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      Chapter 1. Introduction to General Purpose Robotics

      A Note for Early Release Readers

      With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

      
      This will be the first chapter of the final book. Please note that the GitHub repo will be made active later on.

      
      If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

      

      People have been dreaming of making intelligent machines that behave and think like us for centuries. From the industrial revolution to Asimov’s “I, Robot” and the world’s first humanoids built a century ago, robots have occupied the collective imagination of our society for the longest time. Today, robots have transcended from being a figment of science fiction to being realized in the present with accelerating capabilities. 

      What has led to this transformation? Advances in artificial intelligence have disrupted various industries in the last decade by unlocking new capabilities with machine learning. In the case of robotics, it has allowed them to escape constrained and narrow applications in well-structured industrial and research environments and empowered them to handle the vast generality of the real world and integrate into our daily lives. Robots are already driving competitiveness and flexibility through automation in large-scale manufacturing, space and underwater exploration, agriculture and healthcare, among other industries. In the future, we expect to see them operating on roads as autonomous vehicles, performing household chores in homes or autonomously performing surgeries. 

      While the capabilities of robots have increased in the last few decades, the cost has decreased. Over the past 30 years, the average robot price has fallen by half in CPI-adjusted terms, according to a recent McKinsey & Company report. But it has fallen even further in relation to capabilities due to Moore’s law, the ubiquity of GPUs and falling cost yet rising capacity of batteries and onboard compute. The widespread adoption of robots is motivated by increased economic expansion, the rising cost of human labor, the lowering cost of robots and the increase in their capabilities. 

      However, as robots move from research labs and constrained industrial settings to the real world, they face new challenges. Let’s take the example of a household cleaning robot. This robot would have to engage in many tasks, such as cleaning the floor, dusting counters and cleaning the dishes. To accomplish this, it must know how to: 

      
        	
          Traverse indoor environments while perceiving and avoiding obstacles.

        

        	
          Handle fragile, soft and sometimes heavy objects with irregular shapes, including objects it may never have seen before.

        

        	
          Have the hardware flexibility to manipulate scenes it may have never experienced before since each home looks different, has different lighting, layout etc.

        

        	
          Reason about interactions with household objects, humans and pets and past configurations of the space.

        

      

      The challenge here is designing an approach that can adapt to changes in the real world and the variety of situations it will encounter. Before the advent of deep learning, a software stack to solve any of these tasks above would be written as a state machine with “hard-wired” motion primitives resembling traditional controls for that particular task. This approach is not robust to handling unseen situations, doesn’t scale and limits the utility of hard programmed robots. Additionally, even for simple pick and place, translating the wide repository of human intuitions to transitional control is challenging, if not close to impossible. The breadth and universality of perception, reasoning and controls required for general purpose robotics is only handled by universal function approximators: neural networks. Instead of hand coding a control system, we use machine learning to allow a robot to learn the relevant features and their relationships from training data. 

      The success of this approach and the promise of emergent capabilities has led to a boom in machine learning powered robotics and a rising demand for talent in the labor market. According to research from Mordor Intelligence, the Global Robotics Market was valued at USD 27.73 billion in 2020 and is expected to reach USD 74.1 billion by 2026, registering a Compound Annual Growth Rate (CAGR) of 17.45%. While this increase mostly accounts for the boom in industrial robots, the AI robotics market is expected to grow at a CAGR of 38.6% from 6.9 billion USD in 2021 to 35.3 Billion USD in 2026 according to this report. To capitalize on this opportunity, the industry comprising large tech companies, start ups and research labs, increasingly seek qualified AI and robotics engineers for their robotics R&D, autonomous cars R&D, and manufacturing divisions. To start contributing to these companies in their machine learning efforts, you’ll need to understand:

      
        	
          How to formulate a robotics problem in the context of machine learning

        

        	
          What machine learning methods can be used to solve different problems in robotics and tradeoffs between them

        

        	
          At what point in the robotics stack should you use machine learning

        

      

      Moravec’s paradox is one of the main challenges of machine learning for robotics. As Steven Pinker described in 1994, “The main lesson of thirty-five years of AI research is that the hard problems are easy and the easy problems are hard.” Artificial intelligence, especially neural nets are a fairly different form of intelligence than the human brain and as such have different strengths. Things that may seem very difficult for humans - generative imaging, language compression, sequential projection like stock analytics - is quite easy for AI, but tasks that even four year old children take for granted via sensorimotor and perceptual reasoning such as taking a walk, lifting a pencil are harder than conceived. In the history of scientific innovation though, all problems seem hard before they are solved, and as such the authors of this book are optimistic that mapping and fixing the real challenges in robotic learning can help us put a dent in advancing physical intelligence. 

      This chapter will start with defining the two premises of this book: robots and machine learning. We will present general motivations for why one needs to use machine learning for robotics and challenges in doing so. Subsequent chapters will map out key areas in the development of machine learning for robotics, such as machine learning perception, language in robotics, training robots in simulation and building infra for scalable robot learning. Then we will lay out how to practically design and implement these principles in a few select applications: self-driving cars, warehouse robots and consumer robotics.

      Let’s get into it!

      
        A Robot System 

        A robot is defined as an interactive machine that takes in a world model and outputs actions. Unlike many machine learning applications, a robot is characterized by agency and closed loop feedback in a real or simulated world. 

        A robot typically senses the world through its suite of sensors such as, cameras, lidars, inertial measurement units (IMU), voice detectors and/or radars, as a few examples. A robot brain, typically executing on an onboard microcontroller, processes the inputs from sensors and calculates actions, which are sent as signals to the robot’s actuators, such as direct current motors that cause its joints to move or to compliant materials in the case of soft robotics.

        The action space of a robot is determined by its application. For example, it is the acceleration and steering angle for self-driving cars or navigating robots. A robot arm could be designed as positions or velocities of the joints on the arm. Additional action space for a robot that interacts with humans could include natural language via a chat interface, gestures or facial expressions.

        A high-level diagram of a robot system can be seen in Figure 1-1. 

        
          [image: The main components of a robot.]
          Figure 1-1. The main components of a robot.

        

      

      
        Common Types of Robots

        Robots come in many sizes and shapes. By vertical / sector in which they’re deployed, we can segregate them as shown in Table 1-1.

        
          Table 1-1. Types of robots by vertical.
          
          
            
              	
              	Type
              	Definition
              	Examples Industrial robots
            

          

          
            
              	1.
              	Industrial robots
              	Robots used in manufacturing processes such as assembly, painting, welding, and packaging
              	Robotic arms, gantry robots Service robots
            

            
              	2.
              	Service robots
              	Robots that perform tasks to assist humans in various environments such as hospitals, hotels, and restaurants
              	Delivery robots, cleaning robots, telepresence robots
            

            
              	3.
              	Medical robots
              	Robots used in healthcare settings to assist with surgeries, diagnostics, and patient care
              	da Vinci surgical system, rehabilitation robots, pharmacy automation systems
            

            
              	4.
              	Military and defense robots
              	Robots designed for use in military applications, such as reconnaissance, surveillance, and combat support
              	Unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), bomb disposal robots
            

            
              	5.
              	Agricultural robots
              	Robots used in farming to automate tasks like planting, harvesting, and monitoring crop health
              	Autonomous tractors, drones for crop monitoring, fruit-picking robots
            

            
              	6.
              	Domestic robots
              	Robots designed for use in homes to help with chores and other tasks
              	Roomba vacuuming robots, lawn-mowing robots, personal assistant robots like Jibo
            

            
              	7.
              	Educational robots
              	Robots used in educational settings to help teach various subjects or skills
              	LEGO Mindstorms, social robots like Pepper, Sphero
            

            
              	8.
              	Research robots
              	Robots used in scientific research, including exploring remote or hazardous environments and developing new robotic technologies
              	Underwater robots, Mars rovers, humanoid robots like ASIMO
            

            
              	9.
              	Entertainment robots
              	Robots designed for amusement or companionship
              	Robotic pets like Aibo, interactive toys like Furby, robots used in theme parks or movies
            

            
              	10.
              	Swarm robots
              	Robots that work together in large groups, coordinating their actions to complete tasks more efficiently
              	Swarm robots used in research, agriculture, search and rescue, environmental monitoring
            

          
        

        A second way to split robots is by the nature of their embodiment as shown in Table 1-2. 

        
          Table 1-2. Types of robots by embodiment.
          
          
            	Serial Num
            	Embodiment
            	Explanation
            	Examples
          

          
          
          
            	1
            	Wheeled robots
            	Robots using wheels for locomotion, often used on flat surfaces
            	Roomba, TurtleBot, Self driving cars like Waymo and Cruise
          

          
            	2
            	Tracked robots
            	Robots utilizing tracks for movement, providing greater traction and stability on rough or uneven terrain
            	Mars rovers, bomb disposal robots
          

          
            	3
            	Legged robots
            	Robots using legs for locomotion, navigating complex environments like stairs and uneven terrain
            	Boston Dynamics’ Spot, ASIMO
          

          
            	4
            	Flying robots
            	Robots capable of flight, typically using rotors or wings, for aerial surveillance, inspection, and photography. 
            	Quadcopter drones, fixed-wing UAVs
          

          
            	5
            	Underwater robots
            	Robots designed for underwater operation, used for exploration, inspection, and monitoring tasks
            	Bluefin Robotics AUV, SeaBED
          

          
            	6
            	Snake robots
            	Robots with long, flexible bodies, moving through tight spaces and navigating around obstacles
            	CMU’s Biorobotics Lab’s snake robots, OC Robotics’ snake-arm robots
          

          
            	7
            	Robotic arms
            	Robots consisting of a series of joints and links, resembling a human arm, used in industrial settings
            	KUKA, Fanuc, and ABB robotic arms
          

          
            	8
            	Humanoid robots
            	Robots with human-like forms, used in research, entertainment, and service applications
            	SoftBank Robotics’ Pepper, Hanson Robotics’ Sophia
          

          
            	9
            	Soft robots
            	Robots that mimic locomotion mechanisms of deformable matter such as fluids, gels, and elastomers for greater flexibility. Commonly used in biomedical applications such as soft tools for surgery, rehabilitation devices, and drug delivery.
            	Harvard’s Wyss Institute’s soft robots, Octobot
          

        
     

        Despite the variety in robots, both applications and embodiments, they share many similarities that can be used to build a common framework and science for robotics, which is extensible with modifications to fit the deployment conditions of a robot. 

      

      
        Common Concepts in Robot Design 

        In this section we will explain a few ubiquitous concepts that are used in robot design. 

        
          Robotic Manipulator

          A common form of robots are robotic arms/manipulators. These robots can manipulate objects in their environment and include common industrial robotics arms, assistive robots, and medical robots. A robotic arm is a chain of joints and links, such as one depicted in Figure 1-2. Here, a link is a rigid body with relative motion to other parts of the machine. A joint is a connection between two or more links, which allows for some motion, or potential motion, between the connected links.

