

Service Mesh Patterns

Expect More From Your Infrastructure

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Lee Calcote and Nic Jackson

 Service Mesh Patterns

 by
 Lee
 Calcote
 and
 Nic
 Jackson

 Copyright © 2022 Lee Calcote. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 John Devins

 	
 Development Editor:
 Virginia Wilson

 	
 Production Editor:
 Christopher Faucher

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 May 2022:
 First Edition

 Revision History for the Early Release

 	
 2021-02-26:
 First Release

 	
 2021-07-14:
 Second Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781492086451
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Service Mesh Patterns, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors, and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-492-08638-3

 Preface

 As a transparent layer in your infrastructure, a service mesh does so much more than facilitate communication between services. By way of how it offers adding security, traffic management, observability, and embeds business logic into the network, a service mesh is intricate in its sophistication and its potential value is enormous. Irrespective of what role you play in the design, implementation, and operations of your applications and infrastructure, cloud native or not, the presence of a service mesh stands to dramatically impact the way in which each of these functions are performed.

 Who This Book is For

 Identifying who this book is for has been one of the hardest challenges in writing it. The power of a service mesh is vast, and therefore, empowers individuals of many different roles. In short, this book is for anyone delivering workloads enabled by a service mesh and who wants to ensure their use of a service mesh provides the most possible value to the workloads and teams that rely on it.

 What You Will Learn

 You will not learn all of the ways in which people are putting service meshes to use. This book will teach you a subset of those uses and enable you to build these patterns. It will teach you about commonly used features and deployment architectures based on the specific use cases. This book teaches patterns of continuous delivery, in-application observability, identity and security, fine-grained traffic management, business logic augmentation, resiliency and chaos experimentation.

 Navigating This Book

 Given their broad set of capabilities, service meshes have a number of concepts to digest. While you might be able to understand their concepts from start to finish of this book, you don’t need to as each pattern in this book gives a complete overview of a particular task that you might be seeking to accomplish with a service mesh. You will need to read Chapters 1 through 4, afterwards, we anticipate that you will expeditiously skip to the patterns that interest you most now, and visit the others as you need them later.

 Each chapter contains a pattern. All patterns include description of pattern and context for its use. The challenge(s) solved by the pattern, a reference implementation, and recommendations on when to use and when not to use the pattern are included in each chapter. As a pattern is introduced, we will highlight who stands to benefit from its understanding and use.

 Why is this not a [name of service mesh] patterns book?

 This book is not a cookbook of [name your specific service mesh] recipes. Rather, the patterns outlined here are generally considered to be universally applicable irrespective of the specific service mesh at-hand.

 It’s our intention that the broader nature of the patterns presented should be of value to you generally and for a number of years to come. These patterns are open source and highly curated. The specific examples and code samples in this text are included to reinforce your comprehension of a given pattern, making it easier to digest in context of a specific service mesh or use case.

 I’m a [developer | operator | product or service owner]. Will I find value in this book?

 Yes, this book specifically outlines the value service meshes provide to individuals based on their role, so that you might come to expect more from your infrastructure; that you might squeeze all the value you possibly can out of your service mesh. In this way, you will have an understanding of how service meshes benefit developers, operators, and service owners differently.

 Sidebars are included throughout with tips to highlight the benefits that a particular pattern brings to the shared work of these roles. We will withhold more lengthy discussions of how service meshes provide a high degree of value to the developer and the product owner. Perhaps, this is a topic for our next book.

 What prerequisite knowledge do I need to have prior to reading this book?

 The basic technical expectations of readers of this book are as follows:

 	
 You have functional knowledge of systems administration and network services.

 	
 You have read and digested the basics about containers (Docker, specifically) and container orchestration (Kubernetes, specifically).

 	
 You have an environment that has a deployment or aspirations to have a deployment of services running across multiple hosts.

 	
 You have familiarity with typical application concerns like authentication, authorization, user accounts, retry logic, timeouts and so on.

 	
 You do not have to be running a service mesh prior to reading this book. However, you will find more benefit in this text if you can put these patterns immediately into practice.

 What if I do not have a service mesh deployed in my environment? Is this book of value to me?

 Yes, these patterns are useful regardless of where you are in your service mesh deployment because they will help you identify what questions to be asking yourself; they outline considerations you should make when identifying which service mesh to use. Service meshes are a powerful layer of cloud native infrastructure, and therefore, can be used in a number of different ways. Some service meshes may account for your use case (your intended pattern of use) more readily than the next. Understanding these considerations prior to selecting a service mesh or after having selected one, will serve to either enlighten or reinforce your ongoing service mesh selection, deployment, operating, troubleshooting, and so on.

 Chapter 1. How to Get Started with Any Service Mesh

 A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at vwilson@oreilly.com.

 As you learned in Chapter 1: A Multi-Mesh World, there are many different service mesh options to choose from. Knowing that there isn’t a single tool that fits every job is somewhat reassuring, but at the same time having a number of service mesh options to consider means that you will want to make an informed decision regarding which one to deploy.

 In this chapter we provide you with two key pieces of guidance. First, we explain how the management plane Meshery will help you quickly get started with whatever service mesh you choose—to stand it up and deploy your applications or sample applications that you can use to explore and learn. Second, we explain how this robust tool is also particularly useful operationally for implementing each of the patterns you will learn later in this book. Consequently, guidance in this chapter is useful both as you explore and operate different service meshes, but also you comprehend and implement any service mesh pattern.

 Use a Management Plane to Deploy any Service Mesh

 A management plane makes it easy to adopt and operate a service mesh. It helps with caretaking and configuration of workloads, and it integrates with existing tooling and processes (see Figure 2-1).

 [image: Service mesh planes management control and data planes]
 Figure 1-1. Service mesh planes: management, control, and data planes

 As the multi-mesh manager, Meshery, is the open source tool that we will reference throughout this book. Meshery’s popularity (and its usefulness in deploying patterns) is in part due to its compatibility with so many service meshes (more service meshes than any other tool available) as shown in Figure 2-2.

 [image: Multi mesh management through pluggable adapters.]
 Figure 1-2. Multi-mesh management through pluggable adapters.

 Meshery Adapters

 As of this writing, Meshery manages the following service meshes:

 	
 AWS App Mesh

 	
 Citrix Service Mesh

 	
 HashiCorp Consul

 	
 Istio

 	
 Kuma

 	
 Linkerd

 	
 Network Service Mesh

 	
 NGINX Service Mesh

 	
 Octarine

 	
 Open Service Mesh

 	
 VMware Tanzu Service Mesh

 	
 Traefik Mesh

 Meshery manages these service meshes through its adapters, which contain service mesh-specific knowledge. Meshery is compatible with the Service Mesh Interface and Service Mesh Performance standards.

 Meshery deploys as a set of Docker containers whether as a stand-alone, management plane on a Docker host (out-of-cluster) or as a management plane in a Kubernetes cluster (in-cluster). Consequently, any given deployment of Meshery can be described as either an in-cluster or an out-of-cluster deployment. You will find the complete list of its supported platforms in the project’s documentation.

 Whether you will be deploying Meshery in a Kubernetes cluster or on a Docker host (outside of a Kubernetes cluster), prepare to interact with Meshery by installing its command line client: mesheryctl. If you are on a MacOS or Linux system, you can download, install, and run the management plane with this single command:

 $ curl -L https://git.io/meshery | bash -

 If the command line client detects Docker on your system, it will attempt to start Meshery locally, opening your default browser when Meshery is running and available.

 Alternative to this bash script, you can use Homebrew to install mesheryctl on your Linux or MacOS system or you can use Scoop to install mesheryctl on your Windows system.

 To install mesheryctl, using Homebrew execute this command:.

 $ brew install layer5io/mesheryctl

 To install mesheryctl, using Scoop execute the following commands:

 $ scoop bucket add mesheryctl https://github.com/layer5io/scoop-bucket.git
$ scoop install mesheryctl

 Install the management plane and its service mesh adapter by executing:

 $ mesheryctl system start

 Whether you have deployed Meshery locally (out-of-cluster) on your host operating system or remotely (in-cluster) within Kubernetes, you can use either of Meshery’s clients to interact with the management plane. Meshery’s two clients are mesheryctl and Meshery’s UI. See Figure 2.3 for an understanding of how these two clients fit into a Meshery deployment.

 [image: Meshery Clients interact with Meshery through ReST GraphQL and Websockets.]
 Figure 1-3. Meshery Clients interact with Meshery through ReST, GraphQL, and Websockets.

 Upon initialization, Meshery will inspect its environment in search of access to a Kubernetes cluster. For out-of-cluster deployments, this typically means that Meshery will look to your local kubeconfig file under ($HOME/.kube/config) and assume that your current context is the preferred cluster to connect. For in-cluster deployments, this means that Meshery will look to environment variables for a Kubernetes secret and certificate to communicate with Kube API. Once connected to Kubernetes, a reconciliation process called MeshSync initializes and begins synchronizing it’s understanding of the state of any existing service mesh deployments.

 Understanding MeshSync

 MeshSync is an event-driven, continuous synchronization routine that performs the task of ensuring that Meshery knows what the service mesh and Kubernetes environment’s states of configuration and status of operation are. MeshSync runs as a Kubernetes custom controller under the management of Meshery Operator. Once Meshery successfully initializes connection with your Kubernetes cluster, it deploys both Meshery Operator and MeshSync.

 [image: Architecture of Meshery the service mesh management plane]
 Figure 1-4. Architecture of Meshery, the service mesh management plane

 Once you have Meshery running, log into Meshery by selecting a provider from the available list as shown in Figure 2-5. From within Meshery’s UI, you may choose from any number of service meshes that you would like to deploy.

 [image: Select from local and remote Meshery providers.]
 Figure 1-5. Select from local and remote Meshery providers.

 Deploying a Service Mesh

 With Meshery up and running, you can explore the functionality, performance, and behavior of each supported service mesh. Some service meshes include optional add-ons like Promtheus, Grafana, or Jaeger. You can deploy each service mesh and its optional add-ons either using mesheryctl or Meshery UI. To start a service mesh with mesheryctl, execute the command below.

