

			[image: 9781789805024cov.png]
		

	

			Serverless Architectures with AWS

		

		
			Discover how you can migrate from traditional deployments to serverless architectures with AWS

		

		
			Mohit Gupta

		

		
			Serverless Architectures with AWS

			Copyright © 2018 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Author: Mohit Gupta

			Reviewer: Amandeep Singh

			Managing Editor: Edwin Moses

			Acquisitions Editor: Aditya Date

			Production Editor: Nitesh Thakur

			Editorial Board: David Barnes, Ewan Buckingham, Simon Cox, Manasa Kumar, Alex Mazonowicz, Douglas Paterson, Dominic Pereira, Shiny Poojary, Saman Siddiqui, Erol Staveley, Ankita Thakur, and Mohita Vyas.

			First Published: December 2018

			Production Reference: 1211218

			Published by Packt Publishing Ltd.

			Livery Place, 35 Livery Street

			Birmingham B3 2PB, UK

			ISBN 978-1-78980-502-4

		

		
			Table of Contents

			Preface 	 i

			AWS, Lambda, and Serverless Applications 	 1

			Introduction 	 2

			The Serverless Model 	 2

			Benefits of the Serverless Model 	 5

			Introduction to AWS 	 6

			AWS Serverless Ecosystem 	 7

			AWS Lambda 	 8

			Supported Languages 	 9

			Exercise 1: Running Your First Lambda Function 	 10

			Activity 1: Creating a New Lambda Function that Finds the Square Root of the Average of Two Input Numbers 	 16

			Limits of AWS Lambda 	 17

			AWS Lambda Pricing Overview 	 18

			Lambda Free Tier 	 19

			Activity 2: Calculating the Total Lambda Cost 	 20

			Additional Costs 	 21

			Summary 	 21

			Working with the AWS Serverless Platform 	 23

			Introduction 	 24

			Amazon S3 	 24

			Key Characteristics of Amazon S3 	 25

			Deploying a Static Website 	 27

			Exercise 2: Setting up a Static Website with an S3 Bucket Using a Domain Name in Route 53 	 28

			Enabling Versioning on S3 Bucket 	 36

			S3 and Lambda Integration 	 37

			Exercise 3: Writing a Lambda Function to Read a Text File 	 37

			API Gateway 	 42

			What is API Gateway? 	 43

			API Gateway Concepts 	 43

			Exercise 4: Creating a REST API and Integrating It with Lambda 	 44

			Other Native Services 	 51

			Amazon SNS 	 51

			Amazon SQS 	 53

			DynamoDB 	 54

			DynamoDB Streams 	 56

			DynamoDB Streams Integration with Lambda 	 56

			Exercise 5: Creating an SNS topic and Subscribing to It 	 57

			Exercise 6: SNS Integration with S3 and Lambda 	 61

			Activity 3: Setting Up a Mechanism to Get an Email Alert When an Object Is Uploaded into an S3 Bucket 	 66

			Summary 	 67

			Building and Deploying a Media Application 	 69

			Introduction 	 70

			Designing a Media Web Application – from Traditional to Serverless 	 70

			Building a Simple Serverless Media Web Application 	 71

			Exercise 7: Building the Role to Use with an API 	 72

			Exercise 8: Creating an API to Push to / Get from an S3 Bucket 	 75

			Exercise 9: Building the Image Processing System 	 89

			Deployment Options in the Serverless Architecture 	 95

			Activity 4: Creating an API to Delete the S3 Bucket 	 96

			Summary 	 97

			Serverless Amazon Athena and the AWS Glue Data Catalog 	 99

			Introduction 	 100

			Amazon Athena 	 100

			Databases and Tables 	 102

			Exercise 10: Creating a New Database and Table Using Amazon Athena 	 103

			AWS Glue 	 112

			Exercise 11: Using AWS Glue to Build a Metadata Repository 	 114

			Activity 5: Building an AWS Glue Catalog for a CSV-Formatted Dataset and Analyzing the Data Using AWS Athena 	 120

