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			Preface

			The Robot Operating System (ROS) is a globally used robotics middleware that helps developers to program robotic applications and is currently adopted by robotics companies, research centers, and universities to program advanced robots. Mastering ROS for Robotics Programming, Third Edition presents advanced concepts of the ROS framework and is particularly suitable for users who are already familiar with the basic concepts of ROS. However, a brief introduction to the basic ROS concepts is provided in the first chapter in order to help new developers start with the examples in the book. 

			You will be guided through the creation, the modeling and design, of new robots, as well as simulating and interfacing them with the ROS framework. You will use advanced simulation software to use ROS tools that allow robot navigation, manipulation, and sensor elaboration. Finally, you will learn how to handle important concepts such as ROS low-level controllers, nodelets, and plugins. 

			You can work with almost all of the examples of the book using only a standard computer without any special hardware requirements. However, additional hardware components will be used in some chapters of the book to discuss how to use ROS with external sensors, actuators, and I/O boards. 

			The book is organized as follows: after an introduction to the basic concepts of ROS, how to model and simulate a robot is discussed. Gazebo, CoppeliaSim, and the Webots software simulator will be used to control and interact with the modeled robot. These simulators will be used to connect to robots with the MoveIt! and navigation ROS packages. ROS plugins, controllers, and nodelets are then discussed. Finally, the book discusses how to connect MATLAB and Simulink with ROS.

			Who this book is for

			This book is meant to be used by passionate robotics developers or researchers who want to fully exploit the features of ROS. The book is also good for users who are already familiar with typical robotics applications or who want to start learning how to develop in the world of ROS in an advanced manner, learning how to model, build, and control their robots. Basic knowledge of GNU/Linux and C++ programming is strongly recommended if you want to easily comprehend the contents of the book.

			What this book covers

			Chapter 1, Introduction to ROS, gives you an understanding of the core underlying concepts of ROS.

			Chapter 2, Getting Started with ROS Programming, explains how to work with ROS packages.

			Chapter 3, Working with ROS for 3D Modeling, discusses the design of two robots; one is a seven Degrees of Freedom (DOF) manipulator, and the other is a differential drive robot.

			Chapter 4, Simulating Robots Using ROS and Gazebo, discusses the simulation of a seven-DOF arm, differential wheeled robots, and ROS controllers that help control robot joints in Gazebo.

			Chapter 5, Simulating Robots Using ROS, CoppeliaSim and Webots, introduces the CoppeliaSim and Webots simulators, showing how to simulate and control different types of robots.

			Chapter 6, Using the ROS MoveIt! and Navigation Stack On, covers out-of-the-box functionalities such as robot manipulation and autonomous navigation using ROS MoveIt! and the navigation stack.

			Chapter 7, Exploring the Advanced Capabilities of ROS-MoveIt!, discusses the capabilities of MoveIt!, such as collision avoidance, perception using 3D sensors, grasping, picking, and placing. After that, we will see how to interface robotic manipulator hardware with MoveIt!.

			Chapter 8, ROS for Aerial Robots, discusses how to simulate and control aerial robots with ROS, considering the particular case of quadcopters.

			Chapter 9, Interfacing I/O Boards, Sensors, and Actuators to ROS, discusses interfacing some hardware components, such as sensors and actuators, with ROS. We will look at the interfacing of sensors using I/O boards, such as Arduino or Raspberry Pi, with ROS.

			Chapter 10, Programming Vision Sensors Using ROS, OpenCV, and PCL, discusses how to interface various vision sensors with ROS and program them using libraries such as Open Source Computer Vision (OpenCV) and Point Cloud Library (PCL).

			Chapter 11, Building and Interfacing Differential Drive Mobile Robot Hardware in ROS, helps you to build autonomous mobile robot hardware with differential drive configuration and interface it with ROS. This chapter aims to give you an understanding of building a custom mobile robot and interfacing it with ROS.

			Chapter 12, Working with pluginlib, Nodelets, and Gazebo Plugins, shows some of the advanced concepts in ROS, such as ROS pluginlib, nodelets, and Gazebo plugins. We will discuss the functionalities and application of each concept and will practice one example to demonstrate their workings.

			Chapter 13, Writing ROS Controllers and Visualization Plugins, shows how to write and run a basic ROS controller. We will also see how to create a plugin for RViz.

			Chapter 14, Using ROS in MATLAB and Simulink, discusses how to connect MATLAB and Simulink with ROS.

			Chapter 15, ROS for Industrial Robots, helps you understand and install ROS-Industrial packages in ROS. We will see how to develop a MoveIt! IKFast plugin for an industrial robot.

			Chapter 16, Troubleshooting and Best Practices in ROS, discusses how to set up a ROS development environment in Eclipse IDE, best practices in ROS, and troubleshooting tips in ROS.

			To get the most out of this book

			In order to run the examples in this book, you need a standard PC running a Linux OS. Ubuntu 20.04 is the suggested Linux distribution, but Debian 10 is supported as well. The suggested PC configuration requires at least 4 GB of RAM and a modern processor to execute Gazebo simulations and image processing algorithms. You can even work in a virtual environment setup, installing the Linux OS on a virtual machine and using VirtualBox or VMware hosted on a Windows system. The disadvantage of this choice is that more computational power is needed to work with the examples and you could face issues when interfacing ROS with real hardware. The software needed to follow the book is ROS and Noetic Ninjemys. The additional software required is the CoppeliaSim and Webots simulators, Git, MATLAB, and Simulink. Finally, some chapters help you to interface ROS with commercial hardware such as I/O boards (Arduino, ODROID, and Raspberry Pi computers), vision sensors (Intel RealSense), and actuators. These are special hardware components that must be bought to run some examples of the book but are not strictly required to learn ROS. 

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalogue of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			The Code in Action videos for this book can be viewed at https://bit.ly/3iYZnGH.

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781801071024_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "We are using the catkin build system to build ROS packages."

			A block of code is set as follows:

			void number_callback(const std_msgs::Int32::ConstPtr& msg) { 

			   ROS_INFO("Received [%d]",msg->data); 

			} 

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			ssh nvidia@nano_ip_adress

			password is nano  

			Any command-line input or output is written as follows:

			$ mkdir css

			$ cd css

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "To create a new simulation, use the top bar menu and select Wizards | New Project Directory."

			Tips or important notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Mastering ROS for Robotics Programming, Third edition, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	






			
			

		

		
			Section 1 – ROS Programming Essentials

			This section discusses the fundamental concepts of ROS in detail. You will get a clear and crisp idea of ROS concepts after this section. These concepts are required to be understood in order to work on the chapters covering advanced concepts of ROS.

			This section comprises the following chapters:

			
					Chapter 1, Introduction to ROS

					Chapter 2, Getting Started with ROS Programming

			

		

	






			Chapter 1: Introduction to ROS

			The first two chapters of this book will introduce basic ROS concepts and the ROS package management system in order to approach ROS programming. In this first chapter, we will go through ROS concepts such as the ROS master, the ROS nodes, the ROS parameter server, and ROS messages and services, all while discussing what we need to install ROS and how to get started with the ROS master.

			In this chapter, we will cover the following topics:

			
					Why should we learn ROS?

					Understanding the ROS filesystem level.

					Understanding ROS computation graph level.

					ROS community level.

			

			Technical requirements

			To follow this chapter, the only thing you need is a standard computer running Ubuntu 20.04 LTS or a Debian 10 GNU/Linux distribution. 

			Why should we use ROS?

			Robot Operating System (ROS) is a flexible framework that provides various tools and libraries for writing robotic software. It offers several powerful features to help developers in tasks such as message passing, distributed computing, code reusing, and implementing state-of-the-art algorithms for robotic applications. The ROS project was started in 2007 by Morgan Quigley and its development continued at Willow Garage, a robotics research lab for developing hardware and open source software for robots. The goal of ROS was to establish a standard way to program robots while offering off-the-shelf software components that can be easily integrated with custom robotic applications. There are many reasons to choose ROS as a programming framework, and some of them are as follows:

			
					High-end capabilities: ROS comes with ready-to-use functionalities. For example, the Simultaneous Localization and Mapping (SLAM) and Adaptive Monte Carlo Localization (AMCL) packages in ROS can be used for having autonomous navigation in mobile robots, while the MoveIt package can be used for motion planning for robot manipulators. These capabilities can directly be used in our robot software without any hassle. In several cases, these packages are enough for having core robotics tasks on different platforms. Also, these capabilities are highly configurable; we can fine-tune each one using various parameters.

					Tons of tools: The ROS ecosystem is packed with tons of tools for debugging, visualizing, and having a simulation. The tools, such as rqt_gui, RViz, and Gazebo, are some of the strongest open source tools for debugging, visualization, and simulation. A software framework that has this many tools is very rare.

					Support for high-end sensors and actuators: ROS allows us to use different device drivers and the interface packages of various sensors and actuators in robotics. Such high-end sensors include 3D LIDAR, laser scanners, depth sensors, actuators, and more. We can interface these components with ROS without any hassle.

					Inter-platform operability: The ROS message-passing middleware allows communication between different programs. In ROS, this middleware is known as nodes. These nodes can be programmed in any language that has ROS client libraries. We can write high-haveance nodes in C++ or C and other nodes in Python or Java. 

					Modularity: One of the issues that can occur in most standalone robotic applications is that if any of the threads of the main code crash, the entire robot application can stop. In ROS, the situation is different; we are writing different nodes for each process, and if one node crashes, the system can still work. 

					Concurrent resource handling: Handling a hardware resource via more than two processes is always a headache. Imagine that we want to process an image from a camera for face detection and motion detection; we can either write the code as a single entity that can do both, or we can write a single-threaded piece of code for concurrency. If we want to add more than two features to threads, the application behavior will become complex and difficult to debug. But in ROS, we can access devices using ROS topics from the ROS drivers. Any number of ROS nodes can subscribe to the image message from the ROS camera driver, and each node can have different functionalities. This can reduce the complexity in computation and also increase the debugging ability of the entire system.

			

			The ROS community is growing very fast, and there are many users and developers worldwide. Most high-end robotics companies are now porting their software to ROS. This trend is also visible in industrial robotics, in which companies are switching from proprietary robotic applications to ROS.

			Now that we know why it is convenient to study ROS, we can start introducing its core concepts. There are mainly three levels in ROS: the filesystem level, the computation graph level, and the community level. We will briefly have a look at each level.

			Understanding the ROS filesystem level

			ROS is more than a development framework. We can refer to ROS as a meta-OS, since it offers not only tools and libraries but even OS-like functions, such as hardware abstraction, package management, and a developer toolchain. Like a real operating system, ROS files are organized on the hard disk in a particular manner, as depicted in the following diagram: 

			
				
					[image: Figure 1.1 – ROS filesystem level ]
				

			

			Figure 1.1 – ROS filesystem level

			Here are the explanations for each block in the filesystem:

			
					Packages: The ROS packages are a central element of the ROS software. They contain one or more ROS programs (nodes), libraries, configuration files, and so on, which are organized together as a single unit. Packages are the atomic build and release items in the ROS software.

					Package manifest: The package manifest file is inside a package and contains information about the package, author, license, dependencies, compilation flags, and so on. The package.xml file inside the ROS package is the manifest file of that package.

					Metapackages: The term metapackage refers to one or more related packages that can be loosely grouped. In principle, metapackages are virtual packages that don't contain any source code or typical files usually found in packages.

					Metapackages manifest: The metapackage manifest is similar to the package manifest, with the difference being that it might include packages inside it as runtime dependencies and declare an export tag.

					Messages (.msg): We can define a custom message inside the msg folder inside a package (my_package/msg/MyMessageType.msg). The extension of the message file is .msg.

					Services (.srv): The reply and request data types can be defined inside the srv folder inside the package (my_package/srv/MyServiceType.srv).

					Repositories: Most of the ROS packages are maintained using a Version Control System (VCS) such as Git, Subversion (SVN), or Mercurial (hg). A set of files placed on a VCS represents a repository. 

			

			The following screenshot gives you an idea of the files and folders of a package that we are going to create in the upcoming sections:
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			Figure 1.2 – List of files inside the exercise package

			The goal of all the files and directories included in a ROS package will be discussed next.

			ROS packages

			The typical structure of a ROS package is shown here:
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			Figure 1.3 – Structure of a typical C++ ROS package

			Let's discuss the use of each folder:

			
					config: All configuration files that are used in this ROS package are kept in this folder. This folder is created by the user and it is a common practice to name the folder config as this is where we keep the configuration files.

					include/package_name: This folder consists of headers and libraries that we need to use inside the package.

					script: This folder contains executable Python scripts. In the block diagram, we can see two example scripts.

					src: This folder stores the C++ source codes.

					launch: This folder contains the launch files that are used to launch one or more ROS nodes.

					msg: This folder contains custom message definitions.

					srv: This folder contains the services definitions.

					action: This folder contains the action files. We will learn more about these kinds of files in the next chapter.

					package.xml: This is the package manifest file of this package.

					CMakeLists.txt: This file contains the directives to compile the package.

			

			We need to know some commands for creating, modifying, and working with ROS packages. Here are some of the commands we can use to work with ROS packages:

			
					catkin_create_pkg: This command is used to create a new package.

					rospack: This command is used to get information about the package in the filesystem.

					catkin_make: This command is used to build the packages in the workspace.

					rosdep: This command will install the system dependencies required for this package.

			

			To work with packages, ROS provides a bash-like command called rosbash (http://wiki.ros.org/rosbash), which can be used to navigate and manipulate the ROS package. Here are some of the rosbash commands:

			
					roscd: This command is used to change the current directory using a package name, stack name, or a special location. If we give the argument a package name, it will switch to that package folder.

					roscp: This command is used to copy a file from a package.

					rosed: This command is used to edit a file using the vim editor.

					rosrun: This command is used to run an executable inside a package.

			

			The definition of package.xml in a typical package is shown in the following screenshot:
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Figure 1.4 – Structure of package.xml

			The package.xml file also contains information about the compilation. The <build_depend></build_depend> tag includes the packages that are necessary for building the source code of the package. The packages inside the <run_depend></run_depend> tags are necessary for running the package node at runtime.

			ROS metapackages

			Metapackages are specialized packages that require only one file; that is, a package.xml file. 

			Metapackages simply group a set of multiple packages as a single logical package. In the package.xml file, the metapackage contains an export tag, as shown here:

			  <export> 

			    <metapackage/> 

			  </export>  

			Also, in metapackages, there are no <buildtool_depend> dependencies for catkin; there are only <run_depend> dependencies, which are the packages that are grouped inside the metapackage.

			The ROS navigation stack is a good example of somewhere that contains metapackages. If ROS and its navigation package are installed, we can try using the following command by switching to the navigation metapackage folder:

			roscd navigation  

			Open package.xml using your favorite text editor (gedit, in the following case):

			gedit package.xml  

			This is a lengthy file; here is a stripped-down version of it:
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			Figure 1.5 – Structure of the package.xml metapackage

			This file contains several pieces of information about the package, such as a brief description, its dependencies, and the package version.

			ROS messages

			ROS nodes can write or read data of various types. These different types of data are described using a simplified message description language, also called ROS messages. These data type descriptions can be used to generate source code for the appropriate message type in different target languages.

			Even though the ROS framework provides a large set of robotic-specific messages that have already been implemented, developers can define their own message type inside their nodes.

			The message definition can consist of two types: fields and constants. The field is split into field types and field names. The field type is the data type of the transmitting message, while the field name is the name of it.

			Here is an example of message definitions:

			int32 number 

			string name 

			float32 speed 

			Here, the first part is the field type and the second is the field name. The field type is the data type, and the field name can be used to access the value from the message. For example, we can use msg.number to access the value of the number from the message.

			Here is a table showing some of the built-in field types that we can use in our message:
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			ROS provides a set of complex and more structured message files that are designed to cover a specific application's necessity, such as exchanging common geometrical (geometry_msgs) or sensor (sensor_msgs) information. These messages are composed of different primitive types. A special type of ROS message is called a message header. This header can carry information, such as time, frame of reference or frame_id, and sequence number. Using the header, we will get numbered messages and more clarity about which component is sending the current message. The header information is mainly used to send data such as robot joint transforms. Here is the definition of the header:

			uint32 seq 

			time stamp 

			string frame_id 

			The rosmsg command tool can be used to inspect the message header and the field types. The following command helps view the message header of a particular message:

			rosmsg show std_msgs/Header  

			This will give you an output like the preceding example's message header. We will look at the rosmsg command and how to work with custom message definitions later in this chapter.

			The ROS services

			The ROS services are a type of request/response communication between ROS nodes. One node will send a request and wait until it gets a response from the other. 

			Similar to the message definitions when using the .msg file, we must define the service definition in another file called .srv, which must be kept inside the srv subdirectory of the package.

			An example service description format is as follows:

			#Request message type 

			string req

			--- 

			#Response message type 

			string res

			The first section is the message type of the request, which is separated by ---, while the next section contains the message type of the response. In these examples, both Request and Response are strings.

			In the upcoming sections, we will look at how to work with ROS services.

			Understanding the ROS computation graph level

			Computation in ROS is done using a network of ROS nodes. This computation network is called the computation graph. The main concepts in the computation graph are ROS nodes, master, parameter server, messages, topics, services, and bags. Each concept in the graph is contributed to this graph in different ways.

			The ROS communication-related packages, including core client libraries, such as roscpp and rospython, and the implementation of concepts, such as topics, nodes, parameters, and services, are included in a stack called ros_comm (http://wiki.ros.org/ros_comm).

			This stack also consists of tools such as rostopic, rosparam, rosservice, and rosnode to introspect the preceding concepts.

			The ros_comm stack contains the ROS communication middleware packages, and these packages are collectively called the ROS graph layer:
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			Figure 1.6 – Structure of the ROS graph layer

			Some new elements of the ROS graph are as follows:

			
					Nodes: Nodes are the processes that have computation. Each ROS node is written using ROS client libraries. Using client library APIs, we can implement different ROS functionalities, such as the communication methods between nodes, which is particularly useful when the different nodes of our robot must exchange information between them. One of the aims of ROS nodes is to build simple processes rather than a large process with all the desired functionalities. Being simple structures, ROS nodes are easy to debug.

					Master: The ROS master provides the name registration and lookup processes for the rest of the nodes. Nodes will not be able to find each other, exchange messages, or invoke services without a ROS master. In a distributed system, we should run the master on one computer; then, the other remote nodes can find each other by communicating with this master.

					Parameter server: The parameter server allows you to store data in a central location. All the nodes can access and modify these values. The parameter server is part of the ROS master.

					Topics: Each message in ROS is transported using named buses called topics. When a node sends a message through a topic, then we can say the node is publishing a topic. When a node receives a message through a topic, then we can say that the node is subscribing to a topic. The publishing node and subscribing node are not aware of each other's existence. We can even subscribe to a topic that might not have any publisher. In short, the production of information and its consumption are decoupled. Each topic has a unique name, and any node can access this topic and send data through it so long as they have the right message type.

					Logging: ROS provides a logging system for storing data, such as sensor data, which can be difficult to collect but is necessary for developing and testing robot algorithms. These are known as bagfiles. Bagfiles are very useful features when we're working with complex robot mechanisms.

			

			The following graph shows how the nodes communicate with each other using topics: 
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			Figure 1.7 – Graph of communication between nodes using topics

			As you can see, the topics are represented by rectangles, while the nodes are represented by ellipses. The messages and parameters are not included in this graph. These kinds of graphs can be generated using a tool called rqt_graph (http://wiki.ros.org/rqt_graph).

			ROS nodes

			ROS nodes have computations using ROS client libraries such as roscpp and rospy. 

			A robot might contain many nodes; for example, one node processes camera images, one node handles serial data from the robot, one node can be used to compute odometry, and so on.

			Using nodes can make the system fault-tolerant. Even if a node crashes, an entire robot system can still work. Nodes also reduce complexity and increase debug-ability compared to monolithic code because each node is handling only a single function.

			All running nodes should have a name assigned to help us identify them. For example, /camera_node could be the name of a node that is broadcasting camera images.

			There is a rosbash tool for introspecting ROS nodes. The rosnode command can be used to gather information about an ROS node. Here are the usages of rosnode:

			
					rosnode info [node_name]: This will print out information about the node.

					rosnode kill [node_name]: This will kill a running node.

					rosnode list: This will list the running nodes.

					rosnode machine [machine_name]: This will list the nodes that are running on a particular machine or a list of machines.

					rosnode ping: This will check the connectivity of a node.

					rosnode cleanup: This will purge the registration of unreachable nodes.

			

			Next, we will look at some example nodes that use the roscpp client and discuss how ROS nodes that use functionalities such ROS topics, service, messages, and actionlib work.

			ROS messages

			As we discussed earlier, messages are simple data structures that contain field types. ROS messages support standard primitive data types and arrays of primitive types.

			We can access a message definition using the following method. For example, to access std_msgs/msg/String.msg when we are using the roscpp client, we must include std_msgs/String.h for the string message definition.

			In addition to the message data type, ROS uses an MD5 checksum comparison to confirm whether the publisher and subscriber exchange the same message data types.

			ROS has a built-in tool called rosmsg for gathering information about ROS messages. Here are some parameters that are used along with rosmsg:

			
					rosmsg show [message_type]: This shows the message's description.

					rosmsg list: This lists all messages.

					rosmsg md5 [message_type]: This displays md5sum of a message.

					rosmsg package [package_name]: This lists messages in a package.

					rosmsg packages [package_1] [package_2]: This lists all packages that contain messages.

			

			Now, let's take a look at ROS topics.

			ROS topics

			Using topics, the ROS communication is unidirectional. Differently, if we want a direct request/response communication, we need to implement ROS services.

			The ROS nodes communicate with topics using a TCP/IP-based transport known as TCPROS. This method is the default transport method used in ROS. Another type of communication is UDPROS, which has low latency and loose transport and is only suited for teleoperations.

			The ROS topic tool can be used to gather information about ROS topics. Here is the syntax of this command:

			
					rostopic bw /topic: This command will display the bandwidth being used by the given topic.

					rostopic echo /topic: This command will print the content of the given topic in a human-readable format. Users can use the -p option to print data in CSV format.

					rostopic find /message_type: This command will find topics using the given message type.

					rostopic hz /topic: This command will display the publishing rate of the given topic.

					rostopic info /topic: This command will print information about an active topic.

					rostopic list: This command will list all the active topics in the ROS system.

					rostopic pub /topic message_type args: This command can be used to publish a value to a topic with a message type.

					rostopic type /topic: This will display the message type of the given topic.

			

			Now, let's take a look at ROS services.

			ROS services

			In ROS services, one node acts as a ROS server in which the service client can request the service from the server. If the server completes the service routine, it will send the results to the service client. For example, consider a node that can provide the sum of two numbers that has been received as input while implementing this functionality through an ROS service. The other nodes of our system might request the sum of two numbers via this service. In this situation, topics are used to stream continuous data flows.

			The ROS service definition can be accessed by the following method. For example, my_package/srv/Image.srv can be accessed by my_package/Image.

			In ROS services, there is an MD5 checksum that checks in the nodes. If the sum is equal, then only the server responds to the client.

			There are two ROS tools for gathering information about the ROS service. The first tool is rossrv, which is similar to rosmsg, and is used to get information about service types. The next command is rosservice, which is used to list and query the running ROS services.

			Let's explain how to use the rosservice tool to gather information about the running services:

			
					rosservice call /service args: This tool will call the service using the given arguments.

					rosservice find service_type: This command will find the services of the given service type.

					rosservice info /services: This will print information about the given service.

					rosservice list: This command will list the active services running on the system.

					rosservice type /service: This command will print the service type of a given service.

					rosservice uri /service: This tool will print the service's ROSRPC URI.

			

			Now, let's take a look at ROS bagfiles.

			ROS bagfiles

			The rosbag command is used to work with rosbag files. A bag file in ROS is used for storing ROS message data that's streamed by topics. The .bag extension is used to represent a bag file.

			Bag files are created using the rosbag record command, which will subscribe to one or more topics and store the message's data in a file as it's received. This file can play the same topics that they are recorded from, and it can remap the existing topics too.

			Here are the commands for recording and playing back a bag file:

			
					rosbag record [topic_1] [topic_2] -o [bag_name]: This command will record the given topics into the bag file provided in the command. We can also record all topics using the -a argument.

					rosbag play [bag_name]: This will play back the existing bag file.

			

			The full, detailed list of commands can be found by using the following command in a Terminal:

			rosbag play -h

			There is a GUI tool that we can use to handle how bag files are recorded and played back called rqt_bag. To learn more about rqt_bag, go to https://wiki.ros.org/rqt_bag.

			The ROS master

			The ROS master is much like a DNS server, in that it associates unique names and IDs to the ROS elements that are active in our system. When any node starts in the ROS system, it will start looking for the ROS master and register the name of the node in it. So, the ROS master has the details of all the nodes currently running on the ROS system. When any of the node's details change, it will generate a callback and update the node with the latest details. These node details are useful for connecting each node.

			When a node starts publishing to a topic, the node will give the details of the topic, such as its name and data type, to the ROS master. The ROS master will check whether any other nodes are subscribed to the same topic. If any nodes are subscribed to the same topic, the ROS master will share the node details of the publisher to the subscriber node. After getting the node details, these two nodes will be connected. After connecting to the two nodes, the ROS master has no role in controlling them. We might be able to stop either the publisher node or the subscriber node according to our requirements. If we stop any nodes, they will check in with the ROS master once again. This same method is used for the ROS services.

			As we've already stated, the nodes are written using ROS client libraries, such as roscpp and rospy. These clients interact with the ROS master using XML Remote Procedure Call (XMLRPC)-based APIs, which act as the backend of the ROS system APIs.

			The ROS_MASTER_URI environment variable contains the IP and port of the ROS master. Using this variable, ROS nodes can locate the ROS master. If this variable is wrong, communication between the nodes will not take place. When we use ROS in a single system, we can use the IP of a localhost or the name localhost itself. But in a distributed network, in which computation is done on different physical computers, we should define ROS_MASTER_URI properly; only then will the remote nodes be able to find each other and communicate with each other. We only need one master in a distributed system, and it should run on a computer in which all the other computers can ping it properly to ensure that remote ROS nodes can access the master.

			The following diagram shows how the ROS master interacts with publishing and subscribing nodes, with the publisher node publishing a string type topic with a Hello World message and the subscriber node subscribing to this topic:
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			Figure 1.8 – Communication between the ROS master and Hello World publisher and subscriber

			When the publisher node starts advertising the Hello World message in a particular topic, the ROS master gets the details of the topic and the node. It will check whether any node is subscribing to the same topic. If no nodes are subscribing to the same topic at that time, both nodes will remain unconnected. If the publisher and subscriber nodes run at the same time, the ROS master will exchange the details of the publisher to the subscriber, and they will connect and exchange data through ROS topics.

			Using the ROS parameter

			When programming a robot, we might have to define robot parameters to tune our control algorithm, such as the robot controller gains P, I, and D of a standard proportional–integral–derivative controller. When the number of parameters increases, we might need to store them as files. In some situations, these parameters must be shared between two or more programs. In this case, ROS provides a parameter server, which is a shared server in which all the ROS nodes can access parameters from this server. A node can read, write, modify, and delete parameter values from the parameter server.

			We can store these parameters in a file and load them into the server. The server can store a wide variety of data types and even dictionaries. The programmer can also set the scope of the parameter; that is, whether it can be accessed by only this node or all the nodes.

			The parameter server supports the following XMLRPC data types:

			
					32-bit integers

					Booleans

					Strings

					Doubles

					ISO8601 dates

					Lists

					Base64-encoded binary data

			

			We can also store dictionaries on the parameter server. If the number of parameters is high, we can use a YAML file to save them. Here is an example of the YAML file parameter definitions:

			/camera/name : 'nikon'  #string type 

			/camera/fps : 30     #integer   

			/camera/exposure : 1.2  #float  

			/camera/active : true  #boolean 

			The rosparam tool is used to get and set the ROS parameter from the command line. The following are the commands for working with ROS parameters:

			
					rosparam set [parameter_name] [value]: This command will set a value in the given parameter.

					rosparam get [parameter_name]: This command will retrieve a value from the given parameter.

					rosparam load [YAML file]: The ROS parameters can be saved into a YAML file. It can load them into the parameter server using this command.

					rosparam dump [YAML file]: This command will dump the existing ROS parameters into a YAML file.

					rosparam delete [parameter_name]: This command will delete the given parameter.

					rosparam list: This command will list existing parameter names.

			

			These parameters can be changed dynamically when you're executing a node that uses these parameters by using the dyamic_reconfigure package (http://wiki.ros.org/dynamic_reconfigure).

			ROS community level

			These are ROS resources that enable a new community in ROS to exchange software and knowledge. The various resources in these communities are as follows:

			
					Distributions: Similar to the Linux distribution, ROS distributions are a collection of versioned metapackages that we can install. The ROS distributions allow us to easily install and collect ROS software. They also maintain consistent versions across a set of software.

					Repositories: ROS relies on a federated network of code repositories, where different institutions can develop and release their own robot software components.

					The ROS Wiki: The ROS community Wiki is the main forum for documenting information about ROS. Anyone can sign up for an account and contribute their own documentation, provide corrections or updates, write tutorials, and more.

					Bug ticket system: If we find a bug in the existing software or need to add a new feature, we can use this resource.

					Mailing lists: We can use the ROS-users mailing list to ask questions about ROS software and share program problems with the community.

					ROS Answers: This website resource helps us ask questions related to ROS. If we post our doubts on this site, other ROS users can see them and provide solutions.

					Blog: The ROS blog updates with news, photos, and videos related to the ROS community (http://www.ros.org/news).

			

			Now, let's take a look at prerequisites for starting with ROS.

			Prerequisites for starting with ROS

			Before getting started with ROS and trying the code in this book, the following prerequisites should be met:

			
					Ubuntu 20.04 LTS/Debian 10: ROS is officially supported by the Ubuntu and Debian operating systems. We prefer to stick with the LTS version of Ubuntu; that is, Ubuntu 20.04.

					ROS noetic desktop full installation: Install the full desktop installation of ROS. The version we prefer is ROS Noetic, which is the latest stable version. The following link provides the installation instructions for the latest ROS distribution: http://wiki.ros.org/noetic/Installation/Ubuntu. Choose the ros-noetic-desktop-full package from the repository list.

			

			Let's see the different versions of ROS framework.

			ROS distributions

			ROS updates are released with new ROS distributions. A new distribution of ROS is composed of an updated version of its core software and a set of new/updated ROS packages. ROS follows the same release cycle as the Ubuntu Linux distribution: a new version of ROS is released every 6 months. Typically, for each Ubuntu LTS version, an LTS version of ROS is released. Long Term Support (LTS) and means that the released software will be maintained for a long time (5 years in the case of ROS and Ubuntu):
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			Figure 1.9 – List of recent ROS releases

			The tutorials in this book are based on the latest LTS version of ROS, known as ROS Noetic Ninjemys. It represents the thirteenth ROS distribution release. The list of recent ROS distributions is shown in the preceding image.

			Running the ROS master and the ROS parameter server

			Before running any ROS nodes, we should start the ROS master and the ROS parameter server. We can start the ROS master and the ROS parameter server by using a single command called roscore, which will start the following programs:

			
					ROS master

					ROS parameter server

					rosout logging nodes

			

			The rosout node will collect log messages from other ROS nodes and store them in a log file, and will also re-broadcast the collected log message to another topic. The /rosout topic is published by ROS nodes using ROS client libraries such as roscpp and rospy, and this topic is subscribed by the rosout node, which rebroadcasts the message in another topic called /rosout_agg. This topic contains an aggregate stream of log messages. The roscore command should be run as a prerequisite to running any ROS nodes. The following screenshot shows the messages that are printed when we run the roscore command in a Terminal.

			Use the following command to run roscore on a Linux Terminal:

			roscore   

			After running this command, we will see the following text in the Linux Terminal:
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			Figure 1.10 – Terminal messages while running the roscore command

			The following are explanations of each section when executing roscore in a Terminal:

			
					In section 1, we can see that a log file is created inside the ~/.ros/log folder for collecting logs from ROS nodes. This file can be used for debugging purposes.

					In section 2, the command starts a ROS launch file called roscore.xml. When a launch file starts, it automatically starts rosmaster and the ROS parameter server. The roslaunch command is a Python script, which can start rosmaster and the ROS parameter server whenever it tries to execute a launch file. This section shows the address of the ROS parameter server within the port.

					In section 3, we can see parameters such as rosdistro and rosversion being displayed in the Terminal. These parameters are displayed when it executes roscore.xml. We will look at roscore.xml in more detail in the next section.

					In section 4, we can see that the rosmaster node is being started with ROS_MASTER_URI, which we defined earlier as an environment variable.

					In section 5, we can see that the rosout node is being started, which will start subscribing to the /rosout topic and rebroadcasting it to /rosout_agg.

			

			The following is the content of roscore.xml:

			<launch> 

			  <group ns="/"> 

			    <param name="rosversion" command="rosversion roslaunch" />

			    <param name="rosdistro" command="rosversion -d" /> 

			    <node pkg="rosout" type="rosout" name="rosout" respawn="true"/> 

			  </group> 

			</launch> 

			When the roscore command is executed, initially, the command checks the command-line argument for a new port number for rosmaster. If it gets the port number, it will start listening to the new port number; otherwise, it will use the default port. This port number and the roscore.xml launch file will be passed to the roslaunch system. The roslaunch system is implemented in a Python module; it will parse the port number and launch the roscore.xml file.

			In the roscore.xml file, we can see that the ROS parameters and nodes are encapsulated in a group XML tag with a / namespace. The group XML tag indicates that all the nodes inside this tag have the same settings.

			The rosversion and rosdistro parameters store the output of the rosversionroslaunch and rosversion-d commands using the command tag, which is a part of the ROS param tag. The command tag will execute the command mentioned in it and store the output of the command in these two parameters.

			rosmaster and the parameter server are executed inside roslaunch modules via the ROS_MASTER_URI address. This happens inside the roslaunch Python module. ROS_MASTER_URI is a combination of the IP address and port that rosmaster is going to listen to. The port number can be changed according to the given port number in the roscore command.

			Checking the roscore command's output

			Let's check out the ROS topics and ROS parameters that are created after running roscore. The following command will list the active topics in the Terminal:

			rostopic list  

			The list of topics is as follows, as per our discussion of the rosout node's subscribe /rosout topic. This contains all the log messages from the ROS nodes. /rosout_agg will rebroadcast the log messages:

			/rosout

			/rosout_agg  

			The following command lists the parameters that are available when running roscore. The following command is used to list the active ROS parameter:

			rosparam list  

			These parameters are mentioned here; they provide the ROS distribution name, version, the address of the roslaunch server, and run_id, where run_id is a unique ID associated with a particular run of roscore:

			/rosdistro

			/roslaunch/uris/host_robot_virtualbox__51189

			/rosversion

			/run_id

			The list of ROS services that's generated when running roscore can be checked by using the following command:

			rosservice list  

			The list of services that are running is as follows:

			/rosout/get_loggers

			/rosout/set_logger_level  

			These ROS services are generated for each ROS node, and they are used to set the logging levels.

			Summary

			ROS is now a trending software framework among roboticists. Gaining knowledge of ROS will be essential in the upcoming years if you are planning to build your career as a robotics engineer. In this chapter, we have gone through the basics of ROS, mainly to refresh you on the concepts if you have already learned about ROS. We discussed the necessity of learning ROS and how it excels among the current robotics software platforms. We went through the basic concepts, such as the ROS master and the parameter server, and provided an explanation of the working of roscore. In the next chapter, we will introduce ROS package management and discuss some practical examples of the ROS communication system.

			Here are some questions based on what we covered in this chapter.

			Questions

			
					Why should we use ROS?

					What are the basic elements of the ROS framework?

					What are the prerequisites for programming with ROS?

					What is the internal working of roscore?

			

		

	






			Chapter 2: Getting Started with ROS Programming

			After discussing the basics of the ROS master, the parameter server, and roscore, we can now start to create and build a ROS package. In this chapter, we will create different ROS nodes by implementing the ROS communication system. While working with ROS packages, we will also refresh ourselves on the basic concepts of ROS nodes, topics, messages, services, and actionlib.

			In this chapter, we will cover the following topics:

			
					Creating a ROS package

					Adding custom message and service files

					Working with ROS services

					Creating launch files

					Applications of topics, services, and actionlib

			

			Technical requirements

			To follow this chapter, you will need a standard laptop running Ubuntu 20.04 with ROS Noetic installed. The reference code for this chapter can be downloaded from the following GitHub repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git. The necessary code is contained in the Chapter2/mastering_ros_demo_pkg folder.

			You can view this chapter's code in action here: https://bit.ly/3iXO5lW.

			Creating a ROS package

			ROS packages are the basic units of ROS programs. We can create a ROS package, build it, and release it to the public. The current distribution of ROS we are using is Noetic Ninjemys. We are using the catkin build system to build ROS packages. A build system is responsible for generating targets (executable/libraries) from textual source code that can be used by end users. In older distributions, such as Electric and Fuerte, rosbuild was the build system. Because of the various flaws of rosbuild, catkin came into existence. This also allowed us to move the ROS compilation system closer to Cross Platform Make (CMake). This has a lot of advantages, such as porting the package to another OS, such as Windows. If an OS supports CMake and Python, catkin-based packages can be ported to it.

			The first requirement for working with ROS packages is to create a ROS catkin workspace. After installing ROS, we can create and build a catkinworkspace called catkin_ws:

			mkdir -p ~/catkin_ws/src  

			To compile this workspace, we should source the ROS environment to get access to ROS functions:

			source /opt/ros/noetic/setup.bash

			Switch to the source src folder that we created previously:

			cd ~/catkin_ws/src  

			Initialize a new catkin workspace:

			catkin_init_workspace  

			We can build the workspace even if there are no packages. We can use the following command to switch to the workspace folder:

			cd ~/catkin_ws  

			The catkin_make command will build the following workspace:

			catkin_make 

			This command will create a devel and a build directory in your catkin workspace. Different setup files are located inside the devel folder. To add the created ROS workspace to the ROS environment, we should source one of these files. In addition, we can source the setup file of this workspace every time a new bash session starts with the following command:

			echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc 

			source ~/.bashrc  

			After setting the catkin workspace, we can create our own package that has sample nodes to demonstrate the working of ROS topics, messages, services, and actionlib. Note that if you haven't set up the workspace correctly, then you won't be able to use any ROS commands. The catkin_create_pkg command is the most convenient way to create a ROS package. This command is used to create our package, in which we are going to create demos of various ROS concepts.

			Switch to the catkin workspace's src folder and create the package by using the following command:

			catkin_create_pkg package_name [dependency1] [dependency2]  

			Source code folder: All ROS packages, either created from scratch or downloaded from other code repositories, must be placed in the src folder of the ROS workspace; otherwise, they won't be recognized by the ROS system and be compiled.

			Here is the command for creating the sample ROS package:

			catkin_create_pkg mastering_ros_demo_pkg roscpp std_msgs actionlib actionlib_msgs  

			The dependencies in this package are as follows:

			
					roscpp: This is the C++ implementation of ROS. It is a ROS client library that provides APIs to C++ developers to make ROS nodes with ROS topics, services, parameters, and so on. We are including this dependency because we are going to write a ROS C++ node. Any ROS package that uses C++ nodes must add this dependency.

					std_msgs: This package contains basic ROS primitive data types, such as integer, float, string, array, and so on. We can directly use these data types in our nodes without defining a new ROS message.

					actionlib: The actionlib metapackage provides interfaces to create preemptible tasks in ROS nodes. We are creating actionlib-based nodes in this package. So, we should include this package to build the ROS nodes.

					actionlib_msgs: This package contains standard message definitions needed to interact with the action server and action client.

			

			After package creation, additional dependencies can be added manually by editing the CMakeLists.txt and package.xml files. We will get the following message if the package has been successfully created:

			
				
					[image: Figure 2.1 – Terminal messages while creating a ROS package ]
				

			

			Figure 2.1 – Terminal messages while creating a ROS package

			After creating this package, build the package without adding any nodes by using the catkin_make command. This command must be executed from the catkin workspace path. The following command shows you how to build our empty ROS package:

			cd ~/catkin_ws && catkin_make

			After a successful build, we can start adding nodes to the src folder of this package.

			The build folder in the CMake build files mainly contains the executables of the nodes that are placed inside the catkin workspace's src folder. The devel folder contains a Bash script, header files, and executables in different folders that were generated during the build process. We have seen how to create and compile ROS nodes using catkin_make. Let's now discuss how to work with ROS topics.

			Working with ROS topics

			Topics are used as a communication method between ROS nodes, allowing them to share a continuous stream of information that can be received by other nodes. In this section, we will learn how topics work. We are going to create two ROS nodes for publishing a topic and subscribing to it. Navigate to the mastering_ros_demo_pkg folder and join the /src subdirectory for the source code. demo_topic_publisher.cpp and demo_topic_subscriber.cpp are the two sets of code that we are going to discuss.

			Creating ROS nodes

			The first node we are going to discuss is demo_topic_publisher.cpp. This node will publish an integer value on a topic called /numbers. Copy the current code into a new package or use this existing file from this book's code repository.

			Here is the complete code:

			#include "ros/ros.h" 

			#include "std_msgs/Int32.h" 

			#include <iostream> 

			int main(int argc, char **argv) { 

			    ros::init(argc, argv,"demo_topic_publisher"); 

			    ros::NodeHandle node_obj; 

			    ros::Publisher number_publisher =  node_obj.advertise<std_msgs::Int32>("/numbers", 10); 

			    ros::Rate loop_rate(10); 

			    int number_count = 0; 

			    while ( ros::ok() ) { 

			        std_msgs::Int32 msg; 

			        msg.data = number_count; 

			        ROS_INFO("%d",msg.data); 

			        number_publisher.publish(msg); 

			        loop_rate.sleep(); 

			        ++number_count; 

			    } 

			    return 0; 

			} 

			The code starts with the definition of the header files. In particular, ros/ros.h is the main header of ROS. If we want to use the roscpp client APIs in our code, we should include this header. std_msgs/Int32.h is the standard message definition of the integer data type.

			Here, we are sending an integer value through a topic. So, we need a message type to handle the integer data. std_msgs contains the standard message definition of primitive data types, while std_msgs/Int32.h contains the integer message definition. Now, we can initialize a ROS node with a name. It should be noted that the ROS node should be unique:

			ros::init(argc, argv,"demo_topic_publisher"); 

			Next, we need to create a Nodehandle object, which is used to communicate with the ROS system. This line is mandatory for all ROS C++ nodes:

			ros::NodeHandle node_obj; 

			The following line creates a topic publisher and names the topic "/numbers" with a message type of std_msgs::Int32. The second argument is the buffer size. It indicates how many messages are stored in a buffer if the publisher can't publish data fast enough. This number should be set while considering the message publishing rate. If your program publishes faster than the queue size, some messages will be dropped. The lowest accepted number for the queue size is 1, while 0 means an infinite queue:

			ros::Publisher number_publisher = node_obj.advertise<std_msgs::Int32>("/numbers", 10); 

			The following code is used to set the frequency of the main loop of the program and, consequently, the publishing rate in our case:

			ros::Rate loop_rate(10); 

			This is an infinite while loop, and it quits when we press Ctrl + C. The ros::ok() function returns zero when there is an interrupt. This can terminate this while loop:

			while ( ros::ok() ) { 

			The following lines create an integer ROS message, assigning to it an integer value. Here, data is the field name of the msg object:

			std_msgs::Int32 msg; 

			msg.data = number_count; 

			This will print the message data. These lines are used to log the ROS information and publish the preceding message to the ROS network:

			ROS_INFO("%d",msg.data);

			number_publisher.publish(msg); 

			Finally, this line will provide the necessary delay to achieve a frequency of 10 Hz:

			loop_rate.sleep();

			Now that we've discussed the publisher node, we can discuss the subscriber node, which is demo_topic_subscriber.cpp. 

			Here is the definition of the subscriber node:

			#include "ros/ros.h" 

			#include "std_msgs/Int32.h" 

			#include <iostream>

			 

			void number_callback(const std_msgs::Int32::ConstPtr& msg) { 

			   ROS_INFO("Received [%d]",msg->data); 

			} 

			int main(int argc, char **argv) {  

			   ros::init(argc, argv,"demo_topic_subscriber"); 

			   ros::NodeHandle node_obj; 

			   ros::Subscriber number_subscriber = node_obj.subscribe("/numbers",10,number_callback); 

			   ros::spin(); 

			   return 0; 

			} 

			Like before, the code starts with the definition of the header files. Then, we develop the callback function, which will execute whenever a ROS message comes to the /numbers topic. Whenever data reaches this topic, the function will call and extract the value and print it to the console:

			void number_callback(const std_msgs::Int32::ConstPtr& msg) { 

			   ROS_INFO("Received [%d]",msg->data); 

			} 

			This is the definition of the subscriber, and here, we are giving the topic name needed to subscribe, the buffer size, and the callback function. We are also subscribing to the /numbers topic. We looked at the callback function in the preceding section:

			ros::Subscriber number_subscriber = node_obj.subscribe("/numbers",10,number_callback); 

			This is an infinite loop in which the node will wait in this step. This code will fasten the callbacks whenever data reaches the topic and will terminate only when we press Ctrl + C:

			ros::spin(); 

			Now the code is complete. Before we execute it, we need to compile it as discussed in the next section.

			Building the nodes

			We must edit the CMakeLists.txt file in the package to compile and build the source code. Navigate to mastering_ros_demo_pkg to view the existing CMakeLists.txt file. The following code snippet in this file is responsible for building these two nodes:

			include_directories( 

			   include 

			   ${catkin_INCLUDE_DIRS} 

			) 

			#This will create executables of the nodes 

			add_executable(demo_topic_publisher src/demo_topic_publisher.cpp) 

			add_executable(demo_topic_subscriber src/demo_topic_subscriber.cpp) 

			 

			#This will link executables to the appropriate libraries  

			target_link_libraries(demo_topic_publisher ${catkin_LIBRARIES}) 

			target_link_libraries(demo_topic_subscriber ${catkin_LIBRARIES})

			We can add the preceding snippet to create a new CMakeLists.txt file for compiling the two pieces of code.

			The catkin_make command is used to build the package. First, let's switch to a workspace:

			cd ~/catkin_ws  

			Build the ROS workspace, including mastering_ros_demo_package, as follows:

			catkin_make   

			We can either use the preceding command to build the entire workspace or use the -DCATKIN_WHITELIST_PACKAGES option. With this option, it is possible to set one or more packages to compile:

			catkin_make -DCATKIN_WHITELIST_PACKAGES="pkg1,pkg2,..."  

			Note that it is necessary to revert this configuration to compile other packages or the entire workspace. This can be done using the following command:

			catkin_make -DCATKIN_WHITELIST_PACKAGES=""    

			If the building is done, we can execute the nodes. First, start roscore:

			roscore  

			Now, run both commands in two shells. In the running publisher, run the following command:

			rosrun mastering_ros_demo_package demo_topic_publisher   

			In the running subscriber, run the following command:

			rosrun mastering_ros_demo_package demo_topic_subscriber  

			We will see the following output:
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			Figure 2.2 – Running the topic publisher and subscriber

			The following diagram shows how the nodes communicate with each other. We can see that the demo_topic_publisher node publishes the /numbers topic and then subscribes to the demo_topic_subscriber node:
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			Figure 2.3 – Graph showing the communication between the publisher and subscriber nodes

			We can use the rosnode and rostopic tools to debug and understand the working of the two nodes:

			
					rosnode list: This will list the active nodes.

					rosnode info demo_topic_publisher: This will get information about the publisher node.

					rostopic echo /numbers: This will display the value that's being sent through the /numbers topic.

					rostopic type /numbers: This will print the message type of the /numbers topic.

			

			Now that we've learned how to use standard messages to exchange information between ROS nodes, let's learn how to use custom messages and services.

			Adding custom .msg and .srv files

			In this section, we will look at how to create custom messages and service definitions in the current package. The message definitions are stored in a .msg file, while the service definitions are stored in a .srv file. These definitions inform ROS about the type of data and the name of the data to be transmitted from a ROS node. When a custom message is added, ROS will convert the definitions into equivalent C++ codes, which we can include in our nodes.

			We will start with message definitions. Message definitions must be written in the .msg file and must be kept in the msg folder, which is inside the package. We are going to create a message file called demo_msg.msg with the following definition:

			string greeting 

			int32 number 

			So far, we have only worked with standard message definitions. Now, we have created our own definitions, which means we can learn how to use them in our code.

			The first step is to edit the package.xml file of the current package and uncomment the <build_depend>message_generation</build_depend> and <exec_depend>message_runtime</exec_depend> lines.

			Edit the current CMakeLists.txt file and add the message_generation line, as follows:

			find_package(catkin REQUIRED COMPONENTS 

			 roscpp 

			 rospy      

			 message_generation

			) 

			Uncomment the following line and add the custom message file:

			add_message_files( 

			   FILES 

			   demo_msg.msg 

			) 

			## Generate added messages and services with any dependencies listed here 

			generate_messages( 

			   

			    

			) 

			After doing this, we can compile and build the package:

			cd ~/catkin_ws/

			catkin_make  

			To check whether the message has been built properly, we can use the rosmsg command:

			rosmsg show mastering_ros_demo_pkg/demo_msg  

			If the content shown by the command and the definition are the same, then the procedure ran correctly.

			If we want to test the custom message, we can build a publisher and subscriber using the demo_msg_publisher.cpp and demo_msg_subscriber.cpp custom message types, respectively. Navigate to the mastering_ros_demo_pkg folder for these pieces of code.

			We can test the message by adding the following lines of code to CMakeLists.txt:

			add_executable(demo_msg_publisher src/demo_msg_publisher.cpp) 

			add_executable(demo_msg_subscriber src/demo_msg_subscriber.cpp) 

			 

			add_dependencies(demo_msg_publisher mastering_ros_demo_pkg_generate_messages_cpp) 

			add_dependencies(demo_msg_subscriber mastering_ros_demo_pkg_generate_messages_cpp) 

			 

			target_link_libraries(demo_msg_publisher ${catkin_LIBRARIES}) 

			target_link_libraries(demo_msg_subscriber ${catkin_LIBRARIES}) 

			An important difference between this edited CMakeLists.txt file and the older one is the dependency specification to the messages generated in mastering_ros_demo_pkg. This dependency is specified with the add_dependencies instruction. Note that if you forget to include this instruction, the ROS system will start compiling the CPP source code before the message is generated. In this way, a compilation error will be generated since the header files of the custom messages could not be found. Now, we are ready to build the package.

			Let's build the package using catkin_make and test the node by following these steps:

			
					Run roscore:roscore  


					Start the custom message publisher node:rosrun mastering_ros_demo_pkg demo_msg_publisher  


					Start the custom message subscriber node:rosrun mastering_ros_demo_pkg demo_msg_subscriber  


			

			The publisher node publishes a string along with an integer, while the subscriber node subscribes to the topic and prints its values. The output and graph are as follows:
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			Figure 2.4 – Running the publisher and subscriber using custom message definitions

			The topic in which the nodes are communicating is called /demo_msg_topic. Here is the graph view of the two nodes:
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			Figure 2.5 – Graph showing the communication between the message publisher and subscriber

			Next, we can add .srv files to the package. Create a new folder called srv in the current package folder and add a .srv file called demo_srv.srv. The definition of this file is as follows:

			string in 

			--- 

			string out 

			Here, both Request and Response are strings.

			Now, we need to uncomment the following lines in package.xml, as we did for the ROS messages:

			<build_depend>message_generation</build_depend> 

			<exec_depend>message_runtime</exec_depend> 

			Take CMakeLists.txt and add message_runtime to catkin_package():

			catkin_package( 

			   CATKIN_DEPENDS roscpp std_msgs  message_runtime  

			) 

			We need to follow the same procedure for generating services as we did for the ROS message. Apart from that, we need additional sections to be uncommented, as shown here:

			## Generate services in the 'srv' folder 

			add_service_files( 

			   FILES 

			   demo_srv.srv 

			 ) 

			After making these changes, we can build the package using catkin_make. Then, using the following command, we can verify the procedure:

			rossrv show mastering_ros_demo_pkg/demo_srv

			If we see the same content that we defined in the file, we can confirm it is working. The ROS service has been complied and is now available in our ROS workspace. We'll try to use this service in a ROS node in the next section.

			Working with ROS services

			In this section, we are going to create ROS nodes, which can use the service definition that we defined already. The service nodes we are going to create can send a string message as a request to the server; then, the server node will send another message as a response.

			Navigate to mastering_ros_demo_pkg/src and find the demo_service_server.cpp and demo_service_client.cpp nodes.

			demo_service_server.cpp is the server, and its definition is as follows:

			#include "ros/ros.h" 

			#include "mastering_ros_demo_pkg/demo_srv.h" 

			#include <iostream> 

			#include <sstream> 

			using namespace std; 

			 

			bool demo_service_callback(mastering_ros_demo_pkg::demo_srv::Request &req, 

			     mastering_ros_demo_pkg::demo_srv::Response &res) { 

			    ss << "Received Here"; 

			    ROS_INFO("From Client [%s], Server says [%s]",req.in.c_str(),res.out.c_str()); 

			    return true; 

			} 

			 

			int main(int argc, char **argv) { 

			    ros::init(argc, argv, "demo_service_server"); 

			    ros::NodeHandle n; 

			    ros::ServiceServer service = n.advertiseService("demo_service", demo_service_callback); 

			    ROS_INFO("Ready to receive from client."); 

			    ros::spin(); 

			    return 0; 

			} 

			Let's explain this code. First, we include the header file for defining the service that we want to use in the code:

			#include "mastering_ros_demo_pkg/demo_srv.h" 

			Here, we included ros/ros.h, which is a mandatory header for a ROS CPP node. The mastering_ros_demo_pkg/demo_srv.h header is a generated header, which contains our service definition, and we can use this in our code. 

			This is the server callback function that's executed when a request is received on the server. The server can receive the request from clients with a message type of mastering_ros_demo_pkg::demo_srv::Request. It then sends the response with the mastering_ros_demo_pkg::demo_srv::Response message type:

			bool demo_service_callback(mastering_ros_demo_pkg::demo_srv::Request &req, 

			     mastering_ros_demo_pkg::demo_srv::Response &res) 

			{ 

			std::stringstream ss; 

			ss << "Received Here"; 

			res.out = ss.str(); 

			This creates a service called demo_service, and a callback function is executed when a request comes to this service. The callback function is demo_service_callback, which we saw in the preceding section:

			ros::ServiceServer service = n.advertiseService("demo_service", demo_service_callback); 

			Next, let's see how demo_service_client.cpp works. Here is the definition of this code:

			#include "ros/ros.h" 

			#include <iostream> 

			#include "mastering_ros_demo_pkg/demo_srv.h" 

			#include <iostream> 

			#include <sstream> 

			using namespace std; 

			 

			int main(int argc, char **argv) { 

			    ros::init(argc, argv, "demo_service_client"); 

			    ros::NodeHandle n; 

			    ros::Rate loop_rate(10); 

			    ros::ServiceClient client = n.serviceClient<mastering_ros_demo_pkg::demo_srv>("demo_service"); 

			    while (ros::ok()) { 

			        mastering_ros_demo_pkg::demo_srv srv; 

			        ss << "Sending from Here"; 

			        srv.request.in = ss.str(); 

			        if (client.call(srv)) {

			            ROS_INFO("From Client [%s], Server says [%s]",srv.request.in.c_str(),srv.response.out.c_str());  

			        } else { 

			            ROS_ERROR("Failed to call service"); 

			            return 1; 

			        } 

			        ros::spinOnce(); 

			        loop_rate.sleep(); 

			    } 

			    return 0; 

			} 

			This line creates a service client that has a message type of mastering_ros_demo_pkg::demo_srv and communicates with a ROS service named demo_service:

			ros::ServiceClient client = n.serviceClient<mastering_ros_demo_pkg::demo_srv>("demo_service"); 

			mastering_ros_demo_pkg::demo_srv srv; 

			Fill the request instance with a string: 

			ss << "Sending from Here"; 

			srv.request.in = ss.str(); 

			if (client.call(srv))  

			If the response is received, then it will print the request and the response:

			ROS_INFO("From Client [%s], Server says [%s]",srv.request.in.c_str(),srv.response.out.c_str()); 

			Now that we've discussed the two nodes, we can discuss how to build them. The following code is added to CMakeLists.txt to compile and build the two nodes:

			add_executable(demo_service_server src/demo_service_server.cpp) 

			add_executable(demo_service_client src/demo_service_client.cpp) 

			 

			add_dependencies(demo_service_server mastering_ros_demo_pkg_generate_messages_cpp) 

			add_dependencies(demo_service_client mastering_ros_demo_pkg_generate_messages_cpp) 

			 

			target_link_libraries(demo_service_server ${catkin_LIBRARIES}) 

			target_link_libraries(demo_service_client ${catkin_LIBRARIES}) 

			We can execute the following commands to build the code:

			cd ~/catkin_ws

			catkin_make

			To start the nodes, first, execute roscore and use the following commands:

			rosrun mastering_ros_demo_pkg demo_service_server

			rosrun mastering_ros_demo_pkg demo_service_client  

			The output of these commands is shown in the following screenshot:
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			Figure 2.6 – Running the ROS service's client and server nodes

			We can work with rosservice using the rosservice command:

			
					rosservice list: This will list the current ROS services.

					rosservice type /demo_service: This will print the message type of /demo_service.

					rosservice info /demo_service: This will print the information of /demo_service.

					rosservice call /service_name service-args: This will call the service server from the command line.

			

			Another important element of ROS is actions. In the next section, we will learn how to use actionlib in a ROS node to create action/server nodes.

			Working with ROS actionlib

			In ROS services, the user implements a request/reply interaction between two nodes, but if the reply takes too much time or the server has not finished the given work, we have to wait until it completes, which blocks the main application while we wait for the requested action to be terminated. In addition, the calling client can be implemented to monitor the execution of the remote process. In these cases, we should implement our application using actionlib. This is another method in ROS in which we can preempt the running request and start sending another one if the request has not finished on time, as expected. actionlib packages provide a standard way to implement these kinds of preemptive tasks. actionlib is highly used in robot arm navigation and mobile robot navigation. Let's learn how to implement an action server and action client.

			Like ROS services, in actionlib, we must specify the action specification. The action specification is stored inside the action file, and it has an extension of.action. This file must be kept inside the action folder, which is inside the ROS package. The action file has the following parts:

			
					Goal: The action client can send a goal that must be executed by the action server. This is similar to the request in the ROS service. For example, if the joint of a robot needs to be moved from 45 degrees to 90 degrees, the goal here is 90 degrees.

					Feedback: When an action client sends a goal to the action server, it will start executing a callback function. Feedback is simply something that tells us of the progress of the current operation inside the callback function. Using the feedback definition, we can get the current progress. In the preceding case, the robot arm joint must move 90 degrees; in this case, the feedback can be the intermediate value between 45 and 90 degrees that the arm is moving in.

					Result: After completing the goal, the action server will send a final result, which may either be the computational result or an acknowledgment. In the preceding example, if the joint reaches 90 degrees, then it has achieved the goal and the result can be anything indicating that it has done so.

			

			Now, let's discuss a demo action server and action client. The demo action client will send a number as the goal. When an action server receives this goal, it will count from 0 to the goal number with a step size of 1 and with a 1-second delay. If it completes before the given time, it will send the result; otherwise, the task will be preempted by the client. The feedback here is the progress of counting. The action file of this task is as follows and is called Demo_action.action:

			#goal definition 

			int32 count 

			--- 

			#result definition 

			int32 final_count 

			--- 

			#feedback 

			int32 current_number 

			Here, the count value is the goal, in which the server has to count from zero to this number. final_count is the result, which is the final value after a task has been completed, while current_number is the feedback value. This specifies how much progress has been made.

			Navigate to mastering_ros_demo_pkg/src to find the demo_action_server.cpp action server node and the demo_action_client.cpp action client node.

			Creating the ROS action server

			In this section, we will discuss demo_action_server.cpp. The action server receives a goal value, which is a number. When the server gets this goal value, it will start counting from zero to this number. When counting is complete, it will successfully finish the action, while if it is preempted before finishing, the action server will look for another goal value.

			This code is a bit lengthy, so we will only discuss the important code snippets here.

			Let's start with the header files. The first header is the standard action library for implementing an action server node. The second header is generated from the stored action files. It should include accessing our action definition:

			#include <actionlib/server/simple_action_server.h> 

			#include "mastering_ros_demo_pkg/Demo_actionAction.h" 

			Create a simple action server instance with our custom action message. Define a class containing the action server definition:

			class Demo_actionAction {  

			actionlib::SimpleActionServer<mastering_ros_demo_pkg::Demo_actionAction> as; 

			Create a feedback instance for sending feedback during the operation:

			mastering_ros_demo_pkg::Demo_actionFeedback feedback; 

			Create a result instance for sending the final result:

			result:mastering_ros_demo_pkg::Demo_actionResult result; 

			Then, declare an action constructor. By doing this, an action server is created by taking an argument that contains Nodehandle, name, and executeCB, where executeCB is the action callback where all the processing is done:

			Demo_actionAction(std::string name) : 

			  as(nh_, name, boost::bind(&Demo_actionAction::executeCB, this, _1), false), 

			  action_name(name) 

			This line registers a callback when the action is preempted. preemptCB is the callback name that's executed when there is a preempt request from the action client:

			as.registerPreemptCallback(boost::bind(&Demo_actionAction::preemptCB, this)); 

			This is the callback definition that is executed when the action server receives a goal value. It will only execute callback functions after checking whether the action server is currently active or whether it has been preempted already:

			 void executeCB(const mastering_ros_demo_pkg::Demo_actionGoalConstPtr &goal) 

			 { 

			 if(!as.isActive() || as.isPreemptRequested()) return; 

			This loop will execute until the goal value is reached. It will continuously send the current progress as feedback:

			 for(progress = 0 ; progress < goal->count; progress++){ 

			  //Check for ros 

			  if(!ros::ok()){ 

			  if(!as.isActive() || as.isPreemptRequested()){ 

			            return; 

			     }  

			If the current value reaches the goal value, then it publishes the result:

			if(goal->count == progress){ 

			   result.final_count = progress; 

			   as.setSucceeded(result); 

			  } 

			In main(), we must create an instance of Demo_actionAction, which will start the action server:

			 Demo_actionAction demo_action_obj(ros::this_node::getName()); 

			Now that we've looked at the server, let's learn how to create an action client.

			Creating the ROS action client

			In this section, we will discuss how an action client works. demo_action_client.cpp is the action client node that will send the goal value. This consists of a number, which is the goal it must reach. The client is getting the goal value from the command-line arguments. The first command-line argument of the client is the goal value, while the second is the time of completion for this task.

			The goal value will be sent to the server and the client will wait until the given time, in seconds. After waiting, the client will check whether it has completed or not; if it hasn't, the client will preempt the action.

			The client code is a bit lengthy, so we will only discuss the important sections of the code here. In main(), we create an instance of Demo_actionAction, which will start the action server:

			#include <actionlib/client/simple_action_client.h> 

			#include <actionlib/client/terminal_state.h> 

			#include "mastering_ros_demo_pkg/Demo_actionAction.h"

			In the main() function of our ROS node, create an action client instance:

			int main (int argc, char **argv) {

			    ros::init(argc, argv, "demo_action_client");

			    if(argc != 3){

			        ROS_INFO("%d",argc);

			        ROS_WARN("Usage: demo_action_client <goal> <time_to_preempt_in_sec>");

			        return 1;

			    } 

			actionlib::SimpleActionClient<mastering_ros_demo_pkg::Demo_actionAction> ac("demo_action", true); 

			 ac.waitForServer(); 

			Create an instance of a goal and send the goal value from the first command-line argument:

			 mastering_ros_demo_pkg::Demo_actionGoal goal; 

			 goal.count = atoi(argv[1]); 

			 ac.sendGoal(goal); 

			 bool finished_before_timeout = ac.waitForResult(ros::Duration(atoi(argv[2]))); 

			If it is not completed, it will preempt the action:

			 ac.cancelGoal(); 

			Now, let's take a look at building the ROS action server and client.

			Building the ROS action server and client

			After creating these two files in the src folder, we must edit the package.xml and CMakeLists.txt files to build the nodes.

			The package.xml file should contain message generation and runtime packages, similar to the ROS service and messages.

			We must include the Boost library in CMakeLists.txt to build these nodes. Also, we must add the action files that we wrote for this example. We should pass actionlib, actionlib_msgs, and message_generation in find_package():

			find_package(catkin REQUIRED COMPONENTS 

			 roscpp 

			 std_msgs 

			 actionlib  

			 actionlib_msgs 

			 message_generation 

			) 

			We should also add Boost as a system dependency:

			## System dependencies are found with CMake's conventions 

			find_package(Boost REQUIRED COMPONENTS system) 

			## Generate actions in the 'action' folder 

			 add_action_files( 

			  FILES 

			  Demo_action.action 

			 ) 

			Then, we must add actionlib_msgs to generate_messages():

			## Generate added messages and services with any dependencies listed here 

			 generate_messages( 

			  DEPENDENCIES 

			  std_msgs 

			  actionlib_msgs 

			 ) 

			catkin_package( 

			 CATKIN_DEPENDS roscpp rospy std_msgs actionlib actionlib_msgs message_runtime  

			) 

			 

			include_directories( 

			 include 

			 ${catkin_INCLUDE_DIRS} 

			 ${Boost_INCLUDE_DIRS} 

			) 

			Finally, we can define the executable that's generated after the compilation of this node, along with its dependencies and linked libraries:

			##Building action server and action client 

			 

			add_executable(demo_action_server src/demo_action_server.cpp) 

			add_executable(demo_action_client src/demo_action_client.cpp) 

			 

			add_dependencies(demo_action_server mastering_ros_demo_pkg_generate_messages_cpp) 

			add_dependencies(demo_action_client mastering_ros_demo_pkg_generate_messages_cpp) 

			 

			target_link_libraries(demo_action_server ${catkin_LIBRARIES} ) 

			target_link_libraries(demo_action_client ${catkin_LIBRARIES}) 

			After catkin_make, we can run these nodes using the following commands:

			
					Run roscore:roscore  


					Launch the action server node:rosrun mastering_ros_demo_pkg demo_action_server  


					Launch the action client node:rosrun mastering_ros_demo_pkg demo_action_client 10 1  


			

			The output of these processes is as follows:

			
				
					[image: Figure 2.7 – Running the ROS actionlib server and client ]
				

			

			Figure 2.7 – Running the ROS actionlib server and client

			Now, let's look at another important feature of ROS: its launch files.

			Creating launch files

			The launch files in ROS are very useful for launching more than one node. In the preceding examples, we saw a maximum of two ROS nodes, but imagine a scenario in which we have to launch 10 or 20 nodes for a robot. It would be difficult if we had to run each node in a terminal one by one. Instead, we can write all the nodes inside an XML-based file called a launch file and, using a command called roslaunch, we parse this file and launch the nodes.

			The roslaunch command will automatically start the ROS master and the parameter server. So, in essence, there is no need to start the roscore command and any individual nodes; if we launch the file, all operations will be done in a single command. Note that if you start a node using the roslaunch command, terminating or restarting this command will have the same effect as restarting roscore.

			Let's start by creating the launch files. Switch to the package folder and create a new launch file called demo_topic.launch to launch two ROS nodes for publishing and subscribing to an integer value. We will keep the launch files in the launch folder, which is inside the package:

			roscd mastering_ros_demo_pkg

			mkdir launch

			cd launch

			gedit demo_topic.launch

			  

			Paste the following content into the file:

			<?xml version="1.0" ?>

			<launch> 

			 <node name="publisher_node" pkg="mastering_ros_demo_pkg" type="demo_topic_publisher" output="screen"/> 

			 

			 <node name="subscriber_node" pkg="mastering_ros_demo_pkg" type="demo_topic_subscriber" output="screen"/> 

			</launch> 

			Let's discuss what is in the code:

			<?xml version="1.0" ?>

			This line is useful as it allows text editors to recognize this launch file as a markup language file that enables text highlighting. The <launch></launch> tags are the root elements in a launch file. All the definitions will be inside these tags.

			The <node> tag specifies the desired node to launch:

			 <node name="publisher_node" pkg="mastering_ros_demo_pkg" type="demo_topic_publisher" output="screen"/> 

			The name tag inside <node> indicates the name of the node, pkg is the name of the package, and type is the name of the executable we are going to launch.

			After creating the demo_topic.launch launch file, we can launch it using the following command:

			roslaunch mastering_ros_demo_pkg demo_topic.launch  

			Here is the output we will get if the launch is successful:

			
				
					[image: Figure 2.8 – Terminal messages while launching the demo_topic.launch file ]
				

			

			Figure 2.8 – Terminal messages while launching the demo_topic.launch file

			We can check the list of nodes by using the following command:

			rosnode list  

			We can also view the log messages and debug the nodes using a GUI tool called rqt_console:

			rqt_console  

			By doing this, we can see the logs that were generated by the two nodes in this tool, as shown here:

			
				
					[image: Figure 2.9 – Logging using the rqt_console tool ]
				

			

			Figure 2.9 – Logging using the rqt_console tool

			In this chapter, we discussed three elements of ROS: topics, the services, and actionlib. Each of them can be used in a particular situation. Now, let's discuss how to correctly apply these ROS features.

			Applications of topics, services, and actionlib

			Topics, services, and actionlib are used in different scenarios. We know topics are a unidirectional communication method, services are a bidirectional request/reply kind of communication, and that actionlib is a modified form of ROS service in which we can cancel the process that's running on the server as required.

			Here are some of the areas where we use these methods:

			
					Topics: Streaming continuous data flows, such as sensor data; for example, we can stream joypad data to teleoperate a robot, publish robot odometry, and publish a video stream from a camera.

					Services: Executing procedures that terminate quickly; for example, to save the calibration parameters of sensors, to save a map that's been generated by the robot during its navigation, or to load a parameter file.

					actionlib: Executing long and complex actions while managing their feedback; for example, to navigate toward a target or plan a motion path.

			

			The complete source code for this project can be cloned from this book's GitHub repository. The following command will clone the project repository:

			git clone https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git

			cd Mastering-ROS-for-Robotics-Programming-Third-edition/Chapter2/

			After running these commands, you will have a local copy of the source code and also joined the mastering_ros_demo_pkg root directory. You can also start compiling and executing the source code contained in this chapter to test ROS's basic functionalities.

			Summary

			In this chapter, we provided different examples of ROS nodes in which ROS features such as ROS topics, services, and actions were implemented. Such tools are used in every ROS package, both the one already available in the ROS repository and the one created by you. We also discussed how to create and compile ROS packages using custom and standard messages. Usually, different packages use custom messages to handle data generated by their nodes, so it's important to be able to manage custom messages provided by a package. 

			In the next chapter, we will discuss ROS robot modeling using URDF and xacro, and we will design some robot models.

			Here are a few questions based on what we covered in this chapter.

			Questions

			
					Which kinds of communication protocols between nodes are supported by ROS?

					What is the difference between the rosrun and roslaunch commands?

					How do ROS topics and services differ in their operations?

					How do ROS services and actionlib differ in their operations?

			

		

	






			
			

		

		
			Section 2 – ROS Robot Simulation

			In this section, we will deal with how to simulate a robot using ROS and Gazebo, CoppeliaSim, and Webots. We will see how to model a robot URDF, how to simulate these robots, and how to add high-level features such as navigation, manipulation, and perception.

			This section comprises the following chapters:

			
					Chapter 3, Working with ROS for 3D Modeling

					Chapter 4, Simulating Robots Using ROS and Gazebo

					Chapter 5, Simulating Robots Using ROS, CoppeliaSim and Webots

					Chapter 6, Using the ROS MoveIt! and Navigation Stack

					Chapter 7, Exploring the Advanced Capabilities of ROS MoveIt!

					Chapter 8, ROS for Aerial Robots

			

		

	






			Chapter 3: Working with ROS for 3D Modeling

			The first phase of robot manufacturing involves designing and modeling. We can design and model a robot using CAD tools such as Autodesk Fusion 360, SolidWorks, Blender, and many others. One of the main purposes of robot modeling is simulation.

			The robotic simulation tool can check for critical flaws in a robot's design and can confirm that the robot will work before it goes to the manufacturing phase.

			In this chapter, we are going to discuss the design process of two robots. One is a seven-Degrees-of-Freedom (DOF) manipulator, and the other is a differential drive robot. In the upcoming chapters, we will look at simulation, learn how to build real hardware, and discuss interfacing with ROS.

			If you are planning to create a 3D model of a robot and simulate it using ROS, you will need to learn about some ROS packages that can help in robot designing. Creating a model for our robot in ROS is important for various reasons. For example, you can use this model to simulate and control the robot, visualize it, or use ROS tools to get information regarding the robotic structure and its kinematics.

			ROS provides several packages to design and create robot models, such as urdf, kdl_parser, robot_state_publisher, and collada_urdf. These packages will help us to create the 3D robot model description with the exact characteristics of the real hardware.

			In this chapter, we will cover the following topics:

			
					ROS packages for robot modeling

					Understanding robot modeling using the Unified Robot Description Format (URDF)

					Creating the ROS package for the robot description

					Creating our first URDF model

					Explaining the URDF file

					Visualizing the 3D robot model in RViz

					Adding physical and collision properties to a URDF model

					Understanding robot modeling using XML Macros (Xacro) 

					Converting xacro to URDF

					Creating the robot description for a seven-DOF robot manipulator

					Explaining the xacro model of the seven-DOF arm

					Creating a robot model for the differential drive mobile robot

			

			Technical requirements

			To follow the examples in this chapter, you will need a standard laptop running Ubuntu 20.04 with ROS Noetic installed. The reference code for this chapter can be downloaded from the Git repository at https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git. The code is contained inside the Chapter3/mastering_ros_robot_description_pkg/ folder.

			You can view this chapter's code in action here: https://bit.ly/2W5jief. 

			ROS packages for robot modeling

			ROS provides some good packages that can be used to build 3D robot models. In this section, we will discuss some of the important ROS packages that are commonly used to build and model a robot:

			
					urdf: The most important ROS package to model a robot is the urdf package. This package contains a C++ parser for the URDF, which is an XML file representing a robot model. Other different components make up urdf, such as the following:a. urdf_parser_plugin: This package implements methods to fill the URDF data structures.
b. urdfdom_headers: This component provides core data structure headers to use the urdf parser.
c. collada_parser: This package populates data structures by parsing a Collada file.
d. urdfdom: This component populates data structures by parsing URDF files.


			

			We can define robot models, sensors, and a working environment using URDF. We can also parse them using URDF parsers. We can only describe a robot in URDF that has a tree-like structure in its links, that is, the robot will have rigid links and will be connected using joints. Flexible links can't be represented using URDF. URDF is composed using special XML tags, and we can parse these XML tags using parser programs for further processing. Before working on URDF modeling, let's define some ROS packages that use robot model files:

			
					joint_state_publisher: This tool is very useful when designing robot models using URDF. This package contains a node called joint_state_publisher, which reads the robot model description, finds all of the joints, and publishes joint values to all of the nonfixed joints. Different sources for the values of each joint are also available. We will discuss this package and its usage in more detail in the upcoming sections.

					joint_state_publisher_gui: This tool is very similar to the joint_state_publisher package. It offers the same functionalities as the joint_state_publisher package and, in addition to this, implements a set of sliders that can be used by the user to interact with each robot joint visualizing the output using RViz. In this case, the source for the joint value is the slider GUI. While designing URDF, the user can verify the rotation and translation of each joint using this tool.

					kdl_parser: This package contains a parser tool to build a Kinematic and Dynamic Library (KDL) tree from the URDF model of the robot. The KDL is a library that is used to solve kinematic and dynamic problems.

					robot_state_publisher: This package reads the current robot joint states and publishes the 3D poses of each robot link using the kinematics tree built from the URDF. The 3D pose of the robot is published as the tf (transform) ROS. The tf ROS publishes the relationship between the coordinate frames of a robot.

					xacro: Xacro stands for XML Macros, and we can think to xacro files as URDF files with some add-ons. It contains some add-ons to make the URDF shorter and more readable and can be used to build complex robot descriptions. We can convert xacro into URDF at any time using ROS tools. We will learn more about xacro and its usage in the upcoming sections.

			

			Now that we have defined the list of packages that are involved in the 3D modeling of a robot, we are ready to analyze our first model using the URDF file format.

			Understanding robot modeling using URDF

			In the previous section, we listed some important packages that use the urdf file format. In this section, we will take a further look at the URDF XML tags, which help to model the robot. We need to create a file and write the relationship between each link and joint in the robot and save the file using the .urdf extension.

			URDF can represent the kinematic and dynamic description of the robot, the visual representation of the robot, and the collision model of the robot.

			The following tags are the commonly used URDF tags to compose a URDF robot model:

			
					link: The link tag represents the single link of a robot. Using this tag, we can model a robot link and its properties. The modeling includes the size, the shape, and the color; it can even import a 3D mesh to represent the robot link. We can also provide the dynamic properties of the link, such as the inertial matrix and the collision properties.The syntax is as follows:
<link name="<name of the link>"> 
<inertial>...........</inertial> 
  <visual> ............</visual> 
  <collision>..........</collision> 
</link> 
The following is a representation of a single link. The Visual section represents the real link of the robot, and the area surrounding the real link is the Collision section. The Collision section encapsulates the real link to detect a collision before hitting the real link:


			

			
				
					[image: Figure 3.1 – A visualization of the URDF link ]
				

			

			Figure 3.1 – A visualization of the URDF link

			
					joint: The joint tag represents a robot joint. We can specify the kinematics and dynamics of the joint and set the limits of the joint movement and its velocity. The joint tag supports the different types of joints, such as revolute, continuous, prismatic, fixed, floating, and planar.The syntax is as follows:
<joint name="<name of the joint>"> 
  <parent link="link1"/> 
  <child link="link2"/> 
   
  <calibration .... /> 
  <dynamics damping ..../> 
  <limit effort .... /> 
</joint> 


			

			A URDF joint is formed between two links; the first is called the Parent link, and the second is called the Child link. Note that a single joint can have a single parent and multiple children at the same time. The following is an illustration of a joint and its links:

			
				
					[image: Figure 3.2 – A visualization of the URDF joint ]
				

			

			Figure 3.2 – A visualization of the URDF joint

			
					robot: This tag encapsulates the entire robot model that can be represented using URDF. Inside the robot tag, we can define the name of the robot, the links, and the joints of the robot.The syntax is as follows:
<robot name="<name of the robot>" 
  <link>  ..... </link> 
  <link> ...... </link> 
  <joint> ....... </joint> 
  <joint> ........</joint> 
</robot> 
A robot model consists of connected links and joints. Here is a visualization of the robot model:


			

			
				
					[image: Figure 3.3 – A visualization of a robot model with joints and links ]
				

			

			Figure 3.3 – A visualization of a robot model with joints and links

			
					gazebo: This tag is used when we include the simulation parameters of the Gazebo simulator inside the URDF. We can use this tag to include gazebo plugins, gazebo material properties, and more. The following shows an example that uses gazebo tags: <gazebo reference="link_1"> 
    <material>Gazebo/Black</material> 
 </gazebo> 


			

			You can find more URDF tags at http://wiki.ros.org/urdf/XML. We are now ready to use the elements listed earlier to create a new robot from scratch. In the next section, we are going to create a new ROS package containing a description of the different robots.

			Creating the ROS package for the robot description

			Before creating the URDF file for the robot, let's create an ROS package in the catkin workspace so that the robot model keeps using the following command:

			catkin_create_pkg mastering_ros_robot_description_pkg roscpp tf geometry_msgs urdf rviz xacro   

			The package mainly depends on the urdf and xacro packages. If these packages have not been installed on to your system, you can install them using the package manager:

			sudo apt-get install ros-noetic-urdf

			sudo apt-get install ros-noetic-xacro  

			We can create the urdf file of the robot inside this package and create launch files to display the created urdf file in RViz. The full package is available in the following Git repository; you can clone the repository for reference to implement this package, or you can get the package from the book's source code:

			git clone https://github.com/qboticslabs/mastering_ros_3rd_edition.git

			cd mastering_ros_robot_description_pkg/

			Before creating the URDF file of this robot, let's create three folders called urdf, meshes, and launch inside the package folder. The urdf folder can be used to keep the URDF and xacro files that we are going to create. The meshes folder keeps the meshes that we need to include in the urdf file, and the launch folder keeps the ROS launch files.

			Creating our first URDF model

			After learning about URDF and its important tags, we can start some basic modeling using URDF. The first robot mechanism that we are going to design is a pan-and-tilt mechanism, as shown in the following diagram.

			There are three links and two joints in this mechanism. The base link is static, and all the other links are mounted onto it. The first joint can pan on its axis; the second link is mounted on the first link, and it can tilt on its axis. The two joints in this system are of the revolute type:

			
				
					[image: Figure 3.4 – A visualization of the pan-and-tilt mechanism in RViz ]
				

			

			Figure 3.4 – A visualization of the pan-and-tilt mechanism in RViz

			Let's take a look at the URDF code of this mechanism. Navigate to the mastering_ros_robot_description_pkg/urdf directory and open pan_tilt.urdf.

			We will start by defining the base link of the root model:

			<?xml version="1.0"?> 

			<robot name="pan_tilt"> 

			  <link name="base_link"> 

			    <visual> 

			      <geometry> 

			      <cylinder length="0.01" radius="0.2"/> 

			      </geometry> 

			      <origin rpy="0 0 0" xyz="0 0 0"/> 

			      <material name="yellow"> 

			        <color rgba="1 1 0 1"/> 

			      </material> 

			    </visual> 

			  </link> 

			Then, we will define the pan_joint to connect the base_link and the pan_link:

			  <joint name="pan_joint" type="revolute"> 

			    <parent link="base_link"/> 

			    <child link="pan_link"/> 

			    <origin xyz="0 0 0.1"/> 

			    <axis xyz="0 0 1" /> 

			  </joint> 

			  <link name="pan_link"> 

			    <visual> 

			      <geometry> 

			      <cylinder length="0.4" radius="0.04"/> 

			      </geometry> 

			      <origin rpy="0 0 0" xyz="0 0 0.09"/> 

			      <material name="red"> 

			        <color rgba="0 0 1 1"/> 

			      </material> 

			    </visual> 

			  </link> 

			Similarly, we will define the tilt_joint to connect the pan_link and the tilt_link:

			  <joint name="tilt_joint" type="revolute"> 

			    <parent link="pan_link"/> 

			    <child link="tilt_link"/> 

			    <origin xyz="0 0 0.2"/> 

			    <axis xyz="0 1 0" /> 

			  </joint> 

			  <link name="tilt_link"> 

			    <visual> 

			      <geometry> 

			  <cylinder length="0.4" radius="0.04"/> 

			      </geometry> 

			      <origin rpy="0 1.5 0" xyz="0 0 0"/> 

			      <material name="green"> 

			        <color rgba="1 0 0 1"/> 

			      </material> 

			    </visual> 

			  </link> 

			</robot> 

			In the next section, we will analyze the content of this file line by line.

			Explaining the URDF file

			When we check the code, we can add a <robot> tag at the top of the description. In this way, we inform our system that we are visualizing a markup language file. This also allows the text editor to highlight the keywords of the file: 

			<?xml version="1.0"?> 

			<robot name="pan_tilt"> 

			The <robot> tag defines the name of the robot that we are going to create. Here, we named the robot pan_tilt.

			If we check the sections after the <robot> tag definition, we can view the link and joint definitions of the pan-and-tilt mechanism:

			  <link name="base_link"> 

			    <visual> 

			      <geometry> 

			      <cylinder length="0.01" radius="0.2"/> 

			      </geometry> 

			      <origin rpy="0 0 0" xyz="0 0 0"/> 

			      <material name="yellow"> 

			        <color rgba="1 1 0 1"/> 

			      </material> 

			    </visual> 

			  </link> 

			The preceding code snippet is the base_link definition of the pan-and-tilt mechanism. The <visual> tag describes the visual appearance of the link, which is shown on the robot simulation. We can define the link geometry (cylinder, box, sphere, or mesh) and the material (color and texture) of the link using this tag:

			  <joint name="pan_joint" type="revolute"> 

			    <parent link="base_link"/> 

			    <child link="pan_link"/> 

			    <origin xyz="0 0 0.1"/> 

			    <axis xyz="0 0 1" /> 

			  </joint> 

			In the preceding code snippet, we define a joint with a unique name and its joint type. The joint type we used here is revolute, and the parent and child links are base_link and pan_link, respectively. The joint origin is also specified inside this tag.

			Save the preceding URDF code as pan_tilt.urdf and check whether the urdf file contains errors using the following command:

			check_urdf pan_tilt.urdf  

			To use this command, the liburdfdom-tools package must be installed. You can install it using the following command: 

			sudo apt-get install liburdfdom-tools  

			The check_urdf command will parse the urdf tag and show an error if there is one. If everything is OK, it will output the following:

			robot name is: pan_tilt

			---------- Successfully Parsed XML ---------------

			  root Link: base_link has 1 child(ren)

			    child(1):  pan_link

			      child(1):  tilt_link  

			If we want to view the structure of the robot links and joints graphically, we can use a command tool called urdf_to_graphiz:

			urdf_to_graphiz pan_tilt.urdf 

			This command will generate two files: pan_tilt.gv and pan_tilt.pdf. We can view the structure of this robot using this command:

			evince pan_tilt.pdf 

			We will get the following output:

			
				
					[image: Figure 3.5 – A graph of the joint and links in the pan-and-tilt mechanism ]
				

			

			Figure 3.5 – A graph of the joint and links in the pan-and-tilt mechanism

			Using the graph visualization helps us to understand the position and the relation of each joint of the robot. However, it is also very useful to visualize the designed model in a 3D viewer. To do this, we can use RViz, as we will discuss in the next section.

			Visualizing the 3D robot model in RViz

			After designing the URDF, we can view it on RViz. We can create a view_demo.launch launch file and put the following code into the launch folder. Navigate to the mastering_ros_robot_description_pkg/launch directory for the code:

			<?xml version="1.0" ?>

			<launch>

			  <arg name="model" />

			  <param name="robot_description" textfile="$(find mastering_ros_robot_description_pkg)/urdf/pan_tilt.urdf" />

			 <node name="joint_state_publisher_gui" pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" />

			  <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" />

			  <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mastering_ros_robot_description_pkg)/urdf.rviz" required="true" />

			</launch>  

			We can launch the model using the following command:

			roslaunch mastering_ros_robot_description_pkg view_demo.launch 

			If everything works correctly, we will get a pan-and-tilt mechanism in RViz, as shown here:

			
				
					[image: Figure 3.6 – The joint level of the pan-and-tilt mechanism ]
				

			

			Figure 3.6 – The joint level of the pan-and-tilt mechanism

			In the previous version of ROS, the GUI of joint_state_publisher was enabled thanks to a ROS parameter called use_gui. To start the GUI in the launch file, this parameter had to be set to true before starting the joint_state_publisher node. In the current version of ROS, launch files should be updated to launch joint_state_publisher_gui instead of using joint_state_publisher with the use_gui parameter.