 $ mesheryctl mesh start consul
Deploying service mesh: Consul...

 To start a service mesh using Meshery UI, locate the type of service mesh you would like to deploy and click to deploy. Then execute the following command.

 [Screenshot coming soon]

 Deploying a Sample Application

 Once your service mesh is up and running, deploy a sample application. Sample applications are helpful for understanding the functionality of a service mesh and are useful as on-hand examples for experimenting with patterns. Nearly all service meshes have a sample application bundled with them for the very purpose of learning. Consequently, a number of sample applications are bundled in Meshery and readily available for experimentation. Certain sample applications might resemble your own workloads more than others. We include a variety of sample applications throughout the book to demonstrate various aspects of service meshes.

 We recommend using the same sample application across multiple service meshes, as this helps facilitate an even greater understanding of service mesh functionality and helps illuminate functional and behavioral differences between service meshes. Meshery makes this easy by supporting the same sample application deployment across service meshes. See the Meshery documentation for instructions on how to deploy an application (workload).

 When deploying a sample application, first confirm your current context by executing this command:

 $ mesheryctl system context view
Context:
	cluster-b

 Create a new context or switch to an existing context as necessary as shown here:

 $ mesheryctl system context switch cluster-a
Switched to context ‘cluster-a’.

 Use Meshery to Deploy a Service Mesh Pattern

 After a sample application is running, you can then use Meshery to deploy a pattern. Each of the patterns included in this book are detailed as a YAML file. The format of the YAML is based on the Service Mesh Performance (SMP) specification described in Chapter 28 .

 Pattern Repository

 Patterns are available in the Service Mesh Patterns repository. In this repository, you will find each of this book’s patterns. Each service mesh pattern carries a unique identifier for reference. The patterns in this repository serve in an educational capacity, facilitating learning, and also serve in an operational capacity, facilitating implementation and validation of your service mesh deployment’s adherence to a pattern.

 To deploy a pattern, execute this command:

 $ mesheryctl pattern apply -f <path to the pattern>
Deploying pattern…
Pattern successfully deployed.

 From here, output and behavior will vary based upon the specific pattern you’re deploying. Should you find that your pattern is not successfully deployed, refer to the pattern troubleshooting guide in the Meshery documentation.

 As you step through each pattern, you might choose to modify the pattern to suit your specific environment and workload, exploring in-context of your specific situation. Optionally, you may choose to use MeshMap, or another visual service mesh topology tool, to facilitate your comprehension of the patterns and to literally see the patterns in-action.

 Take time to explore. Try deploying one service mesh’s sample application onto a different service mesh and compare differences in behavior and each service mesh’s ability to manage it. If using Meshery to do so, execute the following commands as an example to deploy the sample application, BookCatalog, onto Open Service Mesh:

 $ mesheryctl pattern apply -f book-catalog
Deploying application “BookCatalog”...
Deployed. Endpoint(s) available at: http://localhost:8000/catalog

 Conclusion

 Your understanding of the service mesh management plane is fundamental to getting hands-on with each of the other patterns described in this book. Meshery is designed to not only let you deploy a number of different types of service meshes easily, but to deploy your applications specifically, so that you can onboard them and readily explore their behavior under the patterns you will learn in this book. Whether you are new to service meshes or have been running them for years, the combination of this book’s patterns and Meshery will help get the most out of your mesh.

 Chapter 2. Sidecar Proxies

 A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 7th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at vwilson@oreilly.com.

 The sidecar proxy is a pattern for integrating the data plane of the service mesh with your application. Alongside every application, a lightweight and performant network proxy is deployed that is responsible for handling functionality such as load balancing, retries, circuit breaking, authorization, observability, and other service mesh features. The primary design is to externalize service mesh functionality while keeping network latency to an absolute minimum. Let’s look at a hypothetical problem that can be solved by the sidecar pattern.

 Problem

 Qui’s team were early adopters of the service mesh pattern, their platform comprised of a central system that provided a service catalog and configuration for the individual applications and a library embedded into the applications. While this approach has provided the functionality that the team required and has done so with little performance impact on the application there have been certain challenges.

 	
 Maintaining a common version of the library across multiple services

 	
 Differing implementation of libraries across polyglot environments

 	
 Incorrect implementation of the library by some application teams

 The problem that Qui’s team faced was how to ensure that the applications in the system are all using a recent version of the data plane library. The number of applications in the system is vast and many of these applications are not actively developed. If the data plane library needs to be updated to fix a security vulnerability or to manage a change in the control plane API then every application in the system must have its dependencies updated, be rebuilt, tested, and deployed. This is starting to cause her real problems, recently the entire system experienced an outage as an application did not get updated to the latest library version. A deprecated feature was removed from the control plane API and this stopped the application from communicating with the service mesh.

 Another problem that the team faces is the need for the organization to enable the developers to work in multiple languages. The teams who are creating front-end client code are working with NodeJS, the bulk of the backend services are built in Java, however, the data science team would like to start working with Python and there is a general desire across the company to be flexible on language choice. This is a problem for Qui’s team as they must now produce four different client libraries providing the data plane capabilities.

 The final problem has recently caused the biggest impact, the authentication and authorization feature of the client library was implemented incorrectly in the payments service meaning that it was effectively open to all on the network. In addition to taking payments, the payments service can also process refunds. The intention of using service mesh was to limit access between services. In the instance that the system is compromised a potential attacker would not have the ability to access the endpoints on every service in the application. This misconfiguration placed the organization at risk of large financial loss should an attacker have managed to exploit this problem.

 Let’s look at a pattern that solves all of Qui’s problems.

 Solution

 The sidecar proxy pattern is a common implementation of the service mesh data plane and is designed to move logic related to network operations previously used in application code libraries into a separate binary which acts as a proxy for all downstream and upstream requests.

 Figure 7-1 shows a simple overview of a service along with its sidecar proxy. The sidecar proxy is responsible for proxying all network traffic in and out of the application.

 [image: Directionality of service requests upstream versus downstream.]
 Figure 2-1. Directionality of service requests: upstream versus downstream.

 Downstream / Upstream Traffic

 People are often confused by the concept of upstream and downstream traffic--with good reason! Picture a real-life stream of water on a mountain. If you travel with the flow of water, you are going downstream down the mountain. If you travel against the flow, you are going upstream up the mountain.

 If you apply the same thinking to network traffic, you’d assume that Service A in Figure 7-1 is the downstream service.

 Sadly this is not the case with network traffic, the term upstream and downstream are most likely adopted from the HTTP specification, RFC 2616.1 It states:

 Upstream and downstream describe the flow of a message: all messages flow from upstream to downstream.

 With HTTP servers (certainly in 1999), the majority of traffic was contained in the response. If the server is the source of the stream then the bulk of the traffic will flow away from downstream.

 The confusion comes when you associate the source of a request as the source of a stream and this is not the case, the source in networking terms is the response.

 You can still use the stream analogy, just remember that the stream is not carrying the request to the service but carrying the response from a service to you. Anything you make a request to is upstream and anything that receives a response is downstream.

 Technical Implementation

 Implementing the sidecar pattern requires you to deploy an accompanying proxy for your applications, which is then used as the data plane for the service mesh. Services and their associated sidecars are always deployed in pairs. The sidecar is exclusive to its paired service, for example, it only routes downstream requests to its allocated service, and will only accept traffic destined to upstream services from its dedicated service.

 The proxy handles all ingress traffic for the service and also handles all egress traffic for the service, which is to say that the service has no network interaction outside its local environment (pod or userspace) without going through the sidecar proxy. The sequence diagram in Figure 7-2 shows the network traffic as a request is handled by the API service. The public entry point for the request is the Sidecar proxy, and the sidecar routes the request to the local application.

 In order to perform its work, the API must call the Payments servcie. Again this request flow is transmitted through the sidecar proxy. The actual location of the Payments service is unknown to the API because it delegates that responsibility to its sidecar proxy. The API proxy connects to the Payments proxy with the request from the API service, which is then forwarded to the Payments service and the response to the request flows back through the chain of proxies to the API.

 [image: A request flow with sidecar proxy present.]
 Figure 2-2. A request flow with sidecar proxy present.

 Typically sidecar proxies run in isolated userspaces as the proxy often implements mTLS-based security for connections. The isolated userspace ensures that no applications can contact the application service directly and bypass any security that has been implemented by the proxy.

 Figure 7-3 shows a simplified version of the request sequence shown in figure 7.2. Even if the API and Payments service is running on the same machine, communication should only be allowed via the proxies.

 [image: Request flow from one service to another service with sidecar proxies on the same node.]
 Figure 2-3. Request flow from one service to another service with sidecar proxies on the same node.

 Reference Implementation

 Let’s see this in action. If you look in the folder sidecar-proxy in the examples repository, you will see a Meshery configuration file sidecar_http_test.yaml. This example application runs a simple two-tier application consisting of two services: API and Payments. The application is configured for the service mesh and is using sidecar proxies for its data plane.

 deployment:
 sidecar_proxy:
 protocol: http

 Let’s deploy the application, run the following command in your terminal.

 mesheryctl perf deploy --file ./sidecar_http_test.yaml

 Once the deployment has completed Meshery will output the following message with a local endpoint that can be used to contact the API service.

 ## Deploying application
 Application deployed, you can access the application using the URL:
 http://localhost:8200

 You can manually test the service by curling the URL http://localhost:8200.

 Run the following command in your terminal.

 curl http://localhost:19090/

 You will see in the response that the API service called the upstream service Payments, the traffic flow for this example application is exactly that shown in Figure 7-2.

