for the unknown variables are calculated by adding the variable residuals to the unknown variables, and f1 and f2 are calculated using the updated variables. As shown in Figure 4.1, the variables are updated repeatedly until the values calculated from the two equations (with the latest variable values) are smaller than a specified error term ɛ. The Newton–Raphson method can be codified (or currently exists) on a wide range of software platforms—including MATLAB—as a basic solver for simultaneous equations.






4.3 Link Velocity and Acceleration Components in Planar Space


Figure 4.2a illustrates an arbitrary grounded rotating link with rotation angle β. Figures 4.2b and c include the velocity and acceleration components at point p1 of this link, respectively. Given a link angular velocity (which we label β˙), the velocity vector (which we label Vp1) is produced. This velocity is tangent to the length p0–p1 and acts in the direction of β˙.
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FIGURE 4.2 (a) Rotating link and its (a) velocity and (b) acceleration components.



* The additional dyad is connected to the follower link in the Watt II mechanism while the additional dyad is connected to the coupler link in the Stephenson III mechanism.

† While the numerical Newton–Raphson method can be used to calculate solutions for linear and nonlinear simultaneous equations, linear simultaneous equations can be also solved analytically (see Section 2.4).

Given a link angular velocity and an angular acceleration (which we label β˙ and β¨, respectively), the acceleration vectors (which we label Ap1t and Ap1n) are produced. The acceleration component Ap1t is tangent to the length p0–p1 and acts in the direction of β¨. The acceleration component Ap1n is along the length p0–p1 and acts in the direction toward the center of rotation (i.e., toward p0). The total acceleration at p1 is the sum of acceleration components Ap1t and Ap1n.


Figure 4.3a illustrates an arbitrarily grounded rotating-sliding link with rotation angle β and sliding length V.* Figures 4.3b and c include the velocity and acceleration components at point p1 of this link, respectively. Given a link angular velocity, the velocity vectors (which we label Vp1 and V˙) are produced. The velocity component Vp1 is tangent to the length p0 –p1 and acts in the direction of β˙. The velocity component V˙ (the sliding velocity) is along the length p0–p1 and acts in the direction away from the center of rotation (i.e., away from p0). The total velocity at p1 is the sum of velocity components Vp1 and V˙.
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FIGURE 4.3 (a) Rotating-sliding link and its (a) velocity and (b) acceleration components.



Given a link angular velocity and an angular acceleration, the acceleration vectors (which we Label Ap1t, Ap1n, Ap1c, and V¨) are produced. The acceleration component Ap1t is tangent to the length p0–p1 and acts in the direction of β¨. The acceleration component Ap1t is along the length acts in the p0–p1 and acts in the direction toward the center of rotation (i.e., toward p0).† The acceleration component Ap1n is also tangent to the length p0–p1 but acts in the direction of β˙.‡ The acceleration component V¨ (the sliding acceleration) is along the length p0–p1 and acts in the direction away from the center of rotation (i.e., away from p0). The total acceleration at p1 is the sum of acceleration components Ap1t, Ap1n, Ap1c, and V¨.






4.4 Four-Bar Mechanism Analysis




4.4.1 Displacement Equations


The planar four-bar mechanism consists of four links interconnected by revolute joints. As calculated from Gruebler’s equation for planar mechanisms (with L = 4 and J1 = 4), the planar four-bar mechanism has a single DOF. A single displacement equation is derived for this mechanism by taking the sum of the displaced mechanism vector loop in Figure 4.4. The equation produced from a clockwise sum of the displaced vector loop is


W1ei(θ+βj)+V1ei(ρ+αj)−U1ei(σ+γj)−G1=0 (4.1)
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FIGURE 4.4 Planar four-bar mechanism displacement variables.



* This type of link is used in slider-crank inversions (see Section 3.6 and Example 4.7).

† This acceleration is also known as centripetal acceleration.

‡ This acceleration is also known as Coriolis acceleration.

After expanding Equation 4.1 and grouping its real and imaginary terms as separate equations, the resulting planar four-bar mechanism displacement equations become


f1(αj, γj)=W1cos(θ+βj)+V1cos(ρ+αj)−U1cos(σ+γj)−G1x=0f2(αj,γj)=W1sin(θ+βj)+V1sin(ρ+αj)−U1sin(σ+γj)−G1y=0 (4.2)


With the exception of the coupler displacement angle αj and follower displacement angle γj, all other variables in the planar four-bar displacement equations are user prescribed. Because f1(αj, γj) and f2(αj, γj) in Equation 4.2 both include the unknown displacement angles αj and γj, these equations form a set of nonlinear simultaneous equations from which the angles are calculated.






4.4.2 Velocity Equations


A single planar four-bar velocity equation is derived by differentiating the planar four-bar displacement equation. Differentiating Equation 4.1 with respect to time produces


iβ˙jW1ei(θ+βj)+iα˙jV1ei(ρ+αj)−iγ˙jU1ei(σ+γj)=0 (4.3)*


Equation 4.4 includes the individual velocity variables from Equation 4.3. The velocity Va1 is the global tangential velocity of the crank link vector—the tangential velocity of a1 with respect to a0 (see Figure 4.5). The velocity Vb1 is the global tangential velocity of the follower-link vector—the tangential velocity of b1 with respect to b0. Also, the velocity Vb1−a1 is the relative tangential velocity of the coupler link vector—the relative tangential velocity of b1 with respect to a1.


Va1=iβ˙jW1ei(θ+βj)Vb1=iγ˙jU1ei(σ+γj)Vb1−a1=iα˙jV1ei(ρ+αj)=Vb1−Va1 (4.4)


* Because the complex coefficient is fully distributed in Equation 4.3 (as well as in the velocity equations for the forthcoming planar mechanisms), it can be cancelled from the equation if preferred.
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FIGURE 4.5 Planar four-bar mechanism velocity variables.



After moving the term iβ˙jW1ei(θ+βj) to the right-hand side of Equation 4.3, expanding this equation, and grouping its real and imaginary terms as separate equations, the resulting planar four-bar mechanism velocity equation in matrix form is


[−V1sin(ρ+αj)U1sin(σ+γj)V1cos(ρ+αj)−U1cos(σ+γj)]{α˙jγ˙j}=β˙j[W1sin(θ+βj)−W1cos(θ+βj)] (4.5)


After including the prescribed mechanism variables and the unknown variables calculated from the planar four-bar displacement equations, Equation 4.5 can be solved (using Cramer’s rule, for example) to calculate the coupler angular velocity α˙j and the follower angular velocity γ˙j.






4.4.3 Acceleration Equations


A single planar four-bar acceleration equation is derived by differentiating the planar four-bar velocity equation. Time differentiation of Equation 4.3 produces


−β˙j2W1ei(θ+βj)+iβ¨jW1ei(θ+βj)−α˙j2V1ei(ρ+αj)+iα¨jV1ei(ρ+αj)−(−γ˙j2U1ei(σ+γj)+iγ¨jU1ei(σ+γj))=0 (4.6)


Equation 4.7 includes the individual acceleration variables from Equation 4.6. The accelerations Aa1n and Aa1t are the global normal and tangential accelerations, respectively, of the crank link vector—the normal and tangential accelerations of a1 with respect to a0 (see Figure 4.6).* The total acceleration Aa1 is the sum of these normal and tangential accelerations. The accelerations Ab1n and Ab1t are the global normal and tangential accelerations, respectively, of the follower-link vector—the normal and tangential accelerations of b1 with respect to b0. The total acceleration Ab1 is the sum of these normal and tangential accelerations. Also, the accelerations A(b1−a1)n and A(b1−a1)t are the relative normal and tangential accelerations, respectively, of b1 with respect to a1—the relative normal and tangential accelerations of the coupler link vector. The total relative acceleration Ab1−a1 is the sum of these normal and tangential accelerations.


Aa1=Aa1t+Aa1n=iβ¨jW1ei(θ+βj)−β˙j2W1ei(θ+βj)Ab1=Ab1t+Ab1n=iγ¨jU1ei(σ+γj)−γ˙j2U1ei(σ+γj)Ab1−a1=A(b1−a1)t+A(b1−a1)n=iα¨jV1ei(ρ+αj)−α˙j2V1ei(ρ+αj)=Ab1−Aa1 (4.7)
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FIGURE 4.6 Planar four-bar mechanism acceleration variables.



After moving the terms β˙j2W1ei(θ+βj), iβ¨jW1ei(θ+βj),γ˙j2U1ei(σ+γj), and α˙j2V1ei(ρ+αj) to the right-hand side of Equation 4.6, expanding this equation, and grouping its real and imaginary terms as separate equations, the resulting planar four-bar mechanism acceleration equation in matrix form is


[−V1sin(ρ+αj)U1sin(σ+γj)V1cos(ρ+α)−U1cos(σ+γ)]{α¨jγ¨j}=β˙j2[W1cos(θ+βj)W1sin(θ+βj)]          − β¨j[−W1sin(θ+βj)W1cos(θ+βj)] − γ˙j2[U1cos(σ+γj)U1sin(σ+γj)] + α˙j2[V1cos(ρ+αj)V1sin(ρ+αj)] (4.8)


* Tangential acceleration (which points along or in the opposite direction to the velocity vector) is the result of a change in the velocity vector magnitude, while normal acceleration or centripetal acceleration (which points toward the center of path curvature) is the result of a change in the velocity vector direction.

After including the prescribed mechanism variables and the unknowns calculated from the planar four-bar displacement and velocity equations, Equation 4.8 can be solved (using Cramer’s rule, for example) to calculate the coupler angular acceleration α¨j and the follower angular acceleration γ¨j.


Appendix B.1 includes the MATLAB file user instructions for planar four-bar displacement, velocity, and acceleration analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equations 4.2, 4.5, and 4.8 are calculated.*






4.4.4 Kinematics of Coupler Locations of Interest


The solutions calculated from the planar four-bar displacement, velocity, and acceleration equations can be used in additional equations to calculate the displacement, velocity, and acceleration of any mechanism link location of interest. Like the planar four-bar kinematic equations, the additional equations are the result of formulating vector-loop equations and their derivatives.


For example, Figure 4.7 illustrates a planar four-bar mechanism with a coupler vector L1 that points to an arbitrary coupler location of interest p1. Equations 4.9 and 4.10 are produced from the loop a0–a1–p1 in Figure 4.7 (where Equation 4.10 is the result of expanding and separating Equation 4.9).


p1j=W1ei(θ+βj)+L1ei(δ+αj) (4.9)


p1xj=W1cos(θ+βj)+L1cos(δ+αj)p1yj=W1sin(θ+βj)+L1sin(δ+αj) (4.10)
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FIGURE 4.7 Planar four-bar mechanism with coupler location p1.



* The library of MATLAB files used in this chapter can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

The velocities of the coupler location of interest can be calculated from Equation 4.12—the expanded form of Equation 4.11 (which is the first derivative of Equation 4.9).


Vp1j=iβ˙jW1ei(θ+βj)+iα˙jL1ei(δ+αj) (4.11)


Vp1xj=−β˙jW1sin(θ+βj)−α˙jL1sin(δ+αj)Vp1yj=β˙jW1cos(θ+βj)+α˙jL1cos(δ+αj) (4.12)


The accelerations of the coupler location of interest can be calculated from Equation 4.14—the expanded form of Equation 4.13 (which is the second derivative of Equation 4.9).


Ap1j=−β˙j2W1ei(θ+βj)+iβ¨jW1ei(θ+βj)−α˙j2L1ei(δ+αj)+iα¨jL1ei(δ+αj) (4.13)


Ap1xj=−β˙j2W1cos(θ+βj)−β¨jW1sin(θ+βj)−α˙j2L1cos(δ+αj)−α¨jL1sin(δ+αj)Ap1yj=−β˙j2W1sin(θ+βj)+β¨jW1cos(θ+βj)−α˙j2L1sin(δ+αj)+α¨jL1cos(δ+αj) (4.14)


The Appendix B.1 MATLAB file also includes Equations 4.10, 4.12, and 4.14, from which displacement, velocity, and acceleration values are calculated for a coupler-link location of interest.




Example 4.1


Problem Statement: Using the Appendix B.1 MATLAB file, calculate the displaced value of coupler point p1 for the planar four-bar mechanism configuration in Table E.4.1 for a 25° crank displacement angle.






TABLE E.4.1 Planar Four-Bar Mechanism Configuration





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1.75, 90°

	1.75, −22.4860°

	1.75, 64.5895°

	0.8660, −0.5

	1, 6.4690°











Known Information: Table E.4.1 and Appendix B.1 MATLAB file.


Solution Approach: Figure E.4.1 includes the input specified (in bold text) in the Appendix B.1 MATLAB file. From the calculated output, it can be determined that the displaced coupler point p1 is pj=0.2127+i1.8912 at a 25° crank displacement angle.
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FIGURE E.4.1 Specified input (in bold text) in the Appendix B.1 MATLAB file for Example 4.1.







Example 4.2


Problem Statement: Using the Appendix B.1 MATLAB file, plot the path traced by point p1 on the level-luffing crane (Figure E.4.2).* The mechanism assembly configuration is given in Table E.4.2. The crank displacement angle range is βj = 10°, 9°, …, −32°.






TABLE E.4.2 Level-Luffing Crane Assembly Configuration





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1.96, 47.4041°

	0.33, −51.6935°

	2.09, 63.7721°

	0.6075, −0.6909

	1.19, −51.6935°
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FIGURE E.4.2 Level-luffing crane mechanism.



Known Information: Table E.4.2 and Appendix B.1 MATLAB file.


Solution Approach: Figure E.4.3 includes the input specified (in bold text) in the Appendix B.1 MATLAB file. In this particular mechanism, configuration the angles for V1 and L1 are identical because both vectors are parallel.* Figure E.4.4 illustrates the path traced by the coupler point p1 using the given crank displacement angle range (with a crank rotation increment of −1°). Figure E.4.5 illustrates the level-luffing crane configuration with the calculated path. The lightly shaded section of curve in this figure is useful for leveling applications because this section maintains a near-constant level.


* A level-luffing crane is a crane designed to trace a horizontal path for leveling applications.

* The angles for V1 and L1 (angles ρ and δ respectively) are identical in this example problem. Identical values for these angles however are not required for four-bar linkages in general.
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FIGURE E.4.3 Specified input (in bold text) in the Appendix B.1 MATLAB file for Example 4.2.
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FIGURE E.4.4 Path traced by point p1 on the level-luffing crane mechanism.
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FIGURE E.4.5 Level-luffing crane mechanism with calculated coupler curve.







Example 4.3


Problem Statement: Using the Appendix B.1 MATLAB file, determine if the two door-linkage configurations in Table E.4.3 (Figure E.4.6a and b) will operate properly as the door closes.






TABLE E.4.3 Door-Linkage Assembly Configurations





	

	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y










	Config. 1

	10, −90°

	8, 8.9743°

	9, −103.4799°

	10, 0






	Config. 2

	8, −90°

	8, 1.4850°

	9, −120.0198°

	12.5, 0











Known Information: Appendix B.1 MATLAB file, Table E.4.3, and displacement angle range for crank link.


Solution Approach: One way to determine the operability of the door-linkage configurations is to calculate their coupler link (or follower link) displacement angles throughout the entire crank-link rotation range and check for circuit defects.* The data calculated from the Appendix B.1 MATLAB file includes the coupler and follower-link displacement angles αj and γj,respectively. The crank rotation range corresponding to Figure E.4.6b is 0° (door fully open) to 90° (door fully closed).
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FIGURE E.4.6 (a) Door linkage and (b) kinematic model of four-bar door linkage.



Figure E.4.7 includes the input specified (in bold text) in the Appendix B.1 MATLAB file. Figure E.4.8 illustrates the calculated coupler link displacement angles with respect to the door (or crank) rotation angle (β) as the door closes. With configuration 1, a discontinuity appears after the door (the crank link of the linkage) exceeds an 84° displacement angle. This discontinuity corresponds to the mechanism exceeding its limiting position and subsequently experiencing a circuit defect (see Section 3.5). Using configuration 1, the door cannot close completely. In contrast, configuration 2 produces a coupler displacement angle curve that is continuous throughout the entire 90° door rotation range. Using configuration 2, the door closes completely.


* During circuit defects, no coupler and follower displacement angles appear in the Appendix B.1 MATLAB file. As a result, circuit defects will appear as discontinuities in coupler and follower displacement angle plots.
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FIGURE E.4.7 Specified input (in bold text) in the Appendix B.1 MATLAB file for Example 4.3.
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FIGURE E.4.8 Coupler displacement angles for Configurations 1 and 2.









4.4.5 Instant Center, Centrodes, and Centrode Generation


An instant center (IC) of velocity is a common point among two links (or two bodies in general) in planar motion which has the same instantaneous velocity in both bodies.* For a mechanical system of n links, the total number of ICs in the system, taking two links at a time, can be calculated from the equation


NIC=n(n−1)2 (4.15)


From Equation 4.15 it can be determined that both the planar four-bar and slider-crank mechanisms have a total number of six ICs each.


There is a systematic procedure to identify the locations of ICs for a given mechanism. Such a procedure is necessary due to the number of ICs that can exist, especially as the number of mechanism links increases. This procedure is based on the Aronhold–Kennedy theorem.† This theorem states the following:




For any three bodies in relative planar motion there will exist three instant centers and the three instant centers are collinear.





Figure 4.8 illustrates a planar four-bar mechanism and each of its six ICs. Also illustrated in this figure is a diagram (called a linear diagram or circle diagram) used to keep track of the ICs that have been located. Numbers 1 through 4 marked around the circle in this diagram correspond to the four links in the planar four-bar mechanism, and the lines connecting the numbers (six lines in total) represent each IC.‡ The lines are drawn one by one as each IC is established, and when every possible line connection has been drawn, the full number of ICs has been produced.
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FIGURE 4.8 Planar four-bar mechanism, its ICs, and circle diagram.



Using Figure 4.8 as an example, the procedure for finding ICs and completing the circle diagram is as follows:




	Using Equation 4.15, calculate the total number of ICs for the given mechanism.


	Number the mechanism links (e.g., 1, 2, 3, …) and mark these numbers on an arbitrary circle. The numbers should be equally spaced.


	Determine as many ICs as possible by inspecting the mechanism. For example, since an IC is a common point among two links in planar motion, the four revolute joints in the planar four-bar mechanism are ICs. As each of these ICs is determined, a line should be drawn in the circle diagram to connect the link numbers corresponding to each IC. For example, the lines in the circle diagram that connect Numbers 1 and 2, 2 and 3, 3 and 4, and 4 and 1 correspond to ICs I1–2, I2–3, I3–4, and I1–4 in Figure 4.8.


	Lines can be drawn along a link length between any two ICs. In Figure 4.8, such lines (the dashed lines) have been drawn along all four mechanism links. The point of intersection of any two lines, in accordance with the Aronhold–Kennedy theorem, is also an IC. These ICs correspond to the links that form a triangle with the drawn lines. For example, in Figure 4.8, because Links 3 and 1 form a triangle with the two lines associated with the top-most IC, this IC is labeled I1–3, and a line (a dashed line) is drawn between Numbers 1 and 3 in the circle diagram. Also, in Figure 4.8, because Links 2 and 4 form a triangle with the two lines associated with the left-most IC, this IC is labeled I2–4, and a line (again, a dashed line) is drawn between Numbers 2 and 4 in the circle diagram.





* ICs are also called poles.

† This theorem (also called Kennedy’s rule) was discovered in 1872 by Aronhold (from Germany) and independently in 1886 by Kennedy (from England).

‡ For example, I1–2 in Figure 4.8 (the IC common between Links 1 and 2) is the straight line connecting Numbers 1 and 2 in the diagram in Figure 4.8 (etc.).

Figure 4.9 illustrates the ICs and completed circle diagram for the slider-crank mechanism. If we recall, a planar four-bar mechanism having a follower link of infinite length becomes a slider-crank mechanism (see Figure 3.2).* A line drawn along the infinite-length follower link is perpendicular to the slider path and passes through the revolute joint attached to the slider (see Figure 4.9). The infinite-length follower link requires an infinite-length ground link, which produces a line parallel to the follower-link line that passes through the grounded revolute joint in Figure 4.9.


* One way to determine the ICs for cam follower systems and gear pairs is to produce an equivalent planar four-bar mechanism for these systems and determine the ICs for the equivalent four-bar mechanism.
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FIGURE 4.9 Slider-crank mechanism, its ICs, and circle diagram.



It is important to note that IC locations change with the position of a mechanism. Therefore, if ICs are required for a given mechanism over a crank rotation range, the IC location procedure must be repeated at each increment of the crank rotation range.


In addition to calculating velocities through vector-loop equations, velocities can also be calculated using ICs. Figure 4.10 includes a planar four-bar mechanism, its IC I1–3, and its velocities Va1, Vb1, and Vp1. As illustrated in this figure, at an instant in time, the coupler link of the planar four-bar mechanism rotates about I1–3. Given the angular velocity of the crank link β˙j, the magnitude of the velocity Va1 (or |Va1|) can be calculated directly, since it is simply the product of the angular velocity and the link length. Once |Va1| has been determined, the angular velocity α˙j in Figure 4.10 can be directly calculated, since |Va1| is also the product of α˙j and the distance between the ICs I1–3 and I2–3. Once α˙j has been determined, the magnitudes of velocities Vp1 and Vb1 can be directly calculated, since |Vp1| and |Vb1| are the products of α˙j and the distances between I1–3 and p1, and I1–3 and b1 (see Figure 4.10), respectively.
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FIGURE 4.10 Planar four-bar velocity analysis using an IC.



Another use for ICs for the planar four-bar mechanism (particularly I1–3) is to replicate the motion of the coupler link. Because the locations of ICs vary with the position of the mechanism, a locus of ICs can be produced over a crank rotation range. A locus of ICs is called a centrode. Figure 4.11a illustrates the centrode produced for a given Grashof triple-rocker mechanism. The centrode produced for a given mechanism is called a fixed centrode because it is stationary. Figure 4.11b illustrates the centrode produced for the inverted triple-rocker mechanism. In this particular inversion, the coupler becomes the ground and the ground becomes the coupler (see Figure 3.13). The centrode produced for an inverted mechanism is called a moving centrode because this centrode can exhibit motion—specifically, rolling motion—over the fixed centrode.




[image: ]

FIGURE 4.11 Fixed and moving centrode construction and use for a triple-rocker mechanism.



When illustrating the fixed and moving centrodes in the same illustration as shown in Figure 4.11c, it can be seen more clearly that the concave curvature of the fixed centrode, combined with the convex curvature of the moving centrode, enables the moving centrode to roll over the fixed centrode. This rolling motion replicates the coupler motion produced by the original mechanism itself. The fixed and moving centrodes can be incorporated into geometry (Figure 4.11d) to ultimately produce alternate mechanisms to replicate the coupler motion of their corresponding original planar four-bar mechanisms.


Appendix B.2 includes the MATLAB file user instructions for planar four-bar fixed and moving centrode generation. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), individual fixed and moving centrode points are calculated for the complete rotation range of a planar four-bar mechanism at 1° crank rotation increments. The Appendix B.2 MATLAB file can also be used to calculate the fixed and moving centrodes for slider-crank mechanisms (defined as a planar four-bar mechanism with a large follower length).* A slider-crank centrode generation example is included in Section 4.5.4.


* When using the Appendix B.2 MATLAB file for the slider-crank mechanism, the follower length should be long enough to produce an acceptable slider error. For example, using the follower fixed pivot coordinates b0 = (3, −100,000) for the four-bar mechanism coordinates a0 = (0, 0), a1 = (0.7071, 0.7071), b1 = (3, 0) produces a maximum sliding error (normal to the sliding direction) of 0.00001.



Example 4.4


Problem Statement: Using the Appendix B.2 MATLAB file, plot the fixed and moving centrodes for a planar four-bar mechanism with the unitless dimensions a0 = (0, 0), a1 = (0, 2), b0 = (1, 0), and b1 = (1.8487, 1.2368).


Known Information: Known mechanism dimensions and Appendix B.2 MATLAB file.


Solution Approach: Figure E.4.9 includes the input specified (in bold text) in the Appendix B.2 MATLAB file. Figure E.4.10 illustrates the given planar four-bar mechanism and sections of the fixed and moving centrodes calculated from the Appendix B.2 MATLAB file.
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FIGURE E.4.9 Specified input (in bold text) in the Appendix B.2 MATLAB file for Example 4.4.
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FIGURE E.4.10 Planar four-bar mechanism and sections of its fixed and moving centrodes.











4.5 Slider-Crank Mechanism Analysis




4.5.1 Displacement Equations


The planar slider-crank mechanism consists of four links interconnected by revolute joints, with the slider link connected to ground by a prismatic joint. As calculated from Gruebler’s equation for planar mechanisms (with L = 4 and J1 = 4), the planar slider-crank mechanism has a single DOF. A single displacement equation is derived for this mechanism by taking the sum of the displaced mechanism vector loop in Figure 4.12. The equation produced from a clockwise vector-loop sum of the displaced vector loop is


ei(θ+βj)+V1ei(ρ+αj)−U1−Gj=0 (4.16)
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FIGURE 4.12 Slider-crank mechanism displacement variables.



As illustrated in Figure 4.12, vector U1 only has an imaginary component (the slider offset distance in the y-direction) and vector Gj only has a real component (the sliding distance in the x-direction). Having a zero U1 produces what is called an in-line slider-crank (a nonzero U1 produces an offset slider-crank).


After expanding Equation 4.16 and grouping its real and imaginary terms as separate equations, the resulting slider-crank mechanism displacement equations become


f1(αj,Gj)=W1cos(θ+βj)+V1cos(ρ+αj)−Gj=0f2(αj)=W1sin(θ+βj)+V1sin(ρ+αj)−U1y=0 (4.17)


With the exception of the coupler displacement angle αj and the slider displacement magnitude Gj, all other variables in the slider-crank displacement equations are user prescribed. Unlike Equation 4.2, which requires a numerical solution (at least in its given form), an analytical solution can be produced for Equation 4.17. The imaginary equation f2(αj) can be rearranged so that


αj=sin−1[U1y−W1sin(θ+βj)V1]−ρ (4.18)


The coupler angle solutions from Equation 4.18 are used in f1(αj, Gj) and the corresponding sliding distances Gj are calculated.






4.5.2 Velocity Equations


A single slider-crank velocity equation is derived by differentiating the slider-crank displacement equation. Differentiating Equation 4.16 with respect to time produces


iβ˙jW1ei(θ+βj)+iα˙jV1ei(ρ+αj)−G˙j=0 (4.19)


Equation 4.20 includes the individual velocity variables from Equation 4.19. The velocity Va1 is the global tangential velocity of the crank link vector—the velocity of a1 with respect to a0 (see Figure 4.13). The velocity Vb1 is the global sliding velocity of the slider link—the sliding velocity of b1 with respect to a0. Also, the velocity Vb1−a1 is the relative tangential velocity of b1 with respect to a1—the relative velocity of the coupler link.


Va1=iβ˙jW1ei(θ+βj)Vb1=G˙jVb1−a1=iα˙jV1ei(ρ+αj)=Vb1−Va1 (4.20)
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FIGURE 4.13 Slider-crank mechanism velocity variables.



After moving the term iβ˙jW1ei(θ+βj) to the right-hand side of Equation 4.19, expanding this equation and grouping its real and imaginary terms as separate equations, the resulting slider-crank mechanism velocity equation in matrix form is


[−V1sin(ρ+αj)−1V1cos(ρ+αj)0]{α˙jG˙j}=−β˙j[−W1sin(θ+βj)W1cos(θ+βj)] (4.21)


After including the prescribed mechanism variables and the unknowns calculated from the slider-crank displacement equations, Equation 4.21 can be solved (using Cramer’s rule, for example) to calculate the coupler angular velocity α˙j and the slider velocity G˙j.




Example 4.5


Problem Statement: Using the Appendix B.3 MATLAB file, calculate the slider position and velocity for the slider-bar mechanism configuration in Table E.4.4 for a 25° crank displacement angle and a constant rotation speed of 7 rad/s.






TABLE E.4.4 Slider-Crank Mechanism Configuration (with Link Lengths in mm)





	W1, θ

	V1, ρ

	U1










	30, 90°

	90, 0°

	30











Known Information: Appendix B.3 MATLAB file, Table E.4.4, β and β˙.


Solution Approach: Figure E.4.11 includes the input specified (in bold text) in the Appendix B.3 MATLAB file. From the calculated output, it can be determined that the slider position and velocity are Gj=77.28 mm and G˙j=−193.10 mm/s, respectively.
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FIGURE E.4.11 Specified input (in bold text) in the Appendix B.3 MATLAB file for Example 4.5.









4.5.3 Acceleration Equations


A single slider-crank acceleration equation is derived by differentiating the slider-crank velocity equation. Time differentiation of the Equation 4.19 produces


−β˙j2W1ei(θ+βj)+iβ¨jW1ei(θ+βj)−α˙j2V1ei(ρ+αj)+iα¨jV1ei(ρ+αj)−G¨j=0 (4.22)


Equation 4.23 includes the individual acceleration terms from Equation 4.22. The accelerations Aa1n and Aa1t are the global normal and tangential accelerations, respectively, of the crank link vector—the normal and tangential accelerations of a1 with respect to a0 (see Figure 4.14). The total acceleration Aa1 is the sum of these normal and tangential accelerations. The acceleration Ab1 is the global sliding acceleration of the slider link—the sliding acceleration of b1 with respect to a0. Also, the accelerations A(b1−a1)n and A(b1−a1)t are the relative normal and tangential accelerations, respectively, of b1 with respect to a1—the relative normal and tangential accelerations of the coupler link. The total relative acceleration Ab1−a1 is the sum of these normal and tangential accelerations.


Aa1=Aa1t+Aa1n=iβ¨j2W1ei(θ+βj)−β˙j2W1ei(θ+βj)Ab1=G¨jAb1−a1=A(b1−a1)t+A(b1−a1)n=iα¨jV1ei(ρ+αj)−α˙j2V1ei(ρ+αj)=Ab1−Aa1 (4.23)
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FIGURE 4.14 Slider-crank mechanism acceleration variables.



After moving the terms β˙j2W1ei(θ+βj), iβ¨jW1ei(θ+βj), and α˙j2V1ei(ρ+αj) to the right-hand side of Equation 4.22, expanding this equation, and grouping its real and imaginary terms as separate equations, the resulting slider-crank mechanism acceleration equation in matrix form is


[−V1sin(ρ+αj)−1V1cos(ρ+αj)0]{α¨j​G¨j}=β˙j2[W1cos(θ+βj)W1sin(θ+βj)]−β¨j[−W1sin(θ+βj)W1cos(θ+βj)] +α˙j2[V1cos(ρ+αj)V1sin(ρ+αj)] (4.24)


After including the prescribed mechanism variables and the unknowns calculated from the slider-crank displacement and velocity equations, Equation 4.24 can be solved (using Cramer’s rule, for example) to calculate the coupler angular acceleration α¨j and the slider acceleration G¨j.


Appendix B.3 includes the MATLAB file user instructions for slider-crank displacement, velocity, and acceleration analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equations 4.17, 4.21, and 4.24 are calculated.




Example 4.6


Problem Statement: Using the Appendix B.3 MATLAB file, plot the displacement, velocity, and acceleration profiles for the piston in the crankshaft-connecting rod-piston linkage (Figure E.4.12). The mechanism assembly configuration and driving link parameters are given in Table E.4.5.
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FIGURE E.4.12 Crankshaft-connecting rod-piston linkage.







TABLE E.4.5 Slider-Crank Mechanism Assembly Configuration (with Link Lengths in cm)





	W1, θ

	V1, ρ

	β˙0

	β¨










	1, 45°

	1.5, −28.1255°

	100 rad/s

	0 rad/s2











Known Information: Table E.4.5 and Appendix B.3 MATLAB file.


Solution Approach: As illustrated in Figure E.4.12, the crankshaft-connecting rod-piston linkage is an in-line slider crank mechanism (therefore U1 = 0). Because variable Gx corresponds to piston displacement, the displacement, velocity, and acceleration profiles of the piston can be produced by calculating and plotting Gx, G˙x, and G¨x, respectively.


Figure E.4.13 includes the input specified (in bold text) in the Appendix B.3 MATLAB file. Figure E.4.14 illustrates the piston displacement, velocity, and acceleration profiles with respect to the crank rotation angle (β) over the prescribed 720° crank rotation range.
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FIGURE E.4.13 Specified input (in bold text) in the Appendix B.3 MATLAB file for Example 4.6.
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FIGURE E.4.14 Piston (a) displacement, (b) velocity, and (c) acceleration profiles.







Example 4.7


Problem Statement: Derive vector-loop displacement, velocity, and acceleration equations for the slider-crank inversion illustrated in Figure E.4.15(a). The starting and displaced mechanism variables are included in Figure E.4.15(b). Also verify the velocity and acceleration equations in MATLAB.
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FIGURE E.4.15 (a) Slider-crank inversion and (b) mechanism displacement variables.



Known Information: Figure E.4.15 and vector-loop formulation procedure.


Solution Approach: The two unknowns in the inverted slider-crank mechanism are the sliding distance Vj and the follower displacement angle γj (which is the same displacement angle for the sliding distance vector Vj).* The angle formed by U1 and Vj (angle ρ in Figure E.4.15(b)) remains constant throughout mechanism motion.


DISPLACEMENT EQUATION


Taking a clockwise vector-loop sum for the vector loop in Figure E.4.15(b) produces


W1ei(θ+βj)−Vjei(σ+γj+ρ)−U1ei(σ+γj)−G1=0 (4.25)


* The sliding distance is also the distance between points a1 and b1 in Figure E.4.11. Due to the sliding joint, the distance between these two points (the scalar length of Vj) can change throughout mechanism motion.

VELOCITY EQUATION


Taking the derivative of Equation 4.25 produces


iβ˙jW1ei(θ+βj)−iγ˙jVjei(σ+γj+ρ)−V˙jei(σ+γj+ρ)−iγ˙jU1ei(σ+γj)=0 (4.26)


Equation (4.27) includes the individual velocity variables from Equation (4.26). The velocity Va1 is the global tangential velocity of the crank link vector—the tangential velocity of a1 with respect to a0 (see Figure E.4.16). The velocity Vb1 is the global tangential velocity of the follower-link vector—the tangential velocity of b1 with respect to b0. The velocity Vb1−a1 is the relative tangential velocity of the coupler link vector—the relative tangential velocity of b1 with respect to a1. The velocity V˙j is the relative sliding velocity of a1 with respect to b1—the velocity of the sliding distance vector Vj.


Va1=iβ˙jW1ei(θ+βj)Vb1=iγ˙jU1ei(σ+γj)V˙j=V˙jei(σ+γj+ρ)Vb1–a1=iγ˙jVjei(σ+γj+ρ) (4.27)
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FIGURE E.4.16 Inverted slider-crank mechanism velocity variables.



ACCELERATION EQUATION


Taking the derivative of Equation (4.26) produces


−β˙j2W1ei(θ+βj)+iβ¨jW1ei(θ+βj)+ γ˙j2Vjei(σ+γj+ρ)−i2γ˙jV˙jei(σ+γj+ρ)−iγ¨jVjei(σ+γj+ρ)−V¨jei(σ+γj+ρ)+γ˙j2U1ei(σ+γj)−iγ¨jU1ei(σ+γj)=0 (4.28)


Equation (4.29) includes the individual acceleration variables from Equation (4.28). The accelerations Aa1n and Aa1t are the global normal and tangential accelerations, respectively, of the crank link vector—the normal and tangential accelerations of a1 with respect to a0 (see Figure E.4.17). The total acceleration Aa1 is the sum of these normal and tangential accelerations. The accelerations Ab1n and Ab1t are the global normal and tangential accelerations, respectively, of the follower link vector—the normal and tangential accelerations of b1 with respect to b0. The total acceleration Ab1 is the sum of these normal and tangential accelerations. The accelerations A(b1−a1)n and A(b1–a1)t are the relative normal and tangential accelerations, respectively, of b1 with respect to a1—the relative normal and tangential accelerations of the coupler link vector. The acceleration V¨j is the relative sliding acceleration of a1 with respect to b1—the acceleration of the sliding distance vector Vj. Lastly, the acceleration A(b1–a1)c is called the Coriolis acceleration [3]. This acceleration component is present whenever a link includes both sliding and angular velocities. While the Coriolis acceleration is tangent to the coupler link (like the relative tangential acceleration of b1 with respect to a1), its direction matches the direction of γ˙j (while the direction of A(b1–a1)t matches the direction of γ¨j). The total relative acceleration of point b1 with respect to a1 is the sum of A(b1–a1)n, A(b1–a1)t, V¨j, and A(b1–a1)c.


Aa1=Aa1t+Aa1n=iβ¨jW1ei(θ+βj)−β˙j2W1ei(θ+βj)Ab1=Ab1t+Ab1n=γ˙j2U1ei(σ+γj)−iγ¨jU1ei(σ+γj)A(b1–a1)t=iγ¨jVjei(σ+γj+ρ)A(b1–a1)n=γ˙j2Vjei(σ+γj+ρ)V¨j=V¨jei(σ+γj+ρ)A(b1–a1)c=i2γ˙jV˙jei(σ+γj+ρ)


A(b1–a1)=A(b1–a1)t+A(b1–a1)n+V¨j+A(b1–a1)c (4.29)
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FIGURE E.4.17 Inverted slider-crank mechanism acceleration variables.



EQUATION FORMULATION IN MATLAB


Figure E.4.18 includes the calculation procedure in MATLAB’s command window. In this figure, the terms diff(beta(t),t), diff(V(t),t) and diff(gamma(t),t) represent the terms β˙j, V˙j and γ˙j Equation (4.26), respectively. The terms diff(beta(t),t,t), diff(V(t),t,t) and diff(gamma(t),t,t) in Figure E.4.18 represent the terms β¨j, V¨j and γ¨j Equation (4.26), respectively.
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FIGURE E.4.18 Example 4.7 calculation procedure in MATLAB.









4.5.4 Centrode Generation


The procedure to calculate ICs for the slider-crank mechanism are presented in Section 4.4.5. Like the planar four-bar mechanism, slider-crank mechanism ICs are useful for velocity analysis, and slider-crank mechanism fixed and moving centrodes are useful for replicating coupler motion.


By specifying the coordinates of a slider-crank mechanism in the Appendix B.2 MATLAB file, the fixed and moving centrodes for this mechanism are calculated.




Example 4.8


Problem Statement: Using the Appendix B.2 MATLAB file, plot the fixed and moving centrodes for a planar slider-crank mechanism with the unitless dimensions a0 = (0, 0), a1 = (0, 1) and b1 = (2, 0).


Known Information: Known mechanism dimensions and Appendix B.2 MATLAB file.


Solution Approach: Because the dimensions for a planar four-bar mechanism are required for the Appendix B.2 MATLAB file, the coordinates of the fixed pivot b0 are required. The coordinates b0 = (2, −100,000) were used because with this value, the moving pivot b1 (the slider) is accurate to five decimal places.*


Figure E.4.19 includes the input specified (in bold text) in the Appendix B.2 MATLAB file. Figure E.4.20 illustrates the given slider-crank mechanism and sections of the fixed and moving centrodes calculated from the Appendix B.2 MATLAB file.
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FIGURE E.4.19 Specified input (in bold text) in the Appendix B.2 MATLAB file for Example 4.8.
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FIGURE E.4.20 Slider-crank mechanism and sections of its fixed and moving centrodes.





* Because the follower has an infinite length in a slider-crank mechanism, the accuracy of the slider increases as the value of b0y increases.







4.6 Geared Five-Bar Mechanism Analysis




4.6.1 Displacement Equations


The geared five-bar mechanism consists of five links interconnected by revolute joints. Also included in this mechanism is a gear pair or gear train that couples the input and output links (see Figure 4.15). As calculated from Gruebler’s equation for planar mechanisms (with L = 5, J1 = 5, and J2 = 1), the geared five-bar mechanism has a single DOF. A single displacement equation is derived for this mechanism by taking the sum of the displaced mechanism vector loop in Figure 4.15. The equation produced from a clockwise sum of the displaced vector loop is


W1ei(θ+βj)+V1ei(ρ+αj)−S1ei(ψ+vj)−U1ei(σ+γj)−G1=0 (4.30)
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FIGURE 4.15 Geared five-bar mechanism displacement equation variables.



The relationship between the displacement angles of the crank W1 and the output link U1 can be expressed as


γj=±βjr (4.31)


where the variable r represents the gear ratio of the gear pair or train. The gear ratio can be defined as the ratio of the driven gear radius to the driving gear radius (r=rdriven/rdriving). If W1 and U1 rotate in the same direction (which occurs when an odd number of gears is used), the gear ratio is positive, and it is negative if they rotate in opposite directions (which occurs when an even number of gears is used).


After expanding Equation 4.30 and grouping its real and imaginary terms as separate equations, the resulting geared five-bar mechanism displacement equations become


f1(αj,vj)=W1cos(θ+βj)+V1cos(ρ+αj)−S1cos(ψ+vj)−U1cos(σ+γj)−G1x=0f2(αj,vj)=W1sin(θ+βj)+V1sin(ρ+αj)−S1sin(ψ+vj)−U1sin(σ+γj)−G1y=0 (4.32)


With the exception of the intermediate link displacement angles αj and vj, all other variables in the geared five-bar displacement equations are user prescribed. Because f1(αj, vj) and f2(αj, vj) in Equation 4.32 both include the unknown displacement angles αj and vj, these equations form a set of nonlinear simultaneous equations from which the angles are calculated.






4.6.2 Velocity Equations


A single-geared five-bar velocity equation is derived by differentiating the geared five-bar displacement equation. Differentiating Equation 4.30 with respect to time produces


iβ˙jW1ei(θ+βj)+iα˙jV1ei(ρ+αj)−iv˙jS1ei(ψ+vj)+iγ˙jU1ei(σ+γj)=0 (4.33)


The relationship between the angular velocities of the crank W1 and the output link U1 (the time derivative of Equation 4.31) becomes


γ˙j=±β˙jr (4.34)


Equation 4.35 includes the individual velocity terms from Equation 4.33. The velocity Va1 is the global tangential velocity of the crank link vector—the tangential velocity of a1 with respect to a0 (see Figure 4.16). The velocity Vb1 is the global tangential velocity of the output link vector—the tangential velocity of b1 with respect to b0. Also, the velocity Vc1−a1 is the relative tangential velocity of c1 with respect to a1—the relative tangential velocity of this intermediate link. The global velocity of c1 (Vc1) can be calculated from the last equation in Equation 4.35.


Va1=iβ˙jW1ei(θ+βj)Vb1=iγ˙jU1ei(σ+γj)Vc1−a1=iα˙jV1ei(ρ+αj)=Vc1−Va1 (4.35)
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FIGURE 4.16 Geared five-bar mechanism velocity variables.



After moving the terms iβ˙jW1ei(θ+βj) and iγ˙jU1ei(σ+γj) to the right-hand side of Equation 4.33, expanding this equation, and grouping its real and imaginary terms as separate equations, the resulting geared five-bar mechanism velocity equation in matrix form is


[−V1sin(ρ+αj)S1sin(ψ+vj)V1cos(ρ+αj)−S1cos(ψ+vj)]{α˙jv˙j} =β˙j[W1sin(θ+βj)−W1cos(θ+βj)]+γ˙j[−U1sin(σ+γj)U1cos(σ+γj)] (4.36)


After including the prescribed mechanism variables and the unknowns calculated from the geared five-bar displacement equations, Equation 4.36 can be solved (using Cramer’s rule, for example) to calculate the intermediate link angular velocities α˙j and v˙j.






4.6.3 Acceleration Equations


A single planar four-bar acceleration equation is derived by differentiating the planar four-bar velocity equation. Time differentiation of Equation 4.33 produces


−β˙j2W1ei(θ+βj)+iβ¨jW1ei(θ+βj)−α˙j2V1ei(ρ+αj)+iα¨jV1ei(ρ+αj)−(−v˙j2S1ei(ψ+vj)+iv¨jS1ei(ψ+vj))  −(−γ˙j2U1ei(σ+γj)+iγ¨jU1ei(σ+γj))=0 (4.37)


The relationship between the angular accelerations of the crank W1 and the output link U1 (the time derivative of Equation 4.34) becomes


γ¨j=±β¨jr (4.38)


Equation 4.39 includes the individual acceleration terms from Equation 4.37. The accelerations Aa1n and Aa1t are the global normal and tangential accelerations, respectively, of the crank link vector—the normal and tangential accelerations of a1 with respect to a0 (see Figure 4.17). The total acceleration of Aa1 is the sum of these normal and tangential accelerations. The accelerations Ab1n and Ab1t are the global normal and tangential accelerations, respectively, of the output link vector— the normal and tangential accelerations of b1 with respect to b0. The total acceleration Ab1 is the sum of these normal and tangential accelerations. Also, the accelerations A(c1−a1)n and A(c1−a1)t are the relative normal and tangential accelerations, respectively, of c1 with respect to a1—the relative normal and tangential accelerations of this intermediate link. The total relative acceleration Ac1−a1 is the sum of these normal and tangential accelerations. The global acceleration of c1 (Ac1) can be calculated from the last equation in Equation 4.39.


Aa1=Aa1t+Aa1n=iβ¨jW1ei(θ+βj)−β˙j2W1ei(θ+βj)Ab1=Ab1t+Ab1n=iγ¨jU1ei(σ+γj)−γ˙j2U1ei(σ+γj)Ac1–a1=A(c1−a1)t+A(c1−a1)n=iαjV1ei(ρ+αj)−αj2V1ei(ρ+αj)=Ac1−Aa1 (4.39)
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FIGURE 4.17 Geared five-bar mechanism acceleration variables.



After moving the terms β˙j2W1ei(θ+βj), iβ¨jW1ei(θ+βj), γ˙j2U1ei(σ+γj), iγ¨jU1ei(σ+γj), α˙j2V1ei(ρ+αj), and v˙j2S1ei(ψ+vj) to the right-hand side of Equation 4.37, expanding this equation, and grouping its real and imaginary terms as separate equations, the resulting geared five-bar mechanism acceleration equation in matrix form becomes


[−V1sin(ρ+αj)S1sin(ψ+vj)V1cos(ρ+αj)−S1cos(ψ+vj)]{α¨jv¨j}=β˙j2[W1cos(θ+βj)W1sin(θ+βj)]−β¨j[−W1sin(θ+βj)W1cos(θ+βj)]−γ˙j2[U1cos(σ+γj)U1sin(σ+γj)]+γ¨j[−U1sin(σ+γj)U1cos(σ+γj)]+α˙j2[V1cos(ρ+αj)V1sin(ρ+αj)]+v˙j2[S1cos(ψ+vj)S1sin(ψ+vj)] (4.40)


After including the prescribed mechanism variables and the unknowns calculated from the geared five-bar displacement and velocity equations, Equation 4.40 can be solved (using Cramer’s rule, for example) to calculate the intermediate link angular accelerations α¨j and v¨j.


Appendices B.4 and B.5 include the MATLAB file user instructions for geared five-bar displacement, velocity, and acceleration analysis. The Appendix B.4 file considers a mechanism having two gears (or negative gear ratios) and the Appendix B.5 file considers a mechanism having three gears (or positive gear ratios). In these MATLAB files (which are available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equations 4.32, 4.36, and 4.40 are calculated.






4.6.4 Kinematics of Intermediate Link Locations of Interest


Equations 4.10, 4.12, and 4.14 can be directly applied to calculate the displacements, velocities, and accelerations of an arbitrary intermediate link location of interest p1 of a geared five-bar mechanism (see Figure 4.18). The Appendix B.4 and B.5 MATLAB files include Equations 4.10, 4.12, and 4.14, from which displacement, velocity, and acceleration values are calculated for p1.
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FIGURE 4.18 Geared five-bar mechanism with intermediate link location p1.





Example 4.9


Problem Statement: Using the Appendix B.5 MATLAB file, calculate the displaced value of link point p1 and its velocity for the geared five-bar mechanism configuration in Table E.4.6 for a 45° crank displacement angle and a constant rotation speed of 1.5 rad/s. The gear ratio is r = +2.






TABLE E.4.6 Geared Five-Bar Mechanism Configuration (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	S1, ψ

	G1x, G1y

	L1, δ










	0.35, 90°

	0.525, 54.7643°

	0.35, 60°

	0.525, 115.0279°

	0.35, 0

	0.35, −15.7645°











Known Information: Appendix B.5 MATLAB file, Table E.4.6, β, and β˙.


Solution Approach: Figure E.4.21 includes the input specified (in bold text) in the Appendix B.5 MATLAB file. From the calculated output, it can be determined that the displaced coupler point p1 is pj=(0.0972+i0.1865) m and its velocity is Vpj=(−0.3480−i0.2398) m/s at a 45° crank displacement angle.
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FIGURE E.4.21 Specified input (in bold text) in the Appendix B.5 MATLAB file for Example 4.9.







Example 4.10


Problem Statement: Using the Appendix B.5 MATLAB file, calculate the location, velocity and acceleration values of p1 at β = 0°, 15°, 30°, …, 90° given the geared five-bar mechanism dimensions in Table E.4.7. The initial angular velocity and angular acceleration of the driving link are β˙0 = 1 rad/s and β¨=0.1 rad/s2, respectively. The gear ratio is r = +2.






TABLE E.4.7 Geared Five-Bar Mechanism Dimensions (with Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	S1, ψ

	G1x, G1y

	L1, δ










	1, 90°

	1.5, 32.7304°

	1.5, 45°

	1.5, 149.9837°

	1.5, 0

	1, 74.1400°











Known Information: Table E.4.7 and Appendix B.5 MATLAB file.


Solution Approach: Figure E.4.22 includes the input specified (in bold text) in the Appendix B.5 MATLAB file. Table E.4.8 includes the values of p1j, Vp1j and Ap1j calculated from the Appendix B.5 MATLAB file over the given crank rotation range.
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FIGURE E.4.22 Specified input (in bold text) in the Appendix B.5 MATLAB file for Example 4.10.







TABLE E.4.8 Calculated Geared Five-Bar Point Positions, Velocities, and Accelerations





	β

	p1j (m)

	Vp1j (m/s)

	Ap1j (m/s2)










	0°

	0.2733, 1.9619

	−0.8980, −0.0290

	−0.2352, −0.9733






	15°

	0.0360, 1.9215

	−0.9273, −0.2851

	0.0102, −0.9959






	30°

	−0.1949, 1.8184

	−0.8956, −0.5302

	0.2336, −0.9326






	45°

	−0.4068, 1.6609

	−0.8202, −0.7419

	0.3516, −0.7683






	60°

	−0.5944, 1.4624

	−0.7440, −0.8976

	0.2326, −0.5178






	75°

	−0.7657, 1.2386

	−0.7199, −0.9973

	0.0079, −0.3769






	90°

	−0.9304, 0.9976

	−0.6957, −1.0978

	0.2980, −0.5166



















4.7 Watt II Mechanism Analysis


The Watt II mechanism consists of six links interconnected by revolute joints. As calculated from Gruebler’s equation for planar mechanisms (with L = 6 and J1 = 7), the Watt II mechanism has a single DOF.


From Figure 4.19a, it can be seen that the Watt II mechanism is essentially two planar four-bar mechanisms that share a common link—the follower link of one planar four-bar mechanism being the crank link of the other mechanism.* Because of this particular construction, the displacement, velocity, and acceleration equations presented in Section 4.4 for the planar four-bar mechanism can be used to analyze the Watt II mechanism.
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FIGURE 4.19 (a) Watt II mechanism and (b) mechanism displacement variables.



Figure 4.19b includes the displacement variables for the Watt II mechanism. Mechanism loop W1–V1–U1–G1 is the planar four-bar mechanism loop presented in Section 4.4. For this mechanism loop, the equations in Section 4.4 can be used directly. Mechanism loop W1*−V1*−U1* − G1*is the additional planar four-bar mechanism loop. Because vectors W1* (the crank of mechanism W1*−V1*−U1* − G1*) and U1 (the follower of mechanism W1–V1–U1–G1) share the same link, the follower angular displacement, velocity, and acceleration values calculated for the first planar four-bar mechanism are the crank angular displacement, velocity, and acceleration values for the second planar four-bar mechanism (therefore γj=βj*, γ˙j=β˙j*, and γ¨j=β¨j*).


* The Watt II mechanism can also be described as essentially a planar four-bar mechanism with a dyad attached to its follower link.

The equations in Section 4.4 can also be used to analyze mechanism loop W1*−V1*−U1* −G1*. When using the planar four-bar displacement equations for this mechanism loop, the results must be offset by a value of G1*, since the grounded pivot of W1* (pivot a0* in Figure 4.19b) is offset from the coordinate system origin by this value. As a result, Equations 4.9 and 4.10, when utilized to calculate the coordinates of p1* would take on the form


p1∗=G1+W1∗ei(θ*+βj∗)+L1∗ei(δ*+αj∗) (4.41)


p1xj∗=G1x+W1∗cos(θ∗+βj∗)+L1*cos(δ∗+αj∗)p1yj∗=G1y+W1∗sin(θ∗+βj∗)+L1*sin(δ∗+αj∗) (4.42)


The velocity and acceleration equations in Section 4.4, on the other hand, can be used directly for mechanism loop W1*−V1*−U1* − G1*.


Appendix B.6 includes the MATLAB file user instructions for Watt II displacement, velocity, and acceleration analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for both Watt II mechanism loops are calculated using the planar four-bar displacement, velocity, and acceleration equations in Section 4.4. This MATLAB file also includes Equation 4.42 and its derivatives for the analysis coupler point p1*.




Example 4.11


Problem Statement: Using the Appendix B.6 MATLAB file, calculate the displaced value of coupler point p1* for the Watt II mechanism configuration in Tables E.4.1 and E.4.9 for a −55° crank displacement angle.






TABLE E.4.9 Watt II Mechanism Configuration





	W1*, θ*

	V1*, ρ*

	U1*, σ*

	G1x*,G1y*

	L1*, δ*










	1, 45°

	1.25, 16.6249°

	1.25, 58.4069°

	1.25, 0

	1.5, 34.8197°











Known Information: Tables E.4.1, E.4.9, and Appendix B.6 MATLAB file.


Solution Approach: Figure E.4.23 includes the input specified (in bold text) in the Appendix B.6 MATLAB file. From the calculated output, it can be determined that the displaced coupler point p1 is pj=0.7063+i0.2577 at a −55° crank displacement angle.
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FIGURE E.4.23 Specified input (in bold text) in the Appendix B.6 MATLAB file for Example 4.11.







Example 4.12


Problem Statement: Using the Appendix B.6 MATLAB file, calculate the location and acceleration values of p1* at β = 0°, −15°, −30, …, −90° given the Watt II mechanism dimensions in Table E.4.10. The initial angular velocity and angular acceleration of W1 are β˙0=−1.5 rad/s and β¨=−0.25 rad/s2, respectively.


Known Information: Table E.4.10 and Appendix B.6 MATLAB file.






TABLE E.4.10 Watt II Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1,90°

	1.5, 19.3737°

	1.5, 93.2461°

	1.5, 0

	1, 60.7834°






	W1*, θ*

	V1*, ρ*

	U1*, σ*

	G1x*,G1y*

	L1*, δ*






	1, 45°

	1.5, 7.9416°

	1.5, 60.2717°

	1.4489, −0.3882

	1, 49.3512°











Solution Approach: Figure E.4.24 includes the input specified (in bold text) in the Appendix B.6 MATLAB file. Table E.4.11 includes the values of p1j*, Vp1j* and Ap1j* calculated from the Appendix B.6 MATLAB file over the given crank rotation range.




[image: ]

FIGURE E.4.24 Specified input (in bold text) in the Appendix B.6 MATLAB file for Example 4.12.







TABLE E.4.11 Calculated Watt II Point Positions, Velocities, and Accelerations





	β

	p1j* (m)

	Vp1j* (m/s)

	Ap1j* (m/s2)










	0°

	2.8585, 1.4658

	0.5291, −0.5525

	−1.1396, −0.3436






	−15°

	2.9309, 1.3677

	0.3029, −0.5747

	−1.4555, 0.1176






	−30°

	2.9610, 1.2759

	0.0591, −0.5039

	−1.3376, 0.7658






	−45°

	2.9566, 1.2078

	−0.0796, −0.3041

	−0.1181, 1.7982






	−60°

	2.9509, 1.1899

	0.0535, 0.1407

	1.4468, 4.1631






	−75°

	2.9606, 1.2790

	−0.1487, 1.1232

	−7.2492, 8.3587






	−90°

	2.7922, 1.5254

	−2.2811, 1.7817

	−13.9847, −4.4822

















4.8 Stephenson III Mechanism Analysis




4.8.1 Displacement Equations


The Stephenson III mechanism consists of six links interconnected by revolute joints. As calculated from Gruebler’s equation for planar mechanisms (with L = 6 and J1 = 7), the Stephenson III mechanism has a single DOF.


From Figure 4.20a, it can be seen that the Stephenson III mechanism is essentially a planar four-bar mechanism with a dyad connected to the coupler link. Because of this particular construction, the displacement, velocity, and acceleration equations presented in Section 4.4 for the planar four-bar mechanism can be used to analyze the planar four-bar mechanism loop of the Stephenson III mechanism.
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FIGURE 4.20 (a) Stephenson III mechanism and (b) mechanism displacement variables.



To analyze the U1*−V1* dyad (Figure 4.20b), a vector loop must be formed that includes this dyad. The equation produced from the clockwise vector-loop sum W1−L1−V1*−U1*−G1*−G1 is


W1ei(θ+βj)+L1ei(δ+αj)+V1∗ei(ρ*+αj∗)−U1∗ei(σ*+γj∗)−G1∗−G1=0 (4.43)


After expanding Equation 4.43 and grouping its real and imaginary terms as separate equations, the resulting Stephenson III mechanism displacement equations become


f1(αj∗,γj∗)=W1cos(θ+βj)+L1cos(δ+αj)+V1∗cos(ρ∗+αj∗)     −U1∗cos(σ∗+γj∗)−G1x∗−G1x=0f2(αj∗,γj∗)=W1sin(θ+βj)+L11sin(δ+αj)+V1∗sin(ρ∗+αj∗)     −U1∗sin(σ∗+γj∗)−G1y∗−G1y=0 (4.44)


With the exception of the U1*−V1* dyad displacement angles αj* and γj*, all other variables in the Stephenson III mechanism displacement equations are either user prescribed or calculated from Equation 4.2. Because f1(αj*,γj*) and f2(αj*,γj*) in Equation 4.44 both include the unknown U1*−V1* dyad displacement angles αj* and γj* these equations form a set of nonlinear simultaneous equations from which the angles are calculated.




Example 4.13


Problem Statement: Using the Appendix B.7 MATLAB file, calculate the displacement angle of vector V1* for the Stephenson III mechanism configuration in Tables E.4.1 and E.4.12 for a 50° crank displacement angle.






TABLE E.4.12 Stephenson III Mechanism Configuration





	V1*, ρ*

	U1*, σ*

	G1x*,G1y*










	1.75, −8.8397°

	1.75, 65.6031°

	1.1340, 0.5











Known Information: Tables E.4.1, E.4.12, and Appendix B.7 MATLAB file.


Solution Approach: Figure E.4.25 includes the input specified (in bold text) in the Appendix B.7 MATLAB file. From the calculated output, it can be determined that the displacement angle of vector V1* is αj*=7.1215° at a 50° crank displacement angle.
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FIGURE E.4.25 Specified input (in bold text) in the Appendix B.7 MATLAB file for Example 4.13.









4.8.2 Velocity Equations


Because the Stephenson III mechanism loop W1–V1–U1–G1 is a planar four-bar mechanism, a velocity analysis for this mechanism loop can be conducted using the planar four-bar velocity equations in Section 4.4. In this section, velocity equations for the Stephenson III mechanism dyad U1*−V1* (Figure 4.21) are presented.
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FIGURE 4.21 Stephenson III mechanism velocity variables.



A single Stephenson III velocity equation is derived by differentiating the Stephenson III displacement equation. Differentiating Equation 4.43 with respect to time produces


iβ˙jW1ei(θ+βj)+iα˙jL1ei(δ+αj)+iα˙j∗V1∗ei(ρ*+αj∗)−iγ˙j∗U1∗ei(σ*+γj∗)=0 (4.45)


Equation 4.46 includes the individual velocity terms from Equation 4.45. The velocity Vb1* is the global tangential velocity of vector U1*—the tangential velocity of b1* with respect to b0* (see Figure 4.21). The velocity Vp1−b1* is the relative tangential velocity of p1 with respect to b1*—the relative tangential velocity of vector V1*. The global velocity of p1(Vp1) can be calculated from the last equation in Equation 4.46.


Vb1∗=iγ˙j∗U1∗ei(σ*+γj∗)Vp1–b1∗=iα˙j∗V1∗ei(ρ*+αj∗)=Vp1−Vb1∗ (4.46)


After moving the terms iβ˙jW1ei(θ+βj) and iα˙jL1ei(δ+αj) to the right-hand side of Equation 4.45, expanding this equation, and grouping its real and imaginary terms as separate equations, the resulting Stephenson III mechanism velocity equation in matrix form becomes


[−V1∗sin(ρ∗+αj∗)U1∗sin(σ∗+γj∗)V1∗cos(ρ∗+αj∗)−U1∗cos(σ∗+γj∗)]{α˙j∗γ˙j∗} =β˙j[W1sin(θ+βj)−W1cos(θ+βj)]+α˙j[L1sin(δ+αj)−L1cos(δ+αj)] (4.47)


After including the prescribed mechanism variables and the unknowns calculated from the Stephenson III displacement equations, Equation 4.47 can be solved (using Cramer’s rule, for example) to calculate the U1*−V1* dyad angular velocities α˙j* and γ˙j*.






4.8.3 Acceleration Equations


A single planar four-bar acceleration equation is derived by differentiating the planar four-bar velocity equation. Time differentiation of Equation 4.45 produces


−β˙j2W1ei(θ+βj)+iβ¨jW1ei(θ+βj)−α˙j2L1ei(δ+αj)+iα¨jL1ei(δ+αj)−(α˙j∗)2V1∗ei(ρ∗+αj∗)+iα¨j∗V1∗ei(ρ∗+αj∗)−(−(γ˙j∗)2U1∗ei(σ∗+γj∗)+iγ¨j∗U1∗ei(σ∗+γj∗))=0 (4.48)


Equation 4.49 includes the individual acceleration terms from Equation 4.48. The accelerations Ab1n* and Ab1t* are the global normal and tangential accelerations, respectively, of vector U1* —the normal and tangential accelerations of b1* with respect to b0* (see Figure 4.22). The total acceleration of Ab1* is the sum of these normal and tangential accelerations. The accelerations A(p1−b1*)n and A(p1−b1*)t are the relative normal and tangential accelerations, respectively, of p1 with respect to b1*—the relative normal and tangential accelerations of vector V1*. The total relative acceleration Ap1−b1* is the sum of these normal and tangential accelerations. The global acceleration of p1(Ap1) can be calculated from the last equation in Equation 4.49.


Ab1∗=Ab1t∗+Ab1n∗=iγ¨j∗U1∗ei(σ∗+γj∗)−(γ˙j∗)2U1∗ei(σ∗+γj∗)Ap1−b1∗=A(p1−b1∗)t+A(p1−b1∗)n=iα¨j∗V1∗ei(ρ*+αj∗)−(α˙j∗)2V1∗ei(ρ*+αj∗)=Ap1−Ab1∗ (4.49)
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FIGURE 4.22 Stephenson III mechanism acceleration variables.



After moving all the terms except iα¨j*V1*ei(ρ*+αj*) and iγ¨j*U1*ei(σ*+γj*) to the right-hand side of Equation 4.48, expanding this equation, and grouping its real and imaginary terms as separate equations, the resulting Stephenson III mechanism acceleration equation in matrix form becomes


[−V1∗sin(ρ∗+αj∗)U1∗sin(σ∗+γj∗)V1∗cos(ρ∗+αj∗)−U1∗cos(σ∗+γj∗)]{α¨j∗γ¨j∗}=β˙j2[W1cos(θ+βj)W1sin(θ+βj)] −β¨j[−W1sin(θ+βj)W1cos(θ+βj)]+α˙j2j[L1cos(δ+αj)L1sin(δ+αj)]−α¨j[−L1sin(δ+αj)L1cos(δ+αj)] +(α˙j∗)2[V1∗cos(ρ∗+αj∗)V1∗sin(ρ∗+αj∗)]−(γ˙j∗)2[U1∗cos(σ∗+γj∗)U1∗sin(σ∗+γj∗)] (4.50)


After including the prescribed mechanism variables and the unknowns calculated from the Stephenson III displacement and velocity equations, Equation 4.50 can be solved (using Cramer’s rule, for example) to calculate the U1*−V1* dyad angular accelerations α¨j* and γ¨j*.


Appendix B.7 includes the MATLAB file user instructions for Stephenson III displacement, velocity, and acceleration analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equations 4.44, 4.47, and 4.50 are calculated.






4.8.4 Kinematics of Intermediate Link Locations of Interest


The results calculated from the Stephenson III displacement, velocity, and acceleration equations can be used in additional equations to calculate the displacement, velocity, and acceleration of particular intermediate link locations of interest. These equations are the result of formulating vector-loop equations and their derivatives.


Figure 4.18b illustrates a Stephenson III mechanism with an intermediate link vector L1* that points to an arbitrary intermediate link location of interest p1*. Equations 4.51 and 4.52 are produced from the loop a0−a1−p1−p1* in Figure 4.18b (where Equation 4.52 is the result of expanding and separating Equation 4.51).


p1j∗=W1ei(θ+βj)+L1ei(δ+αj)+L1∗ei(δ*+αj*) (4.51)


p1xj∗=W1cos(θ+βj)+L1cos(δ+αj)+L1*cos(δ∗+αj∗)p1yj∗=W1sin(θ+βj)+L1sin(δ+αj)+L1*sin(δ∗+αj∗) (4.52)


The velocities of the intermediate link location of interest can be calculated from Equation 4.54—the expanded form of Equation 4.53 (which is the first derivative of Equation 4.51).


Vp1j∗=iβ˙jW1ei(θ+βj)+iα˙jL1ei(δ+αj)+iα˙j∗L1∗ei(δ*+αj*) (4.53)


Vp1xj∗=−β˙jW1sin(θ+βj)−α˙jL1sin(δ+αj)−α˙j∗L1*sin(δ∗+αj∗)Vp1yj∗=β˙jW1cos(θ+βj)+α˙jL1cos(δ+αj)+α˙j∗L1*cos(δ∗+αj∗) (4.54)


The accelerations of the intermediate link location of interest can be calculated from Equation 4.56—the expanded form of Equation 4.55 (which is the second derivative of Equation 4.51).


Ap1∗j=−β˙j2W1ei(θ+βj)+iβ¨jW1ei(θ+βj)−α˙j2L1ei(δ+αj)+iα¨jL1ei(δ+αj)−(α˙j∗)2L1∗ei(δ*+αj∗)  +iα¨j∗L1∗ei(δ*+αj∗) (4.55)


Ap1xj∗=−β˙j2W1cos(θ+βj)−β¨jW1sin(θ+βj)−α˙j2L1cos(δ+αj)−α¨jL1sin(δ+αj)  −(α˙j∗)2L1∗cos(δ∗+αj∗)−α¨j∗L1∗sin(δ∗+αj∗)Ap1yj∗=−β˙j2W1sin(θ+βj)+β¨jW1cos(θ+βj)−α˙j2L1sin(δ+αj)+α¨jL1cos(δ+αj)  −(α˙j∗)2L1∗sin(δ∗+αj∗)+α¨j∗L1∗cos(δ∗+αj∗) (4.56)


The Appendix B.7 MATLAB file also includes Equations 4.52, 4.54, and 4.56, from which displacement, velocity, and acceleration values are calculated for the intermediate link locations of interest.




Example 4.14


Problem Statement: Using the Appendix B.7 MATLAB file, calculate the path traced by point p1* of the Stephenson III mechanism given in Table E.4.13 for a complete crank rotation.






TABLE E.4.13 Stephenson III Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1,90°

	1.5, 19.3737°

	1.5, 93.2461°

	1.5, 0

	1, 60.7834°






	L1*, δ*

	V1*, ρ*

	U1*, σ*

	G1x*,G1y*

	






	1, 63.7091°

	2, 17.1417°

	2, 76.4844°

	0.4318, 0.5176

	











Known Information: Table E.4.13 and Appendix B.7 MATLAB file.


Solution Approach: Figure E.4.26 includes the input specified (in bold text) in the Appendix B.7 MATLAB file. Figure E.4.27 includes the Stephenson III mechanism and the p1* path calculated from the Appendix B.7 MATLAB file.
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FIGURE E.4.26 Specified input (in bold text) in the Appendix B.7 MATLAB file for Example 4.14.
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FIGURE E.4.27 Stephenson III mechanism and p1* path.











4.9 Time and Driver Angular Velocity


In the Chapter 4, 7, and 10 MATLAB files, the driving link angular velocity β˙ is calculated according to β˙=β˙0+β¨t, where β˙0, β¨, and t are the initial angular velocity, angular acceleration, and time, respectively.* Under a constant velocity condition (where β¨=0 and subsequently β˙=β˙0), the time increment becomes t=β/β˙. Under a condition where both an initial angular velocity and an angular acceleration are present, the time increment becomes


t=(−β˙0±β˙02+2β¨β)β¨,


where only the smallest positive value of the two solutions is valid.




Example 4.15


Problem Statement: For the problem in Example 4.10, include β˙ in Table E.4.8.


Known Information: Example 4.10 and Appendix B.4 MATLAB file.


Solution Approach: Table E.4.14 includes the values of β˙ calculated using β˙0 and β¨ from Example 4.10, the t values from the Appendix B.5 MATLAB file and the angular velocity equation β˙=β˙0+β¨t presented in Section 4.9.






TABLE E.4.14 Geared Five-Bar Driver Velocities and Point Positions, Velocities, and Accelerations





	β

	β˙⁢ (rad/s)

	p1j (m)

	Vp1j (m/s)

	Ap1j (m/s2)










	0°

	1

	0.2733, 1.9619

	−0.8980, −0.0290

	−0.2352, −0.9733






	15°

	1.0258

	0.0360, 1.9215

	−0.9273, −0.2851

	0.0102, −0.9959






	30°

	1.0511

	−0.1949, 1.8184

	−0.8956, −0.5302

	0.2336, −0.9326






	45°

	1.0757

	−0.4068, 1.6609

	−0.8202, −0.7419

	0.3516, −0.7683






	60°

	1.0997

	−0.5944, 1.4624

	−0.7440, −0.8976

	0.2326, −0.5178






	75°

	1.1233

	−0.7657, 1.2386

	−0.7199, −0.9973

	0.0079, −0.3769






	90°

	1.1464

	−0.9304, 0.9976

	−0.6957, −1.0978

	0.2980, −0.5166

















4.10 Mechanism Configurations


For a given crank link orientation of single-loop four- or five-bar mechanisms, there are two ways to assemble the remaining links. These distinct assemblies are called assembly configurations (also called open and crossed configurations) and can be easily determined graphically for planar mechanisms. Figure 4.23 illustrates the assembly configurations of the planar four-bar, geared five-bar, and slider-crank mechanisms. Reflecting b1 in the planar four-bar mechanism about an axis that passes through a1 and b0 produces the alternate assembly configuration a0–a1–b1*–b0. Reflecting c1 in the geared five-bar mechanism about an axis that passes through a1 and b1 produces the alternate assembly configuration a0–a1–c1*–b1–b0. Reflecting b1 in the slider-crank mechanism about an axis that passes through a1 and is perpendicular to the slider path produces the alternate assembly configuration a0–a1–b1*.


* In Chapter 10, the crank rotation variables, ￼ ￼, and ￼ become ￼, and ￼, respectively.
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FIGURE 4.23 (a) Planar four-bar, (b) geared five-bar, and (c) slider-crank mechanism assembly configurations.



In the type of planar four-bar, geared five-bar, and slider-crank mechanism displacement equations where mechanism motion is calculated algebraically, two sets of unknown link displacement angles are calculated for each given crank link displacement angle [3].* These two sets of displacement angle solutions correspond to the two mechanism assembly configurations. This can be observed in the algebraic spatial mechanism equations that appear in Chapter 10.






4.11 Constructing Cognates


For a given planar four-bar path mechanism, there are alternate four-bar mechanisms of different dimensions that will trace coupler point curves identical to the given four-bar mechanism. These alternate mechanisms are called cognates [4, 5]. A well-known schematic to construct two cognates for a given four-bar mechanism is the Cayley diagram. The construction of this schematic begins by repositioning the crank and follower links of the given four-bar mechanism so that the crank, coupler, and follower links are collinear (mechanism O1−A1−B1−O1 in Figure 4.24). Next, lines are constructed that are parallel to all sides of the links in the original linkage. In Figure 4.24, the two newly constructed cognates are visible (mechanisms O1−A2− B2−O3 and O2−A3−B3−O3).


* The kinematic equations presented in this chapter are solved numerically given the initial mechanism ­assembly configuration. Therefore, kinematic analyses are performed on the particular mechanism assembly configuration specified by the user.
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FIGURE 4.24 Cayley diagram construction.



After constructing the Cayley diagram, the fixed pivots of the original four-bar linkage are returned to their original placements, making this linkage and the cognates movable (as positioned in the Cayley diagram, mechanism O1−A1−B1−O2 and cognates are immovable). When returning the fixed pivots of the original planar four-bar mechanism, the crank, coupler, and follower lengths of the cognates should be maintained. The repositioned Cayley diagram is called a Roberts diagram Figure 4.25a). Figure 4.25b illustrates the three separate cognates. All three cognates will trace the same curve at coupler point C.
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FIGURE 4.25 (a) Roberts diagram and (b) separate cognates.





Example 4.16


Problem Statement: Construct the cognates for the Grashof drag-link mechanism with the unitless dimensions a0 = (0, 0), a1 = (0, 1.75), b0 = (1, 0), b1 = (1.4646, 1.4262), and p1 = (0.8751, 2.2340).


Known Information: Section 4.11 and the given mechanism dimensions.


Solution Approach: Figure E.4.28 includes the given planar four-bar mechanism and its Cayley diagram. Figure E.4.29 includes the Roberts diagram and separate cognates.
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FIGURE E.4.28 (a) Planar four-bar mechanism and (b) Cayley diagram.
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FIGURE E.4.29 (a) Roberts diagram and (b) separate cognates.









4.12 Planar Mechanism Kinematic Analysis and Modeling in Simscape Multibody


As has been noted throughout this chapter, Appendices B.1 and B.3–B.7 include user instructions for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms in MATLAB files, respectively. In these files, the displacement, velocity, and acceleration equations formulated in this chapter are solved. These MATLAB files provide a means for the user to efficiently conduct planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III kinematic analyses by solving their displacement, velocity, and acceleration equations.


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based kinematic analysis. Simscape Multibody (formerly SimMechanics) is the latest MATLAB toolbox that provides a physical modeling environment for the mechanical modeling and simulation of rigid, multibody systems. The MATLAB and Simscape Multibody files that accompany this textbook use distinct approaches for kinematic analysis. In the Appendix B MATLAB files, for example, solutions are predominantly calculated analytically from closed-form kinematic equations. In Simscape Multibody, however, Newtonian equations (produced by building mechanism links and joints in a physical modeling environment) are solved using ordinary differential equation (ODE) solvers [6].


A library of Simscape Multibody files is available for download at https://www.routledge.com/p/book/9781032328317 to conduct displacement, velocity, and accelerationanalyses on planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms.* With these files, the user specifies the mechanism link dimensions and driving link parameters (e.g., crank displacements, velocities, and/or accelerations) and the displacements, velocities, and/or accelerations of the mechanism locations of interest are measured. Additionally, the motion of the mechanism itself is simulated.


The Simscape Multibody file user instructions for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms are given in Appendices H.1–H.6, respectively.




Example 4.17


Problem Statement: Using the Appendix H.1 Simscape Multibody files, plot the transmission angle versus crank displacement angle plot for the planar four-bar mechanism in Table E.4.15 for a complete crank rotation.






TABLE E.4.15 Planar Four-Bar Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1, 90°

	1.5, 4.2451°

	1.5, 88.2046°

	1.4489, −0.3882

	0.75, 45°











Known Information: Table E.4.15 and Appendix H.1 Simscape Multibody files.


Solution Approach: Figure E.4.30 includes the input specified (in bold text) in the Appendix H.1 Simscape Multibody file. Figure E.4.31 illustrates a plot of the transmission angle data measured in the Appendix H.1 Simscape Multibody files. Figure E.4.32 is an initial position snapshot of the mechanism animation generated from the Appendix H.1 Simscape Multibody files.
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FIGURE E.4.30 Specified input (in bold text) in the Appendix H.1 Simscape Multibody file for Example 4.17.
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FIGURE E.4.31 Transmission angle vs. crank displacement angle plot.
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FIGURE E.4.32 Initial position of the planar four-bar mechanism in the Appendix H.1 Simscape Multibody animation for Example 4.17.







* This library can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.





Example 4.18


Problem Statement: Using the Appendix H.2 Simscape Multibody files, plot slider position, velocity, and acceleration versus crank angular displacement plots for the slider-crank mechanism in Table E.4.16 for a complete crank rotation. The initial angular velocity and angular acceleration of the crank link are 1rad/sec and 0.1 rad/sec2, respectively.






TABLE E.4.16 Planar Four-Bar Mechanism Dimensions





	W1, θ

	V1

	U1










	1, 90°

	3

	-0.6583











Known Information: Table E.4.16, driving link parameters, and Appendix H.2 Simscape Multibody files.


Solution Approach: Figure E.4.33 includes the input specified (in bold text) in the Appendix H.2 Simscape Multibody file. Figure E.4.34 illustrates the plots of the slider position, velocity, and acceleration data measured in the Appendix H.2 Simscape Multibody files. Figure E.4.35 is an initial position snapshot of the mechanism animation generated from the Appendix H.2 Simscape Multibody files.
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FIGURE E.4.33 Specified input (in bold text) in the Appendix H.2 Simscape Multibody file for Example 4.18.
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FIGURE E.4.34 Slider (a) position, (b) velocity, and (c) acceleration plots.







Example 4.19


Problem Statement: Repeat Example 4.10 using the Appendix H.3 Simscape Multibody files. In this example, β = 0°, −15°, −30°, …, −90°, β˙0=−1  rad/s, and β¨=−1.0  rad/s2, respectively.


Known Information: Table E.4.7 and Appendix H.3 Simscape Multibody files.


Solution Approach: Because the Appendix H.3 Simscape Multibody files consider geared five-bar mechanisms where the crank and output links rotate in opposite directions, the gear ratio for this problem is r = −2.* Figure E.4.34 includes the input specified (in bold text) in the Appendix H.3 Simscape Multibody file. Table E.4.17 includes the values of p1j, Vp1j, and Ap1j measured from the Appendix H.3 Simscape Multibody files. Figure E.4.37 is an initial position snapshot of the mechanism animation generated from the Appendix H.3 Simscape Multibody files.






TABLE E.4.17 Measured Geared Five-Bar Point Positions, Velocities, and Accelerations





	β

	p1j [m]

	Vp1j [m/sec]

	Ap1j [m/sec2










	0°

	0.2733, 1.9619

	-0.1473, 0.3259

	0.4798, -2.5866






	-14.984°

	0.2391, 1.9658

	-0.1530, -0.2874

	-0.3755, -2.3556






	-29.977°

	0.1849, 1.8154

	-0.2855, -0.9217

	-0.5639, -2.7119






	-44.981°

	0.1021, 1.5037

	-0.3576, -1.6097

	0.1516, -2.6833






	-59.973°

	0.0315, 1.0517

	-0.1901, -2.0725

	1.0790, -0.8210






	-74.968°

	0.0135, 0.5647

	0.0060, -1.9746

	0.3157, 1.4206






	-90.001°

	0.0119, 0.1535

	-0.0653, -1.5665

	-0.8276, 1.8546















Example 4.20


Problem Statement: Using the Appendix H.5 Simscape Multibody files, plot the path traced by point p1* of the Watt II mechanism given in Example 4.12 for a complete crank rotation.


Known Information: Table E.4.10 and Appendix H.5 Simscape Multibody files.


* The Appendix H.4 SimMechanics file considers geared five-bar mechanism where the crank and output links rotate in the same direction, while the Appendix H. 3 file considers links that rotate in the opposite direction.

Solution Approach: Figure E.4.38 includes the input specified (in bold text) in the Appendix H.5 Simscape Multibody file. Figure E.4.39 includes the Watt II mechanism and the p1* calculated from the Appendix H.5 Simscape Multibody files. Figure E.4.40 is an initial position snapshot of the mechanism animation generated from the Appendix H.5 Simscape Multibody files.






[image: ]

FIGURE E.4.35 Initial position of the slider-crank mechanism in the Appendix H.2 Simscape Multibody animation for Example 4.18.
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FIGURE E.4.36 Specified input (in bold text) in the Appendix H.3 Simscape Multibody file for Example 4.19.
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FIGURE E.4.37 Initial position of the geared five-bar mechanism in the Appendix H.3 Simscape Multibody animation for Example 4.19.
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FIGURE E.4.38 Specified input (in bold text) in the Appendix H.5 Simscape Multibody file for Example 4.20.





[image: ]

FIGURE E.4.39 Watt II mechanism and p1* path.
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FIGURE E.4.40 Initial position of the Watt II mechanism in the Appendix H.5 Simscape Multibody animation for Example 4.20.









Example 4.21


Problem Statement: Using the Appendix H.6 Simscape Multibody files for the mechanism in Example 4.14, measure the position of vector V1* over a complete crank rotation (at 45° rotation increments).


Known Information: Table E.4.13 and Appendix H.6 Simscape Multibody files.


Solution Approach: One way to define the position of vector V1* of the Stephenson III mechanism is by point p1 and angle α*. Figure E.4.37 includes the input specified (in bold text) in the Appendix H.6 Simscape Multibody file. Table E.4.18 includes the V1* position data measured from the Appendix H.6 Simscape Multibody file. Figure E.4.42 is an initial position snapshot of the mechanism animation generated from the Appendix H.6 Simscape Multibody files.






TABLE E.4.18 Measured Position Data for Stephenson III Mechanism Dyad Vector V1*





	β

	p1

	a*










	0°

	0.4881, 1.8728

	-0.0017°






	45.004°

	-0.2542, 1.5986

	8.9811°






	89.982°

	-0.7405, 0.9661

	20.6900°






	135.020°

	-0.8565, 0.2815

	33.3070°






	179.990°

	-0.6180, -0.2137

	47.3220°






	225.030°

	-0.1788, -0.2435

	58.5700°






	270.000°

	0.4727, 0.8497

	38.0690°






	315.000°

	1.0664, 1.6404

	-0.2744°






	360.000°

	0.4881, 1.8728

	-0.0016°
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FIGURE E.4.41 Specified input (in bold text) in the Appendix H.6 Simscape Multibody file for Example 4.21.
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FIGURE E.4.42 Initial position of the Watt II mechanism in the Appendix H.6 Simscape Multibody animation for Example 4.21.









4.13 Summary


The method of vector-loop closure is employed in this chapter to formulate kinematic equations for the planar four-bar mechanism, slider-crank mechanism, geared five-bar mechanism, Watt II, and Stephenson III mechanisms. With this method, a sum of the closed loop of mechanism link vectors is taken, expanded, grouped into real and imaginary components, and expressed as a system of two equations to calculate two unknown mechanism variables. With this approach, equations that fully describe the position, displacement, velocity, and acceleration of each mechanism link are formulated. Taking the first and second derivatives of the mechanism displacement equations produces velocity and acceleration equations, respectively. The unknown variables calculated from these kinematic equations can be used in additional vector-loop equations to calculate the positions, displacements, velocities, and accelerations of additional mechanism locations of interest.


The displacement equations presented in this chapter form sets of two nonlinear simultaneous equations. Unlike linear simultaneous equations, nonlinear simultaneous equations cannot be solved algebraically. Using a root-finding method, such equation sets can be solved numerically. The Newton–Raphson method is one of the most common root-finding methods. In the Appendix B.1 and B.3 through B.6 MATLAB files, the displacement, velocity, and acceleration equations for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms, respectively, are solved numerically.


An instant center (or IC) of velocity is a common point among two bodies in planar motion which has the same instantaneous velocity in both bodies. A procedure (based on the Aronhold–Kennedy theorem) has been developed to help locate the ICs for a given mechanism. ICs can conduct velocity analyses as well as replicate coupler motion. A locus of ICs is called a centrode. The centrode produced for a given mechanism is called a fixed centrode because it is stationary. The centrode produced for the inverted mechanism is called a moving centrode because it can exhibit motion—rolling motion over the fixed centrode. The fixed and moving centrodes can be incorporated into geometry, to ultimately produce alternate mechanisms to replicate the coupler motion of their corresponding four-bar mechanisms. In the Appendix B.2 MATLAB file, individual fixed and moving centrode points are calculated for the complete rotation range of a planar four-bar mechanism, as well as slider-crank mechanisms defined as planar four-bar mechanisms.


For a given crank link orientation of most single-loop four- or five-bar mechanisms, there are two distinct assembly configurations (the open and crossed configurations). These configurations can be easily determined graphically for planar mechanisms by reflecting particular links about particular axes.


For a given planar four-bar mechanism, there are alternate four-bar mechanisms (called cognates) that will trace coupler curves identical to the original mechanism. The Cayley diagram is a well-known schematic to construct two cognates for a given four-bar mechanism.


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based kinematic analyses. Using the Appendix H.1 through H.6 Simscape Multibody, the user can conduct displacement, velocity, and acceleration analyses on the planar four-bar, slider-crank, geared five- bar, Watt II, and Stephenson III mechanisms, respectively, as well as simulate mechanism motion.
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Problems




	Figure P.4.1 illustrates a planar four-bar mechanism used to guide a hatch from the closed-hatch position to the opened-hatch position. The dimensions for the illustrated mechanism are included in Table P.4.1. Using a crank rotation increment of −1°, determine the crank rotation range required to reach the opened-hatch position as well as the value of point p1 at the opened-hatch position (using the Appendix B.1 or H.1 files).
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FIGURE P.4.1 Hatch mechanism.







TABLE P.4.1 Hatch Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	4.4127, 118.7982°

	1.0214, 101.2268°

	2.2807, 225.1319°

	−0.7156, 6.4851

	4.1345, 139.4559°












	Figure P.4.2 illustrates a planar four-bar mechanism used to guide a bucket from the loading position to the unloading position. The dimensions for the illustrated mechanism are included in Table P.4.2. Considering a crank rotation increment of −0.1°, determine the crank rotation range required to reach the unloading position as well as the value of point p1 at the unloading position (using the Appendix B.1 or H.1 files).
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FIGURE P.4.2 Loading–unloading mechanism.







TABLE P.4.2 Loading–Unloading Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	2.9777, 136.588°

	0.4032, 70.2408°

	2.513, 259.5885°

	−1.5726, 4.8975

	2.1995, 179.5331°












	Using the Appendix B.1 or H.1 files, produce a velocity magnitude versus crank angular displacement plot and an acceleration magnitude versus crank angular displacement plot for point p1 of the leveling crane illustrated in Figure P.4.3 over a −35º crank rotation range. The initial crank angular velocity and angular acceleration are −1 rad/s and −0.1 rad/s2, respectively.
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FIGURE P.4.3 Leveling crane.




	Using the Appendix B.2 file, plot the fixed and moving centrodes for the mechanism in Problem 1. Limit your minimum and maximum x- and y-axis plot ranges to ±10.


	Using the Appendix B.2 file, plot the fixed and moving centrodes for the mechanism in Problem 2. Limit your minimum and maximum x- and y-axis plot ranges to ±5.


	Figure P.4.4 illustrates a planar four-bar mechanism used to guide a component from the initial position to the assembled position. The dimensions for the illustrated mechanism are included in Table P.4.3. Considering a crank rotation increment of +0.025°, determine the crank rotation range required to reach the assembled position as well as the value of point p1 at the assembled position (using the Appendix B.1 or H.1 files).
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FIGURE P.4.4 Component-assembly mechanism.







TABLE P.4.3 Component-Assembly Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	3.0645, 310.6493°

	1.6039, 89.216°

	1.1359, −112.147°

	2.4465, 0.3309

	4.8525, 0.7042°












	Figure P.4.5 illustrates a planar four-bar mechanism used to guide a digging bucket from the initial position to the final position. The dimensions for the illustrated mechanism are included in Table P.4.4. Considering a crank rotation increment of −0.2°, determine the crank rotation range required to reach the final digging position as well as the value of point p1 at the final digging position (using the Appendix B.1 or H.1 files).
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FIGURE P.4.5 Digging mechanism.