			Summary 	 121

			Real-Time Data Insights Using Amazon Kinesis 	 123

			Introduction 	 124

			Amazon Kinesis 	 124

			Benefits of Amazon Kinesis 	 125

			Amazon Kinesis Data Streams 	 125

			How Kinesis Data Streams Work 	 126

			Exercise 12: Creating a Sample Kinesis Stream 	 127

			Amazon Kinesis Firehose 	 136

			Exercise 13: Creating a Sample Kinesis Data Firehose Delivery Stream 	 138

			Activity 6: Performing Data Transformations for Incoming Data 	 151

			Amazon Kinesis Data Analytics 	 153

			Exercise 14: Setting Up an Amazon Kinesis Analytics Application 	 155

			Activity 7: Adding Reference Data to the Application and Creating an Output, and Joining Real-Time Data with the Reference Data 	 173

			Summary 	 174

			Appendix 	 177

		

		
			To my children, Aarya and Naisha.

		

		
			
			

		

		
			
			

		

	

			>

		

		
			Preface

		

		
			About

			This section briefly introduces the author and reviewer, the coverage of this book, the technical skills you'll need to get started, and the hardware and software required to complete all of the included activities and exercises.

		

		
			About the Book

			Serverless Architectures with AWS begins with an introduction to the serverless model and helps you get started with AWS and AWS Lambda. You'll also get to grips with other capabilities of the AWS serverless platform and see how AWS supports enterprise-grade serverless applications with and without Lambda.

			This book will guide you through deploying your first serverless project and exploring the capabilities of Amazon Athena, an interactive query service that makes it easy to analyze data in Amazon Simple Storage Service (Amazon S3) using standard SQL. You'll also learn about AWS Glue, a fully managed extract, transfer, and load (ETL) service that makes categorizing data easy and cost-effective. You'll study how Amazon Kinesis makes it possible to unleash the potential of real-time data insights and analytics with capabilities such as Kinesis Data Streams, Kinesis Data Firehose, and Kinesis Data Analytics. Last but not least, you'll be equipped to combine Amazon Kinesis capabilities with AWS Lambda to create lightweight serverless architectures.

			By the end of the book, you will be ready to create and run your first serverless application that takes advantage of the high availability, security, performance, and scalability of AWS.

			About the Author and Reviewer

			Mohit Gupta is a solutions architect, focused on cloud technologies and Big Data analytics. He has more than 12 years of experience in IT and has worked on AWS and Azure technologies since 2012. He has helped customers design, build, migrate, and manage their workloads and applications on various cloud-based products, including AWS and Azure. He received his B.Tech in Computer Science from Kurukshetra University in 2005. Additionally, he holds many industry-leading IT certifications. You can reach him on LinkedIn at mogupta84 or follow his twitter handle @mogupta.

			Amandeep Singh works as a distinguished Engineer with Pitney Bowes India Pvt Ltd. He has extensive development experience of more than 13 years in product companies like Pitney Bowes and Dell R&D center. His current role involves designing cloud based distributed solutions at enterprise scale. He is a AWS certified Solutions Architect, and helps Pitney Bowes migrate large monolith platform to AWS Cloud in the form of simpler and smarter microservices. He is strong believer of new age DevOps principles and microservices patterns. He can be reached on LinkedIn at bhatiaamandeep.

			Objectives

			
					Explore AWS services for supporting a serverless environment

					Set up AWS services to make applications scalable and highly available

					Deploy a static website with a serverless architecture

					Build your first serverless web application

					Study the changes in a deployed serverless web application

					Apply best practices to ensure overall security, availability, and reliability

			

			Audience

			Serverless Architectures with AWS is for you if you want to develop serverless applications and have some prior coding experience. Though no prior experience of AWS is needed, basic knowledge of Java or Node.js will be an advantage.

			Approach

			Serverless Architectures with AWS takes a hands-on approach to learning how to design and deploy serverless architectures. It contains multiple activities that use real-life business scenarios for you to practice and apply your new skills in a highly relevant context.

