

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB and its many features varies across reading devices and applications. Use your device or app settings to customize the presentation to your liking. Settings that you can customize often include font, font size, single or double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For additional information about the settings and features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

Modern JavaScript for the Impatient

Modern JavaScript for the Impatient

Cay S. Horstmann

[image: Images]

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2020934310

Copyright © 2020 Pearson Education, Inc.

Cover illustration: Morphart Creation / Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-650214-2

ISBN-10: 0-13-650214-8

ScoutAutomatedPrintCode

To Chi—the most patient person in my life.

Contents

Preface

About the Author

1 Values and Variables [image: Images]

1.1 Running JavaScript

1.2 Types and the typeof Operator

1.3 Comments

1.4 Variable Declarations

1.5 Identifiers

1.6 Numbers

1.7 Arithmetic Operators

1.8 Boolean Values

1.9 null and undefined

1.10 String Literals

1.11 Template Literals

1.12 Objects

1.13 Object Literal Syntax [image: Images]

1.14 Arrays

1.15 JSON

1.16 Destructuring [image: Images]

1.17 Advanced Destructuring [image: Images]

1.17.1 More about Object Destructuring

1.17.2 Rest Declarations

1.17.3 Defaults

Exercises

2 Control Structures [image: Images]

2.1 Expressions and Statements

2.2 Semicolon Insertion

2.3 Branches

2.4 Boolishness [image: Images]

2.5 Comparison and Equality Testing

2.6 Mixed Comparisons [image: Images]

2.7 Boolean Operators

2.8 The switch Statement [image: Images]

2.9 while and do Loops

2.10 for Loops

2.10.1 The Classic for Loop

2.10.2 The for of Loop

2.10.3 The for in Loop

2.11 Breaking and Continuing [image: Images]

2.12 Catching Exceptions

Exercises

3 Functions and Functional Programming [image: Images]

3.1 Declaring Functions

3.2 Higher-Order Functions

3.3 Function Literals

3.4 Arrow Functions

3.5 Functional Array Processing

3.6 Closures

3.7 Hard Objects [image: Images]

3.8 Strict Mode

3.9 Testing Argument Types

3.10 Supplying More or Fewer Arguments

3.11 Default Arguments

3.12 Rest Parameters and the Spread Operator

3.13 Simulating Named Arguments with Destructuring [image: Images]

3.14 Hoisting [image: Images]

3.15 Throwing Exceptions

3.16 Catching Exceptions [image: Images]

3.17 The finally Clause [image: Images]

Exercises

4 Object-Oriented Programming [image: Images]

4.1 Methods

4.2 Prototypes

4.3 Constructors

4.4 The Class Syntax

4.5 Getters and Setters [image: Images]

4.6 Instance Fields and Private Methods [image: Images]

4.7 Static Methods and Fields [image: Images]

4.8 Subclasses

4.9 Overriding Methods

4.10 Subclass Construction

4.11 Class Expressions [image: Images]

4.12 The this Reference [image: Images]

Exercises

5 Numbers and Dates [image: Images]

5.1 Number Literals

5.2 Number Formatting

5.3 Number Parsing

5.4 Number Functions and Constants

5.5 Mathematical Functions and Constants [image: Images]

5.6 Big Integers [image: Images]

5.7 Constructing Dates [image: Images]

5.8 Date Functions and Methods [image: Images]

5.9 Date Formatting [image: Images]

Exercises

6 Strings and Regular Expressions [image: Images]

6.1 Converting between Strings and Code Point Sequences

6.2 Substrings

6.3 Other String Methods

6.4 Tagged Template Literals [image: Images]

6.5 Raw Template Literals [image: Images]

6.6 Regular Expressions [image: Images]

6.7 Regular Expression Literals [image: Images]

6.8 Flags [image: Images]

6.9 Regular Expressions and Unicode [image: Images]

6.10 The Methods of the RegExp Class [image: Images]

6.11 Groups [image: Images]

6.12 String Methods with Regular Expressions [image: Images]

6.13 More about Regex Replace [image: Images]

6.14 Exotic Features [image: Images]

Exercises

7 Arrays and Collections [image: Images]

7.1 Constructing Arrays

7.2 The length Property and Index Properties

7.3 Deleting and Adding Elements

7.4 Other Array Mutators

7.5 Producing Elements

7.6 Finding Elements

7.7 Visiting All Elements

7.8 Sparse Arrays [image: Images]

7.9 Reduction [image: Images]

7.10 Maps

7.11 Sets

7.12 Weak Maps and Sets [image: Images]

7.13 Typed Arrays [image: Images]

7.14 Array Buffers [image: Images]

Exercises

8 Internationalization [image: Images]

8.1 The Locale Concept

8.2 Specifying a Locale

8.3 Formatting Numbers

8.4 Localizing Dates and Times

8.4.1 Formatting Date Objects

8.4.2 Ranges

8.4.3 Relative Time

8.4.4 Formatting to Parts

8.5 Collation

8.6 Other Locale-Sensitive String Methods

8.7 Plural Rules and Lists [image: Images]

8.8 Miscellaneous Locale Features [image: Images]

Exercises

9 Asynchronous Programming [image: Images]

9.1 Concurrent Tasks in JavaScript

9.2 Making Promises

9.3 Immediately Settled Promises

9.4 Obtaining Promise Results

9.5 Promise Chaining

9.6 Rejection Handling

9.7 Executing Multiple Promises

9.8 Racing Multiple Promises

9.9 Async Functions

9.10 Async Return Values

9.11 Concurrent Await

9.12 Exceptions in Async Functions

Exercises

10 Modules [image: Images]

10.1 The Module Concept

10.2 ECMAScript Modules

10.3 Default Imports

10.4 Named Imports

10.5 Dynamic Imports [image: Images]

10.6 Exports

10.6.1 Named Exports

10.6.2 The Default Export

10.6.3 Exports Are Variables

10.6.4 Reexporting

10.7 Packaging Modules

Exercises

11 Metaprogramming [image: Images]

11.1 Symbols

11.2 Customization with Symbol Properties

11.2.1 Customizing toString

11.2.2 Controlling Type Conversion

11.2.3 Species

11.3 Property Attributes

11.4 Enumerating Properties

11.5 Testing a Single Property

11.6 Protecting Objects

11.7 Creating or Updating Objects

11.8 Accessing and Updating the Prototype

11.9 Cloning Objects

11.10 Function Properties

11.11 Binding Arguments and Invoking Methods

11.12 Proxies

11.13 The Reflect Class

11.14 Proxy Invariants

Exercises

12 Iterators and Generators [image: Images]

12.1 Iterable Values

12.2 Implementing an Iterable

12.3 Closeable Iterators

12.4 Generators

12.5 Nested Yield

12.6 Generators as Consumers

12.7 Generators and Asynchronous Processing

12.8 Async Generators and Iterators

Exercises

13 An Introduction to Typescript [image: Images]

13.1 Type Annotations

13.2 Running TypeScript

13.3 Type Terminology

13.4 Primitive Types

13.5 Composite Types

13.6 Type Inference

13.7 Subtypes

13.7.1 The Substitution Rule

13.7.2 Optional and Excess Properties

13.7.3 Array and Object Type Variance

13.8 Classes

13.8.1 Declaring Classes

13.8.2 The Instance Type of a Class

13.8.3 The Static Type of a Class

13.9 Structural Typing

13.10 Interfaces

13.11 Indexed Properties [image: Images]

13.12 Complex Function Parameters [image: Images]

13.12.1 Optional, Default, and Rest Parameters

13.12.2 Destructuring Parameters

13.12.3 Function Type Variance

13.12.4 Overloads

13.13 Generic Programming [image: Images]

13.13.1 Generic Classes and Types

13.13.2 Generic Functions

13.13.3 Type Bounds

13.13.4 Erasure

13.13.5 Generic Type Variance

13.13.6 Conditional Types

13.13.7 Mapped Types

Exercises

Index

Preface

Experienced programmers familiar with languages such as Java, C#, C, and C++ often find themselves in a position where they need to work with JavaScript. User interfaces are increasingly web-based, and JavaScript is the lingua franca of the web browser. The Electron framework extends this capability to rich client applications, and there are multiple solutions for producing mobile JavaScript apps. Increasingly, JavaScript is used on the server side.

Many years ago, JavaScript was conceived as a language for “programming in the small,” with a feature set that can be confusing and error-prone for larger programs. However, current standardization efforts and tool offerings go far beyond those humble beginnings.

Unfortunately, it is difficult to learn modern JavaScript without getting bogged down with obsolete JavaScript. Most books, courses, and blog posts are focused on transitioning from older JavaScript versions, which is not helpful for migrants from other languages.

That is the issue that this book addresses. I assume that you, the reader, are a competent programmer who understands branches and loops, functions, data structures, and the basics of object-oriented programming. I explain how to be productive with modern JavaScript, with only parenthetical remarks about obsolete features. You will learn how to put modern JavaScript to use, while avoiding pitfalls from the past.

JavaScript may not be perfect, but it has shown itself to be well-suited for user interface programming and many server-side tasks. As Jeff Atwood said presciently: “Any application that can be written in JavaScript, will eventually be written in JavaScript.”

Work through this book, and learn how to produce the next version of your application in modern JavaScript!

Five Golden Rules

If you avoid a small number of “classic” features of JavaScript, you can greatly reduce the mental load of learning and using the language. These rules probably won’t make sense to you right now, but I list them here for your future reference, and to reassure you that they are few in number.

	Declare variables with let or const, not var.

	Use strict mode.

	Know your types and avoid automatic type conversion.

	Understand prototypes, but use modern syntax for classes, constructors, and methods.

	Don’t use this outside constructors or methods.

And a meta-rule: Avoid the Wat—those snippets of confusing JavaScript code followed by a sarcastic “Wat?!” Some people find delight in demonstrating the supposed awfulness of JavaScript by dissecting obscure code. I have never learned anything useful from going down that rabbit hole. For example, what is the benefit of knowing that 2 * ['21'] is 42 but 2 + ['40'] is not, if the golden rule #3 tells you not to mess with type conversions? In general, when I run into a confusing situation, I ask myself how to avoid it, not how to explain its gory but useless details.

The Learning Paths

When I wrote the book, I was trying to put information where you can find it when you need it. But that’s not necessarily the right place when you read the book for the first time. To help you customize your learning path, I tag each chapter with an icon that indicates its basic level. Sections that are more advanced than the chapter default get their own icons. You should absolutely skip those sections until you are ready for them.

Here are the icons:

The impatient rabbit denotes a basic topic that even the most impatient reader should not skip.

[image: Images]

Alice indicates an intermediate topic that most programmers want to understand, but perhaps not on first reading.

[image: Images]

The Cheshire cat points to an advanced topic that puts a smile on the face of a framework developer. Most application programmers can safely ignore these.

[image: Images]

Finally, the mad hatter labels a complex and maddening topic, intended only for those with morbid curiosity.

[image: Images]

A Tour of the Book

In Chapter 1, we get going with the basic concepts of JavaScript: values and their types, variables, and most importantly, object literals. Chapter 2 covers control flow. You can probably skim over it quickly if you are familiar with Java, C#, or C++. In Chapter 3, you will learn about functions and functional programming, which is very important in JavaScript. JavaScript has an object model that is very different from class-based programming languages. Chapter 4 goes into detail, with a focus on modern syntax. Chapters 5 and 6 cover the library classes that you will most often use for working with numbers, dates, strings, and regular expressions. These chapters are largely at the basic level, with a sprinkling of more advanced sections.

The next four chapters cover intermediate level topics. In Chapter 7, you will see how to work with arrays and the other collections that the standard JavaScript library offers. If your programs interact with users from around the world, you will want to pay special attention to the coverage of internationalization in Chapter 8. Chapter 9 on asynchronous programming is very important for all programmers. Asynchronous programming used to be quite complex in JavaScript, but it has become much simpler with the introduction of promises and the async and await keywords. JavaScript now has a standard module system that is the topic of Chapter 10. You will see how to use modules that other programmers have written, and to produce your own.

Chapter 11 covers metaprogramming at an advanced level. You will want to read this chapter if you need to create tools that analyze and transform arbitrary JavaScript objects. Chapter 12 completes the coverage of JavaScript with another advanced topic: iterators and generators, which are powerful mechanisms for visiting and producing arbitrary sequences of values.

Finally, there is a bonus chapter, Chapter 13, on TypeScript. TypeScript is a superset of JavaScript that adds compile-time typing. It is not a part of standard JavaScript, but it is very popular. Read this chapter to decide whether you want to stick with plain JavaScript or use compile-time types.

The purpose of this book is to give you a firm grounding of the JavaScript language so that you can use it with confidence. However, you will need to turn elsewhere for the ever-changing landscape of tools and frameworks.

Why I Wrote This Book

JavaScript is one of the most used programming languages on the planet. Like so many programmers, I knew a bit of pidgin JavaScript, and one day, I had to learn serious JavaScript in a hurry. But how?

There are any number of books that teach a little bit of JavaScript for casual web developers, but I already knew that much JavaScript. Flanagan’s Rhino book1 was great in 1996, but now it burdens readers with too many accidents from the past. Crockford’s JavaScript: The Good Parts2 was a wake-up call in 2008, but much of its message has been internalized in subsequent changes to the language. There are many books that bring old-style JavaScript programmers into the world of modern standards, but they assume an amount of “classic” JavaScript that was out of my comfort zone.

Of course, the web is awash in JavaScript-themed blogs of varying quality—some accurate but many with a tenuous grasp of the facts. I did not find it effective to scour the web for blogs and gauge their levels of truthfulness.

Oddly enough, I could not find a book for the millions of programmers who know Java or a similar language and who want to learn JavaScript as it exists today, without the historical baggage.

So I had to write it.

1. David Flanagan, JavaScript: The Definitive Guide, Sixth Edition (O’Reilly Media, 2011).

2. Published by O’Reilly Media, 2008.

Acknowledgments

I would like to once again thank my editor Greg Doench for supporting this project, as well as Dmitry Kirsanov and Alina Kirsanova for copyediting and typesetting the book. My special gratitude goes to the reviewers Gail Anderson, Tom Austin, Scott Davis, Scott Good, Kito Mann, Bob Nicholson, Ron Mak, and Henri Tremblay, for diligently spotting errors and providing thoughtful suggestions for improvements.

Cay Horstmann

Berlin

March 2020

Register your copy of Modern JavaScript for the Impatient on the InformIT site for convenient access to updates and/or corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account. Enter the product ISBN (9780136502142) and click Submit. Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow that link to access any available bonus materials. If you would like to be notified of exclusive offers on new editions and updates, please check the box to receive email from us.

About the Author

Cay S. Horstmann is principal author of Core Java™, Volumes I & II, Eleventh Edition (Pearson, 2018), Scala for the Impatient, Second Edition (Addison-Wesley, 2016), and Core Java SE 9 for the Impatient (Addison-Wesley, 2017). Cay is a professor emeritus of computer science at San Jose State University, a Java Champion, and a frequent speaker at computer industry conferences.

Chapter 1. Values and Variables

[image: Images]

Topics in This Chapter

1.1 Running JavaScript

1.2 Types and the typeof Operator

1.3 Comments

1.4 Variable Declarations

1.5 Identifiers

1.6 Numbers

1.7 Arithmetic Operators

1.8 Boolean Values

1.9 null and undefined

1.10 String Literals

1.11 Template Literals

1.12 Objects

[image: Images] 1.13 Object Literal Syntax

1.14 Arrays

1.15 JSON

[image: Images] 1.16 Destructuring

[image: Images] 1.17 Advanced Destructuring

Exercises

In this chapter, you will learn about the data types that you can manipulate in a JavaScript program: numbers, strings, and other primitive types, as well as objects and arrays. You will see how to store these values in variables, how to convert values from one type to another, and how to combine values with operators.

Even the most enthusiastic JavaScript programmers will agree that some language constructs—meant to be helpful for writing short programs—can lead to unintuitive results and are best avoided. In this and the following chapters, I will point out these issues and provide simple rules for safe programming.

1.1 Running JavaScript

To run JavaScript programs as you read this book, you can use a number of different approaches.

JavaScript was originally intended to execute in a browser. You can embed JavaScript in an HTML file and invoke the window.alert method to display values. As an example, here is such a file:

Click here to view code image

<html>

 <head>

 <title>My First JavaScript Program</title>

 <script type="text/javascript">

 let a = 6

 let b = 7

 window.alert(a * b)

 </script>

 </head>

 <body>

 </body>

</html>

Simply open the file in your favorite web browser, and the result is displayed in a dialog box—see Figure 1-1.

[image: Images]

Figure 1-1 Running JavaScript code in a web browser

You can type short instruction sequences into the console that is part of the development tools of your browser. Find out the menu or keyboard shortcut to display the development tools (for many browsers, it is the F12 key, or the Ctrl+Alt+I, or, on the Mac, the Cmd+Alt+I key combination). Then pick the “Console” tab and type in your JavaScript code—see Figure 1-2.

[image: Images]

Figure 1-2 Running JavaScript code in the development tools console

A third approach is to install Node.js from http://nodejs.org. Then, open a terminal and execute the node program which launches a JavaScript “read-eval-print loop,” or REPL. Type commands and see their results, as shown in Figure 1-3.

[image: Images]

Figure 1-3 Running JavaScript code with the Node.js REPL

For longer code sequences, put the instructions in a file and use the console.log method to produce output. For example, you can put these instructions into a file first.js:

Click here to view code image

let a = 6

let b = 7

console.log(a * b)

Then, run the command

node first.js

The output of the console.log command will be displayed in the terminal.

You can also use a development environment such as Visual Studio Code, Eclipse, Komodo, or WebStorm. These environments let you edit and execute JavaScript code, as shown in Figure 1-4.

[image: Images]

Figure 1-4 Executing JavaScript code in a development environment

1.2 Types and the typeof Operator

Every value in JavaScript is one of the following types:

	A number

	The Boolean values false and true

	The special values null and undefined

	A string

	A symbol

	An object

The non-object types are collectively called primitive types.

You will find out more about these types in the sections that follow, except for symbols that are discussed in Chapter 11.

Given a value, you can find its type with the typeof operator that returns a string 'number', 'boolean', 'undefined', 'object', 'string', 'symbol', or one of a small number of other strings. For example, typeof 42 is the string 'number'.

[image: Images] Note

Even though the null type is distinct from the object type, typeof null is the string 'object'. This is a historical accident.

[image: Images] Caution

Similar to Java, you can construct objects that wrap numbers, Boolean values, and strings. For example, typeof new Number(42) and typeof new String('Hello') are 'object'. However, in JavaScript, there is no good reason to construct such wrapper instances. Since they can be a cause of confusion, coding standards often forbid their use.

1.3 Comments

JavaScript has two kinds of comments. Single-line comments start with // and extend to the end of the line

// like this

Comments that are delimited by /* and */ can span multiple lines

/*

 like

 this

*/

In this book, I use a Roman font to make the comments easier to read. Of course, your text editor will likely use some kind of color coding instead.

[image: Images] Note

Unlike Java, JavaScript does not have a special form of documentation comments. However, there are third party tools such as JSDoc (http://usejsdoc.org) that provide the same functionality.

1.4 Variable Declarations

You can store a value in a variable with the let statement:

let counter = 0

In JavaScript, variables do not have a type. You are free to store values of any type in any variable. For example, it is legal to replace the contents of counter with a string:

counter = 'zero'

It is almost certainly not a good idea to do this. Nevertheless, there are situations where having untyped variables makes it easy to write generic code that works with different types.

If you do not initialize a variable, it has the special value undefined:

let x // Declares x and sets it to undefined

[image: Images] Note

You may have noticed that the statements above are not terminated by semicolons. In JavaScript, like in Python, semicolons are not required at the end of a line. In Python, it is considered “unpythonic” to add unnecessary semicolons. However, JavaScript programmers are split on that question. I will discuss the pros and cons in Chapter 2. Generally, I try not to take sides in unproductive discussions, but for this book, I have to pick one or the other. I use the “no semicolon” style for one simple reason: It doesn’t look like Java or C++. You can see right away that a code snippet is JavaScript.

If you never change the value of a variable, you should declare it with a const statement:

const PI = 3.141592653589793

If you try to modify the value contained in a const, a run-time error occurs.

You can declare multiple variables with a single const or let statement:

Click here to view code image

const FREEZING = 0, BOILING = 100

let x, y

However, many programmers prefer to declare each variable with a separate statement.

[image: Images] Caution

Avoid two obsolete forms of variable declarations, with the var keyword and with no keyword at all:

Click here to view code image

var counter = 0 // Obsolete

coutner = 1 // Note the misspelling—creates a new variable!

The var declaration has some serious deficiencies; you can read about them in Chapter 3. The “create upon first assignment” behavior is obviously dangerous. If you misspell a variable name, a new variable is created. For that reason, “create upon first assignment” is an error in strict mode, a mode that forbids certain outdated constructs. You will see in Chapter 3 how to turn on strict mode.

[image: Images] Tip

In the preface, I list the five golden rules that, if followed, eliminate most of the confusion caused by “classic” JavaScript features. The first two golden rules are:

	Declare variables with let or const, not var.

	Use strict mode.

1.5 Identifiers

The name of a variable must follow the general syntax for identifiers. An identifier consists of Unicode letters, digits, and the _ and $ characters. The first character cannot be a digit. Names with $ characters are sometimes used in tools and libraries. Some programmers use identifiers starting or ending with underscores to indicate “private” features. With your own names, it is best to avoid $ as well as _ at the start or at the end. Internal _ are fine, but many JavaScript programmers prefer the camelCase format where uppercase letters are used for word boundaries.

You cannot use the following keywords as identifiers:

Click here to view code image

break case catch class const continue debugger default delete do

else enum export extends false finally for function if import in instanceof

new null return super switch this throw true try typeof var void while with

In strict mode, these keywords are also forbidden:

Click here to view code image

implements interface let package protected private public static

The following keywords are more recent additions to the language; you can use them as identifiers for backwards compatibility, but you shouldn’t:

Click here to view code image

await as async from get of set target yield

[image: Images] Note

You can use any Unicode letters or digits in identifiers, such as:

Click here to view code image

const π = 3.141592653589793

However, this is not common, probably because many programmers lack input methods for typing such characters.

1.6 Numbers

JavaScript has no explicit integer type. All numbers are double-precision floating-point numbers. Of course, you can use integer values; you simply don’t worry about the difference between, say, 1 and 1.0. What about roundoff? Any integer numbers between Number.MIN_SAFE_INTEGER (−253 + 1 or -9,007,199,254,740,991) and Number.MAX_SAFE_INTEGER (253 − 1 or 9,007,199,254,740,991) are represented accurately. That’s a larger range than integers in Java. As long as results stay within this range, arithmetic operations on integers are also accurate. Outside the range, you will encounter roundoff errors. For example, Number.MAX_SAFE_INTEGER * 10 evaluates to 90071992547409900.

[image: Images] Note

If the integer range is insufficient, you can use “big integers,” which can have an arbitrary number of digits. Big integers are described in Chapter 5.

As with floating-point numbers in any programming language, you cannot avoid roundoff errors with fractional values. For example, 0.1 + 0.2 evaluates to 0.30000000000000004, as it would in Java, C++, or Python. This is inevitable since decimal numbers such as 0.1, 0.2, and 0.3 do not have exact binary representations. If you need to compute with dollars and cents, you should represent all quantities as integer multiples of a penny.

See Chapter 5 for other forms of number literals such as hexadecimal numbers.

To convert a string to a number, you can use the parseFloat or parseInt functions:

Click here to view code image

const notQuitePi = parseFloat('3.14') // The number 3.14

const evenLessPi = parseInt('3') // The integer 3

The toString method converts a number back to a string:

Click here to view code image

const notQuitePiString = notQuitePi.toString() // The string '3.14'

const evenLessPiString = (3).toString() // The string '3'

[image: Images] Note

JavaScript, like C++ but unlike Java, has both functions and methods. The parseFloat and parseInt functions are not methods, so you don’t invoke them with the dot notation.

[image: Images] Note

As you saw in the preceding code snippet, you can apply methods to number literals. However, you must enclose the number literal in parentheses so that the dot isn’t interpreted as a decimal separator.

[image: Images] Caution

What happens when you use a fractional number when an integer is expected? It depends on the situation. Suppose you extract a substring of a string. Then fractional positions are truncated to the next smaller integer:

Click here to view code image

'Hello'.substring(0, 2.5) // The string 'He'

But when you provide a fractional index, the result is undefined:

Click here to view code image

'Hello'[2.5] // undefined

It isn’t worth figuring out when a fractional number happens to work as an integer. If you are in such a situation, make your intent explicit by calling Math.trunc(x) to discard the fractional part, or Math.round(x) to round to the nearest integer.

If you divide by zero, the result is Infinity or -Infinity. However, 0 / 0 is NaN, the “not a number” constant.

Some number-producing functions return NaN to indicate a faulty input. For example, parseFloat('pie') is NaN.

1.7 Arithmetic Operators

JavaScript has the usual operators + - * / for addition, subtraction, multiplication, and division. Note that the / operator always yields a floating-point result, even if both operands are integers. For example, 1 / 2 is 0.5, not 0 as it would be in Java or C++.

The % operator yields the remainder of the integer division for non-negative integer operands, just as it does in Java, C++, and Python. For example, if k is a non-negative integer, then k % 2 is 0 if k is even, 1 if k is odd.

If k and n are positive values, possibly fractional, then k % n is the value that is obtained by subtracting n from k until the result is less than n. For example, 3.5 % 1.2 is 1.1, the result of subtracting 1.2 twice. See Exercise 3 for negative operands.

The ** operator denotes “raising to a power,” as it does in Python (and all the way back to Fortran). The value of 2 ** 10 is 1024, 2 ** -1 is 0.5, and 2 ** 0.5 is the square root of 2.

If an operand of any arithmetic operator is the “not a number” value NaN, the result is again NaN.

As in Java, C++, and Python, you can combine assignment and arithmetic operations:

Click here to view code image

counter += 10 // The same as counter = counter + 10

The ++ and -- operators increment and decrement a variable:

Click here to view code image

counter++ // The same as counter = counter + 1

[image: Images] Caution

Just as Java and C++, JavaScript copies the C language where ++ can be applied either after or before a variable, yielding the pre-increment or post-increment value.

Click here to view code image

let counter = 0

let riddle = counter++

let enigma = ++counter

What are the values of riddle and enigma? If you don’t happen to know, you can find out by carefully parsing the preceding description, or by trying it out, or by tapping the fount of wisdom that is the Internet. However, I urge you never to write code that depends on this knowledge.

Some programmers find the ++ and -- operators so reprehensible that they resolve never to use them. And there is no real need—after all, counter += 1 is not much longer than counter++. In this book, I will use the ++ and -- operators, but never in a situation where their value is captured.

As in Java, the + operator is also used for string concatenation. If s is a string and x a value of any type, then s + x and x + s are strings, obtained by turning x into a string and joining it with s.

For example,

Click here to view code image

let counter = 7

let agent = '00' + counter // The string '007'

[image: Images] Caution

As you saw, the expression x + y is a number if both operands are numbers, and a string if at least one operand is a string. In all other cases, the rules get complex and the results are rarely useful. Either both operands are turned into strings and concatenated, or both are converted into numbers and added. For example, the expression null + undefined is evaluated as the numeric addition 0 + NaN, which results in NaN (see Table 1-1).

With the other arithmetic operators, only conversion to numbers is attempted. For example, the value of 6 * '7' is 42—the string '7' is converted to the number 7.

Table 1-1 Conversion to Numbers and Strings

	Value

	To Number

	To String

	A number

	Itself

	A string containing the digits of the number

	A string containing the digits of a number

	The number value

	Itself

	The empty string ''

	0

	''

	Any other string

	NaN

	Itself

	false

	0

	'false'

	true

	1

	'true'

	null

	0

	'null'

	undefined

	NaN

	'undefined'

	The empty array []

	0

	''

	An array containing a single number

	The number

	A string containing the digits of the number

	Other arrays

	NaN

	The elements converted to strings and joined by commas, such as '1,2,3'

	Objects

	By default, NaN, but can be customized

	By default, '[object Object]', but can be customized

[image: Images] Tip

Don’t rely on automatic type conversions with arithmetic operators. The rules are confusing and can lead to unintended results. If you want to process operands that are strings or single-element arrays, convert them explicitly.

[image: Images] Tip

Prefer template literals (Section 1.11, “Template Literals,” page 15) over string concatenation. This way, you don’t have to remember what the + operator does to non-numeric operands.

1.8 Boolean Values

The Boolean type has two values, false and true. In a condition, values of any type will be converted to a Boolean value. The values 0, NaN, null, undefined, and the empty string are each converted to false, all others to true.

This sounds simple enough, but as you will see in the following chapter, it can lead to very confusing results. To minimize confusion, it is a good idea to use actual Boolean values for all conditions.

1.9 null and undefined

JavaScript has two ways to indicate the absence of a value. When a variable is declared but not initialized, its value is undefined. This commonly happens with functions. When you call a function and fail to provide a parameter, the parameter variable has the value undefined.

The null value is intended to denote the intentional absence of a value.

Is this a useful distinction? There are two schools of thought. Some programmers think that having two “bottom” values is error-prone and suggest that you only use one. In that case, you should use undefined. You can’t avoid undefined in the JavaScript language, but you can (mostly) avoid null.

The opposing point of view is that you should never set values to undefined and never return undefined from a function, but always use null for missing values. Then, undefined may signal a serious problem.

[image: Images] Tip

In any project, explicitly settle on one or the other approach: Use either undefined or null for indicating the intentional absence of a value. Otherwise, you end up with pointless philosophical discussions and unnecessary checks for both undefined and null.

[image: Images] Caution

Unlike null, undefined is not a reserved word. It is a variable in the global scope. In ancient times, you were able to assign a new value to the global undefined variable! This was clearly a terrible idea, and now undefined is a constant. However, you can still declare local variables called undefined. Of course, that’s also a bad idea. Don’t declare local variables NaN and Infinity either.

1.10 String Literals

String literals are enclosed in single or double quotes: 'Hello' or "Hello". In this book, I always use single quotes as delimiters.

If you use a quote inside a string that is delimited by the same quote type, escape it with a backslash. You should also escape backslashes and the control characters in Table 1-2.

For example, '\\\'\'\\\n' is a string of length 5, containing \''\ followed by a newline.

Table 1-2 Escape Sequences for Special Characters

	Escape Sequence

	Name

	Unicode Value

	\b

	Backspace

	\u{0008}

	\t

	Tab

	\u{0009}

	\n

	Linefeed

	\u{000A}

	\r

	Carriage return

	\u{000D}

	\f

	Form feed

	\u{000C}

	\v

	Vertical tab

	\u{000B}

	\'

	Single quote

	\u{0027}

	\"

	Double quote

	\u{0022}

	\\

	Backslash

	\u{005C}

	\newline

	Continuation to the next line

	Nothing—no newline is added:

"Hel\

lo"

is the string "Hello"

To include arbitrary Unicode characters in a JavaScript string, you can just type or paste them, provided your source file uses an appropriate encoding (such as UTF-8):

let greeting = 'Hello [image: Images]'

If it is important to keep your files in ASCII, you can use the \u{code point} notation:

let greeting = 'Hello \u{1F310}'

Unfortunately, there is a nasty twist to Unicode in JavaScript. To understand the details, we have to delve into the history of Unicode. Before Unicode, there was a mix of incompatible character encodings where one sequence of bytes could mean very different things to readers in the USA, Russia, or China.

Unicode was designed to solve these problems. When the unification effort started in the 1980s, a 16-bit code was deemed more than sufficient to encode all characters used in all languages in the world, with room to spare for future expansion. In 1991, Unicode 1.0 was released, using slightly less than half of the available 65,536 code values. When JavaScript and Java were created in 1995, both embraced Unicode. In both languages, strings are sequences of 16-bit values.

Of course, over time, the inevitable happened. Unicode grew beyond 65,536 characters. Now, Unicode uses 21 bits, and everyone believes that is truly sufficient. But JavaScript is stuck with 16-bit values.

We need a bit of terminology to explain how this problem is resolved. A Unicode code point is a 21-bit value that is associated with a character. JavaScript uses the UTF-16 encoding which represents all Unicode code points with one or two 16-bit values called code units. Characters up to \u{FFFF} use one code unit. All others characters are encoded with two code units, taken from a reserved area that doesn’t encode any characters. For example, \u{1F310} is encoded as the sequence 0xD83C 0xDF10. (See http://en.wikipedia.org/wiki/UTF-16 for a description of the encoding algorithm.)

You don’t need to know the details of the encoding, but you do need to know that some characters require a single 16-bit code unit, and others require two.

For example, the string 'Hello [image: Images]' has “length” 8, even though it contains seven Unicode characters. (Note the space between Hello and [image: Images].) You can use the bracket operator to access the code units of a string. The expression greeting[0] is a string consisting of a single letter 'H'. But the bracket operator doesn’t work with characters that require two code units. The code units for the [image: Images] character are at positions 6 and 7. The expressions greeting[6] and greeting[7] are strings of length 1, each containing a single code unit that doesn’t encode a character. In other words, they are not proper Unicode strings.

[image: Images] Tip

In Chapter 2, you will see how you can visit the individual code points of a string with the for of loop.

[image: Images] Note

You can provide 16-bit code units in string literals. Then, omit the braces: \uD83C\uDF10. For code units up to \u{0xFF}, you can use “hex escapes”—for example, \xA0 instead of \u{00A0}. I can think of no good reason to do either.

In Chapter 6, you will learn about the various methods for working with strings.

[image: Images] Note

JavaScript also has literals for regular expressions—see Chapter 6.

1.11 Template Literals

Template literals are strings that can contain expressions and span multiple lines. These strings are delimited by backticks (`. . .`). For example,

Click here to view code image

let destination = 'world' // A regular string

let greeting = `Hello, ${destination.toUpperCase()}!` // A template literal

The embedded expressions inside ${. . .} are evaluated, converted to a string if necessary, and spliced into the template. In this case, the result is the string

Hello, WORLD!

You can nest template literals inside the ${. . .} expressions:

Click here to view code image

greeting = `Hello, ${firstname.length > 0 ? `${firstname[0]}. ` : '' } ${lastname}`

Any newlines inside the template literal are included in the string. For example,

Click here to view code image

greeting = `<div>Hello</div>

<div>${destination}</div>

`

sets greeting to the string '<div>Hello</div>\n<div>World</div>\n' with a newline after each line. (Windows line endings \r\n in the source file are converted to Unix line endings \n in the resulting string.)

To include backticks, dollar signs, or backslashes in template literals, escape them with backslashes: `\`\$\\` is the string containing the three characters `$\.

[image: Images] Note

A tagged template literal is a template literal that is preceded by a function, like this:

Click here to view code image

html`<div>Hello, ${destination}</div>`

In this example, the html function is invoked with the template fragments '<div>Hello, ' and '</div>' and the value of the expression destination.

In Chapter 6, you will see how to write your own tag functions.

1.12 Objects

JavaScript objects are very different from those in class-based languages such as Java and C++. A JavaScript object is simply a set of name/value pairs or “properties,” like this:

Click here to view code image

{ name: 'Harry Smith', age: 42 }

Such an object has only public data and neither encapsulation nor behavior. The object is not an instance of any particular class. In other words, it is nothing like an object in traditional object-oriented programming. As you will see in Chapter 4, it is possible to declare classes and methods, but the mechanisms are very different from most other languages.

Of course, you can store an object in a variable:

Click here to view code image

const harry = { name: 'Harry Smith', age: 42 }

Once you have such a variable, you can access the object properties with the usual dot notation:

let harrysAge = harry.age

You can modify existing properties or add new properties:

harry.age = 40

harry.salary = 90000

[image: Images] Note

The harry variable was declared as const, but as you just saw, you can mutate the object to which it refers. However, you cannot assign a different value to a const variable.

Click here to view code image

const sally = { name: 'Sally Lee' }

sally.age = 28 // OK—mutates the object to which sally refers

sally = { name: 'Sally Albright' }

 // Error—cannot assign a different value to a const variable

In other words, const is like final in Java and not at all like const in C++.

Use the delete operator to remove a property:

delete harry.salary

Accessing a nonexistent property yields undefined:

Click here to view code image

let boss = harry.supervisor // undefined

A property name can be computed. Then, use array brackets to access the property value:

Click here to view code image

let field = 'Age'

let harrysAge = harry[field.toLowerCase()]

1.13 Object Literal Syntax

[image: Images]

This is the first of several intermediate-level sections in this chapter. Feel free to skip the sections with this icon if you are just starting to learn JavaScript.

An object literal can have a trailing comma. This makes it easy to add other properties as the code evolves:

Click here to view code image

let harry = {

 name: 'Harry Smith',

 age: 42, // Add more properties below

}

Quite often, when declaring an object literal, property values are stored in variables whose names are equal to the property names. For example,

Click here to view code image

let age = 43

let harry = { name: 'Harry Smith', age: age }

 // The 'age' property is set to the value of the age variable

There is a shortcut for this situation:

Click here to view code image

let harry = { name: 'Harry Smith', age } // The age property is now 43

Use brackets for the computed property names in object literals:

Click here to view code image

let harry = { name: 'Harry Smith', [field.toLowerCase()] : 42 }

A property name is always a string. If the name doesn’t follow the rules of an identifier, quote it in an object literal:

Click here to view code image

let harry = { name: 'Harry Smith', 'favorite beer': 'IPA' }

To access such a property, you cannot use the dot notation. Use brackets instead:

Click here to view code image

harry['favorite beer'] = 'Lager'

Such property names are not common, but they can sometimes be convenient. For example, you can have an object whose property names are file names and whose property values are the contents of those files.

[image: Images] Caution

There are parsing situations where an opening brace can indicate an object literal or a block statement. In those cases, the block statement takes precedence. For example, if you type

{} - 1

into the browser console or Node.js, the empty block is executed. Then, the expression - 1 is evaluated and displayed.

In contrast, in the expression

1 - {}

{} is an empty object that is converted to NaN. Then the result (also NaN) is displayed.

This ambiguity doesn’t normally occur in practical programs. When you form an object literal, you usually store it in a variable, pass it as an argument, or return it as a result. In all those situations, the parser would not expect a block.

If you ever have a situation where an object literal is falsely parsed as a block, the remedy is simple: Enclose the object literal in parentheses. You will see an example in Section 1.16, “Destructuring” (page 21).

1.14 Arrays

In JavaScript, an array is simply an object whose property names are the strings '0', '1', '2', and so on. (Strings are used because numbers can’t be property names.)

You can declare array literals by enclosing their elements in square brackets:

Click here to view code image

const numbers = [1, 2, 3, 'many']

This is an object with five properties: '0', '1', '2', '3', and 'length'.

The length property is one more than the highest index, converted to a number. The value of numbers.length is the number 4.

You need to use the bracket notation to access the first four properties: numbers['1'] is 2. For your convenience, the argument inside the brackets is automatically converted to a string. You can use numbers[1] instead, which gives you the illusion of working with an array in a language such as Java or C++.

Note that the element types in an array don’t need to match. The numbers array contains three numbers and a string.

An array can have missing elements:

Click here to view code image

const someNumbers = [, 2, , 9] // No properties '0', '2'

As with any object, a nonexistent property has the value undefined. For example, someNumbers[0] and someNumbers[6] are undefined.

You can add new elements past the end:

Click here to view code image

someNumbers[6] = 11 // Now someNumbers has length 7

Note that, as with all objects, you can change the properties of an array that is referenced by a const variable.

[image: Images] Note

A trailing comma does not indicate a missing element. For example, [1, 2, 7, 9,] has four elements, and the highest index is 3. As with object literals, trailing commas are intended for literals that may be expanded over time, such as:

Click here to view code image

const developers = [

 'Harry Smith',

 'Sally Lee',

 // Add more elements above

]

Since arrays are objects, you can add arbitrary properties:

numbers.lucky = true

This is not common, but it is perfectly valid JavaScript.

The typeof operator returns 'object' for an array. To test whether an object is an array, call Array.isArray(obj).

When an array needs to be converted to a string, all elements are turned into strings and joined with commas. For example,

'' + [1, 2, 3]

is the string '1,2,3'.

An array of length 0 becomes an empty string.

JavaScript, like Java, has no notion of multidimensional arrays, but you can simulate them with arrays of arrays. For example,

Click here to view code image

const melancholyMagicSquare = [

 [16, 3, 2, 13],

 [5, 10, 11, 8],

 [9, 6, 7, 12],

 [4, 15, 14, 1]

]

Then, use two bracket pairs to access an element:

melancholyMagicSquare[1][2] // 11

In Chapter 2, you will see how to visit all elements of an array. Turn to Chapter 7 for a complete discussion of all array methods.

1.15 JSON

The JavaScript Object Notation or JSON is a lightweight text format for exchanging object data between applications (which may or may not be implemented in JavaScript).

In a nutshell, JSON uses the JavaScript syntax for object and array literals, with a few restrictions:

	Values are object literals, array literals, strings, floating-point numbers, and the values true, false, and null.

	All strings are delimited by double quotes, not single quotes.

	All property names are delimited by double quotes.

	There are no trailing commas or skipped elements.

See www.json.org for a formal description of the notation.

An example of a JSON string is:

Click here to view code image

{ "name": "Harry Smith", "age": 42, "lucky numbers": [17, 29], "lucky": false }

The JSON.stringify method turns a JavaScript object into a JSON string, and JSON.parse parses a JSON string, yielding a JavaScript object. These methods are commonly used when communicating with a server via HTTP.

[image: Images] Caution

JSON.stringify drops object properties whose value is undefined, and it turns array elements with undefined values to null. For example, JSON.stringify({ name: ['Harry', undefined, 'Smith'], age: undefined }) is the string '{"name":["Harry",null,"Smith"]}'.

Some programmers use the JSON.stringify method for logging. A logging command

console.log(`harry=${harry}`)

gives you a useless message

harry=[object Object]

A remedy is to call JSON.stringify:

Click here to view code image

console.log(`harry=${JSON.stringify(harry)}`)

Note that this problem only occurs with strings that contain objects. If you log an object by itself, the console displays it nicely. An easy alternative is to log the names and values separately:

Click here to view code image

console.log('harry=', harry, 'sally=', sally)

Or even easier, put them into an object:

Click here to view code image

console.log({harry, sally}) // Logs the object { harry: { . . . }, sally: { . . . } }

1.16 Destructuring

[image: Images]

Destructuring is a convenient syntax for fetching the elements of an array or values of an object. As with the other intermediate-level topics in this chapter, feel free to skip this section until you are ready for it.

In this section, we start out with the basic syntax. The following section covers some of the finer points.

Let’s look at arrays first. Suppose you have an array pair with two elements. Of course, you can get the elements like this:

Click here to view code image

let first = pair[0]

let second = pair[1]

With destructuring, this becomes:

let [first, second] = pair

This statement declares variables first and second and initializes them with pair[0] and pair[1].

The left-hand side of a destructuring assignment is not actually an array literal. After all, first and second don’t yet exist. Think of the left-hand side as a pattern that describes how the variables should be matched with the right-hand side.

Consider this more complex case and observe how the variables are matched with the array elements:

Click here to view code image

let [first, [second, third]] = [1, [2, 3]]

 // Sets first to 1, second to 2, and third to 3

The array on the right-hand side can be longer than the pattern on the left-hand side. The unmatched elements are simply ignored:

let [first, second] = [1, 2, 3]

If the array is shorter, the unmatched variables are set to undefined:

Click here to view code image

let [first, second] = [1]

 // Sets first to 1, second to undefined

If the variables first and second are already declared, you can use destructuring to set them to new values:

[first, second] = [4, 5]

[image: Images] Tip

To swap the values of the variables x and y, simply use:

[x, y] = [y, x]

If you use destructuring for an assignment, the left-hand side doesn’t have to consist of variables. You can use any lvalues—expressions that can be on the left-hand side of an assignment. For example, this is valid destructuring:

Click here to view code image

[numbers[0], harry.age] = [13, 42] // Same as numbers[0] = 13; harry.age = 42

Destructuring for objects is similar. Use property names instead of array positions:

Click here to view code image

let harry = { name: 'Harry', age: 42 }

let { name: harrysName, age: harrysAge } = harry

This code snippet declares two variables harrysName and harrysAge and initializes them with the name and age property values of the right-hand side object.

Keep in mind that the left-hand side is not an object literal. It is a pattern to show how the variables are matched with the right-hand side.

Destructuring with objects is most compelling when the property has the same name as the variable. In that case, you can omit the property name and colon. This statement declares two variables name and age and initializes them with the identically named properties of the object on the right-hand side:

let { name, age } = harry

That is the same as:

Click here to view code image

let { name: name, age: age } = harry

or, of course,

Click here to view code image

let name = harry.name

let age = harry.age

[image: Images] Caution

If you use object destructuring to set existing variables, you must enclose the assignment expression in parentheses:

({name, age} = sally)

Otherwise, the opening brace will be parsed as the start of a block statement.

1.17 Advanced Destructuring

[image: Images]

In the preceding section, I focused on the easiest and most compelling parts of the destructuring syntax. In this advanced section, you will see additional features that are powerful but less intuitive. Feel free to skip this section and come back to it when you feel comfortable with the basics.

1.17.1 More about Object Destructuring

You can destructure nested objects:

Click here to view code image

let pat = { name: 'Pat', birthday: { day: 14, month: 3, year: 2000 } }

let { birthday: { year: patsBirthYear } } = pat

 // Declares the variable patsBirthYear and initializes it to 2000

Once again, note that the left-hand side of the second statement is not an object. It is a pattern for matching the variables with the right-hand side. The statement has the same effect as:

Click here to view code image

let patsBirthYear = pat.birthday.year

As with object literals, computed property names are supported:

Click here to view code image

let field = 'Age'

let { [field.toLowerCase()]: harrysAge } = harry

 // Sets value to harry[field.toLowerCase()]

1.17.2 Rest Declarations

When destructuring an array, you can capture any remaining elements into an array. Add a prefix ... before the variable name.

Click here to view code image

numbers = [1, 7, 2, 9]

let [first, second, ...others] = numbers

 // first is 1, second is 7, and others is [2, 9]

If the array on the right-hand side doesn’t have sufficient elements, then the rest variable becomes an empty array:

Click here to view code image

let [first, second, ...others] = [42]

 // first is 42, second is undefined, and others is []

A rest declaration also works for objects:

Click here to view code image

let { name, ...allButName } = harry

 // allButName is { age: 42 }

The allButName variable is set to an object containing all properties other than the one with key name.

1.17.3 Defaults

For each variable, you can provide a default that is used if the desired value is not present in the object or array, or if the value is undefined. Put = and an expression after the variable name:

Click here to view code image

let [first, second = 0] = [42]

 // Sets first to 42, second to 0 since the right-hand side has

 // no matching element

let { nickname = 'None' } = harry

 // Sets nickname to 'None' since harry has no nickname property

The default expressions can make use of previously set variables:

Click here to view code image

let { name, nickname = name } = harry

 // Both name and nickname are set to harry.name

Here is a typical application of destructuring with defaults. Suppose you are given an object that describes certain processing details, for example formatting instructions. If a particular property is not provided, then you want to use a default:

Click here to view code image

let config = { separator: '; ' }

const { separator = ',', leftDelimiter = '[', rightDelimiter = ']' } = config

In the example, the separator variable is initialized with the custom separator, and the default delimiters are used because they are not supplied in the configuration. The destructuring syntax is quite a bit more concise than looking up each property, checking whether it is defined, and providing the default if it isn’t.

In Chapter 3, you will see a similar use case where destructuring is used for function parameters.

Exercises

	What happens when you add 0 to the values NaN, Infinity, false, true, null, and undefined? What happens when you concatenate the empty string with NaN, Infinity, false, true, null, and undefined? Guess first and then try it out.

	What are [] + [], {} + [], [] + {}, {} + {}, [] - {}? Compare the results of evaluating the expressions at the command line and assigning them to a variable. Explain your findings.

	As in Java and C++ (and unlike Python which follows many centuries of mathematical experience), n % 2 is -1 if n is a negative integer. Explore the behavior of the % operator for negative operands. Analyze integers and floating-point numbers.

	Suppose angle is some angle in degrees that, after adding or subtracting other angles, has assumed an arbitrary value. You want to normalize it so that it is between 0 (inclusive) and 360 (exclusive). How do you do that with the % operator?

	List as many different ways as you can to produce the string with two backslash characters \\ in JavaScript, using the mechanisms described in this chapter.

	List as many different ways as you can to produce the string with the single character [image: Images] in JavaScript.

	Give a realistic example in which a template string has an embedded expression that contains another template string with an embedded expression.

	Give three ways of producing an array with a “hole” in the index sequence.

	Declare an array with elements at index positions 0, 0.5, 1, 1.5, and 2.

	What happens when an array of arrays is converted to a string?

	Make a couple of objects representing people and store them in variables harry and sally. To each person, add a property friends that contains an array with their best friends. Suppose harry is a friend of sally and sally is a friend of harry. What happens when you log each object? What happens when you call JSON.stringify?

Chapter 2. Control Structures

[image: Images]

Topics in This Chapter

2.1 Expressions and Statements

2.2 Semicolon Insertion

2.3 Branches

[image: Images] 2.4 Boolishness

2.5 Comparison and Equality Testing

[image: Images] 2.6 Mixed Comparisons

2.7 Boolean Operators

[image: Images] 2.8 The switch Statement

2.9 while and do Loops

2.10 for Loops

[image: Images] 2.11 Breaking and Continuing

2.12 Catching Exceptions

Exercises

In this chapter, you will learn about the control structures of the JavaScript language: branches, loops, and catching exceptions. The chapter also gives an overview of JavaScript statements and describes the process of automatic semicolon insertion.

2.1 Expressions and Statements

JavaScript, like Java and C++, differentiates between expressions and statements. An expression has a value. For example, 6 * 7 is an expression with value 42. A method call such as Math.max(6, 7) is another example of an expression.

A statement never has a value. Instead, it is executed to achieve some effect.

For example,

let number = 6 * 7;

is a statement whose effect is to declare and initialize the number variable. Such a statement is called a variable declaration.

Apart from variable declarations, other common statement types are branches and loops. You will see those later in this chapter.

The simplest form of a statement is an expression statement. It consists of an expression, followed by a semicolon. Here is an example:

console.log(6 * 7);

The expression console.log(6 * 7) has a side effect—displaying 42 on the console. It also has a value, which happens to be undefined, since the console.log method has chosen not to return anything more interesting. Even if the expression had a more interesting value, it would not matter—the value of an expression statement is discarded.

Therefore, an expression statement is only useful for an expression that has a side effect. The expression statement

6 * 7;

is legal JavaScript, but it has no effect in a program.

It is useful to understand the difference between expressions and statements—but in JavaScript, it is a bit tricky to see the difference between an expression and an expression statement. As you will see in the next section, a semicolon is automatically added if you write a line containing a single expression, turning it into a statement. For that reason, you cannot observe an expression in a browser’s JavaScript console or in Node.js.

For example, try typing 6 * 7. The value of the expression is displayed:

6 * 7

42

That is what a read-eval-print loop, or REPL, does: It reads an expression, evaluates it, and prints the value.

Except, because of automatic semicolon insertion, the JavaScript REPL actually sees the statement

6 * 7;

Statements don’t have values, but the JavaScript REPL displays values for them anyway.

Try typing in a variable declaration:

let number = 6 * 7;

undefined

As you just saw, for an expression statement, the REPL displays the value of the expression. For a variable declaration, the REPL displays undefined. Exercise 1 explores what is displayed for other statements.

When you run your own experiments with the REPL, it is important that you know how to interpret the output. For example, type in this expression statement and observe the response:

console.log(6 * 7);

42

undefined

The first line of output is the side effect of the console.log call. The second line is the return value of the method call. As already mentioned, the console.log method returns undefined.

2.2 Semicolon Insertion

In JavaScript, certain statements must be terminated with semicolons. The most common ones are variable declarations, expression statements, and nonlinear control flow (break, continue, return, throw). However, JavaScript will helpfully insert semicolons for you.

The basic rule is simple. When processing a statement, the parser includes every token until it encounters a semicolon or an “offending token”—something that could not be part of the statement. If the offending token is preceded by a line terminator, or is a }, or is the end of input, then the parser adds a semicolon.

Here is an example:

Click here to view code image

let a = x

 + someComplicatedFunctionCall()

let b = y

No semicolon is added after the first line. The + token at the start of the second line is not “offending.”

But the let token at the start of the third line is offending. It could not have been a part of the first variable declaration. Because the offending token comes after a line terminator, a semicolon is inserted:

Click here to view code image

let a = x

 + someComplicatedFunctionCall();

let b = y

The “offending token” rule is simple, and it works well in almost all cases. However, it fails when a statement starts with a token that could have been a part of the preceding statement. Consider this example:

let x = a

(console.log(6 * 7))

No semicolon is inserted after a.

Syntactically,

a(console.log(6 * 7))

is valid JavaScript: It calls a function a with the value returned by the call to console.log. In other words, the (token on the second line was not an offending token.

Of course, this example is rather artificial. The parentheses around console.log(6 * 7) were not necessary. Here is another commonly cited example:

Click here to view code image

let a = x

[1, 2, 3].forEach(console.log)

Because a [can appear after x, no semicolon is inserted. In the unlikely case that you want to loop over an array literal in this way, store the array in a variable:

Click here to view code image

let a = x

const numbers = [1, 2, 3]

numbers.forEach(console.log)

[image: Images] Tip

Never start a statement with (or [. Then you don’t have to worry about the statement being considered a continuation of the previous line.

[image: Images] Note

In the absence of a semicolon, a line starting with a template or regular expression literal can be merged with the preceding line, for example:

Click here to view code image

let a = x

`Fred`.toUpperCase()

Here, x`Fred` is parsed as a tagged template literal. But you would never write such code in practice. When you work with a string or regular expression, you want to use the result, and the literal won’t be at the start of the statement.

The second semicolon rule can be more problematic. A semicolon is inserted after a nonlinear control flow statement (break, continue, return, throw, or yield) that is immediately followed by a line terminator. If you write

Click here to view code image

return

 x + someComplicatedExpression;

then a semicolon is automatically added:

Click here to view code image

return ;

 x + someComplicatedExpression;

The function returns without yielding any value. The second line is an expression statement that is never executed.

The remedy is trivial. Don’t put a line break after return. Put at least one token of the return value expression in the same line:

return x +

 someComplicatedExpression;

You must pay attention to this rule even if you faithfully put semicolons everywhere.

Apart from the “offending token” and “nonlinear control flow” rules, there is another obscure rule. A semicolon is inserted if a ++ or -- is immediately preceded by a line terminator.

According to this rule,

x

++

y

means

x;

++y;

As long as you keep the ++ on the same line as its operand, you don’t have to worry about this rule.

The automatic insertion rules are part of the language. They work tolerably well in practice. If you like semicolons, by all means, put them in. If you don’t, omit them. Either way, you need to pay attention to a couple of corner cases.

[image: Images] Note

Semicolons are only inserted before a line terminator or a }. If you have multiple statements on the same line, you need to provide semicolons:

if (i < j) { i++; j-- }

Here, the semicolon is necessary to separate the i++ and j-- statements.

2.3 Branches

If you are familiar with C, C++, Java, or C#, you can safely skip this section.

The conditional statement in JavaScript has the form

if (condition) statement

The condition must be surrounded by parentheses.

[image: Images] Tip

In the condition, you should produce either true or false, even though JavaScript allows arbitrary values and converts them to Boolean values. As you will see in the next section, these conversions can be unintuitive and potentially dangerous. Follow the golden rule #3 from the preface:

	Know your types and avoid automatic type conversion.

You will often want to execute multiple statements when a condition is fulfilled. In this case, use a block statement that takes the form

Click here to view code image

{

 statement1

 statement2

 . . .

}

An optional else clause is executed when the condition is not fulfilled, for example:

Click here to view code image

if (yourSales > target) {

 performance = 'Good'

 bonus = 100

} else {

 performance = 'Mediocre'

 bonus = 0

}

[image: Images] Note

This example shows the “one true brace style” in which the opening brace is placed at the end of the line preceding the first statement of the block. This style is commonly used with JavaScript.

If the else clause is another if statement, the following format is conventionally used:

Click here to view code image

if (yourSales > 2 * target) {

 performance = 'Excellent'

 bonus = 1000

} else if (yourSales > target) {

 performance = 'Good'

 bonus = 100

} else {

 performance = 'Mediocre'

 bonus = 0

}

Braces are not necessary around single statements:

if (yourSales > target)

 bonus = 100

[image: Images] Caution

If you don’t use braces, or if you use braces but not the “one true brace style” with an if/else statement, then you can write code that works in a program file but fails when pasting into a JavaScript console. Consider this example:

Click here to view code image

if (yourSales > target)

 bonus = 100

else

 bonus = 0

Some JavaScript consoles analyze the code one line at a time. Such a console will think that the if statement is complete before the else clause. To avoid this problem, use braces or place the entire if statement in a single line

Click here to view code image

if (yourSales > target) bonus = 100; else bonus = 0

It is sometimes convenient to have an expression analog to the if statement. Consider computing the larger of two values:

Click here to view code image

let max = undefined

if (x > y) max = x; else max = y

It would be nicer to initialize max with the larger of x and y. Since if is a statement, we cannot write:

Click here to view code image

let max = if (x > y) x else y // Error—if statement not expected

Instead, use the ? : operator, also called the “conditional” operator. The expression condition ? first : second evaluates to first if the condition is fulfilled, second otherwise. This solves our problem:

Click here to view code image

let max = x > y ? x : y

[image: Images] Note

The expression x > y ? x : y is a convenient example to illustrate the conditional operator, but you should use the standard library method Math.max if you need the largest of two or more values.

2.4 Boolishness

[image: Images]

This is a “mad hatter” section that describes a confusing feature of JavaScript in some detail. Feel free to skip the section if you follow the advice of the preceding section and only use Boolean values in conditions.

In JavaScript, conditions (such as the one in the if statement) need not be Boolean values. The “falsish” values 0, NaN, null, undefined, and the empty string make the condition fail. All other values are “truish” and make the condition succeed. These are also often called “falsy” or “truthy.” None of these is an official term in the language specification.

[image: Images] Note

Boolishness also applies for loop conditions, the operands of the Boolean operators &&, ||, and !, and the first operand of the ? : operator. All these constructs are covered later in this chapter.

The Boolean conversion rule sounds reasonable at first glance. Suppose you have a variable performance, and you only want to use it if it isn’t undefined. So you write:

if (performance) . . . // Danger

Sure, the test fails as expected if performance is undefined. As a freebie, it also fails if performance is null.

But what if performance is the empty string? Or the number zero? Do you really want to treat these values the same way as absent values? Sometimes you do, and sometimes you don’t. Shouldn’t your code clearly indicate what your intent is? Just write what you mean:

if (performance !== undefined) . . .

2.5 Comparison and Equality Testing

JavaScript has the usual assortment of comparison operators:

Click here to view code image

< less than

<= less than or equal

> greater than

>= greater than or equal

When used to compare numbers, these operators are unsurprising:

Click here to view code image

3 < 4 // true

3 >= 4 // false

Any comparison involving NaN yields false:

Click here to view code image

NaN < 4 // false

NaN >= 4 // false

NaN <= NaN // false

The same operators also compare strings, using lexicographic order.

Click here to view code image

'Hello' < 'Goodbye' // false—H comes after G

'Hello' < 'Hi' // true—e comes before i

When comparing values with <, <=, >, >=, be sure that both operands are numbers or both operands are strings. Convert operands explicitly if necessary. Otherwise, JavaScript will convert operands for you, sometimes with undesirable results—see the following section.

Use these operators to test for equality:

Click here to view code image

=== strictly equal to

!== not strictly equal to

The strict equality operators are straightforward. Operands of different types are never strictly equal. The undefined and null values are only strictly equal to themselves. Numbers, Boolean values, and strings are strictly equal if their values are equal.

Click here to view code image

'42' === 42 // false—different types

undefined === null // false

'42' === '4' + 2 // true—same string value '42'

There are also “loose equality” operators == and != that can compare values of different types. This is not generally useful—see the following section if you care about the details.

[image: Images] Caution

You cannot use

x === NaN

to check whether x equals NaN. No two NaN values are considered to be equal to one another. Instead, call Number.isNaN(x).

[image: Images] Note

Object.is(x, y) is almost the same as x === y, except that Object.is(+0, -0) is false and Object.is(NaN, NaN) is true.

As in Java and Python, equality of objects (including arrays) means that the two operands refer to the same object. References to different objects are never equal, even if both objects have the same contents.

Click here to view code image

let harry = { name: 'Harry Smith', age: 42 }

let harry2 = harry

harry === harry2 // true—two references to the same object

let harry3 = { name: 'Harry Smith', age: 42 }

harry === harry3 // false—different objects

2.6 Mixed Comparisons

[image: Images]

This is another “mad hatter” section that describes potentially confusing features of JavaScript in some detail. By all means, skip the section if you follow the advice of the golden rule #3—to avoid mixed-type comparisons, and in particular the “weak equality” operators (== and !=).

Still here? Let’s first look at mixed-type comparisons with the <, <=, >, >= operators.

If one operand is a number, the other operand is converted to a number. Suppose the other operand is a string. The conversion yields the numeric value if the string happens to contain a number, 0 if the string is empty, or NaN otherwise. Moreover, any comparison involving NaN is false—even NaN <= NaN.

Click here to view code image

'42' < 5 // false—'42' is converted to the number 42

'' < 5 // true—'' is converted to the number 0

'Hello' <= 5 // false—'Hello' is converted to NaN

5 <= 'Hello' // false—'Hello' is converted to NaN

Now suppose the other operand is an array:

Click here to view code image

[4] < 5 // true—[4] is converted to the number 4

[] < 5 // true—[] is converted to the number 0

[3, 4] < 5 // false—[3, 4] is converted to NaN

If neither operand is a number, both are converted to strings. These comparisons rarely yield meaningful outcomes:

Click here to view code image

[1, 2, 3] < {} // true—[1, 2, 3] is converted to '1,2,3', {} to '[object Object]'

Next, let us look at loose equality x == y more closely. Here is how it works:

	If the two operands have the same type, compare them strictly.

	The values undefined and null are loosely equal to themselves and each other but not to any other values.

	If one operand is a number and the other a string, convert the string to a number and compare strictly.

	If one operand is a Boolean value, convert both to numbers and compare strictly.

	If one operand is an object but the other is not, convert the object to a primitive type (see Chapter 8), then compare loosely.

For example:

Click here to view code image

'' == 0 // true—'' is converted to 0

'0' == 0 // true—'0' is converted to 0

'0' == false // true—both are converted to 0

undefined == false // false—undefined is only equal to itself and null

Have another look at the strings '' and '0'. They are both “equal to” 0. But they are not “equal to” each other:

Click here to view code image

'' == '0' // false—no conversion since both operands are strings

As you can see, the loose comparison rules are not very useful and can easily lead to subtle errors. Avoid this quagmire by using strict equality operators (=== and !==).

[image: Images] Note

The loose comparison x == null actually tests whether x is undefined or null, and x != null tests whether x is neither. Some programmers who have resolved never to use loose equality make an exception for this case.

2.7 Boolean Operators

JavaScript has three operators to combine Boolean values:

&& and

|| or

! not

The expression x && y is true if both x and y are true, and x || y is true if at least one of x and y are. The expression !x is true if x is false.

The && and || operators are evaluated lazily. If the left operand decides the result (falsish for &&, truish for ||), the right operand is not evaluated. This is often useful—for example:

Click here to view code image

if (i < a.length && a[i] > 0) // a[i] > 0 is not evaluated if i ≥ a.length

The && and || operands have another curious twist if the operands are not Boolean values. They yield one of the operands as the expression value. If the left operand decides the result, it becomes the value of the expression, and the right operand is not evaluated. Otherwise, the expression value is the value of the right operand.

For example:

Click here to view code image

0 && 'Harry' // 0

0 || 'Harry' // 'Harry'

Some programmers try to take advantage of this behavior and write code such as the following:

Click here to view code image

let result = arg && arg.someMethod()

The intent is to check that arg isn’t undefined or null before calling the method. If it is, then result is also undefined or null. This idiom breaks down if arg is zero, an empty string, or false.

Another use is to produce a default value when a method returns undefined or null:

Click here to view code image

let result = arg.someMethod() || defaultValue

Again, this breaks down if the method can return zero, an empty string, or false.

What is needed is a convenient way of using a value unless it is undefined or null. Two operators for this are, as of early 2020, in “proposal stage 3,” which means they are likely to be adopted in a future version of JavaScript.

The expression x ?? y yields x if x is not undefined or null, and y otherwise. In the expression

Click here to view code image

let result = arg.someMethod() ?? defaultValue

the default value is used only when the method returns undefined or null.

The expression x?.propertyName yields the given property if x is not undefined or null, and undefined otherwise. Consider

let recipient = person?.name

If person is neither undefined nor null, then the right-hand side is exactly the same as person.name. But if person is undefined or null, then recipient is set to undefined. If you had used the . operator instead of ?., then an exception would have occurred.

You can chain the ?. operators:

Click here to view code image

let recipientLength = person?.name?.length

If person or person.name is undefined or null, then recipientLength is set to undefined.

[image: Images] Note

JavaScript also has bitwise operators & | ^ ~ that first truncate their operands to 32-bit integers and then combine their bits, exactly like their counterparts in Java or C++. There are shift operators << >> >>> that shift the bits, with the left operand truncated to a 32-bit integer and the right operand truncated to a 5-bit integer. If you need to fiddle with individual bits of 32-bit integers, go ahead and use these operators. Otherwise, stay away from them.

[image: Images] Caution

Some programmers use the expression x | 0 to remove the fractional part of a number x. This produces incorrect results if x ≥ 231. It is better to use Math.floor(x) instead.

2.8 The switch Statement

[image: Images]

JavaScript has a switch statement that is just like the switch statement in C, C++, Java, and C#—warts and all. Skip this section if you are familiar with switch.

The switch statement compares an expression with many possible values. Here is an example:

Click here to view code image

let description = ''

switch (someExpression) {

 case 0:

 description = 'zero'

 break

 case false:

 case true:

 description = 'boolean'

 break

 case '':

 description = 'empty string' // See the “Caution” note below

 default:

 description = 'something else'

}

Execution starts at the case label that strictly equals the value of the expression and continues until the next break or the end of the switch statement. If none of the case labels match, then execution starts at the default label if it is present.

Since strict equality is used for matching, case labels should not be objects.

[image: Images] Caution

If you forget to add a break at the end of an alternative, execution falls through to the next alternative! This happens in the preceding example when value is the empty string. The description is first set to 'empty string', then to 'something else'. This “fall through” behavior is plainly dangerous and a common cause for errors. For that reason, some developers avoid the switch statement.

[image: Images] Tip

In many cases, the difference in performance between a switch statement and the equivalent set of if statements is negligible. However, if you have a large number of cases, then the virtual machine can use a “jump table” for efficiently jumping to the appropriate case.

2.9 while and do Loops

This is another section that you can skip if you know C, C++, Java, or C#.

The while loop executes a statement (which may be a block statement) while a condition is fulfilled. The general form is

while (condition) statement

The following loop determines how long it will take to save a specific amount of money for your well-earned retirement, assuming you deposit the same amount of money per year and the money earns a specified interest rate.

Click here to view code image

let years = 0

while (balance < goal) {

 balance += paymentAmount

 let interest = balance * interestRate / 100

 balance += interest

 years++

}

console.log(`${years} years.`)

The while loop will never execute if the condition is false at the outset. If you want to make sure a block is executed at least once, you need to move the test to the bottom, using the do/while loop. Its syntax looks like this:

do statement while (condition)

This loop executes the statement (which is typically a block) and then tests the condition. If the condition is fulfilled, the statement and the test are repeated. Here is an example. Suppose we just processed s[i] and are now looking at the next space in the string:

Click here to view code image

do {

 i++

} while (i < s.length && s[i] != ' ')

When the loop ends, either i is past the end of the string, or s[i] is a space.

The do loop is much less common than the while loop.

2.10 for Loops

The for loop is a general construct for iterating over elements. The following three sections discuss the variants that JavaScript offers.

2.10.1 The Classic for Loop

The classic form of the for loop works just like in C, C++, Java, or C#. It works with a counter or similar variable that is updated after every iteration. The following loop logs the numbers from 1 to 10:

Click here to view code image

for (let i = 1; i <= 10; i++)

 console.log(i)

The first slot of the for statement holds the counter initialization. The second slot gives the condition that will be tested before each new pass through the loop. The third slot specifies how to update the counter after each loop iteration.

The nature of the initialization, test, and update depends on the kind of traversal that you want. For example, this loop visits the elements of an array in reverse order:

Click here to view code image

for (let i = a.length - 1; i >= 0; i--)

 console.log(a[i])

[image: Images] Tip

You can place arbitrary variable declarations or expressions in the first slot, and arbitrary expressions in the other slots of a for loop. However, it is an unwritten rule of good taste that you should initialize, test, and update the same variable.

[image: Images] Note

It is possible to cram multiple update expressions into the third slot of a for loop by using the comma operator:

Click here to view code image

for (let i = 0, j = a.length - 1; i < j; i++, j--) {

 let temp = a[i]

 a[i] = a[j]

 a[j] = temp

}

In the expression i++, j--, the comma operator joins the two expressions i++ and j-- to a new expression. The value of a comma expression is the value of the second operand. In this situation, the value is unused—we only care about the side effects of incrementing and decrementing.

The comma operator is generally unloved because it can be confusing. For example, Math.max((9, 3)) is the maximum of the single value (9, 3)—that is, 3.

The comma in the declaration let i = 0, j = a.length - 1 is not a comma operator but a syntactical part of the let statement. This statement declares two variables i and j.

2.10.2 The for of Loop

The for of loop iterates over the elements of an iterable object, most commonly an array or string. (In Chapter 8, you will see how to make other objects iterable.)

Here is an example:

Click here to view code image

let arr = [, 2, , 4]

arr[9] = 100

for (const element of arr)

 console.log(element) // Prints undefined, 2, undefined, 4, undefined (5 times), 100

The loop visits all elements of the array from index 0 to arr.length − 1, in increasing order. The elements at indexes 0, 2, and 4 through 8 are reported as undefined.

The variable element is created in each loop iteration and initialized with the current element value. It is declared as const since it is not changed in the loop body.

The for of loop is a pleasant improvement over the classic for loop if you need to process all elements in a array. However, there are still plenty of opportunities to use the classic for loop. For example, you might not want to traverse the entire array, or you may need the index value inside the loop.

When the for of loop iterates over a string, it visits each Unicode code point. That is the behavior that you want. For example:

Click here to view code image

let greeting = 'Hello [image: Images]'

for (const c of greeting)

 console.log(c) // Prints H e l l o, a space, and [image: Images]

You need not worry about the fact that [image: Images] uses two code units, stored in greeting[6] and greeting[7].

2.10.3 The for in Loop

You cannot use the for of loop to iterate over the property values of an arbitrary object, and you probably wouldn’t want to—the property values are usually meaningless without the keys. Instead, visit the keys with the for in loop:

Click here to view code image

let obj = { name: 'Harry Smith', age: 42 }

for (const key in obj)

 console.log(`${key}: ${obj[key]}`)

This loop prints age: 42 and name: Harry Smith in some order.

The for in loop traverses the keys of the given object. As you will see in Chapters 4 and 8, “prototype” properties are included in the iteration, whereas certain “nonenumerable” properties are skipped. The order in which the keys are traversed depends on the implementation, so you should not rely on it.

[image: Images] Note

The for of loop in JavaScript is the same as the “generalized” for loop in Java, also called the “for each” loop. The for in loop in JavaScript has no Java equivalent.

You can use a for in loop to iterate over the property names of an array.

Click here to view code image

let numbers = [1, 2, , 4]

numbers[99] = 100

for (const i in numbers)

 console.log(`${i}: ${numbers[i]}`)

This loop sets i to '0', '1', '3', and '99'. Note that, as for all JavaScript objects, the property keys are strings. Even though common JavaScript implementations iterate over arrays in numerical order, it is best not to rely on that. If the iteration order matters to you, it is best to use a for of loop or a classic for loop.

[image: Images] Caution

Beware of expressions such as numbers[i + 1] in a for in loop. For example,

Click here to view code image

if (numbers[i] === numbers[i + 1]) // Error! i + 1 is '01', '11', and so on

The condition does not compare adjacent elements. Since i holds a string, the + operator concatenates strings. If i is '0', then i + 1 is '01'.

To fix this problem, convert the string i to a number:

Click here to view code image

if (numbers[i] === numbers[parseInt(i) + 1])

Or use a classic for loop.

Of course, if you add other properties to your array, they are also visited:

Click here to view code image

numbers.lucky = true

for (const i in numbers) // i is '0', '1', '3', '99', 'lucky'

 console.log(`${i}: ${numbers[i]}`)

As you will see in Chapter 4, it is possible for others to add enumerable properties to Array.prototype or Object.prototype. Those will show up in a for in loop. Therefore, modern JavaScript etiquette strongly discourages this practice. Nevertheless, some programmers warn against the for in loop because they worry about legacy libraries or colleagues who paste random code from the Internet.

[image: Images] Note

In the next chapter, you will learn about another way of iterating over an array, using functional programming techniques. For example, you can log all array elements like this:

Click here to view code image

arr.forEach((element, key) => { console.log(`${key}: ${element}`) })

The provided function is called for all elements and index keys (as numbers 0 1 3 99, not strings).

[image: Images] Caution

When the for in loop iterates over a string, it visits the indexes of each Unicode code unit. That is probably not what you want. For example:

Click here to view code image

let greeting = 'Hello [image: Images]'

for (const i of greeting)

 console.log(greeting[i])

 // Prints H e l l o, a space, and two broken symbols

The indexes 6 and 7 for the two code units of the Unicode character [image: Images] are visited separately.

2.11 Breaking and Continuing

[image: Images]

Sometimes, you want to exit a loop as soon as you reach a goal. Suppose you look for the position of the first negative element in an array:

Click here to view code image

let i = 0

while (i < arr.length) {

 if (arr[i] < 0) . . .

 . . .

}

Upon seeing a negative element, you just want to exit the loop, so that i stays at the position of the element. That is what the break statement accomplishes.

Click here to view code image

let i = 0

while (i < arr.length) {

 if (arr[i] < 0) break

 i++

}

// Get here after break or when the loop terminates normally

The break statement is never necessary. You can always add a Boolean variable to control the loop termination—often called something like done or found:

Click here to view code image

let i = 0

let found = false

while (!found && i < arr.length) {

 if (arr[i] < 0) {

 found = true

 } else {

 i++

 }

}

Like Java, JavaScript offers a labeled break statement that lets you break out of multiple nested loops. Suppose you want to find the location of the first negative element in a two-dimensional array. When you have found it, you need to break out of two loops. Add a label (that is, an identifier followed by a colon) before the outer loop. A labeled break jumps after the labeled loop:

Click here to view code image

let i = 0

let j = 0

outer:

while (i < arr.length) {

 while (j < arr[i].length) {

 if (arr[i][j] < 0) break outer

 j++

 }

 i++

 j = 0

}

// Get here after break outer or when both loops terminate normally

The label in a labeled break statement must be on the same line as the break keyword.

Labeled breaks are not common.

Finally, there is a continue statement that, like the break statement, breaks the regular flow of control. The continue statement transfers control to the end of the innermost enclosing loop. Here is an example—averaging the positive elements of an array:

Click here to view code image

let count = 0

let sum = 0

for (let i = 0; i < arr.length; i++) {

 if (arr[i] <= 0) continue

 count++

 sum += arr[i]

}

let avg = count === 0 ? 0 : sum / count

When an element is not positive, the continue statement jumps immediately to the loop header, skipping the remainder of only the current iteration.

If a continue statement is used in a for loop, it jumps to the “update” part of the for loop, as in this example.

There is also a labeled form of the continue statement that jumps to the end of the loop with the matching label. Such statements are very uncommon.

Many programmers find the break and continue statements confusing. They are easily avoided, and in this book, I will not use them.

2.12 Catching Exceptions

Some methods return an error value when they are invoked with invalid arguments. For example, parseFloat('') returns a NaN value.