TABLE P.4.4 Digging Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	4.1332, 207.829°

	5.3857, 187.8282°

	6.0475, 233.487°

	−5.3924, 2.1975

	5.1839, 202.3921°












	For the two planar four-bar mechanism configurations given in Table P.4.5, plot the paths traced by point p over a complete crank rotation range (using the Appendix B.1 or H.1 files).



TABLE P.4.5 Planar Four-Bar Mechanism Configurations





	W1

	V1, ρ

	U1, σ

	G1

	L1, δ










	2.1, 90°

	2.4, −16.0138°

	2.4, 58.1173°

	1.0392, −0.6

	2.4, 12.9412°






	0.7361, −0.425

	1.7, 58.1173°

	1.7, −16.0138°

	1.4875, 90°

	1.7, 12.9412°












	Using the Appendix B.2 file, plot the fixed and moving centrodes for the mechanism in Problem 6. Limit your minimum and maximum x- and y-axis plot ranges to ±10.


	Using the Appendix B.2 file, plot the fixed and moving centrodes for the mechanism in Problem 7. Limit your minimum and maximum x- and y-axis plot ranges to ±20.


	Using the Appendix B.1 or H.1 files, calculate the rotation range of the designated coupler link in the planar four-bar folding chair linkage from the fully opened position to the fully closed position illustrated in Figure P.4.6.
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FIGURE P.4.6 Folding-chair linkage in (left) fully open and (right) fully closed position.




	Using the Appendix B.1 or H.1 files, determine if the two folding chair linkage designs illustrated in Figure P.4.7 will produce properly-folded chairs (a chair that permits a crank rotation of −101.7°) and if not, why?
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FIGURE P.4.7 Folding-chair linkage designs.




	For the two planar four-bar mechanism configurations given in Problem 8, produce transmission angle versus crank displacement angle plots over a complete crank rotation range (using the Appendix B.1 or H.1 files).


	For the two planar four-bar mechanism configurations given in Problem 8 (with link lengths in meters), produce tables of the velocity and acceleration vectors of p1 over a complete crank rotation range at 30° crank rotation increments (using the Appendix B.1 or H.1 files). The initial crank angular velocity and angular acceleration are 1 rad/s and 0.25 rad/s2, respectively.


	Figure P.4.8 illustrates a planar four-bar mechanism used to guide a wiping blade. For this mechanism, produce a table of the angular displacements, velocities, and accelerations of the follower link over a 45° crank rotation range at 5° crank rotation increments (using the Appendix B.1 or H.1 files). The crank angular velocity and acceleration are 1.25 rad/s and 0.15 rad/s2, respectively.
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FIGURE P.4.8 Wiper-blade mechanism.




	For the slider-crank mechanism configuration given in Table P.4.6, produce slider displacement, velocity, and acceleration (versus crank displacement angle) plots over a complete crank rotation range (using the Appendix B.3 or H.2 files).



TABLE P.4.6 Slider-Crank Mechanism Configuration





	W1, θ

	V1

	U1

	β˙ (rad/s)

	β¨ (rad/s2)










	3.175 cm, 90°

	9.525 cm

	0.7938 cm

	1.5

	0.15












	For the slider-crank mechanism configuration given in Table P.4.6, produce a table of the angular displacement, velocity, and acceleration of V1 over a complete crank rotation range at 30° crank rotation increments (using the Appendix B.3 or H.2 files).


	Using the Appendix B.2 file, plot the fixed and moving centrodes for the mechanism in Problem 16 (let b0 = (b1x, −1,000,000)). Limit your minimum and maximum x- and y-axis plot ranges to ±20.


	Using the Appendix B.2 file, plot the fixed and moving centrodes for the mechanism in Table P.4.7 (let b0 = (b1x, −1,000,000)). Limit your minimum and maximum x- and y-axis plot ranges to ±10.



TABLE P.4.7 Slider-Crank Mechanism Configuration (with Unitless Link Lengths)





	W1, θ

	V1

	U1










	1.35, 90°

	1.6875

	0.3375












	Using the Appendix B.3 or H.2 files, produce piston velocity versus crankshaft rotation plots for the engine linkage illustrated in Figure P.4.9 at crankshaft speeds of 1250, 2187.5, and 3750 rpm (130.9, 229.07, and 392.7 rad/s). The ratio of the coupler length to the crank length is 3:1.
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FIGURE P.4.9 Slider-crank mechanism used in a crankshaft-connecting rod-piston mechanism.




	For the slider-crank mechanism configuration given in Table P.4.8, produce slider displacement, velocity, and acceleration (versus crank displacement angle) plots over a complete crank rotation range (using the Appendix B.3 or H.2 files).



TABLE P.4.8 Slider-Crank Mechanism Configuration





	W1, θ

	V1

	U1

	β˙ (rad/s)

	β¨ (rad/s2)










	4.76 cm, 60°

	6.35 cm

	0 cm

	1.5

	0












	Using the Appendix B.2 file, plot the fixed and moving centrodes for the mechanism in Problem 20 (let b0 = (b1x, −1,000,000)). Limit your minimum and maximum x- and y-axis plot ranges to ±10.


	Using the Appendix B.2 file, plot the fixed and moving centrodes for the mechanism in Problem 21 (let b0 = (b1x, −1,000,000)). Limit your minimum and maximum x- and y-axis plot ranges to ±20.


	Using the Appendix B.5 or H.4 files, plot the path traced by point p1 over a complete crank rotation range for the geared five-bar mechanism configuration given in Table P.4.9. The gear ratio is +2.



TABLE P.4.9 Geared Five-Bar Mechanism Configuration





	W1, θ

	V1, ρ

	U1, σ

	S1, ψ

	G1x, G1y

	L1, δ










	1.3, 60°

	9.1, 173.6421°

	5.2, 150°

	11.7, 182.2848°

	7.8, 0

	7.8, 203.6421°












	For the geared five-bar mechanism configuration given in Table P.4.9, plot the angular displacements of V1 and S1 (versus crank displacement) over a complete crank rotation range (using the Appendix B.5 or H.4 files). The gear ratio is +2.


	For the geared five-bar mechanism configuration given in Table P.4.10, produce tables of the velocity and acceleration of point p1 over a complete crank rotation range at 30° crank rotation increments (using the Appendix B.4 or H.3 files).



TABLE P.4.10 Geared Five-Bar Mechanism Configuration





	W1, θ

	V1, ρ

	U1, σ

	S1, ψ

	G1










	3.302 cm, 90°

	13.208 cm, 140.2031°

	4.953 cm, 75°

	19.812 cm, 154.0128°

	6.604 cm, −15°






	L1, δ

	β˙ (rad/s)

	β¨ (rad/s2)

	Gear Ratio

	






	9.906 cm, 180°

	1

	0.5

	−2

	












	For the geared five-bar mechanism configuration given in Table P.4.10, produce tables of the angular velocity and acceleration of V1 and S1 over a complete crank rotation range at 30° crank rotation increments (using the Appendix B.4 or H.3 files).


	Figure P.4.10 illustrates a Watt II mechanism used in a concept adjustable chair. Using the Appendix B.6 or H.5 files, calculate the corresponding angular displacements of the head-rest (V1) and leg-rest (V1*) components for a given total 20º angular displacement range of the base-rest component (at 1° crank rotation increments). The base rest includes vectors (U1) and (W1*).
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FIGURE P.4.10 Watt II mechanism used in an adjustable chair.




	For the Watt II mechanism configuration given in Table P.4.11, plot the path traced by points p1 and p1* over a complete crank rotation range (using the Appendix B.6 or H.5 files).



TABLE P.4.11 Watt II Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	0.85, 90°

	1.275, 19.3737°

	1.275, 93.2461°

	1.275, 0

	0.85, 60.7834°






	W1*,θ*

	V1*,ρ*

	U1*,σ*

	G1x*,G1y*

	L1*,δ*






	1.7, 25°

	1.7, −59.4144°

	1.7, −10.8507°

	0.7361, −0.425

	1.275, −11.2247°












	For the Watt II mechanism configuration given in Table P.4.11, produce tables of the angular velocity and acceleration of V1 and V1* over a complete crank rotation range at −30° crank rotation increments (using the Appendix B.6 or H.5 files). The initial crank angular velocity and angular acceleration are −0.75 rad/s and −0.25 rad/s2, respectively.


	For the Watt II mechanism configuration given in Table P.4.11 (with link lengths in meters), produce tables of the velocity and acceleration of points p1 and p1* over a complete crank rotation range at 30° crank rotation increments (using the Appendix B.6 or H.5 files). The initial crank angular velocity and angular acceleration are 1 rad/s and 0.5 rad/s2, respectively.


	Figure P.4.11 illustrates a Stephenson III mechanism used to guide a gripping tool. The dimensions for the illustrated mechanism are included in Table P.4.12. Considering a crank rotation increment of 1°, determine the crank rotation range required to simultaneously achieve a −75° upper jaw rotation and a −15° lower jaw rotation (using the Appendix B.7 or H.6 files).
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FIGURE P.4.11 Stephenson III gripper mechanism.







TABLE P.4.12 Stephenson III Gripper Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1.7995, 318.4178°

	0.9091, 286.4362°

	1.6482, 230.6143°

	2.6491, −0.7924

	1.2304, 189.1904°






	V1*, ρ*

	U1*, σ*

	L1*, δ*

	G1x*, G1y*

	






	9.2542, 319.9647°

	1.5166, 236.6216°

	5.7298, 11.8113°

	5.4021, −5.2847

	












	Figure P.4.12 illustrates a Stephenson III mechanism used to guide a digging tool. The dimensions for the illustrated mechanism are included in Table P.4.13. Considering a crank rotation increment of 1°, determine the crank rotation range required to simultaneously achieve a 60° digging arm rotation and a 75° digging bucket rotation (using the Appendix B.7 or H.6 files).
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FIGURE P.4.12 Stephenson III gripper mechanism.







TABLE P.4.13 Stephenson III Digging Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	4.2366, -25.6775°

	2.0805, 120.3504°

	2.5252, 229.6156°

	4.4031, 1.8831

	5.1069, 189.0097°






	V1*, ρ*

	U1*, σ*

	L1*, δ*

	G1x*, G1y*

	






	3.0994, 14.6953°

	1.3340, 187.0724°

	1.9944, 65 m

	-1.3069, -3.5681

	












	For the Stephenson III mechanism configuration given in Table P.4.14, produce a table of the location, velocity, and acceleration of p1* over a complete crank rotation range at 30° crank rotation increments (using the Appendix B.7 or H.6 files). The initial crank angular velocity and angular acceleration are 1.35 rad/s and 0.6 rad/s2, respectively.



TABLE P.4.14 Stephenson III Mechanism Dimensions





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1.45 m, 90°

	2.175 m, 19.3737°

	2.175 m, 93.2461°

	2.175 m, 0 m

	4.35 m, –5.1593°






	V1*, ρ*

	U1*, σ*

	G1x*, G1y*

	L1*, δ*

	






	2.9 m, –46.9725°

	2.9 m, –6.6563°

	1.2557 m, –0.725 m

	2.175 m, 1.2172°

	












	For the Stephenson III mechanism configuration given in Table P.4.14, produce a table of the angular position, velocity, and acceleration of V1* over a complete crank rotation range at −30° crank rotation increments (using the Appendix B.7 or H.6 files). The initial crank angular velocity and angular acceleration are −0.35 rad/s and −0.05 rad/s2, respectively.











  
    



5 Dimensional Synthesis


DOI: 10.1201/9781003316961-5






Concept Overview


In this chapter, the reader will gain a central understanding regarding




	The study of dimensional synthesis and the distinctions between kinematic analysis and dimensional synthesis


	Categories of dimensional synthesis


	Types of mechanism defects and defect-elimination methods in dimensional synthesis


	The formulation of linear simultaneous equation sets for planar four-bar motion generation


	Distinctions between motion generation and path generation


	The formulation of linear simultaneous equation sets for Stephenson III motion generation


	The formulation of linear simultaneous equation sets for planar four-bar function generation


	Distinctions between finitely separated positions (FSPs) and multiply separated positions (MSPs)


	The formulation of linear simultaneous equation sets for planar four-bar function generation with FSPs and MSPs


	Preparation of results from planar four-bar and Stephenson III dimensional synthesis for planar four-bar and Stephenson III kinematic analysis









5.1 Introduction


As noted in Section 1.5, dimensional synthesis is a category in kinematic synthesis where the objective is to calculate the mechanism dimensions required to achieve a prescribed mechanism motion sequence [1].* The calculated mechanism dimensions include link lengths, link positions (also called “rigid-body” positions), and joint coordinates.† The parameters pertaining to the prescribed mechanism motion sequence include link positions, path points,and displacement angles. In contrast to kinematic analysis—where mechanism dimensions are known and the resulting mechanism motion sequence is calculated—in dimensional synthesis, the mechanism motion sequence is known and the mechanism dimensions are calculated (Figure 5.1) [2].


* Another basic description of dimensional synthesis is the design of a mechanism to produce a desired output motion for a given input motion.

† Mechanism links are also called “rigid bodies” because mechanism links are generally assumed to be rigid (nondeforming) in kinematic synthesis.
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FIGURE 5.1 (a) Kinematic analysis vs. (b) dimensional synthesis.



Dimensional synthesis includes three distinct subcategories: motion generation, path generation, and function generation (Figure 5.2). In motion generation, mechanism dimensions are calculated to achieve prescribed rigid-body positions, while prescribed rigid-body path points are achieved in path generation.* In function generation, mechanism dimensions are calculated to achieve prescribed crank and follower-link displacement angles.†




[image: ]

FIGURE 5.2 Subcategories of dimensional synthesis.



An overview of published research in dimensional synthesis will reveal an assortment of qualitative and quantitative methods for motion, path, and function generation [3]. Qualitative methods include graphical techniques, which can provide a wealth of information with virtually no computational effort [4]. Quantitative methods include mathematical models that can be solved analytically or numerically by way of solution algorithms and root-finding methods [5]. As intended by the authors, the dimensional synthesis methods presented in this chapter are all quantitative.


* In four-bar motion and path generation, the coupler link is the rigid body for which positions and path points are prescribed.

† The crank and follower displacement angles are often prescribed in accordance to a mathematical function—hence the name function generation.





5.2 Branch and Order Defects


Although motion and path generation ensure that the synthesized mechanisms will achieve prescribed rigid-body positions and path points, respectively, they do not guarantee




	The synthesized mechanism will achieve the prescribed rigid-body parameters without a change in its original assembly configuration (thus requiring mechanism disassembly).


	The synthesized mechanism will achieve the prescribed rigid-body parameters in the intended order.





These two uncertainties are defects inherent in motion and path generation, mechanism synthesis requiring rigid-body positions and rigid-body path points, respectively.


The first noted defect is commonly called a branch defect [6]. Figure 5.3a illustrates the two assembly configurations of a planar four-bar mechanism: configurations a-b-c-d and a-b-c*-d.* In kinematic synthesis, a branch represents the rigid-body positions or path points that are achieved by a single mechanism assembly configuration. When both mechanism assembly configurations are required to achieve all of the rigid-body positions or path points, this can introduce a potential design problem, because the mechanism would require disassembly and reassembly from one assembly configuration to the other during operation to achieve all of the prescribed rigid-body output.* Figure 5.3b illustrates a planar four-bar branch defect. In this figure, rigid-body positions 1-2-3 are achieved by planar four-bar configuration a-b-c-d, while position 1* is achieved by configuration a-b-c*-d. So, if the design application requires that this mechanism achieves the positions in the order 1*-1-2-3 continuously, this would not be possible with a single mechanism assembly configuration due to the given branch defect. Branch defects are inherent in analytical motion generation [7].


* The assembly configurations a-b-c-d and a-b-c*-d of the planar four-bar mechanism are called the open and crossed configurations, respectively.
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FIGURE 5.3 (a) Four-bar assembly configurations and (b) branch defect.



The second noted defect is commonly called an order defect [8]. When rigid-body positions or path points are prescribed, it is typically desired that the synthesized mechanism achieve the prescribed rigid-body output in the given order in which they were prescribed. If, for example, the rigid-body path points are prescribed in the order 1-2-3-4-1 (Figure 5.4a) but the synthesized mechanism achieves the points in the order 1-2-4-3-1 (Figure 5.4b) this can present a potential problem—especially if the prescribed point order is required to trace a particular coupler curve. As shown in Figure 5.4, the order in which the rigid-body path points are achieved determines the profile of the path achieved.
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FIGURE 5.4 Order difference with four rigid-body path points (orders (a) 1-2-3-4 and (b) 1-2-4-3).



Branch- and order-defect elimination by way of constraint equations, graphical methods, or particular prescribed values are often employed in motion and path generation equations to produce motion and path generator solutions that are branch-defect free and order-defect free [9]. Several common branch- and order-defect elimination methods are presented in Section 5.4.


* The branch defect is distinct from the circuit defect (presented in Section 3.5) although the branch and circuit defect both require mechanism disassembly. With the circuit defect, the mechanism is reassembled in another position of the same assembly configuration (and not from one assembly configuration to another as with the branch defect).





5.3 Planar Four-Bar Motion Generation: Three Precision Positions


Figure 5.5(a) illustrates a planar four-bar mechanism and three coupler positions achieved by the mechanism. The location and orientation or the position of the coupler is defined by the coordinates of rigid-body point pj and rigid-body displacement angle αj. In motion generation (or quantitative motion generation, to be more exact), the mechanism dimensions required to achieve precision positions are calculated.* To further convey motion generation, Figure 5.5b illustrates the operation sequence of an aircraft landing gear. For effective operation, the aircraft landing gear should be guided from within the airframe to a position where the wheels can properly contact the ground. The planar four-bar motion generation equations presented in this section are useful for calculating the four-bar mechanism dimensions required to achieve a set of three precision positions.
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FIGURE 5.5 (a) Four-bar mechanism and coupler positions and (b) aircraft landing-gear example.



Figure 5.6 illustrates both dyads of a planar four-bar mechanism in a starting position (Position 1) and a displaced position (Position j). The left- and right-side dyads include the vector chains W–Z and U–S, respectively. By taking the vector sum between the starting and displaced positions for each dyad, vector-loop equations are derived [10, 11]. After taking the counterclockwise vector sum for each dyad (starting with W1 for the left-side dyad and U1 for the right-side dyad), the vector-loop equations for the four-bar mechanism dyads become
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FIGURE 5.6 Four-bar mechanism in starting and (dashed) displaced positions.



W1eiθ+Z1eiϕ+Pj1eiδj−Z1ei(ϕ+αj)−W1 ej(θ+βj)=0 (5.1)


U1eiσ+S1eiψ+Pj1eiδj−S1ei(ψ+αj)−U1ei(σ+γj)=0 (5.2)


* In motion generation, the prescribed rigid-body positions are also called precision positions.

where Pj1eiδj=pj−p1


After factoring the terms for the starting dyad position (which are unknown terms), the resulting standard-form vector-loop equations become


W1eiθ(eiβj−1)+Z1eiϕ(eiαj−1)=Pj1eiδj (5.3)


U1eiσ(eiγj−1)+S1eiψ(eiαj−1)=Pj1eiδj (5.4)


Expanding Equation 5.3 and grouping the real and imaginary terms as separate equations produces the equation set


W1cosθ(cosβj−1)−W1sinθsinβj+Z1cosϕ(cosαj−1)−Z1sinϕsinαj=Pj1cosδjW1sinθ(cosβj−1)+W1cosθsinβj+Z1sinϕ(cosαj−1)+Z1cosϕsinαj=Pj1sinδj (5.5)


After specifying W1 cos θ = W1x, W1 sin θ = W1y, Z1 cos ϕ = Z1x, and Z1 sin ϕ = Z1y, Equation 5.5 becomes


W1x(cosβj−1)−W1ysinβj+Z1x(cosαj−1)−Z1ysinαj=Pj1cosδjW1y(cosβj−1)+W1xsinβj+Z1y(cosαj−1)+Z1xsinαj=Pj1sinδj (5.6)


Likewise, after separating the real and imaginary terms in the right-side dyad in Equation 5.4 and specifying U1 cos σ = U1x, U1 sin σ = U1y, S1 cos ψ = S1x, and S1 sin ψ = S1y, the equation becomes


U1x(cos γj−1)−U1ysin γj+S1x(cos αj−1)−S1ysin αj=Pj1cos δjU1y(cosγj−1)+U1xsinγj+S1y(cosαj−1)+S1xsin αj=Pj1sin δj (5.7)


When expressed in matrix form for three precision positions (therefore, j = 2, 3), Equations 5.6 and 5.7 become Equations 5.8 and 5.9, respectively, when expressed in matrix form.


[cosβ2−1−sinβ2cosα2−1−sinα2sinβ2cosβ2−1sinα2cosα2−1cosβ3−1−sinβ3cosα3−1−sinα3sinβ3cosβ3−1sinα3cosα3−1]{W1xW1yZ1xZ1y}=[P21cosδ2P21sinδ2P31cosδ3P31sinδ3] (5.8)


[cosγ2−1−sinγ2cosα2−1−sinα2sinγ2cosγ2−1sinα2cosα2−1cosγ3−1−sinγ3cosα3−1−sinα3sinγ3cosγ3−1sinα3cosα3−1]{U1xU1yS1xS1y}=[P21cosδ2P21sinδ2P31cosδ3P31sinδ3] (5.9)


Equations 5.8 and 5.9 can be solved using Cramer’s rule to calculate the scalar components of dyads W1–Z1 and U1–S1, respectively. In Equation 5.8, angles β2 and β3 are the two “free choices” that are prescribed along with the precision positions. By the term “free choice,” we mean that the variable value specified is entirely according to the user’s own preferences. In Equation 5.9, angles γ2 and γ3 are the free choices that are prescribed along with the precision positions. Because an infinite variety of unique combinations of β2, β3, γ2, and γ3 can be specified, the number of possible dyad solutions from Equations 5.8 and 5.9 is also infinite.


The resulting mechanism calculated from Equations 5.8 and 5.9 not only achieves the precision positions precisely, but does so according to the prescribed dyad displacement angles β and γ. By including the precision positions and prescribing the dyad displacement angles, it is ensured that the calculated mechanism solutions are free of order defects because both the precision positions and corresponding dyad displacements are specified.*




Example 5.1


Problem Statement: Synthesize a planar four-bar mechanism to guide the landing gear through the three precision positions in Figure E.5.1.
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FIGURE E.5.1 Three landing-gear precision positions.



* Motion generation with prescribed dyad displacement angles is called motion generation with prescribed timing.

Known Information: Equations 5.8 and 5.9, and Table E.5.1.






TABLE E.5.1 Landing-Gear Precision Position Parameters and Dyad Displacement Angles





	Precision Position

	pj

	αj(°)

	βj(°)

	γj(°)










	1

	0, 0

	

	

	






	2

	0.292, 0.734

	−.51.7124

	18

	−.40






	3

	0.299, 1.461

	−.84.9734

	38

	−.87











Solution Approach: From the prescribed coupler points pj, vectors pj1 and vector angles δj are calculated.* These variables, along with the prescribed dyad displacement angles in Table E.5.1, are used in Equations 5.8 and 5.9 to calculate (through Cramer’s rule) the dyad vectors for the planar four-bar mechanism (W1, Z1, U1, and S1).


Figure E.5.2 includes the calculation procedure in the MATLAB command window and Figure E.5.3 illustrates the resulting planar four-bar mechanism. Being an analytically calculated result, this mechanism achieves the precision positions precisely.


* Pj1 = pj − p1, and δj is the angle vector Pj1 makes with the positive x-axis.
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FIGURE E.5.2 Example 5.1 W1–Z1 and U1–S1 calculation procedure in MATLAB.
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FIGURE E.5.3 Synthesized planar four-bar motion generator.









5.4 Order- and Branch-Defect Elimination


Although branch and order defects are inherent in analytical motion generation, several conventional practices and construction methods are used to produce motion and path generators that are branch- and order-defect free. These practices and construction methods include prescribed timing, Filemon’s construction, and Waldron’s construction.


Motion generation with prescribed timing prevents order defects because, with this practice, each coupler position and its corresponding dyad displacement angles are prescribed. The planar four-bar motion generation equation sets in Section 5.3 (Equations 5.8 and 5.9) include displacement angle variables for both mechanism dyads (angles β and α for dyad W–Z and angles γ and α for dyad U–S). By specifying both the precision positions and the corresponding dyad displacement angles, the order in which the precision positions are achieved is maintained. Motion generation with prescribed timing was demonstrated in Example 5.1.


In the early 1970s, Filemon introduced a construction method to ensure that planar four-bar crank motion generator solutions (specifically, Grashof crank-rocker and drag-link solutions) were branch-defect free [12, 13]. Filemon’s work shows that as long as the moving pivot (the nongrounded revolute joint) of the mechanism driving link is selected outside the wedge-shaped region produced using her construction method, the resulting planar four-bar motion generator will pass through all of the precision positions without disassembly (therefore making it a nonbranching solution).*


In Filemon’s construction, the output link is synthesized first. The follower link moving pivot and fixed pivot will be defined as b1 and b0, respectively, where b1 = −S1 and b0 = −(S1 + U1) … Relative inverse displacements of the follower link are taken to sweep a planar wedge-shaped region (with angles ∠b0jb1b0).† The positions that the follower fixed pivot can take relative to the follower moving pivot are computed as


b0j=[Mj]b0 (5.10)


where


[Mj]= [100010001][cosαj−sinαjPj1xsinαjcosαjPj1y001]−1j=2,3,… (5.11)


and b0 = (b0x, b0y, 1)T.


Given the precision position variables αj and Pj1, Equation 5.10 calculates the ground link displacements of the inverted four-bar mechanism. When synthesizing the input link (having already constructed the wedge-shaped region), an input link having a moving pivot that lies outside the region should be chosen. Filemon’s construction can be applied in motion generation with three precision positions and beyond.


* In linkages, the grounded revolute joints are also known as fixed pivots and the nongrounded revolute joints are also known as moving pivots.

† If the angle of the wedge-shaped region is 180° or greater, the region will fill the entire 2D space (and no solution will be available under Filemon’s construction).



Example 5.2


Problem Statement: Calculate a nonbranching landing-gear mechanism for Example 5.1 using Filemon’s construction.


Known Information: Example 5.1 and Equation 5.10.


Solution Approach: The synthesized follower (U1–S1) in Example 5.1 is the selected output link in this example. From Table E.5.1 in Example 5.1, the coupler displacement angles αj and the x and y-components of the coupler point vectors Pj1 are known.* Figure E.5.4 includes the calculation procedure in MATLAB’s command window. The lines passing through b1 and b02 and through b1 and b03 form the borders for the planar wedge-shaped region (Figure E.5.5).
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FIGURE E.5.4 Example 5.2 b02 and b03 calculation procedure in MATLAB.
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FIGURE E.5.5 Wedge-shaped region borders formed by b02 and b03 (form U1).



The moving pivot for the driving link dyad (W1–Z1) must lie outside the wedge-shaped region. Figure E.5.6 illustrates the (W1–Z1) solution from Equation 5.8 with β2 = 10° and β3 = 40°. Because the four-bar motion generator in this figure is a Grashof crank-rocker and its driving link dyad lies outside the wedge-shaped region, it is branch-defect free.
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FIGURE E.5.6 Wedge-shaped region with calculated dyads W1–Z1 and U1–S1.





In the mid-1970s, Waldron introduced a feasible region construction method for selecting non-branching planar four-bar motion generators for three precision positions [14, 15]. Waldron’s work shows that follower link moving pivots selected outside the three circles produced using his construction method, as well as follower link moving pivots selected in regions where any two circles overlap, result in nonbranching motion generator solutions. Once a suitable follower-link dyad is calculated according to Waldron’s construction method, a corresponding suitable crank link dyad is calculated according to Filemon’s construction.


* Because Pj1 = pj − p1, if p1 is specified as p1 = (0, 0), then the x- and y-components of the precision point vectors Pj1 are identical to the x- and y-components of the precision points pj.

Given three precision positions, three rotation centers or poles exist to rotate from Position 1 to 2 (pole p12), Position 1 to 3 (pole p13) and Position 2 to 3 (pole p23) [16].* These poles form a triangle (called a pole triangle) Δp12p13p23 [17]. The reflection of pole p23 about the triangle side p12p13 produces a new pole (called an image pole) p′23. In Waldron’s construction, each side of the triangle Δp12p13p′23 is equal to a diameter of each circle.


The rotation pole equation corresponding to the two rigid-body positions in Figure 4.6 is defined as


pole pjk=Pj1eiδj−[Pk1eiδk−Pj1eiδjei(αk−αj)−1] (5.12)


where P11 = δ1 = α1 = 0 [18]. Equation 5.12 is used to calculate pole p12, pole p13, and pole p23.




Example 5.3


Problem Statement: Calculate a nonbranching landing-gear mechanism for Example 5.1 using Waldron’s construction and Filemon’s construction.


Known Information: Example 5.1 and Equation 5.12.


Solution Approach: Figure E.5.7 includes the calculation procedure for p12, p13, and p23 in MATLAB’s command window. Reflecting pole p23 about the triangle edge containing poles p12 and p13 produces the image pole (pole p′23 in Figure E.5.8a). Figure E.5.8b includes the three-circle diagram resulting from Waldron’s construction. Suitable follower link moving pivots lie either outside the three circles or in regions where any two the three circles overlap.


* The center of rotation between two positions of a body in planar motion is called a pole.



[image: ]

FIGURE E.5.7 Example 5.3 p12, p13, and p23 calculation procedure in MATLAB.
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FIGURE E.5.8 (a) Calculated poles with image pole and (b) three-circle diagram with calculated dyad U1–S1.



It can be determined from Figure E.5.8 that the follower link dyad (the U1–S1 dyad) solution from Example 5.1 is satisfactory, since its moving pivot lies outside the three circles. The crank link dyad (the W1–Z1 dyad) solution from Example 5.2 is also satisfactory since its moving pivot lies outside the wedge-shaped region. The resulting four-bar motion generator, a Grashof crank-rocker, is branch-defect free.








5.5 Path Generation versus Motion Generation


Figure 5.7a illustrates a planar four-bar mechanism and the curve traced by coupler point p1. In path generation, the mechanism dimensions required to achieve prescribed coupler path points are calculated.* To further convey the concept of path generation, Figure 5.7b illustrates a level-luffing crane, a mechanism that remains at a constant level during motion. For effective operation, the extremity of the level-luffing crane should follow a horizontal path.
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FIGURE 5.7 Path generation concepts. (a) Four-bar mechanism and coupler path points. (b) Level-luffing crane mechanism.



There is a distinct difference between path generation and motion generation. In motion generation, precision positions are achieved, while precision points are achieved in path generation. Because coupler path points rather than coupler positions are prescribed in path generation, coupler displacement angles are not of particular concern. Equations 5.8 and 5.9 can be directly applied for path generation for three precision points, since the mechanisms calculated from these equations achieve prescribed coupler points in addition to prescribed coupler displacement angles.† Because coupler displacement angles are required in Equations 5.8 and 5.9, the user is free to specify the coupler displacement angles arbitrarily.






5.6 Stephenson III Motion Generation: Three Precision Positions


It can be observed from Figure 5.8 (as well as the illustrations in Section 4.7) that the Stephenson III mechanism is a planar four-bar mechanism with a dyad (U1*−V1* in Figure 5.8) attached to its coupler point.
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FIGURE 5.8 Stephenson III mechanism in starting and (dashed) displaced positions.



Because the U1*−V1* dyad and the coupler it is attached to share a common point p1, this point can be used when prescribing precision positions for the dyads W1–Z1, U1–S1, and U1*−V1*. However, while the displacement angle αj is associated with dyads W1–Z1 and U1–S1, the dyad U1*−V1* has its own rigid-body displacement angle (see Figure 5.8).


* In path generation, the prescribed rigid-body path points are also called precision points.

† Although Equations 5.8 and 5.9 can be used for path generation, the user is limited to three precision points (making them too limited and subsequently impractical for detailed paths).

After taking the counterclockwise vector sum for dyad U1*−V1* (starting with U1∗) in the same manner as illustrated in Figure 5.6, the vector-loop equation for this dyad becomes


U1*e1σ*+V1*eiρ*+Pj1eiδj−V1*ei(ρ*+αj*)−U1*ei(α*+γj*)=0 (5.13)


where Pj1eiδj=pj−p1


After factoring the terms for the starting dyad position, the resulting standard-form vector-loop equation becomes


U1*eiσ*(eiγj*−1)+V1*eiρ*(eiαj*−1)=Pj1eiδj (5.14)


Expanding Equation 5.14 and grouping the real and imaginary terms as separate equations produces the equation set


U1*cosσ*(cosγj*−1)−U1*sinσ*sinγj*+V1*cosρ*(cosαj*−1)−V1*sinρ*sinαj*=Pj1cosδjU1*sinσ*(cosγj*−1)+U1*cosσ*sinγj*+V1*sinρ*(cosαj*−1)−V1*cosρ*sinαi*=Pj1sinδj (5.15)


After specifying U1*cosσ*=U1x*, U1*sinσ*=U1y*, V1*cosρ*=V1x*, and V1*sin ρ*=V1y*,


Equation 5.15 becomes


U1x*(cosγj*−1)−U1y*sinγj*+V1x*(cosαj*−1)−V1y*sinαj*=Pj1cosδjU1y*(cosγj*−1)−U1x*sinγj*+V1y*(cosαj*−1)−V1x*sinαi*=Pj1sinδj (5.16)


When expressed in matrix form for three precision positions (therefore, j = 2, 3), Equation 5.16 becomes Equation 5.17 when expressed in matrix form.


[cosγ2*−1−sinγ2*cosα2*−1−sinα2*sinγ2*cosγ2*−1sinα2*cosα2*−1cosγ3*−1−sinγ3*cosα3*−1sinα3*sinγ3*cosγ3*−1sinα3*cosα3*−1]{U1x*U1y*V1x*V1y*}=[P21cosδ2P21sinδ2P31cosδ3P31sinδ3] (5.17)


Like Equations 5.8 and 5.9, Equation 5.17 can be solved using Cramer’s rule to calculate the scalar components of dyad U1*−V1*. In Equation 5.17, angles γ2* and γ3* are the two “free choices” that are prescribed along with the precision positions.




Example 5.4


Problem Statement: Synthesize a Stephenson III mechanism to guide the gripper through the three precision positions in Figure E.5.9.
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FIGURE E.5.9 Three gripper precision positions.



Known Information: Equations 5.8, 5.9, and 5.17, and Table E.5.2.






TABLE E.5.2 Landing-Gear Precision Position Parameters and Dyad Displacement Angles





	Precision Position

	pj

	αj(°)

	α*j(°)

	βj(°)

	γj(°)

	γ*j(°)










	1

	0, 0

	

	

	

	

	






	2

	0.1815, 0.4882

	−.30

	15

	15

	−.20

	10






	3

	0.6647, 1.4078

	−.75

	5

	40

	−.35

	30











Solution Approach: Table E.5.2 includes the precision positions and dyad displacement angles.


Figure E.5.10 includes the calculation procedure in MATLAB’s command window for dyads W1–Z1 and U1–S1. Figure E.5.11 includes the calculation procedure in MATLAB’s command window for the U1*−V1* dyad. Figure E.5.12 illustrates the resulting Stephenson III mechanism.
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FIGURE E.5.10 Example 5.4 W1–Z1 and U1–S1 calculation procedure in MATLAB.
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FIGURE E.5.11 Example 5.4 U1*−V1* calculation procedure in MATLAB.
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FIGURE E.5.12 Synthesized Stephenson III motion generator.









5.7 Planar Four-Bar Function Generation: Three Precision Points


In function generation, the mechanism dimensions required to achieve prescribed link displacement angles are calculated.* The displacement angles are commonly defined according to a mathematical function. In four-bar function generation, the angular displacements of both the crank and follower links are typically where the angular displacement of the follower link is a function of the crank link angular displacement (Figure 5.6a).† To further convey function generation, Figure 5.9b illustrates a four-bar lawn sprinkling mechanism (where the sprinkler is affixed to the follower link). For effective operation, the sprinkler should oscillate within a particular range to avoid over-sprinkling or under-sprinkling the lawn area. The planar four-bar function generation models presented in this section are useful for calculating the planar four-bar mechanism dimensions required to achieve prescribed link angular displacements.


* In addition to link angular displacements, derivative quantities such as angular velocities and angular accelerations are also among the prescribed parameters that are considered in function generation.

† Prescribed displacement angles are also called precision points in function generation.
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FIGURE 5.9 (a) Four-bar mechanism in starting and displaced positions and (b) lawn sprinkling mechanism.



As previously noted, the precision points in four-bar function generation are commonly crank and follower displacement angles where the follower angles are defined as a function of the crank angles. In Figure 5.9a, the crank displacement angles βj correspond to the independent function variable x and the follower displacement angles γj correspond to a user-defined function f(x) [19, 20].


The curve in Figure 5.10 represents an example function to be achieved through function generation. From this function, precision points (pj) are selected. Because only a finite number of precision points can be prescribed through analytical function generation, the resulting function generator will achieve f(x) at pj, or simply f(xj), as opposed to achieving the function continuously.




[image: ]

FIGURE 5.10 Function curve with precision points.



The abscissa and ordinate ranges for the function are Δx and Δy, respectively, and the corresponding crank and follower displacement angle ranges are Δβ and Δγ, respectively (Figure 5.10). Linear relationships between the crank and follower precision points and the specific function precision points can be expressed as


βj−β1xj−x1=ΔβΔxγi−γ1yj−y1=ΔγΔy (5.18)


Angles β1 and γ1 are zero because they are the displacement angles in the initial mechanism position. Solving for βj and γj, Equation 5.18 can be expressed as Equation 5.19 where βj and γj are the crank and follower precision points corresponding to the coordinates xj and yj of the function precision points pj. Crank and follower-link displacement angles are among the precision points for the planar four-bar function generation equations in this chapter.


βj=ΔβΔx(xj−x1)γj=ΔγΔy(yj−y1) (5.19)


The general vector-loop closure equation for the four-bar mechanism in Figure 5.11 in the jth position is


W1ei(θ+βj)+V1ei(ρ+αj)−U1ei(σ+γj)−G1=0 (5.20)
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FIGURE 5.11 Four-bar mechanism in starting and (dashed) displaced positions.



Being always in-line with the x-axis, vector G1 only has the real component G1x. Because the mechanism link proportions affect its link rotation angles (which are of interest in function generation) and not the scale of the mechanism, a single mechanism link length variable can be specified.* After specifying G1x = 1 and moving it to the right-hand side of the equation, Equation 5.20 becomes


W1ei(θ+βj)+V1ei(ρ+αj)−U1ei(σ+γj)=1 (5.21)


Expanding Equation 5.21 and grouping the real and imaginary terms as separate equations produces


W1cosθcosβj−W1sinθsinβj+V1cosρcosαj−V1sinρsinαj–U1cosσcosγj        +U1sinσ sinγj=1W1sinθcosβj−W1cosθsinβj+V1sinρcosαj+V1cosρsinαj         −U1sinσcosγj−U1cosσ sinγj=0 (5.22)


* This also means that scaled versions of a given function generator will produce identical results.

After setting W1 cos θ = W1x, W1 sin θ = W1y, V1 cos ρ = V1x, V1 sin ρ = V1y, U1 cos σ = U1x, and U1 sin σ = U1y, Equation 5.22 becomes


W1xcosβj−W1ysinβj+V1xcosαj−V1ysinαj−U1xcosγj+U1ysinγj=1W1ycosβj+W1xsinβj+V1ycosαj+V1xsinαj−U1ycosγj−U1sinγj=0 (5.23)


When expressed in matrix form for three precision points, Equation 5.23 becomes


[1010−1001010−1cosβ2−sinβ2cosα2−sinα2−cosγ2sinγ2sinβ2cosβ2sinα2cosα2−sinγ2−cosγ2cosβ3−sinβ3cosα3−sinα3−cosγ3sinγ3sinβ3cosβ3sinα3cosα3−sinγ3−cosγ3]{W1xW1yV1xV1yU1xU1y}[101010] (5.24)


The first two rows in Equation 5.24 are the result of displacement angles β1, α1, and γ1 (corresponding to the initial mechanism position) all being zero in Equation 5.23.


Therefore, with three precision points, Equation 5.23 forms Equation 5.24—a set of six linear equations (that can be solved using Cramer’s rule) to calculate the scalar components of link vectors W1, V1, and U1. In addition to prescribing the crank and follower displacement angles, the coupler displacement angles α2 and α3 are also prescribed in Equation 5.24. The coupler displacement angles are typically incidental in function generation, since only the crank and follower displacement angles are typically of concern. Because an infinite variety of unique α2 and α3 combinations can be specified, the number of possible mechanism solutions from Equation 5.24 is also infinite.




Example 5.5


Problem Statement: Synthesize a planar four-bar sprinkler mechanism to achieve a follower rotation range of 60° for a corresponding crank rotation range of 180°.


Known Information: Crank and follower displacement angle ranges and Equation 5.24.


Solution Approach: The crank and follower rotation ranges have been equally divided into the displacement angles given in Table E.5.3. This table also includes arbitrarily specified coupler-link displacement angles.






TABLE E.5.3 Four-Bar Sprinkler Mechanism Precision Points





	Precision Point

	βj(°)

	γj(°)

	αj(°)










	1

	0

	0

	0






	2

	90

	30

	−.5






	3

	180

	60

	10











Figure E.5.13 includes the calculation procedure in MATLAB’s command window for vectors W1, V1, and U1. The synthesized function generator is illustrated in Figure E.5.14. Because the function generator was calculated analytically, it achieves the precision points precisely.
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FIGURE E.5.13 Example 5.5 W1–Z1–U1 calculation procedure in MATLAB.
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FIGURE E.5.14 Synthesized planar four-bar function generator.









5.8 Planar Four-Bar Function Generation: FSPs and MSPs


In addition to link displacement angles, it is also possible to synthesize a function generator to achieve prescribed link angular velocities and accelerations.* Figure 5.12 includes the function generator angular velocity and angular acceleration variables—the first and second derivatives of angular displacements β, α, and γ.
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FIGURE 5.12 Planar four-bar function generator with angular velocity and acceleration variables.



* Angular displacements (being discrete, finitely separated quantities) are called finitely separated positions (FSPs) and derivative quantities such as angular velocities and accelerations are multiply separated positions (MSPs).

By differentiating, expanding, and separating vector-loop Equation 5.21, mechanism velocity and acceleration constraint equations are derived for the planar four-bar function generator. Differentiating Equation 5.21 and cancelling the complex coefficient produces


β˙jW1ei(θ+βj)+α˙jV1ei(ρ+αj)−γ˙jU1ei(σ+γj)=0 (5.25)*


Expanding Equation 5.25 and grouping the real and imaginary terms into separate equations produces


β˙j(W1xcosβj−W1ysinβj)+α˙j(V1xcosαj−V1ysinαj)−γ˙j(U1xcosγj−U1ysinγj)=0β˙j(W1xsinβj+W1ycosβj)+α˙j(V1xsinαj+V1ycosαj)+γ˙j(U1xsinγj−U1ycosγj)=0 (5.26)


Equation 5.26 constitutes a planar four-bar function generator velocity constraint (introducing link velocity terms α˙, β˙, and γ˙). Differentiating Equation 5.25 produces


iβ¨jW1ei(θ+βj)−β˙j2W1ei(θ+βj)+iα¨jV1ei(ρ+αj)−α˙j2V1ei(ρ+αj)−iγ¨jU1ei(σ+γj)+γ˙j2U1ei(σ+γj)=0 (5.27)


Expanding Equation 5.27 and grouping the real and imaginary terms into separate equations produces


−β¨j(W1xsinβj+W1ycosβj)−β˙j2(W1xcosβj−W1ysinβj)−α¨j(V1xsinαj+V1ycosαj)   −α˙j2(V1xcosαj−V1ysinαj)+γ¨j(U1xsinγj+U1ycosγj)+γ˙j2(U1xcosγj−U1ysinγj)=0β¨j(W1xcosβj−W1ysinβj)−β˙j2(W1xsinβj+W1ycosβj)+α¨j(V1xcosαj−V1ysinαj) −α˙j2(V1xsinαj+V1ycosαj)−γ¨j(U1xcosγj−U1ysinγj)+γ˙j2(U1xsinγj+U1ycosγj)=0 (5.28)


* Whenever the complex coefficient (or any other term) is distributed throughout an equation, it can be cancelled if preferred.

Equation 5.28 constitutes a planar four-bar function generator acceleration constraint—introducing link angular acceleration terms α¨, β¨, and γ¨ in addition to the link angular velocity terms introduced in Equation 5.26.


As observed in Equation 5.24, three precision points for planar four-bar function generation produce a set of six scalar equations to calculate mechanism variables W1, V1, and U1. A set of six equations to calculate mechanism variables W1, V1, and U1 can also be formed from Equation 5.23 (with β = α = γ = 0) and any combination of Equations 5.23, 5.26, or 5.28. With such an equation set, the user can specify not only link angular displacements (FSPs), but also corresponding link angular velocities, or accelerations (MSPs). This equation set can be solved using Cramer’s rule. Being an analytically calculated solution, the resulting mechanism will precisely achieve the prescribed angular displacements, velocities, or accelerations.




Example 5.6


Problem Statement: Given a constant driving link angular velocity of 1 rad/s and angular acceleration of zero, synthesize a planar four-bar mechanism to achieve a follower angular velocity and acceleration of −0.75 rad/s and −0.1 rad/s2, respectively.*


Known Information: Equations 5.23, 5.26, 5.28, β˙=1 rad/s, β¨=0 rad/s2, γ˙=−0.75 rad/s, and γ¨=−0.1 rad/s2.


Solution Approach: A set of six equations to calculate mechanism variables W1, V1, and U1 is formed from Equation 5.23 (with β = α = γ = 0), Equation 5.23 (with β,α, and γ) and Equation 5.28.† When expressed in matrix form, these equations become


[1010−1001010−1β˙cβ−β˙sβα˙cα−α˙sα−γ˙cγγ˙sγβ˙sββ˙cβα˙sαα˙cα−γ˙sγ−γ˙cγ−β¨sβ−β˙2cβ−β¨cβ+β˙2sβ−α¨sα−α˙2cα−α¨cα+α˙2sαγ¨sγ+γ˙2cγγ¨cγ−γ˙2sγβ¨cβ−β˙2sβ−β¨sβ−β˙2cβα¨cα−α˙2sα−α¨sα−α˙2cα−γ¨cγ+γ˙2sγγ¨sγ+γ˙2cγ]{W1xW1yV1xV1yU1xU1y}=[100000] (5.29)


In Equation 5.29, cang = cos(ang) and sang = sin(ang). The angular velocity and acceleration of the coupler link were arbitrarily specified as α˙=−1.5 rad/s and α¨=−1 rad/s2. Figure E.5.15 includes the calculation procedure in MATLAB’s command window for vectors W1, V1, and U1. Plotting the follower angular velocity and acceleration profiles (Figure E.5.16) of the planar four-bar function generator solution (Figure E.5.17) confirms that the prescribed MSPs are achieved precisely at β = 0.
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FIGURE E.5.15 Example 5.6 W1–Z1–U1 calculation procedure in MATLAB.
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FIGURE E.5.16 Follower angular velocity and acceleration profiles for synthesized function generator.
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FIGURE E.5.17 Synthesized planar four-bar function generator.







Example 5.7


Problem Statement: Given a driving link angular displacement of 35° and a constant driving link angular velocity of 1 rad/s, synthesize a planar four-bar mechanism to achieve a follower angular displacement and velocity of −20° and −0.75 rad/s, respectively.‡


Known Information: Equations 5.23, 5.26, β = 35°, β˙ = 1 rad/s, γ = −20° and γ˙ = −0.75 rad/s.


* The velocity and acceleration of V1 are arbitrarily specified as α· = −1.5rad/s and α·· = −1rad/s2.

† To ensure the function generator solution forms a closed loop, Equation 5.20 (with β = α = γ = 0) must be included in the solution equation set.

‡ The displacement and velocity of V1 are arbitrarily specified as α = − 10° and α· = −1.5 rad/s.

Solution Approach: A set of six equations to calculate mechanism variables W1, V1, and U1 is formed from Equation 5.23 (with β=α=γ=0), Equation 5.23 (with β, α,  and  γ) and Equation 5.26. When expressed in matrix form, these equations become


[1010−1001010−1cosβ−sinβcosα−sinα−cosγsinγsinβcosβsinαcosα−sinγ−cosγβ˙cosβ−β˙sinβα˙cosα−α˙sinα−γ˙cosγγ˙sinγβ˙sinββ˙cosβα˙sinαα˙cosα−γ˙sinγ−γ˙cosγ]{W1xW1yV1xV1yU1xU1y}=[101000] (5.30)


Figure E.5.18 includes the calculation procedure in MATLAB’s command window for vectors W1, V1, and U1. The synthesized planar four-bar function generator solution is illustrated in Figure E.5.19.
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FIGURE E.5.18 Example 5.7 W1–V1–U1 calculation procedure in MATLAB.
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FIGURE E.5.19 Synthesized planar four-bar function generator.









5.9 Mechanism Dimensions: From Dimensional Synthesis to Kinematic Analysis


After synthesizing a mechanism, it is commonly analyzed kinematically. This is usually done to verify that the mechanism is free of defects. The vector solutions from the planar four-bar and Stephenson III dimensional synthesis equations can be incorporated in their respective kinematic analysis equations. Figure 5.13 includes the dimensional synthesis vectors and the kinematic analysis vectors for the planar four-bar and Stephenson III mechanisms. Figures 5.13a and 5.13b are for planar four-bar and Stephenson III motion generation and kinematic analysis respectively and Figure 5.13c is for planar four-bar function generation and kinematic analysis. In four-bar and Stephenson III motion generation, it is not certain that the W1–Z1 will be the true driving dyad. When a kinematic analysis of a synthesized four-bar or Stephenson II mechanism yields incorrect results (with respect to the prescribed values used for synthesis), one should also drive these mechanisms using the U1–S1 dyad along with its displacement angles to fully determine if the synthesized mechanism has a defect.
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FIGURE 5.13 Synthesis and analysis vectors for (a, c) four-bar and (b) Stephenson III mechanisms.



Table 5.1 includes the vectors and vector expressions for planar four-bar and Stephenson III motion generation and kinematic analysis.* The coupler displacement angles αj andαj* specified in planar four-bar and Stephenson III motion generation require no changes for the kinematic analysis of these mechanisms. Adding the vector sum W1+Z1 to the precision points p1, p2, and p3 as shown in Table 5.1 expresses these precision points in the reference frame used for kinematic analysis. One can also subtract the kinematic analysis-calculated p1 value from any remaining kinematic analysis-calculated pj values to express them in the reference frame used for kinematic synthesis.






TABLE 5.1 Vectors and Vector Expressions in Four-Bar and Stephenson III Synthesis and Analysis





	Motion Generation

	Kinematic Analysis










	Vector

	Vector Expression

	Vector

	Vector Expression






	W1

	W1 = W1x + iW1y

	W1

	W1 = W1x + iW1y






	Z1

	Z1 = Z1x + iZ1y

	L1

	L1 = Z1x + iZ1y






	U1

	U1 = U1x + iU1y

	U1

	U1 = U1x + iU1y






	S1

	S1 = S1x + iS1y

	V1

	V1 = Z1− S1






	

	

	G1

	G1 = W1 + Z1 − S1 − U1






	U1*

	U1*=U1x*+iU1y*

	U1*

	U1*=U1x*+iU1y*






	V1*

	V1*=V1x*+iV1y*

	V1*

	V1*=−V1*






	

	

	G1*

	G1*=W1+Z1+(−V1*)−U1*=−G1






	p1

	p1 = p1x + ip1y

	p1

	p1 = p1 + W1 + Z1






	p2

	p2 = p2x + ip2y

	p2

	p2=p2+W1+Z1    or    p2=p2−p1






	p3

	p3 = p3x + ip3y

	p3

	p3=p3+W1+Z1    or    p3=p3−p1











In planar four-bar function generation (Figure 5.13c), the synthesis vectors W1, V1, U1, and G1 can be directly incorporated in the analysis equations without any additional calculations. From this, we can see that W1 = W1x + iW1y, V1 = V1x + iV1y, U1 = U1x + iU1y, and G1 = G1x + iG1y in the planar four-bar kinematic analysis equations.


* Although link dimensions mainly appear in polar exponential form in the Appendix B, C, D MATLAB files and user instructions, they can be specified in any of the rectangular and complex forms given in Equation 2.1.



Example 5.8


Problem Statement: Using the Appendix B.1 MATLAB file, determine if the mechanism solution in Example 5.1 achieves its precision positions.


Known Information: Example 5.1 and Appendix B.1 MATLAB file.


Solution Approach: Figure E.5.20 includes the input specified (in bold text) in the Appendix B.1 MATLAB file. Table E.5.4 includes the coupler positions and follower displacement angles achieved by the planar four-bar mechanism synthesized in Example 5.1. The values of p1, p2, and p3 (in the pj column in Table E.5.4) calculated from the Appendix B.1 MATLAB file are actually offset by W1+Z1, since the coordinate system origin for kinematic analysis is as shown in Figure 5.13a (right image). By subtracting p1 from p1, p2, and p3 (as shown in the pj−p1 column in Table E.5.4), the coordinate system origin matches the origin shown in Figure 5.13a (left image) and the resulting values in this column can be compared directly to the pj column data in Table E.5.1.
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FIGURE E.5.20 Specified input (in bold text) in the Appendix B.1 MATLAB file for Example 5.1.







TABLE E.5.4 Coupler Positions and Follower Angles Achieved by Example 5.1 Solution





	βj(°)

	pj

	αf(°)

	γj(°)

	pj − p1










	0

	1.9256, −0.6863

	0

	0

	0, 0






	18

	2.2176, 0.0477

	−51.716

	−40.002

	0.292, 0.734






	38

	2.2246, 0.7747

	−84.98

	−87.004

	0.299, 1.461















Example 5.9


Problem Statement: Using the Appendix B.7 MATLAB file, determine if the mechanism solution in Example 5.4 achieves its precision positions.


Known Information:Example 5.4 and Appendix B.7 MATLAB file.


Solution Approach: Figure E.5.21 includes the input specified (in bold text) in the Appendix B.7 MATLAB file. Table E.5.5 includes the coupler positions and follower displacement angles achieved by the planar four-bar mechanism synthesized in Example 5.4. The values of p1, p2, and p3 (in the pj column in Table E.5.5) calculated from the Appendix B.7 MATLAB file are actually offset by W1+Z1 since the coordinate system origin for kinematic analysis is as shown in Figure 5.13b (right image). By subtracting p1 from p1, p2, and p3 (as shown in the pj−p1 column in Table E.5.5), the coordinate system origin matches the origin shown in Figure 5.13b (left image) and the resulting values in this column can be compared directly to the pj column data in Table E.5.2.
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FIGURE E.5.21 Specified input (in bold text) in the Appendix B.7 MATLAB file for Example 5.4.







TABLE E.5.5 Coupler Positions and Follower Angles Achieved by Example 5.4 Solution





	αj(°)

	pj

	αj(°)

	α*j(°)

	γj(°)

	γ*j(°)

	pj − p1










	0

	0.0928, −1.5879

	0

	0

	0

	0

	0, 0






	15

	0.2743, −1.0997

	−30

	14.999

	−20

	10

	0.1815, 0.4882






	40

	0.7575, −0.1801

	−75.001

	5

	−35

	29.999

	0.6647, 1.4078















Example 5.10


Problem Statement: Using the Appendix B.1 MATLAB file, determine if the mechanism solution in Example 5.5 achieves its precision points.


Known Information: Example 5.5 and Appendix B.1 MATLAB file.


Solution Approach: Figure E.5.22 includes the input specified (in bold text) in the Appendix B.1 MATLAB file. Table E.5.6 includes the link displacement angles achieved by the planar four-bar mechanism synthesized in Example 5.5. The values in this table match the precision points in Table E.5.3.
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FIGURE E.5.22 Specified input (in bold text) in the Appendix B.1 MATLAB file for Example 5.5.







TABLE E.5.6 Precision Points Achieved by Example 5.5 Solution





	βj (°)

	γj (°)

	αj (°)










	0

	0

	0






	90

	30.007

	−4.999






	180

	60.008

	10.004















Example 5.11


Problem Statement: Using the Appendix B.1 MATLAB file, determine if the mechanism solution in Example 5.6 achieves its precision points.


Known Information: Example 5.6 and Appendix B.1 MATLAB file.


Solution Approach: Figure E.5.23 includes the input specified (in bold text) in the Appendix B.1 MATLAB file. Table E.5.7 includes the link displacement angles achieved by the planar four-bar mechanism synthesized in Example 5.6. The values in this table match the precision points in Figure E.5.15.
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FIGURE E.5.23 Specified input (in bold text) in the Appendix B.1 MATLAB file for Example 5.6.







TABLE E.5.7 Precision Points Achieved by Example 5.5 Solution





	βj (°)

	αj (°)

	αj˙⁢ (rad/s)

	αj¨⁢ (rad/s2)

	γj (°)

	γj˙⁢ (rad/s)

	γj¨⁢ (rad/s2)










	0

	−0.0701

	−1.495

	−1.0388

	−0.0172

	−0.7482

	−0.1116















Example 5.12


Problem Statement: Using the Appendix B.1 MATLAB file, determine if the mechanism solution in Example 5.7 achieves its precision points.


Known Information: Example 5.7 and Appendix B.1 MATLAB file.


Solution Approach: Figure E.5.24 includes the input specified (in bold text) in the Appendix B.1 MATLAB file. Table E.5.8 includes the link displacement angles achieved by the planar four-bar mechanism synthesized in Example 5.7. The values in this table match the precision points in Figure E.5.18.
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FIGURE E.5.24 Specified input (in bold text) in the Appendix B.1 MATLAB file for Example 5.7.







TABLE E.5.8 Precision Points Achieved by Example 5.7 Solution





	βj (°)

	αj (°)

	αj˙⁢ (rad/s)

	γj (°)

	γj˙⁢ (rad/s)










	35

	−10.012

	−1.4996

	−20.007

	−0.7497

















5.10 Summary


In kinematic analysis, mechanism dimensions are known and the resulting mechanism motion sequence is calculated. In dimensional synthesis (a category of kinematic synthesis), a mechanism motion sequence is prescribed and the mechanism dimensions required to achieve them are calculated. Dimensional synthesis includes three subcategories: motion generation, path generation, and function generation. In motion generation, mechanism link positions are prescribed (specifically, coupler-link positions for the planar four-bar mechanism). In planar four-bar path generation, coupler-link path points are prescribed while crank and follower displacement angles are prescribed in planar four-bar function generation. Prescribed coupler positions are called precision positions, while precision points are prescribed coupler points (this is the chief distinction between motion and path generation).


Order defects and branch defects are two uncertainties inherent in motion and path generation. With the order defect, the synthesized mechanism will not achieve the precision positions/points in the intended order. With the branch defect, the synthesized mechanism will not achieve its precision positions/points in a single mechanism branch. A variety of methods have been developed to ensure order- and branch-defect-free solutions. For example, motion generation with prescribed timing (where dyad rotation angles are prescribed) ensures order-defect-free mechanism solutions.


Linear simultaneous equation sets for planar four-bar motion generation are formulated using vector-loop closure for the starting and displaced position of a mechanism dyad. These equations are applicable for three precision positions. By including an equation set corresponding to an additional dyad connected to the coupler point of the planar four-bar mechanism, Stephenson III motion generators are produced.


In planar four-bar function generation, displacement angles are typically specified for the crank and follower links. Often the displacement angles correspond to a mathematical function (where the crank and follower displacement angles are particular input and output function values, respectively). Simultaneous equation sets for planar four-bar function generation are formulated by taking the vector-loop sum of the entire mechanism. The resulting equations can be used to calculate the dimensions of a planar four-bar mechanism to precisely achieve three prescribed crank and follower displacement angle pairs (also called precision points).


In addition to link displacement angles (or FSPs), it is also possible to synthesize function generators to achieve or approximate prescribed link angular velocities or accelerations (or MSPs). Differentiating, expanding, and separating the planar four-bar vector-loop equation produces velocity and acceleration equations (after the first and second derivatives, respectively). Any combination of the velocity equation or the acceleration equation and the initial-position vector-loop equation produces an equation set to analytically calculate the mechanism dimensions required to precisely achieve prescribed FSPs or MSPs.
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Problems




	Synthesize a branch defect-free planar four-bar mechanism for the three hatch positions in Figure P.5.1. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction or a displacement analysis (using the Appendix B.1 or H.1 files).



[image: ]

FIGURE P.5.1 Tree hatch positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three load–unload bucket positions in Figure P.5.2. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).



[image: ]

FIGURE P.5.2 Three load–unload bucket positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three stamping tool positions in Figure P.5.3. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).



[image: ]

FIGURE P.5.3 Three stamping tool positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three folding wing positions in Figure P.5.4. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).



[image: ]

FIGURE P.5.4 Three folding wing positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three lower blade positions in Figure P.5.5. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).



[image: ]

FIGURE P.5.5 Three lower blade positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three brake pad positions in Figure P.5.6. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).



[image: ]

FIGURE P.5.6 Three brake pad positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three digger bucket positions in Figure P.5.7. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).
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FIGURE P.5.7 Three digger bucket positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three latch positions in Figure P.5.8. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).
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FIGURE P.5.8 Three latch positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three top gripper positions in Figure P.5.9. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).
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FIGURE P.5.9 Three top gripper positions.




	Synthesize a branch defect-free planar four-bar mechanism for the three assembly component positions in Figure P.5.10. Branch defect elimination can be verified through Filemon’s Construction, Waldron’s Construction, or a displacement analysis (using the Appendix B.1 or H.1 files).
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FIGURE P.5.10 Three assembly component positions.




	Repeat Problem 1 with p2=(0.785,−4.71) and p3=(1.57,−6.28).


	Repeat Problem 2 with p2=(1.5,4.5) and p3=(3,6).


	Repeat Problem 4 with p2=(1.45,−0.725) and p3=(0.725,−0.725).


	Repeat Problem 6 with p2=(−1.47,1.47) and p3=(−2.205,2.94).


	Repeat Problem 9 with p2=(0.35,−1.4) and p3=(1.4,−1.75).


	Synthesize a Stephenson III mechanism for the three gripper positions in Figure P.5.11. Verify that the gripper positions are achieved (and that the mechanism is free of branch defects) through a displacement analysis using the Appendix B.7 or H.6 files.
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FIGURE P.5.11 Three gripper positions.




	Synthesize a Stephenson III mechanism for the three seat positions in Figure P.5.12. Verify that the seat positions are achieved (and that the mechanism is free of branch defects) through a displacement analysis using the Appendix B.7 or H.6 files.
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FIGURE P.5.12 Three seat positions.




	Synthesize a Stephenson III mechanism for the three digger arm positions in Figure P.5.13. Verify that the digger arm positions are achieved (and that the mechanism is free of branch defects) through a displacement analysis using the Appendix B.7 or H.6 files.
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FIGURE P.5.13 Three digger arm positions.




	Synthesize a Stephenson III mechanism for the three cutting tool positions in Figure P.5.14. Verify that the cutting tool positions are achieved (and that the mechanism is free of branch defects) through a displacement analysis using the Appendix B.7 or H.6 files.
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FIGURE P.5.14 Three cutting tool positions.




	Repeat Problem 16 with p2=(1.4,1.4) and p3=(2.1,1.75).


	Repeat Problem 17 with p2=(0.735,−0.735) and p3=(2.94,−1.1025).


	Repeat Problem 18 with p2=(2.9,−1.45) and p3=(4.35,−0.3625).


	Repeat Problem 19 with p2=(1.5,1.5) and p3=(3,1.875).


	Using the MATLAB calculation procedure in Example 5.5 (Figure E.5.13), synthesize a planar four-bar mechanism for a 75° total wiper blade rotation range (Figure P.5.15) and a 45° total crank rotation range (where the wiper blade is affixed to the follower link).
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FIGURE P.5.15 Wiper blade rotation range.




	Using the MATLAB calculation procedure in Example 5.5 (Figure E.5.13), synthesize a planar four-bar mechanism for a 75° wheel rotation range (Figure P.5.16) and a 50° crank rotation range (where the wheel is affixed to the follower link).
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FIGURE P.5.16 Wheel rotation range.




	Using the MATLAB calculation procedure in Example 5.5 (Figure E.5.13), synthesize a planar four-bar mechanism for a 90° total valve rotation range (Figure P.5.17) and a 40° total crank rotation range (where the valve is affixed to the follower link).
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FIGURE P.5.17 Pipe valve rotation range.




	Using the MATLAB calculation procedure in Example 5.5 (Figure E.5.13), synthesize a planar four-bar mechanism for a 130° total hatch rotation range (Figure P.5.18) and a 65° total crank rotation range (where the hatch is affixed to the follower link).
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FIGURE P.5.18 Hatch rotation range.




	Using Equation (5.19) and the MATLAB calculation procedure in Example 5.5 (Figure E.5.13), synthesize a planar four-bar mechanism for the function f(x)=cosx at precision points x2=30° and x3=90° (where x1=0°, Δβ=60° and Δγ=135°).


	Using Equation (5.19) and the MATLAB calculation procedure in Example 5.5 (Figure E.5.13), synthesize a planar four-bar mechanism for the function f(x)=logx at precision points x2=5 and x3=10 (where x1=1, Δβ=45° and Δγ=100°).


	Using Equation (5.19) and the MATLAB calculation procedure in Example 5.5 (Figure E.5.13), synthesize a planar four-bar mechanism for the function f(x)=tanx at precision points x2=35° and x3=45° (where x1=0°, Δβ=75° and Δγ=125°).


	Using the MATLAB calculation procedure in Example 5.6 (Figure E.5.15), synthesize a planar four-bar mechanism to achieve a follower angular velocity and acceleration of γ˙ = 1.25 rad/s and γ¨ = −0.25 rad/s2, respectively, for a crank angular velocity and acceleration of β˙ = 2 rad/s and β¨ = 0.5 rad/s2, respectively, and a coupler angular velocity and acceleration of α˙ = 0.65 rad/s and α¨ = 0.10 rad/s2, respectively.


	Using the MATLAB calculation procedure in Example 5.6 (Figure E.5.15), synthesize a planar four-bar mechanism to achieve a follower angular velocity and acceleration of γ˙ = −1.5 rad/s and γ¨ = 0.25 rad/s2, respectively, for a crank angular velocity and acceleration of β˙ = 2 rad/s and β¨ = −0.5 rad/s2, respectively, and a coupler angular velocity and acceleration of α˙ = −0.65 rad/s and α¨ = −0.35 rad/s2, respectively.


	Using the MATLAB calculation procedure in Example 5.7 (Figure E.5.18), synthesize a planar four-bar mechanism to achieve a follower angular displacement and velocity of γ = −35° and γ˙ = −0.25 rad/s, respectively, for a crank angular displacement and velocity of β = 55° and β˙ = 0.5 rad/s, respectively, and a coupler angular displacement and velocity of α = −15° and α˙ = −0.35 rad/s, respectively.


	Using the MATLAB calculation procedure in Example 5.7 (Figure E.5.18), synthesize a planar four-bar mechanism to achieve a follower angular displacement and velocity of γ2 = π/4 rad and γ˙2 = 1.15 rad/s and a coupler angular displacement and velocity of α2 = π/18 rad and α˙2 = 0.25 rad/s. The angular displacement and constant angular velocity for the crank are β2 = π/6 rad and β˙ = 1 rad/s.


	Using the MATLAB calculation procedure in Example 5.7 (Figure E.5.18), synthesize a planar four-bar mechanism to achieve a follower angular displacement and velocity of γ = −75° and γ˙ = −3.25 rad/s, respectively, for a crank angular displacement and velocity of β = 65° and β˙ = 2.5 rad/s, respectively, and a coupler angular displacement and velocity of α = 35° and α˙ = 1.95 rad/s, respectively.











  
    



6 Static Force Analysis of Planar Mechanisms


DOI: 10.1201/9781003316961-6






Concept Overview


In this chapter, the reader will gain a central understanding regarding




	Criteria for static force analysis and its applications


	Link static loads in 2D space


	Formulation and solution of linear simultaneous equation sets for static force analysis


	The effects of gear train inclusion in the static force analysis of five-bar mechanisms









6.1 Introduction


As explained in Chapter 1, additional analyses often follow a kinematic analysis. In terms of structural force analyses for mechanical systems, a static force analysis (Figure 1.1) is the most basic type of analysis to consider beyond kinematics. In this type of analysis, loads such as forces and torques are considered for each mechanism link according to Newton’s first law (∑F = ∑M = 0) [1, 2, 3].
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FIGURE 6.1 Applied forces in (a) lock pliers and (b) cutting tool.



A static force analysis is the only type of force analysis required if the mechanism operates in a static state.* In Figure 6.1a, the lock pliers holding the solid object are an example of a static state because, when holding the solid object, the pliers are not in motion. A static force analysis may also be applicable when the mechanism operates in a quasi-static state. An example of this state is given in the cutting tool illustrated in Figure 6.1b. Although the mechanism is in motion while the blades of the cutting tool shear the material, the dynamic forces produced during this motion can be so small (because the motion can be so slow) that they can be neglected. Under a condition where dynamic forces are small enough to be negligible in a mechanism, a quasi-static state exists and static force assumptions are suitable.


Even if the mechanism motion is truly dynamic, static force assumptions can be useful as a preliminary force analysis. For example, static forces or stresses can be multiplied by certain scale factors to account for dynamic events such as impact and fatigue [4].


Although it is possible for out-of-plane forces and moments to exist in a planar mechanism (due to mechanism mass and force imbalances in the z-direction), the equation systems presented in this chapter consider forces in the x-y plane only.* The equation systems presented in this chapter consider the reaction forces due to externally applied loads as well as the additional forces produced by gravity on the link masses (link weights). Although link weights are not neglected in the forthcoming equations, as the externally applied loads exceed the link weights, the reaction force-producing effect of these weights becomes increasingly negligible. The contribution of link weights generally becomes more important as the scale of the mechanism increases. For example, it would be essential to consider link weights in the static force analysis of a multistory level-luffing crane mechanism (see Figure E.4.1), but not essential in the analysis of the hand tools in Figure 6.1. Lastly,in this chapter, the mechanism links are considered to be rigid or nondeforming in the mechanism static force equations.†


* When a mechanism is in a static state, it is said to be statically determinate.





6.2 Static Loading in Planar Space


Figure 6.2 illustrates arbitrarily grounded rotating and translating planar links under static loads. Loads, even distributed loads, can be represented as force vectors applied to link points. For example, force vectors Fp0, Fp1, and mg are applied to link points p0, p1 and the link’s CG (center of gravity), respectively, in Figure 6.2a. Also, a torque Ta0 is applied about point p0 in Figure 6.2a.‡ Static forces and torques are either applied externally (like force vector F in Figure 6.2b) or they are reactions to externally applied loads (like force vectors Fp1 and Ff in Figure 6.2b).
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FIGURE 6.2 Static loads on (a) grounded rotating and (b) translating planar links.



Link static equilibrium is achieved in accordance to Newton’s first law. With this law, when the sum of all link forces is zero (or ∑F = 0) and the sum of all link moments is zero (or ∑M = 0), link static equilibrium is achieved.§§ Because the force vectors include both x- and y-direction components, the forces’ sums are taken in both directions (∑Fx = 0 and ∑Fy = 0).


The conditions from Newton’s first law must be satisfied for each mechanism link in order to achieve static equilibrium in the entire mechanism.


* Whether out-of-plane mechanism forces and moments should be considered in an analysis depends in part on the amount of mass and force imbalance preset in the mechanism as well as the overall mechanism scale.

† If springs are included in the mechanism design, their deflection should be considered since spring force is proportional to spring deflection.

‡ The torque is actually applied about an axis, but in planar space, the axis can be represented by a point (since the axis is normal to the plane).

§ The words torque and moment are used in this chapter since they are synonymous.





6.3 Four-Bar Mechanism Analysis


Figure 6.3a illustrates a planar four-bar mechanism where a force Fp1 is applied to the coupler-link point p1. To maintain static equilibrium, a torque Ta0 is applied about the crank link revolute joint a0. Vectors R1, R2, and R3 point from a0, a1, and b0, respectively, to the center of gravity of each link. The loads on the individual planar four-bar mechanism links are illustrated in Figure 6.3b. Because the joints at a1 and b1 are shared among two links, the forces at a1 and b1 must be equal but opposite (resulting in ±Fa1 and ±Fb1 in Figure 6.3b). The remaining force and torque variables, however, remain positive for simplicity.* This approach is repeated for the mechanisms in Sections 6.4 through 6.7.
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FIGURE 6.3 (a) Planar four-bar mechanism and (b) link static forces and torque.



Taking the sum of the forces and moments for each link, according to the static equilibrium conditions ∑F = 0 and ∑M = 0, produces two static equilibrium equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx = 0 and ∑Fy = 0, ultimately produces three static equilibrium equations for each link.


Using the first two static equilibrium conditions for the crank link (where the moment sum is taken about a0) produces


Fa0+Fa1+m1g=0


Ta0+W1×Fa1+R1×m1g=0 (6.1)†


Expanding and separating Equation 6.1 produces


Fa0x+Fa1x=0Fa0y+Fa1y+m1g=0Ta0−Fa1xW1sin(θ+βj)+Fa1yW1cos(θ+βj)+m1g(R1xcosβj−R1ysinβj)=0 (6.2)


* The signs of the calculated static force and torque variables are not determined by the signs prescribed to them during equation formulation. They are determined by the mechanism position and the applied load values.

† The expression A × B is the cross product of planar vectors A and B. When expanded, A × B = AxBy− AyBx.

Since gravity is directed along the y-axis (which is identical to the imaginary axis), the expansion of the cross product R1×m1g in Equation 6.2 only includes the expansion of the product of m1g and the real component of R1 where R1=(R1x+iR1y)eiβj.


Using the first two static equilibrium conditions for the coupler link (where the moment sum is taken about a1) produces


−Fa1−Fb1+Fp1+m2g=0−V1×Fb1+L1×Fp1+R2×m2g=0. (6.3)


Expanding and separating Equation 6.3 produces


−Fa1x−Fb1x+Fp1x=0−Fa1y−Fb1y+Fp1y+m2g=0Fb1xV1sin(ρ+αj)−Fb1yV1cos(ρ+αj)−Fp1xL1sin(δ+αj)+Fp1yL1cos(δ+αj)+m2g(R2xcosαj−R2ysinαj)=0. (6.4)


Since gravity is directed along the y-axis, the expansion of the cross product R2×m2g in Equation 6.4 only includes the expansion of the product of m2g and the real component of R2 where R2=(R2x+iR2y)eiαj.


Using the first two static equilibrium conditions for the follower link (where the moment sum is taken about b0) produces


Fb0+Fb1+m3g=0U1×Fb1+R3×m3g=0. (6.5)


Expanding and separating Equation 6.5 produces


Fb0x+Fb1x=0Fb0y+Fb1y+m3g=0−Fb1xU1sin(σ+γj)+Fb1yU1cos(σ+γj)+m3g(R3xcosγj−R3ysinγj)=0 (6.6)


Again, due to the y-axis direction of gravity, the expansion of the cross product R3×m3g in Equation 6.6 only includes the expansion of the product of m3g and the real component of R3 where R3=(R3x+iR3y)eiγj.


Expressing Equations 6.2, 6.4, and 6.6 in a combined matrix form produces


[010100000001010000100−WyWx0000000−1000−100000−1000−10000000Vy−Vx0000010100000001010000000−UyUx]{Ta0Fa0xFa0yFa1xFa1yFb0xFb0yFb1xFb1y} =[0−m1g−m1g(R1xcosβj−R1ysinβj)−Fp1x−Fp1y−m2g[Fp1xLy−Fp1yLx−m2g(R2xcosαj−R2ysinαj)]0−m3g−m3g(R3xcosγj−R3ysinγj)] (6.7)


where:


Wx = W1 cos(θ + βj)


Wy = W1 sin(θ + βj)


Lx = L1 cos(δ + αj)


Ly = L1 sin(δ + αj)


Vx = V1 cos(ρ + αj)


Vy = V1 sin(ρ + αj)


Ux = U1 cos(σ + γj)


Uy = U1 sin(σ + γj).*


Equation 6.7 can be solved using Cramer’s rule to determine the unknown forces and torque. The unknown planar four-bar displacement angles αj and γj are the same angles calculated from the planar four-bar displacement equations in Section 4.4.1. Given βj, αj, and γj solutions, the corresponding static forces and torques can be calculated from Equation 6.7.


Appendix C.1 includes the MATLAB® file user instructions for planar four-bar static force analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 6.7 are calculated.†




Example 6.1


Problem Statement: When vector W1 of the planar four-bar stamping mechanism (Figure E.6.1a) is rotated β=60∘, a reaction force of Fp2=(0,4500)N is applied (Figure E.6.1b) due to the stamping event. Tables E.6.1 and E.6.2 include the dimensions and mass properties of the planar four-bar stamping mechanism in the initial position (Figure E.6.1a). Using the Appendix C.1 MATLAB file, calculate the static torque and forces generated in the stamping mechanism in the stamping position (Figure E.6.1b). Gravity is −9.81 m/s2.


* This method of calculating mechanism forces via matrix manipulation is called the matrix method. With this method, link force equations are quickly derived.

† The library of MATLAB files used in this chapter can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.
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FIGURE E.6.1 Stamping mechanism in (a) initial and (b) stamping positions.







TABLE E.6.1 Stamping Mechanism Dimensions in Initial Position (with Link Lengths in m)





	W1, θ

	V1, ρ

	u1, σ










	0.2013, –157.8291°

	0.1583, –150.1267°

	0.3455, 133.0953°






	G1x, G1y

	L1, δ

	






	−0.0876, −0.4071

	0.27, 4.7572°

	















TABLE E.6.2 Planar Four-Bar Mechanism Dynamic Parameters (with Length in m and mass in kg)





	R1

	−0.0932 − i0.038

	m1

	8










	R2

	0.0955 + i0.0159

	m2

	40






	R3

	−0.118 + i0.1261

	m3

	12











Known Information: Tables E.6.1, E.6.2, and Appendix C.1 MATLAB file.


Solution Approach: Figure E.6.2 includes the input specified (in bold text) in the Appendix C.1 MATLAB file. Table E.6.3 includes the static torque and forces calculated for the planar four-bar stamping mechanism using the Appendix C.1 MATLAB file.




[image: ]

FIGURE E.6.2 Specified input (in bold text) in the Appendix C.1 MATLAB file for Example 6.1.







TABLE E.6.3 Calculated Stamping Mechanism Static Forces (in N) and Torque (in N-m)





	Ta0

	Fa0

	Fa1

	Fb0

	Fb1










	162.51

	74.14, −5347.8

	−74.14, 5426.3

	−74.14, 1436.4

	74.14, −1318.7

















6.4 Slider-Crank Mechanism Analysis


Figure 6.4a illustrates a slider-crank mechanism where a force F is applied to the slider link revolute joint b1. To maintain static equilibrium, a torque Ta0 is applied about the crank link revolute joint a0. Vectors R1 and R2 point from a0 and a1, respectively, to the center of gravity of each link. The loads on the individual slider-crank mechanism links are illustrated in Figure 6.4b. Taking the sum of the forces and moments for each link according to the static equilibrium conditions ∑F = 0 and ∑M = 0 produces two static equilibrium equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx = 0 and ∑Fy = 0, ultimately produces three static equilibrium equations for each link. Using these conditions for the crank link (where the moment sum is taken about a0) produces Equation 6.2.
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FIGURE 6.4 (a) Slider-crank mechanism and (b) link static forces and torque.



Using the first two static equilibrium conditions for the coupler link (where the moment sum is taken about a1) produces


−Fa1−Fb1+m2g=0−V1×Fb1+R2×m2g=0 (6.8)


Expanding and separating Equation 6.8 produces


−Fa1x−Fb1x=0−Fa1y−Fb1y+m2g=0Fb1xV1sin(ρ+αj)−Fb1yV1cos(ρ+αj)+m2g(R2xcosαj−R2ysinαj)=0 (6.9)


Since gravity is directed along the y-axis, the expansion of the cross product R2×m2g in Equation 6.9 only includes the expansion of the product of m2g and the real component of R2 where R2=(R2x+iR2y)eiαj.


Using only the static equilibrium condition ∑F = 0 for the slider link produces


F+Fb1+Ff+m3g=0 (6.10)*


In Equation 6.10, the x- and y-components of vector Ff are the friction force ±μFnormal and the normal force Fnormal, respectively. Expanding and separating Equation 6.10 produces


Fx+Fb1x±μFnormal=0Fy+Fb1y+Fnormal+m3g=0 (6.11)


Expressing Equations 6.2, 6.9, and 6.11 in a combined matrix form produces


[0101000000101000100−WyWx000000−10−1000000−10−1000000Vy−Vx00000010±μ00000011]{Ta0Fa0xFa0yFa1xFa1yFb1xFb1yFnormal} =[0−m1g−m1g(R1xcosβj−R1ysinβj)0−m2g−m2g(R2xcosαj−R2ysinαj)−Fx−Fy−m3g] (6.12)


where:


Wx = W1 cos(θ + βj)


Wy = W1 sin(θ + βj)


Vx = V1 cos(ρ + αj)


Vy = V1 sin(ρ + αj)†


* Because the slider does not rotate, the static equilibrium condition ∑M = 0 is not included in Equation 6.10.

† Equation 6.12 could be solved using both signs for ±μ to determine the maximum static loads.

Equation 6.12 can be solved using Cramer’s rule to determine the unknown forces and torque. The unknown slider-crank displacement angles αj are the same angles calculated from the slider-crank displacement equations in Section 4.5.1. Given βj and αj solutions, the corresponding static forces and torques can be calculated from Equation 6.12.


Appendix C.2 includes the MATLAB® file user instructions for slider-crank static force analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 6.12 are calculated.




Example 6.2


Problem Statement: Using the Appendix C.2 MATLAB file, calculate the static torque and forces generated in the in-line slider-crank mechanism in Tables E.6.4 and E.6.5 where a force of F=(−50,0)N is applied and gravity is −9.81 m/s2.


Known Information: Tables E.6.4, E.6.5, and Appendix C.2 MATLAB file.






TABLE E.6.4 Slider-Crank Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1

	u1

	μ










	0.04, 45°

	0.06

	0

	0.1















TABLE E.6.5 Slider-Crank Mechanism Dynamic Parameters (with Length in m and Mass in kg)





	R1

	0

	m1

	0.05










	R2

	0.0265 − i0.0141

	m2

	0.025






	

	

	m3

	0.075











Solution Approach: Figure E.6.3 includes the input specified (in bold text) in the Appendix C.2 MATLAB file. Table E.6.6 includes the static torque and forces calculated for the slider-crank mechanism using the Appendix C.2 MATLAB file.
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FIGURE E.6.3 Specified input (in bold text) in the Appendix C.2 MATLAB file for Example 6.2.







TABLE E.6.6 Calculated Slider-Crank Mechanism Static Forces (in N) and Torque (in N-m)





	Ta0

	Fa0

	Fa1

	Fb1

	Fnormal

	Ffriction










	−2.053

	47.381, −24.714

	−47.381, 25.204

	47.381, −25.449

	26.815

	2.6185

















6.5 Geared Five-Bar Mechanism Analysis


We will begin the formulation of a static force equation system for the geared five-bar mechanism by first formulating a static force equation system for a five-bar mechanism without gears. Because such a system has two degrees of freedom, static equilibrium is achieved by independently constraining the rotations of the links containing vectors W1 and U1.


Figure 6.5a illustrates a five-bar mechanism where a force Fp1 is applied to the intermediate link point p1. To maintain static equilibrium, torques Ta0 and Tb0 are applied about both grounded revolute joints a0 and b0, respectively. Vectors R1 through R4 point from a0, a1, b1, and b0, respectively, to the center of gravity of each link. The loads on the individual five-bar mechanism links are illustrated in Figure 6.5b. Taking the sum of the forces and moments for each link according to the static equilibrium conditions ∑F = 0 and ∑M = 0 produces two static equilibrium equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx = 0, ∑Fy = 0, ultimately produces three static equilibrium equations for each link. Using these conditions for the crank link a0− a1 (where the moment sum is taken about a0) produces Equation 6.2.
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FIGURE 6.5 (a) Five-bar mechanism and (b) link static forces and torques.



Using the first two static equilibrium conditions for the intermediate link a1− c1 (where the moment sum is taken about a1) produces


−Fa1−Fc1+Fp1+m2g=0−V1×Fc1+L1×Fp1+R2×m2g=0 (6.13)


Expanding and separating Equation 6.13 produces


−Fa1x−Fc1x+Fp1x=0−Fa1y−Fc1y+Fp1y+m2g=0Fc1xV1sin(ρ+αj)−Fc1yV1cos(ρ+αj)−Fp1xL1sin(δ+αj)+Fp1yL1cos(δ+αj)+m2g(R2xcosαj−R2ysinαj)=0 (6.14)


Since gravity is directed along the y-axis, the expansion of the cross product R2×m2g in Equation 6.14 only includes the expansion of the product of m2g and the real component of R2 where R2=(R2x+iR2y)eiαj.


Using the first two static equilibrium conditions for the intermediate link b1− c1 (where the moment sum is taken about b1) produces


Fc1−Fb1+m3g=0S1×Fc1+R3×m3g=0 (6.15)


Expanding and separating Equation 6.15 produces


Fc1x−Fb1x=0Fc1y−Fb1y+m3g=0−Fc1xS1sin(ψ+νj)+Fc1yS1cos(ψ+νj)+m3g(R3xcosνj−R3ysinνj)=0 (6.16)


Since gravity is directed along the y-axis, the expansion of the cross product R3×m3g in Equation 6.16 only includes the expansion of the product of m3g and the real component of R3 where R3=(R3x+iR3y)eiνj.


Using the first two static equilibrium conditions for the crank link b0 − b1 (where the moment sum is taken about b0) produces


Fb0+Fb1+m4g=0Tb0+U1×Fb1+R4×m4g=0 (6.17)


Expanding and separating Equation 6.17 produces


Fb0x+Fb1x=0Fb0y+Fb1y+m4g=0Tb0−Fb1xU1sin(σ+γj)+Fb1yU1cos(σ+γj)+m4g(R4xcosγj−R4ysinγj)=0 (6.18)


Since gravity is directed along the y-axis, the expansion of the cross product R4×m4g in Equation 6.18 only includes the expansion of the product of m4g and the real component of R4 where R4=(R4x+iR4y)eiγj.


Expressing Equations 6.2, 6.14, 6.16, and 6.18 in a combined matrix form produces


[010100000000001010000000100−WyWx0000000000−10−10000000000−10−10000000000Vy−Vx000000000010000−1000000010000−100000−SySx000000000000010100000000001010000000100−UyUx] ×{Ta0Fa0xFa0yFa1xFa1yFc1xFc1yTb0Fb0xFb0yFb1xFb1y}=[0−m1g−m1g(R1xcosβj−R1ysinβj)−Fp1x−Fp1y−m2gFp1xLy−Fp1yLx−m2g(R2xcosαj−R2ysinαj)0−m3g−m3g(R3xcosνj−R3ysinνj)0−m4g−m4g(R4xcosγj−R4ysinγj)] (6.19)


where:


Wx = W1 cos(θ + βj)


Wy = W1 sin(θ + βj)


Lx = L1 cos(δ + αj)


Ly = L1 sin(δ + αj)


Vx = V1 cos(ρ + αj)


Vy = V1 sin(ρ + αj)


Sx = S1 cos(ψ + vj)


Sy = S1 sin(ψ + vj)


Ux = U1 cos(σ + γj)


Uy = U1 sin(σ + γj)


Equation 6.19 can be solved using Cramer’s rule to determine the unknown forces and torques. The unknown five-bar displacement angles αj and νj are the same angles calculated from the geared five-bar displacement equations in Section 4.6.1. Given βj, αj, and νj solutions, the corresponding static forces and torques can be calculated from Equation 6.19.


As noted at the start of this section, Equation 6.19 calculates the static forces and torques for a five-bar mechanism without gears. The inclusion of a gear pair or gear train, however, will affect the calculated values of Ta0, Fa0, and Fb0.


Including a gear pair or train in the five-bar mechanism reduces it to a single degree of freedom. To achieve static equilibrium, a new torque is applied about a0 (while the calculated torque Tb0 is still applied about b0). This new, gear-based torque (which we call Ta0′) includes Ta0 and Tb0 from Equation 6.19 and can be expressed as


T′a0=Ta0+r1r2Tb0=Ta0+1rTb0 (6.20)


where the gear ratio r is the ratio of the radius of the driven gear to the driving gear.*


Therefore, with the inclusion of a gear pair or a gear train in the five-bar mechanism, the static torque Ta0′ from Equation 6.20 replaces Ta0 from Equation 6.19, while the static torque Tb0 calculated from Equation 6.19 remains unchanged.