			Hardware Requirements

			For an optimal student experience, we recommend the following hardware configuration:

			
					Processor: Intel Core i5 or equivalent

					Memory: 4 GB RAM

					Storage: 35 GB available space

			

			Software Requirements

			You'll also need the following software installed in advance:

			
					Operating system: Windows 7 or above

					AWS Free Tier account

					Network access on ports 22 and 80

			

			Conventions

			Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You can also copy this code from the s3_with_lambda.js file."

			A block of code is set as follows:

			var AWS = require('aws-sdk');

			var s3 = new AWS.S3();

			New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Click on Next and follow the instructions to create the bucket."

			Additional Resources

			The code bundle for this book is also hosted on GitHub at https://github.com/TrainingByPackt/Serverless-Architectures-with-AWS.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

		

	

			1

		

		
			AWS, Lambda, and Serverless Applications

		

		
			Learning Objectives

			By the end of this chapter, you will be able to:

			
					Explain the serverless model

					Describe the different AWS serverless services present in the AWS ecosystem

					Create and execute an AWS Lambda function

			

			This chapter teaches you the basics of serverless architectures, focusing on AWS.

		

		
			Introduction

			Imagine that a critical application in your company is having performance issues. This application is available to customers 24-7, and during business hours, the CPU and memory utilization reaches 100%. This is resulting in an increased response time for customers.

			Around 10 years ago, a good migration plan to solve this issue would involve the procurement and deployment of new hardware resources for both the application and its databases, the installation of all required software and application code, performing all functional and performance quality analysis work, and finally, migrating the application. The cost of this would run into millions. However, nowadays, this issue can be resolved with new technologies that offer different approaches to customers – going Serverless is definitely one of them.

			In this chapter, we'll start with an explanation of the serverless model, and get started with AWS and Lambda, the building blocks of a serverless applications on AWS. Finally, you'll learn how to create and run Lambda functions.

			The Serverless Model

			To understand the serverless model, let's first understand how we build traditional applications such as mobile applications and web applications. Figure 1.1 shows a traditional on-premises architecture, where you would take care of every layer of application development and the deployment process, starting with setting up hardware, software installation, setting up a database, networking, middleware configuration, and storage setup. Moreover, you would need a staff of engineers to set up and maintain this kind of on-premises setup, making it very time-consuming and costly. Moreover, the life cycle of these servers was no longer than 5-6 years, which meant that you would end up upgrading your infrastructure every few years.

			The work wouldn't end there, as you would have to perform regular server maintenance, including setting up server reboot cycles and running regular patch updates. And despite doing all the groundwork and making sure that the system ran fine, the system would actually fail and cause application downtime. The following diagram shows a traditional on-premises architecture:

			
				
					[image: Figure 1.1 : Diagram of traditional on-premises architecture]
				

			

			Figure 1.1 : Diagram of traditional on-premises architecture

			The serverless model changes this paradigm completely, as it abstracts all the complexity attached with provisioning and managing data centers, servers, and software. Let's understand it in more detail.

			The serverless model refers to applications in which server management and operational tasks are completely hidden from end users, such as developers. In the serverless model, developers are dedicated specifically to business code and the application itself, and they do not need to care about the servers where the application will be executed or run from, or about the performance of those servers, or any restrictions on them. The serverless model is scalable and is actually very flexible. With the serverless model, you focus on things that are more important to you, which is most probably solving business problems. The serverless model allows you to focus on your application architecture without you needing to think about servers.

			Sometimes, the term "serverless" can be confusing. Serverless does not mean that you don't need any servers at all, but that you are not doing the work of provisioning servers, managing software, and installing patches. The term "the serverless model" just means that it is someone else's servers. Serverless architectures, if implemented properly, can provide great advantages in terms of lowering costs and providing operational excellence, thus improving overall productivity. However, you have to be careful when dealing with the challenges imposed by serverless frameworks. You need to make sure that your application doesn't have issues with performance, resource bottlenecks, or security.