 {
 "name": "API",
 "uri": "/",
 "type": "HTTP",
 "ip_addresses": [
 "10.42.0.20"
],
 "start_time": "2020-09-27T19:34:14.002749",
 "end_time": "2020-09-27T19:34:16.082502",
 "duration": "2.079753s",
 "body": "Hello World",
 "upstream_calls": [
 {
 "name": "PAYMENTS V1",
 "uri": "http://localhost:9091",
 "type": "HTTP",
 "ip_addresses": [
 "10.42.0.21"
],
 "start_time": "2020-09-27T19:34:16.031841",
 "end_time": "2020-09-27T19:34:16.081988",
 "duration": "50.147ms",
 "headers": {
 "Content-Length": "258",
 "Content-Type": "text/plain; charset=utf-8",
 "Date": "Sun, 27 Sep 2020 19:34:16 GMT"
 },
 "body": "Hello World",
 "code": 200
 }
],
 "code": 200
}

 Now you have run a manual test of the example application, let’s run some performance tests for this application. This spike test will load the application with 10 threads that represent concurrent user requests.

 performance_test:
 duration: 3m
 threads: 10
 success_conditions:
 - requests_per_second_p50[name="api"]:
 value: "> 180"
 - cpu_seconds_p50[name="api"]:
 value: "< 2"
 - cpu_seconds_p50[name="api_sidecar"]:
 value: "< 1"
 - memory_megabytes_max[name="payments"]:
 value: "< 100MB"
 - memory_megabytes_max[name="api_sidecar"]:
 value: "< 50MB"
 - memory_megabytes_min[name="payments"]:
 value: "< 100MB"
 - memory_megabytes_min[name="api_sidecar"]:
 value: "< 50MB"

 You can run this test using the following command:

 meshery perf run -file sidecar_proxy_test.yaml

 The test will take 3 minutes to complete, when it finishes you should see the results output in a tabular format that will look similar to the results below.

 ## Executing performance tests

Summary:
 Total: 180.0521 secs
 Slowest: 0.093 secs
 Fastest: 0.0518 secs
 Average: 0.0528 secs
 Requests/sec: 189.2397

 Results:
 requests_per_second_p50[name="api"] 189.00 PASS
 cpu_seconds_p50[name="api"] 1.71 PASS
 cpu_seconds_p50[name="api_sidecar"] 0.04 PASS
 memory_megabytes_max[name="api"] 76.40 PASS
 memory_megabytes_max[name="api_sidecar"] 30.30 PASS
 memory_megabytes_max[name="payments"] 69.10 PASS
 memory_megabytes_max[name="payments_sidecar"] 29.60 PASS
 memory_megabytes_min[name="api"] 23.30 PASS
 memory_megabytes_min[name="api_sidecar"] 26.40 PASS
 memory_megabytes_min[name="payments"] 23.90 PASS
 memory_megabytes_min[name="payments_sidecar"] 26.50 PASS

 The performance test measures the CPU and memory consumption for the application and the sidecar. From this simple test, you can see that there is an overhead when running a sidecar. However, if you look at the difference between the system under load you will see that this value is approximately 4MB over the memory at rest.

 You should not however use this data to determine the suitability of a sidecar proxy in your system. This example is not designed to measure the resource and performance impact but show the functionality of a sidecar proxy within a service mesh. You will learn more about the caveats and considerations for choosing this pattern related to performance and resource consumption later in this chapter.

 Discussion

 Let’s look at some related patterns.

 Related Patterns

 There are two related patterns for running a data plane in your service mesh: Node-based proxies and agentless proxies.

 Node-based proxies

 With node-based proxies, you run a single data plane on each node. The data plane is shared by all applications running on the node and handles all ingress and egress traffic for these applications in the same way as a sidecar proxy does.

 We cover Node Proxies in more detail in chapter 8.

 Agentless proxies

 In-process proxies are shared libraries that are baked into your application code in a similar way to the Netflix Hystrix library. At the time of writing, we do not believe that In-process proxies are going to make a big comeback as the problems discussed earlier regarding shared libraries still apply. That said, given specific environment and workload constraints in-process proxies have their place.

 The in-process proxies pattern is beneficial because it:

 	
 Enables xDS control planes to configure gRPC clients with service information such as endpoint address, health status, priority (based on proximity and capacity) and client-side traffic policies.

 	
 Well-suited for environments such as Google Cloud Run or serverless environments or where there is a specific need for low latency, limited feature proxies.

 We looked at the drawbacks with this pattern in our opening problem statement, they are:

 	
 Maintaining a common version of the library across multiple services

 	
 Differing implementation of libraries across polyglot environments

 	
 Incorrect implementation of the library by some application teams

 For more information on agentless proxies, we recommend you read chapter 9 where this pattern is discussed in more depth.

 Caveats and Considerations

 Even though the sidecar proxy is the most popular and the most capable of the available service mesh deployment models, it still comes with its share of shortcomings. Most notably, it increases resource consumption and can also have an impact on performance

 Resource Consumption

 One of the considerations regarding the use of the sidecar pattern is that it will increase the memory and the CPU consumption of your infrastructure. Overhead is incurred given a number of effects of running proxies:

 	
 Running a separate application for your proxy has a baseline memory footprint.

 	
 Observing L7 requests require requests to be buffered in memory (typically buffered in a rolling window)

 	
 The service mesh features that the proxy is performing have a computational overhead (the more functions you enable, the higher overhead you might expect).

 	
 Opening connections and proxying data (even transparently requires CPU and memory usage).

 Ultimately, only you can determine how much overhead is incurred by the sidecar proxy pattern and what it means for your application’s infrastructure. The factors you need to configure are things like the type of service mesh features (network functions) that you are employing, the efficiency of the proxy used, the amount of workload handled and the scale of your applications.

 Performance Considerations

 When measuring the impact that a sidecar proxy has on resources you must also consider the work it is doing which your application or other components in your system would traditionally perform, and also the benefits you are getting from the features a service mesh is providing.

 When making these determinations you should always:

 	
 Measure under normal operating and max operating load

 	
 Avoid synthetic tests when determining resources and performance

 	
 Ensure that you are comparing feature parity

 Measure under normal operating and max operating load

 When determining the resource consumption a proxy has on your system you should always measure the resources consumed by the proxy under normal load and maximum operating load. Measuring at maximum load helps you with your capacity planning, and measuring at normal operating conditions gives you the true impact of the proxies’ impact on your system.

 You should not assume that resource consumption at rest will scale linearly. For example, a proxy will always have a baseline memory consumption which will not change as the throughput increases. It is also not safe to assume that response time will scale linearly. There are a number of factors that affect throughput such as the number of connections in the proxies connection pool which may cause request queuing. The safe approach is to test and measure and then use this data to make an informed decision.

 Avoid synthetic tests when determining resources and performance

 Synthetic tests may not give you a true picture of the impact the proxy will have on your system.

 For example, consider that you have a workload containing two services and their associated proxies. When comparing performance between a system that uses a sidecar proxy and one that does not, you may see an increase in resource consumption of 100% and an increase in request execution time by 100%. Although these are legitimate results and the percentile change looks high, this may be due to the synthetic workload not demonstrating production-like conditions.

 Looking at these results you may decide to rule out the use of the proxy as the impact is too great. However, if the resource consumption is not reflective of the production workload and in fact resource consumption and performance are 10x of the synthetic workload then you would have an increase of 10%. Where possible you should always measure impact based on your production workload, if this is not possible, ensure that your synthetic workload exhibits the behavior of your production workload.

 Ensure that you are comparing feature parity

 When making decisions on the suitability of the pattern you should not purely measure resources and performance. If you are adding features to your system then regardless of where this feature resides in the application code or the proxy there will be an impact.

 Conclusions and Further Reading

 The sidecar proxy gives a great balancer of security maintainability and performance, for these reasons it is the most popular pattern for providing data plane functionality in the service mesh. The proxy pattern is not however ideal in every situation and we recommend that you read chapters 8 and 9 to learn about the other possible patterns for the service mesh data plane.

 1 RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1 (ietf.org)

 Chapter 3. Retries

 A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 16th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at vwilson@oreilly.com.

 Retries are a foundational, distributed systems pattern; they help your systems deal with problems like unreliable connectivity, dynamically changing endpoints and software bugs. Engineers that design distributed applications are encouraged to design for failure and anticipate that such failures are inevitable; because of this, Retries can be considered one of the patterns that make up the first line of defense when incorporating resilience into a distributed application.

 Let’s look at the problem statement in greater detail.

 Problem

 Services communicating across a network can be subject to a transient failure caused by several factors:

 Network instability causing disruptions or disconnection.

 Latency in the network, causing the upstream service to fail to respond in a timely fashion.

 High load or rate-limiting in the upstream service causes it to be slow to respond or accept the request.

 Endpoint no longer exists caused by the data plane’s endpoint catalog out of sync with deployed application instances.

 Upstream service is suffering temporary failure, either an internal bug or an upstream dependency failing.

 These possible causes for an upstream service being unreachable or unresponsive present their own challenges to overcome. Because these failures are not mutually exclusive, a single application can be affected by different failures simultaneously.

 Let’s look at a scenario, Jerry works for a social media company, and his team owns the profile service for the application. The profile service allows the user to update the name, biography, interests and upload a photograph or avatar for their profile. The system writes the profile data to the database; however, to upload images, the profile service calls the upstream image service responsible for uploading and resizing images.

 The profile and image services are deployed with multiple instances in a resilient way running on the service mesh. Still, Jerry occasionally sees errors in his metrics, reporting that his service fails when a user uploads an image.

 Digging deeper, Jerry sees that his errors are due to the upstream image service disconnecting part way through the image upload service. When chatting with the image service team, their metrics are not reporting any errors when Jerry sees the errors in his application. However, they see something that is probably the root cause; when Jerry sees errors, the application was deploying a new version.

 Why did the application redeploy cause errors?

 When the image team redeployed their application, the scheduler adds the new version of the application before removing the old version. However, if the application terminates before waiting for existing work to complete, all requests in progress result in an error. The upstream image service behaved in precisely this way. It responded immediately to the kill signal and exited before completing its work and returning the response. Since Jerry`s service never received the response message it was expecting, his application then returned an error message.

 Jerry’s issue, however, was twofold; in addition to the premature stop of all in-progress requests, the list of endpoints that the profile service used to call the upstream image service was only eventually consistent. The failure caused a situation where the profile service attempted to contact an endpoint that no longer existed.

 How could this situation have been avoided in the first place?

 Solving the first of Jerry’s problems could be solved by ensuring that the image service gracefully responded to termination signals. Good practice upon receiving a termination signal is to stop accepting any new requests and exiting on completion of all the current requests handled by the service. Jerry could also have worked around these problems by retrying the request.