Figure 6.6a illustrates a gear pair used in the geared five-bar mechanism. By using a gear pair, the links containing vectors W1 and U1 rotate in opposite directions. The force transmitted by Gear 2 (force F in Figure 6.6a) must be included among the components of Fa0 and Fb0 calculated in Equation 6.19.
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FIGURE 6.6 (a) Gear pair and (b) three-gear train used in geared five-bar mechanism.



In Equations 6.21 and 6.22, the components of the transmitted gear pair force F (which is calculated through the torque Tb0 from Equation 6.19) are included in Fa0and Fb0, respectively.


F′a0=Fa0+Tb0r2ei(π2 + ang)=Fa0+Tb0(1+|r|r |G1|)ei(π2 + ang) (6.21)


F′b0=Fb0−Tb0r2ei(π2 + ang)=Fb0−Tb0(1+|r|r |G1|)ei(π2 + ang) (6.22)


Figure 6.6b illustrates a three-gear train used in the geared five-bar mechanism.† By using a three-gear train, the links containing vectors W1 and U1 rotate in the same direction. The force transmitted by Gear 2 (force F in Figure 6.6b) must be included among the components of Fa0 and Fb0calculated in Equation 6.19.


* The radius of a gear is commonly referred to as the pitch radius (see Chapter 8).

† The gear train (Figure 6.6b) considered in this text for the geared five-bar mechanism is comprised of three gears, where the middle gear and the gear affixed to a0 have identical radii.

In Equations 6.23 and 6.24, the components of the transmitted three-gear-train force F (which is calculated through the torque Tb0 from Equation 6.19) are included in Fa0and Fb0, respectively.


F′a0=Fa0+Tb0r2ei(π2 + ang)=Fa0+Tb0(3+|r|r |G1|)ei(π2 + ang) (6.23)


F′b0=Fb0+Tb0r2ei(π2 + ang)=Fb0+Tb0(3+|r|r |G1|)ei(π2 + ang) (6.24)


Therefore, with the inclusion of gears in the five-bar mechanism, the static forces Fa0′ and Fb0′ from Equations 6.21 and 6.22 replace Fa0 and Fb0 calculated from Equation 6.19, when a gear pair is included, while Fa0′ and Fb0′ from Equation 6.23 and 6.24 replace Fa0 and Fb0, when a three-gear train is included.


Appendices C.3 and C.4 include the MATLAB file user instructions for geared five-bar static force analysis (for two and three gears, respectively). In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 6.19 and Equations 6.20 through 6.24 are calculated.




Example 6.3


Problem Statement: Using the Appendix C.4 MATLAB file, calculate the static forces and driver torque generated in the geared five-bar mechanism in Tables E.6.7 and E.6.8 where a force of Fp1=(−2500,−3000)N is applied at β=60°. The gear ratio is r=+2, and the gravity is −9.81 m/s2.


Known Information: Tables E.6.7, E.6.8, and Appendix C.4 MATLAB file.






TABLE E.6.7 Geared Five-Bar Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1 ρ

	u1 σ

	S1 σ

	G1x, G1y

	L1, δ










	0.5, 90°

	0.75, 32.7304°

	0.75, 45°

	0.75, 149.9837°

	0.75, 0

	0.5, 74.1400°















TABLE E.6.8 Geared Five-Bar Mechanism Dynamic Parameters (with Length in m and mass in kg)





	R1

	i0.0831

	m1

	22.54










	R2

	0.2558 + i0.2955

	m2

	29.785






	R3

	−0.3247 + i0.1876

	m3

	12.075






	R4

	0.0356 + i0.0356

	m4

	75.67











Solution Approach: Figure E.6.4 includes the input specified (in bold text) in the Appendix C.4 MATLAB file. Table E.6.9 includes the static forces and torques calculated for the geared five-bar mechanism using the Appendix C.4 MATLAB file.
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FIGURE E.6.4 Specified input (in bold text) in the Appendix C.4 MATLAB file for Example 6.3.







TABLE E.6.9 Calculated Geared Five-Bar Mechanism Static Forces (in N) and Torques (in N-m)





	Ta0′

	Fa0′

	Fa1

	Fc1

	Fb1










	−2207

	543.23, −1144.8

	−543.23, −3173.8

	−1956.8, −118.43

	−1956.8, −236.






	Tb0

	Fb0′

	

	

	






	−1361.9

	1956.8, −3560.5

	

	

	

















6.6 Watt II Mechanism Analysis


Figure 6.7a illustrates a Watt II mechanism where forces Fp1 and Fp1* are applied to the intermediate link points p1 and p1*. Vectors R1 through R5 point from a0, a1, b0, a1*, and b0*, respectively, to the center of gravity of each link. To maintain static equilibrium, a torque Ta0 is applied about the crank link revolute joint a0. The loads on the individual Watt II mechanism link are illustrated in Figure 6.7b. Taking the sum of the forces and moments for each link according to the static equilibrium conditions ∑F = 0 and ∑M = 0 produces two static equilibrium equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx = 0 and ∑Fy = 0, ultimately produces three static equilibrium equations for each link. Because the Watt II mechanism includes the planar four-bar mechanism, the static equilibrium equations given in Equations 6.2 and 6.4 are used for the crank and coupler links, respectively, of the planar four-bar mechanism loop a0−a1−b1−b0 in the Watt II mechanism.
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FIGURE 6.7 (a) Watt II mechanism and (b) link static forces and torque.



Using the first two static equilibrium conditions for the follower link of the planar four-bar mechanism loop a0− a1− b1− b0 (where the moment sum is taken about b0) produces


Fb0+Fb1+Fa1*+m3g=0U1×Fb1+W1*×Fa1*+R3×m3g=0 (6.25)


Expanding and separating Equation 6.25 produces


Fb0x+Fb1x+Fa1x*=0Fb0y+Fb1y+Fa1y*+m3g=0−Fb1xU1sin(σ+γj)+Fb1yU1cos(σ+γj)−Fa1x*W1*sin(θ*+βj*)+Fa1y*W1*cos(θ*+βj*)+m3g(R3xcosγj−R3ysinγj)=0 (6.26)


Since gravity is directed along the y-axis, the expansion of the cross product R3×m3g in Equation 6.26 only includes the expansion of the product of m3g and the real component of R3 where R3=(R3x+iR3y)eiγj.


Using the first two static equilibrium conditions for the coupler link of the planar four-bar mechanism loop b0−a1*−b1*−b0* (where the moment sum is taken about a1*) produces


−Fa1*−Fb1*+Fp1*+m4g=0−V1*×Fb1*+L1*×Fp1*+R4×m4g=0 (6.27)


Expanding and separating Equation 6.27 produces


−Fa1x*−Fb1x*+Fp1x*=0−Fa1y*−Fb1y*+Fp1y*+m4g=0Fb1x*V1*sin(ρ*+αj*)−Fb1y*V1*cos(ρ*+αj*)−Fp1x*L1*sin(δ*+αj*)+Fp1y*L1*cos(δ*+αj*)+m4g(R4xcosαj*−R4ysinαj*)=0 (6.28)


Since gravity is directed along the y-axis, the expansion of the cross product R4×m4g in Equation 6.28 only includes the expansion of the product of m4g and the real component of R4 where R4=(R4x+iR4y)eiαj*.


Using the first two static equilibrium conditions for the follower of the planar four-bar mechanism loop b0−a1*−b1*−b0* (where the moment sum is taken about b0*) produces


Fb0*+Fb1*+m5g=0U1*×Fb1*+R5×m5g=0 (6.29)


Expanding and separating Equation 6.29 produces


Fb0x*+Fb1x*=0Fb0y*+Fb1y*+m5g=0−Fb1x*U1*sin(σ*+γj*)+Fb1y*U1*cos(σ*+γj*)+m5g(R5xcosγj*−R5ysinγj*)=0 (6.30)


Since gravity is directed along the y-axis, the expansion of the cross product R5×m5g in Equation 6.30 only includes the expansion of the product of m5g and the real component of R5 where R5=(R5x+iR5y)eiγj*.


Expressing Equations 6.2, 6.4, 6.26, 6.28, and 6.30 in a combined matrix form produces


[010100000000000001010000000000100−WyWx0000000000000−1000−100000000000−1000−10000000000000Vy−Vx0000000000010101000000000001010100000000000−UyUx−Wy*Wx*0000000000000−1000−100000000000−1000−10000000000000Vy*−Vx*0000000000010100000000000001010000000000000−Uy*Ux*] ×{Ta0Fa0xFa0yFa1xFa1yFb0xFb0yFb1xFb1yFa1x*Fa1y*Fb0x*Fb0y*Fb1x*Fb1y*}=[0−m1g−m1g(R1xcosβj−R1ysinβj)−Fp1x−Fp1y−m2gFp1xLy−Fp1yLx−m2g(R2xcosαj−R2ysinαj)0−m3g−m3g(R3xcosγj−R3ysinγj)−Fp1x*−Fp1y*−m4gFp1x*Ly*−Fp1y*Lx*−m4g(R4xcosαj*−R4ysinαj*)0−m5g−m5g(R5xcosγj*−R5ysinγj*)] (6.31)


where:


variables Wx, Wy, Lx, Ly, Vx, Vy, Ux, and Uy are identical to those used in Equation 6.7 and


Wx*=W1*cos(θ*+βj*)


Wy*=W1*sin(θ*+βj*)


Lx*=L1*cos(δ*+αj*)


Ly*=L1*sin(δ*+αj*)


Vx*=V1*cos(ρ*+αj*)


Vy*=V1*sin(ρ*+αj*)


Ux*=U1*cos(σ*+γj*)


Uy*=U1*sin(σ*+γj*)


Equation 6.31 can be solved using Cramer’s rule to determine the unknown forces and torque. The unknown Watt II displacement angles αj, γj, αj*, and γj* are the same angles calculated from the planar four-bar displacement equations in Section 4.4.1. Given βj, αj, γ, αj*, and γj* solutions, the corresponding static forces and torques can be calculated from Equation 6.31.


Appendix C.5 includes the MATLAB® file user instructions for Watt II static force analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 6.31 are calculated.




Example 6.4


Problem Statement: Using the Appendix C.5 MATLAB file, calculate the static forces and torque generated in the Watt II mechanism in Tables E.6.10 and E.6.11 where forces of Fp1=(2500,3000)N and Fp1*=(−1500,2000)N are applied at β=100° and the gravity is −9.81 m/s2.


Known Information: Tables E.6.10, E.6.11, and Appendix C.5 MATLAB file.






TABLE E.6.10 Watt II Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1 ρ

	u1 σ

	G1x, G1y

	L1, δ










	0.5, 90°

	0.75, 19.3737°

	0.75, 93.2461°

	0.75, 0

	0.5, 60.7834°






	W1∗,θ∗

	V1∗,ρ∗

	u1∗,σ∗

	G1x∗,G1y∗

	L1∗,δ∗






	0.5, 45°

	0.75, 7.941°

	0.75, 60.2717°

	0.7244, −0.1941

	0.5, 49.3512°















TABLE E.6.11 Watt II Mechanism Dynamic Parameters (with Length in m and Mass in kg)





	R1

	i0.25

	m1

	8.05










	R2

	0.3172 + i0.2284

	m2

	29.785






	R3

	0.1037 + i0.3675

	m3

	33.81






	R4

	0.3562 + i0.161

	m4

	29.785






	R5

	0.186 + i0.3257

	m4

	12.075











Solution Approach: Figure E.6.5 includes the input specified (in bold text) in the Appendix C.5 MATLAB file. Table E.6.12 includes the static forces and torque calculated for the Watt II mechanism using the Appendix C.5 MATLAB file.
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FIGURE E.6.5 Specified input (in bold text) in the Appendix C.5 MATLAB file for Example 6.4.







TABLE E.6.12 Calculated Watt II Mechanism Static Forces (in N) and Torque (in N-m)





	Ta0

	Fa0

	Fa1

	Fb0










	1323.5

	−412.06, −2721

	412.06, 2800

	−741.83, 211.14






	Fb1

	Fa1˙

	Fb0˙

	Fb1˙






	2087.9, −92.193

	−1346.1, 212.73

	153.89, −1376.6

	−153.89, 1495.1

















6.7 Stephenson III Mechanism Analysis


Figure 6.8a illustrates a Stephenson III mechanism where a force Fp1* is applied to the intermediate link point. p1* To maintain static equilibrium, a torque Ta0 is applied about the crank link revolute joint a0. Vectors R1 through R5 point from a0, a1, b0, p1, and b0*, respectively, to the center of gravity of each link. The loads on the individual Stephenson III mechanism link are illustrated in Figure 6.8b. Taking the sum of the forces and moments for each link according to the static equilibrium conditions ∑F = 0 and ∑M = 0 produces two static equilibrium equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx = 0, ∑Fy = 0, ultimately produces three static equilibrium equations for each link. Because the Stephenson III mechanism includes the planar four-bar mechanism, the static equilibrium equations given in Equations 6.2, 6.4, and 6.6 are used for the crank and coupler links, respectively, of the planar four-bar mechanism loop a0− a1− b1− b0 in the Stephenson III mechanism.
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FIGURE 6.8 (a) Stephenson III mechanism and (b) link static forces and torque.



Using the first two static equilibrium conditions for the dyad link containing vector R4 (where the moment sum is taken about p1) produces


−Fp1−Fb1*+Fp1*+m4g=0−V1*×Fb1*+L1*×Fp1*+R4×m4g=0 (6.32)


Expanding and separating Equation 6.32 produces


−Fp1x−Fb1x*+Fp1x*=0−Fp1y−Fb1y*+Fp1y*+m4g=0Fb1x*V1*sin(ρ*+αj*)−Fb1y*V1*cos(ρ*+αj*)−Fp1x*L1*sin(δ*+αj*)+Fp1y*L1*cos(δ*+αj*)+m4g(R4xcosαj*−R4ysinαj*)=0 (6.33)


Since gravity is directed along the y-axis, the expansion of the cross product R4×m4g in Equation 6.33 only includes the expansion of the product of m4g and the real component of R4 where R4=(R4x+iR4y)eiαj*.


Using the first two static equilibrium conditions for the dyad link containing vector R5 (where the moment sum is taken about b0* produces


Fb0*+Fb1*+m5g=0U1*×Fb1*+R5×m5g=0. (6.34)


Expanding and separating Equation 6.34 produces


Fb0x*+Fb1x*=0Fb0y*+Fb1y*+m5g=0−Fb1x*U1*sin(σ*+γj*)+Fb1y*U1*cos(σ*+γj*)+m5g(R5xcosγj*−R5ysinγj*)=0. (6.35)


Since gravity is directed along the y-axis, the expansion of the cross product R5×m5g in Equation 6.35 only includes the expansion of the product of m5g and the real component of R5 where R5=(R5x+iR5y)eiγj*.


Expressing Equations 6.2, 6.4, 6.6, 6.33, and 6.35 in a combined matrix form produces


[010100000000000001010000000000100−WyWx0000000000000−1000−101000000000−1000−10100000000000Vy−Vx−LyLx00000000010100000000000001010000000000000−UyUx000000000000000−1000−100000000000−1000−10000000000000Vy*−Vx*0000000000010100000000000001010000000000000−Uy*Ux*] ×{Ta0Fa0xFa0yFa1xFa1yFb0xFb0yFb1xFb1yFp1xFp1yFb0x*Fb0y*Fb1x*Fb1y*}=[0−m1g−m1g(R1xcosβj−R1ysinβj)0−m2g−m2g(R2xcosαj−R2ysinαj)0−m3g−m3g(R3xcosγj−R3ysinγj)−Fp1x*−Fp1y*−m4gFp1x*Ly*−Fp1y*Lx*−m4g(R4xcosαj*−R4ysinαj*)0−m5g−m5g(R5xcosγj*−R5ysinγj*)] (6.36)


where:


variables Wx, Wy, Lx, Ly, Vx, Vy, Ux, and Uy are identical to those used in Equation 6.7


Lx*=L1*cos(δ*+αj*)


Ly*=L1*sin(δ*+αj*)


Vx*=V1*cos(ρ*+αj*)


Vy*=V1*sin(ρ*+αj*)


Ux*=U1*cos(σ*+γj*)


Uy*=U1*sin(σ*+γj*)


Equation 6.36 can be solved using Cramer’s rule to determine the unknown forces and torque. The unknown Stephenson III displacement angles α, γ, αj*, and γj* are the same angles calculated from the Stephenson III displacement equations in Sections 4.4.1 and 4.8.1. Given β, α, γ, αj*, and γj* solutions, the corresponding static forces and torques can be calculated from Equation 6.36.


Appendix C.6 includes the MATLAB file user instructions for Stephenson III static force analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 6.36 are calculated.




Example 6.5


Problem Statement: When vector W1 of the Stephenson III gripper mechanism is rotated by β=40∘, a reaction force of Fp1*=(0, −40)N is applied. Tables E.6.13 and E.6.14 include the dimensions and mass properties of Stephenson III gripper mechanism in the initial position (Figure E.6.6). Gravity is −9.81m/s2. Using the Appendix C.6 MATLAB file, calculate the static torque and forces generated in the gripper mechanism.
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FIGURE E.6.6 Specified input (in bold text) in the Appendix C.5 MATLAB file for Example 6.5.



Known Information: Tables E.6.13, E.6.14, and Appendix C.6 MATLAB file.






TABLE E.6.13 Gripping Mechanism Dimensions in Initial Position (with Link Lengths in m)





	W1, θ

	V1 ρ

	u1 σ

	G1x, G1y

	L1, δ










	1.3575, −64.4543°

	0.9726, 57.2740°

	1.9019, 84.2513°

	0.9207, −2.2989

	0.6120, −143.6057°






	L1∗,δ∗

	V1∗,ρ∗

	u1∗,σ∗

	G1x∗,G1y∗

	






	2.2217, −5°

	0.5815,−25.7782°

	2.9955,−42.1315°

	−3.3894, 2.2487

	















TABLE E.6.14 Stephenson III Mechanism Dynamic Parameters (with Length in m and Mass in kg)





	R1

	0.2927 − i0.6124

	m1

	4










	R2

	0.0504 + i0.1900

	m2

	8






	R3

	0.0953 + i0.9462

	m3

	4






	R4

	0.4979 − i0.2304

	m4

	12






	R5

	1.1107 − i1.0047

	m5

	4











Solution Approach: Figure E.6.7 includes the input specified (in bold text) in the Appendix C.5 MATLAB file. Table E.6.15 includes the static torque and forces calculated for the Stephenson III gripper mechanism using the Appendix C.6 MATLAB file.
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FIGURE E.6.7 Specified input (in bold text) in the Appendix C.5 MATLAB file for Example 6.5.







TABLE E.6.15 Calculated Gripping Mechanism Static Forces (in N) and Torque (in N-m)





	Ta0

	Fa0

	Fa1

	Fb0










	259.92

	−269.71, 352.61

	269.71, −313.37

	14.57, 36.53






	Fb1

	Fp1

	Fb0˙

	Fb1˙






	−14.57, 2.71

	255.13, −232.18

	255.13, −35.22

	−255.13, 74.46

















6.8 Planar Mechanism Static Force Analysis and Modeling in Simscape MultibodyTM


As has been noted throughout this chapter, Appendices C.1–C.6 include user instructions for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms in MATLAB files, respectively. In these files, the static force and torque equations formulated in this chapter are solved. These MATLAB files provide a means for the user to efficiently conduct planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III static force analyses by solving their displacement equations along with their static force and torque equations.


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based static force analysis. A library of Simscape Multibody files is available for download at https://www.routledge.com/p/book/9781032328317 to conduct static force analyses on planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms*. With these files, the user specifies the mechanism link dimensions, mass properties, applied loads, and driving link parameters, and the static forces and torques at the mechanism locations of interest are measured. The Simscape Multibody file user instructions for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms are given in Appendices I.1–I.6, respectively.


While the user can specify input according to any unit type for length, force, and torque in the Appendix C MATLAB files, only two groups of dimensions are available in the Appendix I Simscape Multibody files. The user can specify length, mass, and force quantities either in inch, pound-mass, and pound-force, respectively (the US system), or in meter, kilogram, and newton, respectively (the SI system). The user also has the option in the Appendix I files to convert US system input to SI system output and vice versa.




Example 6.6


Problem Statement: Repeat Example 6.1 using the Appendix I.1 Simscape Multibody files.


Known Information: Example 6.1 and Appendix I.1 Simscape Multibody files.


Solution Approach: Figure E.6.8 includes the input specified (in bold text) in the Appendix I.1 Simscape Multibody file. Table E.6.16 includes the static torque and forces calculated for the planar four-bar stamping mechanism using the Appendix I.1 Simscape Multibody files. Figure E.6.9 is an initial position snapshot of the mechanism animation generated from the Appendix I.1 Simscape Multibody files.
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FIGURE E.6.8 Specified input (in bold text) in the Appendix I.1 Simscape Multibody file for Example 6.6.
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FIGURE E.6.9 Initial position of the planar four-bar mechanism in the Appendix I.1 Simscape Multibody animation for Example 6.6.







TABLE E.6.16 Calculated Stamping Mechanism Static Forces (in N) and Torque (in N-m) (Appendix I.1)





	Ta0

	Fa0

	Fa1

	Fb0

	Fb1










	162.51

	74.14, −5347.8

	−74.14, 5426.3

	−74.14, 1436.4

	74.14, −1318.7















Example 6.7


Problem Statement: Repeat Example 6.2 using the Appendix I.2 Simscape Multibody files.


Known Information: Example 6.2 and Appendix I.2 Simscape Multibody files.


Solution Approach: Figure E.6.10 includes the input specified (in bold text) in the Appendix I.2 Simscape Multibody file. Table E.6.17 includes the static torque and forces calculated for the slider-crank mechanism using the Appendix I.2 Simscape Multibody files. Figure E.6.11 is an initial position snapshot of the mechanism animation generated from the Appendix I.2 Simscape Multibody files.
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FIGURE E.6.10 Specified input (in bold text) in the Appendix I.2 Simscape Multibody file for Example 6.7.
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FIGURE E.6.11 Initial position of the slider-crank mechanism in the Appendix I.2 Simscape Multibody animation for Example 6.7.







TABLE E.6.17 Calculated Slider-Crank Mechanism Static Forces (N) and Torque (N-m) (Appendix I.2)





	Ta0

	Fa0

	Fa1

	Fb1

	Fnormal

	Ffriction










	−2.053

	47.381, −24.714

	−47.381, 25.204

	47.381, −25.449

	26.815

	2.6185















Example 6.8


Problem Statement: Repeat Example 6.3 using the Appendix I.4 Simscape Multibodyfiles.


Known Information: Example 6.3 and Appendix I.4 Simscape Multibody files.


* This library can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

Solution Approach: Figure E.6.12 includes the input specified (in bold text) in the Appendix I.4 Simscape Multibody file. Table E.6.18 includes the static torque and forces calculated for the geared five-bar mechanism using the Appendix I.4 Simscape Multibody files. Figure E.6.13 is an initial position snapshot of the mechanism animation generated from the Appendix I.4 Simscape Multibody files.
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FIGURE E.6.12 Specified input (in bold text) in the Appendix I.4 Simscape Multibody file for Example 6.8.
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FIGURE E.6.13 Initial position of the geared five-bar mechanism in the Appendix I.4 Simscape Multibody animation for Example 6.8.







TABLE E.6.18 Calculated Geared Five-Bar Mechanism Static Forces (N) and Torque (N-m) (Appendix I.4)





	Ta0′

	Fa0′

	Fa1

	Fc1

	Fb1










	−2207

	543.2, −1145

	−543.2, −3173.7

	−1956.8, −118.44

	−1956.8, −236.88






	Tb0

	Fb0′

	

	

	






	−1362

	1956.8, −3560.7

	

	

	















Example 6.9


Problem Statement: Repeat Example 6.4 using the Appendix I.5 Simscape Multibodyfiles.


Known Information: Example 6.4 and Appendix I.5 Simscape Multibody files.


Solution Approach: Figure E.6.14 includes the input specified (in bold text) in the Appendix I.5 Simscape Multibody file. Table E.6.19 includes the static torque and forces calculated for the Watt II mechanism using the Appendix I.5 Simscape Multibody files. Figure E.6.15 is an initial position snapshot of the mechanism animation generated from the Appendix I.5 Simscape Multibody files.
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FIGURE E.6.14 Specified input (in bold text) in the Appendix I.5 Simscape Multibody file for Example 6.9.
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FIGURE E.6.15 Initial position of the Watt II mechanism in the Appendix I.5 Simscape Multibody animation for Example 6.9.







TABLE E.6.19 Calculated Watt II Mechanism Static Forces (in N) and Torque (in N-m) (Appendix I.5)





	Ta0

	Fa0

	Fa1

	Fb0










	1323.5

	−412.06, −2721

	412.06, 2800

	−741.83, 211.14






	Fb1

	Fa0˙

	Fb0˙

	Fb1˙






	2087.9, −92.193

	−1346.1, 212.73

	153.89, −1376.6

	−153.89, 1495.1















Example 6.10


Problem Statement: Repeat Example 6.5 using the Appendix I.6 Simscape Multibody files.


Known Information: Example 6.5 and Appendix I.6 Simscape Multibody files.


Solution Approach: Figure E.6.16 includes the input specified (in bold text) in the Appendix I.5 Simscape Multibody file. Table E.6.20 includes the static torque and forces calculated for the Stephenson III mechanism using the Appendix I.6 Simscape Multibody files. Figure E.6.17 is an initial position snapshot of the mechanism animation generated from the Appendix I.6 Simscape Multibody files.
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FIGURE E.6.16 Specified input (in bold text) in the Appendix I.6 Simscape Multibody file for Example 6.10.
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FIGURE E.6.17 Initial position of the Stephenson III mechanism in the Appendix I.6 Simscape Multibody animation for Example 6.10.







TABLE E.6.20 Calculated Stephenson III Mechanism Static Forces (N) and Torque (N-m) (Appendix I.6)





	Ta0

	Fa0

	Fa1

	Fb0










	259.92

	−269.71, 352.61

	269.71, −313.37

	14.573, 36.532






	Fb1

	Fp1

	Fb0˙

	Fb1˙






	−14.573, 2.7082

	255.13, −232.18

	255.13, −35.221

	−255.13, 74.461

















6.9 Summary


In terms of structural force analyses for mechanical systems, a static force analysis is the most basic type of force analysis to consider beyond kinematics. In this type of analysis, loads are considered for each mechanism link according to Newton’s first law (∑F = ∑M = 0). In this chapter, static force and moment equations are formulated for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms. These equations form sets of linear simultaneous equations that are solved to determine the static forces and torques present at each mechanism joint. The Appendix C.1 through C.6 MATLAB files provide a means for the user to efficiently conduct planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III static force analyses by solving their displacement equations (from Chapter 4) along with their linear simultaneous equation sets.


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based static load analyses. Using the Appendix I.1 through I.6 Simscape Multibody files, the user can conduct static load analyses on the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms, respectively, as well as simulating mechanism motion.
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Problems




	Figure P.6.1 illustrates a planar four-bar mechanism used to guide a hatch from the closed-hatch position to the opened-hatch position. When the opened-hatch position is reached, a static force of Fp2=(0,4500)N is applied at the displaced p1 (labeled p2 in Figure P.6.1). The dimensions for the illustrated mechanism are included in Table P.6.1. The masses of the crank, coupler, and follower links are m1=5, m2=63, and m3=7 kg, respectively, and the link center of mass vectors are R1 = –1.0629 + i1.9335, R2=−2.6808+i0.5954, and R3=−0.8045−i0.8082 m. Gravity is −9.81 m/s2. Considering a crank rotation of −30°, determine the crank static torque and joint forces produced at the opened-hatch position (using the Appendix C.1 or I.1 file).



[image: ]

FIGURE P.6.1 Hatch mechanism.







TABLE P.6.1 Hatch Mechanism Dimensions (with Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	G1x,G1y

	L1,δ










	4.4127,118.7982°

	1.0214,101.2268°

	2.2807, 225.1319°

	−0.7156, 6.4851

	4.1345,139.4559°












	Figure P.6.2 illustrates a planar four-bar mechanism used to guide a bucket from the loading bucket position to the unloading position. When the unloading position is reached, a static force of Fp2=(0,−2250) N is applied at the displaced p1 (labeled p2 in Figure P.6.2). The dimensions for the illustrated mechanism are included in Table P.6.2. The masses of the crank, coupler, and follower links are m1=8.75, m2=58, and m3=10 kg, respectively, and the link center of mass vectors are R1=−1.6021+i1.5157, R2=−1.7147−i1.0699, and R3=−0.3364−i1.8307. Gravity is −9.81 m/s2. Considering a crank rotation of −30°, determine the crank static torque and joint forces produced at the unloading bucket position (using the Appendix C.1 or I.1 file).



[image: ]

FIGURE P.6.2 Loading–unloading mechanism.







TABLE P.6.2 Loading-Unloading Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1,ρ

	U1,σ

	G1x,G1y

	L1,δ










	4.4109, 136.588°

	0.5973, 70.2408°

	3.7227, 259.5885°

	−2.3295, 7.2548

	3.2581, 179.5331°












	Figure P.6.3 illustrates a planar four-bar mechanism used to guide a digging bucket from the initial position to the final position. When the final digging position is reached, a static force of Fp2=(−3500,−4500)N is applied at the displaced p1 (labeled p2 in Figure P.6.3). The dimensions for the illustrated mechanism are included in Table P.6.3. The masses of the crank, coupler, and follower links are m1=8, m2=45, and m3=10 kg, respectively, and the link center of mass vectors are R1=−1.4003−i0.7392, R2=−4.7688+i0.7191, and R3=−1.3785−i1.8621. Gravity is −9.81 m/s2. Considering a crank rotation of −57.4°, determine the crank static torque and joint forces produced at the opened-hatch position (using the Appendix C.1 or I.1 file).



[image: ]

FIGURE P.6.3 Digging mechanism.







TABLE P.6.3 Digging Mechanism Dimensions (with Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	G1x,G1y

	L1,δ










	3.1669, 207.829°

	4.1266, 187.8282°

	4.6337, 233.487°

	−4.1317, 1.6837

	3.9721, 202.3921°












	Figure P.6.4 illustrates a planar four-bar mechanism used to guide a component from the initial position to the assembled position. When the assembled position is reached, a static force of Fp2=(5500,0)N is applied at the displaced p1 (labeled p2 in Figure P.6.4). The dimensions for the illustrated mechanism are included in Table P.6.4. The masses of the crank, coupler, and follower links are m1=40, m2=145, and m3=20 kg, respectively, and the link center of mass vectors are R1=0.853−i0.9935, R2=2.3858+i0.3974, and R3=−0.183−i0.4496. Gravity is −9.81 m/s2. Considering a crank rotation of 66.375°, determine the crank static torque and joint forces produced at the assembled position (using the Appendix C.1 or I.1 file).
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FIGURE P.6.4 Component-assembly mechanism.







TABLE P.6.4 Component Assembly Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	u1, σ

	G1x, G1y

	L1, δ










	2.619, 310.6493°

	1.3708, 89.216°

	0.9708, –112.147°

	2.0908, 0.2827

	4.1467, 0.7042°












	As presented in Section 3.4, the total force on the follower link of a planar four-bar mechanism is Ffollower=Fb0x2+Fb0y2=Fb1x2+Fb1y2 and the transverse and columnar forces on the follower are Ffollowersin(τ) and Ffollowercos(τ), respectively. Knowing this, calculate the minimum and maximum transmission angles (use a 1° crank rotation increment) and the corresponding follower transverse and columnar loads for the planar four-bar mechanism configuration in Table P.6.5 (using the Appendix C.1 or I.1 file). Gravity is to be neglected in this problem.





TABLE P.6.5 Planar Four-Bar Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	G1x,G1y

	L1,δ










	0.2153, 90°

	0.246, −16.0138°

	0.246, 58.1173°

	0.1066, −0.0615

	0.246, 12.9412°






	Fp1 (N)

	R1∼R3

	m1∼m3

	

	






	−150, −150

	0

	0

	

	












	Figure P.6.5 illustrates a planar four-bar mechanism used to guide a wing from the folded position to the extended position. When the extended position is reached, a static force of Fp2=(0,−1600)N is applied at the displaced p1 (labeled p2 in Figure P.6.5). The dimensions for the illustrated mechanism are included in Table P.6.6. The masses of the crank, coupler, and follower links are m1=35, m2=100, and m3=25 kg, respectively, and the link center of mass vectors are R1=0.2398+i2.1116, R2=0.8673+i0.8333, and R3=0.1929−i1.7563. Gravity is −9.81 m/s2. Considering a crank rotation of −35°, determine the crank static torque and joint forces produced at the extended position (using the Appendix C.1 or I.1 file).



[image: ]

FIGURE P.6.5 Folding-wing mechanism.







TABLE P.6.6 Folding Wing Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	0.4795 + i4.2231

	−0.7524 − i1.143

	0.3857 − i3.5125

	−0.6586 + i6.5927

	0.5555 + i0.8439












	Figure P.6.6 illustrates a planar four-bar mechanism used to guide a latch from the released position to the applied position. When the applied position is reached, a static force of Fp2=(5000,0)N is applied at the displaced p1 (labeled p2 in Figure P.6.6). The dimensions for the illustrated mechanism are included in Table P.6.7. The masses of the crank, coupler, and follower links are m1=8, m2=17, and m3=5 kg, respectively, and the link center of mass vectors are R1=1.3729−i1.0192, R2=2.2199+i3.7677, and R3=1.152−i0.3437. Gravity is −9.81 m/s2. Considering a crank rotation of 70°, determine the crank static torque and joint forces produced at the applied position (using the Appendix C.1 or I.1 file).
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FIGURE P.6.6 Latch mechanism.







TABLE P.6.7 Latch Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	2.7459 − i2.0384

	1.8305 − i0.8899

	2.3039 − i0.6875

	2.2725 − i2.2408

	4.1783 + i5.334












	Figure P.6.7 illustrates a planar four-bar mechanism used to guide a lower cutting blade from the open position to the close position. When the close position is reached, a static force of Fp2=(0,−22)N is applied at the displaced p1 (labeled p2 in Figure P.6.7). The dimensions for the illustrated mechanism are included in Table P.6.8. The masses of the crank, coupler, and follower links are m1=15, m2=75 and m3=30 kg, respectively, and the link center of mass vectors are R1=−0.0498+i0.7196 , R2=1.8244−i1.4446, and R3=1.1707+i0.5269. Gravity is −9.81 m/s2. Considering a crank rotation of −45°, determine the crank static torque and joint forces produced at the close position (using the Appendix C.1 or I.1 file).
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FIGURE P.6.7 Cutting-blade mechanism.









TABLE P.6.8 Cutting Blade Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−0.0997 + i1.4392

	−0.6134 + i1.3743

	2.3413 + i1.0538

	−3.0544 + i1.7597

	2.222 − i1.111












	Figure P.6.8 illustrates a planar four-bar mechanism used to guide a brake pad from the released position to the applied position. When the applied position is reached, a static force of Fp2=(222,0)N is applied at the displaced p1 (labeled p2 in Figure P.6.8). The dimensions for the illustrated mechanism are included in Table P.6.9. The masses of the crank, coupler, and follower links are m1=8, m2=12, and m3=5 kg, respectively, and the link center of mass vectors are R1=0.2661+i0.4847, R2=1.1785+i1.0948, and R3=−0.2278+i0.2698. Gravity is −9.81 m/s2. Considering a crank rotation of 40°, determine the crank static torque and joint forces produced at the applied position (using the Appendix C.1 or I.1 file).
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FIGURE P.6.8 Brake-pad mechanism.







TABLE P.6.9 Brake Pad Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	0.5322 + i0.9695

	−1.6049 − i1.2391

	−0.4555 + i0.5396

	−0.6171 − i0.8093

	0.899 + i1.2002












	Calculate the static forces and torque for the planar four-bar mechanism in Example 6.1 where Fp1=(−1500, 4500)N (using the Appendix C.1 or I.1 file).


	Figure P.6.9 illustrates a planar four-bar mechanism used to guide a gripper from the open position to the close position. When the close position is reached, a static force of Fp2=(0, 900)N is applied at the displaced p1 (labeled p2 in Figure P.6.9). The dimensions for the illustrated mechanism are included in Table P.6.10. The masses of the crank, coupler, and follower links are m1=12, m2=30, and m3=10 kg, respectively, and the link center of mass vectors are R1=−0.2025−i0.4005, R2=1.7259+i3.1249, and R3=0.3741+i0.2364. Gravity is −9.81 m/s2. Considering a crank rotation of 50°, determine the crank static torque and joint forces produced at the close position (using the Appendix C.1 or I.1 file).



[image: ]

FIGURE P.6.9 Gripper mechanism.







TABLE P.6.10 Gripper Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−0.405 − i0.801

	1.3998 − i0.4425

	0.7481 + i0.4728

	0.2466 − i1.7163

	3.375 + i4.25












	Figure P.6.10 illustrates a planar four-bar mechanism used to guide a stamping tool from the released position to the applied position. When the close position is reached, a static force of Fp2=(0, 9000)N is applied at the displaced p1 (labeled p2 in Figure P.6.10). The dimensions for the illustrated mechanism are included in Table P.6.11. The masses of the crank, coupler, and follower links are m1=25, m2=120, and m3=25 kg, respectively, and the link center of mass vectors are R1=−0.9319−i0.3798, R2=0.955+i0.1593, and R3=−1.1589+i0.4722. Gravity is −9.81 m/s2. Considering a crank rotation of 60°, determine the crank static torque and joint forces produced at the applied position (using the Appendix C.1 or I.1 file).



TABLE P.6.11 Stamping Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−1.8638 − i0.7595

	−1.8068 − i0.9841

	−2.3177 + i0.9444

	−1.3529 − i2.688

	2.6903 + i0.2239
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FIGURE P.6.10 Stamping mechanism.




	Repeat Problem 3 where Fp2=(0, −5700)N.


	Repeat Problem 4 where Fp2=(5500, 2000)N.


	Repeat Problem 7 where Fp2=(5000, 2500)N.


	Calculate the static forces and torque for the slider-crank mechanism configuration in Table P.6.12 when the crank is rotated 45° (using the Appendix C.2 or I.2 file). The masses of the crank, coupler, and slider links are m1=2.5, m2=7.5 and m3=5.5 kg, respectively, and the link center of mass vectors are R1=i0.15 and R2=0.477−i0.15. Gravity is −9.81 m/s2.



TABLE P.6.12 Slider-Crank Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1

	U1

	μ

	F (N)










	0.3, 90°

	1

	0

	0.45

	300, 100












	Calculate the minimum and maximum crank link static torque magnitude |Ta0| and the corresponding crank displacement angles for the slider-crank mechanism configuration in Table P.6.13 (using the Appendix C.2 or I.2 file). Consider a complete crank rotation cycle at 1° crank rotation increments. The masses of the crank, coupler, and slider links are m1=0.025 , m2=0.015, and m3=0.015 kg, respectively, and the link center of mass vectors are R1=i0.015 and R2=0.0424−i0.015. Gravity is −9.81 m/s2.



TABLE P.6.13 Slider-Crank Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1

	U1

	μ

	F (N)










	0.03, 90°

	0.09

	0

	0.35

	−60, −20












	Calculate the static forces and torque for the initial position of the slider-crank mechanism configuration in Table P.6.14 (using the Appendix C.2 or I.2 file). The masses of the crank, coupler, and slider links are m1=0.025, m2=0.035, and m3=0.025 kg, respectively, and the link center of mass vectors are R1=0.0225+i0.0225 and R2=0.0917−i0.04. Gravity is −9.81 m/s2.



TABLE P.6.14 Slider-Crank Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1

	U1

	μ

	F (N)










	0.0635, 45°

	0.2

	−0.035

	0.5

	400, 0












	Calculate the minimum and maximum crank link static torque magnitude |Ta0| and the corresponding displacement angles for the slider-crank mechanism configuration in Table P.6.15 (using the Appendix C.2 or I.2 file). Consider a complete crank rotation cycle at 1° crank rotation increments. The masses of the crank, coupler, and slider links are m1=0.012, m2=0.01, and m3=0.012 kg, respectively, and the link center of mass vectors are R1=i0.015 and R2=0.045. Gravity is −9.81 m/s2. Consider a complete crank rotation cycle at 1° crank rotation increments.



TABLE P.6.15 Slider-Crank Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1

	U1

	μ

	F (N)










	0.03, 90°

	0.09

	0.03

	0.25

	−111, 0












	Calculate the static forces and torque for the slider-crank mechanism in Example 6.2 (using the Appendix C.2 or I.2 file) where F=(−100, −25)N.


	Calculate the static forces and torques for the initial position of the geared five-bar mechanism configuration in Table P.6.16 (using the Appendix C.3 or I.3 file). The link masses are m1=12, m2=17, m3=10, and m4=11 kg, respectively, and the link center of mass vectors are R1 = i0.175, R2=0.2132+i0.1112, R3=−0.1111+i0.2379, and R4=0.0875+i0.1516. Gravity is −9.81 m/s2.



TABLE P.6.16 Geared Five-Bar Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	S1,ψ

	G1x,G1y

	L1,δ










	0.35, 90°

	0.525, 54.7643°

	0.35, 60°

	0.525, 115.0279°

	0.35, 0

	0.35, −15.7645°






	Fp1

	Gear Ratio

	

	

	

	






	0, −1000

	−2

	

	

	

	












	Repeat Problem 21 using a gear ratio of +2.


	Using the geared five-bar mechanism configuration given in Table P.6.17, determine the driving link static torque value corresponding to crank displacement of 120° (using the Appendix C.3 or I.3 file). The link masses are m1=0.012, m2=0.17, m3=0.05, and m4=0.015 kg, respectively, and the link center of mass vectors are R1=i0.0127, R2=−0.0514+i0.0217, R3=−0.0685+i0.0334, and R4=0.0049+i0.0184. Gravity is −9.81 m/s2.



TABLE P.6.17 Geared Five-Bar Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	S1,ψ

	G1,angle










	0.0254, 90°

	0.1016, 140.2031°

	0.0381, 75°

	0.1524, 154.0128°

	0.0508, −15°






	L1,δ

	Fp1 (N)

	Gear Ratio

	

	






	0.0762, 180°

	0,−40

	−1.5

	

	












	Using the geared five-bar mechanism configuration given in Table P.6.18, determine the driving link static torque value corresponding to crank displacement of −120° (using the Appendix C.4 or I.4 file). The link masses are m1=0.012, m2=0.17, m3=0.025, and m4=0.015 kg, respectively, and the link center of mass vectors are R1=0.0064+i0.011, R2=−0.1054−i0.0138, R3=−0.1142−i0.0046, and R4=−0.044+i0.0254. Gravity is −9.81 m/s2.



TABLE P.6.18 Geared Five-Bar Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	S1,ψ

	G1x,G1y










	0.0254, 60°

	0.1778, 173.6421°

	0.1016, 150°

	0.2286, 182.2848°

	0.1524, 0






	L1,δ

	Fp1 (N)

	Gear Ratio

	

	






	0.1524, 203.6421°

	20, −40

	3

	

	












	Calculate the static forces and torque for the geared five-bar mechanism in Example 6.3 where Fp1=(1500,−2000)N (using the Appendix C.4 or I.4 file).


	Using the Watt II mechanism configuration given in Table P.6.19, determine the driving link static torque value corresponding to crank displacement of 60° (using the Appendix C.5 or I.5 file). The link masses are m1=4, m2=8, m3=8, m4=8, and m5=6 kg, respectively, and the link center of mass vectors are R1=i0.5, R2=0.6344+i0.4568, R3=0.2074+i0.7349, R4=0.7124+i0.322, and R5=0.3719+i0.6513. Gravity is −9.81 m/s2.



TABLE P.6.19 Watt II Mechanism Configuration (with all Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	G1x,G1y

	L1,δ










	1, 90°

	1.5, 19.3737°

	1.5, 93.2461°

	1.5, 0

	1, 60.7834°






	W1*,θ*

	V1*,ρ*

	U1*,σ*

	G1x*,G1y*

	L1*,δ*






	1, 45°

	1.5, 7.9416°

	1.5, 60.2717°

	1.4489, −0.3882

	1, 49.3512°






	Fp1 (N)

	Fp1* (N)

	

	

	






	0, −1500

	−2500, −1000

	

	

	












	Using the Watt II mechanism configuration given in Table P.6.19, determine the driving link static torque values corresponding to crank displacements of −90°, −180°, and −270° (using the Appendix C.5 or I.5 file).


	Figure P.6.11 includes a Watt II mechanism used in an adjustable chair. The dimensions for the chair in the initial upright position are also included in this figure. A crank rotation of 25° is required to achieve the reclined chair position. At the reclined position, the forces illustrated in Figure P.6.11 are applied at vectors L1 and L1* (the midpoints of vectors V1 and V1* respectively). Calculate the static forces and torques at the reclined chair position (using the Appendix C.5 or I.5 file). The link masses are m1=3, m2=7, m3=12, m4=7, and m5=2 kg, respectively, and the link center of mass vectors are R1=−0.2201+i0.7295, R2=0.0602−i0.4441, R3=i0.3279, R4=0.0964−i0.3749, and R5=0.1039−i0.2908. Gravity is −9.81 m/s2.


	Repeat Problem 28 using head rest and leg rest forces of (−150, −450) and (−25, −225)N, respectively.


	Calculate the static forces and torque for the Watt II mechanism in Example 6.4 where Fp1=(−1500,−2000)N and Fp1*=(2000,−1000)N (using the Appendix C.5 or I.5 file).



[image: ]

FIGURE P.6.11 Adjustable-chair mechanism.




	Figure P.6.12 illustrates a Stephenson III mechanism used to guide a seat from the reclined position to the upright position. When the upright position is reached, a static force of Fp2*=(0,−900)N is applied at the displaced p1* (labeled p2* in Figure P.6.12). The dimensions for the illustrated mechanism are included in Table P.6.20. Considering a crank rotation of −16°, determine the crank static torque and joint forces produced at the upright position (using the Appendix C.6 or I.6 file). The link masses are m1=3.75, m2=12, m3=2.5, m4=10, and m5=2.25 kg, respectively, and the link center of mass vectors are R1=−0.3716+i0.2364, R2=0.3832+i0.4702, R3=−0.0902−i0.2348, R4=0.3758−i1.0047, and R5=−0.1043−i0.1201. Gravity is −9.81 m/s2.



[image: ]

FIGURE P.6.12 Seat mechanism.







TABLE P.6.20 Seat Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−0.7432 + i0.4727

	0.5825 + i0.1724

	−0.1804 − i0.4696

	0.0197 + i1.1147

	0.5671 + i1.2383






	L1*

	V1*

	U1*

	G1*

	






	1 + i0.25

	0.0552 − i2.3906

	−0.2086 − i0.2401

	0.068 − i1.5542

	












	Figure P.6.13 illustrates a Stephenson III mechanism used to guide a digging tool from the initial position to the final position. When the final position is reached, a static force of Fp2*=(0,−9000)N is applied at the displaced p1* (labeled p2* in Figure P.6.13). The dimensions for the illustrated mechanism are included in Table P.6.21. Considering a crank rotation of 40°, determine the crank static torque and joint forces produced at the final position (using the Appendix C.6 or I.6 file). The link masses are m1=5, m2=10, m3=4, m4=15, and m5=3.75 kg, respectively, and the link center of mass vectors are R1=1.5273−i0.7343, R2=−1.6254+i0.2655, R3=−0.6545−i0.7694, R4=1.056−i0.4951, and R5=−0.5295−i0.0657. Gravity is −9.81 m/s2.
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FIGURE P.6.13 Digging mechanism.







TABLE P.6.21 Digging Mechanism Dimensions (with Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	G1x,G1y

	L1,δ










	3.3893, −25.6775°

	1.6644, 120.3504°

	2.0202, 229.6156°

	3.5225, 1.5065

	4.0855, 189.0097°






	V1*,ρ*

	U1*,σ*

	L1*,δ*

	G1x*,G1y*

	






	2.4795, 14.6953°

	1.0672, 187.0724°

	2.25, −70°

	−1.0455, −2.8545

	












	Calculate the static forces and torques for the Stephenson III mechanism configuration in Table P.6.22 at a crank displacement angle of −90° (using the Appendix C.6 or I.6 file). The link masses are m1=4, m2=8, m3=4, m4=8, and m5=7 kg, respectively, and the link center of mass vectors are R1=i0.5, R2=0.6344+i0.4568, R3 = 0.2074 + i07349, R4=0.7847+i0.4953, and R5=0.2337+i0.9723. Gravity is −9.81 m/s2.



TABLE P.6.22 Stephenson III Mechanism Configuration (with all Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	G1x,G1y

	L1,δ










	1, 90°

	1.5, 19.3737°

	1.5, 93.2461°

	1.5, 0

	1, 60.7834°






	L1*,δ*

	V1*,ρ*

	U1*,σ*

	G1x*,G1y*

	Fp1* (N)






	1, 63.7091°

	2, 17.1417°

	2, 76.4844°

	0.4318, 0.5176

	0, 0












	Figure P.6.14 illustrates a Stephenson III mechanism used to guide a gripping tool from the open position to the closed position. When the closed position is reached, a static force of Fp2*=(0,−50)N is applied at the displaced p1* (labeled p2* in Figure P.6.14). The dimensions for the illustrated mechanism are included in Table P.6.23. Considering a crank rotation of 40°, determine the crank static torque and joint forces produced at the closed position (using the Appendix C.6 or I.6 file). The link masses are m1=4, m2=8, m3=4, m4=12, and m5=4 kg, respectively, and the link center of mass vectors are R1=0.3846−i0.3412, R2=−0.6343+i1.0364, R3=−0.2988−i0.3639, R4=1.1487+i0.0597, and R5=−0.2384−i0.3618. Gravity is −9.81 m/s2.
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FIGURE P.6.14 Gripping-tool mechanism.







TABLE P.6.23 Gripper Mechanism Dimensions (with Link Lengths in cm)





	W1,θ

	V1,ρ

	U1,σ

	G1x,G1y

	L1,δ










	1.0283, 318.4178°

	0.5195, 286.4362°

	0.9418, 230.6143°

	1.5138,−0.4529

	0.7031, 189.1904°






	V1*,ρ*

	U1*,σ*

	L1*,δ*

	G1x*,G1y*

	






	5.2881, 319.9647°

	0.8666, 236.6216°

	3.2742, 11.8113°

	3.0869, −3.0198

	












	Calculate the static forces and torque for the Stephenson III mechanism in Example 6.5 where Fp1*=(0,0)N.













  
    



7 Dynamic Force Analysis of Planar Mechanisms


DOI: 10.1201/9781003316961-7






Concept Overview


In this chapter, the reader will gain a central understanding regarding




	Criteria for dynamic force analysis and its applications


	Link dynamic loads in 2D space


	Formulation and solution of linear simultaneous equation sets for dynamic force analysis


	The effects of gear train inclusion in the dynamic force analysis of five-bar mechanisms


	The mass moment of inertia, its application in dynamic force analysis, and its calculation in computer-aided design (CAD) software









7.1 Introduction


As explained in Chapter 1, a dynamic force analysis (Figure 1.1) is the next type of force analysis to consider beyond a static force analysis when determining the structural forces in mechanical systems. Such an analysis should always be considered when angular velocities and accelerations are substantial (when mechanism motion is truly dynamic). Dynamic force analyses are also more general than static force analyses when mechanism motion is quasi-static. This is because, with a dynamic force analysis, acceleration-based forces and torques (however small in a quasi-static condition) are included.* In a dynamic force analysis, loads such as forces and torques are considered for each mechanism link according to Newton’s second law (∑F = ma, ∑M = Iα) [1, 2, 3, 4, 5].†


Unlike the static force equations in Chapter 6, the equation systems presented in this chapter consider the inertia, velocity, and acceleration of each link.‡ Like the Chapter 6 equations, the equation systems presented in this chapter consider in-plane forces and torques, and mechanism links are considered to be rigid. Although link weights are not neglected in the forthcoming equations, as the acceleration of the links exceeds gravitational acceleration, the effect of gravity (and subsequently the link weights) becomes increasingly negligible. This condition is common in high-speed machinery.


* In a static force analysis, acceleration-based loads are not included due to Newton’s first law.

† In Newton’s second law, the variables m and I represent the link mass and mass moment of inertia, respectively.

‡ While the equations in this chapter do not explicitly consider time (only angular displacement, velocity, and acceleration), time can be inversely determined from these quantities (see Section 4.9).





7.2 Dynamic Loading in Planar Space


Figure 7.1 illustrates arbitrarily grounded rotating and translating planar links under loading. Like static loads, dynamic loads can be represented as force vectors applied to link points. For example, force vectors Fp0, Fp1, and mg are applied to link points p0, p1, and the link’s CG (center of gravity), respectively, in Figure 7.1(a). Also, a torque Ta0 is applied about point p0 in Figure 7.1(a). Like static loads, dynamic forces and torques are either applied externally (like force vectors F and mg in Figure 7.1(b)) or they are reactions to externally applied loads (like force vectors Fp1 and Ff in Figure 7.1(b)).
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FIGURE 7.1 Dynamic loads on (a) grounded rotating and (b) translating planar links.



Link dynamic loads are governed according to Newton’s second law. In this law, the sum of all link forces is equal to the product of link mass and linear acceleration (or ∑F = ma), and the sum of all moments is equal to the product of the link mass moment of inertia and rotational acceleration (or ∑M = Iα). Like static loading, under dynamic loading force sums are taken in both directions (∑Fx = max and ∑Fy = may). The gravitational load or the weight of each moving link (denoted by the product mg in Figure 7.1) is oriented in the negative y-axis direction.


The conditions of Newton’s second law must be satisfied for each mechanism link in order for the entire mechanism to be dynamically sound.






7.3 Four-Bar Mechanism Analysis


Figure 7.2a illustrates a planar four-bar mechanism where a force Fp1 is applied to the coupler link point p1. To drive the mechanism, a torque Ta0 is applied about the crank link revolute joint a0. The user also has the option of specifying a torque Tb0 about the follower-link revolute joint b0.* The loads on the individual planar four-bar mechanism links are illustrated in Figure 7.2b. Because the joints at a1 and b1 are shared among two links, the forces at a1 and b1 must be equal but opposite (resulting in ±Fa1 and ±Fb1 in Figure 7.2b). The remaining force and torque variables, however, remain positive for simplicity.† This approach is repeated for the mechanisms in Sections 7.4–7.7.




[image: ]

FIGURE 7.2 (a) Planar four-bar mechanism and (b) link dynamic forces and torques.



Taking the sum of the forces and moments for each link according to the conditions ∑F = ma and ∑M = Iα produces two dynamic equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx=maCGx and ∑Fy=maCGy, ultimately produces three dynamic equations for each link.


Because, in a dynamic condition, moments are taken with respect to each link’s center of gravity (also called the center of mass), Figure 7.2b includes vectors between the center of gravity and the load points (which are the mechanism nodes and the points where external forces are applied) of each mechanism link. Equation 7.1 includes the center of gravity-load point vectors used for the planar four-bar mechanism. To eliminate the need to define unique direction angles for vectors R1 through R7, they are expressed in rectangular form.


* If the user prefers not to consider the coupler link applied force FP1 or the follower link applied torque Tb0, these quantities can be specified as zero in the dynamic load equations.

† The signs of the calculated dynamic force and torque variables are not determined by the signs prescribed to them during equation formulation. They are determined by the mechanism position and the applied load values.

Rj=Rjx+iRjy,   j=1,2,...,7 (7.1)


As illustrated in Figure 7.2, vectors R1 through R7 are defined with respect to the link center of gravity (therefore pointing away from the center of gravity).*


Because the x- and y-components of the total acceleration of the center of gravity of each link are required in the dynamic load equations, Equation 7.2 includes the acceleration equations for aCG1 through aCG3.† These acceleration equations are identical in form to the planar four-bar acceleration equations in Section 4.4.3.


aCG1=iβ¨j(−R1)ei(βj)−β˙j2(−R1)ei(βj)aCG2=Aa1+iα¨i(−R3)ei(αj)−α˙j2(−R3)ei(αj)=iβ¨jW1ei(θ+βj)−β˙j2W1ei(θ+βj)−iα¨jR3ei(αj)+α˙j2R3ei(αj)aCG3=iγ¨j(−R7)ei(γj)−γ˙2j(−R7)ei(γj) (7.2)


Using the first two dynamic load conditions for the crank link (where the moment sum is taken about the center of gravity CG1) produces


Fa0+Fa1+m1g=m1aCG1Ta0+R1×Fa0+R2×Fa1=I1β¨j (7.3)


Expanding and separating Equation 7.3 produces


Fa0x+Fa1x=m1aCG1xFa0y+Fa1y+m1g=m1aCG1yTa0−Fa0xR1y+Fa0yR1x−Fa1xR2y+Fa1yR2x=I1β¨j (7.4)


Using the first two dynamic load conditions for the coupler link (where the moment sum is taken about CG2) produces


−Fa1−Fb1+Fp1+m2g=m2aCG2−R3×Fa1−R4×Fb1+R5×Fp1=I2α¨j (7.5)


Expanding and separating Equation 7.5 produces


* The vectors were established this way for use in the forthcoming moment summation equations.

† To correctly calculate aCG1 through aCG3, the signs of R1, R3, and R7 are reversed.

−Fa1x−Fb1x+Fp1x=m2aCG2x−Fa1y−Fb1y+Fp1y+m2g=m2aCG2yFa1xR3y−Fa1yR3x+Fb1xR4y−Fb1yR4x−Fp1xR5y+Fp1yR5x=I2α¨j (7.6)


Using the first two dynamic load conditions for the follower link (where the moment sum is taken about CG3) produces


Fb0+Fb1+m3g=m3aCG3Tb0+R6×Fb1+R7×Fb0=I3γ¨j (7.7)


Expanding and separating Equation 7.7 produces


Fb0x+Fb1x=m3aCG3xFb0y+Fb1y+m3g=m3aCG3yTb0−Fb1xR6y+Fb1yR6x−Fb0xR7y+Fb0yR7x=I3γ¨j (7.8)


Expressing Equations 7.4, 7.6, and 7.8 in a combined matrix form produces


[0101000000010100001−R1yβjR1xβj−R2yβjR2xβj0000000−1000−100000−1000−1000R3yαj−R3xαj00R4yαj−R4xαj00000101000000010100000−R7yγjR7xγj−R6yγjR6xγj]{Ta0Fa0xFa0yFa1xFa1yFb0xFb0yFb1xFb1y} =[m1aCG1xm1aCG1y−m1gI1β¨j−Fp1x+m2aCG2x−Fp1y+m2aCG2y−m2gI2α¨j+Fp1xR5yαj−Fp1yR5xαjm3aCG3xm3aCG3y−m3gI3γ¨j−Tb0] (7.9)


where the x- and y-components of vectors R1 through R7 are Rnxangle j=Rnxcos(anglej)−Rnysin(anglej) and Rnyangle j=Rnxsin(anglej)+Rnycos(anglej).* It can be seen in Equations 7.4, 7.6, 7.8, and ultimately in Equation 7.9 that the mass and mass moment of inertia of each link are also required.


Equation 7.9 can be solved using Cramer’s rule to determine the unknown forces and torque. The unknown planar four-bar displacement angles αj and γj, angular velocities α˙j and γ˙j, and angular accelerations α¨j and γ¨j are the same quantities calculated from the planar four-bar equations in Sections 4.4.1–4.4.4. Given such solutions, the corresponding dynamic forces and torques can be calculated from Equation 7.9.


Appendix D.1 includes the MATLAB® file user instructions for planar four-bar dynamic force analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 7.9 are calculated.†




Example 7.1


Problem Statement: Using the Appendix D.1 MATLAB file, calculate the reaction forces Fa0x, Fa0y, Fb0x, and Fb0y over a complete crank rotation range for the planar four-bar mechanism in Tables E.7.1 and E.7.2. For this mechanism Fp1=(0, 0)N, β˙0=1 rad/s, and β¨=0 rad/s2. Also, Tb0=0 and gravity is −9.81 m/s2.






TABLE E.7.1 Planar Four-Bar Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	0.5, 90°

	0.75, 19.3737°

	0.75, 93.2461°

	0.75, 0

	0.5, 60.7834°















TABLE E.7.2 Planar Four-Bar Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0 − i0.25

	m1

	8.05










	R3

	−0.3172 − i0.2284

	I1

	0.805






	R7

	0.0212 − i0.3744

	m2

	29.785






	

	

	I2

	5.635






	

	

	m3

	12.075






	

	

	I3

	2.415











Known Information: Tables E.7.1, E.7.2, and Appendix D.1 MATLAB file.


Solution Approach: Figure E.7.1 includes the input specified (in bold text) in the Appendix D.1 MATLAB file. Vectors R2, R4, R5, and R6 are calculated in the MATLAB file using vector-loop equations (see Appendix D.1). Figure E.7.2 includes the reaction force profiles calculated for the planar four-bar mechanism using the Appendix D.1 MATLAB file.
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FIGURE E.7.1 Specified input (in bold text) in the Appendix D.1 MATLAB file for Example 7.1.
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FIGURE E.7.2 Fa0x, Fa0y, Fb0x and Fb0y reaction force profiles for planar four-bar mechanism.





* This method of calculating mechanism forces via matrix manipulation is called the matrix method. With this method, link force equations are quickly derived.

† The library of MATLAB files used in this chapter can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

In a mechanism where the crank link rotates continuously, nonconstant force profiles in the mechanism joints (like those illustrated in Figure E.7.1 for the planar four-bar mechanism) will cause the mechanism to oscillate or vibrate. Excessive vibration is an undesired effect because it can compromise the design life of a mechanical system as well as its performance. Vibration analysis (a study associated with dynamics) is concerned with the oscillatory motions of bodies and the forces associated with them [6].






7.4 Slider-Crank Mechanism Analysis


Figure 7.3a illustrates a slider-crank mechanism where a force F is applied to the slider link revolute joint b1 (which is coincident with the slider’s center of gravity CG3). To drive the mechanism, a torque Ta0 is applied about the crank link revolute joint a0. The loads on the individual slider-crank mechanism links are illustrated in Figure 7.3b. Taking the sum of the forces and moments for each link according to the conditions ∑F = ma and ∑M = Iα produces two dynamic equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx=maCGΧ and ∑Fy=maCGy, ultimately produces three dynamic equations for each link.
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FIGURE 7.3 (a) Slider-crank mechanism and (b) link dynamic forces and torque.



Equation 7.10 includes the center of gravity-load point vectors used for the slider-crank mechanism.


Rj=Rjx+iRjy,  j=1,2,...,4 (7.10)


Because the x- and y-components of the total acceleration of the center of gravity of each link are required in the dynamic load equations, Equation 7.11 includes the acceleration equations for aCG1 through aCG3. The acceleration equations are identical in form to the slider-crank acceleration equations in Section 4.5.3.


aCG1=iβ¨i(−R1)ei(βj)−β˙j2(−R1)ei(βj)aCG2=Aa1+iα¨j(−R3)ei(αj)−α˙j2(−R3)ei(αj)=iβ¨jW1ei(θ+βj)−β˙j2W1ei(θ+βj)−iα¨jR3ei(αj)+α˙j2R3ei(αj)aCG3=Ab1=G¨j (7.11)


Using the first two dynamic load conditions for the crank link (where the moment sum is taken about the center of gravity CG1) produces Equation 7.3. Expanding and separating the resulting equations produces Equation 7.4.


Using the first two dynamic load conditions for the coupler link (where the moment sum is taken about CG2) produces


−Fa1−Fb1+m2g=m2aCG2−R3×Fa1−R4×Fb1=I2α¨j (7.12)


Expanding and separating Equation 7.12 produces


−Fa1x−Fb1x=m2aCG2x−Fa1y−Fb1ym2g=m2aCG2yFa1xR3y−Fa1yR3x+Fb1xR4y−Fb1yR4x=I2α¨j (7.13)


Using only the dynamic load condition ∑F = ma for the slider link produces


F+Fb1+Ff+m3g=m3aCG3 (7.14)


In Equation 7.14, the x- and y-components of vector Ff are the friction force ±µFnormal and the normal force Fnormal, respectively. Expanding and separating Equation 7.14 produces


Fx+Fb1x±μFnormal=m3aCG3xFy+Fb1y+Fnormal+m3g=0 (7.15)


Expressing Equations 7.4, 7.13, and 7.15 in a combined matrix form produces


[01010000001010001−R1yβjR1xβj−R2yβjR2xβj000000−10−1000000−10−10000R3yαj−R3xαjR4yαj−R4xαj00000010±μ00000011]{Ta0Fa0xFa0yFa1xFa1yFb1xFb1yFnormal} =[m1aCG1xm1aCG1y−m1gI1β¨jm2aCG2xm2aCG2y−m2gI2α¨j−Fx+m3aCG3x−Fy−m3g] (7.16)


where the x- and y-components of vectors R1 through R4 are Rnxangle j=Rnxcos(anglej)− Rnysin(anglej) and Rnxangle j=Rnxsin(anglej)+Rnycos(anglej).* It can be seen in Equations 7.4, 7.13, 7.15, and ultimately in Equation 7.16 that the mass and mass moment of inertia of each link are also required.


Equation 7.16 can be solved using Cramer’s rule to determine the unknown forces and torque. The unknown slider-crank displacement angles αj, angular velocities α˙j, and angular accelerations α¨j are the same quantities calculated from the slider-crank equations in Sections 4.5.1–4.5.3 (along with the slider accelerations G¨j). Given such solutions, the corresponding dynamic forces and torques can be calculated from Equation 7.16.


Appendix D.2 includes the MATLAB file user instructions for slider-crank dynamic force analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 7.16 are calculated.




Example 7.2


Problem Statement: Using the Appendix D.2 MATLAB file, calculate the driver torque over a complete crank rotation range for the in-line slider-crank mechanism in Tables E.7.3 and E.7.4. For this mechanism, Fp1=(0, 0)N, β˙0=10 rad/s, and β¨=0 rad/s2. Gravity is −9.81 m/s2.






TABLE E.7.3 Slider−Crank Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	µ










	0.5, 90°

	0.9014, −33.6901°

	±0.5











Known Information: Tables E.7.3, E.7.4, and Appendix D.2 MATLAB file.






TABLE E.7.4 Slider−Crank Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0 − i0.25

	m1

	8.05






	R3

	− 0.3750 + i0.2500

	I1

	0.805






	

	

	m2

	14.49






	

	

	I2

	4.025






	

	

	m3

	30











Solution Approach: Figure E.7.3 includes the input specified (in bold text) in the Appendix D.2 MATLAB file. Vectors R2 and R4 are calculated in the MATLAB file using vector-loop equations (see Appendix D.2). Figure E.7.4 includes the driver torque profile calculated for the slider-crank mechanism using the Appendix D.2 MATLAB file. After running the Appendix D.2 file twice (once with μ=+0.5 and again with μ=−0.5), only the driver torque where the friction force opposes the slider velocity is retained and assembled to produce Figure E.7.4.




[image: ]

FIGURE E.7.3 Specified input (in bold text) in the Appendix D.2 MATLAB file for Example 7.2.
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FIGURE E.7.4 Ta0 profile for slider-crank mechanism.





* The correct sign for ±µ in Equation 7.16 will be the sign that produces a friction force that opposes the direction of the slider velocity.





7.5 Geared Five-Bar Mechanism Analysis


We will begin the formulation of a dynamic force equation system for the geared five-bar mechanism by first formulating a dynamic force equation system for a five-bar mechanism without gears. Because such a system has two degrees of freedom, controlled mechanism motion is achieved by independently controlling the rotations of the links containing vectors W1 and U1.


Figure 7.4a illustrates a geared five-bar mechanism where a force Fp1 is applied to the intermediate link point p1. To drive the mechanism, torques Ta0 and Tb0 are applied about the grounded revolute joints a0 and b0, respectively. The loads on the individual geared five-bar mechanism links are illustrated in Figure 7.4b. Taking the sum of the forces and moments for each link according to the conditions ∑F = ma and ∑M = Iα produces two dynamic equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx=maCGx and ∑Fy=maCGy, ultimately produces three dynamic equations for each link.
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FIGURE 7.4 (a) Geared five-bar mechanism and (b) link dynamic forces and torques.



Equation 7.17 includes the center of gravity-load point vectors used for the geared five-bar mechanism.


Rj=Rjx+iRjy,   j=1,2,...,9 (7.17)


Because the x- and y-components of the total acceleration of the center of gravity of each link are required in the dynamic load equations, Equation 7.18 includes the acceleration equations for aCG1 through aCG4. The acceleration equations are identical in form to the geared five-bar acceleration equations in Section 4.6.3.


aCG1=iβ¨j(−R1)ei(βj)−β˙j2(−R1)ei(βj)aCG2=Aa1+iα¨j(−R3)ei(αj)−α˙j2(−R3)ei(αj)=iβ¨jW1ei(θ+βj)−β˙j2W1ei(θ+βj)−iα¨jR3ei(αj)+α˙j2R3ei(αj)aCG3=Ab1+iν¨j(−R7)ei(νj)−ν˙j2(−R7)ei(νj)=iγ¨jU1ei(σ+γj)−γ˙j2U1ei(σ+γj)−iν¨jR7ei(νj)+ν˙j2R7ei(νj)aCG4=iγ¨j(−R9)ei(γj)−γ˙j2(−R9)ei(γj) (7.18)


Using the first two dynamic load conditions for the crank link (where the moment sum is taken about the center of gravity CG1) produces Equation 7.3. Expanding and separating the resulting equations produces Equation 7.4.


Using the first two dynamic load conditions for the intermediate link a1–c1 (where the moment sum is taken about CG2) produces


−Fa1−Fc1+Fp1+m2g=m2aCG2−R3×Fa1−R4×Fc1+R5×Fp1=I2α¨j (7.19)


Expanding and separating Equation 7.19 produces


−Fa1x−Fc1x+Fp1x=m2aCG2x−Fa1y−Fc1y+Fp1y+m2g=m2aCG2yFa1xR3y−Fa1yR3x+Fc1xR4y−Fc1yR4x−Fp1xR5y+Fp1yR5x=I2α¨j (7.20)


Using the first two dynamic load conditions for the intermediate link b1–c1 (where the moment sum is taken about CG3) produces


Fc1−Fb1+m3g=m3aCG3R6×Fc1−R7×Fb1=I3ν¨j (7.21)


Expanding and separating Equation 7.21 produces


Fc1x−Fb1x=m3aCG3xFc1y−Fb1y+m3g=m3aCG3y−Fc1xR6y+Fc1yR6x+Fb1xR7y−Fb1yR7x=I3ν¨j (7.22)


Using the first two dynamic load conditions for the crank link b0–b1 (where the moment sum is taken about CG4) produces


Fb0+Fb1+m4g=m4aCG4Tb0+R8×Fb1+R9×Fb0=I4γ¨j (7.23)


Expanding and separating Equation 7.23 produces


Fb0x+Fb1x=m4aCG4xFb0y+Fb1y+m4g=m4aCG4yTb0−Fb1xR8y+Fb1yR8x−Fb0xR9y+Fb0yR9x=I4γ¨j (7.24)


Expressing Equations 7.4, 7.20, 7.22, and 7.24 in a combined matrix form produces


[0101000000000010100000001−R1yβjR1xβj−R2yβjR2xβj0000000000−10−10000000000−10−100000000R3yαj−R3xαjR4yαj−R4xαj000000000010000−1000000010000−100000−R6yνjR6xνj000R7yνj−R7xνj00000000101000000000010100000001−R9yγjR9xγj−R8yγjR8xγj] {Ta0Fa0xFa0yFa1xFa1yFc1xFc1yTb0Fb0xFb0yFb1xFb1y}=[m1aCG1xm1aCG1y−m1gI1β¨jm2aCG2x−Fp1x−Fp1y+m2aCG2y−m2gI2α¨j+Fp1xR5yαj−Fp1yR5xαjm3aCG3xm3aCG3y−m3gI3ν¨jm4aCG4xm4aCG4y−m4gI4γ¨j] (7.25)


where the x- and y-components of vectors R1 through R9 are Rnxangle j=Rnxcos(anglej) −Rnysin(anglej) and Rnyangle j=Rnxsin(anglej)+Rnycos(anglej). It can be seen in Equations 7.4, 7.20, 7.22, 7.24, and ultimately in Equation 7.25 that the mass and mass moment of inertia of each link are also required.


Equation 7.25 can be solved using Cramer’s rule to determine the unknown forces and torques. The unknown geared five-bar displacement angles αj and νj, angular velocities α˙j and ν˙j, and angular accelerations α¨j and ν¨j are the same quantities calculated from the geared five-bar equations in Sections 4.6.1–4.6.4. Given such solutions, the corresponding dynamic forces and torques can be calculated from Equation 7.25. Because this equation (like Equation 6.19 in static force analysis) considers a five-bar mechanism without gears, values for T′a0, F′a0, and F′b0 must be calculated in place of Ta0, Fa0, and Fb0 in Equation 7.25.


Equations 6.20–6.24 (see Section 6.5) are used to calculate the gear-based driver torque T′a0 and gear-based forces F′a0 and F′b0 from the Equation 7.25 solutions. Because the mass and inertia of the idler gear are not included in Equation 7.25, the results calculated from this equation for a five-bar mechanism having three gears are approximate solutions.*


Appendices D.3 and D.4 include the MATLAB file user instructions for geared five-bar dynamic force analysis (for two and three gears, respectively). In these MATLAB files (which are available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 7.25 and 6.20–6.24 are calculated.




Example 7.3


Problem Statement: Using the Appendix D.4 MATLAB file, calculate the driver torque over a complete crank rotation range for the geared five-bar mechanism in Tables E.7.5 and E.7.6. The gear ratio is r=+2. For this mechanism, Fp1=(0, −1000)N, β˙0=1 rad/s, and β¨=0.25 rad/s2. Gravity is −9.81 m/s2.






TABLE E.7.5 Geared Five-Bar Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	S1, ψ

	G1x, G1y

	L1, δ










	0.5, 90°

	0.75, 32.7304°

	0.75, 45°

	0.75, 149.9837°

	0.75, 0

	0.5, 74.14°











Known Information: Tables E.7.5, E.7.6, and Appendix D.4 MATLAB file.






TABLE E.7.6 Geared Five-Bar Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg-m2)





	R1

	0 − i0.0831

	m1

	22.54






	R3

	− 0.2558 − i0.2955

	I1

	0.505






	R7

	0.3247 − i0.1876

	m2

	29.785






	R9

	− 0.0356 − i0.0356

	I2

	5.635






	

	

	m3

	12.075






	

	

	I3

	2.415






	

	

	m4

	75.67






	

	

	I4

	5.635











Solution Approach: Figure E.7.5 includes the input specified (in bold text) in the Appendix D.4 MATLAB file. Vectors R2, R4, R5, R6, and R8 are calculated in the MATLAB file using vector-loop equations (see Appendix D.4). Figure E.7.6 includes the driver torque profiles calculated for the geared five-bar mechanism using the Appendix D.4 MATLAB file.
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FIGURE E.7.5 Specified input (in bold text) in the Appendix D.4 MATLAB file for Example 7.3.
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FIGURE E.7.6 T′a0 profile for geared five-bar mechanism.





* While only approximate solutions are calculated using Equation 7.25 for five-bar mechanisms having three gears, the solutions are most accurate if the mass and inertia of the idler gear are equal to or less than those of the driving gear.





7.6 Watt II Mechanism Analysis


Figure 7.5a illustrates a Watt II mechanism where forces Fp1 and Fp1* are applied to the intermediate link points p1 and p1∗, respectively. To drive the mechanism, a torque Ta0 is applied about the crank link revolute joint. The user also has the option of specifying torques Tb0 and Tb0∗ about the revolute joints b0 and b0∗, respectively.* The loads on the individual Watt II mechanism links are illustrated in Figure 7.5b. Taking the sum of the forces and moments for each link according to the conditions ∑F = ma and ∑M = Iα produces two dynamic equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx=maCGx and ∑Fy=maCGy, ultimately produces three dynamic equations for each link.
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FIGURE 7.5 (a) Watt II mechanism and (b) link dynamic forces and torques.



Equation 7.26 includes the center of gravity-load point vectors used for the Watt II mechanism.


Rj=Rjx+iRjy,   j=1,2,...,13 (7.26)


* If the user prefers not to consider the applied force Fp1 or the applied torques Tb0 or Tb0∗, these quantities can be specified as zero in the dynamic load equations.

Because the x- and y-components of the total acceleration of the center of gravity of each link are required in the dynamic load equations, Equation 7.27 includes the acceleration equations for aCG4 and aCG5. These acceleration equations are identical in form to the planar four-bar acceleration equations in Section 4.4.3. The acceleration equations for aCG1 through aCG3 are identical to Equation 7.2, since the corresponding links produce a planar four-bar mechanism.


aCG4=Aa1*+iα¨j*(−R9)ei(αj*)−(α˙j*)2(−R9)ei(αj*)=iγ¨j(−R7+R8)ei(γj)−γ˙j2(−R7+R8)ei(γj)+iα¨j*(−R9)ei(αj*)−(αj*)2(−R9)ei(αj*)aCG5=iγ¨j*(−R13)ei(γj*)−(γ˙j*)2(−R13)ei(γj*) (7.27)


Because the Watt II mechanism includes planar four-bar mechanisms, the dynamic load equations given in Equations 7.4 and 7.6 are used for the crank and coupler links, respectively, of the planar four-bar mechanism loop a0–a1–b1–b0 in the Watt II mechanism.


Using the first two dynamic load conditions for the follower link of the planar four-bar mechanism loop a0–a1–b1–b0 (where the moment sum is taken about CG3) produces


Fb0+Fb1+Fa1*+m3g=m3aCG3Tb0+R6×Fb1+R7×Fb0+R8×Fa1*=I3β¨j* (7.28)


Expanding and separating Equation 7.28 produces


Fb0x+Fb1x+Fa1x*=m3aCG3xFb0y+Fb1y+Fa1y*+m3g=m3aCG3yTb0−Fb1xR6y+Fb1yR6x−Fb0xR7y+Fb0yR7x−Fa1x*R8y+Fa1y*R8x=I3β¨j* (7.29)


Using the first two dynamic load conditions for the coupler link of the planar four-bar mechanism loop b0−a1∗−b1∗−b0∗ (where the moment sum is taken about CG4) produces


−Fa1*−Fb1*+Fp1*+m4g=m4aCG4−R9×Fa1*−R10×Fb1*+R11×Fp1*=I4α¨j* (7.30)


Expanding and separating Equation 7.30 produces


−Fa1x*−Fb1x*+Fp1x*=m4aCG4x−Fa1y*−Fb1y*+Fp1y*+m4g=m4aCG4yFa1x*R9y−Fa1y*R9x+Fb1x*R10y−Fb1y*R10x−Fp1x*R11y+Fp1y*R11x=I4α¨j* (7.31)


Using the first two dynamic load conditions for the follower link of the planar four-bar mechanism loop b0−a1∗−b1∗−b0∗ (where the moment sum is taken about CG5) produces


Fb0*+Fb1*+m5g=m5aCG5Tb0*+R12×Fb1*+R13×Fb0*=I5γ¨j* (7.32)


Expanding and separating Equation 7.32 produces


Fb0x*+Fb1x*=m5aCG5xFb0y*+Fb1y*+m5g=m5aCG5yTb0−Fb1x*R12y+Fb1y*R12x−Fb0x*R13y+Fb0y*R13x=I5γ¨j* (7.33)


Expressing Equations 7.4, 7.6, 7.29, 7.31 and 7.33 in a combined matrix form produces


[0101000000000000010100000000001−R1yβjR1xβj−R2yβjR2xβj0000000000000−1000−100000000000−1000−1000000000R3yαj−R3xαj00R4yαj−R4xαj00000000000101010000000000010101000000000−R7yγjR7xγj−R6yγjR6xγj−R8yγjR8xγj0000000000000−1000−100000000000−1000−1000000000R9yαj*−R9xαj*00−R10yαj*R10xαj*00000000000101000000000000010100000000000−R13yγj*R13xγj*−R12yγj*R12xγj*] ×{Ta0Fa0xFa0yFa1xFa1yFb0xFb0yFb1xFb1yFa1x*Fa1y*Fb0x*Fb0y*Fb1x*Fb1y*}=[m1aCG1xm1aCG1y−m1gI1β¨jm2aCG2x−Fp1xm2aCG2y−m2g−Fp1yI2α¨j+Fp1xR5yαj−Fp1yR5xαjm3aCG3xm3aCG3y−m3gI3γ¨j−Tb0m4aCG4x−Fp1x*m4aCG4y−m4g−Fp1y*I4α¨j*+Fp1x*R11yαj*−Fp1y*R11xαj*m5aCG5xm5aCG5y−m5gI5γ¨j*−Tb0*] (7.34)


where the x- and y-components of vectors R1 through R13 are Rnxangle j=Rnxcos(anglej)− Rnysin(anglej) and Rnxangle j=Rnxsin(anglej)+Rnycos(anglej). It can be seen in Equations 7.4, 7.6, 7.29, 7.31, 7.33, and ultimately in Equation 7.34 that the mass and mass moment of inertia of each link are also required.


Equation 7.34 can be solved using Cramer’s rule to determine the unknown forces and torque. The unknown Watt II displacement angles (αj, γj, αj* and γj*), angular velocities (α˙j, γ˙j, α˙j* and γ˙j*), and angular accelerations (α¨j,γ¨j,α¨j* and γ¨j*) are calculated from the planar four-bar equations in Sections 4.4.1–4.4.4. Given such solutions, the corresponding dynamic forces and torques can be calculated from Equation 7.34.


Appendix D.5 includes the MATLAB file user instructions for Watt II dynamic force analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 7.34 are calculated.




Example 7.4


Problem Statement: Using the Appendix D.5 MATLAB file, calculate the forces at joints a1, b1, a1*, and b1* over a complete crank rotation range (at −60° increments) for the Watt II mechanism in Tables E.7.7 and E.7.8. For this mechanism, Fp1=(−500, −500)N, Fp1*=(−1000, 0)N, β˙0=−1 rad/s, and β¨=−0.25 rad/s2. Also Tb0=Tb0*=0 and gravity is −9.81 m/s2.






TABLE E.7.7 Watt II Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ






	0.5, 90°

	0.75, 19.3737°

	0.75, 93.2461°

	0.75, 0

	0.5, 60.7834°






	W1*,θ*

	V1*,ρ*

	U1*,σ*

	G1x*,G1y*

	L1*,δ*






	0.5, 45°

	0.75, 7.9416°

	0.75, 60.2717°

	0.7244, −0.1941

	0.5, 49.3512°















TABLE E.7.8 Watt II Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0 − i0.25

	m1

	8.05






	R3

	− 0.3172 − i0.2284

	I1

	0.805






	R7

	− 0.1037 – i0.3675

	m2

	29.785






	R9

	− 0.3562 − i0.161

	I2

	5.635






	R13

	− 0.1860 − i0.3257

	m3

	33.81






	

	

	I3

	5.635






	

	

	m4

	29.785






	

	

	I4

	5.635






	

	

	m5

	12.075






	

	

	I5

	2.415











Known Information: Tables E.7.7, E.7.8, and Appendix D.5 MATLAB file


Solution Approach: Figure E.7.7 includes the input specified (in bold text) in the Appendix D.5 MATLAB file. Vectors R2, R4, R5, R6, R8, R10, R11, and R12 are calculated in the MATLAB file using vector-loop equations (see Appendix D.5). Table E.7.9 includes the forces calculated for the Watt II mechanism using the Appendix D.5 MATLAB file.
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FIGURE E.7.7 Specified input (in bold text) in the Appendix D.5 MATLAB file for Example 7.4.







TABLE E.7.9 Watt II mechanism forces (N)





	β (°)

	Fa1

	Fb1

	Fa1*

	Fb1*










	0

	−689, −855

	187, 75

	−1186, −685

	191, 396






	−60

	164, −488

	−610, −304

	−1434, −943

	436, 621






	−120

	1087, −3122

	−1603, 2282

	−1063, −634

	4, 353






	−180

	−54, −1917

	−450, 1098

	−946, −639

	−63, 344






	−240

	−885, −1616

	359, 805

	−970, −637

	−45, 343






	−300

	−1189, −1140

	651, 364

	−1047, −621

	34, 345






	−360

	−669, −820

	173, 80

	−1153, −672

	180, 387

















7.7 Stephenson III Mechanism Analysis


Figure 7.6 a illustrates a Stephenson III mechanism where a force Fp1∗ is applied to the intermediate link point p1∗. To drive the mechanism, a torque Ta0 is applied about the crank link revolute joint. The user also has the option of specifying torques Tb0 and Tb0∗ about the revolute joints b0 and b0∗, respectively.* The forces on the individual Stephenson III mechanism links are illustrated in Figure 7.6b. Taking the sum of the forces and moments for each link according to the conditions ∑F = ma and ∑M = Iα produces two dynamic equations for each link. Expanding these two equations and separating the force equation into two equations, where ∑Fx= maCGx and ∑Fy= maCGy, ultimately produces three dynamic equations for each link.
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FIGURE 7.6 (a) Stephenson III mechanism and (b) link dynamic forces and torques.



Equation 7.35 includes the center of gravity-load point vectors used for the Stephenson III mechanism.


* If the user prefers not to consider the applied force FP1 or the applied torques Tb0 or Tb0∗, these quantities can be specified as zero in the dynamic load equations.

Rj=Rjx+iRjy,   j=1,2,...,12 (7.35)


Because the x- and y-components of the total acceleration of the center of gravity of each link are required in the dynamic load equations, Equation 7.36 includes the acceleration equations for aCG4 and aCG5. These acceleration equations are identical in form to the Stephenson III acceleration equations in Section 4.8.3. The acceleration equations for aCG1 through aCG3 are identical to Equation 7.2, since the corresponding links produce a planar four-bar mechanism.


aCG4=Ap1+iα¨j*(−R8)ei(αj*)−(α˙j*)2(−R8)ei(αj*)=iβ¨jW1ei(θ+βj)−β˙j2W1ei(θ+βj) +iα¨L1ei(δ+αj)−(α˙j)2L1ei(δ+αj)−iα¨j*R8ei(αj*)+(α˙j)2R8ei(αj*)aCG5=iγ¨j*(−R12)ei(γj*)−(γ˙j*)(−R12)ei(γj*) (7.36)


Because the Stephenson III mechanism includes the planar four-bar mechanism, the dynamic load equations given in Equations 7.4, 7.6, and 7.8 are used for the crank, coupler, and follower links, respectively, of the planar four-bar mechanism included in the Stephenson III mechanism.


Using the first two dynamic load conditions for the intermediate link p1−b1∗ (where the moment sum is taken about CG4) produces


−Fp1−Fb1*+Fp1*+m4g=m4aCG4−R8×Fp1−R9×Fb1*+R10×Fp1*=I4α¨j* (7.37)


Expanding and separating Equation 7.37 produces


−Fp1x−Fb1x*+Fp1x*=m4aCG4x−Fp1y−Fb1y*+Fp1y*+m4g=m4aCG4yFp1xR8y−Fp1yR8x+Fb1x*R9y−Fb1y*R9x−Fp1x*R10y+Fp1y*R10x=I4α¨j* (7.38)


Using the first two dynamic load conditions for the grounded link b0∗−b1∗ (where the moment sum is taken about CG5) produces


Fb0*+Fb1*+m5g=m5aCG5Tb0*+R11×Fb1*+R12×Fb0*=I5γ¨j* (7.39)


Expanding and separating Equation 7.39 produces


Fb0x*+Fb1x*=m5aCG5xFb0y*+Fb1y*+m5g=m5aCG5yTb0−Fb1x*R11y+Fb1y*R11x−Fb0x*R12y+Fb0y*R12x=I5γ¨j* (7.40)


Expressing Equations 7.4, 7.6, 7.8, 7.38, and 7.40 in a combined matrix form produces


[0101000000000000010100000000001−R1yβjR1xβj−R2yβjR2xβj0000000000000−1000−101000000000−1000−1010000000R3yαj−R3xαj00R4yαj−R4xαj−R5yαjR5xαj000000000101000000000000010100000000000−R7yγjR7xγj−R6yγjR6xγj000000000000000−1000−100000000000−1000−1000000000R8yαj*−R8xαj*00R9yαj*−R9xαj*00000000000101000000000000010100000000000−R12yγj*R12xγj*−R11yγj*R11xγj*] ×{Ta0Fa0xFa0yFa1xFa1yFb0xFb0yFb1xFb1yFp1xFp1yFb0x*Fb0y*Fb1x*Fb1y*}=[m1aCG1xm1aCG1y−m1gI1β¨jm2aCG2xm2aCG2y−m2gI2α¨jm3aCG3xm3aCG3y−m3gI3γ¨j−Tb0m4aCG4x−Fp1x*m4aCG4y−m4g−Fp1y*I4α¨j*+Fp1x*R10yαj*−Fp1y*R10xαj*m5aCG5xm5aCG5y−m5gI5γ¨j*−Tb0*] (7.41)


where the x- and y-components of vectors R1 through R12 are Rnxangle j=Rnxcos(anglej)− Rnysin(anglej) and Rnyangle j=Rnxsin(anglej)+Rnycos(anglej). It can be seen in Equations 7.4, 7.6, 7.8, 7.38, 7.40, and ultimately in Equation 7.41 that the mass and mass moment of inertia of each link are also required.