			Interacting with pan-and-tilt joints

			We can see that an extra GUI came along with RViz; it contains sliders to control the pan joints and the tilt joints. This GUI is called the Joint State Publisher Gui node and belongs to the joint_state_publisher_gui package:

			  <node name="joint_state_publisher_gui" pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" /> 

			We can include this node in the launch file using the following statement. The limits of pan-and-tilt should be mentioned inside the joint tag:

			  <joint name="pan_joint" type="revolute"> 

			    <parent link="base_link"/> 

			    <child link="pan_link"/> 

			    <origin xyz="0 0 0.1"/> 

			    <axis xyz="0 0 1" /> 

			    <limit effort="300" velocity="0.1" lower="-3.14" upper="3.14"/> 

			    <dynamics damping="50" friction="1"/> 

			  </joint> 

			The <limit> tag defines the limits of effort, velocity, and angle. In this scenario, effort is the maximum force supported by this joint, expressed in Newton; lower and upper indicate the lower and upper limits of the joint, in radians for the revolute joint and in meters for the prismatic joints. velocity is the maximum joint velocity expressed in m/s.

			The following screenshot shows the user interface that is used to interact with the robot joints:

			
				
					[image: Figure 3.7 – The joint level of the pan-and-tilt mechanism ]
				

			

			Figure 3.7 – The joint level of the pan-and-tilt mechanism

			In this user interface, we can use the sliders to set the desired joint values. The basic elements of a urdf file have been discussed. In the next section, we will add additional physical elements to our robot model.

			Adding physical and collision properties to a URDF model

			Before simulating a robot in a robot simulator, such as Gazebo or CoppeliaSim, we need to define the robot link's physical properties, such as geometry, color, mass, and inertia, as well as the collision properties of the link.

			Good robot simulations can be obtained only if the robot dynamic parameters (for instance, its mass, inertia, and more) are correctly specified in the urdf file. In the following code, we include these parameters as part of the base_link:

			<link> 

			......  

			<collision> 

			      <geometry> 

			      <cylinder length="0.03" radius="0.2"/> 

			      </geometry> 

			      <origin rpy="0 0 0" xyz="0 0 0"/> 

			    </collision> 

			 

			    <inertial> 

			    <mass value="1"/> 

			    <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz="1.0"/> 

			    </inertial> 

			........... 

			</link> 

			Here, we define the collision geometry as cylinder and the mass as 1 KG, and we also set the inertial matrix of the link.

			The collision and inertia parameters are required in each link; otherwise, Gazebo will not load the robot model properly.

			We have now seen all the elements of an urdf file. In the next section, we will discuss another file type, that is, the xacro file format.

			Understanding robot modeling using xacro

			The flexibility of URDF reduces when we work with complex robot models. Some of the main features that URDF is missing include simplicity, reusability, modularity, and programmability.

			If someone wants to reuse a URDF block 10 times in their robot description, they can copy and paste the block 10 times. If there is an option to use this code block and make multiple copies with different settings, it will be very useful while creating the robot description.

			The URDF is a single file and we can't include other URDF files inside it. This reduces the modular nature of the code. All code should be in a single file, which reduces the code's simplicity.

			Also, if there is some programmability, such as adding variables, constants, mathematical expressions, and conditional statements in the description language, it will be more user-friendly.

			Robot modeling using xacro meets all of these conditions. Some of the main features of xacro are as follows:

			
					Simplify URDF: xacro is a cleaned-up version of URDF. It creates macros inside the robot description and reuses the macros. This can reduce the code length. Also, it can include macros from other files and make the code simpler, more readable, and more modular.

					Programmability: The xacro language supports a simple programming statement in its description. There are variables, constants, mathematical expressions, conditional statements, and more that make the description more intelligent and efficient.

			

			We will start by creating the same pan_tilt robot that we already made using URDF. The full description of this file can be found in the book's source code. Navigate to mastering_ros_robot_description_pkg/urdf, and the filename is pan_tilt.xacro. Instead of .urdf, we need to use the .xacro extension for xacro files. 

			Here is an explanation of the xacro code:

			<?xml version="1.0"?> 

			<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="pan_tilt"> 

			These lines specify a namespace that is needed in all xacro files to parse the xacro file. After specifying the namespace, we need to add the name of the xacro file. In the next section, we will continue our file by including properties. 

			Using properties

			Using xacro, we can declare constants or properties that are the named values inside the xacro file, which can be used anywhere in the code. The main purpose of these constant definitions is that instead of giving hardcoded values on links and joints, we can keep constants, and it will be easier to change these values rather than finding the hardcoded values and then replacing them.

			An example of using properties is given here. We declare the length and radius of the base link and the pan link. So, it will be easy to change the dimension here rather than changing the values in each one:

			  <xacro:property name="base_link_length" value="0.01" /> 

			  <xacro:property name="base_link_radius" value="0.2" /> 

			  <xacro:property name="pan_link_length" value="0.4" /> 

			  <xacro:property name="pan_link_radius" value="0.04" /> 

			We can use the value of the variable by replacing the hardcoded value with the following definition:

			  <cylinder length="${pan_link_length}"  radius="${pan_link_radius}"/> 

			Here, the old value, "0.4", is replaced with "{pan_link_length}", and "0.04" is replaced with "{pan_link_radius}".

			Using the math expression

			We can build mathematical expressions inside ${} using basic operations such as +, -, *, /, unary minus, and parentheses. Exponentiation and modulus are not supported yet. The following is a simple math expression used inside the code:

			  <cylinder length="${pan_link_length}"  radius="${pan_link_radius+0.02}"/>  

			An important element of the xacro file is the macro element. We will discuss how to use a macro in the following section.

			Using macros

			One of the main features of xacro is that it supports macros. We can use xacro to reduce the length of complex definitions. Here is a xacro definition we used in our code to specify inertial values:

			<xacro:macro name="inertial_matrix" params="mass"> 

			  <inertial> 

			       <mass value="${mass}" /> 

			          <inertia ixx="0.5" ixy="0.0" ixz="0.0" 

			          iyy="0.5" iyz="0.0" izz="0.5" /> 

			   </inertial> 

			</xacro:macro> 

			Here, the macro is named inertial_matrix, and its parameter is mass. The mass parameter can be used inside the inertial definition using ${mass}. We can include a new inertia block with a single line, as shown here:

			  <xacro:inertial_matrix mass="1"/> 

			Here, the xacro definition improves code readability and reduces the number of lines compared to urdf. Next, we will look at how to convert xacro to a URDF file.

			Converting xacro to URDF

			As already stated, xacro files can be converted into urdf files every time. After designing the xacro file, we can use the following command to convert it into a URDF file:

			rosrun xacro pan_tilt.xacro > pan_tilt_generated.urdf

			We can use the following line in the ROS launch file to convert xacro into URDF and use it as a robot_description parameter:

			<param name="robot_description" command="$(find xacro)/xacro $(find mastering_ros_robot_description_pkg)/urdf/pan_tilt.xacro"  /> 

			We can view the xacro of the pan-and-tilt robot by making a launch file, and it can be launched using the following command:

			roslaunch mastering_ros_robot_description_pkg view_pan_tilt_xacro.launch

			After running this command, we should see the same output of the visualization as the URDF file. Now we are ready to do something more complicated. The pan-and-tilt robot only has two joints and so only two degrees of freedom. In the next section, we will create a robotic manipulator consisting of seven joints.

			Creating the robot description for a seven-DOF robot manipulator

			Now, we can create some complex robots using URDF and xacro. The first robot we are going to deal with is a seven-DOF robotic arm, which is a serial link manipulator with multiple serial links. The seven-DOF arm is kinematically redundant, which means it has more joints and DOF than required to achieve its goal position and orientation. The advantage of redundant manipulators is that we can have more joint configurations for a desired goal position and orientation. This will improve the flexibility and versatility of the robot's movement and can implement effective collision-free motion in a robotic workspace.

			Let's start by creating the seven-DOF arm; the final output model of the robot arm is shown here (the various joints and links in the robot are also marked on the diagram):

			
				
					[image: Figure 3.8 – Joints and links of the seven-DOF arm robot ]
				

			

			Figure 3.8 – Joints and links of the seven-DOF arm robot

			The preceding robot is described using xacro. We can take the actual description file from the cloned repository. We can navigate to the urdf folder inside the cloned package and open the seven_dof_arm.xacro file. We will copy and paste the description to the current package and discuss the major aspects of this robot description. Before we create the robot model file, let's report some specifications of the robotic arm.

			Arm specification

			In the following list, the characteristics of the seven-DOF arm are reported: 

			
					Degrees of freedom: 7

					Length of the arm: 50 cm

					Reach of the arm: 35 cm

					Number of links: 12

					Number of joints: 11

			

			As you can see, we can define different types of joints. Let's now discuss the type of joints of the seven-DOF arm.

			Types of joints

			Here is a list of joints containing the name of the joint and its robot type:
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			As shown in the preceding table, the robot consists of one fixed joint, seven revolute joints, and two prismatic joints for the gripper. We design the xacro of the arm using the preceding specifications. Next, we will explain the xacro arm file.

			Explaining the xacro model of the seven-DOF arm

			After defining the elements that we must insert in the robot model file, we are now ready to include 10 links and 9 joints (7 for the arm and 2 for the gripper) on this robot, and 2 links and 2 joints on the robot gripper.

			Let's start by looking at the xacro definition:

			<?xml version="1.0"?> 

			<robot name="seven_dof_arm" xmlns:xacro="http://ros.org/wiki/xacro"> 

			Because we are writing a xacro file, we should mention the xacro namespace to parse the file; then, we can start to define the geometric properties of the arm.

			Using constants

			We use constants inside this xacro to make the robot descriptions shorter and more readable. Here, we define the degree-to-radian conversion factor, the PI value, the length, the height, and the width of each of the links:

			  <property name="deg_to_rad" value="0.01745329251994329577"/> 

			  <property name="M_PI" value="3.14159"/> 

			  <property name="elbow_pitch_len" value="0.22" /> 

			  <property name="elbow_pitch_width" value="0.04" /> 

			  <property name="elbow_pitch_height" value="0.04" /> 

			Next, let's explore the macros that are used to define the same kind of element multiple times.

			Using macro

			We define macros in this code to avoid repetition and to make the code shorter. Here are the macros we have used in this code:

			   <xacro:macro name="inertial_matrix" params="mass"> 

			      <inertial> 

			        <mass value="${mass}" /> 

			        <inertia ixx="1.0" ixy="0.0" ixz="0.0" iyy="0.5" iyz="0.0" izz="1.0" /> 

			      </inertial> 

			   </xacro:macro> 

			This is the definition of the inertial matrix macro in which we can use mass as a parameter:

			   <xacro:macro name="transmission_block" params="joint_name"> 

			    <transmission name="tran1"> 

			      <type>transmission_interface/SimpleTransmission</type> 

			      <joint name="${joint_name}"> 

			        <hardwareInterface>PositionJointInterface</hardwareInterface> 

			      </joint> 

			      <actuator name="motor1"> 

			        <hardwareInterface>PositionJointInterface</hardwareInterface> 

			        <mechanicalReduction>1</mechanicalReduction> 

			      </actuator> 

			    </transmission> 

			   </xacro:macro> 

			In the preceding section of the code, we can view the definition by using the transmission tag.

			The transmission tag relates a joint to an actuator. It defines the type of transmission that we are using in a particular joint along with the type of motor and its parameters. It also defines the type of hardware interface we use when we interface with the ROS controllers.

			Including other xacro files

			We can extend the capabilities of the robot xacro by including the xacro definition of sensors using the xacro:include tag. The following code snippet shows how to include a sensor definition in the robot xacro:

			  <xacro:include filename="$(find mastering_ros_robot_description_pkg)/urdf/sensors/xtion_pro_live.urdf.xacro"/> 

			Here, we include a xacro definition of the vision sensor called Asus Xtion pro; this will be expanded when the xacro file is parsed.

			Using "$(find mastering_ros_robot_description_pkg)/urdf/sensors/xtion_pro_live.urdf.xacro", we can access the xacro definition of the sensor, where find is used to locate the current mastering_ros_robot_description_pkg package.

			We will talk more about vision processing in Chapter 10, Programming Vision Sensors Using ROS, OpenCV, and PCL.

			Using meshes in the link

			We can insert a primitive shape inside a link, or we can insert a mesh file using the mesh tag. The following example shows how to insert a mesh into the vision sensor:

			<visual> 

			  <origin xyz="0 0 0" rpy="0 0 0"/> 

			  <geometry> 

			    <mesh filename=      "package://mastering_ros_robot_description_pkg/meshes/sensors/xtion_pro_live/xtion_pro_live.dae"/> 

			  </geometry> 

			<material name="DarkGrey"/> 

			</visual> 

			Next, let's take a look at the definition of the gripper of the robotic arm.

			Working with the robot gripper

			The gripper of the robot is designed for the picking and placing of blocks; the gripper is in the simple linkage category. There are two joints for the gripper, and each joint is prismatic. Here is the joint definition of one gripper joint, that is, finger_joint1:

			   <joint name="finger_joint1" type="prismatic"> 

			    <parent link="gripper_roll_link"/> 

			    <child link="gripper_finger_link1"/> 

			    <origin xyz="0.0 0 0" /> 

			    <axis xyz="0 1 0" /> 

			      <limit effort="100" lower="0" upper="0.03" velocity="1.0"/> 

			      <safety_controller k_position="20" 

			                         k_velocity="20" 

			                         soft_lower_limit="${-0.15 }" 

			                         soft_upper_limit="${ 0.0 }"/> 

			    <dynamics damping="50" friction="1"/> 

			  </joint> 

			Here, the first gripper joint is formed by gripper_roll_link and gripper_finger_link1. Then, we can define the finger_joint2 to connect the gripper_roll_link and gripper_finger_link2 elements.

			The following graph shows how the gripper joints are connected in gripper_roll_link:

			
				
					[image: Figure 3.9 – A graph of the end effector section of the seven-DOF arm robot ]
				

			

			Figure 3.9 – A graph of the end effector section of the seven-DOF arm robot

			We are now ready to visualize the arm model using RViz.

			Viewing the seven-DOF arm in RViz

			Having discussed the robot model, we can now view the designed xacro file in RViz, control each joint using the joint state publisher node, and publish the robot state using  robot_state_publisher.

			The preceding task can be performed using a launch file, called view_arm.launch, which is inside the launch folder of this package:

			<?xml version="1.0" ?>

			<launch>

			      <arg name="model" />

			      <!-- Parsing xacro and setting robot_description parameter -->

			      <param name="robot_description" command="$(find xacro)/xacro $(find mastering_ros_robot_description_pkg)/urdf/seven_dof_arm.xacro" />

			      <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" />

			      <node name="joint_state_publisher_gui" pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" />

			      <!-- Launch visualization in rviz -->

			      <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mastering_ros_robot_description_pkg)/urdf.rviz" required="true" />

			</launch>

			Create the following launch file inside the launch folder, and build the package using the catkin_make command. Launch the urdf using the following command:

			roslaunch mastering_ros_robot_description_pkg view_arm.launch    

			The robot will be displayed on RViz with the joint_state_publisher GUI node:

			
				
					[image: Figure 3.10 – Seven-DOF arm in RViz with joint_state_publisher ]
				

			

			Figure 3.10 – Seven-DOF arm in RViz with joint_state_publisher

			We can interact with the joint slider and move the joints of the robot.

			Next, we will explore what joint state publisher can do.

			Understanding joint state publisher

			The joint state publisher package is one of the ROS packages that is commonly used to interact with each joint of the robot. The package contains the joint_state_publisher node, which finds the nonfixed joints from the URDF model and publishes the joint state values of each joint in the sensor_msgs/JointState message format. This package can also be used in conjunction with the robot_state_publisher package to publish the position of all of the joints. Different sources can be used to set the value of each joint. As we have already seen, one way is to use the slider GUI. This way is mainly used for testing. Otherwise, a JointState topic that the node subscribes to can be used.

			You can find more about the joint state publisher package at http://wiki.ros.org/joint_state_publisher.

			Understanding robot state publisher

			The robot state publisher package helps to publish the state of the robot to tf. This package subscribes to joint states of the robot and publishes the 3D pose of each link using the kinematic representation from the URDF model. We can implement the robot state publisher node using the following line inside the launch file:

			<!-- Starting robot state publish which will publish tf --> 

			  <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" /> 

			In the preceding launch file, view_arm.launch, we started this node to publish the tf of the arm. We can visualize the transformation of the robot by clicking on the tf option in RViz, as follows:

			
				
					[image: Figure 3.11 – The TF view of the seven-DOF arm in RViz ]
				

			

			Figure 3.11 – The TF view of the seven-DOF arm in RViz

			The joint_state_publisher and robot_state_publisher packages are installed along with the ROS desktop's installation.

			After creating the robot description of the seven-DOF arm, let's discuss how to make a mobile robot with differential wheeled mechanisms.

			Creating a robot model for the differential drive mobile robot

			A differential wheeled robot will have two wheels connected to opposite sides of the robot chassis, which is supported by one or two caster wheels. The wheels will control the speed of the robot by regulating the velocity of the single wheels. If the two motors are running at the same speed, the wheels will move forward or backward. If one wheel is running slower than the other, the robot will turn to the side of the lower speed. If we want to turn the robot to the left side, we reduce the velocity of the left wheel and vice versa.

			There are two supporting wheels, called caster wheels, that will support the robot and rotate freely based on the movement of the main wheels.

			The URDF model of this robot is present in the cloned ROS package. The final robot model is shown here:

			
				
					[image: Figure 3.12 – The differential drive mobile robot ]
				

			

			Figure 3.12 – The differential drive mobile robot

			The preceding robot has five joints and links. The two main joints connect the wheels to the robot, while the others are fixed joints connecting the caster wheels and the base footprint to the body of the robot.

			The preceding robot has five joints and five links. The two main joints connect the wheels with the base of the robot. The other joints are fixed and are used to link the caster wheels and the base footprint of the robot with its base link, respectively. Here is the connection graph of this robot:

			
				
					[image: Figure 3.13 – A graphical representation of the links and joints of the differential drive mobile robot ]
				

			

			Figure 3.13 – A graphical representation of the links and joints of the differential drive mobile robot

			Let's go through the important aspects of code in the URDF file. The URDF file, called diff_wheeled_robot.xacro, is placed inside the urdf folder of the cloned ROS package.

			The first section of the URDF file is given here. The robot is named differential_wheeled_robot, and it also includes a URDF file, called wheel.urdf.xacro. This xacro file contains the definition of the wheel and its transmission; if we use this xacro file, we can avoid adding two different definitions for the two wheels. We use this xacro definition because the two wheels are identical in shape and size:

			<?xml version="1.0"?> 

			<robot name="differential_wheeled_robot" xmlns:xacro="http://ros.org/wiki/xacro"> 

			  <xacro:include filename="$(find mastering_ros_robot_description_pkg)/urdf/wheel.urdf.xacro">  

			The definition of a wheel inside wheel.urdf.xacro is given here. We can mention whether the wheel must be placed to the left, right, front, or back. Using this macro, we can create a maximum of four wheels but, for now, we require only two:

			<xacro:macro name="wheel" params="fb lr parent translateX translateY flipY"> <!--fb : front, back ; lr: left, right --> 

			    <link name="${fb}_${lr}_wheel"> 

			We also mention the Gazebo parameters required for simulation. The Gazebo parameters associated with a wheel are also mentioned here. We can mention the frictional coefficient and the stiffness coefficient using the gazebo reference tag:

			    <gazebo reference="${fb}_${lr}_wheel"> 

			      <mu1 value="1.0"/> 

			      <mu2 value="1.0"/> 

			      <kp  value="10000000.0" /> 

			      <kd  value="1.0" /> 

			      <fdir1 value="1 0 0"/> 

			      <material>Gazebo/Grey</material> 

			      <turnGravityOff>false</turnGravityOff> 

			    </gazebo> 

			The joints that we define for a wheel are continuous joints because there are no limits in the wheel joint. The parent link here is the robot base, and the child link is each wheel:

			    <joint name="${fb}_${lr}_wheel_joint" type="continuous"> 

			      <parent link="${parent}"/> 

			      <child link="${fb}_${lr}_wheel"/> 

			<origin xyz="${translateX * base_x_origin_to_wheel_origin} ${translateY * base_y_origin_to_wheel_origin} ${base_z_origin_to_wheel_origin}" rpy="0 0 0" /> 

			      <axis xyz="0 1 0" rpy="0 0 0" />

			      <limit effort="100" velocity="100"/>

			      <joint_properties damping="0.0" friction="0.0"/>

			    </joint> 

			We also need to mention the transmission tag of each wheel. The macro of the wheel is as follows:

			    <!-- Transmission is important to link the joints and the controller --> 

			    <transmission name="${fb}_${lr}_wheel_joint_trans"> 

			      <type>transmission_interface/SimpleTransmission</type> 

			      <joint name="${fb}_${lr}_wheel_joint" /> 

			      <actuator name="${fb}_${lr}_wheel_joint_motor"> 

			        <hardwareInterface>EffortJointInterface</hardwareInterface> 

			        <mechanicalReduction>1</mechanicalReduction> 

			      </actuator> 

			    </transmission> 

			  </xacro:macro> 

			</robot> 

			In the diff_wheeled_robot.xacro file, we can use the following lines to use the macros defined inside the wheel.urdf.xacro file:

			  <xacro:wheel fb="front" lr="right" parent="base_link" translateX="0" translateY="0.5" flipY="1"/>

			      <xacro:wheel fb="front" lr="left" parent="base_link" translateX="0" translateY="-0.5" flipY="1"/>

			Using the preceding lines, we define the wheels on the left and right of the robot base. The robot base is cylindrical, as shown in the preceding figure. The inertia calculating macro is given here. This xacro snippet will use the mass, radius, and height of the cylinder to calculate the inertia using this equation:

			  <!-- Macro for calculating inertia of cylinder --> 

			  <macro name="cylinder_inertia" params="m r h"> 

			    <inertia  ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0" 

			              iyy="${m*(3*r*r+h*h)/12}" iyz = "0" 

			              izz="${m*r*r/2}" />  

			  </macro> 

			The launch file definition to display this root model in RViz is given here. The launch file is named view_mobile_robot.launch:

			<launch> 

			<?xml version="1.0" ?>

			      <arg name="model" />

			      <!-- Parsing xacro and setting robot_description parameter -->

			      <param name="robot_description" command="$(find xacro)/xacro $(find mastering_ros_robot_description_pkg)/urdf/diff_wheeled_robot.xacro" />

			      <!-- Starting Joint state publisher node which will publish the joint values -->

			      <node name="joint_state_publisher_gui" pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" />

			      <!-- Starting robot state publish which will publish tf -->

			      <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" />

			      <!-- Launch visualization in rviz -->

			      <node name="rviz" pkg="rviz" type="rviz" args="-d $(find mastering_ros_robot_description_pkg)/urdf.rviz" required="true" />

			</launch>

			The only difference between the arm URDF file is the change in the robot model to load; the other sections are the same.

			We can view the mobile robot using the following command:

			roslaunch mastering_ros_robot_description_pkg view_mobile_robot.launch  

			An example of the robot in RViz is shown in the following screenshot:

			
				
					[image: Figure 3.14 – Visualizing the mobile robot in RViz with joint state publisher ]
				

			

			Figure 3.14 – Visualizing the mobile robot in RViz with joint state publisher

			Even though you will not be able to really move the robot, you can try to move the wheels of the robot using the slide bars on the user interface of RViz. 

			Summary

			In this chapter, we mainly looked at the importance of robot modeling and how we can model a robot in ROS. We discussed the packages that are used in ROS to model a robotic structure, such as urdf, xacro, and joint_state_publisher and its GUI. We discussed URDF, xacro, and the main URDF tags that we can use. We also created a sample model in URDF and xacro and discussed the differences between the two. Following this, we created a complex robotic manipulator with seven DOF and looked at the usage of the joint_state_publisher and robot_state_publisher packages. At the end of the chapter, we reviewed the design procedure of a differential drive mobile robot using xacro. In the next chapter, we will take a look at the simulation of these robots using Gazebo.

			Questions

			
					What are the packages used for robot modeling in ROS?

					What are the important URDF tags used for robot modeling?

					What are the reasons for using xacro over URDF?

					What is the function of the joint state publisher and robot state publisher packages?

					What is the function of the transmission tag in URDF?

			

		

	






			Chapter 4: Simulating Robots Using ROS and Gazebo 

			After designing the 3D model of a robot, the next phase is to simulate it. Robot simulation will give you an idea of how robots operate in a virtual environment.

			We are going to use the Gazebo (http://www.gazebosim.org/) simulator to simulate the seven Degree Of Freedom (DOF) arms and the mobile robot.

			Gazebo is a multi-robot simulator for complex indoor and outdoor robotic simulation. We can simulate complex robots, robot sensors, and a variety of 3D objects. Gazebo already has simulation models of popular robots, sensors, and a variety of 3D objects in its repository (https://bitbucket.org/osrf/gazebo_models/). We can directly use these models without having to create new ones.

			Gazebo is perfectly integrated with ROS thanks to a proper ROS interface, which exposes the complete control of Gazebo in ROS. We can install Gazebo without ROS, but we should install the ROS-Gazebo interface to communicate from ROS to Gazebo.

			In this chapter, we will discuss the simulation of seven DOF arms and differential wheeled robots. We will also discuss the ROS controllers that help to control the robot's joints in Gazebo.

			We will cover the following topics in this chapter:

			
					Understanding robotic simulation and Gazebo

					Simulating the model of a robotic arm for Gazebo

					Simulating the robotic arm with a depth sensor

					Moving robot joints using ROS controllers in Gazebo

					Simulating a differential wheeled robot in Gazebo

					Teleoperating a mobile robot in Gazebo

			

			Technical requirements

			To follow this chapter, you need a standard laptop running Ubuntu 20.04 with ROS Noetic installed. The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git. The code is contained in the Chapter4/seven_dof_arm_gazebo folder.

			You can view this chapter's code in action here: https://bit.ly/2XvBY7o.

			Simulating the robotic arm using Gazebo and ROS

			In the previous chapter, we designed a seven DOF arm. In this section, we will simulate the robot in Gazebo using ROS.

			Before starting with Gazebo and ROS, we should install the following packages to work with Gazebo and ROS:

			sudo apt-get install ros-noetic-gazebo-ros-pkgs ros-noetic-gazebo-msgs ros-noetic-gazebo-plugins ros-noetic-gazebo-ros-control

			The default version installed from Noetic ROS packages is Gazebo 11.x. The use of each package is as follows:

			
					gazebo_ros_pkgs: This contains wrappers and tools for interfacing ROS with Gazebo.

					gazebo-msgs: This contains messages and service data structures for interfacing with Gazebo from ROS.

					gazebo-plugins: This contains Gazebo plugins for sensors, actuators, and so on.

					gazebo-ros-control: This contains standard controllers to communicate between ROS and Gazebo.

			

			After installation, check whether Gazebo is properly installed using the following commands:

			    roscore & rosrun gazebo_ros gazebo  

			These commands will open the Gazebo GUI. If we have the Gazebo simulator, we can proceed to develop the simulation model of the seven DOF arm for Gazebo.

			Creating the robotic arm simulation model for Gazebo

			We can create the simulation model for a robotic arm by updating the existing robot description by adding simulation parameters.

			We can create the package needed to simulate the robotic arm using the following command:

			catkin_create_pkg seven_dof_arm_gazebo gazebo_msgs gazebo_plugins gazebo_ros gazebo_ros_control mastering_ros_robot_description_pkg  

			Alternatively, the full package is available in the following Git repository; you can clone the repository for a reference to implement this package, or you can get the package from the book's source code:

			git clone https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git

			cd Chapter4/seven_dof_arm_gazebo

			You can see the complete simulation model of the robot in the seven_dof_arm.xacro file, placed in the mastering_ros_robot_description_pkg/urdf/ folder.

			The file is filled with URDF tags, which are necessary for the simulation. We will define the sections of collision, inertial, transmission, joints, links, and Gazebo.

			To launch the existing simulation model, we can use the seven_dof_arm_gazebo package, which has a launch file called seven_dof_arm_world.launch. The file definition is as follows:

			<launch> 

			  <!-- these are the arguments you can pass this launch file, for example paused:=true --> 

			  <arg name="paused" default="false"/> 

			  <arg name="use_sim_time" default="true"/> 

			  <arg name="gui" default="true"/> 

			  <arg name="headless" default="false"/> 

			  <arg name="debug" default="false"/> 

			 

			  <!-- We resume the logic in empty_world.launch --> 

			  <include file="$(find gazebo_ros)/launch/empty_world.launch"> 

			    <arg name="debug" value="$(arg debug)" /> 

			    <arg name="gui" value="$(arg gui)" /> 

			    <arg name="paused" value="$(arg paused)"/> 

			    <arg name="use_sim_time" value="$(arg use_sim_time)"/> 

			    <arg name="headless" value="$(arg headless)"/> 

			  </include> 

			 

			  <!-- Load the URDF into the ROS Parameter Server -->

			  <param name="robot_description" command="$(find xacro)/xacro '$(find mastering_ros_robot_description_pkg)/urdf/seven_dof_arm.xacro'" />

			 

			  <!-- Run a python script to the send a service call to gazebo_ros to spawn a URDF robot --> 

			  <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen" 

			  args="-urdf -model seven_dof_arm -param robot_description"/>  

			</launch> 

			Launch the following command and check what you get:

			roslaunch seven_dof_arm_gazebo seven_dof_arm_world.launch

			You can see the robotic arm in Gazebo, as shown in the following figure; if you get this output without any errors, you are done:

			
				
					[image: Figure 4.1 – Simulation of a seven DOF arm in Gazebo ]
				

			

			Figure 4.1 – Simulation of a seven DOF arm in Gazebo

			In the next section, we will discuss the robot simulation model files in detail.

			Adding colors and textures to the Gazebo robot model

			We can see in the simulated robot that each link has different colors and textures. The following tags inside the .xacro file provide textures and colors to robot links:

			  <gazebo reference="bottom_link"> 

			    <material>Gazebo/White</material> 

			  </gazebo> 

			  <gazebo reference="base_link"> 

			    <material>Gazebo/White</material> 

			  </gazebo> 

			  <gazebo reference="shoulder_pan_link"> 

			    <material>Gazebo/Red</material> 

			  </gazebo> 

			Each gazebo tag references a particular link of the robot model.

			Adding transmission tags to actuate the model

			To actuate the robot using ROS controllers, we should define the <transmission> element to link actuators to joints. Here is the macro defined for transmission:

			   <xacro:macro name="transmission_block" params="joint_name"> 

			    <transmission name="tran1"> 

			      <type>transmission_interface/SimpleTransmission</type> 

			      <joint name="${joint_name}"> 

			                  <hardwareInterface>hardware_interface/PositionJointInterface</hardwareInterface> 

			      </joint> 

			      <actuator name="motor1"> 

			       <mechanicalReduction>1</mechanicalReduction> 

			      </actuator> 

			    </transmission> 

			   </xacro:macro> 

			Here, <joint name = ""> is the joint in which we link the actuators, while the <type> tag specifies the type of transmission. Currently, the only transmission type supported is transmission_interface/SimpleTransmission. Finally, the <hardwareInterface> tag is used to define the controller interface to load the position, velocity, or effort interfaces. In the proposed example, a position control hardware interface has been used. The hardware interface is loaded by the gazebo_ros_control plugin; we will look at this plugin in the next section.

			Adding the gazebo_ros_control plugin

			After adding the transmission tags, we should add the gazebo_ros_control plugin in the simulation model to parse the transmission tags and assign appropriate hardware interfaces and the control manager. The following code adds the gazebo_ros_control plugin to the .xacro file:

			  <!-- ros_control plugin --> 

			  <gazebo> 

			    <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so"> 

			      <robotNamespace>/seven_dof_arm</robotNamespace> 

			    </plugin> 

			  </gazebo> 

			Here, the <plugin> element specifies the plugin name to be loaded, which is libgazebo_ros_control.so. The <robotNamespace> element can be given as the name of the robot; if we are not specifying the name, it will automatically load the name of the robot from the URDF. We can also specify the controller update rate (<controlPeriod>), the location of robot_description (URDF) on the parameter server (<robotParam>), and the type of robot hardware interface (<robotSimType>). The default hardware interfaces are JointStateInterface, EffortJointInterface, and VelocityJointInterface.

			Adding a 3D vision sensor to Gazebo

			In Gazebo, we can simulate the robot's movement and its physics; we can also simulate different kinds of sensors. To build a sensor in Gazebo, we must model its behavior. There are some prebuilt sensor models in Gazebo that can be used directly in our code without writing a new model.

			Here, we are adding a 3D vision sensor (commonly known as an rgb-d or depth sensor) called the Asus Xtion Pro model in Gazebo. Different models of depth sensors can be used in robotics. However, except for their performance, they provide the same output format. We will provide additional information about depth and vision sensors in Chapter 10, Programming Vision Sensors Using ROS, OpenCV, and PCL. 

			Regarding the seven DOF arm, the sensor model is already implemented in the gazebo_ros_pkgs/gazebo_plugins ROS package, which we have already installed in our ROS system. Each model in Gazebo is implemented as a Gazebo-ROS plugin, which can be loaded by inserting it into the URDF file.

			Here is how we include a Gazebo definition and a physical robot model of Xtion Pro in the seven_dof_arm_with_rgbd.xacro robot .xacro file:

			<xacro:include filename="$(find mastering_ros_robot_description_pkg)/urdf/sensors/xtion_pro_live.urdf.xacro"/>  

			Inside xtion_pro_live.urdf.xacro, we can see the following lines:

			<?xml version="1.0"?> 

			<robot xmlns:xacro="http://ros.org/wiki/xacro"> 

			  <xacro:include filename="$(find mastering_ros_robot_description_pkg)/urdf/sensors/xtion_pro_live.gazebo.xacro"/> 

			................... 

			  <xacro:macro name="xtion_pro_live" params="name parent *origin *optical_origin">  

			................... 

			    <link name="${name}_link"> 

			       ...................... 

			  <visual> 

			        <origin xyz="0 0 0" rpy="0 0 0"/> 

			        <geometry> 

			          <mesh filename="package://mastering_ros_robot_description_pkg/meshes/sensors/xtion_pro_live/xtion_pro_live.dae"/> 

			        </geometry> 

			        <material name="DarkGrey"/> 

			    </visual> 

			    </link>  

			 

			</robot> 

			Here, we can see it includes another file called xtion_pro_live.gazebo.xacro, which consists of the complete Gazebo definition of Xtion Pro.

			We can also see a macro definition named xtion_pro_live, which contains the complete model definition of Xtion Pro, including links and joints:

			<mesh filename="package://mastering_ros_robot_description_pkg/meshes/sensors/xtion_pro_live/xtion_pro_live.dae"/> 

			In the macro definition, we are importing a mesh file of the Asus Xtion Pro, which will be shown as the camera link in Gazebo.

			In the mastering_ros_robot_description_pkg/urdf/sensors/xtion_pro_live.gazebo.xacro file, we can set the Gazebo-ROS plugin of Xtion Pro. Here, we will define the plugin as a macro with RGB and depth camera support. Here is the plugin definition:

			          <plugin name="${name}_frame_controller"     filename="libgazebo_ros_openni_kinect.so"> 

			          <alwaysOn>true</alwaysOn> 

			          <updateRate>6.0</updateRate> 

			          <cameraName>${name}</cameraName> 

			          <imageTopicName>rgb/image_raw</imageTopicName> 

			 

			        </plugin>  

			The plugin filename of Xtion Pro is libgazebo_ros_openni_kinect.so, and we can define the plugin parameters, such as the camera name and image topics.

			Simulating the robotic arm with Xtion Pro

			Now that we have learned about the camera plugin definition in Gazebo, we can launch our complete simulation using the following command:

			roslaunch seven_dof_arm_gazebo seven_dof_arm_with_rgbd_world.launch  

			We can see the robot model with a sensor on the top of the arm, as shown here:

			
				
					[image: Figure 4.2 – Simulation of a seven DOF arm with Asus Xtion Pro in Gazebo ]
				

			

			Figure 4.2 – Simulation of a seven DOF arm with Asus Xtion Pro in Gazebo

			We can now work with the simulated rgb-d sensor as if it were directly plugged into our computer. So, we can check whether it provides the correct image output.

			Visualizing the 3D sensor data

			After launching the simulation using the preceding command, we can check the topics generated by the sensor plugin:

			
				
					[image: Figure 4.3 – rgb-d image topics generated by Gazebo ]
				

			

			Figure 4.3 – rgb-d image topics generated by Gazebo

			To see the image data of a 3D vision sensor using a tool called image_view, do the following:

			
					View the RGB raw image:    rosrun image_view image:=/rgbd_camera/rgb/image_raw  


					View the IR raw image:    rosrun image_view image:=/rgbd_camera/ir/image_raw


					View the depth image:    rosrun image_view image:=/rgbd_camera/depth/image_raw


			

			Here is the screenshot with all these images:

			
				
					[image: Figure 4.4 – Viewing images of the rgb-d sensor in Gazebo ]
				

			

			Figure 4.4 – Viewing images of the rgb-d sensor in Gazebo

			We can also view the point cloud data of this sensor in RViz.

			Launch rviz using the following command:

			rosrun rviz -f /rgbd_camera_optical_frame  

			Add a PointCloud2 display type and set Topic as /rgbd_camera/depth/points. We will get a point cloud view as follows:

			
				
					[image: Figure 4.5 – Viewing point cloud data from an rgb-d sensor in rviz ]
				

			

			Figure 4.5 – Viewing point cloud data from an rgb-d sensor in rviz

			The next step is to control the robot joints to move the simulated robot.

			Moving the robot joints using ROS controllers in Gazebo

			In this section, we are going to discuss how to move each joint of the robot in Gazebo.

			To move each joint, we need to assign an ROS controller. For each joint, we need to attach a controller that is compatible with the hardware interface mentioned inside the transmission tags.

			An ROS controller mainly consists of a feedback mechanism that can receive a set point and control the output using the feedback from the actuators.

			The ROS controller interacts with the hardware using the hardware interface. The main function of the hardware interface is to act as a mediator between ROS controllers and the real or simulated hardware, allocating the resources to control it using the data generated by the ROS controller.

			In this robot, we have defined the position controllers, velocity controllers, effort controllers, and so on. The ROS controllers are provided by a set of packages called ros_control.

			For a proper understanding of how to configure ROS controllers for the arm, we should understand the concepts behind these controllers. In the following section, we will discuss more on the ros_control packages, different types of ROS controllers, and how an ROS controller interacts with the Gazebo simulation.

			Understanding the ros_control packages

			The ros_control packages contain the implementation of robot controllers, controller managers, hardware interfaces, different transmission interfaces, and control toolboxes. The ros_controls packages are composed of the following individual packages:

			
					control_toolbox: This package contains common modules (PID and Sine) that can be used by all controllers.

					controller_interface: This package contains the interface base class for the controllers.

					controller_manager: This package provides the infrastructure to load, unload, start, and stop the controllers.

					controller_manager_msgs: This package provides the message and service definition for the controller manager.

					hardware_interface: This contains the base class for the hardware interfaces.

					transmission_interface: This package contains the interface classes for the transmission interface (differential, four-bar linkage, joint state, position, and velocity).

			

			Different types of ROS controllers and hardware interfaces

			Let's see the list of ROS packages that contain the standard ROS controllers:

			
					joint_position_controller: This is a simple implementation of the joint position controller.

					joint_state_controller: This is a controller to publish joint states.

					joint_effort_controller: This is an implementation of the joint effort (force) controller.

			

			The following are some of the commonly used hardware interfaces in ROS:

			
					Joint Command Interfaces: This will send the commands to the hardware.

					Effort Joint Interface: This will send the effort command.

					Velocity Joint Interface: This will send the velocity command.

					Position Joint Interface: This will send the position command.

					Joint State Interfaces: This will retrieve the joint states from the actuator's encoder.

			

			Now we can start to interact with the ROS controller in Gazebo.

			How the ROS controller interacts with Gazebo

			Let's see how an ROS controller interacts with Gazebo. The following figure shows the interconnection of the ROS controller, the robot hardware interface, and the simulator/real hardware:

			
				
					[image: Figure 4.6 – ROS controllers interacting with Gazebo ]
				

			

			Figure 4.6 – ROS controllers interacting with Gazebo

			We can see the third-party tools, the navigation and MoveIt! packages. These packages can give the goal (set point) to the mobile robot controllers and robotic arm controllers. These controllers can send the position, velocity, or effort to the robot hardware interface.

			The hardware interface allocates each resource to the controllers and sends values to each resource. The communications between the robot controllers and robot hardware interfaces are shown in the following diagram:

			
				
					[image: Figure 4.7 – Illustration of ROS controllers and hardware interfaces ]
				

			

			Figure 4.7 – Illustration of ROS controllers and hardware interfaces

			The hardware interface is decoupled from the actual hardware and simulation. The values from the hardware interface can be fed to Gazebo for simulation or to the actual hardware itself.

			The hardware interface is a software representation of the robot and its abstract hardware. The resource of the hardware interfaces are actuators, joints, and sensors. Some resources are read-only, such as joint states, IMU, and force-torque sensors, and some are read and write compatible, such as position, velocity, and effort joints.

			Interfacing the joint state controllers and joint position controllers with the arm

			Interfacing robot controllers with each joint is a simple task. The first task is to write a configuration file for two controllers.

			The joint state controllers will publish the joint states of the arm and the joint position controllers can receive a goal position for each joint and can move each joint.

			We will find the configuration file for the controller at seven_dof_arm_gazebo_control.yaml in the seven_dof_arm_gazebo/config folder.

			Here is the configuration file definition of the joint state controller:

			seven_dof_arm: 

			  # Publish all joint states ----------------------------------- 

			  joint_state_controller: 

			    type: joint_state_controller/JointStateController 

			    publish_rate: 50   

			As for the position controllers, we need to define a new controller for each joint:

			   

			  # Position Controllers --------------------------------------- 

			  joint1_position_controller: 

			    type: position_controllers/JointPositionController 

			    joint: shoulder_pan_joint 

			    pid: {p: 100.0, i: 0.01, d: 10.0} 

			We can replicate the previous block of code and configure it for each joint of the robot:

			  joint2_position_controller: 

			    type: position_controllers/JointPositionController 

			    joint: shoulder_pitch_joint 

			    pid: {p: 100.0, i: 0.01, d: 10.0} 

			  joint3_position_controller: 

			    type: position_controllers/JointPositionController 

			    joint: elbow_roll_joint 

			    pid: {p: 100.0, i: 0.01, d: 10.0} 

			  joint4_position_controller: 

			    type: position_controllers/JointPositionController 

			    joint: elbow_pitch_joint 

			    pid: {p: 100.0, i: 0.01, d: 10.0} 

			  joint5_position_controller: 

			    type: position_controllers/JointPositionController 

			    joint: wrist_roll_joint 

			    pid: {p: 100.0, i: 0.01, d: 10.0} 

			  joint6_position_controller: 

			    type: position_controllers/JointPositionController 

			    joint: wrist_pitch_joint 

			    pid: {p: 100.0, i: 0.01, d: 10.0} 

			  joint7_position_controller: 

			    type: position_controllers/JointPositionController 

			    joint: gripper_roll_joint 

			    pid: {p: 100.0, i: 0.01, d: 10.0} 

			We can see that all the controllers are inside the seven_dof_arm namespace, and the first line represents the joint state controllers, which will publish the joint state of the robot at the rate of 50 Hz.

			The remaining controllers are joint position controllers, which are assigned to the first seven joints, and they also define the PID gains.

			Launching the ROS controllers with Gazebo

			If the controller configuration is ready, we can build a launch file that starts all the controllers along with the Gazebo simulation. Navigate to the seven_dof_arm_gazebo/launch directory and open the seven_dof_arm_gazebo_control.launch file:

			<launch> 

			  <!-- Launch Gazebo  --> 

			  <include file="$(find seven_dof_arm_gazebo)/launch/seven_dof_arm_world.launch" />    

			 

			 

			  <!-- Load joint controller configurations from YAML file to parameter server --> 

			  <rosparam file="$(find seven_dof_arm_gazebo)/config/seven_dof_arm_gazebo_control.yaml" command="load"/> 

			 

			 

			  <!-- load the controllers --> 

			  <node name="controller_spawner" pkg="controller_manager" type="spawner" respawn="false" 

			  output="screen" ns="/seven_dof_arm" args="joint_state_controller 

			            joint1_position_controller 

			            joint2_position_controller 

			            joint3_position_controller 

			            joint4_position_controller 

			            joint5_position_controller 

			            joint6_position_controller 

			            joint7_position_controller"/> 

			 

			 

			  <!-- convert joint states to TF transforms for rviz, etc --> 

			  <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" 

			  respawn="false" output="screen"> 

			    <remap from="/joint_states" to="/seven_dof_arm/joint_states" /> 

			  </node> 

			 

			</launch> 

			The launch files start the Gazebo simulation of the arm, load the controller configuration, load the joint state controller and joint position controllers, and, finally, run the robot state publisher, which publishes the joint states and transforms (TF).

			Let's check the controller topics generated after running this launch file:

			roslaunch seven_dof_arm_gazebo seven_dof_arm_gazebo_control.launch  

			If the command is successful, we will see these messages in the terminal:

			
				
					[image: Figure 4.8 – Terminal messages while loading the ROS controllers of the seven DOF arm ]
				

			

			Figure 4.8 – Terminal messages while loading the ROS controllers of the seven DOF arm

			Here are the topics generated from the controllers when we run this launch file:

			
				
					[image: Figure 4.9 – Position controller command topics generated by the ROS controllers ]
				

			

			Figure 4.9 – Position controller command topics generated by the ROS controllers

			As you can see from the previous screenshot, a new topic is available for each joint to control its position.

			Moving the robot joints

			After finishing the preceding topics, we can start commanding each joint into our desired positions.

			To move a robot joint in Gazebo, we should publish a desired joint value with the message type std_msgs/Float64 to the joint position controller command topics.

			Here is an example of moving the fourth joint to 1.0 radians:

			rostopic pub /seven_dof_arm/joint4_position_controller/command  std_msgs/Float64 1.0  

			
				
					[image: Figure 4.10 – Moving a joint of the arm in Gazebo ]
				

			

			Figure 4.10 – Moving a joint of the arm in Gazebo

			We can also view the joint states of the robot by using the following command:

			    rostopic echo /seven_dof_arm/joint_states  

			Now we can control all the joints of the seven DOF arm and, at the same time, we can read their values. In this way, we can implement custom robot control algorithms. In the next section, we will learn how to simulate the differential-drive robot.

			Simulating a differential wheeled robot in Gazebo

			We have seen the simulation of the robotic arm. In this section, we can set up the simulation for the differential wheeled robot that we designed in the previous chapter.

			You will find the diff_wheeled_robot.xacro mobile robot description in the mastering_ros_robot_description_pkg/urdf folder.

			Let's create a launch file to spawn the simulation model in Gazebo. As we did for the robotic arm, we can create an ROS package to launch a Gazebo simulation using the same dependencies of the seven_dof_arm_gazebo package. If you have already cloned the code repository, you already have this package, otherwise, clone the entire code from the Git repository, or get the package from the book's source code:

			git clone https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git

			cd Chapter4/seven_dof_arm_gazebo

			Navigate to the diff_wheeled_robot_gazebo/launch directory and take the diff_wheeled_gazebo.launch file. Here is the definition of this launch:

			<launch> 

			  <!-- these are the arguments you can pass this launch file, for example paused:=true --> 

			  <arg name="paused" default="false"/> 

			  <arg name="use_sim_time" default="true"/> 

			  <arg name="gui" default="true"/> 

			  <arg name="headless" default="false"/> 

			  <arg name="debug" default="false"/> 

			 

			  <!-- We resume the logic in empty_world.launch --> 

			  <include file="$(find gazebo_ros)/launch/empty_world.launch"> 

			    <arg name="debug" value="$(arg debug)" /> 

			    <arg name="gui" value="$(arg gui)" /> 

			    <arg name="paused" value="$(arg paused)"/> 

			    <arg name="use_sim_time" value="$(arg use_sim_time)"/> 

			    <arg name="headless" value="$(arg headless)"/> 

			  </include> 

			 

			  <!-- urdf xml robot description loaded on the Parameter Server--> 

			  <param name="robot_description" command="$(find xacro)/xacro --inorder '$(find mastering_ros_robot_description_pkg)/urdf/diff_wheeled_robot.xacro'" />  

			 

			  <!-- Run a python script to the send a service call to gazebo_ros to spawn a URDF robot --> 

			  <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen" 

			  args="-urdf -model diff_wheeled_robot -param robot_description"/>  

			 

			</launch> 

			To launch this file, we can use the following command:

			roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo.launch  

			You will see the following robot model in Gazebo. If you get this model, you have successfully finished the first phase of the simulation:

			
				
					[image: Figure 4.11 – Differential wheeled robot in Gazebo ]
				

			

			Figure 4.11 – Differential wheeled robot in Gazebo

			After this successful simulation, let's add a laser scanner to the robot.

			Adding the laser scanner to Gazebo

			We add the laser scanner on top of the robot so we can use it to perform high-end operations, such as autonomous navigation or map creation. Here, we should add the following extra code section to diff_wheeled_robot.xacro to add the laser scanner to the robot to define the link representing the laser scanner and the joint to connect it to the robot frame:

			  <link name="hokuyo_link"> 

			    <visual> 

			      <origin xyz="0 0 0" rpy="0 0 0" /> 

			      <geometry> 

			        <box size="${hokuyo_size} ${hokuyo_size} ${hokuyo_size}"/> 

			      </geometry> 

			      <material name="Blue" /> 

			    </visual> 

			  </link> 

			  <joint name="hokuyo_joint" type="fixed"> 

			    <origin xyz="${base_radius - hokuyo_size/2} 0 ${base_height+hokuyo_size/4}" rpy="0 0 0" /> 

			    <parent link="base_link"/> 

			    <child link="hokuyo_link" /> 

			  </joint> 

			Then, we need to include Gazebo-specific information to configure the laser scanner plugin:

			  <gazebo reference="hokuyo_link"> 

			    <material>Gazebo/Blue</material> 

			    <turnGravityOff>false</turnGravityOff> 

			    <sensor type="ray" name="head_hokuyo_sensor"> 

			      <pose>${hokuyo_size/2} 0 0 0 0 0</pose> 

			      <visualize>false</visualize> 

			      <update_rate>40</update_rate> 

			      <ray> 

			        <scan> 

			          <horizontal> 

			            <samples>720</samples> 

			            <resolution>1</resolution> 

			            <min_angle>-1.570796</min_angle> 

			            <max_angle>1.570796</max_angle> 

			          </horizontal> 

			        </scan> 

			        <range> 

			          <min>0.10</min> 

			          <max>10.0</max> 

			          <resolution>0.001</resolution> 

			        </range> 

			      </ray> 

			      <plugin name="gazebo_ros_head_hokuyo_controller" filename="libgazebo_ros_laser.so"> 

			        <topicName>/scan</topicName> 

			        <frameName>hokuyo_link</frameName> 

			      </plugin> 

			    </sensor> 

			  </gazebo> 

			In this section, we use the Gazebo ROS plugin file called libgazebo_ros_laser.so to simulate the laser scanner. The complete code can be found in the diff_wheeled_robot_with_laser.xacro description file in the mastering_ros_robot_description_pkg/urdf/ directory.

			We can view the laser scanner data by adding some objects to the simulation environment. Here, we add some cylinders around the robot and can see the corresponding laser view in the next section of the figure:

			
				
					[image: Figure 4.12 – Differential drive robot in between cylinder objects in Gazebo ]
				

			

			Figure 4.12 – Differential drive robot in between cylinder objects in Gazebo

			The laser scanner plugin publishes laser data (sensor_msgs/LaserScan) to the /scan topic.

			Moving the mobile robot in Gazebo

			The robot we are working with is a differential robot with two wheels and two caster wheels. The complete characteristics of the robot should be modeled using the Gazebo-ROS plugin. Luckily, the plugin for a basic differential drive function is already implemented.

			To get the robot to move in Gazebo, we should add a Gazebo-ROS plugin file called libgazebo_ros_diff_drive.so, which will add the differential drive behavior to our robot.

			Here is the complete code snippet of the definition of this plugin and its parameters:

			  <!-- Differential drive controller  --> 

			  <gazebo> 

			    <plugin name="differential_drive_controller" filename="libgazebo_ros_diff_drive.so"> 

			 

			      <rosDebugLevel>Debug</rosDebugLevel> 

			      <publishWheelTF>false</publishWheelTF> 

			      <robotNamespace>/</robotNamespace> 

			      <publishTf>1</publishTf> 

			      <publishWheelJointState>false</publishWheelJointState> 

			      <alwaysOn>true</alwaysOn> 

			      <updateRate>100.0</updateRate> 

			 

			      <leftJoint>front_left_wheel_joint</leftJoint> 

			      <rightJoint>front_right_wheel_joint</rightJoint> 

			 

			      <wheelSeparation>${2*base_radius}</wheelSeparation> 

			      <wheelDiameter>${2*wheel_radius}</wheelDiameter> 

			      <broadcastTF>1</broadcastTF> 

			      <wheelTorque>30</wheelTorque> 

			      <wheelAcceleration>1.8</wheelAcceleration> 

			      <commandTopic>cmd_vel</commandTopic> 

			      <odometryFrame>odom</odometryFrame>  

			      <odometryTopic>odom</odometryTopic>  

			      <robotBaseFrame>base_footprint</robotBaseFrame> 

			 

			 

			    </plugin> 

			  </gazebo> 

			We can provide parameters such as the wheel joints of the robot (joints should be of a continuous type), wheel separation, wheel diameter, an odometry topic, and so on, using this plugin.

			An important parameter that is required to move the robot is the following:

			<commandTopic>cmd_vel</commandTopic> 

			This parameter is the velocity command topic to the plugin, which is basically a Twist message in ROS (sensor_msgs/Twist). We can publish the Twist message into the /cmd_vel topic, and we will see the robot start to move from its position.

			Adding joint state publishers to the launch file

			After adding the differential drive plugin, we need to join state publishers to the existing launch file, or we can build a new one. You can find the new final launch file, diff_wheeled_gazebo_full.launch, in diff_wheeled_robot_gazebo/launch.

			The launch file contains joint state publishers, which help developers to visualize the tf in rviz. Here are the extra lines to be added to this launch file for the joint state publishing:

			  <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" ></node>  

			  <!-- start robot state publisher --> 

			  <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen" > 

			    <param name="publish_frequency" type="double" value="50.0" /> 

			  </node> 

			We are now ready to develop our first program to command a robot in an intuitive way. In the next section, we will implement a teleoperation node to move the differential drive robot in the simulation scene.

			Adding the ROS teleop node

			The ROS teleop node publishes the ROS Twist command by taking keyboard inputs. From this node, we can generate both linear and angular velocity, and there is already a standard teleop node implementation available; we can simply reuse the node.

			The teleop is implemented in the diff_wheeled_robot_control package. The script folder contains the diff_wheeled_robot_key node, which is the teleop node. As per usual, you can download this package from the previous Git repository. At this point, you reach this package with the following command:

			roscd diff_wheeled_robot_control  

			To successfully compile and use this package, you may need to install the joy_node package:

			sudo apt-get install ros-noetic-joy

			Here is the launch file called keyboard_teleop.launch to start the teleop node:

			 <launch> 

			  <!-- differential_teleop_key already has its own built in velocity smoother --> 

			  <node pkg="diff_wheeled_robot_control" type="diff_wheeled_robot_key" name="diff_wheeled_robot_key"  output="screen"> 

			 

			    <param name="scale_linear" value="0.5" type="double"/> 

			    <param name="scale_angular" value="1.5" type="double"/> 

			    <remap from="turtlebot_teleop_keyboard/cmd_vel" to="/cmd_vel"/>  

			  </node> 

			</launch> 

			Let's start moving the robot.

			Launch Gazebo with the completed simulation settings using the following command:

			roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo_full.launch  

			Start the teleop node:

			roslaunch diff_wheeled_robot_control keyboard_teleop.launch  

			Start RViz to visualize the robot state and laser data:

			rosrun rviz  

			Add Fixed Frame: /odom and Laser Scan, set the topic to /scan to view the laser scan data, and add the Robot model element to view the robot model.

			In the teleop terminal, we can use some keys (U, I, O, J, K, L, M, ",", and ".") for direction adjustments and other keys (Q, Z, W, X, E, C, K, and the spacebar) for speed adjustments. The following figure shows a screenshot demonstrating the robot moving in Gazebo using teleop and its visualization in RViz.

			We can add primitive shapes from the Gazebo toolbar to the robot environment, or we can add objects from the online library, which is on the left-side panel:

			
				
					[image: Figure 4.13 – Moving the differential drive robot in Gazebo using teleoperation ]
				

			

			Figure 4.13 – Moving the differential drive robot in Gazebo using teleoperation

			The robot will only move when we press the appropriate key inside the teleop node terminal. If this terminal is not active, pressing the key will not move the robot. If everything works well, we can explore the area using the robot and visualize the laser data in RViz.

			Questions

			
					Why do we perform robotic simulation?

					How can we add sensors to a Gazebo simulation?

					What are the different types of ROS controllers and hardware interfaces?

					How can we move the mobile robot in a Gazebo simulation?

			

			Summary

			In this chapter, we were trying to simulate two robots: one was a robotic arm with seven DOF, and the other was a differential wheeled mobile robot. We started with the robotic arm and discussed the additional Gazebo tags needed to launch the robot in Gazebo. We discussed how to add a 3D vision sensor to the simulation. Later, we created a launch file to start Gazebo with a robotic arm and discussed how to add controllers to each joint. We added the controllers and worked with each joint.

			Like the robotic arm, we created the URDF for the Gazebo simulation and added the necessary Gazebo-ROS plugin for the laser scanner and differential drive mechanism. After completing the simulation model, we launched the simulation using a custom launch file. Finally, we looked at how to move the robot using the teleop node.

			We can learn more about the robotic arm and mobile robots supported by ROS at http://wiki.ros.org/Robots.

			In the next chapter, we will see how to simulate robots using other robot simulators, namely, CoppeliaSim and Webots.

		

	






			Chapter 5: Simulating Robots Using ROS, CoppeliaSim, and Webots

			Having learned how to simulate robots with Gazebo, in this chapter we will discuss how to use the other two powerful robot-simulation software: CoppeliaSim (http://www.coppeliarobotics.com) and Webots (https://cyberbotics.com/).

			These are multiplatform robotic simulators. CoppeliaSim is developed by Coppelia Robotics. It offers many simulation models of popular industrial and mobile robots ready to be used, and different functionalities that can be easily integrated and combined through a dedicated application programming interface (API). In addition, it can operate with Robot Operating System (ROS) using a proper communication interface that allows us to control the simulation scene and the robots via topics and services. As with Gazebo, CoppeliaSim can be used as a standalone software, while an external plugin must be installed to work with ROS. As for Webots, it is a free and open source software used to simulate 3D robots. It is developed by Cyberbotics Ltd. and since December 2018 it has been released under a free and open source license. 

			As with CoppeliaSim, it can be easily interfaced with ROS.

			In this chapter, we will learn how to set up these simulators and connect them with the ROS network. We will discuss some initial code to understand how they work with both as standalone software and how they can be used with ROS services and topics.

			We will cover the following topics in this chapter:

			
					Setting up CoppeliaSim with ROS

					Simulating a robotic arm using CoppeliaSim and ROS

					Setting up Webots with ROS

					Writing your first controller

					Writing a teleoperation (teleop) node using webots_ros

			

			Technical requirements

			To follow this chapter, you need a standard laptop running Ubuntu 20.04 with ROS Noetic installed. The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git. The code is contained in the Chapter5/csim_demo_pkg and Chapter5/webost_demo_pkg folders.

			You can view this chapter's code in action here: https://bit.ly/3AOApje. 

			Setting up CoppeliaSim with ROS

			Before starting to work with CoppeliaSim, we need to install it on our system and configure our environment to start the communication bridge between ROS and the simulation scene. CoppeliaSim is cross-platform software, available for different operating systems such as Windows, macOS, and Linux. It is developed by Coppelia Robotics GmbH and is distributed with both free educational and commercial licenses. Download the latest version of the CoppeliaSim simulator from the Coppelia Robotics download page at http://www.coppeliarobotics.com/downloads.html, choosing the edu version for Linux. In this chapter, we will refer to the CoppeliaSim 4.2.0 version.

			After completing the download, extract the archive. Move to your download folder and use the following command:

			tar vxf CoppeliaSim_Edu_V4_2_0_Ubuntu20_04.tar.xz

			This version is supported by Ubuntu versions 20.04. It is convenient to rename this folder with something more intuitive, such as this:

			mv CoppeliaSim_Edu_V4_2_0_Ubuntu20_04 CoppeliaSim

			To easily access CoppeliaSim resources, it is also convenient to set the COPPELIASIM_ROOT environmental variable that points to the CoppeliaSim main folder, like this:

			echo "export COPPELIASIM_ROOT=/path/to/CoppeliaSim/folder >> ~/.bashrc"  

			Here, /path/to/CoppeliaSim/folder is the absolute path to the extracted folder.

			CoppeliaSim offers the following modes to control simulated robots from external applications:

			
					Remote application programming interface (API): The CoppeliaSim remote API is composed of several functions that can be called from external applications developed in C/C++, Python, Lua, or MATLAB. The remote API interacts with CoppeliaSim over the network, using socket communication. You can integrate the remote API in your C++ or Python nodes to connect ROS with the simulation scene. The list of all remote APIs available in CoppeliaSim can be found on the Coppelia Robotics website, at https://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsMatlab.htm. To use the remote API, you must implement both client and server sides, as follows:A. CoppeliaSim client: The client side resides in the external application. It can be implemented in a ROS node or in a standard program written in one of the supported programming languages.
B. CoppeliaSim server: This side is implemented in CoppeliaSim scripts and allows the simulator to receive external data to interact with the simulation scene.


					RosInterface: This is the current interface to enable the communication between ROS and CoppeliaSim. In the past, an ROS plugin was used, but this is now deprecated.

			

			In this chapter, we will discuss how to interact with CoppeliaSim using the RosInterface plugin that replicates the remote API functionalities transparently. Using this interface, CoppeliaSim will act as a ROS node that other nodes can communicate with via ROS services, ROS publishers, and ROS subscribers. The interface is implemented by an external library already available in the CoppeliaSim folder. Prior to the setup of the RosInterface plugin, we need to configure the environment to run CoppeliaSim. First, we need to force our operating system to load the Lua and Qt5 shared libraries from the root folder of CoppeliaSim. Lua is a programming language used for different high-level applications, and it is used from CoppeliaSim to program simulated robots directly from its interface.

			Now, we are ready to start the simulator. To enable the ROS communication interface, a roscore command should be run on your machine prior to opening the simulator, while to open CoppeliaSim, we can use the following command:

			cd $COPPELIASIM_ROOT

			 ./coppeliaSim.sh

			During the startup, all plugins installed in the system will be loaded. In a few words, all the plugins are in the root folder of CoppeliaSim, as shown in the following screenshot:

			
				
					[image: Figure 5.1 – Plugins loading during CoppeliaSim startup ]
				

			

			Figure 5.1 – Plugins loading during CoppeliaSim startup

			You can check if everything is working properly by listing the nodes running on your system after launching CoppeliaSim, as shown in the following screenshot:

			
				
					[image: Figure 5.2 – List of active ROS nodes after running CoppeliaSim with the RosInterface plugin ]
				

			

			Figure 5.2 – List of active ROS nodes after running CoppeliaSim with the RosInterface plugin

			As you can see, the sim_ros_interface node has been started with the CoppeliaSim program. To explore the RosInterface plugin functionalities, we can have a look at the plugin_publisher_subscriber.ttt scene, located in the csim_demo_pkg/scene folder of the code provided with this book. To open this scene, use the main drop-down menu and select the File | Open Scene option. After opening this scene the simulation windows should appear, as in the following screenshot:

			
				
					[image: Figure 5.3 – plugin_publisher_subscriber.ttt simulation scene ]
				

			

			Figure 5.3 – plugin_publisher_subscriber.ttt simulation scene

			In this scene, a robot is equipped with two cameras: one active camera acquiring images from the environment and publishing the video stream on a specific topic, and one passive camera that only acquires the video stream from the same topic. We can press the play button on the main bar of the CoppeliaSim interface.

			After that, the simulation starts; this is what will happen:

			
				
					[image: Figure 5.4 – Image publisher and subscriber example ]
				

			

			Figure 5.4 – Image publisher and subscriber example

			In this simulation, the passive camera displays the image published from the active one, receiving vision data directly from the ROS framework. We can also visualize the video stream published by CoppeliaSim using the image_view package, by running the following command:

			rosrun image_view image:=/camera/image_raw

			We can now discuss how to interface CoppeliaSim and ROS using the RosInterface plugin.

			Understanding the RosInterface plugin

			The RosInterface plugin is part of the CoppeliaSim API framework. Even though the plugin is correctly installed in your system, the load operation will fail if the roscore was not running at that time. In this case, the ROS functions are not able to work properly. To prevent such unexpected behaviors, we will later see how to check if the RosInterface plugin is working properly. Let's discuss how to interact with CoppeliaSim using ROS topics.

			Interacting with CoppeliaSim using ROS topics

			We will now discuss how to use ROS topics to communicate with CoppeliaSim. This is useful when we want to send information to the objects of the simulation, or retrieve data generated by robot sensors or actuators.

			The most common way to program the simulation scene of this simulator is by using Lua scripts. Every object of the scene can be associated to a script that is automatically invoked when the simulation starts and is cyclically executed during simulation time.

			In the next example, we will create a scene with two objects. One will be programmed to publish integer data from a specific topic while the other one subscribes to this topic, displaying the float data on the CoppeliaSim console.

			Use the drop-down menu on the Scene hierarchy panel, select the Add | Dummy entry. We can create two objects, a dummy_publisher object and a dummy_subscriber object, and associate a script with each of them. Use the right mouse button on the created objects, and select the Add | Associated child script | Non threaded entry, as shown in the following screenshot:

			
				
					[image: Figure 5.5 – Associating a non-threaded script with CoppeliaSim object ]
				

			

			Figure 5.5 – Associating a non-threaded script with CoppeliaSim object

			Alternatively, we can directly load the simulation scene by opening the demo_publisher_subscriber.ttt file located in the csim_demo_pkg folder of the book source code in the scene directory.

			Let's see the content of the script associated with the dummy_publisher object, as follows:

			function sysCall_init()

			    if simROS then

			        print("ROS interface correctly loaded")

			        pub=simROS.advertise('/number', 'std_msgs/Int32')

			    else

			    print("<font color='#F00'>ROS interface was not found. Cannot run.</font>@html")

			    end

			end

			function sysCall_actuation()

			    int_data = {}

			    int_data['data'] = 13

			    simROS.publish(pub, int_data)  

			end

			Each Lua script linked to CoppeliaSim objects contains the following four sections:

			
					sysCall_init: This section is only executed the first time that the simulation starts.

					sysCall_actuation: This section is cyclically called at the same frame rate as the simulation. Users can put here the code that controls the actuation of the robot.

					sysCall_sensing: This part will be executed at each simulation step, during the sensing phase of a simulation step.

					sysCall_cleanup: This section is called just before the simulation ends.

			

			As you can see from the previous code snippet, in the initialization part we check if the RosInterface plugin is installed and correctly loaded in the system; if not, an error is displayed. This is done by checking the existence of the simROS object, as shown in the following code snippet:

			if simROS then

			    print("ROS interface correctly loaded")

			After checking that the ROS plugin has been loaded, we will enable the publisher of the float value, as follows:

			pub = simROS.advertise('/number', 'std_msgs/Int32')

			To print messages on the status bar of the simulator, we can use the print function, as follows:

			print("<font color='#F00'>ROS interface was not found. Cannot run.</font>@html")

			This text will be shown if the ROS plugin has not been initialized. The result of the previous line of code is depicted in the following screenshot:

			
				
					[image: Figure 5.6 – Error reported in the status bar of CoppeliaSim ]
				

			

			Figure 5.6 – Error reported in the status bar of CoppeliaSim

			Finally, we exploit the cyclic call of the actuation function to continuously stream the int value over the ROS network, as follows:

			function sysCall_actuation()

			    int_data = {}

			    int_data['data'] = 13

			    simROS.publish(pub, int_data)  

			end

			Let's now see the content of the script associated with the dummy_subscriber object, as follows:

			function sysCall_init()

			    if simROS then

			        print("ROS interface correctly loaded")

			        sub=simROS.subscribe('/number', 'std_msgs/Int32', 'intMessage_callback')

			    else

			    print("<font color='#F00'>ROS interface was not found. Cannot run.</font>@html")

			    end

			end

			function intMessage_callback(msg)

			    print ( "data", msg["data"] )

			end

			After checking that the ROS plugin has been loaded, we activate the subscriber of the input number value on the /number topic. The subscribe method of the simROS object expects as parameters the name of the topic, the desired type to stream, and the callback to process the incoming data. The code can be seen in the following snippet:

			        sub=simROS.subscribe('/number', 'std_msgs/Int32', 'intMessage_callback')

			Then, we define a callback method to display the data published on the /number  topic into the status bar, as follows:

			function intMessage_callback(msg)

			    print ( "data", msg["data"] )

			end

			After starting the simulation, we can see that the float number published by the dummy_publisher script is correctly received by the dummy_subscriber script. We will now discuss how to use different ROS messages in CoppeliaSim scripts.

			Working with ROS messages

			To publish a new ROS message in Lua scripts, we need to wrap it in a data structure containing the same fields of the original message. The inverse procedure must be done to collect the information published on ROS topics. Let's analyze the work done in the previous example before we move to something more complicated. In the dummy_publisher example, the goal was to publish integer data on an ROS topic. We can check the structure of an integer message using this ROS command:

			rosmsg show std_msgs/Int32

			int32 data

			This means that we need to fill the data field of the message structure with the desired value to stream, as we did in the publisher script. The code to do this can be seen here:

			int_data['data'] = 13

			Let's now see how to make something more complex, by streaming over ROS an image taken by a camera sensor placed in the simulation scene. Load the plugin_publisher_subscriber.ttt simulation scene again and open the script associated with the active_camera object. At the start of this script, the handler of the message is retrieved, as follows:

			visionSensorHandle=sim.getObjectHandle('active_camera')

			As well as this, the topic publisher is initialized, as follows:

			pub=simROS.advertise('/camera/image_raw', 'sensor_msgs/Image')

			Then, the sysCall_sensing sensing function is automatically called by the CoppeliaSim executor when a new image is received. Inside it, a sensor_msgs/Image data structure must be compiled before publishing the data. Let's see the code.

			The getVisionSensorCharImage method is used to get the new image and its properties, as illustrated in the following code snippet:

			function sysCall_sensing()

			    local data,w,h=sim.getVisionSensorCharImage(visionSensorHandle)

			We now have almost all the elements to configure the image frame, as illustrated in the following code snippet:

			    d={}

			    d['header']={stamp=simROS.getTime(), frame_id="a"}

			    d['height']=h

			    d['width']=w

			    d['encoding']='rgb8'

			    d['is_bigendian']=1

			    d['step']=w*3

			And we can stream the data, as follows:

			    d['data']=data

			    simROS.publish(pub,d)

			Up to now, we have only discussed how to use RosInterface to connect ROS and CoppeliaSim. We can use it with the robot model already provided with the simulator. In the next section, we will see how to import our own Unified Robot Description Format (URDF) robot model into CoppeliaSim.

			Simulating a robotic arm using CoppeliaSim and ROS

			In the previous chapter, we used Gazebo to import and simulate the seven-degrees of freedom (DOF) arm designed in Chapter 3, Working with ROS for 3D Modeling. Here, we will do the same thing using CoppeliaSim. The first step to simulate our seven-DOF arm is to import it in the simulation scene. CoppeliaSim allows you to import new robots using URDF files; for this reason, we must convert the xacro model of the arm in a URDF file, saving the generated URDF file in the urdf folder of the csim_demo_pkg package, as follows:

			rosrun xacro seven_dof_arm.xacro >  /path/to/csim_demo_pkg/urdf/seven_dof_arm.urdf

			We can now import the robot model, using the URDF import plugin. Select from the main drop-down menu the Plugins | URDF import entry and press the Import button, choosing the default import options from the dialog window. Finally, select the desired file to import, and the seven-DOF arm will appear in the scene, as illustrated in the following screenshot:

			
				
					[image: Figure 5.7 – Simulation of seven-DOF arm in CoppeliaSim ]
				

			

			Figure 5.7 – Simulation of seven-DOF arm in CoppeliaSim

			All the components of the robot are now imported into the scene, as we can see from the Scene hierarchy panel, in which are shown the set of robot joints and links defined in the URDF file.

			Even if the robot has been correctly imported, it is not ready to be controlled yet. To actuate the robot, we need to enable all robot motors from the Joint Dynamic Properties panel. Until the motor is disabled, it is not possible to move it during the simulation. To enable the motor of a joint, open the Scene Object Properties panel, selecting from the main drop-down menu the Tools | Scene object properties option. You can also open this dialog with a double-click on an object icon in the scene hierarchy. From this new window, open the Dynamic properties dialog and enable the motor and the control loop of the joint, selecting the controller type. By default, the motor is controlled via a proportional integral derivative (PID), as shown in the following screenshot:

			
				
					[image: Figure 5.8 – Scene Object Properties and Joint Dynamic Properties dialogs ]
				

			

			Figure 5.8 – Scene Object Properties and Joint Dynamic Properties dialogs

			To increase the performance of the control loop, PID gains should be properly tuned. After enabling motors and control loops for all robot joints, we can check that everything has been configured correctly. Run the simulation and set a target position from the Scene Object Properties panel.

			Here is an example of moving the fourth joint to 1.0 radians:

			
				
					[image: Figure 5.9 – Moving a joint of the arm from CoppeliaSim Scene Object Properties dialog ]
				

			

			Figure 5.9 – Moving a joint of the arm from CoppeliaSim Scene Object Properties dialog

			The robot is now integrated in the simulation scene; however, we cannot control it using ROS. To do this, in the next section we will discuss how to integrate robot controllers with the RosInterface plugin.

			Adding the ROS interface to CoppeliaSim joint controllers

			In this section, we will learn how to interface the seven-DOF arm with the RosInterface plugin to stream the state of its joints and receive the control input via topics. As already seen in the previous example, select a component of the robot (for example, the base_link_respondable component) and create a Lua script that will manage the communication between CoppeliaSim and ROS.

			Here is the description script source code. 

			In the initialization block, we retrieve the handlers of all the joints of the robot, as follows:

			function sysCall_init()

			shoulder_pan_handle=sim.getObjectHandle('shoulder_pan_joint')

			    shoulder_pitch_handle=sim.getObjectHandle('shoulder_pitch_joint')

			     elbow_roll_handle=sim.getObjectHandle('elbow_roll_joint')

			    elbow_pitch_handle=sim.getObjectHandle('elbow_pitch_joint')

			    wrist_roll_handle=sim.getObjectHandle('wrist_roll_joint')

			    wrist_pitch_handle=sim.getObjectHandle('wrist_pitch_joint')

			    gripper_roll_handle=sim.getObjectHandle('gripper_roll_joint')

			Then, we set the publisher of the joint angles, like this:

			    j1_state_pub = simROS.advertise('/csim_demo/seven_dof_arm/shoulder_pan/state', 'std_msgs/Float32')

			We must replicate this line for each joint of the model. We need to successfully do the same for the subscribers of the joint commands, as follows:

			    j1_cmd_sub = simROS.subscribe('/csim_demo/seven_dof_arm/shoulder_pan/cmd', 'std_msgs/Float32', 'j1Cmd_callback')

			Also, in this case, we must instantiate a new subscriber and a new callback to process the incoming data. For example, to read the joint value published on the ROS topic for a given joint and apply a proper joint command, we will use the following block of code:

			function j1Cmd_callback( msg )

			    sim.setJointTargetPosition( shoulder_pan_handle, msg['data'] )

			end

			Here, we use the setJointTargetPosition function to change the position of a given joint. The input arguments of such functions are the handler of the joint object and the value to assign. After starting the simulation, we can move a desired joint, such as the elbow_pitch joint, publishing a value using command-line tools, as illustrated in the following code snippet:

			rostopic pub /csim_demo/seven_dof_arm/elbow_pitch/cmd std_msgs/Float32 "data: 1.0"

			At the same time, we can get the position of the joint listening on the state topic, as follows:

			rostopic echo /csim_demo/seven_dof_arm/elbow_pitch/state

			This is shown in the following screenshot:

			
				
					[image: Figure 5.10 – Controlling a seven_dof_arm joint using the RosInterface plugin ]
				

			

			Figure 5.10 – Controlling a seven_dof_arm joint using the RosInterface plugin

			We are now ready to implement our control algorithms moving the joints of the seven-DOF arm. With this topic, we conclude the first part of this chapter. In the following section, we continue to discuss robotic simulator software, introducing Webots.

			Setting up Webots with ROS

			As already done with CoppeliaSim, we need to install Webots on our system before setting it up with ROS. Webots is a multiplatform simulation software supported by Windows, Linux, and macOS. This software was initially developed by the Swiss Federal Institute of Technology, Lausanne (EPFL). Now, it is developed by Cyberbotics, and it is released under the free and open source Apache 2 license. Webots provides a complete development environment to model, program, and simulate robots. It has been designed for professional use and it is widely used in industry, education, and research.

			You can choose different ways to install the simulator. You can download the .deb package from the Webots web page (http://www.cyberbotics.com/#download) or use the Debian/Ubuntu Advanced Packaging Tool (APT) package manager. Assuming that you are running Ubuntu, let's start by authenticating the Cyberbotics repository, as follows:

			wget -qO- https://cyberbotics.com/Cyberbotics.asc | sudo apt-key add -

			Then, you can configure your APT package manager by adding the Cyberbotics repository, as follows:

			sudo apt-add-repository 'deb https://cyberbotics.com/debian/ binary-amd64/'

			sudo apt-get update

			Then, proceed to the installation of Webots by using the following command:

			sudo apt-get install webots

			We are now ready to start Webots using the following command:

			$ webots

			After this command, the Webots user interface (UI) will open. Using the simulation menu on the top of the window you can control the simulation, starting or pausing the simulation or speeding up its execution.

			We are now ready to start to simulate robot motion and sensors. Before we discuss how to start programming robots with Webots, we will overview its fundamentals.

			Introduction to the Webots simulator

			Webots simulations are mainly composed of the following three elements:

			
					A world configuration file: As with Gazebo, the simulation environment is configured by means of a text-based world file with a .wbt extension. You can directly create and export world files from the Webots interface. All simulated objects and robots—along with their geometrical shapes and textures, position, and orientation—are described in the world file. Webots already contains some example world files ready to be used. These are contained in the world subfolder of Webots. If you installed Webots using APT, such files are contained in the /usr/local/webots/projects/vehicles/worlds/ folder.

					Controllers: Each simulation is handled by one or more controller programs. Controllers can be implemented in different programming languages such as C, C++, Python, or Java. Also, MATLAB scripts are supported. When the simulation starts, the associated controllers start as separate processes. Even in this case, a set of basic controllers are already available in the main directory of Webots; they are placed in the controllers subfolder. In this way, Webots already implements different robot functionalities, such as motion functions.

					Physical plugins: A set of plugins that can be used to modify the regular physical behavior of the simulation. They can be written in the same languages as those of the controller programs.

			

			The communication bridge between ROS and Webots can be implemented using a proper controller that can be used by any robot of the simulation scene and that acts like a ROS node, providing all the Webots functions as services or topics to other ROS nodes. We will start discussing how to create and program a first simulation scene, before we explore its integration with ROS.

			Simulating a mobile robot with Webots

			The goal of this section is to create a simulation scene from scratch, containing objects and a mobile wheeled robot. To do this, we need to create a new empty world. We can use the wizard option to create a new simulation scene. This world is already available in the book source code in the webots_demo_pkg package. To create a new simulation, use the top-bar menu and select Wizards | New Project Directory. An applet will help you to set up everything. Click Next to choose a project directory. Insert the path of the folder as you prefer, and choose mobile_robot as the folder name. You can also choose a world name; insert robot_motion_controller.wbt and be careful to pin the Add a rectangle area option. Then, click Finish and, after the scene has been loaded, it should appear as depicted in the following screenshot:

			
				
					[image: Figure 5.11 – Starting scene of Webots ]
				

			

			Figure 5.11 – Starting scene of Webots

			Each object in the scene is organized in a hierarchical way, as the tree shows in the left panel of the UI. At the start, we have the following elements already present:

			
					WorldInfo: This contains a set of simulation parameters, such as fixing the reference frame.

					Viewpoint: This defines the main viewpoint camera parameters.

					TexturedBackground: This defines the background image of the simulation.

					TexturedBackgroundlight: This defines the light associated with the background.

					RectangleArena: This represents the floor for our simulation objects.

			

			In Webots, such objects are called nodes. Each node can be customized by setting some properties—for example, by double-clicking on the RectangleArena element, we can modify the floor size and the wall's height. We are now ready to add objects to our scene. Select and fold the RectangleArea element from the hierarchy panel and click on the + (add) button in the upper panel, as shown in the following screenshot:

			
				
					[image: Figure 5.12 – Button to add nodes to the Webots scene ]
				

			

			Figure 5.12 – Button to add nodes to the Webots scene

			Each node of Webots is represented by a PROTO file. This is a text file that contains the definition of an object. Webots already contains different PROTO models to spawn objects and robots in the simulation scene. After clicking on the + button, choose PROTO nodes (Webots Projects) | objects | factory | containers | WoodenBox (Solid) to make a big wooden box appear in the simulation. Use the object property to modify its size and position. You can also use the mouse to easily move the box, positioning it. Be careful to assign a reasonable mass to the object, since at the start it is 0. Finally, we are ready to import the mobile robot. Exactly like the wooden box, a robot is represented by a PROTO element. Webots offers different mobile and industrial robot models. In this section, we will import the e-puck mobile robot. This is a small-wheeled, differential-drive educational platform consisting of multiple distance sensors and an onboard camera. Before we add this model or any other model to the environment, you must make sure that the simulation is paused and that the virtual time elapsed is 0 (you can reset the time using the reset button). In fact, every time that the world is modified, the virtual time counter on the main toolbar should show 0:00:00:000. Otherwise, at each save, the position of each object could accumulate errors. Therefore, any modification of the world should be performed after the scene has been reset and saved.

			Again, select RectangleArea and use the + button, selecting the (Webots Projects) / robots / gctronic / e-puck / E-puck PROTO element. Now, position the robot in the scene and save the world. Also, in this case, from the robot panel properties, you can configure things such as the sensor parameters (camera resolution, field of view, and similar). You are now ready to start the simulation using the Start button. You can also see that this robot is already able to move in the environment avoiding obstacles thanks to its sensors. This is because this robot already implements a controller that is called e-puck_avoid_obstacles. You can examine the source code of this controller either by directly opening its source code with a text editor or by using the integrated text editor of Webots. In this latter case, click on the controller in the E-puck node elements and click on Edit. The result is shown in the following screenshot:

			
				
					[image: Figure 5.13 – Controllers editor in Webots ]
				

			

			Figure 5.13 – Controllers editor in Webots

			As you can see, this controller is implemented with a C program, so any modifications made to it must be compiled beforehand to make it effective. Now, let's try writing our first controller using Webots.

			Writing your first controller

			In this section, we will write our first controller for the mobile robot. We have seen how the controllers handle the motion of the robot and its reaction to the sensors. Let's change the controller of the E-puck robot to move some fixed directions. We can choose different programming languages for our controller; however, we will use C++. The goal of the new controller is to command the velocity of the wheels of the robot to show the typical structure of a Webots controller.

			The first thing to do is to change the controller associated with our mobile robot. Note that each robot can use only one controller at once. Conversely, we can associate the same controller with different robots. To write our new controller, we must follow these steps:

			
					Create a new controller file.

					Write a new controller.

					Compile the new controller.

					Change the default controller of the robot with the new one in the robot properties panel.

			

			As already done for the creation of the world, we can use the wizard interface to generate a new controller. Use Wizards | New Robot Controller. Using the wizard, you can choose the programming language for the controller and its name. Choose C++ and robot_motion for its name. Some initial source code will appear in the text editor. Now, you can compile it using the Build button.

			The code of the controller is listed in the following snippet:

			#include <webots/Robot.hpp>

			#include <webots/Motor.hpp>

			#define MAX_SPEED 6.28

			//64 Milliseconds

			#define TIME_STEP 64

			using namespace webots;

			int main(int argc, char **argv) {

			 Robot *robot = new Robot();

			 Motor *leftMotor = robot->getMotor("left wheel motor");

			 Motor *rightMotor = robot->getMotor("right wheel motor");

			 leftMotor->setPosition(INFINITY);

			 rightMotor->setPosition(INFINITY);

			 double t=0.0;

			 double r_direction=1.0;

			 while(true)  {

			    leftMotor->setVelocity( MAX_SPEED*0.1);

			    rightMotor->setVelocity( r_direction*MAX_SPEED*0.1);

			    robot->step(TIME_STEP) ;   

			    t+= TIME_STEP;

			    if ( t > 2000 ) {

			        r_direction*=-1.0;

			    }

			    if( t > 4000) {

			        r_direction = 1.0;

			        t = 0.0;

			    }

			  }

			  delete robot;

			  return 0;

			}

			Here is an explanation of the code.

			Let's start by including the header files to access the Robot functions and its motors, as follows:

			#include <webots/Robot.hpp>

			#include <webots/Motor.hpp>

			Then, we define the maximum speed of the wheels, 6.28 radian per second, and the time step representing the sampling time of the simulation. This time is reported in milliseconds (ms). The code is shown here:

			#define MAX_SPEED 6.28

			#define TIME_STEP 64

			In the main function, we have to write the controller procedure. We will start instantiating the Robot and the Motors objects. For the Robot object, its constructor requires the name of the motor. You can get the element's name of the robot from the PROTO file describing the robot (right-click on the robot name in the hierarchy panel and then select View PROTO Source). The code is illustrated in the following snippet:

			 Robot *robot = new Robot();

			 Motor *leftMotor = robot->getMotor("left wheel motor");

			 Motor *rightMotor = robot->getMotor("right wheel motor");

			To control the robot motor in velocity, we set its position to INFINITY, and then we set the desired velocity, as follows:

			 leftMotor->setPosition(INFINITY);

			 rightMotor->setPosition(INFINITY);

			The main loop consists of an infinite while loop, in which we set the velocity of each motor as 10 percent of the maximum velocity and, for the right motor, a motion direction: 1.0 to move straight forward and -1.0 to rotate. The code is illustrated in the following snippet:

			while(true)  {

			    leftMotor->setVelocity( MAX_SPEED*0.1);

			    rightMotor->setVelocity( r_direction*MAX_SPEED*0.1);

			We consider the elapsed time to set the control velocity, as follows:

			    t+= TIME_STEP;

			Finally, to actuate the robot at the end of each iteration, we need to call the step function to send the commands to its motors. This function takes as input the time to wait before starting another loop of the controller. This number must be specified in ms. The code is illustrated in the following snippet:

			robot->step(TIME_STEP) ;   

			We are now ready to compile the controller using the Build button and add this controller to the robot. The latter step can be made directly in the hierarchy panel, modifying the controller field and selecting the robot_motion controller.

			Now, you can start the simulation and see the results of your first Webots controller. In the next section, we will integrate ROS and Webots.