          
            [image: Links and joints in a robot arm manipulator  source ]
            Figure 1-2. Links and joints in a robot arm/manipulator [source]

          

        

        
          Degrees of Freedom

          Degrees of Freedom (DoF) is the measure of the total number of independent displacements or aspects of motion a robot can undertake. For example, a rigid body in space has six DoF: translatory motion along X, Y, and Z-axis and rotary motion about X, Y, and Z-axis, as shown in Figure 1-3. Every additional link adds to the degrees of freedom of a robot and every joint takes away from it by constraining motion in one or more directions. Each degree of freedom can be modeled as an independent bounded variable that a robot brain needs to predict as an action target to control the robot.

          
            [image: Any rigid body has 6 DoF in space  source ]
            Figure 1-3. Any rigid body has 6 DoF in space [source]

          

        

        
          End Effector and Workspace

          An end effector is a device attached at the end of the arm. A gripper, or dextrous hand, is the most common type of end effector and is a form factor that generalizes to a wide variety of tasks. Sometimes robots also have task specific end effectors like wipers, squeezers, etc.

          The union of the 3 dimensional space occupied by a robot is defined as its workspace. A subset of this space, that which can be reached by the end effector is defined as the reachable space of a robot. Reachable space and workspace bounds drive robot design considerations given that they drive the utility of a robot and its ability to manipulate objects within their placement in space. 

        

        
          Kinematics

          A key concept in robot control is robot kinematics. Etymologically, the term refers to the study of the motion of a body or system of bodies. In this case, it is the joint motion of a robot’s joints and links. With respect to robot control, there are two types of kinematics that are relevant:

          
            	
              Forward kinematics: Here, given input joint angles, we determine the position and orientation of the end effector when all other joint parameters are known in a constellation of links and joints.

            

            	
              Inverse kinematics: Here, given a specific position or velocity that an end effector intends to achieve, we calculate the required motions/orientations of the previous joints to achieve that motion. 

            

          

          The sequence of links in the robot’s physical body, their properties (e.g. mass, moment of inertia, length), and the properties of joints (e.g. constraints imposed, torque of the joint) determine the kinematic system/chain representing the robot. Shown in Figure 1-4 is a depiction of the kinematics chain of a typical robot arm. Figure 1-5 represents the transformation between link i and link i+1.

          
            [image: Kinematic chain for a robot arm.]
            Figure 1-4. Kinematic chain for a robot arm.

          

          
            [image: The transformation between the link i and link i 1.]
            Figure 1-5. The transformation between the link i and link i+1.

          

        

      

      
        Deep Learning for Robotics

        In the last decade, several robotics companies bloomed and perished in the market for a variety of reasons. These reasons range from product market fit to revenue/financing and technological reasons for failure. 

        Despite these, the robotics outlook for 2030 remains positive, partly due to the fact that most breakthroughs in deep learning research are happening in the current decade and are yet to be productized/ deployed on robots. Improving upon the failures of last gen classical robots and a fundamental rethinking of robot learning paradigms is key to bringing to market more powerful and generalizable robots. Deep learning is a promising prospect towards that bet, as shown in Figure 1-6.

        
          [image: Robotics 2030 market outlook from BCG]
          Figure 1-6. 
            Robotics 2030 market outlook from BCG
          

        

        Some of the benefits that deep learning provides include: 

        
          	
            Generalization: Deep networks can learn non linear functions with enough parameters in the model and robust training methods to avoid overfitting. These functions are otherwise impossible to model with hand engineering. This is useful for dealing with diversity in the real world, such as handling various objects and scenes, learning inverse dynamics, and planning in diverse situations.

          

          	
            Feature learning: Back propagation and carefully constructed loss functions allows deep neural networks to learn from data what is important, without the need for explicitly modeling representations or engineering features. It also allows networks to learn multiple representations for similar input data based on the application requirements. This translates into learning the right distributions to generate actions for a variety of tasks with a single network. 

          

          	
            Parallelism: Real world robotics requires responding at very fast inference speeds of the order of 10Hz or greater. While simpler classical methods are faster than neural nets, when the decision space becomes more complex, search/graph based methods become inefficient from a speed perspective and are not as friendly towards parallelization. Deep learning allows for massive parallelization in inference on hardware accelerators like TPUs and GPUs which permit millions of matrix multiplications per second in an optimized manner. Network architecture optimizations such as YoLo and EfficientNet, discussed in Chapter 2, allows a tradeoff between accuracy and speed based on the application.

          

        

        To enable the deployment of deep learning for robotics, a whole host of infrastructure paradigms are important: 

        
          	
            Compute: The improvements in performance from deploying larger and larger AI models is powered by innovations in compute architecture through massive parallelization on TPUs and GPUs. While the theory of deep learning has existed since the 1950s, the current spurt in research and applications was catalyzed by the availability and lowering cost of GPUs in the last decade. Additionally, robot on board compute capabilities have improved due to platforms like Nvidia Jetson allowing for fast real time inference on mobile robots. Over the air updating permits deployment of newer software versions for on the field robots, enabling robot software iterations to happen at the rapid pace that pure software companies iterate on. 

          

          	
            Data: Deep learning is famously data hungry and its use in robotics requires data harvesting for huge robot fleets. A good example of this is Tesla’s large array of sensor mounted vehicles on the road that gather data on a wide variety of highly improbable driving scenarios. Scale also poses newer questions with respect to what the best architecture and training methods are. A second example of disruption from large datasets is in visual-language research where large datasets like ImageNet, LAION and the Internet have allowed developing extremely capable neural networks like ChatGPT, Resnets and Stable Diffusion. We’ll cover this in greater detail in Chapter 2.

          

          	
            Labeling: Supervised and weakly supervised learning are among the most performant types of deep learning out there. Supervised learning, especially for image data, is made possible by highly streamlined labeling pipelines to generate human feedback and the emergence of labeling companies like Scale AI. Weak supervision from text such as language-image pairs extracted from the internet also allows to collect very large scale datasets to train neural networks on and related fidelity improvements in rich image understanding.

          

          	
            Simulation: The widespread availability of simulation engines, such as Mujoco, Gazebo, PyBullet that emulate physics of the real world unlocks new functionalities for robots. For one, it allows modeling of and handling emergency/safety critical scenes that are otherwise highly non-probable in the real world. Also, learning from simulated data removes constraints imposed by robot capacity. Doubling your data, if you only rely on real robots, means doubling robot hours and robot capacity which is costly from a hardware and time perspective, but creating copies of simulated robots to do the same is quite cheap. Additionally, R&D requires iterative development and evaluations and stands to benefit from faster feedback loops that simulation can provide.

          

        

      

      
        Deep Learning Frameworks

        There are four main types of learning systems: supervised learning, unsupervised learning, weakly supervised learning and reinforcement learning. In recent years, the lines between these three learning methods are starting to blur as combinations or ideas from them can be utilized within a singular system. 

        
          	
            Supervised learning uses datasets with labels of the ground truth that the system should use to learn to predict labels of previously unseen data. This is used for classification, where the output typically consists of discrete classes or for regression, where predicted outputs are real numbers. 

          

          	
            Unsupervised learning methods attempt to learn useful representations of data without labels. Examples of unsupervised learning methods include clustering, principal component analysis, gaussian mixture models, auto encoders, etc. Unsupervised learning models are usually used for clustering, association, and dimensionality reduction.

          

          	
            Weakly supervised learning methods use noisy labels in a supervised learning setting. It is used in cases where datasets are expensive to label and aggregating large datasets with weak labels is feasible over a smaller dataset with clean labels. Weakly supervised learning has allowed to train very powerful models like CLIP, DALLE etc at internet scale data.

          

          	
            Reinforcement learning motivates an agent to learn a policy that maximizes a reward function through processing sequences of state-action pairs, observing the achieved rewards and adapting predictions until it accurately predicts an optimal path, or policy, for the agent. Reinforcement learning provides a framework for robots to autonomously learn through trial and error interactions and continuously self improve with feedback.

          

        

      

      
        Robot Learning Frameworks and Objectives

        Given the basics of a robot’s embodiment, let’s discuss various learning frameworks to design robot learning with. Learning a task from a robotics perspective may be described as generating the distribution of actions given a specific input world model. As mentioned before, a key manner in which robotics of the present differs from the past is in designing multi-purpose, generalist robots that can do a variety of tasks as against specialist robots in constrained settings doing a limited number of tasks. Generality, from a deep learning perspective, can be framed in three settings: 

        
          	
            Transfer learning: given a network trained on task T_i, can we adapt it to learn task T_i+1. 

          

          	
            Meta learning: given a network that can do task T_1, T_2 and T_n-1, can we quickly adapt it to learn task T_n. 

          

          	
            Multi task learning: can we train a network on all tasks T_1, T_2 to T_n at the same time. 

          

        

        In subsequent chapters, we will address algorithms to understand these learning paradigms in detail.

        For a multitask robot, specifying the objective assume various forms:

        A robot brain may be configured to achieve an objective. But the question of how to convey an objective to a robot remains. This is especially important for deep learning, which is an objective optimization framework. A few ideas we will be mentioned in the book to address this include: 

        
          	
            Language conditioning is the practice of specifying targets for robotics using language as an interface. Language has been the natural interface for interaction between humans and the expansion in deep learning for natural language processing has made language interfaces to robots and generative a standard. 

          

          	
            Goal conditioning: Goal conditioning often happens on policies where you can train policies to reach a goal state which is provided as input. For example, goal-conditioned reinforcement learning (GCRL) trains an agent to achieve different goals under particular scenarios. 

          

          	
            Self-collision: If the robot is not programmed properly, the robot can collide with itself. The goal of self-collision is to make the robot aware of its body to avoid collision during motion. Another type of collusion is avoiding collisions with the environment. For example, suppose a robot experiences an unexpected obstacle while navigating their environments. In that case, they can use collision avoidance to determine the best action and path around the object to continue their task.

          

          	
            Hierarchical robot learning: The goal of hierarchical learning is to break down larger problems into a hierarchy of subproblems. This would allow for higher-level parent tasks to invoke lower-level child tasks to complete a task. 

          

        

      

      
        Robotics is hard AI

        Advancements in compute and data have made it much easier for anyone to build and test deep learning models for robotics. The ultimate goal is to develop deep learning models that enable generally intelligent robots that can accomplish many different tasks with high effectiveness. For this reason, we’ll briefly highlight our philosophy on general intelligence and the importance of robotics to help us get there. 

      

      
        Towards General Intelligence 

        Solving aligned artificial general intelligence (AGI) is one of the most heated and important problems of our generation. Nick Bostrom defines AGI as “an intellect that is much smarter than the best human brains in practically every field”. Wikipedia defines it as “the ability of an intelligent agent to understand or learn any intellectual task that a human being can.” Open Philanthropy describes “transformative AI” with an economic definition as something that would 10x the Gross World Product by bringing about as much difference as agriculture or the industrial revolution. Steve Wozniak proposed a coffee test for AGI: a machine figures how to make coffee in an unseen human kitchen. Transforming several industries such as - manufacturing, construction, driving, logistics, energy and mining, agriculture - basically almost every industry that predates the internet would require solving embodied AI, that is intelligence with an embodiment. 