Equation 7.41 can be solved using Cramer’s rule to determine the unknown forces and torques. The unknown Stephenson III displacement angles αj* and γj*, angular velocities α˙j* and γ˙j*, and angular accelerations α¨j* and γ¨j* are the same quantities calculated from the Stephenson III equations in Sections 4.8.1–4.8.4. Given such solutions (along with the solutions for the planar four-bar mechanism), the corresponding dynamic forces and torques can be calculated from Equation 7.41.


Appendix D.6 includes the MATLAB file user instructions for Stephenson III dynamic force analysis. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), solutions for Equation 7.41 are calculated.




Example 7.5


Problem Statement: Using the Appendix D.6 MATLAB file, calculate the forces at joints a1, b1, p1, and b1* over a complete crank rotation range (at −60° increments) for the Stephenson III mechanism in Tables E.7.10 and E.7.11. In this mechanism, Fp1*=(0, −1000)N, β˙0=−1 rad/s, and β¨=−0.25 rad/s2. Also Tb0=Tb0*=0 and gravity is −9.81 m/s2.


Known Information: Tables E.7.10, E.7.11, and Appendix D.6 MATLAB file.






TABLE E.7.10 Stephenson III Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ






	0.5, 90°

	0.75, 19.3737°

	0.75, 93.2461°

	0.75, 0

	0.5, 60.7834°






	V1*,ρ*

	L1*,δ*

	U1*,σ*

	G1x*,G1y*

	






	1, 17.1417°

	0.5, 63.7091°

	1, 76.4844°

	0.2159, 0.2588

	















TABLE E.7.11 Stephenson III Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg-m2)





	R1

	0 − i0.25

	m1

	8.05






	R3

	− 0.3172 − i0.2284

	I1

	0.805






	R7

	− 0.0212 – i0.3744

	m2

	29.785






	R8

	− 0.3923 − i0.2477

	I2

	5.635






	R12

	− 0.1169 − i0.4862

	m3

	12.075






	

	

	I3

	2.415






	

	

	m4

	43.47






	

	

	I4

	16.1






	

	

	m5

	15.925






	

	

	I5

	5.635











Solution Approach: Figure E.7.8 includes the input specified (in bold text) in the Appendix D.6 MATLAB file. Vectors R2, R4, R5, R6, R9, R10, and R11 are calculated in the MATLAB file using vector-loop equations (see Appendix D.6). Table E.7.12 includes the forces calculated for the Stephenson III mechanism using the Appendix D.6 MATLAB file.
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FIGURE E.7.8 Specified input (in bold text) in the Appendix D.5 MATLAB file for Example 7.4.







TABLE E.7.12 Stephenson III Mechanism Forces (N)





	β (°)

	Fa1

	Fb1

	Fp1*

	Fb1*










	0

	90, −722

	34, −527

	126, −968

	−124, −442






	−60

	1219, 135

	−551, −1208

	613, −781

	−469, −661






	−120

	2160, −3768

	−1977, 1528

	200, −1900

	−262, 360






	−180

	725, −2221

	−650, 291

	79, −1611

	−99, 147






	−240

	−177, −1802

	30, 52

	−121, −1439

	83, 0






	−300

	−466, −1217

	280, −245

	−148, −1185

	104, −211






	−360

	123, −645

	31, −517

	151, −922

	−127, −438

















7.8 Mass Moment of Inertia and Computer-Aided Design Software


The mass moment of inertia is a measure of a solid object’s resistance to change in rotational speed about a particular axis of rotation. This is the quantity used in the dynamic load condition ∑M = Iα. The mass moment of inertia of a rotating body is generally defined as


I=∫mr2dm (7.42)


or more specifically as


Ix=∫m(y2+z2)dmIy=∫m(z2+x2)dmIz=∫m(x2+y2)dm (7.43)


where dm is the mass of an infinitesimally small part of the body and r, x, y, and z are the distances between dm and the axis of rotation (see Figure 7.7).*




[image: ]

FIGURE 7.7 Arbitrary body with mass moment of inertia variables.



Mass moment of inertia equations are available for a range of primitive solid shapes and a variety of rotation conditions [6]. Although such equations provide the user with a convenient means to calculate mass moments of inertia, the user is limited to the geometry and rotation condition considered in the equations.


With the development of computer-aided design (or CAD) software, specifically in the area of solid modeling (creating virtual representations of solid geometry), the user can now readily calculate the mass moment of inertia of any solid shape produced and under any rotation condition established.* With more accurate CAD-produced inertia values for mechanism components, the accuracy of calculated quantities such as mechanism dynamic forces and torques will also be improved. Mass moment of inertia calculation using CAD software is the preferred approach among engineers today—particularly when the mechanism geometry considered cannot be accurately represented by primitive geometry.




* Because only planar mechanisms are considered in this chapter, only link rotations about the z-axis and the subsequent moment of inertia about the z-axis (Iz in Equation 7.43) are considered.





7.9 Planar Mechanism Dynamic Force Analysis and Modeling in Simscape MultibodyTM


As has been noted throughout this chapter, Appendices D.1–D.6 include user instructions for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms in MATLAB files, respectively. In these files, the dynamic force and torque equations formulated in this chapter are solved. These MATLAB files provide a means for the user to efficiently conduct planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III dynamic force analyses by solving their displacement, velocity, and acceleration equations along with their dynamic force and torque equations.


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based dynamic force analysis. A library of Simscape Multibody files is available for download at https://www.routledge.com/p/book/9781032328317 to conduct dynamic force analyses on planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms†. With these files, the user specifies the mechanism link dimensions, mass properties, applied loads, and driving link parameters, and the dynamic forces and torques at the mechanism locations of interest are measured. Additionally, the motion of the mechanism itself is simulated. The Simscape Multibody file user instructions for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms are given in Appendices J.1–J.6, respectively.


While the user can specify input according to any unit type for length, force, and torque in the Appendix D MATLAB files, only two groups of dimensions are available in the Appendix J Simscape Multibody files. The user can specify length, mass, and force quantities either in inch, pound-mass, and pound-force, respectively (the US system), or in meter, kilogram, and newton, respectively (the SI system). The user also has the option in the Appendix J files to convert US system input to SI system output and vice versa.




Example 7.6


Problem Statement: Figure E.7.2 (in Example 7.1) includes plots for mechanism forces Fa0x, Fa0y, Fb0x, and Fb0y. Using the Appendix J.1 Simscape Multibody files, measure the maximum and minimum values (considering value magnitudes and not directions) for the planar four-bar mechanism forces in Example 7.1. Consider 1° crank rotation increments.


* Commercial CAD software producers include (but are by no means limited to) Autodesk, PTC, Dassault Systemes, and Siemens PLM Software.

† This library can also be downloaded from the authors’ server at http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

Known Information: Example 7.1 and Appendix J.1 Simscape Multibody files.


Solution Approach: Figure E.7.9 includes the input specified (in bold text) in the Appendix J.1 Simscape Multibody file. Table E.7.13 includes the maximum and minimum force values calculated using the Appendix D.1 MATLAB file and the Appendix J.1 Simscape Multibody files. Figure E.7.10 is an initial position snapshot of the mechanism animation generated from the Appendix J.1 Simscape Multibody files.




[image: ]

FIGURE E.7.9 Specified input (in bold text) in the Appendix J.1 Simscape Multibody file for Example 7.6.





[image: ]

FIGURE E.7.10 Initial position of the planar four-bar mechanism in the Appendix J.1 Simscape Multibody animation for Example 7.6.







TABLE E.7.13 Calculated Minimum and Maximum Planar Four-Bar Mechanism Forces (N) (Appendix J.1)





	

	β (°)

	Appendix D.1 MATLAB File

	β (°)

	Appendix J.1 Simscape Multibody Files










	Fa0x max

	247

	−245.22

	246.97

	−245.23






	Fa0x min

	168

	−0.14

	168.02

	−0.19






	Fa0y max

	257

	806.31

	257.02

	806.30






	Fa0y min

	284

	10.19

	283.99

	10.19






	Fb0x max

	250

	279.36

	250.01

	279.36






	Fb0x min

	166

	−0.07

	166.01

	−0.04






	Fb0y max

	286

	463.81

	286.01

	463.80






	Fb0y min

	214

	−0.61

	214.03

	−0.67















Example 7.7


Problem Statement: The minimum and maximum torque values in Figure E.7.2 (in Example 7.2) appear at crank displacement angles of 239° and 304°, respectively. Using the Appendix J.2 Simscape Multibody files, measure the maximum and minimum torque values for the slider-crank mechanism in Example 7.2.


Known Information: Example 7.2 and Appendix I.2 Simscape Multibody files.


Solution Approach: Figure E.7.11 includes the input specified (in bold text) in the Appendix J.2 Simscape Multibody file. Table E.7.14 includes the minimum and maximum torque values calculated using the Appendix D.2 MATLAB file and the Appendix J.2 Simscape Multibody files. Figure E.7.12 is an initial position snapshot of the mechanism animation generated from the Appendix J.2 Simscape Multibody files.




[image: ]

FIGURE E.7.11 Specified input (in bold text) in the Appendix J.2 Simscape Multibody file for Example 7.7.





[image: ]

FIGURE E.7.12 Initial position of the slider-crank mechanism in the Appendix J.2 Simscape Multibody animation for Example 7.7.







TABLE E.7.14 Calculated Minimum and Maximum Slider-Crank Mechanism Torques (in N-m) (Appendix J.2)





	Appendix D.2 MATLAB File

	Appendix J.2 SimMechanics Files










	Ta0 min=−612.53 at β = 239°

	Ta0 min=−612.53 at β = 238.94°






	Ta0 max=940.87 at β = 304°

	Ta0 max=940.88 at β = 304.05°











While the Appendix D.2 file requires the user to run it twice (once using +μ and again using −μ) and then filter the results (only keeping data rows where the sliding friction direction and the slider velocity direction are opposite), only a single run required for the Appendix J.2 files. This is because the latter includes a filter (a decision operator that considers the sliding friction direction and the slider velocity direction) to exclude all invalid result data.






Example 7.8


Problem Statement: Figure E.7.6 (in Example 7.3) includes plots for the driver torque T′a0. Using the Appendix J.4 Simscape Multibody files, measure the maximum and minimum values (considering value directions) for this torque in Example 7.1. Consider 1° crank rotation increments.


Known Information: Example 7.3 and Appendix J.4 Simscape Multibody files.


Solution Approach: Figure E.7.13 includes the input specified (in bold text) in the Appendix J.4 Simscape Multibody file. Table E.7.15 includes the maximum and minimum torque values calculated using the Appendix D.4 MATLAB file and the Appendix J.4 Simscape Multibody files. Unlike the Appendix D.4 file, the mass (m5) and the inertia (I5) of the idler gear are used in the Appendix J.4 files (see Appendix J.4). This makes the results from the latter more accurate. Figure E.7.14 is an initial position snapshot of the mechanism animation generated from the Appendix J.4 Simscape Multibody files.




[image: ]

FIGURE E.7.13 Specified input (in bold text) in the Appendix J.4 Simscape Multibody file for Example 7.8.
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FIGURE E.7.14 Initial position of the geared five-bar mechanism in the Appendix J.4 Simscape Multibody animation for Example 7.8.







TABLE E.7.15 Calculated Minimum and Maximum Slider-Crank Mechanism Torques (in N-m) (Appendix J.2)





	Appendix D.4 MATLAB File

	Appendix J.4 SimMechanics Files (Where m5 = m1 and I5 = I1)










	Ta0 max′=2618.4 at β = 252°

	Ta0 max′=2618.4 at β = 252.02°






	Ta0 min′=−1386.5 at β = 290°

	Ta0 min′=−1386.6 at β = 290°















Example 7.9


Problem Statement: Repeat Example 7.4 using the Appendix J.5 Simscape Multibody files.


Known Information: Example 7.4 and Appendix J.5 Simscape Multibody files.


Solution Approach: Figure E.7.15 includes the input specified (in bold text) in the Appendix J.5 Simscape Multibody file. Table E.7.16 includes the force values calculated using the Appendix J.5 Simscape Multibody files. Figure E.7.16 is an initial position snapshot of the mechanism animation generated from the Appendix J.5 Simscape Multibody files.
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FIGURE E.7.15 Specified input (in bold text) in the Appendix J.5 Simscape Multibody file for Example 7.9.
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FIGURE E.7.16 Initial position of the Watt II mechanism in the Appendix J.5 Simscape Multibody animation for Example 7.9.







TABLE E.7.16 Calculated Watt II Mechanism Forces (in N) (Appendix J.5)





	β (°)

	Fa1

	Fb1

	Fa1*

	Fb1*










	0

	−688.87, −854.55

	186.91, 74.83

	−1185.50, −685.05

	190.80, 395.54






	−60

	164.05, −488.25

	−609.87, −303.67

	−1433.50, −942.95

	436.48, 621.35






	−120

	1086.70, −3122.10

	−1603.30, 2282.10

	−1063.20, −633.55

	4.37, 352.99






	−180.04

	−54.85, −1916.60

	−449.36, 1097.40

	−945.64, −638.55

	−63.29, 343.60






	−239.95

	−884.24, −1616.60

	358.03, 805.42

	−970.35, −636.66

	−44.97, 342.65






	−300.05

	−1189.20,−1139.90

	650.35, 363.31

	−1047.10, −621.41

	34.37, 345.36






	−360

	−669.43, −819.90

	172.80,79.67

	−1153.30,−671.91

	180.08,386.63















Example 7.10


Problem Statement: Repeat Example 7.5 using the Appendix J.6 Simscape Multibody files.


Known Information: Example 7.5 and Appendix J.6 Simscape Multibody files.


Solution Approach: Figure E.7.17 includes the input specified (in bold text) in the Appendix J.6 Simscape Multibody file. Table E.7.17 includes the force values calculated using the Appendix J.6 Simscape Multibody files. Figure E.7.18 is an initial position snapshot of the mechanism animation generated from the Appendix J.6 Simscape Multibody files.
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FIGURE E.7.17 17 Specified input (in bold text) in the Appendix J.6 Simscape Multibody file for Example 7.10.
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FIGURE E.7.18 Initial position of the Stephenson III mechanism in the Appendix J.6 Simscape Multibody animation for Example 7.10.







TABLE E.7.17 Calculated Stephenson III Mechanism Forces (in N) (Appendix J.6)





	β (°)

	Fa1

	Fb1

	Fp1

	Fb1*










	0

	90.16, −721.59

	33.53, −526.58

	125.64, −968.46

	−124.06, −441.54






	−60.02

	1218.80, 135.92

	−551.02, −1208.40

	613.54, −780.57

	−468.50, −660.66






	−120.01

	2159.80, −3767.00

	−1976.30,1527.70

	200.07, −1899.40

	−262.25, 359.71






	−180.01

	724.63, −2221.10

	−649.66, 291.31

	79.17, −1610.70

	−98.88, 147.01






	−240.02

	−177.44, −1802.20

	29.85, 51.83

	−121.36, −1439.10

	83.44, −0.18






	−300.02

	−466.29, −1216.70

	279.82, −245.24

	−147.59, −1185.30

	104.41, −210.67






	−360

	123.56, −644.49

	31.11, −517.27

	151.29, −921.52

	−127.06, −438.40

















7.10 Summary


In terms of structural force analyses for mechanical systems, a dynamic force analysis is the next type of force analysis to consider beyond a static force analysis. In this type of analysis, loads are considered for each mechanism link according to Newton’s second law (∑F = ma, ∑M = Iα). In this chapter, a system of dynamic force and moment equations are formulated for the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms. These equations form sets of linear simultaneous equations that are solved to determine the dynamic forces and torques present at each mechanism joint. The Appendix D.1–D.6 MATLAB files provide a means for the user to efficiently conduct planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III dynamic force analyses by solving their displacement, velocity, and acceleration from Chapter 4 along with their linear simultaneous equation sets.


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based dynamic load analyses. Using the Appendix J.1–J.6 Simscape Multibody files, the user can conduct dynamic load analyses on the planar four-bar, slider-crank, geared five-bar, Watt II, and Stephenson III mechanisms, respectively, as well as simulate mechanism motion.
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Problems




	Figure P.7.1 illustrates a planar four-bar mechanism used to guide a hatch from the opened position to the closed position over a crank rotation of 31.7 °. The dimensions for the mechanism at the opened-hatch position are included in Table P.7.1 and the link dynamic parameters are included in Table P.7.2. Gravity is − 9.81 m/s2. Plot the driver torque over a crank rotation range of 31.7 ° with an initial crank angular velocity of 0 rad/s and an angular acceleration of 0.175 rad/s2 (using the Appendix D.1 or J.1 files).



[image: ]

FIGURE P.7.1 Hatch mechanism.







TABLE P.7.1 Hatch Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	0.1658 + i3.2649

	− 0.7423 − i0.1494

	− 0.0462 − i1.6889

	− 0.5302 + i4.8044

	− 0.3024 − i1.9839















TABLE P.7.2 Hatch Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	−0.0829 − i1.6324

	m1

	2.8811






	R3

	0.3024 + i1.9839

	I1

	10.8216






	R7

	0.0231 + i0.8445

	m2

	56.0143






	

	

	I2

	281.0267






	

	

	m3

	1.6092






	

	

	I3

	1.7066












	Repeat Problem 1 where a constant follower-link torque of Tb0 = 10,000 N-m is also applied.


	Figure P.7.2 illustrates a planar four-bar mechanism used to guide a cutting blade from the opened position to the closed position over a crank rotation of − 45 ° . The dimensions for the mechanism at the opened-blade position are included in Table P.7.3 and the link dynamic parameters are included in Table P.7.4. Gravity is − 9.81 m/s2. Plot the force components at the grounded crank revolute joint (Fa0x,Fa0y) over a crank rotation range of − 45 ° with an initial crank angular velocity of 0 rad/s and an angular acceleration of − 0.55 rad/s2 (using the Appendix D.1 or J.1 files).



[image: ]

FIGURE P.7.2 Cutting mechanism.







TABLE P.7.3 Cutting Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−0.0899 + i1.2955

	−0.5523 + i1.237

	2.1075 + i0.9489

	−2.7497 + i1.5836

	1.8547 − i2.0853















TABLE P.7.4 Cutting Mechanism Dynamic Parameters (with Length in m, Mass in kg and Inertia in kg−m2)





	R1

	0.045 − i0.6478

	m1

	1.2985






	R3

	−1.8547 + i2.0853

	I1

	0.8477






	R7

	−1.0538 − i0.4744

	m2

	4.6682






	

	

	I2

	40.9753






	

	

	m3

	2.1139






	

	

	I3

	4.0685












	Repeat Problem 3 where a constant follower-link torque of Tb0=250 N-m is also applied.


	Figure P.7.3 illustrates a planar four-bar mechanism used to guide a brake pad from the released position to the applied position over a crank rotation of 40 ° . The dimensions for the mechanism at the released-hatch position are included in Table P.7.5 and the link dynamic parameters are included in Table P.7.6. A force of Fp1=(400, 0)N is constantly applied and gravity is − 9.81 m/s2. Plot the driver torque over a crank rotation range of 40 ° with an initial crank angular velocity of 0 rad/s and an angular acceleration of 1 rad/s2 (using the Appendix D.1 or J.1 files).
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FIGURE P.7.3 Brake mechanism.







TABLE P.7.5 Brake Mechanism Dimensions (with Link Lengths in m) 





	W1

	V1

	U1

	G1

	L1










	0.5967 + i1.0893

	−1.801 − i1.3932

	−0.5121 + i0.6055

	−0.6922 − i0.9094

	1.0539 + i1.3509















TABLE P.7.6 Brake Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	−0.2983 − i0.5446

	m1

	1.2526






	R3

	−1.3766 − i1.2335

	I1

	0.7543






	R7

	0.256 − i0.3028

	m2

	24.2732






	

	

	I2

	106.9483






	

	

	m3

	0.8911






	

	

	I3

	0.2439












	For Problem 5, plot the force components at the grounded follower-revolute joint (Fb0x,Fb0y).


	Figure P.7.4 illustrates a planar four-bar mechanism used to guide a latch from the released position to the applied position over a crank rotation of 70 ° . The dimensions for the mechanism at the released-latch position are included in Table P.7.7 and the link dynamic parameters are included in Table P.7.8. Gravity is − 9.81 m/s2. Plot the driver torque over a crank rotation range of 70 ° with an initial crank angular velocity of 0 rad/s and an angular acceleration of 0.25 rad/s2 (using the Appendix D.1 or J.1 files).



[image: ]

FIGURE P.7.4 Latch mechanism.




	Repeat Problem 7 where a constant follower-link torque of Tb0=−100 N-m is also applied.



TABLE P.7.7 Latch Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	3.0887 − i2.2929

	2.0591 − i1.001

	2.5916 − i0.7733

	2.5562 − i2.5206

	3.7416 + i5.3422















TABLE P.7.8 Latch Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	−1.5444 + i1.1465

	m1

	3.3504






	R3

	−3.7416 − i5.3422

	I1

	17.2769






	R7

	−1.2958 + i0.3867

	m2

	12.8341






	

	

	I2

	566.2676






	

	

	m3

	2.4303






	

	

	I3

	6.3265












	Figure P.7.5 illustrates a planar four-bar mechanism used to guide a wiper blade. The dimensions for the mechanism are included in Table P.7.9 and the link dynamic parameters are included in Table P.7.10. Gravity is − 9.81 m/s2. Plot the force components at the grounded crank revolute joint (Fa0x,Fa0y) over a complete crank rotation range at a constant crank angular velocity of 5.25 rad/s (using the Appendix D.1 or J.1 files).



[image: ]

FIGURE P.7.5 Wiper-blade mechanism.




	Plot the force components at the grounded follower-revolute joint (Fb0x,Fb0y) for Problem 9 at a constant crank angular velocity of 6.25 rad/s.



TABLE P.7.9 Wiper Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−0.0626 − i0.2727

	0.6258 − i0.2874

	0.0632 − i0.5601

	0.5 + i0

	0.3129 − i0.1437















TABLE P.7.10 Wiper Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0.0313 + i0.1364

	m1

	0.0177






	R3

	−0.3129 + i0.1437

	I1

	0.0081






	R7

	−0.1023 + i0.9063

	m2

	0.0386






	

	

	I2

	0.0064






	

	

	m3

	0.0499






	

	

	I3

	0.252












	Figure P.7.6 illustrates a planar four-bar mechanism used to guide a gripper component from the open position to the closed position over a crank rotation of 50 ° . The dimensions for the mechanism at the open gripper position are included in Table P.7.11 and the link dynamic parameters are included in Table P.7.12. A force of Fp1=(0, 500)N is constantly applied. Gravity is − 9.81 m/s2. Determine the maximum driver torque magnitude |Ta0| produced given a crank rotation increment of 1 ° , an initial crank angular velocity of 0 rad/s and an angular acceleration of 0.1 rad/s2 (using the Appendix D.1 or J.1 files).



[image: ]

FIGURE P.7.6 Gripper mechanism.







TABLE P.7.11 Gripper Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−0.324 − i0.6408

	1.1198 − i0.354

	0.5985 + i0.3782

	0.1973 − i1.373

	2.7357 + i3.415















TABLE P.7.12 Gripper Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0.162 + i0.3204

	m1

	0.8308






	R3

	−1.2711 − i2.4568

	I1

	0.1924






	R7

	−0.2993 − i0.1891

	m2

	8.8936






	

	

	I2

	76.9644






	

	

	m3

	0.8227






	

	

	I3

	0.1868












	Repeat Problem 11 where a force of Fp1=(−150, 400)N is constantly applied.


	Figure P.7.7 illustrates a planar four-bar mechanism used to guide a component from its initial position to its assembled position over a crank rotation of 66 ° . The dimensions for the mechanism at the initial component position are included in Table P.7.13 and the link dynamic parameters are included in Table P.7.14. Gravity is − 9.81 m/s2. Determine the maximum driver torque magnitude |Ta0| produced given a crank rotation increment of 0.1 ° , an initial crank angular velocity of 0 rad/s and an angular acceleration of 0.55 rad/s2 (using the Appendix D.1 or J.1 files).
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FIGURE P.7.7 Assembly mechanism.







TABLE P.7.13 Assembly Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	1.5356 − i1.7885

	0.0169 + i1.2337

	−0.3294 − i0.8093

	1.8819 + i0.2545

	1.7054 + i0.8903















TABLE P.7.14 Assembly Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	−0.7678 + i0.8943

	m1

	2.1510






	R3

	−1.7054 − i0.8903

	I1

	4.2995






	R7

	0.1647 + i0.4047

	m2

	9.3356






	

	

	I2

	43.7912






	

	

	m3

	0.9563






	

	

	I3

	0.3091












	Repeat Problem 13 where the minimum and maximum values of |Fb0| are determined (instead of the maximum driver torque magnitude).


	Figure P.7.8 illustrates a planar four-bar mechanism used to guide a digging bucket from its initial position to its final position over a crank rotation of − 58 ° . The dimensions for the mechanism at the initial component position are included in Table P.7.15 and the link dynamic parameters are included in Table P.7.16. A force of Fp1=(−3182, −3182)N is constantly applied. Gravity is − 9.81 m/s2. Determine the maximum force magnitude |Fa1| produced given a crank rotation increment of − 0.1 ° , an initial crank angular velocity of 0 rad/s and an angular acceleration of − 0.35 rad/s2 (using the Appendix D.1 or J.1 files).



[image: ]

FIGURE P.7.8 Digging mechanism.







TABLE P.7.15 Digging Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−2.5208 − i1.3307

	−3.6797 − i0.5059

	−2.4816 − i3.3521

	−3.7189 + i1.5155

	−3.3055 − i1.3619















TABLE P.7.16 Digging Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	1.2604 + i0.6654

	m1

	2.5478






	R3

	4.1869 − i0.3915

	I1

	7.3408






	R7

	1.2408 + i1.676

	m2

	36.419






	

	

	I2

	677.1258






	

	

	m3

	3.6112






	

	

	I3

	21.8099












	Repeat Problem 15 where the minimum and maximum values of |Fb1| are determined (instead of the maximum force magnitude |Fa1|).


	Figure P.7.9 illustrates a planar four-bar mechanism used to guide a bucket from its loading position to its unloading position over a crank rotation of − 30 ° . The dimensions for the mechanism at the initial component position are included in Table P.7.17 and the link dynamic parameters are included in Table P.7.18. Gravity is − 9.81 m/s2. Determine the maximum driver torque magnitude |Ta0| produced given a crank rotation increment of − 1 ° , an initial crank angular velocity of 0 rad/s and an angular acceleration of − 0.025 rad/s2 (using the Appendix D.1 or J.1 files).



[image: ]

FIGURE P.7.9 Load–unload mechanism.







TABLE P.7.17 Load–Unload Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	−2.8841 + i2.7285

	0.1817 + i0.5059

	−0.6055 − i3.2954

	−2.0968 + i6.5299

	−1.7775 − i0.8574















TABLE P.7.18 Load–Unload Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	1.442 − i1.3642

	m1

	3.4494






	R3

	1.7775 + i0.8574

	I1

	18.9215






	R7

	0.3028 + i1.6477

	m2

	36.419






	

	

	I2

	174.9659






	

	

	m3

	2.9503






	

	

	I3

	11.6282












	Repeat Problem 17 where the maximum force magnitude |Fb0| is determined (instead of the maximum driver torque magnitude).


	Plot the driving link torque for the planar four-bar mechanism in Example 7.1 over a complete crank rotation range.


	Repeat Example 7.1 using Fp1=(−1500, 4500)N, an initial crank angular velocity of 1.25 rad/s, and an angular acceleration of 0.2 rad/s2.


	Plot Fa0x and Fa0y (vs. the crank angular displacement) for the slider-crank mechanism in Example 7.2 over a complete crank rotation range. For this problem, let μ = ±0.1.


	Plot Fa0x and Fa0y (vs. the crank angular displacement) for the slider-crank mechanism in Example 7.2 over a complete crank rotation range, using a material with half the density of the original material. For this problem, let µ = ± 0.1.


	Repeat Example 7.2 using F = ( − 100, − 25) N, an initial crank angular velocity of 10 rad/s, and an angular acceleration of 2.5 rad/s2. For this problem, let μ = ± 0.1.


	Table P.7.19 includes the dimensions for an offset slider-crank mechanism and Table P.7.20 includes dynamic parameters for this mechanism. For this problem, F=(0,−100)N, the initial crank angular velocity is 0 rad/s and the angular acceleration is − 5 rad/s2. Gravity is − 9.81 m/s2. Calculate the driver torque over a complete crank rotation range (using the Appendix D.2 or J.2 files).



TABLE P.7.19 Slider−Crank Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1

	U1

	µ










	0.5, 90°

	0.9014

	0.25

	±0.15















TABLE P.7.20 Slider−Crank Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0 − i0.25

	m1

	8.05






	R3

	−0.433 + i0.125

	I1

	0.805






	

	

	m2

	14.49






	

	

	I2

	4.025






	

	

	m3

	50












	Plot Fa0y (vs. the crank angular displacement) for the slider-crank mechanism in Problem 24 over a complete crank rotation range, using m3 = 25 kg and m3 = 10 kg.


	Repeat Problem 24 using F=(−150, −50)N, an initial crank angular velocity of − 15 rad/s and an angular acceleration of 0 rad/s2.


	Table P.7.21 includes the dimensions for a geared five-bar mechanism and P.7.22 includes dynamic parameters for this mechanism. The initial crank angular velocity is 1.25 rad/s and the angular acceleration is 0.15 rad/s2. Plot the driving and driven link torque over a complete crank rotation range (using the Appendix D.3 or J.3 files).



TABLE P.7.21 Geared Five-Bar Mechanism Configuration (with Link Lengths in m)





	W1,θ

	V1,ρ

	U1,σ

	S1,ψ

	G1x,G1y

	L1,δ










	0.35, 90°

	0.525, 54.7643°

	0.35, 60°

	0.525, 115.0279°

	0.35, 0

	0.35, −15.7645°






	Fp1 (N)

	Gravity

	Gear Ratio

	

	

	






	0, −1000

	−9.81 m/s2

	−2

	

	

	















TABLE P.7.22 Geared Five−Bar Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0 − i0.0666

	m1

	22.54






	R3

	−0.2132 − i0.1112

	I1

	0.505






	R7

	0.1111 − i0.2379

	m2

	29.785






	R9

	−0.0074 − i0.0128

	I2

	5.635






	

	

	m3

	12.075






	

	

	I3

	2.415






	

	

	m4

	75.67






	

	

	I4

	5.635












	Plot the force magnitudes |F′a0| and |F′b0| (versus the crank angular displacement) for the geared five-bar mechanism in Problem 27 over a complete crank rotation range,


	Repeat Example 7.3 using Fp1=(−1000,−750)N, an initial crank angular velocity of 1.25 rad/s, and an angular acceleration of 0.1 rad/s2.


	Plot Fc1x and Fc1y (vs. the crank angular displacement) for the geared five-bar mechanism in Problem 29 over a complete crank rotation range.


	Calculate the forces Fa0, Fb0, and Fb0∗ for the Watt II mechanism configuration in Table P.7.23 over a − 90 ° crank rotation range at − 15 ° increments (using the Appendix D.5 or J.5 files). Table P.7.24 includes the dynamic parameters for this mechanism. The initial crank angular velocity and acceleration are − 1.25 rad/s and − 0.1 rad/s2, respectively.



TABLE P.7.23 Watt II Mechanism Configuration (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1, 90°

	1.5, 19.3737°

	1.5, 93.2461°

	1.5, 0

	1, 60.7834°






	W1*, θ*

	V1*, ρ*

	U1*, σ*

	G1x∗,G1y∗

	L1∗, δ*






	1, 45°

	1.5, 7.9416°

	1.5, 60.2717°

	1.4489, −0.3882

	1, 49.3512°






	Fp1 (N)

	Fp1* (N)

	Tb0 (N-m)

	Tb0* (N-m)

	Gravity






	0, −1500

	−2500, −1000

	0

	0

	–9.81 m/s2















TABLE P.7.24 Watt II Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0 − i0.5

	m1

	8.05






	R3

	−0.6344 − i0.4568

	I1

	0.805






	R7

	−0.2074 − i0.7349

	m2

	29.785






	R9

	−0.7123 − i0.322

	I2

	5.635






	R13

	−0.3719 − i0.6513

	m3

	33.81






	

	

	I3

	5.635






	

	

	m4

	29.785






	

	

	I4

	5.635






	

	

	m5

	12.075






	

	

	I5

	2.415












	Repeat Example 7.4 using Fp1=(0, −750)N, Fp1∗=(0, −1500)N, and Tb0=Tb0∗=350 N-m. The initial crank angular velocity and acceleration are − 2.5 rad/s and 0 rad/s2, respectively.


	Figure P.7.10 illustrates a Stephenson III mechanism used to guide a digging bucket from its initial position to its final position over a crank rotation of 40 ° . The dimensions for the mechanism at the open gripper position are included in Table P.7.25 and the link dynamic parameters are included in Table P.7.26. A force of Fp1*=(−2500, 0)N is constantly applied. Gravity is − 9.81 m/s2. Determine the maximum driver torque magnitude |Ta0| produced given a crank rotation increment of 1 ° , an initial crank angular velocity of 0 rad/s and an angular acceleration of 0.25 rad/s2 (using the Appendix D.6 or J.6 files).



[image: ]

FIGURE P.7.10 Stephenson III digging mechanism.







TABLE P.7.25 Stephenson III Digging Mechanism Dimensions (with Link Lengths in m)





	W1

	V1

	U1

	G1

	L1










	3.0546 − i1.4686

	−0.841 + i1.4363

	−1.3089 − i1.5388

	3.5225 + i1.5065

	−4.0351 − i0.6398






	V1*

	L1*

	U1*

	G1*

	Tb0,Tb0* (N-m)






	2.3984 + i0.629

	0.4974 − i1.3665

	−1.0591 − i0.1314

	−1.0455 − i2.8545

	0















TABLE P.7.26 Stephenson III Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	−1.5273 + i0.7343

	m1

	2.9817






	R3

	3.7288 − i0.0171

	I1

	12.0162






	R7

	0.6545 + i0.7694

	m2

	2.5865






	R8

	0.2166 + i0.6934

	I2

	36.6452






	R12

	0.5295 + i0.0657

	m3

	1.8797






	

	

	I3

	2.799






	

	

	m4

	9.1046






	

	

	I4

	80.2505






	

	

	m5

	1.1125






	

	

	I5

	0.5096












	Figure P.7.11 illustrates a Stephenson III mechanism used to guide a gripping tool from its open position to its closed position over a crank rotation of 40 ° . The dimensions for the mechanism at the open gripper position are included in Table P.7.27 and the link dynamic parameters are included in Table P.7.28. A force of Fp1*=(0, −2500)N is constantly applied. Gravity is − 9.81 m/s2. Calculate the forces Fa1, Fp1, Fb0 and Fb0* for the Stephenson III mechanism configuration over a 40 ° crank rotation range at 5 ° increments (using the Appendix D.6 or J.6 files). The initial crank angular velocity and acceleration are 0 rad/s and 0.025 rad/s2, respectively.



[image: ]

FIGURE P.7.11 Stephenson III gripper mechanism.







TABLE P.7.27 Stephenson III Gripper Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ






	1.0283, 318.4178°

	0.5195, 286.4362°

	0.9418, 230.6143°

	1.5138, − 0.4529

	0.7031, 189.1904°






	V1*, ρ*

	U1*, σ*

	L1*, δ*

	G1x∗,G1y∗

	Tb0,Tb0* (N-m)






	5.2881, 319.9647°

	0.8666, 236.6216°

	3.2742, 11.8113°

	3.0869, −3.0198

	25, 75















TABLE P.7.28 Stephenson III Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	−0.3846 + i0.3412

	m1

	1.0811






	R3

	0.8113 − i1.4891

	I1

	0.4637






	R7

	0.2988 + i0.3640

	m2

	9.1255






	R8

	−1.6013 + i0.1172

	I2

	35.7589






	R12

	0.2384 + i0.3618

	m3

	1.0111






	

	

	I3

	0.3719






	

	

	m4

	9.1255






	

	

	I4

	64.0933






	

	

	m5

	0.9507






	

	

	I5

	0.3027












	Calculate the forces Fa0, Fp1, Fb0 and Fb0* for the Stephenson III mechanism configuration in Table P.7.29 over a 360 ° crank rotation range at 60 ° increments (using the Appendix D.6 or J.6 files). Table P.7.30 includes the dynamic parameters for this mechanism. The initial crank angular velocity and acceleration are 0 rad/s and 0.125 rad/s2, respectively. Also Fp1*=(0,0)N and gravity is − 9.81 m/s2.



TABLE P.7.29 Stephenson III Mechanism Dimensions (with Link Lengths in m)





	W1, θ

	V1, ρ

	U1, σ

	G1x, G1y

	L1, δ










	1, 90°

	1.5, 19.3737°

	1.5, 93.2461°

	1.5, 0

	1, 60.7834°






	V1*, ρ*

	L1*, δ*

	U1*, σ*

	G1x∗,G1y∗

	Tb0,Tb0* (N-m)






	2, 17.1417°

	1, 63.7091°

	2, 76.4844°

	0.4318, 0.5176

	−150















TABLE P.7.30 Stephenson III Mechanism Dynamic Parameters (with Length in m, Mass in kg, and Inertia in kg−m2)





	R1

	0 − i0.5

	m1

	16.1






	R3

	−0.6344 − i0.4568

	I1

	1.61






	R7

	0.0425 − i0.7488

	m2

	59.57






	R8

	−0.7847 − i0.4953

	I2

	11.27






	R12

	−0.2337 − i0.9723

	m3

	24.15






	

	

	I3

	4.83






	

	

	m4

	86.94






	

	

	I4

	32.2






	

	

	m5

	30.59






	

	

	I5

	11.27





















  
    



8 Design and Kinematic Analysis of Gears


DOI: 10.1201/9781003316961-8






Concept Overview


In this chapter, the reader will gain a central understanding regarding




	Purposes, designs, and functions of spur, planetary, rack and pinion, helical, bevel, and worm gears


	Criteria for optimal gear operation and its relationship with gear design variables and design equations


	Equations and solution methods for the kinematics of spur, planetary, rack and pinion, helical, bevel, and worm gears









8.1 Introduction


Gears are mechanical components used to transmit motion from one shaft to another. In Chapters 3 and 4, gears have been introduced in the planar five-bar mechanism. By including a gear pair, as illustrated in Figure 3.4, or a gear train (three or more gears), as illustrated in Figure 4.13, to interconnect the driving links of this mechanism, the rotation of link a0−a1 is transmitted to link b0−b1.


A simple design to transmit motion between shafts can include cylinders, where friction maintains the rolling contact between the cylinders (Figure 8.1a). With this design, as long as the contact between the cylinders is pure rolling (e.g., no slip), the velocity relationships given in Equation 8.1 hold true. As a result of the friction force being the limiting factor for the torque capacity of rolling cylinders, motion transmission through rolling cylinders is limited to low-torque applications in practice.




[image: ]

FIGURE 8.1 (a) Rolling cylinder pair and (b) gear pair.



Replacing the rolling cylinders with gears (Figure 8.1b) maintains the velocity relationships in Equation 8.1 while substantially increasing torque capacity, since the teeth in the driving gear (also called the pinion) interface or mesh with the teeth of the driven gear.* With gears, torque capacity is limited to the bending strength of the gear teeth (as opposed to contact friction in rolling cylinders) [1]. The ratio of the driving and driven gear angular velocities (in Equation 8.1) is called the velocity ratio (VR).


Although rotation can be transmitted through other mechanical components (e.g., belt-pulley systems and chain-sprocket systems), gears are commonly used, appearing in mechanical systems of all sizes. The advantages of gears over belt-pulley, chain-sprocket, and even linkage systems include higher torque, speed and power capacities, no slip, greater durability, efficiency, and suitability for confined spaces. As you will see throughout this chapter, gear types and gear systems vary primarily by the shaft orientations they accommodate, the input–output rotation ratios possible, and the overall gear system design.


* In Figure 8.1b, variables rp1 and rp2 are the pitch circle radii (the pitch circle diameter is presented in Section 8.3.1) of the driving and driven gears, respectively, and are analogous to r1 and r2 of the rolling cylinders in Figure 8.1a.

VP=r1ω1=r2ω2


or


ω1ω2=r2r1=VR (8.1)






8.2 Gear Types


Spur gears (Figure 8.1b) are used to transmit motion between parallel shafts. Figure 8.2a illustrates the two types of spur-gear designs: external and internal. In an external gear, the gear teeth point away from the gear center, while the teeth point toward the center in an internal gear. An internal gear with an infinite radius forms a rack gear, which, when included with an external gear, is called a rack and pinion gear. In rack and pinion gears (Figure 8.2b), the rotational motion of the pinion gear produces the translational motion of the rack gear.




[image: ]

FIGURE 8.2 (a) External and internal gears and (b) rack and pinion gear.



Helical gears can be used to transmit motion between parallel shafts (Figure 8.3a) and nonparallel shafts that do not intersect (Figure 8.3b). The helical tooth profiles of these gears give them a greater load-bearing capacity (for increased power transmission), greater wear resistance, quieter operation, greater operating speeds, and smoother operation than spur gears.*




[image: ]

FIGURE 8.3 Helical gears on (a) parallel and (b) nonparallel shafts.



Bevel gears (Figure 8.4) are used to transmit motion between intersecting shafts. Bevel gears are typically used for shafts that intersect at 90° (although they are not limited to this angle). Like helical gears, worm gears (Figure 8.5) are used to transmit motion between orthogonal shafts that do not intersect. Worm gears are used when large reductions in velocity ratios are required.




[image: ]

FIGURE 8.4 Bevel gear.





[image: ]

FIGURE 8.5 Worm gear.



* The helical tooth profile results in a greater contact area for helical gear teeth than for a spur gear of the same thickness and radius. The enhanced capacities noted for the helical gear are the result of the increased contact area. This statement assumes that the variables common to both gear types have identical values.





8.3 SPUR-Gear Nomenclature and Relationships of Mating Gears




8.3.1 Spur-Gear Nomenclature


Figure 8.6 illustrates the principal features of a spur-gear tooth. The pitch circle represents the size of the rolling cylinder that would replace the gear (as illustrated in Figure 8.1)*. The diameter of a pitch circle is called the pitch diameter (represented by the variable dp).†




[image: ]

FIGURE 8.6 Spur-gear tooth features.



The number of teeth (represented by the variable N) is the total number of teeth on the gear. This quantity is always an integer (gear teeth fractions are not used).


* The point P in Figure 8.1 is the point of contact between the two pitch circles and is called the pitch point.

† While the pitch diameter cannot be directly measured (due to its location within the gear), gears are commonly referenced by their pitch diameters.

The circular pitch (represented by the variable pc) is the distance measured along the pitch circle from one point on a gear tooth to the corresponding point on an adjacent gear tooth. Given the variables dp and N, an equation for the circular pitch is expressed as


pc=πdpN (8.2)


To enable proper operation for mating gears, the circular pitch values for the gears must be identical.


The gear-tooth profile is constructed from the base circle of the gear and the diameter of a base circle is called the base circle diameter (represented by the variable db). Section 8.4.5 includes details on how a gear-tooth profile is generated from a base circle.


The face width (represented by the variable F) is the length of a gear tooth in the direction parallel to the shaft axis.


The addendum (represented by the variable a) is the radial distance from the pitch circle to the top of a gear tooth and the dedendum (represented by the variable b) is the radial distance from the pitch circle to the bottom of a gear tooth. The sum of the addendum and dedendum is called the whole depth (represented by the variable hT). The amount that the addendum exceeds the dedendum is called the clearance (represented by the variable c).*


The diametral pitch (represented by the variable Pd) is the number of gear teeth per inch of pitch diameter and can be expressed as


Pd=Ndp (8.3)


Diametral pitch (also called pitch) is an often-referenced parameter for gear-tooth size specifications in US customary units (or simply US units). Figure 8.7 includes several standard gear-tooth sizes and their corresponding diametral pitch values. To enable proper operation for mating gears, the diametral pitch values for the gears must be identical.




[image: ]

FIGURE 8.7 Spur-gear tooth size variation with diametral pitch.



The module (represented by the variable m) is the ratio of pitch diameter to the number of gear teeth and is expressed as


m=dpN (8.4)


The module is an often-referenced parameter in the International System of Units (or simply SI units) and has a unit of millimeters. It can be seen from Equations 8.3 and 8.4 that the module is the reciprocal of the diametral pitch. Since the reciprocal of the diametral pitch has a unit of inches, it should be multiplied by 25.4 mm/in to convert the unit to millimeters which are needed for the module.


After substituting Equations 8.4 and 8.3 into Equation 8.2, the circular pitch becomes


pc=πdpN=πPd=πm (8.5)


Most of the gear-tooth features identified in Figure 8.6 are standardized with respect to the diametral pitch.† Table 8.1 includes several gear-tooth feature equations as given and certified by the American Gear Manufacturers Association (AGMA) and the American National Standards Institute (ANSI), respectively [2].






TABLE 8.1 Formulas for Spur-Gear Tooth Proportions (20° and 25° Pressure Angle Involute Full-Depth Teeth ANSI Coarse Pitch)





	Tooth Feature to Calculate

	Diametral Pitch Pd Known










	Addendum, a

	a = 1/Pd






	Dedendum (preferred), b

	b = 1.25/Pd






	Dedendum (shaved or ground teeth), b

	b =1.35/Pd






	Working depth, hk

	hk = 2/Pd






	Whole depth (preferred), ht

	ht = 2.25/Pd






	Whole depth (shaved or ground teeth), ht

	ht = 2.35/Pd






	Fillet radius, rf

	rf = 0.3/Pd






	Clearance (preferred), c

	c = 0.25/Pd






	Clearance (shaved or ground teeth), c

	c =0.35/Pd






	Circular tooth thickness, t

	t =π/2Pd











Source: ANSI B6.1-1968 (R1974). Coarse-pitch spur-gear tooth forms. New York: American National Standards Institute [3].


* In mating gears, the clearance is the gap between the top of a tooth of one gear and the bottom of a tooth of the other gear.

† Gear tooth features are also standardized with respect to the circular pitch.



Example 8.1


Problem Statement: Using Equations 8.2–8.4, calculate the pitch diameter, diametral pitch, and module for a spur gear having 20 teeth and a circular pitch of 0.5. Assuming this gear is an ANSI coarse pitch with a 25° pressure angle (Table 8.1), calculate the working depth and circular tooth thickness of this gear also.


Known Information: N and pc.


Solution Approach: Figure E.8.1 includes the calculation procedure in the MATLAB® command window.
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FIGURE E.8.1 Example 8.1 solution calculation procedure in MATLAB.







8.3.2 Pressure Angle and Involute Tooth Profile


The pressure angle (represented by the variable ϕ) is the angle between the line tangent to both pitch circles of mating gears (called the pitch line in Figure 8.8) and the line perpendicular to both gear-tooth surfaces at the contact point (called the pressure line in Figure 8.8).* The pressure line is also tangent to both the base circles of the mating gears. The relative gear-tooth shape is influenced in part by the pressure angle. To enable proper operation of the mating gears, the pressure angle (like the diametral pitch) values for the gears must be identical.
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FIGURE 8.8 Pressure angle.



It can be explained from Figure 8.8 how the pressure angle affects the relative gear-tooth shape. Because the pressure line is tangent to both base circles, any increase in the pressure angle decreases the size of the base circles. Conversely, any decrease in the pressure angle increases their size. The radial distance between the base and pitch circles influences the gear-tooth shape because the specific gear-tooth profile (explained later in this section) lies along this radial distance only. Most gears today are standardized at pressure angles of 20° and 25°. Although reducing the pressure angle increases the possibility of poor gear-tooth engagement (due to interference), it also results in more efficient torque transmission and smaller radial load transfer to supporting shafts.


Smooth gear motion is achieved when the velocity of the driven gear from gear-tooth engagement to gear-tooth disengagement is constant.† A requirement for this condition is that the path of gear-tooth contact is a straight line and that this line must intersect the point of contact of both pitch circles. Figure 8.9 illustrates three moments of engagement of two gears: initial tooth engagement (1), an intermediate moment of engagement (2), and tooth disengagement (3). The points of contact at each of these moments of engagement lie along the line of contact (or contact line) and this line intersects the point of contact between the pitch circles. Therefore, a constant velocity ratio is ensured for the gears in Figure 8.9.


* Because forces are transmitted in the direction perpendicular to the surfaces of the contacting bodies (and the pressure line is perpendicular to both contacting gear-tooth surfaces), the forces acting on a gear tooth are transmitted along the pressure line. The point of contact between the gear surfaces that lies on the pitch circles is called the pitch point and is represented by the variable P in Figure 8.8.

† This condition also means that the velocity ratio of the driving and driven gears is constant.



[image: ]

FIGURE 8.9 Gear mating process.



These requirements for a constant velocity ratio are expressed in the fundamental law of gearing. In this law, to maintain a constant velocity ratio, the gear-tooth profile must be designed in such a way that the common normal to both contacting tooth surfaces (the pressure line) passes through the pitch point on the line of contact.


The involute of a circle is one of the possible curve types that is adequate for a gear-tooth profile.* An involute curve is produced by unwinding a taut cord from the base circle (having a diameter represented by the variable db), and tracing the path produced by a point on the cord. A gear-tooth profile is formed from a section of the involute curve. Figure 8.10 illustrates the involute curve.
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FIGURE 8.10 Involute gear tooth.



The pressure line and line of contact are identical for gears with involute profiles. The pressure angle (or the inclination of the line of contact) is determined from the involute curve section used for the gear tooth. As previously noted in this section, an increase in the pressure angle decreases the size of the base circles and a decrease in the angle increases their size. The relationship between the pressure angle (ϕ), the pitch diameter (dp), and the base circle diameter (db) can be expressed as


db=dpcosϕ (8.6)


* Another possible curve is called a cycloid, which is the planar path traced by a point on a circle as it rolls on a fixed surface. An epicycloid is produced by a circle rolling over a fixed circle, and a hypocycloid is produced by a circle rolling within a fixed circle.





8.3.3 Gear Center Distance and Contact Ratio


The center distance (represented by variable C) is the center-to-center distance between two mating gears.* In terms of pitch radii and pitch diameters, the equation for center distance for external gears can be expressed as


Cexternal=rp1+rp2=dp1+dp22 (8.7)


Substituting the pitch diameters in Equation 8.7 with Equation 8.3 produces


Cexternal=N1+N22Pd (8.8)


For a gear pair consisting of an internal and an external gear (Figure 8.2a, for example), the center distance can be expressed as


Cext−int=rp1−rp2=dp1−dp22=N1−N22Pd (8.9)†


The contact ratio (represented by the variable mp) is the average number of gear teeth in contact at any instant in time. A contact ratio of 1.2 (generally the minimum considered in design) means that one pair of gear teeth is always in contact while another pair is in contact only 20% of the time. By increasing the contact ratio, more gear teeth are in contact from the moment of engagement to the moment of disengagement. This results in greater duration and power transmission (since loads are shared among more teeth), as well as smoother operation.


A contact ratio equation can be expressed as


mp=Zpb (8.10)


where the variable pb is the base pitch (the distance measured along the base circle from one point on a gear tooth to the corresponding point on an adjacent gear tooth) and the variable Z is the length of the line of contact (from engagement to disengagement). A base pitch equation can be expressed as


pb=πdp1cosϕN1=πdp2cosϕN2 (8.11)


and a contact line length equation can be expressed as


Z=(rp2+a2)2−(rp2cosϕ)2−rp2sin ϕ+(rp1+a1)2−(rp1cosϕ)2−rp1sin ϕ (8.12)


Substituting Equations 8.11 and 8.12 into Equation 8.10 produces a contact ratio equation in terms of gear-tooth geometry.


* This distance is also the center distance between the two shafts supporting the gears.

† For external-internal gear pairs, the center distance is the (positive) difference between the pitch radii.



Example 8.2


Problem Statement: Given an external gear pair where N1 = 25, N2 = 35 and the circular pitch for the pinion is pc1 = 0.25, calculate the center distance, base pitch, contact line length, and contact ratio for the gear pair. Assume the gears are ANSI coarse pitch with 20° pressure angles (Table 8.1).


Known Information: N1, N2, pc1, and ϕ.


Solution Approach: Figure E.8.2 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.8.2 Example 8.2 solution calculation procedure in MATLAB.







8.3.4 Gear-Tooth Interference and Undercutting


As illustrated in Figure 8.9, the contact between mating gear teeth should only occur along the line of contact. Gear-tooth contact at any other point is known as interference and violates the required constant velocity ratio condition for gears.* To avoid interference, it is important that gear-tooth contact only occurs between their involute portions. Since the involute profile of a gear exists above its base circle (see Figure 8.11), it is important to eliminate and/or minimize the noninvolute gear tooth portion below the base circle to avoid interference.
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FIGURE 8.11 Gear-tooth involute portion.







TABLE 8.2 Sample Gear-Tooth Combinations to Avoid Interference





	ϕ = 20°

	ϕ = 25°






	Number of Pinion Teeth, N1

	Max. Number of Gear Teeth, N2

	Number of Pinion Teeth, N1

	Max. Number of Gear Teeth, N2










	Less than 13

	Interference

	Less than 9

	Interference






	13

	16

	9

	13






	14

	26

	10

	32






	15

	45

	11

	249











One way to meet this requirement (and subsequently avoid interference) is by avoiding gears having too few teeth. Inequality Eq. (8.13) determines the maximum number of gear teeth to avoid interference given the number of pinion teeth and pressure angle (in this equation a1 = k/Pd1).*† Table 8.2 includes sample interference-avoiding gear tooth combinations calculated from Inequality Eq. (8.13).


* Interference also produces excessive gear noise, vibration and wear.

* Since a = 1/Pd in Table 8.1, k = 1 in Inequality Eq. (8.13) for the gear types represented in Table 8.1.

N2<N12sin2ϕ−4k24k−2N1sin2ϕ (8.13)


In addition to avoiding gears having too few teeth, interference can also be avoided by removing gear-tooth material between the base and dedendum circles. This procedure is called undercutting. Figure 8.12 illustrates an undercut gear tooth. Because undercutting removes gear-tooth material (subsequently compromising gear-tooth strength), it should be avoided if possible.
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FIGURE 8.12 Undercut gear tooth.



The minimum number of pinion teeth can be directly calculated by formulating a second-order polynomial from Inequality Eq. (8.13) and calculating its roots. To achieve this, the term N2< in Inequality Eq. (8.13) is replaced with N1= and the second-order polynomial [2sin(ϕ)]N12−[4k]N1−4k2=0 can be formed. Using k=1and ϕ=20° (from Table 8.2) in the polynomial and calculating its roots produces N1=12.3231 and N1=−0.9249. The latter root can be neglected since N must be a positive number with a nonzero integer component. And since we want the minimum number of pinion teeth, the first root must be rounded up to the nearest integer, producing N1≥13. When this root is included in Inequality Eq. (8.13), the result is N2<16.4507. And since we want the maximum number of gear teeth, this value must be rounded down to the nearest integer, producing N2≤16. This procedure can be repeated using ϕ=25° (from Table 8.2) to produce N1≥9 and N2≥13.


† Inequality Eq. (8.13) can also be expressed as ￼ where a is the addendum, rb is the base circle radius, C is the center-to-center gear distance and ϕ is the pressure angle. Interference occurs when this condition is violated.





8.3.5 Backlash


Backlash is the clearance measured along the pitch circle between the nondriving surfaces of mating gear teeth (in general, it is the amount of play between mating teeth). Figure 8.13 illustrates mating gear teeth with corresponding backlash labeled. A limited amount of backlash is necessary to prevent the mating gear teeth from binding with each other. Backlash also helps to enable gear-tooth lubrication because it provides clearance for lubricant flow. Although it is important to include clearance between mating gear teeth for proper gear operation, excessive backlash can produce inaccurate gear motion as well as large dynamic loads. AGMA provides tables of recommended backlash ranges [4].
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FIGURE 8.13 Backlash in mating gears.









8.4 Helical-Gear Nomenclature


As mentioned in Section 8.2, helical gears can be used to transmit motion between parallel and nonparallel shafts (also called crossed shafts) that do not intersect.* It was also noted in that section that helical gears have a greater load-bearing capacity and wear resistance, quieter and smoother operation than spur gears. These advantages are the result of the teeth of a helical gear lying at an angle (labeled the helix angle in Figure 8.15) with respect to the gear’s center axis. This angled tooth profile increases the contact between mating gear teeth for greater load distribution (resulting in the advantages given).†


There are two designations for helical gears: right-hand and left-hand. As illustrated in Figure 8.14, the teeth in a right-hand helical gear slope downward-right and the teeth in a left-hand helical gear slope downward-left. This designation holds true whether the gears are driving gears or driven gears. Considering these designations, the helical gear illustrated in Figure 8.15 is a left-hand helical gear.
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FIGURE 8.14 Left-hand and right-hand helical gears.
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FIGURE 8.15 Helical-gear geometry.



As you will notice in this section, the forthcoming formulas for helical gears are similar to those of spur gears, except for the inclusion of the helix angle (represented by the variable ψ). In fact, by considering a spur gear to be a special type of helical gear (one where ψ = 0°), the forthcoming equations are directly applicable to spur gears.


As illustrated in Figure 8.15, there are two directions to consider with helical gears: the normal direction (labeled B-B) and the transverse direction (labeled A-A). There are sevveral helical-gear variables that are given in both the normal and transverse directions. For example, in Figure 8.15, there is a circular pitch that is given in the transverse direction, as well one given in the normal direction. Other helical-gear variables that are given in both directions include the diametral pitch, module, and pressure angle.


The normal circular pitch (represented by variable pcn) is the distance measured along the pitch circle from one point on a gear tooth to the corresponding point on an adjacent gear tooth in the normal direction (or normal to the gear tooth). The equation for the normal circular pitch is expressed as


pcn=pccosψ (8.14)


* When used on nonparallel, nonintersecting shafts, the term crossed helical gears is used to describe the system.

† Although the angled tooth profile makes helical gears more difficult to manufacture than spur gears, they are often preferred over spur gears due to the advantages given.

The normal diametral pitch (represented by the variable Pdn) is the number of gear teeth per inch of pitch diameter in the normal direction and can be expressed as


Pdn=πpcn (8.15)


The normal module (represented by the variable mn) is the ratio of the pitch diameter to the number of gear teeth in the normal direction and can be expressed (in a form identical to Equation 8.5) as


pcn=πpdn=πmn (8.16)


and as


m=mncosψ (8.17)


The normal pressure angle (represented by the variable ϕn) is the angle the pitch line makes with the pressure line in the normal direction and can be expressed as


tanϕn=tanϕcosψ (8.18)


As previously noted, Equations 8.14 through 8.18 are directly applicable for spur gears at ψ = 0°. Therefore, at a helix angle of zero, these equations become identical to their respective spur-gear equations in Sections 8.3.1 and 8.3.2.


Just as spur gear-tooth features are standardized with respect to the diametral pitch, helical gear-tooth features are standardized with respect to the normal diametral pitch. Table 8.3 includes several gear-tooth feature equations as given and certified by AGMA and ANSI, respectively [5].






TABLE 8.3 Formulas for Helical Gear-Tooth Proportions (14.5°, 20°, and 25° Pressure Angle Involute ANSI Fine Pitch)





	Tooth Feature to Calculate

	Normal Diametral Pitch Pdn Known










	Addendum, a

	a=1pdn






	Dedendum, b

	b=[1.200Pdn]+0.002(min)






	Working depth, hk

	hk=2.000Pdn






	Whole depth, ht

	ht=[2.200Pdn]+0.200(min)






	Clearance (standard), c

	c=[0.200Pdn]+0.002(min)






	Clearance (shaved or ground teeth), c

	c=[0.350Pdn]+0.002(min)






	Normal circular tooth thickness, tn

	tn=π2Pdn






	Pitch diameter, dp

	dp=N[Pdn cosΨ]






	Center distance (external), Cexternal

	Cextrnel=[N1+N2][2Pdn  cosΨ]






	Center distance (ext–int), Cext−int

	Cext−int=[N1−N2][2Pdn  cosΨ]











Source: ANSI B6.7-1977. Fine-pitch helical-gear tooth forms. New York: American National Standards Institute [6].




Example 8.3


Problem Statement: Calculate the normal diametral pitch, module, and normal pressure angle for a helical gear having 20 teeth, a circular pitch of 0.5, and a helix angle of 35°. Assuming this gear is an ANSI fine pitch with a 25° pressure angle (Table 8.3), calculate the working depth and pitch diameter of this gear also.


Known Information: N, pc, ψ, and ϕ.


Solution Approach: Figure E.8.3 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.8.3 Example 8.3 solution calculation procedure in MATLAB.







8.5 Gear Kinematics




8.5.1 Spur Gears and Gear Trains


By adhering to the fundamental law of gearing, a constant velocity ratio is maintained. In terms of the variables given in Figure 8.16, Equation 8.1 can be expressed as
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FIGURE 8.16 Mating-gear pair in motion.



VP=rp1ω1=rp2ω2


or


VR=ω1ω2=rp2rp1 (8.19)


where the velocity variable Vp in Figure 8.16 is called the pitch-line velocity: the velocity of the pitch point (point P) of the mating-gear pair.


The velocity ratio can also be expressed in terms of the pitch diameters or the number of gear teeth, since dp = 2rp and N = dpPd from Equation 8.3. When expressed in terms of these variables, Equation 8.19 becomes


VR=ω1ω2=rp2rp1=dp2dp1=N2N1 (8.20)


While Equation 8.20 includes the gear angular velocity ratio ω1/ω2, it can also include the ratios of gear angular displacement θ1/θ2 or angular acceleration α1/α2.


A group of mating-gear pairs is called a gear train (Figure 8.17). Gear trains are often used when large velocity reductions are required because the amount of velocity reduction possible in a single-gear pair for practical use is limited.* Rather than achieve a large velocity reduction in a single-gear pair, such a reduction is achieved over multiple stages using multiple gear pairs.
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FIGURE 8.17 Gear train.



The velocity ratio for a gear train is called a train value. This value is the ratio (of quantities including those in Equation 8.20) of the initial driving gear to the final output gear in the gear train. Because a gear train is comprised of multiple gear pairs, the train value is also the product of the individual velocity ratios of each gear pair in the gear train. If we define the velocity ratio of each gear pair as VRi (where i = 1, 2, 3 …), the equation for the train value can be expressed as


ωinputωoutput=(VR1)(VR2)(VR3)... (8.21)


* The velocity reduction achieved in a single-gear pair is limited by the maximum number of gear teeth and the maximum gear size.

When calculating a train value, it is important to note that if the input and output gears in an individual gear pair rotate in opposite directions, the corresponding velocity ratio is negative and the velocity ratio is positive when they rotate in the same direction.


Because the driven gear will always rotate in the opposite direction to the driving gear in a gear pair, it is necessary to include an idler gear to enable both gears to rotate in the same direction. Making this gear (Figure 8.18) identical and equivalent in size and number of teeth, respectively, to the driving gear minimizes both the additional space needed to include it and its rotation speed. Using Equation 8.21, it can be determined that the train value for the gear train in Figure 8.18 is indeed positive (and subsequently consistent with rotation direction of Gears 1 and 3) since it is the product of two negative velocity ratios—the velocity ratios for gear pairs 1–2 and 2–3.
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FIGURE 8.18 Gear train with idler gear.



In addition to gear kinematic motion, knowing the forces and torques acting on spur gears are important in gear design and operation. Figure 8.19 illustrates the normal force Fn exerted by the driving gear on the driven gear. Because this force is normal to the contact surfaces of the mating gear teeth at point P, it acts along the pressure line (the line of contact) and subsequently is orientated at the pressure angle ϕ. The radial and tangential components of Fn are the radial force Fr and tangent force Ft, and are expressed as
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FIGURE 8.19 Gear-tooth force and force components.



Fr=Fnsinϕ (8.22)


Ft=Fncosϕ (8.23)


The radial force is directed toward the gear center and acts to deflect the gear shaft (acting to move the driven gear out of contact with the driving gear). The tangential force is tangent to the pitch circles at point P and acts to rotate the driven gear.


The torque T produced about the center of a gear is given by


T=Fn(db2)=Fn(dp2)cosϕ=Ft(dp2) (8.24)


The power (in horsepower or hp) transmitted by a rotating gear is given by


hp=Tn63,025=FtVP33,000 (8.25)


where the gear rotation speed (in revolutions/min) is represented by the variable n.* The power (in kilowatts or kW) transmitted by a rotating gear is given by


kW=Tω1,000,000=FtVP1,000,000 (8.26)


where the gear rotation speed (in rad/s) is represented by the variable ω.†




Example 8.4


Problem Statement: Given a train of four gears where N1 = 20, N2 = 35, N3 = 55, N4 = 80, calculate the train value. Assuming the rotational speed of the input gear is ω1 = 7 rad/s and the output gear torque is T4 = 150 N-mm, calculate the power transmitted by the output gear.


Known Information: N1, N2, N3, N4, ω1, and T4.


Solution Approach: Figure E.8.4 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.8.4 Example 8.4 solution calculation procedure in MATLAB.



* In Equation 8.25, T is given in inch-pounds, Ft is given in pounds, and VP is given in feet per minute.

† In Equation 8.26, T is given in newton-millimeters, Ft is given in newtons and VP is given in millimeters per second.





8.5.2 Planetary Gear Trains


The gear train illustrated in Figure 8.20a is called a planetary gear train.* The name planetary is used to describe this gear system because it consists of a gear (called a planet gear) that can rotate about a center gear (called a sun gear). Figure 8.20a illustrates the most basic planetary gear train. In this system, the sun gear is typically connected to an input shaft and the ring gear is typically connected to an output shaft. The planet gear mates with both the sun and ring gears and the carrier constrains the planet gear (to rotation about the sun gear). Although this textbook considers the most basic planetary gear train, multiple variations of the planetary gear train have been identified and used in practice.† Figure 8.20b illustrates a simple line diagram (called a skeleton diagram) of the planetary gear train. In this diagram, the planet, sun, ring, and carrier are labeled by the letters P, S, R, and C, respectively.


* Planetary gear trains are also called epicyclic gear trains.

† Planetary gear train variations include various combinations of sun, planet, and ring gears.
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FIGURE 8.20 (a) A simple planetary gear train and (b) skeleton diagram.



Planetary gear trains have several distinct advantages over conventional gear trains. For example, large velocity reductions can be achieved with a planetary gear train in a workspace that is more compact than a conventional gear train. Gear ratio changes are also achieved by constraining different members (gears or carriers) in the planetary gear train. In transmission systems (where planetary gears are commonly utilized), gear ratios are changed by computer-operated controls (in automatic transmissions) or manually-operated controls (in manual transmissions).


Planetary gear trains are commonly used in transmission systems. Figures 8.21b and c illustrate a planetary gear train used in a speed reduction system (Figure 8.21a). Within this speed reduction system (as the name implies), the input rotational speed of the driving shaft is reduced and delivered to the output shaft.
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FIGURE 8.21 (a) Speed reduction system with (b, c) planetary gear train.



Given the number of teeth in each gear, there is a three-step procedure for calculating the rotations of each member of the planetary gear train.* The steps of this method are as follows:
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FIGURE 8.22 Sun gear conjugating with (a) one, (b) two, and (c) four planet gears.



Step 1: Assume any initially fixed member is unconstrained, the motion of the carrier is fixed, and calculate the rotations of the remaining gears, given a rotation and rotation direction of any single gear.


Step 2: Assume all members are unconstrained and include the full rotation of all members in the direction opposite to the given rotation direction in Step 1.


* This three-step procedure is called the tabular method.

Step 3: Take the sum of the rotations from Steps 1 and 2 for each member of the gear train (this procedure is called superposition). The rotations calculated in this step are the true rotations of the gear train under the initial conditions.


This three-step procedure can be completed in a table of three rows and n columns, where each row is a step in the procedure and each column is a member of the gear train. The rotational velocities of each gear can be calculated from the known velocity ratios.


Unlike the simple planetary gear train illustrated in Figure 8.20, the planetary gear train in Figure 8.22 includes four planet gears. The inclusion of additional planet gears decreases the normal force transmitted between each sun–planet pair. By reducing Fn, the torque capacity of the sun gear is increased. This effect is illustrated in Figure 8.22. While a single sun–planet pair produces a normal force of Fn , this force is reduced by 50% with the inclusion of two sun–planet pairs (Figure 8.22b). Likewise, Fn is reduced by 75% with the inclusion of four sun–planet pairs (Figure 8.22c). As a result, the sun gears in Figures 8.22b and c have double and quadruple the torque capacity, respectively, of the sun gear in Figure 8.22a.*




Example 8.5


Problem Statement: Consider the simple planetary gear train design in Figure 8.20. In this example, Nsun = 20, Nplanet = 10, Nring = 40. Also, the sun gear is fixed, the input is the carrier, and the output is the ring gear.† Calculate the rotations of the sun, planet, ring, and carrier. Also calculate the output rotational speed if the input rotational speed is ωcarrier = 35 rad/s.


Known Information: Nsun, Nplanet, Nring, and ωsun.


Solution Approach: Equations 8.20 and 8.21 also hold true for gear angular displacements. Knowing this, the angular displacements for the planet and ring gears (Step 1) can be calculated. Assuming a full counterclockwise sun gear rotation, Figure E.8.5 includes the Step 1 calculation procedure in MATLAB’s command window for the planet and ring gears.




* The sun–planet force transmitted becomes Fn/NPLANET and the sun torque capacity becomes (NPLANET)T, where Fn and T are the force transmitted and torque capacity, respectively, and NPLANET is the total number of planet gears.

† If the carrier is fixed, this problem can be solved using Equations 8.20 and 8.21 (tabular method not needed).

Table E.8.1 includes the results calculated for Step 1. In accordance with Step 2, a full clockwise rotation is specified for all links and Step 3 includes the sum of the results from Steps 1 and 2. Table E.8.1 also includes the values specified and calculated for Steps 2 and 3, respectively.






TABLE E.8.1 Planetary Gear Rotation Analysis Table for Example 8.5





	

	Sun Gear

	Planet Gear

	Ring Gear

	Carrier










	Step 1 (fixed carrier)

	1

	–2

	–0.5

	0






	Step 2 (full counterrotation)

	–1

	–1

	–1

	–1






	Step 3 (Step 1 + Step 2)

	0

	–3

	–1.5

	–1











With the planetary gear rotations calculated from Step 3 and the known rotation speed of the carrier, the output rotation speed (the rotation speed of the carrier) can be calculated using Equations 8.20 and 8.21. Figure E.8.6 includes this calculation procedure in MATLAB’s command window.*
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FIGURE E.8.5 Example 8.5 solution calculation procedure (for Step 1) in MATLAB.
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FIGURE E.8.6 Example 8.5 solution calculation procedure (for rotational speed) in MATLAB.



* In this problem, positive and negative rotation values correspond to counterclockwise and clockwise rotations, respectively.





8.5.3 Rack and Pinion Gears


As noted in Section 8.2, in the rack and pinion gear, the rotational motion of the pinion gear produces the translational motion of the rack gear. In Equation 8.27, the translation of the rack is represented by the variable Δs and the rotation of the pinion (in radians) is represented by the variable Δθ. The variables rp and dp are the pitch radius and diameter of the pinion, respectively.


Δs=rp Δθ=dp2Δθ (8.27)


The rack and pinion gear is kinematically identical to a gear system consisting of an external gear (the pinion gear) and an internal gear of infinite radius (the rack gear). Because of this, the pitch-line velocity VP in a spur-gear pair is identical to the velocity of the rack in a rack and pinion gear. Therefore, for the rack and pinion gear, Equation 8.19 can be expressed as


VP=Vrack=rp ω=dp2ω (8.28)


Where the variables Vrack and ω are the velocity of the rack and the angular velocity of the pinion, respectively.




Example 8.6


Problem Statement: Calculate the translation and velocity of a rack in a rack and pinion gear where the pinion rotation, speed, and diameter are π/6 rad, 7 rad/s, and 25 mm, respectively.


Known Information: Δθ, ω, and dp.


Solution Approach: Figure E.8.7 includes the solution calculation procedure in MATLAB’s command window.
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FIGURE E.8.7 Example 8.6 solution calculation procedure in MATLAB.







8.5.4 Helical Gears


In addition to spur gears, Equations 8.19 and 8.20 are also applicable for the kinematic analysis of helical gears. Figure 8.23 illustrates the normal force Fn exerted on the driven helical gear. There are three orientation angles associated with Fn. It has a pressure angle of ϕ in the transverse direction (direction A-A in Figure 8.15), a pressure angle of ϕn in the normal direction (direction B-B in Figure 8.15), and a helix angle of ψ, since it is normal to the helical gear teeth in contact at the pressure point.
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FIGURE 8.23 Helical gear-tooth force and force components.



As illustrated in Figure 8.23, Fn has three components: a radial component Fr, a tangential component Ft, and an axial (or thrust) component Fa. These forces are expressed as


Fr=Fnsinϕn=Fttanϕ (8.29)


Ft=Fncosϕncosψ (8.30)


Fa=Fn cos ϕn sin Ψ=Ft tan Ψ (8.31)


Like spur-gear forces, Ft contributes to torque and Fr contributes to shaft bending for helical gears. The axial force component Fa is in the direction parallel to the gear shaft axis and acts to move the gear along its shaft axis.* As illustrated in Figure 8.24, for pinion gears having a counterclockwise rotation (using the right-hand rule), Fa acts leftward in left-hand pinion gears and rightward in right-hand pinion gears. For a clockwise pinion gear rotation, the direction of Fa is reversed for both gears in Figure 8.24. For the gears that are directly driven by these pinions, both the rotation direction and Fa direction are the opposite of those in their pinions (assuming only external gears and parallel shafts are used).
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FIGURE 8.24 Direction of axial force in helical gears.



The torque and horsepower equations given in Section 8.5.1 for spur gears (Equations 8.24–8.26) are also applicable to helical gears.


* Helical gears are often fitted with thrust bearings—a particular type of bearing designed to handle axial loads.



Example 8.7


Problem Statement: Calculate the torque and power transmitted by a helical gear having 40 teeth, a circular pitch of 25 mm, and a helix angle of 35°. Assume this gear is an ANSI fine pitch with a 25° pressure angle (Table 8.3). This gear also has a rotational speed of 7 rad/s and a normal force of 25 N.


Known Information: N, pc, ψ, ϕ, ω, and Fn.


Solution Approach: Figure E.8.8 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.8.8 Example 8.7 solution calculation procedure in MATLAB.







8.5.5 Bevel Gears


In addition to spur and helical gears, Equations 8.19 and 8.20 are also applicable to the kinematic analysis of bevel gears. In fact, the rolling cylinder description used to describe the motion of spur gears become rolling conical wheels for bevel gears.


Figure 8.25 includes several bevel-gear design features. As noted in Section 8.2, bevel gears are designed to transmit motion between nonparallel shafts that intersect. The shaft angle (represented by the variable ∑ in Figure 8.25), is the angle between the center axes of the pinion and gear; although, in many bevel applications, this angle is 90°, bevel gears are not limited to a right shaft angle orientation.*
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FIGURE 8.25 Mating bevel-gear pair (cross-section view).



The shaft angle is the sum of the pinion-pitch angle and the gear-pitch angle (Figure 8.25). The pitch angle is the angle of the cone upon which the bevel gear is constructed. The gear- and pinion-pitch angles are represented by the variables γpinion and γgear, respectively. The equations for γpinion and γgear can be expressed as


tanγpinion=sin∑cos∑+NgearNpinion (8.32)


tanγgear=sin∑cos∑+NpinionNgear (8.33)


and the shaft angle can be expressed as


∑=γpinion+γgear (8.34)


It can be observed that Equations 8.32 and 8.33 include the velocity ratio Ngear/Npinion.


* Miter gears are mating bevel gears having equal numbers of teeth, diametral pitches (giving them a 1:1 gear ratio), and right shaft angle orientations.



Example 8.8


Problem Statement: Calculate the pitch angles for a bevel-gear pair where the pinion and gear have 30 and 45 teeth, respectively, and the shaft angle is 90°.


Known Information: Npinion, Ngear, and ∑.


Solution Approach: Figure E.8.9 includes the calculation procedure in MATLAB’s command window.




The forces acting on bevel gears are identical in in terms of force components to those acting helical gears. Figure 8.26 illustrates the forces exerted in a mating pair of straight-tooth bevel gears. Equations 8.35–8.37 are the tangential, radial and axial force equations for a straight-tooth pinion bevel gear.




[image: ]

FIGURE 8.26 Bevel gear pair force and force components.



Ftpinion=Fn⁢cos⁢⁢ ϕ (8.35)


Frpinion=Fn⁢sin⁢ϕ⁢ cos γpinion=Ftpiniontanϕ⁢cos⁢ γpinion (8.36)


Fapinion=Fnsinϕ⁢ sin γpinion=Ftpiniontanϕsin⁢⁢γpinion (8.37)


Equations 8.38–8.40 are the tangential, radial and axial force equations for the driven bevel gear.


Ftgear=Fn⁢ cos ϕ=Ftpinion (8.38)


Frgear=Fnsinϕ⁢ ⁢cos⁢  γgear=Ftgeartan⁢ ϕ⁢ cos⁢  γgear (8.39)


Fagear=Fn⁢  sin⁢  ϕ⁢  sin⁢  γgear=Ftgeartan⁢ ϕ⁢ sin⁢   γgear (8.40)


As illustrated in Figure 8.26, the radial force on the pinion and the axial force on the gear are equal in magnitude while the axial force on the pinion and the radial force on the gear are equal in magnitude. As a result, Equations 8.41 and 8.42 hold true for 90° shaft orientations. Equations 8.43 and 8.44 result from the 90° shaft orientation condition γpinion+γgear=90°.


Frpinion=Fagear=Fnsinϕcosγpinion=Fnsinϕsinγgear (8.41)


Fapinion=Frgear=Fnsinϕsinγpinion=Fnsinϕcosγgear (8.42)


sinγpinion=sin(90°−γgear)=cosγgear (8.43)


cosγpinion=cos(90°−γgear)=sinγgear (8.44)


Because gear torque can be defined as the product of the tangential force and the pitch radius (Equation 8.24), equations for the pinion and gear torque can be expressed as


Tpinion=Ftpinionrmpinion (8.45)


Tgear=Ftgearrmgear=Ftpinionrmgear (8.46)


where rmpinion and rmgear are the mean pitch radii of the pinion and gear (Figure 8.25).*
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FIGURE E.8.9 Example 8.8 solution calculation procedure in MATLAB.





Example 8.9


Problem Statement: Consider the bevel gear pair in Example 8.8 where Fn=400 N, rmpinion=76.2 mm, ϕ=25°and ωpinion=5.25 rad/s. For this gear pair, calculate the tangential, radial and axial forces on the gear, the pinion and gear torque and the power transmitted.


Known Information:Example 8.8, Fn, rmpinion, ϕ, and ωpinion.


Solution Approach:Figure E.8.10 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.8.10 Example 8.9 solution calculation procedure in MATLAB.



* The mean pitch radius for a bevel gear can be calculated using ￼ where ￼ and ￼ are the bevel gear’s inside and outside pitch diameters respectively.





8.5.6 Worm Gears


Like helical gears, worm gears are used to transmit motion between nonparallel, nonintersecting shafts and, like planetary gears, worm gears can produce large velocity ratios in a compact work-space. Although the shafts do not intersect with worm gears, they are orthogonal to each other. The worm gear is comprised of two mating gears: the larger gear and the smaller worm. In practice, the worm typically transmits motion to the gear.


Due to the structural resistance and friction resistance between the worm and the gear, the gear is typically incapable of driving the worm. This means that a stationary worm will lock the motion of the gear. The self-locking capacity of worm gears can be advantageous in applications where a system is to be locked in position when the power is turned off (such as a loaded hoist, crane, or jack) for safety.


The worm resembles a screw. In fact, the teeth of the worm are called treads. The number of worm teeth (or the number of threads) is represented by the variable Nworm. The gear is often a helical gear, although the involute profile of the gear is often concave (rather than the usual convex involute profile) to better enclose the worm threads.*


Figure 8.27 includes the geometry of the worm. The worm-pitch diameter, worm pitch and worm lead angle are represented by variables dpworm, pworm, and λ, respectively. The worm lead angle and the worm helix angle ψworm are complementary (therefore λ + ψworm = 90°). The worm-pitch diameter is the diameter of the circle that remains tangent to the pitch diameter of the gear. The worm pitch is the axial distance between one point on a thread to the corresponding point on an adjacent thread. If we can recall the definitions of these two terms for spur gears, we can see that the worm-pitch diameter and pitch are defined in a similar manner as for spur gears. The worm illustrated in Figure 8.27a is a single thread. By this we mean that the thread is a single helix. Worms that include two helixes have double thread (and triple thread for three helixes and so on).
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FIGURE 8.27 a) Worm geometry and features (single thread) and (b) trigonometric relationship from worm geometry (Figure 8.27b is not drawn to scale with Figure 8.27a)



Figure 8.27b illustrates the relationship between the thread length, thread lead, and pitch circumference (or πdpworm) of a worm. The thread lead is the axial distance that a thread advances in one revolution of the worm and can be expressed as Nworm and Pworm.†


From the trigonometric relationship illustrated in Figure 8.27b, a relationship that includes the worm geometry features can be expressed as


tanλ=cotψworm=Nwormpwormπdpworm (8.47)


For a mating worm-gear pair, the worm pitch and the circular pitch of the gear must be identical. Therefore, from Equation 8.5,


pworm=pcgear=πPd (8.48)


Because worm gears are used for shafts that are aligned at 90° angles, the lead angle of the worm and the helix angle of the gear must be identical.


* The technique of cutting concave gear teeth to better enclose the worm threads is called enveloping worm-gear teeth and produces a line of contact rather than a point of contact (for better force transfer). In double enveloping, the worm thread is cut concave along its length for even greater contact and force transfer than with enveloping.

† From this relationship, it can be observed that the leads for single, double, and triple thread worms are one, two, and three times the worm pitch, respectively.

The velocity ratio of a worm-gear pair is defined in the same manner as spur, rack and pinion, helical, and bevel gears. Considering the notation for a worm-gear pair, the velocity ratio becomes


ωgearωworm=NwormNgear (8.49)


As noted before, the worm drives the gear.


The forces acting on worms and gears are identical in terms of force components to those acting on helical gears. Figure 8.28 illustrates the forces exerted in a mating worm-gear pair. Equations 8.50–8.52 are the tangential, radial, and axial forces acting on the gear (where ψ is the helix angle of the gear). These equations are identical in form to the helical-gear equations for the same forces (Equations 8.29–8.31).
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FIGURE 8.28 Worm-gear pair force and force components.



Ftgear=Fncosϕncosψ (8.50)


Frgear=Fnsinϕn=Ftgeartanϕ (8.51)


Fagear=Fncosϕnsinψ=Ftgeartanψ (8.52)


Because the helix angle of the gear (ψ) and the lead angle of the worm (λ) are identical for shafts aligned at 90°, for this condition, Equations 8.50 and 8.52 become


Ftgear=Fncosϕncosλ (8.53)


Fagear=Fncosϕnsinλ=Ftgeartanλ (8.54)


Because torque in gears can be defined as the product of the tangential force and the pitch radius (Equation 8.24), equations for the torque on the worm and gear can be expressed as


Tworm=Ftwormrpworm (8.55)


Tgear=Ftgearrpgear (8.56)


where rpworm and rpgear are the pitch radii for the worm and gear, respectively.


For ANSI fine-pitch worms and gears, the pitch diameters for the worm and gear are [7]


dpworm = Nwormpwormπtanλ (8.57)


dpgear = Npc gearπ (8.58)


From Figure 8.28, it can be observed that Fagear=Ftworm (as well as Ftgear=Faworm and Frgear=Frworm). Making this substitution in Equation 8.55, as well as observing that Fagear=Ftgeartanλ in Equation 8.54, the worm torque equation can be expressed as


Tworm=Fagearrpworm=Ftgear(tanλ)rpworm (8.59)




Example 8.10


Problem Statement: Calculate the torque and power transmitted by the gear in a worm-gear pair. The worm has a single thread and rotates at 15 rad/s and the gear has 40 teeth and a circular pitch of 15 mm. A normal force of 45 N is applied to the gear. Assume the worm and gear are ANSI fine pitch with helix and pressure angles of 40º and 20º, respectively.


Known Information: Nworm, ωworm, Ngear, pcgear, ψ, ϕ, and Fn.


Solution Approach: Figure E.8.11 includes the calculation procedure in MATLAB’s command window.
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FIGURE E.8.11 Example 8.9 solution calculation procedure in MATLAB.









8.6 Summary


Gears are mechanical components used to transmit motion from one shaft to another. Although rotation can be transmitted through other mechanical components (e.g., belt-pulley systems and chain-sprocket systems), gears are more commonly used, appearing in mechanical systems of all sizes. Gears offer the advantages of higher torque, speed, and power capacities, no slip, greater durability, efficiency, and suitability for confined spaces.


Six types of gears are considered in this textbook. Spur gears are used to transmit motion between parallel shafts. A group of two or more mating-gear pairs form a gear train. Gear trains are often used to achieve large velocity ratios.


Planetary gear trains have several distinct advantages over conventional gear trains. For example, large velocity reductions can be achieved with a planetary gear train in a workspace that is more compact than a conventional gear train. Gear ratio changes are also achieved by constraining different members (gears or carriers) in the planetary gear train.


In rack and pinion gears, the rotational motion of the pinion gear produces the translational motion of the rack gear. Helical gears can be used to transmit motion between parallel shafts and nonparallel shafts that do not intersect. Bevel gears are used to transmit motion between intersecting shafts.


Like helical gears, worm gears are used to transmit motion between nonparallel shafts that do not intersect. Although the shafts do not intersect with worm gears, they are orthogonal to each other. Worm gears are used when large reduction ratios are required.


For optimal gear operation, the gear-tooth profile must be designed in such a way that the common normal to both contacting tooth surfaces (the pressure line) passes through the pitch point on the line of contact. These requirements, which are expressed in the fundamental law of gearing, ensure a constant velocity ratio (ratio of the driving and driven gear speeds).
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Problems




	From among the gear types presented in Chapter 8, list the gear type(s) that can accommodate shafts that are (a) parallel, (b) intersecting, and (c) orthogonal and nonintersecting.


	Using Equations 8.2–8.4, calculate the pitch diameter, diametral pitch, and module for a spur gear having 45 teeth and a circular pitch of 0.6. Assuming this gear is an ANSI coarse pitch with a 20º pressure angle (Table 8.1), calculate the fillet radius, addendum, working depth, and circular tooth thickness of this gear also.


	Using Equations 8.2–8.4, calculate the pitch diameter, diametral pitch, and module for a spur gear having 45 teeth and a circular pitch of 0.75. Assuming this gear is an ANSI coarse pitch with a 25º pressure angle (Table 8.1), calculate the clearance, dedendum, and whole depth (all preferred) of this gear also.


	Given an external gear pair where N1=45, N2=75 and the circular pitch for the pinion is pc1=0.43, calculate the center distance, base pitch, contact line length, and contact ratio for the gear pair. Assume the gears are ANSI coarse pitch with 25º pressure angles (Table 8.1).


	Given an external–internal gear pair where N1=30, N2=85 and the circular pitch for the pinion is pc1=0.45, calculate the center distance, base pitch, contact line length, and contact ratio for the gear pair. Assume the gears are ANSI coarse pitch with 20º pressure angles (Table 8.1).


	Using Equation 8.13, calculate the maximum number of gear teeth for a pinion having 16 and 17 teeth and a 20º pressure angle (see footnote regarding variable k in Inequality (8.13)).


	Determine which single gear from the gear train illustrated in Figure P.8.1 should be replaced and explain why?
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FIGURE P.8.1 Spur gear train.