However, it is not always a good idea to return an error value. There may be no obvious way of distinguishing valid and invalid values. The parseFloat method is a good example. The call parseFloat('NaN') returns NaN, just like parseFloat('Infinity') returns the Infinity value. When parseFloat returns NaN, you cannot tell whether it parsed a valid 'NaN' string or an invalid argument.

In JavaScript, a method can take an alternative exit path if it is unable to complete its task in the normal way. Instead of returning a value, a method can throw an exception. In that case, execution does not resume at the code that called the method. Instead, a catch clause is executed. If an exception is not caught anywhere, the program terminates.

To catch an exception, use a try statement. The simplest form of this statement is as follows:

Click here to view code image

try {

 code

 more code

 more code

} catch {

 handler

}

If any code inside the try block throws an exception, then the program skips the remainder of the code in the try block and executes the handler code inside the catch clause.

For example, suppose you receive a JSON string and parse it. The call to JSON.parse throws an exception if the argument is not valid JSON. Handle that situation in the catch clause:

Click here to view code image

let input = . . . // Read input from somewhere

try {

 let data = JSON.parse(input)

 // If execution continues here, input is valid

 // Process data

 . . .

} catch {

 // Deal with the fact that the input is invalid

 . . .

}

In the handler, you can log that information, or take some evasive action to deal with the fact that you were handed a bad JSON string.

In Chapter 3, you will see additional variations of the try statement that give you more control over the exception handling process. There, you will also see how to throw your own exceptions.

Exercises

	Browser consoles and the Node.js REPL display values when you enter statements. What values are displayed for the following kinds of statements?

	An expression statement

	A variable declaration

	A block statement with at least one statement inside

	An empty block statement

	A while, do, or for loop whose body is executed at least once

	A loop whose body is never executed

	An if statement

	A try statement that completes normally

	A try statement whose catch clause is executed

	What is wrong with the statement

Click here to view code image

if (x === 0) console.log('zero') else console.log('nonzero')

How do you fix the problem?

	Consider a statement

let x = a

Which tokens could start the next line that prevent a semicolon to be inserted? Which ones can realistically occur in an actual program?

	What are the results of comparing undefined, null, 0, and '' values with the operators < <= ==? Why?

	Is a || b always the same as a ? a : b, no matter what type a and b are? Why or why not? Can you express a && b in a similar way?

	Use the three kinds of for loop for finding the largest value in an array of numbers.

	Consider this code snippet:

Click here to view code image

let arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

for (i in arr) { if (i + 1 === 10) console.log(a[i]) }

Why doesn’t it print anything?

	Implement a switch statement that converts digits 0 through 9 to their English names 'zero' through 'nine'. How can you do this easily without a switch? What about the reverse conversion?

	Suppose n is a number between 0 and 7 and you are supposed to set the array elements arr[k] through arr[k + n - 1] to zero. Use a switch with fallthrough.

	Rewrite the do loop in Section 2.9, “while and do Loops” (page 40), as a while loop.

	Rewrite all for loops in Section 2.10, “for Loops” (page 41), as while loops.

	Rewrite the labeled break example in Section 2.11, “Breaking and Continuing” (page 44), to use two nested for loops.

	Rewrite the labeled break example in Section 2.11, “Breaking and Continuing” (page 44), without a break statement. Introduce a Boolean variable to control the termination of the nested loops.

	Rewrite the continue example in Section 2.11, “Breaking and Continuing” (page 44), without a continue statement.

	Consider the problem of finding the first position in which an array b occurs as a subsequence of an array a. Write two nested loops:

Click here to view code image

let result = undefined

for (let i = 0; i < a.length - b.length; i++) {

 for (let j = 0; j < b.length; j++) {

 if (a[i + j] != b[j]) . . .

 }

 . . .

}

Complete with labeled break and continue statements. Then rewrite without break or continue.

Chapter 3. Functions and Functional Programming

[image: Images]

Topics in This Chapter

3.1 Declaring Functions

3.2 Higher-Order Functions

3.3 Function Literals

3.4 Arrow Functions

3.5 Functional Array Processing

3.6 Closures

[image: Images] 3.7 Hard Objects

3.8 Strict Mode

3.9 Testing Argument Types

3.10 Supplying More or Fewer Arguments

3.11 Default Arguments

3.12 Rest Parameters and the Spread Operator

[image: Images] 3.13 Simulating Named Arguments with Destructuring

[image: Images] 3.14 Hoisting

3.15 Throwing Exceptions

[image: Images] 3.16 Catching Exceptions

[image: Images] 3.17 The finally Clause

Exercises

In this chapter, you will learn how to write functions in JavaScript. JavaScript is a “functional” programming language. Functions are “first-class” values, just like numbers or strings. Functions can consume and produce other functions. Mastering a functional programming style is essential for working with modern JavaScript.

This chapter also covers the JavaScript parameter passing and scope rules, as well as the details of throwing and catching exceptions.

3.1 Declaring Functions

In JavaScript, you declare a function by providing

	The name of the function

	The names of the parameters

	The body of the function, which computes and returns the function result

You do not specify the types of the function parameters or result. Here is an example:

Click here to view code image

function average(x, y) {

 return (x + y) / 2

}

The return statement yields the value that the function returns.

To call this function, simply pass the desired arguments:

Click here to view code image

let result = average(6, 7) // result is set to 6.5

What if you pass something other than a number? Whatever happens, happens. For example:

Click here to view code image

result = average('6', '7') // result is set to 33.5

When you pass strings, the + in the function body concatenates them. The resulting string '67' is converted to a number before the division by 2.

That looks rather casual to a Java, C#, or C++ programmer who is used to compile-time type checking. Indeed, if you mess up argument types, you only find out when something strange happens at runtime. On the flip side, you can write functions that work with arguments of multiple types, which can be convenient.

The return statement returns immediately, abandoning the remainder of the function. Consider this example—an indexOf function that computes the index of a value in an array:

Click here to view code image

function indexOf(arr, value) {

 for (let i in arr) {

 if (arr[i] === value) return i

 }

 return -1

}

As soon as a match is found, the index is returned and the function terminates.

A function may choose not to specify a return value. If the function body exits without a return statement, or a return keyword isn’t followed by an expression, the function returns the undefined value. This usually happens when a function is solely called for a side effect.

[image: Images] Tip

If a function sometimes returns a result, and sometimes you don’t want to return anything, be explicit:

return undefined

[image: Images] Note

As mentioned in Chapter 2, a return statement must always have at least one token before the end of the line, to avoid automatic semicolon insertion. For example, if a function returns an object, put at least the opening brace on the same line:

Click here to view code image

return {

 average: (x + y) / 2,

 max: Math.max(x, y),

 . . .

}

3.2 Higher-Order Functions

JavaScript is a functional programming language. Functions are values that you can store in variables, pass as arguments, or return as function results.

For example, we can store the average function in a variable:

let f = average

Then you can call the function:

let result = f(6, 7)

When the expression f(6, 7) is executed, the contents of f is found to be a function. That function is called with arguments 6 and 7.

We can later put another function into the variable f:

f = Math.max

Now when you compute f(6, 7), the answer becomes 7, the result of calling Math.max with the provided arguments.

Here is an example of passing a function as an argument. If arr is an array, the method call

arr.map(someFunction)

applies the provided function to all elements, and returns an array of the collected results (without modifying the original array). For example,

result = [0, 1, 2, 4].map(Math.sqrt)

sets result to

[0, 1, 1.4142135623730951, 2]

The map method is sometimes called a higher-order function: a function that consumes another function.

3.3 Function Literals

Let us continue the example of the preceding section. Suppose we want to multiply all array elements by 10. Of course, we can write a function

Click here to view code image

function multiplyBy10(x) { return x * 10 }

Now we can call:

Click here to view code image

result = [0, 1, 2, 4].map(multiplyBy10)

But it seems a waste to declare a new function just to use it once.

It is better to use a function literal. JavaScript has two syntactical variants. Here is the first one:

Click here to view code image

result = [0, 1, 2, 4].map(function (x) { return 10 * x })

The syntax is straightforward. You use the same function syntax as before, but now you omit the name. The function literal is a value that denotes the function with the specified action. That value is passed to the map method.

By itself, the function literal doesn’t have a name, just like the array literal [0, 1, 2, 4] doesn’t have a name. If you want to give the function a name, do what you always do when you want to give something a name—store it in a variable:

Click here to view code image

const average = function (x, y) { return (x + y) / 2 }

[image: Images] Tip

Think of anonymous function literals as the “normal” case. A named function is a shorthand for declaring a function literal and then giving it a name.

3.4 Arrow Functions

In the preceding section, you saw how to declare function literals with the function keyword. There is a second, more concise form that uses the => operator, usually called “arrow”:

Click here to view code image

const average = (x, y) => (x + y) / 2

You provide the parameter variables to the left of the arrow and the return value to the right.

If there is a single parameter, you don’t need to enclose it in parentheses:

Click here to view code image

const multiplyBy10 = x => x * 10

If the function has no parameters, use an empty set of parentheses:

Click here to view code image

const dieToss = () => Math.trunc(Math.random() * 6) + 1

Note that dieToss is a function, not a number. Each time you call dieToss(), you get a random integer between 1 and 6.

If an arrow function is more complex, place its body inside a block statement. Use the return keyword to return a value out of the block:

Click here to view code image

const indexOf = (arr, value) => {

 for (let i in arr) {

 if (arr[i] === value) return i

 }

 return -1

 }

[image: Images] Tip

The => token must be on the same line as the parameters:

Click here to view code image

const average = (x, y) => // OK

 (x + y) / 2

const distance = (x, y) // Error

 => Math.abs(x - y)

If you write an arrow function on more than one line, it is clearer to use braces:

Click here to view code image

const average = (x, y) => {

 return (x + y) / 2

}

[image: Images] Caution

If an arrow function does nothing but returns an object literal, then you must enclose the object in parentheses:

Click here to view code image

const stats = (x, y) => ({

 average: (x + y) / 2,

 distance: Math.abs(x - y)

 })

Otherwise, the braces would be parsed as a block.

[image: Images] Tip

As you will see in Chapter 4, arrow functions have more regular behavior than functions declared with the function keyword. Many JavaScript programmers prefer to use the arrow syntax for anonymous and nested functions. Some programmers use the arrow syntax for all functions, while others prefer to declare top-level functions with function. This is purely a matter of taste.

3.5 Functional Array Processing

Instead of iterating over an array with a for of or for in loop, you can use the forEach method. Pass a function that processes the elements and index values:

Click here to view code image

arr.forEach((element, index) => { console.log(`${index}: ${element}`) })

The function is called for each array element, in increasing index order.

If you only care about the elements, you can pass a function with one parameter:

Click here to view code image

arr.forEach(element => { console.log(`${element}`) })

The forEach method will call this function with both the element and the index, but in this example, the index is ignored.

The forEach method doesn’t produce a result. Instead, the function that you pass to it must have some side effect—printing a value or making an assignment. It is even better if you can avoid side effects altogether and use methods such as map and filter that transform arrays into their desired form.

In Section 3.2, “Higher-Order Functions” (page 53), you saw the map method that transforms an array, applying a function to each element. Here is a practical example. Suppose you want to build an HTML list of items in an array. You can first enclose each of the items in a li element:

Click here to view code image

const enclose = (tag, contents) => `<${tag}>${contents}</${tag}>`

const listItems = items.map(i => enclose('li', i))

Actually, it is safer to first escape & and < characters in the items. Let’s suppose we have an htmlEscape function for this purpose. (You will find an implementation in the book’s companion code.) Then we can first transform the items to make them safe, and then enclose them:

Click here to view code image

const listItems = items

 .map(htmlEscape)

 .map(i => enclose('li', i))

Now the result is an array of li elements. Next, we concatenate all strings with the Array.join method (see Chapter 7), and enclose the resulting string in a ul element:

Click here to view code image

const list = enclose('ul',

 items

 .map(htmlEscape)

 .map(i => enclose('li', i))

 .join(''))

Another useful array method is filter. It receives a predicate function—a function that returns a Boolean (or Boolish) value. The result is an array of all elements that fulfill the predicate. Continuing the preceding example, we don’t want to include empty strings in the list. We can remove them like this:

Click here to view code image

const list = enclose('ul',

 items

 .filter(i => i.trim() !== '')

 .map(htmlEscape)

 .map(i => enclose('li', i))

 .join(''))

This processing pipeline is a good example of a high-level “what, not how” style of programming. What do we want? Throw away empty strings, escape HTML, enclose items in li elements, and join them. How is this done? Ultimately, by a sequence of loops and branches, but that is an implementation detail.

3.6 Closures

The setTimeout function takes two arguments: a function to execute later, when a timeout has elapsed, and the duration of the timeout in milliseconds. For example, this call says “Goodbye” in ten seconds:

Click here to view code image

setTimeout(() => console.log('Goodbye'), 10000)

Let’s make this more flexible:

Click here to view code image

const sayLater = (text, when) => {

 let task = () => console.log(text)

 setTimeout(task, when)

}

Now we can call:

Click here to view code image

sayLater('Hello', 1000)

sayLater('Goodbye', 10000)

Look at the variable text inside the arrow function () => console.log(text). If you think about it, something nonobvious is going on. The code of the arrow function runs long after the call to sayLater has returned. How does the text variable stay around? And how can it be first 'Hello' and then 'Goodbye'?

To understand what is happening, we need to refine our understanding of a function. A function has three ingredients:

	A block of code

	Parameters

	The free variables—that is, the variables that are used in the code but are not declared as parameters or local variables

A function with free variables is called a closure.

In our example, text is a free variable of the arrow function. The data structure representing the closure stores a reference to the variable when the function is created. We say that the variable is captured. That way, its value is available when the function is later called.

In fact, the arrow function () => console.log(text) also captures a second variable, namely console.

But how does text get to have two different values? Let’s do this in slow motion. The first call to sayLater creates a closure that captures the text parameter variable holding the value 'Hello'. When the sayLater method exits, that variable does not go away because it is still used by the closure. When sayLater is called again, a second closure is created that captures a different text parameter variable, this time holding 'Goodbye'.

In JavaScript, a captured variable is a reference to another variable, not its current value. If you change the contents of the captured variable, the change is visible in the closure. Consider this case:

Click here to view code image

let text = 'Goodbye'

setTimeout(() => console.log(text), 10000)

text = 'Hello'

In ten seconds, the string 'Hello' is printed, even though text contained 'Goodbye' when the closure was created.

[image: Images] Note

The lambda expressions and inner classes in Java can also capture variables from enclosing scopes. But in Java, a captured local variable must be effectively final—that is, its value can never change.

Capturing mutable variables complicates the implementation of closures in JavaScript. A JavaScript closure remembers not just the initial value but the location of the captured variable. And the captured variable is kept alive for as long as the closure exists—even if it is a local variable of a terminated method.

The fundamental idea of a closure is very simple: A free variable inside a function means exactly what it means outside. However, the consequences are profound. It is very useful to capture variables and have them accessible indefinitely. The next section provides a dramatic illustration, by implementing objects and methods entirely with closures.

3.7 Hard Objects

[image: Images]

Let’s say we want to implement bank account objects. Each bank account has a balance. We can deposit and withdraw money.

We want to keep the object state private, so that nobody can modify it except through methods that we provide. Here is an outline of a factory function:

Click here to view code image

const createAccount = () => {

 . . .

 return {

 deposit: amount => { . . . },

 withdraw: amount => { . . . },

 getBalance: () => . . .

 }

}

Then we can construct as many accounts as we like:

Click here to view code image

const harrysAccount = createAccount()

const sallysAccount = createAccount()

sallysAccount.deposit(500)

Note that an account object contains only methods, not data. After all, if we added the balance to the account object, anyone could modify it. There are no “private” properties in JavaScript.

Where do we store the data? It’s simple—as local variables in the factory function:

Click here to view code image

const createAccount = () => {

 let balance = 0

 return {

 . . .

 }

}

We capture the local data in the methods:

Click here to view code image

const createAccount = () => {

 . . .

 return {

 deposit: amount => {

 balance += amount

 },

 withdraw: amount => {

 if (balance >= amount)

 balance -= amount

 },

 getBalance: () => balance

 }

}

Each account has its own captured balance variable, namely the one that was created when the factory function was called.

You can provide parameters in the factory function:

Click here to view code image

const createAccount = (initialBalance) => {

 let balance = initialBalance + 10 // Bonus for opening the account

 return {

 . . .

 }

}

You can even capture the parameter variable instead of a local variable:

Click here to view code image

const createAccount = (balance) => {

 balance += 10 // Bonus for opening the account

 return {

 deposit: amount => {

 balance += amount

 },

 . . .

 }

}

At first glance, this looks like an odd way of producing objects. But these objects have two significant advantages. The state, consisting solely of captured local variables of the factory function, is automatically encapsulated. And you avoid the this parameter, which, as you will see in Chapter 4, is not straightforward in JavaScript.

This technique is sometimes called the “closure pattern” or “factory class pattern,” but I like the term that Douglas Crockford uses in his book How JavaScript Works. He calls them “hard objects.”

[image: Images] Note

To further harden the object, you can use the Object.freeze method that yields an object whose properties cannot be modified or removed, and to which no new properties can be added.

Click here to view code image

const createAccount = (balance) => {

 return Object.freeze({

 deposit: amount => {

 balance += amount

 },

 . . .

 })

}

3.8 Strict Mode

As you have seen, JavaScript has its share of unusual features, some of which have proven to be poorly suited for large-scale software development. Strict mode outlaws some of these features. You should always use strict mode.

To enable strict mode, place the line

'use strict'

as the first non-comment line in your file. (Double quotes instead of single quotes are OK, as is a semicolon.)

If you want to force strict mode in the Node.js REPL, start it with

node --use-strict

[image: Images] Note

In a browser console, you need to prefix each line that you want to execute in strict mode with 'use strict'; or 'use strict' followed by Shift+Enter. That is not very convenient.

You can apply strict mode to individual functions:

Click here to view code image

function strictInASeaOfSloppy() {

 'use strict'

 . . .

}

There is no good reason to use per-function strict mode with modern code. Apply strict mode to the entire file.

Finally, strict mode is enabled inside classes (see Chapter 4) and ECMAScript modules (see Chapter 10).

For the record, here are the key features of strict mode:

	Assigning a value to a previously undeclared variable is an error and does not create a global variable. You must use let, const, or var for all variable declarations.

	You cannot assign a new value to a read-only global property such as NaN or undefined. (Sadly, you can still declare local variables that shadow them.)

	Functions can only be declared at the top level of a script or function, not in a nested block.

	The delete operator cannot be applied to “unqualified identifiers.” For example, delete parseInt is a syntax error. Trying to delete a property that is not “configurable” (such as delete 'Hello'.length) causes a runtime error.

	You cannot have duplicate function parameters (function average(x, x)). Of course, you never wanted those, but they are legal in the “sloppy” (non-strict) mode.

	You cannot use octal literals with a 0 prefix: 010 is a syntax error, not an octal 10 (which is 8 in decimal). If you want octal, use 0o10.

	The with statement (which is not discussed in this book) is prohibited.

[image: Images] Note

In strict mode, reading the value of an undeclared variable throws a ReferenceError. If you need to find out whether a variable has been declared (and initialized), you can’t check

Click here to view code image

possiblyUndefinedVariable !== undefined

Instead, use the condition

Click here to view code image

typeof possiblyUndefinedVariable !== 'undefined'

3.9 Testing Argument Types

In JavaScript, you do not specify the types of function arguments. Therefore, you can allow callers to supply an argument of one type or another, and handle that argument according to its actual type.

As a somewhat contrived example, the average function may accept either numbers or arrays.

Click here to view code image

const average = (x, y) => {

 let sum = 0

 let n = 0

 if (Array.isArray(x)) {

 for (const value of x) { sum += value; n++ }

 } else {

 sum = x; n = 1

 }

 if (Array.isArray(y)) {

 for (const value of y) { sum += value }

 } else {

 sum += y; n++

 }

 return n === 0 ? 0 : sum / n

}

Now you can call:

Click here to view code image

result = average(1, 2)

result = average([1, 2, 3], 4)

result = average(1, [2, 3, 4])

result = average([1, 2], [3, 4, 5])

Table 3-1 shows how to test whether an argument x conforms to a given type.

Table 3-1 Type Tests

	Type

	Test

	Notes

	String

	Click here to view code image

typeof x === 'string' ||

 x instanceof String

	x might be constructed as new String(. . .)

	Regular expression

	x instanceof RegExp

	

	Number

	Click here to view code image

typeof x === 'number' ||

 x instanceof Number

	x might be constructed as new Number(. . .)

	Anything that can be converted to a number

	typeof +x === 'number'

	Obtain the numeric value as +x

	Array

	Array.isArray(x)

	

	Function

	typeof x === 'function'

	

[image: Images] Note

Some programmers write functions that turn any argument values into numbers, such as

Click here to view code image

const average = (x, y) => {

 return (+x + +y) / 2

}

Then one can call

average('3', [4])

Is that degree of flexibility useful, harmless, or a harbinger of trouble? I don’t recommend it.

3.10 Supplying More or Fewer Arguments

Suppose a function is declared with a particular number of parameters, for example:

Click here to view code image

const average = (x, y) => (x + y) / 2

It appears as if you must supply two arguments when you call the function. However, that is not the JavaScript way. You can call the function with more arguments—they are silently ignored:

Click here to view code image

let result = average(3, 4, 5) // 3.5—the last argument is ignored

Conversely, if you supply fewer arguments, then the missing ones are set to undefined. For example, average(3) is (3 + undefined) / 2, or NaN. If you want to support that call with a meaningful result, you can:

Click here to view code image

const average = (x, y) => y === undefined ? x : (x + y) / 2

3.11 Default Arguments

In the preceding section, you saw how to implement a function that is called with fewer arguments than parameters. Instead of manually checking for undefined argument values, you can provide default arguments in the function declaration. After the parameter, put an = and an expression for the default—that is, the value that should be used if no argument was passed.

Here is another way of making the average function work with one argument:

Click here to view code image

const average = (x, y = x) => (x + y) / 2

If you call average(3), then y is set to x—that is, 3—and the correct return value is computed.

You can provide multiple default values:

Click here to view code image

const average = (x = 0, y = x) => (x + y) / 2

Now average() returns zero.

You can even provide a default for the first parameter and not the others:

Click here to view code image

const average = (x = 0, y) => y === undefined ? x : (x + y) / 2

If no argument (or an explicit undefined) is supplied, the parameter is set to the default or, if none is provided, to undefined:

Click here to view code image

average(3) // average(3, undefined)

average() // average(0, undefined)

average(undefined, 3) // average(0, 3)

3.12 Rest Parameters and the Spread Operator

As you have seen, you can call a JavaScript function with any number of arguments. To process them all, declare the last parameter of the function as a “rest” parameter by prefixing it with the ... token:

Click here to view code image

const average = (first = 0, ...following) => {

 let sum = first

 for (const value of following) { sum += value }

 return sum / (1 + following.length)

}

When the function is called, the following parameter is an array that holds all arguments that have not been used to initialize the preceding parameters. For example, consider the call:

average(1, 7, 2, 9)

Then first is 1 and following is the array [7, 2, 9].

Many functions and methods accept variable arguments. For example, the Math.max method yields the largest of its arguments, no matter how many:

Click here to view code image

let result = Math.max(3, 1, 4, 1, 5, 9, 2, 6) // Sets result to 9

What if the values are already in an array?

Click here to view code image

let numbers = [1, 7, 2, 9]

result = Math.max(numbers) // Yields NaN

That doesn’t work. The Math.max method receives an array with one element—the array [1, 7, 2, 9].

Instead, use the “spread” operator—the ... token placed before an array argument:

Click here to view code image

result = Math.max(...numbers) // Yields 9

The spread operator spreads out the elements as if they had been provided separately in the call.

[image: Images] Note

Even though the spread operator and rest declaration look the same, their actions are the exact opposites of each other.

First, note that the spread operator is used with an argument, and the rest syntax applies to a variable declaration.

Click here to view code image

Math.max(...numbers) // Spread operator—argument in function call

const max = (...values) => { /* body */}

 // Rest declaration of parameter variable

The spread operator turns an array (or, in fact, any iterable) into a sequence of values. The rest declaration causes a sequence of values to be placed into an array.

Note that you can use the spread operator even if the function that you call doesn’t have any rest parameters. For example, consider the average function of the preceding section that has two parameters. If you call

result = average(...numbers)

then all elements of numbers are passed as arguments to the function. The function uses the first two arguments and ignores the others.

[image: Images] Note

You can also use the spread operator in an array initializer:

Click here to view code image

let moreNumbers = [1, 2, 3, ...numbers] // Spread operator

Don’t confuse this with the rest declaration used with destructuring. The rest declaration applies to a variable:

Click here to view code image

let [first, ...following] = numbers // Rest declaration

[image: Images] Tip

Since strings are iterable, you can use the spread operator with a string:

Click here to view code image

let greeting = 'Hello [image: Images]'

let characters = [...greeting]

The characters array contains the strings 'H', 'e', 'l', 'l', 'o', ' ', and '[image: Images]'.

The syntax for default arguments and rest parameters are equally applicable to the function syntax:

Click here to view code image

function average(first = 0, ...following) { . . . }

3.13 Simulating Named Arguments with Destructuring

[image: Images]

JavaScript has no “named argument” feature where you provide the parameter names in the call. But you can easily simulate named arguments by passing an object literal:

Click here to view code image

const result = mkString(values, { leftDelimiter: '(', rightDelimiter: ')' })

That is easy enough for the caller of the function. Now, let’s turn to the function implementation. You can look up the object properties and supply defaults for missing values.

Click here to view code image

const mkString = (array, config) => {

 let separator = config.separator === undefined ? ',' : config.separator

 . . .

}

However, that is tedious. It is easier to use destructured parameters with defaults. (See Chapter 1 for the destructuring syntax.)

Click here to view code image

const mkString = (array, {

 separator = ',',

 leftDelimiter = '[',

 rightDelimiter = ']'

 }) => {

 . . .

}

The destructuring syntax { separator = ',', leftDelimiter = '[', rightDelimiter = ']' } declares three parameter variables separator, leftDelimiter, and rightDelimiter that are initialized from the properties with the same names. The defaults are used if the properties are absent or have undefined values.

It is a good idea to provide a default {} for the configuration object:

Click here to view code image

const mkString = (array, {

 separator = ',',

 leftDelimiter = '[',

 rightDelimiter = ']'

 } = {}) => {

 . . .

}

Now the function can be called without any configuration object:

Click here to view code image

const result = mkString(values) // The second argument defaults to {}

3.14 Hoisting

[image: Images]

In this “mad hatter” section, we take up another complex subject that you can easily avoid by following three simple rules. They are:

	Don’t use var

	Use strict mode

	Declare variables and functions before using them

If you want to understand what happens when you don’t follow these rules, read on.

JavaScript has an unusual mechanism for determining the scope of a variable—that is, is the region of a program where the variable can be accessed. Consider a local variable, declared inside a function. In programming languages such as Java, C#, or C++, the scope extends from the point where the variable is declared until the end of the enclosing block. In JavaScript, a local variable declared with let appears to have the same behavior:

Click here to view code image

function doStuff() { // Start of block

 . . . // Attempting to access someVariable throws a ReferenceError

 let someVariable // Scope starts here

 . . . // Can access someVariable, value is undefined

 someVariable = 42

 . . . // Can access someVariable, value is 42

} // End of block, scope ends here

However, it is not quite so simple. You can access local variables in functions whose declarations precede the variable declaration:

Click here to view code image

function doStuff() {

 function localWork() {

 console.log(someVariable) // OK to access variable

 . . .

 }

 let someVariable = 42

 localWork() // Prints 42

}

In JavaScript, every declaration is hoisted to the top of its scope. That is, the variable or function is known to exist even before its declaration, and space is reserved to hold its value.

Inside a nested function, you can reference hoisted variables or functions. Consider the localWork function in the preceding example. The function knows the location of someVariable because it is hoisted to the top of the body of doStuff, even though that variable is declared after the function.

Of course, it can then happen that you access a variable before executing the statement that declares it. With let and const declarations, accessing a variable before it is declared throws a ReferenceError. The variable is in the “temporal dead zone” until its declaration is executed.

However, if a variable is declared with the archaic var keyword, then its value is simply undefined until the variable is initialized.

[image: Images] Tip

Do not use var. It declares variables whose scope is the entire function, not the enclosing block. That is too broad:

Click here to view code image

function someFunction(arr) {

 // i, element already in scope but undefined

 for (var i = 0; i < arr.length; i++) {

 var element = arr[i]

 . . .

 }

 // i, element still in scope

}

Moreover, var doesn’t play well with closures—see Exercise 10.

Since functions are hoisted, you can call a function before it is declared. In particularly, you can declare mutually recursive functions:

Click here to view code image

function isEven(n) { return n === 0 ? true : isOdd(n -1) }

function isOdd(n) { return n === 0 ? false : isEven(n -1) }

[image: Images] Note

In strict mode, named functions can only be declared at the top level of a script or function, not inside a nested block. In non-strict mode, nested named functions are hoisted to the top of their enclosing function. Exercise 12 shows why this is a bad idea.

As long as you use strict mode and avoid var declarations, the hoisting behavior is unlikely to result in programming errors. However, it is a good idea to structure your code so that you declare variables and functions before they are used.

[image: Images] Note

In ancient times, JavaScript programmers used “immediately invoked functions” to limit the scope of var declarations and functions:

Click here to view code image

(function () {

 var someVariable = 42

 function someFunction(. . .) { . . . }

 . . .

})() // Function is called here—note the ()

// someVariable, someFunction no longer in scope

After the anonymous function is called, it is never used again. The sole purpose is to encapsulate the declarations.

This device is no longer necessary. Simply use:

Click here to view code image

{

 let someVariable = 42

 const someFunction = (. . .) => { . . . }

 . . .

}

The declarations are confined to the block.

3.15 Throwing Exceptions

If a function is unable to compute a result, it can throw an exception. Depending on the kind of failure, this can be a better strategy than returning an error value such as NaN or undefined.

Use a throw statement to throw an exception:

throw value

The exception value can be a value of any type, but it is conventional to throw an error object. The Error function produces such an object with a given string describing the reason.

Click here to view code image

let reason = `Element ${elem} not found`

throw Error(reason)

When the throw statement executes, the function is terminated immediately. No return value is produced, not even undefined. Execution does not continue in the function call but instead in the nearest catch or finally clause, as described in the following sections.

[image: Images] Tip

Exception handling is a good mechanism for unpredictable situations that the caller might not be able to handle. It is not so suitable for situations where failure is expected. Consider parsing user input. It is exceedingly likely that some users provide unsuitable input. In JavaScript, it is easy to return a “bottom” value such as undefined, null, or NaN (provided, of course, those could not be valid inputs). Or you can return an object that describes success or failure. For example, in Chapter 9, you will see a method that yields objects of the form { status: 'fulfilled', value: result } or { status: 'rejected', reason: exception }.

3.16 Catching Exceptions

[image: Images]

To catch an exception, use a try statement. In Chapter 2, you saw how to catch an exception if you are not interested in the exception value. If you want to examine the exception value, add a variable to the catch clause:

Click here to view code image

try {

 // Do work

 . . .

} catch (e) {

 // Handle exceptions

 . . .

}

The variable in the catch clause (here, e) contains the exception value. As you saw in the preceding section, an exception value is conventionally an error object. Such an object has two properties: name and message. For example, if you call

JSON.parse('{ age: 42 }')

an exception is thrown with the name 'SyntaxError' and message 'Unexpected token a in JSON at position 2'. (The string in this example is invalid JSON because the age key is not enclosed in double quotes.)

The name of an object produced with the Error function is 'Error'. The JavaScript virtual machine throws errors with names 'SyntaxError', 'TypeError', 'RangeError', 'ReferenceError', 'URIError', or 'InternalError'.

In the handler, you can record that information in a suitable place. However, in JavaScript it is not usually productive to analyze the error object in detail, as you might in languages such as Java or C++.

When you log an error object on the console, JavaScript execution environments typically display the stack trace—the function and method calls between the throw and catch points. Unfortunately, there is no standard way of accessing the stack trace for logging it elsewhere.

[image: Images] Note

In Java and C++, you can catch exceptions by their type. Then you can handle errors of certain types at a low level and others at a higher level. Such strategies are not easily implemented in JavaScript. A catch clause catches all exceptions, and the exception objects carry limited information. In JavaScript, exception handlers typically carry out generic recovery or cleanup, without trying to analyze the cause of failure.

When the catch clause is entered, the exception is deemed to be handled. Processing resumes normally, executing the statements in the catch clause. The catch clause can exit with a return or break statement, or it can be completed by executing its last statement. In that case, execution moves to the next statement after the catch clause.

If you log exceptions at one level of your code but deal with failure at a higher level, then you want to rethrow the exception after logging it:

Click here to view code image

try {

 // Do work

 . . .

} catch (e) {

 console.log(e)

 throw e // Rethrow to a handler that deals with the failure

}

3.17 The finally Clause

[image: Images]

A try statement can optionally have a finally clause. The code in the finally clause executes whether or not an exception occurred.

Let us first look at the simplest case: a try statement with a finally clause but no catch clause:

Click here to view code image

try {

 // Acquire resources

 . . .

 // Do work

 . . .

} finally {

 // Relinquish resources

 . . .

}

The finally clause is executed in all of the following cases:

	If all statements in the try clause completed without throwing an exception

	If a return or break statement was executed in the try clause

	If an exception occurred in any of the statements of the try clause

You can also have a try statement with catch and finally clauses:

Click here to view code image

try {

 . . .

} catch (e) {

 . . .

} finally {

 . . .

}

Now there is an additional pathway. If an exception occurs in the try clause, the catch clause is executed. No matter how the catch clause exits (normally or through a return/break/throw), the finally clause is executed afterwards.

The purpose of the finally clause is to have a single location for relinquishing resources (such as file handles or database connections) that were acquired in the try clause, whether or not an exception occurred.

[image: Images] Caution

It is legal, but confusing, to have return/break/throw statements in the finally clause. These statements take precedence over any statements in the try and catch clauses. For example:

Click here to view code image

try {

 // Do work

 . . .

 return true

} finally {

 . . .

 return false

}

If the try block is successful and return true is executed, the finally clause follows. Its return false masks the prior return statement.

Exercises

	What does the indexOf function of Section 3.1, “Declaring Functions” (page 51), do when an object is passed instead of an array?

	Rewrite the indexOf function of Section 3.1, “Declaring Functions” (page 51), so that it has a single return at the end.

	Write a function values(f, low, high) that yields an array of function values [f(low), f(low + 1), . . ., f(high)].

	The sort method for arrays can take an argument that is a comparison function with two parameters—say, x and y. The function returns a negative integer if x should come before y, zero if x and y are indistinguishable, and a positive integer if x should come after y. Write calls, using arrow functions, that sort:

	An array of positive integers by decreasing order

	An array of people by increasing age

	An array of strings by increasing length

	Using the “hard objects” technique of Section 3.7, “Hard Objects” (page 59), implement a constructCounter method that produces counter objects whose count method increments a counter and yields the new value. The initial value and an optional increment are passed as parameters. (The default increment is 1.)

Click here to view code image

const myFirstCounter = constructCounter(0, 2)

console.log(myFirstCounter.count()) // 0

console.log(myFirstCounter.count()) // 2

	A programmer thinks that “named parameters are almost implemented in JavaScript, but order still has precedence,” offering the following “evidence” in the browser console:

Click here to view code image

function f(a=1, b=2){ console.log(`a=${a}, b=${b}`) }

f() // a=1, b=2

f(a=5) // a=5, b=2

f(a=7, b=10) // a=7, b=10

f(b=10, a=7) // Order is required: a=10, b=7

What is actually going on? (Hint: It has nothing to do with named parameters. Try it in strict mode.)

	Write a function average that computes the average of an arbitrary sequence of numbers, using a rest parameter.

	What happens when you pass a string argument to a rest parameter ...str? Come up with a useful example to take advantage of your observation.

	Complete the mkString function of Section 3.13, “Simulating Named Arguments with Destructuring” (page 66).

	The archaic var keyword interacts poorly with closures. Consider this example:

Click here to view code image

for (var i = 0; i < 10; i++) {

 setTimeout(() => console.log(i), 1000 * i)

}

What does this code snippet print? Why? (Hint: What is the scope of the variable i?) What simple change can you make to the code to print the numbers 0, 1, 2, . . . , 9 instead?

	Consider this declaration of the factorial function:

Click here to view code image

const fac = n => n > 1 ? n * fac(n - 1) : 1

Explain why this only works because of variable hoisting.

	In sloppy (non-strict) mode, functions can be declared inside a nested block, and they are hoisted to the enclosing function or script. Try out the following example a few times:

Click here to view code image

if (Math.random() < 0.5) {

 say('Hello')

 function say(greeting) { console.log(`${greeting}!`) }

}

say('Goodbye')

Depending on the result of Math.random, what is the outcome? What is the scope of say? When is it initialized? What happens when you activate strict mode?

	Implement an average function that throws an exception if any of its arguments is not a number.

	Some programmers are confused by statements that contain all three of try/catch/finally because there are so many possible pathways of control. Show how you can always rewrite such a statement using a try/catch statement and a try/finally statement.

Chapter 4. Object-Oriented Programming

[image: Images]

Topics in This Chapter

4.1 Methods

4.2 Prototypes

4.3 Constructors

4.4 The Class Syntax

[image: Images] 4.5 Getters and Setters

[image: Images] 4.6 Instance Fields and Private Methods

[image: Images] 4.7 Static Methods and Fields

4.8 Subclasses

4.9 Overriding Methods

4.10 Subclass Construction

[image: Images] 4.11 Class Expressions

[image: Images] 4.12 The this Reference

Exercises

As you know, JavaScript has objects, but they don’t look like the objects you have seen in object-oriented programming languages such as Java or C++. In a JavaScript object, all properties are public, and they don’t seem to belong to any class other than Object. It is not obvious how you might have methods or classes or inheritance.

You can have all that in JavaScript, and this chapter shows you how. Current versions of JavaScript provide syntax for declaring classes that looks very similar to Java, but the underlying mechanism is completely different. You really need to understand what goes on under the hood. For that reason, I first show you how to declare methods and constructor functions by hand, and then you will see how those constructs map to the class syntax.

4.1 Methods

JavaScript, unlike most object-oriented programming languages, lets you work with objects without first having to declare classes. You have already seen how to produce objects:

Click here to view code image

let harry = { name: 'Harry Smith', salary: 90000 }

According to the classic definition, an object has identity, state, and behavior. The object that you just saw certainly has identity—it is different from any other object. The object’s state is provided by the properties. Let’s add behavior in the form of a “method”—that is, a function-valued property:

Click here to view code image

harry = {

 name: 'Harry Smith',

 salary: 90000,

 raiseSalary: function(percent) {

 this.salary *= 1 + percent / 100

 }

}

Now we can raise the employee’s salary with the familiar dot notation:

harry.raiseSalary(10)

Note that raiseSalary is a function declared in the harry object. That function looks like an ordinary function, except for one twist: In the body, we refer to this.salary. When the function is called, this refers to the object to the left of the dot operator.

There is a shortcut syntax for declaring methods. Simply omit the colon and the function keyword:

Click here to view code image

harry = {

 name: 'Harry Smith',

 salary: 90000,

 raiseSalary(percent) {

 this.salary *= 1 + percent / 100

 }

}

This looks similar to a method declaration in Java or C++, but it is just “syntactic sugar” for a function-valued property.

[image: Images] Caution

The this reference only works in functions declared with function or the shortcut syntax that omits function, not with arrow functions. See Section 4.12, “The this Reference” (page 92), for more details.

4.2 Prototypes

Suppose you have many employee objects similar to the one in the preceding section. Then you need to make a raiseSalary property for each of them. You can write a factory function to automate that task:

Click here to view code image

function createEmployee(name, salary) {

 return {

 name: name,

 salary: salary,

 raiseSalary: function(percent) {

 this.salary *= 1 + percent / 100

 }

 }

}

Still, each employee object has its own raiseSalary property, even though the property value is the same function for all employees (see Figure 4-1). It would be better if all employees could share one function.

[image: Images]

Figure 4-1 Objects with replicated methods

That is where prototypes come in. A prototype collects properties that are common to multiple objects. Here is a prototype object that holds the shared methods:

Click here to view code image

const employeePrototype = {

 raiseSalary: function(percent) {

 this.salary *= 1 + percent / 100

 }

}

When creating an employee object, we set its prototype. The prototype is an “internal slot” of the object. That is the technical term used in the ECMAScript language specification to denote an attribute of an object that is manipulated internally without being exposed to JavaScript programmers as a property. You can read and write the [[Property]] internal slot (as it is called in the specification) with the methods Object.getPrototypeOf and Object.setPrototypeOf. This function creates an employee object and sets the prototype:

Click here to view code image

function createEmployee(name, salary) {

 const result = { name, salary }

 Object.setPrototypeOf(result, employeePrototype)

 return result

}

Figure 4-2 shows the result of creating multiple employee objects that share the same prototype. In the figure, the prototype slot is denoted [[Prototype]], as in the ECMAScript specification.

[image: Images]

Figure 4-2 Objects with the same prototype

[image: Images] Caution

In many JavaScript implementations, you can access the prototype of an object as obj.__proto__. This is not a standard notation, and you should use the Object.getPrototypeOf and Object.setPrototypeOf methods instead.

Now consider a method call

harry.raiseSalary(5)

When looking up harry.raiseSalary, no match is found in the harry object itself. Therefore, the property is searched in the prototype. Since harry.[[Prototype]] has a raiseSalary property, its value is the value of harry.raiseSalary.

As you will see later in this chapter, prototypes can be chained. If the prototype doesn’t have a property, its prototype is searched, until the prototype chain ends.

The prototype lookup mechanism is completely general. Here, we used it to look up a method, but it works for any property. If a property isn’t found in an object, then the prototype chain is searched, and the first match is the property value.

Prototype lookup is a simple concept which it is very important in JavaScript. Prototypes are used to implement classes and inheritance, and to modify the behavior of objects after they have been instantiated.

[image: Images] Note

Lookup in the prototype chain is only used for reading property values. If you write to a property, the value is always updated in the object itself.

For example, suppose you change the harry.raiseSalary method:

Click here to view code image

harry.raiseSalary = function(rate) { this.salary = Number.MAX_VALUE }

This adds a new property directly to the harry object. It does not modify the prototype. All other employees retain the original raiseSalary property.

4.3 Constructors

In the preceding section, you saw how to write a factory function that creates new object instances with a shared prototype. There is special syntax for invoking such functions, using the new operator.

By convention, functions that construct objects are named after what would be the class in a class-based language. In our example, let’s call the function Employee, as follows:

Click here to view code image

function Employee(name, salary) {

 this.name = name

 this.salary = salary

}

When you call

Click here to view code image

new Employee('Harry Smith', 90000)

the new operator creates a new empty object and then calls the constructor function. The this parameter points to that newly created object. The body of the Employee function sets the object properties by using the this parameter. The newly created object becomes the value of the new expression.

[image: Images] Caution

Do not return any result from a constructor function. Otherwise the value of the new expression is that returned value, not the newly created object.

In addition to invoking the constructor function, the new expression carries out another important step: It sets the object’s [[Prototype]] internal slot.

The [[Prototype]] internal slot is set to a specific object, which is attached to the constructor function. Recall that a function is an object, so it can have properties. Each JavaScript function has a prototype property whose value is an object.

That object gives you a ready-made place for adding methods, like this:

Click here to view code image

Employee.prototype.raiseSalary = function(percent) {

 this.salary *= 1 + percent / 100

}

As you can see, there is a lot going on. Let us have another look at the call:

Click here to view code image

const harry = new Employee('Harry Smith', 90000)

Here are the steps in detail:

	The new operator creates a new object.

	The [[Prototype]] internal slot of that object is set to the Employee.prototype object.

	The new operator calls the constructor function with three parameters: this (pointing to the newly created object), name, and salary.

	The body of the Employee function sets the object properties by using the this parameter.

	The constructor returns, and the value of the new operator is the now fully initialized object.

	The variable harry is initialized with the object reference. Figure 4-3 shows the result.

[image: Images]

Figure 4-3 Objects created with a constructor

As you can see in Figure 4-3, the Employee.prototype object has as its prototype the Object.prototype object which contributes the toString method and a few other methods.

The upshot of all this magic is that the new operator looks just like a constructor call in Java, C#, or C++. However, Employee isn’t a class. It’s just a function.

Then again, what is a class? In the textbook definition, a class is a set of objects with the same behavior, as provided by the methods. All objects that are obtained by calling new Employee(. . .) have the same set of methods. In JavaScript, constructor functions are the equivalent of classes in class-based programming languages.

You won’t often need to worry about the difference between traditional classes and the prototype-based system of JavaScript. As you will see in the following section, modern JavaScript syntax closely follows the conventions of class-based languages. However, every once in a while, you should remind yourself that a JavaScript class is nothing more than a constructor function, and that the common behavior is achieved with prototypes.

4.4 The Class Syntax

Nowadays, JavaScript has a class syntax that bundles up a constructor function and prototype methods in a familiar form. Here is the class syntax for the example of the preceding section:

Click here to view code image

class Employee {

 constructor(name, salary) {

 this.name = name

 this.salary = salary

 }

 raiseSalary(percent) {

 this.salary *= 1 + percent / 100

 }

}

This syntax does exactly the same as that of the preceding section. There still is no actual class. Behind the scenes, the class declaration merely declares a constructor function Employee. The constructor keyword declares the body of the Employee constructor function. The raiseSalary method is added to Employee.prototype.

As in the preceding section, you construct an object by calling the constructor function with the new operator:

Click here to view code image

const harry = new Employee('Harry Smith', 90000)

[image: Images] Note

As mentioned in the preceding sections, the constructor should not return any value. However, if it does, it is ignored, and the new expression still returns the newly created object.

You should definitely use the class syntax. (This is the golden rule #4 in the preface.) The syntax gets a number of fiddly details right that you do not want to manage manually. Just realize that a JavaScript class is syntactic sugar for a constructor function and a prototype object holding the methods.

[image: Images] Note

A class can have at most one constructor.

If you declare a class without a constructor, it automatically gets a constructor function with an empty body.

[image: Images] Caution

Unlike in an object literal, in a class declaration you do not use commas to separate the method declarations.

[image: Images] Note

Classes, unlike functions, are not hoisted. You need to declare a class before you can construct an instance.

[image: Images] Note

The body of a class is executed in strict mode.

4.5 Getters and Setters

[image: Images]

A getter is a method with no parameters that is declared with the keyword get:

Click here to view code image

class Person {

 constructor(last, first) {

 this.last = last;

 this.first = first

 }

 get fullName() { return `${this.last}, ${this.first}` }

}

You call the getter without parentheses, as if you accessed a property value:

Click here to view code image

const harry = new Person('Smith', 'Harry')

const harrysName = harry.fullName // 'Smith, Harry'

The harry object does not have a fullName property, but the getter method is invoked. You can think of a getter as a dynamically computed property.

You can also provide a setter, a method with one parameter:

Click here to view code image

class Person {

 . . .

 set fullName(value) {

 const parts = value.split(/,\s*/)

 this.last = parts[0]

 this.first = parts[1]

 }

}

The setter is invoked when assigning to fullName:

harry.fullName = 'Smith, Harold'

When you provide getters and setters, users of your class have the illusion of using properties, but you control the property values and any attempts to modify them.

4.6 Instance Fields and Private Methods

[image: Images]

You can dynamically set an object property in the constructor or any method by assigning to this.propertyName. These properties work the same way as instance fields in a class-based language.

Click here to view code image

class BankAccount {

 constructor() { this.balance = 0 }

 deposit(amount) { this.balance += amount }

 . . .

}

Three proposals for alternative notations are in stage 3 in early 2020. You can list the names and initial values of the fields in the class declaration, like this:

Click here to view code image

class BankAccount {

 balance = 0

 deposit(amount) { this.balance += amount }

 . . .

}

A field is private (that is, inaccessible outside the methods of the class) when its name starts with #:

Click here to view code image

class BankAccount {

 #balance = 0

 deposit(amount) { this.#balance += amount }

 . . .

}

A method is private if its name starts with a #.

4.7 Static Methods and Fields

[image: Images]

In a class declaration, you can declare a method as static. Such a method does not operate on any object. It is a plain function that is a property of the class. Here is an example:

Click here to view code image

class BankAccount {

 . . .

 static percentOf(amount, rate) { return amount * rate / 100 }

 . . .

 addInterest(rate) {

 this.balance += BankAccount.percentOf(this.balance, rate)

 }

}

To call a static method, whether inside or outside the class, add the class name, as in the example above.

Behind the scenes, the static method is a property of the constructor. In the olden days, one had to do that by hand:

Click here to view code image

BankAccount.percentOf = function(amount, rate) {

 return amount * rate / 100

}

In the same way, you can define the equivalent of static fields:

Click here to view code image

BankAccount.OVERDRAFT_FEE = 30

In early 2020, a class-based syntax for static fields is in proposal stage 3:

Click here to view code image

class BankAccount {

 static OVERDRAFT_FEE = 30

 . . .

 withdraw(amount) {

 if (this.balance < amount) {

 this.balance -= BankAccount.OVERDRAFT_FEE

 }

 . . .

 }

}

A static field simply becomes a property of the constructor function. As with static methods, you access the field through the class name, as BankAccount.OVERDRAFT_FEE.

Private static fields and methods (prefixed with #) are also currently in proposal stage 3.

You can declare getters and setters as static methods. As always, the setter can do error checking:

Click here to view code image

class BankAccount {

 . . .

 static get OVERDRAFT_FEE() {

 return this.#OVERDRAFT_FEE // In a static method, this is the constructor function

 }

 static set OVERDRAFT_FEE(newValue) {

 if (newValue > this.#OVERDRAFT_FEE) {

 this.#OVERDRAFT_FEE = newValue

 }

 }

}

4.8 Subclasses

A key concept in object-oriented programming is inheritance. A class specifies behavior for its instances. You can form a subclass of a given class (called the superclass) whose instances behave differently in some respect, while inheriting other behavior from the superclass.

A standard teaching example is an inheritance hierarchy with a superclass Employee and a subclass Manager. While employees are expected to complete their assigned tasks in return for receiving their salary, managers get bonuses on top of their base salary if they actually achieve what they are supposed to do.

In JavaScript, as in Java, you use the extends keyword to express this relationship among the Employee and Manager classes:

Click here to view code image

class Employee {

 constructor(name, salary) { . . . }

 raiseSalary(percent) { . . . }

 . . .

}

class Manager extends Employee {

 getSalary() { return this.salary + this.bonus }

 . . .

}

Behind the scenes, a prototype chain is established—see Figure 4-4. The prototype of Manager.prototype is set to Employee.prototype. That way, any method that is not declared in the subclass is looked up in the superclass.

[image: Images]

Figure 4-4 Prototype chain for inheritance

For example, you can call the raiseSalary on a manager object:

Click here to view code image

const boss = new Manager(. . .)

boss.raiseSalary(10) // Calls Employee.prototype.raiseSalary

Prior to the extends syntax, JavaScript programmers had to establish such a prototype chain themselves.

The instanceof operator checks whether an object belongs to a class or one of its subclasses. Technically, the operator visits the prototype chain of an object and checks whether it contains the prototype of a given constructor function. For example,

boss instanceof Employee

is true since Employee.prototype is in the prototype chain of boss.

[image: Images] Note

In Java, the extends keyword is used to extend a fixed class. In JavaScript, extends is more dynamic. The right hand side of extends can be any expression that yields a function (or null to produce a class that doesn’t extend Object). Section 4.11, “Class Expressions” (page 91), has an example.

[image: Images] Note

In Java and C++, it is common to define abstract superclasses or interfaces so that you can invoke methods that will be defined in subclasses. In JavaScript, there is no compile-time checking for method applications, and therefore, there is no need for abstract methods.

For example, suppose you model employees and contractors, and need to get salaries from objects of both classes. In a statically typed language, you would introduce a Salaried superclass or interface with an abstract getSalary method. In JavaScript, you simply call person.getSalary().

4.9 Overriding Methods

Suppose both the superclass and the subclass have a getSalary method:

Click here to view code image

class Employee {

 . . .

 getSalary() { return this.salary }

}

class Manager extends Employee {

 . . .

 getSalary() { return this.salary + this.bonus }

}

Now consider a method call:

Click here to view code image

const empl = . . .

const salary = empl.getSalary()

If empl is a reference to a lowly employee, then the Employee.prototype.getSalary method is called. If, on the other hand, empl refers to a manager, the Manager.prototype.getSalary method is invoked. This phenomenon—where the invoked method depends on the actual object that is being referenced—is called polymorphism. In JavaScript, polymorphism is a simple consequence of prototype chain lookup.

In this situation, we say that the getSalary method in the Manager class overrides the getSalary method of the Employee class.

Sometimes, you want to invoke the superclass method from the subclass. For example:

Click here to view code image

class Manager extends Employee {

 . . .

 getSalary() { return super.getSalary() + this.bonus }

}

In a method, super starts the lookup with the parent of the prototype object in which the method was declared. In our example, the call super.getSalary bypasses Manager.prototype, which is just as well because otherwise there would be an infinite recursion. Instead, the getSalary method in Employee.prototype is invoked.

[image: Images] Note

In this section, we used the getSalary method as an example for method overriding. You can also override getters and setters:

Click here to view code image

class Manager extends Employee {

 . . .

 get salary() { return super.salary + this.bonus }

}

4.10 Subclass Construction

In a subclass constructor, you must invoke the superclass constructor. Use the syntax super(. . .), just like in Java. Inside the parentheses, place the arguments that you want to pass to the superclass constructor:

Click here to view code image

class Manager extends Employee {

 constructor(name, salary, bonus) {

 super(name, salary) // Must call superclass constructor

 this.bonus = bonus // Afterwards, this is valid

 }

 . . .

}

You can only use the this reference after the call to super.

However, if you do not supply a subclass constructor, a constructor is automatically provided. That automatically provided constructor passes all arguments to the superclass constructor. (This is much more useful than in Java or C++, where the no-argument constructor of the superclass is called.)

Click here to view code image

class Manager extends Employee {

 // No constructor

 getSalary() { . . . }

}

const boss = new Manager('Mary Lee', 180000) // Calls Employee('Mary Lee', 180000)

Before the extends and super keywords were added to JavaScript, it was quite a bit more challenging to implement a subclass constructors that invokes the superclass constructor. This process—which is no longer necessary—requires advanced tools that are introduced in Chapter 11.

[image: Images] Note

As you know, JavaScript doesn’t really have classes. A class is just a constructor function. A subclass is a constructor function that calls a superclass constructor.

4.11 Class Expressions

[image: Images]

You can declare anonymous classes, just like you can declare anonymous functions:

Click here to view code image

const Employee = class {

 constructor(name, salary) {

 this.name = name

 this.salary = salary

 }

 raiseSalary(percent) {

 this.salary *= 1 + percent / 100

 }

}

Recall that class yields a constructor function. This function is now stored in the variable Employee. In this example, there is no benefit over the named class notation class Employee { . . . }.

Here is a more useful application. You can provide methods that “mix in“ a capability into an existing class:

Click here to view code image

const withToString = base =>

 class extends base {

 toString() {

 let result = '{'

 for (const key in this) {

 if (result !== '{') result += ', '

 result += `${key}=${this[key]}`

 }

 return result + '}'

 }

 }

Call this function with a class (that is, a constructor function) in order to obtain an augmented class:

Click here to view code image

const PrettyPrintingEmployee = withToString(Employee) // A new class

e = new PrettyPrintingEmployee('Harry Smith', 90000) // An instance of the new class

console.log(e.toString())

 // Prints {name=Harry Smith, salary=90000}, not [object Object]

4.12 The this Reference

[image: Images]

In this “mad hatter” section, we will have a closer look at the this reference. You can safely skip the section if you only use this in constructors, methods, and arrow functions, not inside named functions.

To see where this can be troublesome, first consider the new operator. What happens if you call a constructor function without new? If you make a call such as

Click here to view code image

let e = Employee('Harry Smith', 90000) // Forgot new

in strict mode, then the this variable is set to undefined.

Fortunately, this problem only arises with an old-style constructor function declaration. If you use the class syntax, it is illegal to call the constructor without new.

[image: Images] Caution

If you don’t use the class syntax, it is possible to declare constructor functions so that they do double duty, working with or without new. An example is the Number function:

Click here to view code image

const price = Number('19.95')

 // Parses the string and returns a primitive number, not an object

const aZeroUnlikeAnyOther = new Number(0)

 // Constructs a new object

Calling a constructor without new is not common in modern JavaScript usage.

Here is another potential problem. It is possible to invoke a method without an object. In that case, this is undefined:

Click here to view code image

const doLater = (what, arg) => { setTimeout(() => what(arg), 1000) }

doLater(BankAccount.prototype.deposit, 500) // Error

When the expression what(arg) is evaluated after one second, the deposit method is invoked. The method fails when accessing this.balance since this is undefined.

If you want to deposit money in a specific account, just provide the account:

Click here to view code image

doLater(amount => harrysAccount.deposit(amount), 500)

Next, consider nested functions. Inside a nested function that is declared with the function keyword, this is undefined. You can run into grief when you use this in a callback function:

Click here to view code image

class BankAccount {

 . . .

 spreadTheWealth(accounts) {

 accounts.forEach(function(account) {

 account.deposit(this.balance / accounts.length)

 // Error—this is undefined inside the nested function

 })

 this.balance = 0

 }

}

Here, this.balance does not refer to the balance of the bank account. It is undefined since it occurs in a nested function.

The best remedy is to use an arrow function for the callback:

Click here to view code image

class BankAccount {

 . . .

 spreadTheWealth(accounts) {

 accounts.forEach(account => {

 account.deposit(this.balance / accounts.length) // this correctly bound

 })

 this.balance = 0

 }

}

In an arrow function, this is statically bound to whatever this means outside the arrow function—in the example, to the BankAccount object invoking the spreadTheWealth method.

[image: Images] Note

Before there were arrow functions, JavaScript programmers used a workaround—they initialized another variable with this:

Click here to view code image

spreadTheWealth(accounts) {

 const that = this

 accounts.forEach(function(account) {

 account.deposit(that.balance / accounts.length)

 })

 this.balance = 0

}

Here is another obscure example. Any method call obj.method(args) can also be written as obj['method'](args). For that reason, this is set to obj if you make a call obj[index](args), where obj[index] is a function, even though there is no dot operator in sight.

Let us construct such a situation, with an array of callbacks:

Click here to view code image

class BankAccount {

 constructor() {

 this.balance = 0

 this.observers = []

 }

 addObserver(f) {

 this.observers.push(f)

 }

 notifyObservers() {

 for (let i = 0; i < this.observers.length; i++) {

 this.observers[i]()

 }

 }

 deposit(amount) {

 this.balance += amount

 this.notifyObservers()

 }

 . . .

}

Now suppose you have a bank account:

const acct = new BankAccount()

And you add an observer:

Click here to view code image

class UserInterface {

 log(message) {

 . . .

 }

 start() {

 acct.addObserver(function() { this.log('More money!') })

 acct.deposit(1000)

 }

}

What is this when the function passed to addObserver is called? It is the array of observers! That’s what it was set to in the call this.observers[i](). Since the array has no log method, a runtime error occurs. Again, the remedy is to use an arrow function:

Click here to view code image

acct.addObserver(() => { this.log('More money!') })

[image: Images] Tip

Having this dynamically set, subject to an arcane set of rules, is problematic. To avoid trouble, don’t use this inside functions defined with function. It is safe to use this in methods and constructors, and in arrow functions that are defined inside methods and constructors. That is the golden rule #5.

Exercises

	Implement a function createPoint that creates a point in the plane with a given x and y coordinates. Provide methods getX, getY, translate, and scale. The translate method moves the point by a given amount in x and y direction. The scale method scales both coordinates by a given factor. Use only the techniques of Section 4.1, “Methods” (page 77).

	Repeat the preceding exercise, but now implement a constructor function and use prototypes, as in Section 4.2, “Prototypes” (page 78).

	Repeat the preceding exercise, but now use the class syntax.

	Repeat the preceding exercise, but provide getters and setters for the x and y coordinates. In the setter, make sure the argument is a number.

	Consider this function that makes a string “greetable” by adding a greet method:

Click here to view code image

function createGreetable(str) {

 const result = new String(str)

 result.greet = function(greeting) { return `${greeting}, ${this}!` }

 return result

}

Typical usage:

Click here to view code image

const g = createGreetable('World')

console.log(g.greet('Hello'))

This function has a drawback: each greetable string has its own copy of the greet method. Have createGreetable yield an object whose prototype contains the greet method. Make sure that you can still invoke all string methods.

	Provide a method withGreeter that adds the greet method to any class, yielding a new class:

Click here to view code image

const GreetableEmployee = withGreeter(Employee)

const e = new GreetableEmployee('Harry Smith', 90000)

console.log(e.greet('Hello'))

Hint: Section 4.11, “Class Expressions” (page 91).

	Rewrite the Employee class using private instance fields, as shown in Section 4.6, “Instance Fields and Private Methods” (page 85).

	A classic example for an abstract class is a tree node. There are two kinds of nodes: those with children (parents) and those without (leaves).

Click here to view code image

class Node {

 depth() { throw Error("abstract method") }

}

class Parent extends Node {

 constructor(value, children) { . . . }

 depth() { return 1 + Math.max(...children.map(n => n.depth())) }

}

class Leaf extends Node {

 constructor(value) { . . . }

 depth() { return 1 }

}

This is how you would model tree nodes in Java or C++. But in JavaScript, you don’t need an abstract class to be able to invoke n.depth(). Rewrite the classes without inheritance and provide a test program.

	Provide a class Random with static methods

Click here to view code image

Random.nextDouble(low, high)

Random.nextInt(low, high)

Random.nextElement(array)

that produce a random number between low (inclusive) and high (exclusive), or a random element from the given array.

	Provide a class BankAccount and subclasses SavingsAccount and CheckingAccount. A savings account has an instance field for the interest and an addInterest method that adds it. A checking account charges a fee for each withdrawal. Do not manipulate the superclass state directly but use the superclass methods.

	Draw a diagram of SavingsAccount and CheckingAccount objects from the preceding exercise, similar to Figure 4-4.

	Harry tries this code to toggle a CSS class when a button is clicked:

Click here to view code image

const button = document.getElementById('button1')

button.addEventListener('click', function () {

 this.classList.toggle('clicked')

})

It doesn’t work. Why?

Sally, after searching the wisdom of the Internet, suggests:

Click here to view code image

button.addEventListener('click', event => {

 event.target.classList.toggle('clicked')

})

This works, but Harry feels it is cheating a bit. What if the listener hadn’t produced the button as event.target? Fix the code so that you use neither this nor the event parameter.

	In Section 4.12, “The this Reference” (page 92), you saw that the following doesn’t work:

Click here to view code image

const action = BankAccount.prototype.deposit

action(1000)

Can you make it work by getting the action method from an instance, like this:

Click here to view code image

const harrysAccount = new BankAccount()

const action = harrysAccount.deposit

action(1000)

Why or why not?

	In the preceding exercise, we defined an action function that deposits money into harrysAccount. It seemed a bit pointless, so let’s add some context. The function below invokes a given function after a delay, passing the delay as an argument.

Click here to view code image

function invokeLater(f, delay) {

 setTimeout(() => f(delay), delay)

}

That’s perfect for Harry to earn $1000 after 1000 milliseconds:

Click here to view code image

invokeLater(amount => harrysAccount.deposit(amount), 1000)

But what about Sally? Make a general function depositInto so that one can call

Click here to view code image

invokeLater(depositInto(sallysAccount), 1000)

Chapter 5. Numbers and Dates

[image: Images]

Topics in This Chapter

5.1 Number Literals

5.2 Number Formatting

5.3 Number Parsing

5.4 Number Functions and Constants

[image: Images] 5.5 Mathematical Functions and Constants

[image: Images] 5.6 Big Integers

[image: Images] 5.7 Constructing Dates

[image: Images] 5.8 Date Functions and Methods

[image: Images] 5.9 Date Formatting

Exercises

In this short chapter, we will look at the JavaScript API for working with numbers and big integers. We will then turn to operations with dates. As you will see, JavaScript dates can be converted to numbers—a count of milliseconds. That conversion isn’t actually useful, but it’s an excuse for grouping both topics into this chapter instead of having two even shorter ones.

5.1 Number Literals

All JavaScript numbers are “double precision” values in the IEEE 754 floating-point standard, with a binary representation that occupies eight bytes.

Integer literals can be written in decimal, hexadecimal, octal, or binary:

42

0x2A

0o52

0b101010

[image: Images] Note

The archaic octal notation with a leading zero and no o (such as 052) is disallowed in strict mode.

Floating-point literals can use exponential notation:

4.2e-3

The letters e x o b can be written in lowercase or uppercase: 4.2E-3 or 0X2A are OK.

[image: Images] Note

C++ and Java allow hexadecimal floating-point literals such as 0x1.0p-10 = 2−10 = 0.0009765625. This notation is not supported in JavaScript.

Underscores in number literals are a stage 3 proposal in 2020. You can place underscores anywhere between digits to make the number more legible. The underscores are only for human readers—they are removed when the number is parsed. For example,

Click here to view code image

const speedOfLight = 299_792_458 // same as 299792458

The global variables Infinity and NaN denote the “infinity” and “not a number” values. For example, 1 / 0 is Infinity and 0 / 0 is NaN.

5.2 Number Formatting

To format an integer in a given number base between 2 and 36, use the toString method:

Click here to view code image

const n = 3735928559

n.toString(16) // 'deadbeef'

n.toString(8) // '33653337357'

n.toString(2) // '11011110101011011011111011101111'

You can also format floating-point numbers to a base other than 10:

Click here to view code image

const almostPi = 3.14

almostPi.toString(16) // 3.23d70a3d70a3e

The toFixed method formats a floating-point number in fixed format with a given number of digits after the decimal point. The call x.toExponential(p) uses exponential format with one digit before and p − 1 digits after the decimal point, and x.toPrecision(p) shows p significant digits:

Click here to view code image

const x = 1 / 600 // 0.0016666666666666668

x.toFixed(4) // '0.0017'

x.toExponential(4) // '1.667e-3'

x.toPrecision(4) // '0.001667'

The toPrecision method switches to exponential format if it would otherwise produce too many significant digits or zeroes—see Exercise 3.

[image: Images] Note

The JavaScript standard library has no equivalent to the C printf function, but there are third-party implementations such as https://github.com/alexei/sprintf.js.

The console.log method supports printf-style placeholders %d, %f, %s, but not width, fill, or precision modifiers.

5.3 Number Parsing

In Chapter 1, you saw how to parse strings containing numbers:

Click here to view code image

const notQuitePi = parseFloat('3.14') // The number 3.14

const evenLessPi = parseInt('3') // The integer 3

These functions ignore whitespace prefixes and non-numeric suffixes. For example, parseInt(' 3A') is also 3.

The result is NaN if there is no number after the optional whitespace. For example, parseInt(' A3') is NaN.

The parseInt function accepts hexadecimal notation: parseInt('0x3A') is 58.

Sometimes you want to accept only strings that actually represent decimal numbers in JavaScript format, without leading spaces or suffixes. In this case, your best bet is to use a regular expression:

Click here to view code image

const intRegex = /^[+-]?[0-9]+$/

if (intRegex.test(str)) value = parseInt(str)

For floating-point numbers, the regular expression is more complex:

Click here to view code image

const floatRegex = /^[+-]?((0|[1-9][0-9]*)(\.[0-9]*)?|\.[0-9]+)([eE][+-]?[0-9]+)?$/

if (floatRegex.test(str)) value = parseFloat(str)

See Chapter 6 for more information about regular expressions.

[image: Images] Caution

The Internet is replete with almost correct recipes for recognizing strings that represent JavaScript numbers, but the devil is in the details. The regular expressions above accept exactly the decimal number literals from the JavaScript standard, optionally preceded by a sign. However, embedded underscores (such as 1_000_000) are not supported.

To parse integers in a base other than 10, supply a base between 2 and 36 as the second argument.

Click here to view code image

parseInt('deadbeef', 16) // 3735928559

5.4 Number Functions and Constants

The functions Number.parseInt and Number.parseFloat are identical to the global parseInt and parseFloat functions.

The call Number.isNaN(x) checks whether x is NaN, the special “not a number” value. (You cannot check x === NaN because no two NaN values are considered to be equal to one another.)

To check that a value x is a number other than Infinity, -Infinity, or NaN, call Number.isFinite(x).

[image: Images] Caution

Do not use the global isNaN and isFinite functions—they first convert non-numeric arguments, which does not yield useful results:

Click here to view code image

isNaN('Hello') // true

isFinite([0]) // true

The static methods Number.isInteger and Number.isSafeInteger check whether the argument is an integer, or an integer in the safe range where no roundoff occurs.

That range extends from Number.MIN_SAFE_INTEGER (−253 + 1 or −9,007,199,254,740,991) to Number.MAX_SAFE_INTEGER (253 − 1 or 9,007,199,254,740,991).

The largest number is Number.MAX_VALUE ((2 − 2−52) × 21023 or about 1.8 × 10308). The smallest positive number is Number.MIN_VALUE (2−1074 or about 5 × 10−324). Number.EPSILON (2−52 or about 2.2 × 10−16) is the gap between 1 and the next representable number greater than 1.

Finally, Number.NaN, Number.POSITIVE_INFINITY, and Number.NEGATIVE_INFINITY are the same as the global NaN, Infinity, and -Infinity. You can use those values if you are nervous about someone defining local variables named NaN and Infinity.

Table 5-1 shows the most useful features of the Number class.

Table 5-1 Useful Functions, Methods, and Constants of the Number Class

	Name

	Description

	Functions

	isNaN(x)

	true if x is NaN. Note that you cannot use === since x === NaN is always false.

	isFinite(x)

	true if x is not ±Infinity, NaN

	isSafeInteger(x)

	true if x is an integer in the “safe” range defined below

	Methods

	toString(base)

	The number in the given base (between 2 and 36). (200).toString(16) is 'c8'.

	toFixed(digitsAfterDecimalPoint), toExponential(significantDigits), toPrecision(significantDigits)

	The number in fixed or exponential format, or the more convenient of the two. Formatting 0.001666 with four digits yields '0.0017', '1.667e-3', '0.001667'.

	Constants

	MIN_SAFE_INTEGER, MAX_SAFE_INTEGER

	The range of “safe” integers that can be represented as floating-point numbers without roundoff

	MIN_VALUE, MAX_VALUE

	The range of all floating-point numbers

5.5 Mathematical Functions and Constants

[image: Images]

The Math class defines a number of functions and constants for mathematical computations—logarithms, trigonometry, and the like. Table 5-2 contains a complete list. Most of the functions are quite specialized.

Here are a few mathematical functions that are of general interest.

The max and min functions yield the largest and smallest of any number of arguments:

Click here to view code image

Math.max(x, y) // The larger of x and y

Math.min(...values) // The smallest element of the array values

The Math.round function rounds to the nearest integer, rounding up for positive numbers with fractional part ≥ 0.5 and negative numbers with fractional part > 0.5.

Math.trunc simply truncates the fractional part.

Click here to view code image

Math.round(2.5) // 3

Math.round(-2.5) // -2

Math.trunc(2.5) // 2

The call Math.random() yields a floating-point number between 0 (inclusive) and 1 (exclusive). To obtain a random floating-point number or integer between a (inclusive) and b (exclusive), call:

Click here to view code image

const randomDouble = a + (b - a) * Math.random()

const randomInt = a + Math.trunc((b - a) * Math.random()) // where a, b are integers

Table 5-2 Functions and Constants in the Math class

	Name

	Description

	Functions

	min(values. . .), max(values)

	These functions can be called with any number of arguments

	abs(x), sign(x)

	Absolute value and sign (1, 0, −1)

	random()

	Random number 0 ≤ r < 1

	round(x), trunc(x), floor(x), ceil(x)

	Round to the nearest integer, to integer obtained by truncating the fractional part, to the next smaller or larger integer

	fround(x), ftrunc(x), ffloor(x), fceil(x)

	Round to 32-bit floating-point number

	pow(x, y), exp(x), expm1(x), log(x), log2(x), log10(x), log1p(x)

	xy, ex, ex − 1, ln(x), log2(x), log10(x), ln(1 + x)

	sqrt(x), cbrt(x), hypot(x, y)

	[image: Images]

	sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(y, x)

	Trigonometric functions

	sinh(x), cosh(x), tanh(x), asinh(x), acosh(x), atanh

	Hyperbolic functions

	Constants

	E, PI, SQRT2, SQRT1_2, LN2, LN10, LOG2E, LOG10E

	e, π, [image: Images], ln(2), ln(10), log2(e), log10(e)

5.6 Big Integers

[image: Images]

A big integer is an integer with an arbitrary number of digits. A big integer literal has a suffix n, such as 815915283247897734345611269596115894272000000000n. Alternatively, you can convert any integer-valued expression into a big integer as BigInt(expr).

The typeof operator returns 'bigint' when applied to a big integer.

Arithmetic operators combine big integers to a new big integer result:

Click here to view code image

let result = 815915283247897734345611269596115894272000000000n * BigInt(41)

 // Sets result to 33452526613163807108170062053440751665152000000000n

[image: Images] Caution

You cannot combine a big integer and a value of another type with an arithmetic operator. For example, 815915283247897734345611269596115894272000000000n * 41 is an error.

When combining big integer values, the / operator yields a big integer result, discarding the remainder. For example, 100n / 3n is 33n.

The BigInt class has just two functions that are rather technical. The calls BigInt.asIntN(bits, n) and BigInt.asUintN(bits, n) reduce n modulo 2bits into the interval [−2bits − 1 . . . 2bits − 1 − 1] or [0 . . . 2bits − 1].

5.7 Constructing Dates

[image: Images]

Before getting into the JavaScript API for dates, let us review a couple of concepts about measuring time on our planet.

Historically, the fundamental time unit—the second—was derived from Earth’s rotation around its axis. There are 24 hours or 24 × 60 × 60 = 86400 seconds in a full revolution, so it seems just a question of astronomical measurements to precisely define a second. Unfortunately, Earth wobbles slightly, and a more precise definition was needed. In 1967, a new definition of a second, matching the historical definition, was derived from an intrinsic property of atoms of caesium-133. Since then, a network of atomic clocks keeps the official time.

Ever so often, the official time keepers synchronize the absolute time with the rotation of Earth. At first, the official seconds were slightly adjusted, but starting in 1972, occasional “leap seconds” were inserted as needed. (In theory, a second might need to be removed once in a while, but that has not yet happened.) Clearly, leap seconds are a pain, and many computer systems instead use “smoothing” where time is artificially slowed down or sped up just before the leap second, keeping 86,400 seconds per day. This works because the local time on a computer isn’t all that precise, and computers are used to synchronizing themselves with an external time service.

Because humans everywhere on the globe prefer to have midnight correspond to a point that is more or less in the middle of the night, there are varying local times. But to compare times, there needs to be a common point of reference. This is, for historical reasons, the time at the meridian that passes through the Royal Observatory in Greenwich (not adjusted for daylight savings time). This time is known as “Coordinated Universal Time,” or UTC. The acronym is a compromise between the aforementioned English and the French “Temps Universel Coordiné,” having the distinction of being incorrect in either language.

For representing time in a computer, it is convenient to have a fixed origin from which to count forward or backward. This is the “epoch”: midnight UTC on Thursday, January 1, 1970.

In JavaScript, time is measured in smoothed milliseconds from the epoch, with a valid range of ±100,000,000 days in either direction.

JavaScript uses the standard ISO 8601 format for a point in time: YYYY-MM-DDTHH:mm:ss.sssZ, with four digits for the year, two digits for the month, day, hours, minutes, and seconds, and three digits for the milliseconds. The letter T separates the day and the hours, and the Z suffix denotes a zero offset from UTC.

For example, the epoch is:

1970-01-01T00:00:00.000Z

[image: Images] Note

You may be wondering how that format works with a day that is 100,000,000 days—close to 274,000 years—away from the epoch. And what about dates before the “common era”?

For those dates, the year is specified with six digits and a sign, as ±YYYYYY. The largest valid JavaScript date is

+275760-09-13T00:00:00.000Z

The year before 0001 is 0000, and the year before that is -000001.