        
          Agent/Environment is Deeply Tied to the Definition of Intelligence

          Lifetime learning over several episodes has encoded data in our genes, so much that a baby understands structured motion and the physics of the world around her before she understands and comprehends language. What is intelligent is deeply tied to what gives a survival advantage in an environment. For example, aquatic animals have visual systems that are much better at seeing underwater because they’re evolved to accommodate for the refraction by water in a way that humans are not. Our sensors that attempt to emulate our visual range, and the data we’ve collected on that basis, including YouTube videos, suffers from being overfit to our domain of visual capability. In patients who have had their cataracts removed allowing them to see for the first time, it was seen that despite spending an entire life in a 3D world, they lacked understanding of spatial imagery because their sensors didn’t have that input. In essence, environment and agent cannot be subtracted from the definition of intelligence. 

          The last decade of AI research has led to the rise of large transformers that are very good at multi-task speech and vision benchmarks. A language first AI would be susceptible to the failure modes of a blind agent, beyond the visual context it receives from a training corpus gathered from humans who can see. It logically extends that a visual language model would suffer from an inability to approximate actuator params inherent to performing precise control of an embodied agent. Reasoning about the real world requires not just thinking about methodological spaces and language, but to be grounded in real world context. 

          In a world built by and designed for humans, an intelligence that is agnostic to sensory-motor dynamics is going to be suboptimal, and superhuman skills beckon physical agency and universal control. Having physical embodiment is absolutely indispensable for AGI. 

          During the rest of this book, we will be diving into the different frontiers of deep learning such as language models in robotics, reinforcement learning, and imitation learning which are helping us work towards this future of generally intelligent agents/robots. 

        

      

      
        Summary

        In summary, during this chapter we’ve learned that: 

        
          	
            Due to the recent AI paradigm, robots are moving from research lab settings to the real world. Using machine learning for robotics allows us to build robots that can generalize and work in many unconstrained environments. 

          

          	
            Robotics as a problem can be formulated as sensor inputs to actions in the real world. The main parts of a robot are sensors, a microprocessor or microcontroller, and actuators. 

          

          	
            The goal of applying deep learning to robotics is to learn from the environment. The most common approach in deep learning is a neural network which learns from a set of connection weights. 

          

          	
            The three main learning types are supervised learning, unsupervised learning, and reinforcement learning. 

          

          	
            There are many benefits of using deep learning for robotics, such as generalization, feature learning, and parallelism. 

          

          	
            The ultimate goal for machine learning in robotics is to build a general intelligent agent. 

          

        

        In the next chapter, we will discuss sensors, robot perception and common neural network vision methods for robots to sense and understand their environment. 

      

    







      Chapter 2. Robot Perception: Sensors and Image Processing

      A Note for Early Release Readers

      With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

      
      This will be the second chapter of the final book. Please note that the GitHub repo will be made active later on.

      
      If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

      

      Humans use our five senses to perceive the environment and various cognitive pathways to process this input. This conglomeration of senses, pathways and the brain forms the perception system that allows us to accomplish tasks such as detecting changes in movements around us, recognizing a friend’s face or detecting a familiar scent. 

      Similarly, robots need to be aware of and understand what is around them to function in the real world. Perception allows robots to comprehend and reason about their surrounding environment. A critical part of the perception system is sensors that enable a robot to observe the physical world and act as the eyes and ears of the robot. Additionally, sensors allow robots to collect data by themselves and evolve in an environment to become intelligent and useful.

      Once data is collected using sensors, we need a way for the robot to interpret and determine what task to carry out. This is traditionally done with classical methods, which are very narrow and specific to a robot and task, making them difficult to adapt to the ever-changing conditions in the real world. To overcome this, robotic perception systems use machine learning (ML) techniques which are more efficient at interpreting the environment with less data, generalizing and adapting to changing inputs from a dynamic surrounding. For example, common ML methods are used to map the robot’s surroundings, navigate, detect, and track objects. This chapter will highlight various ML models commonly used for vision tasks and robotic perception. However, before doing this, we first need to understand data collection from sensors since our robot would not work without adequately collecting and processing this data. An overview of the general pipeline we have described can be seen in Figure 2-1. 

      
        [image: A typical robot perception system will include sensors that collect data  data representations for the task and ML AI algorithms for interpretation  planning and execution of actions.  source ]
        Figure 2-1. A typical robot perception system will include sensors that collect data, data representations for the task and ML/AI algorithms for interpretation, planning and execution of actions. (source)

      

      
        Sensors

        For robotic perception tasks, enhanced sensors can provide significant benefits. Using sensors, robots can receive information about their surroundings and decide how to act in their environment. Robots require input from sensors in order to identify objects, recognize their surroundings, maneuver securely, and interact with the outside world. For example, cameras take pictures, LiDAR measures distances, ultrasonic sensors pick up on closeness, and IMUs give information on orientation and motion. Object identification and recognition, localization and mapping, collision avoidance, environmental monitoring, and feedback control are popular uses for these sensors. In addition, robots can use sensor fusion techniques to blend data from various sensors to get a more complete picture of their surroundings. 

        While several robotics applications use a variety of sensors, we will only cover the most popularly used ones in this book. They fall into three main categories: (1) Vision - Cameras, (2) Depth Sensors, (3) Range Sensors - LIDARs, Ultrasonic sensors, (4) Inertial Measurement Units (IMUs). 

        
          Vision Sensors

          The first type of sensors commonly used in robots are vision sensors, such as cameras, which enable robots to collect and analyze visual information from their surroundings. Robots can use vision sensors to perform object detection, tracking, localization, and navigation.

          
            Cameras

            One of a robot system’s most important sensors is its camera. Light is captured by camera sensors, which transform it into electrical signals to produce images. They are made up of a variety of pixels or photosensitive components. Every pixel records the amount of light that strikes it.

            The two most popular types of image sensors used in robotics are CMOS (Complementary Metal-Oxide-Semiconductor) and CCD (Charge-Coupled Device). While CMOS sensors employ discrete amplifiers for each pixel and provide a faster readout, CCD sensors use a complicated array of capacitors to capture and transfer charge. The ability of camera sensors to detect light is essential for taking sharp and properly exposed pictures. The exposure time, ISO sensitivity, and aperture size of camera sensors can all be changed, allowing for different lighting conditions.

            The pixel resolution of camera sensors determines the degree of detail in the collected images. Higher-resolution sensors include more pixels, which makes images clearer and allows for capturing tiny details, but they could also use up more processing power.

            Most camera sensors use a variety of color filters—typically the Bayer pattern—on top of the pixels to capture color information. Thanks to these filters, each pixel may capture either red, green, or blue light. The camera sensor generates a full-color image by interpolating the color values from nearby pixels.

            The amount of photos a camera sensor takes each second is referred to as its frame rate. Robotics applications requiring real-time perception and control can benefit from higher frame rates because they provide smoother video and quicker reaction times.

            Camera sensors produce raw picture data that must be processed further for noise reduction, white balance correction, color correction, and feature extraction. Algorithms for image processing are used to improve image quality, find objects, recognize patterns, and extract depth data. However, camera sensors are frequently fused with other sensors, such as LiDAR, radar, or IMUs, in a sensor fusion strategy to maximize their utility.

            Overall, cameras are adaptable and useful for various operations, including object identification, tracking, and navigation. Camera sensors can have limitations, though. They may struggle in low-light or high-contrast scenes and need a lot of lighting for the best outcome. Cameras may struggle to effectively perceive depth and 3D information without additional sensors or approaches due to occlusions. Large-scale picture processing can also be computationally demanding. Despite these drawbacks, camera sensors are still important and often used in robotic perception. 

            
              Key Considerations for Cameras 

              Alongside understanding how cameras work, it is important to consider a few key components when using cameras in our robotics application.

              There are three main camera components, as seen in Figure 2-2, which we need to consider depending on our robot application. These three components rely primarily on the speed of movement, object size and, in some scenarios, the cost, where the speed or resolution is relatively high.

              
                [image: The three main components of a camera you need to consider when selecting it for a robot application are frames per second  resolution  and cost. ]
                Figure 2-2. The three main components of a camera you need to consider when selecting it for a robot application are frames per second, resolution, and cost. 

              

              Autonomous cars, for instance, require cameras that can capture images at a high frequency due to the speed of the moving car. A car moving 60 miles per hour, passing another car in the opposite direction at the same speed, would mean that each frame captured from the camera represents a significant range between the two cars. We want to capture and process as many frames per second in this scenario. If we miss one or a few frames because the cameras are not fast enough, it could be the difference between the cars colliding. 

              On the other hand, cameras used for industrial applications have different specifications and needs than autonomous cars. For example, applications where picking, packing, and grasping objects that aren’t moving at high speeds, such as in high-speed conveyors, don’t necessarily require the high frame rate capture as autonomous cars do. However, high-speed cameras are beneficial when objects move quickly in an environment. This could be in a conveyor moving multiple objects at a fast pace. 

              On the other hand, if we choose a camera with high images (frames) per second, the camera’s resolution tends to be lower. That could mean that our visibility and ability to recognize objects, especially if they are further away, will be more challenging.

              Choosing a camera or set of cameras with both high resolution and high frames per second significantly increases the cost. In some cases, the set of cameras in a car that are high resolution and have high frequency (frames per second or FPS), would be equivalent or higher to the cost of a 3D LIDAR. This is mainly because a higher resolution and higher FPS means more bandwidth which in turn requires more processing power. 

              To find the right balance between frames per second, resolution, cost, and the number of cameras, we must look at our application to determine the most balanced and suitable approach.

            

            
              Event-based cameras

              Another type of camera is an event-based or neuromorphic camera that outputs pixel-level brightness changes in brightness. This is in contrast to regular frame cameras, which transmit entire arrays of information of the single frame captured by a shutter at a given time. The data format and output of event-based cameras offer a significant advantage as the only transmitted data are the individual pixel information that has changed from frame to frame. This allows it to capture objects in high-speed motion with no motion blur. An event camera is shown in Figure 2-3, and the data output of event cameras is shown in Figure 2-4.

              Event cameras offer significant benefits over regular frame cameras, like no motion blur, high temporal resolution, high dynamic range, and much lower bandwidth. Event cameras are still a novel approach for most solutions, and prices are still not as affordable as regular cameras. However, some applications are still very suitable for event-based cameras:

              
                	
                  Due to the low data rate and sparse information provided by event-based sensors, they can effectively track objects with low compute power.

                

                	
                  Can be useful for frame interpolation, optical flow estimation, and high-speed recording. These applications rely on the high temporal resolution you can get with event cameras to enhance temporal information. 

                

              

              
                [image: 680 x 480 event camera]
                Figure 2-3. 680 x 480 event camera

              

              
                [image: Data output of an event based camera]
                Figure 2-4. Data output of an event based camera

              

            

          

        

        
          Depth Sensors

          Robots also have sensors that measure the depth or distance of objects in their surroundings, such as time-of-flight cameras or structured light sensors. These depth sensors allow robots to comprehend the three-dimensional structure of their surroundings and carry out tasks like object reconstruction, scene interpretation, and gesture identification because of the exact depth information provided by these sensors. Figure 2-5 shows depth sensors which use time-of-flight (ToF), structured light, or stereo-vision principles to measure depth information.