	What is the purpose of the idler gear? Describe its design. Also, what general advantages do helical gears have over spur gears and why?


	Calculate the normal diametral pitch, module, and normal pressure angle for a helical gear having 25 teeth, a circular pitch of 0.4 and a helix angle of 45º. Assuming this gear is an ANSI fine pitch with a 14.5º pressure angle (Table 8.3), calculate the dedendum, center distance (external, where N2=35), working depth, and pitch diameter of this gear also.


	Calculate the normal diametral pitch, module, and normal pressure angle for a helical gear having 40 teeth, a circular pitch of 0.3 and a helix angle of 55º. Assuming this gear is an ANSI fine pitch with a 20º pressure angle (Table 8.3), calculate the addendum, center distance (internal–external, where N2=125), whole depth, and clearance (standard) of this gear also.


	Calculate each of the quantities in Table 8.1 for a gear module of 0.185.


	Calculate each of the quantities in Table 8.3 for a gear module and helix angle of 0.125 and 45º, respectively. Let N1=20 and N2=45 for an external gear pair, and N1=20 and N2=90 for an external–internal gear pair.


	Given a train of four gears where N1=25, N2=35, N3=60, and N4=80, calculate the train value. Assuming an input gear pitch radius, rotational speed, and torque of rp1=17 mm, ω1=10 rad/s, and Τ1=125 N-mm, respectively, calculate the power transmitted by each gear.


	Given a train of six gears where N1=24, N2=40, N3=55, N4=75, N5=115, and N6=135, calculate the train value. Assuming an input gear pitch radius, rotational speed, and torque of rp1=15 mm, ω1=8.5 rad/s, and Τ1=230 N-mm, respectively, calculate the power transmitted by each gear.


	A five-bar mechanism that includes a gear pair is illustrated in Figure P.8.2. Gear 1 is attached to the input link and gear 2 is attached to the output link. The input link rotates twice as much as the output link, its gear has 33 teeth, a diametral pitch of 3.117, and a pressure angle of 25°. If gear 1 transmits a torque of 121 N-mm, what is the torque transmitted by gear 2?
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FIGURE P.8.2 Five-bar mechanism with a gear pair.




	A five-bar mechanism that includes a gear train is illustrated in Figure P.8.3. Gear 1 is attached to the input link, gear 2 is an idler gear, and gear 3 is attached to the output link. The input link rotates three times as much as the output link, its gear has 54 teeth, a diametral pitch of 1.57, and a pressure angle of 20°. If gear 1 transmits a torque of 75 N-mm, what is the torque transmitted by gear 3?


	What general advantages do planetary gear trains have over conventional gear trains?


	Consider the simple planetary gear train design in Figure P.8.4. In this example, Nsun=21, Nplanet=17, Nring=55. Also, the carrier is fixed, the input is the sun gear and the output is the ring gear. Calculate the rotations of the sun, planet, ring, and carrier. Also, assuming an input gear pitch radius, rotational speed, and torque of rpsun=28 mm, ωsun=25 rad/s, and Τsun=85 N-mm, respectively, calculate the power transmitted by each gear.


	Consider the simple planetary gear train design in Figure P.8.4. In this example, Nsun=25, Nplanet=16, Nring=62. Also, the sun gear is fixed, the input is the carrier and the output is the ring gear. Calculate the rotations of the sun, planet, ring, and carrier.


	Consider the simple planetary gear train design in Figure P.8.4. In this example, Nsun=23, Nplanet=14, Nring=77. Also, the ring gear is fixed, the input is the sun gear and the output is the carrier. Calculate the rotations of the sun, planet, ring, and carrier. Also, assuming an input gear pitch radius, rotational speed, and torque of rpsun=28 mm, ωsun=41 rad/s, and Tsun=65 N-mm, respectively, calculate the power transmitted by each gear.


	Consider the simple planetary gear train design in Figure P.8.4. In this example, Nsun=23, Nplanet=18, Nring=51. Also, the ring gear is fixed, the input is the carrier and the output is the sun gear. Calculate the rotations of the sun, planet, ring, and carrier.


	Consider the simple planetary gear train design in Figure P.8.4. In this example, Nsun=18, Nplanet=16, Nring=56. Also, the carrier is fixed, the input is the ring gear and the output is the sun gear. Calculate the rotations of the sun, planet, ring, and carrier. Also, assuming an input gear pitch radius, rotational speed, and torque of rpring=85 mm, ωring=27 rad/s, and Tring=270 N - mm, respectively, calculate the power transmitted by each gear.
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FIGURE P.8.3 Five-bar mechanism with a gear train.
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FIGURE P.8.4 Planetary gear train (see Figure 8.21).




	Consider the simple planetary gear train design in Figure P.8.4. In this example, Nsun=32, Nplanet=19, Nring=89. Also, the sun gear is fixed, the input is the ring gear and the output is the carrier. Calculate the rotations of the sun, planet, ring, and carrier. Also, assuming an input gear pitch radius, rotational speed, and torque of rpring=105 mm, ωring=32 rad/s, and Tring=171 N-mm, respectively, calculate the power transmitted by each gear.


	Describe the types of input–output motion produced by rack and pinion gears.


	Calculate the translation and velocity of the rack in a rack and pinion gear where the pinion rotation, speed, and diameter are 3π/4 rad, 4.55 rad/s, and 56 mm, respectively.


	Calculate the angular displacement and velocity of the pinion in a rack and pinion gear where the rack displacement, rack speed, and pinion diameter are 132 mm, 24 mm/s, and 73 mm, respectively.


	Calculate the radial, axial, and tangential forces transmitted by a helical gear having 49 teeth and a helix angle of 39º. Assume this gear is an ANSI fine pitch with a 14.5º pressure angle. This gear also has a normal force of 42 N.


	Calculate the torque and power transmitted by a helical gear having 37 teeth, a circular pitch of 45 mm and a helix angle of 50º. Assume this gear is an ANSI fine pitch with a 20º pressure angle (Table 8.3). This gear also has a rotational speed of 18 rad/s and a normal force of 25 N.


	Calculate the pitch angles for a bevel gear pair where the pinion and gear have 38 and 60 teeth respectively and the shaft angle is 90º.


	For the bevel gears in Problem 8.29, calculate the pitch radius and angular velocity of the gear if the pinion has an angular velocity of −5.85 rad/s.


	For a bevel gear pair where γpinion=55°, γgear=35°, Fn=175 N, and ϕ=20°, calculate the tangential, radial, and axial forces on the gear and pinion.


	For a bevel gear pair where Νpinion=55, Νgear=80, γpinion=35°, γgear=45°, Fn=110N, rmpinion=75 mm, ϕ=25°, and ωpinion=7.25 rad/s, calculate the torque and the power transmitted by the gear.


	While planetary gear trains and worm gears can both achieve large velocity reductions, what additional capability is provided by worm gears?


	Calculate the radial, axial, and tangential forces transmitted by the gear in a worm-gear pair. The worm has 2 threads and the gear has 82 teeth. A normal force of 18 N is applied to the gear. Assume the worm and gear are ANSI fine pitch with helix and pressure angles of 34º and 20º, respectively.


	Calculate the torque and power transmitted by the gear in a worm-gear pair. The worm has 3 threads and rotates at 29 rad/s and the gear has 65 teeth and a circular pitch of 21 mm. A normal force of 38 N is applied to the gear. Assume the worm and gear are ANSI fine pitch with helix and pressure angles of 45º and 25º, respectively.











  
    



9 Design and Kinematic Analysis of Disk Cams
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CONCEPT OVERVIEW


In this chapter, the reader will gain a central understanding regarding




	Purposes and functions of radial cam systems and follower types


	Components of follower motion and follower motion types


	Radial cam follower kinematics


	Criteria for optimal radial cam operation and its relationship with follower motion types


	Radial cam design


	Criteria for optimal radial cam operation and its relationship with radial cam system design equations









9.1 Introduction


A disk cam (also called a radial cam, flat-faced cam, or simply cam) is a mechanical component used to convert rotary motion into oscillating rotary or translation motion.* In its most basic form, a cam system includes a rotating disk member (the cam) that compels the motion of an oscillating member called the follower. The names disk cam and flat-faced cam refer to the flat, disk-like shape of the cam geometry. Since the rotating disk cam compels motion by pushing components away from its center of rotation—or in a radial direction—the name radial cam is also used.


Among other applications, cam systems are commonly used in the valve trains of internal combustion engines, particularly in automotive engines. Figure 9.1 illustrates a cam system used in an overhead valve train. The rotating cams produce an oscillating translation motion in the rod components which subsequently produce an oscillation rotation motion in the rocker components. Ultimately, the oscillating motion of the rocker components produce an oscillating translation motion in the valve components, causing them to open and close in a precisely timed manner. The cam system illustrated in Figure 9.1 enables proper fuel entry into the engine and proper exit of the combustion products from the engine.
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FIGURE 9.1 Overhead valve train and actuation mechanism.



* Other common (nonradial) cam types not covered in this text include cam slots, cylindrical cams, yokes, and wedge cams.





9.2 Follower Types


The types of followers used in disk cam systems vary in terms of their shape and the oscillating motion they exhibit. Figure 9.2 includes five follower types.
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FIGURE 9.2 Translating (a) knife-edge, (b) flat-faced, and (c) roller followers, and rotating (d) flat-faced and (e) roller followers.



The knife-edge follower (Figure 9.2a) translates when in contact with the rotating cam. Although this type of follower is simple in design, its sharp edge produces high contact stresses.* The flat-faced follower (Figure 9.2b) also translates when in contact with the rotating cam. While the contact stresses with this follower type are less concentrated than those with the knife-edge follower due to its larger contact surface, greater sliding friction forces are produced with the flat-faced follower due to its larger contact surface. The translating roller follower (Figure 9.2c) includes an additional rolling wheel component (pinned to the follower) that rolls over the cam surface.† Though more complex in design that the knife-edge and flat-faced followers, the rolling wheel of the roller follower produces lower contact stresses and friction forces. Figures 9.2d and 9.2e are variations of the flat-faced slider and roller followers, respectively. In these follower variations, a rotational motion is produced when in contact with a rotating cam.


* Because contact stress is proportional to the rate of wear, an increase in contact stress results in an increase in component wear rate and subsequently component life.

† The rods in Figure 9.1 are translating roller followers (Figure 9.2c).





9.3 Follower Motion




9.3.1 Rise, Fall, and Dwell


No matter the type of follower used, a follower displacement profile is comprised of three distinct displacement profiles: rise, fall, and dwell profiles. These profiles are determined by the shape of the cam and its rotation direction.


Figure 9.3 illustrates a disk cam rotating counterclockwise direction. This figure also includes the follower displacement achieved by the rotating cam. As the cam rotates, there is a steady increase in its radii of curvature (or an increasing rate of change) in the cam region bounded by radii r1 and r2. As the cam passes through this region, the follower will be displaced radially away from the cam’s center of rotation (the positive y-direction in Figure 9.3). Positive follower displacement is called rise.
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FIGURE 9.3 Disk cam and follower displacement curve with rise, fall, and dwell regions labeled.



The radius of curvature is constant in the cam region bounded by radii r2 and r3. Because of the constant curvature, as the cam rotates through this region, the follower will experience no displacement at all. Zero follower displacement is called dwell.


There is a steady decrease in radii of curvature (or a decreasing rate of change) in the cam region bounded by radii r3 and r4. As the cam rotates through this region, the follower will be displaced radially toward the cam’s center of rotation (the negative y-direction in Figure 9.3). Negative follower displacement is called fall.


The radius of curvature is also constant in the in the cam region bounded by radii r4 and r1. Because of the constant curvature, as the cam rotates through this region, the follower will again experience dwell.*


Figure 9.4 illustrates a simple follower displacement diagram. This diagram includes a rise-dwell-fall-dwell follower displacement interval sequence (identical to the displacement sequence in Figure 9.3). As with all disk cams, the follower displacement sequence is achieved over a complete (360°) cam rotation cycle. The variables β1 through β4 are the cam rotation ranges associated with each rise, fall, and dwell interval. The variable h1 is the follower displacement range for the corresponding rise and fall intervals.
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FIGURE 9.4 Simple follower displacement diagram.



* For rotating followers, dwell would correspond to zero rotational displacement and rise and fall would correspond to counterclockwise and clockwise rotations, respectively (or vice versa if the user prefers).





9.3.2 Displacement, Velocity, Acceleration, and Jerk


As we have demonstrated in prior chapters (Chapters 2 and 4, for example), differentiating a displacement equation produces an equation for velocity and differentiating a velocity equation produces an equation for acceleration. Determining the follower displacement, velocity, and acceleration is necessary in cam design. It is also necessary to know the rate of change in follower acceleration in cam design. This quantity is called jerk. Differentiating an acceleration equation produces an equation for jerk.


For a cam to operate beyond low-speed applications, its profile must be designed so that its follower displacement, velocity, and acceleration profiles are continuous throughout a complete cam rotation cycle. For this condition to be true, the follower jerk profile must be finite throughout a complete cam rotation cycle. In Sections 9.3.2–9.3.7, we will evaluate different types of follower motion with respect to the cam design conditions of continuous displacement, velocity, and acceleration profiles and a finite jerk profile.*






9.3.3 Constant Velocity Motion


Constant velocity motion is the most basic type of follower motion. Here, the follower rise and fall profiles are defined as linear functions.


Table 9.1 includes the follower rise and fall displacement, velocity, acceleration, and jerk equations for constant velocity motion [1]. When expressing these quantities in terms of cam rotation, the variable θ represents the cam rotation increment over the rotation interval range β.






TABLE 9.1 Follower Displacement, Velocity, Acceleration, and Jerk Equations: Constant Velocity Motion





	

	Rise

	Fall










	

	For 0 < θ < β or 0 < t < T






	Displacement, s

	s = hθ/β = ht/ T

	s=hβ(1−θ)=hT(1−t)






	Velocity, ṡ

	s˙=hs˙β=hT

	s˙=hθ˙β=−hT






	Acceleration, s¨

	s¨=0

	s¨=0






	Jerk, s¨¨

	s¨¨=0

	s¨¨=0











In Table 9.1, the follower equations are also given in terms of time. When expressed this way, the cam rotation interval range β becomes the time-interval range T and the rotation increment θ becomes the time increment t. The quantity θ˙ in the velocity equations represents the cam rotation speed.†


Although constant velocity motion is the simplest type of follower motion, it violates the fundamental law of cam design (given in Section 9.3.2). Figure 9.5 illustrates the follower displacement, velocity, acceleration, and jerk profiles for constant velocity motion. Because the slope is constant in the displacement profile (Figure 9.5a), its derivative becomes a stepped velocity profile (Figure 9.5b). Such a velocity profile violates the continuous velocity condition for cam design.
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FIGURE 9.5 Follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles for constant velocity motion.



* These cam design conditions are also called the fundamental law of cam design. Violating these cam design conditions does not mean a cam design cannot be used, only that it will be limited to low-speed applications.

† The quantity θ is often expressed in units of degrees/time, radians/time, or revolutions/time.

Because the slopes at the start and end of the stepped velocity profile are infinite, these infinite slopes appear as infinite spikes in the acceleration profile (Figure 9.5c).* Such an acceleration profile violates the continuous acceleration condition for cam design. While an infinite acceleration will not appear in actual cam use, these quantities will appear as excessive accelerations (impulse or shock loads). Such loads result in excessive cam wear and damage and will ultimately shorten the life of the cam substantially.


Being the derivative of an acceleration profile having infinite spikes, the follower jerk profile (Figure 9.5d) also includes infinite spikes. Such a jerk profile violates the finite jerk condition for cam design.


Appendix E.1 includes the MATLAB® file user instructions for generating constant velocity motion-based displacement, velocity, acceleration, and jerk diagrams. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), the constant velocity motion equations in Table 9.1 are used.†




Example 9.1


Problem Statement: Using the Appendix E.1 MATLAB file, plot the follower displacement and velocity profiles under constant velocity motion for the following 6 intervals (with π/3 rad for each interval): rise (25 mm)-dwell-rise (30 mm)-dwell-fall (55 mm)-dwell. Assume the cam rotates at a constant speed of 45 rpm.


Known Information: The follower displacement sequence, cam rotation speed, and the Appendix E.1 MATLAB file.


* In mathematics, these spikes are idealized unit impulses and are known as Dirac delta functions.

† The library of MATLAB files used in this chapter can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

Solution Approach: Given the crank rotation speed and the constant cam rotation value for each interval, we can determine that the each interval has a time period of T = 0.2222s.. Figure E.9.1 includes the input specified (in bold text) in the Appendix E.1 MATLAB file. Figure E.9.2 illustrates the follower displacement and velocity profiles calculated from the Appendix E.1 MATLAB file.
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FIGURE E.9.1 Specified input (in bold text) in the Appendix E.1 MATLAB file for Example 9.1.
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FIGURE E.9.2 Constant velocity follower (a) displacement and (b) velocity profiles.









9.3.4 Constant Acceleration Motion


Unlike the first-order (or linear) follower displacement profile associated with constant velocity motion, constant acceleration motion includes a second-order (or parabolic) follower displacement profile.* Table 9.2 includes the follower rise and fall displacement, velocity, acceleration, and jerk equations for constant acceleration motion [1]. As shown in this table, the range (be it a time range or rotation range) is divided so that profiles for each half of the range are plotted using separate equations.






TABLE 9.2 Follower Displacement, Velocity, Acceleration, and Jerk Equations: Constant Acceleration Motion





	

	Rise

	Fall










	

	For 0 < θ < β/2 or 0 < t <T/2






	Displacement, s

	s = 2 h(θ/β)2 = 2 h(t/T)2

	s = h−2 h(θ/β)2 = h−2 h(t/T)2






	Velocity, ṡ

	s˙=4hθ˙θβ2=4htT2

	s˙=4hθ˙θβ2=−4htT2






	Acceleration, s¨

	s¨=4h(θ˙β)2=4hT2

	s¨=−4h(θ˙β)2=−4hT2






	Jerk, s¨¨

	s¨¨=0

	s¨¨=0






	

	For β/2 < θ < β or T/2 < t < T






	Displacement, s

	s = h−2h[1−θ/β)2 = h−2h[1−t/T]2

	s = 2h[1−θ/β)2 = 2h[1−t/T]2






	Velocity, ṡ

	s˙=4hθ˙β(1−θβ)=4htT(1−tT)

	s˙=4hθ˙β(1−θβ)=−4htT(1−tT)






	Acceleration, s¨

	s¨=−4h(θ˙β)2=−4hT2

	s¨=4h(θ˙β)2=4hT2






	Jerk, s¨¨

	s¨¨=0

	s¨¨=0











The parabolic follower displacement profile (Figure 9.6a), when differentiated, produces a triangular velocity profile (Figure 9.6b). This velocity profile, when differentiated, produces a stepped acceleration profile (Figure 9.6c). In comparison to the acceleration profile for constant velocity motion (Figure 9.5c), the acceleration profile for constant acceleration motion is an improvement because it has a finite height. In addition, for a given angle of rotation and rise, constant acceleration motion produces the smallest acceleration among the motion types presented in this chapter [2]. However, because the acceleration profile changes abruptly, shock loads will be produced in the cam system. This discontinuous acceleration profile also violates the continuous acceleration condition for cam design.


* Constant acceleration motion is also called parabolic motion.
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FIGURE 9.6 Follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles for constant acceleration motion.



Being the derivative of a stepped acceleration profile, the follower jerk profile (Figure 9.6d) includes infinite spikes. Such a jerk profile violates the finite jerk condition for cam design.


Appendix E.2 includes the MATLAB file user instructions for generating constant acceleration motion-based displacement, velocity, acceleration, and jerk diagrams. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), the constant acceleration motion equations in Table 9.2 are used.




Example 9.2


Problem Statement: Using the Appendix E.2 MATLAB file, plot the follower displacement, velocity and acceleration profiles under constant acceleration motion for the follower displacement interval and cam rotation speed data given in Example 9.1.


Known Information: Example 9.1 and Appendix E.2 MATLAB file.


Solution Approach: Figure E.9.3 includes the input specified (in bold text) in the Appendix E.2 MATLAB file. Figure E.9.4 illustrates the follower displacement, velocity, and acceleration profiles calculated from the Appendix E.2 MATLAB file.
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FIGURE E.9.3 Specified input (in bold text) in the Appendix E.2 MATLAB file for Example 9.2.
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FIGURE E.9.4 Constant acceleration follower (a) displacement, (b) velocity, and (c) acceleration profiles.









9.3.5 Simple Harmonic Motion


In simple harmonic motion, the follower displacement equations include periodic functions.* Unlike nonperiodic functions, periodic functions can be differentiated indefinitely without ever producing a constant solution (thus preventing infinite spikes in cam motion profiles). Table 9.3 includes the follower rise and fall displacement, velocity, acceleration, and jerk equations for simple harmonic motion [3].






TABLE 9.3 Follower Displacement, Velocity, Acceleration, and Jerk Equations: Simple Harmonic Motion





	

	Rise

	Fall










	

	For 0 < θ < β or 0 < t < T






	Displacement, s

	s=h2[1−cos(πθβ)]=h2[1−cos(πtT)]

	s=h2[1+cos(πθβ)]=h2[1+cos(πtT)]






	Velocity, ṡ

	s˙=πhθ˙2β[sin(πθβ)]=πh2T[sin(πtT)]

	s˙=−πhθ˙2β[sin(πθβ)]=−πh2T[sin(πtT)]






	Acceleration, s¨

	s¨=π2hθ˙22β2[cos(πθβ)]=π2h2T2[cos(πtT)]

	s¨=−π2hθ˙22β2[cos(πθβ)]=−π2h2T2[cos(πtT)]






	Jerk, s¨¨

	s¨¨=−π3hθ˙32β3[sin(πθβ)]=−π3h2T3[sin(πtT)]

	s¨¨=π3hθ˙32β3[sin(πθβ)]=π3h2T3[sin(πtT)]











In simple harmonic motion, a smooth follower displacement profile is produced (Figure 9.7a). This profile, when differentiated, produces a continuous velocity profile (Figure 9.7b). This velocity profile, when differentiated, produces a continuous acceleration profile, having steps at its start and end (Figure 9.7c). The acceleration profile from simple harmonic motion is an improvement over the profile from constant velocity motion (Figure 9.5c), since it is smooth and continuous within its interval range. Simple harmonic motion also produces a finite follower jerk profile (Figure 9.7d), thus satisfying the finite jerk condition for cam design. However, in simple harmonic motion, the acceleration profile changes abruptly at its start and end, producing shock loads in the cam system and violating the continuous acceleration condition for cam design.
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FIGURE 9.7 Follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles for simple harmonic motion.



* Sine and cosine functions (also sine and cosine-based functions) are examples of periodic functions—functions that repeat their values at regular intervals or periods.

Appendix E.3 includes the MATLAB file user instructions for generating simple harmonic motion-based displacement, velocity, acceleration, and jerk diagrams. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), the simple harmonic motion equations in Table 9.3 are used.




Example 9.3


Problem Statement: Using the Appendix E.3 MATLAB file, plot the follower displacement, velocity, acceleration, and jerk profiles under simple harmonic motion for the follower displacement interval and cam rotation speed data given in Example 9.1.


Known Information: Example 9.1 and Appendix E.3 MATLAB file.


Solution Approach: Figure E.9.5 includes the input specified (in bold text) in the Appendix E.3 MATLAB file. Figure E.9.6 illustrates the follower displacement, velocity, acceleration, and jerk profiles calculated from the Appendix E.3 MATLAB file.
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FIGURE E.9.5 Specified input (in bold text) in the Appendix E.3 MATLAB file for Example 9.3.
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FIGURE E.9.6 Simple harmonic motion follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles.









9.3.6 Cycloidal Motion


Like simple harmonic motion, the follower displacement equations also include periodic functions in cycloidal motion. Table 9.4 includes the follower rise and fall displacement, velocity, acceleration, and jerk equations for cycloidal motion [4].






TABLE 9.4 Follower Displacement, Velocity, Acceleration, and Jerk Equations: Cycloidal Motion





	

	Rise

	Fall










	

	For 0 < θ < β or 0 < t < T






	Displacement, s

	s=h[θβ−12πsin(2πθβ)]=h[tT−12πsin(2πtT)]

	s=h[1−θβ+12πsin(2πθβ)]=h[1−tT+12πsin(2πtT)]






	Velocity, ṡ

	s˙=hθ˙β[1−cos(2πθβ)]=hT[1−cos(2πtT)]

	s˙=−hθ˙β[1−cos(2πθβ)]=−hT[1−cos(2πtT)]






	Acceleration, s¨

	s¨=2πhθ˙2β2[sin(2πθβ)]=2πhT2[sin(2πtT)]

	s¨=−2πhθ˙2β2[sin(2πθβ)]=−2πhT2[sin(2πtT)]






	Jerk, s¨¨

	s¨¨=4π2hθ˙3β3[cos(2πθβ)]=4π2hT3[cos(2πtT)]

	s¨¨=−4π2hθ˙3β3[cos(2πθβ)]=−4π2hT3[cos(2πtT)]











While smooth and continuous follower displacement and velocity profiles are produced in cycloidal motion (Figures 9.8a and b), the main advantages with this type of motion is that its acceleration profile is smooth and continuous (Figure 9.8c) and its jerk profile (Figure 9.8d) is finite. Because the acceleration profile includes no abrupt changes, the shock loads resulting from such abrupt changes in acceleration are not produced. Under cycloidal motion, the cam design conditions for continuous displacement, velocity, and acceleration profiles and a finite jerk profile are all satisfied. As a result, cycloidal motion-based cam designs are well suited for high-speed applications.
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FIGURE 9.8 Follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles for cycloidal motion.



Appendix E.4 includes the MATLAB file user instructions for generating cycloidal motion-based displacement, velocity, acceleration, and jerk diagrams. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), the cycloidal motion equations in Table 9.4 are used.




Example 9.4


Problem Statement: Using the Appendix E.4 MATLAB file, plot the follower displacement, velocity, acceleration, and jerk profiles under cycloidal motion for the follower displacement interval and cam rotation speed data given in Example 9.1.


Known Information: Example 9.1 and Appendix E.4 MATLAB file.


Solution Approach: Figure E.9.7 includes the input specified (in bold text) in the Appendix E.4 MATLAB file. Figure E.9.8 illustrates the follower displacement, velocity, acceleration, and jerk profiles calculated from the Appendix E.4 MATLAB file.
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FIGURE E.9.7 Specified input (in bold text) in the Appendix E.4 MATLAB file for Example 9.4.
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FIGURE E.9.8 Cycloidal motion follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles.









9.3.7 Polynomial Motion


Follower motion functions can also be formulated using polynomials. The primary advantage of polynomial-based follower motion functions is that boundary conditions for follower displacement, velocity, acceleration, and jerk can be prescribed. With capability, the user can ensure that the profiles for these quantities are finite and continuous, and thus satisfactory according to the cam design conditions in Section 9.3.2. Equation 9.1 includes the general form of the polynomial function.* In this equation, the variable x becomes θ/β if cam rotational displacement is considered or t/T if time is considered.


s=C0+C1x+C2x2+C3x3+C4x4+C5x5...Cnxn (9.1)


One type of polynomial used to define follower motion is called the 3-4-5 polynomial. This function begins as a polynomial of order 5 (also called a fifth-order polynomial). Expressing Equation 9.1 as a fifth-order polynomial where the term θ/β is used in place of x, the resulting polynomial becomes


s=C0+C1(θβ)+C2(θβ)2+C3(θβ)3+C4(θβ)4+C5(θβ)5 (9.2)


To formulate the coefficients C0 through C5 in Equation 9.2 for the rise function, the following boundary conditions are specified:


At θ=0,s=s˙=s¨=0  and  at θ=β,s=h,s˙=s¨=0


To formulate the coefficients in Equation 9.2 for the fall function, the following boundary conditions are specified:


At θ=0,s=h,s˙=s¨=0  and  at θ=β,s=s˙=s¨=0


Table 9.5 includes the resulting follower rise and fall displacement, velocity, acceleration, and jerk equations for 3-4-5 polynomial motion.† The name “3-4-5 polynomial” reflects the exponent orders that appear in these displacement functions. Table 9.5 also includes the follower velocity, acceleration, and jerk functions.






TABLE 9.5 Follower Displacement, Velocity, Acceleration, and Jerk Equations: 3-4-5 Polynomial Motion





	

	Rise

	Fall










	

	For 0 < θ < β or 0 < t < T






	Disp., s

	s=h[10(θβ)3−15(θβ)4+6(θβ)5]=h[10(tT)3−15(tT)4+6(tT)5]

	s=h[1−10(θβ)3+15(θβ)4−6(θβ)5]=h[1−10(tT)3+15(tT)4−6(tT)5]






	Vel., ṡ

	s˙=hθ˙β[30(θβ)2−60(θβ)3+30(θβ)4]=hT[30(tT)2−60(tT)3+30(tT)4]

	s˙=hθ˙β[−30(θβ)2+60(θβ)3−30(θβ)4]=hT[−30(tT)2+60(tT)3−30(tT)4]






	Acc., s¨

	s¨=hθ˙2β2[60(θβ)−180(θβ)2+120(θβ)3]=hT2[60(tT)−180(tT)2+120(tT)3]

	s¨=hθ˙2β2[−60(θβ)+180(θβ)2+120(θβ)3]=hT2[−60(tT)+180(tT)2+120(tT)3]






	Jerk, s¨¨

	s¨¨=hθ˙3β3[60−360(θβ)+360(θβ)2]=hT3[60−360(tT)+360(tT)2]

	s¨¨=hθ˙3β3[−60+360(θβ)−360(θβ)2]=hT3[−60+360(tT)−360(tT)2]











* The greatest exponent value given in a polynomial determines its order. For example, the function s = C0 + C1x + C2x2 + C3x3 is a polynomial of order 3 (or a third-order polynomial) because its greatest exponent is 3.

† Using the given boundary conditions, the coefficients C0, C1, and C2 become zero in the 3–4–5 polynomial.

The follower displacement, velocity, acceleration, and jerk profiles produced from the 3-4-5 polynomial all satisfy the continuity and finite conditions for cam design (Figure 9.9). In addition to cycloidal motion-based cam designs, 3-4-5 polynomial motion-based cam designs are also well suited for high-speed applications.
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FIGURE 9.9 Follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles for 3–4–5 polynomial motion.



Appendix E.5 includes the MATLAB file user instructions for generating 3-4-5 polynomial motion-based displacement, velocity, acceleration, and jerk diagrams. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), the 3-4-5 polynomial motion equations in Table 9.5 are used.




Example 9.5


Problem Statement: Using the Appendix E.5 MATLAB file, plot the follower displacement, velocity, acceleration, and jerk profiles under 3-4-5 polynomial motion for the follower displacement interval and cam rotation speed data given in Example 9.1.


Known Information: Example 9.1 and Appendix E.5 MATLAB file.


Solution Approach: Figure E.9.9 includes the input specified (in bold text) in the Appendix E.5 MATLAB file. Figure E.9.10 illustrates the follower displacement, velocity, acceleration, and jerk profiles calculated from the Appendix E.5 MATLAB file.
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FIGURE E.9.9 Specified input (in bold text) in the Appendix E.5 MATLAB file for Example 9.5.
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FIGURE E.9.10 Polynomial (3-4-5) motion follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles.





Another type of polynomial used to define follower motion is called the 4-5-6-7 polynomial. This function begins as a polynomial of order 7 (also called a seventh-order polynomial). Expressing Equation 9.1 as a seventh-order polynomial where the term θ/β is used in place of x, the resulting polynomial becomes


s=C0+C1(θβ)+C2(θβ)2+C3(θβ)3+C4(θβ)4+C5(θβ)5+C6(θβ)6+C7(θβ)7 (9.3)


To formulate the coefficients C0 through C7 in Equation 9.3 for the rise function, the following boundary conditions are specified:


At θ=0,s=s˙=s¨=s¨¨=0  and  at θ=β,s=h,s˙=s¨=s¨¨=0


To formulate the coefficients in Equation 8.3 for the dwell function, the following boundary conditions are specified:


At θ=0,s=h,s˙=s¨=s¨¨=0  and  at θ=β,s=s˙=s¨=s¨¨=0


Table 9.6 includes the resulting follower rise and fall displacement, velocity, acceleration, and jerk equations for 4-5-6-7 polynomial motion.* The name “4-5-6-7 polynomial” reflects the exponent orders that appear in these displacement functions. Table 9.6 also includes the follower velocity, acceleration, and jerk functions.






TABLE 9.6 Follower Displacement, Velocity, Acceleration, and Jerk Equations: 4–5–6–7 Polynomial Motion





	

	Rise

	Fall










	

	For 0 < θ < Β or 0 < t < T






	Disp., s

	s=h[35(θβ)4−84(θβ)5+70(θβ)6−20(θβ)7]=h[35(tT)4−84(tT)5+70(tT)6−20(tT)7]

	s=h[1−35(θβ)4+84(θβ)5−70(θβ)6+20(θβ)7]=h[1−35(tT)4+84(tT)5−70(tT)6+20(tT)7]






	Vel., ṡ

	s˙=hθ˙β[30(θβ)2−60(θβ)3+30(θβ)4]=hT[30(tT)2−60(tT)3+30(tT)4]

	s˙=hθ˙β[−30(θβ)2+60(θβ)3−30(θβ)4]=hT[−30(tT)2+60(tT)3−30(tT)4]






	Acc., s¨

	s¨=hθ˙2β2[60(θβ)−180(θβ)2+120(θβ)3]=hT2[60(tT)−180(tT)2+120(tT)3]

	s¨=hθ˙2β2[−60(θβ)+180(θβ)2+120(θβ)3]=hT2[−60(tT)+180(tT)2+120(tT)3]






	Jerk., s¨¨

	s¨¨=hθ˙3β3[60−360(θβ)+360(θβ)2]=hT3[60−360(tT)+360(tT)2]

	s¨¨=hθ˙3β3[−60+360(θβ)−360(θβ)2]=hT3[−60+360(tT)−360(tT)2]











The follower displacement, velocity, acceleration, and jerk profiles produced from the 4-5-6-7 polynomial all satisfy the continuity and finite conditions for cam design (Figure 9.10). In addition to cycloidal and 3-4-5 polynomial motion-based cam designs, 4-5-6-7 polynomial motion-based cam designs are also well suited for high-speed applications.
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FIGURE 9.10 Follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles for 4–5–6–7 polynomial motion.



* Using the given boundary conditions, the coefficients C0, C1, C2, and C3 become zero in the 4-5-6-7 polynomial.

Appendix E.6 includes the MATLAB file user instructions for generating 4-5-6-7 polynomial motion-based displacement, velocity, acceleration, and jerk diagrams. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), the 4-5-6-7 polynomial motion equations in Table 9.6 are used.




Example 9.6


Problem Statement:Using the Appendix E.6 MATLAB file, plot the follower displacement, velocity, acceleration, and jerk profiles under 4-5-6-7 polynomial motion for the follower displacement interval and cam rotation speed data given in Example 9.1.


Known Information: Example 9.1 and Appendix E.6 MATLAB file.


Solution Approach:Figure E.9.11 includes the input specified (in bold text) in the Appendix E.6 MATLAB file. Figure E.9.12 illustrates the follower displacement, velocity, acceleration, and jerk profiles calculated from the Appendix E.6 MATLAB file.
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FIGURE E.9.11 Specified input (in bold text) in the Appendix E.6 MATLAB file for Example 9.6.
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FIGURE E.9.12 Polynomial (4-5-6-7) motion follower (a) displacement, (b) velocity, (c) acceleration, and (d) jerk profiles.











9.4 Disk Cam Design and Pressure Angle


The actual shape of a disk cam is designed from the follower displacement profile. Figure 9.11 illustrates the disk cam design features and nomenclature. The cam profile is produced by wrapping the follower displacement profile over the base circle—the smallest circle centered at the cam’s axis of rotation. Because the size of the base circle will ultimately determine the size of the cam produced, its size is typically restricted to the workspace restrictions for the cam application.* The radius of the base circle is represented by variable rbase in Figure 9.11.
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FIGURE 9.11 Disk cam nomenclature.



The x and y coordinates of the disk cam profile can be formulated as


x=(rbase+s)cos θy=(rbase+s)sin θ (9.4)


The prime circle (defined by variable rprime) is a circle drawn through a point on the follower (called the trace point) while the follower is at a position of zero radial displacement (also called a home position). For the roller follower illustrated in Figure 9.11, the trace point is drawn through the center of the roller. As a result, the prime circle radius for a roller follower is the sum of the base circle radius and the radius of the follower roller (or rprime = rbase + rroller). The path traced by the follower over the rotating cam (at the trace point) is called the pitch curve.


As noted in Chapter 8, for two contacting surfaces, the contact force between the surface pair is oriented in the direction normal to the common tangent of the surface pair. For a cam and follower, as for gears, the orientation angle of the contact force is called the pressure angle. In a cam with a translating follower, this angle is formed by the common normal and the axis of translation of the follower. Figure 9.12 illustrates the contact force and pressure angle of a disk cam and offset roller follower.
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FIGURE 9.12 Offset cam system and pressure angle.



As shown in Figure 9.12, the contact force can have two components: components acting along the direction of and normal to the direction of follower motion. The contact force component acting in the direction of follower motion is necessary for effective follower operation. The contact force component acting normal to the follower motion direction produces side-thrust loads on the cam and follower.† Designers often attempt to minimize the latter contact force component. In practice, pressure angles do not exceed ±30° for translating followers and ±45° for rotating followers [5]. Techniques to reduce the pressure angle in radial cams include increasing the size of the base circle, decreasing the follower offset (represented by the variable ɛ in Figures 9.11 and 9.12), and modifying the follower displacement profile.


A general pressure-angle equation for a disk cam and translating roller follower can be expressed as


φ=δ−tan−1(εrbase+s+rroller) (9.5)


* For a given cam shape, a larger base circle will typically result in improved force transmission than a smaller base circle.

† These side-thrust loads contribute to the lateral deflection of the follower.

where


δ=tan−1[(s˙θ˙)(rbase+s+rrollerε2+(rbase+s+rroller)2−ε(s˙/θ˙))] (9.6)


In these equations, the variables s, ṡ and θ˙ are the displacement and velocity of the follower and the rotational velocity of the cam, respectively (all previously defined in this chapter). To consider a cam and in-line follower using Equations 9.5 and 9.6, the offset variable ɛ should be zero. To ensure interaction between a cam and a translating roller follower, rprime ≥ ε (meaning rbase + rroller ≥ ε).


In a cam with a rotating follower, the pressure angle is formed by the common normal and the velocity vector of the follower arm (which is perpendicular to the follower arm).* Figure 9.13 illustrates the contact force and pressure angle of a disk cam and rotating roller follower.
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FIGURE 9.13 Cam system with rotating roller follower and pressure angle. 



A general pressure-angle equation for a disk cam and rotating roller follower (Figure 9.14) can be expressed as
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FIGURE 9.14 Disk cam with rotating roller follower nomenclature.



φ=δ−π2+tan−1[(s˙θ˙)(1rbase+s+rroller−(s˙θ˙) cos δ)] (9.7)


where


δ−cos−1(L2+(rbase+s+rroller)2−Dy22L(rbase+s+rroller)) (9.8)


* While the velocity vector is always perpendicular to the follower arm, its direction depends on the rotation direction of the follower arm (clockwise or counterclockwise).

The variable L in Equation 9.8 is the length of the follower’s rotating arm (between the arm’s center of rotation and the center of the roller). The variable Dy in this equation is the distance along the y-axis between the arm’s center of rotation and the cam’s center of rotation. As illustrated in Figure 9.14, both centers of rotation are along the y-axis. To ensure interaction between a cam and a rotating roller follower, L–Dy ≤ s + rbase




Example 9.7


Problem Statement: Using the Appendix E.6 MATLAB file, plot the radial cam profile for the follower displacement interval given in Example 9.1. Use a 100 mm base circle radius.


Known Information: Example 9.1 and Appendix E.6 MATLAB file.


Solution Approach: Figure E.9.13 includes the input specified (in bold text) in the Appendix E.6 MATLAB file. Figure E.9.14 illustrates the disk cam profile produced from Equation 9.4 (which is utilized in the Appendix E.6 MATLAB file).
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FIGURE E.9.13 Specified input (in bold text) in the Appendix E.6 MATLAB file for Example 9.7.
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FIGURE E.9.14 Disk cam profile from 4-5-6-7 polynomial motion (with dashed base circle).







Example 9.8


Problem Statement: Using the follower displacement and velocity data produced in Example 9.6, plot the pressure angle profile for a translating follower. Assume a zero offset, a base circle radius of 100 mm and a roller radius of 5 mm.


Known Information: Displacement and velocity results from Example 9.6, Equations 9.5 and 9.6, rbase and rroller.


Solution Approach: From Example 9.6, we know that the cam rotates at a constant speed of 45 rpm (or 4.71 rad/s). Because a zero offset condition is assumed, the pressure angle equation is reduced to Equation 9.6 (where ϕ = δ). Figure E.9.15 illustrates the resulting pressure angle profile.
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FIGURE E.9.15 Pressure angle profile for 4-5-6-7 polynomial cam and translating follower.





Example 9.9


Problem Statement: Using the follower displacement and velocity data produced in Example 9.6, calculate the pressure angle for a rotating follower at a cam rotation of 3π/2 radians. Assume a base circle radius of 100 mm, a roller radius of 5 mm, a follower arm length of 275 mm and a center-to-center y-axis distance of 250 mm.


Known Information: Displacement and velocity results from Example 9.6, Equations 9.7 and 9.8, rbase, rroller, L and Dy.


Solution Approach: From Example 9.6, we know that can cam rotates at a constant speed of 45 rpm (or 4.71 rad/s). From Example 9.6, it can be determined that at a cam rotation of 3π/2 radians (or 270°), s = 27.5 mm and ṡ = -541.41 mm/s. Figure E.9.16 includes the calculation procedure for a single pressure angle value in MATLAB’s command window.
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FIGURE E.9.16 Example 9.9 solution calculation procedure in MATLAB.









9.5 Summary


A disk cam is a mechanical component used to convert rotation motion into oscillating rotation or translation motion. In its most basic form, a cam system includes a rotating disk member (the cam) that compels the motion of an oscillating member called the follower. Among other applications, cam systems are commonly used in the valve trains of internal combustion engines, particularly in automotive engines.


The types of followers used in disk cam systems vary in terms of their shape, motion and contact stress. Common follower types include the knife-edge, flat-faced, and roller followers. Followers are designed to exhibit either translating motion or rotational motion when in contact with a rotating cam.


A follower displacement profile is comprised of three distinct displacement profiles: the rise, fall, and dwell profiles. These profiles are determined by the rate of change in the radius of curvature of the cam and its rotation direction. The first, second, and third derivatives of a follower displacement function produce follower velocity, acceleration, and jerk functions. In cam design for high-speed applications, the follower displacement, velocity, and acceleration profiles must be continuous and the follower jerk profile must be finite over a complete cam rotation cycle. These conditions are expressed in the fundamental law of cam design.


Common types of follower motion include constant velocity, constant acceleration, simple harmonic, cycloidal motion, and polynomial motion. Of these follower motion types, both cycloidal and polynomial motion fully satisfy the conditions for continuous and finite follower motion profiles and are subsequently suitable for high-speed applications. In the Appendix E.1 through E.6 MATLAB files, the user can produce follower displacement, velocity, acceleration, and jerk profiles for constant velocity, constant acceleration, simple harmonic, cycloidal motion, and polynomial motion (both 3-4-5 and 4-5-6-7 polynomials).


For two contacting surfaces, the contact force between the surface pair is oriented in the direction normal to the common tangent of the surface pair. For a cam and follower, as for gears, the orientation angle of the contact force is called the pressure angle. The contact force can have two components: components acting along the direction of and normal to the direction of follower motion. The contact force component acting in the direction of follower motion is necessary for effective follower operation. The contact force component acting normal to the follower motion direction produces side-thrust loads on the cam and follower. Designers often attempt to minimize the latter contact force component. In practice, pressure angles do not exceed 30° for translating followers and 45° for rotating followers.
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Problems




	Of the six follower motion types presented in this chapter, which type produces the smallest acceleration?


	Of the six follower motion types presented in this chapter, which types fully satisfy the fundamental law of cam design?


	In comparison to cams produced from follower motion types that fully satisfy the fundamental law of cam design, what is the primary limitation of cams produced from follower motion types that do not fully satisfy this law?


	What are the structural effects in a cam follower system that does not fully satisfy the fundamental law of cam design?


	Describe a primary similarity and difference between the motion in a cam follower system and a rack and pinion gear.


	Plot constant velocity motion-based follower displacement and velocity profiles for the follower displacement data given in Table P.9.1. Consider a cam rotation speed of 75 rad/s and a cam base circle radius of 15 mm.



TABLE P.9.1 Follower Dwell-Rise-Dwell-Fall Displacement Data





	Event

	Rotation Range

	Total Follower Displacement (mm)










	Dwell

	90°

	0






	Rise

	60°

	4






	Dwell

	30°

	4






	Fall

	180°

	0












	Plot constant velocity motion-based follower displacement and velocity profiles for the follower displacement data given in Table P.9.2. Consider a cam rotation speed of 85 rad/s and a cam base circle radius of 15 mm.



TABLE P.9.2 Follower Rise-Dwell-Fall-Dwell-Fall-Dwell Displacement Data





	Event

	Rotation Range

	Total Follower Displacement (mm)










	Rise

	60°

	3






	Dwell

	60°

	3






	Fall

	60°

	1.5






	Dwell

	60°

	1.5






	Fall

	60°

	0






	Dwell

	60°

	0












	Plot the cam profiles using the follower displacement data from Problems 6 and 7.


	Plot constant acceleration motion-based follower displacement, velocity, and acceleration profiles for the follower displacement data given in Table P.9.1. Consider a cam rotation speed of 70 rad/s and a cam base circle radius of 15 mm.


	Plot constant acceleration motion-based follower displacement, velocity, and acceleration profiles for the follower displacement data given in Table P.9.2. Consider a cam rotation speed of 80 rad/s and a cam base circle radius of 15 mm.


	Plot the cam profiles using the follower displacement data from Problems 9 and 10.


	Plot simple harmonic motion-based follower displacement, velocity, acceleration, and jerk profiles for the follower displacement data given in Table P.9.3. Consider a cam rotation speed of 55 rad/s and base circle radius of 20 mm.



TABLE P.9.3 Follower Rise-Dwell-Fall-Dwell-Rise-Dwell-Fall-Dwell Displacement Data





	Event

	Rotation Range

	Total Follower Displacement (mm)










	Rise

	15°

	3.5






	Dwell

	65°

	3.5






	Fall

	30°

	0






	Dwell

	50°

	0






	Rise

	60°

	2






	Dwell

	90°

	2






	Fall

	35°

	0






	Dwell

	15°

	0












	Plot simple harmonic motion-based follower displacement, velocity, acceleration, and jerk profiles for the follower displacement data given in Table P.9.4. Consider a cam rotation speed of 55 rad/s and base circle radius of 20 mm.



TABLE P.9.4 Follower Dwell-Rise-Dwell-Rise-Dwell-Fall Displacement Data





	Event

	Rotation Range

	Total Follower Displacement (mm)










	Dwell

	15°

	0






	Rise

	45°

	1.5






	Dwell

	30°

	1.5






	Rise

	90°

	4






	Dwell

	45°

	4






	Fall

	135°

	0












	Plot the cam profile using the follower displacement data from Problem 12.


	Plot cycloidal motion-based follower displacement, velocity, acceleration, and jerk profiles for the follower displacement data given in Table P.9.3. Consider a cam rotation speed of 25 rad/s and base circle radius of 20 mm.


	Plot cycloidal motion-based follower displacement, velocity, acceleration, and jerk profiles for the follower displacement data given in Table P.9.4. Consider a cam rotation speed of 50 rad/s and base circle radius of 20 mm.


	Plot the cam profile using the follower displacement data from Problem 16.


	Plot 3-4-5 polynomial motion-based follower displacement, velocity, acceleration, and jerk profiles for the follower displacement data given in Table P.9.5. Consider a cam rotation speed of 40 rad/s and base circle radius of 25 mm.



TABLE P.9.5 Follower Rise-Dwell-Rise-Dwell-Fall-Dwell-Fall-Dwell Displacement Data





	Event

	Rotation Range

	Total Follower Displacement (mm)










	Rise

	60°

	2.5






	Dwell

	30°

	2.5






	Rise

	60°

	5






	Dwell

	30°

	5






	Fall

	80°

	3.5






	Dwell

	50°

	3.5






	Fall

	25°

	0






	Dwell

	25°

	0












	Plot 3-4-5 polynomial motion-based follower displacement, velocity, acceleration, and jerk profiles (and the corresponding cam profile) for the follower displacement data given in Table P.9.6. Consider a cam rotation speed of 40 rad/s and base circle radius of 25 mm.



TABLE P.9.6 Follower Dwell-Rise-Dwell-Fall Displacement Data





	Event

	Rotation Range

	Total Follower Displacement (mm)










	Dwell

	30°

	0






	Rise

	150°

	5






	Dwell

	30°

	5






	Fall

	150°

	0












	Plot the cam profile using the follower displacement data from Problem 18.


	Plot 4-5-6-7 polynomial motion-based follower displacement, velocity, acceleration, and jerk profiles (and the corresponding cam profile) for the follower displacement data given in Table P.9.5. Consider a cam rotation speed of 35 rad/s and base circle radius of 25 mm.


	Plot 4-5-6-7 polynomial motion-based follower displacement, velocity, acceleration, and jerk profiles for the follower displacement data given in Table P.9.6. Consider a cam rotation speed of 35 rad/s and base circle radius of 25 mm.


	Plot the cam profile using the follower displacement data from Problem 22.


	Using the follower displacement and velocity data produced in Problem 6, plot the pressure angle profile for a translating follower. Assume no offset and a roller radius of 3.75 mm.


	Using the follower displacement and velocity data produced in Problem 12, plot the pressure angle profile for a translating follower. Assume no offset and a roller radius of 5 mm.


	Using the follower displacement and velocity data produced in Problem 18, plot the pressure angle profile for a translating follower. Assume no offset and a roller radius of 3.9 mm.


	Using the follower displacement and velocity data produced in Problem 10, plot the pressure angle profile for a translating follower. Assume a 5 mm offset and a roller radius of 2.75 mm.


	Using the follower displacement and velocity data produced in Problem 16, plot the pressure angle profile for a translating follower. Assume a 15 mm offset and a roller radius of 1.75 mm.


	Using the follower displacement and velocity data produced in Problem 22, plot the pressure angle profile for a translating follower. Assume a 3 mm offset and a roller radius of 3.95 mm.


	Using the follower displacement and velocity data produced in Problem 6, plot the pressure angle profile for a rotating follower. Assume a roller radius of 3.5 mm, a follower arm length of 275 mm and a center-to-center y-axis distance of 280 mm.


	Using the follower displacement and velocity data produced in Problem 12, plot the pressure angle profile for a rotating follower. Assume a roller radius of 5.75 mm, a follower arm length of 300 mm and a center-to-center y-axis distance of 280 mm.


	Using the follower displacement and velocity data produced in Problem 18, plot the pressure angle profile for a rotating follower. Assume a roller radius of 1.75 mm, a follower arm length of 290 mm and a center-to-center y-axis distance of 280 mm.


	Using the follower displacement and velocity data produced in Problem 10, plot the pressure angle profile for a rotating follower. Assume a roller radius of 3.5 mm, a follower arm length of 295 mm and a center-to-center y-axis distance of 300 mm.


	Using the follower displacement and velocity data produced in Problem 16, plot the pressure angle profile for a rotating follower. Assume a roller radius of 5.75 mm, a follower arm length of 285 mm and a center-to-center y-axis distance of 300 mm.


	Using the follower displacement and velocity data produced in Problem 22, plot the pressure angle profile for a rotating follower. Assume a roller radius of 2.25 mm, a follower arm length of 275 mm and a center-to-center y-axis distance of 300 mm.











  
    



10 Kinematic Analysis of Spatial Mechanisms


DOI: 10.1201/9781003316961-10






CONCEPT OVERVIEW


In this chapter, the reader will gain a central understanding regarding




	Advantages and disadvantages of spatial mechanisms and the ongoing aim of spatial mechanism modeling


	Intermediate and total spatial kinematics of the RRSS, RSSR, and 4R spherical mechanisms


	Planar mechanism kinematic analysis using spatial mechanism kinematic models









10.1 Introduction


Planar mechanisms are restricted to motion in two-dimensional or planar space. Spatial mechanisms can exhibit three-dimensional or spatial motion. Spatial mechanism motion is predominantly determined by the degrees of freedom of the mechanism joints used and spatial orientation of the joints.


The cylindrical joint (Figure 3.9) can enable spatial mechanism motion because this joint has a translational degree of freedom (DOF) along the z-axis in addition to the planar rotational DOF about the z-axis. The spherical joint (Figure 3.9) can enable spatial mechanism motion because this joint has rotational DOFs about the x- and y-axes in addition to the planar rotational DOF about the z-axis. Even revolute and prismatic joints (Figure 3.9), though possessing only a single DOF, will enable spatial mechanism motion when positioned to have joint axes (or lines of action in the case of prismatic joints) that are skewed to the x–y plane.


Because spatial mechanisms have the capacity to exhibit 3D motion, they offer a greater variety of possible motions and are structurally more general than planar mechanisms. However, because the equations for spatial mechanism analysis are often much larger in scale and greater in complexity than those for planar mechanisms, their real-world applications are often limited. In practice, it is not uncommon to find complicated planar mechanism solutions when, in fact, a simpler spatial mechanism solution is possible. It is, therefore, an ongoing task to devise simple methods of calculation, to produce design aids with diagrams, and to set design standards for spatial mechanisms [1].


This textbook considers three types of four-bar spatial mechanisms: the revolute-revolute-spherical-spherical or RRSS, the revolute-revolute-revolute-revolute spherical or 4R spherical, and the revolute-spherical-spherical-revolute or RSSR mechanisms (Figures 3.7a, b, and c, respectively) [2, 3]. The RRSS, 4R spherical, and RSSR are among the more basic four-bar spatial mechanisms in terms of the types of joints used and the required linkage assembly conditions for motion.






10.2 RRSS Mechanism Analysis




10.2.1 Displacement Equations


The revolute-revolute-spherical-spherical mechanism or RRSS mechanism (Figure 10.1) is a spatial four-link mechanism with a mobility of 2 (with L = 4 and J1 = J3 = 2). Although one DOF of the RRSS mechanism enables it to be crank driven, the other DOF is produced by the follower link. The follower link (link b0–b1 in Figure 10.1) is bounded by spherical joints. As a result, this link can rotate about its own axis of symmetry. This DOF is called a passive degree of freedom. Passive DOFs generally do not contribute to the overall kinematic motion of a mechanism.*
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FIGURE 10.1 RRSS mechanism displacement variables.



Suh and Radcliffe presented displacement equations for the RRSS mechanism [4]. The following follower-link constant-length equation forms the basis for the RRSS displacement equations:


(b−b0)T(b−b0)−(b1−b0)T(b1−b0)=0 (10.1)


The rotation of the crank and coupler links (links a0–a1 and a1–b1, respectively, in Figure 10.1) and the rotation of the crank moving pivot joint axis ua1 about the crank fixed pivot joint axis ua0 (by rotation angle θ) are given by


a=[Rθ,ua0](a1−a0)+a0 (10.2)


ua=[Rθ,ua0]ua1 (10.3)


b1′=[Rθ,ua0](b1−a0)+a0 (10.4)


* The passive DOFs associated with the RSSR and RRSS mechanisms generally do not contribute to mechanism motion because the effects of these DOFs are typically highly localized.

The global displacement of the follower moving pivot b1 is expressed as


b=[Rα,ua](b1′−a)+a (10.5)


The rotational displacement matrices [Rθ,ua0] and [Rα,ua] are identical in form to Matrix 2.28.


Substituting Equation 10.5 into Equation 10.1 produces


E cos(α)+F sin(α)+G=0 (10.6)


In Equation 10.6,


E=(a−b0)T{[I−Qua](b1′−a)} (10.7)*


F=(a−b0)T{[Pua](b1′−a)} (10.8)


G=(a−b0)T{[Qua](b1′−a)}+12{(b1′−a)T(b1′−a)+(a−b0)T(a−b0)−(b1−b0)T(b1−b0) (10.9)


[Pua]=[0−uazuayuaz0−uax−uayuax0] (10.10)


and


[Qua]=[uax2uaxuayuaxuazuaxuayuay2uayuazuaxuazuaxuaz2] (10.11)


The two coupler-link rotation-angle solutions (α) for Equation 10.6 are


α1,2=2 tan−1−F±E2+F2−G2G−E (10.12)†


With α known, the displaced RRSS moving pivot b from Equation 10.5 and also the displaced RRSS coupler point p from Equation 10.13 can be calculated.


As noted in Section 4.10, two sets of link displacement angles are calculated (for a given crank displacement angle) in algebraic four-bar mechanism displacement equations. The ± term in Equation 10.12 corresponds to two coupler displacement angle solutions—one solution for each mechanism assembly configuration.


The global displacement of an arbitrary RRSS coupler point p1 is expressed as


p=[Rα,ua](p1′−a)+a (10.13)


* Matrix I in Equations 10.7 and 10.33 is a 3 × 3 identity matrix.

† This coupler-link displacement angle is not measured with respect to the initial coupler position (like the planar four-bar mechanism for example), but with respect to the crank link.

where


p1′=[Rθ,ua0](p1−a0)+a0 (10.14)


The RRSS variables a0, a1, ua0, ua1, b0, b1, and p1 are 3 × 1 vectors containing x-, y-, and z-components.






10.2.2 Velocity Equations


Figure 10.2 includes the velocity variables for the RRSS mechanism. The following equation, the derivative of the follower-link constant-length equation, forms the basis for the RRSS velocity equations:
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FIGURE 10.2 RRSS mechanism velocity variables.



(b˙)T(b−b0)=0 (10.15)


The global velocity of the RRSS moving pivot b1 (variable b˙ in Equation 10.15) is expressed as


b˙=a˙[Pua](b−a)+b˙′=[Vα˙,ua](b−a)+b˙′ (10.16)


where


b˙′=θ˙[Pua0](b−a0)=[Vθ˙,ua0](b−a0) (10.17)


The rotational velocity matrices [Vθ˙,ua0] and [Vα˙,ua] are identical in form to Matrix 2.33.


In an identical form, the global velocity of an arbitrary RRSS coupler point p1 is expressed as


p˙[Vα˙,ua](p−a)+p˙′ (10.18)


where


p˙′[Vθ˙,ua0](p−a0) (10.19)


Substituting Equations 10.16 and 10.17 into Equation 10.15 and solving for the coupler angular velocity. α˙ · produces the coupler angular velocity equation


α˙=−θ˙(b−b0)T{[Pua0](b−a0)}(b−b0)T{[Pua](b−a)} (10.20)


With α˙ known, the displaced RRSS moving pivot velocity b˙ from Equation 10.16 and also the displaced RRSS coupler point velocity p˙ from Equation 10.18 can be calculated.


Lastly, the global velocity of the RRSS moving pivot a1 is expressed as


a˙=θ˙[Pua0](a−a0)=[Vθ˙,ua0](a−a0) (10.21)


which is identical in form to Equations 10.17 and 10.19.






10.2.3 Acceleration Equations


Figure 10.3 includes the acceleration variables for the RRSS mechanism. The following equation, the second derivative of the follower-link constant-length equation, forms the basis for the RRSS acceleration equations:
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FIGURE 10.3 RRSS mechanism acceleration variables.



(b¨)T(b−b0)+(b˙)T(b˙)=0 (10.22)


The global acceleration of the RRSS moving pivot b1 (variable b¨ in Equation 10.22) is expressed as


b¨=b¨'+{α¨[Pua]+α˙[P˙ua]+α˙2[Pua]}(b−a)+2θ˙[Pua0]{α˙[Pua](b−a)}=b¨'+[Aα˙.α¨,ua](b−a)+2[Vθ˙,ua0]{[Vα˙,ua](b−a)} (10.23)


where


b¨′={θ¨[Pua0]+θ˙[P˙ua0]+θ˙2[Pua0][Pua0]}(b−a0)=[Aθ˙,θ¨,ua0](b−a0) (10.24)


The matrices [P˙ua] and [P˙ua0] that appear in Equations 10.23 and 10.24 become zero, since ua0 and ub0, being grounded, do not exhibit motion [5]. The rotational acceleration matrices [Aθ˙,θ¨,ua0] and [Aα˙,α¨,ua] are identical in form to Matrix 2.37.


In an identical form, the global acceleration of an arbitrary RRSS coupler point p1 is expressed as


p¨=p¨′+[Aα˙,α¨,ua](p−a)+2[Vθ˙,ua0]{[Vα˙,ua](p−a)} (10.25)


where


p¨′=[Aθ˙,θ¨,ua0](p−a0) (10.26)


Substituting Equations 10.23 and 10.24 into Equation 10.22 and solving for the coupler angular acceleration α¨ produces the coupler angular acceleration equation


α¨=−(b−b0)T(b¨′+{α˙2[Pua][Pua]}(b−a)+2[Vθ˙,ua0]{[Vα˙,ua](b−a)})+(b˙)T(b˙)(b−b0)T{[Pua](b−a)} (10.27)


With α¨ known, the displaced RRSS moving point acceleration b¨ from Equation 10.23 and also the displaced RRSS coupler point velocity p¨ from Equation 10.25 can be calculated.


Lastly, the global acceleration of the RRSS moving pivot a1 is expressed as


a¨=[Aθ˙,θ¨,ua0](a−a0) (10.28)


which is identical in form to Equations 10.24 and 10.26.


Appendix F.1 includes the MATLAB® file user instructions for RRSS displacement, velocity, and acceleration analysis. This MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317) utilizes the RRSS displacement, velocity, and acceleration equations presented in Sections 10.2.1–10.2.3.*


Although the equations presented in Sections 10.2.1–10.2.3 are presented for the spatial RRSS mechanism, the same equations can also be used for the displacement, velocity, and acceleration analysis of a planar four-bar mechanism (specifically, a planar RRSS mechanism). To accomplish this, the user should specify planar mechanism values for the RRSS mechanism variables (e.g., ua0 = ua1 = (0, 0, 1) and a0z = a1z = b0z = b1z = p1z = 0).†


* The library of MATLAB files used in this chapter can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† Due to the passive DOF of the follower link, rotation angles for this link cannot be directly calculated in the RRSS mechanism equations, even when restricted to planar motion (unlike the planar four-bar equations in Section 4.3).



Example 10.1


Problem Statement: Figure E.10.1 illustrates an RRSS mechanism use to guide a solar panel. Using the Appendix F.1 MATLAB file, calculate the solar panel positions (the displaced values of points p1, q1, and r1) achieved by the RRSS mechanism in Table E.10.1 at crank displacement angles of 50°, 100°, and 200°.
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FIGURE E.10.1 RRSS mechanism used to guide a solar panel.







TABLE E.10.1 RRSS Mechanism Dimensions





	Variable

	Value










	a0

	−0.0576, 0.2890, −1.4112






	a1

	0.1452, −2.5421, −1.18






	ua0

	−0.0003, 0.0814, 0.9967






	ua1

	0.304, 0.0992, 0.9475






	b0

	0.0851, 0.457, 0.5096






	b1

	1.7725, 5.1566, 0.6499






	p1

	1.7321, 0, −1






	q1

	1.2321, 0, −1.866






	r1

	1.9486, 0, −1.125











Known Information:Table E.10.1 and Appendix F.1 MATLAB file.


Solution Approach: Figure E.10.2 includes the input specified (in bold text) in the Appendix F.1 MATLAB file. Table E.10.2 includes the spatial coordinates of p, q, and r calculated using the Appendix F.1 MATLAB file for the three crank displacement angles. The dimensions in Table E.10.1 and the results in Table E.10.2 are for the initial RRSS mechanism configuration (which corresponds to the first branch in the Appendix F.1 MATLAB file).*
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FIGURE E.10.2 Specified input (in bold text) in the Appendix F.1 MATLAB file for Example 10.1.







TABLE E.10.2 Solar Panel Positions Achieved by RRSS Mechanism





	θ

	P

	q

	r










	50°

	1.0926, 1.3848, −1.0402

	0.7287, 0.9589, −1.8685

	1.2045, 1.5598, −1.1793






	100°

	−0.1671, 1.7348, −1.0237

	−0.1141, 1.1570, −1.8382

	−0.2507, 1.9244, −1.1637






	200°

	−1.7270, −0.0051, −0.9672

	−1.2325, 0.0396, −1.8352

	−1.9224, −0.1086, −1.0839













* The Appendix F.1 MATLAB file produces results for both the initial (branch 1) and second (branch 2) RRSS mechanism configurations.









10.3 RSSR Mechanism Analysis




10.3.1 Displacement Equations


The revolute-spherical-spherical-revolute or RSSR mechanism (Figure 10.4) is a spatial four-bar mechanism having two degrees of freedom (with L = 4 and J1 = J3 = 2), the rotation of the coupler link (link a1–b1) about its own axis of symmetry being a passive DOF.
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FIGURE 10.4 RSSR mechanism displacement variables.



Suh and Radcliffe presented displacement equations for the RSSR mechanism [6]. The following coupler-link constant-length equation forms the basis for the RSSR displacement equations:


(a−b)T(a−b)−(a1−b1)T(a1−b1)=0 (10.29)


The rotation of the crank and follower links (links a0–a1 and b0–b1, respectively, in Figure 10.4) about their fixed pivot joint axes by crank and follower rotation angles θ and ϕ, respectively, are given by


a=[Rθ,ua0](a1−a0)+a0 (10.30)


and


b=[Rϕ,ub0](b1−b0)+b0 (10.31)


The rotational displacement matrices [Rθ,ua0] and [Rϕ,ub0] are identical in form to Matrix 2.28.


Substituting Equations 10.30 and 10.31 into Equation 10.29 produces


E cos(ϕ)+F sin(ϕ)+G=0 (10.32)


In Equation 10.32,


E=(a−b0)T{[I−Qub0](b1−b0)} (10.33)


E=(a−b0)T{[Pub0](b1−b0)} (10.34)


G=(a−b0)T{[Qub0](b1−b0)}+12{(a1−b1)T(a1−b1)−(a−b0)T(a−b0)−(b1−b0)T(b1−b0)} (10.35)


In Equations 10.33–10.35, matrices [Qub0] and [Pub0] are identical in form to Equations 10.10 and 10.11. The two follower-link rotation-angle solutions (ϕ) for Equation 10.32 are


ϕ1,2=2 tan−1−F±E2+F2−G2G−E (10.36)*


With ϕ known, the displaced RSSR moving pivot b from Equation 10.32 can be calculated. The variables a0, a1, ua0, b0, b1, and ub0 are 3 × 1 vectors containing x-, y-, and z-components.






10.3.2 Velocity Equations


Figure 10.5 includes the velocity variables for the RSSR mechanism. The following equation, the derivative of the coupler-link constant-length equation, forms the basis for the RSSR velocity equations:




[image: ]

FIGURE 10.5 RSSR mechanism velocity variables.



(a˙−b˙)T(a−b)=0 (10.37)


* Like Equation 10.12, there are two ϕ solutions corresponding to the two RSSR assembly configurations (the open and crossed configurations) for every θ value.

The global velocity of the RSSR moving pivot b1 (variable b˙ in Equation 10.37) is expressed as


b˙=ϕ˙[Pub0](b−b0)=[Vϕ,ub0](b−b0) (10.38)


and the global velocity of the RSSR moving pivot a1 (variable a˙ in Equation 10.38) is expressed as


a˙=θ˙[Pua0](a−a0)=[Vθ˙,ua0](a−a0) (10.39)


The rotational velocity matrices [Vθ˙,ua0]and [Vϕ˙,ua0] are identical in form to Matrix 2.33.


Substituting Equations 10.38 and 10.39 into Equation 10.37 and solving for the follower angular velocity ϕ˙ produces the follower angular velocity equation


ϕ˙=(a˙)T(a−b)(a−b)T{[Pub0](b−b0)} (10.40)


With ϕ˙ known, the displaced RSSR moving pivot velocity b˙ from Equation 10.38 can be calculated.






10.3.3 Acceleration Equations


Figure 10.6 includes the acceleration variables for the RSSR mechanism. The following equation, the second derivative of the coupler-link constant-length equation, forms the basis for the RSSR acceleration equations:
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FIGURE 10.6 RSSR mechanism acceleration variables.



(a¨−b¨)T(a−b)+(a˙−b˙)T(a˙−b˙)=0 (10.41)


The global acceleration of the RSSR moving pivot b1 (variable b¨ in Equation 10.41) is expressed as


b¨={ϕ¨[Pub0]+ϕ˙2[Pub0]}(b−b0)=[Aϕ˙,ϕ¨,ub0](b−b0) (10.42)


and the global acceleration of the RSSR moving pivot a1 (variable a¨ in Equation 10.41) is expressed as


a¨={θ¨[Pua0]+θ˙2[Pua0][Pua0]}(a−a0)=[Aθ˙,θ¨,ua0](a−a0) (10.43)*


The rotational acceleration matrices [Aθ˙,θ¨,ua0] and [Aϕ˙,ϕ¨,ub0] are identical in form to Matrix 2.37.


Substituting Equations 10.42 and 10.43 into Equation 10.41 and solving for the follower angular acceleration ϕ¨ produces the follower angular acceleration equation


ϕ¨=(a−b)T{a¨−ϕ˙2[Pub0][Pub0](b−b0)}+(a˙−b˙)T(a˙−b˙)(a−b)T{[Pub0](b−b0)} (10.44)


With ϕ¨ known, the displaced RSSR moving pivot acceleration b¨ from Equation 10.42 can be calculated.


Appendix F.2 includes the MATLAB file user instructions for RSSR displacement, velocity, and acceleration analysis. This MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317) utilizes the RSSR displacement, velocity, and acceleration equations presented in Sections 10.3.1–10.3.3.


Like the RRSS mechanism equations in Section 10.2, the RSSR equations can also be used for the displacement, velocity, and acceleration analysis of a planar four-bar mechanism (specifically, a planar RSSR mechanism). To accomplish this, the user should specify planar mechanism values for the RSSR mechanism variables (e.g., ua0 = ub0 = (0,0,1) and a0z = a1z = b0z = b1z = 0).†


* In Equation 10.42 (and similarly in Equation 10.43), the term ϕ¨ [Pub0] (b–b0)· corresponds to the tangential acceleration and the term ϕ2 [Pub0] [Pub0] (b–b0) corresponds to the normal acceleration.

† Due to the passive DOF of the coupler link, rotation angles for this link cannot be directly calculated in the RSSR mechanism equations, even when restricted to planar motion (unlike the planar four-bar equations in Section 4.3).



Example 10.2


Problem Statement: Figure E.10.3 illustrates an RSSR mechanism used in a steering system. All of the gear pairs shown have 1:1 gear ratios. Using the Appendix F.2 MATLAB file, calculate the wheel rotation angles achieved by the RSSR mechanism in Table E.10.3 over a steering wheel displacement angle range of 50° (at 10° increments).
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FIGURE E.10.3 RSSR mechanism used in a steering system.







TABLE E.10.3 RSSR Mechanism Dimensions





	Variable

	Value










	a0

	0, 0, −0.4023






	a1

	0.3356, −0.0708, −0.4023






	ua0

	0, 0, 1






	b0

	1, −2.3885, 0






	b1

	1, −2.3885, 0.73






	ub0

	0, −1, 0











Known Information:Table E.10.3 and Appendix F.2 MATLAB file.


Solution Approach: Figure E.10.4 includes the input specified (in bold text) in the Appendix F.2 MATLAB file. Table E.10.4 includes the wheel rotation angles calculated using the Appendix F.2 MATLAB file over the steering wheel displacement angles. The dimensions in Table E.10.3 and the results in Table E.10.4 are for the initial RSSR mechanism configuration (which corresponds to the first branch in the Appendix F.2 MATLAB file).*
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FIGURE E.10.4 Specified input (in bold text) in the Appendix F.2 MATLAB file for Example 10.2.







TABLE E.10.4 Wheel Rotation Angles Achieved by RSSR Mechanism





	θ (°)

	ϕ (°)










	10

	15.041






	20

	29.998






	30

	44.907






	40

	60.009






	50

	76.05













* The Appendix F.2 MATLAB file produces results for both the initial (branch 1) and second (branch 2) RSSR mechanism configurations.







10.4 Four-Revolute Spherical Mechanism Analysis


The revolute-revolute-revolute-revolute spherical mechanism or four-revolute spherical mechanism or simply 4R spherical mechanism (Figure 10.7) is a single-DOF four-bar mechanism that exhibits spherical motion—a unique type of spatial motion [7].* Contrary to Gruebler’s equation, from which a mobility of −2 is calculated for the 4R spherical mechanism (with L = J1 = 4), it actually has a mobility of 1.† Because the links of the 4R spherical mechanism are circular arcs (with all links having a common center) and the mechanism joint axes all intersect at that common center, the links of this mechanism have spherical surface workspaces.




[image: ]

FIGURE 10.7 4R spherical mechanism.



The RRSS kinematic equations introduced in Section 10.2 can be applied directly to the 4R spherical mechanism (Figure 10.8) [8]. This application is particularly useful for calculating 4R spherical mechanism link positions, velocities, and accelerations. To apply the RRSS kinematic equations, the user should specify the appropriate 4R spherical mechanism values for a0, a1, b0, b1, p1, ua0, and ua1. The variables a0, a1, b0, and b1 should all lie on the surface of a sphere and variables ua0 and ua1 should intersect at the center of the sphere. If it is assumed that the 4R spherical mechanism should lie on a sphere of unit radius (rsphere = 1), then a0 = ua0 and a1 = ua1.
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FIGURE 10.8 RRSS mechanism configured as a 4R spherical mechanism.



* While planar mechanisms have planar-surface workspaces and most spatial mechanisms have volume workspaces, spherical mechanisms have spatial-surface workspaces.

† Mechanisms like the 4R spherical mechanism, having true DOFs that are contrary to Gruebler’s equation, are called paradoxes or maverick mechanisms.

The RSSR kinematic equations introduced in Section 10.3 can be applied directly to the 4R spherical mechanism (Figure 10.9) [9]. This application is particularly useful for calculating 4R spherical mechanism link angular positions, velocities, and accelerations. To apply the RSSR kinematic equations, the user should specify the appropriate 4R spherical mechanism values for a0, a1, b0, b1, ua0, and ub0. The variables a0, a1, b0, and b1 should all lie on the surface of a sphere and variables ua0 and ub0 should intersect at the center of the sphere. If it is assumed that the 4R spherical mechanism should lie on a sphere of unit radius (rsphere = 1), then a0 = ua0 and b0 = ub0.




[image: ]

FIGURE 10.9 RSSR mechanism configured as a 4R spherical mechanism.





Example 10.3


Problem Statement: Figure E.10.5 illustrates a 4R Spherical mechanism used in a folding wing system. Using the Appendix F.1 MATLAB file, calculate the location and velocity of point p1 achieved by the 4R Spherical mechanism in Table E.10.5 over a crank displacement angle range of 168° (at 28° increments). The rotational speed of the crank is 0.5 revolutions/min.




[image: ]

FIGURE E.10.5 4R Spherical mechanism used in a folding wing system.







TABLE E.10.5 4R Spherical Mechanism Dimensions (with Link Lengths in m)





	Variable

	Value










	a0

	0.2612, 0.7274, 0.6346






	a1

	−0.0151, 0.9879, 0.1552






	b0

	0.1793, 0.9837, 0.0172






	b1

	−0.1761, 0.2162, 0.9603






	p1

	−0.2081, 0.1675, 0.8227











Known Information: Table E.10.5 and Appendix F.1 MATLAB file.


Solution Approach: Figure E.10.6 includes the input specified (in bold text) in the Appendix F.1 MATLAB file. Table E.10.6 includes the p1 location and velocity values calculated using the Appendix F.1 MATLAB file. The dimensions in Table E.10.5 and the results in Table E.10.6 are for the initial RRSS mechanism configuration (which corresponds to the first branch in the Appendix F.1 MATLAB file).
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FIGURE E.10.6 Specified input (in bold text) in the Appendix F.1 MATLAB file for Example 10.3.







TABLE E.10.6 Wing Point Locations and Velocities Achieved by 4R Spherical Mechanism





	θ (°)

	p (m)

	(m/s)










	28

	0.1998, 0.0772, 0.838

	0.0261, −0.0059, −0.0057






	56

	0.4058, 0.0319, 0.7632

	0.0195, −0.0041, −0.0102






	84

	0.5745, −0.0011, 0.6466

	0.0168, −0.003, −0.0149






	112

	0.7174, −0.0252, 0.4827

	0.0136, −0.0021, −0.0203






	140

	0.8209, −0.04, 0.2697

	0.0082, −0.001, −0.0251






	168

	0.8637, −0.0434, 0.023

	0.0007, 0.0003, −0.0271















Example 10.4


Problem Statement: Figure E.10.7 illustrates the initial and final positions of a 4R Spherical mechanism used to displace a camera (affixed to the follower link). The mechanism dimensions are a0 = (1,0,0), a1 = (0.9083, -0.3824, 0.1695), b0 = (sin 45°, cos 45°, 0), and b1 = (-0.0166, -0.1928, 0.9811). Given a 180° crank displacement, calculate the resulting follower angular displacement using the Appendix F.2 MATLAB file.
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FIGURE E.10.7 4R Spherical camera rotation mechanism at (left) initial and (right) final positions.



Known Information: Appendix F.2 MATLAB file.


Solution Approach: Figure E.10.8 includes the input specified (in bold text) in the Appendix F.2 MATLAB file. A follower displacement of 80.255° was calculated. The 4R Spherical dimensions and results given in this example problem are for the initial RSSR mechanism configuration (which corresponds to the first branch in the Appendix F.2 MATLAB® file).
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FIGURE E.10.8 Specified input (in bold text) in the Appendix F.2 MATLAB file for Example 10.4.









10.5 Planar Four-Bar Kinematic Analysis Using RRSS and RSSR Kinematic Equations


As noted in this chapter, the kinematic equations for the spatial RRSS and RSSR mechanisms can also be applied to the planar four-bar mechanism. To consider four-bar mechanism motion in the x-y plane, the z-components of a0, a1, b0, b1, and p1 should be specified as zero (therefore a0z = a1z = b0z = b1z = p1z = 0).* Also, the joint axis vectors should be along the z-axis (therefore, ua0 = ua1 = ub0 = (0,0,1)).


Slider-crank mechanisms can also be modeled using the RRSS and RSSR kinematic equations. While an infinite follower length cannot be specified for a planar four-bar mechanism (to perfectly replicate a slider-crank mechanism), a follower length can be specified to produce an acceptable maximum slider error.† For example, a planar four-bar mechanism having a crank length of 1, a coupler length of 2.23, and a follower length of 100,000 will produce a maximum slider error in the order of 10−5.




Example 10.5


Problem Statement: Using the Appendix F.1 MATLAB file, repeat Example 4.2 using the displacement equations for the spatial RRSS mechanism. When expressed as x–y coordinates, the mechanism dimensions in Table E.4.2 become a0 = (0, 0, 0), a1 = (1.3266, 1.4428, 0), b0 = (0.6075,-0.6909,0), b1 = (1.5312,1.1839,0), and p1 = (2.0642,0.509,0).


* If additional coupler points are used (e.g., coupler points q1 or r1), their z-components should also be zero.

† A slider-crank mechanism is kinematically identical to a planar four-bar mechanism having an infinite ­follower length (see Chapter 3).

Known Information: Example 4.2 and Appendix F.1 MATLAB file.


Solution Approach: Figure E.10.9 includes the input specified (in bold text) in the Appendix F.1 MATLAB file. Figure E.10.10 includes the level-luffing crane and coupler curve calculated. The crane dimensions and results given in this figure are for the initial RRSS mechanism configuration (which corresponds to the first branch in the Appendix F.1 MATLAB file).
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FIGURE E.10.9 Specified input (in bold text) in the Appendix F.1 MATLAB file for Example 10.5.
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FIGURE E.10.10 Level-luffing crane mechanism with calculated coupler curve.







Example 10.6


Problem Statement: Using the Appendix F.1 MATLAB file, calculate the minimum and maximum slider velocities for the slider-crank mechanism in Example 4.6 using the displacement equations for the spatial RRSS mechanism. When expressed as x–y coordinates, the mechanism dimensions in Table E.4.5 become a0 = (0, 0, 0), a1 = (0.7071, 0.7071, 0), and b1 = (2.03, 0, 0). Let b0 = (2.03,-500000,0).


Known Information: Example 4.6 and Appendix F.1 MATLAB file.


Solution Approach: Figure E.10.11 includes the input specified (in bold text) in the Appendix F.1 MATLAB file. Maximum and minimum slider velocities of ±122.69 cm/s were calculated. The mechanism dimensions and results given in this example are for the initial RRSS mechanism configuration (which corresponds to the first branch in the Appendix F.1 MATLABfile).
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FIGURE E.10.11 Specified input (in bold text) in the Appendix F.1 MATLAB file for Example 10.6.







Example 10.7


Problem Statement: Using the Appendix F.2 MATLAB file, plot the follower angular displacement versus the crank angular displacement (for both mechanism branches) for the mechanism in Example 4.2. When expressed as x–y coordinates, the mechanism dimensions in Table E.4.2 become a0 = (0, 0, 0), a1 = (1.3266, 1.4428, 0), b0 = (0.6075,-0.6909, 0), and b1 = (1.5312, 1.1839, 0).


Known Information: Example 4.2 and Appendix F.2 MATLAB file


Solution Approach: Figure E.10.12 includes the input specified (in bold text) in the Appendix F.2 MATLAB file. Figure E.10.13 includes the follower versus crank angular displacement plots for the level-luffing crane mechanism calculated using the Appendix F.2 MATLAB file.
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FIGURE E.10.12 Specified input (in bold text) in the Appendix F.2 MATLAB file for Example 10.7.
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FIGURE E.10.13 Follower versus crank angular displacement plots for level-luffing crane mechanism.









10.6 Spatial Mechanism Kinematic Analysis and Modeling in Simscape MultibodyTM


As has been noted throughout this chapter, Appendices F.1 and F.2 include user instructions for the RRSS and RSSR mechanism MATLAB files, respectively. In these files, the displacement, velocity, and acceleration equations formulated in this chapter are solved. The Appendix F.1 and F.2 MATLAB files provide means for the user to efficiently conduct RRSS and RSSR kinematic analyses by calculating solutions from their displacement, velocity, and acceleration equations.


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based kinematic analysis. A library of Simscape Multibody files is available for download at https://www.routledge.com/p/book/9781032328317 to conduct RRSS and RSSR mechanism displacement, velocity, and acceleration analyses.* With these files, the user specifies the mechanism link dimensions and driving link parameters (e.g., crank displacements, velocities, and accelerations) and measures the calculated displacements, velocities, and accelerations of the mechanism locations of interest. Additionally, the motion of the mechanism itself is simulated. The Simscape Multibody file user instructions for the RRSS and RSSR mechanisms are given in Appendices K.1 and K.2, respectively.




Example 10.8


Problem Statement: Repeat Example 10.1 using the Appendix K.1 Simscape Multibody files.


Known Information: Example 10.1 and Appendix K.1 Simscape Multibody files.


Solution Approach: Figure E.10.14 includes the input specified (in bold text) in the Appendix K.1 Simscape Multibody files. Table E.10.7 includes the solutions calculated using the Appendix K.1 Simscape Multibody files. Figure E.10.15 is an initial position snapshot of the mechanism animation generated from the Appendix K.1 Simscape Multibody files
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FIGURE E.10.14 Specified input (in bold text) in the Appendix K.1 Simscape Multibody file for Example 10.8.
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FIGURE E.10.15 Initial position of the RRSS mechanism in the Appendix K.1 Simscape Multibody animation for Example 10.8.







TABLE E.10.7 Solar Panel Positions Achieved by RRSS Mechanism





	θ

	p

	q

	r










	49.978°

	1.0932, 1.3844, −1.0402

	0.7292, 0.9587, −1.8686

	1.2052, 1.5594, −1.1793






	99.993°

	−0.1669, 1.7350, −1.0239

	−0.1140, 1.1572, −1.8383

	−0.2504, 1.9246, −1.1638






	200.000°

	−1.7271,−0.0052, −0.9672

	−1.2325, 0.0395, −1.8352

	−1.9225, −0.1086, −1.0839











* This library can also be downloaded from the authors’ server at http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.





Example 10.9


Problem Statement: Repeat Example 10.2 using the Appendix K.2 Simscape Multibody files.


Known Information:Example 10.2 and Appendix K.2 Simscape Multibody files.


Solution Approach: Figure E.10.16 includes the input specified (in bold text) in the Appendix K.2 Simscape Multibody file. Table E.10.8 includes the solutions calculated using the Appendix K.2 Simscape Multibody files. Figure E.10.17 is an initial position snapshot of the mechanism animation generated from the Appendix K.2 Simscape Multibody files.
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FIGURE E.10.16 Specified input (in bold text) in the Appendix K.2 Simscape Multibody file for Example 10.9.
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FIGURE E.10.17 Initial position of the RSSR mechanism in the Appendix K.2 Simscape Multibody animation for Example 10.9.







TABLE E.10.8 Wheel Rotation Angles Achieved by RSSR Mechanism





	θ(°)

	ϕ(°)










	10.010

	15.0570






	19.980

	29.9680






	30.006

	44.9170






	39.976

	59.9720






	50.000

	76.0500















Example 10.10


Problem Statement: Repeat Example 10.3 using the Appendix K.1 Simscape Multibody files.


Known Information: Example 10.3 and Appendix K.1 Simscape Multibody files.


Solution Approach: Figure E.10.18 includes the input specified (in bold text) in the Appendix K.1 Simscape Multibody file. Table E.10.9 includes the solutions calculated using the Appendix K.1 Simscape Multibody files. Figure E.10.19 is a final position snapshot of the mechanism animation generated from the Appendix K.1 Simscape Multibody files.
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FIGURE E.10.18 Specified input (in bold text) in the Appendix K.1 Simscape Multibody file for Example 10.10.
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FIGURE E.10.19 Final position of the 4R spherical mechanism in the Appendix K.1 Simscape Multibody animation for Example 10.10. (The links of the 4R spherical mechanism are depicted as straight (rather than as circular arcs) in the Simscape Multibody animation window.)







TABLE E.10.9 Wing Point Locations and Velocities Achieved by 4R Spherical Mechanism





	θ [°]

	p [m]

	p˙ [m/sec]










	27.999

	0.1998, 0.0772, 0.8381

	0.0261, −0.0059, −0.0057






	56.001

	0.4058, 0.0319, 0.7632

	0.0195, −0.0041, −0.0102






	84.000

	0.5745, −0.0011, 0.6467

	0.0168, −0.0030, −0.0149






	112.000

	0.7173, −0.0252, 0.4827

	0.0136, −0.0021, −0.0203






	140.000

	0.8209, −0.0399, 0.2697

	0.0082, −0.0010, −0.0251






	168.000

	0.8636, −0.0433, 0.0231

	0.0007, 0.0003, −0.0271

















10.7 Summary


Just as planar mechanisms are configured so that mechanism motion is restricted to two-dimensional space, spatial mechanisms are configured to exhibit motion in three-dimensional space. Spatial mechanism motion is determined in part by the mobility of the mechanism joints used and the spatial orientation of the joints. The four-bar spatial mechanisms considered in this chapter are the RRSS, RSSR, and 4R spherical mechanisms.


Because spatial mechanisms can exhibit spatial motion, they offer a greater variety of possible motions and are structurally more general than planar mechanisms. However, because spatial mechanism analysis equations are often much greater in scale and complexity than planar mechanism equations, their applications in practice are often limited. It is therefore an ongoing task to devise simple methods of calculation, to produce design aids with diagrams, and to set design standards for spatial mechanisms.


Suh and Radcliffe presented displacement, velocity, and acceleration equations for the RRSS and RSSR mechanisms. These displacement equations can be directly applied to the 4R spherical mechanism and even the planar four-bar mechanism. In the Appendix F.1 and F.2 MATLAB files, the displacement, velocity, and acceleration equations for the RRSS and RSSR mechanisms are used.


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based kinematic analyses. Using the Appendix K.1 and K.2 Simscape Multibody files, the user can conduct displacement, velocity, and acceleration analyses on the RRSS, RSSR, and 4R spherical mechanisms, respectively, as well as simulate mechanism motion.
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Problems




	The general fixed and moving pivot variables for the RRSS mechanism in spatial motion are

a0=(a0x,a0y,a0z),   ua0=(ua0x,ua0y,ua0z),   a1=(a1x,a1y,a1z),   ua1=(ua1x,ua1y,ua1z),b0=(b0x,b0y,b0z),   b1=(b1x,b1y,b1z).