In JavaScript, a point in time is represented by an instance of the Date class. Calling the class Time would have been a splendid idea, but the class takes the name and a number of flaws from the Java Date class, and then adds its own idiosyncrasies.

See Table 5-3 for the most useful features of the Date class.

Table 5-3 Useful Constructors, Functions, and Methods of the Date Class

	Name

	Description

	Constructors

	new Date(iso8601String)

	Constructs a Date from an ISO 8601 string such as '1969-07-20T20:17:40.000Z'

	new Date()

	Constructs a Date representing the current time

	new Date(millisecondsFromEpoch)

	

	new Date(year, zeroBasedMonth, day, hours, minutes, seconds, milliseconds)

	Uses the local time zone. At least two arguments are required.

	Functions

	UTC(year, zeroBasedMonth, day, hours, minutes, seconds, milliseconds)

	Yields milliseconds from the epoch, not a Date object

	Methods

	getUTCFullYear(), getUTCMonth()

, getUTCDate(), getUTCHours(), getUTCMinutes(), getUTCSeconds(), getUTCMilliseconds()

	Month between 0 and 11, date between 1 and 31, hour between 0 and 23

	getUTCDay()

	The weekday, between 0 (Sunday) and 6 (Saturday)

	getTime()

	Milliseconds from the epoch

	toISOString()

	The ISO 8601 string such as '1969-07-20T20:17:40.000Z'

	toLocaleString(locale, options), toLocaleDateString(locale, options), toLocaleTimeString(locale, options)

	Humanly readable date and time, date only, time only. See Chapter 8 for locales and a description of all options.

You can construct a date from its ISO 8601 string, or by giving the number of milliseconds from the epoch:

Click here to view code image

const epoch = new Date('1970-01-01T00:00:00.000Z')

const oneYearLater = new Date(365 * 86400 * 1000) // 1971-01-01T00:00:00.000Z

Constructing a Date without arguments yields the current time.

const now = new Date()

[image: Images] Caution

Don’t call the Date function without new. That call ignores any arguments and does not yield a Date object but a string describing the current time—and not even in ISO 8601 format:

Click here to view code image

Date(365 * 86400 * 1000)

 // Ignores its argument and yields a string

 // 'Mon Jun 24 2020 07:23:10 GMT+0200 (Central European Summer Time)'

[image: Images] Caution

If you use Date objects with arithmetic expressions, they are automatically converted, either into the string format from the preceding note, or the number of milliseconds from the epoch:

Click here to view code image

oneYearLater + 1

 // 'Fri Jan 01 1971 01:00:00 GMT+0100 (Central European Summer Time)1'

oneYearLater * 1 // 31536000000

This is only useful to compute the distance between two dates:

Click here to view code image

const before = new Date()

// Do some work

const after = new Date()

const millisecondsElapsed = after - before

You can construct a Date object in your local time zone as

Click here to view code image

new Date(year, zeroBasedMonth, day, hours, minutes, seconds, milliseconds)

All arguments starting from day are optional. (At least two arguments are needed to distinguish this form from the call new Date(millisecondsFromEpoch).)

For historical reasons, the month is zero-based but the day is not.

For example, as I am writing these words, I am an hour east of the Greenwich observatory. When I evaluate

Click here to view code image

new Date(1970, 0 /* January */, 1, 0, 0, 0, 0, 0) // Caution—local time zone

I get

1969-12-30T23:00:00.000Z

When you try it, you may get a different result, depending on your time zone.

[image: Images] Caution

If you supply out-of-range values for zeroBasedMonth, day, hours, and so on, the date is silently adjusted. For example, new Date(2019, 13, -2) is January 29, 2020.

5.8 Date Functions and Methods

[image: Images]

The Date class has three static functions:

	Date.UTC(year, zeroBasedMonth, day, hours, minutes, seconds, milliseconds)

	Date.parse(dateString)

	Date.now()

The UTC function is similar to the constructor with multiple arguments, but it produces the date in UTC.

The parse function parses ISO 8601 strings and may, depending on the implementation, also accept other formats (see Exercise 17).

Date.now() produces the current date and time.

[image: Images] Caution

Tragically, all three functions yield milliseconds since the epoch and not Date objects.

To actually construct a date from UTC components, call:

Click here to view code image

const deadline = new Date(Date.UTC(2020, 0 /* January */, 31))

The Date class has Java-style getter and setter methods, such as getHours/setHours, not JavaScript get/set methods.

To get the components of a Date object, call the methods getUTCFullYear, getUTCMonth (between 0 and 11), getUTCDate (between 1 and 31), getUTCHours (between 0 and 23), getUTCMinutes, getUTCSeconds, getUTCMilliseconds.

The methods without UTC (that is, getFullYear, getMonth, getDate, and so on) yield the same information in local time. Unless you need to show local time to a user, you probably don’t want those. And if you do display a local time, you should use one of the date-formatting methods described in Section 5.9, “Date Formatting” (page 110).

The getUTCDay method yields the weekday between 0 (Sunday) and 6 (Saturday):

Click here to view code image

const epoch = new Date('1970-01-01T00:00:00.000Z')

epoch.getUTCDay() // 4 (Thursday)

epoch.getDay() // 3, 4, or 5, depending on when and where the call is made

[image: Images] Note

The obsolete getYear method yields a two-digit year. Apparently, when JavaScript was created in 1995, nobody could have predicted that two-digit years might be problematic.

JavaScript copies the Java mistake of having mutable Date objects, and makes it worse by having setters for each time unit—see Exercise 16. The setters silently adjust to the next valid date:

Click here to view code image

const appointment = new Date('2020-05-31T00:00:00.000Z')

appointment.setUTCMonth(5 /* June */) // appointment is now July 1

5.9 Date Formatting

[image: Images]

The methods toString, toDateString, toTimeString, and toUTCString yield “humanly readable” strings in a format that is not particularly human-friendly:

Click here to view code image

'Sun Jul 20 1969 21:17:40 GMT+0100 (Mitteleuropäische Sommerzeit)'

'Sun Jul 20 1969'

'21:17:40 GMT+0100 (Mitteleuropäische Sommerzeit)'

'Sun, 20 Jul 1969 20:17:40 GMT'

Note that the time zone (but not the weekday or month name) appears in the user’s locale.

To actually present date and time to a human user, use the methods toLocaleString, toLocaleDateString, or toLocaleTimeString that format a date and time, only the date portion, or only the time portion. The format uses the rules of the user’s current locale or a locale that you specify:

Click here to view code image

moonlanding.toLocaleDateString() // '20.7.1969' if the locale is German

moonlanding.toLocaleDateString('en-US') // '7/20/1969'

The default format is rather short, but you can change it by supplying formatting options:

Click here to view code image

moonlanding.toLocaleDateString(

 'en-US', { year: 'numeric', month: 'long', day: 'numeric' })

 // 'July 20, 1969'

Chapter 8 explains the locale concept and presents these options in detail.

For machine-readable dates, simply call the toISOString method which yields an ISO 8601 string:

Click here to view code image

moonlanding.toISOString() // '1969-07-20T20:17:40.000Z'

Exercises

	The values 0 and −0 are distinct in the IEEE 754 standard. Provide at least two distinct implementations of a function plusMinusZero(x) that returns +1 if x is 0, -1 if x is -0, and 0 otherwise. Hints: Object.is, 1/-0.

	There are three kinds of IEEE 754 “double precision” floating-point values:

	“Normalized” values of the form ±1.m × 2e, where m has 52 bits and e ranges from −1022 to 1023

	±0 and “denormalized” values close to zero, of the form ±0.m × 2−1022, where m has 52 bits

	Special values ±∞, NaN

Write a function that produces a string 'normalized', 'denormalized', or 'special' for a given floating-point number.

	Suppose the number x, when shown in exponential format, has an exponent of e. Give a condition depending on e and p under which the call x.toPrecision(p) shows the result in fixed format.

	Write a function that formats a numeric value according to a printf-style specification. For example, format(42, "%04x") should print 002A.

	Write a function that yields the exponent of a floating-point number—that is, the value that would be printed after e in exponential notation. Use binary search, and don’t call any Math or Number methods.

	Explain the values for Number.MAX_VALUE, Number.MIN_VALUE, and Number.EPSILON given in Section 5.4, “Number Functions and Constants” (page 102).

	Write a function that computes the smallest representable floating-point number after a given integer n. Hint: What is the smallest representable number after 1? After 2? After 3? After 4? You may want to consult an article describing the IEEE floating-point representation. Extra credit if you can obtain the result for an arbitrary number.

	Produce a big integer with the digit 3 repeated a thousand times, using no loops or recursion, in a single line of code that is no more than 80 characters long.

	Write a function that converts a Date object into an object with properties year, month, day, weekday, hours, minutes, seconds, millis.

	Write a function that determines how many hours a user is away from UTC.

	Write a function that determines whether a year is a leap year. Provide two different implementations.

	Write a function that yields the weekday of a given day without calling the Date.getUTCDay/getDay methods. Hint: The epoch fell on a Thursday.

	Write a function that, given a month and year (which should default to the current month and year), prints a calendar such as

Click here to view code image

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

	Write a function with two Date parameters that yields the number of days between the dates, with the fractional part indicating the fraction of the day.

	Write a function with two Date parameters that yields the number of years between the dates. This is more complex than the preceding problem because years have varying lengths.

	Suppose you are given this deadline and you need to move it to February 1:

Click here to view code image

const deadline = new Date(Date.UTC(2020, 0 /* January */, 31))

What is the result of

Click here to view code image

deadline.setUTCMonth(1 /* February */)

deadline.setUTCDate(1)

Perhaps one should always call setUTCDate before setUTCMonth? Give an example where that doesn’t work.

	Experiment which strings are accepted by Date.parse(dateString) or new Date(dateString) in your favorite JavaScript runtime. Examples to try:

Click here to view code image

The string returned by Date()

'3/14/2020'

'March 14, 2020'

'14 March 2020'

'2020-03-14'

'2020-03-14 '

Scarily, the last two strings yield different dates in Node.js version 13.11.0.

Chapter 6. Strings and Regular Expressions

[image: Images]

Topics in This Chapter

6.1 Converting between Strings and Code Point Sequences

6.2 Substrings

6.3 Other String Methods

[image: Images] 6.4 Tagged Template Literals

[image: Images] 6.5 Raw Template Literals

[image: Images] 6.6 Regular Expressions

[image: Images] 6.7 Regular Expression Literals

[image: Images] 6.8 Flags

[image: Images] 6.9 Regular Expressions and Unicode

[image: Images] 6.10 The Methods of the RegExp Class

[image: Images] 6.11 Groups

[image: Images] 6.12 String Methods with Regular Expressions

[image: Images] 6.13 More about Regex Replace

[image: Images] 6.14 Exotic Features

Exercises

In this chapter, you will learn about the methods that the standard library provides for string processing. We will then turn to regular expressions, which let you find strings that match patterns. After an introduction into the syntax of regular expressions and the JavaScript-specific idiosyncrasies, you will see how to use the API for finding and replacing matches.

6.1 Converting between Strings and Code Point Sequences

A string is a sequence of Unicode code points. Each code point is an integer between zero and 0x10FFFF. The fromCodePoint function of the String class assembles a string from code point arguments:

Click here to view code image

let str = String.fromCodePoint(0x48, 0x69, 0x20, 0x1F310, 0x21) // 'Hi [image: Images]!'

If the code points are in an array, use the spread operator:

Click here to view code image

let codePoints = [0x48, 0x69, 0x20, 0x1F310, 0x21]

str = String.fromCodePoint(...codePoints)

Conversely, you can turn a string into an array of code points:

Click here to view code image

let characters = [...str] // ['H', 'i', ' ', '[image: Images]', '!']

The result is an array of strings, each containing a single code point. You can obtain the code points as integers:

Click here to view code image

codePoints = [...str].map(c => c.codePointAt(0))

[image: Images] Caution

JavaScript stores strings as sequences of UTF-16 code units. The offset in a call such as 'Hi [image: Images]'.codePointAt(i) refers to the UTF-16 encoding. In this example, valid offsets are 0, 1, 2, 3, and 5. If the offset falls in the middle of a pair of code units that make up a single code point, then an invalid code point is returned.

If you want to traverse the code points of a string without putting them in an array, use this loop:

Click here to view code image

for (let i = 0; i < str.length; i++) {

 let cp = str.codePointAt(i)

 if (cp > 0xFFFF) i++

 . . . // Process the code point cp

}

6.2 Substrings

The indexOf method yields the index of the first occurrence of a substring:

Click here to view code image

let index = 'Hello yellow'.indexOf('el') // 1

The lastIndexOf method yields the index of the last occurrence:

Click here to view code image

index = 'Hello yellow'.lastIndexOf('el') // 7

As with all offsets into JavaScript strings, these values are offsets into the UTF-16 encoding:

Click here to view code image

index = 'I[image: Images]yellow'.indexOf('el') // 4

The offset is 4 because the “yellow heart” emoji [image: Images] is encoded with two UTF-16 code units.

If the substring is not present, these methods return -1.

The methods startsWith, endsWith, and includes return a Boolean result:

Click here to view code image

let isHttps = url.startsWith('https://')

let isGif = url.endsWith('.gif')

let isQuery = url.includes('?')

The substring method extracts a substring, given two offsets in UTF-16 code units. The substring contains all characters from the first offset up to, but not including, the second offset.

Click here to view code image

let substring = 'I[image: Images]yellow'.substring(3, 7) // 'yell'

If you omit the second offset, all characters until the end of the string are included:

Click here to view code image

substring = 'I[image: Images]yellow'.substring(3) // 'yellow'

The slice method is similar to substring, except that negative offsets are counted from the end of the string. -1 is the offset of the last code unit, -2 the offset of its predecessor, and so on. This is achieved by adding the string length to a negative offset.

Click here to view code image

'I[image: Images]yellow'.slice(-6, -2) // 'yell', same as slice(3, 7)

The length of 'I[image: Images]yellow' is 9—recall that the [image: Images] takes two code units. The offsets -6 and -2 are adjusted to 3 and 7.

With both the substring and slice methods, offsets larger than the string length are truncated to the length. Negative and NaN offsets are truncated to 0. (In the slice method, this happens after adding the string length to negative offsets.)

[image: Images] Caution

If the first argument to substring is larger than the second, the arguments are switched!

Click here to view code image

substring = 'I[image: Images]yellow'.substring(7, 3) // 'yell', same as substring(3, 7)

In contrast, str.slice(start, end) yields the empty string if start ≥ end.

I prefer the slice method over substring. It is more versatile, has a saner behavior, and the method name is shorter.

Another way of taking a string apart is the split method. That method splits a string into an array of substrings, removing the provided separator.

Click here to view code image

let parts = 'Mary had a little lamb'.split(' ')

 // ['Mary', 'had', 'a', 'little', 'lamb']

You can supply a limit for the number of parts:

Click here to view code image

parts = 'Mary had a little lamb'.split(' ', 4)

 // ['Mary', 'had', 'a', 'little']

The separator can be a regular expression—see Section 6.12, “String Methods with Regular Expressions” (page 133).

[image: Images] Caution

Calling str.split('') with an empty separator splits the string into strings that each hold a 16-bit code unit, which is not useful if str contains characters above \u{FFFF}. Use [...str] instead.

6.3 Other String Methods

In this section, you will find miscellaneous methods of the String class. Since strings are immutable in JavaScript, none of the string methods change the contents of a given string. They all return a new string with the result.

The repeat method yields a string repeated a given number of times:

Click here to view code image

const repeated = 'ho '.repeat(3) // 'ho ho ho '

The trim, trimStart, and trimEnd methods yield strings that remove leading and trailing white space, or just leading or trailing white space. White space characters include the space character, the nonbreaking space \u{00A0}, newline, tab, and 21 other characters with the Unicode character property White_Space.

The padStart and padEnd methods do the opposite—they add space characters until the string has a minimum length:

Click here to view code image

let padded = 'Hello'.padStart(10) // ' Hello', five spaces are added

You can also supply your own padding string:

Click here to view code image

padded = 'Hello'.padStart(10, '=-') // =-=-=Hello

[image: Images] Caution

The first parameter is the length of the padded string in bytes. If your padding string contains characters that require two bytes, you may get a malformed string:

Click here to view code image

padded = 'Hello'.padStart(10, '[image: Images]')

 // Padded with two hearts and an unmatched code unit

The toUpperCase and toLowerCase methods yield a string with all characters converted to upper- or lowercase.

Click here to view code image

let uppercased = 'Straße'.toUpperCase() // 'STRASSE'

As you can see, the toUpperCase method is aware of the fact that the uppercase of the German character 'ß' is the string 'SS'.

Note that toLowerCase does not recover the original string:

Click here to view code image

let lowercased = uppercased.toLowerCase() // 'strasse'

[image: Images] Note

String operations such as conversion to upper- and lowercase can depend on the user’s language preferences. See Chapter 8 for methods toLocaleUpperCase, toLocaleLowerCase, localeCompare, and normalize that are useful when you localize your applications.

[image: Images] Note

See Section 6.12, “String Methods with Regular Expressions” (page 133), for string methods match, matchAll, search, and replace that work with regular expressions.

The concat method concatenates a string with any number of arguments that are converted to strings.

Click here to view code image

const n = 7

let concatenated = 'agent'.concat(' ', n) // 'agent 7'

You can achieve the same effect with template strings or the join method of the Array class:

Click here to view code image

concatenated = `agent ${n}`

concatenated = ['agent', ' ', n].join('')

Table 6-1 shows the most useful features of the String class.

Table 6-1 Useful Functions and Methods of the String class

	Name

	Description

	Functions

	fromCodePoint(codePoints...)

	Yields a string consisting of the given code points

	Methods

	startsWith(s), endsWith(s), includes(s)

	true if a string starts or ends with s, or has s as a substring

	indexOf(s, start), lastIndexOf(s, start)

	The index of the first or last occurrence of s beginning with index start (which defaults to 0)

	slice(start, end)

	The substring of code units with index between start inclusive and end exclusive. Negative index values are counted from the end of the string. end defaults to the length of the string. Prefer this method over substring.

	repeat(n)

	This string, repeated n times

	trimStart(), trimEnd(), trim()

	This string with leading, trailing, or leading and trailing white space removed

	padStart(minLength, padString), padEnd(minLength, padString)

	This string, padded at the start or end until its length reaches minLength. The default padString is ' '.

	toLowerCase(), toUpperCase()

	This string with all letters converted to lower or upper case

	split(separator, maxParts)

	An array of parts obtained by removing all copies of the separator (which can be a regular expression). If maxParts is omitted, all parts are returned.

	search(target)

	The index of the first match of target (which can be a regular expression)

	replace(target, replacement)

	This string, with the first match of target replaced. If target is a global regular expression, all matches are replaced. See Section 6.13 about replacement patterns and functions.

	match(regex)

	An array of matches if regex is global, null if there is no match, and the match result otherwise. The match result is an array of all group matches, with properties index (the index of the match) and groups (an object mapping group names to matches).

	matchAll(regex)

	An iterable of the match results

Finally, there are global functions for encoding URL components and entire URLs—or, more generally, URIs using schemes such as mailto or tel—into their “URL encoded” form. That form uses only characters that were considered “safe” when the Internet was first created. Suppose you need to produce a query for translating a phrase from one language into another. You might construct a URL like this:

Click here to view code image

const phrase = 'à coté de'

const prefix = 'https://www.linguee.fr/anglais-francais/traduction'

const suffix = '.html'

const url = prefix + encodeURIComponent(phrase) + suffix

The phrase is encoded into '%C3%A0%20cot%C3%A9%20de', the result of encoding characters into UTF-8 and encoding each byte into a code %hh with two hexadecimal digits. The only characters that are left alone are the “safe” characters

A-Z a-z 0-9 ! ' () * . _ ~ -

In the less common case, if you need to encode an entire URI, use the encodeURI function. It also leaves the characters

$ & + , / : ; = ? @

unchanged since they can have special meanings in URIs.

6.4 Tagged Template Literals

[image: Images]

In Chapter 1, you saw template literals—strings with embedded expressions:

Click here to view code image

const person = { name: 'Harry', age: 42 }

message = `Next year, ${person.name} will be ${person.age + 1}.`

Template literals insert the values of the embedded expressions into the template string. In this example, the embedded expressions person.name and person.age + 1 are evaluated, converted to strings, and spliced with the surrounding string fragments. The result is the string

'Next year, Harry will be 43.'

You can customize the behavior of template literals with a tag function. As an example, we will be writing a tag function strong that produces an HTML string, highlighting the embedded values. The call

Click here to view code image

strong`Next year, ${person.name} will be ${person.age + 1}.`

will yield an HTML string

Click here to view code image

'Next year, Harry will be 43.'

The tag function is called with the fragments of the literal string around the embedded expressions, followed by the expression values. In our example, the fragments are 'Next year, ', ' will be ', and '.', and the values are 'Harry' and 43. The tag function combines these pieces. The returned value is turned into a string if it is not already one.

Here is an implementation of the strong tag function:

Click here to view code image

const strong = (fragments, ...values) => {

 let result = fragments[0]

 for (let i = 0; i < values.length; i++)

 result += `${values[i]}${fragments[i + 1]}`

 return result

}

When processing the template string

Click here to view code image

strong`Next year, ${person.name} will be ${person.age + 1}.`

the strong function is called like this:

Click here to view code image

strong(['Next year, ', ' will be ', '.'], 'Harry', 43)

Note that all string fragments are put into an array, whereas the expression values are passed as separate arguments. The strong function uses the spread operator to gather them all in a second array.

Also note that there is always one more fragment than there are expression values.

This mechanism is infinitely flexible. You can use it for HTML templating, number formatting, internationalization, and so on.

6.5 Raw Template Literals

[image: Images]

If you prefix a template literal with String.raw, then backslashes are not escape characters:

path = String.raw`c:\users\nate`

Here, \u does not denote a Unicode escape, and \n is not turned into a newline character.

[image: Images] Caution

Even in raw mode, you cannot enclose arbitrary strings in backticks. You still need to escape all ` characters, $ before {, and \ before ` and {.

That doesn’t quite explain how String.raw works, though. Tag functions have access to a “raw” form of the template string fragments, in which backslash combinations such as \u and \n lose their special meanings.

Suppose we want to handle strings with Greek letters. We follow the convention of the LATEX markup language for mathematical formulas. In that language, symbols start with backslashes. Therefore, raw strings are attractive—users want to write \nu and \upsilon, not \\nu and \\upsilon. Here is an example of a string that we want to be able to process:

greek`\nu=${factor}\upsilon`

As with any tagged template string, we need to define a function:

Click here to view code image

const greek = (fragments, ...values) => {

 const substitutions = { alpha: 'α', . . ., nu: 'ν', . . . }

 const substitute = str => str.replace(/\\[a-z]+/g,

 match => substitutions[match.slice(1)])

 let result = substitute(fragments.raw[0])

 for (let i = 0; i < values.length; i++)

 result += values[i] + substitute(fragments.raw[i + 1])

 return result

}

You access the raw string fragments with the raw property of the first parameter of the tag function. The value of fragments.raw is an array of string fragments with unprocessed backslashes.

In the preceding tagged template literal, fragments.raw is an array of two strings. The first string is \nu=, and the second string is \upsilon.

\${\nu\upsilon{

including three backslashes. The second string has two characters:

}}

Note the following:

	The \n in \nu is not turned into a newline.

	The \u in \upsilon is not interpreted as a Unicode escape. In fact, it would not be syntactically correct. For that reason, fragments[1] cannot be parsed and is set to undefined.

	${factor} is an embedded expression. Its value is passed to the tag function.

The greek function uses regular expression replacement, which is explained in detail in Section 6.13, “More about Regex Replace” (page 135). Identifiers starting with a backslash are replaced with their substitutions, such as ν for \nu.

6.6 Regular Expressions

[image: Images]

Regular expressions specify string patterns. Use them whenever you need to locate strings that match a particular pattern. For example, suppose you want to find hyperlinks in an HTML file. You need to look for strings of the form . But wait—there may be extra spaces, or the URL may be enclosed in single quotes. Regular expressions give you a precise syntax for specifying what sequences of characters are legal matches.

In a regular expression, a character denotes itself unless it is one of the reserved characters

. * + ? { | () [\ ^ $

For example, the regular expression href only matches the string href.

The symbol . matches any single character. For example, .r.f matches href and prof.

The * symbol indicates that the preceding construct may be repeated 0 or more times; with the + symbol, the repetition is 1 or more times. A suffix of ? indicates that a construct is optional (0 or 1 times). For example, be+s? matches be, bee, and bees. You can specify other multiplicities with { }—see Table 6-2.

A | denotes an alternative: .(oo+|ee+)f matches beef or woof. Note the parentheses—without them, .oo+|ee+f would be the alternative between .oo+ and ee+f. Parentheses are also used for grouping—see Section 6.11, “Groups” (page 131).

A character class is a set of character alternatives enclosed in brackets, such as [Jj], [0-9], [A-Za-z], or [^0-9]. Inside a character class, the - denotes a range (all characters whose Unicode values fall within the two bounds). However, a - that is the first or last character in a character class denotes itself. A ^ as the first character in a character class denotes the complement—all characters except those specified. For example, [^0-9] denotes any character that is not a decimal digit.

There are six predefined character classes: \d (digits), \s (white space), \w (word characters), and their complements \D (non-digits), \S (nonwhite space), and \W (nonword characters).

The characters ^ and $ match the beginning and end of input. For example, ^[0-9]+$ matches a string entirely consisting of digits.

Be careful about the position of the ^ character. If it is the first character inside brackets, it denotes the complement: [^0-9]+$ matches a string of non-digits at the end of input.

[image: Images] Note

I have a hard time remembering that ^ matches the start and $ the end. I keep thinking that $ should denote start, and on the US keyboard, $ is to the left of ^. But it’s exactly the other way around, probably since the archaic text editor QED used $ to denote the last line.

Table 6-2 summarizes the JavaScript regular expression syntax.

If you need to have a literal . * + ? { | () [\ ^ $, precede it by a backslash. Inside a character class, you only need to escape [and \, provided you are careful about the positions of] - ^. For example, []^-] is a class containing all three of them.

Table 6-2 Regular Expression Syntax

	Expression

	Description

	Example

	Characters

	A character other than . * + ? { | () [\ ^ $

	Matches only the given character

	J

	.

	Matches any character except \n, or any character if the dotAll flag is set

	

	\u{hhhh}, \u{hhhhh}

	The Unicode code point with the given hex value (requires unicode flag)

	\u{1F310}

	\uhhhh, \xhh

	The UTF-16 code unit with the given hex value

	\xA0

	\f, \n, \r, \t, \v

	Form feed (\x0C), newline (\x0A), carriage return (\x0D), tab (\x09), vertical tab (\x0B)

	\n

	\cL, where L is in [A-Za-z]

	The control character corresponding to the character L

	\cH is Ctrl-H or backspace (\x08)

	\c, where c is not in [0-9BDPSWbcdfknprstv]

	The character c

	\\

	Character Classes

	[C1C2. . .], where Ci are characters, ranges c-d, or character classes

	Any of the characters represented by C1, C2, . . .

	[0-9+-]

	[^. . .]

	Complement of a character class

	[^\d\s]

	\p{BooleanProperty}
\p{Property=Value}
\P{. . .}

	A Unicode property (see Section 6.9); its complement (requires the unicode flag)

	\p{L} are Unicode letters

	\d, \D

	A digit [0-9]; the complement

	\d+ is a sequence of digits

	\w, \W

	A word character [a-zA-Z0-9_]; the complement

	

	\s, \S

	A space from [\t\n\v\f\r \xA0] or 18 additional Unicode space characters; same as \p{White_Space}

	\s*,\s* is a comma surrounded by optional white space

	Sequences and Alternatives

	XY

	Any string from X, followed by any string from Y

	[1-9][0-9]* is a positive number without leading zero

	X|Y

	Any string from X or Y

	http|ftp

	Grouping

	(X)

	Captures the match of X into a group—see Section 6.11

	'([^']*)' captures the quoted text

	\n

	Matches the nth group

	(['"]).*\1 matches 'Fred' or "Fred" but not "Fred'

	(?<name>X)

	Captures the match of X with the given name

	'(?<qty>[0-9]+)' captures the match with name qty

	\k<name>

	The group with the given name

	\k<qty> matches the group with name qty

	(?:X)

	Use parentheses without capturing X

	In (?:http|ftp)://(.*), the match after :// is \1

	Other (?. . .)

	See Section 6.14

	

	Quantifiers

	X?

	Optional X

	\+? is an optional + sign

	X*, X+

	0 or more X, 1 or more X

	[1-9][0-9]+ is an integer ≥ 10

	X{n}, X{n,}, X{m,n}

	n times X, at least n times X, between m and n times X

	[0-9]{4,6} are four to six digits

	X*? or X+?

	Reluctant quantifier, attempting the shortest match before trying longer matches

	.*(<.+?>).* captures the shortest sequence enclosed in angle brackets

	Boundary Matches

	^ $

	Beginning, end of input (or beginning, end of line if the multiline flag is set)

	^JavaScript$ matches the input or line JavaScript

	\b, \B

	Word boundary, nonword boundary

	\bJava\B matches JavaScript but not Java code

6.7 Regular Expression Literals

[image: Images]

A regular expression literal is delimited by slashes:

Click here to view code image

const timeRegex = /^([1-9]|1[0-2]):[0-9]{2} [ap]m$/

Regular expression literals are instances of the RegExp class.

The typeof operator, when applied to a regular expression, yields 'object'.

Inside the regular expression literal, use backslashes to escape characters that have special meanings in regular expressions, such as the . and + characters:

Click here to view code image

const fractionalNumberRegex = /[0-9]+\.[0-9]*/

Here, the escaped . means a literal period.

In a regular expression literal, you also need to escape a forward slash so that it is not interpreted as the end of the literal.

To convert a string holding a regular expression into a RegExp object, use the RegExp function, with or without new:

Click here to view code image

const fractionalNumberRegex = new RegExp('[0-9]+\\.[0-9]*')

Note that the backslash in the string must be escaped.

6.8 Flags

[image: Images]

A flag modifies a regular expression’s behavior. One example is the i or ignoreCase flag. The regular expression

/[A-Z]+\.com/i

matches Horstmann.COM.

You can also set the flag in the constructor:

const regex = new RegExp(/[A-Z]+\.com/, 'i')

To find the flag values of a given RegExp object, you can use the flags property which yields a string of all flags. There is also a Boolean property for each flag:

Click here to view code image

regex.flags // 'i'

regex.ignoreCase // true

JavaScript supports six flags, shown in Table 6-3.

Table 6-3 Regular Expression Flags

	Single Letter

	Property Name

	Description

	i

	ignoreCase

	Case-insensitive match

	m

	multiline

	^, $ match start, end of line

	s

	dotAll

	. matches newline

	u

	unicode

	Match Unicode characters, not code units—see Section 6.9

	g

	global

	Find all matches—see Section 6.10

	y

	sticky

	Match must start at regex.lastIndex—see Section 6.10

The m or multiline flag changes the behavior of the start and end anchors ^ and $. By default, they match the beginning and end of the entire string. In multiline mode, they match the beginning and end of a line. For example,

/^[0-9]+/m

matches digits at the beginning of a line.

With the s or dotAll flag, the . pattern matches newlines. Without it, . matches any non-newline character.

The other three flags are explained in later sections.

You can use more than one flag. The following regular expression matches upper- or lowercase letters at the start of each line:

/^[A-Z]/im

6.9 Regular Expressions and Unicode

[image: Images]

For historical reasons, regular expressions work with UTF-16 code units, not Unicode characters. For example, the . pattern matches a single UTF-16 code unit. For example, the string

'Hello [image: Images]'

does not match the regular expression

/Hello .$/

The [image: Images] character is encoded with two code units. The remedy is to use the u or unicode flag:

/Hello .$/u

With the u flag, the . pattern matches a single Unicode character, no matter how it is encoded in UTF-16.

If you need to keep your source files in ASCII, you can embed Unicode code points into regular expressions, using the \u{ } syntax:

/[A-Za-z]+ \u{1F310}/u

[image: Images] Caution

Without the u flag, /\u{1F310}/ matches the string 'u{1F310}'.

When working with international text, you should avoid patterns such as [A-Za-z] for denoting letters. These patterns won’t match letters in other languages. Instead, use \p{Property}, where Property is the name of a Boolean Unicode property. For example, \p{L} denotes a Unicode letter. The regular expression

/Hello, \p{L}+!/u

matches

'Hello, värld!'

and

'Hello, [image: Images]!'

Table 6-4 shows the names of other common Boolean properties.

For Unicode properties whose values are not Boolean, use the syntax \p{Property=Value}. For example, the regular expression

/p{Script=Han}+/u

matches any sequence of Chinese characters.

Using an uppercase \P yields the complement: \P{L} matches any character that is not a letter.

Table 6-4 Common Boolean Unicode Properties

	Name

	Description

	L

	Letter

	Lu

	Uppercase letter

	Ll

	Lowercase letter

	Nd

	Decimal number

	P

	Punctuation

	S

	Symbol

	White_Space

	White space, same as \s

	Emoji

	Emoji characters, modifiers, or components

6.10 The Methods of the RegExp Class

[image: Images]

The test method yields true if a string contains a match for the given regular expression:

/[0-9]+/.test('agent 007') // true

To test whether the entire string matches, your regular expression must use start and end anchors:

/^[0-9]+$/.test('agent 007') // false

The exec method yields an array holding the first matched subexpression, or null if there was no match.

For example,

/[0-9]+/.exec('agents 007 and 008')

returns an array containing the string '007'. (As you will see in the following section, the array can also contain group matches.)

In addition, the array that exec returns has two properties:

	index is the index of the subexpression

	input is the argument that was passed to exec

In other words, the array returned by the preceding call to exec is actually

Click here to view code image

['007', index: 7, input: 'agents 007 and 008']

To match multiple subexpressions, use the g or global flag:

let digits = /[0-9]+/g

Now each call to exec returns a new match:

Click here to view code image

result = digits.exec('agents 007 and 008') // ['007', index: 7, . . .]

result = digits.exec('agents 007 and 008') // ['008', index: 15, . . .]

result = digits.exec('agents 007 and 008') // null

To make this work, the RegExp object has a property lastIndex that is set to the first index after the match in each successful call to exec. The next call to exec starts the match at lastIndex. The lastIndex property is set to zero when a regular expression is constructed or a match failed.

You can also set the lastIndex property to skip a part of the string.

With the y or sticky flag, the match must start exactly at lastIndex:

Click here to view code image

digits = /[0-9]+/y

digits.lastIndex = 5

result = digits.exec('agents 007 and 008') // null

digits.lastIndex = 8

result = digits.exec('agents 007 and 008') // ['07', index: 8, . . .]

[image: Images] Note

If you simply want an array of all matched substrings, use the match method of the String class instead of repeated calls to exec—see Section 6.12, “String Methods with Regular Expressions” (page 133).

Click here to view code image

let results = 'agents 007 and 008'.match(/[0-9]+/g) // ['007', '008']

6.11 Groups

[image: Images]

Groups are used for extracting components of a match. For example, here is a regular expression for parsing times with groups for each component:

Click here to view code image

let time = /([1-9]|1[0-2]):([0-5][0-9])([ap]m)/

The group matches are placed in the array returned by exec:

Click here to view code image

let result = time.exec('Lunch at 12:15pm')

 // ['12:15pm', '12', '15', 'pm', index: 9, . . .]

As in the preceding section, result[0] is the entire matched string. For i > 0, result[i] is the match for the ith group.

Groups are numbered by their opening parentheses. This matters if you have nested parentheses. Consider this example. We want to analyze line items of invoices that have the form

Blackwell Toaster USD29.95

Here is a regular expression with groups for each component:

Click here to view code image

/(\p{L}+(\s+\p{L}+)*)\s+([A-Z]{3})([0-9.]*)/u

In this situation, group 1 is 'Blackwell Toaster', the substring matched by the expression (\p{L}+(\s+\p{L}+)*), from the first opening parenthesis to its matching closing parenthesis.

Group 2 is ' Toaster', the substring matched by (\s+\p{L}+).

Groups 3 and 4 are 'USD' and '29.95'.

We aren’t interested in group 2; it only arose from the parentheses that were required for the repetition. For greater clarity, you can use a noncapturing group, by adding ?: after the opening parenthesis:

Click here to view code image

/(\p{L}+(?:\s+\p{L}+)*)\s+([A-Z]{3})([0-9.]*)/u

Now 'USD' and '29.95' are captured as groups 2 and 3.

[image: Images] Note

When you have a group inside a repetition, such as (\s+\p{L}+)* in the example above, the corresponding group only holds the last match, not all matches.

If the repetition happened zero times, then the group match is set to undefined.

You can match against the contents of a captured group. For example, consider the regular expression:

/(['"]).*\1/

The group (['"]) captures either a single or double quote. The pattern \1 matches the captured string, so that "Fred" and 'Fred' match the regular expression but "Fred' does not.

[image: Images] Caution

Even though they are supposed be outlawed in strict mode, several JavaScript engines still support octal character escapes in regular expressions. For example, \11 denotes \t, the character at code point 9.

However, if the regular expression has 11 or more capturing groups, then \11 denotes a match of the 11th group.

Numbered groups are rather fragile. It is much better to capture by name:

Click here to view code image

let lineItem = /(?<item>\p{L}+(\s+\p{L}+)*)\s+(?<currency>[A-Z]{3})(?<price>[0-9.]*)/u

When a regular expression has one or more named groups, the array returned by exec has a property groups whose value is an object holding group names and matches:

Click here to view code image

let result = lineItem.exec('Blackwell Toaster USD29.95')

let groupMatches = result.groups

 // { item: 'Blackwell Toaster', currency: 'USD', price: '29.95' }

The expression \k<name> matches against a group that was captured by name:

Click here to view code image

/(?<quote>['"]).*\k<quote>/

Here, the group with the name “quote” matches a single or double quote at the beginning of the string. The string must end with the same character. For example, "Fred" and 'Fred' are matches but "Fred' is not.

The features of the RegExp are summarized in Table 6-5.

Table 6-5 Features of the RegExp Class

	Name

	Description

	Constructors

	new RegExp(regex, flags)

	Constructs a regular expression from the given regex (a string, regular expression literal, or RegExp object) and the given flags

	Properties

	flags

	A string of all flags

	ignoreCase, multiline, dotAll, unicode, global, sticky

	Boolean properties for all flag types

	Methods

	test(str)

	true if str contains a match for this regular expression

	exec(str)

	Match results for the current match of this regular expression inside str. See Section 6.10 for details. The match and matchAll methods of the String class are simpler to use than this method.

6.12 String Methods with Regular Expressions

[image: Images]

As you saw in Section 6.10, “The Methods of the RegExp Class” (page 130), the workhorse method for getting match information is the exec method of the RegExp class. But its API is far from elegant. The String class has several methods that work with regular expressions and produce commonly used results more easily.

For a regular expression without the global flag set, the call str.match(regex) returns the same match results as regex.exec(str):

Click here to view code image

'agents 007 and 008'.match(/[0-9]+/) // ['007', index: 7, . . .]

With the global flag set, match simply returns an array of matches, which is often just what you want:

Click here to view code image

'agents 007 and 008'.match(/[0-9]+/g) // ['007', '008']

If there is no match, the String.match method returns null.

[image: Images] Note

RegExp.exec and String.match are the only methods in the ECMAScript standard library that yield null to indicate the absence of a result.

If you have a global search and want all match results without calling exec repeatedly, you will like the matchAll method of the String class that is currently a stage 3 proposal. It returns an iterable of the match results. Let’s say you want to look for all matches of the regular expression

Click here to view code image

let time = /([1-9]|1[0-2]):([0-5][0-9])([ap]m)/g

The loop

Click here to view code image

for (const [, hours, minutes, period] of input.matchAll(time)) {

 . . .

}

iterates over all match results, using destructuring to set hours, minutes, and period to the group matches. The initial comma ignores the entire matched expression.

The matchAll method yields the matches lazily. It is efficient if there are many matches but only a few are examined.

The search method returns the index of the first match or -1 if no match is found:

Click here to view code image

let index = 'agents 007 and 008'.search(/[0-9]+/) // Yields index 7

The replace method replaces the first match of a regular expression with a replacement string. To replace all matches, set the global flag:

Click here to view code image

let replacement = 'agents 007 and 008'.replace(/[0-9]/g, '?')

 // 'agents ??? and ???'

[image: Images] Note

The split method can have a regular expression as argument. For example,

str.split(/\s*,\s*/)

splits str along commas that are optionally surrounded by white space.

6.13 More about Regex Replace

[image: Images]

In this section, we have a closer look at the replace method of the String class.

The replacement string parameter can contain patterns starting with a $ that are processed as shown in Table 6-6.

Table 6-6 Replacement String Patterns

	Pattern

	Description

	$`, $'

	The portion before or after the matched string

	$&

	Matched string

	$n

	The nth group

	$<name>

	The group with the given name

	$$

	Dollar sign

For example, the following replacement repeats each vowel three times:

Click here to view code image

'hello'.replace(/[aeiou]/g, '$&$&$&') // 'heeellooo'

The most useful pattern is the group pattern. Here, we use groups to match the first and last name of a person in each line and flip them:

Click here to view code image

let names = 'Harry Smith\nSally Lin'

let flipped = names.replace(

 /^([A-Z][a-z]+) ([A-Z][a-z]+)/gm, "$2, $1")

 // 'Smith, Harry\nLin, Sally'

If the number after the $ sign is larger than the number of groups in the regular expression, the pattern is inserted verbatim:

Click here to view code image

let replacement = 'Blackwell Toaster $29.95'.replace('\$29', '$19')

 // 'Blackwell Toaster $19.95'—there is no group 19

You can also use named groups:

Click here to view code image

flipped = names.replace(/^(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)$/gm,

 "$<last>, $<first>")

For more complex replacements, you can provide a function instead of a replacement string. The function receives the following arguments:

	The string that was matched by the regular expression

	The matches of all groups

	The offset of the match

	The entire string

In this example, we just process the group matches:

Click here to view code image

flipped = names.replace(/^([A-Z][a-z]+) ([A-Z][a-z]+)/gm,

 (match, first, last) => `${last}, ${first[0]}.`)

 // 'Smith, H.\nLin, S.'

[image: Images] Note

The replace method also works with strings, replacing the first match of the string itself:

Click here to view code image

let replacement = 'Blackwell Toaster $29.95'.replace('$', 'USD')

 // Replaces $ with USD

Note that the $ is not interpreted as an end anchor.

[image: Images] Caution

If you call the search method with a string, it is converted to a regular expression:

Click here to view code image

let index = 'Blackwell Toaster $29.95'.search('$')

 // Yields 24, the end of the string, not the index of $

Use indexOf to search for a plain string.

6.14 Exotic Features

[image: Images]

In the final section of this chapter, you will see several complex and uncommon regular expression features.

The + and * repetition operators are “greedy”—they match the longest possible strings. That’s generally desirable. You want /[0-9]+/ to match the longest possible string of digits, and not a single digit.

However, consider this example:

'"Hi" and "Bye"'.match(/".*"/g)

The result is

'"Hi" and "Bye"'

because .* greedily matches everything until the final ". That does not help us if we want to match quoted substrings.

One remedy is to require non-quotes in the repetition:

'"Hi" and "Bye"'.match(/"[^"]*"/g)

Alternatively, you can specify that the match should be reluctant, by using the *? operator:

'"Hi" and "Bye"'.match(/".*?"/g)

Either way, now each quoted string is matched separately, and the result is

['"Hi"', '"Bye"']

There is also a reluctant version +? that requires at least one repetition.

The lookahead operator p(?=q) matches p provided it is followed by q, but does not include q in the match. For example, here we find the hours that precede a colon.

Click here to view code image

let hours = '10:30 - 12:00'.match(/[0-9]+(?=:)/g) // ['10, 12']

The inverted lookahead operator p(?!q) matches p provided it is not followed by q.

Click here to view code image

let minutes = '10:30 - 12:00'.match(/[0-9][0-9](?!:)/g) // ['10, 12']

There is also a lookbehind (?<=p)q that matches q as long as it is preceded by p.

Click here to view code image

minutes = '10:30 - 12:00'.match(/(?<=[0-9]+:)[0-9]+/g) // ['30', '00']

Note that the argument inside (?<=[0-9]+:) is itself a regular expression.

Finally, there is an inverted lookbehind (?<!p)q, matching q as long as it is not preceded by p.

Click here to view code image

hours = '10:30 - 12:00'.match(/(?<![0-9:])[0-9]+/g)

Regular expressions such as this one may have motivated Jamie Zawinski’s timeless quote, “Some people, when confronted with a problem, think: ‘I know, I’ll use regular expressions.’ Now they have two problems.”

Exercises

	Write a function that, given a string, produces an escaped string delimited by ' characters. Turn all non-ASCII Unicode into \u{. . .}. Produce escapes \b, \f, \n, \r, \t, \v, \', \\.

	Write a function that fits a string into a given number of Unicode characters. If it is too long, trim it and append an ellipsis … (\u{2026}). Be sure to correctly handle characters that are encoded with two UTF-16 code units.

	The substring and slice methods are very tolerant of bad arguments. Can you get them to yield an error with any arguments? Try strings, objects, array, no arguments.

	Write a function that accepts a string and returns an array of all substrings. Be careful about characters that are encoded with two UTF-16 code units.

	In a more perfect world, all string methods would take offsets that count Unicode characters, not UTF-16 code units. Which String methods would be affected? Provide replacement functions for them, such as indexOf(str, sub) and slice(str, start, end).

	Implement a printf tagged template function that formats integers, floating-point numbers, and strings with the classic printf formatting instructions, placed after embedded expressions:

Click here to view code image

const formatted = printf`${item}%-40s | ${quantity}%6d | ${price}%10.2f`

	Write a tagged template function spy that displays both the raw and “cooked” string fragments and the embedded expression values. In the raw string fragments, remove the backslashes that were needed for escaping backticks, dollar signs, and backslashes.

	List as many different ways as you can to produce a regular expression that matches only the empty string.

	Is the m/multiline flag actually useful? Couldn’t you just match \n? Produce a regular expression that can find all lines containing just digits without the multiline flag. What about the last line?

	Produce regular expressions for email addresses and URLs.

	Produce regular expressions for US and international telephone numbers.

	Use regular expression replacement to clean up phone numbers and credit card numbers.

	Produce a regular expression for quoted text, where the delimiters could be matching single or double quotes, or curly quotes “”.

	Produce a regular expression for image URLs in an HTML document.

	Using a regular expression, extract all decimal integers (including negative ones) from a string into an array.

	Suppose you have a regular expression and you want to use it for a complete match, not just a match of a substring. You just want to surround it with ^ and $. But that’s not so easy. The regular expression needs to be properly escaped before adding those anchors. Write a function that accepts a regular expression and yields a regular expression with the anchors added.

	Use the replace method of the String class with a function argument to replace all °F measurements in a string with their °C equivalents.

	Enhance the greek function of Section 6.5, “Raw Template Literals” (page 122), so that it handles escaped backslashes and $ symbols. Also check whether a symbol starting with a backslash has a substitution. If not, include it verbatim.

	Generalize the greek function of the preceding exercise to a general purpose substitution function that can be called as subst(dictionary)`templateString`.

Chapter 7. Arrays and Collections

[image: Images]

Topics in This Chapter

7.1 Constructing Arrays

7.2 The length Property and Index Properties

7.3 Deleting and Adding Elements

7.4 Other Array Mutators

7.5 Producing Elements

7.6 Finding Elements

7.7 Visiting All Elements

[image: Images] 7.8 Sparse Arrays

[image: Images] 7.9 Reduction

7.10 Maps

7.11 Sets

[image: Images] 7.12 Weak Maps and Sets

[image: Images] 7.13 Typed Arrays

[image: Images] 7.14 Array Buffers

Exercises

Whenever you learn a new programming language, you want to know how to store your data. The traditional data structure of choice for sequential data is the humble array. In this chapter, you will learn the various array methods that the JavaScript API provides. We then turn to typed arrays and array buffers—advanced constructs for efficient handling of binary data blocks. Unlike Java or C++, JavaScript does not provide a rich set of data structures, but there are simple map and set classes that we discuss at the end of the chapter.

7.1 Constructing Arrays

You already know how to construct an array with a given sequence of elements—simply write a literal:

Click here to view code image

const names = ['Peter', 'Paul', 'Mary']

Here is how to construct an empty array with ten thousand elements, all initially undefined:

const bigEmptyArray = []

bigEmptyArray.length = 10000

In an array literal, you can place spreads of any iterable. Arrays and strings, the sets and maps that you will see later in this chapter, as well as NodeList and HTMLCollection from the DOM API, are iterable. For example, here is how to form an array containing the elements of two iterables a and b:

const elements = [...a, ...b]

As you will see in Chapter 9, an iterable object has a somewhat complex structure. The Array.from method collects elements from a simpler array-like object. An array-like object is an object with an integer-valued property with name 'length' and properties with names '0', '1', '2', and so on. Of course, arrays are array-like, but some methods of the DOM API yield array-like objects that aren’t arrays or iterables. Then you can call Array.from(arrayLike) to place the elements into an array.

Click here to view code image

const arrayLike = { length: 3 , '0': 'Peter', '1': 'Paul', '2': 'Mary'}

const elements = Array.from(arrayLike)

 // elements is the array ['Peter', 'Paul', 'Mary']

 // Array.isArray(arrayLike) is false, Array.isArray(elements) is true

The Array.from method accepts an optional second argument, a function that is called for all index values from 0 up to length − 1, passing the element (or undefined for missing elements) and the index. The results of the function are collected into an array. For example,

Click here to view code image

const squares = Array.from({ length: 5 }, (element, index) => index * index)

 // [0, 1, 4, 9, 16]

[image: Images] Caution

There is a constructor for constructing an array with given elements that you can invoke with or without new:

Click here to view code image

names = new Array('Peter', 'Paul', 'Mary')

names = Array('Peter', 'Paul', 'Mary')

But it has a pitfall. Calling new Array or Array with a single numeric argument has an entirely different effect. The single argument denotes the length of the array:

Click here to view code image

numbers = new Array(10000)

The result is an array of length 10000 and no elements!

I suggest to stay away from the Array constructor and use array literals:

Click here to view code image

names = ['Peter', 'Paul', 'Mary']

numbers = [10000]

[image: Images] Note

The factory function Array.of doesn’t suffer from the problem of the Array constructor:

Click here to view code image

names = Array.of('Peter', 'Paul', 'Mary')

littleArray = Array.of(10000) // An array of length 1, same as [10000]

But it offers no advantage over array literals either. (Exercise 2 shows a subtle and uncommon use case for the of method.)

7.2 The length Property and Index Properties

Every array has a 'length' property whose value is an integer between 0 and 232 − 1. The properties whose numeric values are non-negative integers are called index properties. For example, the array

Click here to view code image

const names = ['Peter', 'Paul', 'Mary']

is an object with a 'length' property (whose value is 3) and index properties '0', '1', '2'. Recall that property keys are always strings.

The length is always one more than the highest index:

Click here to view code image

const someNames = [, 'Smith', , 'Jones'] // someNumbers.length is 4

The length is adjusted when a value is assigned to an index property:

Click here to view code image

someNames[5] = 'Miller' // Now someNames has length 6

You can adjust the length manually:

Click here to view code image

someNames.length = 100

If you decrease the length, any element whose index is at least the new length gets deleted.

Click here to view code image

someNames.length = 4 // someNames[4] and beyond are deleted

There is no requirement that an array has an index property for every index between 0 and length − 1. The ECMAScript standard uses the term missing elements for gaps in the index sequence.

To find out whether an element is missing, you can use the in operator:

Click here to view code image

'2' in someNames // false—no property '2'

3 in someNames // true; there is a property '3'

 // Note that the left operand is converted to a string

[image: Images] Note

An array can have properties that are not index properties. This is occasionally used to attach other information to an array. For example, the exec method of the RegExp class yields an array of matches, with additional properties index and input.

Click here to view code image

/([1-9]|1[0-2]):([0-5][0-9])([ap]m)/.exec('12:15pm')

 // ['12:15pm', '12', '15', 'pm', index: 0, input: '12:15pm']

[image: Images] Caution

A string containing a negative number, such as '-1', is a valid property, but it is not an index property.

Click here to view code image

const squares = [0, 1, 4, 9]

squares[-1] = 1 // [0, 1, 4, 9, '-1': 1]

7.3 Deleting and Adding Elements

The calls

Click here to view code image

let arr = [0, 1, 4, 9, 16, 25]

const deletedElement = arr.pop() // arr is now [0, 1, 4, 9, 16]

const newLength = arr.push(x) // arr is now [0, 1, 4, 9, 16, x]

delete or add an element at the end of an array, adjusting the length.

[image: Images] Note

Instead of calling pop and push, you could write

Click here to view code image

arr.length--

arr[arr.length] = x

I prefer pop and push since they indicate the intent better.

To delete or add the initial element, call

Click here to view code image

arr = [0, 1, 4, 9, 16, 25]

const deletedElement = arr.shift() // arr is now [1, 4, 9, 16, 25]

const newLength = arr.unshift(x) // arr is now [x, 1, 4, 9, 16, 25]

The push and unshift methods can add any number of elements at once:

Click here to view code image

arr = [9]

arr.push(16, 25) // 16, 25 are appended; arr is now [9, 16, 25]

arr.unshift(0, 1, 4) // 0, 1, 4 are prepended; arr is now [0, 1, 4, 9, 16, 25]

Use the splice method to delete or add elements in the middle:

Click here to view code image

const deletedElements = arr.splice(start, deleteCount, x1, x2, . . .)

First, deleteCount elements are removed, starting at offset start. Then the provided elements are inserted at start.

Click here to view code image

arr = [0, 1, 12, 24, 36]

const start = 2

// Replace arr[start] and arr[start + 1]

arr.splice(start, 2, 16, 25) // arr is now [0, 1, 16, 25, 36]

// Add elements at index start

arr.splice(start, 0, 4, 9) // arr is now [0, 1, 4, 9, 16, 25, 36]

// Delete the elements at index start and start + 1

arr.splice(start, 2) // arr is now [0, 1, 16, 25, 36]

// Delete all elements at index start and beyond

arr.splice(start) // arr is now [0, 1]

If start is negative, it is counted from the end of the array (that is, it is adjusted by adding arr.length).

Click here to view code image

arr = [0, 1, 4, 16]

arr.splice(-1, 1, 9) // arr is now [0, 1, 4, 9]

The splice method returns an array of the removed elements.

Click here to view code image

arr = [1, 4, 9, 16]

const spliced = arr.splice(1, 2) // spliced is [4, 9], arr is [1, 16]

7.4 Other Array Mutators

In this section, you will see the mutator methods of the Array class other than those for deleting and adding elements.

The fill method overwrites existing elements with a new value:

arr.fill(value, start, end)

The copyWithin method overwrites existing elements with other elements from the same array:

Click here to view code image

arr.copyWithin(targetIndex, start, end)

With both methods, start defaults to 0 and end to arr.length.

If start, end, or targetIndex are negative, they count from the end of the array.

Here are some examples:

Click here to view code image

let arr = [0, 1, 4, 9, 16, 25]

arr.copyWithin(0, 1) // arr is now [1, 4, 9, 16, 25, 25]

arr.copyWithin(1) // arr is now [1, 1, 4, 9, 16, 25]

arr.fill(7, 3, -1) // arr is now [1, 1, 4, 7, 7, 25]

arr.reverse() reverses arr in place:

Click here to view code image

arr = [0, 1, 4, 9, 16, 25]

arr.reverse() // arr is now [25, 16, 9, 4, 1, 0]

The call

arr.sort(comparisonFunction)

sorts arr in place. The comparison function compares two elements x, y and returns

	A negative number if x should come before y

	A positive number if x should come after y

	0 if they are indistinguishable

For example, here is how you can sort an array of numbers:

Click here to view code image

arr = [0, 1, 16, 25, 4, 9]

arr.sort((x, y) => x - y) // arr is now [0, 1, 4, 9, 16, 25]

[image: Images] Caution

If the comparison function is not provided, the sort method turns elements to strings and compares them—see Exercise 5. For numbers, this might be the world’s worst comparison function:

Click here to view code image

arr = [0, 1, 4, 9, 16, 25]

arr.sort() // arr is now [0, 1, 16, 25, 4, 9]

The most useful methods of the Array class are summarized in Table 7-1.

Table 7-1 Useful Functions and Methods of the Array Class

	Name

	Description

	Functions

	from(arraylike, f)

	Produces an array from any object with properties named 'length', '0', '1', and so on. If present, the function f is applied to each element.

	Mutating Methods

	pop(), shift()

	Removes and returns the last element

	push(value), unshift(value)

	Appends or prepends value to this array and returns the new length

	fill(value, start, end)

	Overwrites the given range with value. For this and the following methods, the following apply unless otherwise mentioned: If start or end are negative, they are counted from the end of the array. The range includes start and excludes end. The default for start and end are 0 and the array length. The method returns this array.

	copyWithin(targetIndex, start, end)

	Copies the given range to the target index

	reverse()

	Reverses the elements of this array

	sort(comparisonFunction)

	Sorts this array

	splice(start, deleteCount, values...)

	Removes and returns deleteCount elements at index start, then inserts the given values at start

	Nonmutating Methods

	slice(start, end)

	Returns the elements in the given range

	includes(target, start), firstIndex(target, start), lastIndex(target, start)

	If the array includes target at or after index start, these methods return true or the index; otherwise, false or -1

	flat(k)

	Returns the elements of this array, replacing any arrays of dimension ≤k with their elements. The default for k is 1.

	map(f), flatMap(f), forEach(f)

	Calls the given function on each element and returns an array of the results, or the flattened results, or undefined

	filter(f)

	Returns all elements for which f returns a truish result

	findIndex(f), find(f)

	Return the index or value of the first element for which f returns a truish value. The function f is called with three arguments: the element, index, and array.

	every(f), some(f)

	Return true if f returns a truish value for every, or at least one, element

	join(separator)

	Returns a string consisting of all elements turned to strings and separated by the given separator (which defaults to ',')

For sorting strings in a human language, the localeCompare method can be a good choice:

Click here to view code image

const titles = . . .

titles.sort((s, t) => s.localeCompare(t))

Chapter 8 has more information about locale-based comparisons.

[image: Images] Note

Since 2019, the sort method is guaranteed to be stable. That is, the order of indistinguishable elements is not disturbed. For example, suppose you have a sequence of messages that was previously sorted by date. If you now sort it by the sender, then messages with the same sender will continue to be sorted by date.

7.5 Producing Elements

All methods that are introduced from this point on do not mutate the array on which they operate.

The following methods produce arrays containing elements from an existing array.

The call

arr.slice(start, end)

yields an array containing the elements in the given range. The start index defaults to 0, end to arr.length.

arr.slice() is the same as [...arr].

The flat method flattens multidimensional arrays. The default is to flatten one level.

[[1, 2], [3, 4]].flat()

is the array

[1, 2, 3, 4]

In the unlikely case that you have an array of more than two dimensions, you can specify how many levels you want to flatten. Here is a flattening from three dimensions to one:

Click here to view code image

[[[1, 2], [3, 4]], [[5, 6], [7, 8]]].flat(2) // [1, 2, 3, 4, 5, 6, 7, 8]

The call

arr.concat(arg1, arg2, . . .)

yields an array starting with arr, to which the arguments are appended. However, there is a twist: Array arguments are flattened.

Click here to view code image

const arr = [1, 2]

const arr2 = [5, 6]

const result = arr.concat(3, 4, arr2) // result is [1, 2, 3, 4, 5, 6]

Since you can nowadays use spreads in array literals, the concat method is no longer very useful. A simpler way of achieving the same result is:

Click here to view code image

const result = [...arr, 3, 4, ...arr2]

There is one remaining use case for the concat method: to concatenate a sequence of items of unknown type and flatten just those that are arrays.

[image: Images] Note

You can control the flattening with the isConcatSpreadable symbol. (Symbols are covered in Chapter 8.)

If the symbol is false, arrays are not flattened:

Click here to view code image

arr = [17, 29]

arr[Symbol.isConcatSpreadable] = false

[].concat(arr) // An array with a single element [17, 29]

If the symbol is true, then array-like objects are flattened:

Click here to view code image

[].concat({ length: 2, [Symbol.isConcatSpreadable]: true,

 '0': 17, '1': 29 }) // An array with two elements 17, 29

7.6 Finding Elements

The following calls check whether a specific value is contained in an array.

Click here to view code image

const found = arr.includes(target, start) // true or false

const firstIndex = arr.indexOf(target, start) // first index or -1

const lastIndex = arr.lastIndexOf(target, start) // last index or -1

The target must match the element strictly, using the === comparison.

The search starts at start. If start is less than 0, it counts from the end of the array. If start is omitted, it defaults to 0.

If you want to find a value that fulfills a condition, then call one of the following:

Click here to view code image

const firstIndex = arr.findIndex(conditionFunction)

const firstElement = arr.find(conditionFunction)

For example, here is how you can find the first negative number in an array:

Click here to view code image

const firstNegative = arr.find(x => x < 0)

For this and the subsequent methods of this section, the condition function receives three arguments:

	The array element

	The index

	The entire array

The calls

Click here to view code image

arr.every(conditionFunction)

arr.some(conditionFunction)

yield true if conditionFunction(element, index, arr) is true for every element or at least one element.

For example,

Click here to view code image

const atLeastOneNegative = arr.some(x => x < 0)

The filter method yields all values that fulfill a condition:

Click here to view code image

const negatives = [-1, 7, 2, -9].filter(x => x < 0) // [-1, -9]

7.7 Visiting All Elements

To visit all elements of an array, you can use a for of loop to visit all elements in order, or the for in loop to visit all index values.

Click here to view code image

for (const e of arr) {

 // Do something with the element e

}

for (const i in arr) {

 // Do something with the index i and the element arr[i]

}

[image: Images] Note

The for of loop looks up elements for all index values between 0 and length − 1, yielding undefined for missing elements. In contrast, the for in loop only visits keys that are present.

In other words, the for in loop views an array as an object, whereas the for of loop views an array as an iterable. (As you will see in Chapter 12, iterables are sequences of values without gaps.)

If you want to visit both the index values and elements, use the iterator that the entries method returns. It produces arrays of length 2 holding each index and element. This loop uses the entries method, a for of loop, and destructuring:

Click here to view code image

for (const [index, element] of arr.entries())

 console.log(index, element)

[image: Images] Note

The entries method is defined for all JavaScript data structures, including arrays. There are corresponding methods keys and values that yield iterators over the keys and values of the collection. These are useful for working with generic collections. If you know that you are working with an array, you won’t need them.

The call arr.forEach(f) invokes f(element, index, arr) for each element, skipping missing elements. The call

Click here to view code image

arr.forEach((element, index) => console.log(index, element))

is equivalent to

Click here to view code image

for (const index in arr) console.log(index, arr[index])

Instead of specifying an action for each element, it is often better to transform the elements and collect the results. The call arr.map(f) yields an array of all values returned from f(arr[index], index, arr):

Click here to view code image

[1, 7, 2, 9].map(x => x * x) // [1, 49, 4, 81]

[1, 7, 2, 9].map((x, i) => x * 10 ** i) // [1, 70, 200, 9000]

Consider a function that returns an array of values:

Click here to view code image

function roots(x) {

 if (x < 0) {

 return [] // No roots

 } else if (x === 0) {

 return [0] // Single root

 } else {

 return [Math.sqrt(x), -Math.sqrt(x)] // Two roots

 }

}

When you map this function to an array of inputs, you get an array of the array-valued answers:

Click here to view code image

[-1, 0, 1, 4].map(roots) // [[], [0], [1, -1], [2, -2]]

If you want to flatten out the results, you can call map followed by flat, or you can call flatMap which is slightly more efficient:

Click here to view code image

[-1, 0, 1, 4].flatMap(roots) // [0, 1, -1, 2, -2]

Finally, the call arr.join(separator) converts all elements to strings and joins them with the given separator. The default separator is ','.

Click here to view code image

[1,2,3,[4,5]].join(' and ') // '1 and 2 and 3 and 4,5'

[image: Images] Note

The forEach, map, filter, find, findIndex, some, and every methods (but not sort or reduce), as well as the from function, take an optional argument after the function argument:

Click here to view code image

arr.forEach(f, thisArg)

The thisArg argument becomes the this parameter of f. That is,

Click here to view code image

thisArg.f(arr[index], index, arr)

is called for each index.

You only need the thisArg argument if you pass a method instead of a function. Exercise 4 shows how you can avoid this situation.

7.8 Sparse Arrays

[image: Images]

An array with one or more missing elements is called sparse. Sparse arrays can arise in four situations:

	Missing elements in an array literal:

Click here to view code image

const someNumbers = [, 2, , 9] // No index properties 0, 2

	Adding an element beyond the length:

Click here to view code image

someNumbers[100] = 0 // No index properties 4 to 99

	Increasing the length:

Click here to view code image

const bigEmptyArray = []

bigEmptyArray.length = 10000 // No index properties

	Deleting an element:

Click here to view code image

delete someNumbers[1] // No longer an index property 1

Most methods in the array API skip over the missing elements in sparse arrays. For example, [, 2, , 9].forEach(f) only invokes f twice. No call is made for the missing elements at indices 0 and 2.

As you have seen in Section 7.1, “Constructing Arrays” (page 141), Array.from(arrayLike, f) is an exception, invoking f for every index.

You can use Array.from to replace missing elements with undefined:

Click here to view code image

Array.from([, 2, , 9]) // [undefined, 2, undefined, 9]

The join method turns missing and undefined elements into empty strings:

Click here to view code image

[, 2, undefined, 9].join(' and ') // ' and 2 and and 9'

Most methods that produce arrays from given arrays keep the missing elements in place. For example, [, 2, , 9].map(x => x * x) yields [, 4, , 81].

However, the sort method places missing elements at the end:

Click here to view code image

let someNumbers = [, 2, , 9]

someNumbers.sort((x, y) => y - x) // someNumbers is now [9, 2, , ,]

(Eagle-eyed readers may have noted that there are four commas. The last comma is a trailing comma. If it had not been present, then the preceding comma would have been a trailing comma and the array would only have had one undefined element.)

The filter, flat, and flatMap skip missing elements entirely.

A simple way of eliminating missing elements from an array is to filter with a function that accepts all elements:

Click here to view code image

[, 2, , 9].filter(x => true) // [2, 9]

7.9 Reduction

[image: Images]

This section discusses a general mechanism for computing a value from the elements of an array. The mechanism is elegant, but frankly, it is never necessary—you can achieve the same effect with a simple loop. Feel free to skip this section if you don’t find it interesting.

The map method applies a unary function to all elements of a collection. The reduce and reduceRight methods that we discuss in this section combine elements with a binary operation. The call arr.reduce(op) applies op to successive elements like this:

Click here to view code image

 .

 .

 .

 op

 / \

 op arr[3]

 / \

 op arr[2]

 / \

arr[0] arr[1]

For example, here is how to compute the sum of array elements:

Click here to view code image

const arr = [1, 7, 2, 9]

const result = arr.reduce((x, y) => x + y) // ((1 + 7) + 2) + 9

Here is a more interesting reduction that computes the value of a decimal number from an array of digits:

Click here to view code image

[1, 7, 2, 9].reduce((x, y) => 10 * x + y) // 1729

This tree diagram shows the intermediate results:

Click here to view code image

 1729

 / \

 172 9

 / \

 17 2

 / \

 1 7

In most cases, it is useful to start the computation with an initial value other than the initial array element. The call arr.reduce(op, init) computes

Click here to view code image

 .

 .

 .

 op

 / \

 op arr[2]

 / \

 op arr[1]

 / \

init arr[0]

Compared with the tree diagram of reduce without an initial value, this diagram is more regular. All array elements are on the right of the tree. Each operation combines an accumulated value (starting with the initial value) and an array element.

For example,

Click here to view code image

[1, 7, 2, 9].reduce((accum, current) => accum - current, 0)

is

0 − 1 − 7 − 2 − 9 = −19

Without the initial value, the result would have been 1 − 7 − 2 − 9, which is not the difference of all elements.

The initial value is returned when the array is empty. For example, if you define

Click here to view code image

const sum = arr => arr.reduce((accum, current) => accum + current, 0)

then the sum of the empty array is 0. Reducing an empty array without an initial value throws an exception.

The callback function actually takes four arguments:

	The accumulated value

	The current array element

	The index of the current element

	The entire array

In this example, we collect the positions of all elements fulfilling a condition:

Click here to view code image

function findAll(arr, condition) {

 return arr.reduce((accum, current, currentIndex) =>

 condition(current) ? [...accum, currentIndex] : accum, [])

}

const odds = findAll([1, 7, 2, 9], x => x % 2 !== 0)

 // [0, 1, 3], the positions of all odd elements

The reduceRight method starts at the end of the array, visiting the elements in reverse order.

Click here to view code image

 op

 / \

 . arr[0]

 .

 .

 /

 op

 / \

 op arr[n-2]

 / \

 init arr[n-1]

For example,

Click here to view code image

[1, 2, 3, 4].reduceRight((x, y) => [x, y], [])

is

[[[[[], 4], 3], 2], 1]

[image: Images] Note

Right reduction in JavaScript is similar to a right fold in Lisp-like languages, but the order of the operands is reversed.

Reducing can be used instead of a loop. Suppose, for example, that we want to count the frequencies of the letters in a string. One way is to visit each letter and update an object.

Click here to view code image

const freq = {}

for (const c of 'Mississippi') {

 if (c in freq) {

 freq[c]++

 } else {

 freq[c] = 1

 }

}

Here is another way of thinking about this. At each step, combine the frequency map and the newly encountered letter, yielding a new frequency map. That’s a reduction:

Click here to view code image

 .

 .

 .

 op

 / \

 op 's'

 / \

 op 'i'

 / \

empty map 'M'

What is op? The left operand is the partially filled frequency map, and the right operand is the new letter. The result is the augmented map. It becomes the input to the next call to op, and at the end, the result is a map with all counts. The code is

Click here to view code image

[...'Mississippi'].reduce(

 (freq, c) => ({ ...freq, [c]: (c in freq ? freq[c] + 1 : 1) }),

 {})

In the reduction function, a new object is created, starting with a copy of the freq object. Then the value associated with the c key is set either to an increment of the preceding value if there was one, or to 1.

Note that in this approach, no state is mutated. In each step, a new object is computed.

It is possible to replace any loop with a call to reduce. Put all variables updated in the loop into an object, and define an operation that implements one step through the loop, producing a new object with the updated variables. I am not saying this is always a good idea, but you may find it interesting that loops can be eliminated in this way.

7.10 Maps

The JavaScript API provides a Map class that implements the classic map data structure: a collection of key/value pairs.

Of course, every JavaScript object is a map, but there are advantages of using the Map class instead:

	Object keys must be strings or symbols, but Map keys can be of any type.

	A Map instance remembers the order in which elements were inserted.

	Unlike objects, maps do not have a prototype chain.

	You can find out the number of entries with the size property.

To construct a map, you can provide an iterable with [key, value] pairs:

Click here to view code image

const weekdays = new Map(

 [["Mon", 0], ["Tue", 1], ["Wed", 2], ["Thu", 3], ["Fri", 4], ["Sat", 5], ["Sun", 6],])

Or you can construct an empty map and add entries later:

Click here to view code image

const emptyMap = new Map()

You must use new with the constructor.

The API is very straightforward. The call

Click here to view code image

map.set(key, value)

adds an entry and returns the map for chaining:

Click here to view code image

map.set(key1, value1).set(key2, value2)

To remove an entry, call:

Click here to view code image

map.delete(key) // Returns true if the key was present, false otherwise

The clear method removes all entries.

To test whether a key is present, call

Click here to view code image

if (map.has(key)) . . .

Retrieve a key’s value with

Click here to view code image

const value = map.get(key) // Returns undefined if the key is not present

A map is an iterable yielding [key, value] pairs. Therefore, you can easily visit all entries with a for of loop:

Click here to view code image

for (const [key, value] of map) {

 console.log(key, value)

}

Alternatively, use the forEach method:

Click here to view code image

map.forEach((key, value) => {

 console.log(key, value)

})

Maps are traversed in insertion order. Consider this map:

Click here to view code image

const weekdays = new Map([['Mon', 0], ['Tue', 1], . . ., ['Sun', 6]])

Both the for of loop and the forEach method will respect the order in which you inserted the elements.

[image: Images] Note

In Java, you would use a LinkedHashMap to visit elements in insertion order. In JavaScript, tracking insertion order is automatic.

[image: Images] Note

Maps, like all JavaScript collections, have methods keys, values, and entries that yield iterators over the keys, values, and key/value pairs. If you just want to iterate over the keys, you can use a loop:

for (const key of map.keys()) . . .

In programming languages such as Java and C++, you get the choice between hash maps and tree maps, and you have to come up with a hash or comparison function. In JavaScript, you always get a hash map, and you have no choice of the hash function.

The hash function for a JavaScript Map is compatible with key equality: === except that all NaN are equal. Hash values are derived from primitive type values or object references.

This is fine if your keys are strings or numbers, or if you are happy to compare keys by identity. For example, you can use a map to associate values with DOM nodes. That is better than adding properties directly into the node objects.

But you have to be careful when you use other objects as keys. Distinct objects are separate keys, even if their values are the same:

Click here to view code image

const map = new Map()

const key1 = new Date('1970-01-01T00:00:00.000Z')

const key2 = new Date('1970-01-01T00:00:00.000Z')

map.set(key1, 'Hello')

map.set(key2, 'Epoch') // Now map has two entries

If that’s not what you want, consider choosing different keys, such as the date strings in this example.

7.11 Sets

A Set is a data structure that collects elements without duplicates.

Construct a set as

Click here to view code image

const emptySet = new Set()

const setWithElements = new Set(iterable)

where iterable produces the elements.

As with maps, the size property yields the number of elements.

The API for sets is even simpler than that for maps:

Click here to view code image

set.add(x)

 // Adds x if not present and returns set for chaining

set.delete(x)

 // If x is present, deletes x and returns true, otherwise returns false

set.has(x) // Returns true if x is present

set.clear() // Deletes all elements

To visit all elements of a set, you can use a for of loop:

Click here to view code image

for (const value of set) {

 console.log(value)

}

Alternatively, you can use the forEach method:

Click here to view code image

set.forEach(value => {

 console.log(value)

})

Just like maps, sets remember their insertion order. For example, suppose you add weekday names in order:

Click here to view code image

const weekdays = new Set(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])

Then the for of loop and forEach method iterate over the elements in this order.

[image: Images] Note

A set is considered as a map of [value, value] pairs. Both the keys and values methods yield an iterator over the values, and the entries method yield an iterator over [value, value] pairs. None of these methods are useful when you work with a known set. They are intended for code that deals with generic collections.

As with maps, sets are implemented as hash tables with a predefined hash function. Set elements are considered to be the same if they are the same primitive type values or the same object references. In addition, NaN values equal each other.

7.12 Weak Maps and Sets

[image: Images]

An important use case for JavaScript maps and sets is to attach properties to DOM nodes. Suppose we want to categorize certain nodes to indicate success, work in progress, or an error. We could attach the properties directly to the nodes:

node.outcome = 'success'

That generally works fine, but it is a bit fragile. DOM nodes have lots of properties, and trouble lies ahead if someone else, or a future version of the DOM API, uses the same property.

It is more robust to use a map:

Click here to view code image

const outcome = new Map()

. . .

outcome.set(node, 'success')

DOM nodes come and go. If a particular node is no longer needed, it should be garbage-collected. However, if a node reference resides in the outcome map, that reference will keep the node object alive.

That is where weak maps come in. If a key in a weak map is the only reference to an object, that object is not kept alive by the garbage collector.

Simply use a weak map to collect properties:

const outcome = new WeakMap()

Weak maps have no traversal methods, and the map objects are not iterable. The only methods are set, delete, has, and get. That is enough to set properties and to check the properties of a given object.

If the property that you want to monitor is binary, you can use a WeakSet instead of a WeakMap. Then the only methods are set, delete, and has.

The keys of weak maps and the elements of weak sets can only be objects, not primitive type values.