			Figure 1.2 shows the different services that are part of the serverless model. Here, we have different services for doing different kinds of work. We have the API Gateway service, a fully managed REST interface, which helps to create, publish, maintain, monitor, and secure APIs. Then, we have the AWS Lambda service that executes the application code and does all the computation work. Once computation is done, data gets stored in the DynamoDB database, which is again a fully managed service that provides a fast and scalable database management system. We also have the S3 storage service, where you can store all your data in raw formats that can be used later for data analytics. The following diagram talks about the serverless model:

			
				
					[image: Figure 1.2 – The serverless model (using AWS services)]
				

			

			Figure 1.2 : The serverless model (using AWS services)

			Serverless models have become quite popular in recent times, and many big organizations have moved their complete infrastructure to serverless architectures and have been running them successfully, getting better performance a much a lower cost. Many serverless frameworks have been designed, making it easier to build, test, and deploy serverless applications. However, our focus in this book will be on serverless solutions built on Amazon Web Services (AWS). Amazon Web Services is a subsidiary of Amazon.com that provides on-demand cloud service platforms.

			Benefits of the Serverless Model

			There are a number of benefits to using a serverless model:

			
					No server management: Provisioning and managing servers is a complex task and it can take anything from days to months to provision and test new servers before you can start using them. If not done properly, and with a specific timeline, it can become a potential obstacle for the release of your software onto the market. Serverless models provide great relief here by masking all the system engineering work from the project development team.

					High availability and fault tolerance: Serverless applications have built-in architecture that supports high availability (HA). So, you don't need to worry about the implementation of these capabilities. For example, AWS uses the concept of regions and availability zones to maintain the high availability of all AWS services. An availability zone is an isolated location inside a region and you can develop your application in such a way that, if one of the availability zones goes down, your application will continue to run from another availability zone.

					Scalability: We all want our applications to be successful, but we need to make sure that we are ready when there is an absolute need for scaling. Obviously, we don't want to spawn very big servers in the beginning (since this can escalate costs quickly), but we want to do it as and when the need occurs. With serverless models, you can scale your applications very easily. Serverless models run under the limits defined by you, so you can easily expand those limits in the future. You can adjust the computing power, the memory, or IO needs of your application with just a few clicks, and you can do that within minutes. This will help you to control costs as well.

					Developer productivity: In a serverless model, your serverless vendor takes all the pain of setting up hardware, networking, and installing and managing software. Developers need to focus only on implementing the business logic and don't need to worry about underlying system engineering work, resulting in higher developer productivity.

					No idle capacity: With serverless models, you don't need to provision computing and storage capacity in advance. And you can scale up and down based on your application requirements. For example, if you have an e-commerce site, then you might need higher capacity during festive seasons than other days. So, you can just scale up resources for that period only.Moreover, today's serverless models, such as AWS, work on the "pay as you go" model, meaning that you don't pay for any capacity that you don't use. This way, you don't pay anything when your servers are idle, which helps to control costs.

					Faster time to market: With serverless models, you can start building software applications in minutes, as the infrastructure is ready to be used at any time. You can scale up or down underlying hardware in a few clicks. This saves you time with system engineering work and helps to launch applications much more quickly. This is one of the key factors for companies adopting the serverless model.

					Deploy in minutes: Today's serverless models simplify deployment by doing all the heavy lifting work and eliminating the need for managing any underlying infrastructure. These services follow DevOps practices.

			

			Introduction to AWS

			AWS is a highly available, reliable, and scalable cloud service platform offered by Amazon that provides a broad set of infrastructure services. These services are delivered on an "on-demand" basis and are available in seconds. AWS was one of the first platforms to offer the "pay-as-you-go" pricing model, where there is no upfront expense. Rather, payment is made based on the usage of different AWS services. The AWS model provides users with compute, storage, and throughput as needed.

			The AWS platform was first conceptualized in 2002 and Simple Queue Service (SQS) was the first AWS service, which was launched in 2004. However, the AWS concept has been reformulated over the years, and the AWS platform was officially relaunched in 2006, combining the three initial service offerings of Amazon S3 (Simple Storage Service): cloud storage, SQS, and EC2 (Elastic Compute Cloud). Over the years, AWS has become a platform for virtually every use case. From databases to deployment tools, from directories to content delivery, from networking to compute services, there are currently more than 100 different services available with AWS. More advanced features, such as machine learning, encryption, and big data are being developed at a rapid pace. Over the years, the AWS platform of products and services has become very popular with top enterprise customers. As per current estimates, over 1 million customers trust AWS for their IT infrastructure needs.