			Simulating the robotic arm using Webots and ROS

			Webots-ROS integration requires two sides: the ROS side and the Webots side. The ROS side is implemented via the webots_ros ROS package, while Webots supports ROS natively thanks to a standard controller that can be added to any robot model. To use Webots with ROS, you need to install the webots_ros package. This can be done using APT, as follows:

			sudo apt-get install ros-noetic-webots-ros

			Now, we must change the controller previously developed with the one called ros, as shown in the following screenshot:

			
				
					[image: Figure 5.14 – Adding ros controller to the Webots robot ]
				

			

			Figure 5.14 – Adding ros controller to the Webots robot

			After the simulation starts, we can directly interact with our robot using a set of services implementing Webots functionalities on the ROS network according to the robot's sensors' and actuators' configuration. Of course, a roscore must be active in the ROS network, otherwise an error will be displayed in the Webots console. Webots only publishes a topic called /model_name. On this topic is published a list of models currently active in the simulation scene. This information is fundamental to use Webots services; in fact, Webots uses a specific syntax to declare its services or topics on the network: [robot_name]/[device_name]/[service/topic_name]. This is broken down as follows:

			
					[robot_name]: The name of the robot is followed by the ID of the process.

					[device_name]: This field shows you which device it refers to.

					[service/topic_name]: This field is identical or very close to the Webots function it corresponds to.

			

			An example of data published on this topic is shown here:

			
				
					[image: Figure 5.15 – Model name published by Webots ]
				

			

			Figure 5.15 – Model name published by Webots

			Now, we can start to use Webots services. The ros controller is very general and can be executed on every robot. Among different sensors, the e-puck robot is endowed with an onboard camera. To stream camera data on the ROS network, the camera must be enabled, and we can use the /camera/enable service. Use the following command-line tools to enable it:

			rosservice call /e_puck_36112_jcacace_Lenovo_Legion_5_15ARH05/camera/enable "value: true"

			At this point, a new topic is published on the ROS network, representing the images taken by the camera. You can see this image using the image_view plugin, as follows:

			rosrun image_view image:=/e_puck_36112_jcacace_Lenovo_Legion_5_15ARH05/camera/image

			Similarly, we can enable and read the other sensors, such as the distance sensors, and we can also set the position, velocity, and torque of the joints of the robot. In our case, we want to set the velocity of the wheels.

			As already stated, the integration with ROS requires two sides. On the ROS side, we can implement new nodes using the webots_ros package.

			Writing a teleop node using webots_ros

			In this section, we will implement a ROS node to directly control the wheels' velocity of the e-puck robot starting from a geometry_msgs::Twist message. To do this, we need to exploit webots_ros as a dependency. Let's create a webots_demo_pkg package, specifying webots_ros as a dependency, as follows:

			catkin_create_pkg webots_demo_pkg roscpp webots_ros geometry_msgs

			The complete source code can be found in the book source code, and it is explained next. Let's start by defining some useful header files implementing the messages needed to use the Webots services, as follows:

			#include "ros/ros.h"

			#include <webots_ros/Int32Stamped.h>

			#include <webots_ros/set_float.h>

			#include <webots_ros/set_int.h>

			#include <webots_ros/robot_get_device_list.h>

			#include <std_msgs/String.h>

			#include <geometry_msgs/Twist.h>

			Then, declare some variable to save the data received by the ROS callbacks—the information about the robot modes and the velocity to apply, as follows:

			static char modelList[10][100];

			static int cnt = 0;

			static float left_vel = 0.0;

			static float right_vel = 0.0;

			Two callbacks are implemented in this node, one to read the desired linear and angular velocity and to assign the wheels' velocity. The code for this is illustrated in the following snippet:

			void cmdVelCallback(const geometry_msgs::Twist::ConstPtr &vel) {

			    float wheel_radius = 0.205;

			    float axes_length = 0.52;

			    left_vel = ( 1/wheel_radius)*(vel->linear.x-axes_length/2*vel->angular.z);

			    right_vel = ( 1/wheel_radius)*(vel->linear.x+axes_length/2*vel->angular.z);  

			}

			The other callback is implemented to read the model name assigned to the e-puck robot, as follows:

			void modelNameCallback(const std_msgs::String::ConstPtr &name) {

			  cnt++;

			  strcpy(modelList[cnt], name->data.c_str());

			  ROS_INFO("Model #%d: %s.", cnt, name->data.c_str());

			}

			Finally, we must implement the main function in which we set up everything needed to control the robot. As usual, start initializing the ROS node and the NodeHandle class, as follows: 

			int main(int argc, char** argv ) {

			    ros::init(argc, argv, "e_puck_manager");

			    ros::NodeHandle n;

			    std::string modelName;

			Then, we must wait for the robot model to be streamed by Webots. Without this information, it will be impossible to use Webots services. The code is illustrated in the following snippet:

			  ros::Subscriber nameSub = n.subscribe("model_name", 100, modelNameCallback);

			  while (cnt == 0 ) {

			    ros::spinOnce();

			  }

			  modelName = modelList[1];   

			Then, define the subscriber to the /cmd_vel topic, as follows:

			ros::Subscriber cmdVelSub = n.subscribe("cmd_vel", 1, cmdVelCallback);

			As already done in the previous section, to control the velocity wheels of the robots we need to set the wheel position to INFINITY. We can use the proper ROS client, as follows:

			    webots_ros::set_float wheelSrv;

			    wheelSrv.request.value = INFINITY;

			    ros::ServiceClient leftWheelPositionClient =

			    n.serviceClient<webots_ros::set_float>(modelName + "/left_wheel_motor/set_position");

			    leftWheelPositionClient.call(wheelSrv);

			    ros::ServiceClient rightWheelPositionClient =

			    n.serviceClient<webots_ros::set_float>(modelName + "/right_wheel_motor/set_position");

			    rightWheelPositionClient.call(wheelSrv);

			We also set the velocity to 0.0, as follows:

			    wheelSrv.request.value = 0.0;

			    ros::ServiceClient leftWheelVelocityClient =

			    n.serviceClient<webots_ros::set_float>(modelName + "/left_wheel_motor/set_velocity");

			    leftWheelVelocityClient.call( wheelSrv );

			    ros::ServiceClient rightWheelVelocityClient =

			    n.serviceClient<webots_ros::set_float>(modelName + "/right_wheel_motor/set_velocity");

			    rightWheelVelocityClient.call( wheelSrv );

			Finally, in the main loop, the only thing that we must do is to apply the velocities calculated in the geometry_msgs::Twist call, as follows:

			    ros::Rate r(10);

			    while(ros::ok()) {

			      wheelSrv.request.value = left_vel;    

			      leftWheelVelocityClient.call( wheelSrv );

			      wheelSrv.request.value = right_vel;    

			      rightWheelVelocityClient.call( wheelSrv );

			      r.sleep();

			      ros::spinOnce();

			    }

			    return 0;

			}

			Now, you can use the keyboard teleop node of the diff_wheeled_robot_control package developed in the previous chapter to control the mobile robot in Webots with ROS. First, start the simulation, then launch the following nodes:

			rosrun webots_demo_pkg e_puck_manager

			roslaunch diff_wheeled_robot_control keyboard_teleop.launch  

			As already done in the previous chapter, you can use your keyboard to drive the robot in the simulation environment. To conclude this chapter, we will discuss how to start the simulation using a convenient launch file.

			Starting Webots with a launch file

			In this last section, we will see how to start Webots directly using a launch file. This can be done thanks to a launch file already provided in the webots_ros package. To start a desired Webots world we need to include this launch file, setting the .wbt file to start, as shown in the webots_demo_package/launch/e_puck_manager.launch launch file. This file is shown and described next.

			Before we include the webots_ros launch file, we set the no-gui parameter to false to open the UI of Webots, as follows:

			<launch>

			  <arg name="no-gui" default="false" />

			  <include file="$(find webots_ros)/launch/webots.launch">

			    <arg name="mode" value="realtime"/>

			    <arg name="no-gui" value="$(arg no-gui)"/>

			Here, we set the configuration file representing the world that we want to start—the e_puck_ros.wbt world file placed in the package directory, as follows:

			<arg name="world" value="$(find webots_demo_pkg)/scene/mobile_robot/worlds/e_puck_ros.wbt"/>

			  </include>

			Finally, start the e_puck_manager node to allow teleop control of the robot, like this:

			  <node name="e_puck_manager" pkg="webots_demo_pkg" type="e_puck_manager" output="screen" />

			Be careful of the fact that to use this launch file, we need to set the WEBOTS_HOME environment variable to point to the root folder of Webots. If you have already installed Webots using APT you can set this variable, adding the following line to your .bashrc file:

			zzecho "export WEBOTS_HOME=/usr/local/webots" >> ~/.bashrc

			You are now ready to use the launch file to start Webots and the e_puck_manager node.

			Summary

			In this chapter, we mainly replicated what we have already done in the previous chapter with Gazebo, using other robot simulators: CoppeliaSim and Webots. These are multiplatform simulation software programs that integrate different technologies and are very versatile. Thanks to their intuitive UIs, they might be easier to use for new users.

			We mainly simulated two robots, one imported using the URDF file of the seven-DOF arm designed in previous chapters, with the other being a popular differential wheeled robot provided by the Webots simulation models. We learned how to interface and control the robot joints of our model with ROS and how to move a differential-drive mobile robot using topics.

			In the next chapter, we will see how to interface the robotic arm with the ROS MoveIt package and the mobile robot with the Navigation stack.

			Questions

			We should now be able to answer the following questions:

			
					How do CoppeliaSim and ROS communicate?

					In what way is it possible to control a CoppeliaSim simulation with ROS?

					How can we import new robot models in CoppeliaSim and integrate them with ROS?

					Can Webots be used as standalone software?

					How can ROS and Webots communicate?

			

		

	






			Chapter 6: Using the ROS MoveIt! and Navigation Stack

			In the previous chapters, we have been discussing the design and simulation of a robotic arm and a mobile robot. We controlled each joint of the robotic arm in Gazebo using the Robot Operating System (ROS) controller and moved the mobile robot inside Gazebo using the teleop node.

			In this chapter, we are going to address the motion-planning problem. Moving a robot by directly controlling its joints manually might be a difficult task, especially if we want to add position or velocity constraints to the robot's motion. Similarly, driving a mobile robot and avoiding obstacles requires the planning of a path. For this reason, we will solve these problems using the ROS MoveIt! and Navigation stack.

			MoveIt! represents a set of packages and tools for doing mobile manipulation in ROS. The official web page (http://moveit.ros.org/) contains documentation, a list of robots using MoveIt!, and various examples to demonstrate pick and place, grasping, simple motion planning using inverse kinematics (IK), and so on.

			MoveIt! contains state-of-the-art software for motion planning, manipulation, three-dimensional (3D) perception, kinematics, collision checking, control, and navigation. Apart from the command-line interface (CLI), it has some good graphical user interfaces (GUIs) to configure a new robot in MoveIt!. There is also a ROS Visualization (RViz) plugin that enables motion planning from a convenient UI. We will also see how to motion-plan our robot using MoveIt! C++ application programming interfaces (APIs).

			Next is the Navigation stack, another set of powerful tools and libraries to work mainly with mobile robot navigation. The Navigation stack contains ready-to-use navigation algorithms that can be used in mobile robots, especially for differential wheeled robots. Using these stacks, we can make the robot autonomous, and that is the final concept that we are going to see in the Navigation stack.

			The first section of this chapter will mainly concentrate on the MoveIt! package, installation, and architecture. After discussing the main concepts of MoveIt!, we will see how to create a MoveIt! package for our robotic arm, which can provide collision-aware path planning to our robot. Using this package, we can perform motion planning (inverse kinematics) in RViz and can interface with Gazebo or a real robot for executing the paths.

			After discussing interfacing, we will discuss more about the Navigation stack and see how to perform autonomous navigation using Simultaneous Localization And Mapping (SLAM) and Adaptive Monte Carlo Localization (Amcl).

			In this chapter, we will discuss the following topics:

			
					The MoveIt! architecture

					Generating a MoveIt! configuration package using the Setup Assistant tool

					Motion planning of a robot in RViz using the MoveIt! configuration package

					Understanding the ROS Navigation stack

					Building a map using SLAM

			

			Technical requirements 

			To follow along with this chapter, you need a standard computer running Ubuntu 20.04 as the operating system, along with ROS Noetic. Additional dependencies will be installed during this chapter.

			The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition/tree/main/Chapter6

			You can view this chapter's code in action here: https://bit.ly/2UxKNN2.

			The MoveIt! architecture

			Before using MoveIt! in our ROS system, you have to install it. The installation procedure is very simple and is just a single command. Using the following commands, we install the MoveIt! core, a set of plugins and planners for ROS Noetic:

			sudo apt-get install ros-noetic-moveit ros-noetic-moveit-plugins ros-noetic-moveit-planners

			Let's start with MoveIt! by discussing its architecture. Understanding the architecture of MoveIt! helps to program and interface the robot with MoveIt!. We will quickly go through the architecture and the important concepts of MoveIt!, and start interfacing with and programming our robots.

			Here is an overview of the MoveIt! architecture:

			
				
					[image: Figure 6.1 – MoveIt! architecture diagram ]
				

			

			Figure 6.1 – MoveIt! architecture diagram

			This diagram is also included in their official web page, at http://moveit.ros.org/documentation/concepts.

			The move_group node

			We can say that move_group is the heart of MoveIt!, as this node acts as an integrator of the various components of the robot and delivers actions/services according to the user's needs.

			Looking at the architecture, it's clear that the move_group node collects robot information such as point cloud, joint state of the robot, and transforms (TFs) of the robot in the form of topics and services.

			From the parameter server, it collects robot kinematics data, such as the Unified Robot Description Format (URDF), the Semantic Robot Description Format (SRDF), and the configuration files. The SRDF file and the configuration files are generated while we generate a MoveIt! package for our robot. The configuration files contain a parameter file for setting joint limits, perception, kinematics, end effector, and so on. We will see the files when we discuss generating the MoveIt! package for our robot.

			After MoveIt! gets all the needed information about the robot and its configuration, we can start commanding the robot from the UIs. We can either use C++ or Python MoveIt! APIs to command the move_group node to perform actions such as pick/place, IK, and forward kinematics (FK), among others. Using the RViz motion-planning plugin, we can command the robot from the RViz GUI

			Since the move_group node is a simple integrator, it does not run any kind of motion-planning algorithms directly but instead connects all the functionalities as plugins. There are plugins for kinematics solvers, motion planning, and so on. We can extend the capabilities through these plugins. After motion planning, the generated trajectory talks to the controllers in the robot using the FollowJointTrajectoryAction interface. This is an action interface in which an action server is run on the robot, and move_node initiates an action client that talks to this server and executes the trajectory on a real robot or on a robotic simulator.

			At the end of our discussion on MoveIt!, we will see how to connect MoveIt! with the RViz GUI to Gazebo. The following screenshot shows a robotic arm that is being controlled from RViz and the trajectory being executed inside Gazebo:

			
				
					[image: Figure 6.2 – Trajectory from RViz GUI executing in Gazebo ]
				

			

			Figure 6.2 – Trajectory from RViz GUI executing in Gazebo

			In the next section, we will discuss more about the MoveIt! planning process.

			Motion planning using MoveIt!

			Assuming that we know the starting pose of the robot, a desired goal pose of the robot, a geometrical description of the robot, and a geometrical description of the world, then motion planning is a technique to find an optimum path that moves the robot gradually from the start pose to the goal pose, while never touching any obstacles in the world and without colliding with the robot links.

			In this context, the robot geometry is described via the URDF file. We can also create a description file for the robot environment and use laser or vision sensors of the robot to map its operative space in order to avoid static and dynamic obstacles during the execution of planned paths.

			Considering a robotic arm, the motion planner should find a trajectory (consisting of joint spaces of each joint) in which the links of the robot should never collide with the environment, avoid self-collision (collision between two robot links), and not violate the joint limits. MoveIt! can talk to the motion planners through the plugin interface. We can use any supported motion-planner techniques by simply changing the plugin. This method is highly extensible, so we can try our own custom motion planners using this interface. 

			The move_group node talks to the motion planner plugin via the ROS action/server. The default planner library used by MoveIt! is the Open Motion Planning Library (OMPL). You can find more information on this at http://ompl.kavrakilab.org/. To start motion planning, we should send a motion-planning request to the motion planner that specified our planning requirements. The planning requirement may be setting a new goal pose of the end effector, such as performing pick-and-place operations.

			We can set additional kinematic constraints for the motion planners. Here are some inbuilt constraints in MoveIt!:

			
					Position constraints: These restrict the position of a link.

					Orientation constraints: These restrict the orientation of a link.

					Visibility constraints: These restrict a point on a link to be visible in an area (view of a sensor).

					Joint constraints: These restrict a joint within its joint limits.

					User-specified constraints: Using these constraints, the user can define their own constraints using callback functions.

			

			With the constraints, we can send a motion-planning request, and the planner will generate a suitable trajectory according to the request. The move_group node will generate a suitable trajectory from the motion planner that obeys all the constraints. This can be sent to robot joint-trajectory controllers.

			Motion-planning request adapters

			The motion-planning request adapters help to preprocess the motion-planning request and postprocess the motion-planning response. One use of preprocessing requests is that it helps to correct any violation in the joint states and, for postprocessing, it can convert the path generated by the planner to a time-parameterized trajectory. Here are some default planning request adapters in MoveIt!:

			
					FixStartStateBounds: If a joint state is slightly outside the joint limits, then this adapter can fix the initial joint limits within the limits.

					FixWorkspaceBounds: This specifies a workspace for planning with a cube size of 10 m x 10 m x 10 m.

					FixStartStateCollision: This adapter samples a new collision-free configuration if the existing joint configuration is in collision. It makes a new configuration by changing the current configuration, by a small factor called jiggle_factor.

					FixStartStatePathConstraints: This adapter is used when the initial pose of the robot does not obey the path constraints. In this, it finds a near pose that satisfies the path constraints and uses that pose as the initial state.

					AddTimeParameterization: This adapter parameterizes the motion plan by applying velocity and acceleration constraints.

			

			To plan motion trajectories, MoveIt! uses a planning scene. Thanks to this scene, information about obstacles and objects can be retrieved.

			MoveIt! planning scene

			The term planning scene is used to represent the world around the robot and store the state of the robot itself. The planning-scene monitor inside move_group maintains the planning-scene representation. The move_group node consists of another section called the world geometry monitor, which builds the world geometry from the sensors of the robot and from the user input.

			The planning-scene monitor reads the joint_states topic from the robot, and the sensor information and world geometry from the world geometry monitor. It also receives data from the occupancy map monitor, which uses 3D perception to build a 3D representation of the environment, called an octomap. 

			An octomap can be generated from point clouds that are handled by a point-cloud occupancy map updater plugin and depth images handled by a depth-image occupancy map updater plugin. The following diagram shows an overview of a planning scene from the MoveIt! official wiki (http://moveit.ros.org/documentation/concepts/):

			
				
					[image: Figure 6.3 – MoveIt! planning-scene overview diagram ]
				

			

			Figure 6.3 – MoveIt! planning-scene overview diagram

			Additional elements involved in the MoveIt! planning process regard the possibility of calculating the FK and IK of a manipulator and checking the presence of obstacles along a planned path, as discussed next. 

			MoveIt! kinematics handling

			MoveIt! provides great flexibility to switch IK algorithms using robot plugins. Users can write their own IK solver as a MoveIt! plugin and switch from the default solver plugin whenever required. The default IK solver in MoveIt! is a numerical Jacobian-based solver. Compared to analytical solvers, numerical solvers can take time to solve IK. The IKFast package can be used to generate C++ code for solving IK using analytical methods, which can be used for different kinds of robot manipulators and performs better if the degrees of freedom (DOF) is less than seve. This C++ code can also be converted into a MoveIt! plugin by using ROS tools. We will look at this procedure in the upcoming chapters.

			FK and finding Jacobians are already integrated into the MoveIt! RobotState class, so we don't need to use plugins for solving FK.

			MoveIt! collision checking

			The CollisionWorld object inside MoveIt! is used to find collisions inside a planning scene that is using the Flexible Collision Library (FCL) package as a backend. MoveIt! supports collision checking for different types of objects, such as meshes and primitive shapes such as boxes, cylinders, cones, spheres, and octomaps.

			Collision checking is one of the most computationally expensive tasks during motion planning. To reduce this computation, MoveIt! provides a matrix called the Allowed Collision Matrix (ACM) that contains a binary value corresponding to the need to check for a collision between two pairs of bodies. If the value of the matrix is 1, this means collision of the corresponding pair is not needed. We can set the value to 1 when the bodies are always so far apart that they would never collide with each other. Optimizing ACM can reduce the total computation needed for collision avoidance.

			After discussing the basic concepts in MoveIt!, we can now move on to discussing how to interface a robotic arm with MoveIt!. To interface a robot arm with MoveIt!, we need to satisfy the components that we saw in Figure 6.1. The move_group node essentially requires parameters such as URDF, SRDF, configuration files, and joint states topics, along with the TF from a robot to start with motion planning.

			MoveIt! provides a GUI-based tool called Setup Assistant to generate all these elements. The following section describes the procedure to generate a MoveIt! configuration from the Setup Assistant tool.

			Generating a MoveIt! configuration package using the Setup Assistant tool

			The MoveIt! Setup Assistant tool is a GUI for configuring any robot to MoveIt!. This tool basically generates SRDF, configuration files, launch files, and scripts generated from the robot URDF model, which is required to configure the move_group node.

			The SRDF file contains details about the arm joints, end effector joints, virtual joints, and the collision-link pairs that are configured during the MoveIt! configuration process using the Setup Assistant tool.

			The configuration file contains details about the kinematic solvers, joint limits, controllers, and so on that are also configured and saved during the configuration process.

			Using the generated configuration package of the robot, we can work with motion planning in RViz without the presence of a real robot or simulation interface.

			Let's start the configuration wizard, and we can see the step-by-step procedure to build the configuration package of our robotic arm.

			Step 1 – Launching the Setup Assistant tool

			To start the MoveIt! Setup Assistant tool, we can use the following command:

			roslaunch moveit_setup_assistant setup_assistant.launch  

			This will bring up a window with two choices: Create New MoveIt! Configuration Package or Edit Existing MoveIt! Configuration Package. Here, we are creating a new package, so we need to select the first option. If we have a MoveIt! package already, then we can select the second option.

			Click on the Create New MoveIt! Configuration Package button to display a new screen, as shown next:

			
				
					[image: Figure 6.4 – MoveIt! Setup Assistant ]
				

			

			Figure 6.4 – MoveIt! Setup Assistant

			In this step, the wizard asks for the URDF model of the new robot. To give the wizard the URDF file, click on the Browse button and navigate to mastering_ros_robot_description_pkg/urdf/seven_dof_arm_with_rgbd.xacro. Choose this file and press the Load button to load the URDF. We can either load a robot model using both the URDF and XML Macros (Xacro) files or, if we use Xacro, the tool will convert to URDF internally.

			If the robot model is successfully parsed, we can see the robot model in the window, as shown in the following screenshot:

			
				
					[image: Figure 6.5 – Successfully parsing the robot model in the Setup Assistant tool ]
				

			

			Figure 6.5 – Successfully parsing the robot model in the Setup Assistant tool

			The robot is now loaded into the Setup Assistant and we can start to configure MoveIt! for it.

			Step 2 – Generating a self-collision matrix

			We can now start to navigate all the panels of the window to properly configure our robot. In the Self-Collisions tab, MoveIt! searches for a pair of links on the robot that can be safely disabled from the collision checking. These can reduce the processing time. This tool analyzes each link pair and categorizes the links as always in collision, never in collision, in collision in the robot's default position, having adjacent links disabled, and sometimes in collision, and it disables the pair of links that make any kind of collision. The following screenshot shows the Self-Collisions window:

			
				
					[image: Figure 6.6 – Generating a self-collision matrix ]
				

			

			Figure 6.6 – Generating a self-collision matrix

			The sampling density is the number of random positions to check for self-collision. If the density is large, computation will be high but self-collision will be lower. The default value is 10,000. We can see the disabled pair of links by pressing the Regenerate Default Collision Matrix button; it will take a few seconds to list the disabled pair of links.

			Step 3 – Adding virtual joints

			Virtual joints attach a robot to the world. They are not mandatory for a static robot that does not move. We need virtual joints when the base position of the arm is not fixed— for example, if a robot arm is fixed on a mobile robot, we should define a virtual joint with respect to the odometry frame (odom).

			In the case of our robot, we are not creating virtual joints.

			Step 4 – Adding planning groups

			A planning group is basically a group of joints/links in a robotic arm that plans together to achieve a goal position of a link or the end effector. We must create two planning groups—one for the arm and one for the gripper.

			Click on the Planning Groups tab on the left side of the screen and click on the Add Group button. You will see the following screen, which has the settings of the arm group:

			
				
					[image: Figure 6.7 – Adding the planning group of the arm ]
				

			

			Figure 6.7 – Adding the planning group of the arm

			Here, we are setting Group Name to arm, and Kinematic Solver to kdl_kinematics_plugin/KDLKinematicsPlugin, which is the default numerical IK solver with MoveIt!. We can also choose a default planning algorithm for this group. For example, here, we have chosen the Rapidly exploring Random Tree (RRT) algorithm. Finally, we can keep the other parameters at their default values while we choose different ways to add elements to a planning group—for example, we could specify the joints of the group, add its links, or directly specify a kinematic chain.

			Inside the arm group, we first have to add a kinematic chain, starting from base_link as the first link to grasping_frame.

			Add a group called gripper—we don't need to have a kinematic solver for the gripper group. Inside this group, we can add the joints and links of the gripper. These settings are shown in the following screenshot:

			
				
					[image: Figure 6.8 – Adding the planning group of the arm and gripper ]
				

			

			Figure 6.8 – Adding the planning group of the arm and gripper

			We can add different planning groups. Each of them can also use only a few joints from our robot and not the whole kinematic chain. In the next step, we will see how to configure some fixed poses for the robot. 

			Step 5 – Adding the robot poses

			In this step, we can add certain fixed poses in the robot configuration—for example, we can assign a home position or a pick/place position in this step. The advantage is that while programming with MoveIt! APIs, we can directly call these poses, which are also called group states. These have many applications in the pick/place and grasping operation. The robot can switch to these fixed poses without any hassle. To add a pose, click the Add Group button, and then choose a pose name and a set of joint values for that pose. 

			Step 6 – Setting up the robot end effector

			In this step, we name the robot end effector and assign the end effector group, the parent link, and the parent group.

			We can add any number of end effectors to this robot. In our case, it's a gripper designed for pick-and-place operations.

			Click on the Add End Effector button and name the end effector robot_eef, the right, it must be; the planning group arm, removing the parent group, as illustrated in the following screenshot:
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			Figure 6.9 – Adding end effectors

			The configuration process for MoveIt! basic elements is complete. We have a number of additional steps that we can perform before generating configuration files used to launch MoveIt! to control our robot.

			Step 7 – Adding passive joints

			In this step, we can specify the passive joints in the robot. Passive joints mean that the joints do not have any actuators. Caster wheels are one example of passive joints. The planner will ignore these kinds of joints during motion planning.

			Step 8 – Author information

			In this step, the author of the robotic model can add personal information such as their name and email address, required by catkin to release the model to the ROS community.

			Step 9 – Generating configuration files

			We are almost done. We are in the final stage, which is generating configuration files. In this step, the tool will generate a configuration package that contains the file needed to interface MoveIt!.

			Click on the Browse button to locate a folder to save the configuration file that is going to be generated by the Setup Assistant tool. Here, we can see the files are generated inside a folder called seven_dof_arm_config. You can use add_config or _generated along with the robot name for the configuration package.

			Click on the Generate Package button, and it will generate the files to the given folder.

			If the process is successful, we can click on Exit Setup Assistant, which will exit the tool. Note that we skipped some steps to link MoveIt! with the Gazebo simulator or with the ROS Control package. We will discuss and implement this link in the rest of the chapter. 

			The following screenshot shows the generation process:
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			Figure 6.10 – Generating the MoveIt! configuration package

			We can directly generate the configuration files in our ROS workspace. In the following section, we are going to work with this package. As usual, the model of the robot created can be obtained from the book's source code.

			The configuration of our robot in MoveIt! is now complete. We can now test that everything has been properly configured using RViz, as discussed in the next section. 

			Motion planning of a robot in RViz using the MoveIt! configuration package

			MoveIt! provides an RViz plugin that allows developers to set the planning problem. From this plugin, the desired pose of the manipulator can be set, and a motion trajectory can be generated to test MoveIt! planning capabilities. To launch this plugin along with the robot model, we can directly use the MoveIt! launch files included in the MoveIt! configuration package. This package consists of configuration files and launch files to start motion planning in RViz. There is a demo launch file in the package to explore all the package's functionalities.

			Here is the command to invoke the demo launch file:

			roslaunch seven_dof_arm_config demo.launch  

			If everything works fine, we will get the following screen of RViz being loaded with the MotionPlanning plugin provided by MoveIt!:
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			Figure 6.11 – MoveIt! RViz plugin

			As you can see, from this plugin you can configure the planning problem, starting from the definition of the planner. In the next section, we will see how to configure a new planning problem to plan a new motion trajectory.

			Using the RViz MotionPlanning plugin

			From the preceding figure, we can see that the RViz MotionPlanning plugin is loaded on the left side of the screen. There are several tabs on the Motion Planning window, such as Context, Planning, and so on. The default tab is the Context tab, and we can see the default Planning Library as OMPL, which is shown in green. This indicates that MoveIt! successfully loaded the motion-planning library. If it is not loaded, we can't perform motion planning.

			Next is the Planning tab. This is one of the most frequently used tabs, and is used to assign a start state and goal state and to plan and execute a path. Shown next is the GUI of the Planning tab:
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			Figure 6.12 – MoveIt! RViz Planning tab

			We can assign a start state and goal state to the robot under the Query panel. Using the Plan button, we can plan the path from the start to the goal state, and if the planning is successful, we can execute it. By default, execution is done on fake controllers. We can change these controllers into trajectory controllers for executing the planned trajectory in Gazebo or a real robot.

			We can set the starting and the goal position of the robot end effector by using the interactive marker attached to the arm gripper. We can translate and rotate the marker pose and, if there is a planning solution, we can see an arm in orange. In some situations, the arm will not move even if the end effector marker pose moves, and if the arm does not come to the marker position, we can assume that there is no IK solution in that pose. We may need more DOF to reach there, or there might be some collision between the links.

			The following screenshots show a valid goal pose and an invalid goal pose:

			
				
					[image: Figure 6.13 – A valid pose and an invalid pose of a robot in RViz ]
				

			

			Figure 6.13 – A valid pose and an invalid pose of a robot in RViz

			The green arm represents the starting position of the arm, and the orange color represents the goal position. In the first screenshot, if we press the Plan button, MoveIt! plans a path from start to goal. In the second screenshot, we can observe two things. First, one of the links of the orange arm is red, which means that the goal pose is in a self-collided state. Secondly, look at the end-effector marker; it is far from the actual end effector, and it has also turned red.

			We can also work with some quick motion planning using random valid (as seen in Figure 6.12) options in the start state and the goal state. If we set the goal state as random valid and press the Update button, it will generate a random-valid goal pose. Click on the Plan button, and we can see the motion planning in operation.

			We can customize the RViz visualization using the various options in the MotionPlanning plugin. Shown next are some settings of this plugin:

			
				
					[image: Figure 6.14 – Settings of the MotionPlanning plugin on RViz ]
				

			

			Figure 6.14 – Settings of the MotionPlanning plugin on RViz

			The first marked area is Scene Robot, which will show the robot model; if it is unchecked, we won't see any robot model. The second marked area is the Trajectory Topic, in which RViz gets the visualization trajectory. If we want to animate the motion planning and display the motion trails, we should enable this option.

			One of the other sections in the plugin settings is shown in the following screenshot:
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			Figure 6.15 – Planning Request setting in MotionPlanning plugin

			In the preceding screenshot, we can see the Query Start State and the Query Goal State options. These options can visualize the start pose and the goal pose of the arm, which we saw in Figure 6.13. Show Workspace visualizes the cubic workspace (world geometry) around the robot. The visualization can help to debug our motion-planning algorithm and understand the robot motion behavior in detail.

			In the next section, we will see how to interface the MoveIt! configuration package to Gazebo. This will execute the trajectory generated by MoveIt! in Gazebo.

			Interfacing the MoveIt! configuration package to Gazebo

			We have already worked with the Gazebo simulation of this arm and attached controllers to it. For interfacing the arm in MoveIt! to Gazebo, we need a trajectory controller that has the FollowJointTrajectoryAction interface, as we mentioned in The MoveIt! architecture section.

			Next, we will go through the procedure to interface MoveIt! to Gazebo.

			Step 1 – Writing the controller configuration file for MoveIt!

			The first step is to create a configuration file for talking with the trajectory controllers in Gazebo from MoveIt!. The controller configuration file called ros_controllers.yaml has to be created inside the config folder of the seven_dof_arm_config package.

			Given next is an example of the ros_controllers.yaml definition:

			controller_list: 

			  - name: seven_dof_arm/seven_dof_arm_joint_controller 

			    action_ns: follow_joint_trajectory 

			    type: FollowJointTrajectory 

			    default: true 

			    joints: 

			      - shoulder_pan_joint 

			      - shoulder_pitch_joint 

			      - elbow_roll_joint 

			      - elbow_pitch_joint 

			      - wrist_roll_joint 

			      - wrist_pitch_joint 

			      - gripper_roll_joint 

			 

			  - name: seven_dof_arm/gripper_controller 

			    action_ns: follow_joint_trajectory 

			    type: FollowJointTrajectory 

			    default: true 

			    joints: 

			      - finger_joint1 

			      - finger_joint2 

			The controller configuration file contains the definition of the two controller interfaces; one is for the arm and the other is for the gripper. The type of action used in the controllers is FollowJointTrajectory, and the action namespace is follow_joint_trajectory. We have to list the joints in each group. default: true indicates that it will use the default controller, which is the primary controller in MoveIt! for communicating with a set of joints.

			Step 2 – Creating controller launch files

			Next, we have to create a new launch file called seven_dof_arm_moveit_controller_manager.launch that can start the trajectory controllers. The name of the file starts with the robot's name, which is added with _moveit_controller_manager.

			Here is the seven_dof_arm_config/launch/ seven_dof_arm_moveit_controller_manager.launch launch file definition:

			<launch>

			<!-- loads moveit_controller_manager on the parameter server which is taken as argument

			if no argument is passed, moveit_simple_controller_manager will be set -->

			<arg name="moveit_controller_manager" default="moveit_simple_controller_manager/MoveItSimpleControllerManager" />

			<param name="moveit_controller_manager" value="$(arg moveit_controller_manager)"/>

			<!-- loads ros_controllers to the param server -->

			<rosparam file="$(find seven_dof_arm_config)/config/ros_controllers.yaml"/>

			</launch>

			This launch file starts the MoveItSimpleControllerManager program and loads the joint-trajectory controllers defined inside controllers.yaml.

			Step 3 – Creating a controller configuration file for Gazebo

			After creating MoveIt! configuration files, we have to create a Gazebo controller configuration file and a launch file.

			Create a new file called trajectory_control.yaml that contains a list of the Gazebo ROS controllers that need to be loaded along with Gazebo.

			You will get this file from the seven_dof_arm_gazebo package created in Chapter 4, Simulating Robots Using ROS and Gazebo, in the /config folder.

			In the following code snippet, the definition of this file is reported:

			seven_dof_arm:

			  arm_controller:

			      type: position_controllers/JointTrajectoryController

			      joints:

			        - shoulder_pan_joint

			        - shoulder_pitch_joint

			        - elbow_roll_joint

			  - elbow_pitch_joint

			      - wrist_roll_joint

			      - wrist_pitch_joint

			      - gripper_roll_joint

			      constraints:

			      goal_time: 0.6

			      stopped_velocity_tolerance: 0.05

			      shoulder_pan_joint: {trajectory: 0.1, goal: 0.1}

			      shoulder_pitch_joint: {trajectory: 0.1, goal: 0.1}

			      elbow_roll_joint: {trajectory: 0.1, goal: 0.1}

			      elbow_pitch_joint: {trajectory: 0.1, goal: 0.1}

			      wrist_roll_joint: {trajectory: 0.1, goal: 0.1}

			      wrist_pitch_joint: {trajectory: 0.1, goal: 0.1}

			      gripper_roll_joint: {trajectory: 0.1, goal: 0.1}  

			      stop_trajectory_duration: 0.5

			      state_publish_rate:  25

			      action_monitor_rate: 10

			Here, we created a position_controllers/JointTrajectoryController configuration, which has an action interface of FollowJointTrajectory, for both the arm and the gripper. We also defined the Proportional-Integral-Derivative (PID) gain associated with each joint, which can provide a smooth motion.

			Step 4 – Creating a launch file for Gazebo trajectory controllers

			After creating a configuration file, we can load the controllers along with Gazebo. We have to create a launch file that launches Gazebo, the trajectory controllers, and the MoveIt! interface in a single command.

			The seven_dof_arm_bringup_moveit.launch launch file contains the definition to launch all these commands, as illustrated in the following code snippet:

			<launch> 

			  <include file="$(find seven_dof_arm_gazebo)/launch/seven_dof_arm_with_rgbd_world.launch" />    

			  <rosparam file="$(find seven_dof_arm_gazebo)/config/trajectory_control.yaml" command="load"/>

			  <rosparam file="$(find seven_dof_arm_gazebo)/config/seven_dof_arm_gazebo_joint_states.yaml" command="load"/>

			  <node name="seven_dof_arm_joint_state_spawner" pkg="controller_manager" type="spawner" respawn="false" output="screen" ns="/seven_dof_arm" args="joint_state_controller arm_controller"/>

			  <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" respawn="false" output="screen">

			    <remap from="/joint_states" to="/seven_dof_arm/joint_states" />

			  </node>

			  <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" /> 

			      <remap from="joint_states" to="/seven_dof_arm/joint_states" />  

			  <include file="$(find seven_dof_arm_config)/launch/planning_context.launch">

			    <arg name="load_robot_description" value="false" />

			  </include>

			  <include file="$(find seven_dof_arm_config)/launch/move_group.launch">

			    <arg name="publish_monitored_planning_scene" value="true" />

			  </include>

			  <include file="$(find seven_dof_arm_config)/launch/moveit_rviz.launch">

			    <arg name="rviz_config" value="$(find seven_dof_arm_config)/launch/moveit.rviz"/>

			  </include>

			</launch> 

			</launch> 

			This launch file spawns the robot model in Gazebo, publishes the joint states, attaches the position controller, attaches the trajectory controller, and, finally, launches moveit_planning_execution.launch inside the MoveIt! package for starting the MoveIt! nodes along with RViz. We may need to load the MotionPlanning plugin in RViz if it is not loaded by default.

			We can start motion planning inside RViz and execute in the Gazebo simulation, using the following single command:

			$ roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_moveit.launch  

			Note that before properly launching the planning scene, we should use the following command to install some packages needed by MoveIt! to use ROS controllers:

			sudo apt-get install ros-noetc-joint-state-controller ros-noetic-position-controllers ros-noetic-joint-trajectory-controller  

			After we have installed the preceding packages, we can launch the planning scene. This will launch RViz and Gazebo, and we can do motion planning inside RViz. After motion planning, click on the Execute button to send the trajectory to the Gazebo controllers. You should now see a screen like this:

			
				
					[image: Figure 6.16 – Gazebo trajectory controllers executing the trajectory from MoveIt! ]
				

			

			Figure 6.16 – Gazebo trajectory controllers executing the trajectory from MoveIt!

			Now, the link between MoveIt! and the simulated (or real) robot is complete. Before we complete the first part of this chapter, let's see how to briefly understand if the MoveIt!-Gazebo connection is working properly.

			Step 5 – Debugging the Gazebo-MoveIt! interface

			In this section, we will discuss some common issues and debugging techniques in this interface.

			If the trajectory is not executing on Gazebo, first list the topics, as follows:

			rostopic list  

			If the Gazebo controllers have been started properly, we will get the following joint-trajectory topics in the list:
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			Figure 6.17 – Topics from the Gazebo-ROS trajectory controllers

			We can see follow_joint_trajectory for the gripper and arm groups. If the controllers are not ready, the trajectory will not execute in Gazebo.

			Also, check the Terminal message while starting the launch file:

			
				
					[image: Figure 6.18 – The Terminal message showing successful trajectory execution ]
				

			

			Figure 6.18 – The Terminal message showing successful trajectory execution

			In Figure 6.18, the first section shows that MoveItSimpleControllerManager was able to connect with the Gazebo controller, and if it couldn't connect to the controller, it shows that it can't connect to the controller. The second section shows a successful motion-planning operation. If the motion planning is not successful, MoveIt! will not send the trajectory to Gazebo.

			In the next section, we will discuss the ROS Navigation stack and look at the requirements needed to interface the Navigation stack with the Gazebo simulation.

			Understanding the ROS Navigation stack

			The main aim of the ROS Navigation package is to move a robot from the start position to the goal position, without making any collision with the environment. The ROS Navigation package comes with an implementation of several navigation-related algorithms that can easily help implement autonomous navigation in mobile robots.

			The user only needs to feed the goal position of the robot and the robot odometry data from sensors such as wheel encoders, Inertial Measurement Unit (IMU), and Global Positioning System (GPS), along with other sensor data streams, such as laser scanner data or 3D point cloud from sensors such as a Red-Green-Blue Depth (RGB-D) sensor. The output of the Navigation package will be the velocity commands that will drive the robot to the given goal position.

			The Navigation stack contains the implementation of the standard algorithms, such as SLAM, A *(star), Dijkstra, amcl, and so on, that can directly be used in our application.

			ROS Navigation hardware requirements

			The ROS Navigation stack is designed to be generic. There are some hardware requirements that should be satisfied by the robot, and these are outlined in the following list: 

			
					The Navigation package will work better in differential drive and holonomic constraints. Also, the mobile robot should be controlled by sending velocity commands in the form of x: velocity, y: velocity (linear velocity), and theta: velocity (angular velocity).

					The robot should be equipped with a vision (rgb-d) or laser sensor to build a map of the environment.

					The Navigation stack will perform better for square- and circular-shaped mobile bases. It will work on an arbitrary shape, but performance is not guaranteed.

			

			The following diagram, taken from the ROS website (http://wiki.ros.org/navigation/Tutorials/RobotSetup), shows the basic building blocks of the Navigation stack. We can see the purpose of each block and how to configure the Navigation stack for a custom robot:
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			Figure 6.19 – Navigation stack setup diagram

			According to the preceding Navigation setup diagram, to configure the Navigation package for a custom robot, we must provide functional blocks that interface with the Navigation stack. The following list provides explanations of all the blocks that are provided as input to the Navigation stack:

			
					Odometry source: Odometry data of a robot gives the robot a position with respect to its starting position. The main odometry sources are wheel encoders, IMU, and 2D/3D cameras (visual odometry). The odom value should publish to the Navigation stack, which has a message type of nav_msgs/Odometry. The odom message can hold the position and the velocity of the robot. Odometry data is a mandatory input to the Navigation stack.

					Sensor source: We have to provide laser-scan data or point-cloud data to the Navigation stack for mapping the robot environment. This data, along with odometry, combines to build a global and local cost map of the robot. The main sensors used here are laser scanners. The data should be of type sensor_msgs/LaserScan or sensor_msgs/PointCloud.

					sensor transforms/tf: The robot should publish the relationship between the robot coordinate frame using ROS TF.

					base_controller: The main function of the base controller is to convert the output of the Navigation stack, which is a twist (geometry_msgs/Twist) message, and convert it into corresponding motor velocities of the robot.

			

			The optional tnodes of the Navigation stack are amcl and map_server, which allow the localization of the robot and help to save/load the robot map.

			Working with Navigation packages

			Before working with the Navigation stack, we were discussing MoveIt! and the move_group node. In the Navigation stack, there is also a node like the move_group node, called the move_base node. From Figure 6.19, it is clear that the move_base node takes input from sensors, joint states, the TF, and odometry, which is very similar to the move_group node that we saw in MoveIt!.

			Let's see more about the move_base node.

			Understanding the move_base node

			The move_base node is from a package called move_base. The main function of this package is to move a robot from its current position to a goal position, with the help of other navigation nodes. The move_base node inside this package links the global planner and the local planner for the path planning, connecting to the rotate-recovery package if the robot is stuck in some obstacle and connecting the global costmap and the local costmap maps to get a map.

			The move_base node is basically an implementation of SimpleActionServer, which takes a goal pose with the message type (geometry_msgs/PoseStamped). We can send a goal position to this node using a SimpleActionClient node.

			The move_base node subscribes a navigation goal from a topic called move_base_simple/goal, which is the input of the Navigation stack, as shown in the previous diagram.

			When this node receives a goal pose, it links to components such as global_planner, local_planner, recovery_behavior, global_costmap, and local_costmap, generates the output, which is the command velocity (geometry_msgs/Twist), and sends it to the base controller to move the robot to achieve the goal pose.

			Here is a list of all the packages that are linked by the move_base node:

			
					global-planner: This package provides libraries and nodes for planning the optimum path from the current position of the robot to the goal position, with respect to the robot map. This package has the implementation of path-finding algorithms—such as A*, Dijkstra, and so on—for finding the shortest path from the current robot position to the goal position.

					local-planner: The main function of this package is to navigate the robot in a section of the global path planned using the global planner. The local planner will take the odometry and sensor reading and send an appropriate velocity command to the robot controller for completing a segment of the global path plan. The base local-planner package is the implementation of the trajectory rollout and dynamic window algorithms.

					rotate-recovery: This package helps the robot to avoid a local obstacle by performing a 360-degree rotation.

					clear-costmap-recovery: This package is also for avoiding a local obstacle by clearing the costmap map by changing the current costmap map used by the Navigation stack to a static map.

					costmap-2D: The main use of this package is to map the robot environment. The robot can only plan a path with respect to a map. In ROS, we create 2D or 3D occupancy grid maps, which is a representation of the environment in a grid of cells. Each cell has a probability value that indicates whether the cell is occupied or not. The costmap-2D package can build a grid map of the environment by subscribing sensor values of the laser scan or point cloud and also the odometry values. There are global cost maps for global navigation and local cost maps for local navigation.

			

			Here are the other packages that are interfaced to the move_base node:

			
					map-server: The map-server package allows us to save and load the map generated by the costmap-2D package.

					amcl: Amcl is a method to localize the robot in a map. This approach uses a particle filter to track the pose of the robot with respect to the map, with the help of probability theory. In the ROS system, amcl accepts a sensor_msgs/LaserScan message to create a map.

					gmapping: The gmapping package is an implementation of an algorithm called Fast SLAM, which takes the laser scan data and odometry to build a 2D occupancy grid map.

			

			After discussing each functional block of the Navigation stack, let's see how it really works.

			Workings of the Navigation stack

			In the previous section, we saw the functionalities of each block in the ROS Navigation stack. Let's check how the entire system works. The robot should publish a proper odometry value, TF information, and sensor data from the laser, and have a base controller and map of the surroundings.

			If all these requirements are satisfied, we can start working with the Navigation package. The main elements related to the problem of robot navigation are summarized in the following section.

			Localizing on the map

			The first step the robot is going to perform is to localize itself on the map. The amcl package will help to localize the robot on the map.

			Sending a goal and path planning

			After getting the current position of the robot, we can send a goal position to the move_base node. The move_base node will send this goal position to a global planner, which will plan a path from the current robot position to the goal position.

			This plan is with respect to the global costmap, which is feeding from the map server. The global planner will send this path to the local planner, which executes each segment of the global plan.

			The local planner gets the odometry and the sensor value from the move_base node and finds a collision-free local plan for the robot. The local planner is associated with the local costmap, which can monitor the obstacle(s) around the robot.

			Collision-recovery behavior

			The global and local costmap are tied with the laser scan data. If the robot is stuck somewhere, the Navigation package will trigger the recovery-behavior nodes, such as the clear costmap recovery or rotate recovery nodes.

			Sending the command velocity

			The local planner generates the command velocity in the form of a twist message that contains linear and angular velocity (geometry_msgs/Twist) used by the move_base controller. The robot base controller converts the twist message to the equivalent motor speed.

			We are now ready to install and configure the ROS Navigation stack for our robot.

			Building a map using SLAM

			Before to start configuring the Navigation stack, we need to install it. The ROS desktop full installation will not install the ROS Navigation stack. We must install the Navigation stack separately, using the following command:

			sudo apt-get install ros-noetic-navigation  

			After installing the Navigation package, let's start learning how to build a map of the robot environment. The robot we are using here is the differential wheeled robot that we discussed in the previous chapter. This robot satisfies all three requirements of the Navigation stack.

			The ROS gmapping package is a wrapper of the open source implementation of SLAM, called OpenSLAM (https://openslam-org.github.io/gmapping.html). The package contains a node called slam_gmapping, which is the implementation of SLAM and helps to create a 2D occupancy grid map from the laser scan data and the mobile robot pose.

			The basic hardware requirement for doing SLAM is a laser scanner that is horizontally mounted on the top of the robot, and the robot odometry data. In this robot, we have already satisfied these requirements. We can generate a 2D map of the environment using the gmapping package, through the following procedure.

			Before operating with gmapping, we need to install it using the following command:

			sudo apt-get install ros-noetic-gmapping  

			After completing the installation, we need to configure gmapping for our robot.

			Creating a launch file for gmapping

			The main task while creating a launch file for the gmapping process is to set the parameters for the slam_gmapping node and the move_base node. The slam_gmapping node is the core node inside the ROS gmapping package. The slam_gmapping node subscribes the laser data (sensor_msgs/LaserScan) and the TF data and publishes the occupancy grid map data as output (nav_msgs/OccupancyGrid). This node is highly configurable, and we can fine-tune the parameters to improve the mapping accuracy. The parameters are mentioned at http://wiki.ros.org/gmapping. 

			The next node we have to configure is the move_base node. The main parameters we need to configure are the global and local costmap parameters, the local planner, and the move_base parameters. The parameters list is very lengthy. We are representing these parameters in several YAML Ain't Markup Language (YAML) files. Each parameter is included in the param folder inside the diff_wheeled_robot_gazebo package.

			The following code is for the gmapping.launch file used in this robot. The launch file is placed in the diff_wheeled_robot_gazebo/launch folder. The launch file contains a big number of parameters and includes some configuration files. First, we define the topic on which the laser-scanner data will be published, as follows:

			<launch> 

			  <arg name="scan_topic" default="scan" /> 

			Then, we include the gmapping node, as follows:

			  <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen"> 

			An important element of the gmapping node is the frames involved in the creation of the map: the base frame, representing the base of the robot, and the odom frame, representing the frame in which the position of the robot is calculated considering wheel odometry. The code is illustrated in the following snippet:

			    <param name="base_frame" value="base_footprint"/> 

			    <param name="odom_frame"value="odom"/> 

			Then, a set of parameters regulate the behavior of the mapping algorithm. We can classify the parameters in the following classes.

			The laser parameters are shown here:

			    <param name="maxUrange" value="6.0"/> 

			    <param name="maxRange" value="8.0"/> 

			    <param name="sigma" value="0.05"/> 

			    <param name="kernelSize" value="1"/> 

			    <param name="lstep" value="0.05"/> 

			    <param name="astep" value="0.05"/> 

			    <param name="iterations" value="5"/> 

			    <param name="lsigma" value="0.075"/> 

			    <param name="ogain" value="3.0"/> 

			    <param name="lskip" value="0"/> 

			    <param name="minimumScore" value="100"/> 

			    <param name="particles" value="80"/>

			The model parameters are shown here:

			    <param name="srr" value="0.01"/> 

			    <param name="srt" value="0.02"/> 

			    <param name="str" value="0.01"/> 

			    <param name="stt" value="0.02"/> 

			Other parameters related the update of the map are shown here:

			    <param name="linearUpdate" value="0.5"/> 

			    <param name="angularUpdate" value="0.436"/> 

			    <param name="temporalUpdate" value="-1.0"/> 

			    <param name="resampleThreshold" value="0.5"/> 

			    <remap from="scan" to="$(arg scan_topic)"/> 

			    <param name="map_update_interval" value="5.0"/> 

			The initial map dimensions and resolution parameters are shown here:

			    <param name="xmin" value="-1.0"/> 

			    <param name="ymin" value="-1.0"/> 

			    <param name="xmax" value="1.0"/> 

			    <param name="ymax" value="1.0"/>

			    <param name="delta" value="0.05"/> 

			The likelihood sampling parameters are shown here:

			    <param name="llsamplerange" value="0.01"/> 

			    <param name="llsamplestep" value="0.01"/> 

			    <param name="lasamplerange" value="0.005"/> 

			    <param name="lasamplestep" value="0.005"/> 

			We are now ready to start the mapping node on the differential drive robot.

			Running SLAM on the differential drive robot

			We can build a ROS package called diff_wheeled_robot_gazebo and run the gmapping.launch file for building the map. The following code snippets show the commands we need to execute to start the mapping procedure.

			Start the robot simulation by using the Willow Garage world (shown in Figure 6.21), as follows:

			roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo_full.launch  

			Start the gmapping launch file with the following command:

			roslaunch diff_wheeled_robot_gazebo gmapping.launch  

			If the gmapping launch file is working fine, we will get the following kind of output on the Terminal:

			
				
					[image: Figure 6.20 – Terminal messages during gmapping process ]
				

			

			Figure 6.20 – Terminal messages during gmapping process

			Start the keyboard teleoperation for manually navigating the robot around the environment. The robot can map its environment only if it covers the entire area. The code is illustrated here:

			roslaunch diff_wheeled_robot_control keyboard_teleop.launch  

			You can add elements in Gazebo directly from the UI—for example, you can add the Willow Garage office in the simulation. This scene is shown in the following screenshot: 

			
				
					[image: Figure 6.21 – Simulation of the robot using the Willow Garage world ]
				

			

			Figure 6.21 – Simulation of the robot using the Willow Garage world

			We can launch RViz and add a display type called Map and a topic name of /map.

			We can start moving the robot inside the world by using keyboard teleoperation, and we can see a map building according to the environment. The following screenshot shows the completed map of the environment shown in RViz:

			
				
					[image: Figure 6.22 – Completed map of the room in RViz ]
				

			

			Figure 6.22 – Completed map of the room in RViz

			We can save the built map using the following command. This command will listen to the map topic and generate an image containing the whole map. The map_server package does this operation:

			rosrun map_server map_saver -f willo  

			You need to install the map server, as follows: 

			sudo apt-get install ros-noetic-map-server  

			Here, willo is the name of the map file. The map file is stored as two files: one is a YAML file that contains the map metadata and the image name, and the other is an image that has the encoded data of the occupancy grid map. Here is a screenshot of the preceding command, running without any errors:

			
				
					[image: Figure 6.23 – Terminal screenshot while saving a map ]
				

			

			Figure 6.23 – Terminal screenshot while saving a map

			The saved encoded image of the map is shown next. If the robot gives accurate robot odometry data, we will get this kind of precise map similar to the environment. The accurate map improves the navigation accuracy through efficient path planning:

			
				
					[image: Figure 6.24 – The saved map ]
				

			

			Figure 6.24 – The saved map

			The next procedure is to localize and navigate in this static map.

			Implementing autonomous navigation using amcl and a static map

			The ROS amcl package provides nodes for localizing the robot on a static map. This node subscribes the laser-scan data, laser-scan-based maps, and the TF information from the robot. The amcl node estimates the pose of the robot on the map and publishes its estimated position with respect to the map.

			If we create a static map from the laser-scan data, the robot can autonomously navigate from any pose of the map using amcl and the move_base nodes. The first step is to create a launch file for starting the amcl node. The amcl node is highly customizable; we can configure it with a lot of parameters. A list of these parameters is available at the ROS package site (http://wiki.ros.org/amcl).

			Creating an amcl launch file

			A typical amcl launch file is given next. The amcl node is configured inside the amcl.launch.xml file, which is in the diff_wheeled_robot_gazebo/launch/include package. The move_base node is also configured separately in the move_base.launch.xml file. The map file we created in the gmapping process is loaded here, using the map_server node, as follows:

			<arg name="map_file" default="$(find diff_wheeled_robot_gazebo)/maps/test1.yaml"/> 

			  <node name="map_server" pkg="map_server" type="map_server" args="$(arg map_file)" /> 

			  <include file="$(find diff_wheeled_robot_gazebo)/launch/includes/amcl.launch.xml"> 

			 

			    <arg name="initial_pose_x" value="0"/> 

			    <arg name="initial_pose_y" value="0"/> 

			    <arg name="initial_pose_a" value="0"/> 

			 

			  </include> 

			 Then, we include the move_base launch file, as follows:

			  <include file="$(find diff_wheeled_robot_gazebo)/launch/includes/move_base.launch.xml"/> 

			</launch> 

			Here is a code snippet taken from amcl.launch.xml. This file is a bit lengthy, as we have to configure a lot of parameters for the amcl node:

			<launch> 

			  <arg name="use_map_topic"  default="false"/> 

			  <arg name="scan_topic"     default="scan"/> 

			  <arg name="initial_pose_x" default="0.0"/> 

			  <arg name="initial_pose_y" default="0.0"/> 

			  <arg name="initial_pose_a" default="0.0"/> 

			 

			  <node pkg="amcl" type="amcl" name="amcl"> 

			    <param name="use_map_topic"             value="$(arg use_map_topic)"/> 

			    <!-- Publish scans from best pose at a max of 10 Hz --> 

			    <param name="odom_model_type"           value="diff"/> 

			    <param name="odom_alpha5"               value="0.1"/> 

			    <param name="gui_publish_rate"          value="10.0"/> 

			    <param name="laser_max_beams"             value="60"/> 

			    <param name="laser_max_range"           value="12.0"/> 

			After creating this launch file, we can start the amcl node, using the procedure outlined next.

			Start the simulation of the robot in Gazebo, as follows:

			roslaunch diff_wheeled_robot_gazebo diff_wheeled_gazebo_full.launch   

			Start the amcl launch file using the following command:

			roslaunch diff_wheeled_robot_gazebo amcl.launch  

			If the amcl launch file is correctly loaded, the Terminal shows the following message:

			
				
					[image: Figure 6.25 – Terminal screenshot while executing amcl ]
				

			

			Figure 6.25 – Terminal screenshot while executing amcl

			If amcl is working fine, we can start commanding the robot to go into a position on the map using RViz, as shown in the following screenshot, in which the arrow indicates the goal position. We have to enable LaserScan, Map, and Path visualizing plugins in RViz for viewing the laser scan, the global/local cost map, and the global/local paths. Using the 2D Nav Goal button in RViz, we can command the robot to go to the desired position.

			The robot will plan a path to that point and give velocity commands to the robot controller to reach that point, as illustrated in the following screenshot:

			
				
					[image: Figure 6.26 – Autonomous navigation using amcl and the map ]
				

			

			Figure 6.26 – Autonomous navigation using amcl and the map

			In the preceding screenshot, we can see that we have placed a random obstacle in the robot's path and that the robot has planned a path to avoid the obstacle.

			We can view the amcl particle cloud around the robot by adding a pose array to RViz, and the topic is /particle_cloud. The following screenshot shows the amcl particle cloud around the robot:

			
				
					[image: Figure 6.27 – The amcl particle cloud and odometry ]
				

			

			Figure 6.27 – The amcl particle cloud and odometry

			Now, the robot is able to localize itself into the map. The shape of the particle cloud gives us information about the quality of the localization. It represents the localization system's uncertainty about the pose of the robot. If the cloud is very spread out, this means that the system is very unsure about the overall pose of the robot. In the previous screenshot, we can see a very condensed cloud that represents a low uncertainty for the localization system.

			Summary

			This chapter offered a brief overview of MoveIt! and the Navigation stack of ROS and demonstrated its capabilities using Gazebo simulation of a robotic arm mobile base. The chapter started with a MoveIt! overview and discussed detailed concepts about MoveIt!. After discussing MoveIt!, we interfaced MoveIt! with Gazebo. After interfacing, we executed the trajectory from MoveIt! on Gazebo.

			The next section was about the ROS Navigation stack. We discussed its concepts and workings as well. After discussing the concepts, we tried to interface our robot in Gazebo to the Navigation stack and build a map using SLAM. After this, we performed autonomous navigation using amcl and the static map.

			In the next chapter, we will discuss pluginlib, nodelets, and controllers.

			Here are few questions based on what we covered in this chapter.

			Questions

			
					What is the main purpose of MoveIt! packages?

					What is the importance of the move_group node in MoveIt!?

					What is the purpose of the move_base node in the Navigation stack?

					What are the functions of the SLAM and amcl packages?

			

		

	






			Chapter 7: Exploring the Advanced Capabilities of ROS MoveIt!

			In the previous chapter, we covered Robot Operating System (ROS) manipulation and navigation. Similarly, in this chapter, we are going to cover the advanced capabilities of ROS MoveIt!, such as collision avoidance, perception with three-dimensional (3D) sensors, grasping, picking, and placing. After this, we will see how to interface robotic manipulator hardware with MoveIt!.

			These are the main topics discussed in this chapter:

			
					Motion-planning using the move_group C++ interface

					Working with perception using MoveIt! and Gazebo

					Performing object manipulation with MoveIt!

					Understanding DYNAMIXEL ROS servo controllers for robot hardware interfacing

					Interfacing a 7-DOF DYNAMIXEL-based robotic arm with ROS MoveIt!

			

			The first topic that we are going to discuss is how to motion-plan our robot using MoveIt! C++ APIs.

			Technical requirements

			To follow along with this chapter, you need a standard laptop running Ubuntu 20.04 with ROS Noetic installed. The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git. The code is contained in the Chapter7/seven_dof_arm_test folder.

			You can view this chapter's code in action here: https://bit.ly/3z4l79J.

			Motion planning using the move_group C++ interface

			In Chapter 6, Using the ROS MoveIt! and Navigation Stack, we discussed how to interact with a robot arm and how to plan its path using the MoveIt! ROS Visualization (RViz) motion planning plugin. In this section, we will see how to program the robot motion using the move_group C++ APIs. Motion planning using RViz can also be done programmatically through the move_group C++ APIs.

			The first step to start working with C++ APIs is to create another ROS package that has the MoveIt! packages as dependencies. We can create this same package using the following command:

			catkin_create_pkg seven_dof_arm_test catkin cmake_modules interactive_markers moveit_core moveit_ros_perception moveit_ros_planning_interface pluginlib roscpp std_msgs

			Let's start using the move_group API to execute planned trajectories.

			Motion planning a random path using MoveIt! C++ APIs

			The first example that we are going to see is a random motion plan using MoveIt!. C++ APIs. You will get the code file named test_random.cpp from the src folder. The code and the description of each line follows. When we execute this node, it will plan a random path and execute it, as illustrated in the following code snippet:

			#include <moveit/move_group_interface/move_group_interface.h> 

			int main(int argc, char **argv) 

			{ 

			  ros::init(argc, argv, "move_group_interface_demo"); 

			  // start a ROS spinning thread 

			  ros::AsyncSpinner spinner(1); 

			  spinner.start(); 

			  // this connects to a running instance of the move_group node 

			  //move_group_interface::MoveGroup group("arm"); 

			  moveit::planning_interface::MoveGroupInterface group("arm"); 

			  // specify that our target will be a random one 

			  group.setRandomTarget(); 

			  // plan the motion and then move the group to the sampled target  

			  group.move(); 

			  ros::waitForShutdown(); 

			} 

			To build the source code, we should add the following lines of code to CMakeLists.txt. You will get the complete CMakeLists.txt file from the existing package itself:

			add_executable(test_random_node src/test_random.cpp) 

			add_dependencies(test_random_node seven_dof_arm_test_generate_messages_cpp) 

			target_link_libraries(test_random_node 

			${catkin_LIBRARIES}) 

			We can build the package using the catkin_make command. First, check whether test_random.cpp is built properly or not. If the code is built properly, we can start testing the code.

			The following command will start the RViz with 7-DOF arm with the motion-planning plugin:

			roslaunch seven_dof_arm_config demo.launch

			Move the end effector to check whether everything is working properly in RViz.

			Run the C++ node for planning to a random position using the following command:

			rosrun seven_dof_arm_test test_random_node

			The output of the RViz is shown next. The arm will select a random position that has valid inverse kinematics (IK) and a motion plan from the current position:

			
				
					[image: Figure 7.1 – Random motion planning using move_group APIs ]
				

			

			Figure 7.1 – Random motion planning using move_group APIs

			In this example, we just try to move the robot with a random, feasible target pose for its end effector. In the next section, we will assign the desired pose to it.

			Motion planning a custom path using MoveIt! C++ APIs

			We saw random motion planning in the preceding example. In this section, we will check how to command the robot end effector to move to a custom goal position. The following example, test_custom.cpp, will do that job. At the start, we must include MoveIt! header files. The code is illustrated in the following snippet:

			#include <moveit/move_group_interface/move_group_interface.h> 

			#include <moveit/planning_scene_interface/planning_scene_interface.h> 

			#include <moveit/move_group_interface/move_group_interface.h> 

			#include <moveit_msgs/DisplayRobotState.h> 

			#include <moveit_msgs/DisplayTrajectory.h> 

			#include <moveit_msgs/AttachedCollisionObject.h> 

			#include <moveit_msgs/CollisionObject.h> 

			Then, we initialize the planning interface and the publishers to visualize the trajectory on MoveIt!, as follows:

			int main(int argc, char **argv) 

			{ 

			  //ROS initialization

			  ros::init(argc, argv, "move_group_interface_tutorial"); 

			  ros::NodeHandle node_handle;   

			  ros::AsyncSpinner spinner(1); 

			  spinner.start(); 

			  sleep(2.0);

			  //Move group setup

			  moveit::planning_interface::MoveGroupInterface group("arm"); 

			  moveit::planning_interface::PlanningSceneInterface planning_scene_interface;   

			  ros::Publisher display_publisher = node_handle.advertise<moveit_msgs::DisplayTrajectory>("/move_group/display_planned_path", 1, true); 

			  moveit_msgs::DisplayTrajectory display_trajectory; 

			  ROS_INFO("Reference frame: %s",    group.getEndEffectorLink().c_str());

			Finally, we set a fixed desired pose for the manipulator target and require the planning and the execution of the generated trajectory, as follows:

			  //Target pose setup 

			  geometry_msgs::Pose target_pose1; 

			  target_pose1.orientation.w = 0.726282; 

			  target_pose1.orientation.x= 4.04423e-07; 

			  target_pose1.orientation.y = -0.687396; 

			  target_pose1.orientation.z = 4.81813e-07; 

			  target_pose1.position.x = 0.0261186; 

			  target_pose1.position.y = 4.50972e-07; 

			  target_pose1.position.z = 0.573659; 

			  group.setPoseTarget(target_pose1);

			  //Motion planning

			  moveit::planning_interface::MoveGroupInterface::Plan my_plan; 

			  moveit::planning_interface::MoveItErrorCode success = group.plan(my_plan); 

			  ROS_INFO("Visualizing plan 1 (pose goal) %s", success.val ? "":"FAILED");     

			  // Sleep to give Rviz time to visualize the plan.  

			  sleep(5.0); 

			  ros::shutdown();   

			} 

			Here are the extra lines of code added on for building the source code:

			add_executable(test_custom_node src/test_custom.cpp) 

			add_dependencies(test_custom_node seven_dof_arm_test_generate_messages_cpp) 

			target_link_libraries(test_custom_node 

			${catkin_LIBRARIES}) 

			Here is the command to execute the custom node:

			rosrun seven_dof_arm_test test_custom_node

			The following screenshot shows the result of test_custom_node:

			
				
					[image: Figure 7.2 – Custom motion planning using MoveIt! C++ APIs ]
				

			

			Figure 7.2 – Custom motion planning using MoveIt! C++ APIs

			However, in this case, we plan the trajectory in a free space. Motion-planning capabilities are more important when the robot's environment is crowded with obstacles. Let's see in the next section how to add obstacles for collision checking.

			Collision checking with a robot arm using MoveIt!

			Along with motion planning and the IK solving algorithm, one of the most important tasks done in parallel in MoveIt! is collision checking and its avoidance. MoveIt! can handle both self-collisions and environmental collisions, exploiting the built-in Flexible Collision Library (FCL) (http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html), an open source project that implements various collision-detection-and-avoidance algorithms. MoveIt! takes the power of FCL and handles the collision inside the planning scene using a collision_detection::CollisionWorld class. The MoveIt! collision checking includes objects—such as meshes, primitive shapes—such as boxes and cylinders, and octomaps. The OctoMap (http://octomap.github.io/) library implements a 3D occupancy grid, called an octree, that consists of probabilistic information regarding obstacles in the environment. The MoveIt! package can build an octomap using 3D point-cloud information and can directly feed the OctoMap library to FCL library for collision checking.

			As with motion planning, collision checking is very computationally intensive. We can fine-tune the collision checking between two bodies—say, a robot link, or with the environment—using a parameter called the Allowed Collision Matrix (ACM). If the value of a collision between two links is set to 1 in ACM, there will not be any collision checks. We may set this for links that are far from each other. We can optimize the collision-checking process by optimizing this matrix.

			Adding a collision object to MoveIt!

			We can add a collision object to the MoveIt! planning scene, and we can see how motion planning works. To add a collision object, we can use mesh files, which can directly be imported from the MoveIt! interface and can be added by writing a ROS node using MoveIt! APIs.

			We will first discuss how to add a collision object using the ROS node, as follows:

			
					In the add_collision_object.cpp node, which is inside the seven_dof_arm_test/src folder, we are starting a ROS node and creating an object of moveit::planning_interface::PlanningSceneInterface, which can access the planning scene of MoveIt! and perform any action on the current scene. We will now add a sleep of 5 seconds to wait for the planningSceneInterface object instantiation, as follows:moveit::planning_interface::PlanningSceneInterface current_scene; 0); 


					In the next step, we need to create an instance of the moveit_msgs::CollisionObject collision object message. This message is going to be sent to the current planning scene. Here, we are making a collision object message for a cylinder shape, and the message is given as seven_dof_arm_cylinder. When we add this object to the planning scene, the name of the object is its identifier (ID), as illustrated in the following code snippet:moveit_msgs::CollisionObject cylinder; 
cylinder.id = "seven_dof_arm_cylinder"; 


					After making the collision-object message, we have to define another message of type shape_msgs::SolidPrimitive, which is used to define what kind of primitive shape we are using and its properties. In this example, we are creating a cylinder object, as shown in the following code snippet. We have to define the type of shape, the resizing factor, the width, and the height of the cylinder:shape_msgs::SolidPrimitive primitive; 
primitive.type = primitive.CYLINDER; 
primitive.dimensions.resize(3); 
primitive.dimensions[0] = 0.6; 
primitive.dimensions[1] = 0.2; 
primitive.dimensions[2] = 0.2; 


					After creating a shape message, we have to create a geometry_msgs::Pose message to define the pose of this object. We define a pose that may be closer to the robot. We can change the pose after the creation of an object in the planning scene. The code is illustrated in the following snippet:geometry_msgs::Pose; 
pose.orientation.w = 1.0; 
pose.position.x =  0.0; 
pose.position.y = -0.4; 
pose.position.z =  -0.4; 


					After defining the pose of the collision object, we need to add the defined primitive object and the pose to the cylinder collision object. The operation we need to perform is adding the planning scene, as follows:cylinder.primitives.push_back(primitive); 
cylinder.primitive_poses.push_back(pose); 
cylinder.operation = cylinder.ADD; 


					In the next step, we create a vector called collision_objects of type moveit_msgs::CollisionObject, inserting the collision object to this vector, like this:std::vector<moveit_msgs::CollisionObject> collision_objects; 
collision_objects.push_back(cylinder); 


					We will add the collision object's vector to the current planning scene by using the following line of code. addCollisionObjects() inside the PlanningSceneInterface class is used to add the object to the planning scene:current_scene.addCollisionObjects(collision_objects); 


					Here are the compile and build lines of the code in CMakeLists.txt:add_executable(add_collision_object src/add_collision_object.cpp) 
add_dependencies(add_collision_object seven_dof_arm_test_generate_messages_cpp) 
target_link_libraries(add_collision_object 
${catkin_LIBRARIES}) 
Let's see how this node works in RViz with the MoveIt! Motion-Planning plugin, as follows.


					We will start the demo.launch file inside the seven_dof_arm_config package for testing this node:roslaunch seven_dof_arm_config demo.launch  


					Then, we add the following collision object:rosrun seven_dof_arm_test add_collision_object  


			

			When we run the add_collision_object node, a green cylinder will pop up, and we can move the collision object, as shown in the following screenshot. When the collision object is successfully added to the planning scene, it will list out in the Scene Objects tab. We can click on the object and modify its pose. We can also attach the new model in any links of robots too. There is a Scale option to scale down the collision model:

			
				
					[image: Figure 7.3 – Adding collision objects to RViz using MoveIt! C++ APIs ]
				

			

			Figure 7.3 – Adding collision objects to RViz using MoveIt! C++ APIs

			The RViz Motion-Planning plugin also gives an option to import a 3D mesh to the planning scene. Click the Import File button for importing the meshes. The following screenshot shows our importing of a cube-mesh Digital Asset Exchange (DAE) file, which is imported along with the cylinder in the planning scene. We can scale up the collision object using the Scale slider, and set the desired pose using the Manage Pose option. When we move the arm end effector to any of these collision objects, MoveIt! detects it as a collision. The MoveIt! collision detection can detect environment collision as well as self-collision. Here is a screenshot of a collision with the environment:

			
				
					[image: Figure 7.4 – Visualizing collided link ]
				

			

			Figure 7.4 – Visualizing collided link

			The collided link will turn red when the arm touches the object. In self-collision also, the collided link will turn red. We can change the color setting of the collision in the Motion-Planning plugin settings.

			Removing a collision object from the planning scene

			Removing a collision object from the planning scene is easy. We have to create a moveit::planning_interface::PlanningSceneInterface object, as we did in the previous example, along with some delay, as follows:

			moveit::planning_interface::PlanningSceneInterface current_scene; 

			sleep(5.0); 

			Next, we need to create a vector of the string that contains the collision object IDs. Here, our collision object ID is seven_dof_arm_cylinder. After pushing the string to this vector, we will call removeCollisionObjects(object_ids), which will remove the collision objects from the planning scene. 

			The code is illustrated in the following snippet:

			std::vector<std::string> object_ids; 

			object_ids.push_back("seven_dof_arm_cylinder"); 

			current_scene.removeCollisionObjects(object_ids); 

			This code is placed in seven_dof_arm_test/src/remove_collision_object.cpp.

			Attaching a collision object to a robot link

			After seeing how to insert and remove objects from the planning scene, we are now going to discuss how to attach and detach objects to the robot's body. This important feature of ROS MoveIt! allows us to perform object manipulation. In fact, after attaching an object to the robot's body, the obstacle avoidance is additionally extended to the grasped object. In this way, the robot will be free to move into its workspace, avoiding obstacles and carrying the object to manipulate. The code we are going to discuss here is the seven_dof_arm_test/src/attach_detach_objs.cpp source code. After creating a moveit::planning_interface::PlanningSceneInterface object, as shown in the previous examples, we must initialize a moveit_msgs::AttachedCollisionObject instance, filling out information about which scene object will be attached to a specific link of the robot's body, as follows:

			moveit_msgs::AttachedCollisionObject attached_object; 

			attached_object.link_name = "grasping_frame"; 

			attached_object.object = grasping_object; 

			current_scene.applyAttachedCollisionObject( attached_object ); 

			In this example, the grasping_object object attached to the robot link is the one already used in the add_collision_object.cpp example. When an object is successfully attached to a robot, its color in the Moveit! visualization will change from green to purple and will move along with the robot motion. To detach an object from the robot's body, we should invoke the applyAttachedCollisionObject function on the desired object to detach modifying its operation from ADD to REMOVE, as illustrated in the following code snippet:

			grasping_object.operation = grasping_object.REMOVE; 

			attached_object.link_name = "grasping_frame"; 

			attached_object.object = grasping_object; 

			Let's continue the examples, checking the collisions of the arm with its structure: the self-collisions. 

			Checking self-collisions using MoveIt! APIs

			We have seen how to detect collisions in RViz, but what do we have to do if we want to get collision information in our ROS node? In this section, we will discuss how to get the collision information of our robot in ROS code. This example can check self-collisions and environment collisions, and tell which links were collided. The check_collision example is placed in the seven_dof_arm_test/src folder. The following code loads the kinematic model of the robot to the planning scene:

			robot_model_loader::RobotModelLoader robot_model_loader("robot_description"); 

			robot_model::RobotModelPtr kinematic_model = robot_model_loader.getModel(); 

			planning_scene::PlanningScene planning_scene(kinematic_model); 

			To test self-collision in the robot's current state, we can create two instances of the collision_detection::CollisionRequest and collision_detection::CollisionResult classes, named collision_request and collision_result. After creating these objects, pass them to the planning_scene.checkSelfCollision() MoveIt! collision-checking function, which can give the collision result in the collision_result object, and we can print the details, which are shown in the following code snippet:

			planning_scene.checkSelfCollision(collision_request, collision_result); 

			ROS_INFO_STREAM("1. Self collision Test: "<< (collision_result.collision ? "in" : "not in") 

			<< " self collision"); 

			If we want to test collision in a particular group, we can do that by mentioning group_name, as shown in the following code snippet. Here, the group name is arm:

			collision_request.group_name = "arm"; 

			current_state.setToRandomPositions(); 

			//Previous results should be cleared 

			collision_result.clear(); 

			planning_scene.checkSelfCollision(collision_request, collision_result); 

			ROS_INFO_STREAM("3. Self collision Test(In a group): "<< (collision_result.collision ? "in" : "not in")); 

			For performing a full collision check, we have to use the following function, called planning_scene.checkCollision(). We need to mention the current robot state and the ACM matrix in this function.

			Here's the code we'll need to perform full collision checking using this function:

			collision_detection::AllowedCollisionMatrix acm = planning_scene.getAllowedCollisionMatrix(); 

			robot_state::RobotState copied_state = planning_scene.getCurrentState(); 

			planning_scene.checkCollision(collision_request, collision_result, copied_state, acm); 

			ROS_INFO_STREAM("6. Full collision Test: "<< (collision_result.collision ? "in" : "not in") 

			<< " collision"); 

			We can launch the motion-planning demo and run this node using the following command:

			roslaunch seven_dof_arm_config demo.launch

			We can run the collision-checking node with this command:

			rosrun seven_dof_arm_test check_collision  

			You will get a report, such as the one shown in the following screenshot. The robot is now not in collision; if it is in collision, it will send a report of it:

			
				
					[image: Figure 7.5 – Collision-checking information messages ]
				

			

			Figure 7.5 – Collision-checking information messages

			Until now, we just used fake execution of motions, without connecting MoveIt! and Gazebo. However, to exploit robot-sensing capabilities, a real robot or a simulation is needed. In the next section, we will discuss how to link the depth sensor of Gazebo simulation with MoveIt!.

			Working with perception using MoveIt! and Gazebo

			Until now, in MoveIt!, we have worked with an arm only. In this section, we will see how to interface 3D vision-sensor data to MoveIt!. The sensor can be either simulated using Gazebo, or you can directly interface a Red-Green-Blue-Depth (RGB-D) sensor, such as Kinect or Intel RealSense, using the openni_launch package. Here, we will work using Gazebo simulation. We will add sensors to MoveIt! to create a map of the environment surrounding the robot. The following command will launch the robot arm and the Asus Xtion pro simulation in Gazebo in a world with obstacles:

			roslaunch seven_dof_arm_gazebo seven_dof_arm_obstacle_world.launch 

			This command will start the Gazebo scene with arm joint controllers and the Gazebo plugin for the 3D vision sensor. We can add a grasp table and grasp objects to the simulation, as shown in the following screenshot, by simply clicking and dragging them to the workspace. We can create any kind of table or object. The objects shown in the following screenshot are only for demonstration purposes. We can edit the model Spatial Data File (SDF) file to change the size and shape of the model:

			
				
					[image: Figure 7.6 – Robot arm with grasp table and object in Gazebo ]
				

			

			Figure 7.6 – Robot arm with grasp table and object in Gazebo

			Check the topics generated after starting the simulation with the following command:

			rostopic list

			Make sure that we are getting the RGB-D camera topics, as shown here:

			
				
					[image: Figure 7.7 – Listing RGB-D sensor topics ]
				

			

			Figure 7.7 – Listing RGB-D sensor topics

			We can view the point cloud in RViz using the following command:

			rosrun rviz rviz -f base_link

			Now, we can add the PointCloud2 data and the robot model to see the following output:

			
				
					[image: Figure 7.8 – Visualizing point-cloud data in RViz ]
				

			

			Figure 7.8 – Visualizing point-cloud data in RViz

			After confirming the point-cloud data from the Gazebo plugins, we have to add some files to the MoveIt! configuration package of this arm—that is, the seven_dof_arm_config package, for bringing the point-cloud data from Gazebo to the MoveIt! planning scene.

			The robot environment is mapped as an octree representation (https://en.wikipedia.org/wiki/Octree), which can be built using a library called OctoMap, which we have already seen in the previous section. The OctoMap library is incorporated as a plugin in MoveIt!, called the Occupancy Map Updater plugin, which can update an octree from different kinds of sensor inputs, such as point-cloud and depth images from 3D vision sensors. Currently, there are the following plugins for handling 3D data:

			
					PointCloudOccupancymap Updater: This plugin can take input in the form of point clouds (sensor_msgs/PointCloud2).

					DepthImageOccupancymapUpdater: This plugin can take input in the form of input depth images (sensor_msgs/Image).

			

			The first step is to write a configuration file for these plugins. This file contains information about which plugin we are using in this robot and what its properties are. The file exploiting the first plugin is found in the seven_dof_arm_config/config folder, called sensor_3d.yaml.

			The definition of this file is shown in the following code snippet:

			sensors: 

			- sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater 

			  point_cloud_topic: /rgbd_camera/depth/points 

			  max_range: 5 

			  padding_offset: 0.01 

			  padding_scale: 1.0 

			  point_subsample: 1 

			  filtered_cloud_topic: filtered_cloud 

			The explanation of a general parameter is sensor_plugin, which is a parameter that specifies the name of the plugin we are using in the robot.

			These are the parameters of the given sensor_plugin parameter:

			
					point_cloud_topic: This plugin will listen to this topic for point-cloud data.

					max_range: This is the distance limit in meters in which points above the range will not be used for processing.

					padding_offset: This value will be considered for robot links and attached objects when filtering clouds containing the robot links (self-filtering).

					padding_scale: This value will also be considered while self-filtering.

					point_subsample: If the update process is slow, points can be subsampled. If we make this value greater than 1, the points will be skipped instead of processed.

					filtered_cloud_topic: This is the final filtered cloud topic. We will get the processed point cloud through this topic. It can be used mainly for debugging.

			

			If we are using the DepthImageOctomapUpdater plugin, we can have a different configuration file. We are not using this plugin in our example robot, but we can see its usage and properties in the following code snippet:

			sensors: 

			 - sensor_plugin: occupancy_map_monitor/DepthImageOctomapUpdater 

			   image_topic: /head_mount_kinect/depth_registered/image_raw 

			   queue_size: 5 

			   near_clipping_plane_distance: 0.3 

			   far_clipping_plane_distance: 5.0 

			   skip_vertical_pixels: 1 

			   skip_horizontal_pixels: 1 

			   shadow_threshold: 0.2 

			   padding_scale: 4.0 

			   padding_offset: 0.03 

			   filtered_cloud_topic: output_cloud 

			The explanation of a general parameter is sensor_plugin, which is a parameter that specifies the name of the plugin we are using in the robot.

			These are the parameters of the given sensor_plugin parameter:

			
					image_topic: The topic that streams the image.

					queue_size: This is the queue size for the depth-image transport subscriber.

					near_clipping_plane_distance: This is the minimum valid distance from the sensor.

					far_clipping_plane_distance: This is the maximum valid distance from the sensor.

					skip_vertical_pixels: This is the number of pixels we have to skip from the top and bottom of the image. If we give a value of 5, it will skip five columns from the first and last pixels of the image.

					skip_horizontal_pixels: Skipping pixels in a horizontal direction.

					shadow_threshold: In some situations, points can appear below the robot links. This happens because of padding. shadow_threshold removes the points with a distance that is greater than the shadow_threshold parameter.

			

			After discussing the OctoMap update plugin and its properties, we can now switch to the launch files necessary to initiate this plugin and its parameters. The first file we need to create is inside the seven_dof_arm_config/launch folder, with a name of seven_dof_arm_moveit_sensor_manager.launch. The definition of this file is shown in the following code snippet. This launch file basically loads the plugin parameters:

			<launch> 

			<rosparam command="load" file="$(find seven_dof_arm_config)/config/sensor_3d.yaml" />

			</launch>  

			The next file that we need to edit is the sensor_manager.launch file, which is located inside the launch folder. The definition of this file is shown in the following code snippet:

			<launch> 

			  <!-- This file makes it easy to include the settings for sensor managers -->   

			 

			  <!-- Params for the octomap monitor --> 

			  <!--  <param name="octomap_frame" type="string" value="some frame in which the robot moves" /> --> 

			  <param name="octomap_resolution" type="double" value="0.015" /> 

			  <param name="max_range" type="double" value="5.0" /> 

			 

			  <!-- Load the robot specific sensor manager; this sets the moveit_sensor_manager ROS parameter --> 

			 

			  <arg name="moveit_sensor_manager" default="seven_dof_arm" /> 

			  <include file="$(find seven_dof_arm_config)/launch/$(arg moveit_sensor_manager)_moveit_sensor_manager.launch.xml" /> 

			 

			</launch> 

			The following line of code is commented because it can be used if the robot is mobile. In our case, our robot is static. If it is fixed on a mobile robot, we can give the frame value as odom, or odom_combined of the robot:

			<param name="octomap_frame" type="string" value="some frame in which the robot moves" /> 

			The following parameter is the resolution of OctoMap, which is visualized in RViz measured in meters. The rays beyond the max_range value will be truncated:

			  <param name="octomap_resolution" type="double" value="0.015" /> 

			  <param name="max_range" type="double" value="5.0" /> 

			The interfacing is now complete. We can test the MoveIt! interface and launch Gazebo for perception using the following commands:

			roslaunch seven_dof_arm_gazebo seven_dof_arm_bringup_obstacle_moveit.launch

			Now, RViz has sensor support. We can see the OctoMap in front of the robot in the following screenshot:

			
				
					[image: Figure 7.9 – Visualizing an octomap in RViz ]
				

			

			Figure 7.9 – Visualizing an octomap in RViz

			The generated OctoMap is continuously updated when new elements appear in the scene and are used in the motion-planning process to generate obstacle-free paths.

			However, in the previous examples, we just considered the possibility of safely moving the arm in the working scene. An important feature of the robotic arms is to handle objects. Let's discuss in the next section how to interact with the scene objects in order to manipulate them. 

			Performing object manipulation with MoveIt!

			Manipulating objects is one of the main usages of robotic arms. The capacity to pick up objects and place them in a different location of the robot's workspace is extremely useful, both in industry and research applications. The picking process is also known as grasping and represents a complex task because a lot of constraints are required to pick an object up in a proper way. Humans handle grasping operations using their intelligence, but robots need rules for it. One of the constraints in grasping is the approaching force; the end effector should adjust the grasping force for picking the object but not make any deformation on the object while grasping. In addition, a grasping pose is needed to pick an object in the best way and should be calculated considering its shape and its pose. In this section, we will interact with the scene object of MoveIt! to simulate pick-and-place operations.