          
            	
              Time-of-Flight (ToF) sensors: ToF sensors measure the time it takes for a light signal to bounce back after reflecting off surrounding objects. The light signal is commonly an infrared (IR) signal. The depth sensor can calculate the round-trip journey time to determine the distance to objects.

            

            	
              Structured light sensors: Structured light sensors project a pattern of light into the scene, such as a grid of infrared dots or a collection of structured patterns. The sensor’s infrared camera then records the distorted pattern. The depth sensor may determine depth information based on the distortions generated by object surfaces by examining the deformation of the pattern.

            

            	
              Stereo vision sensors: Similar to human eyes, stereo vision sensors employ a pair of cameras with a known baseline separation. The depth sensor may determine the depth by comparing the disparities or discrepancies between corresponding pixels in the stereo pictures, and each camera captures a slightly different view of the scene. Triangulation techniques are frequently used to determine depth based on discrepancies in pixels.

            

          

          
            [image: Time of flight  ToF   structured light  or stereo vision principles to measure depth]
            Figure 2-5. Time-of-flight (ToF), structured light, or stereo vision principles to measure depth

          

          The output from depth sensors is a point cloud, a 3D representation of the scene consisting of a collection of 3D points. Each point in the cloud represents a specific location in space along with its corresponding color information. Point clouds can be produced by directly integrating the depth data from a single sensor or merging depth measurements from several sensor readings. An example of the 3D point-cloud output produced from a depth sensor can be seen in Figure 2-6.

          
            [image: 3D point cloud output from a depth sensor]
            Figure 2-6. 3D point-cloud output from a depth sensor

          

          The range, precision, sensitivity to lighting, occlusion issues, and difficulty photographing translucent or reflecting surfaces are drawbacks of depth sensors. But in recent years, improvements in depth sensor technology have improved their performance. For example, they are combined with other sensors, like cameras or inertial measurement units (IMUs), to create a more comprehensive perception system. 

        

        
          Range Sensors

          Another important type of sensor in robots is range sensors, such as LiDAR and ultrasonic sensors, which provide information about the distance between the robot and objects in its surroundings. They help robots navigate and avoid collisions by allowing them to view their surroundings in three dimensions by identifying barriers and detecting obstacles.

          
            LiDAR

            Laser pulses are emitted by LiDAR sensors, which track how long it takes for the pulses to reach nearby objects and then return to the sensor. The LiDAR sensor can determine the distances to objects by calculating the round-trip time and knowing the speed of light.

            Although some LiDAR sensors also employ visible light, laser pulses are primarily emitted by LiDAR sensors as infrared (IR) light. Depending on the particular LiDAR technology, the laser pulses are either released in brief bursts or as continuous beams. They track the time it takes for laser pulses to leave the sensor and return to things. Time-of-Flight (ToF) measurement is what is being used here. The LiDAR sensor accurately uses high-speed electronics and exact timing mechanisms to measure the round-trip time more precisely. 

            The laser pulses are reflected back to the LiDAR sensor when they strike environmental objects. A receiver on the LiDAR sensor picks up the returning laser pulses and calculates the appropriate time of flight. An overview of this process can be seen in Figure 2-7.

            
              [image: Overview of LiDAR sensor.]
              Figure 2-7. Overview of LiDAR sensor.

            

            LiDAR sensors provide a point cloud image of the surroundings by integrating the distance readings from several laser pulses. Each point in the point cloud represents a distinct position in 3D space, together with the relevant distance details. Since LiDAR sensors provide point clouds as their raw data output, additional processing is necessary to retrieve valuable information. Algorithms are used to build high-resolution 3D maps, eliminate outliers, segment objects, and filter out noise. 

            LiDAR sensors use various scanning methods to gather 3D data about their surroundings. There are two popular scanning methods:

            
              	
                Mechanical Scanning: With mechanical scanning LiDARs, a spinning mirror or prism directs laser pulses in various directions, enabling the LiDAR sensor to record a complete 360-degree image of the surroundings.

              

              	
                Solid-State Scanning: To steer laser pulses at various angles, solid-state LiDARs employ a variety of solid-state emitters and receivers that are electronically controlled. Solid-state LiDARs may offer a large field of view without any moving elements.

              

            

            2D LIDARs (data on a single plane) are enough in many simple autonomous robots to do SLAM. An example of this 2D LIDAR can be seen in Figure 2-8. In most scenarios, this data is combined with a depth sensor like an Intel Realsese to capture objects, obstacles or blind spots for the LIDAR. As a result, these robots can navigate warehouses, factories, labs and office spaces.

            
              [image: 2D LIDAR commonly used in indoor autonomous robots]
              Figure 2-8. 2D LIDAR commonly used in indoor autonomous robots

            

            Some more advanced autonomous robots implement 3D LIDARs for the perception stack due to the benefit of 360-degree coverage and more precise and larger mapping capabilities. For example, 3D LIDARs are used in autonomous vehicles to detect objects and estimate distances. The output from 3D LIDARs can be seen in Figure 2-9.

            
              [image: Output data of a 360 degree  3D LIDAR]
              Figure 2-9. Output data of a 360 degree, 3D LIDAR

            

            LiDAR sensors provide precise 3D perception, long-range sensing, a 360-degree field of view, resistance to lighting conditions, high data density, and obstacle detection capabilities in robotics applications. However, they can be expensive, use a lot of power, have low resolution for small objects, have problems with shiny or transparent surfaces, work worse in bad weather, and need computational resources to analyze. LiDAR sensors should be carefully weighed against these advantages and disadvantages to see if they are appropriate for particular robotic jobs and settings.

          

          
            Ultrasonic Sensors

            For tasks involving obstacle identification, collision avoidance, presence detection, distance measuring, and navigation, ultrasonic sensors are frequently used in robotics. They operate on the premise that sound waves interact with the environment and its objects. 

            In particular, ultrasonic sensors produce high-frequency sound waves often audible to humans (20 kHz and above). A piezoelectric transducer built into the sensor transforms electrical energy into ultrasonic sound waves.

            Once the sound waves are created, they spread outward like a cone-shaped beam. The sound waves go in a straight line until they come into contact with a surface or object. The object’s surface characteristics cause the produced sound waves to reflect or bounce back when they collide with it. These reflected sound waves are detected by the ultrasonic sensor’s receiver. The time it takes for sound waves to reach an object and return to the ultrasonic sensor is measured. The sensor can determine the distance between the sensor and the item by knowing the speed of sound in the medium, typically air. The distance to the item is calculated using the measured time-of-flight and good speed by the ultrasonic sensor. An overview of this process can be seen in Figure 2-10. 

            
              [image: Overview of ultrasonic sensors]
              Figure 2-10. Overview of ultrasonic sensors

            

            The sensor’s design, the frequency of the sound waves, and the surrounding environment are only a few variables that affect the range and accuracy of ultrasonic sensors. In general, ultrasonic sensors have an accuracy range of a few millimeters to a few centimeters and can detect things within a few centimeters to several meters. However, there are several restrictions on ultrasonic sensors. For example, they can have trouble detecting items with uneven surfaces or ones that are smaller than the sound waves’ wavelength. They can also be impacted by background noise and echoes, impairing how accurately they calculate distance. These are important factors to consider when determining whether ultrasonic sensors are the best for your robotics application. 

          

        

        
          Inertial Measurement Units (IMUs)

          Another sensor worth noting are the IMU sensors that give robots basic motion-detecting capabilities. Robots can understand their motion, change their behavior, and interact with the environment using IMUs, which record data on acceleration, angular velocity, and magnetic fields. 

          The three main sensors that make up an IMU are accelerometers, gyroscopes, and occasionally magnetometers. Together, these sensors can record various motions of an object.

          
            	
              Accelerometers (measure linear acceleration along each axis): Accelerometers measure linear acceleration along three orthogonal axes, often x, y, and z. They use the inertia principle, which states that acceleration produces an electrical signal when a mass is moved. Accelerometers calculate the object’s acceleration by analyzing the electrical output.

            

            	
              Gyroscopes (measure angular velocity around each axis): Gyroscopes calculate the rotational rate or angular velocity around each of the three axes. To detect orientation changes, they rely on the angular momentum principles. Gyroscopes track the Coriolis effect as the item rotates and produce a signal corresponding to the rotation rate.

            

            	
              Magnetometers (measure magnetic field strength): Magnetometers are not always a part of an IMU, but they are occasionally integrated to give information about the object’s orientation with respect to the Earth’s magnetic field. They can be used to determine the magnetic field’s strength and direction.

            

          

          In Figure 2-11 you can see the accelerometers and gyroscopes in the three axes of movement. 

          
            [image: Accelerometer and gyroscope which are positioned at 90   to each other]
            Figure 2-11. Accelerometer and gyroscope which are positioned at 90° to each other

          

          IMUs use sensor fusion techniques to understand the object’s motion thoroughly. The IMU estimates an object’s position, orientation, velocity, and acceleration by combining data from accelerometers, gyroscopes, and magnetometers and frequently utilizing techniques like Kalman filters or complementary filters.

          IMUs are essential for the tracking and management of robot movements. Thanks to IMUs, which continually measure and update orientation, velocity, and acceleration, robots can retain stability, modify their movements, and react to outside influences. This data is used for balancing humanoid robots, operating robotic arms, and enabling quick navigation in self-driving cars, among other things.

          Inertial navigation uses IMUs to determine the position and trajectory of the robot by integrating the data from accelerometers and gyroscopes over time. This method is particularly helpful for navigation inside buildings or in difficult circumstances where other external localization systems, like GPS, are not available or dependable. 

          IMUs enable accurate motion tracking and control by providing real-time, high-frequency data regarding the robot’s orientation, acceleration, and velocity. However, they are prone to accumulating mistakes over time due to sensor drift, which could reduce their accuracy. They are similarly unable to provide information on absolute positions without outside references. Additionally, magnetic field interference can cause problems for the magnetometers inside IMUs, reducing their dependability in some circumstances. In general, IMUs are useful sensors for robotic motion detection and control, but in applications where high accuracy and absolute position data are essential, these limitations should be accounted for.

        

      

      
        Problems in Perception

        Now that we understand what sensors are, the different types of sensors used in robotics and how they work, we need to understand how sensory data can be useful for robotics. The most common type of input data used is images from cameras. This helps robots better perceive their environment, such as identifying objects, their locations and then carrying out tasks. Common perception tasks for robotics on image data include classification, semantic segmentation, instance segmentation, and object detection. These essential tasks are the foundation for how many robots see, reason, and manipulate objects. 

        
          Classification

          For robots to manipulate objects, they need to have a visual understanding of the object and its surroundings. Image classification allows us to label an image based on a fixed set of categories. For example, if a kitchen robot is tasked with picking up a cup, it must first identify a cup in an image and differentiate it from other categories of objects such as glass, plate or spoon. You are taking an array of pixels, the image and assigning a class to it. The model starts with our input consisting of a set of N images, each labeled with one of the K classes. The goal is to use this dataset and learn what every one of the classes looks like. You can then evaluate how well your model learned by asking it to predict labels for a new set of images that it has never seen before. 