Express a0, ua0, a1, ua1, b0, and b1 for an RRSS mechanism restricted to motion in the X–Z plane.



	The general fixed and moving pivot variables for the RSSR mechanism in spatial motion are

a0=(a0x,a0y,a0z),   ua0=(ua0x,ua0y,ua0z),   a1=(a1x,a1y,a1z),


b0=(b0x,b0y,b0z),   ub0=(ub0x,ub0y,ub0z),   b1=(b1x,b1y,b1z).


Express a0, ua0, a1, b0, ub0, and b1 for an RSSR mechanism restricted to motion in the Y–Z plane.



	From the dimensions provided for the hatch mechanism in Problem 4.1, it can be determined that a0 = (0,0,0), a1 = (-2.1257, 3.8669, 0), b0 = (-0.7156, 6.4851, 0), b1 = (-2.3246, 4.8688, 0), and p1 = (-5.2675, 6.5545, 0). Tabulate the coordinates of coupler points p1 and q1 (where q1 = (-5.2675,2,0)) over the −30° crank rotation range at −5° rotation increments (using the Appendix F.1 or K.1 MATLAB files).


	From the dimensions provided for the loading–unloading mechanism in Problem 4.2, it can be determined that a0 = (0,0,0), a1 = (-2.1631,2.0464, 0), b0 = (-1.5726, 4.8975, 0), b1 = (-2.0268,2.4259,0), and p1 = (-4.3625,2.0643,0). Tabulate the coordinates of coupler points p1 and q1 (where q1 = (-3,2.0643,0)) over the −22.7° crank rotation range at −4.54° rotation increments (using the Appendix F.1 or K.1 MATLAB files).


	For the mechanism in Problem 3, plot the velocity magnitude of coupler point p1 versus the crank displacement angle over the −30° crank rotation range at −1° rotation increments (using the Appendix F.1 or K.1 MATLAB files). Consider an initial crank angular velocity and an angular acceleration value of −1.25 rad/s and 0 rad/s2, respectively.


	From the dimensions provided for the component assembly mechanism in Problem 4.6, it can be determined that a0 = (0,0,0), a1 = (1.9963,-2.3251, 0), b0 = (2.4465, 0.3309, 0), b1 = (2.0182,-0.7213,0), and p1 = (6.8484,-2.2654,0). Tabulate the coordinates of coupler points p1 and q1 (where q1 = (2,-2.2654,0) over the 66.375° crank rotation range at 7.375° rotation increments (using the Appendix F.1 or K.1 MATLAB files).


	From the dimensions provided for the digging mechanism in Problem 4.7, it can be determined that a0 = (0,0,0), a1 = (-3.6552,-1.9295,0), b0 = (-5.3924,2.1975,0), b1 = (-8.9907,-2.6631,0), and p1 = (-8.4482,-3.9043,0). Tabulate the coordinates of coupler points p1 and q1 (where q1 = (-8.4482,-1,0) over the −57.4° crank rotation range at −8.2° rotation increments (using the Appendix F.1 or K.1 MATLAB files).


	For the mechanism in Problem 7, tabulate the velocity and acceleration values of coupler points p1 and q1 over the −57.4° crank rotation range at −8.2° rotation increments (using the Appendix F.1 or K.1 MATLAB files). Consider an initial crank angular velocity and an angular acceleration value of −1 rad/s and 0.499 rad/s2, respectively.


	For the slider-crank mechanism in Problem 4.16, a maximum slider displacement of 12.675 cm is achieved at a crank displacement of 273°. At this crank displacement, a slider velocity and acceleration of 0.0829 cm/s and −15.609 cm/s2, respectively, are also achieved. Expressing the dimensions of this slider-crank mechanism as a0 = (0,0,0), a1 = (0,3.175,0), b1 = (9.2225,0.7938,0), and

b0 = (9.2225,-1000000,0), calculate the slider displacement, velocity, and acceleration at the same crank displacement (using the Appendix F.1 or K.1 MATLAB files).


	For the slider-crank mechanism in Example 4.6, a maximum slider displacement of 2.5 cm is achieved at a crank displacement of 315°. At this crank displacement, a slider velocity and acceleration of 0.0000 cm/s and −16,667 cm/s2, respectively, are also achieved. Expressing the dimensions of this slider-crank mechanism as a0 = (0, 0, 0), a1 = (0.7071, 0.7071, 0), b1 = (2.03, 0, 0), and b0 = (2.03, −1000000, 0), calculate the slider displacement, velocity, and acceleration at the same crank displacement (using the Appendix F.2 or K.2 MATLAB files).


	From the dimensions provided for the leveling crane mechanism in Problem 4.3, it can be determined that a0 = (0,0,0), a1 = (4.7137,7.3718,0), b0 = (2.4762, -2.8162, 0), and b1 = (5.102,6.1836,0). Tabulate the follower displacement angles over the −35° crank rotation range at −5° rotation increments (using the Appendix F.2 or K.2 MATLAB files).


	From the dimensions provided for the wiper blade mechanism in Problem 4.15, it can be determined that a0 = (0,0,0), a1 = (1.4859,-2.3708,0), b0 = (1.25, 0, 0), and b1 = (1.8708,-1.6203,0). Tabulate the follower angular displacement, velocity, and acceleration values over the 45° crank rotation range at 5° rotation increments (using the Appendix F.2 or K.2 MATLAB files).


	Using the planar RRSS mechanism dimensions in Table P.10.1, plot the paths traced by coupler point p1 (for both mechanism branches) over a complete crank rotation (using the Appendix F.1 or K.1 MATLAB files). Consider crank rotation increments of 1°.



TABLE P.10.1 Planar RRSS Mechanism Dimensions





	Variable

	Values










	a0

	0, 0, 0






	a1

	0, 1.125, 0






	ua0

	0, 0, 1






	ua1

	0, 0, 1






	b0

	1.4063, 0, 0






	b1

	1.3779, 1.4059, 0






	p1

	0.5135, 2.126, 0












	Using the planar RRSS mechanism dimensions in Table P.10.1, produce plots of the coupler displacement angle versus the crank displacement angle (for both mechanism branches) over a complete crank rotation (using the Appendix F.1 or K.1 MATLAB files). Consider crank rotation increments of 1°.


	Using the planar RSSR mechanism dimensions in Table P.10.2, produce plots of the follower displacement angle versus the crank displacement angle (for both mechanism branches) over a complete crank rotation (using the Appendix F.2 or K.2 MATLAB files). Consider crank rotation increments of 1°.



TABLE P.10.2 Planar RSSR Mechanism Dimensions





	Variable

	Values










	a0

	0, 0, 0






	a1

	0, 1.55, 0






	ua0

	0, 0, 1






	b0

	2.325, 0, 0






	b1

	2.1227, 2.2464, 0






	ub0

	0, 0, 1












	For the RRSS mechanism in Table P.10.3, tabulate the location, velocity, and acceleration of coupler point p1 (for the 1st mechanism branch only) over a complete crank rotation (using the Appendix F.1 or K.1 MATLAB files). Consider a crank rotation increment of 30° with an initial angular velocity and angular acceleration of 0.75rad/s and 0.25 rad/s2, respectively.



TABLE P.10.3 RRSS Mechanism Dimensions (mm)





	Variable

	Value










	a0

	0, 0, 0






	a1

	0, 22.86, 0






	ua0

	0, 0, 1






	ua1

	0, sin(π/6), cos(π/6)






	b0

	45.72, 0, 0






	b1

	45.72, 45.72, −11.43






	p1

	12.7, 31.75, 0












	For the RRSS mechanism dimensions in Example 10.1, calculate the velocities of coupler points p1, q1, and r1 (for the first mechanism branch only) at the end of the 200° crank rotation range, considering an initial rotational velocity of 1.8 rad/s and rotational acceleration of −0.45 rad/s2 (using the Appendix F.1 or K.1 MATLAB files). Assume the RRSS mechanism length dimensions in Example 10.1 are given in meters.


	Figure P.10.1 illustrates an RRSS mechanism used to guide a solar panel. Table P.10.4 includes the planned solar panel positions to be reached and the corresponding RRSS crank displacement angles. Determine the actual solar panel positions reached at these crank displacement angles (using the Appendix F.1 or K.1 MATLAB files).



TABLE P.10.4 Planned Solar Panel Positions for RRSS Mechanism





	θ (°)

	p

	q

	r










	50

	1.2247, 1.2247, −1

	0.8712, 0.8712, −1.8660

	1.3778, 1.3778, −1.1250






	90

	0, 1.7321, −1

	0, 1.2321, −1.8660

	−0.0631, 1.9416, −1.1210
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FIGURE P.10.1 RRSS solar panel mechanism.




	For the RRSS mechanism in Figure P.10.1, calculate the accelerations of coupler points p1, q1, and r1 at 50° and 90° crank rotations considering an initial rotational velocity of 1.9 rad/s and rotational acceleration of −1.1 rad/s2 (using the Appendix F.1 or K.1 MATLAB files). Assume the RRSS mechanism length dimensions in Example 10.1 are given in meters.


	If it was suggested that the solar panel be guided by the follower link of the RRSS mechanism in Figure P.10.1 (rather than the coupler link), explain why this option is practical or not.


	For the RSSR mechanism in Table P.10.5, produce plots of the follower displacement angle versus the crank displacement angle for both mechanism branches over a complete crank rotation (using the Appendix F.2 MATLAB files).



TABLE P.10.5 RSSR Mechanism Dimensions (m)





	Variable

	Value










	a0

	0, 0, 0






	a1

	−0.4125, 0.7145, 0






	ua0

	0, 0, 1






	b0

	1.65, 0, 0






	b1

	1.65, 1.5938, −0.427






	ub0

	0, sin(π/12), cos(π/12)












	For the RSSR mechanism in Table P.10.5, produce plots of the follower angular velocity versus the crank displacement angle for both mechanism branches over a complete crank rotation (using the Appendix F.2 MATLAB files). Consider an initial crank rotational velocity of 1.3 rad/s and a rotational acceleration of 0 rad/s2.


	For the RSSR mechanism in Table P.10.5, produce plots of the follower angular acceleration versus the crank displacement angle for both mechanism branches over a complete crank rotation (using the Appendix F.2 MATLAB files). Consider an initial crank rotational velocity of 1.3 rad/s and a rotational acceleration of −0.13 rad/s2.


	For the RSSR steering mechanism in Example 10.2, determine the maximum steering-wheel rotation and corresponding tire rotation that can be achieved if an initial angular velocity and angular acceleration of 1.15 rad/s and −0.95 rad/s2, respectively, were applied to the steering wheel. Consider crank rotation increments of 1°. Use the Appendix F.1 or K.1 MATLAB files.


	Would the coupler link of the RSSR steering mechanism (see Example 10.2) make a practical alternative for guiding the motion of the tire instead of the follower link?


	Using the 4R Spherical mechanism dimensions in Table P.10.6, calculate the path traced by coupler point p1 for both mechanism branches over a complete crank rotation (using the Appendix F.1 MATLAB files). Consider crank rotation increments of 30°.



TABLE P.10.6 4R Spherical Mechanism Dimensions (mm)





	Variable

	Value










	a0

	0, 0, 29.21






	ua0

	0, 0, 1






	a1

	0, 11.1787, 26.9872






	ua1

	0, 0.3827, 0.9239






	b0

	29.21 0, 0






	b1

	14.605, −25.2959, 0






	p1

	16.5884, −5.2724, 23.4585












	Using the 4R spherical mechanism dimensions in Table P.10.6, calculate the velocities of coupler point p1 for both mechanism branches over a complete crank rotation (using the Appendix F.1 MATLAB files). Consider crank rotation increments of 30°, an initial crank rotational velocity of 0 rad/s, and a rotational acceleration of 0.3 rad/s2.


	Figure P.10.2 illustrates a 4R Spherical mechanism used to guide a folding wing. Table P.10.7 includes the planned folding wing positions to be reached and the corresponding 4R Spherical mechanism crank displacement angles. Determine the actual folding wing positions reached at these crank displacement angles (using the Appendix F.1 or K.1 MATLAB files).



TABLE P.10.7 Planned Solar Panel Positions for 4R Spherical Mechanism





	θ (°)

	p

	q

	r










	29

	0.1384, 0.0891, 0.8492

	0.4976, 0.2489, 0.6624

	0.2570, 0.2970, 0.7707






	47.5

	0.4964, 0.0163, 0.7082

	0.6714, 0.3156, 0.4449

	0.5074, 0.2611, 0.6500






	54.5

	0.7683, −0.0329, 0.3960

	0.7575, 0.3608, 0.2106

	0.7197, 0.2119, 0.4304
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FIGURE P.10.2 4R spherical folding-wing mechanism.




	For the 4R spherical mechanism in Figure P.10.2, calculate the velocities of coupler points p1, q1, and r1 at 29°, 47.5°, and 54.5° crank rotations considering an initial rotational velocity of 1.5 rad/s and a rotational acceleration of −1.18 rad/s2 (using the Appendix F.1 or K.1 MATLAB files). Assume the 4R spherical mechanism length dimensions in Figure P.10.2 are given in meters.


	For the 4R spherical mechanism in Figure P.10.2, calculate the accelerations of coupler points p1, q1, and r1 at 29°, 47.5°, and 54.5° crank rotations, considering an initial rotational velocity of 0 rad/s and a rotational acceleration of 0.45 rad/s2 (using the Appendix F.1 or K.1 MATLAB files). Assume the 4R spherical mechanism length dimensions in Figure P.10.2 are given in meters.


	Using the 4R Spherical mechanism dimensions in Table P.10.8, produce plots of the follower displacement angle versus the crank displacement angle (for both mechanism branches) over a complete crank rotation (using the Appendix F.2 MATLAB file). Consider crank rotation increments of 1.3°.



TABLE P.10.8 4R Spherical Mechanism Dimensions





	Variable

	Value










	a0

	0, 0, 29.21






	ua0

	0, 0, 1






	a1

	0, 11.1787, 26.9872






	b0

	29.21, 0, 0






	ub0

	1, 0, 0






	b1

	14.605, −25.2959, 0












	Using the 4R spherical mechanism dimensions in Table P.10.8, produce plots of the follower angular velocity versus the crank displacement angle (for both mechanism branches) over a complete crank rotation (using the Appendix F.2 MATLAB file). Consider crank rotation increments of 1°, an initial crank rotational velocity of 0 rad/s, and a rotational acceleration of 0.1 rad/s2.


	Using the 4R spherical mechanism dimensions in Table P.10.8, produce plots of the follower angular acceleration versus the crank displacement angle (for both mechanism branches) over a complete crank rotation (using the Appendix F.2 MATLAB files). Consider crank rotation increments of 1.3°, an initial crank rotational velocity of 3 rad/s, and a rotational acceleration of −0.3 rad/s2.


	Using the 4R spherical mechanism in Example 10.4, produce plots of the follower angular velocity versus the crank displacement angle (for the first mechanism branch only) over the given crank rotation (using the Appendix F.2 or K.2 MATLAB files). Consider crank rotation increments of 1°, an initial crank rotational velocity of 0 rad/s, and a rotational acceleration of 0.6 rad/s2.


	Using the 4R Spherical mechanism in Example 10.4, produce plots of the follower angular acceleration versus the crank displacement angle (for the 1st mechanism branch only) over the given crank rotation (using the Appendix F.2 or K.2 MATLAB file). Consider crank rotation increments of 1°, an initial crank rotational velocity of 1 rad/s and rotational acceleration of −0.15 rad/s2.











  
    



11 Introduction to Robotic Manipulators


DOI: 10.1201/9781003316961-11






CONCEPT OVERVIEW


In this chapter, the reader will gain a central understanding regarding




	Distinctions and disadvantages of robotic manipulators in comparison to classical linkages


	Matrix-based formulation of displacement equation systems for Cartesian, cylindrical, spherical, articulated, and SCARA robots


	Forward kinematics of Cartesian, cylindrical, spherical, articulated, and SCARA robots


	Inverse kinematics and workspace of Cartesian, cylindrical, spherical, articulated, and SCARA robots









11.1 Introduction


As explained in Chapter 1 and demonstrated throughout this textbook, a linkage (also commonly called a mechanism) is an assembly of links and joints where the motion of one link compels the motion of another link in a controlled manner. To enable controlled mechanism motion, they are either initially designed to have a single degree of freedom or ultimately configured (in the case of the geared five-bar mechanism) to have a single degree of freedom. Conventional planar and spatial linkages include the four-bar, slider-crank, geared five-bar, Watt, Stephenson, RRSS, RSSR, and 4R spherical linkages presented in Chapters 4 and 10.


Like the linkages presented in Chapters 4 and 10, a robotic manipulator (commonly called a robot) also includes an assembly of links and joints and is designed to produce a controlled output motion. In addition to links and joints, however, a robotic manipulator also includes electronic circuitry, computer-controlled actuators to compel link motion, and is guided by a computer program. Because robotic manipulators include both mechanical and electronic components, they are classified as electro-mechanical systems.


To achieve a controlled motion, each joint in a robotic manipulator can be controlled independently. As a result, there is no degree of freedom limit that robotic manipulators can be theoretically designed to have.*


Another common distinction between linkages and robotic manipulators is in their overall design. All of the linkages presented in Chapters 4 and 10 have closed-loop designs. With this design, at least two joints in a linkage are connected to ground (thus forming a closed loop). While robotic manipulators can have closed-loop designs, they often have open loops, where only one joint is connected to ground.


* Robotic manipulators are generally limited to six DOFs because a spatial body has a maximum mobility of six.

Figure 11.1 includes a planar four-bar mechanism and a planar, 2-DOF, open-loop robotic manipulator. While coupler Point p1 on the four-bar mechanism (in the given location on the coupler link) can only trace the curve illustrated, Point p1 on the robotic manipulator can trace any path within the shaded annular area or workspace.* Because of the open-loop construction of the robotic manipulator and its mobility, this single manipulator can trace a greater variety of distinct paths than any number of planar four-bar mechanisms.




[image: ]

FIGURE 11.1 (a) Four-bar mechanism and coupler curve and (b) robotic manipulator and workspace.



So, when compared to linkages, robotic manipulators offer advantages such as greater variability—specifically for motion-specific and path-specific tasks. Being computer controlled, robotic manipulators also offer advantages regarding greater precision, accuracy, and repeatability. Lastly, robotic manipulators have the capacity for remote operation as well as autonomous operation since they can be guided by computer programs (as opposed to mechanisms, which often require a degree of manual operation).


It is becoming increasingly difficult to find an industry where robotic manipulators are not employed, either directly or indirectly. Common industries where robotic manipulators are widely employed (both in product manufacturing and operation) include automotive, aerospace, defense, electronics, and medicine. The number of applications for robotic systems is rapidly on the increase, since new robotic manipulator capabilities and more practical robot manipulator designs are continually being developed and produced [1].






11.2 Terminology and Nomenclature


To describe the spatial position and orientation of each link in a robotic manipulator, coordinate systems are rigidly attached to each link. These coordinate systems are called frames. In Figure 11.2b, frames are attached to Link 0 (called the base frame), Link 1, and Link 2. The positions and orientations between the frames are modeled through transformation matrices (Section 2.5). The general transformation matrix and its application will be further discussed in Sections 11.4–11.6.


* The workspace is the area or volume (for spatial robots) of space that the robot can reach.

A robotic manipulator often includes a component at its free end called an end effector. The end effector can serve to handle any tool or component. It can also be the working end of the tool itself if the end effector fully constrains the tool. One common end effector used in robotic manipulators is a gripper. In Figure 11.2, the end effector of the robotic manipulator is a gripper that holds the tool. The tool is assumed to be fully constrained by the gripper.*
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FIGURE 11.2 (a) Robotic manipulator with joint and link descriptions and (b) frames.







11.3 Robotic Manipulator Mobility and Types


In Chapter 3, it was noted that Gruebler’s Equation is used to determine the mobility of a linkage. These equations can also be used to determine the mobility of robotic manipulators. For planar and spatial robotic manipulators, Gruebler’s Equations become


DOFPLANAR=3(L−1)−2J1 (11.1)


DOFSPATIAL=6(L−1)−5J1−4J2−3J3 (11.2)


where only 1-DOF joints are used in the planar robotic manipulator and only 1-, 2-, or 3-DOF joints are used in the spatial manipulator.†


Figure 11.3 includes the types of 1-, 2-, and 3-DOF joints used in the robotic manipulators presented in this chapter. Although a robotic manipulator can be designed to include any joint type, the revolute, prismatic, cylindrical, and spherical are among those joint types most commonly used in practice.


* If the tool was not fully constrained by the gripper, an additional frame attached to the tool (called a tool frame) would have been included.

† As with mechanisms, for robotic manipulators, the ground link should also be counted among the total number of links (L) in Gruebler’s Equation.
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FIGURE 11.3 Example robotic manipulator joint types.



Figure 11.4 illustrates the five spatial robotic manipulator types considered in this chapter. These particular robotic manipulator configurations are among those commonly utilized in industrial applications [2]. The designations P-P-P, R-P-P, R-R-P, R-R-R, and R-R-C in Figure 11.4 denote the joint types and joint sequences used in the robotic manipulators.




[image: ]

FIGURE 11.4 (a) Cartesian (P-P-P), (b) cylindrical (R-P-P), (c) spherical (R-R-P), (d) articulated (R-R-R), and (e) SCARA (R-R-C) robots.



The P-P-P robotic manipulator is commonly known as a Cartesian robot because its degrees of freedom are along the x, y, and z-axes of the Cartesian frame. The R-P-P and R-R-P robotic manipulators are commonly known as cylindrical and spherical robots, respectively, because their motion is consistent with cylindrical and spherical joints, respectively. The R-R-R and R-R-C robotic manipulators are commonly known as articulated and Selective Compliance Assembly/Articulated Robot Arm (or SCARA) robots, respectively.




Example 11.1


Problem Statement: Calculate the mobility values for the R-R-R and R-R-C robotic manipulators.


Known Information: Equation 11.2 and Figure 11.3.


Solution Approach: The R-R-R robotic manipulator is comprised of four links interconnected with three revolute joints. Since there are four links and the revolute joint has a single degree of freedom, L = 4 and J1 = 3 in Equation 11.2 for the R-R-R robotic manipulator.


The R-R-C is comprised of four links interconnected with two revolute joints and one cylindrical joint. Since there are four links and the cylindrical joint has two degrees of freedom, L = 4, J1 = 2, and J2 = 1 in Equation 11.2 for the R-R-C robotic manipulator.


Figure E.11.1 includes the calculation procedure in the MATLAB® command window.
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FIGURE E.11.1 Example 11.1 calculation procedure in MATLAB.







11.4 The General Transformation Matrix


In Section 2.5, a general spatial transformation matrix was presented. This matrix is used to calculate point coordinates originally established in one link coordinate frame (Frame j) in reference to another link coordinate frame (Frame i) in a robotic manipulator. If we recall, the general spatial transformation matrix can be expressed as


[T]ji=[R11R12R13ΔxR21R22R23ΔyR31R32R33Δz0001] (11.3)


where:




	R11 = cos δy cos δz


	R12 = sin δx sin δy cos δz − cos δx sin δz


	R13 = cos δx sin δy cos δz + sin δx sin δz


	R21 = cos δy sin δz


	R22 = sin δx sin δy sin δz + cos δx cos δz


	R23 = cos δx sin δy sin δz −sin δx cos δz


	R31 = −sin δy


	R32 = sin δx cos δy


	R33 = cos δx cos δy





In this matrix, variables δx, δy, and δz are the angular rotations about a frame’s x-, y-, and z-axes, respectively, and variables Δx, Δy, and Δz are the linear translations along the frame’s x-, y-, and z-axes, respectively.*


Given j{p}, the spatial coordinates of a point p in Frame j, the coordinates of this point with respect to Frame i or j{p} can be calculated as


{p}i=ji[T]j{p} (11.4)


where the spatial coordinates of p in Frame j are j{p} = {px py pz 1}T.†


In Figure 11.5, the robotic manipulator in Figure 11.2b is again considered where Frames 0, 1, and 2 are attached to ground, Link 1 and Link 2, respectively. In this figure, Point p1 is attached to Link 1 and its coordinates are given with respect to Frame 1. Point p2 is attached to Link 2 and its coordinates are given with respect to Frame 2.


To calculate the value of Point p1 with respect to the base frame, Equation 11.4 becomes


{p1}0=10[T]1{p1} (11.5)


where 0{p1} is the value of p1 with respect to the base frame (Frame X0−Y0−Z0 in Figure 11.5).‡ The transformation matrix [T]10 considers Frames 0 and 1. This matrix includes angular displacements δ1x, δ1y, and δ1z, and linear displacements Δ1x, Δ1y, and Δ1z.


To calculate the value of Point p2 with respect to the base frame, Equation 11.5 becomes


{p2}0=10[T]12[T]2{p2}=[T]220{p2} (11.6)


* In a general planar transformation matrix, variables δx, δy, and Δz in the general spatial transformation matrix are all zero.

† The planar coordinates of p in Frame j would be j{p} = {px py p0 1}T.

‡ A value given with respect to the base frame is also called a global value.

where 0{p2} is the value of p2 with respect to the base frame. Because the transformation matrix [T]10 already considers Frames 0 and 1, including the transformation matrix [T]21 (which considers Frames 1 and 2) and taking the product of these two matrices produces a single transformation matrix that considers Frames 0 and 2. This matrix includes all of the displacement variables in [T]10 as well as the additional angular displacements δ2x, δ2y, and δ2z, and linear displacements Δ2x, Δ2y, and Δ2z.


Let us now assume an additional frame X3−Y3−Z3 is attached to the tool and the coordinates of a point p3 are given with respect to this frame (Frame 3). To calculate the value of p3 with respect to the base frame, Equation 11.6 becomes
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FIGURE 11.5 Robotic manipulator with frames and points.



0{p3}= [T]10 [T]21 [T]32 3{p3}= [T]20 [T]32 3{p3}= [T]30 3{p3} (11.7)


where 0{p3} is the value of p3 with respect to the base frame. Because the transformation matrix [T]20 already considers Frames 0 and 2, including the transformation matrix [T]32 (which considers Frames 2 and 3) and taking the product of these two matrices produces a single transformation matrix that considers Frames 0 and 3. This matrix includes all of the displacement variables in [T]20 as well as the additional angular displacements δ3x, δ3y, and δ3z, and linear displacements Δ3x, Δ3y, and Δ3z.


From Equations 11.5 to 11.7, it can be observed that as an additional final frame is introduced, the transformation matrix to calculate the global coordinates of a point in the final frame becomes an increasing product of the transformation matrices for each frame. Knowing this, given a group of N frames, the transformation matrix to calculate the global coordinates of a point in the Nth frame can be expressed as


[T]N0= [T]10 [T]21 [T]32… [T]NN−1 (11.8)


*


Therefore, given N{pN}, the spatial coordinates of a point pN in Frame N, the global coordinates of this point with respect to the base frame or 0{pN} can be calculated as


0{pN}= [T]N0N{pN} (11.9)


* When calculating the product of three or more matrices in Equation 11.8, it should be done in right-to-left order.

The coordinate frame x, y, and z rotations and translation variables presented in this section are analogous to Denavit–Hartenberg (or DH) parameters. Like the δand Δvariables, DH parameters are also used to attach reference frames to links. In classical DH notation, only rotations about and translations along coordinate frame x- and z-axes are used. Therefore, with the y-axis rotations and translations eliminated, the general transformation matrix becomes


[T]ji=[cos δz−cos δxsin δzsin δxsin δzΔxcos δzsin δzcos δxcos δz−sin δxcos δzΔxsin δz0sin δxcos δxΔz0001] (11.10)


*




Example 11.2


Problem Statement: Calculate the elements of transformation matrix [T]30 for the coordinate frame displacement values given in Table E.11.1.


Known Information: Matrix 11.3 and Table E.11.1.


Solution Approach: Because all variables in Matrix 11.3, with the exception of those given in Table E.11.1, are zero, this matrix can be simplified. Figure E.11.2 includes the calculation procedure in MATLAB’s command window.








TABLE E.11.1 Frame Displacement Variables (with Unitless Link Lengths)





	Frames

	δx

	δy

	δz

	Δx

	Δy

	Δz










	1 wrt 0

	0

	0

	55°

	0

	0

	0






	2 wrt 1

	0

	0

	0

	0

	0

	1.75






	3 wrt 2

	0

	0

	0

	3

	0

	0













[image: ]

FIGURE E.11.2 Example 11.2 calculation procedure in MATLAB.



* In classical DH notation, the variables θ, α, d, and r are used instead of δz, δx, Δz, and Δz, respectively.





11.5 Forward Kinematics




11.5.1 Definition and Application


In forward kinematics, the link dimensions and joint motion of a robotic manipulator are known and the corresponding output motion of the links (usually the end effector) is calculated [3]. By formulating an equation system for a robotic manipulator (an equation system to calculate the motion of specific link points) and prescribing the link dimensions and joint motions, the resulting link motion is calculated. The most common application for forward kinematics is for determining end effector motion (e.g., tool paths and orientations).






11.5.2 P-P-P


Figure 11.6 includes the frames specified for the P-P-P robotic manipulator. The transformation matrix [T]30 is required to formulate equations to calculate the global position ofp3 on the end effector. To facilitate this procedure, Table 11.1 includes the displacement variables required to align Frame 1 to 0, Frame 2 to 1, and Frame 3 to 2. As this table indicates, a combination of three linear displacements is utilized in the P-P-P robotic manipulator.


From the information given in Table 11.1, the only nonzero variables are Δ1x, Δ2y, and Δ3z. As a result, Matrix 11.8 becomes


[T]30= [T]10 [T]21 [T]32=[100Δ1x010000100001][1000010Δ2y00100001][10000100001Δ3z0001] (11.11)
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FIGURE 11.6 P-P-P robotic manipulator with frames and point. 







TABLE 11.1 Frame Displacement Variables for the P-P-P Robotic Manipulator





	Frames

	δx

	δy

	δz

	Δx

	Δy

	Δz










	1 wrt 0

	0

	0

	0

	Δ1x

	0

	0






	2 wrt 1

	0

	0

	0

	0

	Δ2y

	0






	3 wrt 2

	0

	0

	0

	0

	0

	Δ3z











Using this transformation matrix and Equation 11.9 produces the following system of equations to calculate the global coordinates of p3:


0p3x= 3p3x+Δ1x0p3y= 3p3y+Δ2y0p3z= 3p3z+Δ3z (11.12)


In the P-P-P robotic manipulator, the linear displacement variables Δ1x, Δ2y, and Δ3z are not often assigned constant values because they correspond to the translational displacements of the prismatic joints. More often, displacement ranges are assigned to these variables.




Example 11.3


Problem Statement: Using the joint displacements given in Table E.11.2, calculate the global path points achieved by the end effector of the P-P-P robotic manipulator. In this example, 3{p3} = [0, −1, 0]T.






TABLE E.11.2 P-P-P Robotic Manipulator Joint Displacements





	Point

	Δ1x

	Δ2y

	Δ3z










	1

	0.5

	1.1

	–0.1






	2

	1

	1.2

	–0.15






	3

	1.5

	1.3

	–0.3






	4

	2

	1.2

	–0.45






	5

	2.5

	1.1

	–0.60











Known Information: Equation 11.12 and Table E.11.2.


Solution Approach: Table E.11.3 includes the global end effector path point coordinates calculated using Equation 11.12.






TABLE E.11.3 P-P-P Robotic Manipulator Path Point Coordinates





	Point

	0p3x

	0p3y

	0p3z










	1

	0.5

	0.1

	-0.1






	2

	1

	0.2

	-0.15






	3

	1.5

	0.3

	-0.3






	4

	2

	0.2

	-0.45






	5

	2.5

	0.1

	-0.60

















11.5.3 R-P-P


Figure 11.7 includes the frames specified for the R-P-P robotic manipulator. The transformation matrix [T]30 is required to formulate equations to calculate the global position of p3 on the end effector. To facilitate this procedure, Table 11.2 includes the displacement variables required to align Frame 1 to 0, Frame 2 to 1, and Frame 3 to 2. As this table indicates, a combination of a single angular displacement and two linear displacements are utilized in the R-P-P robotic manipulator.


From the information given in Table 11.2, the only nonzero variables are δ1z, Δ2z, and Δ3x. As a result, Matrix 11.8 becomes
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FIGURE 11.7 R-P-P robotic manipulator with frames and point.







TABLE 11.2 Frame Displacement Variables for the R-P-P Robotic Manipulator





	Frames

	δx

	δy

	δz

	Δx

	Δy

	Δz










	1 wrt 0

	0

	0

	δ1z

	0

	0

	0






	2 wrt 1

	0

	0

	0

	0

	0

	Δ2z






	3 wrt 2

	0

	0

	0

	Δ3x

	0

	0











[T]30= [T]10 [T]21 [T]32=[cos δ1z−sin δ1z00sin δ1zcos δ1z0000100001][10000100001Δ2z0001][100Δ3x010000100001]


(11.13)


Using this transformation matrix and Equation 11.9 produces the following system of equations to calculate the global coordinates of p3:


0p3x= 3p3xcos δ1z− 3p3y sin δ1z+Δ3xcos δ1z0p3y= 3p3x sin δ1z+ 3p3y cos δ1z+Δ3xsin δ1z0p3z= 3p3z+ Δ2z (11.14)


In the R-P-P robotic manipulator, the linear and angular displacement variables Δ2z, Δ3x, and δ1z are not often assigned constant values because they correspond to the translational displacements, the prismatic joints, and the rotational displacements of the revolute joint. More often, displacement ranges are assigned to these variables.


Appendix G.1 includes the MATLAB file user instructions for R-P-P robotic manipulator forward kinematics. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), Equation 11.14 is used to calculate the global coordinates of p3.*




Example 11.4


Problem Statement: Using the Appendix G.1 MATLAB file with the joint displacements given in Table E.11.4, calculate the global path points achieved by the end effector of the R-P-P robotic manipulator. In this example, {p3}3=[0,0,−1]T.






TABLE E.11.4 R-P-P Robotic Manipulator Joint Displacements





	Point

	δ1z (°)

	Δ2z

	Δ3x










	1

	12

	1.1

	–0.1






	2

	24

	1.2

	–0.15






	3

	36

	1.3

	–0.3






	4

	48

	1.2

	–0.45






	5

	60

	1.1

	–0.60











Known Information: Table E.11.4 and Appendix G.1 MATLAB file.


Solution Approach: The data for columns δ1z, Δ2z, and Δ3x in Table E.11.4 are first specified in the file RPP_Input.csv. Figure E.11.3 includes the input specified (in bold text) in the Appendix G.1 MATLAB file and Table E.11.5 includes the global end effector path point coordinates calculated.






TABLE E.11.5 R-P-P Robotic Manipulator Path Point Coordinates





	Point

	0p3x

	0p3y

	0p3z










	1

	-0.0978

	-0.0208

	0.1000






	2

	-0.1370

	-0.0610

	0.2000






	3

	-0.2427

	-0.1763

	0.3000






	4

	-0.3011

	-0.3344

	0.2000






	5

	-0.3000

	-0.5196

	0.1000
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FIGURE E.11.3 Specified input (in bold text) in the Appendix G.1 MATLAB file for Example 11.4.



* The library of MATLAB files used in this chapter can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.





11.5.4 R-R-P


Figure 11.8 includes the frames specified for the R-R-P robotic manipulator. The transformation matrix [T]30 is required to formulate equations to calculate the global position of p3 on the end effector. To facilitate this procedure, Table 11.3 includes the displacement variables required to align Frame 1 to 0, Frame 2 to 1, and Frame 3 to 2. As this table indicates, a combination of two angular displacements and three linear displacements are utilized in the R-R-P robotic manipulator.


From the information given in Table 11.3, the only nonzero variables are δ1z, δ2x, and Δ3z and the terms representing Δ2z and Δ3y.* As a result, Matrix 11.8 becomes


[T]30= [T]10 [T]21 [T]32=[cos δ1z−sin δ1z00sin δ1zcos δ1z0000100001][10000cos δ2x−sin δ2x00sin δ2xcos δ2xl10001][1000010l2001Δ3z0001] (11.15)
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FIGURE 11.8 R-R-P robotic manipulator with frames and point.







TABLE 11.3 Frame Displacement Variables for the R-R-P Robotic Manipulator





	Frames

	δx

	δy

	δz

	Δx

	Δy

	Δz










	1 wrt 0

	0

	0

	δ1z

	0

	0

	0






	2 wrt 1

	Δ2x

	0

	0

	0

	0

	l1






	3 wrt 2

	0

	0

	0

	0

	l2

	Δ3z











* In Table 11.3, Δ2z = l1 and Δ3y = l2.

Using the resulting transformation matrix and Equation 11.9 produces the following system of equations to calculate the global coordinates of p3:


0p3x= 3p3xcos δ1z− 3p3y sinδ1z cos δ2x+ 3p3z sinδ1z sin δ2x− l2 sinδ1z cos δ2x  + Δ3z sinδ1z sinδ2x0p3y= 3p3xsin δ1z+ 3p3y cosδ1z cos δ2x− 3p3z cosδ1z sin δ2x+ l2 cosδ1z cos δ2x​  −Δ3z cosδ1z sin δ2x0p3z= 3p3ysin δ2x+ 3p3z cosδ2x+ l2 sin δ2x+​ Δ3z cos δ2x+l1 (11.16)


In the R-R-P robotic manipulator, variables l1 and l2 are assigned constant values because they represent constant link lengths. The angular and linear displacement variables δ1z, δ2x, and Δ3z, however, correspond to the rotational displacements of the revolute joints and the translational displacements of the prismatic joint. More often, displacement ranges are assigned to these variables.


Appendix G.2 includes the MATLAB file user instructions for R-R-P robotic manipulator forward kinematics. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), Equation 11.16 is used to calculate the global coordinates of p3.




Example 11.5


Problem Statement:Using the Appendix G.2 MATLAB file with the joint displacements given in Table E.11.6, calculate the global path points achieved by the end effector of the R-R-P robotic manipulator. In this example, l1=l2=0.5 (unitless link lengths) and {p3}3=[0,0,0]T.






TABLE E.11.6 R-R-P Robotic Manipulator Joint Displacements





	Point

	δ1z (°)

	Δ2z (°)

	Δ3x










	1

	12

	10

	0.5






	2

	24

	20

	1






	3

	36

	30

	1.5






	4

	48

	40

	2






	5

	60

	50

	2.5











Known Information: Table E.11.6 and Appendix G.2 MATLAB file.


Solution Approach: The data for columns δ1z, δ2x, and Δ3z in Table E.11.6 are first specified in the file RRP_Input.csv. Figure E.11.4 includes the input specified (in bold text) in the Appendix G.2 MATLAB file and Table E.11.7 includes the global end effector path point coordinates calculated.
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FIGURE E.11.4 Specified input (in bold text) in the Appendix G.2 MATLAB file for Example 11.5.







TABLE E.11.7 R-R-P Robotic Manipulator Path Point Coordinates





	Point

	0p3x

	0p3y

	0p3z










	1

	-0.0843

	0.3967

	1.0792






	2

	-0.0520

	0.1168

	1.6107






	3

	0.1863

	-0.2564

	2.0490






	4

	0.6707

	-0.6039

	2.3535






	5

	1.3802

	-0.7969

	2.4900

















11.5.5 R-R-R


Figure 11.9 includes the frames specified for the R-R-R robotic manipulator. The transformation matrix [T]30 is required to formulate equations to calculate the global position of p3 on the tool. To facilitate this procedure, Table 11.4 includes the displacement variables required to align Frame 1 to 0, Frame 2 to 1, and Frame 3 to 2. As this table indicates, a combination of three angular displacements and two linear displacements are utilized in the R-R-R robotic manipulator.


From the information given in Table 11.4, the only nonzero variables are δ1z, δ2x, and δ3x, and the terms representing Δ2z and Δ3y.* As a result, Matrix 11.8 becomes


[T]30= [T]10 [T]21 [T]32=[cos δ1z−sin δ1z00sin δ1zcos δ1z0000100001][10000cos δ2x−sin δ2x00sin δ2xcos δ2xl10001][10000cos δ3x−sin δ3xl20sin δ3xcos δ3x00001]


(11.17)
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FIGURE 11.9 R-R-R robotic manipulator with frames and point.







TABLE 11.4 Frame Displacement Variables for the R-R-R Robotic Manipulator





	Frames

	δx

	δy

	δz

	Δx

	Δy

	Δz










	1 wrt 0

	0

	0

	δ1z

	0

	0

	0






	2 wrt 1

	δ2x

	0

	0

	0

	0

	l1






	3 wrt 2

	δ3x

	0

	0

	0

	l2

	0











* In Table 11.4, Δ2z = l1 and Δ3y = l2.

Using the resulting transformation matrix and Equation 11.9 produces the following system of equations to calculate the global coordinates of p3:


0p3x= 3p3x​ cos δ1z+ 3p3y(sin δ1zsin δ2x sin δ3x−sin δ1z cos δ2x ​cos δ3x)  + 3p3z(sin δ1zcos δ2x sin δ3x+sin δ1z sin δ2x ​cos δ3x)−l2 sin δ1z cos δ2x0p3y= 3p3xsin δ1z+ 3p3y(cos δ1zcos δ2x cos δ3x−cos δ1z sin δ2x sin δ3x)  + 3p3z(−cos δ1zcos δ2x sin δ3x−cos δ1z sin δ2x ​cos δ3x)+l2 cos δ1z cos δ2x0p3z= 3p3y(sin δ2xcos δ3x+cos δ2x sin δ3x)+ 3p3z(cos δ2x cos δ3x−sin δ2xsin δ3x)  +l2 sin δ2x +l1 (11.18)


In the R-R-R robotic manipulator, variables l1 and l2 are assigned constant values because they represent constant link lengths. The angular and linear displacement variables δ1z, δ2x, and δ3x, however, correspond to the rotational displacements of the revolute joints. More often, displacement ranges are assigned to these variables.


Appendix G.3 includes the MATLAB file user instructions for R-R-R robotic manipulator forward kinematics. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), Equation 11.18 is used to calculate the global coordinates of p3.




Example 11.6


Problem Statement: Using the Appendix G.3 MATLAB file with the joint displacements given in Table E.11.8, calculate the global path points achieved by the end effector of the R-R-R robotic manipulator. In this example, l1=l2=0.5 (unitless link lengths) and {p3}3=[0,1,0]T.


Known Information: Table E.11.8 and Appendix G.3 MATLAB file.






TABLE E.11.8 R-R-R Robotic Manipulator Joint Displacements





	Point

	δ1z (°)

	δ2z (°)

	δ3z (°)










	1

	12

	10

	–5






	2

	24

	20

	–10






	3

	36

	30

	–15






	4

	48

	40

	–20






	5

	60

	50

	–25















TABLE E.11.9 R-R-R Robotic Manipulator Path Point Coordinates





	Point

	0p3x

	0p3y

	0p3z










	1

	-0.0877

	1.4561

	0.6740






	2

	-0.1489

	1.3289

	0.8447






	3

	-0.1988

	1.1318

	1.0088






	4

	-0.2533

	0.8851

	1.1634






	5

	-0.3235

	0.6139

	1.3056











Solution Approach: The data for columns δ1z, δ2x, and δ3x in Table E.11.8 are first specified in the file RRR_Input.csv. Figure E.11.5 includes the input specified (in bold text) in the Appendix G.3 MATLAB file and Table E.11.9 includes the global end effector path point coordinates calculated.








[image: ]

FIGURE E.11.5 Specified input (in bold text) in the Appendix G.3 MATLAB file for Example 11.3.









11.5.6 R-R-C


Figure 11.10 includes the frames specified for the R-R-C robotic manipulator. The transformation matrix [T]30 is required to formulate equations to calculate the global position of p3 on the tool. To facilitate this procedure, Table 11.5 includes the displacement variables required to align Frame 1 to 0, Frame 2 to 1, and Frame 3 to 2. As this table indicates, a combination of three angular displacements and four linear displacements are utilized in the R-R-C robotic manipulator.


Using the information given in Table 11.5, the nonzero variables are δ1z, δ2z, δ3z, Δ3z, and the terms representing Δ1z, Δ2x, and Δ3x.* As a result, Matrix 11.8 becomes


[T]30= [T]10 [T]21 [T]32=[cos δ1z−sin δ1z00sin δ1zcos δ1z00001l10001][cos δ2z−sin δ2z0l2sin δ2zcos δ2z1000010001][cos δ3z−sin δ3z0l3sin δ3zcos δ3z00001Δ3z0001] (11.19)
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FIGURE 11.10 R-R-C robotic manipulator with frames and point. 







TABLE 11.5 Frame Displacement Variables for the R-R-C Robotic Manipulator





	Frames

	δx

	δy

	δz

	Δx

	Δy

	Δz










	1 wrt 0

	0

	0

	δ1z

	0

	0

	l1






	2 wrt 1

	0

	0

	δ2z

	l2

	0

	0






	3 wrt 2

	0

	0

	δ3z

	l3

	0

	Δ3z











Using the resulting transformation matrix and Equation 11.9 produces the following system of equations to calculate the global coordinates of p3:


0p3x= 3p3x[(cosδ1zcosδ2z−sinδ1zsinδ2z)cosδ3z+(−cosδ1zsinδ2z−sinδ1zcosδ2z)sinδ3z]  + 3p3y[−(cosδ1zcosδ2z−sinδ1zsinδ2z)sinδ3z+(−cosδ1zsinδ2z−sinδ1zcosδ2z)cosδ3z]  +l3(cosδ1zcosδ2z−sinδ1zsinδ2z)+l2cosδ1z0p3y= 3p3x[(sinδ1zcosδ2z+cosδ1zsinδ2z)cosδ3z+(cosδ1zcosδ2z−sinδ1zsinδ2z)sinδ3z]  + 3p3y[−(sinδ1zcosδ2z+cosδ1zsinδ2z)sinδ3z+(cosδ1zcosδ2z−sinδ1zsinδ2z)cosδ3z]  +l3(sinδ1zcosδ2z+cosδ1zsinδ2z)+l2sinδ1z0p3z= 3p3z+l1+Δ3z. (11.20)


In the R-R-C robotic manipulator, variables l1, l2, and l3 are assigned constant values because they represent constant link lengths. The angular and linear displacement variables δ1z, δ2z, δ3z, and Δ3y, however, correspond to the rotational and translational displacements of the revolute and prismatic joints, respectively. More often, displacement ranges are assigned to these variables.


* In Table 11.5, Δ1z = l1, Δ2x = l2, and Δ3x = l3.

Appendix G.4 includes the MATLAB file user instructions for R-R-C robotic manipulator forward kinematics. In this MATLAB file (which is available for download at https://www.routledge.com/p/book/9781032328317), Equation 11.20 is used to calculate the global coordinates of p3.




Example 11.7


Problem Statement:Using the Appendix G.4 MATLAB file with the joint displacements given in Table E.11.10, calculate the global path points achieved by the end effector of the R-R-C robotic manipulator. In this example, l1=1, l2=l3=0.5 (unitless link lengths), and {p3}3=[1,0,0]T.


Known Information: Table E.11.10 and Appendix G.4 MATLAB file.






TABLE E.11.10 R-R-C Robotic Manipulator Joint Displacements





	Point

	δ1z (°)

	δ2z (°)

	δ3z (°)

	Δ3z










	1

	12

	–5

	15

	–0.1000






	2

	24

	–10

	30

	–0.2000






	3

	36

	–15

	45

	–0.3000






	4

	48

	–20

	60

	–0.2000






	5

	60

	–25

	75

	–0.1000











Solution Approach:The data for columns δ1z, δ2x, δ3z, and Δ3z in Table E.11.10 are first specified in the file RRC_Input.csv. Figure E.11.6 includes the input specified (in bold text) in the Appendix G.4 MATLAB file and Table E.11.11 includes the global end effector path point coordinates calculated.
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FIGURE E.11.6 Specified input (in bold text) in the Appendix G.4 MATLAB file for Example 11.4.











TABLE E.11.11 R-R-C Robotic Manipulator Path Point Coordinates





	Point

	0p3x

	0p3y

	0p3z










	1

	1.9125

	0.5395

	0.9000






	2

	1.6613

	1.0190

	0.8000






	3

	1.2780

	1.3866

	0.7000






	4

	0.8109

	1.6057

	0.8000






	5

	0.3176

	1.6595

	0.9000



















11.6 Inverse Kinematics




11.6.1 Definition and Application


While the robotic manipulator dimensions are known and the end effector motion is calculated in forward kinematics, in inverse kinematics, the end effector motion and link dimensions are known and the joint motion required to achieve the end effector motion is calculated [4, 5, 6, 7]. Inverse kinematics is often described as the reverse of forward kinematics. It is accomplished by calculating joint motion solutions (using the same forward-kinematics-based equation system for a robotic manipulator) given the end effector motion and link lengths. The most common application for inverse kinematics is to determine the joint motion required to achieve the required end effector motion (e.g., the joint motion required to achieve tool paths and orientations).*






11.6.2 P-P-P


Because Equation 11.12 includes three equations each containing a single unknown variable (Δ1x, Δ2y, and Δ3z, respectively), these unknowns can be calculated algebraically for the inverse kinematics of the P-P-P robotic manipulator.


Solving for Δ1x, Δ2y, and Δ3z in Equation 11.12 produces


Δ1x= 0p3x− 3p3xΔ2y= 0p3y− 3p3yΔ3z= 0p3z− 3p3z (11.21)


From Equation 11.21, the user can specify the global end effector coordinates 0{p3}, the end effector coordinates in Frame 3 0{p3}, and calculate the required displacements of each prismatic joint in the P-P-P robotic manipulator (Δ1x, Δ2y, and Δ3z).
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FIGURE 11.11 P-P-P robotic manipulator and workspace.



The global path point coordinates 0{p3} should be prescribed from within the workspace of the P-P-P robotic manipulator. This ensures that the prescribed points will be achieved by the robotic manipulator. As shown in Figure 11.11, the P-P-P robotic manipulator has a cubic (or a rectangular cuboid) workspace with outer x, y, and z dimensions of Δ1xmax, Δ2ymax and Δ3zmax, respectively (the maximum prismatic joint translations).




Example 11.8


Problem Statement:Calculate the P-P-P joint displacements required to achieve the global path points given in Table E.11.12. In this example, {p3}3=[0,−1,0]T.


Known Information: Equation (11.21) and Table E.11.12.






TABLE E.11.12 P-P-P Robotic Manipulator End Effector Path Point Coordinates





	Point

	0p3x

	0p3y

	0p3z










	1

	0.683

	0.375

	0.2165






	2

	0.6764

	0.4521

	0.2566






	3

	0.6569

	0.5306

	0.289






	4

	0.625

	0.6083

	0.3125






	5

	0.5817

	0.6826

	0.3266






	6

	0.5283

	0.7514

	0.3307






	7

	0.4665

	0.8125

	0.3248






	8

	0.3981

	0.8641

	0.309






	9

	0.3252

	0.9047

	0.2838






	10

	0.25

	0.933

	0.25











Solution Approach: Table E.11.13 includes the joint displacements calculated using Equation (11.21). Figure E.11.7 includes the initial and final positions of the P-P-P robotic manipulator over the range of prescribed global end effector points.


* Inverse kinematics is similar to motion generation and path generation (see Chapter 5). The key distinction between dimensional synthesis and inverse kinematics is that, with the latter, joint displacements are calculated (rather than link dimensions).







TABLE E.11.13 P-P-P Robotic Manipulator Joint Displacements





	Point

	Δ1x

	Δ2y

	Δ3z










	1

	0.683

	1.375

	0.2165






	2

	0.6764

	1.4521

	0.2566






	3

	0.6569

	1.5306

	0.289






	4

	0.625

	1.6083

	0.3125






	5

	0.5817

	1.6826

	0.3266






	6

	0.5283

	1.7514

	0.3307






	7

	0.4665

	1.8125

	0.3248






	8

	0.3981

	1.8641

	0.309






	9

	0.3252

	1.9047

	0.2838






	10

	0.25

	1.933

	0.25
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FIGURE E.11.7 P-P-P robotic manipulator in (semitransparent) initial and final positions.







11.6.3 R-P-P


Unlike Equation 11.12, the joint displacement variables δ1z, Δ2x, and Δ3x in Equation 11.14 cannot be calculated algebraically. With unknowns δ1z, Δ2x, and Δ3x, Equation 11.14 becomes a set of three nonlinear simultaneous equations. A root-finding method (see Section 4.2) is required for the inverse kinematics of the R-P-P robotic manipulator. Appendix G.5 includes the user instructions for the MATLAB file to calculate joint displacement solutions for Equation 11.14 given 3{p3} and a prescribed range of values for 0{p3}.
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FIGURE 11.12 R-P-P robotic manipulator and workspace.



As shown in Figure 11.12, the R-P-P robotic manipulator has a cylindrical workspace (having a center axis that is collinear with Δ2z) with outer cylinder height and radius dimensions of Δ2zmax and Δ3xmax, respectively (the maximum prismatic joint translations).




Example 11.9


Problem Statement:Using the Appendix G.5 MATLAB file, calculate the R-P-P joint displacements required to achieve the global path points given in Table E.11.12. In this example, {p3}3=[0,0,−1]T.


Known Information: Table E.11.12 and Appendix G.5 MATLAB file.


Solution Approach: The data for columns p03x, p03y, and p03z in Table E.11.12 are first specified in the file RPP_Input.csv. Figure E.11.8 includes the input specified (in bold text) in the Appendix G.5 MATLAB file and Table E.11.14 includes the joint displacements calculated. Figure E.11.9 includes the initial and final positions of the R-P-P robotic manipulator over the range of prescribed global end effector points.






TABLE E.11.14 R-P-P Robotic Manipulator Joint Displacements





	Point

	δ1z (°)

	Δ2z

	Δ3x










	1

	28.7689

	1.2165

	0.7792






	2

	33.7584

	1.2566

	0.8136






	3

	38.929

	1.289

	0.8444






	4

	44.2242

	1.3125

	0.8722






	5

	49.5629

	1.3266

	0.8968






	6

	54.8894

	1.3307

	0.9185






	7

	60.1375

	1.3248

	0.9369






	8

	65.264

	1.309

	0.9514






	9

	70.2287

	1.2838

	0.9614






	10

	74.9998

	1.25

	0.9659















[image: ]

FIGURE E.11.8 Specified input (in bold text) in the Appendix G.5 MATLAB file for Example 11.9.
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FIGURE E.11.9 R-P-P robotic manipulator in initial and final positions.







11.6.4 R-R-P


The joint displacement variables δ1z, δ2x, δ3z in Equation 11.16 cannot also be calculated algebraically. With unknowns δ1z, δ2x, δ3z, Equation 11.16 becomes a set of three nonlinear simultaneous equations. Like the R-P-P robotic manipulator, a root-finding method is also required for the inverse kinematics of the R-R-P robotic manipulator. Appendix G.6 includes the user instructions for the MATLAB file to calculate joint displacement solutions for Equation 11.16 given 3{p3} and a prescribed range of values for 0{p3}.


As shown in Figure 11.13, the R-R-P robotic manipulator has a spherical workspace (having center coordinates center = (0, 0, l1)) with an outer radius dimension of


router=(l2)2+(Δ3zmax)2
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FIGURE 11.13 R-R-P robotic manipulator and workspace.





Example 11.10


Problem Statement: Using the Appendix G.6 MATLAB file, calculate the R-R-P joint displacements required to achieve the global path points given in Table E.11.12. In this example, l1=l2=0.5 (unitless link lengths) and {p3}3=[0,0,0]T.


Known Information: Table E.11.12 and Appendix G.6 MATLAB file.


Solution Approach:The data for columns p03x, p03y, and p03z in Table E.11.12 are first specified in the file RRP_Input.csv. Figure E.11.10 includes the input specified (in bold text) in the Appendix G.6 MATLAB file and Table E.11.15 includes the joint displacements calculated. Figure E.11.11 includes the initial and final positions of the R-R-P robotic manipulator over the range of prescribed global end effector points.






TABLE E.11.15 R-R-P Robotic Manipulator Joint Displacements





	Point

	δ1z (°)

	δ2x (°)

	Δ3z










	1

	–61.2311

	32.9191

	–0.6614






	2

	–56.2416

	37.2735

	–0.6864






	3

	–51.0710

	40.9089

	–0.7124






	4

	–45.7758

	43.7775

	–0.7388






	5

	–40.4371

	45.8699

	–0.7644






	6

	–35.1105

	47.1905

	–0.7889






	7

	–29.8625

	47.7679

	–0.8115






	8

	–24.7360

	47.6333

	–0.8316






	9

	–19.7713

	46.8339

	–0.8491






	10

	–15.0002

	45.4141

	–0.8634
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FIGURE E.11.10 Specified input (in bold text) in the Appendix G.6 MATLAB file for Example 11.10.
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FIGURE E.11.11 R-R-P robotic manipulator in initial and final positions.
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FIGURE 11.14 R-R-R robotic manipulator and workspace.







11.6.5 R-R-R


The joint displacement variables δ1z, δ2x, and δ3x in Equation 11.18 cannot also be calculated algebraically. With unknowns δ1z, δ2x, and δ3x, Equation 11.18 becomes a set of three nonlinear simultaneous equations. Like the R-P-P and R-R-P robotic manipulators, a root-finding method is also required for the inverse kinematics of the R-R-R robotic manipulator. Appendix G.7 includes the user instructions for the MATLAB file to calculate joint displacement solutions for Equation 11.18 given 3{p3} and a prescribed range of values for 0{p3}.


As shown in Figure 11.14, the R-R-R robotic manipulator has a spherical workspace (having center coordinates center = (0, 0, l1)) with an outer radius dimension of router = l2 + ‖3{p3}‖ where 3{p3} = [0, 0p3y, 0p3z]T.




Example 11.11


Problem Statement:Using the Appendix G.7 MATLAB file, calculate the R-R-R joint displacements required to achieve the global path points given in Table E.11.12. In this example, l1=l2=0.5 (unitless link lengths) and {p3}3=[0,1,0]T.


Known Information: Table E.11.12 and Appendix G.7 MATLAB file.


Solution Approach:The data for columns p03x, p03y, and p03z in Table E.11.12 are first specified in the file RRR_Input.csv. Figure E.11.12 includes the input specified (in bold text) in the Appendix G.7 MATLAB file and Table E.11.16 includes the joint displacements calculated. Figure E.11.13 includes the initial and final positions of the R-R-R robotic manipulator.






TABLE E.11.16 R-R-R Robotic Manipulator Joint Displacements





	Point

	δ1z (°)

	δ2x (°)

	δ3x (°)










	1

	–61.2311

	74.3302

	–124.2298






	2

	–56.2416

	75.2908

	–121.9275






	3

	–51.0710

	75.4719

	–119.5001






	4

	–45.7758

	74.9234

	–117.0128






	5

	–40.4371

	73.7565

	–114.5580






	6

	–35.1106

	72.0287

	–112.1872






	7

	–29.8625

	69.8373

	–109.9699






	8

	–24.7360

	67.2585

	–107.9608






	9

	–19.7713

	64.3666

	–106.2017






	10

	–15.0002

	61.2454

	–104.7446
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FIGURE E.11.12 Specified input (in bold text) in the Appendix G.7 MATLAB file for Example 11.11.
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FIGURE E.11.13 R-R-R robotic manipulator in initial and final positions.







11.6.6 R-R-C


The joint displacement variables δ1z, δ2x, δ3z, and Δ3y in Equation 11.20 cannot also be calculated algebraically. With unknowns δ1z, δ2x, δ3z, and Δ3y, Equation 11.20 becomes a set of three nonlinear simultaneous equations. Like the R-P-P, R-R-P, and R-R-R robotic manipulators, a root-finding method is also required for the inverse kinematics of the R-R-C robotic manipulator. Appendix G.8 includes the user instructions for the MATLAB file to calculate joint displacement solutions for Equation 11.20 given 3{p3} and a prescribed range of values for 0{p3}.


As shown in Figure 11.15, the R-R-C robotic manipulator has a cylindrical workspace (having a center axis that is collinear with l1) with outer height and radius dimensions of Δ3zmax and router = l1 + l2, respectively.
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FIGURE 11.15 R-R-C robotic manipulator and workspace.





Example 11.12


Problem Statement:Using the Appendix G.8 MATLAB file, calculate the R-R-C joint displacements required to achieve the global path points given in Table E.11.12. In this example, l1=1, l2=l3=0.5 (unitless link lengths), and {p3}3=[0,1,−1]T.


Known Information: Table E.11.14 and Appendix G.8 MATLAB file.


Solution Approach: The data for columns p03x, p03y, and p03z in Table E.11.12 are first specified in the file RRC_Input.csv. Figure E.11.14 includes the input specified (in bold text) in the Appendix G.8 MATLAB file and Table E.11.17 includes the joint displacements calculated. Figure E.11.15 includes the initial and final positions of the R-R-C robotic manipulator over the range of prescribed global end effector points.








TABLE E.11.17 R-R-C Robotic Manipulator Joint Displacements





	Point

	δ1z (°)

	δ2z (°)

	δ3z (°)

	δ3z










	1

	–35.4860

	–5.7728

	46.9980

	0.2165






	2

	–30.0170

	–4.5237

	44.2350

	0.2566






	3

	–24.5330

	–3.1631

	41.6230

	0.2890






	4

	–19.0690

	–1.7162

	39.1470

	0.3125






	5

	–13.6890

	–0.21255

	36.8220

	0.3266






	6

	–8.4370

	1.3269

	34.6550

	0.3307






	7

	–3.3822

	2.8823

	32.6820

	0.3248






	8

	1.4188

	4.4435

	30.9450

	0.3090






	9

	5.9070

	6.0036

	29.4950

	0.2838






	10

	10.0190

	7.5616

	28.3930

	0.2500
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FIGURE E.11.14 Specified input (in bold text) in the Appendix G.8 MATLAB file for Example 11.12.
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FIGURE E.11.15 R-R-C robotic manipulator in initial and final positions.









Robotic Manipulator Kinematic Analysis and Modeling in Simscape MultibodyTM


As has been noted throughout this chapter, Appendices G.1–G.8 include MATLAB file user instructions for R-P-P, R-R-P, R-R-R, and R-R-C forward and inverse kinematics. In these files, the global end effector coordinates are calculated for prescribed joint displacements (in Appendices G.1–G.4) and the joint displacements are calculated for prescribed global end effector coordinates (in Appendices G.5–G.8).


This textbook also utilizes Simscape Multibody as an alternate approach for simulation-based kinematic analysis. A library of Simscape Multibody files is also available for download at https://www.routledge.com/p/book/9781032328317 for R-P-P, R-R-P, R-R-R, and R-R-C forward kinematics*. In addition to calculating the global end effector coordinates for prescribed joint displacements, the motion of the robotic manipulator is also simulated over the joint displacements. The Simscape Multibody file user instructions for the forward kinematic analysis of the R-P-P, R-R-P, R-R-R, and R-R-C robotic manipulators are given in Appendices L.1–L.4, respectively.




Example 11.13


Problem Statement:Using the Appendix L.4 Simscape Multibody files, calculate the R-R-C end effector coordinates given the joint displacements in Example 11.12.


Known Information: Example 11.12 and Appendix L.4 Simscape Multibody files.


Solution Approach: The data for columns δ1z, δ2z, δ3z, and Δ3z in Table E.11.17 are first specified in the file RRC_Input.csv. Figure E.11.16 includes the input specified (in bold text) in the Appendix L.4 Simscape Multibody file. Table E.11.18 includes the global R-R-C end effector coordinates calculated. These coordinates are identical to the prescribed end effector coordinates given in Table E.11.12. Figure E.11.17 is an intermediate position snapshot of the robotic manipulator animation generated from the Appendix L.4 Simscape Multibody files.
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FIGURE E.11.16 Specified input (in bold text) in the Appendix L.4 Simscape Multibody file for Example 11.13.
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FIGURE E.11.17 Intermediate position of the R-R-C robotic manipulator in the Appendix L.4 Simscape Multibody animation for Example 11.13.



* This library can also be downloaded from the authors’ server at http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.







TABLE E.11.18 Calculated R-R-C Robotic Manipulator End Effector Coordinates





	Point

	0p3x

	0p3y

	0p3z










	1

	0.6830

	0.3749

	0.2164






	2

	0.6764

	0.4519

	0.2565






	3

	0.6569

	0.5305

	0.2889






	4

	0.6251

	0.6082

	0.3125






	5

	0.5818

	0.6825

	0.3266






	6

	0.5284

	0.7513

	0.3307






	7

	0.4666

	0.8124

	0.3248






	8

	0.3983

	0.8640

	0.3090






	9

	0.3254

	0.9046

	0.2839






	10

	0.2502

	0.9330

	0.2501











Identical end effector coordinates to those in Table E.11.18 can be replicated for the R-P-P, R-R-P, and R-R-R robotic manipulators by using the joint displacements and dimension input data in Examples 11.9, 11.10, and 11.11, respectively (in the Appendix L.1, L.2 and L.3 Simscape Multibody files, respectively).






11.8 Summary


Like a linkage, a robotic manipulator (commonly called a robot) includes an assembly of links and joints and is designed to produce a controlled output motion. In addition to links and joints, however, a robotic manipulator also includes electronic circuitry, computer-controlled actuators to compel link motion, and is guided by a computer program. Because robotic manipulators include both mechanical and electronic components, they are classified as electro-mechanical systems.


Another common distinction between linkages and robotic manipulators is in their overall design. Linkages commonly have closed-loop designs. With this design, at least two joints in a linkage are connected to ground (thus forming a closed loop). While robotic manipulators can have closed-loop designs, they often have open loops, where only one joint is connected to ground.


The five spatial robotic manipulator types considered in this chapter are the Cartesian, cylindrical, spherical, articulated, and SCARA robots. They are commonly known as the P-P-P, R-P-P, R-R-P, R-R-R, and R-R-C robotic manipulators, respectively. By prescribing coordinate frames for each link in a robotic manipulator and establishing displacement variables between each frame, equation systems are formulated (using the general spatial transformation matrix) to calculate the motion of any link in the robotic manipulator.


This textbook includes a library of MATLAB files for the forward kinematics (Appendices G.1–G.4) and the inverse kinematics (Appendices G.5–G.8) of the R-P-P, R-R-P, R-R-R, and R-R-C robotic manipulators. In forward kinematics, the link dimensions and joint motion of a robotic manipulator are known and the corresponding output motion of the links (usually the end effector) is calculated. In inverse kinematics, the end effector motion and link dimensions are known and the joint motion required to achieve the end effector motion is calculated. Inverse kinematics is often described as the reverse of forward kinematics.


This textbook also includes a library of MATLAB and Simscape Multibody files for the forward kinematics (Appendices L.1–L.4) of the R-P-P, R-R-P, R-R-R, and R-R-C robotic manipulators. In addition to calculating the global values for the end effector point p3, the motion of the robotic manipulator is also simulated in the Appendix L files.
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Problems




	Explain some of the design similarities and distinctions between robotic manipulators and the linkages presented in Chapters 4 and 10.


	Explain some of the advantages robotic manipulators have over the linkages presented in Chapters 4 and 10.


	Calculate the mobility values for the P-P-P, R-P-P, and R-R-P robotic manipulators.


	Using Matrix (11.3) calculate the transformation matrix  10[T] for angular displacements δ1x=12° and δ1z=−35°, and linear displacements Δ1x=5.75 and Δ1y=−2.75 between coordinate frames 0 and 1.


	Including Matrix (11.3), calculate the transformation matrix  20[T] for the displacement data given in Problem 4 and angular displacements δ2y=30° and δ2z=15°, and linear displacements Δ2x=15, Δ2y=−8, and Δ2z=5 between coordinate frames 1 and 2.


	Calculate the transformation matrix   30[T] for the coordinate frame displacement values given in Table P.11.1.


	Explain the distinction between a transformation matrix formulated using Denavit–Hartenberg parameters and the transformation matrix given in Matrix 11.3.


	Calculate the {p3}0 coordinates produced by the P-P-P robotic manipulator given the joint displacements

Δ1x=1+t, Δ2y=t1.45, Δ3z=−2t0.25, 0≤t≤10


Consider at least 10 equally-spaced curve points. Also {p3}3=[0,−1,0]T.



	Using the Appendix G.1 or L.1 files, calculate the {p3}0 coordinates produced by the R-P-P robotic manipulator given the joint displacements

δ1z=t, Δ2z=t/35°, Δ3x=(t/40°)1.65, 0≤t≤90°


Consider at least 10 equally-spaced curve points. Also {p3}3=[0,0,−1]T.



	Using the Appendix G.1 or L.1 files, calculate the {p3}0 coordinates produced by the R-P-P robotic manipulator given the joint displacements

δ1z=(90°)sint, Δ2z=t/55°, Δ3x=(t/40°)1.35, 0≤t≤180°


Consider at least 10 equally-spaced curve points. Also {p3}3=[2,0,−1.5]T.



	Using the Appendix G.2 or L.2 files, calculate the {p3}0 coordinates produced by the R-R-P robotic manipulator given the joint displacements

δ1z=t, δ2x=−2t, Δ3z=t/55°, 0≤t≤45°


Consider at least 10 equally-spaced curve points. Also, l1=l2=2 and {p3}3=[0,0,0]T.






TABLE P.11.1 Frame Displacement Variables





	Frames

	δx

	δy

	δz

	Δx

	Δy

	Δz










	1 wrt 0

	20°

	0

	0

	0

	2.85

	0






	2 wrt 1

	0

	0

	15°

	0

	0

	−7.75






	3 wrt 2

	0

	−65°

	0

	0

	7.5

	0












	Using the Appendix G.2 or L.2 files, calculate the {p3}0 coordinates produced by the R-R-P robotic manipulator given the joint displacements

δ1z=(65°)sin1.75t, δ2x=−t/2.5, Δ3z=t/65°, 0≤t≤90°


Consider at least 10 equally-spaced curve points. Also, l1=2, l2=3.5, and {p3}3=[0,0,0]T.



	Using the Appendix G.3 or L.3 files, calculate the {p3}0 coordinates produced by the R-R-R robotic manipulator given the joint displacements

δ1z=2.5t, δ2x=−1.1t, δ3x=3.8t, 0≤t≤30°


Consider at least 10 equally-spaced curve points. Also, l1=2, l2=1.5, and {p3}3=[0,0.25,0]T.



	Using the Appendix G.3 or L.3 files, calculate the {p3}0 coordinates produced by the R-R-R robotic manipulator given the joint displacements

δ1z=(70°)sin2t, δ2x=(35°)sin2t, δ3x=(40°)sin2t, 0≤t≤90°


Consider at least 10 equally-spaced curve points. Also, l1=2, l2=4.5, and {p3}3=[1,0.25,2]T.



	Using the Appendix G.4 or L.4 files, calculate the {p3}0 coordinates produced by the R-R-C robotic manipulator given the joint displacements

δ1z=5t, δ2z=−3t, δ3z=2, Δ3z=−t/100°, 0≤t≤30°


Consider at least 10 equally-spaced curve points. Also, l1=l2=l3=1 and {p3}3=[0,1,−0.1]T.



	Using the Appendix G.4 or L.4 files, calculate the {p3}0 coordinates produced by the R-R-C robotic manipulator given the joint displacements

δ1z=(90°)sin4t, δ2z=(120°)sin2t, δ3z=t/1.75, Δ3z=−t/150°, 0≤t≤90°


Consider at least 10 equally-spaced curve points. Also, l1=l2=l3=1 and {p3}3=[2,1,−2]T.



	In robotic manipulator design, what are the objectives in and applications for forward and inverse kinematics?


	Describe the shape and dimensions of the workspace of a P-P-P robotic manipulator with maximum translation distances (in meters) of Δ1xmax=1.65, Δ2ymax=2.85, and Δ3zmax=3.2.


	Calculate the joint displacements of the P-P-P robotic manipulator required to achieve the curve

p03x=1.5+cos(t), p03y=2.75+sin(t), p03z=t/2π, 0≤t≤2π


Consider at least 10 equally-spaced curve points. Also, {p3}3=[0,−1,0]T.



	Describe the shape and outer dimensions of the workspace of an R-P-P robotic manipulator with maximum translation distances (in meters) of Δ2zmax=8 and Δ3xmax=5.75.


	Describe the shape and outer dimensions of the workspace of an R-P-P robotic manipulator with maximum translation distances (in meters) of Δ2zmax=7.5 and Δ3xmax=3.75.


	Using the Appendix G.5 files, calculate the joint displacements of the R-P-P robotic manipulator required to achieve the curve

p03x=4cos(t), p03y=6sin(t), p03z=t/90°, 0≤t≤360°


Consider at least 10 equally-spaced curve points. Also, {p3}3=[2,−1,0]T.



	Using the Appendix G.5 files, calculate the joint displacements of the R-P-P robotic manipulator required to achieve the curve

p03x=t1.25, p03y=t2, p03z=1+t1.75, 0≤t≤18


Consider at least 10 equally-spaced curve points. Also, {p3}3=[−1,3,0]T.



	Describe the shape and outer dimensions of the workspace of an R-R-P robotic manipulator with link lengths (in meters) l1=l2=10 and a maximum translation distance of Δ3zmax=8.

Describe the shape and outer dimensions of the workspace of an R-R-P robotic manipulator with link lengths (in meters) l1=4.5 and l2=3, and a maximum translation distance of Δ3zmax=1.75.



	Using the Appendix G.6 files, calculate the joint displacements of the R-R-P robotic manipulator required to achieve the curve

p03x=1.75cos(t), p03y=5.5sin(t), p03z=sin(t), 0≤t≤360°


Consider at least 10 equally-spaced curve points. Also, l1=l2=2.5 and {p3}3=[0,0,0]T.



	Using the Appendix G.6 files, calculate the joint displacements of the R-R-P robotic manipulator required to achieve the curve

p03x=7.15+t/360°, p03y=5.72sin(t), p03z=0.52, 0≤t≤360°


Consider at least 10 equally-spaced curve points. Also, l1=2.5, l2=2, and {p3}3=[0,0,0]T.



	Describe the shape and outer dimensions of the workspace of an R-R-R robotic manipulator with link lengths (in meters) l1=12.5 and l2=4, and {p3}3=[0,2,0]T.


	Describe the shape and outer dimensions of the workspace of an R-R-R robotic manipulator with link lengths (in meters) l1=8.25 and l2=3.75, and {p3}3=[0,2,1]T.


	Using the Appendix G.7 files, calculate the joint displacements of the R-R-R robotic manipulator required to achieve the curve

p03x=3sin(t), p03y=2.5cos(t), p03z=1.5cos(t), 0≤t≤180°


Consider at least 10 equally-spaced curve points. Also, l1=l2=3.75 and {p3}3=[3,1.5,0.75]T.



	Using the Appendix G.7 files, calculate the joint displacements of the R-R-R robotic manipulator required to achieve the curve

p03x=−2+t/45°, p03y=sin(t), p03z=2t/45°, 0≤t≤90°


Consider at least 10 equally-spaced curve points. Also, l1=2.5, l2=3, and {p3}3=[1.5,0,1.7]T.



	Describe the shape and outer dimensions of the workspace of an R-R-C robotic manipulator with link lengths (in meters) l2=2, l3=1.25 and a maximum translation distance of Δ3zmax=5.


	Describe the shape and outer dimensions of the workspace of an R-R-C robotic manipulator with link lengths (in meters) l1=1.25, l2=2.95 and a maximum translation distance of Δ3zmax=4.5.


	Using the Appendix G.8 files, calculate the joint displacements of the R-R-C robotic manipulator required to achieve the curve

p03x=t45°sin(t), p03y=−t45°cos(t), p03z=t/30°, 0≤t≤180°


Consider at least 10 equally-spaced curve points. Also, l1=3.25, l2=l3=1.5, and {p3}3=[0,1,−0.5]T.



	Using the Appendix G.8 files, calculate the joint displacements of the R-R-C robotic manipulator required to achieve the curve

p03x=−t120°sin(t), p03y=−t60°cos(t), p03z=t/45°, 0≤t≤180°


Consider at least 10 equally-spaced curve points. Also, l1=2, l2=l3=1.75, and {p3}3=[0,0.5,−0.5]T.












  
    

Appendix A: User Information and Instructions for MATLAB®




A.1 Required MATLAB Toolkits


To utilize the MATLAB and Simscape MultibodyTM files that accompany this textbook (available for download at https://www.routledge.com/p/book/9781032328317), the following toolkits must be included when installing MATLAB:




	Symbolic Math Toolbox: Required for performing symbolic mathematics


	Optimization Toolbox: Required for solving equations (e.g., simultaneous equation sets)


	Simscape Multibody, Simscape and Simulink: Required for running Simscape Multibody files





To view the installed toolkits, the user can type the command ver in the MATLAB command window. The MATLAB and Simscape Multibody™ files that accompany this textbook can also be downloaded from the author’s server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip






A.2 Description of MATLAB Operators and Functions


For additional descriptions of the functions and operators given in Table A.1, please refer to www.mathworks.com/help/matlab/.






TABLE A.1 MATLAB Functions and Operators Used throughout This Textbook





	Function or Operator

	Description










	+ − × ÷ ^

	Add, subtract, multiply, divide, and exponent (respectively)






	;

	When this operator is used at the end of a command, the results from the command are not displayed






	i or j

	Complex coefficient i=j=-1






	pi

	π(3.14159…)






	sqrt(x)

	Square root of x






	atan2(y,x)

	The angle between the positive x-axis and the point given by the coordinates (x, y)






	abs(x)

	Absolute value of a real value or magnitude of a complex value






	norm(x)

	Vector or matrix norm (‖x2‖)






	exp(x)

	Exponent (ex)






	syms var_names real

	Defines symbolic variables (e.g., syms X Y Z real makes variables X, Y, and Z symbolic variables)






	syms name(t) t real

	Defines time-based symbolic variables (e.g., syms X(t) Y(t) Z(t) t real makes variables X, Y and Z time-based symbolic variables)






	diff(F)

	Calculates the first derivative of function F symbolically






	diff(V, N)

	Calculates the Nth derivative of function F symbolically






	expand(expr)

	Symbolic expansion (of polynomials and functions)






	simplify(expr)

	Algebraic simplification






	sin(x)

	Sine function






	cos(x)

	Cosine function






	Name = [N1, N2, N3…]

	Defines a row vector






	Name(cell number)

	Calls a vector cell (e.g., Name(1)=N1 in previous vector)






	Name[N11, N12, N13…; N21, N22, N23…; N31, N32, N33…]

	Defines a matrix






	Name(row#, col#)

	Calls a matrix cell (e.g., Name(2,3)=N23 in previous matrix)






	‘

	When this operator is used at the end of a matrix or vector, the matrix or vector is transposed






	Inv(A)

	The inverse of matrix A ([A]−1)






	A/b

	The solution to the matrix system [A]x=b (x=[A]−1 b)






	…

	When this operator is used at the end of a command, the command can continue on the next line






	f =@(var1, var2…) expression

	When this operator is used before a function expression, an anonymous function is defined

(e.g., for f = x2 + 2y, f =@(x, y) x^2 + 2*y)







	[x,fval] = fsolve(fx,x0)

	Solves a system of nonlinear equations fx (where fx=[eq1; eq2; eq3…]) for unknown variables x (where x=[var1, va2, var3…]). The variable x0 includes the initial unknown variable values.















A.3 Preparing and Running Files in MATLAB and Operations in Simscape Multibody


To execute commands in MATLAB, the user can simply type them line by line in the MATLAB command window (labeled in Figure A.1). This window appears by default in MATLAB. All of the MATLAB commands illustrated in throughout this textbook were implemented using this approach. After typing commands in one line, the user can use the “Enter” button to advance to the text line.*
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FIGURE A.1 MATLAB command and editor windows and New Script buttons (encircled).



* Unlike commands in the MATLAB command line, commands in the MATLAB editor do not include prompts (the symbol >>) that precedes every command in the MATLAB command window.

As a set of commands becomes more extensive, the user may prefer to save them as a MATLAB file. To do this, the user can enter the commands in the MATLAB editor window (labeled in Figure A.1) and save them as a script (a *.m file). The MATLAB editor window can be launched using the “Ctrl + N” buttons or either of the New Script buttons encircled in Figure A.1.


To run files in MATLAB, the user can either use the “F5” button or select the Run button. Figure A.2 illustrates the MATLAB editor toolbar with the Run button encircled. This toolbar appears once a MATLAB file is opened.
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FIGURE A.2 MATLAB editor toolbar with run button (encircled).



There are two windows that appear automatically when running Simscape Multibody files: the model window and the animation window.* Figure A.3 illustrates the model window for Appendix H.1. In this window, Simscape Multibody models are constructed. Because the contents in the model window should never be edited in any way, the user should minimize this window whenever it appears.




[image: ]

FIGURE A.3 Simscape Multibody model window (for Appendix H.1).



Figure A.4 illustrates the animation window for Appendix H.1. In this window, the motion of the model (under the user-prescribed dimension and driving link parameters) is simulated. Figure A.5 illustrates the toolbar for the animation window. This toolbar includes options to adjust view settings and play speed, as well as animation recording settings (among others).


* The Simscape Multibody files are associated with Appendices H through L.
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FIGURE A.4 Simscape Multibody animation window (for Appendix H.1).
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FIGURE A.5 Simscape Multibody animation window toolbar.







A.4 Description of Simscape Multibody Functions


For additional descriptions of the functions given in Table A.2, please refer to www.mathworks.com/help/matlab/.






TABLE A.2 Simscape Multibody Interface Functions Used Throughout This Textbook





	Function

	Description










	open_system(obj)

	To open the Simscape Multibody environment and the simulation model name specified






	set_param(Object,ParameterName,Value,... ParameterNameN,ValueN)

	To customize simulation parameters. In this textbook, the customized parameters are ‘StopTime’ and ‘Refine’






	sim(model)

	To start the simulation






	evalin(workspace,expression)

	To retrieve simulation results data from the Simscape Multibody environment and make it visible in the MATLAB main workspace











During the simulation process, a popup window will appear. This window includes a 3D animation of the mechanism which is rendered by the Simscape Multibody 3D engine.


Towards the end of the simulation, the simulation model is preconfigured to have the simulation engine invoke the Post_Simulation_Task.m file






A.5 Rerunning MATLAB and Simscape Multibody Files with Existing *.csv Files


When rerunning a MATLAB and Simscape Multibody file when its *.csv file is open, the user could (1) rename the *.csv file (to prevent it from being overwritten), (2) store the *.csv file in a different folder (also to prevent it from being overwritten), or (3) close the *.csv file in the same folder (so that it may be overwritten). Attempting to rerun a MATLAB and Simscape Multibody file with its originally named *.csv file open and stored in its original location will prevent the new results from being written (and produce an error message) because a new *.csv file cannot be written when a *.csv file having the same name is in use in the same folder.






A.6 Minimum Precision Requirement for Appendix File User Input


The default precision tolerance for link vector loops in the MATLAB and Simscape Multibody files is 0.0002. Vector-loop errors beyond this tolerance are not allowed. An error indicating this violation will appear in the command line. When specifying link vectors in any of the MATLAB and Simscape Multibody files (e.g., vector lengths, vector angles, or vector components), noninteger values should be specified to at least four decimal places.*


* The only exceptions for this requirement are integer values or noninteger values that include a string of zeros before the fourth decimal place (e.g., ½ = 0.5000 = 0.5, ¼ = 0.2500 = 0.25, 5/4 = 1.2500 = 1.25).







  
    

Appendix B: User Instructions for Chapter 4 MATLAB® Files




B.1 Planar Four-Bar Mechanism


The Appendix B.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Kinematic_ Planar_ 4Bar.m for the kinematic analysis of planar four-bar mechanisms*. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, and L1 (Figure B.1a). Values are also specified for the initial crank angle (start_ ang), the crank rotation increment (step_ ang), and the final crank angle (stop_ ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_ acc) of the crank.† Figure B.2 illustrates the user-input sections of the file Kinematic_ Planar_ 4Bar.m, with sample values in bold type.‡ While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE B.1 (a) Planar four-bar mechanism and (b) output variables.
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FIGURE B.2 Sections of Kinematic_ Planar_4Bar.m with sample values in bold.



After specifying the dimensions and driving link parameters in the file Kinematic_ Planar_4Bar.m, the next step is to run this file. When running this file, one file (filename Disp_Vel_ Acc.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment.§ The calculated mechanism output is included in Figure B.1b.






B.2 Planar Four-Bar Fixed and Moving Centrode Generation


The Appendix B.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Centrodes.m for planar four-bar (and slider-crank) fixed and moving centrode generation.¶ For centrode generation, the user specifies the mechanism’s fixed and moving pivots in this file. Values are specified for pivot variables a0, a1, b0, and b1 for a planar four-bar mechanism (Figure B.3a) or a slider-crank mechanism (Figure B.3b). Figure B.4 illustrates the user-input section of the file Centrodes.m, with sample values in bold type.*


* The library of MATLAB files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† If no crank angular velocity or acceleration values are specified, time cannot be calculated and the text NaN is written to the time column of the *.csv file. 

‡ The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

§ At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.

¶ The folder functions must also accompany the file Centrodes.m. This folder includes auxiliary files that are used by Centrodes.m.
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FIGURE B.3 (a) Planar four-bar and (b) slider-crank mechanism fixed and moving pivots.
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FIGURE B.4 Section of Centrodes.m with sample values in bold.



After specifying the fixed and moving pivots in the file Centrodes.m, the next step is to run this file. When running this file, two files (filenames Fixed_Centrode.csv and Moving_Centrode.csv) are written to a folder named Results (in a format compatible with Microsoft Excel) that include calculated mechanism fixed and moving instant centers at each crank link rotation increment. When considering the slider-crank mechanism for centrode generation, the user should specify a length b0–b1 (or the y coordinate of b0) that produces an acceptable sliding error for b1. For example, in Example 4.8, using b0= (2, −100,000) produces translations of b1 that are accurate to five decimal places. Also, when running Centrodes.m, a window appears where the four-bar mechanism and its fixed and moving centrodes are displayed.


* The first and second cells for the fixed and moving pivots in Centrodes.m (see Figure B.4) correspond to the pivot’s x- and y-components.





B.3 Slider-Crank Mechanism


The Appendix B.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Kinematic_Slider_Crank.m for the kinematic analysis of slider-crank mechanisms. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in this file. Values are specified for link variables W1, V1, and U1 (Figure B.5a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank.* Figure B.6 illustrates the user-input sections of the file Kinematic_Slider_Crank.m, with sample values in bold type.†
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FIGURE B.5 (a) Slider-crank mechanism and (b) output variables.
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FIGURE B.6 Sections of Kinematic_ Slider_Crank.m with sample values in bold.



After specifying the dimensions and driving link parameters in the file Kinematic_ Slider_ Crank.m, the next step is to run this file. When running this file, one file (filename Disp_Vel_ Acc.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.* The calculated mechanism output is included in Figure B.5b.


* If no crank angular velocity or acceleration values are specified, time cannot be calculated and the text NaN is written to the time column of the *.csv file.

† The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.





B.4 Geared Five-Bar Mechanism (Two Gears)


The Appendix B.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Kinematic_5Bar_2Gears.m for the kinematic analysis of geared five-bar mechanisms having two gears. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, S1, and the gear ratio (Figure B.7a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank.† Figure B.8 illustrates the user-input sections of the file Kinematic_Geared_5Bar.m, with sample values in bold type.‡ While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE B.7 (a) Geared five-bar mechanism and (b) output variables.
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FIGURE B.8 Sections of Kinematic_Geared_ 5Bar.m with sample values in bold.



After specifying the dimensions and driving link parameters in the file Kinematic_ Geared_ 5Bar.m, the next step is to run this file. When running this file, one file (filename Disp_ Vel_ Acc.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.§ The calculated mechanism output is included in Figure B.7b.


* At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.

† If no crank angular velocity or acceleration values are specified, time cannot be calculated and the text NaN is written to the time column of the *.csv file. 

‡ The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

§ At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.





B.5 Geared Five-Bar Mechanism (Three Gears)


The Appendix B.5 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Kinematic_5Bar_3Gears.m for the kinematic analysis of geared five-bar mechanisms having three gears. The procedure to use this MATLAB file is identical to the procedure given in Section B.4.






B.6 Watt II Mechanism


The Appendix B.6 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Kinematic_Watt_II.m for the kinematic analysis of Watt II mechanisms. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, W1*,V1*,G1*,U1* and L1* (Figure B.9a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank.* Figure B.10 illustrates the user-input sections of the file Kinematic_Watt_II.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE B.9 (a) Watt II mechanism and (b) output variables.
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FIGURE B.10 Sections of Kinematic_Watt_ II.m with sample values in bold.