			AWS Serverless Ecosystem

			We will take a quick tour of the AWS serverless ecosystem and briefly talk about the different services that are available. These services will be discussed in detail in future chapters.

			Figure 1.4 shows the AWS serverless ecosystem, which is comprised of eight different AWS services:

			
					Lambda: AWS Lambda is a compute service that runs code in response to different events, such as in-app activity, website clicks, or outputs from connected devices, and automatically manages the compute resources required by the code. Lambda is a core component of the serverless environment and integrates with different AWS services to do the work that's required.

					Simple Storage Service (S3): Amazon S3 is a storage service that you can use to store and retrieve any amount of information, at any time, from anywhere on the web. AWS S3 is a highly available and fault-tolerant storage service.

					Simple Queue Service (SQS): Amazon SQS is a distributed message queuing service that supports message communication between computers over the internet. SQS enables an application to submit a message to a queue, which another application can then pick up at a later time.

					Simple Notification Service (SNS): Amazon SNS is a notification service that coordinates the delivery of messages to subscribers. It works as a publish/subscribe (pub/sub) form of asynchronous communication.

					DynamoDB: Amazon DynamoDB is a NoSQL database service.

					Amazon Kinesis: Amazon Kinesis is a real-time, fully managed, and scalable service.

					Step Functions: AWS Step Functions make it easy to coordinate components of distributed applications. Suppose you want to start running one component of your application after another one has completed successfully, or you want to run two components in parallel. You can easily coordinate these workflows using Step Functions. This saves you the time and effort required to build such workflows yourself and helps you to focus on business logic more.

					Athena: Amazon Athena is an interactive serverless query service that makes it easy to use standard SQL to analyze data in Amazon S3. It allows you to quickly query structured, unstructured, and semi-structured data that's stored in S3. With Athena, you don't need to load any datasets locally or write any complex ETL (extract, transform, and load), as it provides the capability to read data directly from S3. We will learn more about AWS Athena in Chapter 4, Serverless Amazon Athena and the AWS Glue Data Catalog.Here's a diagram of the AWS serverless ecosystem:

			

			
				
					[image: Figure 1.3 – The AWS Serverless Ecosystem]
				

			

			Figure 1.3 : The AWS serverless ecosystem Ecosystem

			AWS Lambda

			AWS Lambda is a serverless computing platform that you can use to execute your code to build on-demand, smaller applications. It is a compute service that runs your backend code without you being involved in the provisioning or managing of any servers in the background.

			The Lambda service scales automatically based on your usage and it has inbuilt fault-tolerance and high availability, so you don't need to worry about the implementation of HA or DR (disaster recovery) with AWS Lambda. You are only responsible for managing your code, so you can focus on the business logic and get your work done.

			Once you upload your code to Lambda, the services handles all the capacity, scaling, patching, and infrastructure to run your code and provides performance visibility by publishing real-time metrics and logs to Amazon CloudWatch. You select the amount of memory allocation for your function (between 128 MB and 3 GB). Based on the amount of memory allocation, CPU and network resources are allocated to your function. You could also say that AWS Lambda is a function in code that allows stateless execution to be triggered by events. This also means that you cannot log in to actual compute instances or customize any underlying hardware.

			With Lambda, you only pay for the time that your code is running. Once execution is completed, the Lambda service goes into idle mode and you don't pay for any idle time. AWS Lambda follows a very fine-grained pricing model, where you are charged for compute time in 100 ms increments. It also comes with a Free Tier, with which you can use Lambda for free until you reach a certain cap on the number of requests. We will study AWS Lambda pricing in more detail in a later section.

			AWS Lambda is a great tool for triggering code in the cloud that functions based upon events. However, we need to remember that AWS Lambda (in itself) is stateless, meaning that your code should run as you develop it in a stateless manner. However, if required, a database such as DynamoDB can be used. Over the years, AWS Lambda has become very popular for multiple serverless use cases, such as web applications, data processing, IoT devices, voice-based applications, and infrastructure management.