7.13 Typed Arrays

[image: Images]

JavaScript arrays store sequences of elements of any kind, possibly with missing elements. If all you want to store is a sequence of numbers, or the raw bytes of an image, a generic array is quite inefficient.

If you need to store sequences of numbers of the same type efficiently, you can use a typed array. The following array types are available:

Click here to view code image

Int8Array

Uint8Array

Uint8ClampedArray

Int16Array

Uint16Array

Int32Array

Uint32Array

Float32Array

Float64Array

All elements are of the given type. For example, an Int16Array stores 16-bit integers between −32768 and 32767. The Uint prefix denotes unsigned integers. An UInt16Array holds integers from 0 to 65535.

When constructing an array, specify the length. You cannot change it later.

Click here to view code image

const iarr = new Int32Array(1024)

Upon construction, all array elements are zero.

There are no typed array literals, but each typed array class has a function named of for constructing an instance with given values:

Click here to view code image

const farr = Float32Array.of(1, 0.5, 0.25, 0.125, 0.0625, 0.03215, 0.015625)

As with arrays, there is a from function that takes elements from any iterable, with an optional mapping function:

Click here to view code image

const uarr = Uint32Array.from(farr, x => 1 / x)

 // An Uint32Array with elements [1, 2, 4, 8, 16, 32, 64]

Assigning to a numerical array index that is not an integer between 0 and length − 1 has no effect. However, as with regular arrays, you can set other properties:

Click here to view code image

farr[-1] = 2 // No effect

farr[0.5] = 1.414214 // No effect

farr.lucky = true // Sets the lucky property

When you assign a number to an integer array element, any fractional part is discarded. Then the number is truncated to fit into the integer range. Consider this example:

Click here to view code image

iarr[0] = 40000.25 // Sets iarr[0] to -25536

Only the integer part is used. Since 40000 is too large to fit in the range of 32-bit integers, the last 32 bits are taken, which happen to represent −25536.

An exception to this truncation process is the Uint8ClampedArray which sets an out-of-range value to 0 or 255 and rounds non-integer values to the nearest integer.

The Uint8ClampedArray type is intended for use with HTML canvas images. The getImageData method of a canvas context yields an object whose data property is an Uint8ClampedArray containing the RGBA values of a rectangle on a canvas:

Click here to view code image

const canvas = document.getElementById('canvas')

const ctx = canvas.getContext('2d')

ctx.drawImage(img, 0, 0)

let imgdata = ctx.getImageData(0, 0, canvas.width, canvas.height)

let rgba = imgdata.data // an Uint8ClampedArray

The companion code for this book has a sample program that turns the canvas contents into negative when you click on it—see Figure 7-1.

Click here to view code image

canvas.addEventListener('click', event => {

 for (let i = 0; i < rgba.length; i++) {

 if (i % 4 != 3) rgba[i] = 255 - rgba[i]

 }

 ctx.putImageData(imgdata, 0, 0)

})

[image: Images]

Figure 7-1 The canvas content turns into negative when clicked

Typed arrays have all methods of regular arrays, except for:

	push, pop, shift, unshift—you can’t change the size of a typed array

	flat, flatMap—a typed array can’t hold arrays

	concat—use set instead

There are two methods that regular arrays don’t have. The set method copies values from an array or typed array at an offset:

Click here to view code image

targetTypedArray.set(source, offset)

By default, the offset is zero. The source must fit entirely into the target. If the offset and source length exceed the target length, a RangeError is thrown. (This means you cannot use this method to shift elements of a typed array.)

The subarray method yields a view into a subrange of the elements:

Click here to view code image

const sub = iarr.subarray(16, 32)

If omitted, the end index is the length of the array, and the start index is zero.

This seems to be just the same as the slice method, but there is an important difference. The array and subarray share the same elements. Modifying either is visible in the other.

Click here to view code image

sub[0] = 1024 // Now iarr[16] is also 1024

7.14 Array Buffers

[image: Images]

An array buffer is a contiguous byte sequence that can hold data from a file, a data stream, an image, and so on. The data from typed arrays are also stored in array buffers.

A number of web APIs (including the File API, XMLHttpRequest, and WebSockets) yield array buffers. You can also construct an array buffer with a given number of bytes:

Click here to view code image

const buf = new ArrayBuffer(1024 * 2)

Usually, the binary data in an array buffer has a complex structure, such as an image or sound file. Then use a DataView to look at the data inside:

const view = new DataView(buf)

Read values at a given offset with the DataView methods getInt8, getInt16, getInt32, getUInt8, getUInt16, getUInt32, getFloat32, getFloat64:

Click here to view code image

const littleEndian = true // false or omitted for big-endian byte order

const value = view.getUint32(offset, littleEndian)

Write data with the set method:

Click here to view code image

view.setUint32(offset, newValue, littleEndian)

[image: Images] Note

There are two ways of storing binary data as a sequence of bytes, called “big-endian” and “little-endian.” Consider the 16-bit value 0x2122. In the big-endian way, the more significant byte comes first: 0x21 followed by 0x22. Little-endian is the other way around: 0x22 0x21.

Most modern processors are little-endian, but a number of common file formats (such as PNG and JPEG) use big-endian numbers.

The “big-endian” and “little-endian” terms, while eminently sensible on their own, are actually borrowed from a satirical passage in Gulliver’s Travels.

The buffer of a typed array always uses the endianness of the host platform. If the entire buffer data is an array, and you know that the endianness matches that of the host platform, you can construct a typed array from the buffer contents:

Click here to view code image

const arr = new Uint16Array(buf) // An array of 1024 Uint16, backed by buf

Exercises

	Implement a function that works exactly like the from function of the Array class. Pay careful attention to missing elements. What happens with objects that have keys whose numeric values are ≥ the length property? With properties that are not index properties?

	The Array.of method was designed for a very specific use case: to be passed as a “collector” to a function that produces a sequence of values and sends them to some destination—perhaps printing them, summing them, or collecting them in an array. Implement such a function:

mapCollect(values, f, collector)

The function should apply f to all values and then send the result to the collector, a function with a variable number of arguments. Return the result of the collector.

Explain the advantage of using Array.of over Array (i.e., (...elements) => new Array(...elements)) in this context.

	An array can have properties whose numeric values are negative integers, such as '-1'. Do they affect the length? How can you iterate over them in order?

	Google for “JavaScript forEach thisArg” to find blog articles explaining the thisArg parameter of the forEach method. Rewrite the examples without using the thisArg parameter. If you find a call such as

Click here to view code image

arr.forEach(function() { . . . this.something() . . . }, thisArg)

where thisArg is this, replace the function with an arrow function. Otherwise, replace the inner this with whatever thisArg is. If the call has the form

arr.forEach(method, thisArg)

use an arrow function invoking thisArg.method(. . .). Can you come up with any situation where thisArg is required?

	If you do not supply a comparison function in the sort method of the Array class, then elements are converted to strings and lexicographically compared by UTF-16 code units. Why is this a terrible idea? Come up with arrays of integers or objects where the sort results are useless. What about characters above \u{FFFF}?

	Suppose an object representing a message has properties for dates and for senders. Sort an array of messages first by date, then by sender. Verify that the sort method is stable: Messages with the same sender continue to be sorted by date after the second sort.

	Suppose an object representing a person has properties for first and last names. Provide a comparison function that compares last names and then breaks the ties using first names.

	Implement a comparison function that compares two strings by their Unicode code points, not their UTF-16 code units.

	Write a function that yields all positions of a target value in an array. For example, indexOf(arr, 0) yields all array index values i where arr[i] is zero. Use map and filter.

	Write a function that yields all positions at which a given function is true. For example, indexOf(arr, x => x > 0) yields all array index values i where arr[i] is positive.

	Compute the spread (that is, the difference between maximum and minimum) of an array using reduce.

	Given an array of functions [f1, f2, . . . , fn], obtain the composition function x => f1(f2(. . . (fn(x)) . . .)) using reduceRight.

	Implement functions map, filter, forEach, some, every for sets.

	Implement functions union(set1, set2), intersection(set1, set2), difference(set1, set2) that yield the union, intersection, or difference of the sets, without mutating the arguments.

	Write a function that constructs a Map from an object, so that you can easily construct a map as toMap({ Monday: 1, Tuesday: 2, . . . }).

	Suppose you use a Map whose keys are point objects of the form { x:. . ., y:. . . }. What can go wrong when you make queries such as map.get({ x: 0, y: 0 })? What can you do to overcome that?

	Show that weak sets really work as promised. Start Node.js with the flag --expose-gc. Call process.memoryUsage() to find out how much of the heap is used. Allocate an object:

Click here to view code image

let fred = { name: 'Fred', image: new Int8Array(1024*1024) }

Verify that the heap usage has gone up by about a megabyte. Set fred to null, run the garbage collector by calling global.gc(), and check that the object was collected. Now repeat, inserting the object into a weak set. Verify that the weak set allows the object to be collected. Repeat with a regular set and show that the object won’t be collected.

	Write a function to find the endianness of host platform. Use an array buffer and view it both as a data view and a typed array.

Chapter 8. Internationalization

[image: Images]

Topics in This Chapter

8.1 The Locale Concept

8.2 Specifying a Locale

8.3 Formatting Numbers

8.4 Localizing Dates and Times

8.5 Collation

8.6 Other Locale-Sensitive String Methods

[image: Images] 8.7 Plural Rules and Lists

[image: Images] 8.8 Miscellaneous Locale Features

Exercises

There’s a big world out there, and hopefully many of its inhabitants will be interested in your software. Some programmers believe that all they need to do to internationalize their application is to support Unicode and translate the messages in the user interface. However, as you will see, there is a lot more to internationalizing programs. Dates, times, currencies, even numbers are formatted differently in different parts of the world. In this chapter, you will learn how to use the internationalization features of JavaScript so that your programs present and accept information in a way that makes sense to your users, wherever they may be.

8.1 The Locale Concept

When you look at an application that is adapted to an international audience, the most obvious difference is the language. But there are many more subtle differences; for example, numbers are formatted differently in different countries. The number

123,456.78

should be displayed as

123.456,78

for a German user—that is, the roles of the decimal point and the decimal comma separator are reversed. In other locales, users prefer different digits. Here is the same number in Thai digits:

๑๒๓,๔๕๖.๗๘

There are similar variations in the display of dates. In the United States, dates are displayed as month/day/year; Germany uses the less idiosyncratic order of day/month/year, whereas in China, the usage is the even more sensible year/month/day. Thus, the American date

3/22/61

should be presented as

22.03.1961

to a German user. If the month names are written out explicitly, then the difference in languages becomes even more apparent. The English

March 22, 1961

should be presented as

22. März 1961

in German, or

1961年3月22日

in Chinese.

A locale specifies the language and location of a user, which allows formatters to take user preferences into account. The following sections show you how to specify a locale and how to control the locale settings of a JavaScript program.

8.2 Specifying a Locale

A locale consists of up to five components:

	A language, specified by two or three lowercase letters, such as en (English), de (German), or zh (Chinese). Table 8-1 shows common codes.

	Optionally, a script, specified by four letters with an initial uppercase, such as Latn (Latin), Cyrl (Cyrillic), or Hans (simplified Chinese characters). This can be useful because some languages, such as Serbian, are written in Latin or Cyrillic, and some Chinese readers prefer the traditional over the simplified characters.

	Optionally, a country or region, specified by two uppercase letters or three digits, such as US (United States) or CH (Switzerland). Table 8-2 shows common codes.

	Optionally, a variant. Variants are rarely used nowadays. There used to be a “Nynorsk” variant of Norwegian, but it is now expressed with a different language code, nn. What used to be variants for the Japanese imperial calendar and Thai numerals are now expressed as extensions (see below).

	Optionally, an extension. Extensions describe local preferences for calendars (such as the Japanese calendar), numbers (Thai instead of Western digits), and so on. The Unicode standard specifies some of these extensions. These extensions start with u- and a two-letter code specifying whether the extension deals with the calendar (ca), numbers (nu), and so on. For example, the extension u-nu-thai denotes the use of Thai numerals. Other extensions are entirely arbitrary and start with x-, such as x-java.

Table 8-1 Common Language Codes

	Language

	Code

	Language

	Code

	Chinese

	zh

	Japanese

	ja

	Danish

	da

	Korean

	ko

	Dutch

	du

	Norwegian

	no

	English

	en

	Portugese

	pt

	French

	fr

	Spanish

	es

	Finnish

	fi

	Swedish

	sv

	Italian

	it

	Turkish

	tr

Table 8-2 Common Country Codes

	Country

	Code

	Country

	Code

	Austria

	AT

	Japan

	JP

	Belgium

	BE

	Korea

	KR

	Canada

	CA

	The Netherlands

	NL

	China

	CN

	Norway

	NO

	Denmark

	DK

	Portugal

	PT

	Finland

	FI

	Spain

	ES

	Germany

	DE

	Sweden

	SE

	Great Britain

	GB

	Switzerland

	CH

	Greece

	GR

	Taiwan

	TW

	Ireland

	IE

	Turkey

	TR

	Italy

	IT

	United States

	US

Rules for locales are formulated in the “Best Current Practices” memo BCP 47 of the Internet Engineering Task Force (http://tools.ietf.org/html/bcp47). You can find a more accessible summary at www.w3.org/International/articles/language-tags.

[image: Images] Note

The codes for languages and countries seem a bit random because some of them are derived from local languages. German in German is Deutsch, Chinese in Chinese is zhongwen—hence de and zh. And Switzerland is CH, derived from the Latin term Confoederatio Helvetica for the Swiss confederation.

Locales are described by tags—hyphenated strings of locale elements such as 'en-US'.

In Germany, you would use a locale 'de-DE'. Switzerland has four official languages (German, French, Italian, and Rhaeto-Romance). A German speaker in Switzerland would want to use a locale 'de-CH'. This locale uses the rules for the German language, but currency values are expressed in Swiss francs, not euros.

Pass the locale tags to locale-sensitive functions. For example:

Click here to view code image

const newYearsEve = new Date(1999, 11, 31, 23, 59)

newYearsEve.toLocaleString('de') // Yields the string '31.12.1999 23:59:00'

Instead of a single locale tag, you can provide an array in decreasing priority: ['de-CH', 'de', 'en']. With such a locale tag array, a locale-sensitive method can use a fallback locale if it cannot support the preferred one.

Additional options can be specified in an object that follows the locale tag:

Click here to view code image

newYearsEve.toLocaleString('de', { timeZone: 'Asia/Tokyo' })

 // The date as viewed in the given time zone, such as '1.1.2000, 07:59:00'

If you omit the locale and options, the default locale is used with no options. For the default locale with options, you can provide an empty locale tag array:

Click here to view code image

newYearsEve.toLocaleString([], { timeZone: 'Asia/Tokyo' })

[image: Images] Note

The toLocaleString method is defined in the Object class. You can override it in any class—see Exercise 1.

8.3 Formatting Numbers

To format numbers, invoke the toLocaleString method of the Number method and pass the locale tag as an argument:

Click here to view code image

let number = 123456.78

let result = number.toLocaleString('de') // '123,456.78'

Alternatively, you can construct an instance of the Intl.NumberFormat class and invoke its format method:

Click here to view code image

let formatter = new Intl.NumberFormat('de')

result = formatter.format(number) // '123,456.78'

In the perhaps unlikely case that you need to analyze such a result further, the formatToParts method yields an array of the parts. For example, formatter.formatToParts(number) is the following array:

Click here to view code image

[{ type: 'integer', value: '123' },

 { type: 'group', value: ',' },

 { type: 'integer', value: '456' },

 { type: 'decimal', value: '.' },

 { type: 'fraction', value: '78' }]

For any locale-specific methods, you want to know which locale tag extensions and options are supported. Table 8-3 shows this information for the toLocaleString method of the Number class and the format method of the Intl.NumberFormat class.

Recall that locale tag extensions are prefixed with u. The format method recognizes the u-nu extension, such as:

Click here to view code image

number.toLocaleString('th-u-nu-thai')

new Intl.NumberFormat('th-u-nu-thai').format(number)

 // Both yield '๑๒๓,๔๕๖.๗๘'

The options are provided as a second argument following the locale tag:

Click here to view code image

number.toLocaleString('de', { style: 'currency', currency: 'EUR' })

formatter = new Intl.NumberFormat('de', { style: 'currency', currency: 'EUR' })

formatter.format(number)

 // Both yield '123.456,78 €'

As you can see, if you need to repeatedly carry out complex formatting, it makes sense to construct a formatter object.

Exercise 2 asks you to explore various options.

[image: Images] Note

A stage 3 proposal adds more formatting options for measurement units ('299,792,458 m/s'), scientific notation ('6.022E23'), and compact decimals ('8.1 billion').

[image: Images] Caution

Unfortunately, there is currently no standard way for parsing localized numbers with grouping separators or digits other than 0−9.

Table 8-3 Configuring toLocaleString for Numbers and the Intl.NumberFormat Constructor

	Name

	Value

	Locale Tag Extensions

	nu (numbering)

	latn, arab, thai, . . .

	Options

	style

	decimal (default), currency, percent

	currency

	ISO 4217 currency code such as USD or EUR. Required for currency style.

	currencyDisplay

	symbol (€, default), code (EUR), name (Euro)

	useGrouping

	true (default) to use grouping separators

	minimumIntegerDigits, minimumFractionDigits, maximumFractionDigits, minimumSignificantDigits, maximumSignificantDigits

	Bounds on the digits before and after the decimal separator, or the total number of digits

8.4 Localizing Dates and Times

When formatting date and time, there are many locale-dependent issues:

	The names of months and weekdays should be presented in the local language.

	There will be local preferences for the order of year, month, and day.

	The Gregorian calendar might not be the local preference for expressing dates.

	The time zone of the location must be taken into account.

In the following sections, you will see how to localize Date objects, date ranges, and relative dates (such as “in 3 days”).

8.4.1 Formatting Date Objects

Given a Date object, you can format its date part, time part, or both:

Click here to view code image

const newYearsEve = new Date(1999, 11, 31, 23, 59)

newYearsEve.toLocaleDateString('de') // '31.12.1999'

newYearsEve.toLocaleTimeString('de') // '23:59:00'

newYearsEve.toLocaleString('de') // '31.12.1999, 23:59:00'

As with number formatting, you can also construct a formatter for a given locale and invoke its format method:

Click here to view code image

const germanDateTimeFormatter = new Intl.DateTimeFormat('de')

germanDateTimeFormatter.format(newYearsEve) // '31.12.1999'

You can provide options to control how each of the parts is formatted:

Click here to view code image

newYearsEve.toLocaleDateString('en', {

 year: 'numeric',

 month: 'short',

 day: 'numeric',

}) // 'Dec 31, 1999'

new Intl.DateTimeFormat('de', {

 hour: 'numeric',

 minute: '2-digit'

}).format(newYearsEve) // '23:59'

However, this approach is cumbersome and illogical. After all, the format of each part, and even which parts to include, is a locale-specific preference. The ECMAScript specification prescribes a tedious algorithm for matching the requested format with one that makes sense for a given locale, and a formatMatcher option to choose between the specification algorithm and a potentially better one. That complexity should have tipped them off that they were on the wrong track. There is a stage 3 proposal to fix this mess. You specify which style you want for the date and time part (full, long, medium, or short). Then the formatter picks appropriate fields and formats for the locale:

Click here to view code image

newYearsEve.toLocaleDateString('en', { dateStyle: 'medium' })

 // 'Dec 31, 1999'

newYearsEve.toLocaleDateString('de', { dateStyle: 'medium' })

 // '31.12.1999'

Table 8-4 shows all locale tag extensions and options.

Table 8-4 Formatting Options for Dates

	Name

	Value

	Locale Tag Extensions

	nu (numbering)

	latn, arab, thai

	ca (calendar)

	gregory, hebrew, buddhist, . . .

	hc (hour cycle)

	h11, h12, h23, h24

	Options

	timeZone

	UTC, Europe/Berlin, . . . (default: local time)

	dateStyle, timeStyle (stage 3)

	full, long, medium, short. If you can use these, avoid the options below.

	hour12

	true, false (whether to use 12 hour time; default is locale-dependent)

	hourCycle

	h11, h12, h23, h24

	month

	2-digit (09), numeric (9), narrow (S), short (Sep), long (September)

	year, day, hour, minute, second

	2-digit, numeric

	weekday, era

	long, short, narrow

	timeZoneName

	short (GMT+9), long (Japan Standard Time)

	formatMatcher

	basic (a standard algorithm for matching the requested format with those provided by the locale), best fit (default, a potentially better implementation by the JavaScript runtime)

8.4.2 Ranges

The formatRange method of the Intl.DateTimeFormat class formats a range between two dates as concisely as possible:

Click here to view code image

const christmas = new Date(1999, 11, 24)

const newYearsDay = new Date(2000, 0, 1)

const formatter = new Intl.DateTimeFormat('en', { dateStyle: 'long' })

formatter.formatRange(christmas, newYearsEve) // 'December 24 — 31, 1999'

formatter.formatRange(newYearsEve, newYearsDay) // 'December 31, 1999 — January 1, 2000'

8.4.3 Relative Time

The Intl.RelativeTimeFormat class produces expressions such as “yesterday” or “in 3 hours”:

Click here to view code image

new Intl.RelativeTimeFormat('en', { numeric: 'auto'}).format(-1, 'day') // 'yesterday'

new Intl.RelativeTimeFormat('fr').format(3, 'hours') // 'dans 3 heures'

The format method has two arguments: a quantity and a unit. The unit is one of year, quarter, month, week, day, hour, minute, or second. The plural form is also accepted, such as years.

You can specify the following options:

	numeric: always (1 day ago, default), auto (yesterday)

	style: long, short, narrow

8.4.4 Formatting to Parts

As with number formatters, the Intl.DateTimeFormat and Intl.RelativeTimeFormat classes have formatToParts methods that produce arrays of objects describing each part of the formatted result. Here are a couple of examples:

The call

Click here to view code image

new Intl.RelativeTimeFormat('fr').formatToParts(3, 'hours')

returns the array

Click here to view code image

[

 { type: 'literal', value: 'dans '},

 { type: 'integer', value: '3', unit: 'hour' },

 { type: 'literal', value: ' heures'}

]

The call

Click here to view code image

Intl.DateTimeFormat('en',

 {

 dateStyle: 'long',

 timeStyle: 'short'

 }).formatToParts(newYearsEve)

yields an array with eleven entries, describing the parts of the string 'December 31, 1999 at 11:59 PM', namely

Click here to view code image

{ type: 'month', value: 'December' },

{ type: 'literal', value: ' ' },

{ type: 'day', value: '31' },

and so on.

8.5 Collation

In JavaScript, you can compare strings with the <, <=, >, and >= operators. Unfortunately, when interacting with human users, these operators are not very useful. They lead to absurd results, even in English. For example, the following five strings are ordered according to the < operator:

Athens

Zulu

able

zebra

Ångström

For dictionary ordering, you would want to consider upper case and lower case equivalent, and accents should not be significant. To an English speaker, the sample list of words should be ordered as

able

Ångström

Athens

zebra

Zulu

However, that order would not be acceptable to a Swedish user. In Swedish, the letter Å is different from the letter A, and it is collated after the letter Z! That is, a Swedish user would want the words to be sorted as

able

Athens

zebra

Zulu

Ångström

Whenever you need to sort strings that are provided by a human user, you should use a locale-aware comparison.

The simplest way is to use the localeCompare method of the String class. Pass the locale as a second argument:

Click here to view code image

const words = ['Alpha', 'Ångström', 'Zulu', 'able', 'zebra']

words.sort((x, y) => x.localeCompare(y, 'en'))

 // words is now ['able', 'Alpha', 'Ångström', 'zebra', 'Zulu']

Alternatively, you can construct a collator object:

Click here to view code image

const swedishCollator = new Intl.Collator('sv')

Then pass the collator’s compare function to the Array.sort method:

Click here to view code image

words.sort(swedishCollator.compare)

 // words is now ['able', 'Alpha', 'zebra', 'Zulu', 'Ångström']

Table 8-5 shows the extensions and options supported by the localeCompare method and the Intl.Collator constructor.

A useful extension is numeric sort, where numeric substrings are sorted in increasing order:

Click here to view code image

const parts = ['part1', 'part10', 'part2', 'part9']

parts.sort((x, y) => x.localeCompare(y, 'en-u-kn-true'))

 // Now parts is ['part1', 'part2', 'part9', 'part10']

Many of the other constructs are of limited use. For example, in German phonebooks (but not dictionaries), Ö is considered the same as Oe. The following call does not modify the given array:

Click here to view code image

['Österreich', 'Offenbach'].sort((x, y) => x.localeCompare(y, 'de-u-co-phonebk'))

Table 8-5 String Collation with localeCompare and the Intl.Collator Constructor

	Name

	Value

	Locale Tag Extensions

	co (collation)

	phonebook, phonetic, reformed, pinyin, . . .

	kn (numeric collation)

	true ('1' < '2' < '10'), false (default)

	kf (case first)

	upper, lower, false (default)

	Options

	sensitivity

	base (a = A = Å), accent (a = A ≠ Å), case (a ≠ A = Å), variant (a, A, Å all different; default)

	ignorePunctuation

	true, false (default)

	numeric, caseFirst

	true, false (default)—see kn, kf above

	usage

	sort (use for sorting, default), search (use for searching, where only equality matters)

8.6 Other Locale-Sensitive String Methods

The String class has several methods that work with locales. You have already seen the localeCompare method in the preceding section. The toLocaleUpperCase and toLocaleLowerCase methods take language rules into account. For example, in German, the uppercase of the “double s” character ß is a sequence of two S:

Click here to view code image

'Großhändler'.toLocaleUpperCase('de') // 'GROSSHÄNDLER'

The localeCompare method accepts options just like the Intl.Collator constructor of the preceding section. For example, the comparison

Click here to view code image

'part10'.localeCompare('part2', 'en', { numeric: true })

yields a positive number because with numeric comparison, 'part10' comes after 'part2'.

A character or sequence of characters can sometimes be described in more than one way in Unicode. For example, an Å (\u{00C5}) can also be expressed as a plain A (\u{0041}) followed by a combining ring above [image: Images] (\u{030A}).

You might want to convert strings into a normalized form when you store them or communicate with another program. The Unicode standard defines four normalization forms (C, D, KC, and KD)—see www.unicode.org/unicode/reports/tr15/tr15-23.html. In the normalization form C, accented characters are always composed. For example, a sequence of A and [image: Images] is combined into a single character Å. In form D, accented characters are always decomposed into their base letters and combining accents: Å is turned into A followed by [image: Images]. In forms KC and KD, characters such the trademark symbol ™ (\u{2122}) are decomposed. The W3C recommends that you use the normalization form C for transferring data over the Internet.

The normalize method of the String class carries out this process. Let’s try it with all four modes. For each mode, we spread out the result of the call to normalize, so that you can clearly see the individual characters.

Click here to view code image

const str = 'Å™'

['NFC', 'NFD', 'NFKC', 'NFKD'].map(mode => [...str.normalize(mode)])

 // Yields ['Å', '™'], ['A', '°', '™'], ['Å', 'T', 'M'], ['A', '°', 'T', 'M']

8.7 Plural Rules and Lists

[image: Images]

Many languages have special forms for small quantities. In English, we count 0 dollars, 1 dollar, 2 dollars, 3 dollars and so on. The form for a quantity of 1 is special.

With Russian rubles, it is more complex. There are special forms for one and for “a few”: 0 рублей, 1 рубль, 2, 3, or 4 рубля. With 5 or more, it is again рублей.

You need to know about these rules when you format messages such as “Found n matches”.

The Intl.PluralRules class helps with this problem. The select method yields a key that describes which word form is required for a given quantity. Here are the results in English and Russian:

Click here to view code image

[0, 1, 2, 3, 4, 5].map(i => (new Intl.PluralRules('en').select(i)))

 // ['other', 'one', 'other', 'other', 'other', 'other']

[0, 1, 2, 3, 4, 5].map(i => (new Intl.PluralRules('ru').select(i)))

 // ['many', 'one', 'few', 'few', 'few', 'many']

The PluralRules class just produces the English form names. They still need to be mapped to the localized word forms. Provide a map for each language:

Click here to view code image

dollars = { one: 'dollar', other: 'dollars' }

rubles = { one: 'рубль', few: 'рубля', many: 'рублей' }

Then you can call

Click here to view code image

dollars[new Intl.PluralRules('en').select(i)]

rubles[new Intl.PluralRules('ru').select(i)]

The select method has one option:

	type: cardinal (default), ordinal

Let’s try out English ordinals:

Click here to view code image

const rules = new Intl.PluralRules('en', { type: 'ordinal' })

[0, 1, 2, 3, 4, 5].map(i => rules.select(i))

 // ['other', 'one', 'two', 'few', 'other', 'other']

What is going on? It turns out that the English language is no simpler than Russian: English ordinals are 0th, 1st, 2nd, 3rd, 4th, 5th, and so on.

The Intl.ListFormat class helps with formatting lists of values. It is easiest to understand with an example:

Click here to view code image

let list = ['Goethe', 'Schiller', 'Lessing']

new Intl.ListFormat('en', { type: 'conjunction' }).format(list)

 // Yields the string 'Goethe, Schiller, and Lessing'

As you can see, the format method knows about the conjunction word “and” and the Oxford comma.

When the type is 'disjunction', the elements are joined with “or”. Let’s try it in German:

Click here to view code image

new Intl.ListFormat('de', { type: 'disjunction' }).format(list)

 // 'Goethe, Schiller oder Lessing'

The format method has the following options:

	type: conjunction (default), disjunction, unit

	style: long (default), short, narrow (with unit type only)

The unit type is for unit lists like “7 pounds 11 ounces.” Unfortunately, with the 'long' and 'short' styles, the formatter produces commas in English:

Click here to view code image

list = ['7 pounds', '11 ounces']

new Intl.ListFormat('en', { type: 'unit', style: 'long' }).format(list)

 // '7 pounds, 11 ounces'

The Chicago and AP style guides would not approve.

8.8 Miscellaneous Locale Features

[image: Images]

In modern browsers, the navigator.languages property is an array of the user’s preferred locale tags, in decreasing preference. The value navigator.language is the most preferred locale tag, the same as navigator.languages[0]. Browsers typically use the locale of the host operating system unless users personalize the browser’s language settings.

You can use navigator.languages as the locale argument of the various locale-sensitive methods and constructors that you saw in the preceding sections.

The Intl.getCanonicalLocales accepts a locale tag or an array of locale tags and returns an array with cleaned-up tags, removing duplicates.

Each of the formatter classes described in the preceding sections has a supportedLocalesOf method. Pass a locale tag or array of locale tags. Unsupported tags are dropped, and supported tags are normalized. For example, assuming your browser’s Intl.NumberFormat class does not support Welsh, the call

Click here to view code image

Intl.NumberFormat.supportedLocalesOf(['cy', 'en-uk'])

returns ['en-UK'].

When you pass an array of locale choices to a locale-sensitive method, it is up to the browser to find the best available locale that matches the preferences. All locale-specific functions support the localeMatcher option for setting the matching algorithm. The option has two values:

	'lookup' uses a standard algorithm that is specified in ECMA-402.

	'best fit' (default) allows the JavaScript runtime to find a better match.

At this point, the common JavaScript runtimes use the standard algorithm, so this option is not something to worry about.

[image: Images] Note

If you want to present your users with a locale choice, you need to be able to display that choice in a language that your users understand. A stage 3 proposal defines a class Intl.DisplayNames for this purpose. Here are a few usage samples:

Click here to view code image

const regionNames = new Intl.DisplayNames(['fr'], { type: 'region' })

const languageNames = new Intl.DisplayNames(['fr'], { type: 'language' })

const currencyNames = new Intl.DisplayNames(['zh-Hans'],

 { type: 'currency' })

regionNames.of('US') // 'États-Unis'

languageNames.of('fr') // 'Français'

currencyNames.of('USD') // '美元'

To obtain more information about the properties of an internationalization object, call the resolvedOptions method. For example, given the following collator object:

Click here to view code image

const collator = new Intl.Collator('en-US-u-kn-true', { sensitivity: 'base' })

the call

collator.resolvedOptions()

returns the object

Click here to view code image

{

 locale: 'en-US',

 usage: 'sort',

 sensitivity: 'base',

 ignorePunctuation: false,

 numeric: true,

 caseFirst: 'false',

 collation: 'default'

}

[image: Images] Note

A stage 3 proposal is the Intl.Locale class that provides a convenient way for denoting a locale with options:

Click here to view code image

const germanCurrency = new Intl.Locale('de-DE',

 { style: 'currency', currency: 'EUR' })

Exercises

	Implement a class Person with instance fields for the first name, last name, sex, and marital status. Provide a toLocaleString method that formats names, for example 'Ms. Smith', 'Frau Smith', 'Mme Smith'. Look up the honorific forms for a few languages and design options for variations such as Ms. vs. Mrs./Miss.

	Write a program that formats a value as a number, percentage, and dollar amount. Explore all currency display options. Turn grouping on and off, and show the meanings of the various bounds on the number of digits.

	Show how numbers look different when using English, Arabic, and Thai numerals. What other numerals can you produce?

	Write a program that demonstrates the date and time formatting styles in France, China, Egypt, and Thailand (with Thai digits).

	Make an array with all two-letter (ISO 639-1) language codes. For each of them, format a date and time. How many different formats do you find?

	Write a program that lists all Unicode characters that are expanded to two or more ASCII characters in normalization form KC or KD.

	Provide examples to demonstrate the different sensitivity options for collation.

	What happens with the Turkish locale when you form the uppercase of 'i' or the lowercase of 'I'? Suppose you write a program that checks for a particular HTTP header, If-Modified-Since. HTTP headers are case-insensitive. How do you find the header so that your program works everywhere, including Turkey?

	The Java library has a useful concept of a “message bundle” where you can look up localized messages by locale, with fallbacks. Provide a similar mechanism for JavaScript. For each locale, there is a map of keys to translated messages.

Click here to view code image

{ de: { greeting: 'Hallo', farewell: 'Auf Wiedersehen' },

 'de-CH' : { greeting: 'Grüezi' },

 fr: { greeting: 'Bonjour', farewell: 'Au revoir' },

 . . .

}

When looking for a message, first look at the most specific locale, then move to more general ones. Support overrides for more specialized locales. For example, when looking up a message with key 'greeting' in the locale 'de-CH', locate 'Grüezi', but for 'farewell', fall back to 'de'.

	The Java library has a useful class for formatting locale-dependent messages. Consider the template '{0} has {1} messages'. The French version would be 'Il y a {1} messages pour {0}'. When formatting the message, you provide the items in a fixed order, irrespective of the order required by the language. Implement a function messageFormat that accepts a template string and a variable number of items. Come up with a mechanism for including literal braces.

	Provide a class for locale-dependent display of paper sizes, using the preferred dimensional unit and default paper size in the given locale. Everyone on the planet, with the exception of the United States and Canada, uses ISO 216 paper sizes. Only three countries in the world have not yet officially adopted the metric system: Liberia, Myanmar (Burma), and the United States.

Chapter 9. Asynchronous Programming

[image: Images]

Topics in This Chapter

9.1 Concurrent Tasks in JavaScript

9.2 Making Promises

9.3 Immediately Settled Promises

9.4 Obtaining Promise Results

9.5 Promise Chaining

9.6 Rejection Handling

9.7 Executing Multiple Promises

9.8 Racing Multiple Promises

9.9 Async Functions

9.10 Async Return Values

9.11 Concurrent Await

9.12 Exceptions in Async Functions

Exercises

In this chapter, you will learn how to coordinate tasks that must be executed at some point in the future. We start with an in-depth look at the notion of promises. A promise is just what it sounds: an action that will produce a result at some point in the future, unless it dies with an exception. As you will see, promises can be executed in sequence or in parallel.

One drawback of promises is that you need to use method calls to combine them. The async/await constructs give you a much more pleasant syntax. You write code that uses regular control flow, and the compiler translates your code to a chain of promises.

Ideally, you could skip promises and move straight to the async/await syntax. However, I think it would be quite a challenge to understand the complexities and limitations of the syntax without knowing what it does behind your back.

We end the chapter with a discussion of asynchronous generators and iterators. All but the last section of this chapter should be required reading for intermediate JavaScript developers because asynchronous processing is ubiquitous in web applications.

9.1 Concurrent Tasks in JavaScript

A program is “concurrent” when it manages multiple activities with overlapping timelines. Concurrent programs in Java or C++ use multiple threads of execution. When a processor has more than one core, these threads truly run in parallel. But there is a problem—programmers must be careful to protect data, so that there is no corruption when a value is updated by different threads at the same time.

In contrast, a JavaScript program runs in a single thread. In particular, once a function starts, it will run to completion before any other part of your program starts running. That is good. You know that no other code will corrupt the data that your function uses. No other code will try to read any of the data until after the function returns. Inside your function, you can modify the program’s variables to your heart’s content, as long as you clean up before the function returns. You never have to worry about mut or deadlocks.

The problem with having a single thread is obvious: If a program needs to wait for something to happen—most commonly, for data across the Internet—it cannot do anything else. Therefore, time-consuming operations in JavaScript are always asynchronous. You specify what you want, and provide callback functions that are invoked when data is available or when an error has occurred. The current function continues execution so that other work can be done.

Let us look at a simple example: loading an image. The following function loads an image with a given URL and appends it to a given DOM element:

Click here to view code image

const addImage = (url, element) => {

 const request = new XMLHttpRequest()

 request.open('GET', url)

 request.responseType = 'blob'

 request.addEventListener('load', () => {

 if (request.status == 200) {

 const blob = new Blob([request.response], { type: 'image/png' })

 const img = document.createElement('img')

 img.src = URL.createObjectURL(blob)

 element.appendChild(img)

 } else {

 console.log(`${request.status}: ${request.statusText}`)

 }

 })

 request.addEventListener('error', event => console.log('Network error'));

 request.send()

}

The details of the XMLHttpRequest API are not important, except for one crucial fact. The image data are processed in a callback—the listener to the load event.

If you call addImage, the call returns immediately. The image is added to the DOM element much later, once the data is loaded.

Consider this example, where we load four images (taken from the Japanese Hanafuda card deck—see https://en.wikipedia.org/wiki/Hanafuda):

Click here to view code image

const imgdiv = document.getElementById('images')

addImage('hanafuda/1-1.png', imgdiv)

addImage('hanafuda/1-2.png', imgdiv)

addImage('hanafuda/1-3.png', imgdiv)

addImage('hanafuda/1-4.png', imgdiv)

All four calls to addImage return immediately. Whenever the data for an image arrive, a callback is invoked and the image is added. Note that you do not need to worry about corruption by concurrent callbacks. The callbacks are never intermingled. They run one after another in the single JavaScript thread. However, they can come in any order. If you load the web page with this program multiple times, the image order can change—see Figure 9-1.

[image: Images] Note

All sample programs in this chapter are designed to be run in a web browser. The companion code has web pages that you can load into your browser and code snippets that you can paste into the development tools console.

To experiment with these files on your local system, you need to run a local web server. You can install light-server with the command

npm install -g light-server

Change to the directory containing the files to serve and run the command

light-server -s .

Then point your browser to URLs such as http://localhost:4000/images.html.

[image: Images]

Figure 9-1 Images may load out of order

When loading images, it is fairly easy to cope with out-of-order arrival—see Exercise 1. But consider a more complex situation. Suppose you need to read remote data, and then, depending on the received data, read more data. For example, a web page might contain the URL of an image that you want to load.

In that case, you need to asynchronously read the web page, with a callback that scans the contents for the image URL. Then that image must be retrieved asynchronously, with another callback that adds the image to the desired location. Each retrieval requires error handling, which leads to more callbacks. With a few levels of processing, this programming style turns into “callback hell”—deeply nested callbacks with hard-to-understand success and failure paths.

In the following sections, you will learn how promises allow you to compose asynchronous tasks without nested callbacks.

A promise is an object that promises to produce a result eventually, hopefully. The result may not be available right away, and it might never be available if an error occurs.

That does not sound very promising, but as you will soon see, it is much easier to chain completion and error actions with promises than with callbacks.

9.2 Making Promises

In this section and the next, you will see how to make promises. This is a bit technical, and you rarely need to do it yourself. It is much more common to call library functions that return a promise. Feel free to gloss over these sections until you actually need to construct promises yourself.

[image: Images] Note

A typical example for an API that produces promises is the Fetch API that all modern browsers support. The call

Click here to view code image

fetch('https://horstmann.com/javascript-impatient/hanafuda/index.html')

returns a promise that will yield the response from the HTTP request when it is available.

The Promise constructor has a single argument, a function that has two arguments: handlers for success and failure outcomes. This function is called the “executor function.”

Click here to view code image

const myPromise = new Promise((resolve, reject) => {

 // Body of the executor function

})

In the body of the executor function, you start the task that yields the desired result. Once the result is available, you pass it to the resolve handler. Or, if you know that there won’t be a result, you invoke the reject handler with the reason for failure. When work is completed asynchronously, these handlers will be invoked in some callback.

Here is an outline of the process:

Click here to view code image

const myPromise = new Promise((resolve, reject) => {

 const callback = (args) => {

 . . .

 if (success) resolve(result) else reject(reason)

 }

 invokeTask(callback)

})

Let us put this to work in the simplest case: delivering a result after a delay. This function yields a promise to do that:

Click here to view code image

const produceAfterDelay = (result, delay) => {

 return new Promise((resolve, reject) => {

 const callback = () => resolve(result)

 setTimeout(callback, delay)

 })

}

In the executor function that is passed to the constructor, we call setTimeout with a callback and the given delay. The callback will be invoked when the delay has passed. In the callback, we pass the result on to the resolve handler. We don’t need to worry about errors, and the reject handler is unused.

Here is a more complex function that yields a promise whose result is an image:

Click here to view code image

const loadImage = url => {

 return new Promise((resolve, reject) => {

 const request = new XMLHttpRequest()

 const callback = () => {

 if (request.status == 200) {

 const blob = new Blob([request.response], { type: 'image/png' })

 const img = document.createElement('img')

 img.src = URL.createObjectURL(blob)

 resolve(img)

 } else {

 reject(Error(`${request.status}: ${request.statusText}`))

 }

 }

 request.open('GET', url)

 request.responseType = 'blob'

 request.addEventListener('load', callback)

 request.addEventListener('error', event => reject(Error('Network error')));

 request.send()

 })

 }

The executor function configures an XMLHttpRequest object and sends it. Upon receipt of the response, a callback produces an image and invokes the resolve handler to pass it on. If an error occurs, it is passed to the reject handler.

Let us look at the control flow of a promise in slow motion.

	The Promise constructor is called.

	The executor function is called.

	The executor function initiates an asynchronous task with one or more callbacks.

	The executor function returns.

	The constructor returns. The promise is now in the pending state.

	The code invoking the constructor runs to completion.

	The asynchronous task finishes.

	A task callback is invoked.

	That callback calls the resolve or reject handler, and the promise transitions to the fulfilled or rejected state. In either case, the promise is now settled.

[image: Images] Note

There is one variation of the last step in the control flow. You can call resolve with another promise. Then the current promise is resolved but not fulfilled. It stays pending until the subsequent promise is settled. For this reason, the handler function is called resolve and not fulfill.

Be sure to always call resolve or reject in your task callbacks, or the promise never exits the pending state.

That means that you have to pay attention to exceptions in task callbacks. If a task callback terminates with an exception instead of calling resolve or reject, then the promise cannot settle. In the loadImage example, I carefully vetted the code to ensure that no exception was going to be thrown. In general, it is a good idea to use a try/catch statement in the callback and pass any exceptions to the reject handler.

However, if an exception is thrown in the executor function, you don’t need to catch it. The constructor simply yields a rejected promise.

9.3 Immediately Settled Promises

The call Promise.resolve(value) makes a promise that is fulfilled immediately with the given value. This is useful in methods that returns promises, and where the answer is available right away in some cases:

Click here to view code image

const loadImage = url => {

 if (url === undefined) return Promise.resolve(brokenImage)

 . . .

}

If you have a value that might be a promise or a plain value, the result of Promise.resolve(value) definitely turns it into a promise. If the value is already a promise, it is simply returned.

[image: Images] Note

For compatibility with libraries that predate standard ECMAScript promises, the Promise.resolve method provides special treatment for “thenable” objects—that is, objects with a then method. The then method is invoked with a resolve handler and a reject handler, and returns a promise that is settled when either of the two handlers is called—see Exercise 6.

The call Promise.reject(error) yields a promise that is immediately rejected with the given error.

Use it when a promise-producing function fails:

Click here to view code image

const loadImage = url => {

 if (url === undefined) {

 return Promise.reject(Error('No URL'))

 } else {

 return new Promise(. . .)

 }

}

9.4 Obtaining Promise Results

Now that you know how to construct a promise, you will want to obtain its result. You do not wait for the promise to settle. Instead, you provide actions that process the result or error once the promise has settled. Those actions will execute at some point after the end of the function that has scheduled them.

Use the then method to specify an action that should be carried out once the promise is resolved. The action is a function that consumes the result.

Click here to view code image

const promise1 = produceAfterDelay(42, 1000)

promise1.then(console.log) // Log the value when ready

const promise2 = loadImage('hanafuda/1-1.png')

promise2.then(img => imgdiv.appendChild(img)) // Append the image when ready

[image: Images] Note

The then method is the only way to get a result out of a promise.

You will see in Section 9.6, “Rejection Handling” (page 194), how to deal with rejected promises.

[image: Images] Caution

When you experiment with the loadImage or fetch function with different URLs, you will likely run into “cross-origin” errors. The JavaScript engine inside a browser will not allow JavaScript code to see results of web requests from third-party hosts unless those hosts agree that the access is safe and set a response header. Unfortunately, few sites have gone through the trouble. You can fetch the URLs at https://horstmann.com/javascript-impatient or (as I write this) https://developer.mozilla.org and https://aws.random.cat/meow. If you want to experiment with other sites, you can use a CORS proxy or a browser plugin to overcome the browser check.

9.5 Promise Chaining

In the preceding section, you saw how to obtain the result of a promise. Now we tackle a more interesting case, where the promise result is passed to another asynchronous task.

If the action that you pass to then yields another promise, the result is that other promise. To process its result, call the then method once again.

Here is an example. We load an image, and then another:

Click here to view code image

const promise1 = loadImage('hanafuda/1-1.png')

const promise2 = promise1.then(img => {

 imgdiv.appendChild(img)

 return loadImage('hanafuda/1-2.png') // Another promise

})

promise2.then(img => {

 imgdiv.appendChild(img)

})

There is no need to save each promise in a separate variable. Normally, one processes a chain of promises as a “pipeline.”

Click here to view code image

loadImage('hanafuda/1-1.png')

 .then(img => {

 imgdiv.appendChild(img)

 return loadImage('hanafuda/1-2.png')

 })

 .then(img => imgdiv.appendChild(img))

[image: Images] Note

With the Fetch API, you need to chain promises to read the contents of a web page:

Click here to view code image

fetch('https://developer.mozilla.org')

 .then(response => response.text())

 .then(console.log)

The fetch function returns a promise yielding the response, and the text method yields another promise for the text content of the page.

You can intermingle synchronous and asynchronous tasks:

Click here to view code image

loadImage('hanafuda/1-1.png')

 .then(img => imgdiv.appendChild(img)) // Synchronous

 .then(() => loadImage('hanafuda/1-2.png')) // Asynchronous

 .then(img => imgdiv.appendChild(img)) // Synchronous

Technically, if a then action yields a value that isn’t a promise, the then method returns an immediately fulfilled promise. This allows further chaining with another then method.

[image: Images] Tip

You can make promise pipelines more symmetric by starting out with an immediately fulfilled promise:

Click here to view code image

Promise.resolve()

 .then(() => loadImage('hanafuda/1-1.png'))

 .then(img => imgdiv.appendChild(img))

 .then(() => loadImage('hanafuda/1-2.png'))

 .then(img => imgdiv.appendChild(img))

The preceding examples showed how to compose a fixed number of tasks. You can build an arbitrarily long pipeline of tasks with a loop:

Click here to view code image

let p = Promise.resolve()

for (let i = 1; i <= n; i++) {

 p = p.then(() => loadImage(`hanafuda/1-${i}.png`))

 .then(img => imgdiv.appendChild(img))

}

[image: Images] Caution

If the argument of the then method is not a function, the argument is discarded! The following is wrong:

Click here to view code image

loadImage('hanafuda/1-1.png')

 .then(img => imgdiv.appendChild(img))

 .then(loadImage('hanafuda/1-2.png'))

 // Error—argument of then isn’t a function

 .then(img => imgdiv.appendChild(img))

Here, then is called with the return value of loadImage—that is, a Promise. If you call p.then(arg) with an argument that is not a function, there is no error message. The argument is discarded, and the then method returns a promise with the same result as p. Also, note that the second call to loadImage happens right after the first, without waiting for the first promise to settle.

9.6 Rejection Handling

In the preceding section, you saw how to carry out multiple asynchronous tasks in sequence. We focused on the “happy day” scenario when all of the tasks succeeded. Handling error paths can greatly complicate the program logic. Promises make it fairly easy to propagate errors through a pipeline of tasks.

You can supply a rejection handler when calling the then method:

Click here to view code image

loadImage(url)

 .then(

 img => { // Promise has settled

 imgdiv.appendChild(img)

 },

 reason => { // Promise was rejected

 console.log({reason})

 imgdiv.appendChild(brokenImage)

 })

However, it is usually better to use the catch method:

Click here to view code image

loadImage(url)

 .then(

 img => { // Promise has settled

 imgdiv.appendChild(img)

 })

 .catch(

 reason => { // A prior promise was rejected

 console.log({reason})

 imgdiv.appendChild(brokenImage)

 })

That way, errors in the resolve handler are also caught.

The catch method yields a new promise based on the returned value, returned promise, or thrown exception of its handler argument.

If the handler returns without throwing an exception, then the resulting promise is resolved, and you can keep the pipeline going.

Often, a pipeline has a single rejection handler that is invoked when any of the tasks fails:

Click here to view code image

Promise.resolve()

 .then(() => loadImage('hanafuda/1-1.png'))

 .then(img => imgdiv.appendChild(img))

 .then(() => loadImage('hanafuda/1-2.png'))

 .then(img => imgdiv.appendChild(img))

 .catch(reason => console.log({reason}))

If a then action throws an exception, the then method yields a rejected promise. Chaining a rejected promise with another then simply propagates that rejected promise. Therefore, the catch handler at the end will handle a rejection at any stage of the pipeline.

The finally method invokes a handler whether or not a promise has settled. The handler has no arguments since it is intended for cleanup, not for analyzing the promise result. The finally method returns a promise with the same outcome as the one on which it was invoked, so that it can be included in a pipeline:

Click here to view code image

Promise.resolve()

 .then(() => loadImage('hanafuda/1-1.png'))

 .then(img => imgdiv.appendChild(img))

 .finally(() => { doCleanup(. . .) })

 .catch(reason => console.log({reason}))

9.7 Executing Multiple Promises

When you have multiple promises and you want them all resolved, you can place them into an array or any iterable, and call Promise.all(iterable). You then obtain a promise that is resolved when all promises in the iterable are resolved. The value of the combined promise is an iterable of all promise results, in the same order as the promises themselves.

This gives us an easy way to load a sequence of images and append them in order:

Click here to view code image

const promises = [

 loadImage('hanafuda/1-1.png'),

 loadImage('hanafuda/1-2.png'),

 loadImage('hanafuda/1-3.png'),

 loadImage('hanafuda/1-4.png')]

Promise.all(promises)

 .then(images => { for (const img of images) imgdiv.appendChild(img) })

The Promise.all does not actually run tasks in parallel. All tasks are executed sequentially in a single thread. However, the order in which they are scheduled is not predictable. For example, in the image loading example, you don’t know which image data arrives first.

As already mentioned, Promise.all returns a promise for an iterable. That iterable contains the results of the individual promises in the correct order, regardless of the order in which they were obtained.

In the preceding sample code, the then method is invoked when all images have been loaded, and they are appended from the images iterable in the correct order.

If the iterable that you pass to Promise.all contains non-promises, they are simply included in the result iterable.

If any of the promises is rejected, then Promise.all yields a rejected promise whose error is that of the first rejected promise.

If you need more fine-grained control over rejections, use the Promise.allSettled method instead. It yields a promise for an iterable whose elements are objects of the form

Click here to view code image

{ status: 'fulfilled', value: result }

or

Click here to view code image

{ status: 'rejected', reason: exception }

Exercise 8 shows how to process the results.

9.8 Racing Multiple Promises

Sometimes, you want to carry out tasks in parallel, but you want to stop as soon as the first one has completed. A typical example is a search where you are satisfied with the first result. The Promise.race(iterable) runs the promises in the iterable until one of them settles. That promise determines the outcome of the race.

[image: Images] Caution

If the iterable has non-promises, then one of them will be the result of the race. If the iterable is empty, then Promise.race(iterable) never settles.

It is possible that a rejected promise wins the race. In that case, all other promises are abandoned, even though one of them might produce a result. A more useful method, Promise.any, is currently a stage 3 candidate.

The Promise.any method continues until one of the tasks has resolved. In the unhappy case that all promises are rejected, the resulting promise is rejected with an AggregateError that collects all reasons for rejection.

Click here to view code image

Promise.any(promises)

 .then(result => . . .) // Process the result of the first settled promise

 .catch(error => . . .) // None of the promises settled

9.9 Async Functions

You have just seen how to build pipelines of promises with the then and catch methods, and how to execute a sequence of promises concurrently with Promise.all and Promise.any. However, this programming style is not very convenient. Instead of using familiar statement sequences and control flow, you need to set up a pipeline with method calls.

The await/async syntax makes working with promises much more natural.

The expression

let value = await promise

waits for the promise to settle and yields its value.

But wait. . .didn’t we learn at the beginning of this chapter that it is a terrible idea to keep waiting in a JavaScript function? Indeed it is, and you cannot use await in a normal function. The await operator can only occur in a function that is tagged with the async keyword:

Click here to view code image

const putImage = async (url, element) => {

 const img = await loadImage(url)

 element.appendChild(img)

}

The compiler transforms the code of an async function so that any steps that occur after an await operator are executed when the promise resolves. For example, the putImage function is equivalent to:

Click here to view code image

const putImage = (url, element) => {

 loadImage(url)

 .then(img => element.appendChild(img))

}

Multiple await are OK:

Click here to view code image

const putTwoImages = async (url1, url2, element) => {

 const img1 = await loadImage(url1)

 element.appendChild(img1)

 const img2 = await loadImage(url2)

 element.appendChild(img2)

}

Loops are OK too:

Click here to view code image

const putImages = async (urls, element) => {

 for (url of urls) {

 const img = await loadImage(url)

 element.appendChild(img)

 }

}

As you can see from these examples, the rewriting that the compiler does behind the scenes is not trivial.

[image: Images] Caution

If you forget the await keyword when calling an async function, the function is called and returns a promise, but the promise just sits there and does nothing. Consider this scenario, adapted from one of many confused blogs:

Click here to view code image

const putImages = async (urls, element) => {

 for (url of urls)

 putImage(url, element) // Error—no await for async putImage

}

This function produces and forgets a number of Promise objects, then returns a Promise.resolve(undefined). If all goes well, the images will be appended in some order. But if an exception occurs, nobody will catch it.

You can apply the async keyword to the following:

	Arrow functions:

Click here to view code image

async url => { . . . }

async (url, params) => { . . . }

	Methods:

Click here to view code image

class ImageLoader {

 async load(url) { . . . }

}

	Named and anonymous functions:

Click here to view code image

async function loadImage(url) { . . . }

async function(url) { . . . }

	Object literal methods:

Click here to view code image

obj = {

 async loadImage(url) { . . . },

 . . .

}

[image: Images] Note

In all cases, the resulting function is an AsyncFunction instance, not a Function, even though typeof still reports 'function'.

9.10 Async Return Values

An async function looks as if it returned a value, but it always returns a promise. Here is an example. The URL https://aws.random.cat/meow serves up locations of random cat pictures, returning a JSON object such as { file: 'https://purr.objects-us-east-1.dream.io/i/mDh7a.jpg' }.

Using the Fetch API, we can get a promise for the content like this:

Click here to view code image

const result = await fetch('https://aws.random.cat/meow')

const imageJSON = await result.json()

The second await is necessary because in the Fetch API, JSON processing is asynchronous—the call result.json() yields another promise.

Now we are ready to write a function that returns the URL of the cat image:

Click here to view code image

const getCatImageURL = async () => {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return imageJSON.file

}

Of course, the function must be tagged as async because it uses the await operator.

The function appears to return a string. The point of the await operator is to let you work with values, not promises. But that illusion ends when you leave an async function. The value that appears in a return statement always becomes a promise.

What can you do with an async function? Since it returns a promise, you can harvest the result by calling then:

Click here to view code image

getCatImageURL()

 .then(url => loadImage(url))

 .then(img => imgdiv.appendChild(img))

Or you can get the result with the await operator:

Click here to view code image

const url = await getCatImageURL()

const img = await loadImage(url)

imgdiv.appendChild(img)

The latter looks nicer, but it has to happen in another async function. As you can see, once you are in the async world, it is hard to leave.

Consider the last line in this async function:

Click here to view code image

const loadCatImage = async () => {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return await loadImage(imageJSON.file)

}

You can omit the last await operator:

Click here to view code image

const loadCatImage = async () => {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return loadImage(imageJSON.file)

}

Either way, this method returns a promise for the image that is asynchronously produced by the call to loadImage.

I find the first version easier to understand since the async/await syntax consistently hides all promises.

[image: Images] Caution

Inside a try/catch statement, there is a subtle difference between return await promise and return promise—see Exercise 11. Here, you do not want to drop the await operator.

If an async function returns a value before ever having called await, the value is wrapped into a resolved promise:

Click here to view code image

const getJSONProperty = async (url, key) => {

 if (url === undefined) return null

 // Actually returns Promise.resolve(null)

 const result = await fetch(url)

 const json = await result.json()

 return json[key]

}

[image: Images] Note

The async functions of this section return a single value in the future. In Chapter 12, you will see how an async iterator produces a sequence of values in the future. Here is an example that yields a range of integers, with a given delay between them.

Click here to view code image

async function* range(start, end, delay) {

 for (let current = start; current < end; current++) {

 yield await produceAfterDelay(current, delay)

 }

}

Don’t worry about the syntax of this “async generator function.” You are unlikely to implement one, but you might use one that is provided by a library. You can harvest the results with a for await of loop:

Click here to view code image

for await (const value of range(0, 10, 1000)) {

 console.log(value)

}

This loop must be inside an async function since it awaits all values.

9.11 Concurrent Await

Successive calls to await are done one after another:

Click here to view code image

const img1 = await loadImage(url)

const img2 = await loadCatImage() // Only starts after the first image was loaded

It would be more efficient to load the images concurrently. Then you need to use Promise.all:

Click here to view code image

const [img1, img2] = await Promise.all([loadImage(url), loadCatImage()])

To make sense of this expression, it is not sufficient to understand the async/await syntax. You really need to know about promises.

The argument of Promise.all is an iterable of promises. Here, the loadImage function is a regular function that returns a promise, and loadCatImage is an async function that implicitly returns a promise.

The Promise.all method returns a promise, so we can call await on it. The result of the promise is an array that we destructure.

If you don’t understand what goes on under the hood, it is easy to make mistakes. Consider this statement:

Click here to view code image

const [img1, img2] = Promise.all([await loadImage(url), await loadCatImage()])

 // Error—still sequential

The statement compiles and runs. But it does not load the images concurrently. The call await loadImage(url) must complete before the call await loadCatImage() is initiated.

9.12 Exceptions in Async Functions

Throwing an exception in an async function yields a rejected promise.

Click here to view code image

const getAnimalImageURL = async type => {

 if (type === 'cat') {

 return getJSONProperty('https://aws.random.cat/meow', 'file')

 } else if (type === 'dog') {

 return getJSONProperty('https://dog.ceo/api/breeds/image/random', 'message')

 } else {

 throw Error('bad type') // Async function returns rejected promise

 }

}

Conversely, when the await operator receives a rejected promise, it throws an exception. The following function catches the exception from the await operator:

Click here to view code image

const getAnimalImage = async type => {

 try {

 const url = await getAnimalImageURL(type)

 return loadImage(url)

 } catch {

 return brokenImage

 }

}

You do not have to surround every await with a try/catch statement, but you need some strategy for error handling with async functions. Perhaps your top-level async function catches all asynchronous exceptions, or you document the fact that its callers must call catch on the returned promise.

When a promise is rejected at the top level in Node.js, a stern warning occurs, stating that future versions of Node.js may instead terminate the process—see Exercise 12.

Exercises

	The sample program in Section 9.1, “Concurrent Tasks in JavaScript” (page 185), may not load the images in the correct order. How can you modify it without using futures so that the images are always appended in the correct order, no matter when they arrive?

	Implement a function invokeAfterDelay that yields a promise, invoking a given function after a given delay. Demonstrate by yielding a promise for a random number between 0 and 1. Print the result on the console when it is available.

	Invoke the produceRandomAfterDelay function from the preceding exercise twice and print the sum once the summands are available.

	Write a loop that invokes the produceRandomAfterDelay function from the preceding exercises n times and prints the sum once the summands are available.

	Provide a function addImage(url, element) that is similar to that in Section 9.1, “Concurrent Tasks in JavaScript” (page 185). Return a promise so that one can chain the calls:

Click here to view code image

addImage('hanafuda/1-1.png')

 .then(() => addImage('hanafuda/1-2.png', imgdiv))

 .then(() => addImage('hanafuda/1-3.png', imgdiv))

 .then(() => addImage('hanafuda/1-4.png', imgdiv))

Then use the tip in Section 9.5, “Promise Chaining” (page 192), to make the chaining more symmetrical.

	Demonstrate that the Promise.resolve method turns any object with a then method into a Promise. Supply an object whose then method randomly calls the resolve or reject handler.

	Often, a client-side application needs to defer work until after the browser has finished loading the DOM. You can place such work into a listener for the DOMContentLoaded event. But if document.readyState != 'loading', the loading has already happened, and the event won’t fire again. Capture both cases with a function yielding a promise, so that one can call

whenDOMContentLoaded().then(. . .)

	Make an array of image URLs, some good, and some failing because of CORS (see the note at the end of Section 9.2, “Making Promises,” page 188). Turn each into a promise:

const urls = [. . .]

const promises = urls.map(loadImage)

Call allSettled on the array of promises. When that promise resolves, traverse the array, append the loaded images into a DOM element, and log those that failed:

Click here to view code image

Promise.allSettled(promises)

 .then(results => {

 for (result of results)

 if (result.status === 'fulfilled') . . . else . . .

 })

	Repeat the preceding exercise, but use await instead of then.

	Implement a function sleep that yields a promise so that one can call

await sleep(1000)

	Describe the difference between

Click here to view code image

const loadCatImage = async () => {

 try {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return loadImage(imageJSON.file)

 } catch {

 return brokenImage

 }

}

and

Click here to view code image

const loadCatImage = async () => {

 try {

 const result = await fetch('https://aws.random.cat/meow')

 const imageJSON = await result.json()

 return await loadImage(imageJSON.file)

 } catch {

 return brokenImage

 }

}

Hint: What happens if the future returned by loadImage is rejected?

	Experiment with calling an async function that throws an exception in Node.js. Given

Click here to view code image

const rejectAfterDelay = (result, delay) => {

 return new Promise((resolve, reject) => {

 const callback = () => reject(result)

 setTimeout(callback, delay)

 })

}

try

Click here to view code image

const errorAfterDelay = async (message, delay) =>

 await rejectAfterDelay(new Error(message), delay)

Now invoke the errorAfterDelay function. What happens? How can you avoid this situation?

	Explain how the error message from the preceding exercise can be useful for locating a forgotten await operator, such as

Click here to view code image

const errorAfterDelay = async (message, delay) => {

 try {

 return rejectAfterDelay(new Error(message), 1000)

 } catch(e) { console.error(e) }

}

	Write complete programs that demonstrate the Promise.all and Promise.race functions of Section 9.7, “Executing Multiple Promises” (page 196).

	Write a function produceAfterRandomDelay that produces a value after a random delay between 0 and a given maximum milliseconds. Then produce an array of futures where the function is applied to 1, 2, . . . , 10, and pass it to Promise.all. In which order will the results be collected?

	Use the Fetch API to load a (CORS-friendly) image. Fetch the URL, then call blob() on the response to get a promise for the BLOB. Turn it into an image as in the loadImage function. Provide two implementations, one using then and one using await.

	Use the Fetch API to obtain the HTML of a (CORS-friendly) web page. Search all image URLs and load each image.

	When work is scheduled for the future, it may happen that due to changing circumstances the work is no longer needed and it should be canceled. Design a scheme for cancellation. Consider a multistep process, such as in the preceding exercise. At each stage, you will want to be able to abort the process. There is no standard way yet of doing this in JavaScript, but typically, APIs provide “cancellation tokens.” A fetchImages function might receive an additional argument

Click here to view code image

const token = new CancellationToken()

const images = fetchImages(url, token)

The caller can later decide to call

token.cancel()

In the implementation of an cancelable async function, the call

Click here to view code image

token.throwIfCancellationRequested()

throws an exception if cancellation was indeed requested. Implement this mechanism and demonstrate it with an example.

	Consider this code that carries out some asynchronous work such as fetching remote data, handles the data, and returns the promise for further processing:

Click here to view code image

const doAsyncWorkAndThen = handler => {

 const promise = asyncWork();

 promise.then(result => handler(result));

 return promise;

}

What happens if handler throws an exception? How should this code be reorganized?

	What happens when you add async to a function that doesn’t return promises?

	What happens if you apply the await operator to an expression that isn’t a promise? What happens if the expression throws an exception? Is there any reason why you would want to do this?

Chapter 10. Modules

[image: Images]

Topics in This Chapter

10.1 The Module Concept

10.2 ECMAScript Modules

10.3 Default Imports

10.4 Named Imports

[image: Images] 10.5 Dynamic Imports

10.6 Exports

10.7 Packaging Modules

Exercises

When providing code to be reused by many programmers, it is important to separate the public interface from the private implementation. In an object-oriented programming language, this separation is achieved with classes. A class can evolve by changing the private implementation without affecting its users. (As you saw in Chapter 4, hiding private features is not yet fully supported in JavaScript, but this will surely come.)

A module system provides the same benefits for programming at larger scales. A module can make certain classes and functions available, while hiding others, so that the module’s evolution can be controlled.

Several ad-hoc module systems were developed for the JavaScript. In 2015, ECMAScript 6 codified a simple module system that is the topic of this short chapter.

10.1 The Module Concept

A module provides features (classes, functions, or other values) for programmers, called the exported features. Any features that are not exported are private to the module.

A module also specifies on which other modules it depends. When a module is needed, the JavaScript runtime loads it together with its dependent modules.

Modules manage name conflicts. Since the private features of a module are hidden from the public, it does not matter what they are called. They will never clash with any names outside the module. When you use a public feature, you can rename it so that it has a unique name.

[image: Images] Note

In this regard, JavaScript modules differ from Java packages or modules which rely on globally unique names.

It is important to understand that a module is different from a class. A class can have many instances, but a module doesn’t have instances. It is just a container for classes, functions, or values.

10.2 ECMAScript Modules

Consider a JavaScript developer who wants to make features available to other programmers. The developer places those features into a file. The programmers who use the features include the file in their project.

Now suppose a programmer includes such files from multiple developers. There is a good chance that some of those feature names will conflict with each other. More ominously, each file contains quite a few helper functions and variables whose names give rise to further conflicts.

Clearly, there needs to be some way of hiding implementation details. For many years, JavaScript developers have simulated modules through closures, placing helper functions and classes inside a wrapper function. This is similar to the “hard objects” technique from Chapter 3. They also developed ad-hoc ways of publishing exported features and dependencies.

Node.js implements a module system (called Common.js) that manages module dependencies. When a module is needed, it and its dependencies are loaded. That loading happens synchronously, as soon as the demand for a module occurs.

The AMD (Asynchronous Module Definition) standard defines a system for loading modules asynchronously, which is better suited for browser-based applications.

ECMAScript modules improve on both of these systems. They are parsed to quickly establish their dependencies and exports, without having to execute their bodies first. This allows asynchronous loading and circular dependencies. Nowadays, the JavaScript world is transitioning to the ECMAScript module system.

[image: Images] Note

For Java programmers, an analog of a JavaScript module is a Maven artifact, or, since Java 9, a Java platform module. Artifacts provide dependency information but no encapsulation (beyond that of Java classes and packages). Java platform modules provide both, but they are quite a bit more complex than ECMAScript modules.

10.3 Default Imports

Only a few programmers write modules; many more programmers consume them. Let us therefore start with the most common activity: importing features from an existing module.

Most commonly, you import functions and classes. But you can also import objects, arrays, and primitive values.

A module implementor can tag one feature (presumably the most useful one) as the default. The import syntax makes it particularly easy to import the default feature. Consider this example where we import a class from a module that provides an encryption service:

Click here to view code image

import CaesarCipher from './modules/caesar.mjs'

This statement specifies the name that you choose to give to the default feature, followed by the file that contains the module implementation. For more details on specifying module locations, see Section 10.7, “Packaging Modules” (page 217).

The choice of the feature name in your program is entirely yours. If you prefer, you can give it a shorter name:

import CC from './modules/caesar.mjs'

If you work with modules that provide their services as a default feature, that is all you need to know about the ECMAScript module system.

[image: Images] Note

In a browser, the module location must be a full URL or a relative URL that starts with ./, ../, or /. This restriction leaves open the possibility of special handling for well-known package names or paths in the future.

In Node.js, you can use a relative URL that starts with ./, ../, or a file:// URL. You can also specify a package name.

10.4 Named Imports

A module can export named features in addition to, or instead of, the default. The module implementor gives a name to each nondefault feature. You can import as many of these named features as you like.

Here we import two functions that the module calls encrypt and decrypt:

Click here to view code image

import { encrypt, decrypt } from './modules/caesar.mjs'

Of course, there is a potential pitfall. What if you want to import encryption functions from two modules, and they both call it encrypt? Fortunately, you can rename the imported features:

Click here to view code image

import { encrypt as caesarEncrypt, decrypt as caesarDecrypt }

 from './modules/caesar.mjs'

In this way, you can always avoid name clashes.

If you want to import both the default feature and one or more named features, combine the two syntax elements:

Click here to view code image

import CaesarCipher, { encrypt, decrypt } from './modules/caesar.mjs'

or

Click here to view code image

import CaesarCipher, { encrypt as caesarEncrypt, decrypt as caesarDecrypt} . . .

[image: Images] Note

Be sure to use braces when importing a single nondefault feature:

Click here to view code image

import { encrypt } from './modules/caesar.mjs'

Without the braces, you would give a name to the default feature.

If a module exports many names, then it would be tedious to name each of them in the import statement. Instead, you can pour all exported features into an object:

Click here to view code image

import * as CaesarCipherTools from './modules/caesar.mjs'

You then use the imported functions as CaesarCipherTools.encrypt and CaesarCipherTools.decrypt. If there is a default feature, it is accessible as CaesarCipherTools.default. You can also name it:

Click here to view code image

import CaesarCipher, * as CaesarCipherTools . . .

You can use the import statement without importing anything:

import './app/init.mjs'

Then the statements in the file are executed but nothing is imported. This is not common.

10.5 Dynamic Imports

[image: Images]

A stage 4 proposal allows you to import a module whose location is not fixed. Loading a module on demand can be useful to reduce the start-up cost and footprint of an application.

For dynamic import, use the import keyword as if it were a function with the module location as argument:

import(`./plugins/${action}.mjs`)

The dynamic import statement loads the module asynchronously. The statement yields a promise for an object containing all exported features. The promise is fulfilled when the module is loaded. You can then use its features:

Click here to view code image

import(`./plugins/${action}.mjs`)

 .then(module => {

 module.default()

 module.namedFeature(args)

 . . .

 })

Of course you can use the async/await notation:

Click here to view code image

async load(action) {

 const module = await import(`./plugins/${action}.mjs`)

 module.default()

 module.namedFeature(args)

 . . .

}

When you use a dynamic import, you do not import features by name, and there is no syntax for renaming features.

[image: Images] Note

The import keyword is not a function, even though it looks like one. It is just given a function-like syntax. This is similar to the super(. . .) syntax of the super keyword.

10.6 Exports

Now that you have seen how to import features from modules, let us switch to the module implementor’s perspective.

10.6.1 Named Exports

In a module, you can tag any number of functions, classes, or variable declarations with export:

Click here to view code image

export function encrypt(str, key) { . . . }

export class Cipher { . . . }

export const DEFAULT_KEY = 3

Alternatively, you can provide an export statement with the names of the exported features:

Click here to view code image

function encrypt(str, key) { . . . }

class Cipher { . . . }

const DEFAULT_KEY = 3

. . .

export { encrypt, Cipher, DEFAULT_KEY }

With this form of the export statement, you can provide different names for exported features:

Click here to view code image

export { encrypt as caesarEncrypt, Cipher, DEFAULT_KEY }

Keep in mind that the export statement defines the name under which the feature is exported. As you have seen, an importing module may use the provided name or choose a different name to access the feature.

[image: Images] Note

The exported features must be defined at the top-level scope of the module. You cannot export local functions, classes, or variables.

10.6.2 The Default Export

At most one function or class can be tagged as export default:

export default class Cipher { . . . }

In this example, the Cipher class becomes the default feature of the module.

You cannot use export default with variable declarations. If you want the default export to be a value, do not declare a variable. Simply write export default followed by the value:

Click here to view code image

export default 3 // OK

export default const DEFAULT_KEY = 3

 // Error—export default not valid with const/let/var

It isn’t likely that someone would make a simple constant the default value. A more realistic choice would be to export an object with multiple features:

Click here to view code image

export default { encrypt, Cipher, DEFAULT_KEY }

You can use this syntax with an anonymous function or class:

Click here to view code image

export default (s, key) => { . . . } // No need to name this function

or

Click here to view code image

export default class { // No need to name this class

 encrypt(key) { . . . }

 decrypt(key) { . . . }

}

Finally, you can use the renaming syntax to declare the default feature:

export { Cipher as default }

[image: Images] Note

The default feature is simply a feature with the name default. However, since default is a keyword, you cannot use it as an identifier and must use one of the syntactical forms of this section.

10.6.3 Exports Are Variables

Each exported feature is a variable with a name and a value. The value may be a function, a class, or an arbitrary JavaScript value.

The value of an exported feature can change over time. Those changes are visible in importing modules. In other words, an exported feature captures a variable, not just a value.

For example, a logging module might export a variable with the current logging level and a function to change it:

Click here to view code image

export const Level = { FINE: 1, INFO: 2, WARN: 3, ERROR: 4 }

export let currentLevel = Level.INFO

export const setLevel = level => { currentLevel = level }

Now consider a module that imports the logging module with the statement:

Click here to view code image

import * as logging from './modules/logging.mjs'

Initially, in that module, logging.currentLevel has value Level.INFO or 2. If the module calls

Click here to view code image

logging.setLevel(logging.Level.WARN)

the variable is updated, and logging.currentLevel has value 3.

However, in the importing module, the variable is read-only. You cannot set

Click here to view code image

logging.currentLevel = logging.Level.WARN

 // Error—cannot assign to imported variable

The variables holding exported features are created as soon as the module is parsed, but they are only filled when the module body is executed. This enables circular dependencies between modules (see Exercise 6).

[image: Images] Caution

If you have a cycle of modules that depends on each other, then it can happen that an exported feature is still undefined when it is used in another module—see Exercise 11.

10.6.4 Reexporting

When you provide a module with a rich API and a complex implementation, you will likely depend on other modules. Of course, the module system takes care of dependency management, so the module user doesn’t have to worry about that. However, it can happen that one of the modules contains useful features that you want to make available to your users. Instead of asking users to import those features themselves, you can reexport them.

Here, we reexport features from another module:

Click here to view code image

export { randInt, randDouble } from './modules/random.mjs'

Whoever imports this module will have the features randInt and randDouble from the './modules/random.mjs' module available, as if they had been defined in this module.