			Working with a robot pick-and-place task using MoveIt!

			We can pick and place objects in various ways. One is by using pre-defined sequences of joint values; in this case, we put the object in a known position, and move the robot toward that by providing direct joint values or forward kinematics (FK). Another pick-and-place method is to use IK without any visual feedback. In this case, we command the robot to move in a cartesian position with respect to the robot base frame, and by solving IK. In this way, the robot can reach that position and pick up that object. One more method is to use external sensors, such as vision ones, to calculate the pick-and-place positions; in this case, a vision sensor is used to identify the object's location, and the arm goes to that position by solving to pick the object. Of course, the use of vision sensors requires the development of robust algorithms to perform object recognition and tracking and calculate the best grasping pose to pick that object. But in this section, we want to demonstrate a pick-and-place sequence, by defining the approaching and grasping position to pick the object and place it on another location of its workspace. We can work with this example along with Gazebo, or simply use the MoveIt! demo interface. The complete source code of this example is reported in the seven_dor_arm_test/src/pick_place.cpp file. As we have already seen, we should first initialize the planning scene, as follows:

			ros::init(argc, argv, "seven_dof_arm_planner"); 

			ros::NodeHandle node_handle; 

			ros::AsyncSpinner spinner(1); 

			spinner.start(); 

			moveit::planning_interface::MoveGroupInterface group("arm"); 

			moveit::planning_interface::PlanningSceneInterface planning_scene_interface; 

			sleep(2); 

			moveit::planning_interface::MoveGroupInterface::Plan my_plan; 

			const robot_state::JointModelGroup *joint_model_group =   group.getCurrentState()->getJointModelGroup("arm"); 

			Then, we must create the working environment of the robot. In this context, we manually create two objects: a plane and a grasping object. Our goal is to pick the grasping object from its initial position and to transport it to another position. Let's start creating collision objects, as follows:

			moveit::planning_interface::PlanningSceneInterface current_scene; 

			geometry_msgs::Pose; 

			shape_msgs::SolidPrimitive primitive; 

			primitive.type = primitive.BOX; 

			primitive.dimensions.resize(3); 

			primitive.dimensions[0] = 0.03; 

			primitive.dimensions[1] = 0.03; 

			primitive.dimensions[2] = 0.08; 

			moveit_msgs::CollisionObject grasping_object; 

			Then, we create a grasping object, as follows:

			grasping_object.id = "grasping_object"; 

			pose.orientation.w = 1.0; 

			pose.position.y =  0.0; 

			pose.position.x =  0.33; 

			pose.position.z =  0.35; 

			grasping_object.primitives.push_back(primitive); 

			grasping_object.primitive_poses.push_back(pose); 

			grasping_object.operation = grasping_object.ADD; 

			grasping_object.header.frame_id = "base_link"; 

			primitive.dimensions[0] = 0.3; 

			primitive.dimensions[1] = 0.5; 

			primitive.dimensions[2] = 0.32; 

			Next, we create a surface, like this:

			moveit_msgs::CollisionObject grasping_table; 

			grasping_table.id = "grasping_table"; 

			pose.orientation.w = 1.0; 

			pose.position.y =  0.0; 

			pose.position.x =  0.46; 

			pose.position.z =  0.15; 

			grasping_table.primitives.push_back(primitive); 

			grasping_table.primitive_poses.push_back(pose); 

			grasping_table.operation = grasping_object.ADD; 

			grasping_table.header.frame_id = "base_link"; 

			Finally, we add the collision objects to the planning scene, like this:

			std::vector<moveit_msgs::CollisionObject> collision_objects; 

			collision_objects.push_back(grasping_object); 

			collision_objects.push_back(grasping_table); 

			current_scene.addCollisionObjects(collision_objects); 

			Now that the planning scene is properly configured, we can request the motion of the robot toward a preconfigured position of the workspace to bring its end effector close to the object and pick it up, as follows:

			geometry_msgs::Pose target_pose;

			target_pose.orientation.x = 0;

			target_pose.orientation.y = 0;

			target_pose.orientation.z = 0;

			target_pose.orientation.w = 1;

			target_pose.position.y = 0.0;

			target_pose.position.x = 0.28;

			target_pose.position.z = 0.35;

			group.setPoseTarget(target_pose);

			group.move();

			sleep(2);

			target_pose.position.y = 0.0;

			target_pose.position.x = 0.34;

			target_pose.position.z = 0.35;

			group.setPoseTarget(target_pose);

			group.move();

			If the grasping succeeded, we could attach the object to the end effector of the robot to place it in another location of the workspace, as illustrated in the following code snippet:

			moveit_msgs::AttachedCollisionObject att_coll_object;

			att_coll_object.object.id = "grasping_object";

			att_coll_object.link_name = "gripper_finger_link1";

			att_coll_object.object.operation = att_coll_object.object.ADD;

			planning_scene_interface.applyAttachedCollisionObject(att_coll_object);

			target_pose.position.y = 0.0;

			target_pose.position.x = 0.34;

			target_pose.position.z = 0.4;

			group.setPoseTarget(target_pose); 

			group.move(); 

			//--- 

			target_pose.orientation.x = -1; 

			target_pose.orientation.y = 0; 

			target_pose.orientation.z = 0; 

			target_pose.orientation.w = 0; 

			target_pose.position.y = -0.1; 

			target_pose.position.x = 0.34; 

			target_pose.position.z = 0.35; 

			group.setPoseTarget(target_pose); 

			group.move(); 

			Finally, we must remove the object from the robot's gripper, as follows:

			grasping_object.operation = grasping_object.REMOVE; 

			attached_object.link_name = "grasping_frame"; 

			attached_object.object = grasping_object; 

			current_scene.applyAttachedCollisionObject( attached_object ); 

			To run this example, launch the MoveIt! demo by running the following command:

			roslaunch seven_dof_arm_config demo.launch   

			Run the pick-and-place program by executing the following command:

			rosrun seven_dof_arm_test pick_place  

			Here is a screenshot of the grasping process:
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			Figure 7.10 – Pick-and-place sequences using MoveIt!

			The various steps in the grasping process are explained next:

			
					In the first step, we can see a green block, which is the object that is going to be grasped by the robot gripper. We have created this object inside the planning scene using the pick_and_place node. In the first part of the node, the end effector of the robot is approaching the object.

					After approaching the object, a valid trajectory to grasp the object is generated. After the grasping is completed, the green block will be attached to the robot's gripper and it will change its color to purple.

					After picking up the block, the robot will transport it to another place in the workspace, before placing it on the working table. If there is a valid IK in the place pose, the gripper holds the object in the planned trajectory.

					Finally, the object is placed on the table and detached from the robot's gripper.

			

			Another way to perform the pick-and-place tasks is by using actions provided by MoveIt!. After launching MoveIt!, two action servers start, as detailed here:

			
					pickup: This action accepts a moveit_msgs::PickupGoal message in which we mainly must specify the target object to grasp, and a list of possible grasping configurations. These configurations are filled in a moveit_msgs::Grasp message in which we have to set the complete position of the joints of the robot during the approaching and grasping actions, and the position of the end effector during the picking.

					place: This action is used to place an object onto a surface. It accepts a moveit_msgs::PlaceGoal message to specify a list of possible objects, positioning the configuration.

			

			Using MoveIt! actions assures the success of safe and complete pick-and-place tasks, but a lot of pre-planned information is required, making them difficult to use in advanced complex and dynamic robotic applications.

			Pick-and-place actions in Gazebo and real robots

			The grasping sequence executed in the MoveIt! demo uses fake controllers. We can send the trajectory to the actual robot or Gazebo. In Gazebo, we can launch the grasping world to perform this action.

			In real hardware, the only difference is that we need to create joint-trajectory controllers for the arm. One of the commonly used hardware controllers is the DYNAMIXEL controller. We will learn more about DYNAMIXEL controllers in the next section.

			Understanding DYNAMIXEL ROS servo controllers for robot hardware interfacing

			Till now, we have learned about MoveIt! interfacing using Gazebo simulation. In this section, we will see how to replace Gazebo and put a real robot interface to MoveIt!. Let's discuss DYNAMIXEL servos and the ROS controllers.

			DYNAMIXEL servos

			DYNAMIXEL servos are smart, high-performance networked actuators for high-end robotics applications. These servos are manufactured by a Korean company called ROBOTIS (http://en.robotis.com/). These servos are very popular among robotics enthusiasts because they can provide excellent position and torque control, as well as a variety of feedback, such as position, speed, temperature, voltage, and so on. One of their useful features is that they can be networked in a daisy-chain manner. This feature is very useful in multi-joint systems, such as robotic arms, humanoid robots, robotic snakes, and others. The servos can be directly connected to PCs using a Universal Serial Bus (USB) to DYNAMIXEL controller, which is provided by ROBOTIS. This controller has a USB interface, and when it is plugged into the PC, it acts as a virtual communication (COM) port. We can send data to this port, and internally it will convert the RS 232 protocol to transistor-transistor logic (TTL), and in RS 485 standards. The DYNAMIXEL servo can be powered and then connected to the USB-to-DYNAMIXEL controller to start working with it. DYNAMIXEL servos support both TTL and RS 485-level standards. The following screenshot shows a DYNAMIXEL servo called MX-106 and a USB-to-DYNAMIXEL controller:

			
				
					[image: Figure 7.11 – DYNAMIXEL servo and USB-to-DYNAMIXEL controller ]
				

			

			Figure 7.11 – DYNAMIXEL servo and USB-to-DYNAMIXEL controller

			There are different series of DYNAMIXEL servos available on the market. Some of the series are MX—28, 64, and 106; RX—28, 64, 106; and so on. The following diagram shows how to connect DYNAMIXEL motors to a PC using the USB port:

			
				
					[image: Figure 7.12 – DYNAMIXEL servos connected to a PC using a USB-to-DYNAMIXEL controller ]
				

			

			Figure 7.12 – DYNAMIXEL servos connected to a PC using a USB-to-DYNAMIXEL controller

			Multiple DYNAMIXEL devices can be connected in a sequence (or a daisy chain), as shown in the preceding figure. Each DYNAMIXEL has a firmware setting inside its controller. We can assign the ID of servos, the joint limits, the position limits, the position commands, the Proportional Integral Derivative (PID) values, the voltage limits, and so on inside the controller. There are ROS drivers and controllers for DYNAMIXEL, which are available at http://wiki.ros.org/dynamixel_motor.

			DYNAMIXEL-ROS interface

			The ROS stack for interfacing the DYNAMIXEL motor is named dynamixel_motor. This stack contains an interface for DYNAMIXEL motors, such as MX-28, MX64, MX-106, RX-28, RX64, EX106, AX-12, and AX-18. The stack consists of the following packages:

			
					dynamixel_driver: This package is the driver package of DYNAMIXEL, which can do low-level input/output (I/O) communication with DYNAMIXEL from the PC. This driver has a hardware interface for the previously mentioned series of servos and can do the read/write operations for DYNAMIXEL through this package. This package is used by high-level packages, such as dynamixel_controllers. There are only a few cases when the user directly interacts with this package.

					dynamixel_controllers: This is a higher-level package that works using the dynamixel_motor package. Using this package, we can create a ROS controller for each DYNAMIXEL joint of the robot. The package contains a configurable node, services, and spawner script to start, stop, and restart one or more controller plugins. In each controller, we can set the speed and the torque. Each DYNAMIXEL controller can be configured using the ROS parameters or can be loaded by a YAML file. The dynamixel_controllers package supports position, torque, and trajectory controllers.

					dynamixel_msgs: These are message definitions that are used inside the dynamixel_motor stack.

			

			Dynamixel servo motors can be used to build real robotic arms with multiple degrees of freedom (DOF), as discussed in the next section. 

			Interfacing a 7-DOF DYNAMIXEL-based robotic arm with ROS MoveIt!

			In this section, we will discuss a 7-DOF robot manipulator called COOL arm-5000, which is manufactured by a company called ASIMOV Robotics (http://asimovrobotics.com/) and is shown in the following screenshot. The robot is built using DYNAMIXEL servos. We will see how to interface a DYNAMIXEL-based robotic arm to ROS using dynamixel_controllers:

			
				
					[image: Figure 7.13 – COOL robotic arm ]
				

			

			Figure 7.13 – COOL robotic arm

			COOL arm robots are fully compatible with ROS and MoveIt! and are mainly used in education and research. Here are the details of the arms:

			
					DOF: 7 DOF

					Types of actuators: DYNAMIXEL MX-64 and MX-28

					List of joints: Shoulder roll, shoulder pitch, elbow roll, elbow pitch, wrist yaw, wrist pitch, and wrist roll

					Payload: 5 kilograms (kg)

					Reach: 1 meter (m)

					Work volume: 2.09 m³

					Repeatability: +/- 0.05 millimeters (mm)

					Gripper with three fingers

			

			Creating a controller package for a COOL arm robot

			The first step is to create a controller package for a COOL arm for interfacing with ROS. The COOL arm controller package is available for download along with the book code. Before we create the package, we should install the dynamixel_controllers package, as follows:

			sudo apt-get install ros-kinetic-dynamixel-controllers

			The following command will create a controller package with the necessary dependencies. The important dependency of this package is the dynamixel_controllers package:

			catkin_create_pkg cool5000_controller roscpp rospy dynamixel_controller std_msgs sensor_msgs

			The next step is to create a configuration file for each joint. The configuration file is called cool5000.yaml and contains a definition of each controller's name, its type, and its parameters. We can see this file in the cool5000_controller/config folder. We have to create parameters for the seven joints in this arm. Here is a snippet of this configuration file:

			joint1_controller: 

			    controller: 

			        package: dynamixel_controllers 

			        module: joint_position_controller 

			        type: JointPositionController 

			    joint_name: joint1 

			    joint_speed: 0.1 

			    motor: 

			        id: 0 

			        init: 2048 

			        min: 320 

			        max: 3823 

			joint2_controller: 

			    controller: 

			        package: dynamixel_controllers 

			        module: joint_position_controller 

			        type: JointPositionController 

			    joint_name: joint2 

			    joint_speed: 0.1 

			    motor: 

			        id: 1 

			        init: 2048 

			        min: 957 

			        max: 3106  

			The controller configuration file mentions the joint name, package of the controller, controller type, joint speed, motor ID, initial position, and minimum and maximum limits of the joint. We can connect as many motors as we want and can create controller parameters by including them in the configuration file. The next configuration file to create is a joint_trajectory controller configuration file. MoveIt! can only interface if the robot has the FollowJointTrajectory action server. The cool5000_trajectory_controller.yaml file is put in the cool5000_controller/config folder, and its definition is given in the following code snippet:

			cool5000_trajectory_controller: 

			   controller: 

			       package: dynamixel_controllers 

			       module: joint_trajectory_action_controller 

			       type: JointTrajectoryActionController 

			   joint_trajectory_action_node: 

			       min_velocity: 0.0 

			       constraints: 

			           goal_time: 0.01 

			After creating the JointTrajectory controller, we need to create a joint_state_aggregator node for combining and publishing the joint states of the robotic arm. You can find this node, named joint_state_aggregator.cpp, from the cool5000_controller/src folder. The function of this node is to subscribe controller states of each controller with a message type of dynamixel::JointState and combine each message of the controller with the sensor_msgs::JointState messages and publish them in the /joint_states topic. This message will be the aggregate of the joint states of all the DYNAMIXEL controllers. The definition of joint_state_aggregator.launch, which runs the joint_state_aggregator node with its parameters, is shown in the following code snippet. It is placed in the cool5000_controller/launch folder:

			<launch> 

			    <node name="joint_state_aggregator" pkg="cool5000_controller" type="joint_state_aggregator" output="screen"> 

			    <rosparam> 

			            rate: 50 

			            controllers: 

			                    - joint1_controller 

			                    - joint2_controller 

			                    - joint3_controller 

			                    - joint4_controller 

			                    - joint5_controller 

			                    - joint6_controller 

			                    - joint7_controller 

			                    - gripper_controller 

			        </rosparam> 

			    </node> 

			</launch> 

			We can launch the entire controller using the cool5000_controller.launch file, which is inside the launch folder. The code inside this launch file will start communication between the PC and the DYNAMIXEL servos and will also start the controller manager. The controller manager parameters are serial port, baud rate, servo ID range, and update rate. The code is illustrated in the following snippet:

			<launch> 

			 

			    <!-- Start the Dynamixel motor manager to control all cool5000 servos --> 

			 

			   <node name="dynamixel_manager" pkg="dynamixel_controllers" type="controller_manager.py" required="true" output="screen"> 

			        <rosparam> 

			            namespace: dxl_manager 

			            serial_ports: 

			                dynamixel_port: 

			                    port_name: "/dev/ttyUSB0" 

			                    baud_rate: 1000000 

			                    min_motor_id: 0 

			                    max_motor_id: 6 

			                    update_rate: 20 

			        </rosparam> 

			    </node> 

			In the next step, it should launch the controller spawner by reading the controller configuration file, as follows:

			      <!-- Load joint controller configuration from YAML file to parameter server --> 

			  <rosparam file="$(find cool5000_controller)/config/cool5000.yaml" command="load"/> 

			 

			    <!-- Start all  Cool Arm joint controllers --> 

			    <node name="controller_spawner" pkg="dynamixel_controllers" type="controller_spawner.py" 

			          args="--manager=dxl_manager 

			                --port dynamixel_port 

			                joint1_controller 

			                joint2_controller                

			                    joint3_controller 

			                    joint4_controller 

			                    joint5_controller 

			                    joint6_controller 

			             joint7_controller 

			                    gripper_controller" 

			             output="screen"/> 

			In the next section of the code, it will launch the JointTrajectory controller from the controller configuration file, as follows:

			   <!-- Start the cool5000 arm trajectory controller --> 

			     <rosparam file="$(find cool5000_controller)/config/cool5000_trajectory_controller.yaml" command="load"/> 

			    <node name="controller_spawner_meta" pkg="dynamixel_controllers" type="controller_spawner.py"  

			    args="--manager=dxl_manager 

			          --type=meta  

			          cool5000_trajectory_controller  

			          joint1_controller  

			          joint2_controller  

			          joint3_controller  

			          joint4_controller  

			          joint5_controller  

			          joint6_controller"  

			          output="screen"/> 

			The following section will launch the joint_state_aggregator node and the robot description from the cool5000_description package, as follows:

			  <!-- Publish combined joint info --> 

			  <include file="$(find cool5000_controller)/launch/joint_state_aggregator.launch" /> 

			   

			  <param name="robot_description" command="$(find xacro)/xacro.py '$(find cool5000_description)/robots/cool5000.xacro'" /> 

			  <node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" output="screen"> 

			    <rosparam param="source_list">[joint_states]</rosparam> 

			    <rosparam param="use_gui">FALSE</rosparam> 

			  </node> 

			That's it for the COOL arm controller package. Next, we need to set up the cool5000_moveit_config controller configuration inside the MoveIt! configuration package of the COOL arm.

			MoveIt! configuration of the COOL arm

			The first step is to configure the controllers.yaml file, which is inside the cool5000_moveit_config/config folder. The definition of this file is shown in the following code snippet. For now, we are only focusing on moving the arm, and not on handling the gripper control. So, the configuration only contains the arm group joints:

			controller_list: 

			  - name: cool5000_trajectory_controller 

			    action_ns: follow_joint_trajectory 

			    type: FollowJointTrajectory 

			    default: true 

			    joints: 

			      - joint1 

			      - joint2 

			      - joint3 

			      - joint4 

			      - joint5 

			      - joint6 

			      - joint7 

			Here is the definition of the cool5000_description_moveit_controller_manager.launch.xml file inside cool5000_moveit_config/launch:

			<launch> 

			<!-- 

			 Set the param that trajectory_execution_manager needs to find the controller plugin  

			--> 

			<arg name="moveit_controller_manager" default="MoveIt_simple_controller_manager/MoveItSimpleControllerManager"/> 

			 

			<param name="MoveIt_controller_manager" value="$(arg MoveIt_controller_manager)"/> 

			 

			<!--  load controller_list  --> 

			 

			<rosparam file="$(find cool5000_moveit_config)/config/controllers.yaml"/> 

			</launch> 

			After configuring MoveIt!, we can start working on the arm. Apply a proper power supply to the arm and connect it to your PC or to the USB of the DYNAMIXEL servo. We will see a serial device generated; this may be either /dev/ttyUSB0, or /dev/ttyACM0. According to the device, change the port name inside the controller launch file.

			Start the cool5000 arm controller using the following command:

			roslaunch cool5000_controller cool5000_controller.launch  

			Start the RViz demo and start path planning. If we press the Execute button, the trajectory will execute on the hardware arm, as follows:

			roslaunch cool5000_moveit_config 5k.launch  

			A random pose (which is shown in RViz) and the COOL arm is shown in the following screenshot:

			
				
					[image: Figure 7.14 – COOL-Arm-5000 prototype with MoveIt! visualization ]
				

			

			Figure 7.14 – COOL-Arm-5000 prototype with MoveIt! visualization

			To summarize, MoveIt! represents a fundamental tool to solve robotic manipulation tasks, in the case of both research and industrial applications. In particular, MoveIt! can be easily integrated with real hardware from companies such as Kuka, ABB, or Universal Robot, as discussed in Chapter 15, ROS for Industrial Robots.

			Summary

			In this chapter, we explored some advanced features of MoveIt!, showing how to write C++ code to control simulated and real robotic manipulators. The chapter started with a discussion on collision checking using MoveIt!. We saw how to add a collision object using MoveIt! APIs, and saw the direct importing of mesh to the planning scene. We discussed a ROS node to check collision using MoveIt! APIs. After learning about collisions, we moved to perception using MoveIt!. We connected the simulated point-cloud data to MoveIt! and created an octomap in MoveIt!. After discussing these aspects, we switched to hardware interfacing of MoveIt! using DYNAMIXEL servos and its ROS controllers. In the end, we saw a real robotic arm called COOL arm and its interfacing to MoveIt!, which was completely built using DYNAMIXEL controllers. In the next chapter, we will discuss another kind of robotic platform, aerial robots, and how to integrate and program them using ROS.

			Here are few questions based on what we covered in this chapter.

			Questions

			
					What is the role of the FCL library in MoveIt!?

					How does MoveIt! build an octomap of the environment?

					How could a robot avoid obstacles after grasping an object?

					What are the main features of DYNAMIXEL servos?

			

		

	






			Chapter 8: ROS for Aerial Robots

			In previous chapters, we have considered only ground-based and industrial robots. In the last decade, a new kind of system has become very popular – flying robots, also known as Unmanned Aerial Vehicles (UAVs). Nowadays, UAVs are constructed in different shapes and dimensions. In the main, they can be divided into fixed-wing (these being airplane-like vehicles) and rotary-wing (these being vehicles with multiple vertical axis rotors). Modern UAVs are equipped with onboard computers and sensors that make them real autonomous robots, able to perform different tasks, such as autonomous navigation. Using ROS makes it possible to read a UAV's sensors and send commands to the aerial platform. In addition to the real-life devices, it is also possible to use Gazebo to simulate the hardware and the sensors of different kinds of aerial systems.

			This chapter is divided into two sections. First, we will discuss the basic components of aerial robots and one of the most common autopilots: the Pixhawk board. We will also learn how we can interact with it using ROS and the Px4 flight control stack. In the second part of the chapter, we will focus on the simulation of the rotors of a UAV, modeling the dynamics of the robot and its propellers.

			In this chapter, we will cover the following topics:

			
					Using aerial robots

					Using the Px4 flight control stack

					PC/autopilot communication

					Writing a ROS-Px4 application

					Using the RotorS simulation framework

			

			Technical requirements

			To follow along with this chapter, you will need a standard laptop running Ubuntu 20.04 with ROS Noetic installed. The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git. The code is contained inside the Chapter8/px4_ros_ctrl and Chapter8/iris_model folders.

			You can view this chapter's code in action here: https://bit.ly/3svXX9L.

			Using aerial robots

			At present, flying vehicles are very popular. Even in their primary configuration where they are controlled by a radio controller, some flying vehicles can be considered as robots that respond to their environment in order to stay in the air. Such vehicles can use external sensors to estimate their state and pose, thus allowing them to fly autonomously. Of course, providing a flying robot with autonomy is more complicated than doing the same for a ground robot because of several reasons, listed here:

			
					Stabilization: A flying robot must be able to adjust its pose to hold its position and orientation relative to the environment. Inertial sensors are not enough to accomplish this task, since they are not able to estimate position divergence caused by external disturbances (like wind or ground airflow), or the possible errors generated due to an inertial measurement unit sensor.

					Low computation resources: Compared to a ground robot, flight platforms have payload problems. For this reason, only small and light hardware must be used. Therefore, small companion computers must be used.

					Debugging problems: During the development of sensor fusion and control strategies, debugging is not an easy task. Problems related to wrong reference frames or control gain can cause the aerial platform to fall. This can cause damage to the robot and nearby people.

					Communication with a ground station: Communication between the UAV companion PC and a ground station typically relies on low power and slow communication protocols in order to cope with the distance between the robot and the ground PC.

			

			Another problem with these robots is that the controller of the robot is implemented on an integrated embedded board. This is called the autopilot and, in some cases, the motion performance of the robots strictly depends on the autopilot. Over the next few sections, we will discuss the basic UAV hardware sensors and their respective autopilot functions. Then, we will learn how to simulate a real flying robot by interfacing it with ROS.

			UAV hardware

			The core of a UAV is the autopilot. This is responsible for the onboard sensors' initialization and interfacing. Additionally, it is the autopilot that receives the input to properly control the actuators of the UAV (its propellers). Different platform configurations exist for UAVs. The most common one is the quadrotor. This has four motors and can be actuated with a cross (X) or plus (+) configuration. Also, in their coaxial versions, quadrotors have two lines of motors. Every axis of the quadrotor has two motors and propellors installed coaxially, giving it eight in total. The same is true for hexacopters and octocopters. However, control strategies do not directly depend on the airframe configuration, because the autopilot directly translates the control data into motor input.

			The main sensor of the autopilot is the Inertial Measurement Unit (IMU). This module is used to calculate the attitude, altitude, and direction of flight. It typically includes the following:

			
					A gyroscope that determines the attitude of the craft, including its pitch and roll. This indicates the rotational motion of the craft.

					An accelerometer that determines the rate of change of velocity of the craft with respect to the three axes.

					An altimeter or barometer that determines the altitude of the craft above ground. At low altitudes, a down-looking sonar sensor may be used to determine altitudes of up to several meters.

					A magnetometer serves as a compass to indicate the craft's direction by using the Earth's magnetic field as a reference.

			

			The inertial sensor combines these sensors to measure and display the complete information relating to the flight characteristics of the quadrotor. Typically, this unit will measure the acceleration and orientation of the flying craft in all three dimensions. These sensors allow indoor and outdoor flight. However, they suffer from slight errors that may accumulate during flight. Another important sensor for any UAV is the Global Positioning System (GPS). This sensor allows the robot to estimate the global position of itself in terms of latitude and longitude, permitting the robot to stabilize its position. However, this sensor can only be used outdoors. For this reason, other techniques based on vision or LiDAR sensors must be used in indoor environments. Now that we have examined the basic elements of an autopilot, let's discuss one of the most common open source autopilots used on aerial robots – the Pixhawk autopilot.

			Pixhawk autopilot

			Among the different open source autopilots that exist on the market, the Pixhawk autopilot has proven to be a very popular board. It has been released in multiple different versions and with multiple different hardware capabilities. One such board is shown in the following figure, along with its digital input/output signals:

			
				
					[image: Figure 8.1 – Pixhawk v1 autopilot board ]
				

			

			Figure 8.1 – Pixhawk v1 autopilot board

			This board has multiple input and output connectors for interfacing with external sensors or connecting the autopilot to the companion PC, using USB-serial communication.

			This board can be programmed from scratch, exactly like an Arduino board. Additionally, the autopilot controller code is open source and can be modified to apply changes and custom behavior to the UAV. Two main control stacks are suitable for this autopilot:

			
					ArduCopter: https://ardupilot.org/

					PX4: https://px4.io/ 

			

			There is not a big difference in terms of performance between these two software stacks. The main differences lie in the license and the community supporting the development of the control code. Each supports a different set of vehicles (also ground and underwater vehicles) with different airframes.

			In this chapter, we mainly consider the PX4 control stack. PX4 consists of two main layers:

			
					The flight stack: This is the implementation of the flight control system.

					The middleware: This is a general layer that can support any type of autonomous robot, providing internal/external communications and hardware integration.

			

			The PX4 control stack supports different airframes, and all share the same code. The flight stack is a collection of guidance, navigation, and control algorithms for autonomous vehicles. It includes controllers for fixed-wing, multirotor, and Vertical TakeOff and Landing (VTOL) airframes, as well as estimators for attitude and position. Note that, even if we do not have the real aerial platform and the autopilot, we can modify, compile, and run the code installed on the autopilot by connecting it to the ROS Gazebo simulator.

			In the next section, we will install the PX4 flight stack in our system and then discuss how to simulate and program the autopilot code on our laptop. However, while we will discuss a brief overview of the firmware control code, we will not attempt any modification to the autopilot source code.

			Using the PX4 flight control stack

			PX4 firmware allows developers to directly simulate the code running on the autopilot board on your Linux system. Additionally, it is possible to modify the autopilot source code and reload the new version on the Pixhawk board. To install the firmware on your system, you will firstly need to download it. Even though it is not mandatory, linking this with the ROS will conveniently place it in your ROS workspace. To download the autopilot code, enter your ROS workspace and use the following command:

			git clone https://github.com/PX4/PX4-Autopilot.git --recursive

			This repository contains all the necessary files to run the PX4 firmware on a ROS-Gazebo simulation, using different UAV quadrotors equipped with a camera, a depth camera, a laser scanner, and so on. Simulation represents a quick, easy, and safe way to test changes to PX4 code before attempting to fly in the real world. It is also a good way to start flying with PX4 when you have not yet got a vehicle to experiment with. 

			Note that we used the --recursive option in the clone command to download all the submodules included in the main repository. This means that some parts of the autopilot source code are stored in other, external repositories that are linked by the main one. The clone command may take several minutes. Note that, after the clone command is completed, a new directory called PX4-Autopilot has been created. This folder contains all the files necessary to modify and upload the firmware on the embedded controller (the autopilot) and to simulate source code on different simulators. To link all the necessary elements, the firmware directory is recognized as a ROS package, even though it is not compiled as such. In addition, the name of this package is px4. Note that the name of the directory doesn't necessarily represent the name of the ROS package. So, after you have cloned this directory into your ROS workspace, you can join the firmware folder with the following command:

			roscd px4

			You are now ready to compile this package and start the simulation. Before doing this, you need to install the following set of dependencies:

			sudo apt install python3-pip

			pip3 install --user empy

			pip3 install --user toml

			pip3 install --user numpy

			pip3 install --user packaging

			sudo apt-get install libgstreamer-plugins-base1.0-dev

			pip3 install --user jinja2

			To allow ROS/Flight Control Unit (FCU) communication, you should install the mavros package:

			sudo apt-get install ros-noeitc-mavros ros-noeitc-mavros-msgs 

			Now you can install the geographic dataset:

			sudo /opt/ros/noetic/lib/mavros/install_geographiclib_datasets.sh

			Finally, you can run the following command to compile it:

			roscd px4 && make px4_sitl_default 

			In this case, we used the make command with a specific target. This is the Software in the Loop (SITL) target. This allows us to simulate the firmware source code. As already stated, a simulator allows the PX4 flight code to control a computer-modeled vehicle in a simulated world. After we have launched the simulation, we can interact with this vehicle just as we might with a real vehicle, using ground station software such as QGroundControl, an offboard API, or a radio controller gamepad. Different simulators are supported. The complete list can be found at the following link: https://docs.px4.io/master/en/simulation/. However, we will use Gazebo. To launch the PX4 control code with Gazebo, run the following command from the root directory of the firmware source:

			make px4_sitl_default gazebo

			This command will start a new Gazebo scene with a 3DR IRIS quadrotor, as shown in the following figure:

			
				
					[image: Figure 8.2 – 3DR IRIS quadrotor simulated in Gazebo with the PX4 control stack ]
				

			

			Figure 8.2 – 3DR IRIS quadrotor simulated in Gazebo with the PX4 control stack

			Note that this is the standalone version of Gazebo, so there is no link with the ROS yet. You can also choose other targets to be compiled. For example, to compile the firmware for the real Pixhawk, you can use the following command:

			make px4_fmu-v2_default

			You can interact with the simulator in different ways. The simplest method is by using a ground control station program such as QGroundControl. Using this software, you can take off and land your simulated UAV, and move it around the environment. Using this interface, you can also set some parameters to configure the behavior of the autopilot and tune the controller gains.

			The following commands must be used to start QGroundControl:

			sudo usermod -a -G dialout $USER

			sudo apt-get remove modemmanager -y

			sudo apt install gstreamer1.0-plugins-bad gstreamer1.0-libav gstreamer1.0-gl -y

			Now download the QGroundControl app, as follows:

			wget https://s3-us-west-2.amazonaws.com/qgroundcontrol/latest/QGroundControl.AppImage

			chmod +x QGroundControl.AppImage

			Finally, start the PX4 simulation (as seen previously) and launch the QGroundControl software:

			 ./QGroundControl.AppImage

			The user interface will be displayed, as depicted in the following figure:

			
				
					[image: Figure 8.3 – QGroundControl user interface ]
				

			

			Figure 8.3 – QGroundControl user interface

			Note that you will use the same method if you start up a real autopilot connected (wired or wireless) to your laptop. Before we proceed with connecting the PX4 control stack to ROS, we will briefly discuss the PX4 software architecture.

			PX4 firmware architecture

			Even though we will not modify the default firmware of the PX4 control stack, it is important to understand how it is organized. The whole system architecture is depicted in the following figure:
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			Figure 8.4 – PX4 stack modules

			The source code of the controller is split into self-contained modules/programs (shown in monospace in Figure 8.4). Each building block corresponds to exactly one module. The modules can be found in the source folder of the firmware's main directory. Like ROS, PX4 software modules communicate with each other through a publish/subscribe message bus named uORB. The use of the publish/subscribe protocol means the following:

			
					The system is reactive – it is asynchronous and will update instantly when new data is available. All operations and communication are fully parallelized.

					A system component can consume data from anywhere in a thread-safe fashion. The flight stack is a collection of guidance, navigation, and control algorithms for autonomous drones. It includes controllers for fixed-wing, multirotor, and UAV airframes, as well as estimators for attitude and position.

			

			In particular, the main modules of the PX4 software architecture are as follows:

			
					An estimator: This takes one or more sensor inputs, combines them, and computes a vehicle state (for example, the attitude from IMU sensor data).

					A controller: This is a component that takes a setpoint and measurement, or estimated state (process variable), as input. Its goal is to adjust the value of the process variable so that it matches the setpoint. The output is a correction to eventually reach that setpoint. For example, the position controller takes position setpoints as inputs, the process variable is the current estimated position, and the output takes the form of an attitude and thrust setpoint that moves the vehicle toward the desired position.

					A mixer: This takes motion commands (such as turn right) and translates them into individual motor commands while ensuring that some limits are not exceeded. This translation is specific for a vehicle type and depends on various factors, such as the motor arrangements with respect to the center of gravity, or the vehicle's rotational inertia.

			

			As already stated, all the module source codes are placed in the PX4-Autopilot/src folder. Conversely, everything related to the ROS and Gazebo is confined to the PX4-Autopilot/Tools/sitl_gazebo folder. We are now ready to link the PX4 control stack with ROS.

			PX4 SITL

			The px4 package already contains useful sources and launch files that can be used to simulate a UAV in the Gazebo ROS framework. The integration of Gazebo ROS with the PX4 control stack is possible thanks to a communication protocol used by a huge number of aerial vehicles. This communication protocol is called mavlink. In this context, the communication between the simulation and the control software is shown in the following figure:

			
				
					[image: Figure 8.5 – PX4/Gazebo communication schema ]
				

			

			Figure 8.5 – PX4/Gazebo communication schema

			The control stack communicates with the simulation scene to receive the sensor data while sending the actuator values to the simulated robot. At the same time, it sends onboard information (UAV attitude, position, GPS, and so on) to an offboard program or a ground control station. Before providing more information on the communication protocol, let's now try to start a simulation embedded into the ROS framework. As before, we will use the SITL tool from the PX4 firmware stack. After compiling the stack in the previous section, we now just need to load a configuration file and then start a launch file. The package already contains all the configuration and launch files needed to start ROS and the communication bridge with the PX4 controller. Before discussing what is going on behind the scenes, let's start by loading the configuration files. First, navigate to the px4 directory:

			roscd px4

			Then, load the configuration files:

			source Tools/setup_gazebo.bash $(pwd) $(pwd)/build/px4_sitl_default

			export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:$(pwd)

			export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:$(pwd)/Tools/sitl_gazebo

			It would be convenient to add these lines to your .bashrc file. Now, launch the simulation:

			roslaunch px4 mavros_posix_sitl.launch

			Nothing is changed with respect to the previous execution. A set of ROS topics and services are now available. These can get information from the drone and control its actions. You can use the rostopic list command to see all the topics. For example, if you are interested in the attitude of the UAV, you can view the /mavros/imu/data topic. But what is mavros? mavros establishes the communication between ROS and the PX4 software. In the next section, we will discuss this communication bridge.

			PC/autopilot communication

			To send and receive information from the aerial platform (simulated or real), we can use the following two modes:

			
					Ground station: High-level software that can be connected to the autopilot to send commands such as take off and land or relay waypoint navigation information.

					API: Programming an API allows developers to manage the behavior of the robot.

			

			In both cases, the communication is managed by the MAVLink protocol. Micro Air Vehicle Link (MAVLink)and is a protocol for communicating with small, unmanned vehicles. It is designed as a header-only message-marshaling library. It is used mostly for communication between a Ground Control Station (GCS) and unmanned vehicles, and in the intercommunication of the subsystem of the vehicle. A packet datagram example is shown in the following figure:
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			Figure 8.6 – MAVLink protocol

			Messages are no more than 263 bytes. The sender always fills in the System ID and Component ID fields so that the receiver knows where the packet came from. The system ID is a unique ID for each vehicle or ground station. Ground stations normally use a high system ID such as 255, while vehicles default to using 1. The component ID for the ground station or flight controller is normally 1. The Message ID field can be seen in common.xml and ardupilot.xml, next to the message name. For example, the HEARTBEAT message ID is 0. Finally, the data portion of the message holds the individual field values that are being sent. Currently, the latest version of MAVLink is 2.0 and this is compatible with the first version of the protocol. This means that if a device understands MAVLink2 messages, then it certainly understands MAVLink1 messages. As for the transport protocol, MAVLink is based on serial communication. Therefore, messages from the board can be read implementing a classical serial communication based on User Datagram Protocol (UDP).

			To summarize, MAVLink  provides  the standard communication protocol to get data from UAVs and send commands to them. Like many other control stacks, PX4 uses the MAVLink communication framework for interfacing with a Ground Control Station (GCS) or an onboard PC. Examples of MAVLink messages generated by the UAV include the following:

			
					Global position: The output of the fixed GPS of the UAV

					Local position: The Cartesian position of the UAV, generated via the global position and other local sensors

					Attitude: Information about the attitude of the UAV

			

			As for the commands accepted by the UAV, there are the following:

			
					Take off: To take off in a specified global position and at a certain altitude.

					Setpoint: A position to reach. Such a position can be specified in different ways: local, global, position, and velocity setpoints are acceptable.

					Flight mode: The desired flight mode. The flight mode determines the way in which the robot responds to user input and controls vehicle movement.

			

			The different modes can include position control, attitude control, and OFFBOARD mode. When using OFFBOARD mode, the vehicle obeys a position, velocity, or attitude setpoint provided over MAVLink. In this context, the setpoint may be provided by a companion computer (usually connected via a serial cable or Wi-Fi). As usual, we do not need to implement the MAVLink protocol from scratch. We can use a wrapper of this library made in ROS, called mavros.

			The mavros ROS package

			To develop the MAVLink protocol from scratch using MAVLink libraries is not required. Instead, we can rely on the ROS wrapper called mavros. This package provides a communication driver for various autopilots, based on the MAVLink communication protocol. It also provides a UDP MAVLink bridge for control stations or companion PCs. mavros is an extensible package  – the main node can be extended by plugins. To install mavros, use the following command:

			sudo apt-get install ros-noetic-mavros ros-noetic-mavros-msgs ros-noetic-mavros-extras 

			As you can see, we also installed some extra packages from mavros. This package provides additional nodes and plugins not included in mavros. It can be executed with a set of launch and configuration files. Let's try to configure mavros for the PX4 control stack. We have different parameters to configure how mavros runs, as follows:

			
					fcu_url: This defines the address point of the serial communication. This can be defined as a local network connection or as the address of the serial communication device. For example, for a real board connected via USB to our PC, it will be something like /dev/ttyACM0:57600. In this context, the physical device address is /dev/ttyACM0, while the communication UDP port is 57600.

					pluginlists_yaml: This is the yaml configuration file that defines the list of plugins to start with mavros. Each plugin publishes and listens to a particular topic or service.

					config_yaml: The configuration of each plugin started with the mavros node. Examples of these files are installed in your system as part of the apt package installation.

			

			We are now ready to create our first ROS package to control the motion of a simulated UAV.

			Writing a ROS-PX4 application

			Let's now create a new package in which we will store all the source and launch files needed to send and receive data from the simulated UAV using ROS. Enter your ROS source workspace and use the following command:

			catkin_create_project px4_ros_ctrl roscpp mavros_msgs  geometry_msgs

			As you can see, this package depends from the mavros_msgs. This will be used to retrieve data from the UAV. Here, we will discuss the ROS node that controls the vehicle. The complete code can be found in the book source code and it is contained into the src/px4_ctrl_example.cpp source file.

			To achieve our goal, we need to perform the following operations:

			
					Arm the quadrotor. Arming the vehicle allows the motors to start spinning. This can be done using mavros through ROS services. The /mavros/cmd/arming service can be used.

					Switch to OFFBOARD mode. After that, the motors should start to spin and we can send input to the UAV. To accept external commands, you must enable OFFBOARD mode. Even in this case, we can use a ROS service: /mavros/set_mode.

					Send the desired position. We can require the UAV to reach a new position just publishing on the /mavros/setpoint_position/local topic.

					Land. We can use /mavros/cmd/land to have the UAV land.

			

			Let's inspect the code. As usual, we start by including the header files. Along with the common ROS header files, we include a set of the header files to use mavros messages:

			#include "ros/ros.h"

			#include "geometry_msgs/PoseStamped.h"

			We use the State message to get information on the autopilot state, the CommandBool and CommandTOL messages to require actions of the robot, and the SetMode command to change the operating mode of the UAV (for example, external control, position control mode, and so on):

			#include "mavros_msgs/State.h"

			#include "mavros_msgs/CommandBool.h"

			#include "mavros_msgs/SetMode.h"

			#include "mavros_msgs/CommandTOL.h"

			Then, we declare the mavros_msgs::State data used to store information about that state of the UAV, provided by the autopilot. This message contains different information. For example, if the autopilot is properly connected and armed (the vehicle is fully powered and its motors may be turning).

			mavros_msgs::State mav_state;

			Finally, we declare the callback for this message.

			void mavros_state_cb( mavros_msgs::State mstate) {

			  mav_state = mstate;

			}

			int main(int argc, char** argv ) {

			  ros::init(argc, argv, "px4_ctrl_example");

			  ros::NodeHandle nh;

			We will use a ROS service that accepts a CommandBool message type. The service name is /mavros/cmd/arming. Similarly, we can change the operation mode and require the UAV to land using the /mavros/set_mode and /mavros/cmd/land services:

			  ros::ServiceClient arming_client =     nh.serviceClient<mavros_msgs::CommandBool>("mavros/cmd/arming");

			  ros::ServiceClient set_mode_client =     nh.serviceClient<mavros_msgs::SetMode>("mavros/set_mode");

			  ros::ServiceClient land_client =         nh.serviceClient<mavros_msgs::CommandTOL>("/mavros/cmd/land");

			Then, we subscribe to the state message and publish the position command using the /mavros/state and /mavros/setpoint_position/local topics.

			  ros::Subscriber mavros_state_sub =     nh.subscribe( "/mavros/state", 1, mavros_state_cb);

			  ros::Publisher        local_pos_pub =     nh.advertise<geometry_msgs::PoseStamped>("mavros/setpoint_position/local", 1);

			We are ready to change the operation mode of the robot. To send control data from an external computer, OFFBOARD mode must be selected. For this reason, we use the custom_mode field of the SetMode message, filling it with the "OFFBOARD" string. Then, we call the client, as follows:

			  mavros_msgs::SetMode offb_set_mode;

			  offb_set_mode.request.custom_mode = "OFFBOARD";

			  if( set_mode_client.call(offb_set_mode) && offb_set_mode.response.mode_sent){

			      ROS_INFO("Manual mode enabled");

			  }

			Now, we are ready to arm the system. In this case, we set the value field of the CommandBool message to true (to disarm, set the value to false):

			  mavros_msgs::CommandBool arm_cmd;

			  arm_cmd.request.value = true;

			  if( arming_client.call(arm_cmd) && arm_cmd.response.success){

			       ROS_INFO("Ready to be armed");

			  }

			Then, we wait until the system is correctly armed before continuing:

			  while(!mav_state.armed ) {

			     usleep(0.1*1e6);

			ros::spinOnce();

			  }

			  ROS_INFO("Vehicle armed");

			We set the desired position to reach using geometry_msgs::PoseStamped:

			  geometry_msgs::PoseStamped pose;

			  pose.pose.position.x = 1;

			  pose.pose.position.y = 0;

			  pose.pose.position.z = 2;

			In the main loop of this program, we simply send the desired point, then wait for 20 seconds until the UAV reaches the point. Note that the autopilot requires that, in OFFBOARD mode, the desired control input is continuously streamed. Otherwise, a watchdog implemented on the autopilot will enable the Return-to-Land (RTL) safety control mode:

			  ros::Rate r(10);

			  float t = 0.0;

			  while( ros::ok() &&  (t < 20.0) ) {

			     local_pos_pub.publish(pose);

			      t += (1.0/10.0);

			      r.sleep();

			      ros::spinOnce();

			  }

			Finally, we use the land service to bring the UAV back to the ground:

			  mavros_msgs::CommandTOL land_srv;

			  land_client.call( land_srv );

			  return 0;

			}

			We are now ready to launch this node. First, we must start the Gazebo simulation and the mavros node. We can start the controller node.

			To launch the simulator, you can use the px4_ros.launch file included in the px4_ros_ctrl package. Part of this file will be discussed shortly. We start by initializing some parameters, such as the position of the robot in the simulation scene:

			<launch>

			      <arg name="x" default="0"/>

			      <arg name="y" default="0"/>

			      <arg name="z" default="0"/>

			      <arg name="R" default="0"/>

			      <arg name="P" default="0"/>

			      <arg name="Y" default="0"/>

			Other parameters are closely related to the PX4 control stack. In particular, the attitude and pose estimation algorithm used by the autopilot and the robot model must be specified. By default, the extended Kalman filter (ekf) is selected, while the vehicle represents the robot model. The PX4 contains several models of multirotors and is stored in the PX4-Autopilot/Tools/sitl_gazebo/models/ folder in the form of .sdf files:

			<arg name="est" default="ekf2"/>

			      <arg name="vehicle" default="iris"/>

			      <arg name="sdf" default="$(find mavlink_sitl_gazebo)/models/$(arg vehicle)/$(arg vehicle).sdf"/>

			The vehicle and the estimator declared as ROS arguments are also used to set the following variable environments:

			      <env name="PX4_SIM_MODEL" value="$(arg vehicle)" />

			      <env name="PX4_ESTIMATOR" value="$(arg est)" />

			Then, the Gazebo ROS parameters are set:

			      <arg name="gui" default="true"/>

			      <arg name="debug" default="false"/>

			      <arg name="verbose" default="false"/>

			      <arg name="paused" default="false"/>

			      <arg name="respawn_gazebo" default="false"/>

			We can choose whether or not to start the node in interactive mode. In the former case, we can use an interactive sheet to send a command to the autopilot, such as to take off, land, or reboot the autopilot code:

			<arg name="interactive" default="true"/>

			      <arg unless="$(arg interactive)" name="px4_command_arg1" value="-d"/>

			      <arg       if="$(arg interactive)" name="px4_command_arg1" value=""/>

			Finally, we are ready to start the SITL node of the px4 package. This node is responsible for simulating the real functionalities of the PX4 control stack, such as the state estimation, the motion actions (such as takeoff or waypoint navigation), and all the safety layers. If we don't start this node, we will only simulate a multirotor:

			      <node name="sitl" pkg="px4" type="px4" output="screen"

			    args="$(find px4)/build/px4_sitl_default/etc -s etc/init.d-posix/rcS $(arg px4_command_arg1)" required="true"/>

			Then, the model is spawned in the simulation scene:

			      <node name="$(anon vehicle_spawn)" pkg="gazebo_ros" type="spawn_model" output="screen" args="-sdf -file $(arg sdf) -model $(arg vehicle) -x $(arg x) -y $(arg y) -z $(arg z) -R $(arg R) -P $(arg P) -Y $(arg Y)"/>

			Finally, we need to start mavros in order to exchange data with the aerial platform. mavros is launched with a set of launch and configuration files. For this reason, we include the px4.launch file of the same ROS package. The contents of this file will be discussed later. It is important to define the fcu_url element – the address of the flight control unit. In this case, we refer to the IP and port of the computer where the simulation is running:

			<arg name="fcu_url" default="udp://:14540@localhost:14557"/>

			<arg name="respawn_mavros" default="false"/>

			    

			      <include file="$(find px4_ros_ctrl)/launch/px4.launch">

			        <arg name="fcu_url" value="$(arg fcu_url)"/>

			       </include>

			The content of the px4.launch file is reported in the following. Here we launch the mavros node, including two YAML configuration files, as follows:

			
					The pluginlists_yaml configuration file specifies which mavros plugin must be loaded through the definition of a whitelist and a blacklist.

					The config_yaml configuration file allows you to configure the loaded plugin.

			

			In this example, we will use the default configuration file:

			<include file="$(find mavros)/launch/node.launch">

			      <arg name="pluginlists_yaml" value="$(find mavros)/launch/px4_pluginlists.yaml" />

			      <arg name="config_yaml" value="$(find mavros)/launch/px4_config.yaml" />

			 </include>

			In this example, we used the default configuration file.

			After seen the content of the launch file, we can start the px4 control node using the following commands:

			roslaunch px4_ros_ctrl px4_ros.launch

			rosrun px4_ros_ctrl px4_ctrl_example

			Typically, robots are commanded using a continuous stream of positions that precisely pilot the robot under certain velocity or acceleration constraints. This is the principle of trajectory planning. In the next sections, we will discuss how to send a trajectory to the robot autopilot.

			Writing a trajectory streamer

			In the previous example, we published a point to reach, and the UAV attempted to reach it using its maximum acceleration and velocity. However, we may want to stream a trajectory so as to better control the velocity profile of the robot's motion. In that case, we would need to use the mavros_msgs::PositionTarget message instead of the simple geometry_msgs::PoseStamped message. Using PositionTarget, we can specify both the position and velocity of the UAV. The definition of this message is as follows.

			The first field is the header:

			std_msgs/Header header

			Now we can choose the coordinate frame. The coordinate frame is defined by a set of constants already provided by the message definition. We will discuss the reference frame in the next section of this chapter. Note that only FRAME_LOCAL_NED and FRAME_BODY_NED are supported:

			uint8 coordinate_frame

			uint8 FRAME_LOCAL_NED = 1

			uint8 FRAME_LOCAL_OFFSET_NED = 7

			uint8 FRAME_BODY_NED = 8

			uint8 FRAME_BODY_OFFSET_NED = 9

			Now, we can set a bit mask that will help us to define a few elements of the control message. For example, we might decide to stream only the velocity, or the position, of the UAV. We can also set it to ignore the rotation around the z axis:

			uint16 type_mask

			uint16 IGNORE_PX = 1

			uint16 IGNORE_PY = 2

			uint16 IGNORE_PZ = 4

			uint16 IGNORE_VX = 8

			uint16 IGNORE_VY = 16

			uint16 IGNORE_VZ = 32

			uint16 IGNORE_AFX = 64

			uint16 IGNORE_AFY = 128

			uint16 IGNORE_AFZ = 256

			uint16 FORCE = 512    uint16 IGNORE_YAW = 1024

			uint16 IGNORE_YAW_RATE = 2048

			Finally, we can set the position, the velocity, and the acceleration for the three Cartesian axes, as well as the position and the velocity of the UAV yaw:

			geometry_msgs/Point position

			geometry_msgs/Vector3 velocity

			geometry_msgs/Vector3 acceleration_or_force

			float32 yaw

			float32 yaw_rate

			For example, if we want to stream just the position, ignoring the velocity and the acceleration data, we should include the following code in our ROS node:

			mavros_msgs::PositionTarget ptarget;

			      ptarget.coordinate_frame = mavros_msgs::PositionTarget::FRAME_LOCAL_NED;

			      ptarget.type_mask =

			      mavros_msgs::PositionTarget::IGNORE_VX |

			      mavros_msgs::PositionTarget::IGNORE_VY |

			      mavros_msgs::PositionTarget::IGNORE_VZ |

			      mavros_msgs::PositionTarget::IGNORE_AFX |

			      mavros_msgs::PositionTarget::IGNORE_AFY |

			      mavros_msgs::PositionTarget::IGNORE_AFZ |

			      mavros_msgs::PositionTarget::FORCE |

			      mavros_msgs::PositionTarget::IGNORE_YAW_RATE; 

			This source code used the local NED as a coordinate frame. The coordinate frame specifies how to locate a point (or an object) in the world or the simulation environment. For this reason, understanding the coordinate frame is important for both the localization of the UAV and for sending correct motion commands. The PX4 autopilot internally has only one reference frame, called the North, East, Down (NED) frame. This means that the x of the robot is positive along the ahead direction, the y in the right direction and finally, the z is downward. Meanwhile, the default reference frame used by ROS and Gazebo for global positioning is ENU (right, ahead, upward). For this reason, when using the mavros package, everything sent to the autopilot must be in the ENU frame. Everything received by mavros will therefore also be in the ENU frame. This information is particularly important when we want to externally estimate the position of the UAV, for example, by using SLAM algorithms. Note that, in the previous message, we are able to specify the command in the body frame as well (using the FRAME_BODY_NED constant). In this case, the target position will be interpreted based on the rotation of the UAV.

			External pose estimation for PX4

			UAVs need to know their position in a fixed coordinate frame (the world frame) in order to stabilize during flight. Inertial sensors, such as IMU, are not accurate enough to accomplish this task. For this reason, external sensors such as GPS, LiDAR, or cameras are used. The typical control loop of a UAV is shown in the following figure:
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			Figure 8.7 – PX4 control loop

			In the position control loop (the outer loop), the current position of the UAV is needed. When available, this information is directly retrieved via GPS. However, in some cases  – for example, when you fly in indoor spaces – GPS cannot be used. In these cases, the position of the robot must be estimated to allow for the stabilization and position control of the aerial robot. External sensors can be used to estimate the pose of the UAV. In particular, Optitrack and Vicon systems are very popular in this field. These systems offer high-performance optical tracking (including motion capture software and high-speed tracking cameras). In short, these systems act as very high-precision and super-fast GPS. In addition, the UAV must be able to estimate its pose using onboard sensors, such as standard cameras, depth cameras, or LiDARs. In this context, SLAM algorithms are suitable for this purpose. In recent years, many sensors have been deployed to the market that can reconstruct their pose using FPGA devices to speed up the computation process. This is the case with the Intel Realsense t265 tracking camera. 

			Refer to the following URL for information about this particular camera: https://www.intelrealsense.com/tracking-camera-t265. The PX4 control stack can be configured to accept an estimated position from a companion PC. This can be configured using PX4 parameters and mavros plugins. To enable external pose estimation, the vision_pose_estimate plugin can be used to configure the following parameters. Open QGroundControl and set the following parameters:

			
					EKF2_AID_MASK: From here you can select the list of the external estimation sources. To use the external pose, select vision_position_fusion and vision_yaw_fusion.

					EKF2_HGT_MODE: You must select the vision source to estimate the height of the UAV.

			

			We can now stream the desired position on the /mavros/vision_pose/ topic using the geometry_msgs::PoseStamped message type in the ENU reference frame. Be aware that the system only checks the data that is streamed, and not the data that is reported in the correct reference frame.

			Simulating UAVs using the PX4 stack involves multiple elements. In the first part of this chapter, we focused on the connection between the autopilot code and Gazebo. The question now is: how effectively can Gazebo simulate the sensors and dynamics of a UAV? This question is answered thanks to a set of Gazebo plugins implemented by RotorS. We will discuss all this in the next section.

			Using the RotorS simulation framework

			In the previous section, we discussed how to simulate flight controller unit code using Gazebo ROS. However, in some cases, we might be interested in simulating only UAV dynamics with basic sensors (such as IMU, GPS, and so on) and propellers. This is the goal of the RotorS simulator. This simulator provides a set of configuration files and models shaped as ROS packages in order to simulate different types of UAVs. Besides the standard models, RotorS allows developers to configure new multirotor systems from scratch. In short, this ROS package implements both sensors and mechanisms in the form of Gazebo plugins that can be mounted on the multirotor. In this section, we will install RotorS on our ROS. Later, we will create a new multirotor model containing four rotors.

			Installing RotorS

			Let's start by installing RotorS on our system. To accomplish this step, you should install the following dependencies:

			sudo apt-get install ros-noetic-joy ros-noetic-octomap-ros ros-noetic-mavlink protobuf-compiler libgoogle-glog-dev ros-noetic-control-toolbox

			Now, clone the RotorS repository in your ROS workspace:

			roscd && cd ../src

			git clone https://github.com/ethz-asl/rotors_simulator.git

			Then, compile the workspace using the catkin_make command.

			If the compilation ends without any errors occurring, then you are ready to launch the simulator using one of the models provided by RotorS. Additionally, this package implements a UAV controller to command its position in the simulated world. For example, to simulate the model of a hexacopter, you can use the following command:

			roslaunch rotors_gazebo mav_hovering_example.launch mav_name:=firefly world_name:=basic

			The mav_hovering_exmaple.launch file is explained in the following code snippet. First, the UAV type is defined using mav_name. In this case, we selected the one called firefly:

			<launch>

			  <arg name="mav_name" default="firefly"/>

			Then, we set the environmental variables to add the configuration files used to launch the simulation to Gazebo. In particular, GAZEBO_MODEL_PATH contains the list of directories where Gazebo will search for models, while GAZEBO_RESOURCE_PATH contains the list of directories for other resources, such as world and media files:

			 <env name="GAZEBO_MODEL_PATH" value="${GAZEBO_MODEL_PATH}:$(find rotors_gazebo)/models"/>

			  <env name="GAZEBO_RESOURCE_PATH" value="${GAZEBO_RESOURCE_PATH}:$(find rotors_gazebo)/models"/>

			Then, we can start Gazebo:

			  <include file="$(find gazebo_ros)/launch/empty_world.launch">

			      <arg name="world_name" value="$(find rotors_gazebo)/worlds/$(arg world_name).world" />

			      <arg name="debug" value="$(arg debug)" />

			      <arg name="paused" value="$(arg paused)" />

			      <arg name="gui" value="$(arg gui)" />

			      <arg name="verbose" value="$(arg verbose)"/>

			  </include>

			Based on the UAV type, a set of launch files are included. The following one is to spawn the model in the Gazebo simulator:

			 <group ns="$(arg mav_name)">

			      <include file="$(find rotors_gazebo)/launch/spawn_mav.launch">

			      <arg name="mav_name" value="$(arg mav_name)" />

			      <arg name="model" value="$(find rotors_description)/urdf/mav_generic_odometry_sensor.gazebo" />

			      <arg name="enable_logging" value="$(arg enable_logging)" />

			      <arg name="enable_ground_truth" value="$(arg enable_ground_truth)" />

			      <arg name="log_file" value="$(arg log_file)"/>

			      </include>

			Now, the robot is ready to be controlled. So, the next step is to run the controller node that generates the velocity for each propeller of the UAV. Again, this is a node provided in the set of RotorS packages, lee_position_controller_node:

			      <node name="lee_position_controller_node" pkg="rotors_control" type="lee_position_controller_node" output="screen">

			     <rosparam command="load" file="$(find rotors_gazebo)/resource/lee_controller_$(arg mav_name).yaml" />

			     <rosparam command="load" file="$(find rotors_gazebo)/resource/$(arg mav_name).yaml" />

			     <remap from="odometry" to="odometry_sensor1/odometry" />

			      </node>

			Finally, the hovering_example node is used to control the robot. The goal of this node is to publish a setpoint using geometry_msgs::Pose data:

			      <node name="hovering_example" pkg="rotors_gazebo" type="hovering_example" output="screen"/>

			The hovering_example node can be switched with your node to drive the robot into the simulated environment. To summarize, relying on RotorS to simulate and control UAVs with ROS is easier than using the PX4 SITL and ROS. With RotorS, you can send commands directly to the vehicle. However, autonomous navigation routines must first be implemented. Before we continue by showing how we can define a new multirotor model, let's inspect the elements of RotorS and discuss the contents of its packages.

			RotorS packages

			The RotorS simulator is divided into different packages, as shown in the following figure:

			
				
					[image: Figure 8.8 – RotorS simulator's packages ]
				

			

			Figure 8.8 – RotorS simulator's packages

			The main elements of RotorS are detailed in the following list:

			
					rotors_description: The rotors_description package contains the xacro files and the 3D models of the components involved in the simulation (sensors, UAV frames, and so on). 

					rotors_control: This package contains a set of low-level controllers for the UAV that generate the propeller's velocities based on the desired position input.

					rotors_gazebo_plugins: This package contains a set of Gazebo plugins that are used to simulate the UAV sensors and propellers. All the models will include the following plugins:IMU plugin: This simulates the inertial sensor.
Motor model plugin: This simulates the dynamics of the motors mounted on the UAV.
Multirotor base plugin: This plugin calculates and applies the forces and torques to the base link of the UAV, based on motor speeds.
Odometry plugin: This plugin simulates an odometry sensor in order to stream the UAV position and orientation.
Rotors Gazebo-ROS interface: This plugin represents the communication layer between the RotorS ROS messages and the Gazebo simulation scene. If you fail to load this plugin, you cannot use any ROS topic to command the robot. In addition, only one instance of this plugin may be loaded. For this reason, it's convenient to load this plugin in the Gazebo world file.


					rotors_gazebo: This package contains the launch file to start the different models in the Gazebo simulator.

			

			The combination of the elements included in the RotorS packages allows you to create new robots, or modify the ones already implemented, adding sensors or changing their dynamic parameters (such as the robot mass or inertia).

			To understand how these plugins works, let's try to start the firefly robot by inspecting the available ROS topics:

			roslaunch rotors_gazebo mav_hovering_example.launch mav_name:=firefly world_name:=basic

			rostopic list

			The following salient topics are active in the ROS network:

			
					/firefly/command/motor_speed: This is the only input of the system and represents the velocity of each propeller of the UAV. The message type is part of a mav_msgs package (http://wiki.ros.org/mav_msgs). This topic accepts a mav_msgs::Actuator message, whose definition is as follows:std_msgs/Header header
  uint32 seq
  time stamp
  string frame_id
float64[] angles
float64[] angular_velocities
float64[] normalized
In this context, we are interested in angular_velocities. This is a vector whose size depends on the number of motors of the robot. In this case, we have a vector of six elements.


					/firefly/odometry_sensor1/odometry: This topic is published by the odometry plugin and represents the estimated position, orientation, and velocity of the UAV. This topic streams a nav_msgs/Odometry message.

					/firefly/motor_speed/${num_motor}: This topic is published by a plugin modeling the motors. It can be used to debug.

					/firefly/imu: This topic is published by the IMU plugin and represents the attitude of the UAV.

			

			Note that all the topics start with the name of the UAV because this is the namespace set in the variables of the launch file. Now that we have discussed the main components, in the next section, let's find out how to define a new UAV model.

			Creating a new UAV model

			The RotorS simulator possesses several UAV models with different configurations. However, you can add new robot models with the desired number of motors, placed anywhere on the robot base frame. To import a new model in the RotorS framework, we need to define the xacro file containing all the joints, links, and sensors of the multirotor. The rotors_description package contains a set of xacro files for implementing different macros to simplify creating the UAV. In particular, the following xacro files will be included in our robot:

			
					The multirotor_base.xacro file represents the main element of the UAV. It sets base_link for the robot.

					The component_snippets.xacro file contains the macros for several simulation-related components (sensors, motors, and so on).

			

			We will refer to these files to create our new model. Let's now try to create a model for the IRIS robot. The first step is to create a new ROS package, that depends from the rotors_description package, in which is located the xacro file that was listed previously:

			catkin_create_pkg iris_model roscpp rotors_description mav_msgs

			Now, we must create the urdf directory. Let's create two xacro files inside this directory, the iris.xacro and iris_base.xacro files. Note that we will use the other resources from other RotorS packages (such as CAD models, additional macro files, as well as others). For this reason, our new package will depend on the rotors_description package.

			Let's start from the iris_base.xacro file. To begin, we define the robot name as follows:

			<?xml version="1.0"?>

			<robot name="iris" xmlns:xacro="http://ros.org/wiki/xacro">

			Then, we include two additional xacro files – one containing an important macro (the component_snippets.xacro file) and another containing the main frame of the multirotor (called the iris.xacro file):

			  <xacro:include filename="$(find rotors_description)/urdf/component_snippets.xacro" />

			  <xacro:include filename="$(find iris_model)/urdf/iris.xacro" />

			Finally, we include two sensors: the imu sensor. This uses the default_imu macro, as defined in the component_snippets.xacro file, and the odometry sensor:

			    <xacro:default_imu namespace="${namespace}" parent_link="${namespace}/base_link" />

			The odometry plugin must be configured with parameters including the following:

			
					The namespace of the robot that is specified in the launch file and is required to properly link the sensor to the base link of the robot:    <xacro:odometry_plugin_macro
      namespace="${namespace}"
      odometry_sensor_suffix="1"
      parent_link="${namespace}/base_link"


					The topic on which the data is streamed (position, velocity):      pose_topic="odometry_sensor1/pose"
    pose_with_covariance_topic="odometry_sensor1/pose_with_covariance"
      position_topic="odometry_sensor1/position"
      transform_topic="odometry_sensor1/transform"
      odometry_topic="odometry_sensor1/odometry"
      parent_frame_id="world"
      child_frame_id="${namespace}/odometry_sensor1"


					Possible noise. This is used to inject odometry measurement errors in order to have more realistic simulations:      mass_odometry_sensor="0.00001"
      measurement_divisor="1"
      measurement_delay="0"
      unknown_delay="0.0"
      noise_normal_position="0 0 0"
      noise_normal_quaternion=»0 0 0»
      noise_normal_linear_velocity=»0 0 0»
      noise_normal_angular_velocity=»0 0 0»
      noise_uniform_position=»0 0 0»
      noise_uniform_quaternion=»0 0 0»
      noise_uniform_linear_velocity=»0 0 0»
      noise_uniform_angular_velocity=»0 0 0»
      enable_odometry_map=»false»
      odometry_map=»»
      image_scale=»»>
       <inertia ixx=»0.00001» ixy=»0.0» ixz=»0.0» iyy=»0.00001» iyz=»0.0» izz=»0.00001» /> <!-- [kg m^2] [kg m^2] [kg m^2] [kg m^2] [kg m^2] [kg m^2] -->
      <origin xyz=»0.0 0.0 0.0» rpy=»0.0 0.0 0.0» />
    </xacro:odometry_plugin_macro>
</robot>


			

			We can now define the iris.xacro file. This file could be very long, since it contains the definition of each propeller of the robot, as well as the other sensors. The first part of the file also contains the definition of some parameters. We can choose to slow down the rotation velocity of the propellers in the simulation view, and we can set the CAD file to use as the robot frame:

			<?xml version="1.0"?>

			<robot name="iris" xmlns:xacro="http://ros.org/wiki/xacro">

			  <!-- Properties -->

			  <xacro:property name="namespace" value="$(arg namespace)" />

			  <xacro:property name="rotor_velocity_slowdown_sim" value="10" />

			  <xacro:property name="use_mesh_file" value="true" />

			  <xacro:property name="mesh_file" value="package://rotors_description/meshes/iris.dae" />

			Now, some UAV specific parameters must be defined, such as its mass, inertia, length of its arm, and so on. In addition, the dynamic of the rotors is also modeled considering some constants such as the motor and moment constants. Such parameters depend on the motor mode:

			  <xacro:property name="mass" value="1.5" /> 

			  <xacro:property name="body_width" value="0.47" /> 

			  <xacro:property name="body_height" value="0.11" /> 

			  <xacro:property name="mass_rotor" value="0.005" /> 

			  <xacro:property name="arm_length_front_x" value="0.13" />

			  <xacro:property name="arm_length_back_x" value="0.13" /> 

			  <xacro:property name="arm_length_front_y" value="0.22" /> 

			  <xacro:property name="arm_length_back_y" value="0.2" />

			  <xacro:property name="rotor_offset_top" value="0.023" />

			  <xacro:property name="radius_rotor" value="0.1" /> 

			  <xacro:property name="motor_constant" value="8.54858e-06" />       

			  <xacro:property name="moment_constant" value="0.016" />   

			  <xacro:property name="time_constant_up" value="0.0125" />   

			  <xacro:property name="time_constant_down" value="0.025" />   

			  <xacro:property name="max_rot_velocity" value="838" />   

			  <xacro:property name="rotor_drag_coefficient" value="8.06428e-05" />

			  <xacro:property name="rolling_moment_coefficient" value="0.000001" />

			Some property blocks can now be defined to specify the body and rotor inertias:

			  <!-- Property Blocks -->

			  <xacro:property name="body_inertia">

			      <inertia ixx="0.0347563" ixy="0.0" ixz="0.0" iyy="0.0458929" iyz="0.0" izz="0.0977" /> <!-- [kg.m^2] [kg.m^2] [kg.m^2] [kg.m^2] [kg.m^2] [kg.m^2] -->

			  </xacro:property>

			  <xacro:property name="rotor_inertia">

			      <xacro:box_inertia x="${radius_rotor}" y="0.015" z="0.003" mass="${mass_rotor*rotor_velocity_slowdown_sim}" />

			  </xacro:property>

			Now, we include another xacro file, used to instantiate the main part of the multirotor. After including this file, we will have access to the mulitror_base_macro macro block that is filled according to the size of the platform and the mesh file used in the simulation scene:

			  <xacro:include filename="$(find rotors_description)/urdf/multirotor_base.xacro" />

			  <!-- Instantiate multirotor_base_macro once -->

			  <xacro:multirotor_base_macro

			      robot_namespace="${namespace}"

			      mass="${mass}"

			      body_width="${body_width}"

			      body_height="${body_height}"

			      use_mesh_file="${use_mesh_file}"

			      mesh_file="${mesh_file}"

			      >

			      <xacro:insert_block name="body_inertia" />

			  </xacro:multirotor_base_macro>

			In the rest of the file, we simply instantiate the motors of the UAV. We are modeling a quadrotor, so we will include four different motors. We are free to configure the parameters of each rotor using the following parameters:

			
					Direction: This parameter represents the rotation direction of the propeller. It can be set as cw: clockwise or ccw: counterclockwise.

					Motor number: This is the ID of the rotor. All the motors must have a unique ID.

					Origin block: This block is fundamental to correctly create the UAV model because it represents the position of the motor with respect to the center of the UAV.

			

			Note that the value of some of these parameters, such as the rotation direction or the motor and moment constants, will depend on the controller that you wish to develop. In the following block, we instantiate motor 0. To do this, we use the vertical_rotor macro defined in the multirotor_base.xacro file:

			  <xacro:vertical_rotor

			      robot_namespace="${namespace}"

			      suffix="front_right"

			      direction="ccw"

			      motor_constant="${motor_constant}"

			      moment_constant=»${moment_constant}»

			      parent=»${namespace}/base_link»

			      mass_rotor=»${mass_rotor}»

			      radius_rotor=»${radius_rotor}»

			      time_constant_up=»${time_constant_up}»

			      time_constant_down=»${time_constant_down}»

			      max_rot_velocity=»${max_rot_velocity}»

			      motor_number=»0»

			      rotor_drag_coefficient=»${rotor_drag_coefficient}»

			      rolling_moment_coefficient=»${rolling_moment_coefficient}»

			      color=»Blue»

			      use_own_mesh=»false»

			mesh=»»>

			      <origin xyz=»${arm_length_front_x} -${arm_length_front_y} ${rotor_offset_top}» rpy=»0 0 0» />

			      <xacro:insert_block name=»rotor_inertia» />

			  </xacro:vertical_rotor>

			Then we add motor 1, rotating counterclockwise:

			  <xacro:vertical_rotor

			      robot_namespace="${namespace}"

			      suffix="back_left"

			      direction="ccw"

			      motor_constant="${motor_constant}"

			      moment_constant="${moment_constant}"

			      parent="${namespace}/base_link"

			      mass_rotor="${mass_rotor}"

			      radius_rotor="${radius_rotor}"

			      time_constant_up="${time_constant_up}"

			      time_constant_down="${time_constant_down}"

			      max_rot_velocity="${max_rot_velocity}"

			      motor_number="1"

			      rotor_drag_coefficient="${rotor_drag_coefficient}"

			                             rolling_moment_coefficient="${rolling_moment_coefficient}"

			      color="Red"

			      use_own_mesh="false"

			      mesh="">

			      <origin xyz="-${arm_length_back_x} ${arm_length_back_y} ${rotor_offset_top}" rpy="0 0 0" />

			      <xacro:insert_block name="rotor_inertia" />

			  </xacro:vertical_rotor>

			Then we add motor 2, rotating clockwise:

			  <xacro:vertical_rotor robot_namespace="${namespace}"

			      suffix="front_left"

			      direction="cw"

			      motor_constant="${motor_constant}"

			      moment_constant=»${moment_constant}»

			      parent=»${namespace}/base_link»

			      mass_rotor=»${mass_rotor}»

			      radius_rotor=»${radius_rotor}»

			      time_constant_up=»${time_constant_up}»

			      time_constant_down=»${time_constant_down}»

			      max_rot_velocity=»${max_rot_velocity}»

			      motor_number=»2»

			      rotor_drag_coefficient=»${rotor_drag_coefficient}»

			      rolling_moment_coefficient=»${rolling_moment_coefficient}»

			      color=»Blue»

			      use_own_mesh=»false»

			      mesh=»»>

			      <origin xyz=»${arm_length_front_x} ${arm_length_front_y} ${rotor_offset_top}» rpy=»0 0 0» />

			      <xacro:insert_block name=»rotor_inertia» />

			  </xacro:vertical_rotor>

			And finally, we add the last motor with ID equal to 3 and rotating in a clockwise direction:

			  <xacro:vertical_rotor robot_namespace="${namespace}"

			      suffix="back_right"

			      direction="cw"

			      motor_constant="${motor_constant}"

			      moment_constant="${moment_constant}"

			      parent="${namespace}/base_link"

			      mass_rotor="${mass_rotor}"

			      radius_rotor="${radius_rotor}"

			      time_constant_up="${time_constant_up}"

			      time_constant_down="${time_constant_down}"

			      max_rot_velocity="${max_rot_velocity}"

			      motor_number="3"

			      rotor_drag_coefficient="${rotor_drag_coefficient}"

			      rolling_moment_coefficient="${rolling_moment_coefficient}"

			      color="Red"

			      use_own_mesh="false"

			      mesh="">

			      <origin xyz="-${arm_length_back_x} -${arm_length_back_y} ${rotor_offset_top}" rpy="0 0 0" />

			      <xacro:insert_block name="rotor_inertia" />

			  </xacro:vertical_rotor>

			</robot>

			Now we have defined the UAV model. To start the simulation with this new UAV, we need to create a Gazebo world file and a launch file. Let's start by defining a Gazebo world file in the iris_model package. Let's create a world directory in the iris_model package and then create an empty.world file:

			roscd iris_model

			mkdir world && cd world

			touch empty.world

			The content of this file is as follows. As usual, we include some models to define the ground and the environmental light, as follows:

			<?xml version="1.0" ?>

			<sdf version="1.4">

			  <world name="default">

			      <include>

			      <uri>model://ground_plane</uri>

			      </include>

			      <include>

			      <uri>model://sun</uri>

			      </include>

			Then, we have to include the RotorS Gazebo-ROS interface plugin in order to control the robot motors using the ROS topic and retrieve sensor information from the Gazebo scene:

			<plugin name="ros_interface_plugin" filename="librotors_gazebo_ros_interface_plugin.so"/>

			As already stated, typically UAVs work using GPS localization. For this reason, it may be convenient to add a spherical coordinates reference system that converts the planar coordinates (x, y, and z) into spherical ones (latitude, longitude, and altitude). We can also add the latitude and longitude origins, as follows:

			      <spherical_coordinates>

			          <surface_model>EARTH_WGS84</surface_model>

			          <latitude_deg>47.3667</latitude_deg>

			           <longitude_deg>8.5500</longitude_deg>

			            <elevation>500.0</elevation>

			             <heading_deg>0</heading_deg>

			           </spherical_coordinates>

			Finally, we include the dynamic solver, as follows:

			      <physics type='ode'>

			       <ode>

			      <solver>

			            <type>quick</type>

			            <iters>1000</iters>

			            <sor>1.3</sor>

			      </solver>

			      <constraints>

			            <cfm>0</cfm>

			            <erp>0.2</erp>

			                    <contact_max_correcting_vel>100</contact_max_correcting_vel>

			            <contact_surface_layer>0.001</contact_surface_layer>

			      </constraints>

			      </ode>

			      <max_step_size>0.01</max_step_size>

			      <real_time_factor>1</real_time_factor>

			      <real_time_update_rate>100</real_time_update_rate>

			      <gravity>0 0 -9.8</gravity>

			      </physics>

			  </world>

			</sdf>

			The last step before starting the simulation is to write a proper launch file to launch the previously created world and spawn the IRIS model inside it. Let's create a launch file in the iris_model/launch directory. The file is very similar to the mav_hovering_example program that was previously discussed. There are two main differences. The first is the world file to load. This is defined using the world_name argument, in which we load the world file located in the iris_model folder, as follows:

			      <arg name="world_name" value="$(find iris_model)/worlds/empty.world" />

			The second is the model to load, in which we refer to the iris_base.xacro file, as follows:

			  <arg name="model" value="$(find iris_model)/urdf/iris_base.xacro" />

			To start the simulation, use the following command:

			roslaunch iris_model spawn_iris.launch

			We are now ready to control the robot motors. We will discuss this in detail in the next section.

			Interacting with RotorS motor models

			In this section, we will create a ROS node to interact with the motors of the IRIS UAV model we previously developed. Let's create a source file called motor_example.cpp in the src folder of the iris_model package. The content of this file is discussed in the following section.

			First, we include the mav_msgs::Actuators header to send the commands to the UAV, as follows:

			#include "ros/ros.h"

			#include "mav_msgs/Actuators.h"

			using namespace std;

			In the main function, we define the publisher to the /iris/gazebo/command/motor_speed topic, as follows:

			int main(int argc, char ** argv ) {

			    ros::init(argc, argv, "motor_example");

			    ros::NodeHandle nh;

			    ros::Publisher actuators_pub;

			    actuators_pub = nh.advertise<mav_msgs::Actuators>("/iris/gazebo/command/motor_speed", 1);

			    ros::Rate r(10);

			The goal of this code is to require a rotation of 800 rad/s from each motor, moving one motor at a time. We now resize the angular_velocities field of the actuators message to consider all four motors of the UAV, as follows:

			    mav_msgs::Actuators m;

			    m.angular_velocities.resize(4);

			    while(ros::ok()) {

			      for(int i=0; i<4; i++) {

			       for(int j=0; j<4; j++) {

			              if( i!=j) m.angular_velocities[j] = 0.0;

			              else m.angular_velocities[i] = 800;

			            }    

			Finally, we publish the actuator message, as follows:

			            actuators_pub.publish(m);

			            ros::spinOnce();

			            sleep(1);

			      }    

			    }

			    return 0;

			}

			After compiling this code, we can test whether the motors run correctly.

			Let's launch the Gazebo simulation:

			roslaunch iris_model spawn_iris.launch

			Then, we can send input to the robot motors:

			rosrun iris_model motor_example

			You can now see in the Gazebo scene that the motors will rotate in sequence, and you can program your controller to regulate the velocity of the four rotors in order to stabilize and move the robot in the simulated world.

			Summary

			This chapter introduced the concept of aerial robots and discussed their main elements. We also described one of the most famous autopilot boards used to develop custom applications with UAV – the Pixhawk control board running the PX4 autopilot. After we learned how to use real multirotor platforms and integrate them with ROS, we then went on to discuss two simulation modalities. It is very important to simulate the effect of control algorithms before running them on a real UAV. This is in order to prevent damage to the robot and nearby people.

			In the next chapter, we will discuss how to interface microcontroller boards and actuators with ROS.

			Here are some questions based on what we learned in this chapter.

			Questions

			
					What is an aerial robot?

					What is the main element of an aerial robot?

					What is the PX4 control stack?

					What are the main differences between PX4 SITL and RotorS simulations?

			

		

	






			
			

		

		
			Section 3 – ROS Robot Hardware Prototyping

			In this section, we will deal with the hardware prototyping of a robot. We will look at robot sensor interfacing, embedded board interfacing, and finally, how to build an actual differential robot using ROS.

			This section comprises the following chapters:

			
					Chapter 9, Interfacing I/O Boards, Sensors, and Actuators to ROS

					Chapter 10, Programming Vision Sensors Using ROS, OpenCV, and PCL

					Chapter 11, Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

			

		

	






			Chapter 9: Interfacing I/O Board Sensors and Actuators to ROS

			In the previous chapters, we discussed different kinds of plugin frameworks that are used in ROS. In this chapter, we are going to discuss the interfacing of some hardware components, such as sensors and actuators, to ROS. We will look at the interfacing of sensors using I/O boards such as Arduino, Teensy, Raspberry Pi 4, Jetson Nano, and Odroid-XU4 to ROS, and we will discuss interfacing smart actuators, such as DYNAMIXEL, to ROS. The following is the detailed list of topics that we are going to cover in this chapter: 

			
					Understanding the Arduino-ROS interface

					What is the the Arduino-ROS interface packages?

					Interfacing a non-Arduino board to ROS

					Interfacing DYNAMIXEL actuators to ROS

			

			Technical requirements:

			The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition/tree/main/Chapter9

			You can view this chapter's code in action here: https://bit.ly/3k3RM9f.

			Understanding the Arduino-ROS interface

			Let's see what Arduino is first. Arduino is one of the most popular open source development boards on the market. The ease of programming and the cost-effectiveness of the hardware have made Arduino a big success. Most of the Arduino boards are powered by Atmel microcontrollers, which are available from 8 bit to 32 bit, with clock speeds from 8 MHz to 84 MHz. Arduino can be used for the quick prototyping of robots. The main applications of Arduino in robotics are interfacing sensors and actuators, used for communicating with PCs to receive high-level commands and to send sensor values to PCs using the UART protocol.

			There are different varieties of Arduino available on the market. Selecting one board for our purpose will be dependent on the nature of our robotic application. Let's see some boards that we can use for beginner, intermediate, and high-end users:

			
				
					[image: Figure 9.1 – Different versions of the Arduino board ]
				

			

			Figure 9.1 – Different versions of the Arduino board

			In the following table, we will look at each Arduino board specification in brief and see where it can be deployed:

			
				
					[image: Figure 9.2 – Comparison of different Arduino boards ]
				

			

			Figure 9.2 – Comparison of different Arduino boards

			Let's look at how to interface Arduino to ROS.

			What is the Arduino-ROS interface?

			Most of the communication between PCs and I/O boards in robots will be through the UART protocol. When the devices communicate with each other, there should be some program on both sides that can translate the serial commands from each of the devices. We can implement our logic to receive and transmit the data from the board to the PC and vice versa. The interfacing code can be different in each I/O board because there are no standard libraries to do this communication.

			The Arduino-ROS interface is a standard way of communicating between Arduino boards and a PC. Currently, this interface is exclusive to Arduino boards and boards supported by the Arduino IDE. Some of the examples of those boards are OpenCR (https://robots.ros.org/opencr/) and Teensy (https://www.pjrc.com/teensy/). For other boards, we may need to write a custom ROS interface. Tutorials are provided on the rosserial tutorial page: http://wiki.ros.org/rosserial_client/Tutorials. You can find the list of boards supporting the rosserial protocol at the following link: http://wiki.ros.org/rosserial.

			In the next section, detailed information about the rosserial package in ROS is provided.

			Understanding the rosserial package in ROS

			The rosserial package is a set of standardized communication protocols implemented for communication between ROS and character devices, such as serial ports and sockets, and vice versa. The rosserial protocol can convert the standard ROS message and service data types to equivalent embedded device data types. It also implements multi-topic support by multiplexing the serial data from a character device (https://askubuntu.com/questions/1021394/what-is-a-character-device). The serial data is sent as data packets by adding a header and tail bytes on the packet. The packet representation is shown next:

			
				
					[image: Figure 9.3 – rosserial packet representation ]
				

			

			Figure 9.3 – rosserial packet representation

			The function of each byte follows:

			
					Sync Flag: This is the first byte of the packet, which is always 0xff.

					Sync Flag/Protocol version: This byte was 0xff on ROS Groovy and after that, it is set to 0xfe.

					Message Length: This is the length of the packet.

					Checksum over message length: This is the checksum of packet length for finding packet corruption.

					Topic ID: This is the ID allocated for each topic; the range 0-100 is allocated for system-related functionalities.

					Serialized Message Data: This is the data associated with each topic.

					Checksum over Topic ID and Message Data: This is the checksum for the topic and its serial data for finding the packet, corruption.

			

			The checksum of packet length is computed using the following equation:

			Checksum = 255 - ( (Topic ID Low Byte + Topic ID High Byte + ... data byte values) % 256)

			The ROS client libraries, such as roscpp, rospy, and roslisp, enable us to develop ROS nodes from different programming languages. There is a client library available in ROS that helps us to develop a ROS node from an embedded device, such as Arduino and embedded Linux-based boards, which is called the rosserial_client library. Using the rosserial_client library, we can develop the ROS nodes from Arduino and other embedded board platforms. The following is the list of rosserial_client libraries for each of these platforms:

			
					rosserial_arduino: This rosserial_client works on Arduino platforms, such as Arduino UNO, Leonardo, Mega, and the Due series for advanced robotic projects.

					rosserial_embeddedlinux: This client supports embedded Linux platforms, such as VEXPro, Chumby alarm clock, WRT54GL router, and so on.

					rosserial_windows: This is a client for the Windows platform.

					rosserial_mbed: The client library for the Mbed platform.

					rosserial_tivac: The client library for TI's LaunchPad boards, TM4C123GXL and TM4C1294XL.

					ros-teensy: The client library for the Teensy platform.

			

			On the PC side, we need some other ROS nodes to decode the serial message and convert it to exact topics from the rosserial_client libraries. The following packages help in decoding the serial data:

			
					rosserial_python: This is the recommended PC-side node for handling serial data from a device. The receiving node is completely written in Python.

					rosserial_server: This is a C++ implementation of rosserial on the PC side. There are fewer inbuilt functionalities compared to rosserial_python, but it can be used for high-performance applications.