			Supported Languages

			Lambda is stateless and serverless. You should develop your code so that it runs in a stateless manner. If you want to use other third-party services or libraries, AWS allows you to zip up those folders and libraries and give them to Lambda in a ZIP file, which in turn enables other supportive languages that you would like to use.

			AWS Lambda supports code written in the following six languages:

			
					Node.js (JavaScript)

					Python

					Java (Java 8 compatible)

					C# (.NET Core)

					Go

					PowerShellNote
AWS Lambda could change the list of supported languages at any time. Check the AWS website for the latest information.

			

			Exercise 1: Running Your First Lambda Function

			In this exercise, we'll create a Lambda function, specify the memory and timeout settings, and execute the function. We will create a basic Lambda function to generate a random number between 1 and 10.

			Here are the steps for completion:

			
					Open a browser and log in to the AWS console by going to this URL: https://aws.amazon.com/console/.[image: Figure 1.4 – The AWS Console]
Figure 1.4 : The AWS console

					Click on Services at the top-left of the page. Either look for Lambda in the listed services or type Lambda in the search box, and click on the Lambda service in the search result:[image: Figure 1.5 – AWS Services]
Figure 1.5 : AWS services

					Click on Create a function to create your first Lambda function on the AWS Lambda page:[image: Figure 1.6 – The Get started window]
Figure 1.6 : The Get started window

					On the Create function page, select Author from scratch:[image: Figure 1.7 – The Create function page]
Figure 1.7 : The Create function page

					In the Author from scratch window, fill in the following details:Name: Enter myFirstLambdaFunction.
Runtime: Choose Node.js 6.10. The Runtime window dropdown shows the list of languages that are supported by AWS Lambda, and you can author your Lambda function code in any of the listed options. For this exercise, we will author our code in Node.js.
Role: Choose Create new role from one or more template. In this section, you specify an IAM role.
Role name: Enter lambda_basic_execution.
Policy templates: Select Simple Microservice permissions:
[image:]
Figure 1.8 : The Author from scratch window

					Now, click on Create function. You should see the message shown in the following screenshot:[image: Figure 1.9 – AWS Services]
Figure 1.9 : Output showing Lambda function creation
So, you have created your first Lambda function, but we have yet to change its code and configuration based on our requirements. So, let's move on.

					Go to the Function code section:[image: Figure 1.10 – The Function code window]
Figure 1.10 : The Function code window

					Use the Edit code inline option to write a simple random number generator function.

					The following is the required code for our sample Lambda function. We have declared two variables: minnum and maxnum. Then, we are using the random() method of the Math class to generate a random number. Finally, we call "callback(null, generatednumber)". If an error occurs, null will be returned to the caller; otherwise, the value of the generatednumber variable will be passed as an output://TODO implement
 let minnum = 0;
 let maxnum = 10;
 let generatednumber = Math.floor(Math.random() * maxnum) + minnum
 callback(null, generatednumber);

					In the Basic settings window, write myLambdaFunction_settings in the Description field, select 128 MB in the Memory field, and have 3 sec in the Timeout field:[image: Figure 1.11 – The Basic settings window]
Figure 1.11 : The Basic settings window

					That's it. Click on the Save button in the top-right corner of the screen. Congratulations! You have just created your first Lambda function:[image:]
Figure 1.12 : Output of the Lambda function created

					Now, to run and test your function, you need to create a test event. This allows you to set up event data to be passed to your function. Click on the dropdown next to Select a test event in the top-right corner of the screen and select Configure test event:[image:]
Figure 1.13 : Lambda function Test window

					When the popup appears, click on Create new test event and give it a name. Click on Create and the test event gets created:[image: Figure 1.14 – The Configure test event window]
Figure 1.14 : The Configure test event window

					Click on the Test button next to test events and you should see the following window upon successful execution of the event:[image: Figure 1.15 – The Test execution window]
Figure 1.15 : The Test execution window

					Expand the Details tab and more details about the function execution appear, such as actual duration, billed duration, actual memory used, and configured memory:

			

			
				
					[image: Figure 1.16 – The Details tab]
				

			

			Figure 1.16 : The Details tab

			You don't need to manage any underlying infrastructure, such as EC2 instances or Auto Scaling groups. You only have to provide your code and let Lambda do the rest of the magic.