 The second problem is when there are changes to the endpoints in a system; it takes time for this information to propagate across the service mesh. The standard approach to a failed connection should be to retry another endpoint in the catalog.

 Thankfully there is a pattern that can help with these problems, let’s take a look.

 Solution

 Each failure scenario can have a different solution; however, solving any of them can start with retrying the failed request. To ensure resilience, you configure distributed systems with multiple instances of an application; a simple solution to transient failure is to retry the request, sending the second request to a different upstream service.

 A retry is a configurable element of upstream communication in the service mesh; the proxy is responsible for establishing all upstream connections and can be configured to reattempt a request under certain conditions.

 Automatic retries are the most simple yet powerful and valuable mechanisms a service mesh has for gracefully handling partial or transient request failures; let’s see how you can implement this.

 Technical Implementation

 While examining the technical implementation, you must consider that a retry for an upstream service is not a single retry but layered retries for Layer 4 and Layer 7.

 The reason for this is that there are two predominant ways that a request can fail:

 	Upstream unreachable

 	
 It is impossible to establish a TCP connection to the upstream, or the connection is closed.

 	Upstream unhealthy

 	
 The upstream request fails due to a communicated error or request timeout.

 Layer 4 retries are concerned with a service’s ability to establish a connection to an upstream service. Figure 15.1 shows a layer 4 retry in action, the payment service attempting to establish a connection to the upstream currency service 10.2.1.5. This connection does not succeed as this particular instance of the currency service no longer exists.

 On connection failure, the Payment service proxy then retries another endpoint from the list. The selection of the next endpoint is generally dependent upon the load balancing algorithm the proxy is using. Still, in most cases, the most appropriate thing to do is not retry the connection against the same endpoint.

 [image: L4 connection retries]
 Figure 3-1. L4 connection retries

 Retrying a Layer 4 connection when establishing the connection fails is generally safe as no request has been sent to the upstream at this point. However, since the proxy is not aware of the connection’s context, it is not safe to retry when a connection is closed as the reason behind the closure is unknown. For example, the connection could be closed due to a network fault, but it may also have been closed deliberately by the upstream service.

 To further protect against transient failure, the proxy needs to understand the application protocol. For example, the HTTP protocol states that you return a response code as part of a response to a request. The specification classifies these response codes into different categories, and 500 codes denote that a request has failed. HTTP aware retries can recover from situations where individual requests fail or where a connection is closed before a response is received.

 The following diagram shows this operation; the initial request to the service instance at 10.2.1.5 returned an HTTP status 500. Since the data plane is aware of the HTTP protocol and has been configured to retry when receiving any 5xx status code, the upstream request is attempted again using the next endpoint in the load-balanced list.

 [image: L7 HTTP protocol aware retries]
 Figure 3-2. L7 HTTP protocol aware retries

 While retries are most powerful when they understand the application protocol (like HTTP), this is not required. It is common to configure your service mesh with layered retries; a service will commonly implement both connection and protocol-based retries, as shown in the diagram below.

 [image: L4 and L7 retries combined]
 Figure 3-3. L4 and L7 retries combined

 To see how this works in action, let’s deploy an example an run some tests.

 Reference Implementation

 Let’s look at an example of retries in-action, using the pattern outlined in Figure x.2. You can use Meshery to deploy an example application that consists of a Payment service that calls upstream Currency services. There are two instances of the Currency service; the first currency is configured to operate correctly; however, the second returns an error for half of all requests. Given round-robin load balancing of requests to the Currency service from the Payment service, you would expect to see approximately 25% of all requests fail without a retry. The service mesh retries the upstream Currency service up to 3 times before reporting a failure to handle the upstream failure.

deployment:
 retry:
 upstream_services: 2
 upstream_retries: 3
 upstream_error_rate:
 - 0 # version 1 0% error rate
 - 50 # version 2 50% error rate

 You can apply this configuration and launch the application using the following command:

 mesheryctl perf deploy --file ./retry _test.yaml

 Let’s now test that the system is exhibiting the correct behavior by using the following Meshery performance test.

 performance_test:
 duration: 200s
 rps: 100
 threads: 10
 success_conditions:
 - request_count[status_code=200, name=”payments"]:
 value: 100%
 - request_count[status_code!=200, name=”payments"]:
 value: 0%
 - request_count[status_code=200, name=”currency_v1"]:
 value: 100%
 - request_count[status_code=500, name=”currency_v1"]:
 value: 0%
 - request_count[status_code=200, name=”currency_v2"]:
 value: 50%
 tolerance: 0.1%
 - request_count[status_code=500, name=”currency_v2"]:
 value: 50%
 tolerance: 0.1%

 You can start the test using the following command:

 mesheryctl perf run -file retry_test.yaml

 Once the test completes, you will see that the number of errors returned from payments_v2 currency service configured to return an error for 50% of all requests is approximately 25% of all traffic. However, The number of errors passed to the caller of the API service is 0. The reason for this is that internally the service mesh has been retrying this request; you can see the effect of this as currency_v1 is actually serving approximately 75% of all requests.

 ## Executing performance tests
Summary:
 Total: 180.0521 secs
 Slowest: 0.093 secs
 Fastest: 0.0518 secs
 Average: 0.0528 secs
 Requests/sec: 189.2397
 Results:
 request_count[status_code=200, name="payments"] 34020 PASS
 request_count[status_code!=200, name=”payments"] 0 PASS
 request_count[status_code=200, name="currency_v1"] 25559 PASS
 request_count[status_code=500, name="currency_v1"] 0 PASS
 request_count[status_code=200, name="currency_v2"] 8423 PASS
 request_count[status_code=500, name="currency_v2"] 8677 PASS

 Now you have seen the pattern in action, let’s look at some related patterns that complement a retry.

 Discussion

 Retries are rarely used on their own; patterns like circuit breaking ensure you do not repeatedly retry a failing endpoint, and timeouts ensure you fail fast. Let’s look at these patterns in more depth.

 Related Patterns

 Circuit Breaking

 To avoid a retry always selecting a continuously failing endpoint, you can use the circuit breaking pattern alongside the retry. Circuit breaking removes the erroneous endpoint from the load balancers selection criteria after several failures in a given duration. For more information on circuit breaking pattern, please see Chapter 16 where we discuss this in depth.

 Timeouts

 If a service does not return a response promptly due to a queued request or slow-running application, the calling client will wait for a set duration before canceling the request. If this duration is too long, it can cause pressure on the system as requests back up while waiting to complete. In the worst case, the service making the upstream calls stops responding and eventually fails. This failure then spreads through the system, and you end up in a state of catastrophic or total system failure.

 The timeout pattern protects against catastrophic failure ensuring failure is limited to the upstream service and does not propagate downstream. You define the maximum duration to receive a response for an upstream call. If request time exceeds the specified maximum, an error is immediately returned. Timeouts and retries are often used together; the timeout sets the expected duration a response will take; the retry can re-attempt the request with another endpoint. When using retries and timeouts in this way, it is common to define two timeouts, the duration for an individual request and the total time for all retries. To learn more about Timeouts, please see Chapter 15.

 Rate-limiting

 Rate-limiting protects a service from becoming overloaded by limiting the number of concurrent requests it received. When the rate is exceeded, an immediate error is returned to the downstream, which can retry another endpoint.

 Now you have learned about the related patterns, let’s look at some caveats and considerations related to the use of Retries.

 Caveats and Considerations

 Many consider a retry to be a basic pattern, but like many things, there is a hidden depth to be found when you scratch the surface. If not used correctly, a retry can do more harm than it solves; you can find duplicating payments or sending repeated messages, or even flooding the system with retries that cause total failure. Let’s look at some of these in more depth.

 Retries masking underlying problems

 While retries mask grey failures such as intermittent network from consumers of an API or application, they also mask broader system problems. You should not use Retries to avoid fixing bugs and other system problems; a retry buys you time until you fix the underlying bug or system problem.

 Idempotency

 One of the most important things you should think about when deciding to implement retries is, Is it safe to retry an operation? Requests that retrieve data are normally classified as idempotent; that is, they do not change from call to call and are generally safe to retry. However, requests that action payments or send messages are usually not idempotent. Making multiple requests to an endpoint of this type can have unforeseen consequences such as duplicate payments or messages.

 Where possible, you should strive to make your endpoints idempotent as this easily facilitates retries. Still, in all cases, before you define a retry, you should ensure the idempotency of the call. It is not uncommon to define different retry behavior depending on the upstream action. For example, if you call an upstream service that allows you to query the payment state and create a new payment. It is generally safe to retry the payment query but not the payment creation.

 Designing for failure

 A typical failure case is when a service is overloaded and unable to process a request. If the request simply times out due to the upstream not sending a timely response, the retry pattern will select another endpoint and resend the request. There are two problems with this approach; the first is that the downstream service must wait until the timeout elapses before retrying another endpoint. The second is that while the response may be delayed, the upstream service may have already processed the request, which is a waste of resources.

 A better approach in this situation is to make your service aware of its ability to respond to load. For example, a service might only handle a certain number of concurrent requests; rather than allowing requests to queue, it is sometimes better to fail immediately. When fast failure is combined with a retry, the end-user almost always receives a response quicker than slow failure due to a timeout.

 Retry budgets

 One of the side effects of statically configured retries is that in the instance of widespread failure, they can cause a retry storm where the number of retries in a system creates so much traffic they become the cause of the failure.

 To avoid problems caused by retry storms, retries can be configured using retry budgets. Rather than specifying a fixed maximum number of retry attempts per request, you define retries as a percentage of total requests in a given period. For example, you may specify that you want retries to add at most 20% more requests, and once this limit has been reached, the request should immediately fail. Configuring retries is always a trade-off between improving the success rate and not adding too much extra load to the system. Retry budgets make that trade-off explicit by letting you specify exactly how much extra load your system is willing to accept from retries.

 Calculating retry counts

 Allowing too many retries can significantly increase the requests and load on a system, and this can also seriously increase the latency of requests that need to be retried. Incorrectly configured retries can be the cause of system failure rather than cure. As a general rule, the retry count should always be as low as possible. To calculate retry counts, you need to consider the number of deployed instances of a service and the error rate for the condition you are trying to protect.