			

			We are mainly focusing on running ROS nodes from Arduino. First, we will see how to set up the rosserial package on our PC, and then discuss how to set up the rosserial_arduino client in the Arduino IDE.

			Installing rosserial packages on Ubuntu 20.04

			To enable ROS in the Arduino IDE on Ubuntu 20.04, we must install rosserial ROS packages and then set up the Arduino-ROS client library to communicate with the ROS environment. We can install the rosserial packages on Ubuntu using the following commands:

			
					Install the rosserial package binaries, using the apt package manager:sudo apt install ros-noetic-rosserial ros-noetic-rosserial-arduino ros-noetic-rosserial-python


					To install the rosserial_client library called ros_lib in Arduino, we must download the latest Arduino IDE for Linux 32/64 bit. One of the easiest options to install Arduino IDE is using arduino snap tool(https://snapcraft.io/arduino). You can use the following command to install Arduino IDE using the snap app store: 
sudo snap install arduino 
You can find the Arduino IDE by searching ‘arduino’ in the Unity Dash Search box in Ubuntu. 
If we want to download the latest binaries, we can use the following link to download the Arduino IDE: https://www.arduino.cc/en/main/software. In this book, we are using Arduino IDE  1.8.x, you can download it from following link https://www.arduino.cc/en/main/OldSoftwareReleases. 
Here, we download the Linux 64-bit version and copy the Arduino IDE folder to the Ubuntu desktop. Arduino requires Java runtime support to run it. If it is not installed, we can install it using the following command:
sudo apt install default-jre   


					After installing the Java runtime, we can switch the arduino folder using the following command. The x is your Arduino IDE version:cd ~/Desktop/arduino-1.8.x-linux64/


					Start Arduino, using the following command:./arduino
Shown next is the Arduino IDE window:
[image: Figure 9.4 – The Arduino IDE ]
Figure 9.4 – The Arduino IDE


					Go to File | Preference to configure the sketchbook folder of Arduino. The Arduino IDE stores sketches in this location. We created a folder called Arduino1 in the user's home folder and set this folder as the Sketchbook location:[image: Figure 9.5 – Preferences in the Arduino IDE ]
Figure 9.5 – Preferences in the Arduino IDE
We will see a folder called libraries inside the Arduino1 folder. 


					Go to the Arduino IDE menu, Sketch | Include Library | Manage Libraries and search for rosserial, as shown in the following screenshot: 

			

			
				
					[image: Figure 9.6 – Arduino Library Manager]
				

			

			Figure 9.6 – Arduino Library Manager

			Install the rosserial library you are seeing in the Library Manager. You have now installed the Arduino ROS library in the Arduino1 folder and now you can start implementing a ROS node inside an Arduino board.

			There is an alternate way to install the Arduino ROS library, which is given here: http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup

			These ROS messages and services will convert into the Arduino C/C++ code equivalent, as shown next:

			
					Conversion of ROS messages:ros_package_name/msg/Test.msg  --> ros_package_name::Test  


					Conversion of ROS services:ros_package_name/srv/Foo.srv  --> ros_package_name::Foo


			

			For example, if we include #include <std_msgs/UInt16.h>, we can instantiate the std_msgs::UInt16 number.
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			Figure 9.7 – Rosserial_Arduino library examples

			We can take any example and make sure that it is building properly to ensure that the rosserial_arduino package APIs are working fine. The APIs required for building ROS Arduino nodes are discussed next.

			Understanding ROS node APIs in Arduino

			The following is the basic structure of the ROS Arduino node. We can see the function of each line of code:

			#include <ros.h> 

			 

			ros::NodeHandle nh; 

			 

			void setup() { 

			  nh.initNode(); 

			} 

			 

			void loop() { 

			  nh.spinOnce(); 

			} 

			The creation of NodeHandle in Arduino is done using the following line of code:

			ros::NodeHandle nh; 

			Note that Nodehandle should be declared before the setup() function, which will give a global scope to the NodeHandle instance called nh. The initialization of this node is done inside the setup() function:

			  nh.initNode(); 

			The Arduino setup() function will execute only once when the device starts. Note that we can only create one node from a serial device.

			Inside the loop() function, we have to use the following line of code to execute the ROS callback once:

			  nh.spinOnce(); 

			We can create the Subscriber and Publisher objects in Arduino, like the other ROS client libraries. The following are the procedures for defining the subscriber and the publisher.

			Here is how we define a Subscriber object in Arduino:

			ros::Subscriber<std_msgs::String> sub("talker", callback);

			Here, we define a subscriber that is subscribing a String message. The callback is the callback function that is executing when a String message is available on the talker topic. Given next is an example callback for handling the string data:

			std_msgs::String str_msg; 

			 

			ros::Publisher chatter("chatter", &amp;str_msg); 

			 

			void callback ( const std_msgs::String&amp; msg){ 

			  str_msg.data = msg.data; 

			 

			  chatter.publish( &amp;str_msg ); 

			 

			} 

			Note that the callback(), Subscriber, and Publisher definitions will be above the setup() function for getting the global scope. Here, we are receiving String data, using const std_msgs::String&amp; msg.

			The following code shows how to define a Publisher object in Arduino:

			ros::Publisher chatter("chatter", &amp;str_msg); 

			This next code shows how we publish the string message:

			  chatter.publish( &amp;str_msg ); 

			After defining the publisher and the subscriber, we have to initiate this inside the setup() function, using the following lines of code:

			  nh.advertise(chatter); 

			  nh.subscribe(sub); 

			There are ROS APIs for logging from Arduino. The following are the different logging APIs supported:

			nh.logdebug("Debug Statement"); 

			nh.loginfo("Program info"); 

			nh.logwarn("Warnings.); 

			nh.logerror("Errors.."); 

			nh.logfatal("Fatalities!");

			We can retrieve the current ROS time in Arduino using ROS built-in functions, such as Time and Duration:

			
					The function to retrieve current ROS time is as follows:ros::Time begin = nh.now(); 


					The function for converting the ROS time to seconds is as follows:double secs = nh.now().toSec(); 


					The function for creating a duration in seconds is as follows:ros::Duration ten_seconds(10, 0); 


			

			In this section, we have seen important functions in the ROS-Arduino library. In the next section, we will see how to use these functions to implement different applications.

			ROS-Arduino Publisher and Subscriber example

			The first example using the Arduino and ROS interface is a chatter and talker interface. Users can send a String message to the talker topic and Arduino will publish the same message in a chatter topic. The following ROS node is implemented for Arduino, and we will discuss this example in detail:

			#include <ros.h> 

			#include <std_msgs/String.h> 

			 

			//Creating Nodehandle 

			ros::NodeHandle  nh; 

			 

			//Declaring String variable 

			std_msgs::String str_msg; 

			 

			//Defining Publisher 

			ros::Publisher chatter("chatter", &amp;str_msg); 

			//Defining callback 

			void callback ( const std_msgs::String&amp; msg){ 

			 

			  str_msg.data = msg.data; 

			  chatter.publish( &amp;str_msg ); 

			     

			} 

			 

			//Defining Subscriber 

			ros::Subscriber<std_msgs::String> sub("talker", callback); 

			 

			 

			void setup() 

			{ 

			  //Initializing node 

			  nh.initNode(); 

			  //Start advertising and subscribing  

			  nh.advertise(chatter); 

			  nh.subscribe(sub); 

			} 

			 

			void loop() 

			{ 

			  nh.spinOnce(); 

			  delay(3); 

			} 

			We can compile the preceding code and upload it to the Arduino board. Before compiling the code, select the desired Arduino board that we are using for this example and the device serial port of the Arduino IDE.

			Go to Tools | Boards to select your current Arduino board and Tools | Port to select the device port name of the board. We are using Arduino Mega for these examples.

			After compiling and uploading the code, we can start the ROS serial client nodes in the PC that connects Arduino and the PC, using the following command:

			Start roscore in a new terminal:

			roscore

			Now we can start the rosserial Python client:

			rosrun rosserial_python serial_node.py /dev/ttyACM0  

			In this case, we are running serial_node.py on port /dev/ttyACM0. We can search for the port name listing the contents of the /dev directory. Note that, to use this port, root permissions are needed. In this case, we could change the permissions using the following command to read and write data on the desired port:

			sudo chmod 666 /dev/ttyACM0  

			We are using the rosserial_python node here as the ROS bridging node. We have to mention the device name and baud rate as arguments. The default baud rate of this communication is 57600. We can change the baud rate according to our application and the usage of serial_node.py inside the rosserial_python package is given at http://wiki.ros.org/rosserial_python. If the communication between the ROS node and the Arduino node is correct, we will get the following message:

			
				
					[image: Figure 9.8 – Running the rosserial_python node ]
				

			

			Figure 9.8 – Running the rosserial_python node

			When serial_node.py starts running from the PC, it will send some serial data packets called query packets to get the number of topics, the topic names, and the types of topics that are received from the Arduino node. We have already seen the structure of serial packets that are being used for Arduino ROS communication. Given next is the structure of a query packet that is sent from serial_node.py to Arduino:
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			Figure 9.9 – Structure of the query packet

			The query topic contains fields such as Sync Flag, ROS Version, the length of the message, the MD5 sum, Topic ID, and so on. When the query packet is received on the Arduino, it will reply with a topic info message that contains the topic name, type, length, topic data, and so on. The following is a typical response packet from Arduino:
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			Figure 9.10 – Structure of the response packet

			If there is no response for the query packet, it will send it again. The synchronization in communication is based on ROS time.

			From Figure 9.11, we can see that when we run serial_node.py, the buffer size allocated for publishing and subscribe is 512 bytes. The buffer allocation is dependent on the amount of RAM available on each microcontroller that we are working with. The following is a table showing the buffer allocation of each Arduino controller. We can override these settings by changing the BUFFER_SIZE macro inside ros.h.
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			Figure 9.11 – Structure of the response packet

			There are also some limitations in the float64 data type of ROS in Arduino. It will truncate to 32 bit. Also, when we use string data types, use the unsigned char pointer to save memory.

			After running serial_node.py, we will get the list of ROS topics using the following command:

			rostopic list  

			We can see that topics such as chatter and talker are being generated. We can simply publish a message to the talker topic using the following command:

			rostopic pub -r 5 talker std_msgs/String "Hello World"  

			It will publish the "Hello World" message with a rate of 5.

			We can echo the chatter topic, and we will get the same message as we published:

			rostopic echo /chatter  

			We have seen a basic publisher-subscriber setup in this section. In the next section, we will see how to blink an LED using a push button and using ROS topics.

			Arduino-ROS example – blinking an LED with a push button

			In this example, we can interface the LED and push button to Arduino and control them using ROS. When the push button is pressed, the Arduino node sends a True value to a topic called pushed, and at the same time, it switches on the LED, which is on the Arduino board.

			The following shows the circuit for this example:
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			Figure 9.12 – Interfacing the push button to Arduino

			Here is the Arduino-ROS code snippet for blinking an LED and handling a push-button event in Arduino.

			We have to define a Boolean message for publishing the state of the push button. To publish the push button state, we also create a publisher called pushed. So, once the button is pressed, the state will be published in the pushed topic:

			std_msgs::Bool pushed_msg; 

			ros::Publisher pub_button("pushed", &amp;pushed_msg); 

			Initialize the publisher object and assign Arduino pins for the LED and interfacing the button. The LED pin is configured as output and the button pin is configured as input:

			  nh.advertise(pub_button); 

			  pinMode(led_pin, OUTPUT); 

			  pinMode(button_pin, INPUT); 

			To handle the input signal through the push button pin, we have to enable the internal pull-up resistor. We can enable it by writing a HIGH value to the pin that is connected to the push button:

			  digitalWrite(button_pin, HIGH); 

			The value from the push button pin can be read using digitalRead(). The value will be inverted and stored in a variable to get the initial value:

			  last_reading = ! digitalRead(button_pin); 

			In the main loop of the code, we are checking the debouncing of the button first (https://www.arduino.cc/en/Tutorial/BuiltInExamples/Debounce) and if the button value is stable, it will switch on the LED and publish the button state to the pushed topic:

			void loop() 

			{ 

			   

			  bool reading = ! digitalRead(button_pin); 

			   

			  if (last_reading!= reading){ 

			      last_debounce_time = millis(); 

			      published = false; 

			  } 

			  if ( !published &amp;&amp; (millis() - last_debounce_time)  > debounce_delay) { 

			    digitalWrite(led_pin, reading); 

			    pushed_msg.data = reading; 

			    pub_button.publish(&amp;pushed_msg); 

			    published = true; 

			  } 

			   last_reading = reading; 

			  nh.spinOnce(); 

			}

			The preceding code handles the key debouncing and changes the button state only after the button release. The preceding code can be uploaded to Arduino and interfaced to ROS, using the following commands:

			
					Start roscore:roscore  


					Start serial_node.py:rosrun roserial_python serial_node.py /dev/ttyACM0  


					We can see the button press event by echoing the topic pushed:rostopic echo pushed  


			

			We will get the following values when a button is pressed:
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			Figure 9.13 – Output of Arduino pushing the button

			We have seen how to interface a push button to blink an LED using ROS topics. Now we will see how to interface an accelerometer in Arduino and publish the data as ROS topics.

			Arduino-ROS example – Accelerometer ADXL 335

			In this example, we will interface the Accelerometer ADXL 335 to the Arduino Mega through ADC pins and plot the values using the ROS tool called rqt_plot.

			The following diagram shows the circuit of the connection between the ADLX 335 and Arduino:
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			Figure 9.14 – Interfacing Arduino – ADXL 335

			The ADLX 335 is an analog accelerometer. We can simply connect to the ADC port and read the digital value. The following is the code snippet and an explanation of the embedded code to interface the ADLX 335 with the Arduino ADC.

			The rosserial_arduino package has an Adc message type, which can be used for this application. We create an Adc message variable and create a ROS publisher to start to publish the Adc values:

			ros::NodeHandle nh; 

			rosserial_arduino::Adc adc_msg; 

			ros::Publisher pub("adc", &amp;adc_msg); 

			We average the analog reading to eliminate some of the noise: 

			int averageAnalog(int pin){ 

			  int v=0; 

			  for(int i=0; i<4; i++) v+= analogRead(pin); 

			  return v/4; 

			} 

			Inside the loop() method, we can insert the ADC values of X, Y, and Z axes to the ADC message and publish them in a topic called /adc. We can plot the values using the rqt_plot tool:

			void loop() 

			{ 

			  adc_msg.adc0 = averageAnalog(xpin); 

			  adc_msg.adc1 = averageAnalog(ypin); 

			  adc_msg.adc2 = averageAnalog(zpin); 

			  pub.publish(&amp;adc_msg); 

			  nh.spinOnce(); 

			  delay(10); 

			} 

			The following is the command to plot the three axes values in a single plot:

			rqt_plot adc/adc0 adc/adc1 adc/adc2  

			Next is a screenshot of the plot of the three channels of ADC:
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			Figure 9.15 – Plotting ADXL 335 values using rqt_plot

			We have seen how to interface an accelerometer to Arduino and how to publish the values as ROS topics. In the next section, we will see how to interface an ultrasonic distance sensor with Arduino and publish the value as a ROS topic.

			Arduino-ROS example – ultrasonic distance sensor

			One of the useful types of sensors in robots is range sensors. One of the cheapest ranges of sensors is the ultrasonic distance sensor. The ultrasonic sensor has two pins for handling input and output, called Echo and Trigger. We are using the HC-SR04 ultrasonic distance sensor, which is shown in the following diagram:
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			Figure 9.16 – Plotting ADXL 335 values using rqt_plot

			The ultrasonic sound sensor contains two sections: one is the transmitter and the other is the receiver. The ultrasonic distance sensor works like this: when a trigger pulse with a short duration is applied to the trigger pin of the ultrasonic sensors, the ultrasonic transmitter sends the sound signals to the robot environment. The sound signal sent from the transmitter hits some obstacles and is reflected in the sensor. The reflected sound waves are collected by the ultrasonic receiver, generating an output signal that has a relation to the time required to receive the reflected sound signals.

			Equations to find distance using the ultrasonic range sensor

			The following are the equations used to compute the distance from an ultrasonic range sensor to an obstacle:

			Distance = Speed * Time/2

			Speed of sound at sea level = 343 m/s or 34,300 cm/s

			Thus, Distance = 17,150 * Time (unit cm)

			We can compute the distance to the obstacle using the pulse duration of the output. The following is the code to work with the ultrasonic sound sensor and send a value through the ultrasound topic using the range message definition in ROS.

			We can use the ROS sensor_msgs/Range message definition to handle the ultrasonic sensor data. We have included the following header to get this ROS message:

			#include <sensor_msgs/Range.h> 

			Create the Range ROS message type and publish it in the ultrasound topic:

			sensor_msgs::Range range_msg; 

			ros::Publisher pub_range( "/ultrasound", &amp;range_msg); 

			We can fill the range message with values that are not going to change. For example, the frame ID, field of view, and the minimum and maximum range can be filled in this message in the setup() function: 

			void setup() { 

			  

			  range_msg.radiation_type = sensor_msgs::Range::ULTRASOUND; 

			  range_msg.header.frame_id =  frameid; 

			  range_msg.field_of_view = 0.1;  // fake 

			  range_msg.min_range = 0.0; 

			  range_msg.max_range = 60; 

			   

			  pinMode(trigPin, OUTPUT); 

			  pinMode(echoPin, INPUT); 

			   

			} 

			The following function will return the distance of the object from the ultrasonic sensor: 

			float getRange_Ultrasound(){ 

			 

			 int val = 0; 

			 for(int i=0; i<4; i++) {  

			digitalWrite(trigPin, LOW);  

			 delayMicroseconds(2);  

			 digitalWrite(trigPin, HIGH); 

			 delayMicroseconds(10);  

			 digitalWrite(trigPin, LOW); 

			 duration = pulseIn(echoPin, HIGH); 

			  

			 //Calculate the distance (in cm) based on the speed of sound. 

			  val += duration; 

			 } 

			 return val / 232.8 ; 

			   

			} 

			In the loop() method, the range value is published every 50 milliseconds, the time required to stabilize the sensor:

			void loop() { 

			   if ( millis() >= range_time ){ 

			    int r =0; 

			 

			    range_msg.range = getRange_Ultrasound(); 

			    range_msg.header.stamp = nh.now(); 

			    pub_range.publish(&amp;range_msg); 

			    range_time =  millis() + 50; 

			  } 

			   

			  nh.spinOnce(); 

			  

			 delay(50); 

			}

			We can plot the distance value using the following commands:

			
					Start roscore:roscore  


					Start serial_node.py:rosrun rosserial_python serial_node.py /dev/ttyACM0  


					Plot values using rqt_plot:rqt_plot /ultrasound  


			

			As seen in the following screenshot, the centerline indicates the current distance (range) from the sensor. The upper line is the max_range and the line below is the min_range.
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			Figure 9.17 – Plotting the ultrasonic sound sensor distance value

			We have seen how to interface an ultrasonic distance sensor to Arduino and publish the range values in a ROS topic. In the next section, we will see how to generate odometry data from Arduino and publish it as a ROS topic.

			Arduino-ROS example – odometry data publisher

			In this example, we will see how to send an odom message from an Arduino node to a PC. This example can be used in a robot for computing odom and sending it to the ROS navigation stack as the input. The motor encoders can be used for computing odom and can transmit to a PC. In this example, we will see how to send odom for a robot that is moving in a circle, without taking the motor encoder values.

			The following will create a transform broadcaster object to publish the transform between the base_link and odom frame:

			geometry_msgs::TransformStamped t; 

			tf::TransformBroadcaster broadcaster; 

			We will initialize the TF broadcaster in the setup() function:

			void setup() 

			{ 

			  nh.initNode(); 

			  broadcaster.init(nh); 

			} 

			Generate an odom value X, Y, and theta using the circle equation:

			void loop() 

			{   

			  double dx = 0.2; 

			  double dtheta = 0.18; 

			 

			  x += cos(theta)*dx*0.1; 

			  y += sin(theta)*dx*0.1; 

			  theta += dtheta*0.1; 

			 

			  if(theta > 3.14) 

			    theta=-3.14; 

			Publish the current odom values as a transform between base_link and odom:

			  t.header.frame_id = odom; 

			  t.child_frame_id = base_link; 

			   

			  t.transform.translation.x = x; 

			  t.transform.translation.y = y; 

			   

			  t.transform.rotation = tf::createQuaternionFromYaw(theta); 

			  t.header.stamp = nh.now(); 

			   

			  broadcaster.sendTransform(t); 

			  nh.spinOnce(); 

			   

			  delay(10); 

			} 

			After uploading the code, run roscore and rosserial_node.py. We can view tf and odom in RViz. Open RViz and view tf, as shown next. We will see the odom pointer moving in a circle on RViz, as follows:
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			Figure 9.18 – Visualizing odom data from Arduino

			We have seen how to generate odometry data from Arduino and publish the values as a ROS topic. In the next section, we will see how to interface different Arduino-like boards to ROS.

			Interfacing non-Arduino boards to ROS

			Arduino boards are commonly used boards in robots, but what happens if we want a board that is more powerful than Arduino? In such a case, we may want to write a custom driver for the board, which can convert the serial messages into topics. The following link helps you to guide writing a custom driver for the new board: http://wiki.ros.org/action/fullsearch/rosserial_client/Tutorials/Adding%20Support%20for%20New%20Hardware.

			Setting up the Odroid-C4, Raspberry Pi 4, and Jetson Nano for installing ROS

			The Odroid-C4 and Raspberry Pi 4 are single-board computers that have a low form factor, the size of a credit card. These single board computers can be installed in robots and we can install ROS on them.

			A comparison of the main specifications of Odroid-C4, Raspberry Pi 4, and Jetson Nano is shown next:

			
				
					[image: Figure 9.19 – Comparison of boards ]
				

			

			Figure 9.19 – Comparison of boards

			The following is a photograph of the Odroid-C4 board:
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			Figure 9.20 – Odroid-C4 board

			The Odroid board is manufactured by a company called Hard Kernel. The official web page of the Odroid-C4 board is at https://www.hardkernel.com/shop/odroid-c4/.

			Odroid-C4 is one of the latest boards of the Odroid family. There are cheaper and lower-performance boards as well, such as Odroid-C1+ and C2. All these boards support ROS. One of the popular single-board computers is the Raspberry Pi. Raspberry Pi boards are manufactured by the Raspberry Pi Foundation, which is based in the UK (visit https://www.raspberrypi.org).

			The following is a photograph of the Raspberry Pi 4 board:
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			Figure 9.21 – The Raspberry Pi 4 board

			We can install Ubuntu and Android on Odroid. There are also unofficial distributions of Linux, such as Debian mini, Kali Linux, Arch Linux, and Fedora, and support libraries such as ROS, OpenCV, PCL, and so on. To get ROS on Odroid, we can either install a fresh Ubuntu version 20.04 and install ROS manually like a standard desktop PC, or directly download the unofficial Ubuntu distribution for Odroid with ROS already installed.
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			Figure 9.22 – The Jetson Nano board

			NVIDIA Jetson Nano is one of the popular and affordable ARM-based SBCs from NVIDIA. There are two variants from Jetson Nano, one 2 GB and one 4 GB. Compared with the other two boards, Nano has a great advantage to do GPU-based computing for deep learning applications.

			An image for Ubuntu 20.04 for Odroid boards can be downloaded from https://wiki.odroid.com/odroid-c4/odroid-c4. You can download the Ubuntu MATE desktop version or Ubuntu minimal images board from https://wiki.odroid.com/odroid-c4/os_images/ubuntu.

			A list of the other operating systems supported on Odroid-C4 is given on the wiki page mentioned previously. 

			Raspberry Pi 4 official OS images are given at https://www.raspberrypi.org/software/. The official OS supported by the Raspberry Pi Foundation is the Raspberry Pi OS (previously called Raspbian). There is an unofficial Ubuntu MATE distribution that is also available for Raspberry Pi 4 here: https://ubuntu-mate.org/ports/raspberry-pi/.

			There are 32- and 64-bit versions of the OS for the Raspberry Pi. The 64-bit version performs well compared to the 32-bit OS. 

			From my personal experience, both the Ubuntu and Raspbian OSes will work fine. I prefer Ubuntu MATE for robots compared to the Raspberry Pi OS. The reason is that Ubuntu has the latest software packages and there is not much difference in the OS if you are working with Ubuntu 20.04 on your desktop.

			In Jetson Nano, we can install customized Ubuntu version 18.04 with NVIDIA drivers. You can find the installation instructions at the following link: https://developer.nvidia.com/embedded/learn/getting-started-jetson. 

			You can find the Getting Started guide for each board at the preceding URL. You can click and there is a provision to download and set up the Nano board.

			Installing an OS image to the Odroid-C4, Raspberry Pi 4, and Jetson Nano

			We can download the Ubuntu image for Odroid and the Ubuntu image for the Raspberry Pi 4 and can install them on a micro SD card, preferably 32 GB. Format the micro SD card in the FAT32 filesystem, or we can use the SD card adapter or the USB memory card reader for connecting to a PC.

			We can either install the OS in Windows or Linux. The procedure for installing the OS on these boards follows.

			Installing the OS image from Windows/Linux/Mac

			In Windows/Linux/Mac, there is a tool called balenaEtcher, which is designed to flash the OS to an SD card. This tool will work if you are planning to flash any OS image to the Odroid or Raspberry Pi. You can download the tool from https://www.balena.io/etcher/.

			Run balenaEtcher after installing it from the preceding link. Select the downloaded image, select the target memory card drive, and write the image to the drive.

			
				
					[image: Figure 9.23 – balenaEtcher imager for Raspberry Pi/Odroid/Jetson Nano ]
				

			

			Figure 9.23 – balenaEtcher imager for Raspberry Pi/Odroid/Jetson Nano

			After completing this wizard, we can put the micro SD card in the Odroid/Raspberry Pi and boot up the OS. 

			Installing ROS on the Raspberry Pi 4/Odroid/Nano

			If you are working with Ubuntu 20.04 on the Raspberry Pi/Odroid, you can follow the official ROS Noetic installation procedure to install ROS: http://wiki.ros.org/noetic/Installation/Ubuntu.

			If you are working with the Raspberry Pi OS, the following tutorial will help you to install ROS:

			http://wiki.ros.org/noetic/Installation/Debian

			https://varhowto.com/install-ros-noetic-raspberry-pi-4/

			Connecting to the Odroid-C4, Raspberry Pi 4, and Jetson Nano from a PC

			We can work with the Odroid-XU4, Raspberry Pi 4, and Nano by connecting to the HDMI display port and connecting the keyboard and mouse to the USB like a normal PC. This is the simplest way of working with these boards.

			In most projects, the boards will be placed on the robot, so we can't connect the display and the keyboards to them. There are several methods for connecting these boards to a PC. It would be good if we could connect these boards to the internet too. The following methods can connect the internet to these boards, and at the same time, we can remotely connect via the SSH protocol:

			
					Remote connection using a Wi-Fi router and Wi-Fi dongle through SSH: In this method, we need a Wi-Fi router with internet connectivity and a Wi-Fi dongle on the board to get Wi-Fi support. Both the PC and board will connect to the same Wi-Fi network, so each will have an IP address and can communicate using that address.

					Direct connection using an Ethernet hotspot: We can share the internet connection and communicate using SSH via Dnsmasq, a free software DNS forwarder and DHCP server using few system resources in Linux. Using this tool, we can tether the Wi-Fi internet connection of the laptop to the Ethernet and we can connect the board to the Ethernet port of the PC. This kind of communication can be used for robots that are static in operation. If you are working with Windows, you can think about buying an application called Connectify Hotspot (https://www.connectify.me/), which can be used to do the same job as Dnsmasq. You can easily create an Ethernet hotspot in Windows.

			

			The first method is very easy to configure; it's connecting two PCs on the same network using SSH. You can install openssh-server on both systems and both will be ready to connect using the ssh command using its IP address. 

			You can install openssh-server using the following command:

			sudo apt install openssh-server

			After installing ssh-server on both systems, you can try to connect to any computer using the following commands:

			
					From PC: Connecting to the Odroid:ssh odroid@odroid_ip_address
password is odroid  


					From PC: Connecting to the Raspberry Pi:ssh pi@rpi_ip_adress
password is raspberry  


			

			The IP address of each device can be found using the ifconfig command in Linux. In Windows, it's ipconfig. In order to get the username, you can run the whoami command.

			The second method is a direct connection from the board to the laptop through the Ethernet cable. This method can be used when the robot is not moving. In this method, the board and the laptop can communicate via SSH at the same time and can share internet access too. The advantage of this method is, because it is wired, we will get more bandwidth from the remote connection compared to the Wi-Fi connection. We are using this method in this chapter for working with ROS.

			Configuring an Ethernet hotspot 

			The procedure for creating an Ethernet hotspot in Ubuntu and sharing Wi-Fi internet through this connection follows.

			Go to Edit Connections... in the network settings and click on Add to add a new connection, as shown next:

			
				
					[image: Figure 9.24 – Configuring a network connection in Ubuntu ]
				

			

			Figure 9.24 – Configuring a network connection in Ubuntu

			Create an Ethernet connection and in the IPv4 setting, change the method to Shared to other computers, and set the connection name as Share, as shown next:

			
				
					[image: Figure 9.25 – Creating a new connection for sharing through the Ethernet ]
				

			

			Figure 9.25 – Creating a new connection for sharing through the Ethernet

			Plug in the micro SD card, power up the desired board, and connect the Ethernet port from the board to the PC using a LAN cable. When the board boots up, we will see that the shared network is automatically connected to the board network.

			We can communicate with the board using the following commands:

			
					Odroid:ssh odroid@ip_address
password is odroid  


					Raspberry Pi 4:ssh pi@ip_adress
password is raspberry  


					Jetson Nano:ssh nvidia@nano_ip_adress
password is nano  


			

			After doing SSH into the board, we can launch roscore and most of the ROS commands on the board like our PC. We will look at two examples using these boards. One is for blinking an LED, and the other is for handling a push button. The library we will use to handle the GPIO pins of the Odroid and Raspberry Pi is called WiringPi. The official WiringPi is deprecated so we are going to use the unofficial WiringPi library. For Jetson Nano GPIO handling, NVIDIA provides the jetson-gpio library (https://github.com/NVIDIA/jetson-gpio).

			The Odroid and Raspberry Pi have the same pin layout and most of the Raspberry Pi GPIO libraries are ported to Odroid, which will make the programming easier. One of the libraries we are using in this chapter for GPIO programming is WiringPi. WiringPi is based on C++ APIs, which can access the board GPIO using C++ APIs.

			In the following sections, we will look at the instructions for installing WiringPi on the Odroid and Raspberry 2.

			Installing WiringPi on the Odroid-C4

			The following procedure can be used to install WiringPi on the Odroid-C4. This is a customized version of WiringPi, which can't be used with the Raspberry Pi 4:

			git clone https://github.com/hardkernel/wiringPi.git

			cd wiringPi

			sudo ./build  

			The Odroid-C4 has 40 pins placed as shown in the following diagram:

			
				
					[image: Figure 9.26 – Pinout of the Odroid-C4 ]
				

			

			Figure 9.26 – Pinout of the Odroid-C4

			We have seen the installation and pinout diagram of the WiringPi library on the Odroid-C4. In the next section, we will see how to install WiringPi on the Raspberry Pi 4.

			Installing WiringPi on the Raspberry Pi 4

			The following procedure can be used to install WiringPi on the Raspberry Pi 4:

			git clone https://github.com/WiringPi/WiringPi.git

			cd WiringPi

			sudo ./build  

			The pinout of the Raspberry Pi 4 and WiringPi is shown next:

			
				
					[image: Figure 9.27 – Pinout of the Raspberry Pi 4 ]
				

			

			Figure 9.27 – Pinout of the Raspberry Pi 4

			The following are the ROS examples for the Raspberry Pi 4.

			Blinking the LED using ROS on the Raspberry Pi 4

			This is a basic LED example that can blink the LED connected to the first pin of WiringPi, which is the twelfth pin on the board. The LED cathode is connected to the GND pin and the twelfth pin as an anode. The following diagram shows the circuit of the Raspberry Pi with an LED:

			
				
					[image: Figure 9.28 – Blinking an LED using the Raspberry Pi 4 ]
				

			

			Figure 9.28 – Blinking an LED using the Raspberry Pi 4

			We can create the example ROS package, using the following command:

			catkin_create_pkg ros_wiring_example roscpp std_msgs

			You will get the existing package from the ros_wiring_examples folder.

			Create a src folder and create the following code, called blink.cpp, inside the src folder:

			#include "ros/ros.h" 

			#include "std_msgs/Bool.h" 

			#include <iostream> 

			 

			//Wiring Pi header 

			#include "wiringPi.h" 

			 

			//Wiring PI first pin 

			 

			#define LED 1 

			 

			//Callback to blink the LED according to the topic value 

			void blink_callback(const std_msgs::Bool::ConstPtr&amp; msg) 

			{ 

			 

			 if(msg->data == 1){ 

			  digitalWrite (LED, HIGH) ;  

			  ROS_INFO("LED ON"); 

			  } 

			 if(msg->data == 0){ 

			   digitalWrite (LED, LOW) ;  

			  ROS_INFO("LED OFF"); 

			    } 

			} 

			int main(int argc, char** argv) 

			{ 

			  ros::init(argc, argv,"blink_led"); 

			  ROS_INFO("Started Raspberry Blink Node"); 

			   //Setting WiringPi 

			  wiringPiSetup ();  //Setting LED pin as output 

			  pinMode(LED, OUTPUT); 

			  ros::NodeHandle n; 

			  ros::Subscriber sub = n.subscribe("led_blink",10,blink_callback); 

			  ros::spin();   

			} 

			This code will subscribe to a topic called led_blink, which is a Boolean type. If we publish 1 to this topic, it will switch on the LED. If we publish 0, the LED will turn off.

			A push button and a blinking LED using ROS on the Raspberry Pi 2

			The next example is handling input from a button. When we press the button, the code will publish to the led_blink topic and blink the LED. When the switch is off, the LED will also be OFF. The LED is connected to the twelfth pin and GND, and the button is connected to the eleventh pin and GND. The following diagram shows the circuit of this example. The circuit is also the same for the Odroid:

			
				
					[image: Figure 9.29 – LED and push button on the Raspberry Pi 2]
				

			

			Figure 9.29 – LED and push button on the Raspberry Pi 2

			The code for interfacing the LED and button is given next. The code can be saved with the name button.cpp inside the src folder:

			#include "ros/ros.h" 

			#include "std_msgs/Bool.h" 

			 

			#include <iostream> 

			#include "wiringPi.h" 

			 

			//Wiring PI 1 

			#define BUTTON 0 

			#define LED 1 

			The following code snippet is the led_blink ROS topic callback: 

			void blink_callback(const std_msgs::Bool::ConstPtr&amp; msg) 

			{ 

			   

			 if(msg->data == 1){ 

			 

			   digitalWrite (LED, HIGH) ;  

			  ROS_INFO("LED ON"); 

			  } 

			 

			 if(msg->data == 0){ 

			   digitalWrite (LED, LOW) ;  

			  ROS_INFO("LED OFF"); 

			  } 

			 

			} 

			Initialize the ROS node and pins in the Raspberry Pi for output and input. The output pin is for the LED and the input pin is for interfacing a button. We also have to enable the pull-up resistor to handle input:

			int main(int argc, char** argv) 

			{ 

			 

			  ros::init(argc, argv,"button_led"); 

			  ROS_INFO("Started Raspberry Button Blink Node"); 

			  wiringPiSetup (); 

			 

			  pinMode(LED, OUTPUT); 

			  pinMode(BUTTON, INPUT); 

			    pullUpDnControl(BUTTON, PUD_UP); // Enable pull-up resistor on button 

			Next, create the subscriber and publisher object for the led_blink topic. The publisher will publish when we press the button, and the subscriber of this topic will control the LED:

			  ros::NodeHandle n; 

			  ros::Rate loop_rate(10); 

			 

			  ros::Subscriber sub = n.subscribe("led_blink",10,blink_callback); 

			    ros::Publisher chatter_pub = n.advertise<std_msgs::Bool>("led_blink", 10); 

			 

			 

			  std_msgs::Bool button_press; 

			  button_press.data = 1; 

			 

			  std_msgs::Bool button_release; 

			  button_release.data = 0; 

			 

			   while (ros::ok()) 

			    { 

			          if (!digitalRead(BUTTON)) // Return True if button pressed 

			    { 

			      ROS_INFO("Button Pressed"); 

			      chatter_pub.publish(button_press); 

			    } 

			    else 

			    { 

			      ROS_INFO("Button Released"); 

			      chatter_pub.publish(button_release); 

			    } 

			    ros::spinOnce(); 

			    loop_rate.sleep(); 

			  } 

			} 

			CMakeLists.txt, for building these two examples, is given next. The WiringPi code needs to link with the WiringPi library. We have added this in the CMakeLists.txt file:

			cmake_minimum_required(VERSION 2.8.3) 

			project(ros_wiring_examples) 

			 

			find_package(catkin REQUIRED COMPONENTS 

			  roscpp 

			  std_msgs 

			) 

			 

			find_package(Boost REQUIRED COMPONENTS system) 

			 

			//Include directory of wiring Pi 

			set(wiringPi_include "/usr/local/include") 

			 

			 

			include_directories( 

			  ${catkin_INCLUDE_DIRS} 

			  ${wiringPi_include} 

			) 

			 

			//Link directory of wiring Pi 

			LINK_DIRECTORIES("/usr/local/lib") 

			 

			 

			add_executable(blink_led src/blink.cpp) 

			 

			add_executable(button_led src/button.cpp) 

			 

			target_link_libraries(blink_led 

			   ${catkin_LIBRARIES} wiringPi 

			 ) 

			 

			target_link_libraries(button_led 

			   ${catkin_LIBRARIES} wiringPi 

			 ) 

			Build the project using catkin_make and we can run each example. To execute the WiringPi-based code, we need root permission.

			Running examples on the Raspberry Pi 4

			Now that we have built the project, before running the examples, we should do the following setup for the Raspberry Pi. You can do this setup by logging in to the Raspberry Pi through SSH.

			We need to add the following lines to the .bashrc file of the root user. Take the .bashrc file of the root user:

			sudo -i

			nano .bashrc

			Add the following lines to the end of this file:

			source /opt/ros/noetic/setup.sh 

			source /home/pi/catkin_ws/devel/setup.bash 

			export ROS_MASTER_URI=http://localhost:11311

			We can now log in with a different terminal in our Raspberry Pi 4, and run the following commands to execute the blink_demo program.

			Start roscore in one terminal:

			roscore  

			Run the executable as the root in another terminal:

			sudo -s

			cd  /home/pi/catkin_ws/build/ros_wiring_examples

			./blink_led  

			After starting the blink_led node, publish 1 to the led_blink topic in another terminal:

			
					Here's the code to set the LED to the ON state:rostopic pub /led_blink std_msgs/Bool 1  


					Here's the code to set the LED to the OFF state:rostopic pub /led_blink std_msgs/Bool 0  


					Run the button LED node in another terminal:sudo -s
cd  /home/pi/catkin_ws/build/ros_wiring_examples
./button_led  


			

			Press the button and we can see the LED blinking. We can also check the button state by echoing the topic led_blink:

			rostopic echo /led_blink

			Interfacing DYNAMIXEL actuators to ROS

			One of the latest smart actuators available on the market is DYNAMIXEL, which is manufactured by a company called Robotis. The DYNAMIXEL servos are available in various versions, some of which are shown in the following figure:

			
				
					[image: Figure 9.30 – Different types of DYNAMIXEL servos ]
				

			

			Figure 9.30 – Different types of DYNAMIXEL servos

			These smart actuators have complete support in ROS, and clear documentation is also available for them.

			The official ROS wiki page of DYNAMIXEL is at http://wiki.ros.org/dynamixel_controllers/Tutorials.

			Summary

			This chapter was about interfacing I/O boards to ROS and adding sensors to them. We have discussed the interfacing of the popular I/O board called Arduino to ROS, and the interface's basic components, such as LEDs, buttons, accelerometers, ultrasonic sound sensors, and so on. After looking at the interfacing of Arduino, we discussed how to set up ROS on the Raspberry Pi 2 and Odroid-XU4. We also presented a few basic examples for Odroid and Raspberry Pi based on ROS and WiringPi. Finally, we looked at the interfacing of DYNAMIXEL smart actuators in ROS. 

			The chapter filled the void of interfacing robotic sensors and actuators to an I/O board or computer. Using this knowledge, you can choose a suitable I/O board for your robot and interface it with ROS. 

			The next chapter is about creating a differential drive robot from scratch and interfacing the robot with ROS.

			Here are some questions based on what we covered in this chapter.

			Questions

			
					What are the different rosserial packages?

					What is the main function of rosserial_arduino?

					How does the rosserial protocol work?

					What are the main differences between the Odroid and Raspberry Pi boards?

			

		

	






			Chapter 10: Programming Vision Sensors Using ROS, OpenCV, and PCL

			In the previous chapter, we discussed how to interface sensors and actuators using I/O boards in ROS. In this chapter, we are going to discuss how to interface various vision sensors in ROS and program them using libraries such as Open Source Computer Vision (OpenCV) and Point Cloud Library (PCL). The robotic vision is an important aspect of any robot for manipulating objects and navigating the environment. There are lots of 2D/3D vision sensors available on the market, and most of these sensors have driver packages to interface with ROS. First, we will discuss how to interface vision sensors with ROS and how to program them using OpenCV and PCL. Finally, we will discuss how to use fiducial marker libraries to develop vision-based robotic applications.

			We will cover the following topics in this chapter:

			
					Understanding ROS – OpenCV interfacing packages

					Understanding ROS – PCL interfacing packages

					Interfacing USB webcams with ROS

					Working with ROS camera calibration

					Interfacing Kinect and Asus Xtion Pro with ROS

					Interfacing the Intel RealSense camera with ROS

					Interfacing Hokuyo lasers with ROS

					Working with point cloud dat

			

			Technical requirements

			To follow this chapter, you will need the following software and hardware set up:

			
					Hardware: A good laptop, a webcam supported in Linux and, optionally, a depth camera and LIDAR.

					Software: Ubuntu 20.04 with ROS Noetic.

			

			Let's start by configuring our system with the necessary ROS packages and libraries for working with robotic vision applications using ROS. We will provide a brief introduction to the OpenCV library and its interfacing package in ROS in the next section.

			The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition/tree/main/Chapter10

			You can view this chapter's code in action here: https://bit.ly/3yZYao1.

			Understanding ROS – OpenCV interfacing packages

			OpenCV is one of the most popular open source, real-time computer vision libraries, and it is mainly written in C/C++. OpenCV comes with a BSD license and is free for both academic and commercial applications. OpenCV can be programmed using C/C++, Python, and Java, and it has multi-platform support, such as Windows, Linux, Mac OS X, Android, and iOS. OpenCV has tons of computer vision APIs that can be used for implementing computer vision applications. The web page of the OpenCV library can be found at https://opencv.org/.

			The OpenCV library is interfaced with ROS via a ROS stack called vision_opencv. vision_opencv consists of two important packages for interfacing OpenCV with ROS, as follows:

			
					cv_bridge: The cv_bridge package contains a library that provides APIs for converting the OpenCV image data type, cv::Mat, into a ROS image message called sensor_msgs/Image and vice versa. In short, it can act as a bridge between OpenCV and ROS. We can use OpenCV APIs to process the image and convert it into ROS image messages whenever we want to send them to another node. We will discuss how to do this conversion in the upcoming sections.

					image_geometry: One of the first processes that we should do before working with cameras is calibration. The image_geometry package contains libraries written in C++ and Python, which helps to correct the geometry of the image using calibration parameters. The package uses a message type called sensor_msgs/CameraInfo for handling the calibration parameters and feeding the OpenCV image rectification function.

			

			In this section, we will look at some of the important packages in ROS for interfacing the OpenCV library for 2D robotic vision applications. We will also learn how to interface ROS to PCL to perform 3D point cloud processing.

			Understanding ROS – PCL interfacing packages

			The point cloud is a group of 3D points in space that represent a 3D shape/object. Each point in the point cloud data is represented using X, Y, and Z values. Also, more than just a point in space, it can hold values such as RGB or HSV at each point (https://en.wikipedia.org/wiki/Point_cloud). The PCL library is an open source project for performing 3D point cloud processing.

			Like OpenCV, it is under the BSD license, and free for academic and commercial purposes. It is also a cross-platform package that has support in Linux, Windows, macOS, and Android/iOS.

			The library consists of standard algorithms for filtering, segmentation, feature estimation, and so on, which are required to implement different point cloud-based applications. The main web page of the point cloud library can be found at http://pointclouds.org/.

			Point cloud data can be acquired by sensors such as Kinect, Asus Xtion Pro, Intel RealSense, and others. We can use this data for robotic applications, such as object detection, grasping, and manipulation. PCL is tightly integrated with ROS for handling point cloud data from various sensors. The perception_pcl stack is the ROS interface for the PCL library. It consists of packages for pumping the point cloud data from ROS to PCL data types and vice versa. perception_pcl consists of the following packages:

			
					pcl_conversions: This package provides APIs to convert PCL data types into ROS messages and vice versa.pcl_msgs: This package contains the definition of PCL-related messages in ROS. The PCL messages are ModelCoefficients, PointIndices, PolygonMesh, and Vertices.


					pcl_ros: This is the PCL bridge of ROS. This package contains the tools and nodes to bridge ROS messages to PCL data types and vice versa.

			

			In the next section, we can discuss the installation of the ROS perception stack and can also see various functions of each package.

			Installing ROS perception

			In this section, we are going to install a single package called perception, which is a metapackage of ROS that contains all the perception-related packages, such as OpenCV, PCL, and so on:

			 sudo apt install ros-noetic-perception 

			The ROS perception stack contains the following ROS packages:

			
					image_common: This metapackage contains common functionalities for handling an image in ROS. The metapackage consists of the following list of packages (http://wiki.ros.org/image_common):	image_transport: This package helps compress the image during publishing and subscribes to the images to save bandwidth (http://wiki.ros.org/image_transport). The various compression methods we can use are JPEG/PNG compression and Theora for streaming videos. We can also add custom compression methods to image_transport.
	camera_calibration_parsers: This package contains a routine for reading/writing camera calibration parameters from an XML file. This package is mainly used by camera drivers to access calibration parameters.
	camera_info_manager: This package consists of a routine that's used to save, restore, and load the calibration information. This is mainly used by camera drivers.
	polled_camera: This package contains the interface for requesting images from a polling camera driver (for example, prosilica_camera).



					image_pipeline: This metapackage contains packages to process the raw image from the camera driver. The processing that's done by this meta-package includes calibration, distortion removal, stereo vision processing, depth-image processing, and so on. The following packages are present in this metapackage for processing (http://wiki.ros.org/image_pipeline):	camera_calibration: One of the important tools for relating the 3D world to the 2D camera image is calibration. This package provides tools for doing monocular and stereo image calibration in ROS.
	image_proc: The nodes in this package act between the camera driver and the vision processing nodes. It can handle the calibration parameters, correct camera distortion from the raw image, and convert images into different colour formats.
	depth_image_proc: This package contains nodes and nodelets for handling depth images from Kinect and 3D vision sensors. Depth images can be processed by these nodelets to produce point cloud data.
	stereo_image_proc: This package contains nodes to perform distortion removal for a pair of cameras. It is the same as the image_proc package, except that it handles two cameras – one for stereo vision and another for developing point cloud and disparity images.
	image_rotate: This package contains nodes for rotating the input image.
	image_view: This is a simple ROS tool for viewing ROS message topics. It can also view stereo and disparity images.



					image_transport_plugins: These plugins are used for ROS image transport in order to publish and subscribe to the ROS images in different compression levels or different video codecs. This helps reduce bandwidth and latency (http://wiki.ros.org/image_transport_plugins).

					laser_pipeline: This is a set of packages that can process laser data, such as filtering and converting it into 3D Cartesian points and assembling points to form a cloud (https://wiki.ros.org/laser_pipeline). The laser_pipeline stack contains the following packages:	laser_filters: This package contains nodes to filter the noise in the raw laser data, remove the laser points inside the robot footprint, and remove spurious values inside the laser data.
	laser_geometry: After filtering the laser data, we must transform the laser ranges and angles into 3D Cartesian coordinates efficiently by taking into account the tilt and skew angle of the laser scanner.
	laser_assembler: This package can assemble the laser scan into a 3D point cloud or 2.5D scan.



					perception_pcl: This is the stack of the PCL-ROS interface.

					vision_opencv: This is the stack of the OpenCV-ROS interface.

			

			In this section, we learned how to install ROS perception packages and the list of ROS packages included in the ROS perception stack. In the next section, we will learn how to interface a USB webcam in ROS.

			Interfacing USB webcams in ROS

			We can interface with an ordinary webcam or a laptop cam in ROS. Overall, there are no ROS-specific packages we must install to use web cameras. If the camera is working in Ubuntu/Linux, it may be supported by the ROS driver too. After plugging in the camera, check whether a /dev/videoX device file has been created. You can also check this by using applications such as Cheese, VLC, and others. A guide for checking whether the webcam is supported on Ubuntu is available at https://help.ubuntu.com/community/Webcam.

			We can find the video devices that are present on the system by using the following command:

			ls /dev/ | grep video    

			If you get an output of video0, then this confirms that a USB camera is available for use.

			After ensuring the webcam supports Ubuntu, we can install a ROS webcam driver called usb_cam using the following command:

			sudo apt install ros-noetic-usb-cam  

			We can install the latest package of usb_cam from the source code. The driver is available on GitHub at https://github.com/ros-drivers/usb_cam.

			The usb_cam package contains a node called usb_cam_node, which is the driver of USB cams. We must configure some ROS parameters before running this node. Let's run the ROS node along with its parameters. The usb_cam-test.launch file can launch the USB cam driver with the necessary parameters:

			<launch>

			  <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >

			    <param name="video_device" value="/dev/video0" />

			    <param name="image_width" value="640" />

			    <param name="image_height" value="480" />

			    <param name="pixel_format" value="yuyv" />

			    <param name="camera_frame_id" value="usb_cam" />

			    <param name="io_method" value="mmap"/>

			  </node>

			  <node name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen">

			    <remap from="image" to="/usb_cam/image_raw"/>

			    <param name="autosize" value="true" />

			  </node>

			</launch>

			This launch file will start with usb_cam_node, contain the device /dev/video0 video and have a resolution of 640 x 480. The pixel format here is YUV (https://wiki.videolan.org/YUV). After initiating usb_cam_node, it will start an image_view node for displaying the raw image from the driver. We can launch the previous file by using the following command:

			roslaunch usb_cam usb_cam-test.launch  

			We will get the following message, along with an image preview:

			
				
					[image: Figure 10.1 – USB camera view using the image view tool ]
				

			

			Figure 10.1 – USB camera view using the image view tool

			The topics that are generated by the driver are shown in the following screenshot. These are all raw, compressed, and Theora codec topics:

			
				
					[image: Figure 10.2 – List of topics generated by the USB camera driver ]
				

			

			Figure 10.2 – List of topics generated by the USB camera driver

			We can visualize the image in another window by using the following command:

			rosrun image_view image_view image:=/usb_cam/image_raw  

			As you can see from the topic list, since we installed the image_trasport package, images are published in multiple ways, both compressed and uncompressed. The latter format is useful for sending images to other ROS nodes over the network or to store the video data of the topic in bag files so that they occupy little space on the hard disk. To use the compressed image from a bag file on a remote machine or in the same machine, we must republish it in an uncompressed format by using the republish node of the image_transport package:

			rosrun image_transport republish [input format] in:=<in_topic_base> [output format] out:=<out_topic>

			The following is an example of this:

			rosrun image_transport republish compressed in:=/usb_cam/image_raw [output format] out:=/usb_cam/image_raw/republished

			Note that in the previous example, we used the topic base name as input (/usb_cam/img_raw), not its compressed version (/usb_cam/image_raw/compressed).

			With that, we have learned how to acquire and process images from cameras. Now, let's look at camera calibration.

			Working with ROS camera calibration

			Like all sensors, cameras also need to be calibrated so that we can correct the distortions in the camera's images due to its internal parameters, as well as for finding the world coordinates from the camera coordinates.

			The primary parameters that cause image distortions are radial distortions and tangential distortions. Using the camera calibration algorithm, we can model these parameters and also calculate the real-world coordinates from the camera coordinates by computing the camera calibration matrix, which contains the focal distance and the principal points.

			Camera calibration can be done using a classic black-white chessboard, symmetrical circle pattern, or asymmetrical circle pattern. According to each pattern, we can use different equations to get the calibration parameters. Using certain calibration tools, we can detect these patterns, and each detected pattern is taken as a new equation. When the calibration tool detects enough patterns, it can compute the final parameters for the camera.

			ROS provides a package named camera_calibration (http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration) to do camera calibration and is part of the image pipeline stack. We can calibrate monocular, stereo, and even 3D sensors, such as Kinect and Intel Realsense.

			The first thing we must do before we perform calibration is download the chessboard pattern mentioned in the ROS Wiki page, and then print it and paste it onto some cardboard. This is the pattern we are going to use for calibration. This checkboard is 8 x 6 in size and has 108 mm squares.

			Run the usb_cam launch file to start the camera driver. We are going to run the camera calibration node of ROS using the raw image from the /usb_cam/image_raw topic. The following command will run the calibration node with the necessary parameters:

			rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108 image:=/usb_cam/image_raw camera:=/usb_cam  

			A calibration window will pop up. When we show the calibration pattern to the camera and is it detected, we will see the following output:

			
				
					[image: Figure 10.3 – ROS camera calibration ]
				

			

			Figure 10.3 – ROS camera calibration

			Move the calibration pattern in the X and Y directions. If the calibrator node gets a sufficient amount of samples, a CALIBRATE button will become active on the window. When we press this CALIBRATE button, it will compute the camera parameters using these samples. It will take some time to calculate them. After computation, two buttons, SAVE and COMMIT, will become active inside the window, as shown in the following image. If we press the SAVE button, it will save the calibration parameters to the /tmp/calibrationdata.tar.gz file. If we press the COMMIT button, the new calibration parameters will be updated in the camera driver using a service call. You can also find these calibration parameters are saved in ~/.ros/camera_info/<camera_name.yaml>, where camera_name is the name assigned by the camera driver:

			
				
					[image: Figure 10.4 – Generating the camera calibration file ]
				

			

			Figure 10.4 – Generating the camera calibration file

			Now, if we restart the camera driver, we will see the YAML calibration file being loaded alongside the driver. The calibration file that we generated will look as follows:

			image_width: 640

			image_height: 480

			camera_name: head_camera

			camera_matrix: 

			rows: 3

			cols: 3

			data: [707.1953043273086, 0, 346.4560078627374, 0, 709.5783421541863, 240.0112155124814, 0, 0, 1] 

			distortion_model: plumb_bob

			distortion_coefficients: 

			rows: 1

			cols: 5

			data: [0.1779688561999974, -0.9681558538432319, 0.004497434720139909, 0.0106588921249554, 0] 

			rectification_matrix: 

			rows: 3

			cols: 3

			data: [1, 0, 0, 0, 1, 0, 0, 0, 1] 

			projection_matrix: 

			  rows: 3 

			  cols: 4 

			  data: [697.5267333984375, 0, 353.9677879190494, 0, 0, 714.7203979492188, 240.6829465337159, 0, 0, 0, 1, 0] 

			Now that we have learned how to calibrate cameras using the ROS camera_calibration package, we will learn how to convert ROS image messages into OpenCV data types and vice versa. This will help us process ROS image message using the OpenCV library.

			Converting images between ROS and OpenCV using cv_bridge

			In this section, we will learn how to convert between the ROS image message (sensor_msgs/Image) and the OpenCV image data type (cv::Mat). The main ROS package that's used for this conversion is cv_bridge, which is part of the vision_opencv stack. The ROS library inside cv_bridge, called CvBridge, helps perform this conversion. We can use the CvBridge library inside our code and perform this conversion. The following diagram shows how the conversion is performed between ROS and OpenCV:

			
				
					[image: Figure 10.5 – Converting images using CvBridge ]
				

			

			Figure 10.5 – Converting images using CvBridge

			Here, the CvBridge library acts as a bridge for converting ROS messages into OpenCV images and vice versa. We will learn how the conversion between ROS and OpenCV is performed in the following example.

			Image processing using ROS and OpenCV

			In this section, we will look at an example of how to use cv_bridge to acquire images from a camera driver, as well as how to convert and process the images using OpenCV APIs. Let's look at how this example works:

			
					Subscribe the images from the camera driver from the /usb_cam/image_raw topic (sensor_msgs/Image).

					Convert the ROS images into the OpenCV image type using CvBridge.

					Process the OpenCV image using its APIs and find the edges on the image.

					Convert the OpenCV image type of the edge detection into ROS image messages and publish them to the /edge_detector/processed_image topic.

			

			Follow these steps to build this example:

			
					Create a ROS package for the experiment.You can get this package from the Chapter 10 code folder. Alternatively, you can create a new package using the following command:
catkin_create_pkg cv_bridge_tutorial_pkg cv_bridge image_transport roscpp sensor_msgs std_msgs  
This package is mainly dependent on cv_bridge, image_transport, and sensor_msgs.


					Create the necessary source files.You can get the source code of the example sample_cv_bridge_node.cpp file from the Chapter_10/cv_bridge_tutorial_pkg/src folder.


					Explain the code.Here is the explanation of the cv_bridge node.cpp source code.
#include <image_transport/image_transport.h> 


					Here, we are using the image_transport package to publish and subscribe to an image in ROS:#include <cv_bridge/cv_bridge.h> 
#include <sensor_msgs/image_encodings.h> 


					This header includes the CvBridge class and all the image encoding-related functions in the code:#include <opencv2/imgproc/imgproc.hpp> 
#include <opencv2/highgui/highgui.hpp> 


					These are the main OpenCV image processing modules and GUI modules, which provide image processing and GUI APIs in our code:  image_transport::ImageTransport it_; 
public: 
  Edge_Detector() 
    : it_(nh_) 
  { 
    // Subscribe to input video feed and publish output video feed 
    image_sub_ = it_.subscribe("/usb_cam/image_raw", 1,  
      &ImageConverter::imageCb, this); 
 
    image_pub_ = it_.advertise("/edge_detector/raw_image", 1); 


			

			Let's look at the image_transport::ImageTransport it_ line in more detail. This line creates an instance of ImageTransport, which is used to publish and subscribe to the ROS image messages. More information about the ImageTransport API will be provided in the next section.

			Publishing and subscribing to images using image_transport

			ROS image_transport is very similar to ROS publishers and subscribers, and it is used to publish or subscribe to the images, along with the camera information. We can publish the image data using ros::Publisher, but image transport is a more efficient way of sending image data.

			The image transport APIs are provided by the image_transport package. Using these APIs, we can transport an image in different compression formats; for example, we can transport it as an uncompressed image, a JPEG/PNG compression, or as a Theora (https://www.theora.org/) compression in separate topics. We can also add different transport formats by adding plugins. By default, we can see the compressed and Theora transports:

			  image_transport::ImageTransport it_; 

			In the following line, we are creating an instance of the ImageTransport class:

			  image_transport::Subscriber image_sub_; 

			  image_transport::Publisher image_pub_; 

			After that, we declare the subscriber and publisher objects for subscribing and publishing the images, using the image_transport object:

			image_sub_ = it_.subscribe("/usb_cam/image_raw", 1,  

			      &ImageConverter::imageCb, this); 

			image_pub_ = it_.advertise("/edge_detector/processed_image", 1); 

			The following is how we subscribe and publish an image:

			     cv::namedWindow(OPENCV_WINDOW); 

			  } 

			  ~Edge_Detector() 

			  { 

			    cv::destroyWindow(OPENCV_WINDOW); 

			  } 

			This is how we subscribe and publish to an image.cv::namedWindow(), which is an OpenCV function that's used to create a GUI for displaying an image. The argument inside this function is the window's name. Inside the class destructor, we are destroying the named window.

			Converting OpenCV into ROS images using cv_bridge

			This is an image callback function, and it converts the ROS image messages into the OpenCV cv::Mat type using the CvBridge APIs. The following is how we can convert ROS into OpenCV, and vice versa:

			  void imageCb(const sensor_msgs::ImageConstPtr& msg) 

			  { 

			 

			    cv_bridge::CvImagePtr cv_ptr; 

			    namespace enc = sensor_msgs::image_encodings; 

			 

			    try 

			    { 

			      cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); 

			    } 

			    catch (cv_bridge::Exception& e) 

			    { 

			      ROS_ERROR("cv_bridge exception: %s", e.what()); 

			      return; 

			    } 

			In terms of CvBridge, we should start by creating an instance of a CvImage. The following command creates the CvImage pointer:

			 cv_bridge::CvImagePtr cv_ptr; 

			The CvImage type is a class provided by cv_bridge, which consists of information such as an OpenCV image and its encoding, ROS header, and so on. Using this type, we can easily convert a ROS image into OpenCV, and vice versa:

			cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8); 

			We can handle the ROS image message in two ways: we can make a copy of the image or we can share the image data. When we copy the image, we can process the image, but if we use a shared pointer, we can't modify the data. We can use toCvCopy() to create a copy of the ROS image; the toCvShare() function is used to get the pointer of the image. Inside these functions, we should mention the ROS message and the type of encoding:

			  if (cv_ptr->image.rows > 400 && cv_ptr->image.cols > 600){ 

			  detect_edges(cv_ptr->image); 

			      image_pub_.publish(cv_ptr->toImageMsg()); 

			  } 

			Here, we are extracting the image and its properties from the CvImage instance, and then accessing the cv::Mat object from this instance. This code simply checks whether the rows and columns of the image are in a particular range, and if this is true, it will call another method called detect_edges(cv::Mat), which will process the image that was provided as an argument and display the edge-detected image:

			image_pub_.publish(cv_ptr->toImageMsg()); 

			The preceding line will publish the edge-detected image after converting it into the ROS image message. Here, we are using the toImageMsg() function to convert the CvImage instance into a ROS image message.

			Finding edges on the image

			After converting the ROS images into the OpenCV type, the detect_edges(cv::Mat) function must be called to find the edges on the image. We can do this using the following built-in OpenCV functions:

			cv::cvtColor( img, src_gray, CV_BGR2GRAY ); 

			cv::blur( src_gray, detected_edges, cv::Size(3,3) ); 

			cv::Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size ); 

			Here, the cvtColor() function will convert an RGB image into a gray color space, and cv::blur() will add blurring to the image. After that, using the Canny edge detector, we can extract the edges of the image.

			Visualizing raw and edge-detected images

			Here, we are displaying the image data using the imshow() OpenCV function, which consists of the window name and the image name:

			cv::imshow(OPENCV_WINDOW, img); 

			cv::imshow(OPENCV_WINDOW_1, dst); 

			cv::waitKey(3); 

			Now that we've looked at the code in detail, let's learn how to edit the CMakeLists.txt file to build the preceding code.

			Editing the CMakeLists.txt file

			The definition of the CMakeLists.txt file is as follows. In this example, we need OpenCV support, so we should include the OpenCV header path and also link the source code with the OpenCV libraries:

			include_directories( 

			  ${catkin_INCLUDE_DIRS} 

			  ${OpenCV_INCLUDE_DIRS} 

			) 

			 

			add_executable(sample_cv_bridge_node src/sample_cv_bridge_node.cpp) 

			 

			## Specify libraries to link a library or executable target against 

			 target_link_libraries(sample_cv_bridge_node 

			   ${catkin_LIBRARIES} 

			   ${OpenCV_LIBRARIES} 

			 ) 

			Now that we have edited the CMakeLists.txt file inside the ROS package, let's learn how to build the package and run the application.

			Building and running an example

			After building the package using catkin_make, we can run the node by performing the following steps:

			
					Launch the webcam driver:    roslaunch usb_cam usb_cam-test.launch  


					Run the cv_bridge sample node:    rosrun cv_bridge_tutorial_pkg sample_cv_bridge_node  


					If everything works fine, we will get two windows, as shown in the following image. The first window shows the raw image, while the second shows the processed edge-detected image:

			

			
				
					[image: Figure 10.6 – Raw image and an edge-detected image ]
				

			

			Figure 10.6 – Raw image and an edge-detected image

			Now that we have learned how to run the ROS-OpenCV application, let's learn how to interface advanced depth sensors such as Kinect, Asus Xtion Pro, and Intel RealSense with ROS. 

			Interfacing Kinect and Asus Xtion Pro with ROS

			The webcams that we have worked with until now can only provide 2D visual information of their surroundings. To get 3D information about our surroundings, we must use 3D vision sensors or range finders, such as laser finders. Some of the 3D vision sensors that we will be discussing in this chapter are Kinect, Asus Xtion Pro, Intel RealSense, and Hokuyo laser scanner:

			
				
					[image: Figure 10.7 – Top: Kinect; bottom: Asus Xtion Pro ]
				

			

			Figure 10.7 – Top: Kinect; bottom: Asus Xtion Pro

			The first two sensors we are going to discuss are Kinect and Asus Xtion Pro. Both of these devices need the Open Source Natural Interaction (OpenNI) driver library to operate in Linux. OpenNI acts as a middleware between the 3D vision devices and the application software. The OpenNI driver is integrated into ROS, and we can install these drivers by using the following commands. These packages help us interface OpenNI-supported devices such as Kinect and Asus Xtion Pro:

			sudo apt install ros-noetic-openni2-launch ros-noetic-openni2-camera  

			The preceding command will install the OpenNI drivers and launch files for starting the RGB/depth streams. After successfully installing these packages, we can launch the driver by using the following command:

			roslaunch openni2_launch openni2.launch  

			This launch file will convert the raw data from the devices into usable data, such as 3D point clouds, disparity images, and depth, and the RGB images that use ROS nodelets.

			Other than the OpenNI drivers, there is another driver available called lib-freenect. The common launch files of this driver are organized into a package called rgbd_launch. This package consists of common launch files that are used for the freenect and openni drivers.

			We can visualize the point cloud that's generated by the OpenNI ROS driver using RViz.

			You can run RViz using the following command:

			rosrun RViz RViz

			Set the fixed frame to /camera_depth_optical_frame, add a PointCloud2 display, and set the topic to /camera/depth/points. This is the unregistered point cloud from the IR camera; that is, it may match the RGB camera and only use the depth camera to generate the point cloud:

			
				
					[image: Figure 10.8 – Unregistered point cloud view in RViz ]
				

			

			Figure 10.8 – Unregistered point cloud view in RViz

			We can enable the registered point cloud by using the Dynamic Reconfigure GUI. To do this, use the following command:

			rosrun rqt_reconfigure rqt_reconfigure  

			You will get the following Dynamic Reconfigure plugin in rqt:

			
				
					[image: Figure 10.9 – Dynamic Reconfigure GUI ]
				

			

			Figure 10.9 – Dynamic Reconfigure GUI

			Click on camera | driver and tick depth_registration. Change the point cloud to /camera/depth_registered/points and Color Transformer to RGB8 in RViz. The registered point cloud in RViz will look as follows. It takes information from the depth and the RGB camera to generate the point cloud:

			
				
					[image: Figure 10.10 – The registered point cloud ]
				

			

			Figure 10.10 – The registered point cloud

			With that, we have learned how to set up the interfaces of Kinect and Asus Xtion Pro in ROS. We also learned how to visualize the point cloud from these depth sensors. In the next section, we will learn how to interface another depth camera called Intel RealSense in ROS.

			Interfacing the Intel RealSense camera with ROS

			One of the new 3D depth sensors from Intel is RealSense. At the time of writing, different versions of this sensor have been released (LIDAR camera L515, D400 family, D435, T265, F200, R200, and SR30). To interface RealSense sensors with ROS, we must install the librealsense library.

			You can install the librealsense library using the apt package manager. Detailed instructions for setting up this library can be found at https://github.com/IntelRealSense/librealsense/blob/master/doc/distribution_linux.md. 

			We can also build the librealsense library from source code manually. Let's learn how to install the library.

			Download the RealSense SDK (https://www.intelrealsense.com/sdk-2/) from the following link: https://github.com/IntelRealSense/librealsense/blob/master/doc/installation.md.

			After installing the RealSense library, we must install the ROS wrapper (https://dev.intelrealsense.com/docs/ros-wrapper) to start sensor data streaming. The binary installation and manual installation steps can be found in the following Github repository: https://github.com/IntelRealSense/realsense-ros.

			Now, we can start the sensor using the example launch file and open RViz to visualize the color and depth data that's streamed by RealSense:

			roslaunch realsense2_camera rs_camera.launch

			The following image shows how the point cloud, depth image, RGB image, and IR image are visualized by the Intel RealSense sensor:

			
				
					[image: Figure 10.11 – Intel RealSense view in RViz ]
				

			

			Figure 10.11 – Intel RealSense view in RViz

			The following are the important topics that were generated by the RealSense driver:

			sensor_msgs::PointCloud2 

			/camera/depth/color/points  point cloud with RGB 

			 

			sensor_msgs::Image 

			/camera/image/image_raw                  raw image for RGB sensor 

			/camera/depth/image_rect_raw          raw image for depth sensor 

			/camera/infra1/image_rect_raw             raw image for infrared sensor 

			With that, we have learned how to set up the Intel RealSense ROS package and visualized the different image data from the camera. In the next section, we will learn how to convert the point cloud and depth image data from the depth camera into laser scan data. 

			Converting point cloud to a laser scan 

			One of the most important applications of 3D vision sensors is mimicking the functionalities of a laser scanner. Most of the 2D/3D mapping and localization algorithms for robots use laser scan data as input. We can make a fake laser scanner using a 3D vision sensor by taking a slice of the point cloud data/depth image and converting it into laser range data. In ROS, we have a set of packages we can use to convert the point cloud data into laser scans:

			
					depthimage_to_laserscan: This package contains nodes that take the depth image from the vision sensor and generate a 2D laser scan based on the provided parameters. The inputs of the node are the depth image and camera info parameters, which include calibration parameters. After converting them into the laser scan data, it will publish laser scanner data in the /scan topic. The node parameters are scan_height, scan_time, range_min, range_max, and the output frame ID. The official ROS Wiki page for this package can be found at http://wiki.ros.org/depthimage_to_laserscan.

					pointcloud_to_laserscan: This package converts the real point cloud data into a 2D laser scan, instead of taking a depth image, as in the previous package. The official Wiki page for this package can be found at http://wiki.ros.org/pointcloud_to_laserscan.

			

			The first package is suitable for normal applications; however, if the sensor has been placed at an angle, it is better to use the second package. Also, the first package takes less processing than the second one. Here, we are using the depthimage_to_laserscan package to convert a laser scan. We can install depthimage_to_laserscan and pointcloud_to_laserscan using the following command:

			sudo apt install ros-noetic-depthimage-to-lasersca ROS-noetic-pointcloud-to-laserscan

			We can start converting from the depth image of the OpenNI device into the 2D laser scanner by creating a new ROS package.

			We can use the following command to create a package for performing this conversion:

			catkin_create_pkg fake_laser_pkg depthimage_to_laserscan nodelet roscpp

			Create a folder called launch. Then, inside this folder, create a launch file called start_laser.launch. You can get this package and file from the fake_laser_pkg/launch folder:

			<launch> 

			  <!-- "camera" should uniquely identify the device. All topics   are pushed down 

			       into the "camera" namespace, and it is prepended to tf        frame ids. --> 

			  <arg name="camera"      default="camera"/> 

			  <arg name="publish_tf"  default="true"/> 

			 

			. . . 

			. . . 

			  <group if="$(arg scan_processing)"> 

			    <node pkg="nodelet" type="nodelet"     name="depthimage_to_laserscan" args="load     depthimage_to_laserscan/DepthImageToLaserScanNodelet $(arg     camera)/$(arg camera)_nodelet_manager"> 

			      <!-- Pixel rows to use to generate the laserscan. For each       column, the scan willreturn the minimum value for those        pixels centered vertically in the image. --> 

			      <param name="scan_height" value="10"/> 

			      <param name="output_frame_id" value="/$(arg       camera)_depth_frame"/> 

			      <param name="range_min" value="0.45"/> 

			      <remap from="image" to="$(arg camera)/$(arg       depth)/image_raw"/> 

			      <remap from="scan" to="$(arg scan_topic)"/> 

			 

			. . . 

			. . . 

			</launch> 

			The following code snippet will launch the nodelet in order to convert the depth image into a laser scanner:

			<node pkg="nodelet" type="nodelet" name="depthimage_to_laserscan" args="load depthimage_to_laserscan/DepthImageToLaserScanNodelet $(arg camera)/$(arg camera)_nodelet_manager"> 

			Now, let's launch this file so that we can view the laser scanner in RViz.

			You can launch the file using the following command:

			roslaunch fake_laser_pkg start_laser.launch  

			Upon doing this, we will see the laser scanner data in RViz, as shown in the following screenshot:

			
				
					[image: Figure 10.12 – Laser scan in RViz ]
				

			

			Figure 10.12 – Laser scan in RViz

			As the steps are shown in the preceding figure, first, we can set Fixed Frame to camera_depth_frame and then press Add button to display a LaserScan data type in RViz. After loading the LaserScan display type in RViz, set the Topic to /scan. After setting the topic, change the Color Transformer to Intensity. 

			We can see the laser data in the viewport.

			Interfacing Hokuyo lasers with ROS

			We can interface with different ranges of laser scanners in ROS. One of the most popular laser scanners available in the market is the Hokuyo laser scanner (http://www.robotshop.com/en/hokuyo-utm-03lx-laser-scanning-rangefinder.html):

			
				
					[image: Figure 10.13 – Different series of Hokuyo laser scanners ]
				

			

			Figure 10.13 – Different series of Hokuyo laser scanners

			One of the most commonly used Hokuyo laser scanner models is UTM-30LX. This sensor is fast and accurate and is suitable for robotic applications. The device has a USB 2.0 interface for communication and has a 30-meter range, along with a millimeter resolution. The arc range of the scan is about 270 degrees:

			
				
					[image: Figure 10.14 – Hokuyo UTM-30LX ]
				

			

			Figure 10.14 – Hokuyo UTM-30LX

			There is already a driver available in ROS for interfacing with these scanners. One of the interfaces is called urg_node (http://wiki.ros.org/urg_node).

			We can install this package using the following command:

			sudo apt install ros-noetic-urg-node

			When the device connects to the Ubuntu system, it will create a device called ttyACMx. Check the device's name by entering the dmesg command in the Terminal. You can change the USB device permissions using the following command:

			sudo chmod a+rw /dev/ttyACMx  

			Start the laser scan device using the hokuyo_start.launch launch file:

			<launch> 

			 <node name="urg_node" pkg="urg_node" type="urg_node" output="screen">  

			         <param name="serial_port" value="/dev/ttyACM0"/> 

			    <param name="frame_id" value="laser"/> 

			    <param name="angle_min" value="-1.5707963"/> 

			         <param name="angle_max" value="1.5707963"/> 

			  </node> 

			  name="RViz" pkg="RViz" type="RViz" respawn="false" output="screen" args="-d $(find hokuyo_node)/hokuyo_test.vcg"/> 

			</launch> 

			This launch file starts the node and gets the laser data from the /dev/ttyACM0 device. The laser data can be viewed inside the RViz window, as shown in the following screenshot:

			
				
					[image: Figure 10.15 – Hokuyo laser scan data in RViz ]
				

			

			Figure 10.15 – Hokuyo laser scan data in RViz

			With that, we have learned how to interface a Hokuyo laser scan with ROS and visualize the data in RViz. In the next section, we will learn how to interface RPLIDAR and YDLIDAR with ROS.

			Interfacing RPLIDAR and YDLIDAR with ROS

			If you are planning to work with a low-cost LIDAR for your hobby robot project, then there are a few solutions you can implement. RPLIDAR from SLAMTEC (https://www.slamtec.com/en/) and YDLIDAR (https://www.ydlidar.com/) are two cost-effective LIDAR solutions for your robot:

			
				
					[image: Figure 10.16 – RPLIDAR and YDLIDAR ]
				

			

			Figure 10.16 – RPLIDAR and YDLIDAR

			There is a ROS driver available for both these models, both of which you can find at the following links:

			
					RPLIDAR ROS driver package: https://github.com/slamtec/rplidar_ros

					YDLIDAR ROS driver package: https://github.com/YDLIDAR/ydlidar_ros

			

			In this section, we learned how to interface different LIDAR sensors in ROS. In the next section, we will learn how to work with point cloud data in ROS.

			Working with point cloud data

			We can handle the point cloud data from Kinect or other 3D sensors to perform a wide variety of tasks, such as 3D object detection and recognition, obstacle avoidance, 3D modeling, and so on. In this section, we will look at some basic functionalities; that is, using the PCL library and its ROS interface. We will discuss the following topics:

			
					How to publish a point cloud in ROS

					How to subscribe and process a point cloud

					How to write point cloud data to a PCD file

					How to read and publish a point cloud from a PCD file

			

			Let's learn how to publish point cloud data as a ROS topic using a C++ example.

			How to publish a point cloud

			In this example, we will learn how to publish point cloud data using the sensor_msgs/PointCloud2 message. The code will use PCL APIs to handle and create the point cloud, as well as to convert the PCL cloud data into the PointCloud2 message type.

			You can find the pcl_publisher.cpp example code file in the pcl_ros_tutorial/src folder. The important section of the code is explained here: 

			#include <ros/ros.h> 

			 

			// point cloud headers 

			#include <pcl/point_cloud.h> 

			#include <pcl_conversions/pcl_conversions.h> 

			The preceding headers files contain the necessary functions for handling PCL data and converting between PCL and ROS:

			#include <sensor_msgs/PointCloud2.h> 

			 

			Here is the ROS message header for handling point cloud data. We must include this header to access the PointCloud message definition:

			    ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2> ("pcl_output", 1); 

			Let's look at how to create the publisher object for publishing the point cloud. As you can see, the ROS message we are using here is sensor_msgs::PointCloud2, which we're getting by including the sensor_msgs/PointCloud2.h file:

			pcl::PointCloud<pcl::PointXYZ> cloud; 

			Now, create a specific pointcloud type object to store the point cloud data:

			    sensor_msgs::PointCloud2 output; 

			Then, create a point cloud ROS message instance to publish the point cloud data:

			    //Insert cloud data 

			    cloud.width  = 50000; 

			    cloud.height = 2; 

			    cloud.points.resize(cloud.width * cloud.height); 

			    for (size_t i = 0; i < cloud.points.size (); ++i) 

			    { 

			        cloud.points[i].x = 512 * rand () / (RAND_MAX + 1.0f); 

			        cloud.points[i].y = 512 * rand () / (RAND_MAX + 1.0f); 

			        cloud.points[i].z = 512 * rand () / (RAND_MAX + 1.0f); 

			    } 

			Now, let's learn how to insert points into a point cloud object message. Here, we are assigning a set of random points to the point cloud object:

			    pcl::toROSMsg(cloud, output); 

			    output.header.frame_id = "point_cloud"; 

			 This is how we can convert the point cloud object into a ROS message:

			    ros::Rate loop_rate(1); 

			    while (ros::ok()) 

			    { 

			        //publishing point cloud data 

			      pcl_pub.publish(output); 

			        ros::spinOnce(); 

			        loop_rate.sleep(); 

			    } 

			 

			    return 0; 

			} 

			In the preceding code, we are publishing the converted point cloud message to the /pcl_output topic.

			In the next section, we will how to subscribe to and process the point cloud data from the /pcl_output topic.

			How to subscribe and process a point cloud

			In this section, we are going to look at a ROS C++ example that can subscribe to the topic: /pcl_output point cloud. After subscribing to this point cloud, we will apply a filter from the VoxelGrid class to PCL to downsample the subscribed cloud while keeping it the same shape as the original cloud. You can find the pcl_filter.cpp example code file in the src folder of pcl_ros_tutorial package. Now, let's look at the important sections of this code.

			This code has a class called cloudHandler, which contains all the functions for subscribing the point cloud data from the /pcl_output topic:

			#include <ros/ros.h> 

			#include <pcl/point_cloud.h> 

			#include <pcl_conversions/pcl_conversions.h> 

			#include <sensor_msgs/PointCloud2.h> 

			//Vortex filter header 

			#include <pcl/filters/voxel_grid.h> 

			Let's look at the important header files that are required for subscribing to and processing the point cloud. The pcl/filters/voxel_grid.h header contains the definition of the VoxelGrid filter, which is used to downsample the point cloud:

			class cloudHandler 

			{ 

			public: 

			    cloudHandler() 

			    { 

			         

			//Subscribing pcl_output topics from the publisher 

			//This topic can change according to the source of point cloud 

			 

			    pcl_sub = nh.subscribe("pcl_output", 10, &cloudHandler::cloudCB, this); 

			//Creating publisher for filtered cloud data 

			        pcl_pub = nh.advertise<sensor_msgs::PointCloud2>("pcl_filtered", 1); 

			    } 

			Next, we are creating a class called cloudHandler. This has a subscriber creation and callback function for the pcl_output topic and a publisher object for publishing the filtered point cloud:

			//Creating cloud callback 

			    void cloudCB(const sensor_msgs::PointCloud2& input) 

			    { 

			        pcl::PointCloud<pcl::PointXYZ> cloud; 

			        pcl::PointCloud<pcl::PointXYZ> cloud_filtered; 

			 

			      

			       sensor_msgs::PointCloud2 output; 

			       pcl::fromROSMsg(input, cloud); 

			 

			     //Creating VoxelGrid object 

			      pcl::VoxelGrid<pcl::PointXYZ> vox_obj; 

			     //Set input to voxel object 

			     vox_obj.setInputCloud (cloud.makeShared()); 

			   

			     //Setting parameters of filter such as leaf size 

			    vox_obj.setLeafSize (0.1f, 0.1f, 0.1f); 

			     

			    //Performing filtering and copy to cloud_filtered variable 

			    vox_obj.filter(cloud_filtered); 

			      pcl::toROSMsg(cloud_filtered, output); 

			      output.header.frame_id = "point_cloud"; 

			       pcl_pub.publish(output); 

			    } 

			Here is the callback function of the pcl_output topic. The callback function will convert the ROS PCL message into a PCL data type, then downsample the converted PCL data using the VoxelGrid filter, before publishing the filtered PCL to the /pcl_filtered topic after converting it into a ROS message:

			 

			int main(int argc, char** argv) 

			{ 

			    ros::init(argc, argv, "pcl_filter"); 

			    ROS_INFO("Started Filter Node"); 

			    cloudHandler handler; 

			    ros::spin(); 

			    return 0; 

			} 

			In the main() function, we created an object of the cloudHandler class and called the ros::spin() function to wait for the /pcl_output topic.

			In the next section, we will learn how to store the point cloud data from /pcl_output in a file..PCD files can be used to store point cloud data.

			Writing data to a Point Cloud Data (PCD) file

			We can save the point cloud data to a PCD file using the following code. Its filename is pcl_write.cpp, and it can be found inside the src folder:

			#include <ros/ros.h> 

			#include <pcl/point_cloud.h> 

			#include <pcl_conversions/pcl_conversions.h> 

			#include <sensor_msgs/PointCloud2.h> 

			//Header file for writing PCD file 

			#include <pcl/io/pcd_io.h> 

			Here are the important header files that are required to handle the PCD and read/write it from a file:

			void cloudCB(const sensor_msgs::PointCloud2 &input) 

			{ 

			    pcl::PointCloud<pcl::PointXYZ> cloud; 

			    pcl::fromROSMsg(input, cloud); 

			 

			//Save data as test.pcd file 

			    pcl::io::savePCDFileASCII ("test.pcd", cloud); 

			} 

			The preceding callback function, cloudCB, will execute whenever a point cloud message is available in the /pcl_output topic. The received point cloud ROS message must be converted into the PCL data type and saved as a PCD file using the pcl::io:: savePCDFileASCII() function:

			main (int argc, char **argv) 

			{ 

			    ros::init (argc, argv, "pcl_write"); 

			 

			    ROS_INFO("Started PCL write node"); 

			 

			    ros::NodeHandle nh; 

			    ros::Subscriber bat_sub = nh.subscribe("pcl_output", 10, cloudCB); 

			 

			    ros::spin(); 

			 

			    return 0; 

			} 

			With that, we have learned how to write the point cloud data to a file. Now, let's learn how to read from the PCD file and publish the point cloud as a topic.

			Reading and publishing a point cloud from a PCD file

			This code can read a PCD file and publish the point cloud to the /pcl_output topic. The pcl_read.cpp file is available in the src folder:

			#include <ros/ros.h> 

			#include <pcl/point_cloud.h> 

			#include <pcl_conversions/pcl_conversions.h> 

			#include <sensor_msgs/PointCloud2.h> 

			#include <pcl/io/pcd_io.h> 

			In this code, we are using the same header files that we used to write the point cloud:

			main(int argc, char **argv) 

			{ 

			    ros::init (argc, argv, "pcl_read"); 

			 

			    ROS_INFO("Started PCL read node"); 

			 

			    ros::NodeHandle nh; 

			    ros::Publisher pcl_pub = nh.advertise<sensor_msgs::PointCloud2> ("pcl_output", 1); 

			In the main() function, we are creating a ROS publisher object to publish the point cloud that is being read from the PCD file:

			    sensor_msgs::PointCloud2 output; 

			    pcl::PointCloud<pcl::PointXYZ> cloud; 

			 

			//Load test.pcd file 

			    pcl::io::loadPCDFile ("test.pcd", cloud); 

			 

			    pcl::toROSMsg(cloud, output); 

			    output.header.frame_id = "point_cloud"; 

			In the preceding code, the PCL data is being read using the pcl::io::loadPCDFile() function. Then, it is being converted into a ROS-equivalent point cloud message via the pcl::toROSMsg() function:

			    ros::Rate loop_rate(1); 

			    while (ros::ok()) 

			    { 

			//Publishing the cloud inside pcd file 

			        pcl_pub.publish(output); 

			        ros::spinOnce(); 

			        loop_rate.sleep(); 

			    } 

			 

			    return 0; 

			} 

			In the preceding loop, we are publishing the PCD to a topic at 1Hz.

			We can create a ROS package called pcl_ros_tutorial to compile these examples:

			catkin_create_pkg pcl_ros_tutorial pcl pcl_ros roscpp sensor_msgs

			Otherwise, we can use the existing package.

			Create the preceding examples inside the pcl_ros_tutorial/src folder as pcl_publisher.cpp, pcl_filter.cpp, pcl_write.cpp, and pcl_read.cpp.

			Create a CMakeLists.txt file for compiling all the sources:

			## Declare a cpp executable 

			add_executable(pcl_publisher_node src/pcl_publisher.cpp) 

			add_executable(pcl_filter src/pcl_filter.cpp) 

			add_executable(pcl_write src/pcl_write.cpp) 

			add_executable(pcl_read src/pcl_read.cpp) 

			 

			target_link_libraries(pcl_publisher_node 

			   ${catkin_LIBRARIES} 

			 ) 

			target_link_libraries(pcl_filter 

			   ${catkin_LIBRARIES} 

			 ) 

			target_link_libraries(pcl_write 

			   ${catkin_LIBRARIES} 

			 ) 

			target_link_libraries(pcl_read 

			   ${catkin_LIBRARIES} 

			 ) 

			Build this package using catkin_make. Now, we can run pcl_publisher_node and view the point cloud inside RViz using the following command:

			rosrun RViz RViz -f point_cloud  

			The following is a screenshot of the point cloud from pcl_output:

			
				
					[image: Figure 10.17 – Point cloud visualization ]
				

			

			Figure 10.17 – Point cloud visualization

			We can run the pcl_filter node to subscribe to this same cloud and do voxel grid filtering. The following screenshot shows the output of the /pcl_filtered topic, which is the resultant downsampled cloud:

			
				
					[image: Figure 10.18 - Filtered PCL cloud in RViz ]
				

			

			Figure 10.18 - Filtered PCL cloud in RViz

			We can write the pcl_output cloud by using the pcl_write node and read or publish it by using the pcl_read nodes.