If you like, you can rename features that you reexport:

Click here to view code image

export { randInt as randomInteger } from './modules/random.mjs'

To reexport the default feature of a module, refer to it as default:

Click here to view code image

export { default } from './modules/stringutil.mjs'

export { default as StringUtil } from './modules/stringutil.mjs'

Conversely, if you want to reexport another feature and make it the default of this module, use the following syntax:

Click here to view code image

export { Random as default } from './modules/random.mjs'

Finally, you can reexport all nondefault features of another module.

Click here to view code image

export * from './modules/random.mjs'

You might want to do this if you split up your project into many smaller modules and then provide a single module that is a façade for the smaller ones, reexporting all of them.

The export * statement skips the default feature because there would be a conflict if you were to reexport default features from multiple modules.

10.7 Packaging Modules

Modules are different from plain “scripts”:

	The code inside a module always executes in strict mode.

	Each module has its own top-level scope that is distinct from the global scope of the JavaScript runtime.

	A module is only processed once even if it is loaded multiple times.

	A module is processed asynchronously.

	A module can contain import and export statements.

When the JavaScript runtime reads the module content, it must know that it is processing a module and not a plain script.

In a browser, you load a module with a script tag whose type attribute is module.

Click here to view code image

<script type="module" src="./modules/caesar.mjs"></script>

In Node.js, you can use the file extension .mjs to indicate that a file is a module. If you want to use a plain .js extension, you need to mark modules in the package.json configuration file. When invoking the node executable in interactive mode, use the command-line option --input-type=module.

It seems simplest to always use the .mjs extension for modules. All runtimes and build tools recognize that extension.

[image: Images] Note

When you serve .mjs files from a web server, the server needs to be configured to provide the header Content-Type: text/javascript with the response.

[image: Images] Caution

Unlike regular scripts, browsers fetch modules with CORS restrictions. If you load modules from a different domain, the server must return an Access-Control-Allow-Origin header.

[image: Images] Note

The import.meta object is a stage 3 proposal to provide information about the current module. Some JavaScript runtimes provide the URL from which the module was loaded as import.meta.url.

Exercises

	Find a JavaScript library for statistical computation (such as https://github.com/simple-statistics/simple-statistics). Write a program that imports the library as an ECMAScript module and computes the mean and standard deviation of a data set.

	Find a JavaScript library for encryption (such as https://github.com/brix/crypto-js). Write a program that imports the library as an ECMAScript module and encrypts a message, then decrypts it.

	Implement a simple logging module that supports logging messages whose log level exceeds a given threshold. Export a log function, constants for the log level, and a function to set the threshold.

	Repeat the preceding exercise, but export a single class as a default feature.

	Implement a simple encryption module that uses the Caesar cipher (adding a constant to each code point). Use the logging module from one of the preceding exercises to log all calls to decrypt.

	As an example of a circular dependency between modules, repeat the preceding exercise, but provide an option to encrypt the logs in the logging module.

	Implement a simple module that provides random integers, arrays of random integers, and random strings. Use as many different forms of the export syntax as you can.

	What is the difference between

Click here to view code image

import Cipher from './modules/caesar.mjs'

and

Click here to view code image

import { Cipher } from './modules/caesar.mjs'

	Explain the difference between

Click here to view code image

export { encrypt, Cipher, DEFAULT_KEY }

and

Click here to view code image

export default { encrypt, Cipher, DEFAULT_KEY }

	Which of the following are valid JavaScript?

Click here to view code image

export function default(s, key) { . . . }

export default function (s, key) { . . . }

export const default = (s, key) => { . . . }

export default (s, key) => { . . . }

	Trees have two kinds of nodes: those with children (parents) and those without (leaves). Let’s model that with inheritance:

Click here to view code image

class Node {

 static from(value, ...children) {

 return children.length === 0 ? new Leaf(value)

 : new Parent(value, children)

 }

}

class Parent extends Node {

 constructor(value, children) {

 super()

 this.value = value

 this.children = children

 }

 depth() {

 return 1 + Math.max(...this.children.map(c => c.depth()))

 }

}

class Leaf extends Node {

 constructor(value) {

 super()

 this.value = value

 }

 depth() {

 return 1

 }

}

Now a module-happy developer wants to put each class into a separate module. Do that and try it out with a demo program:

Click here to view code image

import { Node } from './node.mjs'

const myTree = Node.from('Adam',

 Node.from('Cain', Node.from('Enoch')),

 Node.from('Abel'),

 Node.from('Seth', Node.from('Enos')))

console.log(myTree.depth())

What happens? Why?

	Of course, the issue in the preceding exercise could have been easily avoided by not using inheritance, or by placing all classes into one module. In a larger system, those alternatives may not be feasible. In this exercise, keep each class in its own module and provide a façade module tree.mjs that reexports all three modules. In all modules, import from './tree.mjs', not the individual modules. Why does this solve the issue?

Chapter 11. Metaprogramming

Topics in This Chapter

11.1 Symbols

11.2 Customization with Symbol Properties

11.3 Property Attributes

11.4 Enumerating Properties

11.5 Testing a Single Property

11.6 Protecting Objects

11.7 Creating or Updating Objects

11.8 Accessing and Updating the Prototype

11.9 Cloning Objects

11.10 Function Properties

11.11 Binding Arguments and Invoking Methods

11.12 Proxies

11.13 The Reflect Class

11.14 Proxy Invariants

Exercises

This chapter is a deep dive into advanced APIs that you can use to create objects that have nonstandard behavior, and to write code that works with generic objects.

We start by looking at symbols, the only type other than strings that can be used for object property names. By defining properties with certain “well-known” symbols, you can customize the behavior of certain API methods.

Then we look at object properties in detail. Properties can have attributes, and you will learn how to analyze, create, and update properties with the appropriate attributes. As an application, we will walk through a robust clone function for making deep copies.

We then turn to function objects and methods for binding parameters and invoking functions with given parameters. Finally, you will see how proxies can intercept every aspect of working with objects. We will study two applications in detail: spying on object access and dynamically creating properties.

11.1 Symbols

As you have seen throughout this book, a JavaScript object has keys of type String. However, using strings as keys has some limitations. Modern JavaScript provides a second type that you can use for object keys—the Symbol type.

Symbols have string labels, but they are not strings. Create a symbol like this:

const sym = Symbol('label')

Symbols are unique. If you create a second symbol

const sym2 = Symbol('label')

then sym !== sym2.

This is the principal advantage of symbols. If you wanted to have a string key that is guaranteed to be unique, you might add a counter or a time stamp or a random number, and you’d still fret if that was good enough.

[image: Images] Note

You cannot use new to make a symbol: new Symbol('label') throws an exception.

Since symbols are not strings, you cannot use the dot notation for symbol keys. Instead, use the bracket operator:

Click here to view code image

let obj = { [sym]: initialValue }

obj[sym] = newValue

If you want to attach some property to an existing object, such as a DOM node, it isn’t a good idea to use a string key:

node.outcome = 'success'

Even if nodes don’t currently have a key named outcome, they might in the future.

But a symbol is completely safe:

Click here to view code image

let outcomeSymbol = Symbol('outcome')

node[outcomeSymbol] = 'success'

Note that you need to save the symbol in a variable or object, so that it is available when you need it.

For example, the Symbol class has “well-known” symbols in the fields Symbol.iterator and Symbol.species that we will study in the next section.

If you need to share symbols across “realms” (such as different iframes or web workers), you can use the global symbol registry. To create or retrieve a previously created global symbol, call the Symbol.for method. Supply a key that should be globally unique:

Click here to view code image

let sym3 = Symbol.for('com.horstmann.outcome')

[image: Images] Note

The typeof operator yields the string 'symbol' when applied to a symbol.

11.2 Customization with Symbol Properties

Symbol properties are used in the JavaScript API for customizing the behavior of classes. The Symbol class defines a number of “well-known ” symbol constants for this purpose, shown in Table 11-1. The following subsections examine three of them in detail.

Table 11-1 Well-Known Symbols

	Symbol

	Description

	toStringTag

	Customizes the toString method of the Object class—see Section 11.2.1

	toPrimitive

	Customizes conversion to a primitive type—see Section 11.2.2

	species

	A constructor function to create a result collection, used by methods such as map and filter—see Section 11.2.3

	iterator, asyncIterator

	Define iterators (Chapter 9) and asynchronous iterators (Chapter 10)

	hasInstance

	Customize the behavior of instanceof:

class Iterable {

 static [Symbol.hasInstance](obj) {

 return Symbol.iterator in obj

 }

}

[1, 2, 3] instanceof Iterable

	match, matchAll, replace, search, split

	Called from the String methods with the same name. Redefine for objects other than RegExp—see Exercise 2.

	isConcatSpreadable

	Used in the concat method of Array:

const a = [1, 2]

const b = [3, 4]

a[Symbol.isConcatSpreadable] = false

[].concat(a, b) ⇒ [[1, 2], 3, 4]

11.2.1 Customizing toString

You can change the behavior of the toString method in the Object class. By default, it yields '[object Object]'. But if an object has a property with the key Symbol.toStringTag, then that property value is used instead of Object. For example:

Click here to view code image

const harry = { name: 'Harry Smith', salary: 100000 }

harry[Symbol.toStringTag] = 'Employee'

console.log(harry.toString())

 // Now toString yields '[object Employee]

When you define a class, you can set the property in the constructor:

Click here to view code image

class Employee {

 constructor(name, salary) {

 this[Symbol.toStringTag] = 'Employee'

 . . .

 }

 . . .

}

Or you can provide a get method, using the following special syntax:

Click here to view code image

class Employee {

 . . .

 get [Symbol.toStringTag]() { return JSON.stringify(this) }

}

The point is that the well-known symbol provides a hook for customizing the behavior of an API method.

11.2.2 Controlling Type Conversion

The Symbol.toPrimitive symbol gives you additional control over the conversion to primitive types if overriding the valueOf method is not sufficient. Consider this class representing percentages:

Click here to view code image

class Percent {

 constructor(rate) { this.rate = rate }

 toString() { return `${this.rate}%` }

 valueOf() { return this.rate * 0.01 }

}

Now consider:

Click here to view code image

const result = new Percent(99.44)

console.log('Result: ' + result) // Prints Result: 0.9944

Why not '99.44%'? The + operator uses the valueOf method when it is available. The remedy is to add a method with key Symbol.toPrimitive:

Click here to view code image

[Symbol.toPrimitive](hint) {

 if (hint === 'number') return this.rate * 0.01

 else return `${this.rate}%`

}

The hint parameter is:

	'number' with arithmetic other than + and comparisons

	'string' with ` ${. . .} ` or String(. . .)

	'default' with + or ==

In practice, this mechanism is of limited utility because the hint doesn’t give you enough information. What you really want is the type of the other operand—see Exercise 1.

11.2.3 Species

By default, the Array method map produces the same collection that it received:

Click here to view code image

class MyArray extends Array {}

let myValues = new MyArray(1, 2, 7, 9)

myValues.map(x => x * x) // Yields a MyArray

That’s not always appropriate. Suppose we have a class Range extending Array that describes a range of integers.

Click here to view code image

class Range extends Array {

 constructor(start, end) {

 super()

 for (let i = 0; i < end - start; i++)

 this[i] = start + i

 }

}

Transforms of ranges aren’t usually ranges:

Click here to view code image

const myRange = new Range(10, 99)

myRange.map(x => x * x) // Should not be a Range

Such a collection class can specify a different constructor as the value of the Symbol.species property:

Click here to view code image

class Range extends Array {

 . . .

 static get [Symbol.species]() { return Array }

}

This constructor function is used by the Array methods that create new arrays: map, filter, flat, flatMap, subarray, slice, splice, and concat.

11.3 Property Attributes

In this and the following sections, we will examine all functions and methods of the Object class that are summarized in Table 11-2.

Table 11-2 Object Functions and Methods

	Name

	Description

	Functions

	defineProperty(obj, name, descriptor)

defineProperties(obj,

 { name1: descriptor1, . . . })

	Define one or multiple property descriptors

	getOwnPropertyDescriptor(obj, name)

getOwnPropertyDescriptors(obj)

getOwnPropertyNames(obj)

getOwnPropertySymbols(obj)

	Gets one or all noninherited descriptors of an object, or just their string names/symbols

	

keys(obj)

values(obj)

entries(obj)

	The names, values, and [name, value] pairs of own enumerable properties

	

preventExtensions(obj)

seal(obj)

freeze(obj)

	Disallow prototype change and property addition; also, property deletion and configuration; also, property change

	

isExtensible(obj)

isSealed(obj)

isFrozen(obj)

	Checks if obj has been protected by one of the functions from the preceding row

	

create(prototype,

 { name1: descriptor1, . . . })

fromEntries([[name1, value1], . . .])

	Creates a new object with the given properties

	

assign(target, source1, source2, . . .)

	Copies all enumerable own properties from the sources to the target. Use a spread instead.

	

getPrototypeOf(obj)

setPrototypeOf(obj, proto)

	Gets or sets the prototype

	Methods

	

hasOwnProperty(stringOrSymbol)

propertyIsEnumerable(stringOrSymbol)

	true if the object has the given property, or if it is enumerable

	isPrototypeOf(other)

	Checks if this object is a prototype of another

Let us start out with a close look at working with object properties. Every property of a JavaScript object has three attributes:

	enumerable: When true, the property is visited in for in loops.

	writable: When true, the property value can be updated.

	configurable: When true, the property can be deleted and its attributes can be modified.

When you set a property in an object literal or by assignment, all three attributes are true, with one exception. Properties with symbol keys are not enumerable.

Click here to view code image

let james = { name: 'James Bond' }

 // james.name is writable, enumerable, configurable

On the other hand, the length property of an array is writable but not enumerable or configurable.

[image: Images] Note

The writable and configurable attributes are enforced in strict mode by throwing an exception. In non-strict mode, violations are silently ignored.

You can dynamically define properties with arbitrary names and attribute values by calling the Object.defineProperty function:

Click here to view code image

Object.defineProperty(james, 'id', {

 value: '007',

 enumerable: true,

 writable: false,

 configurable: true

})

The last argument is called the property descriptor.

When you define a new property and do not specify an attribute, it is set to false.

You can use the same function to change the attributes of an existing property, provided the property is configurable.

Click here to view code image

Object.defineProperty(james, 'id', {

 configurable: false

}) // Now james.id can’t be deleted, and its attributes can’t be changed

You can define getter and setter properties by providing functions with keys get and set:

Click here to view code image

Object.defineProperty(james, 'lastName', {

 get: function() { return this.name.split(' ')[1] },

 set: function(last) { this.name = this.name.split(' ')[0] + ' ' + last }

})

Note that you can’t use arrow functions here since you need the this parameter.

The get function is invoked when using the property as a value:

Click here to view code image

console.log(james.lastName) // Prints Bond

The set function is invoked when a new value is assigned to the property:

Click here to view code image

james.lastName = 'Smith' // Now james.name is 'James Smith'

[image: Images] Note

You saw in Chapter 4 how to define getters and setters in a class: by prefixing a method with get or set. As you just saw, you don’t need to define a class to have getters and setters.

Finally, the Object.defineProperties function can define or update multiple properties. Pass an object whose keys are property names and whose values are property descriptors.

Click here to view code image

Object.defineProperties(james, {

 id: { value: '007', writable: false, enumerable: true, configurable: false },

 age: { value: 42, writable: true, enumerable: true, configurable: true }

})

11.4 Enumerating Properties

In the preceding section, you saw how to define one or multiple properties. The getOwnPropertyDescriptor/getOwnPropertyDescriptors functions yield property descriptors in the same format as the arguments to the defineProperty/defineProperties functions. For example,

Click here to view code image

Object.getOwnPropertyDescriptor(james, 'name')

yields the descriptor

Click here to view code image

{ value: 'James Bond',

 writable: true,

 enumerable: true,

 configurable: true }

To get all descriptors, call

Click here to view code image

Object.getOwnPropertyDescriptors(james)

The result is an object whose keys are property names and whose values are descriptors:

Click here to view code image

{ name:

 { value: 'James Bond',

 writable: true,

 enumerable: true,

 configurable: true },

 lastName:

 { get: [Function: get],

 set: [Function: set],

 enumerable: false,

 configurable: false }

 . . .

}

The function is called getOwnPropertyDescriptors since it only yields the properties that are defined with the object itself, not those inherited from the prototype chain.

[image: Images] Tip

Object.getOwnPropertyDescriptors is very useful to “spy” on an object since it lists all properties, including those that are not enumerable—see Exercise 9.

If you don’t want the firehose of information that Object.getOwnPropertyDescriptors yields, you can call Object.getOwnPropertyNames(obj) or Object.getOwnPropertySymbols(obj) to get all string or symbol-valued property keys, whether enumerable or not, and then look up those property descriptors that interest you.

Finally, there are Object.keys, Object.values, and Object.entries functions that yield the names, values, and [name, value] pairs of own enumerable properties. These are similar to the keys, values, and entries methods of the Map class that you saw in Chapter 7. However, they are not methods, and they yield arrays, not iterators.

Click here to view code image

const obj = { name: 'Fred', age: 42 }

Object.entries(obj) // [['name', 'Fred'], ['age', 42]]

You can iterate over the properties with this loop:

Click here to view code image

for (let [key, value] of Object.entries(obj))

 console.log(key, value)

11.5 Testing a Single Property

The condition

stringOrSymbol in obj

checks whether a property exists in an object or within its prototype chain.

Why not simply check whether obj[stringOrSymbol] !== undefined? The in operator yields true for properties whose value is undefined. Given the object

Click here to view code image

const harry = { name: 'Harry', partner: undefined }

the condition 'partner' in harry is true.

Sometimes you may not want to look into the prototype chain. To find out whether an object itself has a property with a given name, call

Click here to view code image

obj.hasOwnProperty(stringOrSymbol)

To test for the presence of an enumerable property, call

Click here to view code image

obj.propertyIsEnumerable(stringOrSymbol)

Note that using these methods has a potential downside. An object can override the methods and lie about its properties. In this regard, it is safer to use the in operator and functions such as Object.getOwnPropertyDescriptior.

11.6 Protecting Objects

The Object class has three functions for protecting objects to increasing degrees:

	Object.preventExtensions(obj): Own properties cannot be added, and the prototype cannot be changed.

	Object.seal(obj): In addition, properties cannot be deleted or configured.

	Object.freeze(obj): In addition, properties cannot be set.

The three functions return the object that is being protected. For example, you can construct and freeze an object like this:

Click here to view code image

const frozen = Object.freeze({ . . . })

Note that these protections only apply in strict mode.

Even freezing doesn’t make an object entirely immutable since property values might be mutable:

Click here to view code image

const fred = Object.freeze({ name: 'Fred', luckyNumbers: [17, 29] })

fred.luckyNumbers[0] = 13 // OK—luckyNumbers isn’t frozen

If you want complete immutability, you need to recursively freeze all dependent objects—see Exercise 8.

To find out whether an object has been protected through one of these functions, call Object.isExtensible(obj), Object.isSealed(obj), or Object.isFrozen(obj).

11.7 Creating or Updating Objects

The Object.create function gives you complete control over creating a new object. Specify the prototype and the names and descriptors of all properties:

Click here to view code image

const obj = Object.create(proto, propertiesWithDescriptors)

Here, propertiesWithDescriptors is an object whose keys are property names and whose values are descriptors, as in Section 11.4, “Enumerating Properties” (page 228).

If you have the property names and values in an iterable of key/value pair arrays, then call the Object.fromEntries function to make an object with these properties:

Click here to view code image

let james = Object.fromEntries([['name', 'James Bond'], ['id', '007']])

The call Object.assign(target, source1, source2, . . .) copies all enumerable own properties from the sources into the target and returns the updated target:

Click here to view code image

james = Object.assign(james, { salary: 300000 }, genericSpy)

These days, there is no good reason to use Object.assign. Just use a spread { ...james, salary: 300000, ...genericSpy }.

11.8 Accessing and Updating the Prototype

As you know, the prototype chain is a key concept in JavaScript programming. If you use the class and extends keywords, the prototype chain is established for you. In this section, you will learn how to manage it manually.

To get the prototype of an object (that is, the value of the internal [[Prototype]] slot), call:

Click here to view code image

const proto = Object.getPrototypeOf(obj)

For example,

Click here to view code image

Object.getPrototypeOf('Fred') === String.prototype

When you have an instance of a class that was created with the new operator, such as

Click here to view code image

 const obj = new ClassName(args)

then Object.getPrototypeOf(obj) is the same as ClassName.prototype. But you can set the prototype of any object by calling

Click here to view code image

Object.setPrototypeOf(obj, proto)

We have done this briefly in Chapter 4 before introducing the new operator.

However, changing the prototype of an existing object is a slow operation for JavaScript virtual machines because they speculatively assume that object prototypes do not change. If you need to make an object with a custom prototype, it is better to use the Object.create method from Section 11.7, “Creating or Updating Objects” (page 231).

The call proto.isPrototypeOf(obj) returns true if proto is in the prototype chain of obj. Unless you set a special prototype, you can just use the instanceof operator: obj instanceof ClassName is the same as ClassName.prototype.isPrototypeOf(obj).

[image: Images] Note

Unlike all other prototype objects, Array.prototype is actually an array!

11.9 Cloning Objects

As an application of the material of the preceding sections, let us develop a function that can make a deep copy or “clone” of an object.

A naïve approach makes use of the spread operator:

Click here to view code image

const cloned = { ...original } // In general, not a true clone

However, this only copies the enumerable properties. And it does nothing about prototypes.

We can copy the prototype and all properties:

Click here to view code image

const cloned = Object.create(Object.getPrototypeOf(original),

 Object.getOwnPropertyDescriptors(original)) // Better, but still shallow

Now the clone has the same prototype and the same properties as the original, with all property attributes faithfully copied.

But the copy is still shallow. Mutable property values are not cloned. To see the problem with shallow copies, consider this object:

Click here to view code image

const original = { radius: 10, center: { x: 20, y: 30 } }

Then the original.center and clone.center are the same object, as you can see in Figure 11-1. Mutating original also mutates clone:

Click here to view code image

original.center.x = 40 // clone.center.x is also changed

[image: Images]

Figure 11-1 A shallow copy

The remedy is to recursively clone all values:

Click here to view code image

const clone = obj => {

 if (typeof obj !== 'object' || Object.isFrozen(obj)) return obj

 const props = Object.getOwnPropertyDescriptors(obj)

 let result = Object.create(Object.getPrototypeOf(obj), props)

 for (const prop in props)

 result[prop] = clone(obj[prop])

 return result

}

However, this version fails when there are circular references.

Consider two people who are each other’s best friend (see Figure 11-2):

Click here to view code image

const fred = { name: 'Fred' }

const barney = { name: 'Barney' }

fred.bestFriend = barney

barney.bestFriend = fred

[image: Images]

Figure 11-2 Circular references

Now suppose we recursively clone fred. The result is a new object

Click here to view code image

cloned = { name: 'Fred', bestFriend: clone(barney) }

What does clone(barney) do? It makes an object { name: 'Barney', bestFriend: clone(fred) }. But that is not right. We get an infinite recursion. And even if we didn’t, we would get an object with the wrong structure. We expect an object so that

Click here to view code image

cloned.bestFriend.bestFriend === cloned

We need to refine the recursive cloning process. If an object has already been cloned, don’t clone it again. Instead, use the reference to the existing clone. This can be implemented with a map from original to cloned objects. When a previously uncloned object is encountered, add the references to the original and the clone to the map. When the object has already been cloned, just look up the clone.

Click here to view code image

const clone = (obj, cloneRegistry = new Map()) => {

 if (typeof obj !== 'object' || Object.isFrozen(obj)) return obj

 if (cloneRegistry.has(obj)) return cloneRegistry.get(obj)

 const props = Object.getOwnPropertyDescriptors(obj)

 let result = Object.create(Object.getPrototypeOf(obj), props)

 cloneRegistry.set(obj, result)

 for (const prop in props)

 result[prop] = clone(obj[prop], cloneRegistry)

 return result

}

This is getting very close to the perfect clone function. However, it does not work for arrays. Calling clone([1, 2, 3]) yields an array-like object whose prototype is Array.prototype. However, it is not an array—Array.isArray returns false.

The remedy is to copy arrays with Arrays.from, not Object.create. Here is the final version:

Click here to view code image

const clone = (obj, cloneRegistry = new Map()) => {

 if (typeof obj !== 'object' || Object.isFrozen(obj)) return obj

 if (cloneRegistry.has(obj)) return cloneRegistry.get(obj)

 const props = Object.getOwnPropertyDescriptors(obj)

 let result = Array.isArray(obj) ? Array.from(obj)

 : Object.create(Object.getPrototypeOf(obj), props)

 cloneRegistry.set(obj, result)

 for (const prop in props)

 result[prop] = clone(obj[prop], cloneRegistry)

 return result

}

11.10 Function Properties

Now that we have discussed the methods of the Object class, let us move on to function objects. Every function that is an instance of the class Function has these three nonenumerable properties:

	name: the name with which the function was defined or, for anonymous functions, the name of the variable to which the function was assigned (see Exercise 14)

	length: the number of arguments, not counting a rest argument

	prototype: an object intended to be filled with prototype properties

Recall that in classic JavaScript, there is no difference between functions and constructors. Even in strict mode, every function can be called with new. Therefore, every function has a prototype object.

Let us look at the prototype object of a function more closely. It has no enumerable properties and one nonenumerable property constructor that points back to the constructor function—see Figure 11-3. For example, suppose we define a class Employee. The constructor function, Employee, like any function, has a prototype property, and

Click here to view code image

Employee.prototype.constructor === Employee

Any object inherits the constructor property from the prototype. Therefore, you can get the class name of an object as

obj.constructor.name

[image: Images]

Figure 11-3 The constructor property

[image: Images] Note

Inside a constructor, the odd-looking expression new.target evaluates to the function with which the object is constructed. You can use this expression to find out whether an object is constructed as an instance of a subclass, which may be of some utility—see Exercise 11. You can also tell if the function was called without new. In that case, new.target === undefined.

11.11 Binding Arguments and Invoking Methods

Given a function, the bind method yields a different function that has locked in the initial arguments:

Click here to view code image

const multiply = (x, y) => x * y

const triple = multiply.bind(null, 3)

triple(14) // Yields 42, or multiply(3, 14)

Because one argument of multiply is locked in by the bind method, the result is a function triple with a single argument.

The first argument of the bind method is the binding for the this parameter. Here is an example:

Click here to view code image

const isPet = Array.prototype.includes.bind(['cat', 'dog', 'fish'])

You can use bind for turning a method into a function:

Click here to view code image

button.onclick = this.handleClick.bind(this)

There is no need to use bind in any of these cases. You can define an explicit function:

Click here to view code image

const triple = y => multiply(3, y)

const isPet = x => ['cat', 'dog', 'fish'].includes(x)

button.onclick = (...args) => this.handleClick(...args)

The call method is similar to bind. However, all arguments are supplied, and the function or method is invoked. For example:

Click here to view code image

let answer = multiply.call(null, 6, 7)

let uppercased = String.prototype.toUpperCase.call('Hello')

Of course, it would be much simpler to call multiply(6, 7) or 'Hello'.toUpperCase().

However, there is one situation where a direct function call does not work. Consider this example:

Click here to view code image

const spacedOut = Array.prototype.join.call('Hello', ' ') // 'H e l l o'

We can’t call

'Hello'.join(' ')

because join is not a method of the String class. It is a method of the Array class that happens to work with strings.

Finally, apply is like call, but the arguments other than this are in an array (or array-like object):

Click here to view code image

String.prototype.substring.apply('Hello', [1, 4]) // 'ell'

If you need to apply an arbitrary function, stored in a variable f, to arbitrary arguments, it is simpler to use the expression f(...args) instead of f.apply(null, args). But if the variable f holds a method, then you have no choice. You cannot call obj.f(...args) and must use f.apply(obj, args).

[image: Images] Note

Before JavaScript had the super keyword, you had to use bind, call, or apply to invoke a superclass constructor—see Exercise 16.

11.12 Proxies

A proxy is an entity that appears to its user as if it were an object, but that intercepts property access, prototype access, and method invocations. When intercepted, these actions can do arbitrary work.

For example, an ORM (object-relational mapper) might support method names such as

Click here to view code image

const result = orm.findEmployeeById(42)

where Employee matches a database table. But if there is no matching table, the method would produce an error.

Here, orm is a proxy object that intercepts all method invocations. When invoked with a method whose name is find...ById, the intercepting code extracts the table name from the method name and makes a database lookup.

This is a powerful concept that can be used for very dynamic and powerful effects. Examples are:

	Automatic logging of property access or mutation

	Controlling property access, such as validation or protection of sensitive data

	Dynamic properties, for example DOM elements or database columns

	Making remote calls as if they were local

To construct a proxy, provide two objects:

	The target is the object whose operations we want to control.

	The handler is an object with trap functions that are invoked when the proxy is being manipulated.

There are thirteen possible trap functions, shown in Table 11-3.

Let us start with a simple example, where we log property reads and writes to an object obj. In the handler, we set two trap functions.

Click here to view code image

const obj = { name: 'Harry Smith', salary: 100000 }

const logHandler = {

 get(target, key, receiver) {

 const result = target[key]

 console.log(`get ${key.toString()} as ${result}`)

 return result

 },

 set(target, key, value, receiver) {

 console.log(`set ${key.toString()} to ${value}`)

 target[key] = value

 return true

 }

}

const proxy = new Proxy(obj, logHandler)

In the get and set functions, the target parameter is the target object of the proxy (here, obj). The receiver is the object whose property was accessed. That is the proxy object unless it is in the prototype chain of another object.

Now we must give the proxy, not the original object, to any code that we want to monitor.

Suppose someone changes the salary:

proxy.salary = 200000

Then a message is generated:

set salary to 200000

Operations that are not trapped are passed to the target. In our example, calling

delete proxy.salary

will delete the salary field from the target.

Table 11-3 Trap Functions

	Name

	Description

	get(target, key, receiver)

	receiver[key], receiver.key

	set(target, key, value, receiver)

	receiver[key] = value, receiver.key = value

	deleteProperty(target, key)

	delete proxy[key], delete proxy.key

	has(target, key)

	key in target

	getPrototypeOf(target)

	Object.getPrototypeOf(proxy)

	setPrototypeOf(target, proto)

	Object.setPrototypeOf(proxy, proto)

	isExtensible(target)

	Object.isExtensible(proxy)

	preventExtensions(target)

	Object.preventExtensions(proxy)

	getOwnPropertyDescriptor(target, key)

	Object.getOwnPropertyDescriptor(proxy, key), Object.keys(proxy)

	ownKeys(target)

	Object.keys(proxy), Object.getOwnProperty(Names|Symbols)(proxy)

	defineProperty(target, key, descriptor)

	Object.defineProperty(proxy, key, descriptor)

	apply(target, thisArg, args)

	thisArg.proxy(...args), proxy(...args), proxy.apply(thisArg, args), proxy.call(thisArg, ...args)

	construct(target, args, newTarget)

	new proxy(args), or invocation through super

The JavaScript API provides one useful proxy implementation that allows you to hand a proxied object to code that you trust, and then revoke access because you don’t trust what might happen later.

Obtain the proxy as:

Click here to view code image

const target = . . .

const p = Proxy.revocable(target, {})

The Proxy.revocable function returns an object with a property proxy, the proxied object, and a revoke method that revokes all access to the proxy.

Hand the proxy to the code that you trust. All operations access the target object.

After you call

p.revoke() // p.proxy is no longer usable

all operations on the proxy throw an exception.

You are required to supply a handler for intercepting traps. If you are happy with the default behavior, supply an empty object. See Exercise 24 for an example with a nontrivial handler.

11.13 The Reflect Class

The Reflect class implements the thirteen trap operations from Table 11-3.

You can call the corresponding Reflect functions instead of implementing their actions manually:

Click here to view code image

const logHandler = {

 get(target, key, receiver) {

 console.log(`get ${key.toString()}`)

 return Reflect.get(target, key, receiver)

 // Instead of return target[key]

 },

 set(target, key, value, receiver) {

 console.log(`set ${key.toString()}`)

 return Reflect.set(target, key, value, receiver)

 // Instead of target[key] = value; return true

 }

}

Now suppose we want to log all trappable operations. Note that the code looks the same for each handler function, except for the function name. Instead of writing many almost identical handler functions, you can write a second proxy that traps the getter for the function name:

Click here to view code image

const getHandler = {

 get(target, trapKey, receiver) {

 return (...args) => {

 console.log(`Trapping ${trapKey}`)

 return Reflect[trapKey](...args);

 }

 }

}

const logEverythingHandler = new Proxy({}, getHandler)

const proxy = new Proxy(obj, logEverythingHandler)

To understand what is happening, let us look at a specific scenario.

	The proxy user sets a property:

proxy.name = 'Fred'

	The appropriate method of the logEverythingHandler is invoked:

Click here to view code image

logEverythingHandler.set(obj, 'name', 'Fred', proxy)

	To make this call, the virtual machine must locate the set method of logEverythingHandler.

	Since logEverythingHandler is itself a proxy, the get method of that proxy’s handler is invoked:

Click here to view code image

getHandler.get({}, 'set', logEverythingHandler)

	That call returns a function

Click here to view code image

(...args) => { console.log(`Trapping set`); return Reflect.set(...args) }

as the value of logEverythingHandler.set.

	Now the function call that was started in step 2 can proceed. The function is invoked with arguments (obj, 'name', 'Fred', proxy).

	A console message is printed, followed by the call

Click here to view code image

Reflect.set(obj, 'name', 'Fred', proxy)

	This call causes obj.name to be set to 'Fred'.

If you want to log the arguments to the trap functions (which include the target and proxy), you have to be very careful to avoid infinite recursion. One way to do this is to keep a map of known objects that are printed by name, instead of calling toString which would cause further trap calls.

Click here to view code image

const knownObjects = new WeakMap()

const stringify = x => {

 if (knownObjects.has(x))

 return knownObjects.get(x)

 else

 return JSON.stringify(x)

}

const logEverything = (name, obj) => {

 knownObjects.set(obj, name)

 const getHandler = {

 get(target, trapKey, receiver) {

 return (...args) => {

 console.log(`Trapping ${trapKey}(${args.map(stringify)})`)

 return Reflect[trapKey](...args);

 }

 }

 }

 const result = new Proxy(obj, new Proxy({}, getHandler))

 knownObjects.set(result, `proxy of ${name}`)

 return result

}

Now you can call:

Click here to view code image

const fred = { name: 'Fred' }

const proxyOfFred = logEverything('fred', fred)

proxyOfFred.age = 42

You will see the following logging statements:

Click here to view code image

Trapping set(fred,age,42,proxy of fred)

Trapping getOwnPropertyDescriptor(fred,age)

Trapping defineProperty(fred,"age",{"value":42,

 "writable":true,"enumerable":true,"configurable":true})

The Reflect class was designed for use with proxies, but three of its methods are useful on their own because they are a bit more convenient than their classic counterparts:

	Reflect.deleteProperty returns a boolean to tell whether the deletion was successful. The delete operator doesn’t.

	Reflect.defineProperty returns a boolean to indicate whether the definition succeeded. Object.defineProperty throws an exception upon failure.

	Reflect.apply(f, thisArg, args) is guaranteed to call Function.prototype.apply, but f.apply(thisArg, args) might not since the apply property can be redefined.

11.14 Proxy Invariants

When you implement proxy operations, the virtual machine checks that they do not yield nonsense values. For example:

	construct must return an object.

	getOwnPropertyDescriptor must return a descriptor object or undefined.

	getPrototypeOf must return an object or null.

In addition, the virtual machine carries out consistency checks for proxy operations. A proxy must respect certain aspects of its target, including:

	Nonwritable target properties

	Nonconfigurable target properties

	Nonextensible targets

The ECMAScript specification describes “invariants” that a proxy must fulfill. For example, the description of the get operation on proxies includes this requirement: “The value reported (by get) for a property must be the same as the value of the corresponding target object property if the target object property is a nonwritable, nonconfigurable own data property.”

Similarly, if a target property is not configurable, then has cannot hide it. If a target is not extensible, then the getPrototypeOf operation must yield the actual prototype, and has and getOwnPropertyDescriptor must report the actual properties.

These invariants make sense when a proxy augments an existing object without adding any properties of its own. Unfortunately, they force us to lie about the properties that the proxy adds. Consider an array-like object that stores a range of values, say the integers between 10 and 99. There is no need to store the values. We can compute them dynamically. That’s what proxies are good at. Here is a function that creates such a range proxy:

Click here to view code image

const createRange = (start, end) => {

 const isIndex = key =>

 typeof key === 'string' && /^[0-9]+$/.test(key) && parseInt(key) < end - start

 return new Proxy({}, {

 get: (target, key, receiver) => {

 if (isIndex(key)) {

 return start + parseInt(key)

 } else {

 return Reflect.get(target, key, receiver)

 }

 }

 })

}

The get trap produces range values on demand:

Click here to view code image

const range = createRange(10, 100)

console.log(range[10]) // 20

However, we can’t yet iterate over the keys:

Click here to view code image

console.log(Object.keys(range)) // []

That is not surprising. We first need to define the ownKeys trap:

Click here to view code image

ownKeys: target => {

 const result = Reflect.ownKeys(target)

 for (let i = 0; i < end - start; i++)

 result.push(String(i))

 return result

}

Unfortunately, even after adding the ownKeys trap to the handler, Object.keys(range) yields an empty array.

To fix this, we need to provide property descriptors for the index properties:

Click here to view code image

getOwnPropertyDescriptor: (target, key) => {

 if (isIndex(key)) {

 return {

 value: start + Number(key),

 writable: false,

 enumerable: true,

 configurable: true // Not what we actually want

 }

 } else {

 return Reflect.getOwnPropertyDescriptor(target, key)

 }

}

Now Object.keys yields an array containing '10' to '99'. However, there is a fly in the ointment. The index properties must be configurable. Otherwise, the invariant rules kick in. You cannot report a nonconfigurable property that isn’t already present in the target. (Our target is an empty object.) We don’t actually want index properties to be configurable, but our hands are tied. If we want to prohibit deletion or reconfiguration of index properties, we need to provide additional traps—see Exercise 27.

As you can see, implementing dynamic properties in proxies is not for the faint of heart. Whenever possible, situate properties in the proxy target. For example, the range proxy should have a length property and a toString method. Just add those to the target object and don’t handle them in the traps—see Exercise 28.

Exercises

	Why is the Symbol.toPrimitive method for the Percent class in Section 11.2, “Customization with Symbol Properties” (page 223), unsatisfactory? Try adding and multiplying percent values. Why can’t you provide a fix that works both for percent arithmetic and string concatenation?

	A “glob pattern” is a pattern for matching file names. In its simplest form, * matches any sequence of characters other than the / path separator, and ? matches a single character. Implement a class Glob. Using well-known symbols, enable the use of glob pattern for the string methods match, matchAll, replace, search, and split.

	As described in Table 11-1, you can change the behavior of x instanceof y by ensuring that y has a well-known symbol property. Make it so that x instanceof Natural checks whether x is an integer ≥ 0, and x instanceof Range(a, b) checks if x is an integer in the given range. I am not saying this is a good idea, but it is interesting that it can be done.

	Define a class Person so that for it and any subclasses, the toString method returns [object Classname].

	Look at the output of the following calls and explain the results:

Click here to view code image

Object.getOwnPropertyDescriptors([1,2,3])

Object.getOwnPropertyDescriptors([1,2,3].constructor)

Object.getOwnPropertyDescriptors([1,2,3].prototype)

	Suppose you seal an object by calling Object.seal(obj). Trying to set a nonexistent property throws an exception in strict mode. But you can still read nonexistent properties without an exception. Write a function reallySeal so that reading or writing nonexistent properties on the returned object throws an exception. Hint: Proxies.

	Google for “JavaScript object clone” and review a few blog articles and StackOverflow answers. How many of them work correctly with shared mutable state and circular references?

	Write a function freezeCompletely that freezes an object and recursively all of its property values. Handle cyclic dependencies.

	Using Object.getOwnPropertyDescriptors, find all properties of the array [1, 2, 3], the Array function, and of Array.prototype. Why do all three have a length property?

	Construct a new string object as new String('Fred') and set its prototype to Array.prototype. Which methods can you successfully apply to the object? Start by trying map and reverse.

	The new.target expression, introduced in the note at the end of Section 11.10, “Function Properties” (page 235), is set to the constructor function when an object is constructed with the new operator. Make use of this feature by designing an abstract class Person that cannot be instantiated with new. However, allow instantiation of concrete subclasses such as Employee.

	How can one enforce abstract classes with the constructor property of the prototype instead of the technique of the preceding exercise? Which is more robust?

	The new.target expression is undefined if a function is called without new. What is an easier way of determining this situation in strict mode?

	Explore the name property of functions. What is it set to when the function is defined with a name? Without a name but assigned to a local variable? What about anonymous functions that are passed as arguments or returned as function results? What about arrow expressions?

	In Section 11.11, “Binding Arguments and Invoking Methods” (page 236), you saw that call is necessary to invoke a method from a different class. Provide a similar example for bind.

	In this exercise, you will explore how JavaScript programmers had to implement inheritance before the extends and super keywords. You are given a constructor function

Click here to view code image

function Employee(name, salary) {

 this.name = name

 this.salary = salary

}

Methods are added to the prototype.

Click here to view code image

Employee.prototype.raiseSalary = function(percent) {

 this.salary *= 1 + percent / 100

}

Now implement a Manager subclass without using the extends and super keywords. Use Object.setPrototypeOf to set the prototype of Manager.prototype. In the Manager constructor, you need to invoke the Employee constructor on the existing this object instead of creating a new one. Use the bind method described in Section 11.11, “Binding Arguments and Invoking Methods” (page 236).

	Attempting to solve the preceding exercise, Fritzi sets

Manager.prototype = Employee.prototype

instead of using Object.setPrototypeOf. What are the unhappy results of this decision?

	As noted at the end of Section 11.8, “Accessing and Updating the Prototype” (page 231), Array.prototype is actually an array. Verify this with Array.isArray. Why is [] instanceof Array false? What happens to arrays if you add elements to the Array.prototype array?

	Use the logging proxy from Section 11.12, “Proxies” (page 237), to monitor reading and writing of array elements. What happens when you read or write an element? The length property? What happens if you inspect the proxy object in the console by typing its name?

	Isn’t it annoying when one misspells the name of a property or method? Using a proxy, implement autocorrect. Pick the closest existing name. You need to use some measure of closeness for strings, such as the number of common characters or the Levenshtein edit distance.

	It is possible to change the behavior of objects, arrays, or strings by overriding methods of the Object, Array, or String class. Implement a proxy that disallows such overrides.

	An expression obj.prop1.prop2.prop3 will throw an exception if any of the intermediate properties yield null or undefined. Let’s solve that nuisance with proxies. First, define a safe object that returns itself when looking up any property. Next, define a function so that safe(obj) is a proxy for obj that returns the safe object when looking up any property whose value is null or undefined. Extra credit if you can extend this technique to method calls so that safe(obj).m1().m2().m3() doesn’t throw an exception if any of the intermediate methods return null or undefined.

	Create a proxy that supports an XPath-like syntax for finding elements in an HTML or XML document.

Click here to view code image

const root = makeRootProxy(document)

const firstItemInSecondList = root.html.body.ul[2].li[1]

	Make a revocable proxy, as described in Section 11.12, “Proxies” (page 237), that makes all properties read-only until access is revoked entirely.

	In Section 11.14, “Proxy Invariants” (page 242), the getOwnPropertyDescriptor trap returns a descriptor for index properties whose configurable attribute is true. What happens if you set it to false?

	Debug the ownKeys trap in Section 11.14, “Proxy Invariants” (page 242), by logging the calls to the {} target, using the logEverything method of Section 11.13, “The Reflect Class” (page 240). Also place a logging call into the getOwnPropertyDescriptor trap. Now read through Section 9.5.11 of the ECMAScript 2020 standard. Does the implementation follow the algorithm of the standard?

	Add traps to the range proxy in Section 11.14, “Proxy Invariants” (page 242) to prevent deleting or modifying the index properties. Also add a has trap.

	Add a length property and a toString method to the range proxy in Section 11.14, “Proxy Invariants” (page 242). Add it to the proxy target and don’t provide special handling in the traps. Provide appropriate attributes.

	The range proxy in Section 11.14, “Proxy Invariants” (page 242), is instantiated by calling the createRange function. Use a constructor function so that a user can call new Range(10, 100) and get a proxy instance that looks as if it was an instance of a Range class.

	Continue the preceding exercise so that the Range class extends Array. Be sure to set the Symbol.species property, as described in Section 11.2.3, “Species” (page 225).

Chapter 12. Iterators and Generators

[image: Images]

Topics in This Chapter

12.1 Iterable Values

12.2 Implementing an Iterable

12.3 Closeable Iterators

12.4 Generators

12.5 Nested Yield

12.6 Generators as Consumers

12.7 Generators and Asynchronous Processing

12.8 Async Generators and Iterators

Exercises

In this short chapter, you will learn how to implement iterators that can be used in the for of loop and array spreads. You will be able to work with iterators in your own code.

Implementing an iterator can be a bit tedious, but generators greatly simplify this task. A generator is a function that can yield multiple values, suspending after each value is produced and resuming when the next value is requested. Generators are also the building blocks of callback-free asynchronous programming.

All of the material in this chapter is at an advanced level.

12.1 Iterable Values

Perhaps the most common use of iterable values in JavaScript is the for of loop. For example, arrays are iterable. The loop

for (const element of [1, 2, 7, 9])

iterates over the elements of the given array. Strings are also iterable, and the loop

for (const ch of 'Hello')

iterates over the code points of the given string.

The following values are iterable:

	Arrays and strings

	Sets and maps

	The objects returned by the keys, values, and entries methods of arrays, typed arrays, sets, and maps (but not Object)

	DOM data structures such as the one returned by the call document .querySelectorAll('div')

In general, a value is iterable if it has a method with key Symbol.iterator that yields an iterator object:

Click here to view code image

const helloIter = 'Hello'[Symbol.iterator]()

An iterator object has a next method that yields an object containing the next value and an indicator whether the iteration is finished:

Click here to view code image

helloIter.next() // Yields { value: 'H', done: false }

helloIter.next() // Yields { value: 'e', done: false }

. . .

helloIter.next() // Yields { value: 'o', done: false }

helloIter.next() // Yields { value: undefined, done: true }

In a loop

for (const v of iterable)

an iterator object is obtained by calling iterable[Symbol.iterator](). The next method of that object is invoked in each loop iteration. Each time, it yields an object { value: . . ., done: . . . }. As long as done is false, the variable v is set to the object’s value property. Once done is true, the for of loop exits.

Here is a list of situations in which iterables are used in JavaScript:

	As already discussed, in a loop for (const v of iterable)

	In an array spread: [...iterable]

	With array destructuring: [first, second, third] = iterable

	With the function Array.from(iterable)

	With set and map constructors: new Set(iterable)

	With the yield* directive that you will see later in this chapter

	In any place where a programmer makes use of the iterator constructed by calling the function that is returned from iterable[Symbol.iterable]()

12.2 Implementing an Iterable

In this section, you will see how to create iterable objects that can appear in for of loops, array spreads, and so on.

It is best to work through a concrete example first. Let us implement an iterable Range class whose iterator yields values between two given bounds.

Click here to view code image

class Range {

 constructor(start, end) {

 this.start = start

 this.end = end

 }

 . . .

}

If we have a Range instance, it should be usable in a for of loop:

Click here to view code image

for (const element of new Range(10, 20))

 console.log(element) // Prints 10 11 . . . 19

An iterable object must have a method with name Symbol.iterator. Since the method name is not a string, it is enclosed in brackets:

Click here to view code image

class Range {

 . . .

 [Symbol.iterator]() { . . . }

}

That method returns an object with a next method. We define a second class to produce those objects.

Click here to view code image

class RangeIterator {

 constructor(current, last) {

 this.current = current

 this.last = last

 }

 next() { . . . }

}

class Range {

 . . .

 [Symbol.iterator]() { return new RangeIterator(this.start, this.end) }

}

The next method returns objects of the form { value: . . ., done: . . . }, like this:

Click here to view code image

 next() {

 . . .

 if (. . .) {

 return { value: some value, done: false }

 } else {

 return { value: undefined, done: true }

 }

 }

If you like, you can omit done: false and value: undefined.

In our example:

Click here to view code image

class RangeIterator {

 . . .

 next() {

 if (this.current < this.last) {

 const result = { value: this.current }

 this.current++

 return result

 } else {

 return { done: true }

 }

 }

}

By explicitly defining two classes, it becomes obvious that the Symbol.iterator method yields an instance of a different class with a next method.

Alternatively, you can create the iterator objects on the fly:

Click here to view code image

class Range {

 constructor(start, end) {

 this.start = start

 this.end = end

 }

 [Symbol.iterator]() {

 let current = this.start

 let last = this.end

 return {

 next() {

 if (current < last) {

 const result = { value: current }

 current++

 return result

 } else {

 return { done: true }

 }

 }

 }

 }

}

The Symbol.iterator method yields an object with a next method, which yields the { value: current } and { done: true } objects.

This is more compact but perhaps not quite as easy to read.

12.3 Closeable Iterators

If an iterator object has a method called return (!), it is closeable. The return method is called when the iteration is terminated prematurely. For example, suppose lines(filename) is an iterable over the lines of a file. Now consider this function:

Click here to view code image

const find = (filename, target) => {

 for (line of lines(filename)) {

 if (line.contains(target)) {

 return line // iterator.return() called

 }

 } // iterator.return() not called

}

The return method of the iterator is called when the loop is abruptly exited through a return, throw, break, or labeled continue statement. In this example, the iterator’s return method is called if a line contains the target string.

If no line contains the target string, the for of loop returns normally, and the return method is not called.

If you use an iterator and manually call next on it, and if you abandon it before having received done: true, then you should call iterator.return().

Of course, you should never call next after return.

Implementing a closeable iterator is a bit unpleasant because you need to put the closing logic in two places: the call to return and the branch of the next method that detects the absence of further values.

Here is a skeleton implementation of a function that yields an iterable over the lines of a file. Exercise 6 asks you to flesh out the details.

Click here to view code image

const lines = filename => {

 const file = . . . // Open the file

 return {

 [Symbol.iterator]: () => ({

 next: () => {

 if (done) {

 . . . // Close the file

 return { done: true }

 } else {

 const line = . . . // Read a line

 return { value: line }

 }

 },

 ['return']: () => {

 . . . // Close the file

 return { done: true } // Must return an object

 }

 })

 }

}

12.4 Generators

In the previous sections, you saw how to implement an iterator whose next method produces one value at a time. The implementation can be tedious. The iterator needs to remember some amount of state between successive calls to next. Even the case of a simple range was not trivial. Unfortunately, you can’t just use a loop:

Click here to view code image

for (let i = start; i < end; i++)

 . . .

That doesn’t work because the values are produced all together, not one at a time.

However, in a generator function, you can do just that:

Click here to view code image

function* rangeGenerator(start, end) {

 for (let i = start; i < end; i++)

 yield i

}

The yield keyword produces a value, but it does not exit the function. The function is suspended after each yielded value. When the next value is required, the function continues after the yield statement and eventually yields another value.

The * symbol tags this function as a generator function. Unlike a regular function that can produce only one result when it returns, a generator function produces a result each time the yield statement is executed.

When you invoke a generator function, the function body does not yet start executing. Instead, you obtain an iterator object:

Click here to view code image

const rangeIter = rangeGenerator(10, 20)

Like any iterator, the rangeIter object has a next method. When you call next for the first time, the generator function body runs until it reaches a yield statement. Then the next method returns an object { value: yielded value, done: false }.

Click here to view code image

let nextResult = rangeIter.next() // { value: 10, done: false }

From now on, each time the next method is invoked, execution of the generator function resumes at the last yield statement and continues until another yield statement is reached.

Click here to view code image

nextResult = rangeIter.next() // { value: 11, done: false }

. . .

nextResult = rangeIter.next() // { value: 19, done: false }

When the generator function returns, the next method returns { value: returned value, done: true } to indicate that the iteration is complete.

Click here to view code image

nextResult = rangeIter.next() // { value: undefined, done: true }

If at any time the generator function code throws an exception, the call to next terminates with that exception.

[image: Images] Note

In JavaScript, yield is shallow—you can only yield inside the generator function, not in a function that the generator function calls.

A generator function can be a named or anonymous function:

Click here to view code image

function* myGenerator(. . .) { . . . }

const myGenerator = function* (. . .) { . . . }

If an object property or a method is a generator function, prefix it with an asterisk:

Click here to view code image

const myObject = { * myGenerator(. . .) { . . . }, . . . }

 // Syntactic sugar for myGenerator: function* (. . .) { . . . }

class MyClass {

 * myGenerator(. . .) { . . . }

 . . .

}

Arrow functions cannot be generators.

You can place an invocation of a generator function everywhere an iterable is accepted—in for of statements, array spreads, and so on:

Click here to view code image

[...rangeGenerator(10, 15)] // The array [10, 11, 12, 13, 14]

12.5 Nested Yield

Suppose we want to iterate over all elements of an array. Of course, an array is already iterable, but let’s provide a generator anyway. The implementation is straightforward:

Click here to view code image

function* arrayGenerator(arr) {

 for (const element of arr)

 yield element

}

What if arr is [1, [2, 3, 4], 5], with an element that is itself an array? In this case, we would like to flatten out the traversal and yield the elements 1, 2, 3, 4, and 5 in turn. A first attempt might be:

Click here to view code image

function* flatArrayGenerator(arr) {

 for (const element of arr)

 if (Array.isArray(element)) {

 arrayGenerator(element) // Error—does not yield any elements

 } else {

 yield element

 }

}

However, this approach does not work. The call

arrayGenerator(element)

does not execute the body of the arrayGenerator generator function. It merely obtains and discards the iterator. The call

Click here to view code image

const result = [...flatArrayGenerator([1, [2, 3, 4], 5])]

sets result to the array [1, 5].

If you want to obtain all values of a generator inside a generator function, you need to use a yield* statement:

Click here to view code image

function* flatArrayGenerator(arr) {

 for (const element of arr)

 if (Array.isArray(element)) {

 yield* arrayGenerator(element) // Yields the generated elements one at a time

 } else {

 yield element

 }

}

Now the call

Click here to view code image

const result = [...flatArrayGenerator([1, [2, 3, 4], 5])]

yields the flattened array [1, 2, 3, 4, 5].

However, if the array is deeply nested, the result is still not correct: flatArrayGenerator([1, [2, [3, 4], 5], 6]) yields the values 1, 2, [3, 4], 5, and 6.

The remedy is simple—call flatArrayGenerator recursively:

Click here to view code image

function* flatArrayGenerator(arr) {

 for (const element of arr)

 if (Array.isArray(element)) {

 yield* flatArrayGenerator(element)

 } else {

 yield element

 }

}

The point of this example is that yield* overcomes a limitation of generator functions in JavaScript. Every yield statement must be in the generator function itself. It cannot be in a function that is called from a generator function. The yield* statement takes care of the situation where one generator function calls another, splicing in the yielded values of the invoked generator.

The yield* statement also splices in the values of an iterable, yielding one value in each call to next. That means we could have simply defined our arrayGenerator as:

Click here to view code image

function* arrayGenerator(arr) {

 yield* arr

}

[image: Images] Note

A generator function can return a value when it is finished, in addition to yielding values:

Click here to view code image

function* arrayGenerator(arr) {

 for (const element of arr)

 yield element

 return arr.length

}

The return value is included with the last iteration result, when the done property is true. When iterating over the yielded values, the return value is ignored. But you can capture it as the value of a yield* expression inside another generator function:

Click here to view code image

function* elementsFollowedByLength(arr) {

 const len = yield* arrayGenerator(arr);

 yield len;

}

12.6 Generators as Consumers

Up to this point, we used generators to produce a sequence of values. Generators can also consume values. When calling next with an argument, it becomes the value of the yield expression:

Click here to view code image

function* sumGenerator() {

 let sum = 0

 while (true) {

 let nextValue = yield sum

 sum += nextValue

 }

}

Here, the value of the yield sum expression is stored in the nextValue variable and added to the sum. There is a two-way communication:

	The generator receives values from the caller of the next method and accumulates them.

	The generator sends the current sum to the caller of the next method.

[image: Images] Caution

You need an initial call to next in order to get to the first yield statement. Then you can start calling next with values that are consumed by the generator.

When calling the method named return (!), the generator is shut down, and further calls to next yield { value: undefined, done: true }.

Here is a complete sequence of calls to the iterator:

Click here to view code image

const accum = sumGenerator()

accum.next() // Advance to first yield

let result = accum.next(3) // Returns { value: 3, done: false }

result = accum.next(4) // Returns { value: 7, done: false }

result = accum.next(5) // Returns { value: 12, done: false }

accum.return() // Shuts down and returns { value: undefined, done: true }

Calling throw(error) on the iterator object causes the error to be thrown in the pending yield expression. If the generator function catches the error and progresses to a yield or return statement, the throw method returns a { value: . . ., done: . . . } object. If the generator function terminates because the error was not caught, or because another error was thrown, then the throw method throws that error.

In other words, throw is exactly like next, except that it causes the yield expression to throw an error instead of yielding a value.

To demonstrate throw, consider the following variation of the sum generator:

Click here to view code image

function* sumGenerator() {

 let sum = 0

 while (true) {

 try {

 let nextValue = yield sum

 sum += nextValue

 } catch {

 sum = 0

 }

 }

}

Calling throw resets the accumulated value:

Click here to view code image

const accum = sumGenerator()

accum.next() // Advance to first yield

let result = accum.next(3)

result = accum.next(4)

result = accum.next(5)

accum.throw() // Returns { value: 0, done; false }

If you call throw before the first yield expression was reached, the generator is shut down and the error is thrown by the call to the throw method.

12.7 Generators and Asynchronous Processing

Having read the preceding section, you may wonder why you would ever want a generator that accumulates values. There are much easier ways of computing a sum. Such generators become far more interesting with asynchronous programming.

When you read data from a web page, the data is not available instantly. As you saw in Chapter 9, a JavaScript program has a single thread of execution. If you wait for something to happen, your program can do nothing else. Therefore, web requests are asynchronous. You receive a callback when the requested data is available. As an example, here we obtain a true random number, using the XMLHttpRequest class that is available in web browsers (but not Node.js):

Click here to view code image

const url = 'https://www.random.org/integers/?num=1&min=1&max=1000000000\

&col=1&base=10&format=plain&rnd=new'

const req = new XMLHttpRequest();

req.open('GET', url)

req.addEventListener('load', () => console.log(req.response)) // Callback

req.send()

Let’s put this into a function. The function has a handler function as parameter that is invoked when the random number has been received:

Click here to view code image

const trueRandom = handler => {

 const url = 'https://www.random.org/integers/?num=1&min=1&max=1000000000\

&col=1&base=10&format=plain&rnd=new'

 const req = new XMLHttpRequest();

 req.open('GET', url)

 req.addEventListener('load', () => handler(parseInt(req.response)))

 req.send()

}

Now we can get a random integer easily:

Click here to view code image

trueRandom(receivedValue => console.log(receivedValue))

But suppose we want to add three such random numbers. Then we need to make three calls and compute the sum when all answers are ready. This is not for the faint of heart:

Click here to view code image

trueRandom(first =>

 trueRandom(second =>

 trueRandom(third => console.log(first + second + third))))

Of course, as you have seen in Chapter 9, you can use promises and the async/await syntax to deal with this situation. Promises are actually built upon generators. This section gives you a brief outline of how generators can help with asynchronous processing.

Let us use a generator to provide the illusion of synchronous calls. We will shortly define a function nextTrueRandom that delivers a random integer into a generator. Here is the generator:

Click here to view code image

function* main() {

 const first = yield nextTrueRandom()

 const second = yield nextTrueRandom()

 const third = yield nextTrueRandom()

 console.log(first + second + third)

}

Launching the generator yields an iterator:

const iter = main()

That is the iterator into which we will feed values as they become available:

Click here to view code image

const nextTrueRandom = () => {

 trueRandom(receivedValue => iter.next(receivedValue))

}

Just one thing remains to be done. The iteration needs to start:

iter.next() // Kick it off

Now the main function starts executing. It calls nextTrueRandom and then suspends in the yield expression until someone calls next on the iterator.

That call to next doesn’t happen until the asynchronous data is available. And this is where generators get interesting. They allow us to suspend a calculation and continue it later when a value is available. Eventually, the value is obtained, and the nextTrueRandom function calls iter.next(receivedValue). That value is stored in first.

Then execution suspends again in the second yield expression, and so on. Eventually we have all three values and can compute their sum.

For a brief period, after generators were added in ES7, they were touted as a solution for avoiding asynchronous callbacks. However, as you have seen, the setup is not very intuitive. It is much easier to use promises and the async/await syntax of Chapter 9. Value-consuming generators were an important stepping stone towards promises, but they are not commonly used by application programmers.

12.8 Async Generators and Iterators

A generator function yields values that you can retrieve with an iterator. Each time you call iter.next(), the generator runs until the next yield statement and then suspends itself.

An async generator is similar to a generator function, but you are allowed to use the await operator inside the body. Conceptually, an async generator produces a sequence of values in the future.

To declare an async generator, use both the async keyword and the * that denotes a generator function:

Click here to view code image

async function* loadHanafudaImages(month) {

 for (let i = 1; i <= 4; i++) {

 const img = await loadImage(`hanafuda/${month}-${i}.png`)

 yield img

 }

}

When you call an async generator, you get an iterator. However, when you call next on the iterator, the next value may not yet be available. It may not even be known whether the iteration still continues. Therefore, next returns a promise for a { value: . . ., done: . . . } object.

Of course, you can retrieve the promised values from the iterator, but that is tedious—see Exercise 16. It is easier to use a special form of the for loop, the for await of loop:

Click here to view code image

for await (const img of loadHanafudaImages(month)) {

 imgdiv.appendChild(img)

}

The for await of loop must be inside an async function because it invokes the await operator on each generated promise.

If any of the promises is rejected, the for await of loop throws an exception, and the iteration terminates.

The for await of loop works with any async iterable. An async iterable has a property with key Symbol.asyncIterator whose value is a function yielding an async iterator. An async iterator has a next method yielding promises for { value: . . ., done: . . . } objects. Async generators are the most convenient mechanism for producing async iterables, but you can also implement them by hand—see Exercise 17.

[image: Images] Caution

Async iterables are not iterables. They do not work with the for of loop, spreads, or destructuring. For example, you cannot do this:

Click here to view code image

const results = [...loadHanafudaImages(month)]

 // Error, not an array of promises

for (const p of loadHanafudaImages(month)) p.then(imgdiv.appendChild(img))

 // Error, not a loop over the promises

[image: Images] Note

On the other hand, the for await of loop works with regular iterables. It simply does the same as the for of loop.

Here is an example of an async iterable that produces a range of numbers with a delay between them:

Click here to view code image

class TimedRange {

 constructor(start, end, delay) {

 this.start = start

 this.end = end

 this.delay = delay

 }

 async *[Symbol.asyncIterator]() {

 for (let current = this.start; current < this.end; current++) {

 yield await produceAfterDelay(current, this.delay)

 }

 }

}

The implementation of the iterator function is straightforward, thanks to the await and yield syntax. Simply wait until the next value is available, and then yield it.

You can consume the results in a for await of loop:

Click here to view code image

let r = new TimedRange(1, 10, 1000)

for await (const e of r) console.log(e)

Let us conclude with a more realistic example. Many APIs have a page parameter that allows fetching of successive pages of data, for example:

Click here to view code image

https://chroniclingamerica.loc.gov/search/titles/results/

 ?terms=michigan&format=json&page=5

Here we page through the results of such a query:

Click here to view code image

async function* loadResults(url) {

 let page = 0

 try {

 while (true) {

 page++

 const response = await fetch(`${url}&page=${page}`)

 yield await response.json()

 }

 } catch {

 // End iteration

 }

}

If we call the generator from a for async of loop, we traverse all responses. By itself, that is not so exciting. We could have done that traversal in an async function, without using a generator.

However, one can use this generator as a building block for other useful functions. Normally, an API uses paging because it is expected that the client will stop after having found a satisfactory result. Here is how to implement such a search, stopping as soon as the callback returns true:

Click here to view code image

const findResult = async (queryURL, callback) => {

 for await (const result of loadResults(queryURL)) {

 if (callback(result)) return result

 }

 return undefined

}

Note two things. First, the findResult function is not a generator but merely an async function. By putting the hard part of a computation into an async generator, it can be consumed by any async function. Moreover, crucially, the fetching of the pages is lazy. As soon as a match is found, the findResult function exits, abandoning the generator without fetching further pages.

Exercises

	Implement a function that receives an iterable value and prints every other element.

	Implement a function that receives an iterable value and returns another iterable value that yields every other element.

	Implement an iterable value that yields an infinite number of die tosses, random integers between 1 and 6. Write it in a single line:

const dieTosses = { . . . }

	Write a function dieTosses(n) that returns an iterable yielding n random integers between 1 and 6.

	What is wrong with this implementation of a Range iterator?

Click here to view code image

class Range {

 constructor(start, end) {

 this.start = start

 this.end = end

 }

 [Symbol.iterator]() {

 let current = this.start

 return {

 next() {

 current++

 return current <= this.end ? { value: current - 1 } : { done: true }

 }

 }

 }

}

	Complete the implementation of the file iterator in Section 12.3, “Closeable Iterators” (page 252). Use the openSync, readSync, and closeSync methods of the Node.js fs module (https://nodejs.org/api/fs.html). Note that you need to close the file in both the next and the return functions. You can avoid the code duplication by calling return from next.

	Change the arrayGenerator function of Section 12.5, “Nested Yield” (page 255), so that for array elements that are strings, each character is yielded separately.

	Enhance the preceding exercise so that the values of any iterable array element are yielded separately.

	Using a generator, produce a tree iterator that visits the nodes of a tree one at a time. If you are familiar with the DOM API, visit the nodes of a DOM document. Otherwise, make your own tree class.

	Using a generator and Heap’s algorithm (https://en.wikipedia.org/wiki/Heap%27s_algorithm), produce an iterator that yields all permutations of an array. For example, if the array has values [1, 2, 3], your iterator should produce [1, 2, 3], [1, 3, 2], [2, 3, 1], [2, 1, 3], [3, 1, 2], and [3, 2, 1] (not necessarily in this order).

	How can you make the return method of a generator object return a value? Would you ever want to?

	Section 12.6, “Generators as Consumers” (page 257), lists a number of different scenarios for the behavior of the throw method. Make a table that summarizes each scenario and the expected behavior. Provide brief programs to demonstrate the behavior in each scenario.

	Write a function trueRandomSum(n, handler) that computes the sum of n random numbers and passes it to the given handler. Use a generator, following Section 12.6, “Generators as Consumers” (page 257).

	Repeat the preceding exercise without using a generator.

	Consider this async function:

Click here to view code image

const putTwoImages = async (url1, url2, element) => {

 const img1 = await loadImage(url1)

 element.appendChild(img1)

 const img2 = await loadImage(url2)

 element.appendChild(img2)

 return element

}

And now consider this generator function yielding promises:

Click here to view code image

function* putTwoImagesGen(url1, url2, element) {

 const img1 = yield loadImage(url1)

 element.appendChild(img1)

 const img2 = yield loadImage(url2)

 element.appendChild(img2)

 return element

}

This is essentially the transformation that the JavaScript compiler does for any async function. Now fill in the ___ to complete a function genToPromise that takes an arbitrary generator yielding promises and turns it into a Promise:

Click here to view code image

const genToPromise = gen => {

 const iter = gen()

 const nextPromise = arg => {

 const result = ___

 if (result.done) {

 return Promise.resolve(___)

 } else {

 return Promise.resolve(___).then(___)

 }

 }

 return nextPromise()

}

	Use the iterator returned from the loadHanafudaImages generator function in Section 12.8, “Async Generators and Iterators” (page 261), to add all images to a DOM element. Do not use a for await of loop.

	Implement the TimedRange class from Section 12.8, “Async Generators and Iterators” (page 261), without using a generator function. Produce the promise-yielding iterator by hand.

	One plausible use of the for await of loop is with Promise.all. Suppose you have an array of image URLs. Turn them into an array of promises:

Click here to view code image

const imgPromises = urls.map(loadImage)

Run them in parallel, await the resulting promise, and iterate over the responses. Which of the four loops below run without errors? Which one should you use?

Click here to view code image

for (const img of Promise.all(imgPromises)) element.appendChild(img)

for await (const img of Promise.all(imgPromises)) element.appendChild(img)

for (const img of await Promise.all(imgPromises)) element.appendChild(img)

for await (const img of await Promise.all(imgPromises)) element.appendChild(img)

	Which of these loops run without errors? For those that do, how does their behavior differ from those of the preceding exercise?

Click here to view code image

for (const p of urls.map(loadImage))

 p.then(img => element.appendChild(img))

for (const p of urls.map(async url => await loadImage(url)))

 element.appendChild(await p)

for await (const img of urls.map(url => await loadImage(url)))

 element.appendChild(img)

for (const img of await urls.map(loadImage))

 element.appendChild(img)

for await (const img of await urls.map(loadImage))

 element.appendChild(img)

	Some APIs (such as the GitHub API described at https://developer.github.com/v3/guides/traversing-with-pagination) yield paged results with a slightly different mechanism than that of the example in Section 12.8, “Async Generators and Iterators” (page 261). The Link header of each response contains a URL to navigate to the next result. You can retrieve it as:

Click here to view code image

let nextURL

 = response.headers.get('Link').match(/<(?<next>.*?)>; rel="next"/).groups.next;

Adapt the loadResults generator function to this mechanism.

Extra credit if you can demystify the regular expression.

Chapter 13. An Introduction to TypeScript

[image: Images]

Topics in This Chapter

13.1 Type Annotations

13.2 Running TypeScript

13.3 Type Terminology

13.4 Primitive Types

13.5 Composite Types

13.6 Type Inference

13.7 Subtypes

13.8 Classes

13.9 Structural Typing

13.10 Interfaces

[image: Images] 13.11 Indexed Properties

[image: Images] 13.12 Complex Function Parameters

[image: Images] 13.13 Generic Programming

Exercises

TypeScript is a superset of JavaScript that adds compile-time typing. You annotate variables and functions with their expected types, and TypeScript reports an error whenever your code violates the type rules. Generally, that is a good thing. It is far less costly to fix compile-time errors than to debug a misbehaving program. Moreover, when you provide type information, your development tools can give you better support with autocompletion and refactoring.

This chapter contains a concise introduction into the main features of TypeScript. As with the rest of the book, I focus on modern features and mention legacy constructs only in passing. The aim of this chapter is to give you sufficient information so you can decide whether to use TypeScript on top of JavaScript.

Why wouldn’t everyone want to use TypeScript? Unlike ECMAScript, which is governed by a standards committee composed of many companies, TypeScript is produced by a single vendor, Microsoft. Unlike ECMAScript, where standards documents describe the correct behavior in mind-numbing detail, the TypeScript documentation is sketchy and inconclusive. TypeScript is—just like JavaScript—sometimes messy and inconsistent, giving you another potential source of grief and confusion. TypeScript evolves on a different schedule than ECMAScript, so there is yet another moving part. And, finally, you have yet another part in your tool chain that can act up.

You will have to weigh the advantages and drawbacks. This chapter will give you a flavor of TypeScript so you can make an informed decision.

[image: Images] Tip

If, after reading this chapter, you come to the conclusion that you want static type checking but you aren’t sure about TypeScript, check out Flow (https://flow.org) and see if you prefer its type system, syntax, and tooling.

13.1 Type Annotations

Consider the following JavaScript function computing the average of two numbers:

Click here to view code image

const average = (x, y) => (x + y) / 2

What happens when you call

const result = average('3', '4')

Here, '3' and

 '4' are concatenated to '34', which is then converted to the number 34 and divided by 2, yielding 17. That is surely not what you intended.

In situations like that, JavaScript provides no error messages. The program silently computes the wrong result and keeps running. In all likelihood, something will eventually go wrong elsewhere.

In TypeScript, you annotate parameters, like this:

Click here to view code image

const average = (x: number, y: number) => (x + y) / 2

Now it is clear that the average function is intended to compute the average of two numbers. If you call

Click here to view code image

const result = average('3', '4') // TypeScript: Compile-time error

the TypeScript compiler reports an error.

That is the promise of TypeScript: You provide type annotations, and TypeScript detects type errors before your program runs. Therefore, you spend far less time with the debugger.

In this example, the annotation process is very straightforward. Let us consider a more complex example. Suppose you want to allow an argument that is either a number or an array of numbers. In TypeScript, you express this with a union type number | number[]. Here, we want to replace a target value, or multiple target values, with another value:

Click here to view code image

const replace = (arr: number[], target: number | number[], replacement: number) => {

 for (let i = 0; i < arr.length; i++) {

 if (Array.isArray(target) && target.includes(arr[i])

 || !Array.isArray(target) && target === arr[i]) {

 arr[i] = replacement

 }

 }

}

TypeScript can now check whether your calls are correct:

Click here to view code image

const a = [11, 12, 13, 14, 15, 16]

replace(a, 13, 0) // OK

replace(a, [13, 14], 0) // OK

replace(a, 13, 14, 0) // Error

[image: Images] Caution

TypeScript knows about the types of the JavaScript library methods, but as I write this, the online playground is misconfigured and doesn’t recognize the includes method of the Array class. Hopefully this will be fixed by the time you read this book. If not, replace target.includes(arr[i]) with target.indexOf(arr[i]) >= 0.

[image: Images] Note

In these examples, I used arrow functions. The annotations work in exactly the same way with the function keyword:

Click here to view code image

function average(x: number, y: number) { return (x + y) / 2 }

To use TypeScript effectively, you need to learn how to express types such as “array of type T” and “type T or type U” in the TypeScript syntax. This is simple in many common situations. However, type descriptions can get fairly complex, and there are situations where you need to intervene in the typechecking process. All real-world type systems are like that. You need to expend a certain amount of upfront effort before you can reap the reward—error detection at compile time.

13.2 Running TypeScript

The easiest way to experiment with TypeScript is the “playground” at https://www.typescriptlang.org/play. Simply type in your code and run it. If you mouse over a value, its type is displayed. Errors are shown as wiggly underlines—see Figure 13-1.

[image: Images]

Figure 13-1 The TypeScript playground

Visual Studio Code (https://code.visualstudio.com/) has excellent support for TypeScript, as do other editors and integrated development environments.

To work with TypeScript on the command line, install it with the npm package manager. Here is the command for a global installation:

npm install -g typescript

In this chapter, I will always assume that TypeScript operates in the strict mode and targets the latest version of ECMAScript. Similar to plain JavaScript, TypeScript’s strict mode outlaws “sloppy” legacy behavior. To activate these settings, include a file tsconfig.json in your project directory with the following contents:

Click here to view code image

{

 "compilerOptions": {

 "target": "ES2020",

 "strict": true,

 "sourceMap": true

 },

 "filesGlob": [

 "*.ts"

]

}

To compile TypeScript files to JavaScript, run

tsc

in the directory that contains TypeScript files and tsconfig.json. Each TypeScript file is translated to JavaScript. You can run the resulting files with node.

To start up a REPL, run

ts-node

in a directory with a tsconfig.json file, or

Click here to view code image

ts-node -O '{ "target": "es2020", "strict": true }'

in any directory.

13.3 Type Terminology

Let us step back and think about types. A type describes a set of values that have something in common. In TypeScript, the number type consists of all values that are JavaScript numbers: regular numbers such as 0, 3.141592653589793, and so on, as well as Infinity, -Infinity, and NaN. We say that all these values are instances of the number type. However, the value 'one' is not.

As you saw already, the type number[] denotes arrays of numbers. The value [0, 3.141592653589793, NaN] is an instance of the number[] type, but the value [0, 'one'] is not.

A type such as number[] is called a composite type. You can form arrays of any type: number[], string[], and so on. Union types are another example of composite types. The union type

number | number[]

is composed of two simpler types: number and number[].

In contrast, types that are not composed of simpler types are primitive. TypeScript has primitive types number, string, boolean, as well as a few others that you will encounter in the following section.

Composite types can get complex. You can use a type alias to make them easier to read and reuse. Suppose you like to write functions that accept either a single number or an array. Simply define a type alias:

type Numbers = number | number[]

Use the alias as a shortcut for the type:

Click here to view code image

const replace = (arr: number[], target: Numbers, replacement: number) => . . .