 For example, given you have five instances, and the error rate is 2% equally distributed across both services, a single retry would probably be satisfactory as this would give a combined probability of 0.02 * 0.02 = 0.0004 (.004%) for both instances failing. However, under load, the error rate may be much higher, say 50%; this would result in a 25% chance that may not be acceptable. A higher retry count may be desired to reduce the probability that an error will be returned to the downstream service.

 So, therefore, why not simply set the retry count to equal the number of service instances? As you saw in the results from the example implementation, a retry increases the traffic on the system. In the example, the 50% failure of one of the service instances increases total traffic by 25%. In certain circumstances, retries can adversely affect the system they are trying to protect. Under failure conditions, instead of 10% of requests failing, the increased load that incorrectly configured retries place on a system can cause complete failure.

 Unfortunately, there is no easy solution to configuring a retry. You need to understand the behavior of your system under different conditions, and the only way to determine this is through monitoring and load testing.

 Application code independently retrying upstream services

 One important caveat that should be understood when using retries is that it is challenging to stop application code from implementing its retry strategy independent of the service mesh. For example, if both the service mesh and the application code have independent retry strategies, this increases the retry count and inadvertently increases the system load.

 For this reason, you should only apply retries in a single location, and ideally, configuring this capability of the service mesh should be delegated to the service owner. Enabling the owner of the service mesh to control features like retries instead of central management reduces the need for a service owner to find a work-around for centrally configured components. It also allows them to take ownership of a problem and increases time for change by reducing the need for interaction by a third party.

 Conclusion and Further Reading

 Retries are an essential pattern to ensure resilience in your application, but you must understand a certain amount of complexity to use them correctly. You also must have good observability into your system; to correctly configure a retry, you need to understand the system’s behavior. By leveraging the service mesh for your application’s traffic, you benefit that the service mesh provides you with the necessary capability to observe the network traffic and, importantly, to configure retry behavior centrally and without needing to redeploy or recompile your application.

 In the next chapter, you will learn an essential companion to the Retry pattern, the Circuit Breaker. Since the invention of distributed systems, correctly layering patterns like Retries, Circuit Breaking, and Timeouts have been paramount to an application’s uptime. With the service mesh, this problem merely configuration, and you do not need to change a single line of code.

 Chapter 4. Circuit Breaking

 A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 17th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at vwilson@oreilly.com.

 Circuit breaking is a foundation pattern designed to remove endpoints that persistently return error messages from a load-balanced group. Circuit Breakers go hand in hand with the retry pattern; while a retry attempts to recover from an endpoint returning an error when the system knows an endpoint is failing, a circuit breaker ensures that it is no longer called.

 Problem

 Let’s take a look at a theoretical problem in action. Ishank works on the Checkout API team; a service that allows customers to pay for their baskets. To process the customer’s payments the Checkout API calls an upstream service Payments. Like all services in the application to handle fault tolerance, the Payments service is made up of multiple instances as shown in figure 17.1.

 There is, however, a problem with the Payment service; during high traffic, an individual endpoint can become overloaded, it accepts the connection but hangs while waiting to process the request. Eventually, a failing instance will recover but the time it takes is proportional to the number of requests it is trying to handle. The smaller the queue of requests to process the faster it recovers.

 The delay in the Payment service to respond, causes the Checkout API to delay its response to the customer and eventually the failure of the transaction. The implications of this simple failure are actually quite dramatic. Ishank can see from the data that only 50% of customers retry the transaction, 25% abandon the transaction before the Checkout returns and the other 25% never retry upon receiving an error message.

 [image: Checkout upstream services]
 Figure 4-1. Checkout upstream services

 The Payments service team is doing everything they can to help solve the problem but is also running into issues with the external banking provider. Requests to the Payments service are idempotent, meaning re-submitted requests are not a problem, to alleviate pressure, Ishank has implemented a retry when he receives a timeout from the Payments service. This retry attempts to send the payment request to another of the Payment service endpoints, which can process the request.

 Ishank’s solution helps to alleviate the problem and reduce the number of customers abandoning their transactions, however, the persistent failure of one or more Payments endpoints means the user still needs to wait for both the first request to fail and the second to succeed. In addition, the continual traffic sent to a failing endpoint increases the time it takes to return to full health. It is also not just Ishank’s Checkout API that is affected, when the system is under high load, the delay in processing the requests causes a backup of work in other parts of the application reducing the overall capacity to process requests.

 Within the service mesh, a service is a logical grouping of service instances that are able to satisfy a particular request. When making an upstream call the data plane selects one of these endpoints based on its load balancing algorithm and forwards the request. In almost all cases only healthy instances should form part of the load-balanced list, however, all of Ishank’s issues stem from the system’s inability to detect an unhealthy instance and to remove it from the load-balanced group.

 The health of the service instances is generally determined through passive health checking (Chapter 10). With passive health checks, an endpoint on the service instance is called periodically and the result of this call is used to determine the inclusion or exclusion from the services load-balancing group. There are however two problems with passive health checks:

 	
 Since passive health checks are periodic, there is often a delay between a service becoming unhealthy and being removed from the load-balanced list. It is not uncommon to see health check intervals of 15s with the requirement for multiple failures before a service is removed.

 	
 Health check endpoints do not always report problems or latency in the service. For example, given a health check is configured to use the endpoint “/health”, if the service is experiencing latency due to waiting on a database table lock, and the health check is not codified to report this, then “/health” may not accurately report the health of the service. More often than not “/health” endpoints are configured to report that the service is simply running. Unless IO such as Memory, CPU, or Network are overloaded simple health endpoints do not report a service’s inability to handle the traffic.

 The resulting delay in health reporting or incorrect health reporting is that the data plane’s load balancer sends requests to the unhealthy endpoint. There are three issues with this situation:

 	
 If the request has no retry configuration, the service returns an error to the client.

 	
 When a retry is configured, the end-user will be subject to a delay while the retry is in action.

 	
 If the upstream service is not responding due to load, continually calling the endpoint may not give it time to recover naturally.

 In Ishank’s case, the Retry that he applied to requests to the Payment service went some of the ways to helping reduce abandoned transactions however it did not completely solve his problem. In addition, his Retries are actually increasing the load on the system that causes increased recovery time on the failing service instances.

 A pattern that compliments the retry and timeouts and solves Ishank’s problems is the circuit breaker. Let’s see how it works.

 Solution

 The circuit breaker is application protocol-aware, it actively detects issues with an instance by examining the responses from the requests sent to it. In the instance that the circuit breaker detects an instance is failing, it temporarily removes it from the load balancer’s list of endpoints.

 In its simplest form, a Circuit Breaker is configured with three parameters, the number of errors before an endpoint is removed and the duration it will be removed, and the criteria for failure, this can be the HTTP status code, gRPC status code, or the time taken to establish a connection or return a response.

 In our hypothetical example, Ishank determines the parameters he will use to configure the circuit breaker by looking at his application metrics; he knows that consecutive failures of a single endpoint are almost always due to the service being overloaded, and that given time, the service will recover on its own.

 However, he also understands that it is possible for sporadic errors to occur; this can be due to a flakey network or problems with the payment gateway. This type of error does not warrant the removal of an individual endpoint as there is no issue with the service as the problem is network-related. Using this information, Ishank decides that an endpoint should be removed after three consecutive failures. Typically it can take 60 seconds before a failing Payment endpoint returns to normal service. For this reason, he configures the Circuit Breaker to remove a Payments endpoint from the load-balanced list for 60 seconds.

 This simple implementation protects the majority of Ishank’s users from unnecessary wait and protects the failing upstream from the additional load.

 Technical Implementation

 The service mesh data plane is responsible for circuit breaking, and the state is localized to each proxy. Detection and exclusion of an erroneous endpoint by one service proxy will not propagate this to the other proxies in the mesh.

 The circuit breaker works by sitting in the request path as shown in figure 17.2, and it is always in any one of these three states:

 	
 Closed, the upstream endpoint is operating normally.

 	
 Open, errors to the upstream endpoint have exceeded the threshold.

 	
 Half Open, the circuit has been open for a set amount of time, and requests are sent to the upstream. A single failure will again fully open the circuit.

 [image: Circuit breaker flow diagram]
 Figure 4-2. Circuit breaker flow diagram

 Under normal operating conditions, the circuit breaker remains Closed, and requests are sent to the upstream as usual.

 However, to protect against sending requests to an upstream when it is in an error state, you define an error threshold. The error threshold defines the maximum number of errors over a defined duration that is acceptable. When the threshold is exceeded, the circuit breaker Opens, and instead of calling the upstream, an error is returned immediately.

 Once in the Open state, the circuit breaker assumes that the upstream failure is temporary and enters a recovery period. In contrast, in this state, any request to the upstream will immediately fail.

 Once the recovery period elapses, then the circuit breaker enters a Half-Open state. When Half-Open requests are again allowed to be sent to the upstream, unlike the Closed state, when Half-Open no error threshold operates, a single error will fully open the circuit.

 A more detailed view of this example can be seen in the flow diagram shown in Figure 17.3.

 [image: Circuit breaker flow diagram]
 Figure 4-3. Circuit breaker flow diagram

 Let’s see this in action by running an example application.

 Reference Implementation

 You can use Meshery to deploy a two-tier application consisting of a downstream service Currency with a single endpoint and an upstream service Payments with two endpoints, payments_v1 never returns an error, however, payments_v2 is configured to fail 100% of the time.