			This was the final topic in this chapter. In this section, we learned how to read, write, filter, and publish point cloud data in ROS. Now, let's summarize this chapter.

			Summary

			This chapter was about vision sensors and their programming in ROS. We looked at the interfacing packages that are used to interface the cameras and 3D vision sensors, such as vision_opencv and perception_pcl. We looked at each package and how they function on these stacks. We also looked at how to interface a basic webcam and processing image using ROS cv_bridge. After discussing cv_bridge, we looked at how to interface various 3D vision sensors and laser scanners with ROS. After this, we learned how to process the data from these sensors using the PCL library and ROS. In the next chapter, we will learn how to build an autonomous mobile robot using ROS.

			Here are a few questions based on what we covered in this chapter.

			Questions

			
					What are the packages in the vision_opencv stack?

					What are the packages in the perception_pcl stack?

					What are the functions of cv_bridge?

					How do we convert a PCL cloud into a ROS message?

					How do we do distributive computing using ROS?

			

		

	






			Chapter 11: Building and Interfacing Differential Drive Mobile Robot Hardware in ROS

			In the previous chapter, we discussed robotic vision using ROS. In this chapter, we will see how to build autonomous mobile robot hardware with a differential drive configuration and how to interface it in ROS using ROS Control. We will see how to configure the ROS Navigation Stack for this robot and perform SLAM and AMCL to move the robot autonomously. This chapter aims to give you an idea about building a custom mobile robot and interfacing it with ROS. In this chapter, we are going to cover the following main topics:

			
					Introduction to the Remo robot – a DIY autonomous mobile robot

					Developing a low-level controller and a high-level ROS Control hardware interface for a differential drive robot

					Configuring and working with the Navigation Stack

			

			The topics we are going to discuss in this chapter are how to build a Do It Yourself (DIY) autonomous mobile robot, called Research Education Modular/Mobile Open (Remo), develop its high-level software and low-level firmware, and interface it with ROS Control and the ROS Navigation Stack. The robot, called Remo, was built as part of the learning experience of Franz Pucher and received valuable input from the robotic books published by Packt Publishing (http://learn-robotics.com) and ROS courses by Joseph Lentin. The step-by-step procedure to build this robot is discussed in its online documentation published at https://ros-mobile-robots.com. In this chapter, we will learn more about how to implement a ROS Control hardware_interface::RobotHW C++ class and how to configure the ROS Navigation Stack to perform autonomous navigation using SLAM and AMCL. We have already discussed the ROS Navigation Stack in Chapter 6, Using the ROS MoveIt! and Navigation Stack, and we have simulated a differential robot using Gazebo and performed SLAM and AMCL. In the first part of the chapter, the Remo hardware is required to follow the tutorials. However, the concepts discussed in the first part of the chapter are then applied to a simulated robot.

			Technical requirements

			In the https://github.com/ros-mobile-robots organization on GitHub are the required ROS packages to set up a differential drive robot. One of the main software repositories is https://github.com/ros-mobile-robots/diffbot. It includes packages for simulation and the configurations and software to operate a real robot and interact with it from a development PC. For the hardware, you can build your own two-wheeled differential drive robot similar to the one present in the diffbot_description package or 3D print a more stable Remo robot with the stl files in https://github.com/ros-mobile-robots/remo_description. The next two sections describe the technical requirements for the software and hardware.

			You can view this chapter's code in action here: https://bit.ly/3xU9916. 

			Software requirements

			For the development PC, you should have ROS Noetic installed on Ubuntu 20.04 (https://releases.ubuntu.com/20.04/). On the Raspberry Pi 4 B Single-Board Computer (SBC) that is mounted on Remo, we use Ubuntu Mate 20.04 for arm64 architecture (https://ubuntu-mate.org/download/arm64/focal/). To clone large stl files from the Git repository we use git-lfs. On both Ubuntu flavors it needs to be installed with the following:

			sudo apt install git-lfs

			On both the development PC and the SBC of the robot, you need a connection to the same local network and to enable the ssh protocol, to connect from the development PC (client) to the robot, which is running an open-ssh server. Install it on Ubuntu Mate 20.04 with the following:

			sudo apt install openssh-server

			Another interface setup that is needed to work with the microcontroller, is to add your user to the dialout group on both machines, the SBC and the development PC. This can be done with the following command, followed by a system reboot:

			sudo adduser <username> dialout

			When you clone the diffbot repository in a new catkin workspace, you will find two YAML files, diffbot_dev.repos and remo-robot.repos, that list required source dependencies together with their version control type, the repository address, and a relative path where these dependencies are cloned. remo_robot.repos is here to clone source dependencies on the real robot.

			To make use of such YAML files and clone the listed dependencies, we use the command-line tools from vcstool (http://wiki.ros.org/vcstool), which replaces wstool (http://wiki.ros.org/wstool):

			
					In a new catkin workspace, clone the diffbot repository inside the src folder:ros_ws/src$ git clone --depth 1 --branch 1.0.0 https://github.com/ros-mobile-robots/diffbot.git


					Make sure to execute the vcs import command from the root of the catkin workspace and pipe in the diffbot_dev.repos or remo_robot.repos YAML file, depending on where you execute the command, either the development PC or the SBC of Remo to clone the listed dependencies:vcs import < src/diffbot/diffbot_dev.repos


					Execute the next command on the SBC of the robot:vcs import < src/diffbot/remo_robot.repos


			

			After obtaining the source dependencies with vcstool, we can compile the workspace. To successfully compile the packages of the repository, binary dependencies must be installed. As the required dependencies are specified in each ROS package's package.xml, the rosdep command can install the required ROS packages from the Ubuntu repositories:

			rosdep install --from-paths src --ignore-src -r -y

			Finally, the workspaces on the development machine and the SBC of the robot need to be built, either using catkin_make or catkin tools. The following uses catkin_make which comes pre-installed with ROS:

			catkin_make

			Network setup

			ROS is a distributed computing environment. This allows running compute-expensive tasks such as visualization or path planning on machines with more performance and sending goals to robots that operate on less performant hardware such as Remo with its Raspberry Pi 4 B. For more details, see the pages on ROS Network Setup (http://wiki.ros.org/ROS/NetworkSetup) and ROS Environment Variables (http://wiki.ros.org/ROS/EnvironmentVariables).

			The setup between the development machine that handles compute-heavy tasks and Remo is configured by setting the ROS_MASTER_URI environment variable to be the IP address of the development machine. To do this, add the export ROS_MASTER_URI=http://{IP-OF-DEV-MACHINE}:11311/ line to your bashrc of the development machine and the SBC of the robot. This will make the development machine the ROS master and you need to execute roscore on this machine prior to executing the commands in this chapter.

			Hardware requirements

			The repository at https://github.com/ros-mobile-robots/remo_description contains the robot description of Remo. Remo is a modular mobile robot platform, which is based on NVIDIA's JetBot. The currently available parts can be 3D printed using the provided stl files in the remo_description repository. To do this, you either need a 3D printer with a recommended build volume of 15x15x15 cm or instruct a local or online 3D print service.

			Introduction to the Remo robot – a DIY autonomous mobile robot

			In Chapter 6, Using the ROS MoveIt! and Navigation Stack, we discussed some mandatory requirements for interfacing a mobile robot with the ROS Navigation Stack. These are recalled at http://wiki.ros.org/navigation/Tutorials/RobotSetup:

			
					Odometry source: The robot should publish its odometry/position data with respect to the starting position. The necessary hardware components that provide odometry information are wheel encoders and IMUs, The necessary hardware components that provide odometry information are wheel encoders or inertial measurement units (IMUs).

					Sensor source: There should be a laser scanner or a vision sensor. The laser scanner data is essential for the map-building process using SLAM.

					Sensor transform using tf: The robot should publish the transform of the sensors and other robot components using ROS transform.

					Base controller: A ROS node, which can convert a twist message from the Navigation Stack to the corresponding motor velocities.

			

			We can check the components present in the Remo robot and determine whether they satisfy the Navigation Stack requirements. 

			Remo hardware components

			The following figure shows a 3D-printed Remo robot together with its components that satisfy the requirements for the ROS Navigation Stack. These parts are introduced next:

			
				
					[image: Figure 11.1 – Remo prototype ]
				

			

			 

			Figure 11.1 – Remo prototype

			
					Dagu DC Gear motor encoder (https://www.sparkfun.com/products/16413): This motor operates in a voltage range between 3 V and 9 V, and provides 80 RPM at 4.5 V. The motor shaft is attached to a quadrature encoder, with a maximum of 542 ticks/rev of the gearbox output shaft. Encoders are one source of odometry.

					Adafruit Feather motor driver (https://www.adafruit.com/product/2927): This motor driver can control two stepper motors or four brushed DC motors. For Remo, two brushed DC motor terminals are used. It uses the I2C protocol and operates at 3.3 V for communication. To power the board and apply voltage to the motors, the supported voltages are between 4.5 V and 13.5 V and provide 1.2 A per bridge.

					Teensy 3.2 (https://www.pjrc.com/teensy/): Remo has a Teensy microcontroller for interfacing with the motor driver and encoders. It can receive control commands from the SBC and can send appropriate signals to the motors, via the motor driver. Teensy 3.2 runs on 72 MHz, which is fast enough to handle reading the encoder ticks. An alternative is the Teensy 4.0 with its 600 MHz Cortex-M7 chip.

					SLAMTEC RPLIDAR A2 M8 (https://www.slamtec.com/en/Lidar/A2): The laser scanner is the RPLIDAR A2 M8 from SLAMTEC with an angular range of 360 degrees. It has a 16 m range radius. Note that it is possible to use the SLAMTEC RPLIDAR A1 but due to its larger dimensions, it is required to adapt the lidar-platform stl file, found in the remo_description/meshes/remo folder.

					Raspberry Pi Camera v2 (https://www.raspberrypi.org/products/camera-module-v2/): The official Raspberry Pi Camera Module with a Sony IMX219 8-megapixel sensor. It can be used for various tasks such as lane following.

					Raspberry Pi 4 B: This is an SBC from the Raspberry Pi Foundation where we install Ubuntu and ROS on its SD card. The SBC is connected to the RPLIDAR and Teensy MCU to retrieve sensor and odometry data. The nodes running on the SBC compute the tf transforms between the robot frames and run the ROS Control hardware interface. The Raspberry Pi SBC is placed on the exchangeable deck of Remo. Another deck is available for the Jetson Nano in the remo_description package.

					Powerbank and battery pack: The robot uses two power supplies. One power bank with 15,000 mAh is used to provide 5 V to the Raspberry Pi and its peripherals such as the Teensy MCU and the RPLIDAR. Another power supply is used to power the motors through the motor driver, which is a battery pack connected to the motor drivers' motor power input terminals. Remo uses a battery pack with eight rechargeable AA batteries (1.2 V, 2,000 mAh), that provides 9.6 V in total.

					Wi-Fi dongle (optional, recommended): Although the Raspberry Pi has a built-in Wi-Fi module, its connectivity can be weak. Therefore, an external USB Wi-Fi dongle is recommended to get a reliable connection to the robot from the development PC.

					MPU 6050 IMU (optional): The IMU used in this robot is the MPU 6050, which is a combination of an accelerometer, gyroscope, and Digital Motion Processer (DMP). The values can be taken to calculate the odometry along with the wheel encoders.

					OAK-1, OAK-D (optional): 4K Camera Modules with an IMX378 sensor and capable of running neural network inference thanks to its Movidius Myriad X chip. OAK-D is a stereo camera with two synchronized grayscale, global shutter cameras (OV9282 sensor) that provide depth information. 3D printable camera holder mounts are available for these cameras in the remo_description package.

			

			We can check from the hardware list that all the requirements of the ROS Navigation Stack are satisfied. The following figure shows the block diagram of this robot:
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			Figure 11.2 – Block diagram of Remo

			The Teensy 3.2 microcontroller board is connected to the encoder and optional IMU sensors as well as the motor driver actuator. It communicates to the Raspberry Pi 4 B via USB over the rosserial protocol. The motor driver and the optional IMU exchange data over I2C with the microcontroller. The RPLIDAR has a serial-to-USB converter and is therefore connected to one of the USB ports of the SBC. The motor encoder sensors are interfaced through the GPIO pins of the microcontroller. The following shows the connection diagram of the components:

			
				
					[image: Figure 11.3 – Fritzing connection diagram of Remo ]
				

			

			Figure 11.3 – Fritzing connection diagram of Remo

			After having verified that the hardware requirements for the Navigation Stack are met, an overview of Remo's software follows.

			Software requirements for the ROS Navigation Stack

			The diffbot and remo_description repositories contain the following ROS packages:

			
					diffbot_base: This package contains the platform-specific code for the base controller component required by the ROS Navigation Stack. It consists of the firmware based on rosserial for the Teensy MCU and the C++ node running on the SBC that instantiates the ROS Control hardware interface including the controller_manager control loop for the real robot. The low-level base_controller component reads the encoder ticks from the hardware, calculates angular joint positions and velocities, and publishes them to the ROS Control hardware interface. Using this interface makes it possible to use the diff_drive_controller package from ROS Control (http://wiki.ros.org/diff_drive_controller). It provides a controller (DiffDriveController) for a differential drive mobile base that computes target joint velocities from commands received by either a teleop node or the ROS Navigation Stack. The computed target joint velocities are forwarded to the low-level base controller, where they are compared to the measured velocities to compute suitable motor PWM signals using two separate PID controllers, one for each motor.

					diffbot_bringup: Launch files to bring up the hardware driver nodes (camera, lidar, microcontroller, and so on) as well as the C++ nodes from the diffbot_base package for the real robot.

					diffbot_control: Configurations for DiffDriveController and JointStateController of ROS Control used in the Gazebo simulation and the real robot. The parameter configurations are loaded onto the parameter server with the help of the launch files inside this package.

					remo_description: This package contains the URDF description of Remo including its sensors. It allows you to pass arguments to visualize different camera and SBC types. It also defines the gazebo_ros_control plugin. Remo's description is based on the description at https://github.com/ros-mobile-robots/mobile_robot_description, which provides a modular URDF structure that makes it easier to model your own differential drive robot.

					diffbot_gazebo: Simulation-specific launch and configuration files for Remo and Diffbot, to be used in the Gazebo simulator.

					diffbot_msgs: Message definitions specific to Remo/Diffbot, for example, the message for encoder data is defined in this package.

					diffbot_navigation: This package contains all the required configuration and launch files for the ROS Navigation Stack to work. 

					diffbot_slam: Configurations for simultaneous localization and mapping using implementations such as gmapping to create a map of the environment.

			

			After this overview of the ROS packages of a differential robot that fulfill the requirements of the Navigation Stack, the next section implements the base controller component.

			Developing a low-level controller and a high-level ROS Control hardware interface for a differential drive robot

			In the following two sections, the base controller, mentioned in the Navigation Stack, will be developed. For Remo, this platform-specific node is split into two software components. 

			The first component is the high-level diffbot::DiffBotHWInterface that inherits from hardware_interface::RobotHW, acting as an interface between robot hardware and the packages of ROS Control that communicate with the Navigation Stack and provide diff_drive_controller (http://wiki.ros.org/diff_drive_controller) – one of many available controllers from ROS Control. With the gazebo_ros_control plugin, the same controller including its configuration can be used in the simulation and the real robot. An overview of ROS Control in a simulation and the real world is given in the following figure (http://gazebosim.org/tutorials/?tut=ros_control):
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			Figure 11.4 – ROS control in simulation and reality

			The second component is the low-level base controller that measures angular wheel joint positions and velocities and applies the commands from the high-level interface to the wheel joints. The following figure shows the communication between the two components:

			
				
					[image: Figure 11.5 – Block diagram of the low-level controller and the high-level hardware interface (ROS Control) ]
				

			

			Figure 11.5 – Block diagram of the low-level controller and the high-level hardware interface (ROS Control)

			The low-level base controller uses two PID controllers to compute PWM signals for each motor based on the error between measured and target wheel velocities. 

			RobotHW receives measured joint states (angular position (rad) and angular velocity (rad/s)) from which it updates its joint values. With these measured velocities and the desired command velocity (geometry_msgs/Twist message on the cmd_vel topic), from the Navigation Stack, the diff_drive_controller computes the target angular velocities for both wheel joints using the mathematical equations of a differential drive robot. This controller works with continuous wheel joints through a VelocityJointInterface class. The computed target commands are then published within the high-level hardware interface inside the robot's RobotHW::write method. Additionally, the controller computes and publishes the odometry on the odom topic (nav_msgs/Odometry) and the transform from odom to base_footprint.

			Having explained the two components of the base controller, the low-level firmware is implemented first. The high-level hardware interface follows the next section.

			Implementing the low-level base controller for Remo

			The low-level base controller is implemented on the Teensy microcontroller using PlatformIO (https://platformio.org/). The programming language in PlatformIO is the same as Arduino (based on Wiring) and it is available as a plugin for the Visual Studio Code editor, which is covered in Chapter 16, Troubleshooting and Best Practices in ROS. On the development PC, we can flash the robot firmware to the board with this plugin. We will get the firmware code from the diffbot_base ROS package, located in the scripts/base_controller subfolder. Opening this folder in Visual Studio Code will recognize it as a PlatformIO workspace because it contains the platformio.ini file. This file defines the required dependencies and makes it straightforward to flash the firmware to the Teensy board after compilation. Inside this file, the used libraries are listed:

			lib_deps = frankjoshua/Rosserial Arduino Library@^0.9.1

			           adafruit/Adafruit Motor Shield V2 Library@^1.0.11

			           Wire

			As you can see, the firmware depends on rosserial, the Adafruit Motor Shield V2 library, and Wire, an I2C library. PlatformIO allows using custom libraries defined in the local ./lib folder, which are developed in this section.

			The firmware is used to read from encoders and IMU sensor, and receive wheel velocity commands from the high-level hardware_interface::RobotHW class, discussed in the next section. The following code snippets are part of the low-level base controller's main.cpp  file and show the used libraries, found in diffbot_base/scripts/base_controller, in the lib and src folders. src contains main.cpp consisting of the setup() and loop() functions, common to every Arduino sketch and starts off by including the following headers:

			#include <ros.h>

			#include "diffbot_base_config.h"

			Besides the ros header file, it includes definitions specific to Remo, which are defined in the diffbot_base_config.h header. It contains constant parameter values such as the following:

			
					Encoder pins: Defines to which pins on the Teensy microcontroller the Hall effect sensors are connected.

					Motor I2C address and pins: The Adafruit motor driver can drive four DC motors. For good cable management, motor terminals M3 and M4 are used for the left and right motors, respectively.

					PID: The tuned constants for both PID controllers of base_controller.

					PWM_MAX and PWM_MIN: The minimum and maximum possible PWM values that can be sent to the motor driver.

					Update rates: Defines how often the functions of base_controller are executed. For example, the control portion of the low-level base controller code reads encoder values and writes motor commands at a specific rate.

			

			After including Remo-specific definitions, next follows the custom libraries in the lib folder:

			#include "base_controller.h"

			#include "adafruit_feather_wing/adafruit_feather_wing.h"

			These included headers and the libraries that get included with them and are introduced next:

			
					base_controller: Defines the BaseController template class, defined in the base_controller.h header, and acts as the main class to manage the two motors, including each motor's encoder, and communicate with the high-level hardware interface.

					motor_controller_intf: This library is indirectly included with adafruit_feather_wing.h and defines an abstract base class, named MotorControllerIntf. It is a generic interface used to operate a single motor using arbitrary motor drivers. It is meant to be implemented by other specific motor controller subclasses and therefore avoids changing code in classes that know the MotorControllerIntf interface and call its setSpeed(int value) method, such as with BaseController. The only requirement for this to work is for a subclass to inherit from this MotorControllerIntf interface and implement the setSpeed(int value) class method.

					adafruit_feather_wing: This library, in the motor_controllers folder, implements the MotorControllerIntf abstract interface class and defines a concrete motor controller. For Remo, the motor controller is defined in the AdafruitMotorController class. This class has access to the motor driver board and serves to operate the speed of a single motor, which is why two instances are created in the main.cpp file.

					encoder: This library is used in the BaseController class and is based on Encoder.h from https://www.pjrc.com/teensy/td_libs_Encoder.html that allows reading encoder tick counts from quadrature encoders, like the DG01D-E motors consist of. The encoder library also provides a method jointState() to directly obtain the joint state, which is returned by this method in the JointState struct, that consists of the measured angular position (rad) and angular velocity (rad/s) of the wheel joints:diffbot::JointState diffbot::Encoder::jointState() {
long encoder_ticks = encoder.read();
ros::Time current_time = nh_.now();
ros::Duration dt = current_time - prev_update_time_;
double dts = dt.toSec();
double delta_ticks = encoder_ticks - prev_encoder_ticks_;
double delta_angle = ticksToAngle(delta_ticks);
joint_state_.angular_position_ += delta_angle;
joint_state_.angular_velocity_ = delta_angle / dts;
prev_update_time_ = current_time;
prev_encoder_ticks_ = encoder_ticks;
return joint_state_;
}


					pid: Defines a PID controller to compute PWM signals based on the velocity error between the measured and commanded angular wheel joint velocities.

			

			With these libraries, we look at the main.cpp file. Inside it exist only a few global variables to keep the code organized and make it possible to test the individual components that get included. The main code is explained next:

			
					First, we define the global ROS node handle, which is referenced in other classes, such as BaseController, where it is needed to publish, subscribe, or get the current time, using ros::NodeHandle::now(), to keep track of the update rates:ros::NodeHandle nh;


					For convenience and to keep the code organized, we declare that we want to use the diffbot namespace, where the libraries of the base controller are declared:using namespace diffbot;


					Next, we define two concrete motor controllers of type AdafruitMotorController found in the motor_controllers library:AdafruitMotorController motor_controller_right = AdafruitMotorController(3);
AdafruitMotorController motor_controller_left = AdafruitMotorController(4);
This class inherits from the abstract base class MotorControllerIntf, explained above. It knows how to connect to the Adafruit motor driver using its open source Adafruit_MotorShield library (https://learn.adafruit.com/adafruit-stepper-dc-motor-featherwing/library-reference) and how to get a C++ pointer to one of its DC motors (getMotor(motor_num)). Depending on the integer input value to AdafruitMotorController::setSpeed(int value), the DC motor is commanded to rotate in a certain direction and at a specified speed. For Remo, the range is between –255 and 255, specified by the PWM_MAX and PWM_MIN identifiers.


					The next class that is defined globally inside main is BaseController, which incorporates most of the main logic of this low-level base controller:BaseController<AdafruitMotorController, Adafruit_MotorShield> base_controller(nh, &motor_controller_left, &motor_controller_right);
As you can see, it is a template class that accepts different kinds of motor controllers (TMotorController, which equals AdafruitMotorController in the case of Remo) that operate on different motor drivers (TMotorDriver, which equals Adafruit_MotorShield), using the MotorControllerIntf interface as explained previously. The BaseController constructor takes a reference to the globally defined ROS node handle and the two motor controllers to let it set the commanded speeds computed through two separate PID controllers, one for each wheel. In addition to setting up pointers to the motor controllers, the BaseController class initializes two instances of type diffbot::Encoder. Its measured joint state, returned from diffbot::Encoder::jointState(), is used together with the commanded wheel joint velocities in the diffbot::PID controllers to compute the velocity error and output an appropriate PWM signal for the motors.


			

			After defining the global instances, the firmware's setup() function is discussed next. 

			The low-level BaseController class communicates with the high-level DiffBotHWInterface interface using ROS publishers and subscribers. These are set up in the Basecontroller::setup() method, which is called in the setup() function of main.cpp. In addition to that, the BaseController::init() method is here to read parameters stored on the ROS parameter server, such as the wheel radius and distance between the wheels. Beside initializing BaseController, the communication frequency of the motor driver is configured:

			void setup() {

			  base_controller.setup();

			  base_controller.init();

			  motor_controller_left.begin();

			  motor_controller_right.begin();

			}

			The begin(uint16_t freq) method of the motor controllers has to be called explicitly in the main setup() function because MotorControllerIntf doesn't provide a begin() or setup() method. This is a design choice that, when added, will make the MotorControllerIntf less generic.

			After the setup() function follows the loop() function, to read from sensors and write to actuators, which happens at specific rates, defined in the diffbot_base_config.h header. The bookkeeping of when these read/write functionalities occurred is kept in the BaseController class inside its lastUpdateRates struct. Reading from the encoders and writing motor commands happens in the same code block as the control rate: 

			void loop() {

			ros::Duration command_dt = nh.now() - base_controller.lastUpdateTime().control;

			if (command_dt.toSec() >= ros::Duration(1.0 / base_controller.publishRate().control_, 0).toSec()) {

			  base_controller.read();

			  base_controller.write();

			  base_controller.lastUpdateTime().control = nh.now();

			}

			The following steps in this code block happen continuously at the control rate:

			
					Encoder sensor values are read through the BaseController::read() method and the data is published inside this method for the high-level DiffbotHWInterface class, on the measured_joint_states topic of message type sensor_msgs::JointState.

					The BaseController class subscribes to DiffBotHWInterface from which it receives the commanded wheel joint velocities (the wheel_cmd_velocities, type diffbot_msgs::WheelsCmdStamped topic) inside the BaseController::commandCallback(const diffbot_msgs::WheelsCmdStamped&) callback method. In BaseController::read(), the PID is called to compute the motor PWM signals from the velocity error and the motor speeds are set with the two motor controllers.

					To keep calling this method at the desired control rate, the lastUpdateTime().control variable is updated with the current time. 

			

			After the control loop update block, if an IMU is used, its data could be read at the imu rate and published for a node that fuses the data with the encoder odometry to obtain more precise odometry. Finally, in the main loop(), all the callbacks waiting in the ROS callback queue are processed with a call to nh.spinOnce().

			This describes the low-level base controller. For more details and the complete library code, please refer to the diffbot_base/scripts/base_controller package. In the following section, the diffbot::DiffBotHWInterface class is described.

			ROS Control high-level hardware interface for a differential drive robot

			The ros_control (http://wiki.ros.org/ros_control) meta package contains the hardware_interface::RobotHW hardware interface class, which needs to be implemented to leverage many available controllers from the ros_controllers meta package. First, we'll look at the diffbot_base node that instantiates and uses the hardware interface:

			
					The diffbot_base node includes the diffbot_hw_interface.h header, as well as the controller_manager, defined in controller_manager.h, to create the control loop (read, update, and write):#include <ros/ros.h>
#include <diffbot_base/diffbot_hw_interface.h>
#include <controller_manager/controller_manager.h>


					Inside the main function of this diffbot_base node, we define the ROS node handle, the hardware interface (diffbot_base::DiffBotHWInterface), and pass it to the controller_manager, so that it has access to its resources:ros::NodeHandle nh;
diffbot_base::DiffBotHWInterface diffBot(nh);
controller_manager::ControllerManager cm(&diffBot);


					Next, set up a separate thread that will be used to service ROS callbacks. This runs the ROS loop in a separate thread as service callbacks can block the control loop:ros::AsyncSpinner spinner(1);
spinner.start();


					Then define at which rate the control loop of the high-level hardware interface should run. For Remo, we choose 10 Hz:ros::Time prev_time = ros::Time::now();
ros::Rate rate(10.0); rate.sleep(); // 10 Hz rate


					Inside the blocking while loop of the diffbot_base node, we do basic bookkeeping to get the system time to compute the control period:while (ros::ok()) {
  const ros::Time time = ros::Time::now();
  const ros::Duration period = time - prev_time;
  prev_time = time;


					Next, we execute the control loop steps: read, update, and write. The read() method is here to get sensor values, while write() writes commands that were computed by diff_drive_controller during the update() step:  diffBot.read(time, period);
  cm.update(time, period);
  diffBot.write(time, period);


					These steps keep getting repeated with the specified rate using rate.sleep().

			

			After having defined the code that runs the main control loop of the diffbot_base node, we'll take a look at the implementation of diffbot::DiffBotHWInterface, which is a child class of hardware_interface::RobotHW. With it, we register the hardware and implement the read() and write() methods. 

			The constructor of the diffbot::DiffBotHWInterface class is used to get parameters from the parameter server, such as the diff_drive_controller configuration from the diffbot_control package. Inside the constructor, the wheel command publisher and measured joint state subscriber are initialized. Another publisher is pub_reset_encoders_, which is used in the isReceivingMeasuredJointStates method to reset the encoder ticks to zero after receiving measured joint states from the low-level base controller.

			After constructing DiffBotHWInterface, we create instances of JointStateHandles classes (used only for reading) and JointHandle classes (used for read, and write access) for each controllable joint and register them with the JointStateInterface and VelocityJointInterface interfaces, respectively. This enables the controller_manager to manage access for joint resources of multiple controllers. Remo uses DiffDriveController and JointStateController:

			for (unsigned int i = 0; i < num_joints_; i++) {

			hardware_interface::JointStateHandle joint_state_handle(     

			  joint_names_[i], &joint_positions_[i],  

			  &joint_velocities_[i], &joint_efforts_[i]);

			joint_state_interface_.registerHandle(joint_state_handle)

			hardware_interface::JointHandle joint_handle(   

			  joint_state_handle, &joint_velocity_commands_[i]);

			velocity_joint_interface_.registerHandle(joint_handle); 

			}

			The last step that is needed to initialize the hardware resources is to register the JointStateInterface and the VelocityJointInterface interfaces with the robot hardware interface itself, thereby grouping the interfaces together to represent the Remo robot in the software:

			registerInterface(&joint_state_interface_);

			registerInterface(&velocity_joint_interface_);

			Now that the hardware joint resources are registered and the controller manager knows about them, it's possible to call the read() and write() methods of the hardware interface. The controller manager update happens in between the read and write steps.

			Remo subscribes to the measured_joint_states topic, published by the low-level base controller. The received messages on this topic are stored in the measured_joint_states_ array of type diffbot_base::JointState using the measuredJointStateCallback method, and are relevant in the read() method:

			
					The read() method is here to update the measured joint values with the current sensor readings from the encoders – angular positions (rad) and velocities (rad/s):void DiffBotHWInterface::read() {
for (std::size_t i = 0; i < num_joints_; ++i) {
joint_positions[i]=measured_joint_states[i].angular_position;  joint_velocity[i]=measured_joint_states[i].angular_velocity; }


					The final step of the control loop is to call the write() method of the DiffBotHWInterface class to publish the angular wheel velocity commands of each joint, computed by diff_drive_controller:

			

			void DiffBotHWInterface::write() {

			  diffbot_msgs::WheelsCmdStamped wheel_cmd_msg;

			  for (int i = 0; i < NUM_JOINTS; ++i) {

			wheel_cmd_msg.wheels_cmd.angular_velocities.joint.push_back(joint_velocity_commands_[i]); }

			pub_wheel_cmd_velocities_.publish(wheel_cmd_msg); }

			In this method, it is possible to correct for steering offsets due to model imperfections and slight differences in the wheel radii.

			This concludes the important parts of the DiffBotHWInterface class and enables Remo to satisfy the requirements to work with the ROS Navigation Stack. In the next section, we'll look at how to bring up the robot hardware and how the started nodes interact with each other.

			Overview of ROS nodes and topics for the Remo robot

			The following launch file will bring up the hardware nodes, load the robot description onto the parameter server, start diff_drive_controller, and begin to publish the transformations using tf. Run this launch file on the robot's SBC:

			roslaunch diffbot_bringup bringup.launch model:=remo

			On the development PC, you can use the teleop node to steer the robot. To do this, run the following:

			roslaunch diffbot_bringup keyboard_teleop.launch

			Issuing the rosnode list command shows the following list of started nodes:

			/diffbot/controller_spawner

			/diffbot/diffbot_base

			/diffbot/robot_state_publisher

			/diffbot/rosserial_base_controller

			/diffbot_teleop_keyboard

			/rosout

			To launch the RPLIDAR laser scanner too, we use the bringup_with_laser.launch launch file from the diffbot_bringup package on the robot. This will publish the laser scans on the /diffbot/rplidarNode topic. The next figure shows the started nodes and topics:

			
				
					[image: Figure 11.6 – The interconnection of each node in Remo ]
				

			

			Figure 11.6 – The interconnection of each node in Remo

			The nodes run by this launch file and their workings are described here:

			
					rosserial_base_controller: The Teensy MCU is interfaced with rosserial with the SBC. This acts as the ROS driver for the Teensy as well as a bridge between the robot hardware and the high-level hardware interface using ROS topics. This node reads sensor values from sensors connected to the Teensy and writes motor commands to the motors using two PID controllers. It publishes sensor data into topics (measured_joint_states) and subscribes to wheel commands on the wheel_cmd_velocities topic, published by the diffbot_base node.

					diffbot_base: Runs DiffBotHWInterface and controller_manager, which accesses the robot hardware and spawns diff_drive_controller with parameters from the diffbot_control package. Another spawned controller is JointStateController, which doesn't control anything but has access to the joint states and publishes them on the joint_states topic of type sensor_msgs/JointState. The node subscribes to the cmd_vel topic (geometry_msgs/Twist), either from a teleop node or the Navigation Stack and converts the message to angular wheel joint velocities (rad/s) and publishes it on the wheel_cmd_velocities topic (diffbot_msgs::WheelsCmdStamped), containing target angular velocities for each wheel. Furthermore, diff_drive_controller computes the odometry from the joint states.

					robot_state_publisher: Subscribes to the joint_states topic published by ROS Control's JointStateController and publishes tf transforms between all links for the Navigation Stack. The diff_drive_controller controller publishes only a single transform between odom and base_footprint.

			

			The content of bringup.launch includes other launch files from packages, such as diffbot_base and remo_description. The following summarizes the content:

			
					To load different robot descriptions into the ROS parameter server, this launch file, like some others, accepts the model argument, which is set to diffbot by default. For Remo, it is required to pass model:=remo to the launch command.

					Run rosserial to connect with the Teensy MCU and start the base controller:<node name="rosserial_base_controller" pkg="rosserial_python" type="serial_node.py" respawn="false" output="screen" args="_port:=/dev/ttyACM0 _baud:=115200"/>


					Run the diffbot_base node with its high-level hardware interface:<node name="diffbot_base" pkg="diffbot_base" type="diffbot_base" output="screen"/>


					Load the controller and base configs to the parameter server:<rosparam command="load" file="$(find diffbot_control)/config/diffbot_control.yaml"/>
<rosparam command="load" file="$(find diffbot_base)/config/base.yaml"/>


					After having loaded the controller config, load the controller itself:<node name="controller_spawner" pkg="controller_manager" type="spawner" respawn="false" output="screen" args="joint_state_controller mobile_base_controller"/>


					Run the robot_state_publisher node to read joint states published by ROS Control's joint_state_controller and publish tf transforms:<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" output="screen" ns="diffbot" />


			

			After running bringup.launch, we can visualize the robot in RViz, with this command:

			roslaunch diffbot_bringup view_diffbot.launch model:=remo

			This will open RViz and we will see the robot model. Next, launch the keyboard teleop node:

			roslaunch diffbot_bringup keyboard_teleop.launch

			Using the keys displayed in the terminal moves the robot and we can observe the movement and odometry in RViz:
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			Figure 11.7 – Visualizing robot odometry

			Until now, we have discussed Remo interfacing in ROS. The C++ code is kept modular, and a lot of available official ROS packages were used, mostly from ROS Control. These provide the differential drive kinematics out of the box and support the requirements to interface with the ROS Navigation Stack. All that we have left to do is to write the high- and low-level code.

			Configuring and working with the Navigation Stack

			After creating the hardware interface and low-level controller, we need to configure the Navigation Stack to perform SLAM and Adaptive Monte Carlo Localization (AMCL) to build the map, localize the robot, and perform autonomous navigation. In Chapter 6, Using the ROS MoveIt! and Navigation Stack, we saw the basic packages in the Navigation Stack. To build the map of the environment, we will configure gmapping and move_base, together with the global and local planners and global and local cost maps. To perform localization, we will configure the amcl node. We start with the gmapping node.

			Configuring the gmapping node and creating a map

			gmapping is the package to perform SLAM (http://wiki.ros.org/gmapping). Remo's gmapping node parameters are in diffbot_slam/config/gmapping_params.yaml and loaded with diffbot_slam/launch/diffbot_gmapping.launch. By fine-tuning the parameters, we improve the accuracy of the gmapping node. For example, reduce delta to get a better map resolution. For more details, refer to Chapter 6, Using the ROS MoveIt! and Navigation Stack.

			Working with the gmapping node

			To work with gmapping, the robot hardware needs to run first. To do this, launch the following launch file on the SBC of the real robot:

			roslaunch diffbot_bringup bringup_with_laser.launch model:=remo

			This will initialize the hardware interface and the low-level base controller and run the rplidar node, and the laser will start to rotate and stream laser scans on the diffbot/scan topic. Then, on your development PC, start the gmapping node using the following command: 

			roslaunch diffbot_slam diffbot_slam.launch

			It launches the gmapping node together with its configuration and opens RViz, where we see the map building process:
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			Figure 11.8 – Creating a map using gmapping shown in RViz

			We can now launch a teleop node for moving the robot to build the map of the environment. The following will launch the teleop node to move the robot around:

			roslaunch diffbot_bringup keyboard_teleop.launch

			After completing the mapping process, we save the map using this command:

			rosrun map_server map_saver -f ~/room

			The map_server package in ROS contains the map_server node, which provides the current map data as a ROS service. It provides a command utility called map_saver, which helps to save the map. The current map is saved as two files in the user's home folder: room.pgm and room.yaml. The first one is the map data and the next is its metadata, which contains the map file's name and its parameters. For more details, see http://wiki.ros.org/map_server.

			After building a map of the environment, the next step is to implement localization and navigation. Before starting the AMCL node, we will look at move_base in the next section.

			Configuring the move_base node

			Along with the move_base node, we need to configure the global and the local planners, and also the global and the local cost maps. To load all these configuration parameters, the launch file diffbot_navigation/launch/move_base.launch is used.

			Next, we will briefly outline each configuration file and its parameters.

			Common configurations for the local_costmap and global_costmap nodes

			The costmap is created using the obstacles present around the robot. Fine-tuning the parameters can increase the accuracy of map generation. The customized file costmap_common_params.yaml in the diffbot_navigation/config folder contains the common parameters of both the global and the local cost maps, such as the obstacle_range, the raytrace_range, and the inflation_radius parameters of obstacles and the footprint of the robot. It also specifies the observation_sources parameter. To get a working local costmap, it is required to set the correct laser scan topic. For all parameters, see http://wiki.ros.org/costmap_2d/flat. 

			The following are the main configurations required for building global and local costmaps. The definitions of the parameters are found in diffbot_navigation/config/costmap_global_params.yaml and costmap_local_params.yaml. The global_frame parameter for both costmaps is map. The robot_base_frame parameter is base_footprint; it is the coordinate frame in which the costmap is referenced around the robot base. The update_frequency parameter is the frequency at which the costmap runs its main update loop, whereas publishing_frequency is set to 10 Hz to publish display information. If we are using an existing map, we set static_map as true, otherwise we set it as false. For global_costmap, it's set to true, and false for the local costmap. The transform_tolerance parameter is the rate at which the transform is performed. The robot will stop if the transforms are not updated at this rate.

			The rolling_window parameter of the local costmap is set to true to center it around the robot. The width, height, and resolution parameters are the width, height, and resolution of the costmap. The next step will be to configure the base local planner.

			Configuring the base local planner and DWA local planner parameters

			The base local planner and DWA local planner are similar, with almost the same parameters. We can either use the base local planner or the DWA local planner for our robot using the local_planner argument of the diffbot_navigation/launch/diffbot_navigation.launch launch file. The functionality of these planners is to compute the velocity commands from a goal sent from a ROS node. The base local planner configuration of Remo is in diffbot_navigation/config/base_local_planner_params.yaml, along with the DWA config in dwa_local_planner_params.yaml. These files contain parameters related to limits of velocity and acceleration and specify the differential drive robot configuration with holonomic_robot. For Remo, it is set to false because it is a non-holonomic robot. We can also set a goal tolerance, specifying when a goal is reached. 

			Configuring move_base node parameters

			The move_base node configuration is defined in the move_base_params.yaml file, defining parameters such as controller_frequency, which defines the rate at which the move_base node runs the update loop and sends velocity commands. We also define planner_patience. That is the planner's wait time for finding a valid path before the space-clearing operations take place. For more details, refer to Chapter 6, Using the ROS MoveIt! and Navigation Stack, and http://wiki.ros.org/move_base.

			Configuring the AMCL node

			In this section, we will cover the available amcl launch files of Remo. The AMCL algorithm uses particle filters for tracking the pose of the robot with respect to a map. The algorithm is implemented in the AMCL ROS package (http://wiki.ros.org/amcl), which has a node that receives laser scan messages, tf transforms, the initial pose, and the occupancy grid map. After processing the sensor data, it publishes amcl_pose, particlecloud, and tf.

			The main launch file for starting amcl is called diffbot_navigation.launch in the diffbot_navigation package. It launches the amcl related nodes, the map server for providing the map data, the amcl node for performing localization, and the move_base node to move the robot from the commands received from the Navigation Stack.

			The complete amcl launch parameters are set inside another file called amcl.launch. The arguments accepted by this launch file are scan_topic and the initial pose. If the initial pose of the robot is not mentioned, the particles will be near the origin. Other parameters such as laser_max_range are set to the specifications of the RPLIDAR. Most other parameters are close to the defaults found in the ROS wiki, http://wiki.ros.org/amcl.

			We have discussed the parameters used in the Navigation Stack, the gmapping and move_base nodes. Now we will see how to localize and navigate Remo around an existing map. 

			AMCL planning

			Launch the robot hardware nodes by using the following command:

			roslaunch diffbot_bringup bringup_with_laser.launch model:=remo

			Then, on your development PC, run the navigation launch file with the previously stored map file from your user's home folder, using the following command:

			roslaunch diffbot_navigation diffbot_hw.lauch map_file:=/home/<username>/room.yaml  

			This will launch RViz to command the robot to move to a particular pose on the map:
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			Figure 11.9 – Robot autonomous navigation using AMCL

			Next, we will see more options in RViz and how to command the robot on the map.

			2D pose estimate and 2D nav goal buttons

			The first step in RViz is to set the initial position of the robot on the map. If the robot can localize itself on the map, there is no need to set the initial position. Otherwise, we set the position using the 2D Pose Estimate button in RViz, as shown in the following screenshot: 

			
				
					[image: Figure 11.10 – RViz 2D Pose Estimate (left) and 2D Nav Goal (right) buttons ]
				

			

			Figure 11.10 – RViz 2D Pose Estimate (left) and 2D Nav Goal (right) buttons

			The green color cloud around the robot is the particle cloud of amcl. The spread of particles describes the uncertainty of the position. Low spread means low uncertainty and the robot is almost sure about its position. After setting the pose, we can start to plan a path. 

			The 2D Nav Goal button is used to give a goal position to the move_base node through RViz and move the robot to that location. We can select this button from the top panel of RViz and place the goal position inside the map by left-clicking inside it.

			Obstacle avoidance using the Navigation Stack

			The Navigation Stack enables the robot to avoid random obstacles during its motion. The following is a scenario where a dynamic obstacle is placed in the planned path of the robot. In particular, the left part of the following figure shows path planning without obstacles on the path. When a dynamic obstacle is placed on the robot path, a path avoiding the obstacle is planned:
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			Figure 11.11 – Visualizing obstacle avoidance capabilities in RViz

			The preceding figures show the local and global cost maps, the real obstacles detected by the laser scans (represent by the dots), and the inflated obstacles. To avoid collision with the real obstacles, they are inflated to some distance from the real obstacles, called inflated obstacles, as per the values in the configuration files. The robot only plans a path beyond the inflated obstacle; inflation is a technique to avoid a collision with real obstacles.

			In the following figure, we can see the global, local, and planner plans:

			
				
					[image: Figure 11.12 – Visualizing the global, local, and planner plans in RViz ]
				

			

			 

			Figure 11.12 – Visualizing the global, local, and planner plans in RViz

			The planner and the global plans represent the complete plan to reach the goal. The local plan represents a short-term plan to follow global planning. The global plan and the planner plan can be changed if there are any obstacles. The plans can be displayed using the RViz path display type.

			So far, we have worked with Remo in the real world. Next, we will look at available simulations.

			Working with Remo robot in simulation

			The diffbot_gazebo simulator package is available in the diffbot repository. With it, we can simulate the robot in Gazebo. Instead of launching bringup.launch from diffbot_bringup for the hardware, we can start examples to get a more complex simulated environment for the robot using the diffbot world:

			roslaunch diffbot_navigation diffbot.launch model:=remo

			This will load a previously stored map from the diffbot_navigation/maps folder, open the Gazebo simulator, which loads the db_world.world world from the diffbot_gazeb/worlds folder, and a robot_rqt_steering window will appear too. With that, you can steer Remo manually. The launch command also opens Rviz, shown in the following figure, where you can use the navigation tools from the toolbar to let the robot navigate autonomously, as we did for the real robot:

			 

			
				
					[image: Figure 11.13 – Navigating Remo in the simulated diffbot world ]
				

			

			Figure 11.13 – Navigating Remo in the simulated diffbot world

			Other operations, such as SLAM and AMCL, have the same procedure that we followed for the hardware. The following launch files are used to perform SLAM and AMCL in the simulation: 

			
					To run SLAM in the simulation, we first launch Gazebo and the diffbot world:roslaunch diffbot_gazebo diffbot.launch model:=remo 


					In a second terminal, run SLAM gmapping:roslaunch diffbot_slam diffbot_slam.launch slam_method:=gmapping


					Then steer the robot around manually with the already opened rqt_robot_steering window or run the keyboard teleop node and start moving the robot with the keys:roslaunch diffbot_bringup keyboard_teleop.launch  


					After moving the robot around, we can save the generated map as done before:rosrun map_server map_saver -f /tmp/db_world
The created map can then be used in the simulation. For this, we just need to pass the map file and the world file to the diffbot_navigation/launch/difbot.launch launch file. An example of a complete command is the following:
roslaunch diffbot_navigation diffbot.launch model:=remo world_name:='$(find diffbot_gazebo)/worlds /turtlebot3_world.world'
map_file:='$(find diffbot_navigation)/maps/map.yaml'
This will launch the turtlebot3 world together with its previously stored map.


			

			This concludes the simulation of Remo in Gazebo, where we made use of launch files to navigate autonomously in an existing map of the diffbot world. We also saw how the mapping of the diffbot world is done. This procedure can be used to map new simulated environments and drive the Remo robot autonomously afterward using the launch files from the diffbot_navigation package.

			Summary

			In this chapter, we covered interfacing a DIY autonomous mobile robot with ROS and the Navigation Stack. After introducing the robot and the necessary components and connection diagrams, we looked at the robot firmware and saw how to flash it into the real robot. After that, we learned how to interface it with ROS using ROS Control packages by developing a hardware interface. With diff_drive_controller it is easy to convert twist messages to motor velocities and encoder ticks to odom and tf. ROS Control also enables simulation with the gazebo_ros_control plugin. After discussing these nodes, we looked at configurations of the ROS Navigation Stack. We also did gmapping and AMCL and looked at how to use RViz with the Navigation Stack. We also covered obstacle avoidance using the Navigation Stack and worked with Remo in a simulation. The next chapter introduces pluginlib, nodelets, and Gazebo plugins.

			Here are some questions based on what we covered in this chapter.

			Questions

			
					What are the basic requirements for working with the ROS Navigation Stack?

					What benefits does ROS Control provide?

					What are the steps to implement the ROS Control hardware interface?

					What are the main configuration files for working with the ROS Navigation Stack?

					What are the methods to send a goal pose to the Navigation Stack?

			

		

	






			
			

		

		
			Section 4 – Advanced ROS Programming

			In this section, we will deal with advanced concepts in ROS. These chapters will be helpful in prototyping advanced concepts such as controllers, plugins, and the interfacing of ROS to third-party applications such as MATLAB.

			This section comprises the following chapters:

			
					Chapter 12, Working with pluginlib, Nodelets, and Gazebo Plugins

					Chapter 13, Writing ROS Controllers and Visualization Plugins

					Chapter 14, Using ROS in MATLAB and Simulink

					Chapter 15, ROS for Industrial Robots

					Chapter 16, Troubleshooting and Best Practices in ROS

			

		

	






			Chapter 12: Working with pluginlib, nodelets, and Gazebo Plugins

			In the previous chapter, we discussed the interfacing and simulation of a mobile robot to the Robot Operating System (ROS) Navigation Stack. In this chapter, we will look at some advanced concepts in ROS, such as the ROS pluginlib, nodelets, and Gazebo plugins. We will discuss the functionalities and applications of each concept and will look at an example to demonstrate its working. We have used Gazebo plugins in the previous chapters to get the sensor and robot behavior inside the Gazebo simulator. In this chapter, we're going to see how to create it. We will also discuss a different form of ROS node, called ROS nodelets. These features in ROS are implemented using a plugin architecture called pluginlib.

			In this chapter, we will discuss the following topics:

			
					Understanding pluginlib

					Understanding ROS nodelets

					Understanding and creating a Gazebo plugin

			

			Technical requirements

			To follow along with this chapter, you should have the following set up on your computer:

			
					Ubuntu 20.04 Long-Term Support (LTS)

					ROS Noetic Desktop full installation

			

			The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition/tree/main/Chapter12

			You can view this chapter's code in action here: https://bit.ly/3AZxg0p.

			Understanding pluginlib

			Plugins are a commonly used term in the computer world. They are modular pieces of software that can add a new feature to an existing software application. An advantage of plugins is that we don't need to write all the features in the main software; instead, we can create an infrastructure on the main software to accept new plugins to it. Using this method, we can extend the capabilities of the software to any level.

			We need plugins for our robotics applications too. When we are building a complex ROS-based application for a robot, plugins are a good choice to extend the capabilities of the application.

			The ROS system provides a plugin framework called pluginlib to dynamically load/unload plugins, which can be a library or a class. pluginlib is basically a C++ library that helps to write plugins and load/unload them whenever we need to.

			Plugin files are runtime libraries—such as shared objects (.so) or dynamic-link libraries (.dll)—that are built without linking to the main application code. Plugins are separate entities that do not have any dependencies with the main software.

			The main advantage of plugins is that we can expand the application capabilities without making changes to the main application code. We can also load/unload these capabilities dynamically at runtime. 

			We can create a simple plugin using pluginlib and see all the procedures involved in creating a plugin using ROS pluginlib.

			Here, we are going to create a simple calculator application using pluginlib. We are adding each functionality of the calculator using plugins.

			Implementing a calculator plugin using pluginlib 

			Creating a calculator application using plugins is a slightly tedious task compared to writing a single piece of code. The aim of this example, however, is to show how to add new features to a calculator without modifying the main application code.

			In this example, we will see a ROS application that loads plugins to perform each operation. Here, we only implement the main operations, such as addition, subtraction, multiplication, and division. We can expand to any level by writing individual plugins for each operation.

			Before going on to create a plugin definition, we can access the calculator code from the pluginlib_calculator folder for reference.

			We are going to create a ROS package called pluginlib_calculator to build these plugins and the main calculator application.

			The following diagram shows how the calculator plugins and applications are organized inside the pluginlib_calculator ROS package:

			
				
					[image: Figure 12.1 – Organization of plugins in the calculator application ]
				

			

			Figure 12.1 – Organization of plugins in the calculator application

			We can see a list of calculator plugins and a plugin base class called CalcFunctions. The plugin base class implements the common functionalities that are required by these plugins.

			This is how we can create a ROS package and start developing plugins for the main calculator application.

			Working with the pluginlib_calculator package

			For a quick start, we can use the existing pluginlib_calculator ROS plugin package.

			If we want to create this package from scratch, we can use the following command:

			catkin_create_pkg pluginlib_calculator pluginlib roscpp std_msgs  

			The main dependency of this package is pluginlib. We can discuss the main source files in this package to build plugins. However, you can get the plugin code from the Chapter 12/plugins calculator folder.

			After cloning the repository, you can copy each file from the repository to the new package, or you can go through the following steps to understand the function of each file inside the plugin calculator package.

			Step 1 – Creating a calculator_base header file

			The calculator_base.h file is present in the pluginlib_calculator/include/pluginlib_calculator folder, and the main purpose of this file is to declare functions/methods that are commonly used by the plugins. Have a look at the following code snippet:

			namespace calculator_base

			{

			class CalcFunctions

			{

			Inside the preceding code, we declare an abstract base class called CalcFunctions that encapsulates methods used by the plugins. This class is included in a namespace called calculator_base. Have a look at the following code snippet:

			virtual void get_numbers(double number1, double number2) = 0; 

			virtual double operation() = 0;

			These are the main methods implemented inside the CalcFunctions class. The get_number() function can retrieve two numbers as input to the calculator, and the operation() function defines the mathematical operation we want to perform.

			Step 2 – Creating a calculator_plugins header file

			A calculator_plugins.h file is present in the pluginlib_calculator/include/pluginlib_calculator folder, and the main purpose of this file is to define complete functions of the calculator plugins, which are named Add, Sub, Mul, and Div. Here is an illustration of the code in this file:

			#include <pluginlib_calculator/calculator_base.h> 

			#include <iostream>

			#include <cmath> 

			 

			namespace calculator_plugins  

			{ 

			  class Add : public calculator_base::CalcFunctions 

			  { 

			This header file includes a calculator_base.h file for accessing the basic functionalities of a calculator. Each plugin is defined as a class, and it inherits the CalcFunctions class from the calculator_base.h class, as illustrated in the following code snippet:

			class Add : public calculator_base::CalcFunctions 

			  { 

			    public: 

			  Add() 

			  { 

			    number1_ = 0; 

			    number2_ = 0; 

			  } 

			The following function is a definition of the get_numbers() function that is overriding from the base class. It retrieves two numbers as input: 

			 

			  void get_numbers(double number1, double number2) 

			  { 

			 try

			 { 

			       number1_ = number1; 

			       number2_ = number2; 

			      } 

			     catch(int e) 

			      { 

			      std::cerr<<"Exception while inputting  numbers"<<std::endl; 

			     } 

			  }   

			The operation() function performs the desired math operation. In this case, it performs an additional operation, as illustrated in the following code snippet:

			  double operation() 

			  { 

			      return(number1_+number2_); 

			  } 

			 

			    private: 

			      double number1_; 

			      double number2_; 

			}; 

			 

			}; 

			In the next step, we have to export the plugin we have created. The plugin can be loaded at runtime if it is properly exported.

			Step 3 – Exporting plugins using the calculator_plugins.cpp file

			To load the class of plugins dynamically, we must export each class using a special PLUGINLIB_EXPORT_CLASS macro. This macro must be present in any .cpp file that consists of plugin classes. We have already defined the plugin class, and, in this file, we are going to define a macro statement only.

			Locate the calculator_plugins.cpp file from the pluginlib_calculator/src folder. This is how we export each plugin:

			#include <pluginlib/class_list_macros.h> 

			#include <pluginlib_calculator/calculator_base.h> 

			#include <pluginlib_calculator/calculator_plugins.h> 

			 

			PLUGINLIB_EXPORT_CLASS(calculator_plugins::Add, calculator_base::CalcFunctions); 

			Inside PLUGINLIB_EXPORT_CLASS, we need to provide the class name of the plugin and the base class.

			Step 4 – Implementing a plugin loader using the calculator_loader.cpp file

			This plugin loader node loads each plugin, inputs a number to each plugin, and fetches the result from the plugin. We can locate the calculator_loader.cpp file from the pluginlib_calculator/src folder.

			Here is an illustration of the code in this file:

			#include <boost/shared_ptr.hpp> 

			#include <pluginlib/class_loader.h> 

			#include <pluginlib_calculator/calculator_base.h> 

			These are the necessary header files to load the plugins:

			pluginlib::ClassLoader<calculator_base::CalcFunctions> calc_loader("pluginlib_calculator", "calculator_base::CalcFunctions"); 

			The pluginlib plugin provides the ClassLoader class, which is inside class_loader.h, to load classes at runtime. We need to provide a name for the loader and the calculator base class as arguments, as follows:

			   boost::shared_ptr<calculator_base::CalcFunctions> add = calc_loader.createInstance("pluginlib_calculator/Add"); 

			This will create an instance of the add class using the ClassLoader object, as illustrated in the following code snippet:

			    add->get_numbers(10.0,10.0); 

			    double result = add->operation(); 

			These lines give input and perform the operations in the plugin instance.

			Step 5 – Creating a plugin description file: calculator_plugins.xml

			After creating the calculator loader code, we must next describe a list of plugins inside this package in an Extensible Markup Language (XML) file called a plugin description file. The plugin description file contains all the information about the plugins inside a package, such as the name of the classes, types of classes, base class, and so on.

			The plugin description file is an important file for plugin-based packages because it helps the ROS system to automatically discover, load, and reason about the plugin. It also holds information such as a description of the plugin.

			The following code snippet shows the calculator_plugins.xml plugin description file of our package, which is stored along with the CMakeLists.txt and package.xml files. You can get this file from the package folder.

			Here is an illustration of the code in this file:

			<library path="lib/libpluginlib_calculator"> 

			    <class name="pluginlib_calculator/Add" type="calculator_plugins::Add" base_class_type="calculator_base::CalcFunctions"> 

			   <description>This is a add plugin.</description> 

			  </class> 

			This code is for the Add plugin and it defines the library path of the plugin, the class name, the class type, the base class, and the description.

			Step 6 – Registering a plugin with the ROS package system

			For pluginlib to find all plugin-based packages in the ROS system, we should export the plugin description file inside package.xml. If we do not include this plugin, the ROS system won't find the plugins inside the package.

			Here, we add the export tag to package.xml, as follows:

			<export> 

			  <pluginlib_calculator plugin="${prefix}/calculator_plugins.xml" /> 

			</export> 

			We are done with exporting the plugin description file. Next, we can edit the CMakeLists.txt file to build the plugin.

			Step 7 – Editing the CMakeLists.txt file

			Another difference with respect to a common ROS node regards the compilation directives included in the CMakeLists.txt file. To build the calculator plugins and loader nodes, we should add the following lines to CMakeLists.txt:

			## pluginlib_tutorials library 

			add_library(pluginlib_calculator src/calculator_plugins.cpp) 

			target_link_libraries(pluginlib_calculator ${catkin_LIBRARIES}) 

			## calculator_loader executable 

			add_executable(calculator_loader src/calculator_loader.cpp) 

			target_link_libraries(calculator_loader ${catkin_LIBRARIES}) 

			We are almost done with all the settings, and it's now time to build the package using the catkin_make command.

			Step 8 – Querying a list of plugins in the package

			If the package is built properly, we can execute the loader. The following command will query the plugins inside the package:

			rospack plugins --attrib=plugin pluginlib_calculator   

			We will get the following result if everything is built properly:

			pluginlib_calculator /home/robot/master_ros_ws/src/plugin_calculator/calculator_plugins.xml 

			In the next step, we can see how to load all these plugins. 

			Step 9 – Running the plugin loader

			After launching the roscore, we can execute the calculator_loader executable using the following command:

			rosrun pluginlib_calculator calculator_loader  

			The following code block shows the output of this command, to check whether everything is working fine. The loader gives both inputs as 10.0, and we are getting a proper result:

			[ INFO] [1609673718.399514348]: Sum result: 20.00

			[ INFO] [1609673718.399737057]: Substracted result: 0.00

			[ INFO] [1609673718.399838030]: Multiplied result: 100.00

			[ INFO] [1609673718.399916915]: Division result: 1.00

			In the next section, we will look at a new concept called nodelets and discuss how to implement them.

			Understanding ROS nodelets

			Nodelets are specific ROS nodes designed to run multiple algorithms within the same process in an efficient way, executing each process as threads. The threaded nodes can communicate with each other efficiently without overloading the network, with zero-copy transport between two nodes. These threaded nodes can communicate with external nodes too.

			Each nodelet can dynamically load like a plugin that has a separate namespace. Each nodelet can act as a separate node, but on a single process.

			Nodelets is used when the volume of data transferred between nodes is very high; for example, in transferring data from three-dimensional (3D) sensors or cameras. The disadvantage of using nodelets is they can't be run in a separate process, so they don't parallelize well.

			Next, we will look at how to create a nodelet.

			Implementing a sample nodelet

			In this section, we are going to create a basic nodelet that can subscribe to a string topic called /msg_in and publish the same string (std_msgs/String) on a /msg_out topic.

			Step 1 – Creating a package for a nodelet

			We can create a package called nodelet_hello_world, using the following command to create our nodelet:

			catkin_create_pkg nodelet_hello_world nodelet roscpp std_msgs  

			Otherwise, we can use the existing nodelet_hello_world package, which you can find in the Chapter 12/ nodelet_hello_world folder in the code repository. 

			Here, the main dependency of this package is the nodelet package, which provides application programming interfaces (APIs) to build a ROS nodelet.

			Step 2 – Creating a hello_world.cpp nodelet

			Now, we are going to create the nodelet code. Create a folder called src inside the nodelet_hello_world package and create a file called hello_world.cpp.

			You will get the existing code from the nodelet_hello_world/src folder.

			Step 3 – Explanation of hello_world.cpp

			Here is an illustration of the code in the hello_world.cpp file:

			#include <pluginlib/class_list_macros.h> 

			#include <nodelet/nodelet.h> 

			#include <ros/ros.h> 

			#include <std_msgs/String.h> 

			#include <stdio.h> 

			These are the header files inclueded in this code file. We should include class_list_macro.h and nodelet.h to access the pluginlib APIs and nodelet APIs. Have a look at the following code snippet:

			namespace nodelet_hello_world 

			{ 

			  class Hello : public nodelet::Nodelet 

			  { 

			Here, we create a nodelet class called Hello that inherits a standard nodelet base class. All nodelet classes should inherit from the nodelet base class and be dynamically loadable using pluginlib. Here, the Hello class is going to be used for dynamic loading. The code is illustrated in the following snippet:

			  virtual void onInit() 

			  { 

			    ros::NodeHandle& private_nh = getPrivateNodeHandle(); 

			    NODELET_DEBUG("Initialized the Nodelet"); 

			    pub = private_nh.advertise<std_msgs::String>("msg_out",5); 

			    sub = private_nh.subscribe("msg_in",5, &Hello::callback, this); 

			  } 

			This is the initialization function of a nodelet. This function should not block or do significant work. Inside the function, we are creating a NodeHandle object, topic publisher, and subscriber on the msg_out and msg_in topics, respectively. There are macros to print debug messages while executing a nodelet. Here, we use NODELET_DEBUG to print debug messages in the console. The subscriber is tied up with a callback() callback function, which is inside the Hello class. The code is illustrated in the following snippet:

			  void callback(const std_msgs::StringConstPtr input) 

			  { 

			    std_msgs::String output; 

			    output.data = input->data; 

			    NODELET_DEBUG("Message data = %s",output.data.c_str()); 

			    ROS_INFO("Message data = %s",output.data.c_str()); 

			    pub.publish(output); 

			  } 

			In the callback() function, it will print the messages from the /msg_in topic and publish them to the /msg_out topic, as illustrated in the following code snippet:

			PLUGINLIB_EXPORT_CLASS(nodelet_hello_world::Hello,nodelet::Nodelet); 

			Here, we are exporting Hello as a plugin for the dynamic loading.

			Step 4 – Creating a plugin description file

			As with the pluginlib example, we have to create a plugin description file inside the nodelet_hello_world package. The hello_world.xml plugin description file is illustrated in the following code snippet:

			<library path="libnodelet_hello_world"> 

			  <class name="nodelet_hello_world/Hello" type="nodelet_hello_world::Hello" base_class_type="nodelet::Nodelet"> 

			      <description> 

			      A node to republish a message 

			      </description> 

			  </class> 

			</library> 

			After adding the plugin description file, we can see in the next step how to add the path of the plugin description file to package.xml. 

			Step 5 – Adding the export tag to package.xml

			We need to add the export tag to package.xml and add build and run dependencies, as follows:

			<export> 

			    <nodelet plugin="${prefix}/hello_world.xml"/> 

			</export> 

			After editing the package.xml file, we can see how to edit the CMakeLists.txt file to compile the nodelets. 

			Step 6 – Editing CMakeLists.txt

			We need to add additional lines of code in CMakeLists.txt to build a nodelet package. Here are the extra lines. You will get the complete CMakeLists.txt file from the existing package:

			## Declare a cpp library 

			 add_library(nodelet_hello_world 

			   src/hello_world.cpp 

			 ) 

			 

			## Specify libraries to link a library or executable target against 

			 target_link_libraries(nodelet_hello_world 

			   ${catkin_LIBRARIES} 

			 ) 

			After editing the CMakeLists.txt file, let's see how to build the nodelet ROS package. 

			Step 7 – Building and running nodelets

			After following this procedure, we can build the package using catkin_make and, if the build is successful, we can generate a libnodelet_hello_world.so shared object file, which represents the plugin.

			The first step in running nodelets is to start a nodelet manager. A nodelet manager is a C++ executable program that will listen to the ROS services and dynamically load nodelets. We can run a standalone manager or embed it within a running node.

			The following commands can start the nodelet manager:

			
					Start roscore, as follows:roscore  


					Start the nodelet manager, using the following command:rosrun nodelet nodelet manager __name:=nodelet_manager  


					If the nodelet manager runs successfully, we will get the following message:[ INFO] [1609674707.691565050]: Initializing nodelet with 6 worker threads.


					After launching the nodelet manager, we can start the nodelet by using the following command:rosrun nodelet nodelet load nodelet_hello_world/Hello nodelet_manager __name:=nodelet1 


					When we execute the preceding command, the nodelet contacts the nodelet manager to instantiate an instance of nodelet_hello_world/Hello nodelet with the name of nodelet1. The following code block shows the message we receive when we load the nodelet:[ INFO] [1609674752.075787641]: Loading nodelet /nodelet1 of type nodelet_hello_world/Hello to manager nodelet_manager with the following remappings:


					The topics generated after running this nodelet and a list of nodes are shown here: rostopic list
/nodelet1/msg_in
/nodelet1/msg_out
/nodelet_manager/bond
/rosout
/rosout_agg
We can test the node by publishing a string to the /nodelet1/msg_in topic and check whether we receive the same message in nodelet1/msg_out.


					The following command publishes a string to /nodelet1/msg_in:rostopic pub /nodelet1/msg_in std_msgs/String "Hello" -r 1


					You will get the same data that we have given as input from the /nodelet1/msg_out topic, as illustrated in the following code snippet:rostopic echo /nodelet1/msg_out
data: "Hello"
---
We can echo the msg_out topic and confirm whether the code is working properly.


			

			Here, we have seen that a single instance of the Hello() class is created as a node. We can create multiple instances of the Hello() class with different node names inside this nodelet.

			Step 8 – Creating launch files for nodelets

			We can also write launch files to load more than one instance of the nodelet class. The following launch file will load two nodelets with the names test1 and test2, and we can save it as launch/hello_world.launch:

			<launch> 

			 

			<!-- Started nodelet manager --> 

			 

			  <node pkg="nodelet" type="nodelet" name="standalone_nodelet"  args="manager" output="screen"/> 

			 

			<!-- Starting first nodelet --> 

			 

			  <node pkg="nodelet" type="nodelet" name="test1" args="load nodelet_hello_world/Hello standalone_nodelet" output="screen"> 

			  </node>     

			 

			<!-- Starting second nodelet --> 

			 

			  <node pkg="nodelet" type="nodelet" name="test2" args="load nodelet_hello_world/Hello standalone_nodelet" output="screen"> 

			  </node>     

			 

			</launch> 

			The preceding launch file can be launched with the following command:

			roslaunch nodelet_hello_world hello_world.launch  

			The following message will show up on the terminal if it is launched successfully:

			[ INFO] [1609675205.643405707]: Loading nodelet /test1 of type nodelet_hello_world/Hello to manager standalone_nodelet with the following remappings:

			[ INFO] [1609675205.645714262]: waitForService: Service [/standalone_nodelet/load_nodelet] has not been advertised, waiting...

			[ INFO] [1609675205.652567416]: Loading nodelet /test2 of type nodelet_hello_world/Hello to manager standalone_nodelet with the following remappings:

			[ INFO] [1609675205.655896332]: waitForService: Service [/standalone_nodelet/load_nodelet] has not been advertised, waiting...

			[ INFO] [1609675205.707828044]: Initializing nodelet with 6 worker threads.

			[ INFO] [1609675205.711686663]: waitForService: Service [/standalone_nodelet/load_nodelet] is now available.

			[ INFO] [1609675205.719831856]: waitForService: Service [/standalone_nodelet/load_nodelet] is now available.

			A list of topics and nodes is shown in the following code snippet. We can see two nodelets instantiated, as well as their topics:

			rostopic list 

			/rosout_agg

			/standalone_nodelet/bond

			/test1/msg_in

			/test1/msg_out

			/test2/msg_in

			/test2/msg_out

			Topics are generated by multiple instances of the Hello() class. We can see the interconnection between these nodelets using the rqt_graph tool. Open rqt by running the following command:

			rqt

			Load the Node Graph plugin from the Plugins->Introspection->Node Graph option, and you will get a graph like the one shown in the following diagram:
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			Figure 12.2 – A two-node instance of a nodelet

			Alternatively, you can directly load the rqt_graph plugin, as follows:

			rqt_graph

			In this preceding section, we have seen how to work with ROS nodelets. In the next section, we will see how to create plugins for the Gazebo simulator.

			Understanding and creating a Gazebo plugin

			Gazebo plugins help us to control the robot models, sensors, world properties, and even the way Gazebo runs. As with pluginlib and nodelets, Gazebo plugins are a set of C++ code that can be dynamically loaded/unloaded from the Gazebo simulator.

			Using plugins, we can access all the components of Gazebo, which are independent of ROS so that they can be shared with people who are not using ROS (that is, the components). We can mainly classify the plugins as follows:

			
					The world plugin: Using the world plugin, we can control the properties of a specific world in Gazebo. We can change the physics engine, the lighting, and other world properties using this plugin.

					The model plugin: The model plugin is attached to a specific model in Gazebo and controls its properties. The parameters, such as the joint state of the model, control of the joints, and so on, can be controlled using this plugin.

					The sensor plugin: The sensor plugins are for modeling sensors—such as camera, inertial measurement unit (IMU), and so on—in Gazebo.

					The system plugin: The system plugin is started along with the Gazebo startup. A user can control a system-related function in Gazebo using this plugin.

					The visual plugin: The visual property of any Gazebo component can be accessed and controlled using the visual plugin.

					The GUI plugin: The graphical user interface (GUI) plugin can be used to create a custom GUI widget on Gazebo and can change the existing GUI parameters of Gazebo. 

			

			Before starting development with Gazebo plugins, we might need to install some packages. The Gazebo version installed along with ROS Noetic is 11.0, so you might need to install its development package in Ubuntu using the following command:

			sudo apt install libgazebo11-dev   

			The Gazebo plugins are independent of ROS and we don't need ROS libraries to build a plugin.

			Creating a basic world plugin

			We will look at a basic Gazebo world plugin and try to build and load it in Gazebo.

			This project is also included in the Chapter 12/gazebo_ros_hello_world folder provided with this book.

			Create a folder called gazebo_basic_world_plugin in the desired folder and create a CPP file called hello_world.cc, as follows:

			mkdir gazebo_basic_world_plugin && cd gazebo_basic_world_plugin 

			You can open the following code using a text editor. Here, I am using gedit:

			gedit hello_world.cc  

			The definition of hello_world.cc is shown in the following code snippet:

			#include <gazebo/gazebo.hh>

			namespace gazebo

			{

			  class WorldPluginTutorial : public WorldPlugin

			  {

			    public: WorldPluginTutorial() : WorldPlugin()

			            {

			              printf("Hello World!\n");

			            }

			    public: void Load(physics::WorldPtr _world, sdf::ElementPtr _sdf)

			            {

			            }

			  };

			  GZ_REGISTER_WORLD_PLUGIN(WorldPluginTutorial)

			} 

			The header file used in this code is <gazebo/gazebo.hh>. The header contains the core functionalities of Gazebo. Other headers are listed here:

			
					gazebo/physics/physics.hh: This is a Gazebo header for accessing the physics engine parameters.

					gazebo/rendering/rendering.hh: This is a Gazebo header for handling rendering parameters.

					gazebo/sensors/sensors.hh: This is a Gazebo header for handling sensors.

			

			At the end of the code, we must export the plugin using the following statements.

			The GZ_REGISTER_WORLD_PLUGIN(WorldPluginTutorial) macro will register and export the plugin as a world plugin. The following macros are used to register for sensors, models, and so on:

			
					GZ_REGISTER_MODEL_PLUGIN: This is an export macro for the Gazebo robot model.

					GZ_REGISTER_SENSOR_PLUGIN: This is an export macro for the Gazebo sensor model.

					GZ_REGISTER_SYSTEM_PLUGIN: This is an export macro for the Gazebo system.

					GZ_REGISTER_VISUAL_PLUGIN: This is an export macro for Gazebo visuals.

			

			After setting the code, we can make a CMakeLists.txt file for compiling the source code. Here is the source code of CMakeLists.txt:

			gedit gazebo_basic_world_plugin/CMakeLists.txt 

			 

			cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

			find_package(gazebo REQUIRED)

			include_directories(${GAZEBO_INCLUDE_DIRS})

			link_directories(${GAZEBO_LIBRARY_DIRS})

			list(APPEND CMAKE_CXX_FLAGS "${GAZEBO_CXX_FLAGS}")

			add_library(hello_world SHARED hello_world.cc)

			target_link_libraries(hello_world ${GAZEBO_LIBRARIES}) 

			Create a build folder for storing the shared object, as follows:

			mkdir build && cd build

			After switching to the build folder, execute the following command to compile and build the source code:

			cmake ../

			make  

			After building the code, we will get a shared object called libhello_world.so, and we have to export the path of this shared object in GAZEBO_PLUGIN_PATH and add it to the .bashrc file. 

			Make sure you have edited the path to the build folder before exporting GAZEBO_PLUGIN_PATH, as follows:

			export GAZEBO_PLUGIN_PATH=${GAZEBO_PLUGIN_PATH}:/path/to/gazebo_basic_world_plugin/build 

			After setting the Gazebo plugin path and reloading the .bashrc file, we can use it inside the Unified Robot Description Format (URDF) file or the Simulation Description Format (SDF) file. The following is a sample world file called hello.world, which includes this plugin:

			gedit gazebo_basic_world_plugin/hello.world 

			 

			<?xml version="1.0"?> 

			<sdf version="1.4"> 

			  <world name="default"> 

			    <plugin name="hello_world" filename="libhello_world.so"/> 

			  </world> 

			</sdf>  

			Run the Gazebo server and load this world file, as follows:

			cd gazebo_basic_world_plugin 

			gzserver hello.world --verbose 

			Here is the output from the preceding command: 

			Gazebo multi-robot simulator, version 11.1.0

			Copyright (C) 2012 Open Source Robotics Foundation.

			Released under the Apache 2 License.

			http://gazebosim.org

			[Msg] Waiting for master.

			[Msg] Connected to gazebo master @ http://127.0.0.1:11345

			[Msg] Publicized address: 192.168.47.131

			Hello World!

			The Gazebo world plugin prints Hello World!. We can also launch the plugin using a launch file as well. Here is the command to start from a launch file

			gzserver hello.world --verbose 

			We will source the code for various Gazebo plugins from the Gazebo repository.

			We can check https://github.com/osrf/gazebo, browse for the source code, and take the examples folder and then the plugins, as shown in the following screenshot:

			
				
					[image: Figure 12.3 – List of sample Gazebo plugins ]
				

			

			Figure 12.3 – List of sample Gazebo plugins

			We can clone this repository and build the selected Gazebo plugin based on our simulation. We can follow the same build instructions to build the preceding list of plugins, as we did for the basic hello world Gazebo plugin.

			Summary

			In this chapter, we covered some advanced concepts—such as the pluginlib, nodelets, and Gazebo plugins—that can be used to add more functionalities to a complex ROS application. We discussed the basics of pluginlib and saw an example of using it. After covering pluginlib, we looked at ROS nodelets, which are widely used in high-performance applications. We also looked at an example using ROS nodelets. Finally, we came to the Gazebo plugins that are used to add functionalities to Gazebo simulators.

			This chapter will have given you a clear idea of how to write plugins and nodelets in ROS. Nodelets will be very useful when working with computer vision and 3D point-cloud applications. The Gazebo plugins will give you a good understanding of how to create custom plugins for your robots.

			In the next chapter, we will discuss the ROS Visualization (RViz) plugin and ROS controllers in more detail.

			Here are some questions based on what we learned in this chapter.

			Questions

			
					What is pluginlib and what are its main applications?

					What is the main application of nodelets?

					What are the different types of Gazebo plugins?

					What is the function of the model plugin in Gazebo?

			

		

	






			Chapter 13: Writing ROS Controllers and Visualization Plugins

			In the previous chapter, we discussed pluginlib, nodelets, and Gazebo plugins. The base library for making plugins in ROS is pluginlib, and the same library can be used in nodelets. In this chapter, we will continue with pluginlib-based concepts, such as ROS controllers and ROS visualization (RViz) plugins. We have already worked with ROS controllers and have reused some standard controllers, such as joint state, position, and trajectory controllers, in Chapter 4, Simulating Robots Using ROS and Gazebo.

			In this chapter, we will see how to write a basic ROS controller for a generic robot. We will implement the desired controller for our seven-Degree of Freedom (DOF) arm robot, developed in previous chapters, executing it in the Gazebo simulator. RViz plugins can add more functionality to RViz, and in this chapter, we will look at how to create a basic RViz plugin. The detailed topics that we are going to discuss in this chapter are as follows:

			
					Understanding ros_control packages

					Writing a basic joint controller in ROS

					Understanding the RViz tool and its plugins

					Writing an RViz plugin for teleoperation

			

			Technical requirements

			To follow this chapter, you should have the following setup on your computer:

			
					Ubuntu 20.04 LTS

					ROS Noetic desktop full installation

			

			The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition/tree/main/Chapter13

			You can view this chapter's code in action here: https://bit.ly/3k51SGW.

			Understanding ros_control packages

			Let's see how to develop a ROS controller. The first step is to understand the dependency packages required to start building custom controllers.

			The main set of packages used to develop a controller generic to all robots is contained in the ros_control stack. This is a rewritten version of pr2_mechanism, containing useful libraries to write low-level controllers for PR2 robots (http://wiki.ros.org/Robots/PR2) used in the past version of ROS. In ROS Kinetic, pr2_mechanism has been substituted with the ros_control stack (http://wiki.ros.org/ros_control). The following is a description of some useful packages that help us to write robot controllers:

			
					ros_control: This package takes as input the joint state data directly from the robot's actuators and the desired set point, generating the output to send to its motors. The output is usually represented by the join position, velocity, or effort.

					controller_manager: The controller manager can load and manage multiple controllers and can work them in a real-time compatible loop.

					controller_interface: This is the controller base class package from which all custom controllers should inherit the controller base class. 

					hardware_interface: This package represents the interface between the implemented controller and the hardware of the robot. Using this interface, controllers can directly access the hardware components cyclically.

					joint_limits_interface: This package allows us to set joint limits to safely work with our robot. Joint limits are also included in the Unified Robotic Description Format (URDF) of the robot. This package is different than the URDF because it allows us to additionally specify acceleration and jerk limits. Also, the position, velocity, and effort values contained within the URDF model can be overridden using this package. Commands sent to the hardware are filtered according to the specified joint limits.

					realtime_tools: This contains a set of tools that can be used from a hard real-time thread if the operating system supports real-time behavior. The tools currently only provide the real-time publisher, which makes it possible to publish messages to a ROS topic in real time.

			

			Since we have already worked with ros_control in Chapter 4, Simulating Robots Using ROS and Gazebo, everything should already be installed on our system. Otherwise, to operate this package, we should install the following ROS packages from the Ubuntu/Debian repositories:

			sudo apt install ros-noetic-ros-control ros-noetic-ros-controllers

			Before writing the ROS controller, it would be good to understand the use of each package of the ros_control stack. 

			The ros_control stack contains packages for using ready-made controllers as well as libraries for creating our own custom ROS controllers for a simulated or real robot. The main packages include controller interfaces, controller managers, hardware interfaces, and transmissions. The first package that we are going to discuss is the controller_interface package.

			The controller_interface package

			The basic ROS low-level controller that we want to implement must inherit a base class called controller_interface::Controller. We also have to mention hardware_interface (https://github.com/ros-controls/ros_control/wiki/hardware_interface), which is going to be used by this controller. In order to create our controller, basically, we have to override four important functions: init(), starting(), update(), and stopping(). The controller class should be in a custom namespace. A basic code snippet of a custom ROS Controller class is as follows:

			namespace our_controller_ns 

			{ 

			  class Controller: public controller_interface::Controller<Th type of hardware interface> 

			  { 

			  public: 

			    virtual bool init(hardware_interface *robotHW, 

			                     ros::NodeHandle &nh); 

			    virtual void starting(const ros::Time& time); 

			    virtual void update(const ros::Time& time, const ros::Duration& period); 

			    virtual void stopping(const ros::Time& time); 

			  }; 

			} 

			The workflow of a ROS controller class is as follows:
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			Figure 13.1 – Workflow of the ROS controller

			In the next section, we will see how each part of the controller works.

			Initializing the controller

			The first function that executes when a controller is loaded is init(). The init() function will not start running the controller; it will just initialize it. The initialization can take any amount of time before starting the controllers. The declaration of the init function is as follows:

			 virtual bool init(harware_interface *robotHW, ros::NodeHandle &nh); 

			The function arguments are as follows:

			
					hardware_interface *robotHW: This pointer represents the specific hardware interface used by the controller. ROS contains a list of already-implemented hardware interfaces, such as the following:A. Joint command interfaces (effort, velocity, and position)
B. Joint state interfaces
C. Actuator state interfaces


					ros::NodeHandle &nh: The controller can read the robot configuration and even advertise topics using this NodeHandle object nh.

			

			The init() method only executes once while the controller is loaded by the controller manager. If the init() method is not successful, it will unload from the controller manager. We can write a custom message if any error occurs inside the init() method.

			Starting the ROS controller

			This method will only execute once before updating and running the controller. The starting() method declaration is as follows:

			virtual void starting(const ros::Time& time); 

			The controller can also call the starting() method when it restarts the controller without unloading it.

			Updating the ROS controller

			The update() function is the most important method that makes the controller alive. The update() method, by default, executes the code inside it at a rate of 1,000 Hz. This means the controller completes one execution within 1 millisecond:

			virtual void update(const ros::Time& time, const ros::Duration& period); 

			Whenever we wish to stop the controller, we will execute the function described in the following section.

			Stopping the controller

			This method will call when a controller is stopped. The stopping() method will execute as the last update() call and only executes once. The stopping() method will not fail and it does not return any value either. The following is the declaration of the stopping() method:

			virtual void stopping(const ros::Time& time); 

			We have seen basic functions present inside a controller. In the following section, we will discuss the ROS controller manager.

			controller_manager

			The controller_manager package can load and unload the desired controller. The controller manager also ensures that the controller will not set a goal value that is less than or greater than the safety limits of the joint. The controller manager also publishes the states of the joint in the /joint_state (sensor_msgs/JointState) topic at a default rate of 100 Hz. The following figure shows the basic workflow of a controller manager:
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			Figure 13.2 – Workflow of the ROS control manager

			The controller manager can load and unload a plugin. When a controller is loaded by the controller manager, it will first initialize it, but the controller will not start running.

			After loading the controller inside the controller manager, we can individually start and stop the controller. When we start the controller, the controller starts working, and when we stop it, it will simply stop. Stopping doesn't mean it is unloaded. But if the controller is unloaded from the controller manager, we can't access the controller.

			In this section, we have seen the important functions inside the Controller class. In the next section, we will see how to create a new controller based on the Controller class. We will see how to test the controller we have developed using the seven-DOF arm simulation package.

			Writing a basic joint controller in ROS

			The basic prerequisites for writing a ROS controller are already installed. We have discussed the underlying concepts of controllers. Now, we can start creating a package for our controller.

			We are going to develop a controller that can access a joint of the robot and move the robot in a sinusoidal fashion. In particular, the first joint of the seven-DOF arm will follow a sinusoidal motion.

			The procedure for building a controller is similar to other plugin development that we have seen earlier. The procedure to create a ROS controller is as follows:

			
					Create a ROS package with the necessary dependencies.

					Write controller code in C++.

					Register or export the C++ class as a plugin.

					Define the plugin definition in an XML file.

					Edit the CMakeLists.txt and package.xml files for exporting the plugin.

					Write the configuration for our controller.

					Load the controller using the controller manager.

			

			Let's discuss each of these steps in detail.

			Step 1 – creating the controller package

			The first step is to create a controller package with all its dependencies. The following command can create a package for the controller called my_controller:

			catkin_create_pkg my_controller roscpp pluginlib controller_interface   

			We will get the existing package from the Chapter13/my_controller folder of the code provided with this book's code.

			After getting the package, you can copy each file from the repository to the new package, or you can go through the following steps to understand the function of each file inside the my_controller package.

			Step 2 – creating the controller header file

			We will get the my_controller.h header file from the my_controller/include/my_controller folder. Given in the following code block is the header file definition of my_controller.h. As already stated, in this header, we are going to implement the functions contained in the controller_interface::Controller class:

			#include <controller_interface/controller.h> 

			#include <hardware_interface/joint_command_interface.h> 

			#include <pluginlib/class_list_macros.h> 

			 

			 

			namespace my_controller_ns { 

			 

			   class MyControllerClass: public controller_interface::Controller<hardware_interface::PositionJointInterface> 

			   { 

			   public: 

			         bool init(hardware_interface::PositionJointInterface* hw, ros::NodeHandle &n); 

			         void update(const ros::Time& time, const ros::Duration& period); 

			         void starting(const ros::Time& time); 

			         void stopping(const ros::Time& time); 

			 

			   private: 

			         hardware_interface::JointHandle joint_; 

			         double init_pos_; 

			   }; 

			} 

			In the preceding code, we can see the controller class, MyControllerClass, and we are inheriting the base class, controller_interface::Controller. We can see that each function inside the Controller class is overridden in our MyControllerClass class.

			Step 3 – creating the controller source file

			Create a folder called src inside the package and create a C++ file called my_controller_file.cpp, which is the class definition of the preceding header.

			The following is an explanation of my_controller_file.cpp, which has to be saved inside the src folder.