[image: Images] Note

The typeof operator yields the value of a variable or property. You can use that type to declare another variable of the same type:

Click here to view code image

let values = [1, 7, 2, 9]

let moreValues: typeof values = []

 // typeof values is the same as number[]

let anotherElement: typeof values[0] = 42

 // typeof values[0] is the same as number

13.4 Primitive Types

Every JavaScript primitive type is also a primitive type in TypeScript. That is, TypeScript has primitive types number, boolean, string, symbol, null, and undefined.

The undefined type has one instance—the value undefined. Similarly, the value null is the sole instance of the null type. You won’t want to use these types by themselves, but they are very useful in union types. An instance of the type

string | undefined

is either a string or the undefined value.

The void type can only be used as the return type of a function. It denotes the fact that the function returns no value (see Exercise 2).

The never type denotes the fact that a function won’t ever return because it always throws an exception. Since you don’t normally write such functions, it is very unlikely that you will use the never type for a type annotation. Section 13.13.6, “Conditional Types” (page 303), has another application of the never type.

The unknown type denotes any JavaScript value at all. You can convert any value to unknown, but a value of type unknown is not compatible with any other type. This makes sense for parameter types of very generic functions (such as console.log), or when you need to interface with external JavaScript code. There is an even looser type any. Any conversion to or from the any type is allowed. You should minimize the use of the any type because it effectively turns off type checking.

A literal value denotes another type with a single instance—that same value. For example, the string literal 'Mon' is a TypeScript type. That type has just one value—the string 'Mon'. By itself, such a type isn’t very useful, but you can form a union type, such as

Click here to view code image

'Mon' | 'Tue' | 'Wed' | 'Thu' | 'Fri' | 'Sat' | 'Sun'

This is a type with seven instances—the names of the weekdays.

With a type like this, you will usually want to use a type alias:

Click here to view code image

type Weekday = 'Mon' | 'Tue' | 'Wed' | 'Thu' | 'Fri' | 'Sat' | 'Sun'

Now you can annotate a variable as Weekday:

Click here to view code image

let w: Weekday = 'Mon' // OK

w = 'Mo' // Error

A type such as Weekday describes a finite set of values. The values can be literals of any type:

Click here to view code image

type Falsish = false | 0 | 0n | null | undefined | '' | []

[image: Images] Note

If you want constants with nicer names, TypeScript lets you define an enumerated type. Here is a simple example:

Click here to view code image

enum Weekday { MON, TUE, WED, THU, FRI, SAT, SUN }

You can refer to these constants as Weekday.MON, Weekday.TUE, and so on. These are synonyms for the numbers 0, 1, 2, 3, 4, 5, and 6. You can also assign values:

Click here to view code image

enum Color { RED = 4, GREEN = 2, BLUE = 1 }

String values are OK too:

Click here to view code image

enum Quarter { Q1 = 'Winter', Q2 = 'Spring', Q3 = 'Summer', Q4 = 'Fall' }

13.5 Composite Types

TypeScript provides several ways of building more complex types out of simpler ones. This section describes all of them.

Given any type, there is an array type:

Click here to view code image

number[] // Array of number

string[] // Array of string

number[][] // Array of number[]

These types describe arrays whose elements all have the same type. For example, a number[] array can only hold numbers, not a mixture of numbers and strings.

Of course, JavaScript programmers often use arrays whose elements have mixed types, such as [404, 'not found']. In TypeScript, you describe such an array as an instance of a tuple type [number, string]. A tuple type is a list of types enclosed in brackets. It denotes fixed-length arrays whose elements have the specified types. In our example, the value [404, 'not found'] is an instance of the tuple type [number, string], but ['not found', 404] or [404, 'error', 'not found'] are not.

[image: Images] Note

The type for an array that starts out with a number and a string and then has other elements is

[string, number, ...unknown[]]

Just as a tuple type describes the element types of arrays, an object type defines the property names and types of objects. Here is an example of such a type:

{ x: number, y: number }

You can use a type alias to make this declaration easier to reuse:

type Point = { x: number, y: number }

Now you can define functions whose parameters are Point instances:

Click here to view code image

const distanceFromOrigin = (p: Point) => Math.sqrt(Math.pow(p.x, 2) + Math.pow(p.y, 2))

A function type describes the parameter and return types of a function. For example,

Click here to view code image

(arg1: number, arg2: number) => number

is the type of all functions with two number parameters and a number return value.

The Math.pow function is an instance of this type, but Math.sqrt is not, since it only has one parameter.

[image: Images] Note

In JavaScript, you must provide names with the parameter types of a function type, such as arg1 and arg2 in the preceding example. These names are ignored, with one exception. A method is indicated by naming the first parameter this—see Section 13.8.2, “The Instance Type of a Class” (page 285). In all other cases, I will use arg1, arg2, and so on in a function type so you can see right away that it is a type, not an actual function. For a rest parameter, I will use rest.

You have already seen union types. The values of the union type T | U are the instances of T or U. For example, an instance of

number | string

is either a number or a string, and

(number | string)[]

describes arrays whose elements are numbers or strings.

An intersection type T & U has instances that combine the requirements of T and U. Here is an example:

Point & { color: string }

To be an instance of this type, an object must have numeric x and y properties (which makes it a Point) as well as a string-valued color property.

13.6 Type Inference

Consider a call to our average function:

Click here to view code image

const average = (x: number, y: number) => (x + y) / 2

. . .

const a = 3

const b = 4

let result = average(a, b)

Only the function parameters require a type annotation. The type of the other variables is inferred. From the initialization, TypeScript can tell that a and b must have type number. By analyzing the code of the average function, TypeScript infers that the return type is also number, and so is the type of result.

Generally, type inference works well, but sometimes you have to help TypeScript along.

The initial value of a variable may not suffice to determine the type that you intend. For example, suppose you declare a type for error codes.

type ErrorCode = [number, string]

Now you want to declare a variable of that type. This declaration does not suffice:

let code = [404, 'not found']

TypeScript infers the type (number | string)[] from the right-hand side: arrays of arbitrary length where each element can be a number or string. That is a much more general type than ErrorCode.

[image: Images] Tip

To see the inferred type, use a development environment that displays type information. Figure 13-2 shows how Visual Studio Code displays inferred types.

[image: Images]

Figure 13-2 Type information in Visual Studio Code

The remedy is to use a type annotation with the variable:

let code: ErrorCode = [404, 'not found']

You face the same problem when a function returns a value whose type is ambiguous, such as the following:

Click here to view code image

const root = (x: number) => {

 if (x >= 0) return Math.sqrt(x)

 else return [404, 'not found']

}

The inferred return type is number | (number | string)[]. If you want number | ErrorCode, put a return type annotation behind the parameter list:

Click here to view code image

const root = (x: number): number | ErrorCode => {

 if (x >= 0) return Math.sqrt(x)

 else return [404, 'not found']

}

Here is the same function with the function syntax:

Click here to view code image

function root(x: number): number | ErrorCode {

 if (x >= 0) return Math.sqrt(x)

 else return [404, 'not found']

}

A type annotation is also needed when you initialize a variable with undefined:

let result = undefined

Without an annotation, TypeScript infers the type any. (It would be pointless to infer the type undefined—then the variable could never change.) Therefore, you should specify the intended type:

Click here to view code image

let result: number | undefined = undefined

Later, you can store a number in result, but not a string:

result = 3 // OK

result = '3' // Error

Sometimes you know more about the type of an expression than TypeScript can infer. For example, you might have just received a JSON object and you know its type. Then use a type assertion:

Click here to view code image

let target = JSON.parse(response) as Point

A type assertion is similar to a cast in Java or C#, but no exception occurs if the value doesn’t actually conform to the target type.

When you process union types, TypeScript follows the decision flow to ensure that a value is of the correct type in each branch. Consider this example:

Click here to view code image

const less = (x: number | number[] | string | Date | null) => {

 if (typeof x === 'number')

 return x - 1;

 else if (Array.isArray(x))

 return x.splice(0, 1)

 else if (x instanceof Date)

 return new Date(x.getTime() - 1000)

 else if (x === null)

 return x

 else

 return x.substring(1)

}

TypeScript understands the typeof, instanceof, and in operators, the Array.isArray function, and tests for null and undefined. Therefore, the type of x is inferred as number, number[], Date, and null in the first four branches. In the fifth branch, only the string alternative remains, and TypeScript allows the call to substring.

However, sometimes this inference doesn’t work. Here is an example:

Click here to view code image

const more = (values: number[] | string[]) => {

 if (array.length > 0 && typeof x[0] === 'number') // Error—not a valid type guard

 return values.map(x => x + 1)

 else

 return values.map(x => x + x)

}

TypeScript can’t analyze the condition. It is simply too complex.

In such a situation, you can provide a custom type guard function. Its special role is indicated by the return type:

Click here to view code image

const isNumberArray = (array: unknown[]): array is number[] =>

 array.length > 0 && typeof array[0] === 'number'

The return type array is number[] indicates that this function returns a boolean and can be used to test whether the array argument has type number[]. Here is how to use the function:

Click here to view code image

const more = (values: number[] | string[]) => {

 if (isNumberArray(values))

 return values.map(x => x + 1)

 else

 return values.map(x => x + x)

}

Here is the same type guard with the function syntax:

Click here to view code image

function isNumberArray(array: unknown[]): array is number[] {

 return array.length > 0 && typeof array[0] === 'number'

}

13.7 Subtypes

Some types, for example number and string, have no relationship with each other. A number variable cannot hold a string variable, nor can a string variable hold a number value. But other types are related. For example, a variable with type number | string can hold a number value.

We say that number is a subtype of number | string, and number | string is a supertype of number and string. A subtype has more constraints than its supertypes. A variable of the supertype can hold values of the subtype, but not the other way around.

In the following sections, we will examine the subtype relationship in more detail.

13.7.1 The Substitution Rule

Consider again the object type

Click here to view code image

type Point = { x: number, y: number }

The object { x: 3, y: 4 } is clearly an instance of Point. What about

Click here to view code image

const bluePoint = { x: 3, y: 4, color: 'blue' }

Is it also an instance of Point? After all, it has x and y properties whose values are numbers.

In TypeScript, the answer is “no.” The bluePoint object is an instance of the type

Click here to view code image

{ x: number, y: number, color: string }

For convenience, let us give a name to that type:

Click here to view code image

type ColoredPoint = { x: number, y: number, color: string }

The ColoredPoint type is a subtype of Point, and Point is a supertype of ColoredPoint. A subtype imposes all the requirements of the supertype, and then some.

Whenever a value of a given type is expected, you can supply a subtype instance. This is sometimes called the substitution rule.

For example, here we pass a ColoredPoint object to a function with a Point parameter:

Click here to view code image

const distanceFromOrigin = (p: Point) => Math.sqrt(Math.pow(p.x, 2) + Math.pow(p.y, 2))

const result = distanceFromOrigin(bluePoint) // OK

The distanceFromOrigin function expects a Point, and it is happy to accept a ColoredPoint. And why shouldn’t it be? The function needs to access numeric x and y properties, and those are certainly present.

[image: Images] Note

As you just saw, the type of a variable need not be exactly the same as the type of the value to which it refers. In this example, the parameter p has type Point, but the value to which it refers has type ColoredPoint. When you have a variable of a given type, you can be assured that the referenced value belongs to that type or a subtype.

The substitution rule has one exception in TypeScript. You cannot substitute an object literal of a subtype. The call

Click here to view code image

const result = distanceFromOrigin({ x: 3, y: 4, color: 'blue' }) // Error

fails at compile time. This is called an excess property check.

The same check is carried out when you assign an object literal to a typed variable:

Click here to view code image

let p: Point = { x: 3, y: 4 }

p = { x: 0, y: 0, color: 'red' } // Error—excess property blue

You will see the rationale for this check in the following section.

It is easy enough to bypass an excess property check. Just introduce another variable:

Click here to view code image

const redOrigin = { x: 0, y: 0, color: 'red' }

p = redOrigin // OK—p can hold a subtype value

13.7.2 Optional and Excess Properties

When you have an object of type Point, you can’t read any properties other than x and y. After all, there is no guarantee that such properties exist.

Click here to view code image

let p: Point = . . .

console.log(p.color) // Error—no such property

That makes sense. It is exactly the kind of check that a type system should provide.

What about writing to such a property?

p.color = 'blue' // Error—no such property

From a type-theoretical point of view, this would be safe. The variable p would still refer to a value that belongs to a subtype of Point. But TypeScript prohibits setting “excess properties.”

If you want properties that are present with some but not all objects of a type, use optional properties. A property marked with ? is permitted but not required. Here is an example:

Click here to view code image

type MaybeColoredPoint = {

 x: number,

 y: number,

 color?: string

}

Now the following statements are OK:

Click here to view code image

let p: MaybeColoredPoint = { x: 0, y: 0 } // OK—color optional

p.color = 'red' // OK—can set optional property

p = { x: 3, y: 4, color: 'blue' } // OK—can use literal with optional property

Excess property checks are meant to catch typos with optional properties. Consider a function for plotting a point:

Click here to view code image

const plot = (p: MaybeColoredPoint) => . . .

The following call fails:

Click here to view code image

const result = plot({ x: 3, y: 4, colour: 'blue' })

 // Error—excess property colour

Note the British spelling of colour. The MaybeColoredPoint class has no colour property, and TypeScript catches the error. If the compiler had followed the substitution rule without the excess property check, the function would have plotted a point with no color.

13.7.3 Array and Object Type Variance

Is an array of colored points more specialized than an array of points? It certainly seems to. Indeed, in TypeScript, the ColoredPoint[] type is a subtype of Point[]. In general, if S is a subtype of T, then the array type S[] is a subtype of T[]. We say that arrays are covariant in TypeScript since the array types vary in the same direction as the element types.

However, this relationship is actually unsound. It is possible to write TypeScript programs that compile without errors but create errors at runtime. Consider this example:

Click here to view code image

const coloredPoints: ColoredPoint[] = [{ x: 3, y: 4, color: 'blue' },

 { x: 0, y: 0, color: 'red' }]

const points: Point[] = coloredPoints // OK for points to hold a subtype value

We can add a plain Point via the points variable:

Click here to view code image

points.push({ x: 4, y: 3 }) // OK to add a Point to a Point[]

But coloredPoints and points refer to the same array. Reading the added point with the coloredPoints variable causes a runtime error:

Click here to view code image

console.log(coloredPoints[2].color.length)

 // Error—cannot read property 'length' of undefined

The value coloredPoints[2].color is undefined, which should not be possible for a ColoredPoint. The type system has a blind spot.

This was a conscious choice by the language designers. Theoretically, only immutable arrays should be covariant, and mutable arrays should be invariant. That is, there should be no subtype relationship between mutable arrays of different types. However, invariant arrays would be inconvenient. In this case, TypeScript, as well as Java and C#, made the decision to give up on complete type safety for the sake of convenience.

Covariance is also used for object types. To determine whether one object type is a subtype of another, we look at the subtype relationships of the matching properties. Let us look at two types that share a single property:

Click here to view code image

type Colored = { color: string }

type MaybeColored = { color: string | undefined }

In this case, string is a subtype of string | undefined, and therefore Colored is a subtype of MaybeColored.

In general, if S is a subtype of T, then the object type { p: S } is a subtype of { p: T }. If there are multiple properties, all of them must vary in the same direction.

As with arrays, covariance for objects is unsound—see Exercise 11.

In this section, you have seen how array and object types vary with their component types. For variance of function types, see Section 13.12.3, “Function Type Variance” (page 293), and for generic variance, Section 13.13.5, “Generic Type Variance” (page 302).

13.8 Classes

The following sections cover how classes work in TypeScript. First, we go over the syntactical differences between classes in JavaScript and TypeScript. Then you will see how classes are related to types.

13.8.1 Declaring Classes

The TypeScript syntax for classes is similar to that of JavaScript. Of course, you provide type annotations for constructor and method parameters. You also need to specify the types of the instance fields. One way is to list the fields with type annotations, like this:

Click here to view code image

class Point {

 x: number

 y: number

 constructor(x: number, y: number) {

 this.x = x

 this.y = y

 }

 distance(other: Point) {

 return Math.sqrt(Math.pow(this.x - other.x, 2) + Math.pow(this.y - other.y, 2))

 }

 toString() { return `(${this.x}, ${this.y})` }

 static origin = new Point(0, 0)

}

Alternatively, you can provide initial values from which TypeScript can infer the type:

class Point {

 x = 0

 y = 0

 . . .

}

[image: Images] Note

This syntax corresponds to the field syntax that is a stage 3 proposal in JavaScript.

You can make the instance fields private. TypeScript supports the syntax for private features that is currently at stage 3 in JavaScript.

Click here to view code image

class Point {

 #x: number

 #y: number

 constructor(x: number, y: number) {

 this.#x = x

 this.#y = y

 }

 distance(other: Point) {

 return Math.sqrt(Math.pow(this.#x - other.#x, 2) + Math.pow(this.#y - other.#y, 2))

 }

 toString() { return `(${this.#x}, ${this.#y})` }

 static origin = new Point(0, 0)

}

[image: Images] Note

TypeScript also supports private and protected modifiers for instance fields and methods. These modifiers work just like in Java or C++. They come from a time where JavaScript did not have a syntax for private variables and methods. I do not discuss those modifiers in this chapter.

[image: Images] Note

You can declare instance fields as readonly:

class Point {

 readonly x: number

 readonly y: number

 . . .

}

A readonly property cannot be changed after its initial assignment.

Click here to view code image

const p = new Point(3, 4)

p.x = 0 // Error—cannot change readonly property

Note that readonly is applied to properties, whereas const applies to variables.

13.8.2 The Instance Type of a Class

The instances of a class have a TypeScript type that contains every public property and method. For example, consider the Point class with public fields from the preceding sections. Its instances have the type

Click here to view code image

{

 x: number,

 y: number,

 distance: (this: Point, arg1: Point) => number

 toString: (this: Point) => string

}

Note that the constructor and static members are not a part of the instance type.

You can indicate a method by naming the first parameter this, as in the preceding example. Alternatively, you can use the following compact notation:

Click here to view code image

{

 x: number,

 y: number,

 distance(arg1: Point): number

 toString(): string

}

Getter and setter methods in classes give rise to properties in TypeScript types. For example, if you define

Click here to view code image

get x() { return this.#x }

set x(x: number) { this.#x = x }

get y() { return this.#y }

set y(y: number) { this.#y = y }

for the Point class with private instance fields in the preceding section, then the TypeScript type has properties x and y of type number.

If you only provide a getter, the property is readonly.

[image: Images] Caution

If you only provide a setter and no getter, reading from the property is permitted and returns undefined.

13.8.3 The Static Type of a Class

As noted in the preceding section, the constructor and static members are not part of the instance type of a class. Instead, they belong to the static type.

The static type of our sample Point class is

{

 new (x: number, y: number): Point

 origin: Point

}

The syntax for specifying a constructor is similar to that for a method, but you use new in place of the method name.

You don’t usually have to worry about the static type (but see Section 13.13.4, “Erasure,” page 300). Nevertheless, it is a common cause of confusion. Consider this code snippet:

Click here to view code image

const a = new Point(3, 4)

const b: typeof a = new Point(0, 0) // OK

const ctor: typeof Point = new Point(0, 0) // Error

Since a is an instance of Point, typeof a is the instance type of the Point class. But what is typeof Point? Here, Point is the constructor function. After all, that’s all a class is in JavaScript—a constructor function. Its type is the static type of the class. You can initialize ctor as

const ctor: typeof Point = Point

Then you can call new ctor(3, 4) or access ctor.origin.

13.9 Structural Typing

The TypeScript type system uses structural typing. Two types are the same if they have the same structure. For example,

type ErrorCode = [number, string]

and

type LineItem = [number, string]

are the same type. The names of the types are irrelevant. You can freely copy values between the two types:

Click here to view code image

let code: ErrorCode = [404, 'Not found']

let items: LineItem[] = [[2, 'Blackwell Toaster']]

items[1] = code

This sounds potentially dangerous, but it is certainly no worse than what programmers do every day with plain JavaScript. And in practice, with object types, it is quite unlikely that two types have exactly the same structure. If we use object types in our example, we might arrive at these types:

Click here to view code image

type ErrorCode = { code: number, description: string }

type LineItem = { quantity: number, description: string }

They are different since the property names don’t match.

Structural typing is very different from the “nominal” type systems in Java, C#, or C++, where the names of the type matter. But in JavaScript, what matters are the capabilities of an object, not the name of its type.

To illustrate the difference, consider this JavaScript function:

Click here to view code image

const act = x => { x.walk(); x.quack(); }

Obviously, in JavaScript, the function works with any x that has methods walk and quack.

In TypeScript, you can accurately reflect this behavior with a type:

Click here to view code image

const act = (x: { walk(): void, quack(): void }) => { x.walk(); x.quack(); }

You may have a class Duck that provides these methods:

Click here to view code image

class Duck {

 constructor(. . .) { . . . }

 walk(): void { . . . }

 quack(): void { . . . }

}

That’s swell. You can pass a Duck instance to the act function:

Click here to view code image

const donald = new Duck(. . .)

act(donald)

But now suppose you have another object—not an instance of this class, but still with walk and quack methods:

Click here to view code image

const daffy = { walk: function () { . . . }, quack: function () { . . . } };

You can equally well pass this object to the act function. This phenomenon is called “duck typing,” after the proverbial saying: “If it walks like a duck and quacks like a duck, it must be a duck.”

The structural typing in TypeScript formalizes this approach. Using the structure of the type, TypeScript can check at compile time that each value has the needed capabilities. The type names don’t matter at all.

13.10 Interfaces

Consider an object type to describe objects that have an ID method:

type Identifiable = {

 id(): string

}

Using this type, you can define a function that finds an element by ID:

Click here to view code image

const findById = (elements: Identifiable[], id: string) => {

 for (const e of elements) if (e.id() === id) return e;

 return undefined;

}

To make sure that a class is a subtype of this type, you can define the class with an implements clause:

Click here to view code image

class Person implements Identifiable {

 #name: string

 #id: string

 constructor(name: string, id: string) { this.#name = name; this.#id = id; }

 id() { return this.#id }

}

Now TypeScript checks that your class really provides an id method with the correct types.

[image: Images] Note

That is all that the implements clause does. If you omit the clause, Person is still a subtype of Identifiable, because of structural typing.

There is an alternate syntax for object types that looks more familiar to Java and C# programmers:

Click here to view code image

interface Identifiable {

 id(): string

}

In older versions of TypeScript, object types were more limited than interfaces. Nowadays, you can use either.

There are a couple of minor differences. One interface can extend another:

Click here to view code image

interface Employable extends Identifiable {

 salary(): number

}

With type declarations, you use an intersection type instead:

Click here to view code image

type Employable = Identifiable & {

 salary(): number

}

Interfaces, unlike object types, can be defined in fragments. You can have

Click here to view code image

interface Employable {

 id(): string

}

followed elsewhere by

Click here to view code image

interface Employable {

 salary(): number

}

The fragments are merged together. This merging is not done for type declarations. It is debatable whether this is a useful feature.

[image: Images] Note

In TypeScript, an interface can extend a class. It then picks up all properties of the instance type of the class. For example,

Click here to view code image

interface Point3D extends Point { z: number }

has the fields and methods of Point, as well as the z property.

Instead of such an interface, you can use an intersection type

Click here to view code image

type Point3D = Point & { z: number }

13.11 Indexed Properties

[image: Images]

Sometimes, you want to use objects with arbitrary properties. In TypeScript, you need to use an index signature to let the type checker know that arbitrary properties are OK. Here is the syntax:

Click here to view code image

type Dictionary = {

 creator: string,

 [arg: string]: string | string[]

}

The variable name of the index argument (here, arg) is immaterial, but you must supply a name.

Each Dictionary instance has a creator property and any number of other properties whose values are strings or string arrays.

Click here to view code image

const dict: Dictionary = { creator: 'Pierre' }

dict.hello = ['bonjour', 'salut', 'allô']

let str = 'world'

dict[str] = 'monde'

[image: Images] Caution

The types of explicitly provided properties must be subtypes of the index type. The following would be an error:

Click here to view code image

type Dictionary = {

 created: Date, // Error—not a string or string[]

 [arg: string]: string | string[]

}

There would be no way to check that an assignment to dict[str] is correct with an arbitrary value for str.

You can also describe array-like types with integer index values:

Click here to view code image

type ShoppingList = {

 created: Date,

 [arg: number] : string

}

const list: ShoppingList = {

 created: new Date()

}

list[0] = 'eggs'

list[1] = 'ham'

13.12 Complex Function Parameters

[image: Images]

In the following sections, you will see how to provide annotations for more optional, default, rest, and destructured parameters. Then we turn to “overloading”—specifying multiple parameter and return types for a single function.

13.12.1 Optional, Default, and Rest Parameters

Consider the JavaScript function

Click here to view code image

const average = (x, y) => (x + y) / 2 // JavaScript

In JavaScript, you have to worry about the fact that someone might call average(3), which would evaluate to (3 + undefined) / 2, or NaN. In TypeScript, that’s not an issue. You cannot call a function without supplying all of the required arguments.

However, JavaScript programmers often provide optional parameters. In our average function, the second parameter can be optional:

Click here to view code image

const average = (x, y) => y === undefined ? x : (x + y) / 2 // JavaScript

In TypeScript, you tag optional parameters with a ?, like this:

Click here to view code image

const average = (x: number, y?: number) => y === undefined ? x : (x + y) / 2

 // TypeScript

Optional parameters must come after the required parameters.

As in JavaScript, you can provide default parameters in TypeScript:

Click here to view code image

const average = (x = 0, y = x) => (x + y) / 2 // TypeScript

Here, the parameter types are inferred from the types of the defaults.

Rest parameters work exactly like in JavaScript. You annotate a rest parameter as an array:

Click here to view code image

const average = (first = 0, ...following: number[]) => {

 let sum = first

 for (const value of following) { sum += value }

 return sum / (1 + following.length)

}

The type of this function is

Click here to view code image

(arg1: number, ...arg2: number[]) => number

13.12.2 Destructuring Parameters

In Chapter 3, we looked at functions that are called with a “configuration object,” like this:

Click here to view code image

const result = mkString(elements,

 { separator: ', ', leftDelimiter: '(', rightDelimiter: ')' })

When implementing the function, you can, of course, have a parameter for the configuration object:

Click here to view code image

const mkString = (values, config) =>

 config.leftDelimiter + values.join(config.separator) + config.rightDelimiter

Or you can use destructuring to declare three parameter variables:

Click here to view code image

const mkString = (values, { separator, leftDelimiter, rightDelimiter }) =>

 leftDelimiter + values.join(separator) + rightDelimiter

In TypeScript, you need to add types. However, the obvious way does not work:

Click here to view code image

const mkString = (values: unknown[], { // TypeScript

 separator: string,

 leftDelimiter: string, // Error—duplicate identifier

 rightDelimiter: string // Error—duplicate identifier

 }) => leftDelimiter + values.join(separator) + rightDelimiter

The syntax for TypeScript type annotations is in conflict with the destructuring syntax. In JavaScript (and therefore, in TypeScript), you can add variable names after the property names:

Click here to view code image

const mkString = (values, { // JavaScript

 separator: sep,

 leftDelimiter: left,

 rightDelimiter: right

 }) => left + values.join(sep) + right

To correctly specify the types, add a type annotation to the entire configuration object:

Click here to view code image

const mkString = (values: unknown[], // TypeScript

 { separator, leftDelimiter, rightDelimiter }

 : { separator: string, leftDelimiter: string, rightDelimiter: string })

 => leftDelimiter + values.join(separator) + rightDelimiter

In Chapter 3, we also provided default arguments for each option. Here is the function with the defaults:

Click here to view code image

const mkString = (values: unknown[], // TypeScript

 { separator = ',', leftDelimiter = '[', rightDelimiter = ']' }

 : { separator?: string, leftDelimiter?: string, rightDelimiter?: string })

 => leftDelimiter + values.join(separator) + rightDelimiter

Note that with the defaults, the type changes slightly—each property is now optional.

13.12.3 Function Type Variance

In Section 13.7.3, “Array and Object Type Variance” (page 282), you saw that arrays are covariant. Replacing the element type with a subtype yields an array subtype. For example, if Employee is a subtype of Person, then Employee[] is a subtype of Person[].

Similarly, object types are covariant in the property types. The type { partner: Employee } is a subtype of { partner: Person }.

In this section, we examine subtype relationships between function types.

Function types are contravariant in their parameter types. If you replace a parameter type with a supertype, you get a subtype. For example, the type

Click here to view code image

type PersonConsumer = (arg1: Person) => void

is a subtype of

Click here to view code image

type EmployeeConsumer = (arg1: Employee) => void

That means, an EmployeeConsumer variable can hold a PersonConsumer value:

Click here to view code image

const pc: PersonConsumer = (p: Person) => { console.log(`a person named ${p.name}`) }

const ec: EmployeeConsumer = pc

 // OK for ec to hold subtype value

This assignment is sound because pf can surely accept Employee instances. After all, it is prepared to handle more general Person instances.

With the return type, we have covariance. For example,

Click here to view code image

type EmployeeProducer = (arg1: string) => Employee

is a subtype of

Click here to view code image

type PersonProducer = (arg1: string) => Person

The following assignment is sound:

Click here to view code image

const ep: EmployeeProducer = (name: string) => ({ name, salary: 0 })

const pp: PersonProducer = ep

 // OK for pp to hold subtype value

Calling pp('Fred') surely produces a Person instance.

If you drop the last parameter type from a function type, you obtain a subtype. For example,

(arg1: number) => number

is a subtype of

(arg1: number, arg2: number) => number

To see why, consider the assignment

Click here to view code image

const g = (x: number) => 2 * x

 // Type (arg1: number) => number

const f: (arg1: number, arg2: number) => number = g

 // OK for f to hold subtype value

It is safe to call f with two arguments. The second argument is simply ignored.

Similarly, if you make a parameter optional, you obtain a subtype:

Click here to view code image

const g = (x: number, y?: number) => y === undefined ? x : (x + y) / 2

 // Type (arg1: number, arg2?: number) => number

const f: (arg1: number, arg2: number) => number = g

 // OK for f to hold subtype value

Again, it is safe to call f with two arguments.

Finally, if you add a rest parameter, you get a subtype.

Click here to view code image

let g = (x: number, y: number, ...following: number[]) => Math.max(x, y, ...following)

 // Type: (arg1: number, arg2: number, ...rest: number[]) => number

let f: (arg1: number, arg2: number) => number = g

 // OK for f to hold subtype value

Once again, calling f with two parameters is fine.

Table 13-1 gives a summary of all subtype rules that were covered so far.

Table 13-1 Forming Subtypes

	Action

	Supertype
A variable of this type...

	Subtype
...can hold a value of this type

	Replace array element type with subtype

	Person[]

	Employee[]

	Replace object property type with subtype

	{ partner: Person }

	{ partner: Employee }

	Add object property

	{ x: number, y: number }

	{ x: number, y: number, color: string }

	Replace function parameter type with supertype

	(arg1: Employee) => void

	(arg1: Person) => void

	Replace function return type with subtype

	(arg1: string) => Person

	(arg1: string) => Employee

	Drop the last parameter

	(arg1: number, arg2: number) => number

	(arg1: number) => number

	Make the last parameter optional

	(arg1: number, arg2: number) => number

	(arg1: number, arg2?: number) => number

	Add a rest parameter

	(arg1: number) => number

	(arg1: number, ...rest: number[]) => number

13.12.4 Overloads

In JavaScript, it is common to write functions that can be called flexibly. For example, this JavaScript function counts how many times a letter occurs in a string:

Click here to view code image

function count(str, c) { return str.length - str.replace(c, '').length }

What if we have an array of strings? In JavaScript, it is easy to extend the behavior:

Click here to view code image

function count(str, c) {

 if (Array.isArray(str)) {

 let sum = 0

 for (const s of str) {

 sum += s.length - s.replace(c, '').length

 }

 return sum

 } else {

 return str.length - str.replace(c, '').length

 }

}

In TypeScript, we need to provide a type for this function. That is not too hard: str is either a string or an array of strings:

Click here to view code image

function count(str: string | string[], c: string) { . . . }

This works because in either case, the return type is number. That is, the function has type

Click here to view code image

(str: string | string[], c: string) => number

But what if the return type differs depending on the argument types? Let’s say we remove the characters instead of counting them:

Click here to view code image

function remove(str, c) { // JavaScript

 if (Array.isArray(str))

 return str.map(s => s.replace(c, ''))

 else

 return str.replace(c, '')

}

Now the return type is either string or string[].

But it is not optimal to use the union type string | string[] as the return type. In an expression

Click here to view code image

const result = remove(['Fred', 'Barney'], 'e')

we would like result to be typed as string[], not the union type.

You can achieve this by overloading the function. JavaScript doesn’t actually allow you to overload functions in the traditional sense—that is, implement separate functions with the same name but different parameter types. Instead, you list the declarations that you wish you could implement separately, followed by the one implementation:

Click here to view code image

function remove(str: string, c: string): string

function remove(str: string[], c: string): string[]

function remove(str: string | string[], c: string) {

 if (Array.isArray(str))

 return str.map(s => s.replace(c, ''))

 else

 return str.replace(c, '')

}

With arrow functions, the syntax is a little different. Annotate the type of the variable that will hold the function, like this:

Click here to view code image

const remove: {

 (arg1: string, arg2: string): string

 (arg1: string[], arg2: string): string[]

} = (str: any, c: string) => {

 if (Array.isArray(str))

 return str.map(s => s.replace(c, ''))

 else

 return str.replace(c, '')

}

[image: Images] Caution

Perhaps for historical reasons, the syntax of this overload annotation does not use the arrow syntax for function types. Instead, the syntax is reminiscent of an interface declaration.

Also, the type checking is not as good with arrow functions. The parameter str must be declared with type any, not string | string[]. With function declarations, TypeScript works harder and checks the execution paths of the function, guaranteeing that string arguments yield string results, but string[] arguments return string[] values.

Overloaded methods use a syntax that is similar to functions:

Click here to view code image

class Remover {

 c: string

 constructor(c: string) { this.c = c }

 removeFrom(str: string): string

 removeFrom(str: string[]): string[]

 removeFrom(str: string | string[]) {

 if (Array.isArray(str))

 return str.map(s => s.replace(this.c, ''))

 else

 return str.replace(this.c, '')

 }

}

13.13 Generic Programming

[image: Images]

A declaration of a class, type, or function is generic when it uses type parameters for types that are not yet specified and can be filled in later. For example, in TypeScript, the standard Set<T> type has a type parameter T, allowing you to form sets of any type, such as Set<string> or Set<Point>. The following sections show you how to work with generics in TypeScript.

13.13.1 Generic Classes and Types

Here is a simple example of a generic class. Its instances hold key/value pairs:

Click here to view code image

class Entry<K, V> {

 key: K

 value: V

 constructor(key: K, second: V) {

 this.key = key

 this.value = value

 }

}

As you can see, the type parameters K and V are specified inside angle brackets after the name of the class. In the definitions of fields and the constructor, the type parameters are used as types.

You instantiate the generic class by substituting types for the type variables. For example, Entry<string, number> is an ordinary class with fields of type string and number.

A generic type is a type with one or more type parameters, such as

Click here to view code image

type Pair<T> = { first: T, second: T }

[image: Images] Note

You can specify a default for a type parameter, such as

Click here to view code image

type Pair<T = any> = { first: T, second: T }

Then the type Pair is the same as Pair<any>.

TypeScript provides generic forms of the Set, Map, and WeakMap classes that you saw in Chapter 7. You simply provide the types of the elements:

Click here to view code image

const salaries = new Map<Person, number>()

Types can also be inferred from the constructor arguments. For example, this map is typed as a Map<string, number>:

Click here to view code image

const weekdays = new Map(

 [['Mon', 0], ['Tue', 1], ['Wed', 2], ['Thu', 3], ['Fri', 4], ['Sat', 5], ['Sun', 6]])

[image: Images] Note

The generic Array<T> class is exactly the same as the type T[].

13.13.2 Generic Functions

Just like a generic class is a class with type parameters, a generic function is a function with type parameters. Here is an example of a function with one type parameter. The function counts how many times a target value is present in an array.

Click here to view code image

function count<T>(arr: T[], target: T) {

 let count = 0

 for (let e of arr) if (e === target) count++

 return count

}

Using a type parameter ensures that the array type is the same as the target type.

Click here to view code image

let digits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]

let result = count(digits, 5) // OK

result = count(digits, 'Fred') // Type error

The type parameters of a generic function are always placed before the opening parenthesis that starts the list of function parameters. A generic arrow function looks like this:

Click here to view code image

const count = <T>(arr: T[], target: T) => {

 let count = 0

 for (let e of arr) if (e === target) count++

 return count

}

The type of this function is

Click here to view code image

<T> (arg1: T[], arg2: T) => number

When calling a generic function, you do not need to specify the type parameters. They are inferred from the argument types. For example, in the call count(digits, 5), the type of digits is number[], and TypeScript can infer that T should be number.

You can, if you like, supply the type explicitly, before the arguments, like this:

count<number>(digits, 4)

You occasionally need to do this if TypeScript doesn’t infer the types that you intended. You will see an example in the following section.

13.13.3 Type Bounds

Sometimes, the type parameters of a generic class or function need to fulfill certain requirements. You express these requirements with a type bound.

Consider this function that yields the tail—all but the first element—of its argument:

Click here to view code image

const tail = <T>(values: T) => values.slice(1) // Error

This approach cannot work since TypeScript doesn’t know whether values has a slice method. Let’s use a type bound:

Click here to view code image

const tail = <T extends { slice(from: number, to?: number): T }>(values: T) =>

 values.slice(1) // OK

The type bound ensures that the call values.slice(1) is valid. Note that the extends keyword in a type bound actually means “subtype”—the TypeScript designers just used the existing extends keyword instead of coming up with another keyword or symbol.

Now we can call

Click here to view code image

let result = tail([1, 7, 2, 9]) // Sets result to [7, 2, 9]

or

Click here to view code image

let greeting = 'Hello'

console.log(tail(greeting)) // Displays ello

Of course, we can give a name to the type that is used as a bound:

Click here to view code image

type Sliceable<T> = { slice(from: number, to?: number): T }

const tail = <T extends Sliceable<T>>(values: T) => values.slice(1)

For example, the type number[] is a subtype of Sliceable<number[]> since the slice method returns a number[] instance. Similarly, string is a subtype of Sliceable<string>.

[image: Images] Caution

If you try out the call

Click here to view code image

console.log(tail('Hello')) // Error

compilation fails with an error—the type 'Hello' is not a subtype of Sliceable<'Hello'>. The problem is that 'Hello' is both an instance of the literal type 'Hello' and the type string. TypeScript chooses the literal type as the most specific one, and typechecking fails. To overcome this problem, explicitly instantiate the template function:

Click here to view code image

console.log(tail<string>('Hello')) // OK

or use a type assertion:

Click here to view code image

console.log(tail('Hello' as string))

13.13.4 Erasure

When TypeScript code is translated to plain JavaScript, all types are erased. As a consequence, the call

let newlyCreated = new T()

is illegal. At runtime, there is no T.

To construct objects of arbitrary types, you need to use the constructor function. Here is an example:

Click here to view code image

const fill = <T>(ctor: { new() : T }, n: number) => {

 let result: T[] = []

 for (let i = 0; i < n; i++)

 result.push(new ctor())

 return result

}

Note the type of ctor—a function that can be called with new and yields a value of type T. That is a constructor. This particular constructor has no arguments.

When calling the fill function, you provide the name of a class:

Click here to view code image

const dates = fill(Date, 10)

The expression Date is the constructor function. In JavaScript, a class is just “syntactic sugar” for a constructor function with a prototype.

Similarly, you cannot make a generic instanceof check. The following will not work:

Click here to view code image

const filter = <T>(values: unknown[]) => {

 let result: T[] = []

 for (const v of values)

 if (v instanceof T) // Error

 result.push(v)

 return result

}

The remedy is, again, to pass the constructor:

Click here to view code image

const filter = <T>(values: unknown[], ctor: new (...args: any[]) => T) => {

 let result: T[] = []

 for (const v of values)

 if (v instanceof ctor) // OK—right-hand side of instanceof is a constructor

 result.push(v)

 return result

}

Here is a sample call:

Click here to view code image

const pointsOnly = filter([3, 4, new Point(3, 4), Point.origin], Point)

Note that in this case, the constructor accepts arbitrary arguments.

[image: Images] Caution

The instanceof test only works with a class. There is no way of testing at runtime whether a value is an instance of a type or interface.

13.13.5 Generic Type Variance

Consider a generic type such as

Click here to view code image

type Pair<T> = { first: T, second: T }

Now suppose you have a type Person and a subtype Employee. What is the appropriate relationship between Pair<Person> and Pair<Employee>?

Type theory provides three possibilities for a type variable. It can be covariant (that is, the generic type varies in the same direction), contravariant (with subtype relationships flipped), and invariant (with no subtype relationships between the generic types).

In Java, type variables are always invariant, but you can express relationships with wildcards such as Pair<? extends Person>. In C#, you can choose the variance of type parameters: Entry<out K, in V>. TypeScript does not have any comparable mechanism.

Instead, when deciding whether a generic type instance is a subtype of another, TypeScript simply substitutes the actual types and then compares the resulting nongeneric types.

For example, when comparing Pair<Person> and Pair<Employee>, substituting the types Person and Employee yields

{ first: Person, second: Person }

and the subtype

{ first: Employee, second: Employee }

As a result, the Pair<T> type is covariant in T. This is unsound (see Exercise 15). However, as discussed in Section 13.7.3, “Array and Object Type Variance” (page 282), this unsoundness is a conscious design decision.

Let us look at another example that illustrates contravariance:

Click here to view code image

type Formatter<T> = (arg1: T) => string

To compare Formatter<Person> and Formatter<Employee>, plug in the types, then compare

(arg1: Person) => string

and

(arg1: Employee) => string

Since function parameter types are contravariant, so is the type variable T of Formatter<T>. This behavior is sound.

13.13.6 Conditional Types

A conditional type has the form T extends U ? V : W, where T, U, V, and W are types or type variables. Here is an example:

Click here to view code image

type ExtractArray<T> = T extends any[] ? T : never

If T is an array, then ExtractArray<T> is T itself. Otherwise, it is never, the type that has no instances.

By itself, this type isn’t very useful. But it can be used to filter out types from unions:

Click here to view code image

type Data = string | string[] | number | number[]

type ArrayData = ExtractArray<Data> // The type string[] | number[]

For the string and number alternatives, ExtractArray yields never, which is simply dropped.

Now suppose you want to have just the element type. The following doesn’t quite work:

Click here to view code image

type ArrayOf<T> = T extends U[] ? U : never // Error—U not defined

Instead, use the infer keyword:

Click here to view code image

type ArrayOf<T> = T extends (infer U)[] ? U : never

Here, we check whether T extends X[] for some X, and if so, bind U to X. When applied to a union type, the non-arrays are dropped and the arrays replaced by their element type. For example, ArrayOf<Data> is number | string.

13.13.7 Mapped Types

Another way to specify indexes is with mapped types. Given a union type of string, integer, or symbol literals, you can define indexes like this:

Click here to view code image

type Point = {

 [propname in 'x'|'y']: number

}

This Point type has two properties x and y, both of type number.

[image: Images] Caution

This notation is similar to the syntax for indexed properties (see Section 13.11, “Indexed Properties,” page 290). However, a mapped type has only one mapping, and it cannot have additional properties.

This example is not very useful. Mapped types are intended for transforming existing types. Given an Employee type, you can make all properties readonly:

Click here to view code image

type ReadonlyEmployee = {

 readonly [propname in keyof Employee]: Employee[propname]

}

There are two pieces of new syntax here:

	The type keyof T is the union type of all property names in T. That is 'name' | 'salary' | . . . in this example.

	The type T[p] is the type of the property with name p. For example, Employee['name'] is the type string.

Mapped types really shine with generics. The TypeScript library defines the following utility type:

Click here to view code image

type Readonly<T> = {

 readonly [propname in keyof T]: T[propname]

}

This type marks all properties of T as readonly.

[image: Images] Tip

By using Readonly with a parameter type, you can assure callers that the parameter is not mutated.

Click here to view code image

const distanceFromOrigin = (p: Readonly<Point>) =>

 Math.sqrt(Math.pow(p.x, 2) + Math.pow(p.y, 2))

Another example is the Pick utility type that lets you pick a subset of properties, like this:

Click here to view code image

let str: Pick<string, 'length' | 'substring'> = 'Fred'

 // Can only apply length and substring to str

The type is defined as follows:

Click here to view code image

type Pick<T, K extends keyof T> = {

 [propname in K]: T[propname]

};

Note that extends means “subtype.” The type keyof string is the union of all string property names. A subtype is a subset of those names.

You can also remove a modifier:

Click here to view code image

type Writable<T> = {

 -readonly [propname in keyof T]: T[propname]

}

To add or remove the ? modifier, use ? or -?:

Click here to view code image

type AllRequired<T> = {

 [propname in keyof T]-?: T[propname]

}

Exercises

	What do the following types describe?

Click here to view code image

(number | string)[]

number[] | string[]

[[number, string]]

[number, string, ...:number[]]

[number, string, ...:(number | string)[]]

[number, ...: string[]] | [string, ...: number[]]

	Investigate the difference between functions with return type void and return type undefined. Can a function returning void have any return statements? How about returning undefined or null? Must a function with return type undefined have a return statement, or can it implicitly return undefined?

	List all types of the functions of the Math class.

	What is the difference between the types object, Object, and {}?

	Describe the difference between the types

Click here to view code image

type MaybeColoredPoint = {

 x: number,

 y: number,

 color?: string

}

and

Click here to view code image

type PerhapsColoredPoint = {

 x: number,

 y: number,

 color: string | undefined

}

	Given the type

Click here to view code image

type Weekday = 'Mon' | 'Tue' | 'Wed' | 'Thu' | 'Fri' | 'Sat' | 'Sun'

is Weekday a subtype of string or the other way around?

	What is the subtype relationship between number[] and unknown[]? Between { x: number, y: number } and { x: number | undefined, y: number | undefined }? Between { x: number, y: number } and { x: number, y: number, z: number }?

	What is the subtype relationship between (arg: number) => void and (arg: number | undefined) => void? Between () => unknown and () => number? Between () => number and (number) => void?

	What is the subtype relationship between (arg1: number) => number and (arg1: number, arg2?: number) => number?

	Implement the function

Click here to view code image

const act = (x: { bark(): void } | { meow(): void }) => . . .

that invokes either bark or meow on x. Use the in operator to distinguish between the alternatives.

	Show that object covariance is unsound. Use the types

Click here to view code image

type Colored = { color: string }

type MaybeColored = { color: string | undefined }

As with arrays in Section 13.7.3, “Array and Object Type Variance” (page 282), define two variables, one of each type, both referring to the same value. Create a situation that shows a hole in the type checker by modifying the color property of one of the variables and reading the property with the other variable.

	In Section 13.11, “Indexed Properties” (page 290), you saw that it is impossible to declare

Click here to view code image

type Dictionary = {

 created: Date, // Error—not a string or string[]

 [arg: string]: string | string[]

}

Can you overcome this problem with an intersection type?

	Consider this type from Section 13.11, “Indexed Properties” (page 290):

Click here to view code image

type ShoppingList = {

 created: Date,

 [arg: number] : string

}

Why does the following code fail?

Click here to view code image

const list: ShoppingList = {

 created: new Date()

}

list[0] = 'eggs'

const more = ['ham', 'hash browns']

for (let i in arr)

 list[i + 1] = arr[i]

Why does this code not fail?

for (let i in arr)

 list[i] = arr[i]

	Give an example of supertype/subtype pairs for each of the rows of Table 13-1 that is different from those given in the table. For each pair, demonstrate that a supertype variable can hold a subtype instance.

	The generic Pair<T> class from Section 13.13.5, “Generic Type Variance” (page 302), is covariant in T. Show that this is unsound. As with arrays in Section 13.7.3, “Array and Object Type Variance” (page 282), define two variables, one of type Pair<Person> and of type Pair<Employee>, both referring to the same value. Mutate the value through one of the variables so that you can produce a runtime error by reading from the other variable.

	Complete the generic function

Click here to view code image

const last = <. . .> (values: T) => values[values.length - 1]

so that you can call:

Click here to view code image

const str = 'Hello'

console.log(last(str))

console.log(last([1, 2, 3]))

console.log(last(new Int32Array(1024)))

Hint: Require that T has a length property and an indexed property. What is the return type of the indexed property?

Index

Symbols and Numbers

- (minus sign)

in regular expressions, 124

operator, 9

-- operator, 10, 31

with arrays, 144

_ (underscore)

in identifiers, 7

in number literals, 100–101

, (comma)

in let statements, 42

in URLs, 120

operator, in loops, 41

trailing, 17, 19

; (semicolon)

after statements, 28–31

in URLs, 120

terminating lines with, 6

: (colon), in URLs, 120

! operator, 34, 37–38

!= operator, 35–37

!== operator, 35

? (quotation mark)

in regular expressions, 123–127

in TypeScript, 291, 304

in URLs, 120

? : operator, 33–34

in TypeScript, 303

?: operator

in regular expressions, 126, 132

in TypeScript, 294

?! operator, 137

??, ?. operators, 38

?<=, ?= operators, 137

/ (slash)

in regular expressions, 127

in URLs, 120, 211

operator, 9, 105

. (period), in regular expressions, 123–125

./, ../, in relative URLs, 211

... (ellipsis)

in function parameters, 64

in rest declarations, 23–24

spread operator, 115

with arrays, 65–66

`. . .` (backticks), 15

^ (caret)

operator, 39

in regular expressions, 123–125, 127–128

~ (tilde), operator, 39

'. . .', ". . ." (single and double quotes)

for string literals, 13

matching for, 132–133

'' (empty string)

as a Boolean, 34

converting to numbers/strings, 11

(. . .) (parentheses)

in arrow functions, 55

in conditional statements, 31

in object destructuring, 23

in regular expressions, 123–126, 131–133

starting statements with, 30

[. . .] (square brackets)

for arrays, 18, 141

for code units, 15

for symbol keys, 222

in regular expressions, 123–125, 131–133

starting statements with, 30

{. . .} (curly braces)

and object literals, 18

around single statements, 33

for configuration objects, 67, 292–293

in arrow functions, 55

in export statements, 214–215

in import statements, 212

in regular expressions, 123–126, 131–133

@ (at), in URLs, 120

$ (dollar sign)

in identifiers, 7

in regular expressions, 123–128

in String.replace method, 135

in URLs, 120

${. . .} expression, 15, 121, 225

* (asterisk)

in export statements, 216

in import statements, 212

in regular expressions, 123–127, 136

operator, 9

with generator functions, 254–257, 261

*? operator, 137

** operator, 10

\ (backslash)

in [image: Images], 122

in regular expressions, 123–127

in string literals, 13

in template literals, 16

in URLs, 122

& (ampersand)

operator, 39

escaping, in HTML, 56

in URLs, 120

&& operator, 34, 37–38

(number sign)

in method names, 86

in URLs, 120

% (percent sign)

in URLs, 120

operator, 10, 25

+ (plus sign)

in regular expressions, 123–127, 136

in URLs, 120

operator, 9–11, 224

+? operator, 137

++ operator, 10, 31

+= operator, 10

< (left angle bracket)

escaping, in HTML, 56

operator, 34–36, 176

<< operator, 39

<= operator, 34–36, 176

<. . .> (angle brackets), for generic parameters, 297

= (equal sign)

for default parameters, 64

in URLs, 120

== operator, 35–37, 225

=== operator, 35

for array elements, 149

for maps, 158

=> operator, 54, 176–177

>, >= operators, 34–36, 176

>>, >>> operators, 39

| (vertical bar)

operator, 39

for union type (TypeScript), 270, 273, 276, 279, 296

in regular expressions, 123–126

|| operator, 34, 37–38

0 (zero)

converting to Boolean, 12, 34

dividing by, 9

leading, in octal numbers, 62, 99

[image: Images], 14–15, 42, 44, 66, 115–116, 129

[image: Images], 116–118

Å, 178

π, mathematical constant, 104

ß (in German), 118, 177

A

abs function (Math), 104

acos, acosh functions (Math), 104

add method (Set), 158

AggregateError, 197

all method (Promise), 196, 201–202

AMD (Asynchronous Module Definition), 210

any method (Promise), 197

any type (TypeScript), 274–275

apply method

of Function, 237

of Reflect, 242

arithmetic operators, 9–12

Array class

concat method, 148, 223, 225

copyWithin method, 145–146

entries method, 150

every method, 147, 149, 151

fill method, 145–146

filter method, 56–57, 147, 150–152, 225

find, findIndex methods, 147, 149, 151

firstIndex, lastIndex methods, 147

flat method, 147–149, 152, 225

flatMap method, 147, 151–152, 225

forEach method, 56, 147, 150–152

from function, 142, 146, 151–152, 250

includes method, 147, 149, 271

index, input properties, 143

indexOf method, 149

isArray function, 279

join method, 56, 119, 147, 151–152

lastIndexOf method, 149

length property, 143

map method, 56, 147, 151, 153, 225

of function, 142, 164

pop, push methods, 144, 146

prototype property, 44, 232

reduce method, 153–156

reduceRight method, 153, 155

reverse method, 145–146

shift, unshift methods, 144, 146

slice method, 147–148, 225

some method, 147, 149–151

sort method, 145–147, 152, 176

splice method, 144–146, 225

subarray method, 225

array buffers, 163

ArrayBuffer class, 163

arrays, 18–20

building HTML lists from, 56

comparing to other types, 36

constructing, 65, 141–142

converting to:

numbers, 11

strings, 11, 19

destructuring, 21–22, 250

elements of:

adding, 144

computing values from, 153–156

deleting, 144

filtering, 150

iterating over, 42–43, 56–57, 150–151, 249–250, 255–257

missing, 143, 152

searching, 149

empty, 141, 154

flattening, 148–149, 256

functional processing, 56–57

initializing, 66

length of, 141, 143

multidimensional, 20, 148

sorting, 145–147, 152

sparse, 152

type tests for, 63

type variance of, 282–283

typed, 160–162

with spread operator, 65

arrow functions, 54–55

and this, 78, 93–95

vs. generators, 255

with async, 199

as keyword, 8

as default statement, 215

ASCII format, 129

asin, asinh, atan, atanh functions (Math), 104

asIntN, asUintN functions (BigInt), 105

assign function (Object), 226, 231

async/await statements, 8, 197, 197–202

concurrent, 201

throwing/catching exceptions in, 202

with generators, 261–263

with module imports, 213

AsyncFunction class, 199

asynchronous programming, 185–202

using generators with, 259–260

asyncIterator field (Symbol), 223

average function, 62–65, 270

B

b, B, in binary literals, 99–100

\b, \B, in regular expressions, 127

bank account objects, 59–60

BCP 47 memo, 170

big integers, 105

big-endian ordering, 163

BigInt class, 105

binary data, 163

binary numbers, 99

bind method (Function), 236

bitwise operators, 39

block statements, 32

Boolean operators, 37–39

boolean type (TypeScript), 274–275

Boolean values, 12

converting to numbers/strings, 11

in conditions, 32, 34

returned by predicate functions, 57

Boolishness, 34

branches, 31–33

break statement, 7, 40, 44–46

labeled, 45

semicolon insertion in, 30

browsers

CORS restrictions in, 217

modules in, 211, 217

running JavaScript in, 1–2

safety checks in, 192

user preferences in, 180

C

\c, in regular expressions, 125

C# language

casts in, 279

classes in, 82

scope of variables in, 67

type variance in, 302

C++ language

abstract methods in, 89

catching exceptions in, 71

classes in, 82

concurrent programs in, 185

error objects in, 71

functions in, 9

hash/tree maps in, 158

hexadecimal floating-point literals in, 100

methods in, 9, 78

no-argument constructors in, 91

scope of variables in, 67

tree nodes in, 96

call method (Function), 236

callback functions, 186

callback hell, 188

captured variables, 58–60

case label, 7, 39

catch method (Promise), 195, 197

catch statement, 7, 46, 70–73

with promises, 190, 200

cbrt, ceil functions (Math), 104

character classes, 124–126

characters

combined, 178

encoding, 14

in regular expressions, 123–125

Chinese language, 168

circular references, 234

class statement, 7, 83–84, 91

using new operator with, 92

classes, 83–84

anonymous, 91

executed in strict mode, 84

generic, 297–298

private fields in, 86

static fields/methods in, 86–87

subclasses in, 87–89

vs. functions, 82–84

vs. modules, 210

clear method (Map), 157

clones, 232–234

closeable iterators, 252–253

closure pattern, 60

closures, 57–58

and var, 68, 74

simulating modules through, 210

code points, 14, 115

code units, 14, 116

collation, 176–177

comments, 5–6

Common.js module system, 210

comparisons, 34–37

compile-time typing, 269

concat method

of Array, 148, 223, 225

of String, 119

concurrent tasks, 185–188

conditional operator, 33

conditional statements, 31

arbitrary values in, 32, 34

configuration objects, 67, 292–293

console.log method, 28, 101

const statement, 6–7, 17

and scope of variables, 68

constants, mathematical, 104

constructor keyword, 83–84, 235

constructors, 81–83

setting object properties in, 85

subclass/superclass, 90–91

continue statement, 7, 46

labeled, 46

semicolon insertion in, 30

control flow statements, 30–33

copyWithin method (Array), 145–146

CORS (Cross-Origin Resource Sharing), 192, 217

cos, cosh functions (Math), 104

country codes, 168–170

create function (Object), 226, 231–232

Crockford, Douglas, 60

cross-origin errors, 192

currency, displaying, 172

D

\d, \D, in regular expressions, 124–125

data transfer, 186, 259

DataView class, 163

Date class, 106–108, 173

getXXX methods, 107, 109

mutability of, 110

now, parse functions, 109

setXXX methods, 109

toXXX methods, 107, 110

UTC function, 107, 109

dates

constructing, 106–109

current, 109

distance between, 108

formatting, 110, 173–174

localizing, 168, 173–174

parsing, 109

ranges of, 174

daylight savings time, 106

debugger statement, 7

decimal numbers, 99

default keyword, 7, 39

default values, 38

defineProperties function (Object), 226, 228

defineProperty function

of Object, 226–227, 239, 242

of Reflect, 242

delete method

of Map, 157

of Set, 158

of WeakMap/WeakSet, 160

delete statement, 7, 17

applied to unqualified identifiers, 61

deleteProperty method (Reflect), 239, 242

destructuring, 21–24, 66–67

development tools console

enabling strict mode in, 61

running JavaScript in, 2–3

do statement, 7, 40–41

Document.querySelectorAll method, 250

documentation comments, 6

DOM nodes, attaching properties to, 159

dotAll property (RegExp), 125, 128, 133

duck typing, 288

E

e, mathematical constant, 104

e, E, in number literals, 99–100

Eclipse development environment, 4

ECMAScript Internationalization API (ECMA-402), 180

ECMAScript language

module system in, 209–211

specification of, 79

else statement, 7, 32

else if statement, 32

emojis

encoding, 116

in regular expressions, 130

empty string

as a Boolean, 34

converting to numbers/strings, 11

encodeURI function (String), 120

endianness, 163

endsWith method (String), 116, 119

English language

dates in, 168

plurals in, 178–179

string ordering in, 176

entries method

objects returned by, 250

of Array, 150

of Map, 158

of Object, 226, 229

of Set, 159

enum, 7

epoch, 106

equality testing, 35

Error function, 70–71

error objects, 71

escape sequences, 13

every method (Array), 147, 149, 151

exceptions

catching, 46–47, 70–73

throwing, 46, 69–72

exec method (RegExp), 130–131, 133–134

exp, expm1 functions (Math), 104

export statement, 7, 213–216

export default statement, 214–215

expression statements, 28

expressions, 27–29

extends, 7, 87–91

in TypeScript, 300, 303–304

F

\f, in regular expressions, 125

factory class pattern, 60

factory functions, 78

invoking, 81

local variables in, 59–60

parameters in, 60

failures, 69

false value, 7, 12, 34

fetch function (Promise), 192–193

Fetch API, 188, 193, 199

fields

private, 86

private static, 87

static, 86–87

File API, 163

file:// URLs, 211

fill method (Array), 145–146

filter method (Array), 56–57, 147, 150–152, 225

finally statement, 7, 72–73

find, findIndex methods (Array), 147, 149, 151

firstIndex method (Array), 147

flags property (RegExp), 128, 133

flat method (Array)

of Array, 147–149, 152, 225

of typed arrays, 162

flatMap method

of Array, 147, 151–152, 225

of typed arrays, 162

floating-point numbers, 8, 99–100

FloatXXXArray classes, 160–161

floor function (Math), 39, 104

Flow type checker, 270

for await of statement, 201, 261–263

for each loop (Java), 43

for in statement, 43–44

and legacy libraries, 44

for arrays, 150

iterating over a string, 44

for method (Symbol), 222

for of statement, 42, 249–251, 253, 255, 262

for arrays, 150

for sets, 159

for statement, 7, 41–42

forEach method

of Array, 56, 147, 150–152

of Map, 157

of Set, 159

format method

of Intl.DateTimeFormat, 173

of Intl.ListFormat, 179

of Intl.NumberFormat, 171–172

of Intl.RelativeTimeFormat, 175

formatRange method (Intl.DateTimeFormat), 174

formatToParts method

of Intl.DateTimeFormat, 175

of Intl.NumberFormat, 171

of Intl.RelativeTimeFormat, 175

free variables, 57–58

freeze function (Object), 60, 226, 230

from function (Array), 142, 146, 151–152, 250

from keyword, 8

fromCodePoint function (String), 115, 119

fromEntries function (Object), 226, 231

fround, ftrunc, ffloor, fceil functions (Math), 104

function statement, 7, 51, 54

and this, 78

comparing to arrow functions, 55

default parameters in, 66

for nested functions, 93

rest declarations in, 66

type annotations with, 271

Function class, 235

apply method, 237

bind method, 236

call method, 236

function literals, 54

functional array processing, 56–57

functional programming languages, 51

functions, 9

anonymous, 54–55, 69, 199

applying strict mode to, 61

arrow, 54–55, 78, 93–95, 199, 255

async, 199, 263

callback, 186

calling, 52

before declaring, 69

flexibly, 295

configuration objects for, 67, 292–293

declaring, 51–52, 61, 69

executing later, 57

factory, 59–60, 78, 81

generic, 297–299

higher-order, 53

immediately invoked, 69

mathematical, 104

named, 54, 199

nested, 55, 68–69, 93

parameterless, 55

parameters of:

always converted to numbers, 63

annotating, 270

default, 64, 66

destructuring, 292–293

duplicating, 62

named, 66

number of, 63–65

optional, 291

types of, 52, 62–63

predicate, 57

properties of, 235–236

return value of, 52–53

storing in variables, 53

terminating, 52

trap, 238–242

type tests for, 63

type variance of, 293–295

vs. classes in Java/C++, 82

with free variables, 57–58

G

g flag, in regular expressions, 128, 131

garbage collection, 160

generators, 254–255

as consumers, 257–259

asynchronous, 259–263

generic programming, 297–304

get keyword, 8, 85, 227–228

of proxies, 242

get method

of Map, 157

of WeakMap, 160

getCanonicalLocales method (Intl), 180

getIntXXX, getUIntXXX, getFloatXXX methods (DataView), 163

getOwnPropertyXXX functions

of Object, 226, 228–230, 232, 239

of proxies, 242

getPrototypeOf function

of Object, 80, 226, 231–232, 239

of proxies, 242

getters, 85, 228

overriding, 90

static, 87

getUTCXXX, getXXX methods (Date), 107, 109

getYear method (Date), obsolete, 109

global property (RegExp), 128, 131, 133

Greek letters, 122

groups property (RegExp), 133

Gulliver’s Travels, 163

H

Hanafuda playing cards, 187

hard objects, 59–60

has method

of Map, 157

of proxies, 242

of WeakMap/WeakSet, 160

hasInstance field (Symbol), 223

hasOwnProperty method (Object), 226, 230

hexadecimal numbers, 99

higher-order functions, 53

hoisting, 67–69

HTML (HyperText Markup Language)

building lists from arrays in, 56

canvas images in, 161

escaping characters in, 56

hyperlinks in, 123

HTMLCollection collection, 141

hyperbolic functions, 104

hypot function (Math), 104

I

i flag, in regular expressions, 127–128

identifiers, 7–8

unqualified, 61

IEEE 754 standard, 99

if statement, 7, 31

vs. switch, 40

ignoreCase property (RegExp), 127–128, 133

images

in HTML canvas, 161

loading, 186–187, 201–202

immediately invoked functions, 69

implements keyword, 8, 288

import statement, 7, 211–213

import.meta object, 217

in statement, 7, 143, 229

in TypeScript, 279

includes method

of Array, 147, 149, 271

of String, 116, 119

index property (Array), 143

index signatures, 290–291

indexOf method

of Array, 149

of String, 116, 119, 136

infer keyword, 303

Infinity variable, 100, 102

inheritance, 87–89

input property (Array), 143

instance fields, 85–86

instanceof operator, 7, 89, 232

in TypeScript, 279, 301

integers, 99

big, 105

no explicit type for, 8

rounding numbers to, 9

interface keyword, 8

interfaces, 288–290

internal slots, 79

internationalization, 167–181

Internet Engineering Task Force, 170

Intl.Collator class, 177

resolvedOptions method, 181

supportedLocalesOf method, 180

Intl.DateTimeFormat class

format method, 173

formatRange method, 174

formatToParts method, 175

supportedLocalesOf method, 180

Intl.DisplayNames class, 180

Intl.getCanonicalLocales method, 180

Intl.ListFormat class, 179

select method, 179

supportedLocalesOf method, 180

Intl.NumberFormat class

format method, 171–172

formatToParts method, 171

supportedLocalesOf method, 180

Intl.PluralRules class, 178–179

select method, 178

supportedLocalesOf method, 180

Intl.RelativeTimeFormat class, 175

format, formatToParts methods, 175

supportedLocalesOf method, 180

IntXXXArray classes, 160–161

is function (Object), 35

isArray function (Array), 279

isConcatSpreadable field (Symbol), 149, 223

isExtensible function (Object), 226, 230, 239

isFinite function

global, 102

of Number, 102–103

isFrozen function (Object), 226, 230

isInteger function (Number), 102

isNaN function

global, 102

of Number, 35, 102–103

ISO 8601 format, 106

isPrototypeOf method (Object), 226, 232

isSafeInteger function (Number), 102–103

isSealed function (Object), 226, 230

iterables, 42, 141, 249–250

async, 261

implementing, 250–252

iterator field (Symbol), 222–223, 250–253

iterators, 252–253

J

Japanese imperial calendar, 169

Java language

abstract methods in, 89

captured variables in, 58

casts in, 279

catching exceptions in, 71

classes in, 82

concurrent programs in, 185

Date class in, 106

error objects in, 71

extends keyword in, 89

for each loop in, 43

hash/tree maps in, 158

hexadecimal floating-point literals in, 100

methods in, 9, 78

modules in, 210–211

no-argument constructors in, 91

packages in, 210

scope of variables in, 67

tree nodes in, 96

type variance in, 302

JavaScript language

functional, 51

running, 1–4

stage 3 proposal, 38, 86–87, 100, 134, 171, 173, 180–181, 197, 217, 284

stage 4 proposal, 213

join method (Array), 56, 119, 147, 151–152

.js extension, 217

JSDoc tool, 6

JSON (JavaScript Object Notation), 20–21

asynchronous processing of, 199

parse method, 20, 47

stringify method, 20–21

jump tables, 40

K

key/value pairs, 156

keys method

objects returned by, 250

of Map, 158

of Object, 226, 229, 239, 243–244

of Set, 159

keywords, 7–8

Komodo development environment, 4

L

labeled breaks, 45

language codes, 168–170

lastIndex method (Array), 147

lastIndex property (RegExp), 131

lastIndexOf method

of Array, 149

of String, 116, 119

[image: Images] language, 122

lazy evaluations, 37

leap seconds, 105

length property (Array), 143

let statement, 6–8

and scope of variables, 67–68

letters

in regular expressions, 130

lowercase/uppercase, 118, 120

light-server http server, 187

LinkedHashMap (Java), 157

little-endian ordering, 163

loadImage function (Promise), 192

local time zone, 107–108

localeCompare method (String), 147, 176–178

locales, 167–168

dates in, 107, 110, 168, 172

displaying, 180

numbers in, 167–168, 171–172

plurals in, 178–179

specifying, 168–170

strings in, 177–178

sorting, 147, 176–177

tags for, 180

time in, 172

log, log2, log10, log1p functions (Math), 104

logging, 21, 215

lookahead/lookbehind operators, 137

loops, 40–44

condition values for, 34

exiting, 44–46

loose equality, 35–37

lowercase letters

converting to, 118, 120

in regular expressions, 130

lvalues, 22

M

m flag, in regular expressions, 128

map method (Array), 56, 147, 151, 153, 225

Map class, 156

generic, 298

methods of, 157–158

size property of, 157

mapped types, 303–304

maps, 156–158

adding/removing entries of, 157

constructing, 157, 250

empty, 157

iterating over, 250

keys of, 157

traversing, 157

weak, 160

match, matchAll fields (Symbol), 223

match, matchAll methods (String), 120, 131, 134

Math class, 103–104

constants of, 104

functions of, 104

floor, 39, 104

max, 33, 42, 65, 103–104

min, 103–104

pow, 104, 276

random, 104

round, 104

sqrt, 104, 276

trunc, 9, 104

Maven artifacts, 211

methods, 9, 77–78

default values for, 38

intersepting invocations of, 237

invoked:

with invalid arguments, 46

without an object, 92

overriding, 89–90

private, 86

private static, 87

setting object properties in, 85

static, 86–87

with async, 199

Microsoft, 269

.mjs extension, 217

modules, 209–217

circular dependencies between, 215–216

default feature of, 211

exported vs. private features of, 209

exporting, 213–216

importing, 211–213

loading asynchronously, 210

named features in, 212

packaging, 217

processing, 217

URLs for, 211

vs. classes/closures, 210

multiline property (RegExp), 128, 133

N

n, in big integers, 105

\n, in regular expressions, 125

name conflicts, 210

named arguments, 66

NaN (Not A Number), 9, 12–13

arithmetic operations with, 10–11

assigning new values to, 61

checking for, 102

comparing to, 35–36

converting to Boolean, 12, 34

global variable for, 100, 102

navigator.languages property, 180

never type (TypeScript), 274–275

new operator, 7, 81–82, 84, 231

missing in a constructor function, 92

with Array, 142

with maps, 157

next method (iterators), 250, 261

Node.js

enabling strict mode in, 61

modules in, 210, 217

rejected promises in, 202

running JavaScript in, 3–4

NodeList collection, 141

non-strict mode, 62, 69, 74

normalize method (String), 178

Norwegian language, 169

now function (Date), 109

npm package manager, 272

null type (TypeScript), 274–275

null value, 5, 7

arithmetic operations with, 11

checking values for, 38

comparing to, 35, 37

converting to numbers/strings, 11

Number class, 92, 103

constants of, 102–103

isFinite function, 102–103

isInteger function, 102

isNaN function, 35, 102–103

isSafeInteger function, 102–103

parseFloat, parseInt functions, 8–9, 46, 101–102

toExponential, toFixed, toPrecision methods, 100, 103

toLocaleString method, 171–172

toString function, 9, 82, 100, 103

number type (TypeScript), 273–275

number[] type (TypeScript), 273

numbers, 8–9, 99–100

comparing, 34

to other types, 36–37

converting:

from strings, 8, 36, 92, 101

to strings, 9, 11, 100

dividing by zero, 9

finding largest/smallest of, 103

formatting, 100, 167–168, 171–172

in regular expressions, 130

parsing, 101–102

random, 104, 259–260

removing fractional part of, 39

rounding, 8–9, 104

type tests for, 63

Nynorsk standard, 169

O

o, O, in octal literals, 99–100

obj.__proto__ notation, 80

Object class, 77

assign function, 226, 231

create function, 226, 231–232

defineProperties function, 226, 228

defineProperty function, 226–227, 239, 242

entries method, 226, 229

freeze function, 60, 226, 230

fromEntries function, 226, 231

getOwnPropertyXXX functions, 226, 228–230, 232, 239

getPrototypeOf function, 80, 226, 231–232, 239

hasOwnProperty method, 226, 230

is function, 35

isExtensible function, 226, 230, 239

isFrozen function, 226, 230

isPrototypeOf method, 226, 232

isSealed function, 226, 230

keys method, 226, 229, 239, 243–244

preventExtensions function, 226, 230, 239

propertyIsEnumerable method, 226, 230

prototype property, 44, 82

seal function, 226, 230

setPrototypeOf function, 80, 226, 231, 239

toLocaleString method, 170

toString method, 223–224

values method, 226, 229

object literals, 17

object-oriented programming languages, 77

inheritance in, 87

objects, 16–17, 77

array-like, 142

as map keys, 158

attaching properties to, 222

cloning, 232–234

comparing, 35

converting to numbers/strings, 11

creating, 231

destructuring, 22–24

hard, 59–60

immutable, 230

internal slots of. See prototypes

iterable, 42, 141

keys of, 221

nested, 23

properties of. See properties

protecting, 230

type variance of, 282–283

wrapper, 5

octal numbers, 62, 99

regular expressions for, 132

of function

of Array, 142, 164

of typed arrays, 161

of keyword, 8

offending tokens, 29

One True Brace Style (1TBS), 32

operators

arithmetic, 9–12

bitwise, 39

Boolean, 37–39

greedy, 136

shift, 39

ORM (object-relational mapper), 237

P

\p, \P, in regular expressions, 125

package statement, 8

package.json file, 217

padStart, padEnd methods (String), 118–119

parse function (Date), 109

parse method (JSON), 20, 47

parseFloat, parseInt functions (Number), 8, 101–102

invalid parameters for, 9, 46

pipelines, 193, 197

plurals, 178–179

polymorphism, 90

pop method (Array), 144, 146

pow function (Math), 104, 276

predefined character classes, 124–126

predicate functions, 57

preventExtensions function (Object), 226, 230, 239

primitive types, 5

controlling conversion on, 224–225

printf function (C), 101

private keyword, 8

private properties, 59

programming

asynchronous, 185–202, 259–260

functional, 51

generic, 297–304

object-oriented, 77

Promise class, 188–190

all method, 196, 201–202

any method, 197

catch method, 195, 197

fetch function, 192–193

loadImage function, 192

race method, 197

reject method, 189–191

resolve method, 189–191, 193–195

then method, 192–197

promises, 185, 188–202

making, 188–191

multiple:

chaining, 192–194

executing, 196

racing, 197

obtaining results of, 191–192

rejected, 190–191, 194–197, 202

settled, 190

immediately, 191

properties (of objects)

attributes of, 225–228

common to multiple objects, 79

descriptors of, 227

dynamic, 227, 244

enumerating, 228–229

iterating over, 43

testing, 229–230

writing to, 81

propertyIsEnumerable method (Object), 226, 230

protected keyword, 8

prototype property, 82, 235

prototype chain, 81, 88, 229, 231

[[Prototype]] internal slot, 82

prototypes, 78–81

accessing, 231

lookup mechanism of, 80–81

setting, 80

updating, 231

proxies, 237–239

checking return values of, 242

invariants for, 242–244

Proxy.revocable function, 239

public keyword, 8

punctuation, in regular expressions, 130

push method (Array), 144, 146

Q

QED text editor, 124

querySelectorAll method (Document), 250

R

\r, in regular expressions, 125

race method (Promise), 197

random function (Math), 104

random numbers, 104, 259–260

RangeError, 162

raw property (String), 122

readonly property (TypeScript), 285, 303

reduce method (Array), 153–156

reduceRight method (Array), 153, 155

reduction, 153–156

ReferenceError, 62, 68

Reflect class, 240–242

functions of, 239, 242

RegExp class, 127, 130–131

exec method, 130–131, 133–134

flags property, 133

groups property, 133

lastIndex property, 131

test method, 130, 133

regular expression literals, 127

regular expressions, 123–127

and Unicode, 129–130

character classes in, 124–126

flags in, 127–128

for numbers, 101

groups in, 131–133

lookahead/lookbehind operators in, 137

reserved characters in, 123–125

reject method (Promise), 189–191

repeat method (String), 118–119

REPL (“read-eval-print” loop), 28

replace method

of String, 120, 134–136

of Symbol, 223

resolve method (Promise), 189–191, 193–195

resolvedOptions method (Intl.Collator), 181

rest declarations, 23–24, 64–66

return method (iterators), 252–253, 258

return statement, 7

in arrow functions, 55

in function declarations, 52–53

semicolon insertion in, 30, 53

reverse method (Array), 145–146

revocable method (Proxy), 239

round function (Math), 104

roundoff errors, 8

run-time errors, 6

Russian language, 178–179

S

s flag, in regular expressions, 128

\s, \S, in regular expressions, 124, 126

script element (HTML), 217

seal function (Object), 226, 230

search method

of String, 120, 134, 136

of Symbol, 223

select method (Intl.PluralRules), 178

semicolon insertion, 28–31, 53

Set class, 158–159

add method, 158

delete method, 158

entries method, 159

forEach method, 159

generic, 298

keys method, 159

size property, 158

values method, 159

set keyword, 8, 85, 227–228

set method

of Map, 157

of typed arrays, 162

of WeakMap/WeakSet, 160

setIntXXX, setUIntXXX, setFloatXXX methods (DataView), 163

setPrototypeOf function (Object), 80, 226, 231, 239

sets, 158–159

constructing, 158, 250

iterating over, 250

order of entries in, 159

weak, 160

setters, 85, 228

overriding, 90

static, 87

setTimeout function, 57

shift method (Array), 144, 146

shift operators, 39

sign function (Math), 104

sin, sinh functions (Math), 104

size property

of Map, 157

of Set, 158

slice method

of Array, 147–148, 225

of String, 117, 119

sloppy mode, 62, 69, 74

some method (Array), 147, 149–151

sort method (Array), 145–147, 152, 176

species field (Symbol), 222–223, 225

splice method (Array), 144–146, 225

split method

of String, 117, 120, 135

of Symbol, 223

spread operator, 65–66, 115, 231, 250

for cloning, 232

sqrt function (Math), 104, 276

stack trace, 71

startsWith method (String), 116, 119

statements, 27–29

block, 32

conditional, 31

control flow, 30–33

expression, 28

terminated with semicolons, 29–31

static keyword, 8, 86–87

sticky property (RegExp), 128, 131, 133

strict equality, 35

strict mode, 61–62, 67–69

creating variables in, 7

enabling, 61

for classes, 84

for modules, 217

forbidden keywords in, 8

missing new operator in, 92

octal numbers in, 99, 132

property attributes in, 227

String class

concat method, 119

endsWith method, 116, 119

fromCodePoint function, 115, 119

includes method, 116, 119

indexOf method, 116, 119, 136

lastIndexOf method, 116, 119

localeCompare method, 147, 176–178

match, matchAll methods, 120, 131, 134

normalize method, 178

padStart, padEnd methods, 118–119

raw property, 122

repeat method, 118–119

replace method, 120, 134–136

search method, 120, 134, 136

slice method, 117, 119

split method, 117, 120, 135

startsWith method, 116, 119

substring method, 116

toLocaleXXXCase methods, 177

toLowerCase, toUpperCase methods, 118, 120

trim, trimStart, trimEnd methods, 118–119

string literals, 13–15

string type (TypeScript), 274–275

stringify method (JSON), 20

strings

comparing, 35, 176

concatenating, 10–11, 119, 270

converting:

from arrays, 11, 19, 151

from numbers, 9, 100

from/to code points, 115

to numbers, 8, 11, 36, 92, 101

extracting substrings from, 9

iterating over, 42, 44, 250

length of, 118–119

numeric, 177

patterns for. See regular expressions

replacing, 120

sorting, 176–177

type tests for, 63

with embedded expressions. See template literals

working with locales, 177–178

strong element (HTML), 121

subarray method

of Array, 225

of typed arrays, 162

subclasses, 87–89

overriding methods in, 89–90

substring method (String), 116–117

substrings, 116–117

super keyword, 7, 90–91

superclasses, 87

constructors of, 237

overriding methods of, 89–90

supportedLocalesOf method (Intl.XXX), 180

switch statement, 7, 39–40

Symbol class, 221

asyncIterator field, 223

for method, 222

hasInstance field, 223

isConcatSpreadable field, 223

iterator field, 222–223, 250–253

match, matchAll fields, 223

replace field, 223

search field, 223

species field, 222–223, 225

split field, 223

toPrimitive field, 223–225

toStringTag field, 223

symbol type (TypeScript), 274–275

symbols, 221–222

creating, 221

global, 222

in regular expressions, 130

properties of, 223

uniqueness of, 222

T

T, in dates, 106

\t, in regular expressions, 125

tag functions, 121

tan, tanh functions (Math), 104

target keyword, 8

template literals, 12, 15–16

raw, 122–123

tagged, 16, 121–122

test method (RegExp), 130, 133

Thai numerals, 168–169

then method (Promise), 192–197

this reference, 7, 78, 92–95

and calls to super, 90

binding, 236

for object properties, 85

in constructor functions, 81–83

in TypeScript, 286

vs. captured variables, 60

with arrays, 151

threads, 185

throw method (iterators), 258–259

throw statement, 7, 70

semicolon insertion in, 30

time

current, 107–109

daylight savings, 106

formatting, 175

local, 107–109

localizing, 172, 175

measuring, 105

representing in computer, 106

time-consuming operations, 186

timeout, 57

™ (trademark symbol), 178

toExponential, toFixed, toPrecision methods (Number), 100, 103

toLocaleString method

of Number, 171–172

of Object, 170

toLocaleXXXCase methods (String), 177

toLowerCase, toUpperCase methods (String), 118, 120

toPrimitive field (Symbol), 223–225

toString method

of Date, 110

of Number, 9, 82, 100, 103

of Object, 223–224

toStringTag field (Symbol), 223

toXXXString methods (Date), 107, 110

trailing comma

in arrays, 19

in object literals, 17

trap functions, 238–242

trigonometric functions, 104

trim, trimStart, trimEnd methods (String), 118–119

true value, 7, 12, 34

trunc function (Math), 9, 104

try statement, 7, 46–47, 70–73

with promises, 190, 200

tsconfig.json file, 272–273

type annotations, 270–271

type parameters, 297

type variance, 282–283

generic, 302

of functions, 293–295

typeof operator, 5, 7, 105

in TypeScript, 274, 279

with arrays, 19

with regular expressions, 127

with symbols, 222

types, 5

comparing, 36–37

controlling conversion on, 224–225

generic, 297–298

inference of, 277–280

of function parameters, 52, 62–63

testing, 63

TypeScript, 269–304

classes in, 284–287

declaring, 284–285

instances of, 285–286

static types of, 286–287

composite types in, 273, 275–277

number[], 273, 275

string[], 275

union, 270, 273, 276, 279, 296

conditional types in, 303

covariance in, 283

enumerated types in, 275

functions in, 276

destructuring parameters of, 292–293

overloading, 296–297

type guard, 279

type variance of, 293–295

in statement in, 279

index signatures in, 290–291

instanceof operator in, 279, 301

interfaces in, 288–290

intersection types in, 276

mapped types in, 303–304

object types in, 276

optional parameters in, 291–292

optional/excess properties in, 281–282

primitive types in, 273–275

private/protected modifiers in, 285

running, 271–273

substitution rule in, 280–281

tuple types in, 275

type aliases in, 273

type assertion in, 279

type bounds in, 299–300

type erasures in, 300–301

type inference in, 277

type parameters in, 297–304

type variance in, 302

typeof operator in, 274, 279

U

u flag, in regular expressions, 128–129

\u{. . .} notation, of code points, 14

in regular expressions, 125, 129

UintXXXArray classes, 160–161

undefined type (TypeScript), 274–275

undefined value, 6, 9, 12–13

arithmetic operations with, 11

as function return value, 52

assigning new values to, 61

checking values for, 38

comparing to, 35

converting to:

Boolean, 12, 34

numbers/strings, 11

for function parameters, 64

undefined variable, 13

unicode property (RegExp), 128–129, 133

Unicode, 14

combined characters in, 178

in regular expressions, 128–130

normalization forms in, 178

union type (TypeScript), 270, 273, 276, 279, 296

unknown type (TypeScript), 274–275

unqualified identifiers, 61

unshift method (Array), 144, 146

uppercase letters

converting to, 118, 120

in regular expressions, 130

URLs

\ (backslashes) in, 122

for modules, 211

safe characters for, 120

UTC (Coordinated Universal Time), 106, 109

UTC function (Date), 107, 109

UTF-16 encoding, 116

in regular expressions, 129–130

V

\v, in regular expressions, 125

values

default, 38

finding type of, 5

iterable, 141, 249–250

values method

objects returned by, 250

of Map, 158

of Object, 226, 229

of Set, 159

var statement (obsolete), 7

and scope of variables, 67–69

with closures, 68, 74

variable declarations, 6–7, 27

variables

captured, 58–60

default values of, 24

free, in functions, 57–58

initializing, 6, 12

local, 59, 67–69

naming, 7–8

never chaining, 6

scope of, 67–69

storing functions in, 53

undeclared, 61–62

untyped, 6

Visual Studio Code development environment, 4, 272

void keyword, 7

void type (TypeScript), 274–275

W

\w, \W, in regular expressions, 124, 126

weak equality, 35–37

WeakMap class, 160

generic, 298

WeakSet class, 160

web servers, local, 187

WebSocket API, 163

WebStorm development environment, 4

while statement, 7, 40–41

whitespace

in regular expressions, 130

leading/trailing, 118–119

with statement, 7, 62

wrapper objects, 5

X

x, X, in hexadecimal literals, 99–100

\x, in regular expressions, 125

XMLHttpRequest class, 186, 259

yielding array buffers, 163

Y

y flag, in regular expressions, 128, 131

yield statement, 8, 250, 254

nested, 255–257

semicolon insertion in, 30

shallowness of, 255

with consumers, 257–259

Z

Zawinski, Jamie, 137

zero. See 0

Credits

Cover: Hatter engaging in rhetoric. Mad Hatter is telling a story to Alice and his friends. Alice in Wonderland original vintage engraving. Alice’s Adventures in Wonderland. Illustration from John Tenniel. Morphart Creation/Shutterstock.