After specifying the dimensions and driving link parameters in the file Kinematic_Watt_ II.m, the next step is to run this file. When running this file, one file (filename Disp_Vel_ Acc.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure B.9b.






B.7 Stephenson III Mechanism


The Appendix B.7 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Kinematic_ Stephenson_ III.m for the kinematic analysis of Stephenson III mechanisms. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, W1*,V1*,G1*,U1* and L1* (Figure B.11a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank.* Figure B.12 illustrates the user-input sections of the file Kinematic_ Stephenson_ III.m, with sample values in bold type.† While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


* If no crank angular velocity or acceleration values are specified, time cannot be calculated and the text NaN is written to the time column of the *.csv file.

* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

† At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.
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FIGURE B.11 (a) Stephenson III mechanism and (b) output variables.
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FIGURE B.12 Sections of Kinematic_ Stephenson_ III.m with sample values in bold.



After specifying the dimensions and driving link parameters in the file Kinematic_ Stephenson_ III.m, the next step is to run this file. When running this file, one file (filename Disp_Vel_ Acc.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.‡ The calculated mechanism output is included in Figure B.11b.


* If no crank angular velocity or acceleration values are specified, time cannot be calculated and the text NaN is written to the time column of the *.csv file.

† The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

‡ At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.







  
    

Appendix C: User Instructions for Chapter 6 MATLAB® Files




C.1 Planar Four-Bar Mechanisma


The Appendix C.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Static_Planar_4Bar.m for the static force analysis of planar four-bar mechanisms*. To conduct a static force analysis, the user specifies the mechanism link dimensions, coupler force, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, the coupler force Fp1, the gravitational constant g, the center of mass vectors R1 through R3, and link masses m1 through m3 (Figure C.1a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure C.2 illustrates the user-input sections of the file Static_Planar_4Bar.m, with sample values in bold type.† While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE C.1 (a) Planar four-bar mechanism and (b) output variables (angle τ shown in a).
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FIGURE C.2 Sections of Static_Planar_4Bar.m with sample values in bold.



After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_Planar_4Bar.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment.‡ The calculated mechanism output is included in Figure C.1b.






C.2 Slider-Crank Mechanism


The Appendix C.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Static_Slider_Crank.m for the static force analysis of slider-crank mechanisms. To conduct a static force analysis, the user specifies the mechanism link dimensions, slider force, static friction coefficient, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in this file. Values are specified for link variables W1, V1, U1, the slider force F, the static friction coefficient ± µ, the gravitational constant g, the center of mass vectors R1, R2, and link masses m1 through m3 (Figure C.3a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure C.4 illustrates the user-input sections of the file Static_Slider_Crank.m, with sample values in bold type.*
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FIGURE C.3 (a) Slider-crank mechanism and (b) output variables.
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FIGURE C.4 Sections of Static_Slider_Crank.m with sample values in bold.



* The library of MATLAB files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† The unit for crank angular rotation is degree. 

‡ At crank rotation increments where circuit defects occur, the text Inf is written in the *.csv file.

After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_Slider_Crank.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.* The calculated mechanism output is included in Figure C.3b.






C.3 Geared Five-Bar Mechanism (Two Gears)


The Appendix C.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Static_5Bar_2Gears.m for the static force analysis of geared five-bar mechanisms having two gears. To conduct a static force analysis, the user specifies the mechanism link dimensions, gear ratio, intermediate link force, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, S1, the intermediate link force Fp1, the gear ratio, the gravitational constant g, the center of mass vectors R1 through R4, and link masses m1 through m4 (Figure C.5a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure C.6 illustrates the user-input sections of the file Static_5Bar_2Gear.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE C.5 (a) Geared five-bar mechanism and (b) output variables.
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FIGURE C.6 Sections of Static_5Bar_2Geare.m with sample values in bold.



* At crank rotation increments where circuit defects occur, the text Inf is written in the *.csv file.

After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_5Bar_2Gear.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure C.5b.






C.4 Geared Five-Bar Mechanism (Three Gears)


The Appendix C.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Static_5Bar_3Gears.m for the static force analysis of geared five-bar mechanisms having three gears. The procedure to use this MATLAB file is identical to the procedure given in Section C.3.


* The unit for crank angular rotation is degree.

† At crank rotation increments where circuit defects occur, the text Inf is written in the *.csv file.





C.5 Watt II Mechanism


The Appendix C.5 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Static_Watt_II.m for the static force analysis of Watt II mechanisms. To conduct a static force analysis, the user specifies the mechanism link dimensions, coupler forces, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in this file. Values are specified for link variables W1,V1,G1,U1,L1,W1*,V1*,G1*,U1*,L1*, the oupler forces Fp1 and Fp1*, the gravitational constant g, the center of mass vectors R1 through R5, and link masses m1 through m5 (Figure C.7a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure C.8 illustrates the user-input sections of the file Static_Watt_II.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE C.7 (a) Watt II mechanism and (b) output variables.
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FIGURE C.8 Sections of Static_Watt_II.m with sample values in bold.



After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_Watt_II.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure C.7b.


* The unit for crank angular rotation is degree.

† At crank rotation increments where circuit defects occur, the text Inf is written in the *.csv file.





C.6 Stephenson III Mechanism


The Appendix C.6 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Static_Stephenson_III.m for the static force analysis of Stephenson III mechanisms. To conduct a static force analysis, the user specifies the mechanism link dimensions, intermediate link force, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in this file. Values are specified for link variables W1,V1,G1,U1,V1*,G1*,U1*,L1* and the intermediate link force Fp1*, the gravitational constant g, the center of mass vectors R1 through R5, and link masses m1 through m5 (Figure C.9a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure C.10 illustrates the user-input sections of the file Static_Stephenson_III.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.




[image: ]

FIGURE C.9 (a) Stephenson III mechanism and (b) output variables.
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FIGURE C.10 Sections of Static_Stephenson_III.m with sample values in bold.



After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_Stephenson_III.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure C.9b.


* The unit for crank angular rotation is degree.

† At crank rotation increments where circuit defects occur, the text Inf is written in the *.csv file.







  
    

Appendix D: User Instructions for Chapter 7 MATLAB® Files




D.1 Planar Four-Bar Mechanism


The Appendix D.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Dynamic_Planar_4Bar.m for the dynamic force analysis of planar four-bar mechanisms*. To conduct a dynamic force analysis, the user specifies the mechanism link dimensions, coupler force and follower torque  gravitational constant, center of mass vectors, link masses, link mass moments of inertia, and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, the coupler force Fp1, the follower torque Tb0, the gravitational constant g, the center of mass vectors R1, R3, and R7, link masses m1 through m3, and link mass moments of inertia I1 through I3 (Figure D.1a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure D.2 illustrates the user-input sections of the file Dynamic_Planar_4Bar.m, with sample values in bold type.† While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE D.1 (a) Planar four-bar mechanism and (b) output variables (angle τ not shown).
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FIGURE D.2 Sections of Dynamic_Planar_4Bar.m with sample values in bold.



After specifying the mechanism dimensions, dynamic analysis data, and driving link parameters in the file Dynamic_Planar_4Bar.m, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment.‡ The calculated mechanism output is included in Figure D.1b.






D.2 Slider-Crank Mechanism


The Appendix D.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Dynamic_Slider_Crank.m for the dynamic force analysis of slider-crank mechanisms. To conduct a dynamic force analysis, the user specifies the mechanism link dimensions, slider force, dynamic friction coefficient, gravitational constant, center of mass vectors, link masses, link mass moments of inertia, and the crank motion parameters in this file. Values are specified for link variables W1, V1, U1, the slider force F, the dynamic friction coefficient ±µ, the gravitational constant g, the center of mass vectors R1 and R3, link masses m1 through m3, and link mass moments of inertia I1 and I2 (Figure D.3a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure D.4 illustrates the user-input sections of the file Dynamic_Slider_Crank.m, with sample values in bold type.* While some the link vector values in this figure appear in rectangular form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


* The library of MATLAB files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† The units for crank angular rotation, velocity, and acceleration are degree, rad/s, and rad/s2, respectively. 

‡ At crank rotation increments where circuit defects occur, the text Inf is written in the *.csv file.

* The units for crank angular rotation, velocity, and acceleration are degree, rad/s, and rad/s2, respectively.

† At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.
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FIGURE D.3 (a) Slider-crank mechanism and (b) output variables.
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FIGURE D.4 Sections of Dynamic_Slider_Crank.m with sample values in bold.



After specifying the mechanism dimensions, dynamic analysis data, and driving link parameters in the file Dynamic_Slider_Crank.m, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure D.3b.






D.3 Geared Five-Bar Mechanism (Two Gears)


The Appendix D.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Dynamic_5Bar_2Gear.m for the dynamic force analysis and simulation of geared five-bar mechanisms having two gears. To conduct a dynamic force analysis, the user specifies the mechanism link dimensions, gear ratio, intermediate link force, gravitational constant, center of mass vectors, link masses and mass moments of inertia, and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, S1, the gear ratio, the intermediate link force Fp1, the gravitational constant g, the center of mass vectors R1, R3, R7, and R9, link masses m1 through m4, and link mass moments of inertia I1 through I4 (Figure D.5a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure D.6 illustrates the user-input sections of the file Dynamic_5Bar_2Gear.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE D.5 (a) Geared five-bar mechanism and (b) output variables.
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FIGURE D.6 Sections of Dynamic_5Bar_2Gear.m with sample values in bold.



After specifying the mechanism dimensions, dynamic analysis data, and driving link parameters in the file Dynamic_5Bar_2Gear.m, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure D.5b.






D.4 Geared Five-Bar Mechanism (Three Gears)


The Appendix DJ.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Dynamic_5Bar_3Gear.m for the dynamic force analysis and simulation of geared five-bar mechanisms having three gears. The procedure to use this MATLAB file is identical to the procedure given in Section D.3.


* The units for crank angular rotation, velocity, and acceleration are degree, rad/s, and rad/s2, respectively.

† At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.





D.5 Watt II Mechanism


The Appendix D.5 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Dynamic_Watt_II.m for the dynamic force analysis and simulation of Watt II mechanisms. To conduct a dynamic force analysis, the user specifies the mechanism link dimensions, coupler link forces and follower torques, gravitational constant, center of mass vectors, link masses and mass moments of inertia, and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, W1*V1*,G1*,U1*,L1*, the coupler forces Fp1 and Fp1*, the follower torques 16and 17, the gravitational constant g, the center of mass vectors R1, R3, R7, R9, and R13, link masses m1 through m5, and link mass moments of inertia I1 through I5 (Figure D.7a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure D.8 illustrates the user-input sections of the file Dynamic_Watt_II.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE D.7 (a) Watt II mechanism and (b) output variables.
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FIGURE D.8 Sections of Dynamic_Watt_II.m with sample values in bold.



* The units for crank angular rotation, velocity, and acceleration are degree, rad/sec, and rad/sec2, respectively.

After specifying the mechanism dimensions, dynamic analysis data, and driving link parameters in the file Dynamic_Watt_II.m, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure D.7b.


† At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.





D.6 Stephenson III Mechanism


The Appendix D.6 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Dynamic_Stephenson_III.m for the dynamic force analysis and simulation of Stephenson III mechanisms. To conduct a dynamic force analysis, the user specifies the mechanism link dimensions, coupler link force and follower torques, gravitational constant, center of mass vectors, link masses and mass moments of inertia, and the crank motion parameters in this file. Values are specified for link variables W1, V1, G1, U1, L1, V1*,G1*,U1*,L1* the coupler force Fp1*, the follower torques 20 and 21, the gravitational constant g, the center of mass vectors R1, R3, R7, R8, and R12, link masses m1 through m5, and link mass moments of inertia I1 through I5 (Figure D.9a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure D.10 illustrates the user-input sections of the file Dynamic_Stephenson_III.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE D.9 (a) Stephenson III mechanism and (b) output variables.
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FIGURE D.10 Sections of Dynamic_Stephenson_III.m with sample values in bold.



After specifying the mechanism dimensions, dynamic analysis data, and driving link parameters in the file Dynamic_Stephenson_III.m, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.* The calculated mechanism output is included in Figure D.9b.


* The units for crank angular rotation, velocity, and acceleration are degree, rad/s, and rad/s2, respectively

* At crank rotation increments where circuit defects occur, the text Inf is written to the *.csv file.







  
    

Appendix E: User Instructions for Chapter 9 MATLAB® Files




E.1 S, V Profile Generation and Cam Design: Constant Velocity Motion


The Appendix E.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Cam_Const_Vel.m for the kinematic analysis and design of radial cams for constant velocity motion.* To conduct a constant velocity-based kinematic analysis, the user specifies the follower displacement event sequence, the displacement event ranges, the end values for each displacement event, the cam rotation speed, and the cam base circle radius.†


* The library of MATLAB files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† The units for the displacement interval range and cam rotation speed are degrees and rad/s, respectively.

To demonstrate how values are specified in Cam_Const_Vel.m, Figure E.1 illustrates an arbitrary follower rise-dwell-fall-dwell displacement event sequence, while Figure E.2 includes the corresponding values (in bold type) specified in Cam_Const_Vel.m.‡




[image: ]

FIGURE E.1 Follower rise-dwell-fall-dwell displacement event sequence.



‡ While this figure illustrates a rise-dwell-fall-dwell displacement event sequence (for demonstration), the user can specify displacement event sequences of any number and any combination of displacement events.

Rise, fall, and dwell events are specified using R, F, and D (in single quotes in a row matrix), respectively. Because Figure E.1 presents a rise-dwell-fall-dwell sequence, the sequence (R, D, F, D) appears in Figure E.2. Next, the rotation ranges for each displacement event appear in Figure E.2 (representing [β1, β2, β3, β4]). The rotation ranges should be integers and have a sum of 360°. Next, the displacement value at the end of each displacement event appears. Because the profile in Figure E.1 achieves an arbitrary maximum displacement of 2, the sequence (2, 2, 0, 0) (representing [s1, s2, s3, s4]) appears in Figure E.2. Lastly, both the cam rotation speed and base radius appear in Figure E.2.
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FIGURE E.2 Sections of Cam_Const_Vel.m with sample values in bold.



After specifying the follower displacement event sequence parameters, cam rotation speed, and cam base circle radius in the file Cam_Const_Vel.m, the next step is to run this file. When running this file, one file (filename DVAJ.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated follower displacement and velocity curve data, and the corresponding cam profile data, at 1° increments.






E.2 S, V, A Profile Generation and Cam Design: Constant Acceleration Motion


The Appendix E.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Cam_Const_Acc.m for the kinematic analysis and design of radial cams for constant acceleration motion. To conduct a constant acceleration-based kinematic analysis, the user specifies the follower displacement event sequence, the displacement event ranges, the end values for each displacement event, the cam rotation speed, and the cam base circle radius.*


* The units for the displacement interval range and cam rotation speed are degrees and rad/s, respectively.

To demonstrate how values are specified in Cam_Const_Acc.m, Figure E.3 illustrates an arbitrary follower rise-dwell-fall-dwell displacement event sequence, while Figure E.4 includes the corresponding values (in bold type) specified in Cam_Const_Acc.m.†
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FIGURE E.3 Follower rise-dwell-fall-dwell displacement event sequence.
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FIGURE E.4 Sections of Cam_Const_Acc.m with sample values in bold.



† While this figure illustrates a rise-dwell-fall-dwell displacement event sequence (for demonstration), the user can specify displacement event sequences of any number and any combination of displacement events

Rise, fall, and dwell events are specified using R, F, and D (in single quotes in a row matrix), respectively. Because Figure E.3 presents a rise-dwell-fall-dwell sequence, the sequence (R, D, F, D) appears in Figure E.4. Next, the rotation ranges for each displacement event appear in Figure E.4 (representing [β1, β2, β3, β4]). The rotation ranges should be integers and have a sum of 360°. Next, the displacement value at the end of each displacement event appears. Because the profile in Figure E.3 achieves an arbitrary maximum displacement of 2, the sequence (2, 2, 0, 0) (representing [s1, s2, s3, s4]) appears in Figure E.4. Lastly, both the cam rotation speed and base radius appear in Figure E.4.


After specifying the follower displacement event sequence parameters, cam rotation speed, and cam base circle radius in the file Cam_Const_Acc.m, the next step is to run this file. When running this file, one file (filename DVAJ.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated follower displacement, velocity and acceleration data, and the corresponding cam profile data, at 1° increments.






E.3 S, V, A, J Profile Generation and Cam Design: Simple Harmonic Motion


The Appendix E.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Cam_SHM.m for the kinematic analysis and design of radial cams for simple harmonic motion. To conduct a simple harmonic-based kinematic analysis, the user specifies the follower displacement event sequence, the displacement event ranges, the end values for each displacement event, the cam rotation speed, and the cam base circle radius.*


* The units for the displacement interval range and cam rotation speed are degrees and rad/s, respectively.

To demonstrate how values are specified in Cam_SHM.m, Figure E.5 illustrates an arbitrary follower rise-dwell-fall-dwell displacement event sequence, while Figure E.6 includes the corresponding values (in bold type) specified in Cam_SHM.m.†
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FIGURE E.5 Follower rise-dwell-fall-dwell displacement event sequence.



† While this figure illustrates a rise-dwell-fall-dwell displacement event sequence (for demonstration), the user can specify displacement event sequences of any number and any combination of displacement events.

Rise, fall, and dwell events are specified using R, F, and D (in single quotes in a row matrix), respectively. Because Figure E.5 presents a rise-dwell-fall-dwell sequence, the sequence (R, D, F, D) appears in Figure E.6. Next, the rotation ranges for each displacement event appear in Figure E.6 (representing [β1, β2, β3, β4]). The rotation ranges should be integers and have a sum of 360°. Next, the displacement values at the end of each displacement event appear. Because the profile in Figure E.5 achieves an arbitrary maximum displacement of 2, the sequence (2, 2, 0, 0) (representing [s1, s2, s3, s4]) appear in Figure E.6. Lastly, both the cam rotation speed and base radius appear in Figure E.6.
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FIGURE E.6 Sections of Cam_SHM.m with sample values in bold.



After specifying the follower displacement event sequence parameters, cam rotation speed, and cam base circle radius in the file Cam_SHM.m, the next step is to run this file. When running this file, one file (filename DVAJ.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated follower displacement, velocity, acceleration, and jerk data, and the corresponding cam profile data, at 1° increments.






E.4 S, V, A, J Profile Generation and Cam Design: Cycloidal Motion


The Appendix E.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Cam_Cycloidal.m for the kinematic analysis and design of radial cams for cycloidal motion. Both the data specified in and calculated from Cam_Cycloidal.m are identical to those described in Appendix E.3.






E.5 S, V, A, J Profile Generation and Cam Design: 3-4-5 Polynomial Motion


The Appendix E.5 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Cam_345_Poly.m for the kinematic analysis and design of radial cams for 3-4-5 polynomial motion. Both the data specified in and calculated from Cam_345_Poly.m are identical to those described in Appendix E.3.






E.6 S, V, A, J Profile Generation and Cam Design: 4-5-6-7 Polynomial Motion


The Appendix E.6 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Cam_4567_Poly.m for the kinematic analysis and design of radial cams for 4-5-6-7 polynomial motion. Both the data specified in and calculated from Cam_4567_Poly.m are identical to those described in Appendix E.3.








  
    

Appendix F: User Instructions for Chapter 10 MATLAB® Files




F.1 RRSS Mechanism


The Appendix F.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Kinematic_RRSS.m for the kinematic analysis of RRSS mechanisms.* To conduct a kinematic analysis, the user specifies the mechanism point coordinates and the crank motion parameters in this file. Values are specified for link variables a0, ua0, a1, ua1, b0, b1, p1, q1, and r1 (Figure F.1a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure F.2 illustrates the user-input sections of the file Kinematic_RRSS.m, with sample values in bold type.†


* The library of MATLAB files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively. 
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FIGURE F.1 (a) RRSS mechanism and (b) output variables.
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FIGURE F.2 Sections of Kinematic_RRSS.m with sample values in bold.



After specifying the dimensions and driving link parameters in the file Kinematic_RRSS.m, the next step is to run this file. When running this file, two files (filenames RRSS_branch1.csv and RRSS_branch2.csv) are written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment for both RRSS branches.‡ The calculated mechanism output is included in Figure F.1b.


‡ At crank rotation increments where circuit defects occur, the coupler-link motion data written to the *.csv file appear as complex numbers.

The initial RRSS mechanism configuration corresponds to the mechanism dimensions specified in the Appendix F.1 MATLAB file (see Figure F.2). The results for this configuration are included in the file RRSS_branch1.csv. The results for the second mechanism configuration are included in the file RRSS_branch2.csv.






F.2 RSSR Mechanism


The Appendix F.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB file Kinematic_RSSR.m for the kinematic analysis of RSSR mechanisms. To conduct a kinematic analysis, the user specifies the mechanism point coordinates and the crank motion parameters in this file. Values are specified for link variables a0, ua0, a1, b0, ub0, and b1 (Figure F.3a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure F.4 illustrates the user-input sections of the file Kinematic_RSSR.m, with sample values in bold type.*
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FIGURE F.3 (a) RSSR mechanism and (b) output variables.
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FIGURE F.4 Sections of Kinematic_RSSR.m with sample values in bold.



* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

After specifying the dimensions and driving link parameters in the file Kinematic_RSSR.m, the next step is to run this file. When running this file, two files (filenames RSSR_branch1.csv and RSSR_branch2.csv) are written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment for both RSSR branches.*The calculated mechanism output is included in Figure F.3b.


* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

The initial RSSR mechanism configuration corresponds to the mechanism dimensions specified in the Appendix F.2 MATLAB file (see Figure F.4). The results for this configuration are included in the file RSSR_branch1.csv. The results for the second mechanism configuration are included in the file RSSR_branch2.csv.








  
    

Appendix G: User Instructions for Chapter 11 MATLAB® Files




G.1 R-P-P Robotic Manipulator Forward Kinematics


The Appendix G.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes two MATLAB files for R-P-P robotic manipulator forward kinematics.* These two files are described in Table G.1. To conduct an R-P-P forward kinematics analysis, the user specifies the R-P-P joint displacements in the file RPP_Input.csv. This file is compatible with Microsoft® Excel. Also, {3p3} is specified in the file RPP_FK.m. Figure G.1 illustrates the user-input section of this file, with sample values in bold type.


* The library of MATLAB files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.





TABLE G.1 Appendix G.1 MATLAB Files





	Filename

	Use of File










	RPP_Input.csv

	To specify joint displacements






	RPP_FK.m

	To specify {3p3} and write output (in a file compatible with Microsoft Excel)
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FIGURE G.1 Section of RPP_FK.m with sample values in bold.



After specifying the R-P-P joint displacements in RPP_Input.csv and {3p3} in RPP_FK.m, the next step is to run RPP_FK.m. When running this file, one file (filename RPP_p3.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the {0p3} values calculated for the given {3p3} value and joint displacement values.






G.2 R-R-P Robotic Manipulator Forward Kinematics


The Appendix G.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes two MATLAB files for R-R-P robotic manipulator forward kinematics. These two files are described in Table G.2. To conduct an R-R-P forward kinematics analysis, the user specifies the R-R-P joint displacements in the file RRP_Input.csv. This file is compatible with Microsoft Excel. Also, {3p3}, l1, and l2 are specified in the file RRP_FK.m. Figure G.2 illustrates the user-input section of this file, with sample values in bold type.






TABLE G.2 Appendix G.2 MATLAB Files





	Filename

	Use of File










	RRP_Input.csv

	To specify joint displacements






	RRP_FK.m

	To specify {3p3}, l1, and l2, and write output (in a file compatible with Microsoft Excel)
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FIGURE G.2 Section of RRP_FK.m with sample values in bold.



After specifying the R-R-P joint displacements in RRP_Input.csv and {3p3}, l1, and l2 in RRP_FK.m, the next step is to run RRP_FK.m. When running this file, one file (filename RRP_p3.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the {0p3} values calculated for the given {3p3}, length, and joint displacement values.






G.3 R-R-R Robotic Manipulator Forward Kinematics


The Appendix G.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes two MATLAB files for R-R-R robotic manipulator forward kinematics. These two files are described in Table G.3. To conduct an R-R-R forward kinematics analysis, the user specifies the R-R-R joint displacements in the file RRR_Input.csv. This file is compatible with Microsoft Excel. Also, {3p3}, l1, and l2 are specified in the file RRR_FK.m. Figure G.3 illustrates the user-input section of this file, with sample values in bold type.






TABLE G.3 Appendix G.3 MATLAB Files





	Filename

	Use of File










	RRR_Input.csv

	To specify joint displacements






	RRR_FK.m

	To specify {3p3}, l1, and l2, and write output (in a file compatible with Microsoft Excel)
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FIGURE G.3 Section of RRR_FK.m with sample values in bold.



After specifying the R-R-R joint displacements in RRR_Input.csv and {3p3}, l1, and l2 in RRR_FK.m, the next step is to run RRR_FK.m. When running this file, one file (filename RRR_p3.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the {0p3} values calculated for the given {3p3}, length, and joint displacement values.






G.4 R-R-C Robotic Manipulator Forward Kinematics


The Appendix G.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes two MATLAB files for R-R-C robotic manipulator forward kinematics. These two files are described in Table G.4. To conduct an R-R-C forward kinematics analysis, the user specifies the R-R-C joint displacements in the file RRC_Input.csv. This file is compatible with Microsoft Excel. Also, {3p3}, l1, l2 and l3 are specified in the file RRC_FK.m. Figure G.4 illustrates the user-input section of this file with sample values in bold type.






TABLE G.4 Appendix G.4 MATLAB Files





	Filename

	Use of File










	RRC_Input.csv

	To specify joint displacements






	RRC_FK.m

	To specify {3p3}, l1, l2 and l3, and write output (in a file compatible with Microsoft Excel)
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FIGURE G.4 Section of RRC_FK.m with sample values in bold.



After specifying the R-R-C joint displacements in RRC_Input.csv and {3p3}, l1, l2 and l3 in RRC_FK.m, the next step is to run RRC_FK.m. When running this file, one file (filename RRC_p3.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the {0p3} values calculated for the given {3p3}, length, and joint displacement values.






G.5 R-P-P Robotic Manipulator Inverse Kinematics


The Appendix G.5 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes two MATLAB files for R-P-P robotic manipulator inverse kinematics. These two files are described in Table G.5. To conduct an R-P-P inverse kinematics analysis, the user specifies the global R-P-P end-effector coordinates ({0p3}) in the file RPP_Input.csv. This file is compatible with Microsoft Excel. Also, {3p3} is specified in the file RPP_IK.m. Figure G.5 illustrates the user-input section of this file with sample values in bold type.






TABLE G.5 Appendix G.5 MATLAB Files





	Filename

	Use of File










	RPP_Input.csv

	To specify global end effector coordinates






	RPP_IK.m

	To specify {3p3} and write output (in a file compatible with Microsoft Excel)
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FIGURE G.5 Section of RPP_IK.m with sample values in bold.



After specifying the global R-P-P end effector coordinates in RPP_Input.csv and {3p3} in RPP_IK.m, the next step is to run RPP_IK.m. When running this file, one file (filename RPP_Joints.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the joint displacement values calculated for the given {0p3} and {3p3} values.






G.6 R-R-P Robotic Manipulator Inverse Kinematics


The Appendix G.6 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes two MATLAB files for R-R-P robotic manipulator inverse kinematics. These two files are described in Table G.6. To conduct an R-R-P inverse kinematics analysis, the user specifies the global R-R-P end effector coordinates ({0p3}) in the file RRP_Input.csv. This file is compatible with Microsoft Excel. Also, {3p3}, l1, and l2 are specified in the file RRP_IK.m. Figure G.6 illustrates the user-input section of this file with sample values in bold type.






TABLE G.6 Appendix G.6 MATLAB Files





	Filename

	Use of File










	RRP_Input.csv

	To specify global end effector coordinates






	RRP_IK.m

	To specify {3p3}, l1, and l2, and write output (in a file compatible with Microsoft Excel)
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FIGURE G.6 Section of RRP_IK.m with sample values in bold.



After specifying the global R-R-P end effector coordinates in RRP_Input.csv and {3p3}, l1, and l2 in RRP_IK.m, the next step is to run RRP_IK.m. When running this file, one file (filename RRP_Joints.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the joint displacement values calculated for the given {0p3}, {3p3}, l1, and l2 values.






G.7 R-R-R Robotic Manipulator Inverse Kinematics


The Appendix G.7 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes two MATLAB files for R-R-R robotic manipulator inverse kinematics. These two files are described in Table G.7. To conduct an R-R-R inverse kinematics analysis, the user specifies the global R-R-R end-effector coordinates ({0p3}) in the file RRR_Input.csv. This file is compatible with Microsoft Excel. Also, {3p3}, l1, and l2 are specified in the file RRR_IK.m.






TABLE G.7 Appendix G.7 MATLAB Files





	Filename

	Use of File










	RRR_Input.csv

	To specify global end effector coordinates






	RRR_IK.m

	To specify {3p3}, l1, and l2, and write output (in a file compatible with Microsoft Excel)











Figure G.7 illustrates the user-input section of this file with sample values in bold type. After specifying the global R-R-R end effector coordinates in RRR_Input.csv and {3p3}, l1, and l2 in RRR_IK.m, the next step is to run RRR_IK.m. When running this file, one file (filename RRR_Joints.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the joint displacement values calculated for the given {0p3}, {3p3}, l1, and l2 values.
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FIGURE G.7 Section of RRR_IK.m with sample values in bold.







G.8 R-R-C Robotic Manipulator Inverse Kinematics


The Appendix G.8 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes two MATLAB files for R-R-C robotic manipulator inverse kinematics. These two files are described in Table G.8. To conduct an R-R-C inverse kinematics analysis, the user specifies the global R-R-C end effector coordinates ({0p3}) in the file RRC_Input.csv. This file is compatible with Microsoft Excel. Also, {3p3}, l1, l2, and l3 are specified in the file RRC_IK.m. Figure G.8 illustrates the user-input section of this file with sample values in bold type.






TABLE G.8 Appendix G.8 MATLAB Files





	Filename

	Use of File










	RRC_Input.csv

	To specify global end effector coordinates






	RRC_IK.m

	To specify {3p3}, l1, l2, and l3, and write output (in a file compatible with Microsoft Excel)
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FIGURE G.8 Section of RRC_IK.m with sample values in bold.



After specifying the global R-R-C end effector coordinates in RRC_Input.csv and {3p3}, l1, l2, and l3 in RRC_IK.m, the next step is to run RRC_IK.m. When running this file, one file (filename RRC_Joints.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the joint displacement values calculated for the given {0p3}, {3p3}, l1, l2, and l3 values.








  
    

Appendix H: User Instructions for Chapter 4 MATLAB® and Simscape Multibody™ Files




H.1 Planar Four-Bar Mechanism


The Appendix H.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the kinematic analysis and simulation of planar four-bar mechanisms. These files are described in Table H.1.* To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in the file Kinematic_Planar_4Bar_Simulate.m. Values are specified for link variables W1, V1, G1, U1, and L1 (Figure H.1a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure H.2 illustrates the user-input sections of the file Kinematic_Planar_4Bar_Simulate.m, with sample values in bold type.† While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


* The MATLAB and Simscape Multibody files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.





TABLE H.1 Appendix H.1 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Kinematic_Planar_4Bar_Simulate.m

	To specify mechanism link dimensions and crank link controls






	Kinematic_Planar_4Bar_Model.slx

	To calculate mechanism output and simulate mechanism motion






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)
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FIGURE H.1 (a) Planar four-bar mechanism and (b) output variables.
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FIGURE H.2 Sections of Kinematic_Planar_4Bar_Simulate.m with sample values in bold.



After specifying the mechanism dimensions and driving link parameters in the file Kinematic_Planar_4Bar_Simulate.m, the next step is to run this file. When running this file, one file (filename Disp_Vel_Acc.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment.‡ The calculated mechanism output is included in Figure H.1b.


When running Kinematic_Planar_4Bar_Simulate.m, a graphical user interface appears where the motion of the planar four-bar mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).


‡ If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file.





H.2 Slider-Crank Mechanism


The Appendix H.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the kinematic analysis and simulation of slider-crank mechanisms. These files are described in Table H.2. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in the file Kinematic_Slider_Crank_Simulate.m. Values are specified for link variables W1, V1, and U1 (Figure H.3a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure H.4 illustrates the user-input sections of the file Kinematic_Slider_Crank_Simulate.m, with sample values in bold type.*


* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.





TABLE H.2 Appendix H.2 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Kinematic Slider_Crank_Simulate.m

	To specify mechanism link dimensions and crank link controls






	Kinematic_Slider_Crank_Model.slx

	To calculate mechanism output and simulate mechanism motion






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)
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FIGURE H.3 (a) Slider-crank mechanism and (b) output variables.
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FIGURE H.4 Sections of Kinematic_Slider_Crank_Simulate.m with sample values in bold.



After specifying the mechanism dimensions and driving link parameters in the file Kinematic_Slider_Crank_Simulate.m, the next step is to run this file. When running this file, one File (filename Disp_Vel_Acc.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure H.3b.


† If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file.

When running Kinematic_Slider_Crank_Simulate.m, a graphical user interface appears where the motion of the slider-crank mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






H.3 Geared Five-Bar Mechanism (Two Gears)


The Appendix H.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the kinematic analysis and simulation of geared five-bar mechanisms having two gears. These files are described in Table H.3. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in the file Kinematic_5Bar_2Gears_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, and S1 (Figure H.5a).* Values are specified for the gear ratio and the number of teeth in the driving gear. Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure H.6 illustrates the user-input sections of the file Kinematic_5Bar_2Gears_Simulate.m, with sample values in bold type.† While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


* While the user can specify the number of gear teeth in the geared five-bar mechanism, this is optional since the gears are cosmetic and thus serve no functional purpose in the mechanism animation.

† The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.







TABLE H.3 Appendix H.3 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Kinematic_5Bar_2Gears_Simulate.m

	To specify mechanism link dimensions and crank link controls






	Kinematic_5Bar_2Gears_Model.slx

	To calculate mechanism output and simulate mechanism motion






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)






	Make_Gear.m

dist.m


rotateZ.m


scaleXY.m


	To generate the spur gears in the geared five-bar mechanism animation and simulate their motion, files dist.m, rotateZ.m and scaleXY.m are used in the file Make_Gear.m.
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FIGURE H.5 (a) Geared five-bar mechanism and (b) output variables.
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FIGURE H.6 Sections of Kinematic_5Bar_2Gears_Simulate.m with sample values in bold.



After specifying the mechanism dimensions and driving link parameters in the file Kinematic_5Bar_2Gears_Simulate.m, the next step is to run this file. When running this file, one file (filename Disp_Vel_Acc.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure H.3b.


† If the mechanism experiences a circuit defect (or if the crank decelerates to a zero-velocity state), results beyond this point are not written to the *.csv file.

When running Kinematic_5Bar_2Gear_Simulate.m, a graphical user interface appears where the motion of the geared five-bar mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted however (e.g., if folder storage space is inadequate).






H.4 Geared Five-Bar Mechanism (Three Gears)


The Appendix H.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the kinematic analysis and simulation of geared five-bar mechanisms having three gears. These files are described in Table H.4. The procedure to use these MATLAB and Simscape Multibody files is identical to the procedure given in Appendix H.3.






TABLE H.4 Appendix H.4 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Kinematic_5Bar_3Gears_Simulate.m

	To specify mechanism link dimensions and crank link controls






	Kinematic_5Bar_3Gears_Model.slx

	To calculate mechanism output and simulate mechanism motion






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)






	Make_Gear.m

dist.m


rotateZ.m


scaleXY.m


	To generate the spur gears in the geared five-bar mechanism animation and simulate their motion, files dist.m, rotateZ.m and scaleXY.m are used in the file Make_Gear.m.















H.5 Watt II Mechanism


The Appendix H.5 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the kinematic analysis and simulation of Watt II mechanisms. These files are described in Table H.5. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in the file Kinematic_Watt_II_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, W1*,V1*,G1*,U1*, and L1*, (Figure H.7a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure H.8 illustrates the user-input sections of the file Kinematic_Watt_II_Simulate.m with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.





TABLE H.5 Appendix H.5 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Kinematic_Watt_II_Simulate.m

	To specify mechanism link dimensions and crank link controls






	Kinematic_Watt_II_Model.slx

	To calculate mechanism output and simulate mechanism motion






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)
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FIGURE H.7 (a) Watt II mechanism and (b) output variables.
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FIGURE H.8 Sections of Kinematic_Watt_II_Simulate.m with sample values in bold.



After specifying the mechanism dimensions and driving link parameters in the file Kinematic_Watt_II_Simulate, the next step is to run this file. When running this file, one file (filename Disp_Vel_Acc.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.†† The calculated mechanism output is included in Figure H.7b.


† If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file. 

When running Kinematic_Watt_II_Simulate.m, a graphical user interface appears where the motion of the Watt II mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






H.6 Stephenson III Mechanism


The Appendix H.6 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the kinematic analysis and simulation of Stephenson III mechanisms. These files are described in Table H.6. To conduct a kinematic analysis, the user specifies the mechanism link dimensions and the crank motion parameters in the file Kinematic_Stephenson_III_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, W1*,V1*,G1*,U1*, and L1*, (Figure H.9a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure H.10 illustrates the user-input sections of the file Kinematic_Stephenson_III_Simulate.m with sample values in bold type.** While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.





TABLE H.6 Appendix H.6 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Kinematic_Stephenson_III_Simulate.m

	To specify mechanism link dimensions and crank link controls






	Kinematic_Stephenson_III_Model.slx

	To calculate mechanism output and simulate mechanism motion






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)
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FIGURE H.9 (a) Stephenson III mechanism and (b) output variables.
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FIGURE H.10 Sections of Kinematic_Stephenson_III_Simulate.m with sample values in bold.



After specifying the mechanism dimensions and driving link parameters in the file Kinematic_Stephenson_III_Simulate.m, the next step is to run this file. When running this file, one file (filename Disp_Vel_Acc.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure H.9b.


† If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file.

When running Kinematic_Stephenson_III_Simulate.m, a graphical user interface appears where the motion of the Stephenson III mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).








  
    

Appendix I: User Instructions for Chapter 6 MATLAB® and Simscape Multibody™ Files




I.1 Planar Four-Bar Mechanism


The Appendix I.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the static force analysis and simulation of planar four-bar mechanisms. These files are described in Table I.1.* To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.


* The library of MATLAB files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.





TABLE I.1 Appendix I.1 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Static_Planar_4Bar_Simulate.m

	To specify mechanism link dimensions, coupler force, and crank link controls






	Static_Planar_4Bar_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion.

file rotz.m is used in the file Static_Planar_4Bar_Model.slx.







	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After selecting the unit system, the user specifies the mechanism link dimensions, coupler force, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in the file Static_Planar_4Bar_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, W1*,V1*,G1*,U1*,L1*, the coupler force Fp1 and, Fp1*,  the gravitational constant g, the center of mass vectors R1 through R3, and link masses m1 through m3 (Figure I.1a) according to the Metric or English units listed in the file (Figure I.2). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure I.2 illustrates the user-input sections of the file Static_Planar_4Bar_Simulate.m, with sample values in bold type.† While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


† The unit for crank angular rotation is degrees. 
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FIGURE I.1 (a) Planar four-bar mechanism and (b) output variables (angle τ shown in a).
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FIGURE I.2 Sections of Static_Planar_4Bar_Simulate.m with sample values in bold.



After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_Planar_4Bar_Simulate.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment.‡ The calculated mechanism output is included in Figure I.1b.


‡ When the mechanism experiences a circuit defects occur, results are no longer written to the *.csv file.

When running Static_Planar_4Bar_Simulate.m, a graphical user interface appears where the motion of the planar four-bar mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






I.2 Slider-Crank Mechanism


The Appendix I.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the static force analysis and simulation of slider-crank mechanisms. These files are described in Table I.2. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE I.2 Appendix I.2 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Static_Slider_Crank_Simulate.m

	To specify mechanism link dimensions, coupler force, and crank link controls






	Static_Slider_Crank_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion.

File rotz.m is used in the file Static_Slider_Crank_Model.slx.







	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After selecting the unit system, the user specifies the mechanism link dimensions, slider force, static friction coefficient, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in this file Static_Slider_Crank_Simulate.m. Values are specified for link variables W1, V1, U1, the slider force F, the static friction coefficient ±µ, the gravitational constant g, the center of mass vectors R1, R2, and link masses m1 through m3 (Figure I.3a) according to the Metric or English units listed in the file (Figure I.4). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure I.4 illustrates the user-input sections of the file Static_Slider_Crank_Simulate.m, with sample values in bold type.*
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FIGURE I.3 (a) Slider-crank mechanism and (b) output variables.
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FIGURE I.4 Sections of Static_Slider_Crank_Simulate.m with sample values in bold.



* The unit for crank angular rotation is degrees.

After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_Slider_Crank_Simulate.m, the next step is to run this file. To run the file, the user can use the “F5” button or the Run Static_Slider_Crank_Simulate.m button in the toolbar. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment. The calculated mechanism output is included in Figure I.3b.


When running Static_Slider_Crank_Simulate.m, a graphical user interface appears where the motion of the slider-crank mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






I.3 Geared Five-Bar Mechanism (Two Gears)


The Appendix I.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the static force analysis and simulation of geared five-bar mechanisms having two gears. These files are described in Table I.3. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE I.3 Appendix I.3 MATLAB and Simscape Multibody Files Files





	Filename

	Use of File










	Static_5Bar_2Gear_Simulate.m

	To specify mechanism link dimensions, link force, and crank link controls






	Static_5Bar_2Gear_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion.

File rotz.m is used in the file Static_5Bar_2Gear_Model.slx.







	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)






	Make_Gear.m

dist.m


rotateZ.m


scaleXY.m


	To generate the spur gears in the geared five-bar mechanism animation and simulate their motion, files dist.m, rotateZ.m, and scaleXY.m are used in the file Make_Gear.m.











After selecting the unit system, the user specifies the mechanism link dimensions, intermediate link force, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in the file Static_5Bar_2Gear_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, S1, the intermediate link force Fp1, the gear ratio, the gravitational constant g, the center of mass vectors R1 through R4, and link masses m1 through m4 (Figure I.5a) according to the Metric or English units listed in the file (Figure I.6). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure I.6 illustrates the user-input sections of the file Static_5Bar_2Gear_Simulate.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE I.5 (a) Geared five-bar mechanism and (b) output variables.
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FIGURE I.6 Sections of Static_5Bar_2Gear_Simulate.m with sample values in bold (see Appendix H.3 for an explanation of specifying the number of driving gear teeth).



* The unit for crank angular rotation is degrees.

After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_5Bar_2Gear_Simulate.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure I.5b.


† When the mechanism experiences a circuit defects occur, results are no longer written to the *.csv file.

When running Static_5Bar_2Gear_Simulate.m, a graphical user interface appears where the motion of the geared five-bar mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






I.4 Geared Five-Bar Mechanism (Three Gears)


The Appendix I.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the static force analysis and simulation of geared five-bar mechanisms having three gears. These files are described in Table I.4. The procedure to use these MATLAB and Simscape Multibody files is identical to the procedure given in Section I.3.






TABLE I.4 Appendix I.4 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Static_5Bar_3Gear_Simulate.m

	To specify mechanism link dimensions, link force, and crank link controls






	Static_5Bar_3Gear_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion. File rotz.m is used in the file Static_5Bar_3Gear_Model.slx.






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)






	Make_Gear.m

dist.m


rotateZ.m


scaleXY.m


	To generate the spur gears in the geared five-bar mechanism animation and simulate their motion. Files dist.m, rotateZ.m and scaleXY.m are used in the file Make_Gear.m.















I.5 Watt II Mechanism


The Appendix I.5 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the static force analysis and simulation of Watt II mechanisms. These files are described in Table I.5. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE I.5 Appendix I.5 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Static_Watt_II_Simulate.m

	To specify mechanism link dimensions, coupler force, and crank link controls






	Static_Watt_II_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion.

File rotz.m is used in the file Static_Watt_II_Model.slx.







	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After selecting the unit system, the user specifies the mechanism link dimensions, coupler forces, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in the file Static_Watt_II_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, W1*,V1*,G1*,U1*,L1*, the coupler forces Fp1 and, Fp1*, the gravitational constant g, the center of mass vectors R1 through R5, and link masses m1 through m5 (Figure I.7a) according to the Metric or English units listed in the file (Figure I.8). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure I.8 illustrates the user-input sections of the file Static_Watt_II_Simulate.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE I.7 (a) Watt II mechanism and (b) output variables.
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FIGURE I.8 Sections of Static_Watt_II_Simulate.m with sample values in bold.



After specifying the mechanism dimensions, static analysis data, and driving link parameters in the file Static_Watt_II_Simulate.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.* The calculated mechanism output is included in Figure I.7b.


* The unit for crank angular rotation is degrees.

† When the mechanism experiences a circuit defects occur, results are no longer written to the *.csv file.

When running Static_Watt_II_Simulate.m, a graphical user interface appears where the motion of the Watt II mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






I.6 Stephenson III Mechanism


The Appendix I.6 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the static force analysis and simulation of Stephenson III mechanisms. These files are described in Table I.6. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE I.6 Appendix I.6 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Static_Stephenson_III_Simulate.m

	To specify mechanism link dimensions, coupler force, and crank link controls






	Static_Stephenson_III_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion.

File rotz.m is used in the file Static_Stephenson_III_Model.slx.







	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After selecting the unit system, the user specifies the mechanism link dimensions, intermediate link force, gravitational constant, center of mass vectors, link masses, and the crank motion parameters in the file Static_Stephenson_III_Simulate.m. Values are specified for link variables W1, V1, G1, U1, V1*,G1*,U1*,L1*, and the intermediate link force, Fp1 the gravitational constant g, the center of mass vectors R1 through R5, and link masses m1 through m5 (Figure I.9a) according to the Metric or English units listed in the file (Figure I.10). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Figure I.10 illustrates the user-input sections of the file Static_Stephenson_III_Simulate.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE I.9 (a) Stephenson III mechanism and (b) output variables.
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FIGURE I.10 Sections of Static_Stephenson_III_Simulate.m with sample values in bold.



* The unit for crank angular rotation is degrees.

After specifying the mechanism dimensions, static analysis data and driving link parameters in the file Static_Stephenson_III_Simulate.m, the next step is to run this file. When running this file, one file (filename Static_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.*The calculated mechanism output is included in Figure I.9b.


* When the mechanism experiences a circuit defects occur, results are no longer written to the *.csv file.

When running Static_Stephenson_III_Simulate.m, a graphical user interface appears where the motion of the Stephenson III mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).








  
    

Appendix J: User Instructions for Chapter 7 MATLAB® and Simscape Multibody™ Files




J.1 Planar Four-Bar Mechanism


The Appendix J.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the dynamic force analysis and simulation of planar four-bar mechanisms*. These files are described in Table J.1. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE J.1 Appendix J.1 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Dynamic_Planar_4Bar_Simulate.m

	To specify mechanism link dimensions, mass parameters, coupler force, and crank link controls






	Dynamic_Planar_4Bar_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion.

File rotz.m is used in the file Dynamic_Planar_4Bar_Model.slx.







	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After selecting the unit system, the user specifies the mechanism link dimensions, coupler force and follower torque, gravitational constant, center of mass vectors, link masses, link mass moments of inertia, and the crank motion parameters in the file Dynamic_Planar_4Bar_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, the coupler force Fp1, the follower torque Tb0, the gravitational constant g, the center of mass vectors R1, R3, and R7, link masses m1 through m3, and link mass moments of inertia I1 through I3 (Figure J.1a) according to the Metric or English units listed in the file (Figure J.2). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure J.2 illustrates the user-input sections of the file Dynamic_Planar_4Bar_Simulate.m, with sample values in bold type.† While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


* The library of MATLAB files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.
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FIGURE J.1 (a) Planar four-bar mechanism and (b) output variables (angle τ shown in Figure I.2a).
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FIGURE J.2 Sections of Dynamic_Planar_4Bar_Simulate.m with sample values in bold.



After specifying the mechanism dimensions, dynamic analysis data, and driving link parameters in the file Dynamic_Planar_4Bar_Simulate.m, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment.‡ The calculated mechanism output is included in Figure J.1b.


‡ If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file.

When running Dynamic_Planar_4Bar_Simulate.m, a graphical user interface appears where the motion of the planar four-bar mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






J.2 Slider-Crank Mechanism


The Appendix J.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the dynamic force analysis and simulation of slider-crank mechanisms. These files are described in Table J.2. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE J.2 Appendix J.2 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Dynamic_Slider_Crank_Simulate.m

	To specify mechanism link dimensions, mass parameters, slider force, and crank link controls






	Dynamic_Slider_Crank_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion. File rotz.m is used in the file Dynamic_Slider_Crank_Model.slx.






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After selecting the unit system, the user specifies the mechanism link dimensions, slider force, dynamic friction coefficient, gravitational constant, center of mass vectors, link masses and mass moments of inertia, and the crank motion parameters in the file Dynamic_Slider_Crank_Simulate.m. Values are specified for link variables W1, V1, U1, the slider force F, the dynamic friction coefficient ±µ, the gravitational constant g, the center of mass vectors R1 and R3, link masses m1 through m3, and link mass moments of inertia I1 and I2 (Figure J.3a) according to the Metric or English units listed in the file (Figure J.4). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure J.4 illustrates the user-input sections of the file Dynamic_Slider_Crank_Simulate.m, with sample values in bold type.*
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FIGURE J.3 (a) Slider-crank mechanism and (b) output variables.
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FIGURE J.4 Sections of Dynamic_Slider_Crank_Simulate.m with sample values in bold.



* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

After specifying the mechanism dimensions, dynamic analysis data, and and driving link parameters in the file Dynamic_Slider_Crank_Simulate.m, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment. The calculated mechanism output is included in Figure J.3b.


When running Dynamic_Slider_Crank_Simulate.m, a graphical user interface appears where the motion of the slider-crank mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






J.3 Geared Five-Bar Mechanism (Two Gears)


The Appendix J.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the dynamic force analysis and simulation of geared five-bar mechanisms having two gears. These files are described in Table J.3. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE J.3 Appendix J.3 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Dynamic_5Bar_2Gear_Simulate.m

	To specify mechanism link dimensions, mass parameters, coupler force, and crank link controls






	Dynamic_5Bar_2Gear_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion.

File rotz.m is used in the file Dynamic_5Bar_2Gear_Model.slx.







	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)






	Make_Gear.m

dist.m


rotateZ.m


scaleXY.m


	To generate the spur gears in the geared five-bar mechanism animation and simulate their motion. Files dist.m, rotateZ.m and scaleXY.m are used in the file Make_Gear.m.











After selecting the unit system, the user specifies the mechanism link dimensions, intermediate link force, gravitational constant, center of mass vectors, link masses, mass moments of inertia, and the crank motion parameters in the file Dynamic_5Bar_2Gear_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, S1, the intermediate link force Fp1, the gravitational constant g, the center of mass vectors R1, R3, R7, and R9, link masses m1 through m4, and link mass moments of inertia I1 through I4 (Figure J.5a) according to the Metric or English units listed in the file (Figure J.6). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure J.6 illustrates the user-input sections of the file Dynamic_5Bar_2Gear_Simulate.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE J.5 (a) Geared five-bar mechanism and (b) output variables.
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FIGURE J.6 Sections of Dynamic_5Bar_2Gear_Simulate.m with sample values in bold (see Appendix H.3 for an explanation of specifying the number of the number of driving gear teeth).



* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

After specifying the mechanism dimensions, dynamic analysis data, driving link parameters in the file Dynamic_5Bar_2Gear_Simulate.m, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.* The calculated mechanism output is included in Figure J.5b.


* If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file.

When running Dynamic_5Bar_2Gear_Simulate.m, a graphical user interface appears where the motion of the geared five-bar mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






J.4 Geared Five-Bar Mechanism (Three Gears)


The Appendix J.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the dynamic force analysis and simulation of geared five-bar mechanisms having three gears. These files are described in Table J.4.






TABLE J.4 Appendix J.4 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Dynamic_5Bar_3Gear_Simulate.m

	To specify mechanism link dimensions, mass parameters, coupler force, and crank link controls






	Dynamic_5Bar_3Gear_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion. File rotz.m is used in the file Dynamic_5Bar_3Gear_Model.slx.






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)






	Make_Gear.m

dist.m


rotateZ.m


scaleXY.m


	To generate the spur gears in the geared five-bar mechanism animation and simulate their motion. Files dist.m, rotateZ.m and scaleXY.m are used in the file Make_Gear.m.











The procedure to use these MATLAB and Simscape Multibody files is identical to the procedure given in Appendix J.3. In the file Dynamic_5Bar_3Gear_Simulate.m, the user also specifies values for variables m5 and I5 (the mass and mass moment of inertia of the idler gear, respectively).






J.5 Watt II Mechanism


The Appendix J.5 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the dynamic force analysis and simulation of Watt II mechanisms. These files are described in Table J.5. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE J.5 Appendix J.5 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Dynamic_Watt_II_Simulate.m

	To specify mechanism link dimensions, mass parameters, coupler force, and crank link controls






	Dynamic_Watt_II_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion. File rotz.m is used in the file Dynamic_Watt_II_Model.slx.






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After selecting the unit system, the user specifies the mechanism link dimensions, coupler link forces and follower torques, gravitational constant, center of mass vectors, link masses and mass moments of inertia, and the crank motion parameters in the file Dynamic_Watt_II_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, V1*,G1*,U1*,L1*, the coupler forces Fp1 and Fp1*, the follower torques Tb0 and Tb0*, the gravitational constant g, the center of mass vectors R1, R3, R7, R9, and R13, link masses m1 through m5, and link mass moments of inertia I1 through I5 (Figure J.7a) according to the Metric or English units listed in the file (Figure J.8) Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure J.8 illustrates the user-input sections of the file Dynamic_Watt_II_Simulate.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.
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FIGURE J.7 (a) Watt II mechanism and (b) output variables.
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FIGURE J.8 Sections of Dynamic_Watt_II_Simulate.m with sample values in bold.



* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

After specifying the mechanism dimensions, dynamic analysis data, and driving link parameters in the file Dynamic_Watt_II_Simulate, the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.† The calculated mechanism output is included in Figure J.7b.


† If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file.

When running Dynamic_Watt_II_Simulate.m, a graphical user interface appears where the motion of the Watt II mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






J.6 Stephenson III Mechanism


The Appendix J.6 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the dynamic force analysis and simulation of Stephenson III mechanisms. These files are described in Table J.6. To conduct a static force analysis, the user first selects the preferred unit system (either Metric or English units) for the written mechanism output.






TABLE J.6 Appendix J.6 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Dynamic_Stephenon_III_Simulate.m

	To specify mechanism link dimensions, mass parameters, coupler force, and crank link controls






	Dynamic_Stephenson_III_Model.slx

rotz.m


	To calculate mechanism output and simulate mechanism motion. File rotz.m is used in the file Dynamic_Stephenson_III_Model.slx.






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After selecting the unit system, the user specifies the mechanism link dimensions, coupler link force and follower torques, gravitational constant, center of mass vectors, link masses and mass moments of inertia, and the crank motion parameters in the file Dynamic_Stephenson_III_Simulate.m. Values are specified for link variables W1, V1, G1, U1, L1, V1*,G1*,U1*,L1*,, the coupler force Tb0 and Fp1*, the follower torques 34 and Tb0*, the gravitational constant g, the center of mass vectors R1, R3, R7, R8, and R12, link masses m1 through m5, and link mass moments of inertia I1 through I5 (Figure J.9a) according to the Metric or English units listed in the file (Figure J.10). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure J.10 illustrates the user-input sections of the file Dynamic_Stephenson_III_Simulate.m, with sample values in bold type.* While most of the link vector values in this figure appear in polar exponential form, they can all be specified in any of the rectangular and complex forms given in Equation 2.1.


* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.
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FIGURE J.9 (a) Stephenson III mechanism and (b) output variables.
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FIGURE J.10 Sections of Dynamic_Stephenson_III_Simulate.m with sample values in bold.



After specifying the mechanism dimensions, dynamic analysis data, and driving link parameters in the file Dynamic_Stephenson_III_Simulate.m., the next step is to run this file. When running this file, one file (filename Dynamic_Loads.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.* The calculated mechanism output is included in Figure J.9b.


* If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file.

When running Dynamic_Stephenson_III_Simulate.m, a graphical user interface appears where the motion of the Stephenson III mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).








  
    

Appendix K: User Instructions for Chapter 10 MATLAB® and Simscape Multibody′ Files




K.1 RRSS Mechanism


The Appendix K.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and SimMechanics files for the kinematic analysis and simulation of RRSS mechanisms*. These three files are described in Table K.1. To conduct a kinematic analysis, the user specifies the mechanism point coordinates and the crank motion parameters in the file Kinematic_RRSS_Simulate.m. Values are specified for link variables a0, ua0, a1, ua1, b0, b1, p1, q1, and r1 (Figure K.1a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure K.2 illustrates the user-input sections of the file Kinematic_RRSS_Simulate.m, with sample values in bold type.†
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FIGURE K.1 (a) RRSS mechanism and (b) output variables.
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FIGURE K.2 Sections of Kinematic_RRSS_Simulate.m with sample values in bold.







TABLE K.1 Appendix K.1 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Kinematic_RRSS_Simulate.m

M_xform.m


	To specify mechanism link dimensions and crank link controls, file M_xform.m is used in the file Kinematic_RRSS_Simulate.m.






	Kinematic_RRSS_Model.slx

	To calculate mechanism output and simulate mechanism motion






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After specifying the dimensions and driving link parameters in the file Kinematic_RRSS_Simulate.m, the next step is to run this file. When running this file, one file (filename Disp_Vel_Acc.csv) is written to a folder named Results (in a format compatible with Microsoft® Excel) that includes the calculated mechanism output at each crank link rotation increment.‡ The calculated mechanism output is included in Figure K.1b.


When running Kinematic_RRSS_Simulate.m, a graphical user interface appears where the motion of the RRSS mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






K.2 RSSR Mechanism


The Appendix K.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the kinematic analysis and simulation of RSSR mechanisms. These files are described in Table K.2. To conduct a kinematic analysis, the user specifies the mechanism point coordinates and the crank motion parameters in the file Kinematic_RSSR_Simulate.m. Values are specified for link variables a0, ua0, a1, b0, ub0, and b1 (Figure K.3a). Values are also specified for the initial crank angle (start_ang), the crank rotation increment (step_ang), and the final crank angle (stop_ang). Lastly, values are specified for the angular velocity (angular_vel) and angular acceleration (angular_acc) of the crank. Figure K.4 illustrates the user-input sections of the file Kinematic_RSSR_Simulate.m, with sample values in bold type.*


* The MATLAB and Simscape Multibody files presented in this appendix can also be downloaded from the authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

† The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

‡ If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this point are not written to the *.csv file.
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FIGURE K.3 (a) RSSR mechanism and (b) output variables.
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FIGURE K.4 Sections of Kinematic_RSSR_Simulate.m with sample values in bold.







TABLE K.2 Appendix K.2 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	Kinematic_RSSR_Simulate.m

M_xform.m


	To specify mechanism link dimensions and crank link controls, file M_xform.m is used in the file inematic_RSSR_Simulate.m.






	Kinematic_RSSR_Model.slx

	To calculate mechanism output and simulate mechanism motion






	Post_Simulation_Task.m

	To write mechanism output (compatible with Microsoft Excel)











After specifying the dimensions and driving link parameters in the file Kinematic_RSSR_Simulate.m, the next step is to run this file. When running this file, one file (filenames Disp_Vel_Acc.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the calculated mechanism output at each crank link rotation increment.†The calculated mechanism output is included in Figure K.3b.


When running Kinematic_RSSR_Simulate.m, a graphical user interface appears where the motion of the RSSR mechanism is simulated over the defined crank rotation range (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).


* The units for crank angular rotation, velocity, and acceleration are degrees, rad/s, and rad/s2, respectively.

† If the mechanism experiences a circuit defect (or if the crank decelerates to a zero velocity state), results beyond this pointare not written to the *.csv file.







  
    

Appendix L: User Instructions for Chapter 11 MATLAB® and Simscape Multibody™ Files




L.1 R-P-P Robotic Manipulator Forward Kinematics


The Appendix L.1 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the forward kinematic analysis and simulation of R-P-P robotic manipulators. These files are described in Table L.1.* To conduct an R-P-P forward kinematics analysis, the user specifies the R-P-P joint displacements in the file RPP_Input.csv. This file is compatible with Microsoft® Excel. Also, 3{p3} is specified in the file RPP_FK_Simulate.m. Figure L.1 illustrates the user-input section of this file, with sample values in bold type.
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FIGURE L.1 Section of RPP_FK_Simulate.m with sample values in bold.







TABLE L.1 Appendix L.1 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	RPP_Input.csv

	To specify joint displacements






	RPP_FK_Simulate.m

	To specify 3{p3}






	RPP_FK_Model.slx

	To calculate manipulator output and simulate manipulator motion






	Post_Simulation_Task.m

	To write manipulator output (in a file compatible with Microsoft Excel)











After specifying the R-P-P joint displacements in RPP_Input.csv and 3{p3} in RPP_FK_Simulate.m, the next step is to run RPP_FK_Simulate.m. When running this file, one file (filename RPP_p3.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the 0{p3} values calculated for the given 3{p3} value and joint displacement values.


When running RPP_FK_Simulate.m, a graphical user interface appears where the motion of the R-P-P robotic manipulator is simulated over the defined joint displacements (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






L.2 R-R-P Robotic Manipulator Forward Kinematics


The Appendix L.2 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the forward kinematic analysis and simulation of R-R-P robotic manipulators. These files are described in Table L.2. To conduct an R-R-P forward kinematics analysis, the user specifies the R-R-P joint displacements in the file RRP_Input.csv. This file is compatible with Microsoft Excel. Also, 3{p3}, l1, and l2 are specified in the file RRP_FK_Simulate.m. Figure L.2 illustrates the user-input section of this file, with sample values in bold type.






TABLE L.2 Appendix L.2 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	RRP_Input.csv

	To specify joint displacements






	RRP_FK_Simulate.m

	To specify 3{p3}, l1, and l2






	RRP_FK_Model.slx

	To calculate manipulator output and simulate manipulator motion






	Post_Simulation_Task.m

	To write manipulator output (in a file compatible with Microsoft Excel)
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FIGURE L.2 Section of RRP_FK_Simulate.m with sample values in bold.



After specifying the R-R-P joint displacements in RRP_Input.csv and 3{p3}, l1, and l2 in RRP_FK_Simulate.m, the next step is to run RRP_FK_Simulate.m. When running this file, one file (file-name RRP_p3.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the 3{p3} values calculated for the given3{p3}, length, and joint displacement values.


* The MATLAB and Simscape Multibody files presented in this appendix can also be downloaded from the  authors’ server http://www.softalink.com/kruss/kin_dyn_mech_sys_3rd_ed/MATLAB_SIMMECH_FILES.zip.

When running RRP_FK_Simulate.m, a graphical user interface appears where the motion of the R-R-P robotic manipulator is simulated over the defined joint displacements (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






L.3 R-R-R Robotic Manipulator Forward Kinematics


The Appendix L.3 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the forward kinematic analysis and simulation of R-R-R robotic manipulators. These files are described in Table L.3. To conduct an R-R-R forward kinematics analysis, the user specifies the R-R-R joint displacements in the file RRR_Input.csv. This file is compatible with Microsoft Excel. Also, 3{p3}, l1, and l2 are specified in the file RRR_FK_Simulate.m. Figure L.3 illustrates the user-input section of this file, with sample values in bold type.
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FIGURE L.3 Section of RRR_FK_Simulate.m with sample values in bold.







TABLE L.3 Appendix L.3 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	RRR_Input.csv

	To specify joint displacements






	RRR_FK_Simulate.m

	To specify 3{p3}, l1, and l2






	RRR_FK_Model.slx

	To calculate manipulator output and simulate manipulator motion






	Post_Simulation_Task.m

	To write manipulator output (in a file compatible with Microsoft Excel)











After specifying the R-R-R joint displacements in RRR_Input.csv and 3{p3}, l1, and l2 in RRR_FK_Simulate.m, the next step is to run RRR_FK_Simulate.m. When running this file, one file (filename RRR_p3.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the 0{p3} values calculated for the given 3{p3}, length, and joint displacement values.


When running RRR, a graphical user interface appears where the motion of the R-R-R robotic manipulator is simulated over the defined joint displacements (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).






L.4 R-R-C Robotic Manipulator Forward Kinematics


The Appendix L.4 folder (which is available for download at https://www.routledge.com/p/book/9781032328317) includes the MATLAB and Simscape Multibody files for the forward kinematic analysis and simulation of R-R-C robotic manipulators. These files are described in Table L.4. To conduct an R-R-C forward kinematics analysis, the user specifies the R-R-C joint displacements in the file RRC_Input.csv. This file is compatible with Microsoft Excel. Also, 3{p3}, l1, l2, and l3 are specified in the file RRC_FK_Simulate.m. Figure L.4 illustrates the user-input section of this file, with sample values in bold type.
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FIGURE L.4 Section of RRC_FK_Simulate.m with sample values in bold.







TABLE L.4 Appendix L.4 MATLAB and Simscape Multibody Files





	Filename

	Use of File










	RRC_Input.csv

	To specify joint displacements






	RRC_FK_Simulate.m

	To specify 3{p3}, l1, l2, and l3






	RRC_FK_Model.slx

	To calculate manipulator output and simulate manipulator motion






	Post_Simulation_Task.m

	To write manipulator output (in a file compatible with Microsoft Excel)











After specifying the R-R-C joint displacements in RRC_Iinput.csv and 3{p3}, l1, l2, and l3 in RRC_FK_Simulate.m, the next step is to run RRC_FK_Simulate.m. When running this file, one file (filename RRC_p3.csv) is written to a folder named Results (in a format compatible with Microsoft Excel) that includes the 0{p3} values calculated for the given 3{p3}, length, and joint displacement values.


When running RRC_FK_Simulate.m, a graphical user interface appears where the motion of the R-R-C robotic manipulator is simulated over the defined joint displacements (see Appendix A.3). Also, the folder slprq is written. This folder includes functions that preclude recompiling the model in future simulations. This optional folder can be deleted, however (e.g., if folder storage space is inadequate).
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	forward kinematics, 397–399, 467–468, 517–518


	inverse kinematics, 407–409, 471






	Assembly configurations, 108









B




	Backlash, 291


	Base circle, 285, 287, 289, 290, 298, 339–340, 342



	diameter, 283, 287






	Base frame, 385, 388–389


	Base pitch, 288


	Bevel gears, 281, 306–309, 313


	Binary link, 46


	Binding position, 53


	Branch defect, 135–137



	elimination, 142–146, 167













C




	Cam joint, 46, 56, 59


	Cam profile, 339


	Cartesian robot, 386, 387



	forward kinematics, 391–392


	inverse kinematics, 402–404






	Cayley diagram, 109–112, 120


	Center distance, 288–289


	Centrode, 78–80, 89–90, 119, 120, 425–427


	Change point mechanism, 51


	Circuit defect, 53–54, 57, 74, 136, 425


	Circular motion, see Pure rotation


	Circular pitch, 283, 293, 310


	Clearance, 283


	Closed-loop design, 383


	Coefficient matrix, 22


	Cognate construction, 109–111


	Column matrix, 23



	transpose, addition, subtraction, and multiplication of, 23–26






	Compacting mechanism, 7–8


	Complex motion, 5, 6, 10, 41, 45–45, 56


	Complex number, 36



	addition, 15–16


	forms, 13–15


	multiplication and differentiation, 17–20






	Constant acceleration motion, 325–327, 457–459


	Constant velocity motion, 323–325, 457


	Contact force, 340–342, 345


	Contact line, 287



	length, 288






	Contact ratio, 288–289


	Coriolis acceleration, 66, 87


	Coupler, 41, 50, 179, 230, 249, 352



	angular acceleration, 70, 356


	angular velocity, 68, 82, 355


	displacement angles, 75, 140, 154, 160, 353


	locations of interest kinematics, 70–75


	path points, 146


	position, 137






	Cramer’s rule, 27, 37, 70, 82, 84, 149, 154, 157, 191–201, 232–250


	Crank displacement angles, 91, 134, 151, 154, 165, 166


	Crank link, 41, 67, 109, 179, 230, 352


	Crank-rocker mechanism, 50, 52


	Crossed shafts, 292


	Cycloid, 287


	Cycloidal motion, 330–333, 461


	Cylindrical joint, 46, 56, 351, 386, 387


	Cylindrical robot, 386, 387



	forward kinematics, 393–394, 467–468, 515–517


	inverse kinematics, 404–405, 470













D




	Dedendum, 283


	Degrees of freedom (DOF), 3, 46–47, 56, 187, 351



	passive, 352


	and paradoxes, 55–56






	Denavit–Hartenberg (DH) parameters, 390


	Diametral pitch, 283


	Dimensional synthesis, 7, 133



	branch and order defects, 135–137


	elimination, 142–146


	kinematic analysis vs., 134


	mechanism dimensions, 160–165


	path generation vs. motion generation, 146–147


	planar four-bar function generation finitely separated positions (FSPs) and multiply separated positions (MSPs), 155–160


	three precision points, 151–155


	planar four-bar motion generation, 137–141


	Stephenson III motion generation, 147–151


	subcategories of, 135






	Disk cam, 319



	design and pressure angle, 339–344


	follower motion, 321–339


	constant acceleration motion, 325–327


	constant velocity motion, 323–325


	cycloidal motion, 330–333


	displacement, velocity, acceleration, and jerk, 323


	polynomial motion, 333–339


	rise, fall, and dwell profiles, 321–322


	simple harmonic motion, 328–330


	follower types in, 320–321


	nomenclature, 340






	Displacement angles, 113, 151–152, 154, 165



	coupler, 75, 147, 154, 160, 353


	crank, 102, 134, 151, 154, 165, 166


	dyad, 102, 139–140, 142


	follower, 134, 151, 154, 165, 166






	Displacement equations, 66–67, 80–81, 85, 91–92, 100–102, 352–354, 358–359



	follower, 328, 330


	formulation of, 63






	DOF, see Degrees of freedom (DOF)


	Door linkage, 74


	Double-crank mechanism, 50, 53


	Double enveloping, 310


	Double-rocker mechanism, 50–52


	Double thread, 310


	Drag-link, see Double-crank mechanism


	Dynamic force analysis, of planar mechanisms, 227



	dynamic loading in planar space, 228


	four-bar mechanism analysis, 228–233


	geared five-bar mechanism analysis, 237–242


	mass moment of inertia and computer-aided design software, 252–254


	planar mechanism and modeling in Simscape Multibody, 254–262


	slider-crank mechanism analysis, 234–237


	Stephenson III mechanism analysis, 247–252


	Watt II mechanism analysis, 242–247






	Dynamics, meaning of, 1









E




	Electro-mechanical systems, 383


	End effector, 385


	Enveloping worm-gear teeth, 310


	Epicycloid, 287


	External gear, 280, 288









F




	Face width, 283


	Filemon’s construction, 142–143


	Fixed centrode, 78–79, 90, 119–120, 426


	Fixed pivot, 110, 142, 352, 425


	Flat-faced cam, see Disk cam


	Flat-faced follower, 320, 321


	Follower angular acceleration equation, 361


	Follower displacement angles, 134, 152, 154, 165, 166


	Follower link, 41, 50–52, 55–57, 77, 109, 142, 143, 146, 151, 355


	Follower motion



	constant acceleration motion, 325–327


	constant velocity motion, 323–325


	cycloidal motion, 330–333


	displacement, velocity, acceleration, and jerk, 323


	polynomial motion, 333–339


	rise, fall, and dwell profiles, 321–322


	simple harmonic motion, 328–330






	Forward kinematics



	definition and application, 391


	P-P-P robotic manipulator, 391–392


	R-P-P robotic manipulator, 393–394, 467–468, 515


	R-R-C robotic manipulator, 399–401, 469–470, 518


	R-R-P robotic manipulator, 395–397, 467, 515–516


	R-R-R robotic manipulator, 397–399, 467–469, 517






	Frames, 385, 388–390


	Free choices, in equations, 139, 149


	Friction force, 185, 235, 236, 279, 320


	Full joint, see Lower pair


	Function curve, with precision points, 152


	Function generation, 7, 10, 134



	finitely separated positions (FSPs) and multiply separated positions (MSPs), 155–160


	planar four-bar mechanism, 160, 165, 166


	three precision points, 151–155






	Fundamental law of gearing, 287









G




	Geared five-bar mechanism, 42–43



	acceleration equations, 93–95


	displacement equations, 91–92


	dynamic force analysis, 237–242


	kinematics of intermediate link locations of interest, 95–97


	MATLAB, 429–430, 438–440, 447–449, 477–478, 480, 489, 500, 502, 504


	static force analysis, 187–192


	velocity equations, 92–93






	Gear joint, 46, 56


	Gear mating process, 286


	Gear pair, 56, 91, 190–191, 279, 280


	Gear-pitch angle, 306


	Gear ratio, 91, 190, 300, 313


	Gears, 279–280



	backlash, 292–293


	center distance and contact ratio, 288–289


	gear-tooth interference and undercutting, 289–291


	helical-gear nomenclature, 292–295


	kinematics, 295–312


	bevel gears, 306–309


	helical gears, 304–305


	planetary gear trains, 299–302


	rack and pinion gears, 303


	spur gears and gear trains, 295–298


	worm gears, 309–312


	pressure angle and involute tooth profile, 284–287


	spur-gear nomenclature, 282–284


	types, 280–282






	Gear-tooth interference and undercutting, 289–291


	Gear train, 42, 91, 190–191, 279



	and spur-gear, 295–298






	Global acceleration, 94, 104, 355–356, 360


	Global velocity, 92, 103, 354, 360


	Grashof’s criteria, 50–51, 57


	Gripper, 385


	Ground link, 2, 43, 47, 140, 249


	Gruebler’s equation, 46, 55, 56, 66, 80, 385









H




	Half joint, see Higher pair


	Helical gear, 281, 304–305, 309–311, 313



	left-hand, 292, 304


	nomenclature, 292–295


	right-hand, 292, 304






	Helix angle, 292–294, 310, 311


	Higher pair, 46


	Home position, 340


	Hypocycloid, 287









I




	IC, see Instant center (IC)


	Identity matrix, 26, 353


	Idler gear, 297


	Image pole, 145, 146


	Imaginary component, 14–16, 67–69, 119, 138–139


	In-line slider crank, 81


	Instant center (IC), 76–80, 119, 426


	Interference, 289


	Intermediate acceleration, 32


	Intermediate and total spatial motion, 29–33


	Intermediate displacement, 31


	Intermediate velocity, 31


	Internal gear, 28


	International System of Units, 8, 283


	Inverse kinematics



	definition and application, 402


	P-P-P, 402–404


	R-P-P, 404–405, 470


	R-R-C, 409–410, 472–473


	R-R-P, 406–407, 470–471


	R-R-R, 407–409, 471–472






	Involute gear tooth, 287









J




	Jerk, 323


	Joints, 46



	cam, 46, 56


	cylindrical, 46, 56, 351, 386


	full, 46


	gear, 46, 56


	half, 46


	prismatic, 46, 56, 80, 386, 392, 400


	revolute, 46, 66, 76–100, 179–198, 228–248, 386


	spherical, 46, 56, 351, 352, 386













K




	Kinematics, 1–2 see individual entries



	chains and mechanisms, 2–3


	dimensional synthesis and, 134, 160–165


	fundamental concepts in, 41–56


	mathematical concepts in, 13–36


	mechanism motion types, 5–6


	mobility, planar, ad spatial mechanisms, 3–5


	planar mechanisms and, 63–119


	software resources, 9


	synthesis, 7–8, 10


	units and conversion, 8–9






	Knife-edge follower, 320, 321









L




	Level-luffing crane mechanism, 71–73, 146, 178, 367, 369


	Linear equation, 22, 37, 154


	Linear motion, see Pure translation


	Linear simultaneous equation systems and matrices, 22–23, 37


	Linkage, 383 see also Mechanism;; Planar mechanism kinematic analysis; Spatial mechanisms


	Links



	angular velocity, 64, 93, 155


	binary, 46


	crank, 41, 67, 109, 179, 230, 352


	drag, see Double-crank mechanism


	follower, 41, 50–56, 77, 109, 142–151, 355


	ground, 3, 43, 46, 47, 142, 249


	velocity and acceleration components and, 64–66


	rotating, 64


	rotating-sliding, 66


	ternary, 46






	Load points, 229, 234, 238


	Lower pair, 46









M




	Mass moment of inertia and computer-aided design software, 252–254


	MATLAB, 9, 10, 14–18, 159–160, 301–305, 390



	calculation procedure, see individual entries


	constant acceleration motion, 457–459


	constant velocity motion, 457


	cycloidal motion, 461


	equation formulation in, 88–89


	functions and operators, 420


	geared five-bar mechanism, 429, 438–439, 447–449, 477–479, 489–490, 500–504


	planar four-bar mechanism, 425–427, 435, 445, 475, 485, 497–498


	3-4-5 polynomial motion, 461


	4-5-6-7 polynomial motion, 461


	precision requirement, 424


	preparing and running files in, 419–422


	rerunning files with existing *.csv files, 424


	R-P-P robotic manipulator forward kinematics, 467–468, 515–516


	inverse kinematics, 470


	R-R-C manipulator forward kinematics, 469–470, 518


	inverse kinematics, 472–473


	R-R-P robotic manipulator forward kinematics, 467, 515


	inverse kinematics, 470–471


	R-R-R manipulator forward kinematics, 467, 468, 517


	inverse kinematics, 471–472


	RRSS mechanism, 463, 464, 511–512


	RSSR mechanism, 463, 511–514


	simple harmonic motion, 459–461


	slider-crank mechanism, 427–429, 435–438, 445–447, 475–477, 485–489, 498–500


	Stephenson III mechanism, 432–433, 442–443, 451–455, 483–484, 494–496, 507–509


	vector first-order differentiation procedure in, 19


	Watt II mechanism, 430–432, 440–441, 449–451, 480–483, 490–494, 505–507






	Matrix, 22–23, 68, 139



	angular acceleration, 31


	angular velocity, 31


	coefficient, 22


	column, 22–27


	combined, 181–195, 231–246, 250


	identity, 26, 353


	inversion, 26–29


	products, 26


	row, 23


	spatial angular acceleration matrix, 31


	spatial angular displacement matrix, 29


	spatial angular velocity matrix, 31


	square, 24, 26


	transformation matrix, 33–36, 387–401






	Maverick mechanisms, see Paradoxes mechanisms


	Mechanism inversion, 54–55, 57


	Mechanism mobility, 46–48, 56


	Mechanisms, 2, 10 see also Linkage


	Module, 283


	Motion generation, 7, 10, 134, 143, 165



	analytical, 134, 142


	path generation vs., 146–147


	planar four-bar mechanism, 137–141, 160


	with prescribed timing, 140, 142, 165


	Stephenson III mechanism, 147–151, 160






	Moving centrode, 79–80, 89–90, 120, 425–427


	Moving pivot, 142–146, 352–356, 359–361, 425









N




	Newton’s first law, 1, 7, 177, 178, 209


	Newton’s second law, 1, 227, 228, 262


	Newton–Raphson method, 64, 119



	flowchart, 64






	Nodes, 46–47


	Normal acceleration, 68–69, 88–88, 93–94, 104


	Normal circular pitch, 293


	Normal diametral pitch, 293, 294


	Normal direction, 293, 294


	Normal force, 185, 235, 297, 301, 304


	Normal module, 293


	Normal pressure angle, 294


	Number of teeth, 282, 300


	Number synthesis, 7, 10, 49–50, 56









O




	Offset cam system and pressure angle, 340


	Open loop design, 384


	Order defect, 136, 165–166



	elimination, 142–146






	Overhead valve train and actuation mechanism, 319, 320









P




	Paradox mechanisms, 55


	Parking automobile, 6


	Passive degree of freedom, 55, 352


	Path generation, 134, 135, 146, 165


	Periodic functions, 328


	Pinion-pitch angle, 306


	Pitch circle, 282, 284, 287, 291


	Pitch circumference, 310


	Pitch curve, 340


	Pitch diameter, 282, 288, 293, 306



	worm, 309, 311






	Pitch-line velocity, 296


	Pitch point, 287


	Planar four-bar mechanism, 41, 42, 54, 56, 112



	acceleration equations, 68–70


	branch defect, 135


	with circuit defect, 53


	coupler locations of interest kinematics, 70–75


	displacement equations, 66


	dyads, 137


	dynamic force analysis, 228–233


	function generation, 160, 165



	finitely separated positions (FSPs) and multiply separated positions (MSPs), 155–160


	three precision points, 151–155






	instant center, centrodes, and centrode generation, 76–80


	MATLAB, 425–427, 435, 445, 475, 485, 497–498


	motion generation, 137–141


	RRSS and RSSR kinematic equations and, 367


	static force analysis, 179–183


	synthesis and analysis vectors for, 161


	vectors and vector expressions in, 161


	velocity equations, 67–68






	Planar mechanism kinematic analysis, 63



	cognate construction, 109–111


	four-bar mechanism analysis, 66–80


	geared five-bar mechanism analysis, 91–97


	link velocity and acceleration components and, 64–66


	mechanism configurations, 108–109


	and modeling in Simscape Multibody, 112–119


	numerical solution method for two simultaneous equations, 64


	slider-crank mechanism analysis, 80–90


	Stephenson III mechanism analysis, 100–108


	time and driver angular velocity, 108


	Watt II mechanism analysis, 97–100






	Planar multiloop six-bar mechanism, 44–45


	Planetary gear trains, 299–302


	Planet gear, 299, 301, 302


	Pliers, 42, 177, 178



	in open and closed positions, 3


	in plane, 5






	Point coordinates, 20, 35–37, 387, 393–402


	Polar exponential form, 14, 17, 18


	Polar forms, of vector, 14


	Pole triangle, 145



	3-4-5 Polynomial, 333, 334, 336, 461


	4-5-6-7 Polynomial, 336–338, 343–344, 461






	Polynomial motion, 333–339


	P-P-P robotic manipulator, see Cartesian robot


	Precision points, 147, 151–155, 157, 166


	Pressure angle, 339



	equation, for disk cam and translating roller follower, 340


	and involute tooth profile, 284–287


	and offset cam system, 341


	profile, for 4-5-6-7 polynomial cam and translating follower, 344






	Pressure line, 285–287, 294, 297, 313


	Prime circle, 340


	Prismatic joint, 46, 56, 80, 392, 396, 400


	Pure rotation, 5, 6, 10, 41, 43, 56


	Pure translation, 5, 6, 10, 41, 56









Q




	Qualitative kinematic analysis, 63


	Quantitative kinematic analysis, 63


	Quasi-static state, 177, 227









R




	4R, see Revolute-revolute-revolute-revolute (4R) spherical mechanism


	Rack and pinion gear, 280, 303–304, 313


	Rack gear, 280, 303, 313


	Radial cam, see Disk cam


	Radial force, 297, 308


	Real component, 14, 67–68, 81, 119, 138–139


	Rectangular form, of vector, 14, 16


	Revolute joint, 46, 66, 76–100, 179–198, 228–247, 386


	Revolute-revolute-revolute-revolute (4R) spherical



	mechanism, 45, 54, 363–367






	Revolute-revolute-spherical-spherical (RRSS) mechanism, 45, 55–57



	acceleration equations, 352–358


	displacement equations, 352–354


	MATLAB, 463, 511


	velocity equations, 354–355






	Revolute-spherical-spherical-revolute (RSSR) mechanism, 45, 55–57



	acceleration equations, 360–363


	displacement equations, 358–359


	MATLAB, 463–465, 511–514


	velocity equations, 359–360






	Roberts diagram, 110


	Robotic manipulators, 5, 383, 384



	forward kinematics



	definition and application, 391


	P-P-P, 391–392


	R-P-P, 393–394


	R-R-C, 399–401


	R-R-P, 395–397


	R-R-R, 397–399






	inverse kinematics



	definition and application, 402


	P-P-P, 402–404


	R-P-P, 404–405


	R-R-C, 409–410


	R-R-P, 406–407


	R-R-R, 407–409






	kinematic analysis, and Simscape Multibody modeling, 411


	mobility and types, 385–387


	terminology and nomenclature, 384–385


	transformation matrix, 387–390






	Robotic system, with reference frames, 35


	Roller follower, 320–321



	rotating



	and cam system, 341


	and disc cam, 342










	Rolling conical wheels, 306


	Rolling cylinder pair, 55, 279, 280


	Rolling-sliding contact, 46


	Root-finding method, 64, 119, 134, 404, 406, 407–409


	Rotating link, 64


	Rotating-sliding link, 66


	Row matrix, 23


	R-P-P robotic manipulator, see Cylindrical robot


	R-R-C robotic manipulator, see Selective Compliance Assembly/Articulated Robot Arm


	(SCARA) robot


	R-R-P robotic manipulator, see Spherical robot


	R-R-R robotic manipulator, see Articulated robot


	RRSS, see Revolute-revolute-spherical-spherical (RRSS) mechanism


	RSSR, see Revolute-spherical-spherical-revolute (RSSR) mechanism









S




	SCARA, see Selective Compliance Assembly/Articulated Robot Arm (SCARA) robot


	Screw axis, 5, 10


	Screw motion, 5, 6, 10


	Selective Compliance Assembly/Articulated Robot Arm (SCARA) robot, 386, 387



	forward kinematics, 399–401, 469–470, 518


	inverse kinematics, 409–411, 472






	Shaft angle, 306


	Simple harmonic motion, 328–330, 459–461


	Simscape Multibody, 9–10, 112–120, 203–209, 254–262, 370–373, 475–518



	operations in, 419–423


	precision requirement, 424


	rerunning files with existing *.csv files, 424






	Simultaneous equations



	linear, 22–23, 27, 37, 165, 209, 262


	nonlinear, 67, 92, 102, 119, 404, 406–409


	numerical solution method for, 64






	Single thread, 310


	Slider-crank mechanism, 41, 42, 54, 77



	acceleration equations, 83–89


	centrode generation, 89–90


	displacement equations, 80–81, 85


	dynamic force analysis, 234–237


	instant centers and circle diagram, 78


	MATLAB, 427–429, 435–438, 445–447, 475–477, 485–489, 498–500


	static force analysis, 184–187


	velocity equations, 81–82, 85






	Spatial angular acceleration matrix, 31


	Spatial angular displacement matrix, 29


	Spatial angular velocity matrix, 31


	Spatial four-bar mechanism, 45–46



	types of, 45






	Spatial mechanisms, 351



	4R spherical analysis, 363–367


	and modeling in Simscape Multibody, 370–373


	planar four-bar kinematic analysis using RRSS and RSSR kinematic equations, 367–369


	RRSS mechanism analysis



	acceleration equations, 355–358


	displacement equations, 352–354


	velocity equations, 354–355






	RSSR mechanism analysis



	acceleration equations, 360–363


	displacement equations, 358–359


	velocity equations, 359–360










	Spatial motion, of two-body system, 30


	Spatial rotation, of arbitrary body, 30


	Speed reduction system, 300


	Spherical joint, 46, 56, 351, 352, 387


	Spherical robot, 387



	forward kinematics, 395–397, 467, 515


	inverse kinematics, 406–407, 470–471






	Spur-gear



	features, 282


	and gear trains, 295–299


	nomenclature, 282–284


	size variation with diametral pitch, 284


	types, 280






	Square matrix, 24, 26


	Static force analysis, of planar mechanisms, 177–178



	four-bar mechanism analysis, 179–183


	geared five-bar mechanism analysis, 187–192


	planar mechanism and modeling in Simscape Multibody, 203–209


	slider-crank mechanism analysis, 184–187


	static loading in planar space, 178


	Stephenson III mechanism analysis, 198–202


	Watt II mechanism analysis, 192–197






	Statics, meaning of, 1


	Stephenson III mechanism, 44–46, 63



	acceleration equations, 68–70


	displacement equations, 100–102


	dynamic force analysis, 247–252


	kinematics of intermediate link locations of interest, 105–108


	MATLAB, 432–433, 442–443, 451–455, 483–484, 494–496, 507–510


	motion generation, 146–151


	static force analysis, 198–202


	synthesis and analysis vectors for, 160


	vectors and vector expressions in, 161


	velocity equations, 103–104






	Sun gear, 299, 301


	Superposition, 301









T




	Tabular method, 299–300


	Tangent force, 297, 298


	Tangential acceleration, 68, 83, 87–88, 93–94, 104


	Tangential velocity, 67, 82, 83, 92, 103


	Ternary link, 46


	Thread lead, 310


	Thread length, 310


	Threads, 31


	Thrust bearings, 304


	Time and driver angular velocity, 108


	Tool frame, 385


	Torque, see individual entries


	Total acceleration, 32, 69, 83, 230


	Total velocity, 31, 66


	Trace point, 340


	Train value, 296


	Transformation matrix, 33–36, 387–401


	Transmission angle, 50–53, 57, 61



	vs. crank displacement angle plot, 113






	Transverse direction, 293


	Triple-rocker mechanism, 50, 78



	inverted, 78






	Triple thread, 310


	Type synthesis, 7, 10, 33









U




	Undercutting, 290


	Unit matrix, see Identity matrix


	US customary units, 8, 283









V




	Valve train assembly, 5–6


	Vector; see individual entries



	first-order differentiation procedure in MATLAB, 16


	in loop, in two-dimensional complex space, 15, 16, 18


	and point representation, 20–21


	second-order differentiation procedure in MATLAB, 19


	in two-dimensional complex space, 14






	Vector-loop, 37, 63, 70, 105, 119



	errors, 424


	for four-bar mechanism, 137, 153, 157, 165, 166


	standard-form, 138


	Stephenson III motion generation, 147–151


	sum, 18, 81, 85, 102






	Velocity equations, 67–68, 81–83, 92–93, 103–104, 354–355, 359–360


	Velocity ratio (VR), 279, 296, 301, 306, 311


	Vibration analysis, 233


	VR, see Velocity ratio (VR)









W




	Waldron’s construction, 143, 145


	Watt II mechanism, 45, 63, 97–100



	dynamic force analysis, 242–247


	MATLAB, 430–432, 440–441, 449–451, 480–483, 490–494, 505–507


	static force analysis, 192–197






	Whole depth, 283


	Workspace, 384, 402, 406


	Worm gears, 281, 309–312


	Worm helix angle, 310


	Worm lead angle, 310


	Worm pitch, 310


	Worm-pitch diameter, 310, 312









X




	x-Direction, 178, 230–244, 249–250, 359, 402


	x-y Plane, 3, 178, 351, 367


	x-y-z Plane, 4, 33–34









Y




	y-Direction, 178, 185, 230–249, 342, 351, 387–390









Z




	z-Direction, 177, 351, 359, 367, 387, 402
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% Here, values for the slider-crank mechanism variables W1, UL,
% V1 are assigned and variable Gl calculated. Variables LW1,
% LUL and LV1 are the scalar lengths of vectors W1, Ul and V1.