			First, you can include my_controller.h, which has the class declaration of my_controller_ns::MyControllerClass:

			#include "my_controller.h" 

			namespace my_controller_ns { 

			Here is the function to initialize the controller. The init() function will execute only once when the controller is loaded. Inside init(), we are trying to get the joint handle of elbow_pitch_joint to control that specific joint. The joint_name parameter is set in my_controller.yaml, which is inside the package:

			bool MyControllerClass::init(hardware_interface::PositionJointInterface* hw, ros::NodeHandle &n) 

			{ 

			//Retrieve the joint object to control 

			      std::string joint_name; 

			      if( !nh.getParam( "joint_name", joint_name ) ) { 

			            ROS_ERROR("No joint_name specified"); 

			            return false; 

			      } 

			      joint_ = hw->getHandle(joint_name);  

			      return true; 

			} 

			The following function is the definition of the starting() function of the controller. Inside this function, we are just getting the initial position of elbow_pitch_joint:

			void MyControllerClass::starting(const ros::Time& time) { 

			         init_pos_ = joint_.getPosition(); 

			   } 

			 

			The following function is the definition of update(), which will keep on running when the controller is running. The time argument in update() gives the current time and the period argument gives the time passed since the last call to update(). Inside the function, we are continuously updating elbow_pitch_joint to get a sinusoid motion:

			void MyControllerClass::update(const ros::Time& time, const ros::Duration& period) 

			{ 

			//---Perform a sinusoidal motion for joint shoulder_pan_joint 

			double dpos = init_pos_ + 10 * sin(ros::Time::now().toSec()); 

			         double cpos = joint_.getPosition(); 

			      joint_.setCommand( -10*(cpos-dpos)); //Apply command to the selected joint 

			         //--- 

			} 

			 

			The following stopping() function will execute when the controller stops. Currently, we haven't added anything to the function:

			//Controller exiting 

			void MyControllerClass::stopping(const ros::Time& time) { } 

			} 

			 

			The following code exports the controller class as a plugin, which helps to find this controller in ROS:

			PLUGINLIB_EXPORT_CLASS(my_controller_ns::MyControllerClass, controller_interface::ControllerBase); 

			In the next section, we will see a detailed explanation of each section of the code.

			Step 4 – detailed explanation of the controller source file

			In this section, we will see a greater explanation of each section of the code:

			/// Controller initialization in non-real-time 

			bool MyControllerClass::init(hardware_interface::PositionJointInterface* hw, ros::NodeHandle &n) 

			{ 

			The preceding code is the definition of the init() function in the controller. This will be called when a controller is loaded by the controller manager. Inside the init() function, we are creating an instance of the state of the robot (hw) and NodeHandle, and we also get the manager of the joint interacting with the controller. In our example, we defined the joint to control in the my_controller.yaml file, loading the joint name into the ROS parameter server. This function returns the success or the failure in the controller initialization:

			std::string joint_name;

			if( !nh.getParam( "joint_name", joint_name ) ) 

			{

			      ROS_ERROR("No joint_name specified");

			      return false;

			}

			joint_ = hw->getHandle(joint_name); 

			return true;

			This preceding code will initialize a hardware_interface::JointHandle object called joint_. We can able to control the desired joint using this object. The hw is an instance of the hardware_interface class. joint_name is the desired joint to which we are attaching the controller:

			/// Controller startup in realtime 

			void MyControllerClass::starting(const ros::Time& time) 

			{ 

			init_pos_ = joint_.getPosition(); 

			} 

			After the controller is loaded, the next step is to start it. The preceding function will execute when we start a controller. In this function, it will retrieve the current position of the joint, storing its value in the init_pos_ variable:

			/// Controller update loop in real-time 

			void MyControllerClass::update(const ros::Time& time, const ros::Duration& period) 

			{ 

			//---Perform a sinusoidal motion for joint shoulder_pan_joint 

			double dpos = init_pos_ + 10 * sin(ros::Time::now().toSec()); 

			double cpos = joint_.getPosition(); 

			joint_.setCommand( -10*(cpos-dpos)); //Apply command to the selected joint 

			} 

			The preceding code is the definition of the update() function in the controller. This function will be continuously called whenever the controller starts working. Inside the update() function, one of the joints defined in the my_controller.yaml controller configuration file will be continuously moving in a sinusoidal fashion.

			Step 5 – creating the plugin description file

			In this section, we will see how to define the plugin definition file for our controller. The plugin file is saved inside the package folder under the name of controller_plugins.xml:

			<library path="lib/libmy_controller_lib"> 

			   <class name="my_controller_ns/MyControllerClass" type="my_controller_ns::MyControllerClass" 

			base_class_type="controller_interface::ControllerBase" /> 

			</library> 

			The controller description file consists of the name of the controller class. In our controller, the name of the class is my_controller_ns/MyControllerClass. 

			The next step is to update package.xml to export the plugin description file.

			Step 6 – updating package.xml

			We need to update package.xml to point the controller_plugins.xml file:

			   <export> 

			    <controller_interface plugin="${prefix}/controller_plugins.xml" /> 

			  </export> 

			The <export> tag in package.xml helps to find the plugins/controllers inside a package.

			Step 7 – updating CMakeLists.txt

			After doing all these things, we can compose CMakeLists.txt of the package:

			## my_controller_file library 

			add_library(my_controller_lib src/my_controller.cpp) 

			target_link_libraries(my_controller_lib ${catkin_LIBRARIES}) 

			We have to compile and build the controller as a ROS library rather than an executable. The ROS controller uses pluginlib as the backend, which can be loaded at runtime.

			Step 8 – building the controller

			After completing CMakeLists.txt, we can build our controller using the catkin_make command. After building, check that the controller is configured as a plugin using the rospack command, as shown here:

			rospack plugins --attrib=plugin controller_interface  

			With this command, all the controllers related to controller_interface will be listed.

			If everything has been performed correctly, the output may look like the following:

			velocity_controllers /opt/ros/noetic/share/velocity_controllers/velocity_controllers_plugins.xml

			diff_drive_controller /opt/ros/noetic/share/diff_drive_controller/diff_drive_controller_plugins.xml

			joint_state_controller /opt/ros/noetic/share/joint_state_controller/joint_state_plugin.xml

			my_controller /home/robot/master_ros_ws/src/my_controller/controller_plugins.xml

			We will see how to write a controller configuration file in the next section.

			Step 9 – writing the controller configuration file

			After proper installation of the controller, we can configure and run it. The first procedure is to create a configuration file of the controller that consists of the controller type, joint name, joint limits, and so on. The configuration file is saved as a YAML file that must be saved inside the package. 

			We are creating a YAML file with the name my_controller.yaml, and the definition is as follows:

			#File loaded during Gazebo startup 

			my_controller_name: 

			  type: my_controller_ns/MyControllerClass 

			  joint_name: elbow_pitch_joint 

			This file is the configuration of the controller. In particular, this file contains the type of the controller represented by the name of the class compiled with the controller source code and the set of parameters to pass to the controller. In our case, this is the name of the joint to control.

			Step 10 – writing the launch file for the controller

			The joint assigned for showing the working of this controller is elbow_pitch_joint of the seven_dof_arm robot. After creating the YAML file, we can create a launch file inside the launch folder, which can load the controller configuration file and run the controller. The launch file is called my_controller.launch, which is given as follows:

			<?xml version="1.0" ?> 

			<launch> 

			  <include file="$(find my_controller)/launch/seven_dof_arm_world.launch" />    

			  <rosparam file="$(find my_controller)/my_controller.yaml" command="load"/> 

			  <node name="my_controller_spawner" pkg="controller_manager" type="spawner" respawn="false" 

			   output="screen" args="my_controller_name"/> 

			</launch> 

			In the following code, we explain the launch file:

			<launch> 

			  <include file="$(find my_controller)/launch/seven_dof_arm_world.launch" />    

			Here, we run the Gazebo simulator, launching a modified version of seven_dof_arm:

			<rosparam file="$(find my_controller)/my_controller.yaml" command="load"/> 

			Then, we load the developed controller.

			Finally, we spawn the controller:

			  <node name="my_controller_spawner" pkg="controller_manager" type="spawner" respawn="false" 

			   output="screen" args="my_controller_name"/> 

			In this way, controller_manager will run the controller specified in the args list. In our case, only my_controller_name is executed through init(), start(), and the update() functions implemented by the controller.

			Step 11 – running the controller along with the seven-DOF arm in Gazebo

			After creating the controller launch files, we should test them on our robot. We can launch the Gazebo simulation using the following command:

			roslaunch my_controller my_controller.launch

			When we launch the simulation, all of the controllers associated with the robot also get started. The objective of our ROS controller is to move the elbow_pitch_joint of seven_dof_arm, as defined in the controller configuration file. If everything is properly working, the elbow of the robot should start to move in a sinusoidal way:
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			Figure 13.3 – Working of my_controller in the Gazebo simulation

			If existing controllers are handling this same joint, our controller can't work properly. To avoid this situation, we need to stop the controller that is handling the same joint of the robot. A set of services are exposed by controller_manager to manage the controllers of the robot. 

			For example, we can use the following command to check the state of the controllers loaded in the system:

			rosservice call /controller_manager/list_controllers  

			The output of this command is as follows:

			 controller: 

			  - 

			    name: "my_controller_name"

			    state: "running"

			    type: "my_controller_ns/MyControllerClass"

			    claimed_resources: 

			      - 

			        hardware_interface: "hardware_interface::PositionJointInterface"

			        resources: 

			          - elbow_pitch_joint

			In the previous screenshot, you can see that our controller (my_controller_name) is running. We can stop it using the /controller_manager/switch_controller service, as shown in the following command:

			rosservice call /controller_manager/switch_controller "start_controllers: ['']

			stop_controllers: ['my_controller_name']

			strictness: 0

			start_asap: true

			timeout: 0.0"

			You will get the following output if the operation is successful:

			ok: True

			You can check the list of controllers running using the following command:

			rosservice call /controller_manager/list_controllers  

			You will get the list of the controllers like this: 

			controller: 

			  - 

			    name: "my_controller_name"

			    state: "stopped"

			    type: "my_controller_ns/MyControllerClass"

			    claimed_resources: 

			      - 

			        hardware_interface: "hardware_interface::PositionJointInterface"

			        resources: 

			          - elbow_pitch_joint

			Consider that in this example, we are exploiting the gazebo_ros_control plugin to run our controller. This plugin represents the hardware interface of our robot in the simulated scene. In the case of a real robot, we should write our hardware interface to apply control data to robot actuators.

			In conclusion, ros_control implements a standard set of generic controllers, such as effort_controllers, joint_state_controllers, position_controllers, and velocity controllers for any kind of robot. We used these ROS controllers in Chapter 3, Working with ROS for 3D Modeling.

			Here, we used ros_control to develop a simple dedicated position controller for our seven_dof_arm robot. You can check the availability of new controllers through the wiki page of ros_control at https://github.com/ros-controls/ros_control/wiki.

			In the next section, we will see more about RViz and how to extend the capabilities of RViz by writing plugins. 

			Understanding the RViz tool and its plugins

			The RViz tool is an official 3D visualization tool of ROS. Almost all kinds of data from sensors can be viewed through this tool. RViz will be installed along with the full ROS desktop installation. Let's launch RViz and see the basic components present in RViz. Make sure you are executing these commands in separate terminals (or tabs).

			Start roscore:

			roscore

			Start rviz:

			rviz

			The important sections of the RViz GUI are marked, and the uses of each section are shown in the following screenshot:

			
				
					[image: Figure 13.4 – Sections of RViz ]
				

			

			Figure 13.4 – Sections of RViz

			We have seen how to work with RViz in ROS, and have seen different sections in RViz. In the following sections, we will provide a detailed explanation of each section of RViz.

			The Displays panel

			The panel on the left side of RViz is called the Displays panel. The Displays panel contains a list of the display plugins of RViz and its properties. The main use of display plugins is to visualize different types of ROS messages, mainly sensor data in the RViz 3D viewport. There are lots of display plugins already present in RViz for viewing images from the camera, and for viewing the 3D point cloud, LaserScan, robot model, TF, and so on. Plugins can be added by pressing the Add button on the left panel. We can also write our display plugin and add it there.

			The RViz toolbar

			There is a set of tools present in the RViz toolbar for manipulating the 3D viewport. The toolbar is present at the top of RViz. There are tools present for interacting with the robot model, modifying the camera view, giving navigation goals, and giving the robot 2D pose estimations. We can add our custom tools to the toolbar in the form of plugins.

			The Views panel

			The Views panel is placed on the right side of RViz. Using the Views panel, we can save different views of the 3D viewport and switch to each view by loading the saved configuration.

			The Time panel

			The Time panel displays the ROS time and wall time (http://wiki.ros.org/roscpp/Overview/Time), which are useful while working with Gazebo simulation. It is also helpful for seeing the simulated time when playing ROS bag files. We can also reset the RViz initial setting using this panel.

			Dockable panels

			The preceding toolbar and panels belong to dockable panels. We can create our dockable panels as an RViz plugin. We are going to create a dockable panel that has an RViz plugin for robot teleoperation.

			Writing an RViz plugin for teleoperation

			In this section, we will see how to create an RViz plugin from scratch. The objective of this plugin is to teleoperate the robot from RViz. Normally, we use separate teleoperation nodes for controlling the robot, but using this plugin, we can mention the teleop topic and the linear and angular velocity, as shown in the following screenshot:

			
				
					[image: Figure 13.5 – RViz Teleop plugin ]
				

			

			Figure 13.5 – RViz Teleop plugin

			In the following section, we discuss the detailed procedure of building this plugin.

			The methodology of building a RViz plugin

			Before starting to build the teleoperation plugin, we should understand how to write a RViz plugin in general. The standard method to build a ROS plugin is applicable for this plugin too. The difference is that the RViz plugin is GUI-based. RViz is written using a GUI framework called Qt, so we need to create a GUI in Qt and, using Qt APIs, we have to get the GUI values and send them to the ROS system.

			The following steps describe how this teleoperation RViz plugin is going to work:

			
					The dockable panel will have a Qt GUI interface, and the user can input the topic, linear velocity, and angular velocity of teleoperation from the GUI.

					Collect the user input from GUI using Qt signals and slots, and publish the values using the ROS subscribe-and-publish method. (The Qt signals and slots are a trigger-invoke technique available in Qt. When a signal/trigger is generated by a GUI field, it can invoke a slot or function, such as a callback mechanism.)

					Here also, we build the RViz plugin in the same way we have built other ROS plugins in this and previous chapters.

			

			Now we will see the step-by-step procedure to build this plugin. You can also find the complete package from Chapter13/rviz_teleop_commander.

			Step 1 – creating the RViz plugin package

			Let's create a new package for creating the teleop plugin:

			catkin_create_pkg rviz_telop_commander roscpp rviz std_msgs  

			The package is mainly dependent on the rviz package. RViz is built using Qt libraries, so we don't need to include additional Qt libraries in the package. In the Ubuntu 20.04 version, we need to use Qt5 libraries.

			Step 2 – creating the RViz plugin header file

			Let's create a new header inside the src folder called teleop_pad.h. You will get this source code from the existing package. This header file consists of the class and methods of declaration for the plugin.

			The following is the explanation of this header file:

			#ifndef Q_MOC_RUN

			    #include <ros/ros.h> 

			    #include <rviz/panel.h> 

			#endif

			The preceding code is from the header file required to build this plugin. We need ROS headers for publishing the teleop topic and <rviz/panel.h> for getting the base class of the RViz panel for creating a new RViz panel. The #ifndef Q_MOC_RUN macro is to skip the ROS header from the Meta-Object Compiler (moc). If you want to know about moc, you can check out this link (https://doc.qt.io/archives/4.6/moc.html):

			class TeleopPanel: public rviz::Panel 

			{ 

			TeleopPanel is a RViz plugin class and it is inherited from the rviz::Panel base class.

			Q_OBJECT 

			public: 

			The TeleopPanel class is using the Qt signals and slots(https://doc.qt.io/qt-5/signalsandslots.html), and it's also a subclass of Q_Object in Qt. In that case, we should use the Q_OBJECT macro.

			  TeleopPanel( QWidget* parent = 0 );

			This is the constructor of the TeleopPanel() class, and we are initializing a QWidget class to 0. We are using the QWidget instance inside the TeleopPanel class for implementing the GUI of the teleop plugin.

			  virtual void load( const rviz::Config& config ); 

			  virtual void save( rviz::Config config ) const; 

			The preceding code shows how to override the rviz::Panel functions for saving and loading the RViz config file.

			public Q_SLOTS: 

			After the preceding line, we can declare some public Qt slots required for the TeleopPanel plugin.

			  void setTopic( const QString& topic ); 

			When we enter the topic name in the GUI and press Enter, the setTopic() slot will be called and will initialize the ROS topic publisher with the topic name given in the GUI.

			protected Q_SLOTS: 

			  void sendVel(); 

			  void update_Linear_Velocity(); 

			  void update_Angular_Velocity(); 

			  void updateTopic(); 

			The preceding lines of code are the protected slots for sending the velocity, updating the linear velocity and angular velocity, and updating the topic name when we change the name of the existing topic.

			  QLineEdit* output_topic_editor_; 

			  QLineEdit* output_topic_editor_1; 

			  QLineEdit* output_topic_editor_2; 

			We are now creating the Qt QLineEdit object to create three text fields in the plugin to receive the topic name, linear velocity, and angular velocity.

			ros::Publisher velocity_publisher_; 

			ros::NodeHandle nh_; 

			These are the publisher object and the NodeHandle object for publishing topics and handling a ROS node.

			Step 3 – creating the RViz plugin definition

			In this step, we will create the main C++ file that contains the definition of the plugin. The file is teleop_pad.cpp, and you will get it from the src package folder.

			The main responsibilities of this file are as follows:

			
					It acts as a container for a Qt GUI element, such as QLineEdit, to accept text entries.

					It publishes the command velocity using the ROS publisher.

					It saves and restores the RViz config files.

			

			The following is the explanation for each section of the code:

			TeleopPanel::TeleopPanel( QWidget* parent ) 

			  : rviz::Panel( parent ) 

			  , linear_velocity_( 0 ) 

			  , angular_velocity_( 0 ) { 

			The preceding code is the constructor of TeleopPanel::TeleopPanel RViz plugin class. It also initializes rviz::Panel with QWidget, setting the linear and angular velocity as 0.

			  QVBoxLayout* topic_layout = new QVBoxLayout; 

			  topic_layout->addWidget( new QLabel( "Teleop Topic:" )); 

			  output_topic_editor_ = new QLineEdit; 

			  topic_layout->addWidget( output_topic_editor_ ); 

			This preceding code will add a new QLineEdit widget on the panel for handling the topic name. Similarly, two other QLineEdit widgets handle the linear velocity and angular velocity.

			  QTimer* output_timer = new QTimer( this ); 

			This will create a QTimer object for updating a function that is publishing the velocity topic.

			  connect( output_topic_editor_, SIGNAL( editingFinished() ), this, SLOT( updateTopic() )); 

			  connect( output_topic_editor_, SIGNAL( editingFinished() ), this, SLOT( updateTopic() )); 

			  connect( output_topic_editor_1, SIGNAL( editingFinished() ), this, SLOT( update_Linear_Velocity() )); 

			  connect( output_topic_editor_2, SIGNAL( editingFinished() ), this, SLOT( update_Angular_Velocity() ));

			This will connect a Qt signal to the slots. Here, the signal is triggered when editingFinished() returns true, and the slot here is updateTopic(). When the editing inside a QLineEdit widget is finished by pressing the Enter key, the signal will trigger, and the corresponding slot will execute. 

			Here, this slot will set the topic name, angular velocity, and linear velocity value from the text field of the plugin:

			   connect( output_timer, SIGNAL( timeout() ), this, SLOT( sendVel() )); 

			   output_timer->start( 100 ); 

			These lines generate a signal when the QTimer object output_timer times out. The timer will time out after every 100 ms and execute a slot called sendVel(), which will publish the velocity topic.

			We can see the definition of each slot after this section. This code is self-explanatory and, finally, we can see the following code to export it as a plugin:

			#include <pluginlib/class_list_macros.h> 

			PLUGINLIB_EXPORT_CLASS(rviz_telop_commander::TeleopPanel, rviz::Panel ) 

			We have gone through the important sections of the RViz plugin code. Now, we can see how to write the plugin description file of the RViz plugin. 

			Step 4 – creating the plugin description file

			The definition of plugin_description.xml is as follows:

			<library path="lib/librviz_telop_commander"> 

			  <class name="rviz_telop_commander/Teleop" 

			         type="rviz_telop_commander::TeleopPanel" 

			         base_class_type="rviz::Panel"> 

			    <description> 

			      A panel widget allowing simple diff-drive style robot base control. 

			    </description> 

			  </class> 

			</library>  

			After creating the plugin description file, we can add the path of this file to the package.xml file. This will help ROS nodes to find the RViz plugin and load the appropriate plugin files.

			Step 5 – adding the export tags in package.xml

			We have to update the package.xml file to include the plugin description. The following is the update of package.xml:

			  <export> 

			      <rviz plugin="${prefix}/plugin_description.xml"/> 

			  </export>

			After updating the <export> tag in package.xml, let's update CMakeLists.txt in order to build the plugin source code.

			Step 6 – editing CMakeLists.txt

			We need to add extra lines to the CMakeLists.txt definition, as given in the following code:

			   find_package(Qt5 COMPONENTS Core Widgets REQUIRED) 

			   set(QT_LIBRARIES Qt5::Widgets) 

			   catkin_package( 

			       LIBRARIES ${PROJECT_NAME} 

			       CATKIN_DEPENDS roscpp 

			                     rviz 

			   ) 

			    include_directories(include  

			         ${catkin_INCLUDE_DIRS}  

			         ${Boost_INCLUDE_DIRS} 

			   ) 

			    link_directories( 

			         ${catkin_LIBRARY_DIRS} 

			         ${Boost_LIBRARY_DIRS} 

			   ) 

			    add_definitions(-DQT_NO_KEYWORDS) 

			    QT5_WRAP_CPP(MOC_FILES 

			     src/teleop_pad.h  

			     OPTIONS -DBOOST_TT_HAS_OPERATOR_HPP_INCLUDED -DBOOST_LEXICAL_CAST_INCLUDED  

			   ) 

			 

			   set(SOURCE_FILES 

			     src/teleop_pad.cpp  

			     ${MOC_FILES} 

			   ) 

			   add_library(${PROJECT_NAME} ${SOURCE_FILES}) 

			   target_link_libraries(${PROJECT_NAME} ${QT_LIBRARIES} ${catkin_LIBRARIES}) 

			You will get the complete CMakeLists.txt source code from the rviz_telop_commander package from Chapter13/rviz_teleop_commander.

			After building the RViz plugin in the catkin workspace, we can load the plugin in RViz using the following steps.

			Step 7 – building and loading plugins

			After creating these files, build a package using catkin_make. If the build is successful, we can load the plugin in RViz. Open RViz and load the panel by going to the Menu panel | Add New Panel. We will get a panel such as the following:
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			 Figure 13.6 – Choosing the RViz Teleop plugin

			If we load the Teleop plugin from the list, we will get a panel such as the following:

			
				
					[image: Figure 13.7 – RViz Teleop plugin ]
				

			

			Figure 13.7 – RViz Teleop plugin

			We can choose the Teleop Topic name and add values for Linear Velocity and Angular Velocity, and we can print the Teleop Topic values using the following command:

			
				
					[image: Figure 13.8 – Printing velocity command in the terminal ]
				

			

			Figure 13.8 – Printing velocity command in the terminal

			This plugin can help to drive a wheeled robot from RViz. We can also easily customize this plugin to add more control to the GUI.

			Summary

			In this chapter, we discussed creating plugins for RViz and writing basic ROS controllers. We have already worked with default controllers in ROS, and in this chapter, we developed a custom controller for moving joints. After building and testing the controller, we looked at RViz plugins. We created a new RViz panel for teleoperation. We can manually enter the topic name and linear and angular velocity in the panel. This panel is useful for controlling robots without starting another teleoperation node. 

			In the next chapter, we will discuss using ROS with MATLAB. MATLAB is a powerful numeric computing environment developed by MathWorks. The next chapter discusses how to interface this tool with ROS to create robot applications.

			Here are some questions based on what we covered in this chapter.

			Questions

			
					What is the list of packages needed for writing a low-level controller in ROS?

					What are the different processes happening inside a ROS controller?

					What are the main packages of the ros_control stack?

					What are the different types of RViz plugins?

			

		

	






			Chapter 14: Using ROS in MATLAB and Simulink

			In previous chapters, we discussed how to simulate and control robots implementing ROS nodes in C++. In this chapter, we will learn how to create ROS nodes using MATrix LABoratory (MATLAB), a powerful piece of software that provides several toolboxes with algorithms and hardware connectivity to develop autonomous robotic applications for ground vehicles, manipulators, and humanoid robots. Also, MATLAB integrates Simulink: a block diagram environment for model-based design, allowing the implementation of our control programs through a graphical editor. In this chapter, we will also discuss how to implement robotic applications using Simulink.

			The first part of this chapter is dedicated to a brief introduction to MATLAB and Robotics System Toolbox. After we have learned how to exchange data between ROS and MATLAB, we will implement an obstacle avoidance system for the differential drive mobile robot TurtleBot, showing how simple it is to use components already available in Robotics System Toolbox and to minimize the number of elements to develop in the system. In the second part of the chapter, we will introduce Simulink, showing an initial model as an example, and then discuss a publisher-and-subscriber model to demonstrate the Simulink and ROS communication interface. Finally, a control system to regulate the orientation of the TurtleBot robot will be developed in Simulink and tested in the Gazebo simulator.

			The following are the main topics discussed in this chapter:

			
					Getting started with MATLAB

					Getting started with ROS Toolbox and MATLAB

					Developing a robotic application using MATLAB and Gazebo

					Getting started with ROS and Simulink

					Developing a simple control system in Simulink

			

			Technical requirements

			To follow this chapter, you need a standard laptop running Ubuntu 20.04 with ROS Noetic installed and properly configured. Also, a version of MATLAB 2020b must be installed, selecting ROS Toolbox, Robotics System Toolbox, and Navigation Toolbox.

			The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition/tree/main/Chapter14/ros_matlab_test

			You can view this chapter's code in action here: https://bit.ly/37WE0zy. 

			Getting started with MATLAB 

			MATLAB is a multi-platform numerical computing environment widely used by industries, universities, and research centers. MATLAB was born as a mathematical software, but now it offers a lot of additional packages for different areas, such as control design, plotting, image processing, and robotics. Every year, two new versions of MATLAB are released. The first one is called XXXXa (where XXXX is the year of the release) and it is released in March, while the second one is called XXXXb and it is released in September. In this chapter, we assume the installation of the MATLAB 2020b version. MATLAB is a proprietary product of MathWorks, and it is not free software. Usually, free licenses are distributed to students and academic institutions. You can use MATLAB on Windows, GNU/Linux, and macOS. After you have launched it, the main window of MATLAB will appear with its default layout, as shown in the following screenshot:

			
				
					[image: Figure 14.1 – The main window of MATLAB in its default layout ]
				

			

			Figure 14.1 – The main window of MATLAB in its default layout

			This window includes three main panels:

			
					Current Folder: This shows local files.

					Command Window: This is a command line to enter MATLAB commands or run MATLAB scripts.

					Workspace: This shows data created from the Command Window or in MATLAB scripts.

			

			Using the Command Window, you can issue mathematical commands and create variables that will be shown in the workspace. The same window can be used to view MATLAB function documentation. In fact, all the built-in MATLAB functions have supporting documentation, including examples and descriptions of the function inputs, outputs, and calling syntax. You can access the documentation using the doc or help command. The first one will open an external window containing the documentation, while the second one will display the documentation in the Command Window. Let's see how to get the documentation about the mean function:

			>> doc mean

			You could also use this command to obtain the same result:

			>> help mean

			After this very brief introduction to MATLAB, we will discuss in the next section how to connect it with the ROS network to use ROS functions.

			Getting started with ROS Toolbox and MATLAB

			Beyond the standard functions provided by the default installation of MATLAB, several external toolboxes give you access to other utilities and libraries. To use ROS with MATLAB, you need to install ROS Toolbox (https://it.mathworks.com/products/ros.html). This toolbox implements an interface between MATLAB and ROS that enables developers to test and port their applications on real robots and robotic simulators. To implement robotic applications, it is also useful to install Robotics System Toolbox (https://it.mathworks.com/products/robotics.html) and Navigation Toolbox (https://it.mathworks.com/products/navigation.html), providing several algorithms that help us to develop autonomous robot applications, such as path planners, obstacle avoidance methods, state estimations, kinematics, and dynamics algorithms.

			You can add ROS Toolbox, Robotics System Toolbox, and Navigation Toolbox from the package list during the MATLAB installation, or download them from the MATLAB website:

			
				
					[image: Figure 14.2 – ROS Toolbox selection during MATLAB installation ]
				

			

			Figure 14.2 – ROS Toolbox selection during MATLAB installation

			Using ROS Toolbox, we can transform MATLAB into a ROS node that will be able to exchange information with other nodes of the system and directly control simulated or real ROS-enabled robots using topics and services. After connecting MATLAB to a ROS master node, it can fetch data to process from the robot or other ROS nodes. MATLAB could itself initialize a ROS master node to manage the communication with the nodes of the network, or it could be connected to another remote ROS master, like any other element of the ROS network. In addition, in the final version of the application, we are not forced to run MATLAB on our computer to execute it, but we can deploy the developed application as a typical C++ node. The following block diagram depicts the connection between MATLAB and ROS:
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			Figure 14.3 – ROS-MATLAB interface schema

			With the installation of Robotics System Toolbox, we will have access to several ROS commands equivalent to the ones used under Linux. To list these commands, you can enter the following line in the Command Window:

			>> help ros

			The output of this command is shown in the following figure:
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			Figure 14.4 – ROS-MATLAB interface commands

			To initialize the ROS-MATLAB interface, we can use the rosinit command, while rosshutdown is used to stop it. By default, rosinit creates a ROS master node in MATLAB, starting matlab_global_node to communicate with the ROS network. We can see the active ROS nodes after initializing roscore using the rosnode list command:

			
				
					[image: Figure 14.5 – Default initialization of the ROS-MATLAB interface ]
				

			

			Figure 14.5 – Default initialization of the ROS-MATLAB interface

			Using the default configuration of the ROS-MATLAB interface, we must set the ROS_MASTER_URI environmental variable on the other node of the ROS network with the IP address of the computer running MATLAB. If you are running MATLAB on Windows, you can easily get the IP address of your computer by using the following command:

			>> !ipconfig

			Or, you can use the following command if you are running MATLAB on Linux:

			>> !ifconfig

			The output of this command in Windows is shown in the following screenshot:

			
				
					[image: Figure 14.6 – The ifconfig command on MATLAB, running on Linux ]
				

			

			Figure 14.6 – The ifconfig command on MATLAB, running on Linux

			Otherwise, we can directly connect MATLAB to an active ROS network. In this case, we must inform the ROS-MATLAB interface about the address of the computer/robot where the ROS master is running. This is done with the following commands:

			
				
					[image: Figure 14.7 – Initializing the ROS-MATLAB interface on an external ROS network ]
				

			

			Figure 14.7 – Initializing the ROS-MATLAB interface on an external ROS network

			In the next section, we will start to work with topic callbacks, initializing the ROS-MATLAB interface and adding data directly from MATLAB scripts.

			Starting with ROS topics and MATLAB callback functions

			In this section, we will discuss how to publish and subscribe ROS messages using MATLAB scripts. The first script that we will analyze defines a typical template to develop the control loop of our robot. Firstly, we will subscribe to an input topic, and, then we will republish its value on an output topic for a certain amount of time. The complete source code is contained in talker.m, in the code provided with the book, in the ros_matlab_test package.

			Let's see the content of the talker.m script:

			rosinit

			pause(2)

			talker_sub = rossubscriber( '/talker' );

			[chatter_pub, chatter_msg] = rospublisher('/chatter','std_msgs/String');

			r = rosrate(2); % 2 Hz loop rate

			pause(2) % wait a bit the roscore initialization

			for i = 1:20

			      %Get data from the input topic

			      data = talker_sub.LatestMessage;

			      chatter_msg.Data = data.Data;

			      %Publish data on the output topic

			      send(chatter_pub, chatter_msg);

			      %Wait for the control loop rate

			      waitfor(r);

			end

			%Shutdown ROS connection

			rosshutdown

			Let's see how the script works. The first thing to do is to initialize the MATLAB-ROS node. In this example, we want to connect MATLAB to the local ROS network and make it able to both read and write data on topics. It could be convenient to include a pause after the init command before continuing with the MATLAB script to wait for the completion of the initialization: 

			rosinit

			pause(2)

			Then, we subscribe to the /talker topic while initializing the advertiser to the /chatter topic of the std_msgs/String type:

			talker_sub = rossubscriber( '/talker' );

			[chatter_pub, chatter_msg] = rospublisher('/chatter','std_msgs/String');

			Finally, we use the LatestMessage function to get the last message on the input topic, while publishing the message on the /chatter topic:

			data = talker_sub.LatestMessage;

			send(chatter_pub, chatter_msg);

			At this point, you can publish the desired message on the /talker topic, using the command line from one of the computers running Linux in the same network as the MATLAB computer, and visualize the message published on the /chatter topic. 

			Now, you can run the script by typing its name in the Command Window:

			>> talker

			If everything has been correctly set, the output on the Linux machine should appear as in the following screenshot:

			
				
					[image: Figure 14.8 – Communication between MATLAB and ROS ]
				

			

			Figure 14.8 – Communication between MATLAB and ROS

			The previous script defines a typical template to implement the control loop of an autonomous robot. Instead of continuously asking for the last message received on the topics, we can define a callback function that is called every time that a new message is received. In this way, we could write more complex control loops to handle the robot behavior, asynchronously receiving multiple information from ROS topics. In the next example, we will start to connect ROS-MATLAB to Gazebo, simulating the TurtleBot robot and plotting the value of its laser sensor using MATLAB.

			To run the Gazebo simulation, we will use the turtlebot3_gazebo package. Note that the turtlebot3 package has configuration and source files for three different turtlebot3 models. We will use the simulation with the burger model, so we set it before launching the Gazebo scene:

			export TURTLEBOT3_MODEL=burger 

			roslaunch turtlebot3_gazebo turtlebot3_world.launch

			If you have not installed turtlebot3 packages yet, you can install them with the following command:

			sudo apt-get install ros-noetic-turtlebot3*

			After starting Gazebo, different topics are published, among which is /scan. In this example, we need the following MATLAB functions:

			
					plot_laser.m: This initializes the ROS-MATLAB interface subscribing to the desired laser scanner topic and plots the laser data at the desired frame rate.

					get_laser.m: This receives and stores the value of the laser scanner data.

			

			Let's look at the code of the plot_laser script:

			function plot_laser()

			      global laser_msg;

			      %ROS_MASTER_URI

			      rosinit

			      pause(2)   

			      laser_sub = rossubscriber( '/scan', @get_laser );

			      r = rosrate(2); % 2 Hz loop rate

			      for i=1:50

			      plot(laser_msg   ); %Plot laser_msg

			      waitfor(r);

			      end

			      rosshutdown

			      close all

			end

			After setting up the ROS-MATLAB interface, we initialize the subscriber to the laser scan topic:

			laser_sub = rossubscriber('/scan', @get_laser );

			With this line, we demand that the get_laser function handles the data contained in the /scan topic. To exchange data between different MATLAB scripts, we use a global variable:

			      global laser_msg;

			Finally, we plot the laser scanner data of the laser data for 25 seconds:

			      plot(laser_msg);

			Let's now look at the code of the get_laser function:

			function get_laser(~, message)

			global laser_msg;

			laser_msg = message;

			End

			In this function, we just save the value of the laser scanner data. After launching the Gazebo simulation, we can run the MATLAB script:

			>> plot_laser

			The output of the default placement of the scene objects is shown in the following screenshot:

			

			
				
					[image: Figure 14.9 – Gazebo laser scanner data plotted in MATLAB ]
				

			

			Figure 14.9 – Gazebo laser scanner data plotted in MATLAB

			In the previous examples, we just showed how to get data from the ROS network. In the next section, we will implement a motion algorithm that drives the TurtleBot robot into its environment using laser scanner data to avoid obstacles. 

			Developing a robotic application using MATLAB and Gazebo

			Until now, we have used MATLAB only to exchange data using ROS topics. In this section, we are going to demonstrate how easy it is to create a robotic application for a mobile robot using MATLAB and Navigation Toolbox. We will design an obstacle avoidance system for a differential mobile robot that allows the TurtleBot robot to navigate a crowded environment without colliding with any obstacles. We will present a MATLAB script that will set the control velocities of the robot to generate a random movement. At the same time, the laser scanner data of the sensor of the robot will be used to avoid obstacles. To implement this behavior, we will rely on the Vector Field Histogram (VFH) algorithm to compute the obstacle-free steering directions of the robot, based on range sensor data. This algorithm is already provided by Navigation Toolbox in the controllerVFH class. Finally, after some navigation time, some log data will be plotted, using the MATLAB function. This could help developers to debug our application.

			The complete source code of the script that we are going to discuss can be found in the vfh_obstacle_avoidance.m source file and its content is explained.

			We include the source code in a function called vfh_obstacle_avoidance. As usual, at the start, we initialize the ROS interface:

			function vfh_obstacle_avoidance()  

			      rosinit

			pause(2) 

			Then, we subscribe to the laser scan message and declare variables to advertise the commands to control the robot. The ROS publisher function returns both the instantiated publisher, velPub, and the type of the message to send via the publisher, velMsg. In addition, we subscribe to the odometry of the robot to track its velocity during the motion:

			      laserSub = rossubscriber('/scan');

			      odomSub =  rossubscriber('/odom');

			       [velPub, velMsg] = rospublisher('/cmd_vel');

			We are now ready to instantiate the VFH object to implement our obstacle avoidance system:

			      vfh = controllerVFH;

			Some parameters are needed for the VFH algorithm. These are as follows: 

			
					DistanceLimits: The limits for laser readings, specified with a two-dimensional vector continuing the minimum and maximum ranges to consider a valid laser measure

					RobotRadius: The dimension of the robot specified in meters

					MinTurningRadius: The minimum turning radius, in meters, of the robot

					SafetyDistance: The maximum space to allow between the robot and the obstacles

			

			We set these values in the following way:

			vfh.DistanceLimits = [0.05 1];

			      vfh.RobotRadius = 0.1;

			      vfh.MinTurningRadius = 0.2;

			      vfh.SafetyDistance = 0.1;

			We are now ready to start the control loop that allows the motion of the robot. Firstly, we define the control loop rate:

			      rate = robotics.Rate(10);

			In the following, the motion control loop is described. We want to perform the control loop for a desired amount of time. We can use rate.TotalElapsedTime to track the elapsed time. This function returns the elapsed time in seconds from the creation of the rate object. Inside the control loop, we will read the sensor data from the laser scanner topic: 

			      while rate.TotalElapsedTime < 25

			            laserScan = receive(laserSub);

			            odom = receive(odomSub);

			            ranges = double(laserScan.Ranges);

			angles = double(laserScan.readScanAngles);

			targetDir specifies the angle direction of the robot movement. Its value must be expressed in radians, and the robot's forward direction is considered as 0 radians. As already stated, the target direction in our example is randomly calculated at each control loop:

			targetDir = (r_max-r_min).*rand();

			Then, we can call the field histogram method to calculate an obstacle-free steering direction on the base of the input laser scanner data and the actual desired direction of the movement:

			steerDir= vfh(ranges, angles, targetDir);

			If a valid steering direction exists, we need to calculate the rotation velocity to send to the robot to actuate it. To do this, we will use the following function:

			w = exampleHelperComputeAngularVelocity(steerDir, 1);

			This function returns the angular velocity for a differential drive robot expressed in rad/s, given a steering direction in the robot's frame, like in our case. In addition, the second parameter of the function represents a maximum velocity value to saturate the calculated one. Finally, we plot the minimum distance of the robot from the detected obstacles during its motion, the performed path, and the actuated angular and forward velocities:

			figure(1);

			plot( ob_dist, 'red-' );

			figure(2);

			plot( odom_vel_x, 'red' );

			figure(3);

			plot( odom_vel_z, 'blue' );

			figure(4)

			plot( odom_pos_x, odom_pos_y, 'red');

			To test this example, first we need to launch the TurtleBot simulation scene on the computer where we want to run roscore:

			roslaunch turtlebot3_gazebo turtlebot_world.launch

			Then we must invoke the MATLAB script:

			>> vfh_obstacle_avoidance

			While the robot will navigate the same environment depicted in Figure 14.9, an example of the output of the MATLAB script is shown in the following screenshot:

			
				
					[image: Figure 14.10 – Log data plotted using MATLAB print functions ]
				

			

			Figure 14.10 – Log data plotted using MATLAB print functions

			In this screenshot, we have different data retrieved by the simulation. In particular, at the upper left, the minimum obstacle distance is reported, at the upper right, the linear forward velocity is reported, and at the bottom left and bottom right, the angular velocity and executed path are depicted. 

			The previous plots can be used to check the performance of the obstacle avoidance algorithm. 

			Another useful tool of MATLAB software is the possibility to use, create, and model control systems with a graphical tool called Simulink. Simulink can be connected with the ROS network and can use ROS functions, as discussed in the next section.

			Getting started with ROS and Simulink

			In the previous sections, we discussed how to interact with ROS using MATLAB. In this section, we are going to use another powerful tool of MATLAB: Simulink. Simulink is a graphical programming environment for modeling, simulating, and analyzing dynamical systems. We can use Simulink to create a model of a system and simulate its behavior over time. In this section, we will start creating our first simple system from the ROS framework. We will also discuss how to develop a ROS application using Simulink.

			Creating a wave signal integrator in Simulink

			To model a new system, let's start by opening Simulink. We can open it by typing the following command in the Command Window:

			>> Simulink

			Then, you should choose to create a new blank model. To create a new system, we must import the desired Simulink blocks that will compose it. These blocks can be directly dragged and dropped into the model window from the Library Browser. To open the Library Browser, select View | Library from the model pane toolbar. For our first system, we need four blocks:

			
					Sine wave: This generates a sinusoidal signal that will represent the input of our system. 

					Integrator: This integrates an input signal.

					Bus creator: This combines multiple signals in one signal.

					Scope: This graphically visualizes the input signal.

			

			After importing these blocks, your model pane should appear as in the following figure:

			
				
					[image: Figure 14.11 – The sine wave, integrator, bus creator, and scope Simulink blocks ]
				

			

			Figure 14.11 – The sine wave, integrator, bus creator, and scope Simulink blocks

			Some blocks must be properly configured with some parameters. For example, the sine wave block requires the amplitude and the frequency sinusoidal signal to generate. To set these values, we can explore block parameters with a double-click on the desired block. To make the system work, we need to properly connect the Simulink blocks, as shown in this model:

			
				
					[image: Figure 14.12 – Sinusoidal signal integrator ]
				

			

			Figure 14.12 – Sinusoidal signal integrator

			Now that the model components have been connected, we can simulate the behavior of our system. First, we should configure the duration of the simulation by setting the start and stop simulation times. Open the Simulation | Model Configuration Parameters window and insert the desired value. In our example, we are considering a start time of 0 and a stop time of 10.0:

			
				
					[image: Figure 14.13 – Simulation time for our system ]
				

			

			Figure 14.13 – Simulation time for our system

			Now, we can press the play button in the model pane toolbar, while we check the output by exploring the content of the scope block, with a double-click on it:

			
				
					[image: Figure 14.14 – Sinusoidal and integrated signal ]
				

			

			Figure 14.14 – Sinusoidal and integrated signal

			Note that even if we inserted 10 seconds of simulation time, Simulink would not work in real time but would only simulate the increment of the time steps in the simulation. In this way, the effective elapsed time during the simulation will be very short. The model proposed in this example can be found in the book's source code in the ros_matlab_test/staring_example.mdl model file.

			Working with ROS messages in Simulink

			The Simulink interface for ROS allows us to model systems that can be linked to other nodes of the ROS network. This support includes a library of Simulink blocks for sending and receiving messages via topics. When we start the simulation of the developed model, Simulink will try to connect to a ROS network, which can be running on the same computer where Simulink is or on another remote machine. Once this connection is established, Simulink exchanges messages with the ROS network until the simulation is terminated. As we did in the previous section, we will start by showing how to read and write data, using ROS topics, and then we will discuss how to create a more complex system to control the TurtleBot robot simulated in Gazebo. Let's start to create two different Simulink models. In one model, we are going to develop a message publisher while in the other one, we will implement a simple subscriber. These models can be found in the source code directory, ros_matlab_test, called publisher.mdl  and subscriber.mdl, respectively.

			Publishing a ROS message in Simulink

			To publish a ROS message in Simulink, we mainly need two blocks:

			
					Publish: This block sends a message on the ROS network. Using block parameters, we can specify the topic name and the message type. 

					Blank message: This block creates a blank message with the specified message type.

			

			Let's see how to connect these blocks to publish a geometry_msgs/Twist message on a new topic, called /position. Get started by importing the blank message block from the Library Browser and configuring the type of message by double-clicking on it. From the block parameters pane, we can press the Select button to select the ROS message type from a list, as shown in the following screenshot:

			
				
					[image: Figure 14.15 – Parameter configuration for a Simulink ROS blank message block ]
				

			

			Figure 14.15 – Parameter configuration for a Simulink ROS blank message block

			Now we are ready to import the ROS publish block: drag and drop the block to the model and double-click on it to configure the topic source and the message type. Select Specify your own for the topic source field to enter the desired topic name. Enter /position in the Topic field. As we have already seen, we can select the type of the message to publish:

			
				
					[image: Figure 14.16 – Parameter configuration for a Simulink ROS publish block ]
				

			

			Figure 14.16 – Parameter configuration for a Simulink ROS publish block

			Now, we must fill in the fields of the ROS message to publish before sending it into the ROS network. We will use two other Simulink components to do this work. The first is the sine wave, the sinusoidal signal generation already used in the first Simulink example. The second one is a signal bus assignment. In fact, a ROS message is represented as a bus signal in the Simulink environment, allowing us to manage its field using the bus signal block. Connect the output port of the blank message block to the bus input port of the BusAssignment block. Connect the output port of the BusAssignment block to the input port of the ROS publish block. Then, configure the bus signal parameters: double-click on the BusAssignment block. You should see X, Y, and Z (the signals comprising a geometry_msgs/Twist message) listed on the left. Remove the element in the right list and select both the X and Y signals of the linear part of the message in the left list, click Select >>, and then click OK to close the block mask. In this case, we will assign only the first two components of the linear part of the Twist message:

			
				
					[image: Figure 14.17 – Bus assignment for the geometry_msgs/Twist message ]
				

			

			Figure 14.17 – Bus assignment for the geometry_msgs/Twist message

			After completing the parameter configuration of the bus assignment module, the shape of the block will change, accepting the value of the selected input signals. Now, we should assign the desired value to publish to these components. We can do this by using the sine wave block, as we did in the previous example. Drag and drop two sinusoidal signal generators, linking them to the bus assignment block. The final model will look as follows: 

			
				
					[image: Figure 14.18 – The publisher Simulink model ]
				

			

			Figure 14.18 – The publisher Simulink model

			An additional block has been included in our publisher Simulink model: ros_rate. This block is needed to simulate real-time behavior during the execution of our model, implementing the ROS rate mechanism. Without this module, in fact, the execution rate of this node will be very high, publishing ROS messages at maximum frequency. The ros_rate block is a special module called the MATLAB System block and allows us to instantiate and invoke a MATLAB class object. After importing this block into the system model, we should select the system object name to invoke, or create a new one:

			
				
					[image: Figure 14.19 – MATLAB System block ]
				

			

			Figure 14.19 – MATLAB System block

			The code of the ros_rate block is in the ros_rate.m source file and it is reported and discussed. In this code, we defined the ros_rate class, which has two objects: the rate specifying the loop frequency and rateObj, which implements the rate mechanism. The most important methods of this class are the setupImpl(obj) method, which is called at the start of the simulation and is used to initialize the class stuff, and the stepImpl(obj) method, which is invoked at each step time to regulate the execution time of the simulation:

			classdef ros_rate < matlab.System

			      properties

			           RATE;

			end

			      methods(Access = protected)

			      function setupImpl(obj)

			                  obj.rateObj = robotics.Rate(obj.RATE);

			            end

			            function stepImpl(obj)

			                  obj.rateObj.waitfor();

			            end

			end

			Now that our model is complete, we require a never-ending duration for our simulation setting to inf value the stop time of the simulation. In this way, we can terminate the simulation when desired by using the Stop button. Now, we can play the simulation and read the content published on the /position topic. In the next section, we will discuss the subscriber implementation.

			Subscribing to a ROS topic in Simulink

			To subscribe to a ROS topic, we only need the Subscribe block. Even in this case, we must configure the type of the message to read and the topic name. Let's select the /position topic in order to read the data sent to the ROS network by the publisher Simulink model. The Subscribe block has two outputs: IsNew, a Boolean signal that defines whether a new message is received, and Msg, which contains the received message:

			
				
					[image: Figure 14.20 – Simulink subscriber block ]
				

			

			Figure 14.20 – Simulink subscriber block

			In the publisher model, if we have used a bus creator to aggregate multiple data in one message, then we need to split the data of the message. For this, we will use a BusSelector block with one input and two outputs: the X and Y fields of the linear part of the Twist message. To create this block, configure it to have, as the selected signals, only the Linear.X and Linear.Y parts of the Twist message:

			
				
					[image: Figure 14.21 – BusSelector block ]
				

			

			Figure 14.21 – BusSelector block

			In our implementation, we include the bus selector in a subsystem, another type of block that can be enabled/disabled with the use of an enable port. In this way, we can link the IsNew field of the subscriber block to the subsystem and enable its output only if a new message is received. To explore the content of a subsystem, it is enough to double-click on it, like any other block. Finally, we can add two scope blocks to plot the output of the subsystem. The final linked model is shown in the following figure:

			
				
					[image: Figure 14.22 – Subscriber system model ]
				

			

			Figure 14.22 – Subscriber system model

			We can now run both the publisher and subscriber systems and check the output on the scope blocks. Note that roscore must be running on your machine before starting the publisher and subscriber models. 

			Before concluding this chapter, we will discuss how to implement a control system using Simulink.

			Developing a simple control system in Simulink

			Now that we have learned how to interface Simulink and ROS, we can try to implement a more complex system that is able to control a real or simulated robot. We will continue to work with the TurtleBot robot simulated in Gazebo, and we will see how to control its orientation to bring it to the desired value. In other words, we will implement a control system that will measure the orientation of the robot using its odometry, comparing this value with the desired orientation and obtaining the orientation error. We will use a PID controller to calculate the velocity to actuate the robot to reach the final desired orientation, setting the orientation error to 0. This controller is already available in Simulink, so we don't need to implement it by ourselves. Let's start to discuss all the elements of our model:

			
				
					[image: Figure 14.23 – TurtleBot orientation control model in Simulink ]
				

			

			Figure 14.23 – TurtleBot orientation control model in Simulink

			The input of the system is represented by the /odom message, which contains information about the actual pose of the robot and its velocity, and the constant block, which specifies the desired orientation of TurtleBot. The first thing that our model does is to estimate the orientation from the /odom message. The orientation is estimated by considering the angular velocity of the robot, integrating it at each time step. We use a MATLAB function block to threshold the velocity value of the /odom message to discard noise measurements. To integrate the velocity data, we use the Integrator block provided by Simulink. Again, we include this part in a subsystem:

			
				
					[image: Figure 14.24 – MATLAB function block ]
				

			

			Figure 14.24 – MATLAB function block

			The MATLAB function block allows developers to translate their own MATLAB functions into Simulink blocks. In this case, the code function is as follows:

			function y = fcn(u)

			y = 0.0;

			if abs( u ) > 0.01

			          y = u;

			end

			end

			We extract the Angular.Z value from the received Twist message that specifies the angular velocity with respect to the z axis, representing which direction is rotating the robot. We consider as noise any values below 0.01 rad/s. Now that we know how to rotate the robot, we can calculate the orientation error by considering the desired orientation (which is constant) using the Simulink Sum block. To change the desired orientation, we can double-click on the Constant block and configure its parameters. 

			Finally, we can implement our robot controller. For this scope, we will use a PID controller, one of the most used control loop mechanisms with feedback. This kind of controller is widely used both in industry and university settings for a variety of applications. It continuously tries to minimize the input error, applying a control output based on proportional, integral, and derivative terms, which gives the controller its name. After dragging and dropping this controller in the model, its response to the input data will depend on P, I, and D terms (called gains) that can be properly tuned from the block properties. Finally, we must publish the data generated by the PID controller on the /cmd_vel topic to actuate the robot in the Gazebo simulation. As usual, we can check on the scope block how the orientation error decreases after starting the simulation. Before applying the calculated velocity, we use another MATLAB function block to set the sign of the velocity. In fact, considering the sign of the velocity, the robot will rotate in two different directions: a negative velocity will make the robot rotate in a clockwise direction, while a positive velocity will make the robot rotate in a counterclockwise direction. In our case, we want to choose the direction that will bring the robot more quickly to its direction:

			function a_vel = fcn(v, cmd, mis)

			a_vel = 0;

			if (mis < cmd )

			    a_vel = abs(v);

			elseif ( mis > cmd )

			    a_vel = -abs(v);

			end

			end

			This function block receives as input the calculated velocity, the commanded orientation, and the actual orientation of the robot. When the measured orientation is lower than the commanded one, the robot must rotate in a clockwise direction, or otherwise in a counterclockwise direction.

			Configuring the Simulink model

			Now that our model is fully connected, we only need to configure and simulate it. Firstly, we need to import the ros_rate module to synchronize the Simulink simulation. In this case, a higher frame rate assures a better behavior, so you can double-click on the ros_rate block and set the rate to 100 Hz. Then, open the model configuration parameters by clicking on Simulation | Model Configuration Parameters from the main menu bar of the model window, or just press Ctrl + E. A suggested configuration is to use a fixed-step size solver, specifying the desired step size (we can use 0.01 seconds):

			
				
					[image: Figure 14.25 – Model configuration parameters ]
				

			

			Figure 14.25 – Model configuration parameters

			Now that the model has been configured, we can simulate it. As in the last example, launch the TurtleBot simulation:

			roslaunch turtlebot3_gazebo turtlebot_world.launch

			Then, push the Play button to start the Simulink simulation. On Gazebo, you should see the robot tries to reach the desired orientation, while on Simulink, you can use the scope panels to monitor the orientation error and the generated velocity command:

			
				
					[image: Figure 14.26 – turtlebot3 orientation error evolution ]
				

			

			Figure 14.26 – turtlebot3 orientation error evolution

			You can also check the Gazebo simulator to see that the robot is reaching the desired orientation.

			Summary

			In this chapter, we learned how to use MATLAB to develop simple or complex robotic applications and how to connect MATLAB with the other ROS nodes running on the same computer or in other nodes of the ROS network. We discussed how to handle topics in MATLAB and how to develop a simple obstacle avoidance system for a differential driver robot, reusing functions already available in the MATLAB toolboxes. Then, we introduced Simulink, a graphically based program editor that allows developers to implement, simulate, and validate their dynamic system models. We learned how to get and set data into the ROS network and how to develop a simple control system that controls the orientation of the TurtleBot robot. In the next chapter, we will present ROS-Industrial, a ROS package to interface industrial robot manipulators to ROS, and how to control it using the power of ROS, such as MoveIt!, Gazebo, and RViz.

			Here are some questions based on what we covered in this chapter.

			Questions

			
					What is MATLAB and Robotics System Toolbox? 

					How can we connect MATLAB with the ROS network?

					Why is MATLAB useful for developing robotic applications?

					What is Simulink?

					What is a PID controller and how can we implement it using Simulink?

			

		

	






			Chapter 15: ROS for Industrial Robots 

			Until now, we have been mainly discussing interfacing personal and research robots with ROS, but some of the main areas where robots are extensively used are in industries such as manufacturing, the automotive industry, and packaging. Does ROS support industrial robots? Are there any companies that use ROS to handle manufacturing processes? ROS-Industrial comes with a solution to interface industrial robot manipulators to ROS and control them using its powerful tools, such as MoveIt, Gazebo, and RViz.

			In this chapter, we will discuss the following topics:

			
					Understanding and getting started with ROS-Industrial packages

					Creating a URDF for an industrial robot and interfacing it with MoveIt

					Working with the MoveIt configuration for a Universal Robots arm and ABB robots

					Understanding ROS-Industrial robot support packages

					Understanding ROS-Industrial robot client and driver packages

					Working with IKFast algorithms and the MoveIt IKFast plugin

			

			Let's start with a brief overview of ROS-Industrial.

			Technical requirements

			To follow this chapter, you need a standard laptop running Ubuntu 20.04 with ROS Noetic installed. The reference code for this chapter can be downloaded from the following Git repository: https://github.com/PacktPublishing/Mastering-ROS-for-Robotics-Programming-Third-edition.git. The code is contained in the Chapter15/ abb_irb6640_moveit_plugins and Chapter15/ikfast_demo folders.

			Understanding ROS-Industrial packages

			ROS-Industrial basically extends the advanced capabilities of ROS software to industrial robots employed in manufacturing processes. ROS-Industrial consists of many software packages, which help us to control industrial robots. These packages are BSD (legacy)/Apache 2.0 (preferred) licensed programs, which contain libraries, drivers, and tools with a standard solution for industrial hardware. ROS-Industrial is now guided by the ROS-Industrial Consortium. The official website of ROS-Industrial (ROS-I) can be found at http://rosindustrial.org/.

			Goals of ROS-Industrial

			The main goals behind ROS-Industrial development are as follows:

			
					Combining the strength of ROS with existing industrial technologies to explore the advanced capabilities of ROS in the manufacturing process

					Developing reliable and robust software for industrial robot applications

					Providing an easy way to do research and development in industrial robotics

					Creating a wide community supported by researchers and professionals for industrial robotics

					Providing industrial-grade ROS applications and becoming a one-stop location for industry-related applications

			

			Before exploring the capabilities of ROS-Industrial with a set of industrial robots, let's briefly introduce it, discussing its history, architecture, and installation.

			ROS-Industrial – a brief history

			In 2012, the ROS-Industrial open source project started as a collaboration of Yaskawa Motoman Robotics (http://www.motoman.com/), Willow Garage (https://www.willowgarage.com/), and the Southwest Research Institute (SwRI) (http://www.swri.org/) for using ROS in industrial manufacturing. ROS-I was founded by Shaun Edwards in January 2012.

			In March 2013, the ROS-I Consortium Americas and Europe were launched, led by SwRI in Texas and Fraunhofer IPA in Germany, respectively. In the following list, a set of benefits that ROS-I provides to the community are detailed:

			
					Explores the features in ROS: The ROS-Industrial packages are tied to the ROS framework so that we can use all the ROS features in industrial robots too. Using ROS, we can create custom inverse kinematic solvers for each robot and implement object manipulation, using 2D/3D perception.

					Out-of-the-box applications: The ROS interface enables advanced perception in robots for working with picking up and placing complex objects.

					Simplifies robotic programming: ROS-I eliminates teaching and planning the paths of robots and instead, automatically calculates a collision-free optimal path for the given points.

					Open source: ROS-I is open source software that allows commercial use without any restrictions.

			

			Installing ROS-Industrial packages

			The main repository of ROS-Industrial packages can be found at the following link: https://github.com/ros-industrial. In this repository, developers can find different packages used to interface their ROS system with typical industrial tools and devices, such as Programmable Logic Controller (PLC), or directly communicate with the hardware driver of popular industrial manipulators such as Kuka, abb, or Fanuc. Apart from this, the main repository for ROS-Industrial resources is the industrial_core stack, which can be downloaded from the following Git repository: 

			git clone https://github.com/ros-industrial/industrial_core

			This repository is still under development to assure full compatibility with ROS Noetic. However, the industrial-core stack includes the following set of ROS packages:

			
					industrial-core: This stack contains packages and libraries for supporting industrial robotic systems. The package consists of nodes for communicating with industrial robot controllers and industrial robot simulators and also provides ROS controllers for industrial robots.

					industrial_deprecated: This package contains nodes, launch files, and so on that are going to be deprecated. The files inside this package could be deleted from the repository in the next ROS versions, so we should look for the replacements of these files before the content is deleted.

					industrial_msgs: This package contains message definitions that are specific to the ROS-Industrial packages.

					simple_message: This is a part of ROS-Industrial and is a standard message protocol containing a simple messaging framework for communicating with industrial robot controllers.

					industrial_robot_client: This package contains a generic robot client for connecting to industrial robot controllers, which runs an industrial robot server and can communicate using a simple message protocol.

					industrial_robot_simulator: This package simulates the industrial robot controller, which follows the ROS-Industrial driver standard. Using this simulator, we can simulate and visualize the industrial robot.

					industrial_trajectory_filters: This package contains libraries and plugins for filtering the trajectories that are sent to the robot controller.

			

			ROS-I implements a multilayer high-level architecture to implement an application for industrial manipulators, as discussed in the next section.

			Block diagram of ROS-Industrial packages

			The following diagram is a simple block diagram representation of ROS-I packages that are organized on top of ROS. We can see the ROS-I layers on top of the ROS layers. 

			
				
					[image: Figure 15.1 – The high-level system architecture of ROS-Industrial ]
				

			

			Figure 15.1 – The high-level system architecture of ROS-Industrial

			We can look at a brief description of each of the layers for a better understanding:

			
					The ROS GUI: This layer includes the ROS plugin-based GUI tools layer, which consists of tools such as RViz, rqt_gui, and so on.

					The ROS-I GUI: These GUIs are standard industrial UIs for working with industrial robots that may be implemented in the future.

					The ROS Layer: This is the base layer in which all communications take place.

					The MoveIt Layer: The MoveIt layer provides a direct solution to industrial manipulators in planning, kinematics, and picking and placing.

					The ROS-I Application Layer: This layer consists of an industrial process planner, which is used to plan what is to be manufactured, how it will be manufactured, and what resources are needed for the manufacturing process.

					The ROS-I Interface Layer: This layer consists of the industrial robot client, which can be connected to the industrial robot controller using the simple message protocol.

					The ROS-I Simple Message Layer: This is the communication layer of the industrial robot, which is a standard set of protocols that will send data from the robot client to the controller and vice versa.

					The ROS-I Controller Layer: This layer consists of vendor-specific industrial robot controllers.

			

			After discussing the basic concepts, we will start to interface an industrial robot to ROS using ROS-Industrial. First, we will show how to create a URDF model of an industrial robot and how to create a proper MoveIt configuration for it. Then, we will discuss how to control real and simulated Universal Robots and Abb industrial manipulators, analyzing all the necessary elements of a ROS-I package. Finally, we will work with the Ikfast algorithm and plugin to speed up kinematic calculations with MoveIt.

			Creating a URDF for an industrial robot

			Creating the URDF file for an ordinary robot and an industrial robot are the same, but industrial robots require some standards that should be strictly followed during their URDF modeling, which are as follows:

			
					Simplify the URDF design: The URDF file should be simple and readable and only need the important tags.

					Develop a common design: Develop a common design formula for all industrial robots by various vendors.

					Modularize the URDF: The URDF needs to be modularized using XACRO macros and it can be included in a large URDF file without much hassle.

			

			The following points are the main differences in the URDF design followed by ROS-I:

			
					Collision-aware: Industrial robot IK planners are collision-aware, so the URDF should contain an accurate collision 3D mesh for each link. Every link in the robot should export to STL or DAE with a proper coordinate system. The coordinate system that ROS-I is following is the x axis pointing forward and the z axis pointing up when each joint is in the zero position. It is also to be noted that, if the joint's origin coincides with the base of the robot, the transformation will be simpler. It will be good if we put robot-based joints in the zero position (origin), which can simplify the robot design. In ROS-I, the mesh file used for visual purposes is highly detailed, but the mesh file used for collision will not be detailed, because it takes more time to perform collision checking. In order to remove the mesh details, we can use tools such as MeshLab (http://meshlab.sourceforge.net/), using its option from the top bar menu (Filters | Remeshing, Simplification and Reconstruction | Convex Hull).

					URDF joint conventions: The orientation value of each robot joint is limited to a single rotation; that is, out of the three orientation (roll, pitch, and yaw) values, only one value will be there.

					xacro macros: In ROS-I, the entire manipulator section is written as a macro using xacro. We can add an instance of this macro in another macro file, which can be used for generating a URDF file. We can also include additional end-effector definitions in this same file.

					Standard frames: In ROS-I, the base_link frame should be the first link and tool0 (tool-zero) should be the end-effector link. Also, the base frame should match the base instance of the robot controller. In most cases, the transform from base to base_link is treated as fixed.

			

			After building the xacro file for the industrial robot, we can convert to URDF and verify it using the following command:

			rosrun xacro xacro -o <output_urdf_file> <input_xacro_file>

			check_urdf <urdf_file>

			Next, we will discuss the differences in creating the MoveIt configuration for an industrial robot.

			Creating the MoveIt configuration for an industrial robot

			The procedure for creating the MoveIt interface for industrial robots is the same as the other ordinary robot manipulators, except for some standard conventions. The following procedure gives a clear idea about these standard conventions:

			
					Launch the MoveIt setup assistant by using the following command:roslaunch moveit_setup_assistant setup_assistant.launch


					Load the URDF from the robot description folder or convert xacro to URDF and load the setup assistant.

					Create a self-collision matrix with Sampling Density of ~ 80,000. This value can increase the accuracy of collision checking in the arm.

					Add a virtual joint, as shown in the following screenshot. Here, the virtual and parent frame names are arbitrary:[image: Figure 15.2 – Adding MoveIt – virtual joints ]
Figure 15.2 – Adding MoveIt – virtual joints


					In the next step, we are adding planning groups for the manipulator and end effectors. Here, also, the group names are arbitrary. The default plugin is KDL; we can change it even after creating the MoveIt configuration for the manipulator.[image: Figure 15.3 – Creating a manipulator planning group in MoveIt ]
Figure 15.3 – Creating a manipulator planning group in MoveIt


					Then, we can create the planning group for the end effector as well:[image: Figure 15.4 – Creating an endeffector planning group in MoveIt ]
Figure 15.4 – Creating an endeffector planning group in MoveIt


					The planning groups, that is, the manipulator plus the endeffector configuration, will be shown like this:[image: Figure 15.5 – Planning groups of manipulators and end effectors in MoveIt ]
Figure 15.5 – Planning groups of manipulators and end effectors in MoveIt


					We can assign robot poses, such as the home position, the up position, and so on. This setting is an optional one.

					We can assign end effectors, as shown in the following screenshot; this is also an optional setting:[image: Figure 15.6 – Setting end effectors in the MoveIt setup assistant ]
Figure 15.6 – Setting end effectors in the MoveIt setup assistant


					Configure the ROS controllers to actuate a simulated or real robotic arm. This can be done using the Auto Add FollowjointsTrajectory Controllers button, as shown in the following screenshot:[image: Figure 15.7 – Generate ROS controller configuration ]
Figure 15.7 – Generate ROS controller configuration


					After setting the end effector, we can directly generate the configuration files. It should be noted that the moveit-config package should be named <robot_name>_config, where robot_name is the name of the URDF file. Also, if we want to move this generated config package to another PC, we need to edit the .setup_assistant file, which is inside the package generated by the setup_assistant tool and it is a hidden file. We should change the absolute path to the relative path. Here is an example of the abb_irb2400 robot. We should mention the relative path of URDF and SRDF in this file, as follows:moveit_setup_assistant_config: 
  URDF: 
    package: abb_irb2400_support 
    relative_path: urdf/irb2400.urdf 
  SRDF: 
    relative_path: config/abb_irb2400.srdf 
  CONFIG: 
    generated_timestamp: 1402076252 


			

			The configuration of the MoveIt package for our robot is now complete. We should only modify the ROS controller's configuration to properly stream the generated position trajectory robot joints, as discussed in the next section.

			Updating the MoveIt configuration files

			After creating the MoveIt configuration, we should update the ros_controllers.yaml file inside the config folder of the MoveIt package. Here is an example of ros_controllers.yaml:

			controller_list: 

			  - name: "" 

			    action_ns: follow_joint_trajectory 

			    type: FollowJointTrajectory 

			    joints: 

			      - shoulder_pan_joint 

			      - shoulder_lift_joint 

			      - elbow_joint 

			      - wrist_1_joint 

			      - wrist_2_joint 

			      - wrist_3_joint 

			In the previous file, we have to pay attention to the action_ns field. This field represents the name of the action server used to send the trajectory to the simulated or real robotic platform. We will discuss in the next section how to configure it. 

			We should also update joint_limits.yaml with the joint information. Here is a code snippet of joint_limits.yaml:

			joint_limits: 

			  shoulder_pan_joint: 

			    has_velocity_limits: true 

			    max_velocity: 2.16 

			    has_acceleration_limits: true 

			    max_acceleration: 2.16 

			We can also change the kinematic solver plugin by editing the kinematics.yaml file. After editing all the configuration files, we need to edit the controller manager launch file (<robot>_config/launch/<robot>_moveit_controller_manager.launch.xml).

			Here is an example of the controller_manager.launch.xml manager.launch file:

			<launch>

			  <arg name="moveit_controller_manager" default="moveit_simple_controller_manager/MoveItSimpleControllerManager" />

			  <param name="moveit_controller_manager" value="$(arg moveit_controller_manager)"/>

			  <!-- loads ros_controllers to the param server -->

			  <rosparam file="$(find ur10_config)/config/ros_controllers.yaml"/>

			</launch>

			Finally, we should configure the demo.launch file to start all necessary configuration and additional launch files needed for the execution of a motion trajectory. In particular, the demo.launch file includes the move_group.launch file, which is responsible for running all the main MoveIt executables with and without a real trajectory execution. Here is an example of the move_group inclusion: 

			<include file="$(find ur10_config)/launch/move_group.launch">

			      <arg name="allow_trajectory_execution" value="false"/>

			      <arg name="fake_execution" value="true"/>

			      <arg name="info" value="true"/>

			      <arg name="debug" value="$(arg debug)"/>

			      <arg name="pipeline" value="$(arg pipeline)"/>

			</include>

			In the previous example, the allow_trajectory_execution parameter is set to false. This means that we can check the resulting planned trajectory in the RViz window, without relying on a real or a simulated robot. In the following section, we will discuss how to connect the move_group node to a robot simulated in Gazebo. 

			Installing ROS-Industrial packages for Universal Robots arms

			Universal Robots (http://www.universal-robots.com/) is an industrial robot manufacturer based in Denmark. The company mainly produces three arms: UR3, UR5, and UR10. The robots are shown in the following figure:

			
				
					[image: Figure 15.8 – UR3, UR5, and UR10 robots ]
				

			

			Figure 15.8 – UR3, UR5, and UR10 robots

			The specifications of these robots are given in the following table:

			
				
					[image: Figure 15.9 – Universal Robots robot properties ]
				

			

			Figure 15.9 – Universal Robots robot properties

			In the next section, we will install the Universal Robots packages and work with the MovetIt interface to simulate industrial robots in Gazebo.

			Installing the ROS interface for Universal Robots

			We get the Universal Robots ROS-I packages by downloading them from the following repository:

			git clone https://github.com/ros-industrial/universal_robot.git  

			The Universal Robots packages are as follows:

			
					ur_description: This package consists of the robot description and Gazebo description of UR-3, UR-5, and UR-1.

					ur_driver: This package contains client nodes, which can communicate with the UR-3, UR-5, and UR-10 robot hardware controllers.

					ur_bringup: This package consists of launch files to start communication with the robot hardware controllers to start working with the real robot.

					ur_gazebo: This package consists of Gazebo simulations of UR-3, UR-5, and UR-10.

					ur_msgs: This package contains ROS messages used for communication between various UR nodes.

					urXX_moveit_config: These are the moveit config files of Universal Robots manipulators. One different package exists for each type of arm (ur3_moveit_config, ur5_moveit_config and ur10_moveit_config).

					ur_kinematics: This package contains kinematic solver plugins for UR-3, UR-5, and UR-10. We can use this solver plugin in MoveIt.

			

			After installing or compiling the Universal Robots packages, we can launch the simulation in Gazebo of the UR-10 robot by using the following command:

			roslaunch ur_gazebo ur10.launch

			After running this command, a Gazebo scene with a UR10 robot will open.

			
				
					[image: Figure 15.10 – Universal Robots UR-10 model simulation in Gazebo ]
				

			

			Figure 15.10 – Universal Robots UR-10 model simulation in Gazebo

			We can see the robot controller configuration file for interfacing with the MoveIt package. The following YAML file defines the JointTrajectory controller. It is placed in the ur_gazebo/controller folder with the name arm_controller_ur10.yaml:

			arm_controller:

			  type: position_controllers/JointTrajectoryController

			  joints:

			      - elbow_joint

			      - shoulder_lift_joint

			      - shoulder_pan_joint

			      - wrist_1_joint

			      - wrist_2_joint

			      - wrist_3_joint

			  constraints:

			      goal_time: 0.6

			      stopped_velocity_tolerance: 0.05

			      elbow_joint: {trajectory: 0.1, goal: 0.1}

			      shoulder_lift_joint: {trajectory: 0.1, goal: 0.1}

			      shoulder_pan_joint: {trajectory: 0.1, goal: 0.1}

			      wrist_1_joint: {trajectory: 0.1, goal: 0.1}

			      wrist_2_joint: {trajectory: 0.1, goal: 0.1}

			      wrist_3_joint: {trajectory: 0.1, goal: 0.1}

			  stop_trajectory_duration: 0.5

			  state_publish_rate:  25

			  action_monitor_rate: 10

			After starting the simulation, the robot will accept trajectory commands on the /arm_controller/follow_joint_trajectory server. We are now ready to configure the MoveIt package to plan and execute a motion trajectory.

			Understanding the MoveIt configuration of a Universal Robots arm

			The MoveIt configuration for Universal Robots arms is in the config directory of each moveit_config package (ur10_moveit_config for the UR-10 configuration).

			Here is the default content of the controller.yaml file of UR-10:

			controller_list: 

			  - name: "" 

			    action_ns: follow_joint_trajectory 

			    type: FollowJointTrajectory 

			    joints: 

			      - shoulder_pan_joint 

			      - shoulder_lift_joint 

			      - elbow_joint 

			      - wrist_1_joint 

			      - wrist_2_joint 

			      - wrist_3_joint 

			To properly connect the MoveIt side, we must set the correct action_ns element. Let's change this file in the following way: 

			controller_list: 

			  - name: "" 

			    action_ns: /arm_controller/follow_joint_trajectory

			    type: FollowJointTrajectory 

			    joints: 

			      - shoulder_pan_joint 

			      - shoulder_lift_joint 

			      - elbow_joint 

			      - wrist_1_joint 

			      - wrist_2_joint 

			      - wrist_3_joint 

			In the same directory, we can find the kinematic configuration: kinematics.yaml. This file specifies the IK solvers used for the robotic arm. For the UR-10 robot, the content of the kinematic configuration file is shown here:

			#manipulator: 

			#  kinematics_solver: ur_kinematics/UR10KinematicsPlugin 

			#  kinematics_solver_search_resolution: 0.005 

			#  kinematics_solver_timeout: 0.005 

			#  kinematics_solver_attempts: 3 

			manipulator: 

			  kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin 

			  kinematics_solver_search_resolution: 0.005 

			  kinematics_solver_timeout: 0.005 

			  kinematics_solver_attempts: 3 

			The definition of ur10_moveit_controller_manager.launch inside the launch folder is given as follows. This launch file loads the trajectory controller configuration and starts the trajectory controller manager:

			<launch> 

			  <rosparam file="$(find ur10_moveit_config)/config/controllers.yaml"/> 

			  <param name="use_controller_manager" value="false"/> 

			  <param name="trajectory_execution/execution_duration_monitoring" value="false"/> 

			  <param name="moveit_controller_manager" value="moveit_simple_controller_manager/MoveItSimpleControllerManager"/> 

			</launch> 

			After editing the configuration and launch files in the MoveIt configuration, we can start running the robot simulation and can check whether the MoveIt configuration is working well or not. Here are the steps to test an industrial robot:

			
					First, start the robot simulator. We will use the ur_gazebo package: roslaunch ur_gazebo ur10.launch


					Then, start the MoveIt planner using the demo.launch file of the ur10_moveit_config package, changing the allow_trajectory_execution and fake_execution parameter values, setting them to true and false respectively:roslaunch ur10_moveit_config demo.launch


					This launch file starts RViz as well. From its interface, we can set the desired target point of the robotic end effector and then use the Plan and Execute button. If MoveIt is able to find a feasible trajectory, it will also be executed in the Gazebo simulator, as shown in the following figure:

			

			
				
					[image: Figure 15.11 – Motion planning in the UR-10 model in Gazebo and RViz ]
				

			

			Figure 15.11 – Motion planning in the UR-10 model in Gazebo and RViz

			In addition, we can move the end-effector position of the robot and plan the path by using the Plan button. When we click the Execute button or the Plan and Execute button, the trajectory should be sent to the simulated robot, performing the motion in the Gazebo environment.

			Getting started with real Universal Robots hardware and ROS-I

			After testing our control algorithms in simulation using Gazebo, we can start to perform manipulation tasks with a real Universal Robots arm. The main difference between performing a trajectory simulating the robot and using real hardware is that we need to start the driver that will contact the arm controller to set the desired joint positions.

			The default driver of Universal Robots arms is released with the ur_driver package of ROS-I. This driver has been successfully tested with system versions ranging from v1.5.7 to v1.8.2. The last version of Universal Robots controllers is v3.2, so the default version of the ROS-I driver might not be fully compatible. For the newer versions of these systems (v3.x and up), it is recommended to use the unofficial ur_modern_driver package:

			
					To download ur_modern_driver, use the following Git repository:git clone https://github.com/ros-industrial/ur_modern_driver.git


					After downloading this package, we need to compile the workspace to be able to use the driver.

					The next step is to configure Universal Robots hardware to control it from our computer. Firstly, we must enable the networking capabilities of the Universal Robots hardware, using the teach pendant. Navigate into the Robot | Setup Network menu in order to select a proper configuration compatible with our network. If you prefer to have a fixed internet address for the robot, you must select the Static Address option and manually input the desired address information.

					You can also rely on the automatic address assignment selecting the DHCP option, and then apply the configuration. After setting the IP address, it could be useful to check the connection status by pinging the robot controller:ping IP_OF_THE_ROBOT


					If the controller replies to the ping command, the connection is successfully established, and we can start to control the manipulator.

					If your Universal Robots system has a version lower than v3.x, we can bring it up by running the following command:roslaunch ur_bringup ur10_bringup.launch robot_ip:=IP_OF_THE_ROBOT [reverse_port:=REVERSE_PORT]


					Replace IP_OF_THE_ROBOT with the IP address assigned to the robot controller. Then, we can test the motion of the robot by using the following script:rosrun ur_driver IP_OF_THE_ROBOT [reverse_port:=REVERSE_PORT]


					To operate with systems greater than v3.x, we can use launch files provided by the ur_modern_driver package:roslaunch ur_modern_driver ur10_bringup.launch robot_ip:=IP_OF_THE_ROBOT [reverse_port:=REVERSE_PORT]


					The next step is to use MoveIt to control the robot:roslaunch ur10_moveit_config ur5_moveit_planning_execution.launch
roslaunch ur10_moveit_config moveit_rviz.launch config:=true


					Note that for some desired robot configurations, MoveIt could have difficulties with finding plans with full joint limits. There is another version with lower restrictions for the joint limits. This operating mode can be started simply by using the argument limited in the launch command:roslaunch ur10_moveit_config ur5_moveit_planning_execution.launch limited:=true


			

			We have seen how to simulate and control a Universal Robots arm. In the next section, we will work with ABB robots.

			Working with MoveIt configuration for ABB robots

			We will work with two of the most popular ABB industrial robot models: IRB 2400 and IRB 6640. The following are photographs of these two robots and their specifications:

			
				
					[image: Figure 15.12 – ABB IRB 2400 and IRB 6640 ]
				

			

			Figure 15.12 – ABB IRB 2400 and IRB 6640

			The specifications of these robotic arms are given in the following table:

			
				
					[image: Figure 15.13 – ABB IRB robot properties ]
				

			

			Figure 15.13 – ABB IRB robot properties

			To work with ABB packages, clone the ROS packages of the robot into the catkin workspace. We can use the following command to do this task:

			git clone https://github.com/ros-industrial/abb

			Then, build the source packages using catkin_make. Actually, this package mainly contains configuration files, so nothing related to C++ code needs to be compiled. However, in the abb folder, we have a particular package defining kinematic plugins to speed up the inverse kinematic calculation. More details on this topic will be provided in the next section.

			To launch the ABB IRB 6640 in RViz for motion planning, use the following command:

			roslaunch abb_irb6640_moveit_config demo.launch

			The RViz window will open, and we can start motion planning the robot in RViz:

			
				
					[image: Figure 15.14 – Motion planning of ABB IRB 6640 ]
				

			

			Figure 15.14 – Motion planning of ABB IRB 6640

			One of the other popular ABB robot models is the IRB 2400. We can launch the robot in RViz by using the following command:

			roslaunch abb_irb2400_moveit_config demo.launch

			As after the previous command, a new RViz window will show the ABB IRB 2400 robot: 

			
				
					[image: Figure 15.15 – Motion planning of ABB IRB 2400 ]
				

			

			Figure 15.15 – Motion planning of ABB IRB 2400

			This last model is slightly different with respect to the other robots present in the ABB package. In fact, this model uses a particular plugin to solve the inverse kinematic problem. This plugin is implemented in the abb_irb2400_moveit_plugins ROS package, which can be selected as the default kinematic solver, as shown in the following figure:

			
				
					[image: Figure 15.16 – Kinematic solver for the ABB IRB 2400 robot ]
				

			

			Figure 15.16 – Kinematic solver for the ABB IRB 2400 robot

			In particular, when the MoveIt configuration package for this robot has been created, the Kinematic Solver field will be filled with the IKFastKinematicsPlugin solver, differently from the default KDL solver previously used. In this way, we will use a specific plugin to plan the motion trajectory that will provide better and faster solutions.

			Understanding the ROS-Industrial robot support packages

			The ROS-I robot support packages are a new convention followed for industrial robots. The aim of these support packages is to standardize the ways of maintaining ROS packages for a wide variety of industrial robot types of different vendors. Because of the standardized way of keeping files inside support packages, we don't have any confusion in accessing the files inside them. We can demonstrate a support package of an ABB robot and can see the folders and files and their uses.

			We have already cloned the ABB robot packages, and inside this folder, we can see three support packages that support three varieties of ABB robots. Here, we are taking the ABB IRB 2400 model support package: abb_irb2400_support. The following list shows the folders and files inside this package:

			
					config: As the name of the folder, this contains the configuration files of joint names, RViz configuration, and robot model-specific configuration.

					joint_names_irb2400: Inside the config folder, there is a configuration file, which contains the joint names of the robot that is used by the ROS controller.

					launch: This folder contains the launch file definitions of this robot. These files follow a common convention for all industrial robots.

					load_irb2400.launch: This file simply loads robot_description on the parameter server. According to the complexity of the robot, the number of xacro files can be increased. This file loads all xacro files in a single launch file. Instead of writing separate code for adding robot_description in other launch files, we can simply include this launch file.

					test_irb2400.launch: This launch file can visualize the loaded URDF. We can inspect and verify the URDF in RViz. This launch file includes the preceding launch files and starts the joint_state_publisher and robot_state_publisher nodes, which help to interact with the user on RViz. This will work without the need for real hardware.

					robot_state_visualize_irb2400.launch: This launch file visualizes the current state of the real robot by running nodes from the ROS-Industrial driver package with appropriate parameters. The current state of the robot is visualized by running RViz and the robot_state_publisher node. This launch file needs a real robot or simulation interface. One of the main arguments provided along with this launch file is the IP address of the industrial controller. Also, note that the controller should run a ROS-Industrial server node.

					robot_interface_download_irb2400.launch: This launch file starts bi-directional communication with the industrial robot controller to ROS and vice versa. There are industrial robot client nodes for reporting the state of the robot (robot_state node) and subscribing the joint command topic and issuing the joint position to the controller (joint_trajectory node). This launch file also requires access to the simulation or real robot controller and needs to mention the IP address of the industrial controllers. The controller should run the ROS-Industrial server programs too.

					urdf: This folder contains the set of standardized xacro files of the robot model.

					irb2400_macro.xacro: This is the xacro definition of a specific robot. It is not a complete URDF, but it's a macro definition of the manipulator section. We can include this file inside another file and create an instance of this macro.

					irb2400.xacro: This is the top-level xacro file, which creates an instance of the macro that was discussed in the preceding section. This file doesn't include any other files other than the macro of the robot. This xacro file will load inside the load_irb2400.launch file that we have already discussed.

					irb2400.urdf: This is the URDF generated from the preceding xacro file, using the xacro tool. This file is used when tools or packages can't load xacro directly. This is the top-level URDF for this robot.

					meshes: This contains meshes for visualization and collision checking.

					irb2400: This folder contains mesh files for a specific robot.

					visual: This folder contains STL files used for visualization.

					collision: This folder contains STL files used for collision checking.

					tests: This folder contains the test launch file to test all the preceding launch files.

					roslaunch_test.xml: This launch file tests all the launch files.

			

			Among all the configuration files, the real node that enables the communication between the robot and MoveIt is the robot client package. In the next section, we will discuss how this client is programmed.

			The ROS-Industrial robot client package

			The industrial robot client nodes are responsible for sending robot position/trajectory data from ROS MoveIt to the industrial robot controller. The industrial robot client converts the trajectory data to simple_message and communicates to the robot controller using the simple_message protocol. The industrial robot controller runs a server and industrial robot client nodes connect to this server and start communicating with it.

			Designing industrial robot client nodes

			The industrial_robot_client package contains various classes to implement industrial robot client nodes. The main functionalities that a client should have include updating the robot's current state from the robot controller, and also sending joint position messages to the controller. There are two main nodes that are responsible for getting the robot state and sending joint position values:

			
					The robot_state node: This node is responsible for publishing the robot's current position, status, and so on.

					The joint_trajectory node: This node subscribes to the robot's command topic and sends the joint position commands to the robot controller via the simple message protocol.

			

			The following figure gives the list of APIs provided by the industrial robot client:

			
				
					[image: Figure 15.17 – A list of the industrial robot client APIs ]
				

			

			Figure 15.17 – A list of the industrial robot client APIs

			We can briefly go through these APIs and their functionalities, as follows:

			
					RobotStateInterface: This class contains methods to publish the current robot position and status at regular intervals after receiving the position data from the robot controller.

					JointRelayHandler: The RobotStateInterface class is a wrapper around a class called MessageManager. What it does is it listens to the simple_ message robot connection and processes each message handling process, using Messagehandlersnode. The JointRelayHandler functionality is a message handler program, and its function is to publish the joint position in the joint_states topic.

					RobotStatusRelayHandler: This is another MessageHandler, which can publish the current robot status info in the robot_status topic.

					JointTrajectoryInterface: This class contains methods to send the robot's joint position to the controller when it receives a ROS trajectory command.

					JointTrajectoryDownloader: This class is derived from the JointTrajectoryInterface class, and it implements a method called send_to_robot(). This method sends an entire trajectory as a sequence of messages to the robot controller. The robot controller will execute the trajectory in the robot only after getting all sequences sent from the client.

					JointTrajectoryStreamer: This class is the same as the preceding class except in the implementation of the send_to_robot() method. This method sends independent joint values to the controller in separate threads. Each position command is sent only after the execution of the existing command. On the robot side, there will be a small buffer for receiving the position to make the motion smoother.