        

        
          Segmentation 

          The problem of image segmentation can be thought of as the image is broken down into various subgroups called image segments by classifying each pixel of the image into a category. This is useful for providing fine-grain and precise information about the contents of an image. Imagine an example of an autonomous vehicle trying to navigate the road and understand its surroundings on a busy street with a pavement, car, and bus in the foreground. In the background, there is a building, a tree, and the sky. Image segmentation aims to assign each pixel in the image that the car sees to the object to which it belongs. We can separate the foreground from the background, identify the precise location of a car, and mark the boundaries that separate a tree from the sky. 

          To efficiently perform their tasks, robots need to be able to map and interpret the scenes in which they’re working. The pixel-level understanding that image segmentation provides can help robots understand how they can better navigate their environment. For example, image segmentation can be used in robotics for extracting an object that you may be grasping from a bin of objects or to discover the driveable areas on an image for a self-driving car. We often use an encoder-decoder structure model to implement these models, as shown in Figure 2-12. 

          
            [image: A convolutional encoder decoder  source ]
            Figure 2-12. A convolutional encoder-decoder (source)

          

          The encoder is usually a pre-trained classification network like ResNet or VGG. This is followed by a decoder network that semantically projects the lower-resolution discriminative features learnt by the encoder onto the high-resolution pixel space. Then, taking the low-resolution spatial tensor, which contains high-level information, it produces high-resolution segmentation outputs.

          Simply stacking the encoder and decoder layers would result in a loss of low-level information. To compensate for the lost information, we let the decoder access the low-level features produced by the encoder layers. That is done through skip connections where intermediate outputs of the encoder are concatenated with the inputs to the intermediate layers of the decoder at appropriate positions.

          We usually need to implement two major image segmentation types: semantic and instance. With semantic segmentation, all objects of the same kind are marked using one class label, while similar objects get separate labels in instance segmentation. The difference between these two segmentation types can be seen in Figure 2-13. 

          
            [image: Semantic segmentation  left  and Instance segmentation  right   source ]
            Figure 2-13. Semantic segmentation (left) and Instance segmentation (right) [source]

          

          
            Semantic segmentation

            Semantic segmentation takes an image as an input and outputs a segmentation map where each pixel contains a class label that groups objects based on defined categories. It treats multiple objects within a single category as one entity. For example, an image of a street seen by an autonomous car would be segmented by “pedestrians,” “bikes,” “vehicles,” “sidewalks,” and more. The predicted output shape matches the input’s width and height with a channel depth that equals the number of possible classes to be predicted. Each channel then consists of a binary mask which labels areas where a specific class is present.

            Once we get our output predictions, how do we know how well our predictions are? One way to do this is through pixel accuracy. This method tells you the percent of pixels in the image that were correctly classified by evaluating a binary mask. A true positive represents a pixel correctly predicted to belong to the given class based on the target mask, and a true negative represents a pixel correctly identified as not belonging to the given class. Although this works fine, this metric can sometimes provide misleading results when the representation for a class is small. This is mainly because the measure will be biased towards negative cases identified where the class is not present.

            An alternative metric commonly used is the Intersection over Union (IoU), which evaluates how well the prediction was compared to the ground truth. It quantifies the percent overlap between the number of pixels that are the same between the target and prediction masks divided by the total number of pixels across both masks. Figure 2-14 shows an example of this, where green represents the ground truth and red represents the prediction. 

            
              [image: Example of IoU calculation.  source ]
              Figure 2-14. Example of IoU calculation. [source]

            

          

          
            Instance segmentation

            Instance segmentation identifies individual objects within categories of objects. Categories like “vehicles” are split into “cars,” “motorcycles,” and “buses.” Essentially, instances of each category are identified. Whereas semantic segmentation models output a single segmentation mask, instance segmentation models have more complex outputs. They produce a collection of local segmentation masks describing each object detected in the image. 

            Instance segmentation can be very important for self-driving cars, where you want to have a detailed understanding of your surroundings, such as complex streets with many pedestrians. By segmenting the image, we can get fine-grained results with pixel-level accuracy. One way to do this is using Panoptic Segmentation, a combination of semantic segmentation (differentiating sky, road, pedestrian, and other cars) and instance segmentation (differentiating different instances of the same category). 

            How do you evaluate predictions you get from an instance segmentation? One way is by comparing the predicted masks with the available target masks for a given input. This is called mean average overlap (mAP) and uses the concept of precision and recall. To understand precision and recall, it can be helpful to understand the confusion matrix as seen in Figure 2-15: 

            
              	
                A true positive is when a prediction-target mask pair has an IoU score which exceeds some predefined threshold. 

              

              	
                A true negative is when the model does not predict the label and is not a part of the ground truth.

              

              	
                A false positive is when you predict an object that doesn’t exist. This is when a predicted object mask has no associated ground truth object mask. 

              

              	
                A false negative is when you fail to identify an object. This is when a ground truth object mask has no associated predicted object mask. 

              

            

            
              [image: Difference between precision and recall.]
              Figure 2-15. Difference between precision and recall.

            

            In simple terms, precision is measuring the percentage of correct positive predictions among all predictions made. Recall is measuring the percentage of correct positive predictions among all positive ground truths. This relationship can be seen in Figure 2-16.

            
              [image: Definition of recall and precision. ]
              Figure 2-16. Definition of recall and precision. 

            

            To fully understand how mAP is calculated, it can be helpful to understand average precision (AP) which is the area under the precision-recall curve (PR curve). mAP is simply all the AP values averaged over different classes/categories. Harshit Kumar created a good resource if you are interested in diving deeper into these metrics and how they are calculated. 

          

        

        
          Object Detection 

          Object detection utilizes classification to identify what objects are in an image and then localization to specify where they are in the image using bounding boxes. The input is an image with one or more objects. The output is one or more bounding boxes defined by a point, width, height, and corresponding class labels for each bounding box. Robots in industry, manufacturing or self-driving cars have to do various tasks such as navigation, picking and placing, based on the ability to recognize the object.

          AP and mean Average Precision (mAP) are the most popular metrics used to evaluate the common object detection models such as Faster RCNN, Mask R-CNN, and YOLO as some examples. However, AP is calculated individually for each class, and mAP is just the average of AP values over all classes. 

          For example, take a self-driving car where you want to detect other cars on the highway. The output of the model is shown as red boxes. We have seven detections where the precision is calculated based on the IoU threshold for each detection. The precision value will then be different depending on the IoU threshold. In Figure 2-17, you can see object detection for cars on a highway based on their IoU threshold. 

          
            [image: Object detection on cars  source ]
            Figure 2-17. Object detection on cars (source)

          

          To get mAP, we can calculate AP across a set of IoU thresholds for each class and then take the average of all AP values. For each class, we calculate the mAP across different IoU thresholds, and the final metric mAP across test data is calculated by taking an average of all mAP values per class. You can learn more about how this works in this article. 

        

      

      
        Convolutional Neural Nets Overview

        To do image classification, segmentation, and object detection, one approach is using convolutional neural networks (CNNs). For a deeper dive into how CNNs work, we recommend checking out the Convolutional Neural Networks module in the Deep Learning Specialization course or going through the Convolutional Neural Networks (CNN) from Scratch course. We’ll be going through a brief overview of CNNs before jumping into common CNN models that are used for perception tasks in robotics. 

        CNNs are deep neural networks that can classify and identify specific features from sensory collected data such as images captured by robots. A few of the most common layers in the CNN are the convolutional layers, pooling layers, and fully-connected (FC) layers. 

        
          Convolutional Layer

          A convolutional layer is used to extract the various features from the input images. By learning image features through small squares of input data, convolutions are able to preserve the spatial relationship between pixels. The operation of convolution is performed between an input image (NxNx3) and a filter of a particular size MxMx3. As we slide the filter over the width and height of the input volume, we produce a 2D feature map which gives us information about the image at every spatial position such as any corners and edges in the image. An example of a filter being applied to a two-dimensional input to create a feature map can be seen in Figure 2-18.

          
            [image: Example of feature map produced when applying a filter to a 2D image. ]
            Figure 2-18. Example of feature map produced when applying a filter to a 2D image. 

          

          An overview of this operation is shown in Figure 2-19. Essentially, an image and a filter which are represented as matrices are multiplied to give an output that is used to extract features from the image. This feature map is then put into other layers in the network to learn about the features in the input image. 

          
            [image: Convolution operation on RGB image  source ]
            Figure 2-19. Convolution operation on RGB image [source]

          

          The size of the feature map is controlled by three parameters:

          
            	
              Depth: This corresponds to the number of filters we use for the convolution operation.

            

            	
              Stride: The number of pixels we slide our filter matrix over the input matrix. For example, when the stride is 1 then we move the filters by one pixel each time. Having a larger stride produces smaller feature maps.

            

            	
              Padding: In some cases it can be helpful to pad the input matrix with zeros around the border. This allows us to apply the filter to bordering elements of our input image matrix. 

            

          

          The key idea here is that filters act as feature detectors from the original input image. This means that different values of the filter matrix will produce different feature maps for the same input image. This can be useful because we can perform operations such as edge detection, sharpen and blur just by changing the numeric values of our filter matrix before the convolution operation. 

          When you stack these convolutional layers on top of each other, they can detect a hierarchy of visual patterns. The lower layers will produce feature maps for vertical and horizontal edges, corners, and other simple patterns. As you move deeper into the network, the layers will detect complicated objects such as cars, houses, trees, and people. 

          
            Introducing Non Linearity (ReLU)

            Convolution is a linear operation since we are doing element wise matrix multiplication and addition. However, most real-world data we want to learn is non-linear so we account for non-linearity by introducing a nonlinear function like ReLU. After every convolution operation, Rectified Linear Unit (ReLU) is used to increase the non-linearity in our images. At a high level, ReLU is used for filtering information that propagates forward through the network. The main advantage of using ReLU is that it does not activate all the neurons at the same time which also makes it more computationally efficient. Neurons are only deactivated if the output of the linear transformation is less than 0. ReLU will replace all negative pixel values in the feature map by zero. An overview of this process can be seen in Figure 2-20. Other nonlinear functions such as tanh or sigmoid can also be used but ReLU has been found to perform better in most situations.

            
              [image: The ReLU Layer  source ]
              Figure 2-20. The ReLU Layer [source]

            

          

        

        
          Pooling Layer

          A pooling layer often follows a convolutional layer and it mainly aims to decrease the size of the feature map previously generated. It has a few main functionalities:

          
            	
              It makes the feature dimension smaller which reduces the number of parameters and computations in the network. This can also be helpful to avoid overfitting. 

            

            	
              The network becomes invariant to small transformations such as distortions and translations in the input image. This is mainly because you are taking the maximum/average value in a local area.

            

            	
              Helps us arrive at an equivariant representation of our image which can help us detect objects in an image no matter where they are located.

            

          

          Decreasing the size of the feature map can reduce the amount of parameters and computation in the network. There are two common ways in which pooling is done, max pooling and average pooling. In max pooling, the largest element is taken from the feature map. Average pooling calculates the average value for each patch for a predefined sized image section. 