			Activity 1: Creating a New Lambda Function that Finds the Square Root of the Average of Two Input Numbers

			Create a new Lambda function that finds the square root of the average of two input numbers. For example, the two numbers provided are 10 and 40. Their average is 25 and the square root of 25 is 5, so your result should be 5. This is a basic Lambda function that can be written using simple math functions.

			Here are the steps for completion:

			
					Follow the exercise that we just completed before this activity.

					Go to the AWS Lambda service and create a new function.

					Provide the function name, runtime, and role, as discussed in the previous exercise.

					Under the section on Function code, write the code to find the square root of the average of two input numbers. Once done, save your code.

					Create the test event and try to test the function by executing it.

					Execute the function.Note
The solution for this activity can be found on page 152.

			

			Limits of AWS Lambda

			AWS Lambda imposes certain limits in terms of resource levels, according to your account level. Some notable limits imposed by AWS Lambda are as follows:

			
					Memory Allocation: You can allocate memory to your Lambda function with a minimum value of 128 MB and a maximum of 3,008 MB. Based on memory allocation, CPU and network resources are allocated to the Lambda function. So, if your Lambda function is resource-intensive, then you might like to allocate more memory to it. Needless to say, the cost of a Lambda function varies according to the amount of memory allocated to the function.

					Execution Time: Currently, the Lambda service caps the maximum execution time of your Lambda function at 15 minutes. If your function does not get completed by this time, it will be automatically be timed out.

					Concurrent Executions: The Lambda service allows up to 1000 total concurrent executions across all functions within a given region. Depending on your usage, you may want to set the concurrent execution limit for your functions, otherwise the overall costs may escalate very soon. Note
If you want to learn more about other limits of Lambda functions, go to https://docs.aws.amazon.com/lambda/latest/dg/limits.html#limits-list.

			

			AWS Lambda Pricing Overview

			AWS Lambda is a serverless compute service and you only pay for what you use, not for any idle time. There is a Free Tier associated with Lambda pricing. We will discuss the Lambda Free Tier in the next section.

			To understand the AWS billing model for Lambda, you first need to understand the concept of GB-s.

			1 GB-s is 1 Gigabyte of memory used per second. So, if your code uses 5 GB in 2 minutes, and then 3 GB in 3 minutes, the accumulated memory usage would be 5*120 + 3*180 = 1140 GB seconds.

			Note

			The prices for the AWS services discussed in this section and in this book are current at the time of writing, as AWS prices may change at any time. For the latest prices, please check the AWS website.

			Lambda pricing depends on the following two factors:

			
					Total Request Count: This is the total number of times the Lambda function has been invoked to start executing in response to an event notification or invoke call. As part of the Free Tier, the first 1 million requests per month are free. There is a charge of $0.20 for 1 million requests beyond the limits of the Free Tier.

					Total Execution Time: This is the time taken from the start of your Lambda function execution until it either returns a value or terminates, rounded up to the nearest 100 ms. The price for execution time varies with the amount of memory allocated to your function. If you want to understand how the cost of total execution time varies with the total amount of memory allocated to the Lambda function, go to https://aws.amazon.com/lambda/pricing:

			

			
				
					[image: Figure 1.17 – Lambda pricing]
				

			

			Figure 1.17 : Lambda pricing

			Lambda Free Tier

			As part of the Lambda Free Tier, you can make 1 million free requests per month. You can have 400,000 GB-seconds of compute time per month. Since function duration costs vary with the allocated memory size, the memory size you choose for your Lambda functions determines how long they can run in the Free Tier.

			Note

			The Lambda Free Tier gets adjusted against monthly charges, and the Free Tier does not automatically expire at the end of your 12-month AWS Free Tier term, but is available to both existing and new AWS customers indefinitely.