 Load balancing between the active upstream endpoints is set to round-robin. If both endpoints are error-free, each upstream will receive 50% of the traffic. However, due to the configured error rates for the second endpoint and the configured circuit breaker, you will see only a handful of requests go to the second endpoint as the circuit breaker removes it from the load-balanced list.

 deployment:
 circuit-breaking:
 upstream_services: 2
 upstream_error_rate:
 - 0% # version 1 0% error rate
 - 100% # version 2 100% error rate
 error_threshold: 2
 ejection_duration: 60s

 This example uses the sample code from the source repository for this book in the circuit-breaking folder; inside this folder, you will find the file breaking_deployment.yaml. Let`s deploy the application using mesheryctl.

 mesheryctl perf deploy --file ./breaking_deployment.yaml

Deploying application
 Application deployed, you can access the application using the URL:
 http://localhost:8200

 Now that the application has been deployed, you can run the performance tests. The test will run for 200 seconds at ten requests per second; this test aims not to stress the system but to test the action of the circuit breaker.

 performance_test:
 duration: 200s
 rps: 10
 threads: 10
 success_conditions:
 - request_count["name=checkout"]:
 value: 2000
 tolerance: 0.01%
 - request_count["name=payments_v1, status=200"]:
 value: 1992
 tolerance: 0.01%
 - request_count["name=payments_v1, status!=200"]:
 value: 0
 tolerance: 0.01%
 - request_count["name=payments_v2, status=200"]:
 value: 0
 - request_count["name=payments_v2 status!=200"]:
 value: 8
 tolerance: 0.01%

 Run this test using the following command:

 mesheryctl perf run -file breaker_test.yaml

 Once the test completes, you will see the summary report. The tests defined in the performance test document will all have passed, and you will see that the instance of the Payment upstream, configured to return an error 100% of the time, received very few requests as the circuit breaker did its job.

 ## Executing performance tests

Summary:
 Total: 200.01 secs
 Slowest: 0.032 secs
 Fastest: 0.016 secs
 Average: 0.020 secs
 Requests/sec: 10.01

 Total data: 2534390 bytes
 Size/request: 844 bytes

 Results:
 request_count["name=checkout"] 2002 PASS
 request_count["name=payments_v1, status=200"] 1994 PASS
 request_count["name=payments_v1, status!=200"] 0 PASS
 request_count["name=payments_v2, status=200"] 0 PASS
 request_count["name=payments_v2 status!=200"] 8 PASS

 If there wasn’t a circuit breaker between the Checkout and the Payment services, this example would have returned very different results. You would have seen a more even split between the two endpoints with approximately 1000 errors returned from the second instance. The circuit breaker has protected the system from making wasteful calls to a malfunctioning upstream.

 Let’s take a look at some of the related patterns that work well with the Circuit Breaker.

 Discussion

 Like most of the patterns in this book, there are complementary patterns and caveats with their use. Let’s take a look at some of the related patterns.

 Related Patterns

 Passive Health Checks

 The passive health check pattern is where a service endpoint is polled to check its readiness and liveliness to accept requests. This check is normally performed against a special endpoint that performs no function other than reporting the health of the service. The Service Mesh control plane uses this data for its service catalog. In the instance of health check failure, the control plane removes the failing endpoint from the service catalog and updates all the proxies in the mesh, which are subscribed to this information.

 For more in-depth information on passive health checks, please see chapter 10, active and passive health checks.

 Retries

 While not essential, we recommended pairing a Circuit Breaker with the retry pattern; in the instance of an endpoint having an open circuit breaker, instead of an error being returned to the downstream client, the retry will attempt to send the request to another upstream.

 Please see chapter 16 to learn more about how to configure retries.

 Timeouts

 Sometimes failure is not immediate; in the instance that an upstream service is overloaded, it may start to queue requests, which take a long time to return. This failure or slowness to return will reduce the effectiveness of a Circuit Breaker as it will take longer to open or, in the worst case, not open at all. A timeout is used to protect against long waits when a service is failing to respond to a request; when a request takes longer than a predetermined duration, it is assumed to have failed and automatically canceled.

 While the timeout pattern may seem straightforward, like all patterns there are advanced features and nuances in their use. Check out chapter 15, to learn more about timeouts.

 Caveats and Considerations

 So far we have looked at the Circuit breaker in its simplest form, there are however a number of caveats and considerations that you need to take into account in order to successfully use this pattern.

 Circuit breaking with Backoff

 Rather than using static recovery thresholds, a sliding threshold or backoff can be used; sliding thresholds increase in duration every time the circuit breaker moves from a half-open to an open state. The reason for using a sliding scale as opposed to a static scale is that initially, the thresholds can be way lower, reducing the time an endpoint is out of circulation in the instance it recovers. At the opposite end of this spectrum, when the service fails, the threshold increases, reducing the number of checks.

 Health Checks

 Health checks are important to the circuit breaker pattern for two reasons:

 	
 When configuring thresholds for Circuit Breakers, you should do so with the settings for the Health Checks in mind. Thresholds for the circuit breaker, which are greater than the setting of the Health check, will be ineffectual as in the instance of failure, the health check will kick in before it.

 	
 Health check endpoints often do not report errors such as database locks or upstream errors, which can cause a service to perform badly or error. Often a health check is only reporting the service is running, not that it is able to handle a request.

 You can regard a circuit breaker as an active health check, a correctly configured circuit breaker will notify you of the health of an upstream faster than a passive health check.

 Route independent circuit breaking.

 We mentioned earlier in this chapter that failure is not always due to exhausted resources and could be due to a write lock on a database table. Many services contain multiple endpoints, for example, you can have an endpoint to read data and an endpoint to write data. If a failure in a service instance is localized to the writing of data then the circuit breaker should only isolate the endpoint responsible for writing data. It should not completely remove the service instance and thus reducing the read capacity of the system.

 Conclusion and Further Reading

 In this chapter, you have learned the benefits and issues with the circuit breaking pattern, circuit breaking is one of the most common patterns that will be a core part of your toolbox when designing system reliability. To get the most out of the circuit breaking pattern we recommend you familiarize yourself with its related patterns, why not check out the further reading below.

 	
 Retry pattern - Chapter 19

 	
 Passive health checks - Chapter 10

 	
 Timeouts - Chapter 15

Chapter 5. Canary Deployments

A note for Early Release readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 18th chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at vwilson@oreilly.com.

Managing change and managing risk in environments with dynamic infrastructure and continuously evolving workloads is a challenge that we’re sure you all face. Employing the pattern of canary deployments helps you reduce this implicit, system-wide risk. The canary deployment pattern allows you to release new versions of your services into production based on either a percentage of requests or to a subset of users while providing the ability to rollback to the original state if there is undesirable behavior or errors.

Canary deployments or canary releases are not a pattern that originated with the introduction of the service mesh. The canary deployments pattern was written about in Martin Fowler’s blog back in 20141

. Given capabilities, such as dynamic load balancing, configurable routing, and observability, a service mesh can facilitate canary deployments far easier than traditional infrastructure.

Problem

Let’s investigate the problem that canary deployments solve, any change to a system introduces risk; this risk manifests itself in several areas:

		
	Changes to application code (code deployments)

	

		
	Changes to infrastructure (change from 16GB to 32GB memory in a VM)

	

		
	Changes to infrastructure software (upgrade Kubernetes from v1.15 to v1.16)

	

While you should always write software-defined tests for all of these areas of change, it is not always possible to stimulate your production system’s exact conditions. Doing so can be cost-prohibitive and bears the burden of having another environment to sustain a production system. Often tests are executed on systems that differ significantly in terms of:

		
	Scale (number of physical machines, number of services)

	

		
	Load (number of requests, the variance of type of request)

	

		
	Random events (test systems generally control inputs based on known conditions)

	

Let’s look at a simple example involving changes to application code. Mary has just completed the latest updates to her API; the unit and integration tests pass. When she deploys it to production, immediately there are reports of elevated errors in the system - failed functional “tests” that she couldn’t otherwise replicate in an environment other than production. This error cascaded through the system and resulted in a total system outage.

After much debugging and testing, she determines that a downstream system sends a malformed input to her service, causing errors. The team which owns the downstream service accidentally introduced a bug into the system in a previous release.

Why did automation testing not catch this issue?

In this case, it was due to an assumption of the inputs to the test. Errors caused by incorrect assumptions related to input conditions are not a common problem. All tests generally validate what you know about the system; they are vulnerable to what you do not know. In Mary’s case, she did not know that her application was not defensively handling a downstream bug. The result of this was a total system outage. The remedy of the bug was simple and involved a two-line fix to the request validation. Unfortunately, while simple to fix, this type of bug caused the business to lose substantial revenue. The question you should be asking is:

How could this situation have been avoided in the first place?

If Mary had gradually introduced the new version of her service into production, she would have been able to detect the bug without causing a full system outage. The bug would still have existed, but there would have been a dramatic reduction in end-users exposure to the bug.

Solution

Gradual and measured introduction of a new version of an application is commonly called a Canary deployment. With a canary deployment, you deploy a new version of your application to the production environment; however, it initially receives no user requests. The previous version continues to handle 100% of the requests.

Traffic is gradually distributed to the new version of the service while monitoring it for errors or anomalies. Incremental increases to the new service’s traffic continue until the new service handles 100% of all traffic, and you remove the previous service version. If you detect unsatisfactory levels of errors at any point, traffic is reverted to the old version. Because the service meshes routing later handles traffic direction, it is incredibly quick to change the traffic flow. Also, there is a dramatic reduction to risk as you hopefully catch any errors before exposure to the problem affects all users.

[image: Traffic distribution]
Figure 5-1. Traffic distribution

There is a further subdivision of this pattern that restricts traffic to a subset of the users. You can expose users to the canary using HTTP cookie, HTTP header, JWT Claim, or gRPC metadata. Regardless if you choose to use a controlled group or all your users, the process of canary deployments remains the same.

Canary Deployment Steps

Fundamentally a canary Deployment falls into the following five steps:

		
	Deploy

	

		
	Modify Traffic Split

	

		
	Observe

	

		
	Promote

	

		
	Rollback

	

[image: Canary Deployment Steps]
Figure 5-2. Canary Deployment Steps

Deploy

Before deploying the new version of your service, you must determine a measure of success. This criteria typically relates to several observable outputs of the system, not just the number of errors. For example, you may decide the following requirements:

		
	The system must not have an increased level of errors.

	

		
	The performance of the system must be within +/- 10%

	

		
	The system must process requests according to its design.

	

When deploying a new version of the application (Canary) into the environment, it should not immediately start to receive traffic. This step allows for initial health checking or production testing before starting the roll out.