        

        
          Fully Connected Layer 

          The final pooling and convolutional layer output is a 3-D matrix flattened by unrolling all its values into a vector. This usually represents high-level features of the input image which are used as an input to the fully connected (FC) layer. The purpose of the FC layer is to use these features for classifying the input image into various classes based on the training data. The FC layer maps the spatial tensor from the convolution layers to a fixed-length vector. It consists of the weights and biases along with the neurons and is used to connect the neurons between two different layers. FC layers are often placed before the output layer. 

        

      

      
        CNNs for Perception

        Let’s take a simple example of a cleaning robot that uses a CNN to detect objects on a table to then clean the table. As seen in Figure 2-21, each object in the image has been located and identified with a certain level of precision. 

        
          [image: Example of a CNN detecting various objects on a table  source  ]
          Figure 2-21. Example of a CNN detecting various objects on a table [source] 

        

        One general way to solve this problem using a CNN is:

        
          	
            Taking an image of the table with the items we want to clean/organize using a sensor.

          

          	
            Input this image into the CNN.

          

          	
            Divide the image into various regions and consider each region as a separate image.

          

          	
            Pass all the images with regions to the CNN and classify them into various classes.

          

          	
            Once each divided region has been put into its corresponding class, we can combine all these regions to get the original image with the detected objects.

          

        

        Although this approach sounds effective at a high level, the problem with using this approach is that the objects in the image can have different aspect ratios and spatial locations. For example, in some images, the object might be part of most of the image, while in others, the object might just be a very small part. The spatial locations can also be different since in real-life it is common for the shapes of the objects to be different. 

        As a result, we would need a large number of regions to make this approach work, resulting in a huge amount of computational time. To solve this problem and reduce the number of regions, we can use region-based CNN (R-CNN), which selects the regions using a proposal method. Let’s understand how the R-CNN does this. 

        
          R-CNN

          R-CNNs are a family of machine-learning models commonly used for object detection. Instead of processing many regions, R-CNN proposes boxes in an image and checks if they contain objects. The process involves selective search to identify regions of interest (RoI) based on qualities like color, texture, scale, and enclosure. A pre-trained CNN is then used to extract features from each RoI. Support Vector Machines (SVMs) classify the regions into different classes, and linear regression can be used to generate tighter bounding boxes for each identified object.

          One of the major drawbacks of the R-CNN model is that it can be slow and extremely computationally heavy since it generates and crops 2,000 separate regions for each image based on selective search. The entire process of object detection using R-CNN also has three models (CNN for feature extraction, linear SVM classifier for identifying objects, and the regression model for tightening the bounding boxes). Combining these processes can take the R-CNN a couple of tens of seconds to predict each new image. In the case of the cleaning robot, this would be extremely slow and difficult to implement in real time. 

          Thankfully there’s a model, Fast R-CNN, which aims to solve some of the problems with the original R-CNN model.

        

        
          Fast R-CNN

          What if instead of running a CNN 2,000 times per image, we could just run it just once per image and get all the RoI’s?

          The main bottleneck in the performance of an R-CNN is independent forward propagation for each region proposal. Due to overlap in these regions, doing independent feature extractions can lead to repeated computation. Fast R-CNN solves this problem by taking an entire image as the input of the CNN for feature extraction, rather than individual region proposals. We feed the input image to the CNN and this generates the convolutional feature maps. Using these maps, the regions of proposals are extracted. We then use a RoI pooling layer to reshape all the proposed regions into a fixed size, so that it can be fed into a fully connected network. Using this approach, we can quickly get a list of corresponding feature maps with a fixed size from a list of rectangles with different sizes. With many object proposals in a frame, we can use the same input feature map for all of them. This allowed Fast R-CNN to extract features for all the regions of interest in the image in a single pass as opposed to R-CNN, which processed each region separately. 

          Although Fast R-CNN performs better than R-CNN, it still relies on selective search to find the RoI, which is a slow and time consuming process. For the cleaning robot, we will likely be working with a large dataset and we need a model that can compute object detection very quickly for each item on the table. To solve this problem, another iteration of the R-CNN called Faster R-CNN was proposed. 

        

        
          Faster R-CNN

          Fast R-CNN improves the speed of object detection compared to R-CNN, taking only 0.32 seconds for prediction, whereas R-CNN takes 47 seconds. Generating 2,000 region proposals takes 2 seconds, resulting in a total of 2.3 seconds per image using Fast R-CNN. With a fully differentiable model using end-to-end training, Faster R-CNN has a test time of 0.2 seconds with region proposals per image. 

          The main differentiator of a Faster R-CNN is that it contains a Region Proposal Network (RPN), which is inserted after the last convolutional layer and generates object proposals directly without relying on external mechanisms like selective search. It works by sliding a window over feature maps created from the CNN and producing k anchor boxes of different shapes and sizes at each window. The RPN predicts the probability of an anchor being an object and the bounding box regressor for adjusting the anchor to better fit the object. An overview of how RPN works can be seen in Figure 2-22. 

          
            [image: Process for how RPN works  source ]
            Figure 2-22. Process for how RPN works [source]

          

          The generated bounding boxes are then passed to the RoI pooling layer, which crops each proposal to include an object and extracts fixed-sized feature maps for each anchor. These feature maps are fed into a fully connected layer with a softmax classifier and a linear regression layer. This layer classifies the object and predicts the bounding boxes for the identified objects.

          Overall, Faster R-CNN is approximately 10 times faster than Fast R-CNN while maintaining similar accuracy on datasets like VOC-2007. This makes Faster R-CNN a preferred algorithm for object detection. Figure 2-23 provides a quick comparison between different versions of R-CNN.

          
            [image: Comparison of R CNN  Fast R CNN  and Faster R CNN  source ]
            Figure 2-23. Comparison of R-CNN, Fast R-CNN, and Faster R-CNN [source]

          

        

        
          Mask R-CNN

          Mask R-CNN is an extension of the R-CNN models that allows precise pixel-level object localization, making it suitable for image segmentation tasks. It has been applied in various domains, such as object segmentation, distance measurement for robot grasping, and vehicle detection in self-driving cars.. This could also be useful for our cleaning robot if we wanted to get more granular and segment out all of the objects we would be cleaning from the image. 

          In Mask R-CNN, a branch is added to Faster R-CNN to output a binary mask indicating whether each pixel belongs to an object or not. This branch consists of a Fully Convolutional Network on top of a CNN-based feature map. Figure 2-24 shows an overview of Mask R-CNN. The loss function in Mask R-CNN considers three components: classification loss (tells you how close the predictions are to the true class), bounding box loss for localization (tells you how good the model is at localization), and mask prediction loss calculated by taking the binary cross-entropy between the predicted mask and the ground truth.

          
            [image: Main components of Mask R CNN  source ]
            Figure 2-24. Main components of Mask R-CNN [source]

          

          Since image segmentation requires pixel level specificity, unlike bounding boxes, Mask R-CNN refined the RoI pooling which is used for extracting small feature maps from each RoI. To address the challenge of pixel-to-pixel alignment in RoI pooling, which can affect mask prediction accuracy, Mask R-CNN introduces RoIAlign. RoIAlign preserves spatial information by using binary interpolation to create a fixed-size feature map, unlike RoI pooling. The output of the RoIAlign layer is then fed into the mask head, which consists of convolution layers. This process allows for pixel-to-pixel segmentation of an image.

          A comparison between Mask R-CNN and Faster R-CNN is presented in this paper that focuses on building detection using Google Earth data. We can see that Faster R-CNN configured with ResNet101 outperforms the VGG version significantly. This showcases the powerful ability of residual networks, which we will explain in the next section. Mask R-CNN-ResNet101 here obtains similar results to Faster R-CNN-ResNet101. Figure 2-25 shows the comparison of mean average precision (mAP) for each of these methods. For the purpose of this example, the details of the proposed method is not too relevant. 

          
            [image: Comparison of Faster R CNN and Mask R CNN on the Fujian dataset  source ]
            Figure 2-25. Comparison of Faster R-CNN and Mask R-CNN on the Fujian dataset (source)

          

        

        
          ResNet 

          We’ve spoken a lot about optimizing the architecture of these models to make perception tasks faster to compute. But what about increasing the accuracy of these models to perform perception tasks better? For example, if a robot is manipulating in environments like surgery, it needs to be able to detect or classify objects accurately.

          Is learning better networks as easy as stacking more layers? It is often thought that stacking additional layers in deep neural networks will improve accuracy and performance. The intuition behind adding more layers is that these layers progressively learn more complex features. However, it was found that after a certain point of the network depth increasing, accuracy gets saturated and then degrades rapidly. There is a maximum threshold for depth with the traditional CNN model. This occurs due to the vanishing gradient problem — as the gradient is back-propagated to earlier layers, repeated multiplication may make the gradient extremely small. 

          Residual Neural Networks (ResNet) were proposed by He et al. in 2015 as a breakthrough which solved the vanishing gradient problem and allowed us to build larger CNNs that had improved performance in perception tasks. For this reason, ResNets are used as a backbone today for many computer vision tasks. They are not only limited to image classification but can also solve a wide range of problems in image segmentation and object detection. The fundamental breakthrough with ResNet allowed us to successfully train extremely deep neural networks with more than 150 layers. 

          
            Skip Connection — The Strength of ResNet

            The magic of ResNets is the skip connection which is now a standard module in many convolutional architectures. Using a skip connection, we provide an alternative path for the gradient during backpropagation. Skip connections skip some layers in the neural network and feed the output of one layer as the input to the next layers instead of only the next one. The core idea is to backpropagate through the identity function using vector addition. We use an identity function to preserve the gradient. Then the gradient would simply be multiplied by one, and its value will be maintained in the earlier layers. The main idea ResNets they stack these skip residual blocks together. In Figure 2-26 you can see what a single residual block with skip connection looks like.

            
              [image: A residual block.  source ]
              Figure 2-26. A residual block. (source)

            

            To summarize, the intuition behind why skip connections work are because: 

            
              	
                They mitigate the problem of vanishing gradient by allowing an alternate shortcut path for gradient to flow through.

              

              	
                They allow the model to learn an identity function which ensures that the higher layer will perform at least as good as the lower layer.

              

            

          

          
            U-Net

            The use of skip connections influenced the development of architectures like U-Net. U-Nets were proposed by Ronneberger et al. for biomedical image segmentation but can be applied to other industries for image segmentation tasks. It has an encoder-decoder part including Skip Connections. It is primarily worth mentioning for its ability to run on fewer training images and to yield more precise segmentations. The U-Net architecture is able to perform segmentation on images of sizes 512x512 using a modern GPU in less than a second. 

            The main idea behind the architecture (as seen in Figure 2-27) for a U-Net is to replace pooling operations with upsampling operators. These layers increase the resolution of the output and then a successive convolutional layer can learn to assemble a precise output based on this information.

            
              [image: U Net architecture  source ]
              Figure 2-27. U-Net architecture [source]

            

            U-Net has been used commonly in segmentation tasks for robotics given its speed and ability for the encoder-decoder structure to learn rich spatial information. For example, it has been used in research for robotic instrument segmentation for robotic surgery, lane detection for self-driving cars, and for robot grasping generally. 