			

			The list of nodes inside the industrial robot client is as follows:

			
					robot_state: This node runs based on RobotStateInterface, which can publish the current robot states.

					motion_download_interface: This node runs JointTrajectoryDownloader, which will download the trajectory in sequence with the controller.

					motion_streaming_interface: This node runs JointTrajectoryStreamer, which will send the joint position in parallel using threading.

					joint_trajectory_action: This node provides a basic actionlib interface.

			

			Finally, to connect the client package with the hardware of the robot, a proper driver package must be used. This package is specific for each robot controller and in the next section, we will discuss the ABB robot driver package. 

			The ROS-Industrial robot driver package

			In this section, we will discuss the industrial robot driver package. If we take the ABB robot as an example, it has a package called abb_driver. This package is responsible for communicating with the industrial robot controller. This package contains industrial robot clients and launches the file to start communicating with the controller. We can check what is inside the abb_driver/launch folder. The following is a definition of a launch file called robot_interface.launch:

			<launch> 

			  <!-- robot_ip: IP-address of the robot's socket-messaging server --> 

			  <arg name="robot_ip" /> 

			  <!-- J23_coupled: set TRUE to apply correction for J2/J3 parallel linkage --> 

			  <arg name="J23_coupled" default="false" /> 

			 

			  <!-- copy the specified arguments to the Parameter Server, for use by nodes below --> 

			  <param name="robot_ip_address" type="str" value="$(arg robot_ip)"/> 

			  <param name="J23_coupled" type="bool" value="$(arg J23_coupled)"/> 

			 

			  <node pkg="abb_driver" type="robot_state" name="robot_state"/> 

			 

			After the configuration of the robot using the preceding instructions, we are ready to start the driver of the robot as well:

			  <!-- motion_download_interface: sends robot motion commands by DOWNLOADING path to robot 

			                                  (using socket connection to robot) --> 

			 

			<node pkg="abb_driver" type="motion_download_interface" name="motion_download_interface"/> 

			 

			  <!-- joint_trajectory_action: provides actionlib interface for high-level robot control --> 

			  <node pkg="industrial_robot_client" type="joint_trajectory_action" name="joint_trajectory_action"/> 

			</launch> 

			This launch file provides a socket-based connection to ABB robots using the standard ROS-Industrial simple_message protocol. Several nodes are started to supply both low-level robot communication and high-level actionlib support:

			
					robot_state: This publishes the current joint positions and robot state data.

					motion_download_interface: This commands the robot motion by sending motion points to the robot.

					joint_trajectory_action: This is the actionlib interface to control the robot motion.

			

			Their typical usage is as follows:

			roslaunch [robot_interface.launch] robot_ip:=IP_OF_THE_ROBOT

			We can see the abb_irb6600_support/launch/ robot_interface_download_irb6640.launch file, and this is the driver for the ABB IRB 6640 model. This definition of launch is given in the following code. The preceding driver launch file is included in this launch file. In other support packages of other ABB models, use the same driver with different joint configuration parameter files:

			<launch> 

			  <arg name="robot_ip" /> 

			  <arg name="J23_coupled" default="true" /> 

			 

			  <rosparam command="load" file="$(find abb_irb2400_support)/config/joint_names_irb2400.yaml" /> 

			 

			  <include file="$(find abb_driver)/launch/robot_interface.launch"> 

			    <arg name="robot_ip"    value="$(arg robot_ip)" /> 

			    <arg name="J23_coupled" value="$(arg J23_coupled)" /> 

			  </include> 

			</launch> 

			The preceding file is the manipulator-specific version of robot_interface.launch (of abb_driver):

			
					Defaults provided for IRB 2400: - J23_coupled = true

					Usage: robot_interface_download_irb2400.launch robot_ip:=<value>

			

			We should run the driver launch file to start communicating with the real robot controller. For the ABB robot IRB 2400, we can use the following command to start bi-directional communication with the robot controller and the ROS client:

			roslaunch abb_irb2400_support robot_interface_download_irb2400.launch robot_ip:=IP_OF_THE_ROBOT

			After launching the driver, we can start planning by using the MoveIt interface. It should also be noted that the ABB robot should be configured, and the IP of the robot controller should be found before starting the robot driver.

			Understanding the MoveIt IKFast plugin

			One of the default numerical IK solvers in ROS is KDL. This library is used to calculate the direct and inverse kinematics of a robot using the URDF. KDL mainly uses DOF > 6. In DOF <= 6 robots, we can use analytic solvers, which are much faster than numerical solvers, such as KDL. Most industrial arms have DOF <= 6, so it will be good if we make an analytical solver plugin for each arm. The robot will work on the KDL solver too, but if we want a fast IK solution, we can choose something such as the IKFast module to generate analytical solver-based plugins for MoveIt. We can check which are the IKFast plugin packages present in the robot (for example, universal robots and ABB):

			
					ur_kinematics: This package contains IKFast solver plugins of UR-5 and UR-10 robots from Universal Robotics.

					abb_irb2400_moveit_plugins/irb2400_kinematics: This package contains IKFast solver plugins for the ABB robot model IRB 2400.

			

			We can go through the procedures to build an IKFast plugin for MoveIt. It will be useful when we create an IK solver plugin for a custom industrial robotics arm. Let's see how to create a MoveIt IKFast plugin for the industrial robot ABB IRB 6640.

			Creating the MoveIt IKFast plugin for the ABB IRB 6640 robot

			We have seen the MoveIt package for the ABB robot IRB 6640 model. This robot works with a default numerical solver. In this section, we will discuss how to generate an IK solver plugin using IKFast, a powerful inverse kinematics solver provided within Rosen Diankov's OpenRAVE motion planning software. At the end of this section, we will be able to run the MoveIt demo of this robot, using our custom inverse kinematic plugin.

			In short, we will build an IKFast MoveIt plugin for the robot ABB IRB 66400. This plugin can be selected during the MoveIt setup wizard or we can mention it in the config/kinematics.yaml file of the moveit-config package.

			Prerequisites for developing the MoveIt IKFast plugin

			The following is the configuration we have used for developing the MoveIt IKFast plugin:

			
					Ubuntu 20.04 LTS 

					ROS Noetic desktop, full installation

					OpenRave

			

			The OpenRave and IKFast modules

			OpenRave is a set of command lines and GUI tools for developing, testing, and deploying motion planning algorithms in real-world applications. One of the OpenRave modules is IKFast, which is a robot kinematics compiler. OpenRave was created by a robotic researcher called Rosen Diankov. The IKFast compiler analytically solves the inverse kinematics of a robot and generates optimized and independent C++ files, which can be deployed in our code for solving IK. The IKFast compiler generates analytic solutions of IK, which is much faster than numerical solutions provided by KDL. The IKFast compiler can handle any number of DOFs, but practically it is well suited for DOF <= 6. IKFast is a Python script that takes arguments such as IK types, robot model, the joint position of the base link, and end effectors.

			The following are the main IK types supported by IKFast:

			
					Transform 6D: This end effector should calculate the commanded 6D transformation.

					Rotation 3D: This end effector should calculate the commanded 3D rotation.

					Translation 3D: This end effector origin should reach the desired 3D translation.

			

			MoveIt IKFast

			The ikfast package for MoveIt contains tools to generate a kinematic solver plugin using the OpenRave source files. We will use this tool to generate an IKFast plugin for MoveIt.

			Installing the MoveIt IKFast package

			The following command will install the moveit-ikfast package in ROS Indigo:

			sudo apt-get install ros-noetic-moveit-kinematics

			Let's discuss how to install and use OpenRave.

			Installing OpenRave on Ubuntu 20.04

			Installing OpenRave on the latest Ubuntu (Ubuntu 20.04) is an easy task. We will install OpenRave from a set of convenient scripts used to also install its dependencies. To install OpenRave, follow these steps:

			
					The first step is to download these scripts from the following Git repository:git clone https://github.com/crigroup/openrave-installation


					You can download it whenever you prefer. Now, we are ready to install the OpenRave dependencies. Always pay attention to prompts for sudo and insert the administrator password:cd openrave-installation


					Install a set of library dependencies: ./install-dependencies.sh


					Install OpenSceneGraph: ./install-osg.sh


					Install the Flexible Collision Library: ./install-fcl.sh


					Finally, we can install OpenRave: ./install-openrave.sh


					After installing OpenRave, execute the following command to check that OpenRave is working:openrave


			

			If everything works fine, it will open a 3D view window. In the next section, we will use OpenRave to create a plugin to solve the inverse kinematic problem of our manipulator.

			Creating the COLLADA file of a robot to work with OpenRave

			In this section, we will discuss how to use URDF robot models with OpenRave. Firstly, we will see how to convert a URDF in a collada file (.dae) format; this file will then be used to generate the IKFast source file. To convert a URDF model into a collada file, we can use a ROS package called collada_urdf. This can be installed with the following command:

			sudo apt-get install ros-noetic-collada-urdf

			We will work with the ABB IRB 6640 robot model, which can be found in the abb_irb6600_support package in the /urdf folder named irb6640.urdf. Alternatively, you can take this file from the ikfast_demo folder released with the book's source code. Copy this file into your working folder and run the following command for the conversion:

			roscore && rosrun collada_urdf urdf_to_collada irb6640.urdf irb6640.dae  

			The output of the previous command is the robotic model in the collada file format.

			In most cases, this command fails because most of the URDF file contains STL meshes and it may not convert into DAE as we expected. If the robot meshes in the DAE format, it will work fine. If the command fails, follow this procedure:

			Install the meshlab tool for viewing and editing meshes, using the following command:

			sudo apt-get install meshlab  

			Open meshes present at abb_irb6600_support/meshes/irb6640/visual in MeshLab and export the file into DAE with the same name. Edit the irb6640.urdf file and change the visual meshes in the STL extension to DAE. This tool only processes meshes for visual purposes, so we will get a final DAE model.

			We can open the irb6640.dae file using OpenRave with the following command:

			openrave irb6640.dae

			We will get the model in OpenRave, as shown in the following screenshot:

			
				
					[image: Figure 15.18 – Viewing the ABB IRB 6640 model on OpenRave ]
				

			

			Figure 15.18 – Viewing the ABB IRB 6640 model on OpenRave

			We can check the link information of the robot by using the following command:

			openrave-robot.py irb6640.dae --info links 

			We can get the link info about the robot in the following format:

			    name          index parents

			    ---------------------------------

			    base_link     0

			    base          1     base_link

			    link_1        2     base_link

			    link_2        3     link_1

			    link_4        5     link_3

			    link_5        6     link_4

			    link_6        7     link_5

			    tool0         8     link_6

			    link_cylinder 9     link_1

			    link_piston   10    link_cylinder

			    -------------------------------     --

			Now that we have prepared the .dae file, we can generate the IKFast source file for this robot.

			Generating the IKFast CPP file for the IRB 6640 robot

			After getting the link information, we can start to generate the inverse kinematic solver source file for handling the IK of this robot. All the files needed to follow the tutorial of this section are available in the source code folder, ikfast_demo, provided with this book. Alternatively, you can download this code by cloning the following Git repository:

			git clone https://github.com/jocacace/ikfast_demo.git  

			Use the following command to generate the IK solver for the ABB IRB 6640 robot:

			python `openrave-config --python-dir`/openravepy/_openravepy_/ikfast.py --robot=irb6640.dae --iktype=transform6d --baselink=1 --eelink=8 --savefile=ikfast61.cpp  

			The preceding command generates a CPP file called ikfast61.cpp, in which the IK type is transform6d, the position of the baselink link is 1, and the end effector link is 8. We need to mention the robot DAE file as the robot argument.

			Before using this code with MoveIt, we can test it with the ikfastdemo.cpp demo source. This ikfastdemo.cpp source code has been modified to include the ikfast61.cpp source code, as you can see from the header file list:

			#define IK_VERSION 61 

			#include "output_ikfast61.cpp"  

			Compile the demo source files:

			g++ ikfastdemo.cpp -lstdc++ -llapack -o compute -lrt  

			The previous command generates an executable called compute. If you run it without input arguments, the program displays the usage menu. To get the forward kinematic solution, given a set of joint angle values, use the following command:

			 ./compute fk j0 j1 j2 j3 j4 j5 

			Here, j0 j1 j2 j3 j4 j5 represents the joint angle values in radians. To measure the average time taken by the IKFast algorithm for a set of random joint angles, use the following command:

			 ./compute iktiming 

			Now that we have successfully created the inverse kinematic solver CPP file, we can create a MoveIt IKFast plugin by using this source code.

			Creating the MoveIt IKFast plugin

			Creating a MoveIt IKFast plugin is quite easy. There is no need to write code; everything can be generated using some tools. The only thing we need to do is to create an empty ROS package. The following is the procedure to create a plugin:

			
					Create an empty package in which the name should contain the robot name and model number. This package is going to convert into the final plugin package, using the plugin generation tool:catkin_create_pkg abb_irb6640_moveit_plugins


					Then, build the workspace by using the catkin_make command. 

					After building the workspace, copy ikfast.h to abb_irb6640_moveit_plugins/include.

					Copy the switch ikfast61.cpp, previously created in the package folder, renaming it abb_irb6640_manipulator_ikfast_solver.cpp. This filename consists of the robot's name, model number, type of robot, and so on. This kind of naming is necessary for the generating tool.

			

			After performing these steps, open two terminals in the current path where the IK solver CPP file exists. In one terminal, start the roscore command. In the next terminal, move into the create package and enter the plugin creation command, as follows:

			rosrun moveit_kinematics create_ikfast_moveit_plugin.py abb_irb6640 manipulator abb_irb6640_moveit_plugins abb_irb6640_manipulator_ikfast_solver.cpp  

			This command could fail due to a mismatch of the robot name specified in the URDF and SRDF files. To work around this error, we need to change the name of the robot in the SRDF file, placed in the abb_irb6640_mveit_config/config folder. You change line seven of this file from <robot name="abb_irb6640_185_280"> to <robot name="abb_irb6640">. Or simply replace this file with the one contained in the ikfast_demo folder.

			The moveit_ikfast ROS package includes the create_ikfast_moveit_plugin.py script for plugin generation. The first parameter is the robot name with the model number, the second argument is the type of robot, the third argument is the package name we created earlier, and the fourth argument is the name of the IK solver CPP file. This tool needs the abb_irb6640_moveit_config package in order to work. It will search this package using the given name of the robot. So, if the name of the robot is wrong, the tool for raising an error will say that it couldn't find the robot moveit package.

			If the creation is successful, the following messages will be displayed in the terminal:

			
				
					[image: Figure 15.19 – Terminal messages on the successful creation of the IKFast plugin for MoveIt ]
				

			

			Figure 15.19 – Terminal messages on the successful creation of the IKFast plugin for MoveIt

			As you can see from these messages, after creating the plugin, the abb_irb6640_moveit_config/config/kinematics.yaml file has been updated, specifying abb_irb6640_manipulator_kinematics/IKFastKinematicsPlugin as the kinematics solver. The updated version of the file is shown in the following code:

			manipulator: 

			  kinematics_solver:     abb_irb6640_manipulator_kinematics/IKFastKinematicsPlugin 

			  kinematics_solver_search_resolution: 0.005 

			  kinematics_solver_timeout: 0.005 

			  kinematics_solver_attempts: 3 

			Now you can build the workspace again in order to install the plugin and start to operate with the robot and the new IKFast plugin, using the demo.launch file from the abb_irb6640_moveit_config package. At this point, this plugin will be used every time that a motion trajectory is requested by MoveIt.

			Summary

			In this chapter, we discussed a new interface of ROS for industrial robots called ROS-Industrial. We looked at the basic concepts of developing industrial packages and installing them in Ubuntu. After installation, we looked at the block diagram of this stack, and discussed developing the URDF model for industrial robots and also creating the MoveIt interface for an industrial robot. 

			After covering these topics in detail, we installed the industrial robot packages for Universal Robots and ABB. We learned the structure of the MoveIt package and then shifted to the ROS-Industrial support packages. We discussed them in detail and switched to concepts such as the industrial robot client and how to create the MoveIt IKFast plugin. Finally, we used the developed plugin in the ABB robot.

			In the next chapter, we will look at troubleshooting and best practices in ROS software development.

			Here are some questions that will help you better understand this chapter.

			Questions

			
					What are the main benefits of using ROS-Industrial packages?

					What are the conventions followed by ROS-I in designing a URDF for industrial robots?

					What is the purpose of ROS' support packages?

					What is the purpose of ROS' driver packages?

					Why do we need the IKFast plugin for our industrial robot, rather than the default KDL plugin?

			

		

	






			Chapter 16: Troubleshooting and Best Practices in ROS

			In this chapter, we will discuss how to set up an Integrated Development Environment (IDE) with ROS, best practices in ROS, and troubleshooting tips for ROS. This is the last chapter of this book, so before we start development in ROS, it would be good to know the standard methods for writing code. The following are the topics that we are going to discuss in this chapter:

			
					Setting up Visual Studio Code IDE with ROS

					Best practices in ROS

					Best coding practices for ROS packages

					Important troubleshooting tips for ROS

			

			Before we start coding in ROS, we should set up a ROS development environment in an IDE. 

			Setting up an IDE for coding and, in particular, for ROS is not mandatory, but it can save developers time. IDEs can provide auto-completion features, as well as build and debugging tools that can make programming easy. We can use any editor, such as Sublime Text or Vim, or simply Gedit for coding in ROS, but it's good if you choose certain IDEs when you are planning a big project in ROS. For this reason, in this chapter, we will focus on Visual Studio Code, an IDE that can be easily configured for ROS development. 

			Visual Studio Code can be used with any kind of programming language. In theory, it is only a code editor. Besides, several extensions are available to support additional functionalities, transforming it into a powerful IDE. Among them, a proper extension makes ROS development visual, simple, and manageable. In addition, Visual Studio Code offers useful tools to manage the ROS workspace, how ROS nodes are created, handled, and compiled, and the support-running ROS tools.

			Setting up Visual Studio Code with ROS

			Several IDEs are available in Linux – such as NetBeans (https://netbeans.org), Eclipse (www.eclipse.org), and QtCreator (https://wiki.qt.io/Qt_Creator) – and they are suitable for different programming languages. To build and run ROS programs from IDEs, the ROS environment must be set up. Some IDEs might have a configuration file for that, but running your IDE from your ROS-sourced shell should be the easiest way to avoid any inconsistencies. In this section, we will discuss how to use the Visual Studio Code IDE with ROS. A comprehensive list of other IDEs that can be configured with ROS can be found at http://wiki.ros.org/IDEs.

			Visual Studio Code (https://code.visualstudio.com/) is a multi-platform IDE that's available for Linux, Windows, and macOS. It is a powerful source code editor but at the same time, it is very lightweight. It comes with a set of functionalities that support web-based programming languages such as JavaScript, TypeScript, and Node.js. However, it also provides a rich ecosystem of extensions for other languages (such as C++, C#, Java, Python, and similar). Before starting with Visual Studio Code and ROS, let's learn how to install it on an Ubuntu system and describe its basic usage.

			Installing/uninstalling Visual Studio Code

			The easiest way to install Visual Studio Code on Ubuntu 20.04 is by using the official .deb file, which is available on Visual Studio Code's official website. You can download it using the following command:

			wget https://go.microsoft.com/fwlink/?LinkID=760868 -O  vscode.deb

			At this point, you can install the .deb package using the dpkg command:

			cd /path/to/the/deb/file/

			sudo dpkg -i vscode.deb

			To remove the software, you can use the following command:

			sudo apt-get remove code

			Now that Visual Studio Code has been installed on your system, you can start using its  functionalities.

			Getting started with Visual Studio Code

			Once you have installed vscode, you can start it from the command line or the program launcher of your system:

			code

			After launching this command, the main window of vscode will open, as shown in the following screenshot:

			
				
					[image: Figure 16.1 – Visual Studio Code user interface ]
				

			

			Figure 16.1 – Visual Studio Code user interface

			The main elements of the window are as follows:

			
					ACTIVITY BAR: This panel allows you to switch between the different functionalities and plugins of vscode. To see the code, the Explorer window must be selected. Using the other buttons, you can explore the available extensions, an interface for the versioning system, and more.

					EXPLORER window: This panel shows the content of your code workspace. From this panel, you can navigate through all the ROS packages that have been installed in your ROS workspace.

					EDITOR: In this panel, you can edit the source code of the packages.

					TERMINAL and OUTPUT: These panels allow developers to use the Linux Terminal that's integrated with the IDE and check for possible errors during compilation.

			

			The main features of vscode are integrated into the term IntelliSense. This term is quite general and consists of different code editing features such as code completion, function parameter information, the class member list, and many others. By default, Python and C++ are not configured to be supported by the IntelliSense system of vscode, so we need to configure them by installing the necessary extensions. Moreover, the first time you start vscode, the explorer windows will be empty, since no workspaces will have been configured. Later in this chapter, we will learn how to add source code directories to Visual Studio Code. For now, let's learn how to install a set of additional extensions for programming robots.

			Installing new Visual Studio Code extensions

			A new extension can be installed in two ways. One way is by using the extension panel to open the extension marketplace, in which you can search for the desired extension and install it, as shown in the following screenshot:

			
				
					[image: Figure 16.2 – Visual Studio Code extension marketplace ]
				

			

			Figure 16.2 – Visual Studio Code extension marketplace

			Using the search panel, you can also discover new extensions. Another way to install extensions is by using the vscode Quick Open bar, which you can open by pressing CTRL + P. For example, to install the C/C++ IntelliSense support shown in the preceding screenshot using the Quick Open bar, press CTRL + P in the editor window and paste the following command:

			>> ext install ms-vscode.cpptools

			Of course, in this case, you should already know the correct command for the extension. 

			By executing this command, you will have added the C/C++ language support to Visual Studio Code, including IntelliSense and debugging features.

			Before installing the ROS extension, you may find the following plugins useful:

			
					CMake: This extension installs the IntelliSense support in CMakeLists.txt files. To install this plugin, use the ext install twxs.cmake command.

					CMake Tools: This extension provides the native developer with a full-featured, convenient, and powerful workflow for CMake-based projects in Visual Studio Code. To install this plugin, use the ext install ms-vscode.cmake-tools command.

					GitLens: This extension installs additional functionalities built into Visual Studio Code so that you can use Git features. To install this plugin, use the ext install eamodio.gitlens-insiders command.

					Python: This extension installs IntelliSense support for Python. To install this plugin, use the ext install ms-python.python command.

			

			Finally, an add-on that is very useful when you are programming real robots is the Remote - SSH extension. This extension lets you use any remote machine with an SSH server as your development environment. After establishing a connection with the remote host, you can use the vscode Terminal to run commands on the remote machine and also inspect its source files. The Remote – SSH extension can be installed with the following command: 

			>> ext install ms-vscode-remote.remote-ssh

			Now that we've installed all these plugins, let's learn how to install the ROS extension for vscode and configure the ROS environment.

			Getting started with the Visual Studio Code ROS extension

			To install the ROS extension, you can use the following command after pressing CTRL + P in the vscode interface:

			>> ext install ms-iot.vscode-ros

			Let's discuss the main features of this plugin. The ROS environment is automatically configured, and the ROS version is detected once you've installed this extension. However, this extension can only be used once a ROS workspace has been loaded. To load a workspace, you can use the main bar of the vscode window and go to File | Open Folder, and then select the desired workspace. 

			At this point, a new icon containing information about ROS and its version should appear in the bottom status bar, as shown in the following screenshot:

			
				
					[image: Figure 16.3 – ROS status icon in the bottom bar of VSCode ]
				

			

			Figure 16.3 – ROS status icon in the bottom bar of VSCode

			In this case, vscode finds that the Noetic version of ROS has been installed. The cross icon on the left-hand side of the ROS version is the ROS indicator and indicates that roscore is not active yet. At this point, a new set of commands can be used to create, compile, and manage your ROS nodes and the overall system. In this context, a new command can be inserted into vscode using the CTRL + Shift + P shortcut. For example, to start roscore directly from vscode, you should use the following command:

			>> ROS: Start Core

			To check the effect of the command, you can directly click on the ROS icon shown in the preceding screenshot to open a new page inside vscode. This page can be seen in the following screenshot and shows the status of our roscore, as well as the active topics and services:

			
				
					[image: Figure 16.4 – ROS status page in VSCode ]
				

			

			Figure 16.4 – ROS status page in VSCode

			The same result can be obtained using the Show Core Status command:

			>> ROS: Show Core Status

			Similarly, to stop roscore, you can use the following command:

			>> ROS: Stop Core

			However, roscore can be also controlled externally from the classic Linux Terminal. As part of the IntelliSense section of vscode, with the ROS extension, we can enable syntax highlighting for common ROS files, such as the message, service, action, and URDF files.

			Inspecting and building the ROS workspace

			After loading the ROS workspace in vscode, you can quickly open source files using the CTRL + P shortcut to make the Quick Open bar appear. From this panel, you can search for any source file just by typing in part of its name, as shown in the following screenshot:

			
				
					[image: Figure 16.5 – Quick Open bar of Visual Studio Code ]
				

			

			Figure 16.5 – Quick Open bar of Visual Studio Code

			Now, you can start compiling the workspace using a vscode command. This can be done with the CTRL + Shift + B shortcut command, which lets you select the build task to run. In particular, ROS is compiled with the catkin compilation tool. To use this tool, the following compilation task must be inserted:

			>> catkin_make: build

			The compilation output will be shown in the Terminal window. In this window, eventual compilation errors are shown. You can use the CTRL + Click shortcut to directly open the line of code that produced this error in the editor, as shown in the following screenshot:

			
				
					[image: Figure 16.6 – Compilation error in the vscode terminal window ]
				

			

			 

			Figure 16.6 – Compilation error in the vscode terminal window

			Additional commands can be used to manage the ROS packages and its nodes, as discussed in the next section.

			Managing ROS packages using Visual Studio Code

			To create a new ROS package, you can use the following command:

			>> ROS: Create Catkin Package

			The vscode editor will ask you to insert the name of the package and its dependencies, as shown in the following screenshot:

			
				
					[image: Figure 16.7 – Creating a ROS package using vscode ]
				

			

			Figure 16.7 – Creating a ROS package using vscode

			After creating and compiling the new package, you can manage the execution of its nodes directly from vscode. To start a new node, we can use both the rosrun and roslaunch commands. After opening the command window and typing the run keyword, vscode helps you choose the desired action, as shown in the following screenshot

			
				
					[image: Figure 16.8 – Running a node from vscode ]
				

			

			Figure 16.8 – Running a node from vscode

			Of course, to start the desired node properly, we must insert the name of the package that it is contained in, the name of the executable, and a list of eventual arguments for the node. When this occurs, a set of suggestions are provided in the vscode window. In the same way, you can select a launch file as part of a given package to start multiple nodes at the same time. 

			Visualizing the preview of a URDF file

			Among the different functionalities provided by the ROS extension for Visual Studio Code, a useful feature is the URDF preview command. This command opens a vscode window in which the result of a URDF file is shown in real time. In this way, developers can see the results of the modifications they've made to a robot model file. To preview the URDF file, open a robot model file in the editor window; for example, the pan-tilt model we developed in Chapter 3, Working with ROS for 3D Modeling. You can use the Quick Open bar (CTRL + P) and type in the pan_tilt keyword to quickly find it. At this point, use the following command to visualize this preview:

			>> ROS: Preview URDF

			The result of this command is displayed in the following screenshot:

			
				
					[image: Figure 16.9 – URDF preview command used on the pan_tilt.urdf file in vscode ]
				

			

			Figure 16.9 – URDF preview command used on the pan_tilt.urdf file in vscode

			At this point, you can also try to change the parameters and elements of this URDF file to see the change in the visualized model, in the URDF Preview window. It is quite clear that working with this IDE allows developers to speed up how they design and code their robotic applications. In the next section, a brief overview of the best practices in ROS development will be discussed. 

			Best practices in ROS

			This section will give you a brief idea of the best practices that can be followed when developing something with ROS. ROS provides detailed tutorials about its Quality Assurance (QA) process. A QA process is a detailed developer guide that includes C++ and Python code style guides, naming conventions, and so on. First, we will discuss the ROS C++ coding styles.

			ROS C++ coding style guide

			ROS C++ nodes follow a coding style to make the code more readable, debuggable, and maintainable. If the code is styled properly, it will be very easy to reuse and contribute to the current code. In this section, we will quickly go through some commonly used coding styles.

			Standard naming conventions used in ROS

			Here, we are using the text HelloWorld to demonstrate the naming patterns we use in ROS:

			
					HelloWorld: This name starts with an uppercase letter, and each new word starts with an uppercase letter with no spaces or underscores.

					helloWorld: In this naming convention, the first letter will be lowercase, but new words will be in uppercase without spaces.

					hello_world: This only contains lowercase letters. Words are separated by underscores.

					HELLO_WORLD: All letters are uppercase letters. Words are separated by SPACEunderscores.

			

			The following are the naming conventions that are followed by each component in ROS:

			
					Packages, topics/services, files, and libraries: These ROS components follow the hello_world pattern.

					Classes/types: These classes follow the HelloWorld naming convention – for example, class ExampleClass.

					Functions/methods: Functions follow the helloWorld naming convention, while function arguments follow the hello_world pattern – for example, void exampleMethod(int sample_arg);.

					Variables: Generally, variables follow the hello_world pattern.

					Constants: Constants follow the HELLO_WORLD pattern.

					Member variables: The member variable inside a class follows the hello_world pattern with a trailing underscore added – for example, int sample_int_.

					Global variables: Global variables follow the hello_world convention with a leading g_ – for example, int g_samplevar;.

					Namespace: Namespaces follow the hello_world naming pattern.

			

			Now, let's take a look at code license agreement.

			Code license agreement

			We should add a license statement at the top of our code. ROS is an open source software framework, and it's in the BSD license. The following is a code snippet of a license, which must be inserted at the top of the code. You can get a license agreement from any of the ROS nodes in this book's GitHub repository. You can check out the source code for the ROS tutorial at https://github.com/ros/ros_tutorials:

			/*********************************************************************

			* Software License Agreement (BSD License) 

			*

			* Copyright (c) 2012, Willow Garage, Inc. 

			* All rights reserved. 

			*

			* Redistribution and use in source and binary forms, with or without

			* modification, are permitted provided that the following conditions

			* are met: 

			*********************************************************************/

			For more information about the various licensing schemes in ROS, refer to http://wiki.ros.org/DevelopersGuide#Licensing.

			ROS code formatting

			One thing that needs to be taken care of while developing code is its formatting. One of the basic things to remember about formatting is that each code block in ROS is separated by two spaces. The following is a code snippet showing this kind of formatting:

			if(a < b) 

			{ 

			  // do stuff 

			} 

			else 

			{ 

			  // do other stuff 

			} 

			The following is an example code snippet in the ROS standard formatting style. It starts with the inclusion of header files and the definition of a constant:

			#include <boost/tokenizer.hpp> 

			#include <moveit/macros/console_colors.h> 

			#include <moveit/move_group/node_name.h> 

			 

			static const std::string ROBOT_DESCRIPTION = "robot_description";    // name of the robot description (a param name, so it can be changed externally) 

			Then, a namespace is defined:

			namespace move_group 

			{ 

			Finally, the definition of a class and its members is reported:

			class MoveGroupExe 

			{ 

			public: 

			 

			  MoveGroupExe(const planning_scene_monitor::PlanningSceneMonitorPtr& psm, bool debug) : 

			    node_handle_("~") 

			  { 

			    // if the user wants to be able to disable execution of paths, they can just set this ROS param to false 

			    bool allow_trajectory_execution; 

			    node_handle_.param("allow_trajectory_execution", allow_trajectory_execution, true); 

			 

			    context_.reset(new MoveGroupContext(psm, allow_trajectory_execution, debug)); 

			 

			    // start the capabilities 

			    configureCapabilities(); 

			  } 

			 

			  ~MoveGroupExe() 

			  { 

			Now, let's learn how the code's output should be presented in a Linux Terminal.

			Console output information

			Try to avoid printf or cout statements when printing debug messages inside ROS nodes.

			We can use rosconsole (http://wiki.ros.org/rosconsole) to print debug messages from ROS nodes, instead of the printf or cout functions. rosconsole offers timestamped output messages, automatically logs the printed messages, and provides five different levels of verbosity. For more details about these coding styles, please refer to http://wiki.ros.org/CppStyleGuide.

			In this section, we mainly focused on how to correctly write the source code inside ROS nodes. In the following section, we will discuss how to maintain the ROS package, as well as some important tips for solving typical problems that occur when compiling the ROS package and executing its nodes.

			Best coding practices for the ROS package

			The following are the key points to bear in mind while creating and maintaining a package:

			
					Version control: ROS supports version control using Git, Mercurial, and Subversion. We can host our code in GitHub and Bitbucket. Most of the ROS packages are in GitHub.

					Packaging: Inside a ROS catkin package, there will be a package.xml file. This file should contain the author's name, a description of its content, and its license. The following is an example of a package.xml file:
<?xml version="1.0"?> 
<package> 
  <name>roscpp_tutorials</name> 
 
  <version>0.6.1</version> 
 
  <description> 
    This package attempts to show the features of ROS step-by-step, 
    including using messages, servers, parameters, etc. 
  </description> 
 
  <maintainer email="dthomas@osrfoundation.org">Dirk Thomas</maintainer> 
 
  <license>BSD</license> 
 
  <url type="website">http://www.ros.org/wiki/roscpp_tutorials</url> 
  <url type="bugtracker">https://github.com/ros/ros_tutorials/issues</url> 
  <url type="repository">https://github.com/ros/ros_tutorials</url> 
  <author>Morgan Quigley</author> 


			

			In the next section, we will look at some common errors and mistakes that are made by developers when they create ROS nodes.

			Important troubleshooting tips in ROS

			In this section, we'll look at some of the common issues that are experienced when working with ROS, as well as tips on how to solve them.

			One of ROS's in-built tools for finding issues in a ROS system is roswtf. roswtf is a command-line tool that checks for issues in the following areas of ROS:

			
					Environment variables and configuration

					Packages or metapackages configuration

					Launch files

					Online graphs

			

			Now, let's take a look at using roswtf.

			Using roswtf

			We can check the issues inside a ROS package by simply going into the package and entering roswtf. We can also check for issues in our ROS system by entering the following command:

			roswtf

			This command generates a report about the health of the system – for example, in the case of an incorrect ROS hostname and master configuration, we will have the following report:

			
				
					[image: Figure 16.10 – roswtf output in the case of a wrong ROS hostname configuration ]
				

			

			Figure 16.10 – roswtf output in the case of a wrong ROS hostname configuration

			We can also run roswtf on launch files to search for potential issues:

			roswtf <file_name>.launch 

			Additional information on the roswtf command can be found at http://wiki.ros.org/roswtf.

			The following are some of the common issues that you may face when working with ROS:

			
					Issue 1: An error message stating Failed to contact master at [localhost:11311]. Retrying...:

			

			
				
					[image: Figure 16.11 – Failed to contact master error message ]
				

			

			Figure 16.11 – Failed to contact master error message

			
					Solution: This message appears when the ROS node executes without running the roscore command or checking the ROS master configuration.

					Issue 2: An error message stating Could not process inbound connection: topic types do not match:

			

			
				
					[image: Figure 16.12 – Inbound connection warning messages ]
				

			

			Figure 16.12 – Inbound connection warning messages

			
					Solution: This occurs when there is a topic message mismatch, where we publish and subscribe to a topic with a different ROS message type.

					Issue 3: An error message stating Couldn't find executables:

			

			
				
					[image: Figure 16.13 – Couldn't find executables ]
				

			

			Figure 16.13 – Couldn't find executables

			
					Solution: This error could occur for different reasons. One error could be the wrong executable name being specified in the command line or the missing name of the executable in the ROS package. In this case, we should check its name inside the CMakeLists.txt file. In the case of nodes written in Python, this error can be solved by changing the execute permissions of the related script using the chmod command. 

					Issue 4: An error message stating roscore command is not working:

			

			
				
					[image: Figure 16.14 – roscore command is not running properly ]
				

			

			Figure 16.14 – roscore command is not running properly

			
					Solution: One of the reasons that can hang the roscore command is the definitions of ROS_IP and ROS_MASTER_URI. When we run ROS on multiple computers, each computer has to assign its own IP as ROS_IP, and then use ROS_MASTER_URI as the IP of the computer that is running roscore. If this IP is incorrect, roscore will not run. This error can be generated by assigning an incorrect IP to these variables.

					Issue 5: An error message stating Compiling and linking errors:

			

			
				
					[image: Figure 16.15 – Compiling and linking errors ]
				

			

			Figure 16.15 – Compiling and linking errors

			
					Solution: If the CMakeLists.txt file contains no dependencies, which are required to compile the ROS nodes, this error may appear. Here, we have to check the package dependencies in the package.xml and CMakeLists.txt files. Here, we are generating this error by commenting on the roscpp dependencies:

			

			
				
					[image: Figure 16.16 – CMakeLists.txt without a package dependency ]
				

			

			Figure 16.16 – CMakeLists.txt without a package dependency

			The preceding list covers a set of common mistakes that developers commit at the start of their programming experience in ROS. Additional tips can be found on the ROS wiki page: http://wiki.ros.org/ROS/Troubleshooting.

			Summary

			In this chapter, we learned how to work with the Visual Studio Code IDE, how to set up the ROS development environment inside the IDE, how to create nodes and packages, and how to manage ROS data. Then, we discussed some of the best practices in ROS while looking at naming conventions, coding styles, best practices while creating a ROS package, and so on. After discussing these best practices, we looked at ROS troubleshooting. There, we discussed various troubleshooting tips that we need to bear in mind when we work with ROS. 

			With this chapter, we conclude the Mastering ROS for Robotics Programming book. We hope you enjoyed reading this book and are satisfied with your learning path. Thank you for reading this book.

			Here are some questions based on what we covered in this chapter.

			Questions

			
					Why do we need an IDE to work with ROS?

					What are the common naming conventions that are used in ROS?

					Why is documentation important when we create a package?

					What is the use of the roswtf command?
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			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:
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			Learn Robotics Programming - Second Edition

			Danny Staple

			ISBN: 978-1-83921-880-4

			
					Leverage the features of the Raspberry Pi OS

					Discover how to configure a Raspberry Pi to build an AI-enabled robot

					Interface motors and sensors with a Raspberry Pi

					Code your robot to develop engaging and intelligent robot behavior

					Explore AI behavior such as speech recognition and visual processing

					Find out how you can control AI robots with a mobile phone over Wi-Fi

					Understand how to choose the right parts and assemble your robot
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			Smart Robotics with LEGO MINDSTORMS Robot Inventor

			Aaron Maurer

			ISBN: 978-1-80056-840-2

			
					Discover how the Robot Inventor kit works, and explore its parts and the elements inside them

					Delve into the block coding language used to build robots

					Find out how to create interactive robots with the help of sensors

					Understand the importance of real-world robots in today's landscape

					Recognize different ways to build new ideas based on existing solutions

					Design basic to advanced level robots using the Robot Inventor kit

			

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Share Your Thoughts

			Now you've finished Mastering ROS for Robotics Programming, Third edition, we'd love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.
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jcacace@robot:~/catkin_ws$ rosrun mastering_ros_demo_pkg demo_action_client
[ INFO] [1499861037.958432848]: Waiting for action server to start.

[ INFO] [1499861038.206812461]: Action server started, sending goal.

[ INFO] [1499861038.207104961]: Sending Goal [10] and Preempt time of [1]

[ INFO] [1499861039.209897255]: Action did not finish before the time out.
jcacace@robot:~/catkin_ws$ [

10

jcacace@robot:
jcacace@robot:~$ rosrun mastering_ros_demo_pkg demo_action_server

[ INFO] [1499861036.234953391]: Starting Demo Action Server

[ INFO] [1499861038.209617808]: /demo_action is processing the goal 16
[ INFO] [1499861038.209949156]: Setting to goal 0 / 10

[ INFO] [1499861038.413934495]: Setting to goal 1 / 10

[ INFO] [1499861038.609803856]: Setting to goal 2 / 10

[ INFO] [1499861038.809718825]: Setting to goal 3 / 10

[ INFO] [1499861039.009985643]: Setting to goal 4 / 10

[ INFO] [1499861039.210416071]: Setting to goal 5 / 10

ﬂ WARN] [1499861039.210567039]: /demo_action got preempted!
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Done checking log file disk usage. Usage is <1GB.
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jcacace@robot:~$ rosrun mastering_ros_demo_pkg demo_topic_pub jcacace@robot:~$ rosrun mastering_ros_demo_pkg demo_topic_sub
lisher scriber

[ INFO] [1500276155.757008571]: © INFO] [1500276156.057591945]: Recieved [3]
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[ INFO] [1500276156.157087268]: INFO] [1500276156.457377162]: Recieved [7]

[ INFO] [1500276156.257505796]: INFO] [1500276156.557647552]: Recieved [8]

[ INFO] [1500276156.357532737]: INFO] [1500276156.658285212]: Recieved [9]
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ROS Core Status
online

Parameters

= run_id: 398183fc-ab09-11eb-bd5e-51df50e47bdd
= roslaunch:
o uris:
= host_jcacace_lenovo_legion_5_15arh05__38193: http://jcacace-Lenovo-Legion-5-15ARH05:38193/
= rosversion: 1.15.9
» rosdistro: noetic

Topics

Name Publishers Subscribers
Irosout_agg Irosout

/rosout /rosout
Services

Name Providers
/Irosout/get_loggers /rosout

[rosout/set _logger level Irosout
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>> setenv{'ROS_MASTER URI', ‘http://192.168.1.131:11311');
The value of the ROS WASTER_URI environment variable, Rttp://192.168.1.131:11311, will be used to connect
Initializing global node /matlab_global_node 75920 with NedeURI heep://192.168.1.130: 61991/

> rosnode 1ist

/matlab_global_node 75
Irosout.
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PROBLEMS (3) OUTPUT TERMINAL DEBUG CONSOLE 2: Task - build v + 0 @

Open file in editor (ctrl + click)

/home/jcacace/ros_ws/src/key teleop/src/key teleop.cpp:30:49: error: expected primary-expression before ‘>’ token
30 | _vel pub = nh.advertise< geometry msgs::Twist >("/cmd vel", 1);

make[2]: *** [key teleop/CMakeFiles/key teleop.dir/build.make:63: key teleop/CMakeFiles/key teleop.dir/src/key_teleop.cpp.o] Error 1
make[1]: *** [CMakeFiles/Makefile2:1735: key teleop/CMakeFiles/key teleop.dir/all] Error 2

make: *** [Makefile:141: all] Error 2

Invoking "make -j16 -116" failed

The terminal process "/bin/bash '-c', 'catkin make --directory /home/jcacace/ros ws'" terminated with exit code: 1.

Terminal will be reused by tasks, press any key to close it.
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RX errors 0 dropped 13 overruns 0 frame 0

TX packets 261822 bytes 70550108 (70.5 KB}

TX errors 0_dropped O overruns 0 carrier 0_collisions O
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[1565810241.730240828,
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15.340000000] :
15.381000000] :
15.449000000] :
15.552000000] :
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15.656000000] :
15.660000000] :
15.714000000] :
15.851000000] :
15.900000000] :
16.015000000] :
16.057000000] :
16.191000000] :
16.198000000] :
16.967000000] :
17.620000000] :
17.046000000] :

Loading from pre-hydro parameter style
Using plugin "static_layer"
Requesting the map...
Resizing costmap to 288 X 608 at 0.050000 m/pix
Received a 288 X 608 map at 0.050000 m/pix
Using plugin "obstacle_layer"

Subscribed to Topics: scan bump
Using plugin "inflation_layer"
Loading from pre-hydro parameter style
Using plugin "obstacle_layer"

Subscribed to Topics: scan bump
Using plugin "inflation_layer"
Created local_planner dwa_local_planner/DWAPlannerROS
Sim period is set to 0.20
Recovery behavior will clear layer obstacles
Recovery behavior will clear layer obstacles
odom received!





image/Figure_3.2_B17104.jpg
Child frame
=Joint frame

Joint axis
in joint frame

Parent frame





image/Figure_11.4_B17104.jpg
8 GAZEBO + ROS + ros_control

Simulation

readsim()l Iwritesim()

Hardware_interface::RobotHWSim
Provides position, velocity, and effort interfaces
between Gazebo and ros_control

\

Hardware

le——  Actuators
Encoders t
Embedded controllers
read() write()T

Hardware_interface::RobotHW
Provides position, velocity, and effort interfaces
between hardware and ros_control

1

77
Hardware Rest:lkg Joint State Interface g

Interface Layer

e.g. JointStatelnterface

joint_state_controller

diff_drive_controller

Loads, unloads, and calls update:
Controller Manager

s to controllers






image/Figure_4.11_B17104.jpg
TR S
LIRS
ae





image/Figure_9.24_B17104.jpg
1y B = o) 7osem 3

Name Lastused +
Wired connection 1 [, o

Disconnect

VPN Connections

+ Enable Networking

‘mation

close






image/Figure_11.10_B17104.jpg





image/Figure_16.13_B17104.jpg
jcacace@jcacace-Inspiron-7570:~$ rosrun roscpp_tutorials taker
[rosrun] Couldn't find executable named taker below /opt/ros/kinetic/sha
re/roscpp_tutorials
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MAVLink Frame — 8-263 bytes

STX LEN SEQ SYS COMPMSG PAYLOAD oKa oK8
Byte | Content Value Explanation
Index
0| Packetstart | v1.0: OXFE Indicates the start of a new packet.
sign (v0.9: 0x55)
1| Payload length | 0-255 Indicates length of the following payload
2 | Packet 0-255 Each component counts up his send sequence. Allows to detect
sequence packet loss
3| systemiD 1-255 ID of the SENDING system. Allows to differentiate different MAVS
on the same network
4| ComponentiD | 0-255 ID of the SENDING component. Allows to differentiate different
components of the same system, e.g. the IMU and the autopilot
5 | Message ID 0-255 ID of the message - the id defines what the payload ‘means” and
how it should be correctly decoded
6to | Data (0-255) bytes | Data of the message, depends on the message id
(n+6)
(n+7) o | Checksum (low | ITU X 25/SAE AS-4 hash, excluding packet start sign, 5o bytes 1..(n+6) Note:
(n+8) | byte, high byte) | The checksum aiso includes MAVLINK_CRC_EXTRA (Number computed from
message flelds. Protects the packet from decoding a different version of the same
packet but with different variables).
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AVR model Buffer Size Publisher/Subscribers
ATMEGA 168 150 bytes 6/6

ATMEGA 328P 280 bytes 25/25

All others 512 bytes 25/25
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[coppeliasin:loadinfo]

plugin

loadinfo]  plugin 'OpenMesh': load succeeded.
loadinfo]  plugin 'Ghull': loading...

1oadinfo] _plugin 'Qhull': load succeeded.
Toadinfo] plugin 'ROSInterface’: loading. ..
oadinfo] plugin 'ROSInterface’: load succeeded.
Toadinfo] plugin "RRs1': loading.

:loadinfo] plugin 'RRS1': load succeeded.

‘ReflexxesTypelIl': loading. ..
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jcacace@robot:~$ roscore

. logging to /home/jcacace/.ros/log/a50123ca-4354-11eb-b33a-e3799b7b952f/rosla
unch-robot-2558.1log
Checking log directory for disk usage. This may take a while. 1
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://robot:33837/
ros_comm version 1.15.9 ;Z

SUMMARY

PARAMETERS

* [rosdistro: noetic

* /[rosversion: 1.15.9 3
NODES

uto-starting new master
rocess[master]: started with pid [2580]
0S_MASTER_URI=http://robot:11311/ pal

setting /run_id to a50123ca-4354-11eb-b33a-e3799b7b952f
process[rosout-1]: started with pid [2590]
started core service [/rosout] Es
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industrial_robot_client :joint_trajectory_action:jointTrajectoryAction |

J industrial_robot_client jjoint_trajectory_downloader:jointTrajectoryDownloader
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industrial_robot_client :joint_trajectory_streamer:jointTrajectoryStreamer |
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Base path: /home/jcacace/ros_ws

Source space: /home/jcacace/ros_ws/src
Build space: /home/jcacace/ros_ws/build
Devel space: /home/jcacace/ros_ws/devel
Install space: /home/jcacace/ros_ws/install
#iHi

#i### Running command: "make cmake_check_build_system" in "/home/jcacace/ros_ws/build"
#it#t

#u##

#i## Running command: "make -j8 -18" in "/home/jcacace/ros_ws/build"

H#it##

[ 50%] Linking CXX executable /home/jcacace/ros_ws/devel/lib/linking_error_test/linking_error
CMakeFiles/linking_error.dir/src/linking_error.cpp.o: In function ‘main':
/home/jcacace/ros_ws/src/linking_error_test/src/linking_error.cpp:7: undefined reference to ‘ros::init(int&, char**, std::__cxx
11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, unsigned int)

collect2: error: 1d returned 1 exit status

linking_error_test/CMakeFiles/linking_error.dir/build.make:104: recipe for target '/home/jcacace/ros_ws/devel/lib/linking_error
_test/linking_error' failed

make[2]: *** [/home/jcacace/ros_ws/devel/lib/linking_error_test/linking_error] Error 1

CMakeFiles/Makefile2:493: recipe for target 'linking_error_test/CMakeFiles/linking_error.dir/all' failed

make[1]: *** [linking_error_test/CMakeFiles/linking_error.dir/all] Error 2

Makefile:138: recipe for target 'all' failed

make: *** [all] Error 2
Invoking "make -3j8 -18" failed
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[ INFO] [1563389354.6087765795, ©.155600000]: Loaded gazebo_ros_control.
[INFO] [1503389354.726844, 6.274066]: Controller Spawner: Waiting for service controll
er_manager/switch_controlier

[INFO] [1503389354.728599, 6.276066]: Controller Spawner: Waiting for service controll
er_manager/unload_controlier

[INFO] [1503389354.736271, 6.277006]:
[INFO] [1503389354.812192, 6.355006]
[INFO] [1503389354.896451, 6.433000]:
[INFO] [1503389354.905462, 6.442006]
[INFO] [1503389354.914256, 6.451006]
[INFO] [1503389354.921049, 6.458006]
[INFO] [1503389354.928891, 6.466000] : jointé_position_controller
[INFO] [1503389354.935862, 6.473006] ling joint7_position_controller
[INFO] [1503389354.944609, 6.482066]: Controller Spawner: Loaded controllers: joint_st
ate_controller, jointl position_controller, joint2 position_controller, joint3_pos
n_controller, jointa_position_controller, joints_position_controller, joint6_position_
controller, joint7_position_controller

[INFO] [1503389354.947569, 6.485006]: Started controllers: joint_state_controller, joi
nt1_position_controller, joint2_position_controller, joint3_position_controller, joint
a_position_controller, joints_position_controller, jointé_position_controller, joint7_
position_controller

joint_state_controller
jointl_position_controller
joint2_position_controller
joint3_position_controller
joint4_position_controller
joints_position_controller
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IKFast Plugin Generator
Loading robot from 'abb_irb6640_moveit_config' package ...
Creating plugin in 'abb_irb6640_moveit_plugins' package ...
found 1 planning groups: manipulator
found group 'manipulator'
found source code generated by IKFast version 268435529

Created plugin file at '/home/jcacace/ros_ws/src/MASTERING_ROS/ch13/abb_irb6646_moveit_plugins/src/abb_irb6640_manipulator_ikfa
st_moveit_plugin.cpp'

Created plugin definition at: '/home/jcacace/ros_ws/src/MASTERING_ROS/ch13/abb_irb6640_moveit_plugins/abb_irb6646_manipulator_m
oveit_ikfast_plugin_description.xml'

Overwrote CMakeLists file at '/home/jcacace/ros_ws/src/MASTERING_ROS/ch13/abb_irb6640_moveit_plugins/CMakeLists.txt'
Modified package.xml at '/home/jcacace/ros_ws/src/MASTERING_ROS/ch13/abb_irb6640_moveit_plugins/package.xml'
Modified kinematics.yaml at /home/jcacace/ros_ws/src/abb_irb6646_moveit_config/config/kinematics.yaml

Created update plugin script at /home/jcacace/ros ws/src/MASTERING ROS/ch13/abb _irb6640 moveit plugins/update ikfast plugin.sh





image/Figure_1.3_B17104.jpg
CMakelists.txt

— —

config include script

launch msg action






image/Figure_13.7_B17104.jpg





image/Figure_1.Table_1_B17104.jpg
Primitive type | Serialization C++ Python

bool (1) Unsigned 8-bit int uint8 t(2) bool

int8§ Signed 8-bit int intg_t int

uint8g Unsigned 8-bit int uint8_t int (3)
intle Signed 16-bit int intleé t int

uintle Unsigned 16-bit int uintl6_t int

int32 Signed 32-bit int int32_t int

uint32 Unsigned 32-bit int uint32 t int

inté64 Signed 64-bit int int64 t long
uinté4 Unsigned 64-bit int uinté64 t long
float32 32-bit IEEE float float float
floate64 64-bit TEEE float double float
string ascii string(4) std: :string string
time secs/nsecs unsigned 32-bit ints | ros: : Time rospy.Time
duration secs/nsecs signed 32-bit ints ros: :Duration rospy.Duration






image/Figure_6.22_B17104.jpg
Focus Camera == Measure ¢ 2DPoseEstimate 7 2DNavGoal @ PublishPoint = o

{interact | % Move Camera [ Select

0 Displays 0
v & Global Options

Fixed Frame odom

Background Color Ml 48; 48; 48

Frame Rate 30

¥ v Global Status: Ok

V Fixed Frame oK
> ® Grid 4
> % Laserscan &
> i, RobotModel 28
> - TF (]
v T2 map [
» v Status: Ok
Topic /map
Alpha 07
Color Scheme map
Draw Behind 6]
Resolution 0.05
Wwidth 576
Height 608
» Position -15.4;-17;0
» Orientation 0;,0;0;1

Fixed Frame
Frame into which all data is transformed beFore being
displayed.

Add Remove Rename

@ Time

ROS Time: [293.48 ROS Elapsed: |147.57 Wall Time: [1445969788.12 | Wall Elapsed: |251.88 [) Experimental






image/Figure_3.6_B17104.jpg





image/Figure_10.12_B17104.jpg
fnteract | M

Frame Rate
v v Global status: Ok
v Fixed Frame
S
[P
8
v
» v Status: Ok
Topi
Selectable

Queue Size 10
Channel Name intensity
Use rainbow
Invert Rainbow
Min Color mo:
Color Transformer
Set the transformer to use to set the color of the
2

© Time

ROS Time: |1440231518.57 | ROS Elapsed: |61.36 Wall Time: [1440231518.61 | Wall Elap:

Reset | LeFt-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options.

"] Experimental

30 fps





image/Figure_11.6_B17104.jpg
scan

mobile_base_controller/cmd_vel
geometry _msgs/Twist

joint_states
sensor_msgs/JointState

wheel_cmd_velocities
diffbot/WheelsCmd

Motor PWM signals

reset

measured_joint_states
std_msgs/Empty

sensor_msgs/JointState

Encoder Hall sensor signals

Remo Robot





image/Figure_9.7_B17104.jpg
sketch_decoza | Arduino 1.8.13

Edt_Sketch Tools tielp
New
open
pen Recent
Sketchbook

Close cuiw] on Corme

save cuss)
06 Sensors
Swers. cubeshites| oo

Pagesetup  Cubtshit+? | o8 Stings s
Pt ci+p 05058 5

Preferences  Cirl+Comma | 10 Starteri_Basickt

s cutvg| HLATinoSP .

Adafi Circut Playground .
sridge .
Esplora .
Ethernet .
Fmsta .

s >
Uauidcrystal .
Robot Control .
button_example
Robot Motor . Sk
L ? | clapoer
=0 * | eloworid
Ranger
Spacebrowun C e
e ? | toggng
odom
Temboa .
pubsub
pereec, * | senvcectent
r Seniceserer
Ecprom * | servocentral
Softuaresenal * | rempersture
s * { renae
wre * | utrasound

a - oaras .

! o Lbrary v





image/Figure_15.6_B17104.jpg
Start
self-Collisions
Virtual Joints

Planning Groups
Robot Poses
End Effectors
Passive joints

ROS Control

Define End Effectors

Setup your robot's end effectors. These are planning groups corresponding to grippers or tools,
attached to a parent planning group (an arm). The specified parent ink is used as the reference
frame for IK attempts.

End Effector Name:

[moveit_eef |
End Effector Group:

[ endeffector -]
parent Link (usually part of the arm):

[ ee.tink -]
Parent Group (optional):






image/Figure_3.4_B17104.jpg





image/Figure_4.06_B17104.jpg
3rd party i ros_control & friends

RobotHW Eg\

navigation

killer_app

Movelt! ‘arm_controller

foo_controller

controller_manager ¢

hardware interfaces

@—@ \elocity control
A—A position control
B effort control





image/Figure_5.15_B17104.jpg
Jcacace@jcacace-Lenovo-Leglon-5-15ARHOS:~§ rostoplc echo /model_name
Gata: “e_puck_36112_Jcacace_Lenovo_Leglon_5_1SARMDS"






image/Figure_6.13_B17104.jpg





image/Figure_14.25_B17104.jpg
Configuration Parameters: turtlebot_orientation_ctrl/Configuration (Active) — O

[Q Search

Simulation time

Data Import/Export
Math and Data Types

» Diagnostics
Hardware Implementation
Model Referencing
Simulation Target

Start time: [0.0 ] Stop time: [inf ]

Solver selection

I Solver: [aulo (Automatic solver selec!ion)[ v ]

Fixed-step

v Solver details

Fixed-step size (fundamental sample time):

Tasking and sample time options

Periodic sample time constraint: ]Unconstrained [ - ‘

[[] Treat each discrete rate as a separate task
D Allow tasks to execute concurrently on target
[] Automatically handle rate transition for data transfer

[T Higner priority value indicates higher task priority

OK H Cancel H Help H






image/Figure_14.15_B17104.jpg
&l
ROS Blank Message (mask) (k)
Crete  bank message it the specifed messagetype. Tl St 0 Mesag e

“The *Msg” block output s a blank ROS message (bus signa). Use a Bus
Assignment blockto modiy specicfelds i the bus signal.

‘The bus signal i ntialized to zero value (ground).
Parameters

e e s

‘Sampletme: @ ot recommended for tis k.S o - to remove. Why?
fiof :

Ok | Cancel || Hep || Apply






image/Image86750.jpg
© % QAR | WAL o o Bruox © [ocamer ]|
©rn a4 %
|

TN sy
‘:¢' ey ‘-‘%& q‘.“g"

At Rel) (m)
-0.0

Groundspeed () |
00

e Tine _l






image/Figure_1.5_B17104.jpg
<?xml version="1.0"?7>
<package>
<name>navigation</name>
<version>1.14.0</version>
<description>
A 2D navigation stack that takes in information from odometry, sensor
streams, and a goal pose and outputs safe velocity commands that are sent
to a mobile base.
</description>

;ﬁ}l>http://wiki.ros.org/navigation</url>
;Bﬁildtuolfdepend>catkin</buildtoolidepend>
<run_depend>amcl</run_depend>
;ékpnrt>

<metapackage/>

</export>
</package>
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[1505806707.153599116, 0.343000000]: Added FollowJlointTrajectory controller for seven_dof_ar
ller

[1505806707.153740538, 0.343000000]: Returned 2 controllers in list

[1505806707.205783246, 0.347000000]: Trajectory execution is managing controllers
'move_group/ApplyPlanningSceneService'...
'move_group/ClearOctomapService'...
'move_group/MoveGroupCartesianPathService'...
'move_group/MoveGroupExecuteTrajectoryAction'.
'move_group/MoveGroupGetPlanningSceneService'...

'move_group/MoveGroupKinematicsService'...

'move_group/MoveGroupMoveAction'...

'move_group/MoveGroupPickPlaceAction'...

'move_group/MoveGroupPlanService'...

'move_group/MoveGroupQueryPlannersService'... 1
'move_group/MoveGroupStateValidationService'...

[1505806835.903571251, 36.978000000]: arm[RRTkConfigDefault]: Starting planning with 1 state
structure

[1505806835.994742622, 36.997000000]: arm[RRTkConfigDefault]: Created 21 states :Z
[1505806836.036028021, 37.004000000]: arm[RRTkConfigDefault]: Created 38 states
[1505806836.038435520, 37.005000000]: ParallelPlan::solve(): Solution found by one or more t
1 seconds
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Joint number |Joint name Joint type | Joint limits
1 bottom joint Fixed --

2 shoulder pan joint Revolute [ -150°to 114°
3 shoulder pitch joint | Revolute |-67°to 109°
4 elbow roll joint Revolute [ -150°to 41°
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6 wrist roll joint Revolute [ -150°to 150°
7 wrist pitch joint Revolute [92°to 113°

8 gripper roll joint Revolute |-150°to 150°
9 finger jointl Prismatic [0cmto3 cm
10 finger joint2 Prismatic |0cmto3 cm
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[ INFO] [1509310151.685693448]: Using transport "raw'
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[ INFO] [1509310151.852111773]: Starting 'head_camera' (/dev/videoo) at 64
0x480 via mmap (yuyv) at 30 FPS

[ WARN] [1569310152.108112434]: unknown control 'focus_auto

OO /usb_cam/imag






image/Figure_10.17_B17104.jpg
{ynteract | Move Camera 73 Select

I Displays

» v Status: Ok
Topic
Selectable
style
size (Pixels)
Alpha
Decay Time

Position Transfor...

Color Transformer
Queue Size
Channel Name
Use rainbow
Invert Rainbow
Min Color

Max Color
Autocompute Int.
Min Intensity

Max Intensity

Color Transformer

/pcl_output

Points
3

XvZ
Intensity
10

intensity

Wo; 0,0
1255, 255; 255

Set the transformer to use to set the color of the

points.

Add

@ Time

ROS Time: |1440422473.59 | ROS Elapsed: |45.16

= Measure 7 2D PoseEstimate 7 2DNavGoal  § Publish Point o

Wall Time: [1440422473.63 | Wall Elapsed: 45.13 ") Experimental

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options. 30fps





image/Figure_16.2_B17104.jpg
@ EXTENSIONS: MARKETPLACE v £ Extension: C/C++ X

clet+

C/C++ (mswscode:cpptools
Microsoft | 19,460,995 | %%+ | Repository | License | v1.3.1
C/C++ IntelliSense, debugging, and code browsing.

C/C++ Compile Run 1.0.14 DIM k4.5 [install’ i3

Compile & Run single c/c++ files easly - TN

i el — This extension is recommended based on the files you recently opened.
CC e anaicommandiidaptonci Crel) 00 Details Feature Contributions Changelog

Completion and Diagnostic for C/C++/Objective-C using Clang Com...
Yasuaki MITANI Install

S otk C/C++ for Visual Studio Code

Code snippets for C/C++
Harsh CInstall






image/Figure_5.11_B17104.jpg





image/Figure_15.16_B17104.jpg
start Define Planning Groups

Create and edit joint mode groups for your robot based on joint collections,link collections, kinematic chains or
self-Collisions subgroups. A planning group defines the set of (oint, link) pairs considered for planning and collision checking.
Define individual groups for each subset of the robot you want to plan for.Note: when adding a link to the group, its
‘parentjointis added too and vice versa.

Virtual Joints

Edit Planning Group 'manipulator’
Planning Groups Kinematics
e Group Name: [maniputator

Kinematic Solver: | abb_irb2400_ manipulator_kinematics/IKFastkinematicsPlugin  ~

EDd=ecor Kin. Search Resolution: [0.005

passive Joints Kin. Search Timeout (sec): [0.005

Kin. parameters file: [ ][ - ]

ROS Control





image/B17104_Figure_7.3.jpg
yinteract | Move Camera [select 4 =

@ Displays

> & Global Options
> v Global status: Ok
> @ Grid

v 3 MotionPlanning

Add

Motion Planning

Context Planning Manipulation| Scene Objects  [stored Scenes  Stored States  Status

Current Scene Objects ‘Object status

seven_dof_arm_cylinder

Manage Pose and Scale

Position (xv2): [0.00 000 0.00
Rotation (RPY): 0.0 000 000 :
scale: 0% 200%

Scene Geometry

Export As Text | | Import From Text

Import URL

Remove Clear

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More option:

30fps





image/Figure_15.2_B17104.jpg
Start
self-Collisions
Virtual Joints

Planning Groups
Robot Poses
End Effectors

Passive joints

Define Virtual Joints

Create a virtual joint between a robot link and an external frame of reference (considered fixed
with respect to the robot).

VirtualJoint Name:
[fixed_base |
child ink:

[ base_link -]

Parent Frame Name:

[wortd |
Joint Type:
e =]






image/Figure_2.5_B17104.jpg
/demo_msg_publisher

/demo_msg_topic

/demo_msg_subscriber






image/Figure_4.10_B17104.jpg





image/Figure_8.05_B17104.jpg
PX4 on SITL MAVLink API/Offboard
~— | Communication

port 14540
mavlink_main.cop |«aq H============-=
port 14580

QGroundControl/ Joystick/
Other GCS Gamepad

port 14550
- R st O -
port 18570

Simulator

TCP 4560
simulator_mavlink.cpp |-+ -ﬂU






image/Figure_6.2_B17104.jpg





toc.xhtml

		
		Contents


			
						Mastering ROS for Robotics Programming Third Edition


						Contributors


						About the authors


						About the reviewers


						Preface
					
								Who this book is for


								What this book covers


								To get the most out of this book


								Download the example code files


								Code in Action


								Download the color images


								Conventions used


								Get in touch


								Share Your Thoughts


					


				


						Section 1 – ROS Programming Essentials


						Chapter 1: Introduction to ROS
					
								Technical requirements


								Why should we use ROS?


								Understanding the ROS filesystem level
							
										ROS packages


										ROS metapackages


										ROS messages


										The ROS services


							


						


								Understanding the ROS computation graph level
							
										ROS nodes


										ROS messages


										ROS topics


										ROS services


										ROS bagfiles


										The ROS master


										Using the ROS parameter


							


						


								ROS community level


								Prerequisites for starting with ROS
							
										ROS distributions


										Running the ROS master and the ROS parameter server


							


						


								Summary


								Questions


					


				


						Chapter 2: Getting Started with ROS Programming
					
								Technical requirements


								Creating a ROS package
							
										Working with ROS topics


										Creating ROS nodes


										Building the nodes


							


						


								Adding custom .msg and .srv files


								Working with ROS services
							
										Working with ROS actionlib


										Building the ROS action server and client


							


						


								Creating launch files


								Applications of topics, services, and actionlib


								Summary


								Questions


					


				


						Section 2 – ROS Robot Simulation


						Chapter 3: Working with ROS for 3D Modeling
					
								Technical requirements


								ROS packages for robot modeling


								Understanding robot modeling using URDF


								Creating the ROS package for the robot description


								Creating our first URDF model


								Explaining the URDF file


								Visualizing the 3D robot model in RViz
							
										Interacting with pan-and-tilt joints


							


						


								Adding physical and collision properties to a URDF model


								Understanding robot modeling using xacro
							
										Using properties


										Using the math expression


							


						


								Converting xacro to URDF


								Creating the robot description for a seven-DOF robot manipulator
							
										Arm specification


							


						


								Explaining the xacro model of the seven-DOF arm
							
										Using constants


										Using macro


										Including other xacro files


										Using meshes in the link


										Working with the robot gripper


										Viewing the seven-DOF arm in RViz


							


						


								Creating a robot model for the differential drive mobile robot


								Summary


								Questions


					


				


						Chapter 4: Simulating Robots Using ROS and Gazebo 
					
								Technical requirements


								Simulating the robotic arm using Gazebo and ROS


								Creating the robotic arm simulation model for Gazebo
							
										Adding colors and textures to the Gazebo robot model


										Adding transmission tags to actuate the model


							


						


								Adding the gazebo_ros_control plugin
							
										Adding a 3D vision sensor to Gazebo


							


						


								Simulating the robotic arm with Xtion Pro
							
										Visualizing the 3D sensor data


							


						


								Moving the robot joints using ROS controllers in Gazebo
							
										Understanding the ros_control packages


										Different types of ROS controllers and hardware interfaces


										How the ROS controller interacts with Gazebo


										Interfacing the joint state controllers and joint position controllers with the arm


										Launching the ROS controllers with Gazebo


										Moving the robot joints


							


						


								Simulating a differential wheeled robot in Gazebo
							
										Adding the laser scanner to Gazebo


										Moving the mobile robot in Gazebo


										Adding joint state publishers to the launch file


							


						


								Adding the ROS teleop node


								Questions


								Summary


					


				


						Chapter 5: Simulating Robots Using ROS, CoppeliaSim, and Webots
					
								Technical requirements


								Setting up CoppeliaSim with ROS
							
										Understanding the RosInterface plugin


										Working with ROS messages


							


						


								Simulating a robotic arm using CoppeliaSim and ROS
							
										Adding the ROS interface to CoppeliaSim joint controllers


							


						


								Setting up Webots with ROS
							
										Introduction to the Webots simulator


										Simulating a mobile robot with Webots


							


						


								Writing your first controller
							
										Simulating the robotic arm using Webots and ROS


							


						


								Writing a teleop node using webots_ros
							
										Starting Webots with a launch file


							


						


								Summary


								Questions


					


				


						Chapter 6: Using the ROS MoveIt! and Navigation Stack
					
								Technical requirements 


								The MoveIt! architecture
							
										The move_group node


										Motion planning using MoveIt!


										Motion-planning request adapters


										MoveIt! planning scene


										MoveIt! kinematics handling


										MoveIt! collision checking


							


						


								Generating a MoveIt! configuration package using the Setup Assistant tool
							
										Step 1 – Launching the Setup Assistant tool


										Step 2 – Generating a self-collision matrix


										Step 3 – Adding virtual joints


										Step 4 – Adding planning groups


										Step 5 – Adding the robot poses


										Step 6 – Setting up the robot end effector


										Step 7 – Adding passive joints


										Step 8 – Author information


										Step 9 – Generating configuration files


							


						


								Motion planning of a robot in RViz using the MoveIt! configuration package
							
										Using the RViz MotionPlanning plugin


										Interfacing the MoveIt! configuration package to Gazebo


							


						


								Understanding the ROS Navigation stack
							
										ROS Navigation hardware requirements


										Working with Navigation packages


										Workings of the Navigation stack


							


						


								Building a map using SLAM
							
										Creating a launch file for gmapping


										Running SLAM on the differential drive robot


										Implementing autonomous navigation using amcl and a static map


										Creating an amcl launch file


							


						


								Summary


								Questions


					


				


						Chapter 7: Exploring the Advanced Capabilities of ROS MoveIt!
					
								Technical requirements


								Motion planning using the move_group C++ interface
							
										Motion planning a random path using MoveIt! C++ APIs


										Motion planning a custom path using MoveIt! C++ APIs


										Collision checking with a robot arm using MoveIt!


							


						


								Working with perception using MoveIt! and Gazebo


								Performing object manipulation with MoveIt!
							
										Working with a robot pick-and-place task using MoveIt!


										Pick-and-place actions in Gazebo and real robots


							


						


								Understanding DYNAMIXEL ROS servo controllers for robot hardware interfacing
							
										DYNAMIXEL servos


										DYNAMIXEL-ROS interface


							


						


								Interfacing a 7-DOF DYNAMIXEL-based robotic arm with ROS MoveIt!
							
										Creating a controller package for a COOL arm robot


										MoveIt! configuration of the COOL arm


							


						


								Summary


								Questions


					


				


						Chapter 8: ROS for Aerial Robots
					
								Technical requirements


								Using aerial robots
							
										UAV hardware


										Pixhawk autopilot


							


						


								Using the PX4 flight control stack
							
										PX4 firmware architecture


										PX4 SITL


							


						


								PC/autopilot communication
							
										The mavros ROS package


							


						


								Writing a ROS-PX4 application
							
										Writing a trajectory streamer


										External pose estimation for PX4


							


						


								Using the RotorS simulation framework
							
										Installing RotorS


										RotorS packages


										Creating a new UAV model


										Interacting with RotorS motor models


							


						


								Summary


								Questions


					


				


						Section 3 – ROS Robot Hardware Prototyping


						Chapter 9: Interfacing I/O Board Sensors and Actuators to ROS
					
								Technical requirements:


								Understanding the Arduino-ROS interface


								What is the Arduino-ROS interface?
							
										Understanding the rosserial package in ROS


										Understanding ROS node APIs in Arduino


										ROS-Arduino Publisher and Subscriber example


										Arduino-ROS example – blinking an LED with a push button


										Arduino-ROS example – Accelerometer ADXL 335


										Arduino-ROS example – ultrasonic distance sensor


										Arduino-ROS example – odometry data publisher


							


						


								Interfacing non-Arduino boards to ROS
							
										Setting up the Odroid-C4, Raspberry Pi 4, and Jetson Nano for installing ROS


										Blinking the LED using ROS on the Raspberry Pi 4


										A push button and a blinking LED using ROS on the Raspberry Pi 2


										Running examples on the Raspberry Pi 4


							


						


								Interfacing DYNAMIXEL actuators to ROS


								Summary


								Questions


					


				


						Chapter 10: Programming Vision Sensors Using ROS, OpenCV, and PCL
					
								Technical requirements


								Understanding ROS – OpenCV interfacing packages


								Understanding ROS – PCL interfacing packages
							
										Installing ROS perception


							


						


								Interfacing USB webcams in ROS


								Working with ROS camera calibration
							
										Converting images between ROS and OpenCV using cv_bridge


							


						


								Interfacing Kinect and Asus Xtion Pro with ROS


								Interfacing the Intel RealSense camera with ROS
							
										Converting point cloud to a laser scan 


							


						


								Interfacing Hokuyo lasers with ROS
							
										Interfacing RPLIDAR and YDLIDAR with ROS


							


						


								Working with point cloud data
							
										How to publish a point cloud


										How to subscribe and process a point cloud


										Reading and publishing a point cloud from a PCD file


							


						


								Summary


								Questions


					


				


						Chapter 11: Building and Interfacing Differential Drive Mobile Robot Hardware in ROS
					
								Technical requirements
							
										Software requirements


										Network setup


										Hardware requirements


							


						


								Introduction to the Remo robot – a DIY autonomous mobile robot
							
										Remo hardware components


										Software requirements for the ROS Navigation Stack


							


						


								Developing a low-level controller and a high-level ROS Control hardware interface for a differential drive robot
							
										Implementing the low-level base controller for Remo


										ROS Control high-level hardware interface for a differential drive robot


										Overview of ROS nodes and topics for the Remo robot


							


						


								Configuring and working with the Navigation Stack
							
										Configuring the gmapping node and creating a map


										Working with the gmapping node


										Configuring the move_base node


										Configuring the AMCL node


										AMCL planning


										Working with Remo robot in simulation


							


						


								Summary


								Questions


					


				


						Section 4 – Advanced ROS Programming


						Chapter 12: Working with pluginlib, nodelets, and Gazebo Plugins
					
								Technical requirements


								Understanding pluginlib
							
										Implementing a calculator plugin using pluginlib 


							


						


								Understanding ROS nodelets
							
										Implementing a sample nodelet


							


						


								Understanding and creating a Gazebo plugin
							
										Creating a basic world plugin


							


						


								Summary


								Questions


					


				


						Chapter 13: Writing ROS Controllers and Visualization Plugins
					
								Technical requirements


								Understanding ros_control packages
							
										The controller_interface package


							


						


								Writing a basic joint controller in ROS
							
										Step 1 – creating the controller package


										Step 2 – creating the controller header file


										Step 3 – creating the controller source file


										Step 4 – detailed explanation of the controller source file


										Step 5 – creating the plugin description file


										Step 6 – updating package.xml


										Step 7 – updating CMakeLists.txt


										Step 8 – building the controller


										Step 9 – writing the controller configuration file


										Step 10 – writing the launch file for the controller


										Step 11 – running the controller along with the seven-DOF arm in Gazebo


							


						


								Understanding the RViz tool and its plugins
							
										The Displays panel


										The RViz toolbar


										The Views panel


										The Time panel


										Dockable panels


							


						


								Writing an RViz plugin for teleoperation
							
										The methodology of building a RViz plugin


							


						


								Summary


								Questions


					


				


						Chapter 14: Using ROS in MATLAB and Simulink
					
								Technical requirements


								Getting started with MATLAB 


								Getting started with ROS Toolbox and MATLAB
							
										Starting with ROS topics and MATLAB callback functions


							


						


								Developing a robotic application using MATLAB and Gazebo


								Getting started with ROS and Simulink
							
										Creating a wave signal integrator in Simulink


										Publishing a ROS message in Simulink


										Subscribing to a ROS topic in Simulink


							


						


								Developing a simple control system in Simulink
							
										Configuring the Simulink model


							


						


								Summary


								Questions


					


				


						Chapter 15: ROS for Industrial Robots 
					
								Technical requirements


								Understanding ROS-Industrial packages


								Goals of ROS-Industrial


								ROS-Industrial – a brief history


								Installing ROS-Industrial packages
							
										Block diagram of ROS-Industrial packages


							


						


								Creating a URDF for an industrial robot


								Creating the MoveIt configuration for an industrial robot


								Updating the MoveIt configuration files


								Installing ROS-Industrial packages for Universal Robots arms


								Installing the ROS interface for Universal Robots


								Understanding the MoveIt configuration of a Universal Robots arm


								Getting started with real Universal Robots hardware and ROS-I


								Working with MoveIt configuration for ABB robots


								Understanding the ROS-Industrial robot support packages


								The ROS-Industrial robot client package


								Designing industrial robot client nodes


								The ROS-Industrial robot driver package


								Understanding the MoveIt IKFast plugin


								Creating the MoveIt IKFast plugin for the ABB IRB 6640 robot
							
										Prerequisites for developing the MoveIt IKFast plugin


							


						


								The OpenRave and IKFast modules
							
										MoveIt IKFast


										Installing the MoveIt IKFast package


										Installing OpenRave on Ubuntu 20.04


							


						


								Creating the COLLADA file of a robot to work with OpenRave


								Generating the IKFast CPP file for the IRB 6640 robot


								Creating the MoveIt IKFast plugin


								Summary


								Questions


					


				


						Chapter 16: Troubleshooting and Best Practices in ROS
					
								Setting up Visual Studio Code with ROS
							
										Installing/uninstalling Visual Studio Code


										Getting started with Visual Studio Code


										Installing new Visual Studio Code extensions


										Getting started with the Visual Studio Code ROS extension


										Inspecting and building the ROS workspace


										Managing ROS packages using Visual Studio Code


										Visualizing the preview of a URDF file


							


						


								Best practices in ROS
							
										ROS C++ coding style guide


							


						


								Best coding practices for the ROS package


								Important troubleshooting tips in ROS
							
										Using roswtf


							


						


								Summary


								Questions


								Why subscribe?


					


				


						Other Books You May Enjoy
					
								Packt is searching for authors like you


								Share Your Thoughts


					


				


			


		
		
		Landmarks


			
						Cover


						Table of Contents


			


		
	

image/Figure_6.8_B17104.jpg
Start
Self-Collisions
Virtual Joints
Robot Poses
End Effectors
Passive Joints
ROS Control
Simulation
3D Perception
Author Information

Configuration Files

Define Planning Groups

Create and edit joint model groups for your robot based on joint collections,link collections,
kinematic chains or subgroups. A planning group defines the set of (join, link) pairs considered
for planning and collision checking. Define individual groups for each subset of the robot you
want to plan for.Note: when adding a ink to the group, its parent joint is added too and vice
versa.

Current Groups
- arm
Joints
Links
~ Chain
base link -> grasping_frame
Subgroups
- gripper
- Joints
finger_joint1 - Prismatic
inger joint2 - rismatic
Links
Chain
Subgroups

Expand All Collapse All Delete Selected | Edit Selected | | Add Group






image/Figure_15.11_B17104.jpg
File Panels Help

Eyersce | mowe omers [lselec focusComera S Messure 7 20 ose stmote
) oisplays 0
» © Giobal Options e
+ /' Giobal Staus: Ok

» @ Grid v

= % \tssiontlansinn m =

DNawvGos  Qrubisnroint  F = @

add

3 Motionplanning 0

property Value

Context | Planning | Manipulation | Scene Objects | Stored Scenes | Stored Stz  »
Commands Query Options

Plan Planning Group: Planning Time (s} 5,00 A

manipulator  ~ | planning Attempts: |10 g

start tate: Velocity scaling: (0,10 A
Stop scurrent> | cceleration Scaling: 0,10
Goal stae: Allow Replanning
Clearocomap | |<current> = Allow Sensor Positioning
Allow External Comm.
Path Constraints
Use Cartesian Path
Hooe, " ¥ Use collsion-Aware Ik
Goal Tolerance: 000 B

Allow Approx IK Solutions.

I ReaiTime racor RealTime:





image/Figure_16.9_B17104.jpg
S pan_tilt.urdf X

src > rl_robot_description_pkg > urdf > N pan_tilt.urdf

<color rgoa="o U L L'/
</material>
</visual>
<collision>
<geometry>
<cylinder length="0.4" radius="0.66"/>
</geometry>
<origin rpy="6 © 0" xyz="0 0 0.09"/>
</collision>
<inertial>
<mass value="1"/>
<inertia ixx="1.0" ix
</inertial>
</link>

0.0" ixz="0.0" iyy="1.0" iyz="0.0" izz:

<joint name="tilt_joint" type="revolute">
<parent link="pan_link"/>
<child link="tilt link"/>
<origin xyz="0 0 0.2"/>
<axis xyz="0 1 0" />
<limit effort="300" velocity:
<dynamics damping="50" friction:

</joint>

.1" lower="-4.64" upper="-1.5"/>
"/>

<link name=!
<visual>
<geometry>
<cylinder length="0.4" radius="0.04"/>
</geonetry>
<origin rpy="0 1.57 e" Xyz="0 0 0"/>
<material name="red
<color rgb:
</material>
</visual>
<collision>
<geometry>
<cylinder length="0.4" radius="0.06"/>
</geometry>
<origin rpy="0 1.5 0" xyz="0 0 0"/>
</collision>

ilt_link">

= URDF Preview X





image/Figure_14.16_B17104.jpg
[
st ) )
S s 0505 et

T Ykt s 05 s o ).

B T e e e
o,

I oo g s T s o Sty v
D Ty, e St
it e g

—p——"
[epr—

e T —
o T —





image/Figure_14.26_B17104.jpg





image/Figure_10.7_B17104.jpg





image/Figure_16.12_B17104.jpg
jcacace@jcacace-Inspiron-7570:~$ rostopic pub /chatter std_msgs/Int32 "data: 1"

publishing and latching message. Press ctrl-C to terminate

[WARN] [1515176143.614150]: Could not process inbound connection: topic types do not

match: [std_msgs/String] vs. [std_msgs/Int32]{'topic': '/chatter', 'tcp_nodelay': '@"
'mdSsum': '992ce8al687cec8c8bd883ec73cad41dl', 'type': 'std_msgs/String', 'callerid'
'/listener'}
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Define Planning Groups

Create and edit joint model groups for your robot based on joint collections,link collections,
Kinematic chains or subgroups. A planning group defines the set of (join, link) pairs considered
for planning and collision checking. Define individual groups for each subset of the robot you

want to plan for.Note: when adding a ink to the group, its parent joint is added too and vice
versa.

Create New Planning Group
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Kin. Search Resolution: 0,005
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Optimize Self-Collision Checking

“This searches for pairs of robot links that can safely be disabled from collision checking,
decreasing motion planning time. These pairs are disabled when they are aways i collsion,
never in collsion, in collision in the robot's default position, or when the links are adjacent to each
other on the kinematic chain. Sampling density specifies how many random robot positions to
check for self collision.

‘sampling Density: Low = High 10000

Min. collisions for "always"colliding pairs: |95% ||| Generate Collision Matrix
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Loaded plugin tf.tfwtf

Static checks summary:

Found 1 warning(s).
Warnings are things that may be just fine, but are sometimes at fault

WARNING ROS_HOSTNAME may be incorrect: ROS_HOSTNAME [192.168.2.23] resolves to [192.168.2.23], which does
not appear to be a local IP address ['127.0.0.1', '192.168.1.7'].

ROS Master does not appear to be running.
Online graph checks will not be run.
ROS_MASTER_URI is [http://192.168.2.2:11311]
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>> rosinit
Initializing ROS master on http://DESKTOP-407G188:11311/.

Initializing global node /matlab_global node 16208 with NodeURI http://DESKTOP-407G18}
>> rosnode list

/matlab_global_node 16208

1762/
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Start Generate Configuration Files

Create or update the configuration files package needed to run your robot with Movelt. Uncheck
self-Collisions files to disable them from being generated - this is useful if you have made custom changes to
them. Files in orange have been automatically detected as changed.

Virtual Joints Configuration Package Save Path
‘Specify the desired directory for the Movelt configuration package to be generated.
Planning Groups ‘Overwriting an existing configuration package directory s acceptable. Example: /u/robot/ros/

panda_moveit config

Robot Poses bme/jcacace/deviros ws/src/mastering ros_3rd_edition/seven_dof arm_config| [ Browse

s Files to be generated: (checked)

v Defines a ROS package
V' CMakelists.txt
Passive joints V! config/
V! config/seven_dof arm.srdf
o et V! configiompl_planning yami
V! configichomp_planning.yaml
V! config/kinematics.yami
Simulation V! config/joint limits.yaml
V! config/fake_controllers.yam
V! configiros_controllers yam
3D Perception V' config/sensors 3d.yaml
V! launch/
Author Information | 4 v

Generate Package

Exit Setup Assistant
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jcacace@robot:~/catkin_ws$ rosrun mastering_ros_demo_pkg demo_service_server

INFO] [1499857954.849054844]: Ready to receive from client.

[

[ INFO] [1499857956.626780527]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857956.727500536]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857956.827664441]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857956.933545057]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.027340860]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.127714980]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.227157798]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.328243221]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.427351564]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.527108113]: From Client [Sending from Here], Server says [Received Here]
[jcacace@robot:-$ rosrun mastering_ros_demo_pkg demo_service client

[ INFO] [1499857956.627200681]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857956.727860599]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857956.828064716]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857956.934237703]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.027558745]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.127958080]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.227397212]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.328513872]: From Client [Sending from Here], Server says [Received Here]
[ INFO] [1499857957.427616100]: From Client [Sending from Here], Server says [Received Here]
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[sandboxScriptinfo] Simulation started.

ROSinterface was not found. Cannok run.

[Plane@chigscriptenon] 13; stempt Lo index globel SimROS' (o il velue)
Stack tracebackc

Tstring "Plane@childscriot]:13: in function <lstring "Plane@chidscriot™:10>
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jcacace@robot:~$ rosrun map_server map_saver -f willo

[ INFO] [1505810794.895750258]: Waiting for the map

[ INFO] [1505810795.117276658, 21.621000000]: Received a 288 X 608 map @ 0.050 m/pix

[ INFO] [1505810795.119888038, 21.621000000]: Writing map occupancy data to willo.pgm
[ INFO] [1505810795.138065942, 21.632000000]: Writing map occupancy data to willo.yaml
[ INFO] [1505810795.138632329, 21.632000000]: Done
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<?xml version="1.0"?>
<package>
<name>hello_world</name>
<version>0.0.1</version>
<description>The hello_world package</description>
<maintainer email="jonathan.cacace@gmail.com">Jonathan Cacace</maintainer>

<buildtool depend>catkin</buildtool depend>
<build depend>roscpp</build depend>
<build_depend>rospy</build depend>
<build_depend>std_msgs</build depend>

<run_depend>roscpp</run_depend>
<run_depend>rospy</run_depend>
<run_depend>std_msgs</run_depend>

<export>
</export>
</package>
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