LWl = 1
theta = 45%pi/180;
Wl = LWl*exp(i*theta);

LU1 = 0;

Ul = i*LU1;

LVl = 1.5;

rho = asin((LUl-LWl*sin(theta))/LV1);

V1 = LVl*exp(i*rho);

Gl = Wl + V1 - U1;

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang = 0;
step_ang =
stop_ang

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel = 100%ones(N+1,1);
angular_acc 10*ones (N+1,1) ;
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3.6901*pi/180;
6.3099%pi/180;

/.
>> omega_p = 5.25;
>> Ft_g = ancos(phw)

Ft_g =
362.5231
>> Fr_g = Fn*sin(phi)*cos(gamma_g)
Fr_g =
93.7707
>> Fa_g = Fn*sin(phi)*sin(gamma_g)
Fa_g =
140.6558

>> Ft_p = Ft_g;
>> T_p = Ft_p*rm_p

Tp=
2.7624e+04

>> rm_g = rm_p*Ng/Np;
>> T_g = Ft_g*rm_g

T9 =

4.1436e+04
>> kw = T_p*omega_p/1000000
kW =

0.1450

>>
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% Here, values for the RSSR mechanism variables a0, al, ua0, b0
% bl and ub0 are assigned. They must all be defined as
% transposed row matrices as shown).

a0 = [0, 0, -0.4023]';

al = [0.3356, -0.0708, -0.4023]';
uao = [0, 0, 1]';

(1, -2.3885, 0]';

(1, -2.3885, 0.7300]';

ubo = [0, -1, 0]

% Here, values for the start, step and stop displacement angl
% for the crank link are assigned.

start_ang
step_ang
stop_ang

% Here, values for crank link angular velocity and angular
% acceleration are assigned

ones (N+1,1) ;

angular_vel
ones (N+1,1) ;

angular_acc
pititn <
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>> pl = [0, 0]';

>> p2 = [0.1815, 0.4882]';

>> p3 = [0.6647, 1.4078]';

>>

>>

>> -75%pi/180;

>> cos(A2); SA2 = sin(A2);
>> cos(A3); SA3 = sin(A3);
>> 15%pi/180;

>> 40+pi/180;

>> cos(B2); SB2 = sin(B2);
>> cos(B3); SB3 = sin(B3);
>> Wz = inv([CB2 - 1, -SB2, CA2 - 1, -SA2

SB2, CB2 - 1, SA2, CA2 -1
CB3 - 1, -SB3, CA3 - 1, -SA3
SB3, CB3 - 1, SA3, CA3 - 11)*[P21(1), P21(2), P31(1), P31(2)]*

Wz =

0.5854
-1.2248
-0.4926
-0.3631

>> -20%pi/180;

>> G3 = -35*pi/180;

5> cos(G2); $G2 = sin(G2);

5> cos(G3); SG3 = sin(G3);

5> inv([CG2 - 1, -SG2, CA2 - 1, -SA2

$G2, €G2 - 1, SA2, CA2 - 1

€G3 - 1, -8G3, CA3 - 1, -SA3

SG3, CG3 - 1, SA3, CA3 - 1])%[P21(1), P21(2), P31(1), P31(2)]*

0.1905

1.8923
-1.0184
-1.1813

>
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unit_select = 'SI';

.5*exp(i*90*pi/180) ;
75%exp(i¥19.3737%p1/180);

.75'exp(1’93 2461*pi/180) ;
.5*exp(1*60.7834%pi/180);

start_ang
step_ang
stop_ang

angular_vel
angular_acc

=1
-0}
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= 1.5%

>> viy = 2;
>> V1= Vix + i*vly
V1 =

1.5000 + 2.0000i

>> Magnitude = abs (V1
Magnitude =
2.5000

>> Direction

angle (V1) *180/pi
Direction =
53.1301

>>
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-2.5000
-3.0000

1.7500
-2.5000

>> A*v_T
ans =

.0000
0000
.5000
0000

>> veu_T
ans =

-11.2500

>>
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2,=(0.0164, 0.0015, 2.3579)
2,~(-2.0705, 05585, 2.363)
uag=ua,=(0.0025, 0.0003, 0.9999)
by=(-0.3038, 0.1265,-2.172)
b,5(0.9.-0.9,0)

p=(1.7321,0-1)
4,=(1.2321,0,-1.866)
1,=(1.9486,0,-1.125)
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Here, values for the follower displacement event sequence, the

%
% corresponding follower displacement event ranges and the end
% value for each follower displacement event are assigned. The
5
%

cam rotational speed and base circle radius are assigned here
also.

Event = ['R','D','F','D'];
Beta = [120,60,120,60];
si = [2,2,0,0];

dTheta = 1.1;
Rbase
P
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%

% Here, values for the slider-crank mechanism variables wl, Ul
% and V1 are assigned. The slier force F, friction coefficient
% T, gravity g, center of mass vectdrs Rl and k2 and Tink
%
%

masses are specified here also.

Available units are the following:
% 'SI' (Metric
% 'Us' (english

Length [meter], Mass [kg] and Force [N]
Length [inch], Mass [1bm] and Force [1bf]

unit_select = 'SI';

LWl = 4;
theta = 45%pi/180;
Wl = Lwl*exp(i*theta);

LUl = 0;
Ul = i*Lul;

6;
asin((Lul-Lwl*sin(theta))/LV1);
V1 = LvI*exp(i*rho);

=wl + Vvl - ul;
= [-100, 0]; mu = 0.1; g = -9.81;

.0265 - i*0.0141;
ml = 0.05; m2 = 0.025; m3 = 0.075;

% Here, values for the start, step and stop displacement angles
% for the crank Tink are assigned.

start_ang
step_ang
stop_ang
-
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>> [0, 01';
>> 10.292, 0.734]";
>> 0.299, 1.4611";
>> P2 - pl;
>> p3 - pl;
>> -51.7124%pi/180;
>> -84.9734*pi/180;
>> cos(A2); SA2 = sin(A2);
>> cos(A3); SA3 = sin(a3);
>> B2 = 18*pi/180;
>> B3 = 38*pi/180;
>> CB2 = cos(B2); SB2 = sin(B2);
>> CB3 = cos(B3); SB3 = sin(B3);
>> Wz = inv([CB2 - 1, -SB2, CA2 - 1, -SA2
SB2, CB2 - 1, SA2, CA2 - 1
CB3 - 1, -SB3, CA3 - 1, -SA3
SB3, CB3 - 1, SA3, CA3 - 11)*[P21(1), P21(2), P31(1),
W =
2.0580
-0.8054
-0.1324
0.1191
>> G2 = -40%pi/180;
>> G3 = -87*pi/180;
>> CG2 = cos(G2); SG2 = sin(G2);
>> CG3 = cos(G3); SG3 = sin(G3);
>> US = inv([CG2 - 1, -SG2, CA2 - 1, -SA2
SG2, CG2 - 1, SA2, CA2 - 1
€G3 - 1, -SG3, CA3 - 1, -SA3
563, €G3 - 1, SA3, CA3 - 1])*[P21(1), P21(2), P31(1),
us =
0.5808
-1.8615
-1.5053

1.3400

P31(2)]"

P31(2)]"
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A
5> Ng = 45
>> sigma = 90%pi/18
>> gamma_p = atan(s1n(s1gma)/(cos(s1gma) + Ng/Np))*180/pi
gamma_p =

33.6901
>> gamma_g = atan(sin(sigma)/(cos(sigma) + Np/Ng))*180/p
gamma_g =

56.3099

>>
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% s

% Here, values for the watt II mechanism variables wl, V1, Gl

% ul, L1, wls, Vls, Gls, Uls and Lls are assigned. The coupler

% forces Fpl and Fpls and follower torques Tb0 and ThOs, gravity
% "g", the center of mass vectors RL, R3, R7, R9 and R13, link

é m_lasses and 1ink mass moments of inertia are specified here
also.

= 0.5%exp(i*90%*pi /18
g 7§*exp(1*19 3737*91/180)v

0.75*exp(i*93.2461*pi/180);
L1 = 0.5%exp(-1*60.7834*pi/180)}

uls = 0.55exp(i 45 pi/180);

VIs = 0.75%exp(i*7.9416%pi/180);
Gls = 0.7244 - 1#0.1941;

Uls = 0.75%exp(i*60.2717*pi/180);
L1s = 0.5*exp(i¥49.3512%pi/180);
Fpl = [-5

0 o
Fpls = [-1000, 0]; Th0s = 0; g = -9.81;

Rl =0 - i*0.25; R3 = -0.3172 - i*0.2284;
1037 - 1*0.3675; R9 = -0.3562 - i*0. 161;
.1860 - 1*0.3257;

RL + W1; R4 = R3 + VI; RS = R3 + L1; R6 u1;
R8 = R7 + W1S; R10 = RO + VIs; R11 = RO + L1s; A2 K3 v s

= 8.05; I1 = 0.805;
29.785; 12 = 5.63

% Here, values for the start, step and stop displacement angles
% for the crank Tink are assigned.

start_ang
step_ang
stop_ang

0;

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel = -1.5%ones(N,1);
angul 2 13;
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§--

% Here, the coordinates for the end-effector point p3_3 are

% assigned.

o,

p3_3
%

0, -1];
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35;
20%pi/180;
Pcl*N1/pi;
1/dpl;

= N2/Pd}
= (dpl + dp2)/2
c=
2.3873
>> pb = pi*dpl*cos(phi)/N1
pb =
0.2349
>> a = 1/pd;
> Z=

sqre((0,5%dp2 + a)A2 - (0. 5%dp2*cos(phi))A2) -
+'sqrt({0.5%dpl + a)A2 - (0.5*dpl*cos(phi)IA2)

z=
0.3874
>> mp = Z/pb
mp =
1.6491

>>

0.5%dp2*sin(phi). ..
~'0.5%dpl*sin(phi)
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% Here, the coordinates for the end-effector point p3_3 are
% assigned.

p3_3 = [0, 0, -1;
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Here, values for the Stephenson III mechanism variables wl
vi, 61, ul, L1, wis, Vls, Gls, Uls and L1s are assigned. The
ce Fpls and follower torques ThO and ThOs,

, the center of mass vectors R1, R3, R7, RO and

gravity
R13, 1ink masses and 1ink mass moments of inertia are
% specified here also.

%
%
% coupler
%
%

= 0.5%exp(i*90%pi/18

975" exp(i¥19. 135% /180
175 4 i%0

0. 75*exp(1“93 2461%pi/180) ;

L1 = 0.5%exp(~1*60.7834*pi/180)}

Vvls = 1*exp(1*17 1417*p1/180),
Gls = 0.2159 + i%0.2588

Uls = 1*exp(i*76. 4844*p1/180),
L1ls = 0.5*exp(i*63.7091%pi/180);

Fpls = [-1000, 0]; ThO = 0; ThOs = 0; g = -9.81;

Rl = 0 - §¥0.25; R3 = -0.3172 - i*0.2284;
0.0212 - i%0. 3744; R8 = -0. 3923 Zi%0.2477;
20.1169 - 1%0.4862;

Rl + Wl; R4 = R3 + V1; RS = R3 + L1; R6 = R7 + UL
R8 + Vls; R10 = R8 + Lls; R1l = R12 + Uls;

8.05; 11 = 0. 805
29.785; 12 .
33.81; 13
29.785; 14

12 075; 15

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang

% Here, values for crank Tink angular velocity and angular
% acceleration are assigned.

angular_vel = -1*ones(N,1);
1 2 1






OEBPS/Images/fig10_3.jpg





OEBPS/Images/E09x007.jpg
Event = ['R','D', 'R,
Beta =_[60,60,60,60,60,60]
i = [25, 25 55 55 0,0];

dTheta = 45*pi/30;
Rbase = 1; (NOTE: this value is not relevant since “Rbase” is not
used in this example)
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>>
>>
>>
>>
>>
>>
>>

0;
> delta = acoS((LAZ + (rb + s + rr)A2 - DyA2)/..
(Z"L*(rb +5 +rr)));
>> phi = (delta - p1/2 + atan((ds/dtheta)*..
(1/(rb + s + rr - (ds/dtheta)*cos(delta)))))*180/pi
phi =
~57.3323

>>
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wl = 0.5
theta = 90*p1/180

LUl = 0;

Lvl = 0.9014;

F = [0, 0];

mu = 0.5;

g = -9.81;

Rl = -i*0.25;

R3 = -0.3750 + i*0.25;
ml = 8.05;

I1 = 0.805;

m2 = 14.49;

12 = 4.025;

m3 = 30;
start_ang = 0;
step_ang = 1;
stop_ang = 360;

angular_vel = 1
angular_acc = 0
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.35*exp(i*90*pi/180) ;
.525%exp(i*54.7643*pi/180) ;
.Ss*exp( i*15. 7645*p1/180)

.35;
.35'exp(1*60’g1/180
.525%exp(i¥*115.0279*pi/180) ;
ratio = 2;

start_ang
step_ang
stop_ang

45;

1.5 * ones(N+1,1);

angular_vel
0% ones(N+1,13;

angular_acc
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a=(0, 0.7398, 0.553)
a,~(0.5258. 03533, 0.674)
ua,=(0, 0.7998, 0.6003)
5684, 03819, 0.7287)
by =(0.4625, 0.6986, 0.3921)
b,=(0.1943, 0.7044, 0.5672)

p,=(-0.2081,0.1675,0.8227)
q,=(0.2272, 01665, 0.8179)
0, 0.3087, 0.8080)
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35%pi/180;
1;

cos(B); SB = sin(B);
10%pi/180;

~1:55

cos(A); SA = sin(A);
-20%pi/180;

-0.75;

CG = c0s(G); SG = sin(®);
>> ww = inv([1, 0, 1, 0, -1,
0,1,0,1,0, -1
CB, -SB, CA, -SA, -CG, SG
SB, CB, SA, CA, -SG, -CG
dB*CB, -dB*SB, dA*CA, -dA*SA,

dB*SB, dB*CB, dA*SA, dA*CA,
D*[1, 05 1, 0, 01'

wvy

0.3675
-0.1534
-0.1252

0.1796
-0.7577

0.0261

>>

0

-dG*CG, dG*SG
-dG*sG, -dG*CG
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Here, values for the slider-crank mechanism variables wl, vi,
Gl and Ul are assigned and calculated. variables Lwl, LUl and
LV1 are the scalar lengths of vectors wl, Ul and V1. The
slider force "F", dynamic friction coefficient "mu" and
gravity "g" are assigned here also. Lastly, the center of mass
vectors R1 and R3, 1ink masses and 1link mass moments of
inertia are specified here.

Available units are the following:
'SI' (Metric) : Length [meter], Mass [kg] and Force [N]
‘us' (English): Length [inch], Mass [Ibm] and Force [1bf]

3R3QRITIVIIIRRRRR

unit_select = 'SI';

LWl = 0.5; theta = 90%pi/180;
wl = Lwl*exp(i*theta);

LUl = 0;

Ul = i*Lul;

LVl = 0.9014;

rho = asin((LUl-Lwl¥*sin(theta))/LV1);

V1l = Lvl¥exp(i*rho);
=wl+ V1 - ul;
= [0,0]; mu = 0.5; g = -9.81;

0 - i*0.25;
-0.3750 + i*0.25;
R2 = R1 + W1l; R4 = R3 + V1;

8.05; Il =
14.49; 12

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang = 0;
step_ang = 1;

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel = 10;
1 0
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= 0.3675 - i*0.1534;
-0.1252 + i*0.1796;
-0.7577 + i*0.0261;

(1-0;

start_ang
step_ang

0
1
stop_ang 3

angular_vel

H
= 1 * ones(N+1,1);
angular_acc = 0

ones(N+1,1)}
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Lwl = 30;
theta = 90*pi/180;

LUl = 30;
Lvl = 90;

start_ang
step_ang
stop_ang

* ones(N+1,1);

angular_vel
* ones(N+1,1);

angular_acc
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si = [25 25 55 55 0,01;

dTheta = 45%pi/30;
Rbase = 1; (NOTE: this value is not relevant since
used in this example)
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>> pl = [1.25, -
>> p2 = (-2, 9.6
>>V = p2 - pl

v =

-3.2500
14.6500

>> Magnitude = norm(v)
Magnitude =

15.0062
>> pl

>> p2
>> v

-3.2500
14.6500
6.0000
>> Magnitude = norm (V)
Magnitude =
16.1612

>>
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% Here, values for the planar 4-bar mechanwsm varwab]es wl, vi,
%G1, Ul and L1 are assigned. The coupler force Fpl, follower
% torque ThO, gravity "g", center of mass vectors Rl R3 and
% R7, 1ink masses and 1ink mass moments of inertia are

% specwfwed here also.

wl = 0.5%exp(i*90%pi/180);
75 Exp(1 *19. 3737*p1/180),

b
7S“exp(1*93 2461*pi/180) ;
.5*exp(-1*60.7834*pi/180) ;

Fpl = [0, 0]; ThO = 0; g = -9.81;

.2284;
0.0212 - i%0. 3744

R2 = Rl + Wl; R4 = R3 + V1; RS = R3 + L1; R6 = R7 + UL
8.05; 11 = 0. 805
.635

29.785; 12
12.075; 13

%
% Here, values for the start, step and stop displacement angles
% for the crank Tink are assigned.

start_ang =
step_ang =1

% Here, values for crank Tink angular velocity and angular
% acceleration are assigned.

angular_vel
angul
%-
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[0 2612, 0.7274, 0.6346]
0 0151 0. 9879 0.1552]

[0.1793. 0.9837, 0.0172]'
[-0.1761, 0.2162, 0.9603]
[ 0 2081, 0.1675, 0.8227]';

pl
start_ang

step_ang
stop_ang

2
168;

(0 5*pi/30) * Dnes(N+1 13
* ones(N+1, 1]

angular_vel
angular_acc






OEBPS/Images/A005x005.jpg
Dwell
s, interval 5,

Fall

Rise !
| interval

interval

Dwell
3 interval Sy

B (120° Lﬂg(ﬁo").l B3 (120°) Lﬁucowj

‘One rotation cycle = 360°






OEBPS/Images/E08x008.jpg
>> N = 40;

5> pe = 25;

55 psi = 35%pi/180;
5> phi = 25%pi/180"
>> omega = 7;

>> Fn = 25

>> pen = pc*cos(ps1),
>> Pdn = pi/pci

>> dﬁ N/(Pdn Cos(psid);
>> phin = atan(tan(nh1)*cos(psl)),
>> Ft = Fn*cos(phin)*cos(psi);
>> T = Ft*dp/2
T=
3.0447e+03
>> kw = T*omega/1000000
kw =
0.0213

>>
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unit_select = 'sI';

0.5%exp(i*90%*pi/180) ;
8.;§*exp(x*32 7304%pt/180) ;
0.75%exp(i*45%pi /180) ;
0.5*exp(1*74.1400*pi/180);
0.75%exp(i*149.9847%pi/180) ;

=2;
[—%500. -3000];

§+0.0831

0.2558 +i%0.2955;
-0.3247 + 1*0,1876;
0.0356 + %0.0356;

start_ang
step_ang
stop_ang
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P
% Here, values for the RRSS mechanism variables a0, al, ua0,

% ual, b0, bl, pl, ql and rl are assigned. They must all be
% defined as transposed row matrices (as shown).

a0 = [-0.0576, 0.2890, -1.4112]';
al = [0.1452, -2.5421, -1.1800]';
[-0.0003, 0.0814, 0.9967]';
[0.3040, 0.0992, 0.9475]"';

[0.0851, 0.4570, 0.5096] ';
[1.7725, 5.1566, 0.6499]';
(1.7321, 0, -1]'
[1.2321, 0, -1.8660]"';
[1.9486, 0, -1.1250]

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang = 0;
step_ang = 10;
stop_ang = 200;
i

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel
angular_acc
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%=
% Here, values for the slider-crank mechanism variables wl, Ul
% and V1 are assigned. The slier force F, friction coefficient
% "mu", gravity “g", center of mass vectors Rl and R2 and link
% masses are specified here also.

il = 4;
theta = 45%pi/180;
Wl = Lwl*exp(i*theta);

Lul

ul

Lv1 i

rho = asin((LUL-LWL*sin(theta))/Lv1);
V1 = Lvi*exp(i*rho);
Gl=wl+Vl-uL

F = [-100, 0]; mu = 0.1; g = -9.81;

0.0265 - i*0.0141;
ml = 0.05; m2 = 0.025; m3 = 0.075

% Here, values for the start, step and stop displacement angles
% for the crank Tink are assigned.

start_ang
step_ang
an,
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.5*exp(i*90*pi/180) ;
75%exp(i*32.7304%p1/180) ;
75*exp (i*0*pi/180 g
75*exp(i*45%p 1/180) ;
.S*exp(i*74. 14" pi/180) ;

s1 = 0.75*exp(i*149. 9847*p1/180),
Fpl = [0, -1000];

ratio = 2;

g =-9.81;

R1 *0 0831;

R3

R7 0.1876;
R9 = 0.0356 - 1*0.0356;
ml = 22.54;

11 = 0.505;

m2 = 29.785;

12 = 5.635;

m3 = 12.075;

13 = 2.415;

m4 = 75.67;

14 = 5.635;

start_ang 0;
step_ang 13
stop_ang 360;

angular_vel
angular_acc

10 * ones(N+1,1);
0 * ones(N+1,1);
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11 = 0.5;
12 = 0.5;
[0, 0, 0];
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>> syms all al2 a2l a22 real;
>> syms bll bl2 b2l b22 real;
>> syms cll cl2 c2l c22 real;

>> [all, al2; a2l, a22];
>> [b1ll, bl2; b21l, b22];
>> [c1l, cl12; c21, c22];
>> A*B
ans =

[ all*bll + al2*b21l, all*bl2 + al2*b22]
[ a21*bll + a22*b21, a21*bl2 + a22+*b22]

>> A*B*C

ans =

cl1*(all*bll + al2*b21)
al2*b2l) + c22*(all*bl2

cll*(a21*bll + a22*b21)
a22*b21) + c22*(a21*bl2

c21*(all*bl2 + al2*b22), cl2*(all*bll
al2*b22)]
c21* (a21*bl2 + a22*b22), cl2*(a2l*bll
a22*p22)]

JR
PR
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11 and 12 are assigned.

11
12
p3
5o

0.5;
0.5;
(o

3

0l;
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0.0576, 0.289, -1.4112]";
.1452, -2.5421, -1.18]

= [1 9486, 0, e 125]"

start_ang
step_ang 5
stop_ang = 200;

0 * ones(N+1,1);
0 * ones(N+1,1);

angular_vel
angular_acc
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Here, values for the geared 5-bar mechanism variables wl, v1,
Gl, U1, L1 and s1 are assigned. The Tink force Fpl, gear
ratio, gravity "g", center of mass vectors R1, R3, R7 and R9,
Tink masses and Tink mass moments of inertia are specified
here also. Only negative gear ratio values should

specified.

Available units are the following:
'SI' (Metric) : Length [meter], Mass [kg] and Force [N]
% 'us' (English): Length [inch], mass [Tbm] and Force [1bf]

unit_select = 'sI';

0.5%exp(i*90%pi /18
0.75%exp(i#32. 7304*p1/180),
0.75 + i%0;

0.75%exp (i *45%pi/180) ;
0.5%exp(1%74.1400%pi/180);
0.75%exp(i+149.9847+pi/180);

Fpl = [0,-1000]; ratio = 5 g =-9.81;

R1 = 0 - i*0.0831; R3 = -0.2558 - i*0.2955;
R7 = 0.3247 - i*0.1876; R9 = -0.0356 - i*0.0356;

R1 + Wl; R4 = R3 + V1; RS = R3 + L1; R6 = R7 + S1;
R8 = RO + UL;

ml = 22.54; 11 —0 505;

3 2
75. 67 14 = 5.635;

% Number of teeth of the driving gear
Na

% Here, values for the start, step and stop d15p1acement angles
% for the crank 1link are assigned.

start_ang = 0;
step_ang =
stop_ang

% Here, values for crank Tink angular velocity and angular
% acceleration are assigned.

angular_vel - 1;
an
%
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L 7;

tv =

>> omega4 = omegal*N1/N4;
>> kW = T4*omegad /1000000

kw =
2.6250e-04

>>
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% Here, values for the Stephenson III mechanism vamalﬂes wl,

% V1, 61, ul, L1, vIs, Gls, Uls and L1s are assigned. The

% cou;ﬂer force Fpls, gravit E , the center of mass vectors
% R1, R2, R3, R4 and RS and ¥1n masses are specified here also

1.3575%exp(-1*64,4543%pi/180) ;
0.9726%exp(i*57.2740%p1/180) 3
0.9207 - 1%2,2989;
1.9019%exp(i+84,2513%pi/180) ;
0.6120%exp(-1*143. 6057‘p1/180).

0.5815%exp(-1*125.7782%pi/180) ;
-3.3894 + 2; H
*42.1315%pi/180) ;

2.9955%exp(-1
52217 eoxp (1551 /1803 :

Fpls = [0, -40]; g = -9.81;

0.3846_- i*0.3412;
-0.6343 + 1*1.0364;
-0.2988 - i*0.3639;
1.1487 + i%0.0597;

~0.2384 - 1%0.3618;

ml=4; m2=8 m3=4; m=12;m5 =4

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang

sty
%-
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>> syms thetal alphal V1 Wl rea
>> V' = V1*(cos(thetal) + i*sin(thet:
>> W = Wi*(cos (al,
>> Product =

Vi
hal) - i*sin(alphal))
£y (expand (V*) )

Product =
-V1*W1*(sin(alphal - thetal)*i - cos(alphal - thetal))

>>
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= 0.2818 + i*0.0540;
-0.3424 + i*0.1260;
-1.0605 + i*0.1801;

L1 =0;

start_ang = 0;
step_ang = 1!
stop_ang = 1!

angular_vel =1 * ones(N+1,1);
angular_acc = 0 * ones(N+1,1);
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0;
cos(B); SB = sin(B);
1.5

-1
COS(A); SA = sin(A);
70 75

cos(G), S6 = sin(G);

S>> WU = inv([1, 0, 1, 0, -1, O
0,1,0,1,0, -1

dB*CB, ~dB¥SB, dA*CA, -dA*SA, -dG¥CG, dG*SG
dB*SB, dB*CB, dA*SA, dA*CA, -dG*SG, -dG*CG

-ddB*SB - dBA2*CB, -ddB*CB + dBA2%*SB, -ddA*SA - dAA2*CA,...

-ddA*CA + dAA2¥SA, ddG¥SG + dGA2*CG, ddG*CG - dGA2*SG
ddB*CB - dBA2*SB, -ddB*SB - dBA2*CB, ddA*CA - dAA2¥SA,...
-ddA*SA - dAA2¥CA, -ddG¥CG + dGA2¥SG, ddG*SG + dGA2*CG
D*[1, 0, 0, 0, 0, 0]'

ww =

0.2818
0.0540
-0.3424
0.1260
-1.0605
0.1801

>>
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% Here, values for the planar 4-bar or slider-crank mechanism
% variables a0, al, b0 and bl are assigned.

ao=[0, 0]';
al=[0, 1]1';
bo=[2.5, -100000] *;
bi=[2.5, 0]*
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exp(i*90*pi/180) ;
1 5*exp(1 *19, 3737*p1 /180);

1 5*exp(1'93 2461*pi/180) ;
exp(i*60.7834%pi/180);

2*exp(i*17.1417*pi/180) ;
0.4318 + i*0.5176;
2%exp(i*76.4844*pi/180) ;
exp(i*63.7091*pi/180) ;

_ang 0;
step_ang
stop_ang 360;

0 * ones(N+1,1);

angular_vel
0 * ones(N+1,1);

angular_acc
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exp(i*90*pi/180) ;

1. gsexp(1*19 3737+pi/180);
1.5;

1.5%exp(i*93. 2461*g1/180)?
L1 = exp(i*60.7834*pi/180);

= exp(i*45*pi/180);
g*exp(1e7 9416"p1/180),

Tiaag’s

L otite0 71741 /180

exp(i*49.3512%pi/180);

_ang
step_ang
stop_ang

angular_vel
angular_acc
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. 75*exp(i*90*pi/180) ;
*22.4850%p1/180);

ul 1.75*exp(1*64 5895*pi/180) ;
1 = exp(i¥*6.469%pi/180);

1.75%exp(-1*8,8397*pi/180) ;
1 1340 + i*0.
75*exp(1*65 6031%pi/180) ;

I
=
@
o

Lls

start_ang
step_ang
stop_ang

0;
1;
=5

angular_vel

* ones(N+1,1);
angular_acc

* ones(N+1,1);

oo S5
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11 and 12 are assigned.

11
12
p3
5o

0.5;
0.5;
(o

3

0l;
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%
% Here, values for the planar 4-bar mechanism variables wl, V1,
% G1, Ul and L1 are assigned. The coupler force Fpl, gravity

% "g", center of mass vectors R1, R2 and R3 and link masses are
; specified here also.

%

%

Available units are the following:
'sI' (Metric): Length [meter], Mass [kg] and Force [N]
% 'us' (English): Length [inch], Mass [1bm] and Force [1bf]

unit_select = 'SI';

5+exp(i*90%pi/180);
0 75%exp(i*19. 3737"p1/180),
0.75 + i*0;
0. 75“‘exp(1’*93 2461*pi/180);
= 0.5%exp(-1*60. 7834*p1/180),

= [0, 4500]; g = -9.81;

-0.0932 - i*0.0380;
0.0955 + i*0.0159;
.1180 + *0.1261;

% Here, values for the start, step and stop displacement angles
% for the crank Tink are assigned.

start_ang =
step_ang =
stop_ang
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>> syms all al2 al3 a2l a22 a23 a3l a32 a33 real;
>> A = [all, al2, al3

a2l, a22, a23

a3l, a32, a33];

5> Inverse A = inv(A)

Inverse A =

[ (a22%a33 - a23*a32)/(all*a22*a33 - all*a23*a32 - al2*a2l*a33 +
al2*a23*a3l + al3*a21*a32 - al3*a22*a31), -(al2*a33 -
al3*a32)/(all*a22*a33 - all*a23*a32 - al2*a2l*a33 + al2*a23*a3l +
al3*a21*a32 - al3*a22+*a3l), (al2*a23 - al3*a22)/(all*a22*a33 -
all*a23*a32 - al2*a21*a33 + al2*a23*a3l + al3*a2l*a32 -
al3*a22*a3l)]

[ - (a21*a33 - a23*a31)/(all*a22*a33 - all*a23*a32 - al2*a21*a33 +
al2*a23*a3l + al3*a2l*a32 - al3*a22*a3l), (all*a33 -
al3*a3l)/(all*a22*a33 - all*a23*a32 - al2*a21*a33 + al2*a23*a3l +
al3*a21*a32 - al3*a22*a3l), - (all*a23 - al3*a2l)/(all*a22*a33 -
all*a23*a32 - al2*a2l*a33 + al2*a23*a3l + al3*a2l*a32
al3*a22+*a3l)]

[ (a21*a32 - a22*a31)/(all*a22*a33 - all*a23*a32 - al2*a21*a33 +
al2*a23*a3l + al3*a21*a32 - al3*a22*a3l), -(all*a32 -
al2*a31l)/(all*a23*a33 - all*a23*a32 - al2*a21*a33 + al2*a23*a3l +
al3*a21*a32 - al3*a22*a3l), (all*a22 - al2*a2l)/(all*a22*a33 -
all*a23*a32 - al2*a21*a33 + al2*a23*a3l + al3*a2l*a32
al3*a22*a3l)]

>>
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% Here, values for the Stephenson III mechanism variables W1,
% V1, Gl, U1, L1, Vls, Gls, Uls and Lls are assigned.

W1 = 0.5%exp(i*90+pi/180);

V1 = 0.75%exp(i*19.3737+pi/180);
Gl = 0.75 + i*0;

UL = 0.75*exp(i*93.2461*pi/180);
L1 = 0.5%exp(i*60.7834*pi/180);
V1s = 1*exp(i*17.1417+pi/180);
Gls = 0.2159 + i*0.2588;

Uls = 1*exp(i*76.4844*pi/180);

0.5%exp (i*63.7091%pi/180) ;

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang
stop_ang

% Here, values for crank link angular velocity and angular
% acceleration are assigned

angular_vel =
angular_acc
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Event = ['R','D', 'R,
Beta =_[60,60,60,60,60,60]
i = [25, 25 55 55 0,0];

dTheta = 45*pi/30;
Rbase = 1; (NOTE: this value is not relevant since “Rbase” is not
used in this example)
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wl=1, 3575’9XDE 1*64.4543*pi/180) ;
V1 = 0.9726*exp(i*57.2740*p1/180);
Gi 0.9207 - 1%*2.2989;

u

1. 9019*exp(1 #84. 2513*?1/130),

L1 = 0.6120*exp(-1*143.6057*pi/180);

V%s < 045815 exn (14125, 778251/180);
Gls = -3.
1s = 2.9955%exp(-1*42.1315%pi/180) ;
15 2 212217%exp(-i%5%p1/1803;

Fpls = [0, -40];
g = -9.81;

- i*0.6124;
+ 1*0.1900;
+ 1%0.9462;
- 1*0.2304;
- 1*1.0047;
start_ang = 0;
step_ang =1
stop_ang = 40;
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>> syms W X t alpha(t) delta(t) real;
>> V = Wrexp(i*alpha(t)) + X*exp(i*delta(t))
>> dav = diff(V, 2)

dav =

- Wrexp(alpha (t) *i) *diff (alpha(t), £)*2 -
X*exp (delta(t) *i) *diff (delta(t), £)*2 +
Wrexp (alpha (t) *i) *diff (alpha(t), t, t)*i +
Xrexp (delta (t) *i) *diff (delta(t), t, t)*i

>>
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1.96*exp(i*47.4041*pi/180) ;
“33*exp(-1*51.6935%p1 /1803 ;
.6075 - 1*0.6909;
-09*exp(i*63. 7721*p1/180)
1.19%exp(-i*51. 6935*p1/180),
start_ang

step_ang
stop_ang =

angular_vel = * ones(N+1,1);
angular_acc = 0 * ones(N+1,1);
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%
% Here, values for the planar 4-bar mechanism variables wl, V1
%G1, Ul and L1 are assigned. The coupler force Fpl, follower
% tcrque ThO, gravity "g", center of mass vectors Rl R3 and R7,
% 1ink masses and Tink mass moments of inertia are spec1f1ed

% here also.

%

%

%

%

Available units are the following:
'sI' (Metric) : Length [meter], Mass [kg] and Force [N]
'us' (english): Length [inch], mass [Tbm] and Force [1bf]

unit_select = 'SI';

wl = 0.5%exp(i*90%*pi/180);
75*exp(i*19.3737*pi/180) ;
W75 + %03
0.75%*exp(i*93.2461%pi/180);
L1 = 0.5%*exp(i*60.7834*pi/180);

Fpl = [0,0]; TbO = 0;
0 - i*0.2

-0.3172 - 1*0 2284;
0.0212 - i%0.3744;

R2 = RL + W1l; R4 = R3 + V1; RS = R3 + L1; R6 = R7 + UL;

8.05; 11 = 0. 805
29.785; 12 ='5.635;
12 075; 13 = 2. 415

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang
stop_ang

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel = 1.0;
1 0.1;
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B =
1
-2
1
3
-3
A=
1 -2 i -3
2 1 2 -2
-1 2 -4 1
3 0 0 -3
>> inv ()
ans =

-0.5000 -0.3750  -0.3125 0.6458
[ 0.5000 0.2500  -0.2500
0 0.2500  -0.1250  -0.2083
-0.5000 -0.3750 -0.3125 0.3125

>> x = A\b
%

1.8750
-1.5000
-1.2500

0.8750

>>
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1;
rot_s*-Ns/Np

>> rot_r = rot_p*Np/Nr
rot_r =
-0.5000

>>
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% Here, values for the planar 4-bar mechanism variables Wi, V1,
% Gl, Ul and L1 are assigned.

W1l = 0.5*exp(i*90*pi/180);

V1 = 0.75*exp(i*19.3737*pi/180);
Gl = 0.75 + i*0;

UL = 0.75%exp(i*93.2461*pi/180);
Ll =0

.5*exp (1*60.7834%pi/180) ;

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned

start_ang = 0;
step ang = 1;
stop_ang 360
i

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel
angular_ace
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unit_select = 'SI';

.5*exp(i*90*pi/180) ;
-75%exp(i*¥32.7304% 1/180).
.75*exp(1*0*p1/18 g
75%exp(i*45+pi/180);
S*exp(i*74. 14"p1/180
.75%exp(i*149. 9847‘p1/180),

[0, -1000];

R9 = -030‘;56 - 190 8326
ml = 22.54; 11 = 0.505;
m2 = 29.785; 12 = 5.635;
m3 = 12.075; I3 = 2.415;
m4 = 75.67; 14 = 5.635;
m5 = 22.54; I5 = 0.505;

start_ang
step_ang
stop_ang
angular_vel = 10;
angular_acc = 0;






OEBPS/Images/004x001.jpg
Initial values
hn

o o T!

LRI A AN
5 % AURE)
", -

%

}._

V=V +81,
V=V, 48V,

H W) <e
and
AURON






OEBPS/Images/P04x010.jpg
reclined chair position

W, = 122449 ¢ 106789 W,* = 4.7774 ¢ I558312°

V,=72012¢ 8228 Y *=62205 ¢ 755805

U, =4.7774 ¢ 124168 * = 4.9615 ¢ 703427

3.6515 ¢ #54161°

6444 ¢ TOSHS G,

G,

kinematic model of chair





OEBPS/Images/Fig04E_30.jpg
1*exp(i*90*pi/180) ;
1.5%exp(i*4. 2451*m/180).
1.2489 - %0.3882;
5*exp(i*88.2046%pi/180) ;
. 75%exp(i*45%pi/180);

start_ang = 0;
step_ang = 1;
stop_ang = 360;

angular_vel
angular_acc
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1*0.0816;

1%0.4564;
1%0.5380;
start_ang = 0;
step_ang =1;
stop_ang = 180;

angular_vel =0 * ones(N+1,1);
Znqular_acc = 0 * ones(N+1.1)!
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55
20*pi/180;

40%pi/180;
el

atan(tan(phi)*cos(psi));
Fn*cos (phin)*cos (psid;
Ng*pc_g/pi;

>> omega_g = omega_w*Nw/Ng;

>> T_g = Ft_g*dp_g/2

Tg9 =

3.1709e+03
>> ki = T_g*omega_g/1000000
K =

0.0012

>>
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»> dlz = E54pi/180;
5> D2z = 1.75;
>> D3x =
> 101 = [cos(dlz)6 -sin(d12), 0, 0; sin(dlz), cos(dlz), 0, 0;..
> Ti2 L [i 0,0, 0; 0, 1, 0, 0; 0, 0, 1, D2z; 0, 0, 0, 1];
>> 723 = [1, 0, 0, D3x; 0,'1,'0, 0;'0,°0,"1, 0 0, 0, 0, 1I}
>> T03 = Toi*Ti2#723
T03 =

0.5736  -0.8192 0 1.7207

0.8192  0.5736 0 2.4575

0 0 1.0000  1.7500

0 0 0 1.0000

>>
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11, 12 and 13 are assigned.

11
12
13
p3
P
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>> syms Wl Ul Gl theta s1gma rho t v(t) beta(t) gamma(t) real;
>> F = Wl*exp(i*(theta + beta(t)

vt *exp(i*(sigma + gamma(t) + rho)) .

- Ul*exp(i*(sigma + gamma(t))) - Gl;

>> dF = diff(F)

dF =

exp(rho*i + sigma*i + gamma(t)*i)*diff(V(t), ©
wl*exp(theta*i + beta(t)*i)*diff(beta(t), t)*i
Ul*exp(sigma*i + gamma(t)*i)¥*diff(a. amma(t), t)*i

expCrhom 1 sigmaty T ganmatt) 1)y (ty di F(ganmaCt), ©*i
>> ddF = diff(F, 2

ddF =

[N

- exp(rho*i + sigma®i + gamma(t)*i)*diff(v(t), t, t)

- exp(rho*i + sigma*i + gamma(t)*i)*diff(v(t), t)

*dS FRCgammact) Do

- w1*exp(theta<1 + beta(t)*i)*diff(beta(t), t)A2
Ul*exp(sigma*i + gamma(t)*1)*diff(gamma(), €)A2

wl*exp(theta*i + beta(t)*i)*diff(beta(t), t, t) i

Ul*exp(sigma*i + gamma(t) <1)*d|ff(gamma(t) £

exp(rho*i + sigma*i + gamma(t)"1)"v(t)*d1ff(gamma(t). ©A2

exp(rho*i + sigma*i + gamma(t)*i)*v(t)*diff(gamma(t), t, ©)*i

[
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% Here, values for the Watt II mechanism variables W1, V1, Gl,
% UL, L1, Wls, Vls, Gls, Uls and Lls are assigned.

W1 = 0.5%exp(i*90*pi/180);
V1 = 0.75%exp(i*19.3737+pi/180);
Gl = 0.75 + i*0;

UL = 0.75%exp(i*93.2461*pi/180);

L1l = 0.5*exp(-i*60.7834*pi/180);

Wls = 0.5*exp(i*45+pi/180);
Vis = 0.75%exp(i*7.9416*pi/180);

Gls = 0.7244 - i*0.1941;
Uls = 0.75*exp (i*60.2717+pi/180) ;
Lls = 0.5%exp(i*49.3512%pi/180);
5 : =l

3
% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang
stop_ang
§oo

5 =
% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel
angular_acc

-1.5%ones (N,1) ;
-0.25%ones (N, 1) ;
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[0.2612, 0.7274, 0.6346]';
[-8.0151. 0.9879, 0.1552]";
a0;

al;
[0.1793, 0.9837, 0.0172]"';
[-0.1761, 0.2162, 0.96031;
[-0.2081, 0.1675, 0.82271';
pl;
pl;

start_ang
step_ang
stop_ang

angular_vel
angular_acc
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% Here, values for the geared 5-bar mechanism variables wl, v1
%G1, U1, L1 and S1 are assigned. The link force Fpl, gear

% ratio, gravity "g", center of mass vectors R, R2, R3 and R4
% and Tink massés are specified here aiso.

% only negative gear ratio values should be specified.

% Available units are the following:
% 'SI' (Metric) : Length [meter], Mass [kg] and Force [N]
% 'Us' (English): Length [inch], Mass [1bm] and Force [1bf]

unit_select = 'sI';

Wl = 0.5%exp( Pi/180) ;

vi 75*exp(\”32 7304%pi/180);
Gl = 0.75 + 1%0:

UL = 0.75%exp(i*45+pi/180) ;

L1 = 0.5%exp(1%74.1400%pi/180) ;
S1 = 0.75%exp(i*149.9847%pi/180);
ratio = -2;
r 1 = [-2500,-3000] ;
= -9.81;
R1 = 0 + i*0.0831;
R2 = 0.2558_+ 1*0.295
R3 = -0.3247 + 1¥0.187
R4 = 0.0356 + 1*0.0356;

= 22.54; m2 = 29.785; m3 = 12.075; m4 = 75.67;

% Number of teeth of the driving gear
Na 20;

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang =
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exp(i*90*pi/180) ;
1.3%exp(i*19. 3737+pi/180);
1.5%exp(i*93. Z451*g1/180):

exp(i*60.7834%pi/180) ;
Wls = exp(i*45%*pi/180);
Vls = *exp(1"7 9416*p1/180),
Gls = 4 89 *0.3882
Uls = 1. 5*exp(1*60 2717"p1/150),
Lls = exp(i*49.3512*pi/180);
start_ang
step_ang -
stop_ang -90;
angular_vel = -1.5 * ones(N+1,1);

angular_acc -0.25 * ones(N+1,1);
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unit_select = 'SI';

Wl = 0.5%exp(i*90*pi/180) ;

VI 2 0:75eexp(i 19" 3737401 /180);
GL = 075 + 1%0;

Ul = 0.75%exp(i%93.2461%pi/180);
L1 = 0.5%exp(i*60.7834%pi/180);

wls = 0.5*exp(i*45+pi/180);

Vis = 0.75%exp(i*7.9416%p1/180);
Gls = 0.7244 - 1*0.1941;

Uls = 0.75%exp(i*60.2717*pi/180);

L1s = 0.5%exp(i*49.3512%p1/180);
Fpl = [2500,3000];

Fpls 1500, 2000];
-9.81;
i#0.25;
0.3172"+ #0.2284;
0.1037 + 1#0.3675}
0.3562 + 1%0.161;

RS = 01860 + 1+0.3257;

ml = 8.05;

m2 = 29.785;

m3 - 33.8

m = 29.78%;

ms = 12,075}

start_ang

step_ang

stop_ang
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% Here, values for the planar 4-bar mechanism variables wl, vi,
% Gl, U1 and L1 are assigned. The coupler force Fpl, gravity

% "g", center of mass vectors RL, R2 and R3 and 1ink masses are
% specified here also.

0.5%exp(i*90%pi/180) ;

0.75%exp(i¥19.3737%p1/180);
0.75 + %0
0.75%exp(1¥93.2461%pi/180) ;
0.5%exp(~1*60.7834%pi/180 ;

Fpl = [0, 4500]; g = -9.81;

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang = 0;
step_ang ;
st

Hs
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. 5*exp(i¥90*pi/180) ;
.75%exp(i*19.3737*pi/180);

.75,
175%exp(i*93.2461%p1/180) ;
I5*exp(1*60.7834%p1/180);

uls = 0.5%exp(i*454p1/180);

V1s = 0.75%exp(i*7.9416*pi/180);
Gls = 0.7244 - 1*0.1941;

ULs = 0.75%exp(i*60.2717*p1/180);
LTS 2 0. 5%exp(i+49.3512%p5 /480)

Fpl = [-500, -500]; Fpls = [-1000, 0];
TbO = 0; TbhsO = 0; g = -9.81;

= 8.05; 11 = 0.805;
29 785. 12 = 5.635;
13 = 5 635;
9.785' 4 = 635
= 12.075; 15 = 2. 415,

start_ang
step_ang
stop_ang

angular_vel

= -1 * ones(N+1,1);
angular_acc

-0.25 * ones(N+1,1);
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. 5*exp(i%*90*pi/180) ;
.75%exp(i*19.3737*pi/180);

.75
.75%exp(i*93.2461%pi/180);
.5*exp(i*60.7834*pi/180);

Vis = 1rexp(iv17, 1417+p1/180);
Gls = 0.2159 + 1%0.2588;

ULs = exp(i*76, 4544* /180

U1e 2 6 B%exp(i63. 7004%p1 /i80) ;

Fpls = [0, -1000];
ThO = 0; TbsO = 0; g = -9.81;

start_ang
step_ang
stop_ang

angular_vel

= -1 * ones(N+1,1);
angular_acc

-0.25 * ones(N+1,1);
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>> 0, 0, 01';
>> 0, 1, 01';

>> [0.25, 1.3536, -0.25

>> 0, 0, 11;

>> u0(1); udy = u0(2); udz = ud(3)
>> 0.7071, 0, 0.7071]"';

>> theta = 30*pi/180;

>> beta = -15*pi/180;

>> C = cos(theta);

>> § = sin(theta);

>»>V=1-¢C;

>> R theta u0 =

V*u0x~2 + C, V*uOx*uly - S*ulz, V*uOx*ulz + S*uly
vu0x*uly + S*ulz, V*u0y2 + C, V*uly*u0z - S*u0x
V*u0x*udz - S*uly, V+udy*udz + S*udx, V+u0z*2 + Cl;
>> u = R_theta u0*ul

w -
0.6124
0.3535
0.7071
>> p = R_theta u0*(pl - p0) + po0
P =
-0.5000
0.8660
0
>> g prime = R theta u0*(gl - p0) + pO;
>> cos (beta) ;
>> sin(beta)
>> 1-c;
>> ux = u(l); uy = u(2); uz = u(3)
>> R beta u .
VHux"2 , Veuxtuy - S*uz, Vuxtuz + Stuy

V*ux*uy + S*uz, V¥uy’2 + C, VFuy*uz - S*ux
Vtux*uz - S*uy, Veuy*uz + S*ux, Veuz"2 + C

>> g = R beta u*(q prime - p) + p
o =
-0.3599
1.2357
-0.3062

>>
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unit_select = 'SI';

Wl = 1.3575*%exp(-1*64.4543*pi/180);
VI = 0.9726%exp(i*57.2740%p1/180)}
Gl = 0.9207 - i%2.2989;

ul 9019*exp( 84.2513*;1/180).
L1 = 0.6120%exp(~i*143.6057*pi/180) ;
Vls = 0.5815*exp(~i*125.7782*pi/180);
Gls = -3.3894 + 1%2.2487;

Uls = 2.9955%exp E— i30T i/180);
L1s = 2.2217*exp(-i*5%pi/180);

Fpls = [0, -40];

g = -9.81}
RL - 0.2927 - §%0.6124;
R2 = 0.0504 +
R3 = 0.0953 +
R4 = 0.4979 -
RS = 1.1107 -
nl = 4;

nz =8

n3 =4

ma

ms = 4
start_ang
step_ang

stop_ang
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unit_select = 'SI';

wl = 0.2013*exp(-i*157.8291*pi/180);
= 01583 exp(;i130; 1257';:1/130),

-0.0876 - 1*0.41

2 0 45k Cenpti 4133, 0953%pi /180 ;

L1 = 0.27*exp(i1*4.7572*pi/180) ;

Fpl = [0, 4500];
9.81

g =-9.81;
Rl = -0.0932 - *0.0380;
R2 = 0.0955 + i*0.0159;
R3 = -0.1180 + %0.1261;
ml = 8;

m2 - 40;

m3 = 12;

start_ang = 0;
step_ang 1
stop_ang ;

angular_vel
angular_acc

oo 8°°
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upright
reclined position

position

~20.981°
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.5*exp(i*90*pi/180)
7s~e5p(1-19p3737~p1‘ /180);

.75*ex (1*93,2461*pi/180) ;
5"exp(1*60 7834%*pi/180);

Fpl = [0, 0];
Z0:

m3 = 12.075;

13 = 2.415;
start_ang 0;
step_ang 1;
stop_ang 360;

1 * ones(N+1,1);

angular_vel
0 * ones(N+1,1);

angular_acc
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p1=(0.0)
P, = (0.7350,-0.3675)
p; = (1.1025, -0.3675)
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>> rot_p
>> rot_r
>> rot_c
>> omega_c = 35;

>> omega_p = omega_c*rot_p/rot_c

-3;

omega_p =
105
>> omega_r = omega_p*rot_r/rot_p
omega_r =
52.5000

>>
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= [0, 0, -0.4023]'
[0.3356, 1 0708. -0.4023]";

[1,’-2.3885, 01';
[1, -2.3885; 0.731";

=h

= [0, -1, 01';
start_ang
step_ang
stop_ang

angular_vel =0 * ones(N+1,1);
angular_acc = 0 * ones(N+1,1);
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11, 12 and 13 are assigned.

&1

12
13

p3
A
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= 0.5854 - i*1.2248;

1905 + i*1.8923;
21,0184 - 1+1.1813;
z1'-7s1;

Wl + z1 - sl - ul;
21;

Uls = 2.2215 - i*2.0095

Vls = -(0.3400 + i*0. 4718),
Gls = Wl + 21 + Vls - Uls - G1;
L1s = 0;

start_ang = 0;

step_ang = 1;

stop_ang = 40;

angular_vel

0
= 0 * ones(N+1,1);
angular_acc = 0

* ones(N+1,1)
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% Here, the coordinates for the end-effector point p3_3 are
% assigned.

p3_3 = [0, 0, -1;
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Event = ['R','D', 'R,
Beta =_[60,60,60,60,60,60]
i = [25, 25 55 55 0,0];

dTheta = 45*pi/30;
Rbase = 1; (NOTE: this value is not relevant since “Rbase” is not
used in this example)
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% Here, values for the planar 4-bar mechanism variables W1, VI,
% G1, Ul and L1 are assigned.

W1 = 0.5%exp(i*90*pi/180);

V1 = 0.75%exp(i*19.3737+*pi/180);
Gl = 0.75 + i*0;

UL = 0.75*exp(i*93.2461*pi/180);
L1 = 0.5%exp(-i*60.7834*pi/180);

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang = 0;
step_ang = 1;
stop_ang 360

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel = 1.0%ones(N,1);
angular_acc
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20;
i5s
35%pi/180;
25%pi/180;
>> pcn = pc¥cos(psi);
>> Pdn = pi/pen
pdn =

7.6704

>> mn = (1/Pdn)*25.4;
>> m = mn/cos(psi)

m=
4.0425
>> phin = atan(tan(phi)*cos(psi))*180/pi
phin =
20.9057
>> hk = 2/pdn
hk =
0.2607
>> dp = N/(Pdn*cos(psi))
dp =
3.1831

>>
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>> L = 4;
>> J1 = 3;
>> DOF_RRR

DOF_RRR =

= 6%(L - 1) -5%11

1;
_| = 6%(L - 1) - 5%11 - 4%32

>>
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1.75*exp(i*90*pi/180) ;
1. gggexp( 1*22 4860*p1 /180 ;
1.75'exp(1 *64 5895*pi/180) ;
exp(i*6.469%pi/180);

wls = exg(1'45'p 80) ;

Vis = 1gsrexp(ivle. 6249%pi /180) ;
Gls =

Uls = 1 25*exp(1*58 4069*pi/180) ;
Lls = 1.5*exp(i*34.8197*pi/180);
start_ang

step_ang L

stop_ang -55;

angular_vel

0 * ones(N+1,1);
angular_acc

0 * ones(N+1,1);
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Lwl = 0.04;
theta = 45%pi/180;

Ll = 0;

Lvl = 0.06;

F = [-50, 0];

mu = 0.1;

g = -9.81;

Rl = 0;

R2 = 0.0265 - i*0.0141;

start_ang
step_ang
stop_ang
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B2
B3
cB2
cB3
G2
63
cG2
c63
A2
a3
caz2
CA3
WU
CB2, -
$B2, CI
CB3, -
SB3, CI

WU =

0
0

0
0
0

>>

0816
0598

4564
.3268
.5380

= 90*pi/180;
= 180*pi/180;
= cos(B2); SB2 = sin(B2);
cos (B3); SB3 - sin(B3);
30*pi/180;
- 60*pi/180;
= cos(G2); SG2 = sin(G2);
= cos(G3); SG3 = sin(G3);
-5*pi/180;
10*pi/180;
cos(A2); SA2 = sin(A2);
cos (A3); SA3 = sin(A3);
= inv([1, 0, 1, 0, -1, O
0, 1, 0, -
SB2, CA2, -SA2, -CG2, SG2
B2, SA2, CA2, -SG2, -CG2
SB3, CA3, -SA3, -CG3, SG3
B3, SA3, CA3, -5G3, -CG3])*[1,
.2670

0,

Ty

0,

iy

o1'
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% Here, values for the follower displacement event sequence, the
% corresponding follower displacement event ranges and the end
%
%
%

value for each follower displacement event are assigned. The
cam rotational speed and base circle radius are assigned here
also.

Event = ['R','D','F','D'];
Beta [120,60,120,60] ;
si = [2,2,0,0];

dTheta = 1.1;
Rbase
P
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Event = ['R','D', 'R,
Beta =_[60,60,60,60,60,60]
i = [25, 25 55 55 0,0];

dTheta = 45*pi/30;
Rbase = 1; (NOTE: this value is not relevant since “Rbase” is not
used in this example)
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>> syms W X t alpha(t) delta(t) rea
>> V' = Wrexp(i*alpha(t)) + X*exp(i*delta(t));
>> dv = diff (V)

av =

X*exp(delta(t)*i) *diff (delta(t), t)*i +
Wrexp (alpha (t) *i) *diff (alpha (t), t)*i

>>
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start_ang = 0;
step_ang 1
stop_ang 720;

angular_vel

100 * ones(N+1,1);
angular_acc

0 * ones(N+1,13;
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% = 7
% Here, values for the slider-crank mechanism variables W1, U1,
% V1 are assigned and variable Gl calculated. Variables LW1,

% LUL and LVl are the scalar lengths of vectors W1, Ul and V1.

il =1
theta = 45%pi/180;
Wl = LWl*exp(i*theta);

LUl = 0;
Ul = i*LU1;
V1 = 1.5;

rho = asin((LUl-LWl*sin(theta))/LV1);
V1 = LVl*exp(i*rho);

Gl =WL+Vl-Ul
B

¥ -
% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang
stop_ang
B

¥
% Here, values for crank link angular velocity and angular
% acceleration are assigned.

10
10

angular_vel
angular_acc
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%

% Here, values for the watt II mechanism variables wl, v1, GL

% ul, L1, wls, Vls, Gls, Uls and L1s are assigned. The coupler
% forces Fpl and Fpls, gravity "g", the center of mass vectors
% R1, R2, R3, R4 and RS and 1ink masses are specified here also.

0.5rexp(i290%01/180)
0.75%exp(i*19.3737+p1/180);
0.75 + 1%0;
0.75%exp(1%93.2461%p1/180) ;
0.5%exp(~1*60.7834*pi/180) }

.S*exp(i*45%pi/180) ;
7stexp(i77. 9416%1/180);
7244 - 1*0.1941;

o
5%

S*exp(1*60 2717*01/180)v
exp(i%49.3512%pi/180) ;

2500, 3000]; Fpls = [-1500, 2000]; g = -9.81;

ml = 8.05; m2 = 29.785; m3 33 81; m4 = 29.785; m5 = 12.07!

%
% Here, values for the start, step and stop displacement angles
% for the crank Tlink are assigned.

start_ang
step_ang
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a0 = [0, 0, -0.4023]'
0.3356, -O 0708 -0.4023]";
[0, 0, 11°'
. -2.3885, 01';
3885, 0.731';
01%;

start_ang
step_ang
stop_ang

angular_vel = 0;
angular_acc = 0;
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1.0%exp(i*90*pi/180);
1. 5"&)(951"32 .7304%p1/180) ;
1 O*exp 1%74.1400*pi/180) ;

T Siexp(i*astpi/180);
S1 = 1.5%exp(i*149. 9847*91/180)v
ratio = -2;

start_ang
step_ang
stop_ang

angular_vel
angular_acc
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%
% Here, values for the Stephenson IIT mechanwsm variables wl,

% V1, 61, Ul, L1, vis, GIs, Uls and L1s are assigned. The

% cuup1er force Fpls, grav1t , the center of mass vectors

; R1, R2, R3, R4 and R5 and {mﬁ masses are specified here also.
%

%

%

Available units are the following:
'sI' (Metric) : Length [meter], Mass [kg] and Force [N
'us' (english): Length [inch], Mass [Ibm] and Force [1bf]

unit_select = 'SI';

1.3575%exp(-i*64.4543*pi/180);
0.9726%exp(i*57.2740%pi/180) ;
0.9207 - 1%2.2989;
1.9019*exp(i*84 L2513 pi/180);
0.6120%exp(-i*143. 6057*p1/180);

0,815 +exp (<1125, 77824p1/180);
-3.3894 + 12,248
2.9955%exp(-1+42.1315%pi/180) ;
2.2217%exp(~1*5%pi/180);

Fpls = [0, -40]; g = -9.81;

0.3846 - i*0.3412;
-0.6343 + i*1.0364;
-0.2988 - i*0. 3639
1.1487 + i*0.0597;

~0.2384 - 1%0.3618;

ml=4; m2 =8; m3 =4; md = 12; mS = 4

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang

St
%-
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1.75*exp(i*90*pi/180) ;

L 75rexp(;i%22. 4860%pi /180) ;
.866 - 1*0.5

: 7S*exp(1*64 5895*pi/180) ;
exp(i*¥6.469%pi/180);

start_ang
step_ang
stop_ang

ones(N+1,1);

angular_vel
ones(N+1,1);

angular_acc
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11 and 12 are assigned.

11
12
p3
5o

0.5;
0.5;
(o

3

0l;
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Here, values for the Stephenson III mechanism variables wi,
vi, 61, ul, L1, wls, Vls, Gls, Uls and Lls are assigned. The
coupler forces Fpl and Fpls and follower torques Tbh0 and ThOs
gravity "g", the center of mass vectors R1, R3, R7, R9 and
R13, link masses and Tink mass moments of inertia are

speci fied here also.

Available units are the following:
'SI' (Metric) : Length [meter], Mass [kg] and Force [N]
'us' (English): Length [inch], Mass [1bm] and Force [1bf]

323033V R RN

unit_select = 'SI';

0.5*exp(i*90*pi/180) ;
0. 75*6)(9(1*19 3737*91/180%

0. 7S*exp(1 93.2461%pi/180);
0.5%exp(i%60.7834%pi/180) ;

vls = Lrexp(ie17. 14174pi/180);
Gls = 0.2159 + 1%0.2588

UTS = T¢exp(i+76,4844+p1/180);
L1s = 0.5%exp(i*63.7091%pi/180);

Fpls = [-1000, 0]; ThO = 0; ThOs = 0; g = -9.81;

Rl =0 - i¥0.25; R3 = -0.3172 - i*0.2284;
0. 0212 it 3744 R8 = -0. 3923 “ito. 2477;
0.1169 - 1%0.4862;

+ Wl; R4 = R3 + VI; RS = R3 + L1; R6 = R7 + UL;
8 + Vls; R10 = R8 + L1s; R1l = R12 + Uls;
5

= 29.785; I2 = 5.635;
= 29.785; 14 = 5.635;

%
% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang =
step_ang =

% Here, values for crank Tink angular velocity and angular
% acceleration are assigned.

angular_vel
angul
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unit_select = 'SI';

= 0.5*exp(i*90%pi/180) ;

0:75*%exp(i+19.3737+5i/180);
0.75%exp(i*93.2461%*pi/180);
= 0.5%exp(i*60.7834*pi/180) ;

0. 5*exp(i*45*pi/180) ;
0.75%exp({*7. 9416*p1/180),
0.7244 - *0.194

0 75 exp (i +0 2317 p1 /180
0. S*exp(i+49. 3512+p1/180)

Fpl = [-500, -500]; Fpls = [-1000, 0];
ThO = 0; ThsO = 0; g = -9.81;

-1*0.25;

-0.3172 - i*0.2284;
-0.1037 - i*0.3675;
-0.3562 - i*0.161;
-0.1860 - 1*0.3257;

8.05; Il 0.805;
5.63'

29.785; 14 = 5.635;
12:075; 15 = 2.415;

start_ang
step_ang
stop_ang

angular_vel
angular_acc
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27 theta - pi/6;
> omega,

>> dp

2 P chetardos2

s =
6.5450
>> vrack = omega*dp/2
vrack =
87.5000

>>
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>> o, 0]';

>> [0.292, 0.734]';

>> [0.299, 1.4611';

>> p2 - pl;

>> p3 - pl;

>> -51.7124*pi/180;

>> -84.9734*pi/180;

>> CA2 = cos(A2); SA2 = sin(A2);
>> CA3 = cos(A3); SA3 = sin(a3);
>> Ul =[0.5808, -1.8615]';

>> S1 = [-1.5053, 1.3400]';

>> S1U1 = -(S1 + Ul);

>> b0 = [S1U1(1,1), $1U1(2,1), 1]'

>> b02 =([1 0 0;0 1 0;0 0 1]*...
inv([CA2 -SA2 P21(1,1);SA2 CA2 P21(2,1);0 0 11))*b0

bo2 =
0.5587
0.3648
1.0000
>> b03 =([1 0 0;0 1 0;0 0 1]*...
inv([CA3 -SA3 P31(1,1);SA3 CA3 P31(2,1);0 0 1]))*Db0
b03 =
0.9907
0.5408
1.0000
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gripper closed
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Here, values for the watt II mechanism variables wl, v1, GI,
ul, L1, wls, Vls, Gls, Uls and L1s are assigned. The coupler
forces Fpl and Fpls and follower torques Th0 and ThOs, gravity
"g", the center of mass vectors R1, R3, R7, R9 and R13, link
m?sses and Tink mass moments of inertia are specified here
also.

Available units are the following:
'SI' (Metric) : Length [meter], Mass [kg] and Force [N]
'us' (English): Length [inch], Mass [Tbm] and Force [1bf]

32303 RR RN

unit_select = 'SI';

= 0.5%exp(i*90*pi/180);
0.75%exp(i*19.3737%p1/180); Gl = 0.75 + i*0;
0.75%exp(i*93,2461*pi/180) ;

= 0.5%exp(i*60.7834%p1/180);

0. S*exp(1*45*p1/180

0.75%exp(i*7. 9416"[)1/180) Gls = 0.7244 - i%0.1941;
0.75*exp(i*60. 2717‘91/180)
0.5%*exp(i*49.3512%pi/180);

Fpl = [-500, -500]; ThO = 0;
Fpls = [-1000, 0]; TbhOs = 0; g = -9.81;

23172 - i*0.2284;

1+ wl; R4 = R3 + V1; RS = R3 + L1; R6 = R7 + UL;
7 + wls; R10 = RO + V1s; R11l = R9 + L1ls; R12 = R13 + Uls;

0.805; m2 = 29.785; I2 = 5.635; m3 = 33.81;
29.785; 14 = 5.635; m5 12 075 I5 = 2.41!

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang =
step_ang = -1;

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel = -1.5;
1 2
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5;
[0, 0, 0];
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2.058 - i%0.8054;
-0.1324 + i*0.1191;
0.5808 - i*1.861!
-1.5053 + i¥1.34
z1 - s1;

Wl + z1 - s1 - ul;

L1 = 21;

start_ang = 0;
step_ang = 1;
stop_ang = 38;

angular_vel

3
= 0 * ones(N+1,1);
angular_acc = 0

* ones(N+1,1);
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% Here, values for the geared 5-bar mechanism variables wil, Vl
% Gl, UL, L1 and S1 are assigned. Only negative gear ratio
% values’should be specified.

0.5%exp(i*90%pi/180) ;
0.75%exp(i732. 7304*§1/150),

45*p
xp(1*74. 1400’“ i7180);
5;exp(1 *149. 9847"‘|‘H/180) H

% Here, values for the start, step and stop d1$p13cement ang]es
% for the crank link are assigned.

start_ang = 0;
step_ang
stop_ang
%

%
% Here, values for crank Tink angular velocity and angular
% acceleration are assigned.

angu'lar vel =1;
an Y
%=
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>> L - 8;
>> J1 = 10;
>> 32 = 0;
>> DOF_Planar = 3*(L - 1) - 2*J1 - J2
DOF_Planar =
1
>> L
>> J1
>> 32
>> J3 = 3;
>> 4 = 0;
>> J5 = 0;
>> DOF_Spatial = 6*(L - 1) - 5*J1 - 4*J2 - 3%J3 - 2%J4

DOF_Spatial =

>>

2

J5
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% Here, values for the Stephenson III mechanism variables W1,
% V1, Gl, U1, L1, Vis, Gls, Uls and Lls are assigned.

Wl = 0.5*exp(i*90*pi/180) ;

V1 = 0.75*exp(i*19.3737+pi/180);
Gl = 0.75 + i*0;

Ul = 0.75*exp(i*93.2461*pi/180);
L1 = 0.5*exp(-i*60.7834*pi/180);
Vis 1*exp(i*17.1417*pi/180) ;
Gls = 0.2159 + i*0.2588;

Uls = 1l*exp(i*76.4844*pi/180);

0.5%exp (i*63.7091*pi/180) ;

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang
stop_ang

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel = -l*ones(N,1);
angular_acc -0.25*ones (N, 1) ;
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= 0.2013*exp(-i*157.8291%pi/180);
.1583*exp(~i*150.1267*pi/180) ;
0.0876 -1*0.4071;
+3455%exp(i*133.0953%p1 /180) ;
L27%exp(i*4.7572%pi/180);

Fpl = [0, 4500];
g - -9.81;

0.0932 -i*0.038;
L0955 + 1*0.0159;
.118+ *0.1261;

8;
40;
12;

=
&
W

start_ang = 0;
step_ang
stop_ang
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values for the watt II mechanism variables wl, V1, Gl1,
Uls and L1s are assigned. The coupler

Here,
ul, L1, wis, vls, Gls,
forces Fpl and Fpls, gravity "g", the center of mass vectors

R1, R2, R3, R4 and R5 and 1ink masses are specified here also.

Available units are the following:
)

(Metric)

'us'

unit_select =

(English):

: Length [meter], Mass [kg] and Force [N]
Length [inch], mass [Tbm] and Force [1bf]

LSTYy

0.5

5*exp(i*90%pi/180) ;

0.75%exp(i+19.3737%p1/180);
0.75 + 1%0;

0.75%exp(1¥93,2461%pi /180) ;
0.5%exp(i*60. 7834*pi /180) ;

Wls = 0.5%exp(i*45%pi/180);
vls = 0. 75*exp(1*7 9416*91/180),
Gls = 0.7244 *0.1941
Uls = 0.75%exp(i*60. 2717% pi/180);
Lls = 0.5%e; xp(1“49 3512"p1/180)
1 = [2500, 3000]; Fpls = [-1500, 2000]; g = -9.81;
=0 + i%0.25;
0.3172 + i*0.2284;
0.1037 + *0.3675;
0.3562 + i*0.161;
0:1860 + 1*0.3257;
ml = 8.05; m2 29.785; m5 = 12.07'

29.785; m3 = 33.81; m4

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang

st
%-
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start_ang 10;
step_ang -1;
stop_ang w33

angular_vel
angular_acc

0 * ones(N+1,1);
* ones(N+1,1)}
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= 1.0*exp(i*90*pi/180);
1.5%exp(i*32.7304*pi/180);
1. 0"'exp(1*74 1400*[:1/180),

1. s*exp?*u* pi/180);
S*exp(i*149 9847*p1/180),
ratio = 2;

start_ang
step_ang
stop_ang

angular_vel =1 * ones(N+1,1);
angular_acc = 0.1 * ones(N+1,1);
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.5*exp(i*90*pi/180);
75*e§p(1 197 3737%1 /180);

.75*ex (i*93.2461%*pi/180);
5*exp%1*60 7834'9?/180)v

Wls = 0.5% exp(‘l"45*g1/180),

Vis = 0:7s%exp(i+7.9416%1/180);
Gls = 0.7244 -

uls = 0. 75*exp(1*50 2717*[)1/180),
L1s = 0.5*exp(i*49.3512%p1/180);

Fpl = [2500, 3000];
Fpls 5.k [ 1500 20001
g = -

1860 + 1*0. 3257

= 8.05;
29 785

33988
- 120075!

start_ang
step_ang
stop_ang
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Event = ['R','D', 'R’ »'D'];
Beta = [60, 60,60, 60, 60 50]

si [25,25,55,55,0,01}

dTheta = 45*pi/30;
Rbase = 1; (NOTE: th1s value is not relevant since “Rbase’

used in this example

" is not
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Vi =
1.5000 + 2.0000i
>> V2 = - i*0.5
v2 =
50001
>> V3 = -1.25 - i*2.25
v3 =

0.2500 - 0.2500i

+ V2 V3 + V4

0.5000 - 1.0000i

>>
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11 and 12 are assigned.

11 = 0.5;
12 = 0.5;
3 =10 0l;

p3
o
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11 and 12 are assigned.

11
12
p3
5o

0.5;
0.5;
(o

3

0l;
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>>

80;
Sin(delta x); Cx = cos(delta x)

= sin(delta_y); Cy = cos(delta_y)

= sin(delta z); Cz = cos(delta z)

Sx*Sy*Cz - Cx*Sz, Cx*Sy*Cz + Sx*Sz
Sx*Sy*Sz + Cx*Cz, Cx*Sy*Sz - Sx*Cz

Sx*Cy, Cx*Cy, Dz

2%p2

.9489
1666
.4836
0000

Dx
Dy
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gl
% Here, values for the RRSS mechanism variables a0, al, ua0,
% ual, b0, bl, pl, gl and rl are assigned. They must all be
% defined as transposed row matrices (as shown).

[-0.0576, 0.2890, -1.4112]';
[0.1452, -2.5421, -1.1800]';
[-0.0003, 0.0814, 0.9967]';
[0.3040, 0.0992, 0.9475]';
[0.0851, 0.4570, 0.5096]';
[1.7725, 5.1566, 0.6499]';
[1.7321, 0, -11';

[1.2321, 0, -1.8660]';
[1.9486, 0, -1.1250]"';

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang = 0;

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

ones (N+1,1) ;
ones (N+1,1) ;

angular_vel
angular_acc
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latch fully released
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Wl =0

.55
theta = 90*pi/180;

Ll = 0;
LV1 = 0.9014;
F=1T0

mu

g = -9.81;
R1 |
R3

ml = 8.05;
11 = 0.805;
m2 = 14.49;
12 = 4.025;
m3 = 30;
start_ang
step_ang
stop_ang

angular_vel
angular_acc

, 013
.5; (NOTE: the file must be run with mu=0.5 and mu=-0.5)

0.25;
0.3750 + 1%0.25;

10 * ones(N+1,1);
0 * ones(N+1,1);
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unit_select = 'SI';

Lwl = 0.04;

theta = 45%pi/180;
L1 = 0;

Lvl = 0.06;

F = [-50, 01;

mu e i)

g = -9.81;

R1 = 0;

R2 = 0.0265 - i*0.0141;
ml = 0.05;

m2 = 0.025;

m3 = 0.075;
start_ang
step_ang

stop_ang
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% Here, values for the follower displacement event sequence, the
% corresponding follower displacement event ranges and the end

% value for each follower displacement event are assigned. The
5
%

cam rotational speed and base circle radius are assigned here
also.

Event = ['R','D','F','D'];
Beta = [120,60,120,60];
si = [2,2,0,0];

dTheta = 1.1;
Rbase
P
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>> pl = [0, 0]';
>> p2 = [0.1815, 0.4882]"';
>> p3 = [0.6647, 1.4078]";
>> P21 = p2 - pl:
>> P31 = p3 - pl;
>> A2s = 15*pi/180;
>> A3s = 5%pi/180;
>> CA2s = cos(A2s); SA2s = sin(A2s);
>> CA3s = cos(A3s); SA3s = sin(A3s);
>> G2s = 10%pi/180;
>> G3s = 30*pi/180;
>> CG2s = cos(G2s); SG2s = sin(G2s);
>> CG3s = cos(G3s); SG3s = sin(G3s);
>> UsVs = inv([CG2s - 1, -SG2s, CA2s - 1, -SA2s
5G2s, CG2s- 1, SA2s, CA2s - 1
CG3s - 1, -SG3s, CA3s - 1, -SA3s
se3s, CG3s - 1, SA3s, CA3s - 1])*[B21(1), P21(2),
UsVs =

2.2215

-2.0095

0.3400

0.4718

P31¢(

1),

P31(2)]"
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Event = ['R','D', 'R,
Beta =_[60,60,60,60,60,
si = [25,2! ,55,0,0];

dTheta = 1; (NOTE: this value is not relevant since “dTheta” is
not used in this example)
Rbase = 100;
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-0.6909, 0]';
3 1339 D]j'

start_ang 10;
step_ang ~1
stop_ang -32;

angular_vel = 0 * ones(N+1,1);
angular_acc = 0 * ones(N+1,1)}
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lower blade
(tool open)
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>> pl = [0, 0]';
>> p2 = [0.292, 0.734]';
>> p3 = [0.299, 1.4611';

>> P21 = norm(p2 - pl);

>> P31 norm(p3 - pl);

>> A2 = -51.7124*pi/180;

>> A3 = -84.9734*pi/180;

>> D2 = atan2(p2(2,1), p2(1,1));

>> D3 = atan2(p3(2,1), p3(1,1));

>> pole pl2 = - (P21l*exp(i*D2))/(exp(i*A2) - 1)

pole pl2 =

0.9033 + 0.06574
>> pole_pl3 = -(P31l*exp(i*D3))/(exp(i*A3) - 1)
pole pl3 =

0.9471 + 0.5673i

>> pole p23 = P21*exp(i*D2) - (P31*exp(i*D3) - P21*exp(i*D2))/...

(exp(i*(A3-A2)) - 1)
pole p23 =

1.5125 + 1.0858i






OEBPS/Images/003x015.jpg
Rolling contact only (no sliding)






OEBPS/Images/008x022.jpg
planet (2) planet (4)

(a)





OEBPS/Images/E03x001.jpg
z






OEBPS/Images/Fig08E_01.jpg
3.1831
>> pd = N/dp
Pd =
6.2832
>> m = (dp/N)*25.4
m=
4.0425
>> hk = 2/pd
hk =
0.3183
>> t = pi/(2¥pd)
t=
0.2500

>>






OEBPS/Images/A004x006.jpg
% Here, values for the geared 5-bar mechanism variables Wi, V1,
%G1, U1, L1 and S1 are assigned. The link force Fpl, gear

% ratio, gravity "g", center of mass vectors R1, R3, R7 and R9,
% 1ink masses and Tink mass moments of inertia are s ecwﬁed
% here also. only negative gear ratio values should

% specified.

Wl = 0.5%exp(i*90%pi/180);

Vi 75%exp(i*32.7304*p1/180) ;
GL = 0.75%exp(i*0*pi/180);
ul 75%exp(i*45%pi/180) ;

Srexp(oi#74. 1400%p1 /180 ;
ST 2 0.75%exp(i+149. 08475p1 /180 ;

Fpl = [0,-1000]; ratio = -2; g = -9.81;

Rl =0 - i%0.0831; R3 = -0.2558 - i%0.2955
0.3247 - i*0.1876; R9 = -0.0356 - 1‘0 0356;

R2 = RLl + Wl; R4 = R3 + V1; RS = R3 + L1; R6 = R7 + S1
= R9 + ULl;

= 22.54; Il 0.505;
78 5 H

% Here, values for the start, step and stop displacement angles
% for the crank 1ink are assigned.

start_ang
step_ang
stop_ang

% Here, values for crank Tink angular velocity and angular
% acceleration are assigned.

angu1ar vel = l¥ones(N,1);
;n 0% ;
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11 and 12 are assigned.

11
12
p3
5o

0.5;
0.5;
(o

3

0l;
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.5*exp(§*90*pi/180)
7s*e§p(1 3207504701 /180> ;

75*exp(1 *45%*pi/180) ;

.5*exp(1%74.1400*pi/180) ;
.75'exp(1 *149. 9847*p1/180) §

=2;
[-2500,-3000] ;

75.67;

start_ang
step_ang
stop_ang
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15;
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(0, -450)N (0, 225N

reclined chair position

W, = 152471067897 W} =0.5946 ¢ 558312°

V, =0.8963 ¢ -i8228°

=0.7742 ¢ ~i75.5803°

U, =0.5946 ¢ 1241688° U] =0.6175 ¢ 703427

" 2 .y = i79.8468° o i45.4161°
kinematic model of chair G =0.0802¢ P G =04545 ¢ 4541
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L, = 0.4482 ¢ ~i82.28° L} =0.3871 ¢ ~i75:5803°
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% Here, the coordinates for the end-effector point p3_3 and the
% lengths 11, 12 and 13 are assigned.

11

12

53

p3
P
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Here, values for the planar 4-bar mechanism variables wl, vi,
GL, Ul and L1 are assigned and/or calculated. Variables Lwl,
Lul and LVl are the scalar lengths of vectors wl, Ul and V.
The slider force "F", dynamic friction coefficient "mu" and
gravity "g" are assigned here also. Lastly, the center of mass
vectors R1 and R3, Tink masses and link mass moments of

% inertia are specified here.

Lwl = 0.5; theta = 90*pi/180;
Wl = Lwi*exp(i*theta);

wi = 0;
Ul = i*lul;

LVl = 0.9014;
rho = asin((LUl-LWl*sin(theta))/LV1);
V1 = LVI*exp(i*rho);

00000

1 =Wl + V1 - Ul;
F=[0, 0]; mu=0.5 g=-9.81;

R1 =0 - i%0.25;
R3 = -0.3750 + 1*0.25;

R2 = RL + Wl; R4 = R3 + V1;

8.05; I1 = 0.805;

% Here, values for the start, step and stop displacement angles
% for the crank Tink are assigned.

start_ang =
step_ang =
stop_ang
%-

Fes s N
% Here, values for crank 1ink angular velocity and angular
% acceleration are assigned.

angular_vel = 10%ones(N,1);
angul 0% ik
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10*exp(-i *90*g1 /180) 5
S*exp(1*8 9743*pi/180;

10;
9*exp( 1%103.4799*pi/180) ;

start_ang
step_ang

0:
1
stop_ang 90;

angular_vel

0;
=0 * ones(N+1,1);
angular_acc - 0

* ones(N+1,1);

(MATLAB File Input for Linkage Configuration 1)

8*exp(- '90*@1/180) 5
8;exp(1*l 485*pi/180) ;

5
8*exp( 1#¥120.0198*pi/180) ;

start_ang = 0;
step_ang = LY
stop_ang = 9

angular_vel

0;
=0 * ones(N+1,1);
angular_acc = 0

* ones(N+1,1);

(MATLARB File Input for Linkage Configuration 1)
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>> Vix = 1.5;

>> viy = 2;
>> V1= Vix + i*vly
V1 =

1.5000 + 2.0000i

>> Magnitude = sqrt (V1x*2 + V1yr2
Magnitude =
2.5000

>> Direction

atan2 (Vly, Vix)*180/pi

irection =

53.1301

>>
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% Here, values for the Watt II mechanism variables W1, V1, G,
% Ul, L1, Wls, Vls, Gls, Uls and Lls are assigned

Wl = 0.5%exp(i*90*pi/180);

V1 = 0.75%exp(i*19.3737+pi/180);
Gl = 0.75 + i*0;

Ul = 0.75*exp(i*93.2461*pi/180);
L1 = 0.5%exp(i*60.7834*pi/180);

.5*exp (i*45%pi/180) ;
75*exp (1*7.9416*pi/180) ;
7244 - i%0.1941;

.75%exp (1*60.2717*pi/180) ;
.5*exp(i*49.3512%pi/180) ;

coocoo

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned

start_ang
step_ang
stop_ang

% Here, values for crank link angular velocity and angular
% acceleration are assigned

angular_vel =
angular_acc
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Wl =1
theta = 45%pi/180;

Ll = 0;
Lvl = 1.5;

start_ang
step_ang

0;
1
stop_ang 7

20;

100 * ones(N+1,1);
0 * ones(N+1,1);

angular_vel
angular_acc
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%
% Here, values for the geared 5-bar mechanism variables wl, V1
% Gl, U1, L1 and S1 are assigned. The link force Fpl, gear

% ratio, gravity "g", center of mass vectors R1l, R2, R3 and R4
% and Tink massbs aré specified here a1so.

% only negative gear ratio values should be specified.

0.5%exp(i%90%pi/180) ;
0.75%exp(i¥32.7304%p1/180) ;
0.75 + i
0.75%exp(i*45%pi/180) ;
0.5%exp(-1*74.1400%pi /180) ;
0.75%ekp(1+14598475p1 /1803 ;

Fpl = [-2500,-3000]; ratio = -2; g = -9.81;
=0 + i%0.0831;

0.2558 + 1*0.2955;

-0.3247 + i*0.1876;

0.0356 + i*0.0356;

ml 22 54; m2 = 29.785; m3 = 12. 075, m4 = 75.67

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang =
step_ang =
St
%

0;
[
2;






OEBPS/Images/P04x008.jpg
.4859-i2.3708
G, =1.25+i0

U,=0.6206-i1.6203
V,=0.3849+i0.7505 Wiper Blade






OEBPS/Images/005x004.jpg





OEBPS/Images/Fig07E_17.jpg
unit_select = 'sI';

= 0.5%exp(i*90*pi/180) ;

8. ;g‘exp(i"lQ. 3737*pi1/180) ;
0.75%exp(i*93.2461%pi/180);
= 0.5%exp(i*60.7834%pi/180) ;

0.5*exp(i*45%pi/180) ;
9:757exp(i+7.9416%1/180);
0.7244 - §%0.1

0175 exp(i+0 217 +p1 /180
0. 5*exp(i+49. 3512+p}1/180)

Fpl = [-500, -500]; Fpls = [-1000, 01;
ThO = 0; ThsO = 0; g = -9.81;

-1*0.25;

-0.3172 - i*0.2284;
-0.1037 - i*0.3675;
-0.3562 - i*0.161;
-0.1860 - i*0.3257;

8.05; Il 0.805;
5.63!

3 oo
12. 075, 15 = 2. 415

start_ang
step_ang
stop_ang

angular_vel
angular_acc
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% Here, values for the geared 5-bar mechanism variables W1, V1,
%G1, U1, L1, S1 and gear ratio are assigned. Only negatiive
% gear ratio values should be specified.

Wl .S*exp (i*90%pi/180) ;

vi .75*exp (i*32.7304*pi/180) ;
Gl <75 + i*0;

ul .75%exp (i*45%pi/180) ;

L1 .5*exp (-1%74.1400%pi/180) ;
s1 .75*%exp (i*149.9847*pi/180) ;
ratio 2

P

5
% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang = 0;
step_ang = 1;
stop_ang 360

% Here, values for crank link angular velocity and angular
% acceleration are assigned

angular_vel = l¥ones(N,1)
angular_ace
ik
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[, 0]"
[0 9083, -0 3824, 0.1695]1';

[s1n(45’n1/180), cos(45*p1/180) 01';
[50-0166 -0.1928, 0.9811]"

start_ang
step_ang 180;
stop_ang = 180;

angular_vel
angular_acc

0 * ones(N+1,1);
0 * ones(N+1,1);
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% Here, values for the RSSR mechanism variables a0, al, ua0, b0,
% bl and ub0 are assigned. They must all be defined as
% transposed row matrices as shown).

a0 = [0, 0, -0.4023]';

al = [0.3356, -0.0708, -0.4023]';
uao = [0, 0, 1]';

[1, -2.3885, 0]';

(1, -2.3885, 0.7300]';

ub0 = [0, o]

% Here, values for the start, step and stop displacement angles
% for the crank link are assigned.

start_ang
step_ang
stop_ang

% Here, values for crank link angular velocity and angular
% acceleration are assigned.

angular_vel = 0;
angular_acc = 0;
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