          

        

        
          EfficientNet

          CNNs are commonly scaled up by increasing the CNN depth or width or by using a larger input image resolution for training and evaluation to achieve better accuracy. For example, ResNet can be scaled up from ResNet-18 to ResNet-200 by increasing the number of layers. This often requires tedious manual tuning, and results in sub-optimal efficiency. Is there a better way to scale up a CNN to obtain better accuracy and efficiency?

          Conventional methods focus on arbitrarily scaling network dimensions, such as width, depth and resolution. EfficientNet found that uniformly scaling all dimensions (depth/width/resolution) using a compound coefficient is best to improve overall performance. The compound coefficient is specified by a user and controls how many resources are available. On the other hand, α, β, and γ specify how to assign these resources to network depth, width, and resolution respectively. Given that we can use 2N more computational resources then we can increase the network depth by αN, width by βN , and image size by γN, where α, β, γ are constant coefficients. EfficientNet uses a compound coefficient ϕ to uniformly scale network width, depth, and resolution. These coefficients are applied to scale up a baseline network to the desired target model size or computational budget. A comparison of conventional scaling methods seen in (b) to (d) that scale a single dimension of the network and the compound scaling method in EfficientNets can be seen in Figure 2-28.

          EfficientNets are able to superpass state-of-the-art accuracy with up to 10x better efficiency in terms of size (smaller) and speed (faster). The compound scaling method is useful since the network needs more layers to increase the receptive field (the region in the input space that a particular CNN’s feature is looking at) and more channels to capture more fine-grained patterns on the bigger image if the input image is bigger.

          
            [image: Comparison of scaling methods  source ]
            Figure 2-28. Comparison of scaling methods (source)

          

          EfficientNets also perform effectively when transferred to other datasets. For example, EfficientNets achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with many fewer parameters.

        

        
          One-stage Detectors

          Many of the object detection algorithms mentioned so far are handling object detection as a classification problem by first generating object proposals and then sending these proposals to classification/regression heads. What if there was a way to look at the complete image at once rather than looking at only the generated region proposals? These methods would be able to compute extremely fast and can be run real time. 

          A method called YOLO - You Only Look Once aims to do this by making predictions of bounding boxes and class probabilities simultaneously using an end-to-end neural network. 

          
            YOLO

            YOLO has been commonly applied in robotics for object detection applications due to its simplicity and speed. For example, a more recent version of YOLO called YOLO v4 achieves state-of-the-art results (43.5% AP) for real-time object detection and is able to run at a speed of 65 FPS on a V100 GPU. A paper used YOLO to identify static objects that could be obstacles in the path of a mobile robot. In contrast, another paper has built upon newer versions of YOLO, such as YOLOv5 for robotic grasping. 

            YOLO works through residual blocks where the image is first divided into various grids. The purpose for doing this is so that each grid cell can detect objects that appear within them by predicting the bounding boxes and their confidence scores. This process greatly lowers the computation as both detection and recognition are handled by cells from the image. However, one problem that it does bring forth is duplicate predictions due to multiple cells predicting the same object with different bounding box predictions. YOLO uses Non Maximal Suppression to solve this issue by suppressing all bounding boxes that have lower probability scores.

            This is done by first looking at the probability scores associated with each decision and taking the largest one out of them all. It then suppresses the bounding boxes which have the largest IOU with the current high probability bounding box. This process is repeated until only the final bounding boxes are left. The architecture for YOLO can be seen in Figure 2-29.

            
              [image: YOLO Architecture  source ]
              Figure 2-29. YOLO Architecture [source]

            

          

          
            SSD

            Similar to YOLO, the single-shot detector (SSD) detects images in a single pass. However, YOLO uses two fully connected layers while the SSD uses multiple convolutional layers. SSD is generally a better option over YOLO if you care more about computation but this may come with a compromise of accuracy. The main feature that sets it apart from YOLO is its approach to bounding-box regression.

            SSD has a backbone model which is a pre-trained image classification network like ResNet or VGG16 which acts as a feature extractor. It also has a head which is composed of one or more convolutional layers responsible for producing multiscale feature maps. These feature maps are then used to produce the bounding box and class predictions. One of the main benefits of SSD is that the head makes it spatially invariant, allowing it to detect objects of most sizes.

            One of the most important parts of SSD is the receptive field which enables it to detect objects at different scales and output a tighter bounding box. The receptive field is the region in the input space that a particular CNN’s feature is looking at. For example, earlier layers that have smaller receptive fields can represent smaller sized objects. These predictions from earlier layers can help in dealing with smaller sized objects. Using this, you can define different types of grid cells at different layers. You could use a 4x4 grid to find smaller objects, a 2x2 grid to find mid-sized objects and a 1x1 grid to find objects that are very large or in the entire image. A comparison of the SSD and YOLO architecture can be seen in Figure 2-30.

            
              [image: SSD  Top  and YOLO  Bottom  Architecture  source ]
              Figure 2-30. SSD (Top) and YOLO (Bottom) Architecture (source)

            

            A comparison of SSD and YOLO with Faster-RCNN can be seen in Figure 2-32.

          

          
            RetinaNet

            One-stage detectors like YOLO and SSD can often be faster and lead to higher accuracies when applied over dense sampling of object locations, scales and aspect ratio. However, this comes with a con since one-stage detectors generate a large set of object locations that densely cover few areas of the image. This creates a class imbalance as the negatives are increased and the object classes present in those locations go undetected.

            Another one-stage object detection model, RetinaNet, aims to solve the dense detection problem. RetinaNet works well with dense and small-scale objects, while being known to have greater accuracy over other one-stage object detection models such as YOLO and SSD in some scenarios. 

            For example, on the common COCO dataset, Faster R-CNN has average mAP for IoU from 0.5 to 0.95 as 21.9%, SSD300 and SSD512 have mAPs of 23.2 and 26.8, YOLO-V2 is at 21.6% whereas YOLO-V3 is at 33%. RetinaNet has the highest mAP at 40.8%. These results can be seen in Figure 2-31. 

            
              [image: Comparison of RetinaNet  SSD  and YOLO on COCO dataset  source ]
              Figure 2-31. Comparison of RetinaNet, SSD, and YOLO on COCO dataset [source]

            

            The main goal of RetinaNet is to leverage Focal Loss, a method to prevent negatives from clouding the detector. It does this by increasing the importance of correcting misclassified examples. Overall, Focal Loss helps to make the background more clearly distinguished from the foreground objects. RetinaNet was a huge improvement for detection using its new training approach.

          

        

        
          
            Model Comparison
             
          

          Choosing the right model is crucial for robotics and depends on the problem you are trying to solve and how you set this up. The results of Faster R-CNN, YOLO, and SSD based on average precision (mAP) and FPS on Pascal VOC2007 are shown in Figure 2-32. The input images from these datasets are tested with different resolutions to compare results. It is important to note that newer versions of YOLO (YOLO v4, YOLO v5 and PP-YOLO), which have an improved architecture, have much higher mAP and FPS.

          
            [image: Comparison of Faster R CNN  YOLO  and SSD based on average precision  mAP  and FPS on Pascal VOC2007 dataset  source ]
            Figure 2-32. Comparison of Faster R-CNN, YOLO, and SSD based on average precision (mAP) and FPS on Pascal VOC2007 dataset [source]

          

          In another example, a paper by the Korea Electronics Technology Institute implemented Faster-RCNN (Inception v2), YOLO, SSD (Mobilenet v1) and the newer YOLO v4 to recognize vehicle types. This is a common task used in self-driving cars to detect what vehicles are in the cars surrounding. They developed an automobile dataset based on the vehicle classification of the Korea Expressway Corporation. Results (seen in Figure 2-33) show that the R-CNN model has a relatively high accuracy but slower speed. The SSD model is faster than the others but the accuracy is lower compared to the other models. YOLO is relatively slower than SSD but it detects vehicles well. This tradeoff will differ depending on the problem you are working on and your dataset and is essential to consider, especially for real-time detection applications in robotics. 

          
            [image: Comparing Faster RCNN  YOLO v4  and SSD based on mAP and frame per second  Source ]
            Figure 2-33. Comparing Faster-RCNN, YOLO v4, and SSD based on mAP and frame per second [Source]

          

        

      

      
        Transformers for Perception

        In the previous section, we discussed CNN based vision techniques. However, in recent times, transformer based vision techniques have provided a strong alternative to solving vision problems discussed in Section 2.2. Transformers, as opposed to CNNs, rely on self-attention mechanisms to model global connections among visual elements, improving the models understanding of contextual information. In robotics, applications like object detection, image segmentation, and visual reasoning—where global context and fine-grained interactions are essential for precise decision-making—are ideally suited for transformers.

        
          Transformer Introduction 

          To understand how sequence models can be applied to robotics, we first need to understand attention, which is the neural network element that explicitly motivates the network to focus on certain parts of the input data and ignore others. In long sequences, unrolling the net in time means older inputs are forgotten. Attention provides a direct path to older inputs reducing the vanishing/exploding gradient problem.

          Attention mechanism was first proposed by Bahdanau et al as embedding weights to jointly align and translate during a neural machine translation task. Prior to the work proposed by Bahdanau et al, neural translation involved an encoder and decoder setup where an encoder converted inputs to an embedding representation and a decoder converted the embedding back into tokens in a target language. In Bahdanau et al, a simple feedforward network was used to calculate alignment scores between the input and output tokens and this score was used to weight the context vector of the RNN decoder. This would later come to be known as additive attention since feedforward applies a linear, additive function on inputs.

          
            [image: ]

            Figure 2-34. Caption to come

          

          In Figure 2-34, a_ij is a learned weight given to jth input to calculate the ith output. This mechanism was soft attention. Since then, several attention mechanisms have been proposed (as seen in Figure 2-35), which we will be highlighting in more detail in subsequent chapters.

          
            [image: Proposed attention mechanisms. ]
            Figure 2-35. Proposed attention mechanisms. 

          

        

        
          The Transformer

          An important neural network architecture that bases itself on the ability to utilize attention over long sequences is the Transformer. Introduced in Vaswani et al, titled “Attention is all you Need”, transformers have changed the terrain of deep learning by providing better than human performance in speech and vision. The best language models in the world, like GPT-3 and PaLM, are transformers. 

          Outside of being applied to tasks such as machine translation, text generation, and language understanding, transformers can be utilized for object detection and tracking in robotic vision systems. Using self-attention mechanisms, transformers can capture global dependencies and spatial relationships between different regions, leading to improved object recognition and tracking capabilities. Other use cases in robotics include path planning and navigation tasks in robotics where transformers can be used to capture long-range dependencies and make use of contextual information, improving the robot’s ability to navigate complex and dynamic environments. 

          Vaswani et al categorizes an attention network generically as mapping a set of queries and key-value pairs to outputs where they are all vectors. Figure 2-36 shows that the output is a weighted sum of all the values, and the weight is calculated as a dot product of the query and key vectors.