Increase Traffic Split

After deployment the next step is to modify the split of traffic between the production release and the canary. The percentage of traffic introduced should be enough to produce a meaningful measurement of performance while minimizing risk.

Because this step is iterative, you start with very few requests and slowly increase this over time until the canary’s traffic reaches 100%, at this point you move to the Promotion phase.

Observe

A service mesh will provide you with many useful metrics such as L7 status codes such as HTTP or gRPC status codes that can be used to determine if your canary is performing as required. However, application-level metrics should always supplement the built-in metrics.

For example, the metrics that flow through the Service Mesh will tell you that 5% of the time, the service returned an HTTP status 500 with a response time of 100ms. You can not determine if the service is effective in the task it is trying to perform. For example, Mike works in the payments team and is deploying a new version of the you have a canary for your payment service.

While observing the external status of the service Mike sees that all requests result in a HTTP status code 200 and the response time is within the tolerance of 100ms. And progresses to increase the traffic of the canary.

However; the application is not functioning correctly, the canary has been mis-configured and is using the development credentials for the payment gateway. While the application code is functioning and customer orders have been processed all payment requests have been sent to a sandbox instead of the production gateway. The result of this is that any order processed by the canary would have shipped correctly but the customer’s payment would not have been taken. If Mike had correlated the HTTP status codes from the service mesh along with the number of transactions from the payment gateway he would have spotted this misconfiguration and stopped the rollout.

The metrics you need to observe for your application differs from application to application, in many cases it will be OK to just observe error levels and application durations, but only knowledge of the internal service function will allow you to make that decision.

In addition to selecting the right metrics to measure, specific errors and performance criteria only manifest themselves at a particular load; for example, lock contention on a datastore is only significant when you have enough traffic attempting to obtain the lock. When evaluating the success of a canary, be cautious when increasing the traffic to it, and where possible, take many small steps instead of a few large steps.

Promote

Once the new version of your application is handling 100% of the traffic, you can safely remove the old version freeing capacity on your cluster.

Rollback

A canary deployment’s core feature is rolling back deployments to the previous state when the new application does not perform as desired. To roll back a canary, you change the percentage of traffic flowing to 0; however, you should not remove the existing application until you have diagnosed the root cause of why you rolled things back. A failed canary deployment provides much information regarding metrics and logs and the ability to debug or test in situ, which can help expedite the discovery of why it was not successful.

Why this pattern?

We believe that canary deployments are one of the go-to patterns in modern software release engineering. It is also an established distributed systems pattern which is particularly suited to Service Mesh as many of the required components, such as dynamic routing and observability, are core features of Service Meshes.

Technical implementation

When you deploy your application and register it with the Service Mesh, you tag the new instances with some form of metadata. The data plane handles all upstream calls and load balances to all available endpoints. The upstream load balancer inside the data plane has a weighting applied to the different endpoints based on the metadata to perform a canary deployment.

For example, given a total weight of 1 and you would like to direct 90% of traffic to version 1 and 10% to version 2, you would assign a weighting of .9 to your version 1 endpoints and .1 to your version 2. This assignment makes the selection of a version 1 endpoint 9x more likely than version 2. The load balancing algorithm does not consider the number of endpoints in each group, only the percentage of traffic distributed to each group.

Generally, each data plane implements an individual load balancing strategy. The control plane configures the weightings but plays no part in the selection criteria as distributed load balancing equates to approximately the same result should this have been decided centrally.

A distributed approach increases the service mesh’s performance as no expensive network hops, or central resources subject to contention are required. Reliability increases as the data plane can distribute traffic while experiencing a temporary interruption in service from the control plane.

Reference Implementation

Let’s see the pattern in action; you can use Meshery to deploy an example application to your service mesh. The following Meshery deployment configuration will add the example application for the canary pattern. The deployment creates three applications:

		
	API which is the ingress application which has an upstream application Payments

	

		
	Payments v1 configured to handle 50% of all traffic sent by API.

	

		
	Payments v2 configured to handle 50% of all traffic sent by API.

	

deployment:
 canary:
 upstreams:
 - name: payments_v1
 weight: 50%
 instances: 1
 - name: payments_v2
 weight: 50%
 instances: 1

The folder canary in the GitHub repository contains the Meshery application and performance test files. Run the following command to set up the demo application:

mesheryctl pattern apply -f ./canary_deployment.yaml

Deploying application
 Application deployed, you can access the application using the URL:
 http://localhost:8200

With the demo application deployed, you can now test the application. First, let’s run a manual test to automatically see the service mesh balancing the traffic between version 1 and version 2 of the payments application. Run the following command in your terminal:

curl http://localhost:8200

You should see output similar to the following:

➜ curl localhost:8200
{
 "name": "API",
 "uri": "/",
 "type": "HTTP",
 "ip_addresses": [
 "10.42.0.16"
],
 "start_time": "2020-09-13T10:35:44.202865",
 "end_time": "2020-09-13T10:35:44.245175",
 "duration": "42.3107ms",
 "body": "Hello World",
 "upstream_calls": [
 {
 "name": "PAYMENTS V1",
 "uri": "http://localhost:9091",
 "type": "HTTP",
 "ip_addresses": [
 "10.42.0.17"
],
 "start_time": "2020-09-13T10:35:44.233257",
 "end_time": "2020-09-13T10:35:44.243477",
 "duration": "10.2194ms",
 "headers": {
 "Content-Length": "259",
 "Content-Type": "text/plain; charset=utf-8",
 "Date": "Sun, 13 Sep 2020 10:35:43 GMT",
 "Server": "envoy",
 "X-Envoy-Upstream-Service-Time": "13"
 },
 "body": "Hello World",
 "code": 200
 }
],
 "code": 200
}

The demonstration application is outputting the call details, including timings and the response from the upstream service. Because the traffic split is set to 50/50, you will either see the name of the upstream service returned as PAYMENTS V1 or PAYMENTS V2

Executing this curl command multiple times will show you a 50/50 split between version 1 and version two. You can use Meshery’s performance management feature to characterize the performance of the deployed application. The file ./canary_test.yaml in the source repository contains the following test definition. We will run a relatively simple test that will run for 30 seconds, which will validate that the two canaries receive the correct traffic split.

performance_profile:
 duration: 30s
 qps: 100
 threads: 4
 success_conditions:
 - request_duration_p50: 100ms
 - request_duration_p50["name=payments_v1"]:
 value: < 100ms
 - request_duration_p50["name=payments_v2"]:
 value: < 100ms
 - request_count["name=payments_v1"]:
 value: 50%
 tolerance: 0.1%
 - request_count["name=payments_v2"]:
 value: 50%
 tolerance: 0.1%

You can run this test using the following command:

mesheryctl patter apply -f canary_test.yaml

Once the test completes, you will see the summary report. The tests defined in the performance test document will all have passed, and you will see the distribution between the two canaries of approximately 50%.

Executing performance tests
Summary:
 Total: 30.0313 secs
 Slowest: 0.0521 secs
 Fastest: 0.0140 secs
 Average: 0.0200 secs
 Requests/sec: 99.8959

 Total data: 2534390 bytes
 Size/request: 844 bytes
 Results:
 request_duration_p50 20ms PASS
 request_duration_p50[“name=payments_v1”] 22ms PASS
 request_duration_p50[“name=payments_v2”] 18ms PASS
 request_count[“name=payments_v1”] 1496 PASS
 request_count[“name=payments_v2”] 1504 PASS

Before continuing, why not experiment with some different splits for the traffic to see how this affects the results?

Discussion

So far, you have learned the basics of the Canary pattern; however, several patterns complement a canary deployment, and there are caveats and considerations you need to know to operate a canary deployment successfully. Let’s take a look at these.

Related Patterns

Related patterns to canary deployments are Retries, Circuit Breaking, Multi-Variant Testing, and Dark deployments. Let’s look at each of these.

Retries

When performing a canary deployment, a retry is required to protect the end user from errors introduced by the new version. If the upstream service call results in a detectable error, the data plane should retry the upstream call.

Circuit Breaking

To protect against problems with a retry, always select an erroneous version of an application circuit breaking. With circuit breaking, you remove the application’s faulty version from the load balancers selection criteria after several failures in a given duration. Given the correct configuration for the retry count and circuit breaker, you can always ensure that an endpoint from the working group is selected.

Multi Variant Testing

The canary deployment pattern is not Multi Variant Testing (MVT); however, the two patterns are similar. Canary deployments are about introducing a new version of an application into an environment. MVT is a statistically designed experiment intended to measure a change’s impact on a business’s performance. For example, with an MVT test, you may introduce 20 different versions of your website into production, each with a different color for the buy button. The success measure may be determined by the version that has the most buttons clicked and the increased sales resulting in the action.

Traffic Shadowing

With Traffic Shadowing, you send a request to two versions of a service in parallel; the intention is to observe the new service’s function without mutating state. Due to complexities with decoupling state in the local version and with upstream calls, this pattern is categorized advanced and is not widely adopted.

Caveats and Considerations

Now you understand the canary deployment pattern’s fundamentals, let’s look at some essential caveats and considerations.

Parallel Change2

When introducing a new version of an application into production, you are often required to:

		
	Change or modify the application’s behavior.

	

		
	Change the interface.

	

		
	Change a model in an external data store.

	

The ability to successfully employ canary deployments requires that these actions remain compatible with the service’s previous version. For example, should the new version of a service necessitate a change to the datastore, which changes a string value to an integer, it is unlikely that the data store will remain compatible with the current service version.

It’s important to consider all these factors when deciding whether it is possible to use a canary deployment pattern.

Sample Size

When observing the results from a new service deployed, you need to consider the sample size or the number of requests the new service has processed. For example, you deploy a new version of the service into production with a 100% success rate. What if that version had only received one request, and by chance that request was successful, all subsequent requests may have failed? In statistics, there is a confidence interval; that is, you state, given a repeat of the experiment, I am n% confident of the same outcome.

You can use a simple formula to determine the sample size to ensure that your canary behaves the way you expect. To calculate the sample size using Yamane’s formula:3

 n = N 1+Ne2

N the population

e is the margin of error

n is the sample size

The population is going to be the number of requests which make up your comparison group. For example, if in a 24hr period, the existing service has 10000 requests and an error rate of 10%, we determine that your canary will be successful if the error rate is <= 10%. Our sample needs to be based on a comparable population so you can use 10000 requests as the population.