Cover: White Rabbit looking at its watch. 1865 edition of Lewis Carroll’s Alice’s Adventures in Wonderland. Charles Dodgson (alias Lewis Carroll), published by MacMillan and Co. Book. Drawn by John Tenniel. Morphart Creation/Shutterstock.

Icon: Alice with Crown—Original book engraving. “‘And what is this on my head?’ she exclaimed in a tone of dismay, as she put her hands up to something very heavy, that fitted tight round her head.” Morphart Creation/Shutterstock.

Icon: Executioner argues with King about cutting off Cheshire Cat head—Alice’s Adventures in Wonderland, original vintage engraving. Morphart Creation/Shutterstock.

Icon: Hatter engaging in rhetoric. Mad Hatter is telling a story to Alice and his friends. Alice in Wonderland original vintage engraving. Alice’s Adventures in Wonderland. Illustration from John Tenniel. Morphart Creation/Shutterstock.

Icon: White Rabbit looking at its watch. 1865 edition of Lewis Carroll’s Alice’s Adventures in Wonderland. Charles Dodgson (alias Lewis Carroll), published by MacMillan and Co. Book. Drawn by John Tenniel. Morphart Creation/Shutterstock.

Figure 1–1: Screenshot of Firefox web browser © Mozilla Foundation.

Figure 1–2: Screenshot of Firefox web browser © Mozilla Foundation.

Figure 1–3: Screenshot of Node.js terminal © OpenJS Foundation.

Figure 1–4: Screenshot of WebStorm © JetBrains.

Page 272: Screenshot of The TypeScript playground © Microsoft 2020.

Page 278: Screenshot of Type information in Visual Studio Code © Microsoft 2020.

[image: Images]

[image: Images]

[image: Images]

[image: Images]

Code Snippets

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

[image: Images]

OEBPS/Images/pg175_Image_486.jpg
{ type: 'literal', value: ‘dans '},
{ type: 'integer', value: '3', unit: 'hour' },
{ type: 'literal', value: ' heures'}

OEBPS/Images/pg175_Image_485.jpg
new Intl.RelativeTimeFormat('fr').formatToParts(3, 'hours')

OEBPS/Images/pg175_Image_483.jpg
new Intl.RelativeTimeFormat(‘en’, { numeric: ‘auto’f).format(-1, "day’) // 'yesterday’
new Intl.RelativeTimeFormat('fr').format(3, 'hours') // 'dans 3 heures'

OEBPS/Images/pg175_Image_488.jpg
{ type: 'month’, value: 'December’ f,
{ type: 'literal’, value: * ' },
{ type: 'day’, value: '31' },

OEBPS/Images/pg175_Image_487.jpg
Intl.DateTimeFormat('en’,
{
dateStyle: ‘long’,
timeStyle: 'short’
}).formatToParts(newYearsEve)

OEBPS/Images/pg70_Image_220.jpg
try {
// Do work

} catch (e) {
// Handle exceptions

OEBPS/Images/pg292_Image_828.jpg
const result = mkString(elements,
{ separator ' leftDelimiter:

rightDelimiter: ')’ })

OEBPS/Images/pg292_Image_827.jpg
(argl: number, ...arg2: number[]) => number

OEBPS/Images/pg292_Image_826.jpg
const average = (first = 0, ...following: number[]) =>
let sun = first
for (const value of following) { sum += value }
return sun / (1 + following.length)

OEBPS/Images/pg70_Image_218.jpg
let reason = "Element ${elem} not found"
throw Error(reason)

OEBPS/Images/pg189_Image_518.jpg
const loadImage = url => {
return new Promise((resolve, reject) => {
const request = new XMLHttpRequest()
const callback = () = {
if (request.status == 260) {
const blob = new Blob([request.response], { type: 'image/png’ }
const img = document.createElement('img')
img.src = URL.createObjectURL(blob)
resolve(img)
else {
reject(Error("${request.status}: ${request.statusText}")

request .open('GET", url)

request. responseType = 'blob'

request.addEventListener('load', callback)
request.addEventListener('error', event => reject(Error('Network error')))
request.send()

}

OEBPS/Images/pg292_Image_829.jpg
const mkString = (values, config) =>
config.leftDelimiter + values.join(config.separator) + config.rightDelimiter

OEBPS/Images/pg212_Image_573.jpg

OEBPS/Images/pg189_Image_517.jpg
const produceAfterDelay = (result, delay) => {
return new Promise((resolve, reject) => {
const callback = () => resolve(result)
setTimeout (callback, delay)

OEBPS/Images/pg306_Image_906.jpg
const list: Shoppinglist = {
created: new Date()

b
list[6] = 'eggs'
const more = ['ham', 'hash browns']
for (let i in arr)
1list[i + 1] = arr[i]

OEBPS/Images/pg212_Image_574.jpg
1import CaesarCipher, * as CaesarCipherTools . . .

OEBPS/Images/pg189_Image_516.jpg
const myPromise = new Promise((resolve, reject) => {
const callback = (args) => {

if (success) resolve(result) else reject(reason)

invokeTask(callback)
)

OEBPS/Images/pg189_Image_515.jpg
const myPromise = new Promise((resolve, reject) => {
// Body of the executor function
})

OEBPS/Images/pg212_Image_571.jpg
import CaesarCipher, { encrypt as caesarEncrypt, decrypt as caesarDecrypt} . . .

OEBPS/Images/pg306_Image_904.jpg
type Dictionary = {
created: Date, // Error—not a string or string][]
[arg: string]: string | string[]

OEBPS/Images/pg212_Image_572.jpg
import { encrypt } from './modules/caesar.mjs'

OEBPS/Images/pg306_Image_905.jpg
type Shoppinglist = {
created: Date,
[arg: number] : string

}

OEBPS/Images/pg212_Image_570.jpg

OEBPS/Images/pg132_Image_359a.jpg

OEBPS/Images/pg306_Image_902.jpg

OEBPS/Images/pg306_Image_903.jpg
type Colored = { color: string }
type MaybeColored = { color: string | undefined }

OEBPS/Images/pg186_Image_1.jpg
const addImage = (url, element) => {
const request = new XMLHttpRequest()
request.open('GET", url)
request.responseType = 'blob’

request.addEventListener('load', () => {

if (request.status == 200) {
const blob = new Blob([request.response], { type: 'image/png' })
const img = document.createElement('img')
img.src = URL.createObjectURL(blob)
element.appendChild(img)

}oelse {
console.log("${request.status}: ${request.statusText}")

b
request.addEventListener('error', event => console.log('Network error'));
request.send()

}

OEBPS/Images/9780136502142.jpg
Modern
Javascript

for the

Cay S. Horstmann™
\\//I//{ o

©

T

Wi

%/,

OEBPS/Images/pg296_Image_852.jpg

OEBPS/Images/pg296_Image_853.jpg
function remove(str: string, c: string): string
function remove(str: string[], c: string): string[
function remove(str: string | string[], c: string) {
if (Array.isArray(str))
return str.map(s => s.replace(c, ''))
else
return str.replace(c, '')

OEBPS/Images/pg296_Image_850.jpg
(str: string | string[], c: string) => number

OEBPS/Images/pg296_Image_851.jpg
function remove(str, c) { // JavaScript
if (Array.isArray(str))
return str.map(s => s.replace(c, ''))
else
return str.replace(c, '')

OEBPS/Images/pg296_Image_849.jpg
function count(str: string | string|)], c: string) { . . .

OEBPS/Images/pg109_Image_310a.jpg

OEBPS/Images/pg198_Image_541.jpg
const putImages = async (urls, element) => {
for (url of urls)
putInage(url, element) // Ermror—no await for async putImage

OEBPS/Images/pg198_Image_540.jpg
const putImages = async (urls, element
for (url of urls) {
const img = await loadImage(url)
element . appendChild(img)

OEBPS/Images/pg212_Image_568.jpg
import { encrypt, decrypt } from './modules/caesar.mjs’

OEBPS/Images/pg212_Image_569.jpg
import { encrypt as caesarEncrypt, decrypt as caesarDecrypt }
from './modules/caesar.mjs’

OEBPS/Images/pg216_Image_590.jpg
export { randInt as randomInteger } from

'./modules/random.mjs

OEBPS/Images/pg216_Image_591.jpg
export { default } from './modules/stringutil.mjs’
export { default as StringUtil } from './modules/stringutil.mjs'

OEBPS/Images/pg216_Image_592.jpg

OEBPS/Images/pg198_Image_538.jpg
const putImage = (url, element) => {
LoadImage(url)
.then(ing => element.appendChild(ing))

OEBPS/Images/pg198_Image_539.jpg
const putTwoImages = async (urll, url2, element) => {
const imgl = await loadImage(urll)
element..appendChild(img1)
const img2 = await loadImage(url2)
element..appendChild(img2)

OEBPS/Images/pg198_Image_537.jpg
const putImage = async (url, element) => {
const img = await loadImage(url)
element .appendChild(img)

OEBPS/Images/pg216_Image_593.jpg
export *

from

./modules/random.mjs

OEBPS/Images/pg143_Image_387.jpg
someNames. length = 100

OEBPS/Images/pg162_Image_466.jpg

OEBPS/Images/pg178_Image_1.jpg
'part10'.localeCompare('part2', 'en', { numeric: true })

OEBPS/Images/pg143_Image_388.jpg
/([1-9]11(0-2]):([0-5](0-9])(lapIm)/.exec("12:15pm")
// ['12:15pm', '12', '15', 'pm', index: ©, input: '12:15pm']

OEBPS/Images/pg162_Image_464.jpg
canvas.addEventlistener('click’, event => {
for (let i = 6; i < rgba.length; i++) {
if (i %4 != 3) rgbali] = 255 - rgba[i]

ctx.putImageData(imgdata, 0, 8)
)

OEBPS/Images/pg143_Image_389.jpg
const squares = [0, 1, 4, 9]
squares[-1] =1// [0, 1, 4, 9, '-

OEBPS/Images/pg162_Image_463.jpg

OEBPS/Images/pg143_Image_384.jpg

OEBPS/Images/pg162_Image_468.jpg

OEBPS/Images/pg143_Image_385.jpg

OEBPS/Images/pg143_Image_386.jpg
someNames[5] = 'Miller’' // Now someNames has length 6

OEBPS/Images/pg162_Image_467.jpg

OEBPS/Images/pg36_Image_106.jpg
4] <5 // true—[4] is converted to the number 4
[] <5 // true—[] is converted to the number §
(3, 4] < 5 // false—[3, 4] is converted to NaN

OEBPS/Images/pg83_Image_244.jpg
class Employee {
constructor(name, salary) {
this.name = name
this.salary = salary

raiseSalary(percent) {
this.salary = 1 + percent / 10€
}
}

OEBPS/Images/pg253_Image_696.jpg
const lines = filename => {

const file = . . . // Open the file
return {
[Symbol.iterator]: () => ({
next: () = {
if (done) {

. . . // Close the file
return { done: true }

} else {
const line = . . . // Read a line
return { value: line }

}

}
['return']: () = {
.« . // Close the file
return { done: true } // Must return an object

OEBPS/Images/pg134_Image_369.jpg
let replacement = ‘agents 007 and 008'.replace(/[8-9]/g, '?")
// ‘agents 722 and 222"

OEBPS/Images/pg83_Image_243.jpg
Object.prototype

((Prototypel] null
tostring = function
function

Employee.prototyp

[tPrototype]] =
raiseSalary

function

harry
[(Prototype]] = —
name = ‘Harry Smith'
salary = 90000
sally
[[Prototype]] = —
name = ‘Sally Lopez'
salary = 100000

OEBPS/Images/pg253_Image_695.jpg
const find = (filename, target) => {
for (line of lines(filename)) {
if (line.contains(target)) {
return line // iterator.return() called

} // iterator.return() not called

OEBPS/Images/pg36_Image_107.jpg

OEBPS/Images/pg134_Image_368.jpg
let index = 'agents 007 and 008'.search(/[0-9]+/) // Yields index 7

OEBPS/Images/pg36_Image_104.jpg
let harry = { name: 'Harry Smith’, age: 42 }

let harry2 = harry

harry === harry2 // true—two references to the same object
let harry3 = { name: 'Harry Smith', age: 42 }

harry === harry3 // false—different objects

OEBPS/Images/pg36_Image_105.jpg
42" <5 // false—"42" is converted to the number 42
<5 // true—"" is converted to the number §
'Hello' <= 5 // false—'Hello' is converted to NaN
5 <= 'Hello' // false—'Hello' is converted to NaN

OEBPS/Images/caution.jpg

OEBPS/Images/pg134_Image_367.jpg
for (const [, hours, minutes, period] of input.matchAll(time)) {

e

OEBPS/Images/pg134_Image_366.jpg
let time = /([1-9]|1[6-2]):([6-5][06-9])(Llaplm)/¢g

OEBPS/Images/pg33_Image_96.jpg
let mx =x>y ?x

OEBPS/Images/pg222_Image_605.jpg
let outcomeSymbol = Symbol('outcome’)
node[outcomeSymbol] = 'success'

OEBPS/Images/pg134_Image_365.jpg

OEBPS/Images/pg222_Image_604.jpg
let obj = { [sym]: initialValue }
obi[sym] = newValue

OEBPS/Images/pg33_Image_95.jpg
let max = 1f (x > y) x else y // Error—if statement not expected

OEBPS/Images/pg134_Image_364.jpg
'agents 007 and 008'.match(/[0-9]+/) // ['007', index: 7, . . .

OEBPS/Images/pg58_Image_173.jpg
let text = "Goodbye
setTimeout(() => console.log(text), 10000)
text = 'Hello'

OEBPS/Images/pg33_Image_92.jpg
if (yourSales > target)
bonus = 100

else
[r—1

OEBPS/Images/pg33_Image_94.jpg
let max = undefined
if (x > y) max = x; else max = y

OEBPS/Images/cat2.jpg

OEBPS/Images/pg33_Image_93.jpg

OEBPS/Images/pg180_Image_1.jpg
Intl.NumberFormat.supportedLocalesOf(['cy', 'en-uk'])

OEBPS/Images/pg194_Image_528.jpg
let p = Promise.resolve()
For (let i = 1; i <= nj is+) {
p = p.then(() => loadInage(*hanafuda/1-${i}.png"))
.then(ing => ingdiv.appendChild(ing))
}

OEBPS/Images/cat1.jpg

OEBPS/Images/pg171_Image_471.jpg
let number
let result

number.tolocaleString('de') // '123,456.78"

OEBPS/Images/pg194_Image_529.jpg
loadImage(url)
+then(
ing => { // Promise has settled
ingdiv.appendChild(ing)

reason => { // Promise was rejected
console.log({reason})
ingdiv.appendChild(brokenInage)

1)

OEBPS/Images/pg171_Image_472.jpg
let formatter = new Intl.NumberFormat('de’)
result = formatter.format(number) // '123,456.78"

OEBPS/Images/pg171_Image_473.jpg
integer', value
‘group', value
nteger', value:
*decimal’, value:
'fraction', valu

78" }]

OEBPS/Images/pg171_Image_474.jpg
number. toLocaleString('th-u-nu-thai')
new Intl.NumberFormat("th-u-nu-thai').format(number)
// Both yield 'olom, &, oc"

OEBPS/Images/pg216_Image_589.jpg

OEBPS/Images/pg222_Image_606.jpg

OEBPS/Images/pg171_Image_475.jpg
number.tolocaleString('de', { style: 'currency', currency: 'EUR' })
formatter = new Intl.NumberFormat('de’, { style: 'currency', currency: 'EWR' })
format ter . format (number)

// Both yield '123.456,78 €'

OEBPS/Images/pg92_Image_269.jpg
let e = Employee('Harry Smith', 96666) // Forgot new

OEBPS/Images/pg92_Image_268.jpg
const PrettyPrintingEmployee = withToString(Employee) // A new class
e = new PrettyPrintingEmployee('Harry Smith', 90800) // An instance of the new class
console. log(e. toString())

// Prints {name=Harry Smith, salary=90006}, not [object Object]

OEBPS/Images/pg60_Image_180.jpg
const createAccount = (balance) => {
return Object. freeze({
deposit: amount => {
balance += amount

}

.
}

OEBPS/Images/pg17_Image_33.jpg

OEBPS/Images/pg287_Image_805.jpg

OEBPS/Images/pg17_Image_34.jpg
let field = 'Age’
let harrysAge = harry[field.toLowerCase()]

OEBPS/Images/pg17_Image_31.jpg
const sally = { name: 'Sally Lee' }
sally.age = 28 // OK—mutates the object to which sally refers
sally = { name: 'sally Albright' }

// Error—cannot assign a different value to a const variable

OEBPS/Images/pg235_Image_655.jpg
Eunction
P ——
prototype -

/ Em
vary

sabry
[[Prototype]] —

“Harry s

}
constructor =
il I

OEBPS/Images/pg153_Image_430.jpg
17
\

172

1729

9

OEBPS/Images/pg235_Image_654.jpg

OEBPS/Images/pg17_Image_37.jpg
let harry = { name: 'Harry Smith', age } // The age property is now 43

OEBPS/Images/pg17_Image_38.jpg
let harry = { name: 'Harry Smith', [field.toLowerCase()] : 42 }

OEBPS/Images/pg17_Image_35.jpg
let harry = {
name: 'Harry Smith',
age: 42, // Add more properties below

OEBPS/Images/jokerc.jpg

OEBPS/Images/pg17_Image_36.jpg
let age = 43
let harry = { name: 'Harry Smith', age: age }
// The 'age' property is set to the value of the age variable

OEBPS/Images/pg143_Image_387_2.jpg
‘2" 1in someNames // false—no property '2°
3 in someNames // true; there is a property '3'
// Note that the left operand is converted to a string

OEBPS/Images/pg143_Image_387_1.jpg
someNames.length = 4 // someNames{4] and beyond are deleted

OEBPS/Images/pg287_Image_804.jpg
type ErrorCode = { code: number, description: string }
type LineItem = { quantity: number, description: string }

OEBPS/Images/pg287_Image_803.jpg
let code: ErrorCode = [404, "Not found']
let items: LineItem[] = [[2, 'Blackwell Toaster']]
items[1] = code

OEBPS/Images/pg49_Image_143.jpg
let result = undefined

for (let i = 0; i < a.length - b.length; i++) {
for (let j = 6; j < b.length; j++) {
. if (ali + j1 1= b[31) . . .

OEBPS/Images/catc.jpg

OEBPS/Images/pg194_Image_1.jpg
loadImage('hanafuda/1-1.png")
.then(img => imgdiv.appendChild(img))
.then(loadImage('hanafuda/1-2.png'))
// Error—argument of then isn’t a function
.then(img => imgdiv.appendChild(img))

OEBPS/Images/pg92_Image_270.jpg
const price = Number('19.95')

// Parses the string and returns a primitive number, not an object
const aZeroUnlikeAnyOther = new Number(8)

// Constructs a new object

OEBPS/Images/pg153_Image_429.jpg
o
I\
o an(s]
o a2l

arr[0] arr[1]

OEBPS/Images/pg92_Image_271.jpg
const dolater = (what, arg) => { setTimeout(() => what(arg), 1000) }
doLater(BankAccount.prototype.deposit, 560) // Error

OEBPS/Images/joker.jpg

OEBPS/Images/pg164_Image_1.jpg
arr.forEach(function() { . . . this.something() . . . }, thisArg)

OEBPS/Images/joker2.jpg

OEBPS/Images/pg305_Image_898.jpg
type MaybeColoredPoint = {
X: number,
y: number,
color?: string

OEBPS/Images/pg121_Image_338.jpg

OEBPS/Images/pg305_Image_897.jpg
(number | string)(]
number([] | string(]
[[number, string]]
[number, string, .
[number, string, .
[number,

OEBPS/Images/pg121_Image_337.jpg
strong Next year, ${person.name} will be ${person.age + 1}
g e

OEBPS/Images/pg121_Image_336.jpg
const strong = (fragments, ...values) => {
let result = fragments[6]
for (let i = 8; i < values.length; i++)
result += “${values(i]}${fragments(i + 1]}
return result

}

OEBPS/Images/pg305_Image_899.jpg
type PerhapsColoredPoint = {
X: number,
y: number,
color: string | undefined

}

OEBPS/Images/pg121_Image_335.jpg
const person = { name: 'Harry', age: 42 }
message = "Next year, ${person.name} will be ${person.age + 1}.

OEBPS/Images/pg276_Image_762.jpg
(argl: number, arg2: number)

> number

OEBPS/Images/pg203_Image_558.jpg
addImage("hanatuda/1-1.png"
.then(() => addInage("hanafuda/1-2.png", ingdiv))
.then(() => addInage("hanafuda/1-3.png", ingdiv))
.then(() => addInage('hanafuda/1-4.png', imediv))

OEBPS/Images/pg244_Image_681.jpg
Object.getOwnPropertyDescriptors([1,2,3])
Object. getOwnPropertyDescriptors([1,2,3.
1,2,3

Object.getOwnPropertyDescriptors([:

.constructor)
.prototype)

OEBPS/Images/pg276_Image_761.jpg

OEBPS/Images/pg41_Image_118.jpg
for (let 1 = 1; 1 <= 18; 1++)
console.log(i)

OEBPS/Images/pg41_Image_117.jpg
do {
ies

} while (i < s.length 86 s[i] != ' ')

OEBPS/Images/pg119_Image_332.jpg
concatenated
concatenated

“agent ${n}"
['agent', '

nlLjoin(*)

OEBPS/Images/pg119_Image_331.jpg
const n =/
let concatenated = 'agent'.concat(' ', n) // ‘agent 7'

OEBPS/Images/pg41_Image_119.jpg
for (let 1 = a.length - 1; 1 >= §; 1i--)
console.log(a[il)

OEBPS/Images/pg51_Image_144.jpg
function average(x, y) 1
return (x +y) / 2
}

OEBPS/Images/pg212_Image_1.jpg
import { encrypt, decrypt } from './modules/caesar.mjs’

OEBPS/Images/pg254_Image_700.jpg
let nextResult = rangelter.next() // { value: 10, done: false }

OEBPS/Images/pg254_Image_701.jpg
nextResult

nextResult

rangelter.next() // { value: 11, done: false }

rangelter.next() // { value: 19, done: false }

OEBPS/Images/pg273_Image_746.jpg
ts-node -0 '{ "target": "es2020", "strict": true }'

OEBPS/Images/pg273_Image_748.jpg
const replace = (arr: number[], target

Numbers, replacement: number) => . . .

OEBPS/Images/pg181_Image_509.jpg

OEBPS/Images/pg41_Image_120.jpg
for (let 1 =6, j = a.length - 17 1 < j; 1++, Jj--) 1
Tlet temp = ali]
ali] = afj]
afj] = temp

OEBPS/Images/pg181_Image_511.jpg
const germanCurrency = new Intl.Locale("de-DE’,
{ style: 'currency', currency: 'EUR' })

OEBPS/Images/pg181_Image_510.jpg
Tocale: 'en-US',
usage: 'sort',
sensitivity: ‘base’,
ignorePunctuation: false,
numeric: true,

caseFirst: 'false',
collation: 'default’

OEBPS/Images/pg285_Image_795.jpg
class Point {
#ix: number
#y: number

constructor(x: number, y: number) {

this.ix = x
this.fy = y
}

distance(other: Point) {
return Math.sqrt(Math.pow(this.#x - other.#x, 2) + Math.pow(this.#y - other.#y, 2)

toString() { return “(${this.#x}, ${this.#y})" }

static origin = new Point(6, 6)

OEBPS/Images/pg78_Image_232.jpg
harry = {
name: 'Harry Smith',
salary: 90609,
raiseSalary: function(percent) {
this.salary += 1+ percent / 168
}
}

OEBPS/Images/pg128_Image_344.jpg
regex.flags // '1"
regex.ignoreCase // true

OEBPS/Images/pg78_Image_233.jpg
name: 'Harry Smith',
salary: 90600,
raiseSalary(percent) {
this.salary = 1 + percent / 108
}
}

OEBPS/Images/pg42_Image_122.jpg
let greeting = 'Hello ©'
for (const c of greeting)
console.log(c) // Prints He 1 1 o, a space, and @

OEBPS/Images/pg42_Image_121.jpg
let ar: v 2, , &)
arr[9] = 100
for (const element of arr)
console.log(element) // Prints undefined, 2, undefined, 4, undefined (5 times), 100

OEBPS/Images/pg231_Image_637.jpg

OEBPS/Images/pg327_Image_01.jpg
Learn Scala

& Java Quickly

Lemcmon] -

EEHLH

for the
Impatlent *

anS Horstmann™=4

iy Al

for the
Impatient

Second Edition

Get started quickly with
Scala's interpreter, syntax,
tools, and unique idioms

Master core language
features

Become familiar
with object-oriented
programming in Scala

Use Scala for real-world
programming tasks

Use modules to simplify
the development of well-
performing complex
systems

Express actions more
concisely with lambda
expressions

Leverage modern
concurrent programming
based on cooperating
tasks

informit.com/horstmann

@ Pearson
Addison-Wesley

informir.com

OEBPS/Images/pg231_Image_639.jpg

OEBPS/Images/pg231_Image_635.jpg

OEBPS/Images/pg231_Image_636.jpg

OEBPS/Images/pg96_Image_281.jpg
class Node {
depth() { throw Error("abstract method") }

class Parent extends Node {
constructor(value, children) { . . .}
depth() { return 1 + Math.max(...children.map(n => n.depth())) }

class Leaf extends Node {
constructor(value) { . . . }
depth() { return 1}

}

OEBPS/Images/pg96_Image_282.jpg
Random. nextDouble(low, high)
Random. nextInt(low, high)
Random. nextElement(array)

OEBPS/Images/pg96_Image_283.jpg
const button = document.getElementById('buttonl’)

button.addEventListener('click', function () {
this.classList. toggle(’ clicked')

})

OEBPS/Images/pg77_Image_232.jpg

OEBPS/Images/pg115_Image_316.jpg
let str = String.fromCodePoint(0x48, 0x69, 0x20, 0x1F310, 6x21) // 'Hi ©

OEBPS/Images/pg115_Image_318.jpg
let characters

OEBPS/Images/pg115_Image_317.jpg
let codePoints = [0x48, 6x69, 0x20, 8x1F310, Bx21]
str = String.fromCodePoint(...codePoints)

OEBPS/Images/pg115_Image_319.jpg

OEBPS/Images/pg258_Image_715.jpg
const accum = sumGenerator()

accun.next() // Advance to first yield

let result = accum.next(3) // Returns { value: 3, done: false }

result = accum.next(4) // Returns { value: 7, done: false }

result = accum.next(5) // Returns { value: 12, done: false }

accum.return() // Shuts down and returns { value: undefined, done: true }

OEBPS/Images/pg258_Image_716.jpg
function+ sumGenerator() {
Tet sum = @
while (true) {
try {
Tet nextvalue = yield sum
sum += nextValue
} catch {
sum = 0
}
}
}

OEBPS/Images/pg258_Image_717.jpg
const accum = sumGenerator()

accum.next() // Advance to first yield

let result = accum.next(3)

result = accum.next(4)

result = accum.next(5)

accum. throw() // Returns { value: 0, done; false }

OEBPS/Images/pg286_Image_796.jpg
t
X number,
y: number,
distance: (this: Point, argl: Point) => number
toString: (this: Point) => string

}

OEBPS/Images/pg286_Image_797.jpg
t
X: number,
y: number,
distance(argl: Point): number
toString(): string

OEBPS/Images/pg255_Image_705.jpg
function* arrayGenerator(arr) {
for (const element of arr)
yield element

OEBPS/Images/pg286_Image_798.jpg
get x() { return this.éx }
set x(x: number) { this.#x = x }
get y() { return this.#y }
set y(y: number) { this.#ty = y }

OEBPS/Images/pg231_Image_640.jpg

OEBPS/Images/pg250_Image_686.jpg

OEBPS/Images/pg231_Image_641.jpg

OEBPS/Images/pg231_Image_642.jpg

OEBPS/Images/pg255_Image_703.jpg
function* myGenerator(. . .) {
const myGenerator

unctions (. . .

OEBPS/Images/pg255_Image_704.jpg
const myObject = { * myGenerator(. . .) { . . .}, ...}

// Syntactic sugar for nyGenerator: functions (. . .) { . . .

class MyClass {
+ myGenerator(. . .) { ...}

OEBPS/Images/pg255_Image_702.jpg

OEBPS/Images/pg250_Image_687.jpg
hellolter.next() // Yields { value:
hellolter.next() // Yields { value:

hellolter.next() // Yields { value:
helloIter.next() // Yields { value:

‘H", done:
‘e’ done:

‘o', done:
undefined,

false }
false }

false }
done: true }

OEBPS/Images/pg7_Image_9.jpg
break case catch class const continue debugger default delete do
else enum export extends false finally for function if import in instanceof
new null return super switch this throw true try typeof var void while with

OEBPS/Images/pg7_Image_8.jpg
const FREEZING = 0, BOILING = 100
let x, y

OEBPS/Images/pg260_Image_722.jpg
functions main() {
const first = yield nextTrueRandom()
const second = yield nextTrueRandom()
const third = yield nextTrueRandom()
console. log(first + second + third)

}

OEBPS/Images/pg260_Image_723.jpg
const nextTrueRandom = () => {
trueRandom(receivedvalue => iter.next(receivedvalue))

}

OEBPS/Images/pg299_Image_861.jpg
function count<T>(arr: T[], target: T) {
Tet count = 0
for (let e of arr) if (e === target) counts+s
return count

OEBPS/Images/pg299_Image_866.jpg
const tail = <T>(values: T) => values.slice(1) // Error

OEBPS/Images/pg299_Image_862.jpg
let digits = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
let result = count(digits, 5) // OK
result = count(digits, 'Fred') // Type error

OEBPS/Images/pg299_Image_863.jpg
const count = <T>(arr: T[], target: T) => {
Tet count = 0
for (let e of arr) if (e

return count

target) count+s

OEBPS/Images/pg299_Image_864.jpg

OEBPS/Images/pg37_Image_109.jpg

OEBPS/Images/pg37_Image_108.jpg
‘0" // false—no conversion since both operands are strings

OEBPS/Images/pg37_Image_107.jpg
0 // true—""is converted to 0

// true—'0" is converted to &

alse // true—both are converted to 6

undefined == false // false—undefined is only equal to itself and null

OEBPS/Images/pg133_Image_362.jpg
/(?<quote>|

['"]).*\k<quote>/

OEBPS/Images/pg133_Image_361.jpg
let result = lineltem.exec('Blackwell Toaster USD29.95")
let groupMatches = result.groups
// { item: 'Blackwell Toaster', currency: 'USD', price: '29.95' }

OEBPS/Images/pg55_Image_162.jpg
const dieToss = () => Math.trunc(Math.random() * 6) + 1

OEBPS/Images/pg55_Image_164.jpg
const average = (x, y) => // OK
(x+y)/2

const distance = (x, y) // Emor
=> Math.abs(x - y)

OEBPS/Images/pg55_Image_163.jpg
const indexOf = (arr, value) => {
for (let i in arr) {
if (arr[i] === value) return i

return -1

OEBPS/Images/pg97_Image_288a.jpg

OEBPS/Images/pg54_Image_156.jpg
function multiplyByl6(x) { return x = 1

OEBPS/Images/pg54_Image_157.jpg

OEBPS/Images/pg54_Image_158.jpg
result = [0, 1, 2, &].map(function (x) { return 10 * x })

OEBPS/Images/pg54_Image_159.jpg
const average = function (x, y) { return (x +vy) / 2 }

OEBPS/Images/pg55_Image_166.jpg
const stats = (x, y) => ({
average: (x +y) /2,
distance: Math.abs(x - y)

}

OEBPS/Images/pg55_Image_165.jpg
const average = (x, y) => {
return (x +y) /2

OEBPS/Images/pg157_Image_439.jpg
const weekdays = new Map(
[["Mon", 8], ["Tue", 11, ["Wed", 21, ["Thu", 31, ["Fri", &1, ["Sat", 5], ["Sun", 6], 1)

OEBPS/Images/pg232_Image_644.jpg

OEBPS/Images/pg232_Image_643.jpg
const cloned = Object.create(Object.getPrototypeOf(original),
Object.getOwnPropertyDescriptors(original)) // Better, but still shallow

OEBPS/Images/pg232_Image_645.jpg
original.center.x = 46 // clone.center.x is also changed

OEBPS/Images/squirrel.jpg

OEBPS/Images/pg272_Image_745.jpg
"compilerOptions”: {
"target": "ES2020",
"strict": true,
"sourceMap”: true

N

"filesGlob": [
"eots"

1

OEBPS/Images/pg272_Image_744.jpg
> ca ©/a hitps://»

TypeScript Documentation Downlosd Community Tools

Playground TS Config - Examples = What's New -

ViB3- Run Export- [75,05 Erore_Logs_options

 typescriptiang.org/v2/c1/o) 120

const replace = (arr: nunber(l, target : nurber | number(], replacene
for (let i< arrlength; i) (
i1 {Array.ishrray(target) & target.index0f arrli]) >= &
1| Ihrray.ishrray(target) & target === arr[il} {
arrld) - replacenent

}

)
const a: number(]

const a = 11, 12, 13, 14, 15, 16]

reptacelo, 13, 0)

replace(a, [33, 141, o)

reptace(a, 13, 14,)

console. oo {a}]

OEBPS/Images/pg95_Image_278.jpg
function createGreetable(str) {
const result = new String(str)
result.greet = function(greeting) { return “${greeting}, ${this}!" }
return result

}

OEBPS/Images/pg116_Image_320.jpg
let isHttps = url. startsW)th(https://")
let isGif = url.endsWith(')
let isQuery = url.includes(’

OEBPS/Images/pg103_Image_301.jpg
Math.max(x, y) // The larger of x and y
Math.min(...values) // The smallest element of the array values

OEBPS/Images/pg116_Image_322.jpg

OEBPS/Images/pg116_Image_321.jpg
let substring

yellow'.substring(3, 7) // 'yell

OEBPS/Images/pg54_Image_160.jpg

OEBPS/Images/pg54_Image_161.jpg

OEBPS/Images/pg157_Image_444.jpg
if (map.has(key)) .

OEBPS/Images/pg157_Image_443.jpg
map.delete(key) // Returns true if the key was present, false otherwise

OEBPS/Images/pg157_Image_446.jpg
for (const [key, value] of map) 1
console. Log(key, value)

}

OEBPS/Images/pg157_Image_445.jpg
const value = map.get(key) // Returns undefined if the key is not present

OEBPS/Images/pg262_Image_1.jpg
const results ..loadHanafudaImages(month)]
// Error, not an array of promises

for (const p of loadHanafudaImages(month)) p.then(imgdiv.appendChild(img))
// Error, not a loop over the promises

OEBPS/Images/pg157_Image_448.jpg

OEBPS/Images/pg157_Image_447.jpg
map. forEach((key, value) => {
console. log(key, value)

OEBPS/Images/pg95_Image_279.jpg
const g = createGreetable('World")
console.log(g.greet('Hello'))

OEBPS/Images/pg206_Image_567.jpg
const doAsyncWorkAndThen = handler 1
const promise = asynclork();
promise.then(result => handler(result));
return promise;

}

OEBPS/Images/pg95_Image_280.jpg
const GreetableEmployee = withGreeter(Employee)
const e = new GreetableEmployee(Harry Smith', 9966)
console.log(e.greet('Hello'))

OEBPS/Images/pg116_Image_317.jpg

OEBPS/Images/pg157_Image_440.jpg

OEBPS/Images/pg116_Image_316.jpg
for (let 1 = 6; 1 < str.length; 1++) {
let cp = str.codePointAt(i)
if (cp > OXFFFF) ivr

' « « . // Process the code point cp

OEBPS/Images/pg157_Image_442.jpg

OEBPS/Images/pg116_Image_319.jpg

OEBPS/Images/pg157_Image_441.jpg

OEBPS/Images/pg116_Image_318.jpg

OEBPS/Images/pg145_Image_402.jpg
arr = (0, 1, 4, 9, 16, 25]
arr.sort() // arr is now [0, 1, 16, 25, 4, 9]

OEBPS/Images/pg176_Image_494.jpg
words.sort(swedishCollator.compare)
// words is now ['able', 'Alpha’, 'zebra', 'Zulu’, 'hngstrém']

OEBPS/Images/pg145_Image_401.jpg
arr = (8, 1, 16, 25, 4, 9]
arr.sort((x, y) => x - y) // arr is now [0, 1, &4, 9, 16, 25]

OEBPS/Images/pg176_Image_493.jpg

OEBPS/Images/pg293_Image_834.jpg
const mkString = (values: unknown[], // TypeScript
{ separator = ',", leftDelimiter = '[*, rightDelimiter = ']' }
: { separator?: string, leftDelimiter?: string, rightDelimiter?: string })
=> leftDelimiter + values.join(separator) + rightDelimiter

OEBPS/Images/pg176_Image_492.jpg
const words = ['Alpha’, 'Angstrém', 'Zulu’, ‘able', ‘zebra']
words.sort((x, y) => x.localeCompare(y, 'en'))
// words is now ['able', 'Alpha', 'Angstrim', 'zebra', 'Zulu'l

OEBPS/Images/pg293_Image_833.jpg
const mkString = (values: unknown[], // TypeScript
{ separator, leftDelimiter, rightDelimiter }
: { separator: string, leftDelimiter: string, rightDelimiter: string })
=> leftDelimiter + values.join(separator) + rightDelimiter

OEBPS/Images/pg293_Image_832.jpg
const mkString = (values, { // JavaScript
separator: sep,
TeftDelimiter: left,
rightDeliiter: right
1) => 1left + values.join(sep) + right

OEBPS/Images/pg305_Image_900.jpg

OEBPS/Images/pg202_Image_556.jpg
const getAnimalImageURL = async type => {
if (type === ‘cat') {
return getJSONProperty('https://aws.random.cat/meow', 'file')
} else if (type === 'dog') {
return getJSONProperty('https://dog.ceo/api/breeds/image/random', 'message')
}else {
throw Error('bad type') // Async function returns rejected promise

OEBPS/Images/pg202_Image_557.jpg
const getAnimallmage = async type => {
try {
const url = await getAnimalImageURL(type)
return loadImage(url)
} catch {
return brokenImage

OEBPS/Images/pg8_Image_12.jpg

OEBPS/Images/pg8_Image_11.jpg
awalt as async trom get of set target yield

OEBPS/Images/pg293_Image_836.jpg
type EmployeeConsumer = (argl: Employee) => void

OEBPS/Images/pg8_Image_10.jpg
implements 1ntertace let package protected private public static

OEBPS/Images/pg293_Image_835.jpg

OEBPS/Images/pg202_Image_555.jpg
const [imgl, img2] = Promise.all([await loadImage(url), await loadCatImage()])
// Error—still sequential

OEBPS/Images/pg238_Image_664.jpg
const obj = { name: 'Harry Smith’, salary: 106606
const loghandler = {
get(target, key, receiver) {
const result = target[key]
console.log("get ${key.toString()} as ${result}")
return result

set(target, key, value, receiver) {
console.log(set ${key.toString()} to ${value}")
target[key] = value
return true
}
J

const proxy = new Proxy(obj, logHandler)

OEBPS/Images/pg174_Image_482.jpg
const christmas = new Date(1999, 11, 24)

const newVearsDay = new Date(2000, 0, 1)

const formatter = new Intl.DateTimeFormat(‘en', { dateStyle: 'long' })

formatter. formatRange(christmas, newYearsEve) // 'December 24 - 31, 199"
formatter.formatRange(newYearsEve, newYearsDay) // 'December 31, 1999 — January 1, 2066’

OEBPS/Images/pg204_Image_560.jpg
const loadCatImage = async () => {
try {
const result = await fetch('https://aws.randon.cat/meow")
const imageJSON = await result.json()
return loadInage(inageJSON.file)
} catch {
return brokenImage
}
}

OEBPS/Images/pg238_Image_665.jpg
const target =
const p = Proxy. revocable(!arge! 1)

OEBPS/Images/pg111_Image_319.jpg
The string returned by Date()
'3/14/2026"

‘March 14, 2020"

‘14 March 2020"

'2020-03-14"

'2020-03-14 '

OEBPS/Images/pg156_Image_437.jpg
/N
empty map ‘M’

OEBPS/Images/round.jpg

OEBPS/Images/pg156_Image_438.jpg
- '‘Mississippi’].reduce(
(freq, ¢) => ({ ...freq, [c]: (c in freq ? freqlc] +1: 1) }),
i)

OEBPS/Images/pg111_Image_317.jpg

OEBPS/Images/pg111_Image_318.jpg
deadline.setUTCMonth(1 /+ February +/)
deadline.setUTCDate(1)

OEBPS/Images/pg204_Image_562.jpg
const rejectAfterDelay = (result, delay) => {
return new Promise((resolve, reject) => {
const callback = () => reject(result)
setTimeout (callback, delay)

OEBPS/Images/pg204_Image_561.jpg
const loadCatImage = async () => {
try {
const result = await fetch('https://aws.random.cat/meow")
const imageJSON = await result.json()
return await loadImage(imageJSON.file)
} catch {
return brokenImage
}
}

OEBPS/Images/pg111_Image_316.jpg
6 7 8 91611 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26

27 28 29 30 31

OEBPS/Images/pg300_Image_869.jpg
let greeting = 'Hello®
console. log(tail(greeting)) // Displays ello

OEBPS/Images/pg297_Image_855.jpg
class Remover {
c: string
constructor(c: string) { this.c = ¢ }

removeFrom(str: string): string
removeFrom(str: string[]): string[
removeFron(str: string | string[])
if (Array.isArray(str))
return str.map(s => s.replace(this.c, '')
else
return str.replace(this.c, '')

OEBPS/Images/pg300_Image_867.jpg
const tail = <T extends { slice(from: number, to?: number): T }>(values: T) =>
values.slice(1) // OK

OEBPS/Images/pg147_Image_404.jpg
const titles = . . .
titles.sort((s, t) => s.localeCompare(t))

OEBPS/Images/pg300_Image_868.jpg
let result = tail([1, 7, 2, 9]) // Sets result to |7, 2, 9]

OEBPS/Images/pg178_Image_499.jpg
0, 1, 2, 3, 4, 5).map(i => (new Intl.PluralRules('en’).select(i)))
// ['other', 'one', 'other', 'other', 'other', 'other']

[0, 1, 2, 3, 4, 5].map(i => (new Intl.PluralRules('ru').select(i)))
// ['many', 'one', 'few', 'few', 'few', 'many']

OEBPS/Images/pg297_Image_854.jpg
const remove: {
(argl: string, arg2: string): string
(argl: string[], arg2: string): string[]
} = (str: any, c: string) = {
if (Array.ishrray(str))
return str.map(s => s.replace(c, ''))
else
return str.replace(c, '')

OEBPS/Images/pg204_Image_559.jpg
Promise.allSettled(promises)
.then(results => {
for (result of results)
if (result.status
1)

‘fulfilled') . . . else . .

OEBPS/Images/pg178_Image_498.jpg
const str = "A™'
['NFC', 'NFD', "NFKC', 'NFKD'l.map(mode => [...str.normalize(mode)])
7/ Yields ['A', ™1 A", o' W] [AT Tt W] (A, te

OEBPS/Images/pg142_Image_383.jpg
names = Array.ot{ Peter’, "Paul’, "Mary)
littleArray = Array.of(10000) // An array of length 1, same as [16606]

OEBPS/Images/pg142_Image_382.jpg
names = ['Peter’, 'Paul’, "Mary']
numbers = [10606]

OEBPS/Images/pg142_Image_381.jpg

OEBPS/Images/pg142_Image_380.jpg
names = new Array('Peter’, 'Paul’, 'Mary’)
names = Array('Peter', 'Paul’, 'Mary')

OEBPS/Images/pg300_Image_872.jpg

OEBPS/Images/pg300_Image_873.jpg
console.log(tail

("Hello'

as string))

OEBPS/Images/pg300_Image_870.jpg
type Sliceable<T> = { slice(from: number, to?: number): T }
const tail = <T extends Sliceable<Ts>>(values: T) => values.slice(1)

OEBPS/Images/pg300_Image_871.jpg

OEBPS/Images/pg59_Image_174.jpg
) =1

const createAccount

return {
deposit: amount => { . . .},
withdraw: amount ..
getBalance: () = . . .

OEBPS/Images/pg59_Image_175.jpg
const harrysAccount = createAccount()
const sallysAccount = createAccount()
sallysAccount.deposit(500)

OEBPS/Images/pg59_Image_176.jpg
const createAccount = () => {
let balance = 0
return {

S
}

OEBPS/Images/pg35_Image_103a.jpg
strictly equal to
not strictly equal to

OEBPS/Images/pg59_Image_177.jpg
const createAccount = () => {
return {
deposit: amount => {
balance += amount
}
withdraw: amount => {
if (balance >= amount)
balance -= amount
}

getBalance: () => balance
}
}

OEBPS/Images/pg104_Image_302.jpg
Math.round(2.5) // 3
Math.round(-2.5) // -2
Math.trunc(2.5) // 2

OEBPS/Images/pg104_Image_303.jpg
const randomDouble = a + (b - a) = Math.random()
const randomInt = a + Math.trunc((b - a) = Math.random()) // where a, b are integers

OEBPS/Images/pg304_Image_890.jpg
type ReadonlyEmployee = {
readonly [propname in keyof Employee]: Employee[propnane]

OEBPS/Images/pg304_Image_891.jpg
type Readonly<T> = {
readonly [propname in keyof T1: T[propname]

OEBPS/Images/pg304_Image_892.jpg
const distanceFromOrigin = (p: Readonly<Point>) =>
Math.sqrt(Math.pow(p.x, 2) + Math.pow(p.y, 2))

OEBPS/Images/pg304_Image_893.jpg
let str: Pick<string, 'length’ | 'substring’> = "Fred
// Can only apply length and substring to str

OEBPS/Images/pg195_Image_531.jpg
Promise.resolve()
.then(() => loadImage('hanafuda/1-1.png"))
.then(ing => ingdiv.appendChild(img))
.then(() => loadImage('hanafuda/1-2.png"))
.then(ing => ingdiv.appendChild(img))
.catch(reason => console.log({reason}))

OEBPS/Images/pg304_Image_894.jpg
type Pick<T, K extends keyof T> = {
[propname in K]: T[propname]

OEBPS/Images/pg304_Image_895.jpg
type Writable<T> = {
-readonly [propname in keyof T]: T[propname]

OEBPS/Images/pg195_Image_532.jpg
Promise.resolve()
.then(() => loadImage('hanafuda/1-1.png'))
.then(img => ingdiv.appendChild(img))
-finally(() = { doCleanup(. . .) })
.catch(reason => console.log({reason}))

OEBPS/Images/pg304_Image_896.jpg
type AllRequired<T> = {
[propname in keyof T1-?: T[propnane]

OEBPS/Images/pg195_Image_530.jpg
LoadInage(url)
~then(
ing => { // Promise has settled
ingdiv.appendChild(ing)
b
~catch(
reason => { // A prior promise was rejected
console. log({reason})
ingdiv. appendChild(brokenInage)
1)

OEBPS/Images/pg57_Image_169.jpg
const list = enclose('ul’,
items
Jfilter(i => i.trim() !=:
.map(htmlEscape)
.map(i => enclose('li’, i))

OEBPS/Images/pg142_Image_379.jpg
const squares = Array.from({ length: 5 }, (element, Index) => index * index)
// [0, 1, 4, 9, 16]

OEBPS/Images/pg142_Image_378.jpg
const arraylLike = { length: 3 , "6': 'Peter’,
const elements = Array.from(arrayLike)

// elements is the array ['Peter’, 'Paul’, 'Mary']

// Array.isArray(arraylike) is false, Array.isArray(elements) is true

‘Paul’, "2°: "Mary'}

OEBPS/Images/pg57_Image_172.jpg
sayLater('Hello’, 1660)
sayLater(’Goodbye', 10000)

OEBPS/Images/pg57_Image_170.jpg

OEBPS/Images/pg57_Image_171.jpg
const saylater = (text, when) => {
let task = () => console.log(text)
setTimeout(task, when)

}

OEBPS/Images/pg144_Image_390.jpg
arr. length--
arr[arr.length] = x

OEBPS/Images/pg144_Image_392.jpg
arr = (9]
arr.push(16, 25) // 16, 25 are appended; arr is now [9, 16, 25]
arr.unshift(6, 1, 4) // 6, 1, 4 are prepended; arr is now [0, 1, 4, 9, 16, 25]

OEBPS/Images/pg144_Image_391.jpg
arr = (6, 1, 4, 9, 16, 25]
const deletedElement = arr.shift() // arr is now [1, 4, 9, 16, 25]
const newLength = arr.unshift(x) // arr is now [x, 1, 4, 9, 16, 25]

OEBPS/Images/pg144_Image_394.jpg
arr = [0, 1, 12, 24, 36]

const start = 2

// Replace arr[start] and arr[start + 1]

arr.splice(start, 2, 16, 25) // arr is now [9, 1, 16, 25, 36]

// Add elements at index start

arr.splice(start, 8, 4, 9) // arr is now [0, 1, 4, 9, 16, 25, 36]
// Delete the elements at index start and start + 1
arr.splice(start, 2) // arr is now [6, 1, 16, 25, 36]

// Delete all elements at index start and beyond
arr.splice(start) // arr is now [0, 1]

OEBPS/Images/pg144_Image_393.jpg

OEBPS/Images/pg144_Image_395.jpg
arr = (8, 1, 4, 16]
arr.splice(-1, 1, 9) // arr is now [0, 1, &, 9]

OEBPS/Images/pg16_Image_27.jpg

OEBPS/Images/pg243_Image_675.jpg
const createRange = (start, end) => {
const isIndex = key =>
typeof key ‘string' &6 /"[0-9]+$/.test(key) 86 parseInt(key) < end - start

return new Proxy({}, {
get: (target, key, receiver) => {
if (isIndex(key)) {
return start + parselnt(key)
}else {
return Reflect.get(target, key, receiver)

¥

OEBPS/Images/pg16_Image_28.jpg

OEBPS/Images/pg155_Image_1.jpg
[1, 2, 3, 4].reduceRight((x, y) => [x, vl, [])

OEBPS/Images/pg193_Image_524.jpg
LloadImage(hanafuda/1-1.png")
.then(ing => {
ingdiv.appendChild(ing)
return loadImage('hanafuda/1-2.png")
}
.then(img

ingdiv.appendChild(img))

OEBPS/Images/pg135_Image_373.jpg
let replacement = 'Blackwell Toaster $29.95'.replace('\$29', '$19")
// 'Blackwell Toaster $19.95'—there is no group 19

OEBPS/Images/pg193_Image_525.jpg
fetch('https://developer.mozilla.org’)
.then(response => response. text())
.then(console.log)

OEBPS/Images/pg135_Image_374.jpg
flipped = names.replace(/"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)$/gm,
wSlast>, $<first>")

OEBPS/Images/pg193_Image_526.jpg
loadImage("hanafuda/1-1.png")
.then(ing => ingdiv.appendChild(ing)) // Synchronous
.then(() => loadInage("hanafuda/1-2.png"))"// Asynchronous
.then(img => imgdiv.appendChild(ing)) // Synchronous

OEBPS/Images/pg193_Image_527.jpg
Promise.resolve()
.then(() => loadImage('hanafuda/1-1.png'))
.then(img => ingdiv.appendChild(ing))
+then((ToadInage(‘hanafuda/1-2.png'))
~then(img => ingdiv.appendChild(ing))

OEBPS/Images/pg170_Image_1.jpg
const newYearskve = new Date(1999, 11, 31, 23, 59)
newYearsEve.tolocaleString('de') // Yields the string '31.12.1999 23:59:00°

OEBPS/Images/pg329_Image_01.jpg
Pearson ‘ livelessons®

Photo by Marvent/Shutterstock

VIDEO TRAINING FOR THE IT PROFESSIONAL

Learn a new technology in just hours. Video training can teach more in
less time, and material is generally easier to absorb and remember.

Instructors demonstrate concepts so you see technology in action.

Our Complete Video Courses offer self-assessment quizzes throughout.

Most videos are streaming with an option to download lessons for offline viewing.

Learn mo I'e, browse our store, and watch free, sample lessons at
informit.com/video

Save 50%* off the list price of video courses with discount code VIDBOB

@ Pearson informir

the trusted technology learning source

“Discount code VIDBOB confers a 50% discount of the lis price of eligibe titles purchased on informit.com. Eligibl ties include most full-course video tites. Book + eBook bundles,
boolk/eBook + video bundles, individual video lessons, Rough Cuts, Safari Books Online, non-discountable ite, titles on promation with our retail partners, and any titke featured
as eBook Deal of the Day or Video Deal of the Week: unt may not be combined with any other offer and is not redeemable for cash. Offer subject to change.

OEBPS/Images/pg170_Image_3.jpg
newYearsEve.tolocaleString([], { timeZone: 'Asia/Tokyo' })

OEBPS/Images/pg135_Image_371.jpg
'hello'.replace(/[aeioul/g, '$6%6%6') // 'heeellooo’

OEBPS/Images/pg135_Image_372.jpg
let names = "Harry Smith\nSally Lin®

let flipped = nanes. replace(
/M([A-2][a-2]+) ([A-Z][a-2]+)/gm, "$2, $1")
// ‘smith, Harry\nLin, Sally'

OEBPS/Images/pg170_Image_2.jpg
newYearsEve.tolocaleString('de’, { timeZone: 'Asia/Tokyo' })
// The date as viewed in the given time zone, such as '1.1.2000, 07:59:00'

OEBPS/Images/pg193_Image_523.jpg
const promisel = loadImage("hanafuda/1-1.png")
const promise2 = promisel.then(img => {
ingdiv.appendChild(ing)
return loadInage('hanafuda/1-2.png') // Another promise
b
promise2. then(ing => {
ingdiv. appendChild(ing)
1)

OEBPS/Images/pg23_Image_71.jpg
let field = 'Age’
let { [field.tolowerCase()]: harrysAge } = harry
// Sets value to harry|[field.toLowerCase()]

OEBPS/Images/pg23_Image_70.jpg
let patsBirthYear = pat.birthday.year

OEBPS/Images/pg23_Image_73.jpg
let [first, second, ...others] = [42]
// first is 42, second is undefined, and others is []

OEBPS/Images/pg23_Image_72.jpg
numbers = {1, 7, 2, 9]
let [first, second, ...others] = numbers
// first is 1, second is 7, and others is [2, 9]

OEBPS/Images/pg188_Image_1.jpg
fetch('https://horstmann.com/javascript-impatient/hanafuda/index.html")

OEBPS/Images/pg243_Image_679.jpg
getOwnPropertyDescriptor: (target, key) => {
if (isIndex(key)) {
return {
value: start + Number(key),
writable: false,
enumerable: true,
configurable: true // Not what we actually want

}
}else {

return Reflect.getOwnPropertyDescriptor(target, key)
}

OEBPS/Images/pg16_Image_24.jpg
greeting = “<div>Hello</div>
<div>${destination}</div>

OEBPS/Images/pg243_Image_678.jpg
ownKeys: target => {
const result = Reflect.ownKeys(target)
for (let i = 0; i< end - start; i+s+)
result.push(String(i))
return result

}

OEBPS/Images/pg144_Image_389.jpg
let arr = [6, 1, 4, 9, 16, 25]
const deletedElement = arr.pop() // arr is now [9, 1, 4, 9, 16]
const newLength = arr.push(x) // arr is now [0, 1, 4, 9, 16, x]

OEBPS/Images/pg243_Image_677.jpg
console.log(Object.keys(range)) // |

OEBPS/Images/pg16_Image_26.jpg
html <div>Hello, ${destination}</div>"

OEBPS/Images/pg243_Image_676.jpg
const range = createRange(10, 100)
console.log(range[10]) // 20

OEBPS/Images/pub.jpg
vy Addison-Wesley

OEBPS/Images/pg23_Image_69.jpg
let pat = { name: 'Pat’, birthday: { day: 14, month: 3, year: 2000 } ;
let { birthday: { year: patsBirthYear } } = pat
// Declares the variable patsBirthYear and initializes it to 2000

OEBPS/Images/pg30_Image_84.jpg
let a = x
const numbers = [1, 2, 3]
numbers. forEach(console. og)

OEBPS/Images/pg30_Image_83.jpg
let a = x
[1, 2, 3].forEach(console.log)

OEBPS/Images/pg30_Image_86.jpg
return
x + someComplicatedExpression:

OEBPS/Images/pg30_Image_85.jpg

OEBPS/Images/pg30_Image_87.jpg
return ;
x + someComplicatedExpression;

OEBPS/Images/pg236_Image_658.jpg

OEBPS/Images/pg236_Image_659.jpg
const triple = y => multiply(3, y)
const isPet = x => ['cat', 'dog', 'fish'l.includes(x)
button.onclick = (...args) => this.handleClick(...args)

OEBPS/Images/pg236_Image_656.jpg
const multiply = (x, y) => x »y
const triple = multiply.bind(null, 3)
triple(14) // Yields 42, or multiply(3, 14)

OEBPS/Images/pg66_Image_199.jpg

OEBPS/Images/pg66_Image_198.jpg

OEBPS/Images/pg236_Image_657.jpg

OEBPS/Images/pg68_Image_212.jpg
function doStuff() { // Start of block
... // Attempting to access soneVariable throws a ReferenceError
let someVariable // Scope starts here
« . . // Can access someVariable, value is undefined
someVariable = 42
. . . // Can access someVariable, value is 42
} // End of block, scope ends here

OEBPS/Images/pg68_Image_214.jpg
function someFunction(arr) {
// 1, elenent already in scope but undefined
for (var i = 0; i< arr.length; i++) {
var element = arr[i]

-

// i, elenent still in scope

OEBPS/Images/pg295_Image_847.jpg
function count(str, c) {
if (Array.isArray(str)) {
let sum = 0
for (const s of str) {
sum += s.length - s.replace(c, '').length

}

return sun
} else {
return str.length - str.replace(c, '').length
}
}

OEBPS/Images/pg295_Image_846.jpg

OEBPS/Images/pg68_Image_213.jpg
function doStuff() {
function localWork() {
console.log(somevariable) //

_

let someVariable = 42

Tocalliork() // Prints 42

OEBPS/Images/pg236_Image_660.jpg
let answer = multiply.call(null, 6, 7)
let uppercased = String.prototype.toUpperCase.call('Hello')

OEBPS/Images/pg35_Image_103.jpg
42" 42 // false—different types
undefined === null // false
42" '4' + 2 // true—same string value '42'

OEBPS/Images/pg35_Image_101.jpg
NalN < &4 // false
Nall >= 4 // false
NaN <= NaN // false

OEBPS/Images/pg35_Image_102.jpg
‘Hello' < 'Goodbye' // false—H comes after G
'Hello' < 'Hi' // true—e comes before i

OEBPS/Images/pg154_Image_433.jpg
const sum = arr

arr.reduce((accum, current) => accum + current, 0)

OEBPS/Images/pg154_Image_432.jpg

OEBPS/Images/pg154_Image_431.jpg
o
I\
o arel2]
o arel]
\

init arr(@]

OEBPS/Images/pg307_Image_908.jpg
const str = "Hello"

console. log(last(str))

console. log(last([1, 2, 31))
console.log(last(new Int32Array(1624)))

OEBPS/Images/pg307_Image_907.jpg

OEBPS/Images/pg93_Image_272a.jpg

OEBPS/Images/pg236_Image_661.jpg

OEBPS/Images/pg69_Image_216.jpg
(function () {
var someVariable = 42
function someFunction(. . .) { . ..}

}() // Function is called here—note the ()
// someVariable, someFunction no longer in scope

OEBPS/Images/pg69_Image_217.jpg
t
let someVariable = 42
const someFunction = (. . .) = { ...}

OEBPS/Images/pg69_Image_215.jpg
: is0dd(n -1) }
isEven(n -1) }

function iskven(n) { return n
function is0dd(n) { return n

0 ? false

OEBPS/Images/pg62_Image_184.jpg
possiblyUndefinedVariable

OEBPS/Images/pg62_Image_183.jpg
result = average(1, 2)

result = average([1, 2, 31, 4)
result = average(1, [2, 3, 4])
result = average([1, 2], [3, 4, 5])

OEBPS/Images/pg62_Image_185.jpg
typeof possiblyUndefinedVariable

OEBPS/Images/pg109_Image_310.jpg
const epoch = new Date('1970-01-01T0(
epoch. getUTCay() // 4 (Thursday)
epoch.getDay() // 3, 4, or 5, depending on when and where the call is made

100.000Z")

OEBPS/Images/pg9_Image_15.jpg
"Hello'.substring(@, 2.5) // The string 'He'

OEBPS/Images/pg9_Image_14.jpg
const notQuitePiString

const evenlessPiString

n
(:

otQuitePi.toString() // The string °3.14
3).toString() // The string '3*

OEBPS/Images/pg191_Image_521.jpg
const loadImage = url => {
if (url === undefined) {
return Promise.reject(Error('No URL'))
} else {
return new Promise(. . .)

OEBPS/Images/pg191_Image_520.jpg
const loadImage = url => {
if (url === undefined) return Promise.resolve(brokenInage)

OEBPS/Images/pg62_Image_182.jpg
const average = (X, y) => {
Tet sun = §
letn=8
if (Array.isArray(x)) {
for (const value of x) { sum += value; ns+]
} else {
sum=x;n=1

}
if (Array.isArray(y)) {

for (const value of y) { sum += value }
} else {

sum += y; nes

return n

6?26:sum/n

OEBPS/Images/pg19_Image_44.jpg
someNumbers[6] = 11 // Now someNumbers has length 7

OEBPS/Images/pg19_Image_45.jpg
const developers = [
*Harry Smith',
'sally Lee',
// Add more elements above

OEBPS/Images/pg153_Image_3.jpg
[1, 7, 2, 9].reduce((x, y) => 10 * x +vy) // 1729

OEBPS/Images/pg19_Image_42.jpg
const someNumbers = [,

, 91 // No properties

OEBPS/Images/pg240_Image_667.jpg
const getHandler = {
get(target, trapKey, receiver) {
return (...args) = {
console.log("Trapping ${trapkey})
return Reflect[trapKey](...args);

}
J

const LogEverythingHandler = new Proxy({}, getHandler)

const proxy = new Proxy(obj, logEverythingHandler)

OEBPS/Images/pg153_Image_1.jpg
[, 2, , 9].filter(x => true) // [2, 9]

OEBPS/Images/pg153_Image_2.jpg
const arr = (1, 7, 2, 9]
const result = arr.reduce((x, y) =>x +vy) // ((1 +7) +2) +9

OEBPS/Images/pg240_Image_666.jpg
const logHandler = {
get(target, key, receiver) {
console.log("get ${key.toString()}")
return Reflect.get(target, key, receiver)
// Instead of return target[key]

set(target, key, value, receiver) {
console.log("set ${key.toString()}")
return Reflect.set(target, key, value, receiver)
// Instead of target[key] = value; return true

}

OEBPS/Images/pg63_Image_187.jpg
let resul

average(3, 4, 5) // 3.5—the last argument is ignored

OEBPS/Images/pg240_Image_668.jpg
logEverythingHandler.set(obj,

name

, 'Fred', proxy)

OEBPS/Images/pg63_Image_186.jpg

OEBPS/Images/pg63_Image_185.jpg
const average = (X, Yy) => {
return (+x + +y) / 2

}

OEBPS/Images/pg63_Image_184.jpg
typeof x === 'string’ ||
X instanceof String

OEBPS/Images/pg215_Image_1.jpg
export default (s, key) => { . . . } // No need to name this function

OEBPS/Images/pg138_Image_382.jpg
const formatted = printf ${item}%-40s | ${quantity}%6d | ${price}%10.2f"

OEBPS/Images/pg34_Image_100.jpg
3 <& // true
3> &4 // false

OEBPS/Images/pg60_Image_179.jpg
const createAccount = (balance) => {
balance += 10 // Bonus for opening the account
return {
deposit: amount => {
balance += amount

}

OEBPS/Images/pg60_Image_178.jpg
const createAccount = (initialBalance) => {
Tet balance = initialBalance + 10 // Bonus for opening the account
return {

-
}

OEBPS/Images/pg107_Image_307.jpg
const epoch = new Date('1976-81-61T60:60:60.000Z")
const oneYearlLater = new Date(365 * 86400 * 1000) // 1971-01-01T00

OEBPS/Images/pg137_Image_381.jpg

OEBPS/Images/pg242_Image_674.jpg
Trapping set(fred,age,42,proxy of fred)

Trapping getOwnPropertyDescriptor(fred,age)

Trapping defineProperty(fred, age",{"value":42,
"writable":true,"enumerable":true,"configurable":true})

OEBPS/Images/pg330_Image_01.jpg
Photo by iusek/gettyimages

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

Download available product updates.

Access bonus material if available.”

Check the box to hear from us and receive exclusive offers on new
editions and related products.

“Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformlT is the online home of information technology brands at Pearson, the world's
foremost education company. At InformIT.com, you can:
Shop our books, eBooks, software, and video training
Take advantage of our special offers and promotions (informit.com/promotions)
Sign up for special offers and content newsletter (informit.com/newsletters)
Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

non
informit

lctnobogy esring sourcs

s - Cisco Press + Microsoft Press

on-Wesley « Pearson IT Certification + Que + Sams - Peachpit Press

A
@ Pearson

OEBPS/Images/pg277_Image_763.jpg
const average = (x: number, y: number) => (x +y) / 2
const 2 =
const b =
let result = average(a, b)

3
4

OEBPS/Images/pg137_Image_380.jpg

OEBPS/Images/pg192_Image_522.jpg
const promisel = produceAfterDelay(42, 1660)
promisel. then(console. log) // Log the value when ready

const promise2 = loadInage(’hanafuda/1-1.png')
promise2.then(img => imgdiv.appendChild(img)) // Append the image when ready

OEBPS/Images/pg64_Image_187.jpg
const average = (x, y) =>y

OEBPS/Images/pg102_Image_297.jpg
parselnt('deadbeef', 16) // 3735928559

OEBPS/Images/pg64_Image_188.jpg

OEBPS/Images/pg102_Image_298.jpg
isNaN("Hello") // true
isFinite([8]) // true

OEBPS/Images/pg288_Image_809.jpg

OEBPS/Images/pg288_Image_808.jpg
const donald = new Duck(. . .)
act(donald)

OEBPS/Images/pg278_Image_770.jpg

OEBPS/Images/pg288_Image_807.jpg
class Duck {

constructor(. . .) { .. .

walk(): void { . . . }
quack(): void { . . .}
}

OEBPS/Images/pg288_Image_806.jpg

OEBPS/Images/pg64_Image_190.jpg

OEBPS/Images/pg64_Image_191.jpg
average(3) // average(3, undefined)
average() // average(8, undefined)
average(undefined, 3) // average(8, 3)

OEBPS/Images/pg64_Image_192.jpg
const average = (firs
let sun = first
for (const value of following) { sun += value }
return sun / (1 + following.length)

s -«.following) => {

OEBPS/Images/pg283_Image_791.jpg

OEBPS/Images/pg61_Image_181.jpg
function strictInASeaOfSloppy() 1
'use strict’

OEBPS/Images/pg283_Image_792.jpg
console.log(coloredPoints(2].color.length)
// Error—cannot read property 'length' of undefined

OEBPS/Images/pg64_Image_189.jpg

OEBPS/Images/pg283_Image_790.jpg
const coloredPoints: ColoredPoint{] = [{ x: 3, y: 4, color: "blue’ },
{x: 0, y: 0, color: 'red' }]
const points: Point[] = coloredPoints // OK for points to hold a subtype value

OEBPS/Images/pg137_Image_379.jpg

OEBPS/Images/pg288_Image_810.jpg
const findById = (elements: Identifiable[], id: string) => {
for (const e of elements) if (e.id() === id) return e;
return undefined;

}

OEBPS/Images/pg137_Image_378.jpg

OEBPS/Images/pg283_Image_793.jpg
type Colored = { color: string }
type MaybeColored = { color: string | undefined }

OEBPS/Images/pg150_Image_417.jpg

OEBPS/Images/pg280_Image_775.jpg
const more = (values: number[] | string[]) => {
if (isNumberArray(values))
return values.map(x => x + 1)
else
return values.map(x => x + x)

OEBPS/Images/pg74_Image_228.jpg
function f(a=1, b=2){ console.log("a=${a}, b=${b}") }
f() // a=1, b=2

f(a=5) // a=5, b=2

f(a=7, b=10) // a=7, b=10

f(b=10, a=7) // Order is require:

OEBPS/Images/pg150_Image_418.jpg
for (const e of arr) {
// Do something with the element e
b
for (const i in arr) {
// Do something with the index i and the element arr[i]

}

OEBPS/Images/pg74_Image_229.jpg
for (var 1 =8; 1 < 18; 1++) {
setTimeout(() => console.log(i), 1600 * i)

OEBPS/Images/pg280_Image_776.jpg
function isNumberArray(array: unknown[]): array is number[] {
return array.length > 0 §6 typeof array[0] *number"

OEBPS/Images/pg150_Image_419.jpg
for (const [index, element] of arr.entries())
console.log(index, element)

OEBPS/Images/pg280_Image_777.jpg

OEBPS/Images/pg151_Image_427.jpg
arr.forEach(f, thisArg)

OEBPS/Images/pg280_Image_778.jpg

OEBPS/Images/pg281_Image_784.jpg
const redOrigin = { x: 0, y: 0, color: 'red’ }
b = redorigin // OK—p can hold a subtype value

OEBPS/Images/pg151_Image_428.jpg

OEBPS/Images/pg280_Image_779.jpg
: number, y: number, color: string }

OEBPS/Images/pg281_Image_780.jpg

OEBPS/Images/pg281_Image_781.jpg
const distanceFromOrigin = (p: Point) => Math.sqrt(Math.pow(p.x, 2) + Math.pow(p.y, 2))
const result = distanceFromOrigin(bluePoint) // OK

OEBPS/Images/pg281_Image_782.jpg

OEBPS/Images/pg281_Image_783.jpg
let p: Point = { x: 3, y: 4 }
p={x:0,y:0, color: 'red’ } // Error—excess property blue

OEBPS/Images/pg279_Image_771.jpg

OEBPS/Images/pg279_Image_772.jpg
number | number(] | string | Date | null) => {
*number")

return x - 1;
else if (Array.isArray(x))

return x.splice(6, 1)
else if (x instanceof Date)

return new Date(x.getTime() - 1606)
else if (x === null)

return x

else
return x.substring(1)

OEBPS/Images/pg29_Image_80.jpg
let a = x
+ someComplicatedFunctionCall();
let b=y

OEBPS/Images/pg149_Image_415.jpg
arr.every(conditionFunction)
arr.some(conditionFunction)

OEBPS/Images/pg279_Image_773.jpg
const more = (values: number[] | string[]) => {
if (array.length > 0 &6 typeof x[6] nunber') // Error—not a valid type guard
return values.map(x => x + 1)
else
return values.map(x => x + x)

OEBPS/Images/pg279_Image_774.jpg
const isNumberArray = (array: unknown[]): array is number[)
array.length > 8 &6 typeof array[0] === 'number'

OEBPS/Images/pg303_Image_888.jpg

OEBPS/Images/pg303_Image_889.jpg
type Point = {
[propname in 'x'|"y']: number

}

OEBPS/Images/pg101_Image_294.jpg
const notQuitePi = parsefloat('3.14") // The number 3.14
const evenlessPi = parseInt('3') // The integer 3

OEBPS/Images/pg101_Image_295.jpg
const intRegex = /"[+-]7[8-9]+$/
if (intRegex.test(str)) value = parselnt(str)

OEBPS/Images/pg101_Image_296.jpg
const floatRegex = /"[+-]7((0][1-9][0-9]%)(\.[0-9]%)?|\.[0-9]+)([eE][+-]?[0-9]+)?}/
if (floatRegex.test(str)) value = parseFloat(str)

OEBPS/Images/pg148_Image_409.jpg

OEBPS/Images/pg151_Image_423.jpg
function roots(x) {
if (x < 0) {
return [] // No roots
} else if (x === 8) {
return [0] // Single root
} else {
return [Math.sqrt(x), -Math.sqrt(x)] // Two roots
}
}

OEBPS/Images/pg74_Image_230.jpg

OEBPS/Images/pg303_Image_885.jpg

OEBPS/Images/pg151_Image_424.jpg
[-1, 0, 1, 4].map(roots) // [[], [6], [1, -1], [2, -2]]

OEBPS/Images/pg74_Image_231.jpg
if (Math.random() < 6.5) {
say("Hello')
function say(greeting) { console.log("${greeting}!") }

b
say('Goodbye')

OEBPS/Images/pg151_Image_425.jpg
-1, 0, 1, 4].flatMap(roots) // [0, 1, -1, 2, -2]

OEBPS/Images/pg303_Image_886.jpg
type Data = string | string(] | number | number(]
type ArrayData = ExtractArray<Data> // The type string[] | number[]

OEBPS/Images/pg149_Image_410.jpg
arr = (17, 29]
arr[Synbol. isConcatSpreadable] = false
[1.concat(arr) // An array with a single element [17, 29]

OEBPS/Images/pg303_Image_887.jpg

OEBPS/Images/pg151_Image_426.jpg

OEBPS/Images/pg149_Image_411.jpg
[]. concat({ length: 2, [Symbol.isConcatSpreadable]: true,
17, '1': 29 }) // An array with two elements 17, 29

OEBPS/Images/pg148_Image_406.jpg

OEBPS/Images/pg149_Image_412.jpg
const found = arr.includes(target, start) // true or false
const firstIndex = arr.indexOf(target, start) // first index or -1
const lastIndex = arr.lastIndexOf(target, start) // last index or -1

OEBPS/Images/pg151_Image_421.jpg

OEBPS/Images/pg302_Image_879.jpg

OEBPS/Images/pg149_Image_413.jpg
const firstIndex = arr.findIndex(conditionFunction)
const firstElement = arr.find(conditionFunction)

OEBPS/Images/pg148_Image_408.jpg
const arr = [1, 2]
const arr2 = [5, 6]
const result = arr.concat(3, &4, arr2) // result is [1, 2, 3, &4, 5, 6]

OEBPS/Images/pg149_Image_414.jpg

OEBPS/Images/pg150_Image_416.jpg
const atLeastOneNegative = arr.some(x

OEBPS/Images/pg151_Image_422.jpg
1, 7, 2, 9).map(x => x » x) // [1, 49, 4, 81]
(1, 7, 2, 9].map((x, i) => x * 10 #+ i) // [1, 70, 206, 9666

OEBPS/Images/pg278_Image_766.jpg
Fie"Ei elecion View Go Fun Jerminal Help

R b Launch Progra - Bl restts o M tsconfiohon m

© vamastes 0> fon> T test1s> e coce.
T type let code: {string | nunber) (]
2 let code = [484, 'not found'l| T

Hm— I 5 i

OEBPS/Images/pg278_Image_767.jpg
const root = (x: number) => {
if (x >=) return Math.sqrt(x)
else return [404, 'not found']

}

OEBPS/Images/pg278_Image_768.jpg
const root = (x: number): number | ErrorCode =>
if (x >= @) return Math.sqrt(x)
else return [404, 'not found']

}

OEBPS/Images/pg278_Image_769.jpg
function root(x: number): number | ErrorCode {
if (x >= @) return Math.sqrt(x)
else return [404, 'not found']

}

OEBPS/Images/pg141_Image_378.jpg
const names = ['Peter', 'Paul’', 'Mary’]

OEBPS/Images/pg100_Image_293.jpg
const x =1/ 600 // 8.0916666666666666668
x.toFixed(4) // '0.0017"
X.toExponential(4) // '1.667e-3'
x.toPrecision(4) // '0.001667"

OEBPS/Images/pg100_Image_292.jpg
const almostP1 = 3.14
almostPi.toString(16) // 3.23d78a3d70a3e

OEBPS/Images/pg301_Image_874.jpg
const fill = <T>(ctor: { new() : T }, n: number) => {
let result: T[] = []
for (let i = 8 i< nj ie+)
result.push(new ctor())
return result

}

OEBPS/Images/pg100_Image_291.jpg
const n = 3735928559
n.toString(16) // 'deadbeef’

n.toString(8) // '33653337357"

n.toString(2) // '11011110101011011011111011191111’

OEBPS/Images/pg301_Image_877.jpg
const filter = <T>(values: unknown[], ctor: new (...args: any[]) = T) = {
Tet result: T[] = []
for (const v of values)
if (v instanceof ctor) // OK—right-hand side of instanceof is a constructor
result.push(v)
return result

OEBPS/Images/pg301_Image_878.jpg

OEBPS/Images/pg301_Image_875.jpg
const dates = fill(Date, 10)

OEBPS/Images/pg301_Image_876.jpg
const filter = <T>(values: unknown[]) => {
let result: T[] =[]
for (const v of values)
if (v instanceof T) // Error
result.push(v)
return result

OEBPS/Images/pg150_Image_420.jpg

OEBPS/Images/pg282_Image_786.jpg
type MaybeColoredPoint = {
x: number,
y: number,
color?: string

}

OEBPS/Images/pg29_Image_79.jpg
let a = x
+ someComplicatedFunctionCall()
let b=y

OEBPS/Images/pg282_Image_785.jpg
let p: Point = . . .
console. log(p. color) // Error—no such property

OEBPS/Images/pg100_Image_291a.jpg

OEBPS/Images/pg282_Image_788.jpg

OEBPS/Images/pg282_Image_787.jpg
let p: MaybeColoredPoint
p.color = 'red’ // OK—
o= {x: 3, y: 4 col

1x:0,y: 0} // OK—color optional
an set optional property
"blue’ } // OK—can use literal with optional property

OEBPS/Images/pg282_Image_789.jpg
const result = plot({ x: 3, y: 4, colour: 'blue’ })
// Error—excess property colour

OEBPS/Images/pg4_Image_5.jpg
let a
let b = 7
console.log(a * b)

OEBPS/Images/pg177_Image_1.jpg
'GroRhadndler'.tolLocaleUpperCase('de') // 'GROSSHANDLER'

OEBPS/Images/pg72_Image_223.jpg
try {
// Do work

} catch (e) {
console. log(e)
throw e // Rethrow to a handler that deals with the failure

OEBPS/Images/pg289_Image_812.jpg
interface Employable extends Identifiable {
salary(): number

}

OEBPS/Images/pg4_Image_7.jpg
[untitled] - WebStorm

untitled first. firstis «| » & a
K = Project - D= % = afirsts
e ed Teta-6
i firstjs leth=7 R
 External Libraries console.log(a = b)
‘Scratches and Consoles
§/Run: o firstis @ -
£, |1 /home/cay/.nvn/versions/node/v10.12.0/bin/node /home/cay/WebstornProjects/untitled/first.]
S 22
55 |3 process Tinished with exit code 0
*s
@Terminal | 5 4:RUA| 5: Debug QEvent Log
o 3114 /2 UTF-8: 2 spaces w & &

OEBPS/Images/pg289_Image_813.jpg
type Employable = Identifiable & {
salary(): number

}

OEBPS/Images/pg72_Image_224.jpg
try {
1/ Acquire resources

1/ Do work
} finally {
// Relinquish resources

}

OEBPS/Images/yheart.jpg

OEBPS/Images/pg289_Image_811.jpg
interface Identifiable {
id(): string

OEBPS/Images/pg200_Image_546.jpg
getCatImageURL()
.then(url => loadInage(url))
.then(img => imgdiv.appendChild(img))

OEBPS/Images/pg289_Image_814.jpg
interface Employable f
id(): string
}

OEBPS/Images/pg289_Image_815.jpg
interface Employable {
salary(): number

}

OEBPS/Images/pg200_Image_549.jpg
const loadCatImage = async () => {
const result = await fetch('https://aws.random.cat/meow’)
const imageJSON = await result.json()
return loadInage(imageJSON. file)

OEBPS/Images/pg200_Image_548.jpg
const loadCatImage = async () => {
const result = await fetch('https://aws.random.cat/meow")
const imageJSON = await result.json()
return await loadImage(imageJSON. file)

OEBPS/Images/pg200_Image_547.jpg
const url = await getCatImageURL()
const img = await loadImage(url)
imgdiv.appendChild(img)

OEBPS/Images/pg291_Image_824.jpg
const average =
// TypeScript

X: number, y?: number) =>y undefined ? x : (x +vy) / 2

OEBPS/Images/pg118_Image_327a.jpg
padded = 'Hello'.padStart(10,

OEBPS/Images/pg291_Image_825.jpg
const average = (x =0, y=x) => (x +y) / 2 // TypeScript

OEBPS/Images/pg291_Image_822.jpg
const average = (x, y) => (x +y) / 2 // JavaScript

OEBPS/Images/pg291_Image_823.jpg
undefined ? x : (x +vy) / 2 // JavaScript

OEBPS/Images/pg241_Image_669.jpg
getHandler.get({}, 'set', logEverythingHandler)

OEBPS/Images/squirrel3.jpg

OEBPS/Images/pg291_Image_821.jpg
type Shoppinglist = {
created: Date,
[arg: number] : string

const list: Shoppinglist = {
created: new Date()

b

list[6] = 'eggs'

list[1] = 'ham’

OEBPS/Images/squirrel2.jpg

OEBPS/Images/pg73_Image_227.jpg
const myFirstCounter = constructCounter(®, 2)
console. log(myFirstCounter.count()) //
console. log(myFirstCounter.count()) // 2

OEBPS/Images/pg73_Image_226.jpg
try 1
// Do work
return true
} finally {

return false

}

OEBPS/Images/pg108_Image_309.jpg
oneYearlater + 1
// 'Fri Jan 01 1971 01:00:00 GMT+0100 (Central European Summer Time)1'
oneYearLater * 1 // 31536000000

OEBPS/Images/pg108_Image_308.jpg
Date(365 * 86460 * 1660)
// gnores its argument and yields a string
// 'Mon Jun 24 2620 07:23:10 GMT+0260 (Central European Summer Time)'

OEBPS/Images/pg292_Image_831.jpg
const mkString = (values: unknown[], { // TypeScript
separator: string,
leftDeliniter: string, // Error—duplicate identifier
rightDeliniter: string // Error—duplicate identifier
1) => leftDelimiter + values.join(separator) + rightDelimiter

OEBPS/Images/pg292_Image_830.jpg
const mkString = (values, { separator, leftDelimiter, rightDelimiter }) =>
leftDelimiter + values.join(separator) + rightDelimiter

OEBPS/Images/pg241_Image_672.jpg
const knownObjects = new WeakMap()

const stringify = x = {
if (knownObjects.has(x))
return knownObjects.get(x)
else
return JSON.stringify(x)
J

const logEverything = (name, obj) => {
knownObjects. set(obj, name)
const getHandler = {
get(target, trapKey, receiver) {
return (...args) = {
console.log("Trapping ${trapkey}(${args.map(stringify)})")
return Reflect[trapKey](...args);

}
}

const result = new Proxy(obj, new Proxy({}, getHandler))
knownObjects.set(result, “proxy of ${name}")
return result

OEBPS/Images/pg241_Image_673.jpg
const fred = { name: 'Fred" }
const proxyOffred = logEverything('fred', fred)
proxyOfFred.age = 42

OEBPS/Images/pg241_Image_670.jpg
..args) => { console.log(Trapping set™

return Reflect.set(...args) }

OEBPS/Images/pg241_Image_671.jpg

OEBPS/Images/pg302_Image_882.jpg

OEBPS/Images/pg294_Image_843.jpg
const g = (x: number) => 2 * x
// Type (argl: number) => number

const f: (argl: number, arg2: number) => number = g
// OK for f to hold subtype value

OEBPS/Images/pg294_Image_844.jpg
const g = (x: number, y?: number) => y === undefined ? x : (x +y) / 2
// Type (argl: number, arg2?: number) => number

const f: (argl: number, arg2: number) => number = g
// OK for f to hold subtype value

OEBPS/Images/pg110_Image_311.jpg
const appointment = new Date('2026-65-31T60:06:60.006Z")
appointment.setUTCMonth(5 /+ June */) // appointment is now July 1

OEBPS/Images/pg110_Image_313.jpg
moonlanding.tolocaleDateString() // '20.7.1969" if the locale is German
moonlanding.tolLocaleDateString('en-US') // '7/26/1969"

OEBPS/Images/pg294_Image_840.jpg
const ep: EmployeeProducer = (name: string) => ({ name, salary: 0 })
const pp: PersonProducer = ep
// OK for pp to hold subtype value

OEBPS/Images/pg110_Image_312.jpg
'Sun Jul 20 1969 21:17:40 GMT+0100 (Mitteleuropaische Sommerzeit)'
‘Sun Jul 20 1969"

'21:17:40 GNT+0100 (Mitteleuropiische Sommerzeit)'

'Sun, 20 Jul 1969 20:17:40 GMT'

OEBPS/Images/pg130_Image_353a.jpg

OEBPS/Images/pg155_Image_436.jpg
const freq = {}
for (const c of "Mississippi') {
if (c in freq) {
freqlcl++
} else {
fregqlc] = 1

OEBPS/Images/pg155_Image_435.jpg
op arr[n-2]
/N

init arr[n-1]

OEBPS/Images/pg155_Image_434.jpg
function findAll(arr, condition) {
return arr.reduce((accum, current, currentIndex) =>
condition(current) ? [...accum, currentIndex] : accum, [])

const odds = findA1([1, 7, 2, 9], x => x % 2 1== 0)
// 18, 1, 3], the positions of all odd elements

OEBPS/Images/pg110_Image_315.jpg

OEBPS/Images/pg110_Image_314.jpg
moonlanding.tolocaleDateString(
‘en-US', { year: 'numeric', month: 'long', day: 'numeric' })
// 'July 26, 1969'

OEBPS/Images/pg294_Image_845.jpg
number(]) => Math.max(x, y, ...following)
// Type: (argl: number, arg2: number, ...rest: number[]) = nunber

let f: (argl: number, arg2: number) => number
// OK for f to hold subtype value

OEBPS/Images/pg18_Image_39.jpg

OEBPS/Images/pg81_Image_239a.jpg

OEBPS/Images/pg228_Image_621.jpg

OEBPS/Images/pg294_Image_838.jpg

OEBPS/Images/pg177_Image_496.jpg
['Osterreich', 'Offenbach'].sort((x, y)

X.localeCompare(y, 'de-u-co-phonebk'))

OEBPS/Images/pg228_Image_625.jpg
{ value: "James Bond’,
writable: true,
enumerable: true,
configurable: true }

OEBPS/Images/pg294_Image_839.jpg

OEBPS/Images/pg228_Image_624.jpg

OEBPS/Images/pg72_Image_225.jpg
try {
} catch (e) {
} finally {

}

OEBPS/Images/pg228_Image_623.jpg
Object.defineProperties(james, {
id: { value: '087', writable: false, enumerable: true, configurable: false },
age: { value: 42, writable: true, enumerable: true, configurable: true }

})

OEBPS/Images/pg228_Image_622.jpg
james.lastName = 'Smith

// Now james.name is

James Smith

OEBPS/Images/pg294_Image_837.jpg
const pc: PersonConsumer = (p: Person) => { console.log("a person named ${p.name}") }
const ec: EnployeeConsumer = pc
// OK for ec to hold subtype value

OEBPS/Images/pg228_Image_626.jpg

OEBPS/Images/pg177_Image_495.jpg
const parts = ['partl’, 'partl@’, ‘part2’, 'part9’]
parts.sort((x, y) => x.localeCompare(y, 'en-u-kn-true'))
// Now parts is ['partl’, 'part2', 'part9', 'part10']

OEBPS/Images/pg205_Image_563.jpg
const errorAfterDelay = async (message, delay) =>
await rejectAfterDelay(new Error(message), delay)

OEBPS/Images/pg237_Image_662.jpg

OEBPS/Images/pg237_Image_663.jpg

OEBPS/Images/pg205_Image_566.jpg

OEBPS/Images/pg18_Image_41.jpg

OEBPS/Images/pg205_Image_564.jpg
const errorAfterDelay = async (message, delay) => {
try {
return rejectAfterDelay(new Error(message), 1000)
} catch(e) { console.error(e) }

}

OEBPS/Images/pg18_Image_40.jpg

OEBPS/Images/pg205_Image_565.jpg
const token = new CancellationToken()
const images = fetchImages(url, token)

OEBPS/Images/pg290_Image_817.jpg

OEBPS/Images/pg159_Image_454.jpg

OEBPS/Images/pg2_Image_2.jpg
) My First JavaScript Program - Mozilla Firefox - nox
< - | @ file:/ijtmpffirst.html [L X #

OEBPS/Images/pg290_Image_816.jpg
interface Point3D extends Point { z: number }

OEBPS/Images/pg290_Image_819.jpg
const dict: Dictionary = { creator: 'Pierre’ }
dict.hello = ['bonjour', 'salut’, 'alls']

let str = 'world"

dict[str] = 'monde’

OEBPS/Images/pg2_Image_1.jpg
<html>
<head>
<title>My First JavaScript Program</title>
<script type="text/javascript">

leta=6
letb=7
window.alert(a * b)
</script>
</head>
<body>
</body>

¢/html>

OEBPS/Images/pg159_Image_452.jpg
for (const value of set) {
console. Log(value)

OEBPS/Images/pg159_Image_453.jpg
set.forkach(value => {
console. Log(value)

OEBPS/Images/pg290_Image_818.jpg
type Dictionary = {
creator: string,
[arg: string]: string | string[]

}

OEBPS/Images/pg201_Image_554.jpg

OEBPS/Images/pg201_Image_553.jpg
const imgl
const img2

await loadImage(url)
await loadCatImage() // Only starts after the first image was loaded

OEBPS/Images/pg201_Image_552.jpg
for await (const value of range(6, 18, 1660)) {
console. log(value)

OEBPS/Images/pg201_Image_551.jpg
async function* range(start, end, delay) {
for (let current = start; current < end; current++) {
yield await produceAfterDelay(current, delay)
}
}

OEBPS/Images/pg201_Image_550.jpg
const getJSONProperty = async (url, key) => {
if (url === undefined) return null
// Actually returns Pronise. resolve(null)
const result = await fetch(url)
const json = await result.json()
return json[key]

OEBPS/Images/pg159_Image_451.jpg
set.add(x)
// Adds x if not present and returns set for chaining
set.delete(x)
// T x is present, deletes x and returns true, otherwise returns false
set.has(x) // Returns true if x is present
set.clear() // Deletes all elements

OEBPS/Images/pg187_Image_513.jpg
R © | ® localhost:4000/images.html

OEBPS/Images/tip.jpg

OEBPS/Images/pg90_Image_262.jpg
class Manager extends Employee {

getSalary() { return super.getSalary() + this.bonus }

OEBPS/Images/pg90_Image_263.jpg
class Manager extends Employee {

get salary() { return super.salary + this.bonus }

OEBPS/Images/pg90_Image_264.jpg
class Manager extends Employee {
constructor(name, salary, bonus) {
super(nane, salary) // Must call superclass constructor
this.bonus = bonus // Afterwards, this is valid

}

OEBPS/Images/pg290_Image_820.jpg
type Dictionary = {
created: Date, // Eror—not a string or string[]
[arg: string]: string | string(]

OEBPS/Images/note.jpg

OEBPS/Images/pg89_Image_261a.jpg
const empl =
const salan

empl.getSalary()

OEBPS/Images/pg20_Image_46.jpg
const melancholyMagicSquare = |
(16, 3, 2, 13],
(s, 16, 11, 8],
[9, 6, 7, 12,
(4, 15, 14, 1]
1

OEBPS/Images/pg20_Image_48.jpg

OEBPS/Images/pg105_Image_305.jpg
let result = 815915283247897734345611269596115894272000000000n * BigInt(41)
// Sets result to 334525266131638071081700620534407516651520006600666n

OEBPS/Images/pg218_Image_597.jpg

OEBPS/Images/pg218_Image_598.jpg

OEBPS/Images/pg218_Image_595.jpg

OEBPS/Images/pg218_Image_596.jpg

OEBPS/Images/pg218_Image_599.jpg
export function default(s, key) { . . . }
export default function (s, key) { . . . }
export const default = (s, key) => { . . .}
export default (s, key) => { ...}

OEBPS/Images/pg136_Image_375.jpg
flipped = names.replace(/"([A-Z]la-z]+) ([A-Z]la-z]+)/gm,
(match, first, last) => “${last}, ${first[8]}.")
// ‘Smith, H.\nLin, S."'

OEBPS/Images/pg65_Image_196.jpg
Math.max(...numbers) // Spread operator—argument in function call
const max = (...values) => { /* body */}
// Rest declaration of parameter variable

OEBPS/Images/pg65_Image_195.jpg
result = Math.max(...numbers) // Yields 9

OEBPS/Images/pg65_Image_194.jpg
let numbers = [1, 7, 2, 9]
result = Math.max(numbers) // Yields NaN

OEBPS/Images/pg65_Image_193.jpg

OEBPS/Images/pg284_Image_794.jpg
class Point {
Xt nunber
y: nuaber

constructor(x: number, y: number) {
this.x = x
this.y = y

}

distance(other: Point) {
return Math.sqrt(Math.pow(this.x - other.x, 2) + Math.pow(this.y - other.y, 2))

tostring() { return “(${this.x}, ${this.y})" }

static origin = new Point(@, 0)

OEBPS/Images/pg136_Image_377.jpg
let index = 'Blackwell Toaster $29.95'.search('$')
// Yields 24, the end of the string, not the index of $

OEBPS/Images/pg251_Image_689.jpg
for (const element of new Range(16, 26))
console.log(element) // Prints 16 11 . . . 19

OEBPS/Images/pg251_Image_688.jpg
class Range {
constructor(start, end) {
this.start = start
this.end = end

}

OEBPS/Images/pg136_Image_376.jpg
let replacement = 'Blackwell Toaster $29.95'.replace('$", 'USD')
// Replaces $ with USD

OEBPS/Images/latex.jpg
[ATEX

OEBPS/Images/pg262_Image_727.jpg
let r = new TimedRange(1, 16, 1666)
for await (const e of r) console.log(e)

OEBPS/Images/pg262_Image_728.jpg
https://chroniclingamerica.loc.gov/search/titles/results/
?terms=michigan&format=jsonfpage=5

OEBPS/Images/pg262_Image_726.jpg
class TimedRange {
constructor(start, end, delay) {
this.start = start
this.end = end
this.delay = delay
}

async *[Symbol.asyncIterator]() {
for (let current = this.start; current < this.end; current++) {
yield await produceAfterDelay(current, this.delay)
}
}
}

OEBPS/Images/pg43_Image_125.jpg
let obj = { name: "Harry Smith®, age: 42
for (const key in obj)
console. log("${key}: ${objlkey]}")

OEBPS/Images/pg219_Image_600.jpg
class Node {
static fron(value, ...children) {
return children.length 2 new Leaf(value)
+ new Parent(value, children)
}

]

class Parent extends Node {
constructor(value, children) {

super()
this.value = value
this.children = children

}
depth() {
return 1 + Math.max(...this.children.map(c => c.depth()))

]

class Leaf extends Node {
constructor(value) {
super()
this.value = value

}
depth() {
return 1

OEBPS/Images/pg43_Image_128.jpg
if (numbers[i]

OEBPS/Images/pg219_Image_601.jpg
import { Node } from './node.mjs’

const myTree = Node. from('Adan’,
Node. from('Cain', Node.from('Enoch')),
Node. from('Abel"),
Node. from('Seth", Node.from('Enos')))
console.log(myTree.depth())

OEBPS/Images/pg127_Image_342.jpg
const timeRegex = /"([1-9]|1[0-2]):[0-9]{2} [ap]m$/

OEBPS/Images/pg43_Image_126.jpg
let numbers = (1, 2, , 4]

numbers[99] = 168

for (const i in numbers)
console.log("${i}: ${numbers[i]}")

OEBPS/Images/pg127_Image_343.jpg
const fractionalNumberRegex

J10-9)+\.[0-9]=/

OEBPS/Images/pg43_Image_127.jpg

OEBPS/Images/pg127_Image_344.jpg
const fractionalNumberRegex

new RegExp('[0-9)+\\.[0-9)*")

OEBPS/Images/pg180_Image_508.jpg
const regionNames = new Intl.DisplayNames(['fr'], { type: 'region’ })
const languageNames = new Intl.DisplayNames(['fr'], { type: 'language’ })
const currencyNames = new Intl.DisplayNames(['zh-Hans'],

{ type: 'currency’ })
regionNames.of ('US') // 'ftats-Unis'
languageNames.of ('fr') // 'Frangais’
currencyNames.of ('USD') // 't

OEBPS/Images/pg274_Image_750.jpg

OEBPS/Images/pg63_Image_184a.jpg
typeof x *number" ||
x instanceof Number

OEBPS/Images/pg118_Image_329.jpg

OEBPS/Images/pg118_Image_328.jpg
padded = "Hello'.padStart(16,)
// Padded with two hearts and an unmatched code unit

OEBPS/Images/pg118_Image_327.jpg
let padded = 'Hello'.padStart(10) // ' Hello', five spaces are added

OEBPS/Images/pg52_Image_147.jpg
function indexOf(arr, value) {
for (let i in arr) {
if (arr[i] === value) return i
}
return -1

}

OEBPS/Images/pg118_Image_326.jpg

OEBPS/Images/pg52_Image_146.jpg

OEBPS/Images/pg182_Image_1.jpg
{ de: { greeting: 'Hallo', farewell: 'Auf Wiedersehen' },
'de-CH' : { greeting: 'Griezi' },
fr: { greeting: 'Bonjour', farewell: 'Au revoir' },

=

OEBPS/Images/pg79_Image_236.jpg
const employeePrototype
raiseSalary: function(percent) {
this.salary += 1 + percent / 168

OEBPS/Images/pg79_Image_235.jpg
harry
name = ‘Harry Smith’
salary = 90000 .
raiseSalary = function ~”
sally
name = ‘sally Lopez
salary = 100000
raiseSalary = function *

OEBPS/Images/pg79_Image_234.jpg
function createEmployee(name, salary) {
return {
name: name,
salary: salary,
raiseSalary: function(percent) {
this.salary *= 1 + percent / 108

OEBPS/Images/pg230_Image_633.jpg

OEBPS/Images/pg275_Image_752.jpg
let w: Weekday = "Mon’ // OK
w = 'Mo' // Error

OEBPS/Images/pg230_Image_632.jpg

OEBPS/Images/pg275_Image_753.jpg

OEBPS/Images/pg230_Image_631.jpg
obj.hasOwnProperty(stringOrSymbol)

OEBPS/Images/pg230_Image_630.jpg

OEBPS/Images/pg275_Image_751.jpg

OEBPS/Images/pg97_Image_285.jpg
const action = BankAccount.prototype.deposit
action(1008)

OEBPS/Images/pg97_Image_284.jpg
button.addEventListener('click’, event => {
event. target.classList.toggle('clicked')

OEBPS/Images/pg97_Image_287.jpg
function invokelater(f, delay) {
setTimeout(() => f(delay), delay)

OEBPS/Images/pg67_Image_207.jpg
const mkString = (array, {
separator = ',",
TleftDeliniter = '[',
rightDelimiter = ']
H={

}

OEBPS/Images/pg97_Image_286.jpg
const harrysAccount = new BankAccount()
const action = harrysAccount .deposit
action(1008)

OEBPS/Images/pg67_Image_209.jpg
const mkString = (array, {
separator = ',",
leftDelimiter = '[',
rightDelimiter = ']
={h={

OEBPS/Images/pg251_Image_692.jpg
next() {
.0

return { value: some value, done: false }
}else {
return { value: undefined, done: true }

OEBPS/Images/pg251_Image_691.jpg
class Rangelterator {
constructor(current, last) {
this.current = current
this.last = last

}
next() { ...}
J

class Range {

[Symbol.iterator]() { return new RangeIterator(this.start, this.end) }

OEBPS/Images/pg117_Image_326.jpg
parts = 'Mary had a little lamb'.split(" ', 4)
// ['Mary', 'had’, 'a', 'little']

OEBPS/Images/pg251_Image_690.jpg
class Range {

Isymbol.iterator]() { . . . }

OEBPS/Images/pg53_Image_149.jpg
return {
average: (x +y) /2,
max: Math.max(x, y),

OEBPS/Images/pg275_Image_756.jpg

OEBPS/Images/pg256_Image_710.jpg
function* flatArrayGenerator(arr) {
for (const element of arr)
if (Array.isArray(element)) {
yield« flatArrayGenerator(element)
} else {
yield element

OEBPS/Images/pg117_Image_324.jpg
substring = "ICyellow’.substring(7, 3) // 'yell', same as substring(3, 7)

OEBPS/Images/pg117_Image_325.jpg
let parts = 'Mary had a little lamb'.split(" ')
// ['Mary', 'had', 'a', 'little', 'lamb']

OEBPS/Images/pg275_Image_757.jpg
number(] // Array of number
string[] // Array of string
number[1[] // Array of number[]

OEBPS/Images/pg275_Image_754.jpg

OEBPS/Images/pg230_Image_634.jpg
const fred = Object.freeze({ name: "Fred”, luckyNumbers: (17, 29] })

fred. luckyNumbers[0] = 13 // OK—LluckyNumbers isn’t frozen

OEBPS/Images/pg117_Image_323.jpg

OEBPS/Images/pg275_Image_755.jpg

OEBPS/Images/pg10_Image_17.jpg
counter++ // The same as counter = counter + 1

OEBPS/Images/pg10_Image_16.jpg
counter += 10 // The same as counter = counter + 10

OEBPS/Images/pg67_Image_210.jpg
const result = mkString(values) // The second argument defaults to {}

OEBPS/Images/pg10_Image_18.jpg
let counter = @
let riddle = counter++
let enigma = ++counter

OEBPS/Images/pg97_Image_288.jpg

OEBPS/Images/pg179_Image_1.jpg
const rules = new Intl.PluralRules('en', { type: 'ordinal' })
[0, 1, 2, 3, 4, 5).map(i => rules.select(i))
// ['other', 'one', 'two', 'few', 'other', 'other']

OEBPS/Images/pg161_Image_462.jpg
const canvas = document.getELlementById(‘canvas')

const ctx = canvas.getContext('2d')

ctx.drawInage(img, 8, 0)

let imgdata = ctx.getImageData(0, 6, canvas.width, canvas.height)
let rgba = imgdata.data // an Uint8ClampedArray

OEBPS/Images/pg161_Image_460.jpg
farrl-1] = 2 // No eftect
farr[0.5] = 1.414214 // No effect
farr.lucky = true // Sets the lucky property

OEBPS/Images/pg161_Image_461.jpg

OEBPS/Images/pg52_Image_145.jpg

OEBPS/Images/pg199_Image_1.jpg
const result = await fetch('https://aws.random.cat/meow")
const imageJSON = await result.json()

OEBPS/Images/pg199_Image_2.jpg
const getCatImageURL = async () => {
const result = await fetch('https://aws.random.cat/meow")
const image]SON = await result.json()
return imageJSON.file

}

OEBPS/Images/pg56_Image_167.jpg
const listltems = 1tems
.map(htmlEscape)
.map(i => enclose('1i', i))

OEBPS/Images/pg56_Image_168.jpg
const list = enclose('ul"’,
items
.map(htmlEscape)
-map(i => enclose('1i", 1))

OEBPS/Images/pg56_Image_169.jpg
arr.forEach((element, index) => { console.log(${index}: ${element}) })

OEBPS/Images/pg271_Image_742.jpg
const a = [11, 12, 13, 14, 15, 16
replace(a, 13, 0) // OK
replace(a, [13, 14], 8) // OK
replace(a, 13, 14, 8) // Error

OEBPS/Images/math1.jpg
Vx, Vx, Vx* +

OEBPS/Images/pg271_Image_741.jpg
const replace = (arr: number[], target: number | number[], replacement:
for (let i = 8; i < arr.length; i++) {
if (Array.isArray(target) 66 target.includes(arr[i])
|| !Array.isArray(target) 66 target arr[i]) {
arr[i] = replacement

OEBPS/Images/pg56_Image_170.jpg
arr.forEach(element => { console.log(${element}) })

OEBPS/Images/math2.jpg

OEBPS/Images/pg66_Image_206.jpg
const mkString = (array, config) =
Tet separator = config.separator

: config.separator

OEBPS/Images/pg56_Image_171.jpg
const enclose = (tag, contents) => "<${tagp>${contents}</${tagh>
const listItems = items.map(i => enclose('li', i))

OEBPS/Images/pg271_Image_743.jpg
function average(x: number, y.

number) {

return (x +vy) / 2

OEBPS/Images/pg145_Image_398.jpg
let arr = [0, 1, 4, 9, 16, 25]

arr.copithin(9, 1) // arr is now [1, 4, 9, 16, 25, 25]
arr.copithin(1) // arr is now [1, 1, 4, 9, 16, 25]
arr. fill(7, 3, -1) // arris now [1, 1, &, 7, 7, 25]

OEBPS/Images/pg145_Image_399.jpg
arr = [0, 1, 4, 9, 16, 25]
arr.reverse() // arr is now [25, 16, 9, 4, 1, 0]

OEBPS/Images/pg187_Image_1.jpg
const imgdiv = document.getElementById('images')
addImage('hanafuda/1-1.png', imgdiv)
addImage('hanafuda/1-2.png', imgdiv)
addImage('hanafuda/1-3.png', imgdiv)
addImage('hanafuda/1-4.png', imegdiv)

OEBPS/Images/pg66_Image_200.jpg
let greeting = 'Hello ©'
let characters = [...greeting]

OEBPS/Images/pg145_Image_396.jpg
arr = [1, 4, 9, 16]
const spliced = arr.splice(1, 2) // spliced is [4, 9], arr is [1, 16]

OEBPS/Images/pg145_Image_397.jpg
arr.copyWithin(targetIndex, start, end)

OEBPS/Images/pg274_Image_749.jpg
let values = [1, 7, 2, 9]
let moreValues: typeof values = []
// typeof values is the same as number[]
let anotherElement: typeof values[0] = 42
// typeof values[8] is the same as number

OEBPS/Images/pg66_Image_205.jpg

OEBPS/Images/pg118_Image_330.jpg
let lowercased

uppercased. toLowerCase() //

strasse

OEBPS/Images/pg66_Image_203.jpg
function average(first = 0, ...following) { . . . }

OEBPS/Images/pg32_Image_89.jpg
statementy
statement

OEBPS/Images/pg15_Image_23.jpg
greeting = "Hello, ${firstname.length > @ ? “${firstname[0]}. ~ : '' } ${lastname}"

OEBPS/Images/pg15_Image_22.jpg
let destination = 'world’ // A regular string
let greeting = “Hello, ${destination.toUpperCase()}!" // A template literal

OEBPS/Images/pg234_Image_651.jpg
fred =

bamey

T

Object

name = ‘Fred'

bestFriend

Object

name
bestFriend

“Barney’

OEBPS/Images/pg234_Image_652.jpg
const clone = (obj, cloneRegistry = new Map()) => {
if (typeof obj !== 'object' || Object.isFrozen(obj)) return ob;
if (cloneRegistry.has(obj)) return cloneRegistry.get(obj)
const props = Object.getOwnPropertyDescriptors(obj)
let result = Object.create(Object.getPrototypeOf(obj), props)
cloneRegistry.set(obj, result)
for (const prop in props)
result[prop] = clone(obj[prop], cloneRegistry)
return result

OEBPS/Images/pg234_Image_653.jpg
const clone = (obj, cloneRegistry = new Map()) => {
if (typeof obj == 'object' || Object.isFrozen(obj)) return obj
if (cloneRegistry.has(obj)) return cloneRegistry.get(obj)
const props = Object.getOwnPropertyDescriptors(obj)
Tet result = Array.isrray(obj) ? Array.fron(obj)
: Object.create(Object.getPrototype0f(obj), props)
cloneRegistry.set(obj, result)
for (const prop in props)
resultlprop] = clone(objlprop], cloneRegistry)
return result

OEBPS/Images/pg255_Image_1.jpg
..rangeGenerator(16, 15)] // The array [10, 11, 12, 13, 14]

OEBPS/Images/pg22_Image_64.jpg
let harry = { name: 'Harry’, age: 42 }
let { name: harrysName, age: harrysAge } = harry

OEBPS/Images/pg22_Image_63.jpg

OEBPS/Images/pg22_Image_61.jpg
let [first, second] = [1]
// Sets first to 1, second to undefined

OEBPS/Images/pg233_Image_648.jpg
const fred = { name: "Fred’ }
const barney = { name: 'Barney’)
fred.bestFriend = barney
barney.bestFriend = fred

OEBPS/Images/pg160_Image_455.jpg
const outcome = new Map()

outcome.set(node, 'success')

OEBPS/Images/pg233_Image_649.jpg
cloned = { name: 'Fred', bestFriend: clone(barney) }

OEBPS/Images/pg233_Image_646.jpg
original = ———————" Object

radius = 10

name = —

Object
cloned = X = 20
T objeet Y= o

radius = 10
name = —

OEBPS/Images/pg160_Image_456.jpg
IntsArray
Uint8Array
Uint8ClanpedArray
Int16Array
Uint16Array
Int32Array
Uint32Array
Float32Array
Float6kArray

OEBPS/Images/pg233_Image_647.jpg
const clone = obj => {
if (typeof obj !== ‘object' || Object.isFrozen(obj)) return obj

const props = Object.getOwnPropertyDescriptors(obj)
let result = Object.create(Object.getPrototype0f(obj), props)
for (const prop in props)
result[prop] = clone(obj[prop])
return result

OEBPS/Images/pg246_Image_683.jpg
Employee.prototype.raiseSalary = function(percent) {
this.salary *= 1 + percent / 108

}

OEBPS/Images/pg246_Image_682.jpg
function Employee(name, salary) 1
this.nane = nane
this.salary = salary

}

OEBPS/Images/pg94_Image_277.jpg
acct.addObserver(()

> { this.log('More money!') })

OEBPS/Images/pg94_Image_276.jpg
class UserInterface {
log(message) {

}

start() {
acct.addobserver(function() { this.log('More money!') })
acct.deposit(1000)

OEBPS/Images/pg32_Image_90.jpg
if (yourSales > target) {
performance = 'Good'
bonus = 160

belse {
perfornance = 'Mediocre’
bonus = 6

OEBPS/Images/pg196_Image_535.jpg
{ status: 'rejected', reason: exception }

OEBPS/Images/pg94_Image_275.jpg
class BankAccount {
constructor() {
this.balance = 6
this.observers = []

}
addobserver(f) {
this.observers. push(f)

notifyobservers() {
for (let i = 6; i < this.observers.length; i++)
this.observers[i]()

deposit(amount) {
this.balance += amount
this.notifyobservers()

OEBPS/Images/pg32_Image_91.jpg
if (yourSales > 2 » target) {
perfornance = 'Excellent’
bonus = 1600

} else if (yourSales > target) {
perfornance = 'Good'
bonus = 160

b else {
perfornance = 'Mediocre’
bonus = 6

OEBPS/Images/pg196_Image_534.jpg

OEBPS/Images/pg232_Image_1.jpg
const cloned =

..original } // In general, not a true clone

OEBPS/Images/pg22_Image_67.jpg
let name = harry.name
let age = harry.age

OEBPS/Images/pg196_Image_533.jpg
const promises = [
‘loadImage(' hanafuda/1-1.png'),
ToadInage(' hanafuda/1
ToadInage(' hanafuda/1
ToadInage(' hanafuda/1-4.

Promise.all(promises)
.then(images => { for (const img of images) imgdiv.appendChild(img) }

OEBPS/Images/pg22_Image_66.jpg

OEBPS/Images/pg257_Image_711.jpg
functions arrayGenerator(arr) {
yields arr

}

OEBPS/Images/pg257_Image_712.jpg
function* arrayGenerator(arr) {
for (const element of arr)
yield element
return arr.length

}

OEBPS/Images/pg173_Image_480.jpg
newYearsEve.tolocaleDateString(‘en’, { dateStyle: 'medium’ })
// "Dec 31, 1999'

newYearsEve.tolocaleDateString('de’, { dateStyle: 'medium' })
// '31.12.1999"

OEBPS/Images/pg257_Image_713.jpg
function* elementsFollowedBylLength(arr) {
const len = yields arrayGenerator(arr);
yield len;

}

OEBPS/Images/pg81_Image_239.jpg
function Employee(name, salary) {
this.nane = nane
this.salary = salary

OEBPS/Images/pg197_Image_536.jpg
Promise.any(promises)
.then(result => .
.catch(error => .

/ Process the result of the first settled promise
/ None of the promises settled

")
“ a)

OEBPS/Images/queenc.jpg

OEBPS/Images/pg257_Image_714.jpg
function+ sumGenerator() {
Tet sum = @
while (true) {
Let nextvalue = yield sum
sum += nextValue
}
}

OEBPS/Images/pg81_Image_240.jpg
new Employee('Harry Smith', 90000)

OEBPS/Images/pg132_Image_360.jpg

OEBPS/Images/pg298_Image_860.jpg
const weekdays = new Map(
[['Mon', 6], ['Tue', 11, ['Wed', 21, ['Thu', 31, ['Fri', 4], ['Sat’, 5], ['Sun’, 6]1)

OEBPS/Images/pg256_Image_709.jpg

OEBPS/Images/pg233_Image_650.jpg

OEBPS/Images/pg256_Image_708.jpg
functions flatArrayGenerator(arr) {
for (const element of arr)
if (Array.isArray(element)) {
yields arrayGenerator(element) // Yields the generated elements one at a time
} else {
yield element

OEBPS/Images/pg256_Image_707.jpg

OEBPS/Images/pg256_Image_706.jpg
functions flatArrayGenerator(arr) {
for (const element of arr)
if (Array.isArray(element)) {
arrayGenerator(element) // Error—does not yield any elements
} else {
yield element

}

OEBPS/Images/pg286_Image_1.jpg
const p = new Point(3, 4)
p.x = 0 // Error—cannot change readonly property

OEBPS/Images/pg287_Image_799.jpg
const a = new Point(3, 4)
const b: typeof a = new Point(9, 8) // OK
const ctor: typeof Point = new Point(@, 6) // Error

OEBPS/Images/pg80_Image_238.jpg
harry

[[Prototype]] = —]
name = ‘'Harry Smith"
salary = 90000
sally
[[Prototype]] =
name ‘Sally Lopez'
salary 100000

employeePrototyp

raisesalary = function

OEBPS/Images/pg80_Image_237.jpg
function createEmployee(name, salary) {
const result = { name, salary }
Object.setPrototype0f(result, employeePrototype)
return result

OEBPS/Images/pg38_Image_108.jpg
9 66 'Harry' // @
o || "Harry' // 'Harry

OEBPS/Images/pg40_Image_116.jpg
let years = 0
while (balance < goal) {
balance += paymentAmount
let interest = balance interestRate / 106
balance += interest
years++

console.log(${years} years.")

OEBPS/Images/pg38_Image_109.jpg

OEBPS/Images/pg132_Image_359.jpg

OEBPS/Images/pg298_Image_859.jpg
const salaries = new Map<Person, number>()

OEBPS/Images/pg298_Image_858.jpg
type Pair<T = any> =

{ first: T, second: T }

OEBPS/Images/pg298_Image_857.jpg
type Pair<T> = { first

T, second: T }

OEBPS/Images/pg173_Image_477.jpg
const newYearstve = new Date(1999, 11, 31, 23, 59)
newYearsEve. tolocaleDateString('de') // '31.12.1999"
newYearsEve. tolocaleTimeString('de') // '23:59:00'
newYearsEve. tolocaleString('de') // '31.12.1999, 23:59:00'

OEBPS/Images/pg298_Image_856.jpg
class Entry<K, V> {
key: K
value: V
constructor(key: K, second: V) {
this.key = key
this.value = value
}
}

OEBPS/Images/pg8_Image_13.jpg
const notQuitePi = parseFloat('3.14") // The number 3.14
const evenlessPi = parseInt('3') // The integer 3

OEBPS/Images/pg173_Image_479.jpg
newYearsEve.tolocaleDateString(‘en’, {
year: 'numeric’,
“short’,
: 'numeric’,

}) /7 "Dec 31, 1999

new Intl.DateTimeFormat('de’, {
hour: 'numeric’,
minute: '2-digit’
}).format(newYearsEve) // '23:59"

OEBPS/Images/pg173_Image_478.jpg
const germanDateTimeFormatter = new Intl.DateTimeFormat('de’)
sermanDateTimeFormatter. format(newYearsEve) // '31.12.1999"

OEBPS/Images/pg247_Image_684.jpg
const root = makeRootProxy(document)
const firstItemInSecondList = root.html.body.ul[2].1i[1]

OEBPS/Images/pg38_Image_110.jpg
let result

arg.someMethod() || defaultValue

OEBPS/Images/pg38_Image_111.jpg

OEBPS/Images/pg38_Image_113.jpg
let recipientlength = person?.name?.length

OEBPS/Images/queen2.jpg

OEBPS/Images/queen1.jpg

OEBPS/Images/pg227_Image_619.jpg
Object.defineProperty(james, "id", {
configurable: false
}) // Now james.id can’t be deleted, and its attributes can’t be changed

OEBPS/Images/pg227_Image_618.jpg
Object.defineProperty(james, '1d", {
value: '667',
enumerable: true,
writable: false,
configurable: true

OEBPS/Images/pg163_Image_4.jpg
const arr = new Uintl6Array(buf) // An array of 1024 Uint16, backed by buf

OEBPS/Images/pg227_Image_617.jpg
let james = { name: 'James Bond’ }
// james.name is writable, enumerable, configurable

OEBPS/Images/pg163_Image_1.jpg
const buf = new ArrayBuffer(1024 « 2)

OEBPS/Images/pg163_Image_3.jpg
view.setUint32(offset, newValue, littleEndian)

OEBPS/Images/pg163_Image_2.jpg
const littleEndian = true // false or omitted for big-endian byte order
const value = view.getUint32(offset, littleEndian)

OEBPS/Images/pg199_Image_543.jpg
class Imageloader {
async load(url) { . . . }
}

OEBPS/Images/pg199_Image_542.jpg
async url => { . . . }
async (url, params) = { .

OEBPS/Images/pg199_Image_545.jpg
b = 1
async LoadImage(ur) { . . . },

}

OEBPS/Images/pg199_Image_544.jpg
async function loadImage(url) { . . . }

async function(url) { . . . }

OEBPS/Images/pg289_Image_1.jpg
class Person implements Identifiable {
#name: string
#id: string
constructor(name: string, id: string) { this.#name = name; this.#id = id; }
id() { return this.#id }

OEBPS/Images/pg120_Image_335.jpg
const phrase = 'a coté de’
const prefix = 'https://w. Linguee. fr/anglais-francais/traduction
const suffix = '.htnl’

const url = prefix + encodeURIComponent(phrase) + suffix

OEBPS/Images/pg11_Image_19.jpg
let counter = 7
let agent = '66' + counter // The string '667'

OEBPS/Images/pg213_Image_577.jpg
import("./plugins/${action}.mjs")
.then(module => {
module.default()
module.namedFeature(args)

N

OEBPS/Images/pg213_Image_578.jpg
async load(action) {
const module = await import("./plugins/${action}.njs")
module.default()
nodule.namedFeature(args)

OEBPS/Images/pg158_Image_450.jpg
const emptySet = new Set()
const setWithElements = new Set(iterable)

OEBPS/Images/pg225_Image_613.jpg
class MyArray extends Array {;
let myValues = new MyArray(1, 2, 7, 9)
mValues.map(x => x + x) // Yields a MyArray

OEBPS/Images/pg158_Image_449.jpg
const map = new Map()

const keyl = new Date('1970-01-61T60:00:66.6602')
const key2 = new Date('1970-01-61T60:00:66.6602')
map.set(keyl, 'Hello')

map.set(key2, 'Epoch') // Now map has two entries

OEBPS/Images/pg179_Image_507.jpg
list = ['7 pounds®, '11 ounces']
new Intl.ListFormat('en', { type: 'unit', style: 'long' }).format(list)
// '7 pounds, 11 ounces'

OEBPS/Images/pg179_Image_502.jpg
dollars(new Intl.PluralRules('en').select(i)’
rubles[new Intl.PluralRules('ru').select(i)]

OEBPS/Images/pg179_Image_505.jpg
new Intl.ListFormat('de’, { type: 'disjunction’ }).format(list)
// ‘Goethe, Schiller oder Lessing'

OEBPS/Images/pg179_Image_504.jpg
let list = ['Goethe’, 'Schiller’, ‘Lessing’]
new Intl.ListFormat('en’, { type: 'conjunction' }).format(list)
// Yields the string 'Goethe, Schiller, and Lessing'

OEBPS/Images/pg225_Image_615.jpg
const myRange = new Range(10, 99)
myRange.map(x => x * x) // Should not be a Range

OEBPS/Images/pg225_Image_614.jpg
class Range extends Array {
constructor(start, end) {
super()
for (let i = 0; i< end - start; i++)
this[i] = start + i

OEBPS/Images/pg179_Image_501.jpg
dollars = { one: 'dollar’, other: 'dollars’ }
rubles = { one: 'pybnb', few: 'py6na’, many: 'pyénei’ }

OEBPS/Images/pg225_Image_616.jpg
class Range extends Array {

static get [Symbol.species]() { return Array }

OEBPS/Images/pg229_Image_627.jpg
{ name:

{ value: 'James Bond',
writable: true,
enumerable: true,
configurable: true },

Tasthame:

{ get: [Function: get],
set: [Function: set],
enumerable: false,
configurable: false]

OEBPS/Images/pg229_Image_628.jpg
const obj = { name: 'Fred’, age: 42 }
Object.entries(obj) // [['name', 'Fred'], ['age', 42]]

OEBPS/Images/pg131_Image_354.jpg
result
result
result

digits.exec('agents 007 and 008") // ['007", inde

digits.exec('agents 897 and 008') // ['008', index: 15, .

digits.exec('agents 007 and 098') // null

Tyoeed
N

OEBPS/Images/pg131_Image_356.jpg

OEBPS/Images/pg131_Image_355.jpg
digits = /18-91+/y

digits.lastIndex = 5

result = digits.exec('agents 607 and 068') // null
digits.lastIndex = 8

result = digits.exec('agents 607 and 008') // ['07', index: 8, . .

OEBPS/Images/pg39_Image_115.jpg
let description

switch (someExpression) {

case 0:
description
break

case false:

case true:
description
break

case '":
description

default:
description

‘zero*

'boolean’

‘empty string' // See the “Caution” note below

*something else’

OEBPS/Images/pg131_Image_358.jpg
let result = time.exec('Lunch at 12:15pm’)

// ['12:15pm', '12', '15', 'pm', index: 9, . . .

OEBPS/Images/pg131_Image_357.jpg

OEBPS/Images/pg48_Image_141.jpg

OEBPS/Images/pg48_Image_142.jpg
let arr = [1, 2, 3, 4, 5, 6,7,8,9,16, 11, 12]
for (i in arr) { if (i + 1 0) console.log(a[i]) }

OEBPS/Images/pg229_Image_629.jpg
for (let [key, value] of Object.entries(obj))
console. log(key, value)

OEBPS/Images/pg82_Image_241.jpg
Employee.prototype.raiseSalary = function(percent) {
this.salary *= 1 + percent / 108
}

OEBPS/Images/pg82_Image_242.jpg
const harry = new Employee('Harry Smith', 90000)

OEBPS/Images/pg259_Image_719.jpg
const trueRandom = handler => {
const url = 'https://ww.randon. org/integers/?nun=16min=16nax=1086600000\
6col=16base=106fornat=plainsrnd=new’
const req = new XMLHttpRequest();
req.open('GET", url)
req.addEventListener('load', () => handler(parseInt(req.response)))
req.send()
}

OEBPS/Images/pg259_Image_718.jpg
const url = "https://www.random.org/integers/?num=16min=16max=1666666666\
col=16base=105format=plainrnd=nen’

const req = new XMLHttpRequest();

req.open('GET', url)

req.addEventListener(‘load’, () => console.log(req.response)) // Callback
req.send()

OEBPS/Images/pg161_Image_459.jpg
const uarr = Uint32Array.from(farr, x => 1/ x)
// An Uint32Array with elements [1, 2, &, 8, 16, 32, 64]

OEBPS/Images/pg161_Image_457.jpg

OEBPS/Images/pg161_Image_458.jpg

OEBPS/Images/pg121_Image_335b.jpg

OEBPS/Images/pg121_Image_335a.jpg
strong ‘Next year, ${person.name} will be ${person.age + 1}.°
g

OEBPS/Images/pg152_Image_8.jpg
let someNumbers = [, 2, , 9]
someNumbers.sort((x, y) =>y - x) // someNumbers is now [9, 2, , ,]

OEBPS/Images/pg152_Image_7.jpg
[, 2, undefined, 9].join(" and ') // ' and 2 and and 9'

OEBPS/Images/pg152_Image_6.jpg
Array.from([, 2, , 9]) // [undefined, 2, undefined, 9]

OEBPS/Images/pg152_Image_4.jpg
delete someNumbers[1] // No longer an index property 1

OEBPS/Images/pg152_Image_3.jpg
const bigEmptyArray = []
bigEmptyArray.length = 10000 // No index properties

OEBPS/Images/pg93_Image_272.jpg
class BankAccount {

spreadTheWealth(accounts) {
accounts. forEach(function(account) {
account.deposit(this.balance / accounts.length)
// Error—this is undefined inside the nested function
}

this.balance = 0
}
}

OEBPS/Images/pg152_Image_2.jpg
someNumbers[100] = 0 // No index properties 4 to 99

OEBPS/Images/pg152_Image_1.jpg
const someNumbers = [, 2, , 9] // No index properties 0, 2

OEBPS/Images/pg93_Image_273.jpg
class BankAccount {

spreadTheWealth(accounts) {
accounts. forEach(account => {
account.deposit(this.balance / accounts.length) // this correctly bound
}
this.balance = 0
}
}

OEBPS/Images/pg93_Image_274.jpg
spreadTheWealth(accounts) {
const that = this
accounts. forEach(function(account) {
account.deposit(that.balance / accounts.length)
}

this.balance = 6

OEBPS/Images/pg3_Image_3.jpg
Developer Tools - New Tab - about:blank

(R O ispector [Conscle O Debugger @ Performance () Style Editor » e

Persist Logs

OEBPS/Images/pg3_Image_4.jpg
~$ node
>leta=6
undefined
>let b =7
undefined
>a*b

42
> 1

OEBPS/Images/pg270_Image_740.jpg

OEBPS/Images/pg217_Image_594.jpg

OEBPS/Images/pg270_Image_739.jpg

OEBPS/Images/pg259_Image_720.jpg

OEBPS/Images/pg84_Image_245.jpg
const harry = new Employee('Harry Smith', 96060)

OEBPS/Images/pg259_Image_721.jpg
trueRandom(first =>
trueRandon(second =>
trueRandom(third => console.log(first + second + third))))

OEBPS/Images/pg122_Image_339.jpg
const greek = (fragments, . values) =1
const substitutions = { alpna a', ..., nu 'V,
const substitute = str => str. replace(/\\[a z]‘/g,
match => substitutions[match.slice(1)])

let result = substitute(fragments.raw[0])
for (let i = 0; i < values.length; i++)

result += values[i] + substitute(fragments.raw[i + 1])
return result

OEBPS/Images/pg261_Image_725.jpg
for await (const img of loadHanafudaImages(month)) {
ingdiv. appendChild(ing)

OEBPS/Images/pg261_Image_724.jpg
async function* loadHanafudaImages(month) {
for (let i =1; i <= 4; ir+) {
const img = await loadImage(hanafuda/${month}-${i}.png")
yield ing

OEBPS/Images/pg91_Image_265.jpg
class Manager extends Employee {
// No constructor
getSalary() { . . . }

const boss = new Manager('Mary Lee', 180000) // Calls Employee('Mary Lee', 180000)

OEBPS/Images/pg91_Image_267.jpg
const withToString = base =>
class extends base {
toString() {
Tet result = '{'
for (const key in this) {
if (result == '{') result += ', '
result += “${keyl=${this[key]}"

}

return result + '}’

OEBPS/Images/pg91_Image_266.jpg
const Employee = class {
constructor(name, salary) {
this.name = name
this.salary = salary

raiseSalary(percent) {
this.salary += 1+ percent / 160

OEBPS/Images/pg252_Image_693.jpg
class Rangelterator {
next() {

if (this.current < this.last) {
const result = { value: this.current }
this. current++
return result

}else {
return { done: true }

OEBPS/Images/chinese4.jpg

OEBPS/Images/pg252_Image_694.jpg
class Range {
constructor(start, end) {
this.start = start
this.end = end
}
[Symbol. iterator]() {
Tet current = this.start
let last = this.end
return {
next() {
if (current < last) {
const result = { value: current }
current++
return result
}else {
return { done: true }

OEBPS/Images/pg227_Image_620.jpg
Object.defineProperty(james, 'lastName', {
get: function() { return this.name.split(' ')[1] },
set: function(last) { this.name = this.name.split(' ')[6] + ' ' + last]

3]

OEBPS/Images/bcircle.jpg

OEBPS/Images/pg265_Image_732.jpg
const putTwoImages = async (urll, url2, element) => {
const imgl = await loadImage(urll)
element..appendChild(img1)
const img2 = await loadImage(url2)
element..appendChild(img2)
return element

OEBPS/Images/pg88_Image_258.jpg
class Employee {
constructor(name, salary) { . ..}
raiseSalary(percent) { . . . }

-

lass Manager extends Enployee {
getSalary() { return this.salary + this.bonus }

OEBPS/Images/pg88_Image_259.jpg
const boss = new Manager(. . .)
hoss.raiseSalary(10) // Calls Employee.prototype.raiseSalary

OEBPS/Images/pg265_Image_733.jpg
function* putTwoImagesGen(urll, url2, element) {
const ingl = yield loadInage(url1)
element.appendChild(img1)
const ing2 = yield loadImage(url2)
element..appendChild(img2)
return element

OEBPS/Images/pg265_Image_734.jpg
const genToPromise = gen => {
const iter = gen()
const nextPromise = arg => {
const result = ___
if (result.done) {
return Promise.resolve(___)
} else {
return Promise.resolve(___).then(___)

}

Teturn nextPromise()

}

OEBPS/Images/pg88_Image_260.jpg
harry

(iPrototypel]
name
salary

—

bo:
(iFrototypel]
name
salary
bonus

“Mary Lee'

180000
10000

Object.prototyp

[tPrototypel] = null
tostring = function
= function
Employee.prototype
[[Prototype]] [
raiseSalary = function
Manager.prototype

(Prototypel]
getsalary

function

OEBPS/Images/pg9_Image_15a.jpg
"Hello'[2.5] // undefined

OEBPS/Images/cat.jpg

OEBPS/Images/pg24_Image_74.jpg
let { name, ...allButName } = harry
// allButName is { age: 42 }

OEBPS/Images/pg24_Image_77.jpg
let config = { separatnr HE
const { separator = IeftDellmlter = '[', rightDelimiter = ']' } = config

OEBPS/Images/pg44_Image_134.jpg
let1=19
while (i < arr.length) {
if (arr[i] <0) . . .

OEBPS/Images/pg24_Image_75.jpg
let [first, second = 0] = [42]
// Sets first to 42, second to 0 since the right-hand side has
// no matching element

let { nickname = "None' } = harry
// Sets nickname to 'None' since harry has no nickname property

OEBPS/Images/pg24_Image_76.jpg
let { name, nickname = name } = harry
// Both name and nickname are set to harry.name

OEBPS/Images/pg89_Image_261.jpg
class Employee {

getSalary() { return this.salary }

class Manager extends Enployee {

getSalary() { return this.salary + this.bonus }

OEBPS/Images/pg264_Image_731.jpg
class Range {
constructor(start, end) {
this.start = start
this.end = end

[Symbol. iterator]() {
Tet current = this.start
return {
next() {
current++
return current <= this.end ? { value: current - 1 } : { done: true }

OEBPS/Images/pg44_Image_129.jpg
humbers. Lucky = true
for (const i in nunbers) // i is '0'
console.log("${i}: ${numbers[i]})

'3', '99", "lucky’

OEBPS/Images/pg34_Image_99.jpg
less than
<= less than or equal
> greater than
greater than or equal

OEBPS/Images/pg44_Image_131.jpg
let greeting = 'Hello ©'
for (const i of greeting)
console.log(greeting[i])
// Prints He 11 o, a space, and two broken symbols

OEBPS/Images/pg44_Image_130.jpg
arr.forEach((element, key) => { console.log(${key}: ${element}) })

OEBPS/Images/pg266_Image_735.jpg

OEBPS/Images/pg45_Image_137.jpg
let1=0
let j = 0
outer:

while (i < arr.length) {
while (j < arr[i].length) {
if (arr[i][j] < @) break outer

o
}

is
j=0

// Get here after break outer or when both loops terminate normally

OEBPS/Images/pg45_Image_136.jpg
let
Let found = false
while (!found 6 i < arr.length) {
if (arr[i] < 0) {
found = true
}else {
ive
}
}

OEBPS/Images/pg266_Image_737.jpg
for (const p of urls.map(loadImage))
p.then(ing => element.appendChild(img))

for (const p of urls.map(async url => await loadImage(url)))
element . appendChild(await p)

for await (const img of urls.map(url => await loadImage(url)))
element..appendChild(img)

for (const img of await urls.map(loadImage))
element..appendChild(img)

for await (const img of await urls.map(loadInage))
element.appendChild(img)

OEBPS/Images/pg266_Image_736.jpg
for (const img of Promise.all(imgPromises)) element.appendChild(img)

for await (const ing of Promise.all(ingPromises)) element.appendChild(ing)

for (const ing of await Promise.all(ingPromises)) element.appendChild(ing)

for await (const img of await Promise.all(imgPromises)) element.appendChild(img)

OEBPS/Images/pg45_Image_135.jpg
let1=10

while (i < arr.length) {
if (arr[i] < 0) break
i

}

// Get here after break or when the loop terminates normally

OEBPS/Images/pg266_Image_738.jpg
let nextURL
= response.headers.get('Link').match(/<(?<next>.*?):

rel="next"/).groups.next:

OEBPS/Images/pg263_Image_730.jpg
const findResult = async (queryURL, callback) => {
for await (const result of loadResults(queryURL)) {
if (callback(result)) return result

return undefined

OEBPS/Images/pg85_Image_250.jpg
class BankAccount {
constructor() { this.balance = 0 }
deposit(amount) { this.balance += amount }

OEBPS/Images/pg263_Image_729.jpg
async function* loadResults(url) {
let page = 6
try {
while (true) {
page++
const response = await fetch(${url}spage=${page}")
yield await response.json()

} cateh {
// End iteration
}
}

OEBPS/Images/pg85_Image_247.jpg
const harry = new Person('Smith’, 'Harry')
const harrysName = harry. fullName // 'Smith, Harry'

OEBPS/Images/pg85_Image_248.jpg
class Person {

set fullName(value) {
const parts = value.split(/,\s*/)
this.last = parts[6]
this.first = parts[1]

OEBPS/Images/pg85_Image_246.jpg
class Person {
constructor(last, first) {
this.last = last;
this.first = first

}
get fullllame() { return “${this.last}, ${this.first}" }
}

OEBPS/Images/pg7_Image_10.jpg
var counter = 8 // Obsolete
coutner = 1 // Note the misspelling—creates a new variable!

OEBPS/Images/pg108_Image_309c.jpg

OEBPS/Images/pg328_Image_01.jpg
i y Expert-Led Video Training
livelessons® X At

Modern
- From CAY S. HORSTMANN A&Y:\Y/=
JavaScript for 50%"

the Impatient Co0E: CHviD

Modern javaScript for the Impatient LiveLessons demonstrates
how to be productive with JavaScript as it exists today.

After reviewing the fundamentals of values, variables, and
control flow, the video thoroughly covers functions, objects,
and classes. The standard library and the most commonly
used tools are also covered, as well as key topics related

to asynchronous programming, internationalization, and
modules.

+ Implement functions that consume and produce
other functions

+ Use closures to implement a form of classes

+ Master object-oriented programming with modern
JavaScript

+ Getavisual tour of the standard library (numbers
and dates, strings and regular expressions, as well
as arrays and collections)

Save 50% —Use coupon code CHVID
informit.com/horstmann

*Discount code CHVID confers a 50% discount offthe list price of featured video when
purchased on InformiT. Offer s subject to change.

@ Pearson miorm T

the trusted technology lear

OEBPS/Images/pg108_Image_309a.jpg
const before = new Date()

// Do some work

const after = new Date()

const millisecondsElapsed = after - before

OEBPS/Images/pg47_Image_139.jpg
try {
code
more code
more code
} catch {
handler
}

OEBPS/Images/pg108_Image_309b.jpg

OEBPS/Images/pg165_Image_1.jpg
let fred = { name: 'Fred', image: new Int8Array(1024*1024) }

OEBPS/Images/pg21_Image_52.jpg
console.log("harry=${JSON.stringify(harry)}")

OEBPS/Images/pg254_Image_697.jpg
for (let 1 = start; 1 < end; i++)

OEBPS/Images/pg21_Image_53.jpg

OEBPS/Images/queen.jpg

OEBPS/Images/pg215_Image_587.jpg
logging.setlLevel(logging.Level .WARN)

OEBPS/Images/pg215_Image_588.jpg
logging.currentlevel = logging.Level.WARN
// Error—cannot assign to imported variable

OEBPS/Images/pg21_Image_59.jpg
let [first, [second, third]] = [1, (2, 3]]
// Sets first to 1, second to 2, and third to 3

OEBPS/Images/pg21_Image_56.jpg
let first = pair[0]
let second = pair[1]

OEBPS/Images/pg215_Image_584.jpg
export default class { // No need to name this class
encrypt(key) { . . . }
decrypt(key) { . . . }

}

OEBPS/Images/pg21_Image_54.jpg
console.log(iharry, sally}) // Logs the object {

harry: { .

OEBPS/Images/pg215_Image_585.jpg
export const Level = { FINE: 1, INFO: 2, WARN: 3, ERROR: & }

export let currentlevel = Level.INFO
export const setlevel = level => { currentlevel

evel }

OEBPS/Images/pg254_Image_698.jpg
function* rangeGenerator(start, end) {
for (let i = start; i < end; i++)
yield i

OEBPS/Images/pg215_Image_586.jpg

OEBPS/Images/pg254_Image_699.jpg
const rangelter

rangeGenerator(16, 20)

OEBPS/Images/pg47_Image_140.jpg
let input = . . . // Read input from somewhere
try {
let data = JSON.parse(input)
// 1 execution continues here, input is valid
// Process data
} catch {
// Deal with the fact that the input is invalid

OEBPS/Images/pg86_Image_255.jpg

OEBPS/Images/pg86_Image_254.jpg
BankAccount.percentOf = function(amount, rate) {
return amount * rate / 109

}

OEBPS/Images/pg86_Image_253.jpg
class BankAccount {
static percentOf(amount, rate) { return amount * rate / 100 }

addInterest(rate) {
this.balance += BankAccount.percent0f(this.balance, rate)

OEBPS/Images/pg86_Image_252.jpg
class BankAccount {
#balance = 6
deposit(anount) { this.#balance += anount }

OEBPS/Images/pg86_Image_251.jpg
class BankAccount {
balance = &
deposit(amount) { this.balance += amount }

OEBPS/Images/pg214_Image_579.jpg
export function encrypt(str, key) { . . . }
export class Cipher { . . . }
export const DEFAULT KEY = 3

OEBPS/Images/pg224_Image_607.jpg
const harry = { name: ‘Harry Smith’, salary: 106600 }
harry[Symbol. toStringTag] = 'Employee’
console.log(harry. toString())

// Now toString yields '[object Employee]

OEBPS/Images/pg224_Image_609.jpg
class Employee {

ée; iSymbol.tosmngTag]() { return JSON.stringify(this) }
}

OEBPS/Images/pg224_Image_608.jpg
class Employee {
constructor(name, salary) {
this[Symbol.toStringTag] = 'Employee’

}

OEBPS/Images/pg271_Image_1.jpg
const result = average('3', '4') // TypeScript: Compile-time error

OEBPS/Images/pg87_Image_257.jpg
class BankAccount {

static get OVERDRAFT_FEE() {
return this.#OVERDRAFT_FEE // In a static method, this is the constructor function

static set OVERDRAFT_FEE(newValue) {
if (newValue > this.#OVERDRAFT_FEE) {
this. #OVERDRAFT_FEE = newValue
}
}
}

OEBPS/Images/pg87_Image_256.jpg
class BankAccount {
static OVERDRAFT_FEE = 30

withdraw(amount) {
if (this.balance < amount) {
this.balance -= BankAccount.OVERDRAFT_FEE

OEBPS/Images/pg224_Image_610.jpg
class Percent {
constructor(rate) { this.rate = rate }
toString() { return “${this.rate}%" }
valueOf() { return this.rate = .61 }

OEBPS/Images/pg224_Image_612.jpg
[Symbol.toPrimitive](hint) {
if (hint === 'number') return this.rate + 6.61
else return “${this.rate}%"

}

OEBPS/Images/pg224_Image_611.jpg
const result = new Percent(99.44)
console.log('Result: ' + result) // Prints Result: 0.9944

OEBPS/Images/pg214_Image_583.jpg

OEBPS/Images/pg46_Image_138.jpg
let count = 0

let sun = 0

for (let i = 6; i < arr.length; i++) {
if (arr[i] <= @) continue
count++
sum += arr[i]

b

let avg = count

9720 : sum/ count

OEBPS/Images/pg214_Image_582.jpg
export default 3 // OK
export default const DEFAULT_KEY = 3
// Error—export default not valid with const/let/var

OEBPS/Images/pg214_Image_581.jpg

OEBPS/Images/pg214_Image_580.jpg
function encrypt(str, key) { . . . }
class Cipher { }
const DEFAULT_KEY = 3

export { encrypt, Cipher, DEFAULT KEY }