          
            [image: Scaled dot product attention and multi head attention  source ]
            Figure 2-36. Scaled dot product attention and multi head attention (source)

          

          In scaled dot product attention, the attention is calculated using Figure 2-37:

          
            [image: ]

            Figure 2-37. Caption to come

          

          where Q, K and V are query, key and value vectors respectively and d_k is the dimension of the key vector. Compared to additive attention introduced in Bahdanau et al, dot product attention is faster to compute and space-efficient. In scaled dot product attention, the 1/ sqrt(d_k) keeps the input value of softmax value normalized, since for large values of d_k the dot product is pushed to areas where the softmax function has small gradients. 

          In multi headed attention, we parallelize by first projecting values, keys and queries to d_v, d_k and d_q dimensional arrays respectively, then applying scaled dot product attention as shown in Figure 2-38. This allows the model to attend to different information from different embedding subspaces jointly. 

          
            [image: ]

            Figure 2-38. Caption to come

          

          The transformer (as seen in Figure 2-39) employs multiheaded attention with an encoder-decoder setup in three places:

          
            	
              In the encoder as self-attention where the keys, values and queries come from the encoder, such that the encoder can attend to all its positions. 

            

            	
              Between the encoder and decoder where keys and values come from the encoder and queries come from the previous output of the decoder. 

            

            	
              In the decoder as self-attention where the keys, values and queries come from the decoder, such that the decoder can attend to all its positions. 

            

          

          
            [image: The Transformer  source ]
            Figure 2-39. The Transformer (source)

          

        

        
          Transformers for Vision

          Now let’s look at methods that allow us to apply transformers to vision problems mentioned in section 2.2, namely classification, detection, segmentation and captioning.

          
            
              Image Classification with Vision transformer (
              ViT
              )
            

            One of the first applications of transformers to computer vision that could be applied for robotic perception was published by Dosovitskiy et al. in the form of the vision transformer (ViT). By utilizing its ability to interpret visual data and capture contextual relationships, the Vision Transformer (ViT) can be used for image classification. The ViT is useful when you need a thorough grasp of the environment because of its attention mechanism, which enables it to model long-range dependencies and capture fine-grained information. A robot’s perception abilities can be improved by modifying the ViT architecture and training it on domain-specific data. This will allow the robot to move around, interact, and make better judgements based on visual input.

            The ViT tokenizes an image into patches. Then, it feeds it into a transformer as if the patches are sequences with a position embedding corresponding to the patch’s position in the picture. The architecture of this can be seen in Figure 2-40. 

            
              [image: Vision Transformer architecture  source ]
              Figure 2-40. Vision Transformer architecture (source)

            

            The ViT handles images of higher resolution by increasing the sequence length and 2D interpolation of pretrained position embeddings corresponding to the new patch positions. 

            While breaking a picture up into multiple patches seems counterintuitive to the purpose of retaining geometric correlation across patches, it was found that when the model is pretrained on a very large dataset (> 100M images) and then fine tuned to a classification task, it learned the relationships between the position embeddings and could extract features across patches. At smaller dataset sizes, a resnet-based model was still dominant given that convolution neural nets preserve inductive biases about translational equivariance and locality.

            A closer inspection found that the initial layers learn to attend to features in the patches, preserving its low dimensional structure. Once position embedding is added, there are similarities in the embeddings between close patches and those in the same row/column, meaning that the network learns the larger geometrical context of the image. From that perspective, the attention distance of the ViT is comparable to the receptive field of resnets.

            Additionally, the paper also found that ViTs best resnets on compute vs performance, requiring 2-4x less memory for the same performance. Also, the model didn’t saturate, giving the possibility of higher performance with scaling.

          

          
            Scaling Vision Transformers to 22 Billion Parameters:

            Although ViTs are state of the art for many computer vision tasks, until recently, we have not been able to scale up ViTs. In a new study, Google tackles the question of why the traditional method of training ViTs produces instability during scaling and how to modify the architecture for scaling. They introduced ‘ViT-22B by scaling vision transformers to 22 billion parameters. This approach is 5.5x larger than the previous vision backbone ViT-e used which had 4 billion parameters. ViT-22B is trained on a version of the JFT dataset that has been extended to include around 4B images. Additionally, this work was also applied in PaLM-e, which shows how the state-of-the-art for robotics tasks can be advanced by combining ViT-22B with a language model.

            Specifically, the authors noticed a divergent training loss in ViT models with around 8B parameters. This was occurring due to very large values in attention logits that were causing roughly zero entropy attention weights. They address this issue of divergent training loss in ViT models with large parameters by applying LayerNorm to the queries and keys before the dot-product attention computation. In Figure 2-41, we can see how this improves training. 

            
              [image: Improvement in training after query key normalization  source . ]
              Figure 2-41. Improvement in training after query/key normalization (source). 

            

            Many improvements were also found by modifying the architecture. In the classical transformer after the self-attention output is followed by a multi-layer-perceptron (MLP). The authors propose a modification to the standard Transformer architecture in ViT-22B that applies Attention and MLP blocks in parallel rather than sequentially, enabling further parallelization through linear projections. This technique results in a 15% speed-up during training without affecting performance. An encoder layer with parallel attention-MLP blocks can be seen in Figure 2-42.

            
              [image: Parallel ViT 22B layer with QK normalization  source .]
              Figure 2-42. Parallel ViT-22B layer with QK normalization (source).

            

            Alongside this, bias terms are removed from the QKV projections, and all LayerNorms are applied without bias, improving accelerator utilization without compromising quality. The authors use multi-head attention pooling to aggregate per-token representations, and their embedding layer follows the original ViT. They use a learned 1D positional embedding and perform 2D interpolation of pre-trained position embeddings during fine-tuning on high-resolution images. Bias terms are used for the MLP dense layers, unlike in PaLM. This led to an improvement in quality without slowing down the process. Full model architecture details of ViT-22B can be seen in Figure 2-43. 

            
              [image: ViT 22B model architecture details  source .]
              Figure 2-43. ViT-22B model architecture details (source).

            

            In terms of training infrastructure, the authors implemented ViT-22B in JAX using the FLAX library and organized the chips into a 2D logical mesh to leverage both model and data parallelism. They used sharding and asynchronous parallel linear operations to maximize throughput and minimize communication. By doing this they were able to achieve better results than PaLM and ViT-e on the same hardware.

          

          
            Image Classification via Captioning: Contrastive Language Image Pretraining (CLIP)

            Applying language to computer vision such as using CLIP, introduced by Radford et al, allows us to a ViT like transformer to get richer visual features. The idea of CLIP is to jointly learn embeddings from a large corpus of image-text pairs in order to zero shot image classification. Instead of training an image encoder and classifier, we jointly train an image encoder and text encoder which are fed batches of (image, text) pairs with a label for whether they match or not. There are a few strong reasons for doing so.

            It removes a requirement for labeling data in the format intended for classification tasks. Even ImageNet only labels 1000 classes, which is far fewer than object descriptors required for generalized vision. Compared to it, natural language supervision allows one to train on descriptive text, without explicit and formatted labeling. This enables one to train from the large number of image/text descriptions on the internet compared to previous benchmarks, as well learn attributes of the image such as object types, aesthetics, style, and most features that people are likely to write online about. 

            Contrastive objectives are also found to be better than predictive objectives at learning representations. In a contrastive setting, the model is trained to predict which text is paired with which image rather than predicting the exact words of that text. This is because the jointly trained image encoder learns representations required to describe the same image in many ways rather than a singular label. An overview of CLIP can be seen in Figure 2-44. 

            
              [image: Summary of CLIP  source ]
              Figure 2-44. Summary of CLIP (source)

            

            The image encoder backbone could be a standard ResNet or the vision transformer and the text encoder could be another text transformer such as in Vaswani et al. 

            Robotic perception can be improved by richer image understanding made possible by CLIP features. Language also allows more flexible querying of objects that is allowed by pure classification/detection methods. Robots can make inferences, reason about visual correlations, and complete challenging visual tasks using CLIP’s comprehension of textual descriptions. 

          

          
            Image Segmentation with Segment Anything

            An application of transformers to solve the image segmentation problem is the Segment Anything Model (SAM) developed by Meta Research. SAM is able to take input prompts from various systems like video editing outputs, abstracting 2D objects into 3D models, and generates multiple valid segmentation masks. Specifically, SAM can be useful for tasks like object detection, annotation assistance, and feature extraction.

            SAM’s segmentation masks have shown groundbreaking results compared to other techniques like ViTDet. The model was trained on 11 million images and 1.1 billion segmentation masks, resulting in the creation of the Segment Anything 1-Billion Mask (SA-1B) dataset. This dataset is a large, diverse dataset which contains high-quality annotations, making it an extremely valuable foundation model for training and fine-tuning on different computer vision segmentation models.

            It is designed with three main components: the promptable segmentation task, the model architecture, and the dataset. The promptable segmentation task allows for SAM to generalize to new tasks without requiring any additional training. The model architecture consists of the following main components: 

            
              	
                Image Encoder: The image encoder is a masked auto-encoder which is a pre-trained Vision Transformer (ViT). It generates one-time image embeddings and can be applied before prompting the model. The main goal of the image encoder is to capture high-level features and representations from the input image.

              

              	
                Prompt Encoder: The prompt encoder encodes various types of prompts such as masks, bounding boxes, or texts which are converted into embedding vectors in real time. The main type of prompts accepted are: sparse prompts with things like points, boxes, text and dense prompts with things like masks. The sparse prompts are usually represented using positional encodings and learned embeddings, and if you have free-form text prompts you can use an off-the-shelf text encoder from CLIP. More dense prompts with things like masks, are embedded using convolutions and combined element-wise with the image embedding.

              

              	
                Mask Decoder: The mask decoder predicts segmentation masks based on the embeddings from both the image and prompt encoders. The decoder essentially updates all embeddings using prompt self-attention and cross-attention from prompt to image embedding and the other way around. 

              

            

            In Figure 2-45, you can see an overview of the Segment Anything model. 

            
              [image: Segment Anything model diagram  source ]
              Figure 2-45. Segment Anything model diagram (source)

            

            SAM’s architecture allows for promptable segmentation tasks enabling zero-shot generalization. Overall, SAM’s architecture and the SA-1B dataset are extremely effective in segmenting objects in images, making it accurate and flexible for various computer vision applications.

          

        

      

      
        Summary

        In summary, during this chapter, we covered: 

        
          	
            Various sensors are essential for collecting data used as input for ML models and allowing robots to perceive their environment. The most common sensors fall into the categories: (1) Vision - Cameras, (2) Depth Sensors, (3) Range Sensors - LIDARs, Ultrasonic sensors, (4) Inertial Measurement Units (IMUs). 

          

          	
            Common perception tasks for how many robots see and manipulate objects. These tasks include classification, semantic segmentation, instance segmentation, and object detection. 

          

          	
            Overview of how convolutional neural networks (CNNs) work and common models such as R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, U-Net, YOLO, SSD, and RetinaNet used for robotic perception tasks. 

          

          	
            Overview of transformers and processing images like sequences to solve image processing problems such as object detection and segmentation

          

        

        This chapter was mainly focused on 2D image processing techniques. In the next chapter, we’ll discuss 3D image processing methods, multimodal perception and sensor fusion. 
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