For the margin of error, you can use a statistical norm of +-5%. Putting all of this together, you get the following equation and result.

 n = 10000 10001*0.0025 = 400

That means that you can be 95% confident that a repeat of the experiment would yield the same results given a sample of 400. Therefore, after 400 requests, you can be 95% sure that the canary’s error rate can be meaningfully compared to that of the original version.

If you are unsure of how to calculate an appropriate sample, the safest approach is to ensure your sample equals the population.

Like for Like Comparison

One of the dangers you should be aware of when determining if a canary is successful is comparing like for like. For example, version 1 of your service has an average performance of 100ms, and version 2 has an average performance of 20ms. This performance is a vast improvement, and you might convince yourself that version 2 is a complete success.

However, if you did your deployment at noon when the traffic to the application is predominately read based, and the service does the bulk of its work at midnight. Had you run the canary at midnight, the new service may have had a performance degradation of 300ms, which would have resulted in a rollback.

When determining the success criteria of a Canary, you should always be careful of the measurement period to ensure you select a period that represents the full spectrum of the application’s work.

Outliers

One of the main reasons that unit / functional and even manual testing does not fully protect you from errors when you deploy an application to production is that applications are always dependent on the environment. For this reason, you should consider the distribution group size when evaluating a canary. A single instance deployed to a noisy node could lead to a false negative as it is not the application that is at fault but the node to which it has been deployed. The larger the deployment set, the easier it is to identify outliers like this. If possible, you should attempt to deploy a canary that mimics the size of the original deployment.

Automated vs. Operator led Canary Deployment

Canary deployments are an iterative process; there is the action of configuring the traffic splitting and analyzing the results. In this pattern, we have predominantly addressed the technical operation of using Canary deployments; we have not yet discussed who should be managing this process.

Correctly implemented, your authors believe that there is little reduction in operational risk by taking a manual approach to a canary deployment. An operator’s actions regarding analyzing the metrics or changing the traffic split are no different from the logic codified into an automated system. Depending on the duration of a rollout, it may be less risky to let the automation control the operation. A canary deployments performance needs to be measured continually to make the necessary decisions to promote or rollback. A machine is less likely to drift off into a Reddit rabbit hole and neglect its duties.

Thankfully, there is not even a need to codify this process yourself. At the time of writing, the two most popular tools for automating deployments are the CNCF projects, Flagger and Argo. To successfully implement the Canary pattern, you need to have a fundamental understanding of how it works. Still, we recommend that you seek a tool that allows the pattern to be applied as an automated process when you are looking to employ it in production.

Conclusion and Further Reading

In this chapter, you have learned how the service mesh provides you with the capability to deploy application code with minimized risk. The correct implementation of a canary deployment relies on a proper roll out duration to ensure the test’s accuracy, and you have learned how to calculate these durations. You have learned that you need to layer patterns. The canary is often used with a Retry to protect the end-user when the canary returns errors and many more nuances of the patterns that will help you use it successfully.

To learn more about Canary deployments we recommend reading the following articles which have been cited in this chapter.

1 Sato, D., 2021. bliki: CanaryRelease. [online] martinfowler.com. Available at: <https://martinfowler.com/bliki/CanaryRelease.html> [Accessed 2 February 2021].
2 Medium. 2021. Expand Contract Pattern and Continuous Delivery of Databases. [online] Available at: <https://medium.com/continuousdelivery/expand-contract-pattern-and-continuous-delivery-of-databases-4cfa00c23d2e> [Accessed 2 February 2021].
3 Israel, G., 2021. Determining Sample Size. [ebook] University of Florida. Available at: <https://www.tarleton.edu/academicassessment/documents/samplesize.pdf> [Accessed 2 February 2021].

OEBPS/Images/circuit_breaking_740731_03.png
Request Threshold Open
==Request==b Breaker Open? ==No=p Call Upstream =P Successful? e N O) exceeded? =Yes Circuit Breaker R
[| !
Yes Yes No
Il 1
I
I
Open period Request |
elapsed? e el Ui Successful? —e
I
I
I
I
I
I
I
I
Close Circuit |
4——Return response Breaker |
| I
| I
| I
| I
|

e

OEBPS/Images/circuit_breaking_740731_02.png
Payment
10.1.2.232

Checkout == Circuit Breaker

Payment
10.1.2.124

OEBPS/Images/circuit_breaking_740731_01.png
Checkout API

l

Payment Service

(—(_E—l

Instance Instance Instance Instance

(healthy) (failing) (healthy) (healthy)

OEBPS/Images/how_to_get_started_with_any_service_mesh_128401_05.png
Please choose a provider to continue

Select Your Provider v

Meshery

None

SMI Conformance

The University of Texas at Austin

Built with @@ by the Layer5 Community

OEBPS/Images/how_to_get_started_with_any_service_mesh_128401_03.png
Meshery Architecture

Clients

Clients Docker or Kubernetes

—

Moshory Ul

Platform

Service Mesh service

Meshery

= Ingress egress
Tep Servicef ————— senvice D

2QBOANGCO

Sovee A senkas L sk
Request Lood _ NN < e

Prometheus
HrTP
HrTP

Kube AP1

HrTP

OEBPS/Images/how_to_get_started_with_any_service_mesh_128401_04.png
Arc

Out-of-band
telemetry
propagation

Meshery
hitecture

generated load
http / gRPC traffic

application
traffic

ﬁ Control flow

)
c
: H operator @
qE) wrk2 fortio nighthawk N ¥

RPC
O X workloads patterns
=0 o

Control
Plane

' Service Foo ' 0 Service Bar :
= : ' [- P
2 : : ; " 2
[: : 1 1 (V]
E ! 1 ! 1 E
O 1 1 1 1 O
wv 1 1 1 1 (7))
w0 1 1 1 1 7,
(0] 1 1 1 1 b))
— 1 ' 1 1 s
B0 1 1 1 1 bo
c 1 1 1 1 wi
- 1 1 1 1
1 1 1 1
1 1 1 1
| . |
S OC) :. ______________________ _: P 4
© © —
An application namespace
Application I Meshery WASM .
e P rafiic Fiter Y @mesheryio

OEBPS/Images/sidecar_proxies_334450_02.png
API API Payments Payments

Proxy Proxy .
(10.1.0.12:9090) (localhost:9090) (10.1.0.200:80) (locathost:9091)
inbound request forward initial

from downstream request

call upstream forward request

payments to payments service
send response
4—forward response == — —
P (Hello World)

forward response send response to

to downstream initial request

OEBPS/Images/sidecar_proxies_334450_01.png
downstream

request Proxy Payments
(10.1.3.233:443) (localhost:9090)

upstream
request

OEBPS/Images/sidecar_proxies_334450_03.png
downstream
request

API
(localhost:9090)

Proxy
(10.1.0.12:9090)

upstream

not permitted
request |

Proxy
(10.1.0.12:8080)

Payments
(localhost:8080)

OEBPS/Images/how_to_get_started_with_any_service_mesh_128401_01.png
Service Mesh Planes

(monitoring, auiing,
inventory, metering)

)

(L7-focused-application communication, e.g
HTTP, gRPC.

Out-of-band Out-of-band

In-band

Management Plane
(govemance, financial management,
expanded policy and systems integration,
metering, federation, intelligent services,
multi-mesh)

Control Plane
(monitoring, policy configuration, network
topology / state, service discovery, identity

management)

Data Plane
(packet forwarding, routing, load balancing,
caching, policy enforcement)

OEBPS/Images/how_to_get_started_with_any_service_mesh_128401_02.png
Meshery Architecture

Docker or Kubernetes

|

Meshery

HTTP
Tcp.
oRPC

HrTP
HrTP

HrTP

Platform

Prometheus

Grafana

Kube AP

Service Mesh

Ingress

Servie £

Sovee A sekrs Lo sk
e <

Senvice SenviceD

2QBOANGCO

Gateway /
Egress

OEBPS/Images/retries_204308_03.png
Payment Currency Currency

ID: a-42-dg-avfd ID: 1-45-g2-17bd ID: 2-ab-23-sdsd
10.2.243 @ 10215 @ 10.1.23.231
| | |
| | |
receive request estabilish TCP |
from downstream connection |
|
4= =—connection failed= = |
|
| estabilish TCP
I connection
|

<—:—successfully connected =—
_— endrequest—b

|
| request failed
@__________r___ <tatue: 500
| estabilish TCP
connection
| | |

OEBPS/Images/cover.png
O'REILLY"

Service
Mesh Patterns

Expect More From Your Infrastructure

Early
Release

RAW &
UNEDITED

Lee Calcote &
Nic Jackson

OEBPS/Images/retries_204308_01.png
Payment service
ID: a-42-dg-avfd
127.0.0.1

call currency
service

send response
to payment

Payment proxy Currency proxy
ID: a-42-dg-avfd ID: 1-45-g2-17bd
10.2.243 € 10215
| |
| |

s ca | UpStream =)

request failed

status: 500
|
—I_
|

retry different
upstream

Currency proxy
ID: 2-ab-23-sdsd

@ 10.1.23.231

successful response
—_— -

status: 200

OEBPS/Images/retries_204308_02.png
Payment Currency Currency

ID: a-42-dg-avfd ID: 1-45-g2-17bd ID: 2-ab-23-sdsd
10.2.243 @ 10215 @ 10.1.23.231
| | |
| | |
receive request |
9 s ca| upstream ==———p |
from downstream
request failed :
status: 500 I
| retry different
I upstream
|

send response L successful response

to downstream I status: 200

OEBPS/Images/canary_deployments_635499_01.png
95% Version 1 ———‘

requests .
Metrics
|
API) — 4 Timeseries
| DB
| Metrics
5%]
requests)

Version 2 -——
—

OEBPS/Images/canary_deployments_635499_02.png
-
Errors
out of
r—Trafﬁc 100% tollerance
I

Deploy ————— Modify Traffic Split —'"“":a;::ri""—u Observe

Errors in
tollerance