			Activity 2: Calculating the Total Lambda Cost

			We have a Lambda function that has 512 MB of memory allocated to it and there were 20 million calls for that function in a month, with each function call lasting 1 second. Calculate the total Lambda cost.

			Here's how we calculate the cost:

			
					Note the monthly compute price and compute time provided by the Free Tier.

					Calculate the total compute time in seconds.

					Calculate the total compute time in GB-s.

					Calculate the monthly billable compute in GB- s. Here's the formula:Monthly billable compute (GB- s) = Total compute – Free Tier compute

					Calculate the monthly compute charges in dollars. Here's the formula:Monthly compute charges = Monthly billable compute (GB-s) * Monthly compute price

					Calculate the monthly billable requests. Here's the formula:Monthly billable requests = Total requests – Free Tier requests

					Calculate the monthly request charges. Here's the formula:Monthly request charges = Monthly billable requests * Monthly request price

					Calculate the total cost. Here's the formula:Monthly compute charge + Monthly request charges
Note
The solution for this activity can be found on page 153.

			

			Additional Costs

			While estimating Lambda costs, you must be aware of additional costs. You will incur costs as part of Lambda integration with other AWS services such as DynamoDB or S3. For example, if you are using the Lambda function to read data from an S3 bucket and write output data into DynamoDB tables, you will incur additional charges for read from S3 and writing provisioned throughput to DynamoDB. We will study more about S3 and DynamoDB in Chapter 2, Working with the AWS Serverless Platform.

			In summary, it may not seem like running Lambda functions costs a lot of money, but millions of requests and multiple functions per month tend to escalate the overall cost.

			Summary

			In this chapter, we focused on understanding the serverless model and getting started with AWS and Lambda, the first building block of a serverless application on AWS. We looked at the main advantages and disadvantages of the serverless model and its use cases. We explained the serverless model, and worked with AWS serverless services. We also created and executed the AWS Lambda function.

			In the next chapter, we'll look at the capabilities of the AWS Serverless Platform and how AWS supports enterprise-grade serverless applications, with and without Lambda. From Compute to API Gateway and from storage to databases, the chapter will cover the fully managed services that can be used to build and run serverless applications on AWS.

		

	

			2

		

		
			Working with the AWS Serverless Platform

		

		
			Learning Objectives

			By the end of this chapter, you will be able to:

			
					Explain Amazon S3 and serverless deployments

					Use API Gateway and integrate it with AWS Lambda

					Work with fully managed services such as SNS, SQS, and DynamoDB

			

			This chapter teaches you how to build and run serverless applications with AWS.

		

		
			Introduction

			In the previous chapter, we focused on understanding the serverless model and getting started with AWS and Lambda, the first building blocks of a serverless application on AWS. You also learned about how the serverless model differs from traditional product development.

			In this chapter, we will learn about other AWS capabilities such as S3, SNS, and SQS. You can start by asking students about different AWS serverless technologies that the students have heard about or have had the chance to work with. Talk to them briefly about different AWS services such as S3 storage, API Gateway, SNS, SQS, and DynamoDB services. We will discuss them in detail in this chapter.

			Amazon S3

			Amazon Simple Storage Service or S3 is nothing but a cloud storage platform that lets you store and retrieve any amount of data anywhere. Amazon S3 provides unmatched durability, scalability, and availability so that you can store your data in one of the most secure ways. This storage service is accessible via simple web interfaces, which can either be REST or SOAP. Amazon S3 is one of the most supported platforms, so either you can use S3 as a standalone service or you can integrate it with other AWS services.

			Amazon S3 is an object storage unit that stores data as objects within resources called "buckets". Buckets are containers for your objects and serve multiple purposes. Buckets let you organize Amazon namespaces at the highest level and also play a key role in access control. You can store any amount of objects within a bucket, while your object size can vary from 1 byte to 5 terabytes. You can perform read, write, and delete operations on your objects in the buckets.

			Objects in S3 consist of metadata and data. Data is the content that you want to store in the object. Within a bucket, an object is uniquely identified by a key and a version ID. The key is the name of the object.

			When you add a new object in S3, a version ID is generated and assigned to the object. Versioning allows you to maintain multiple versions of an object. Versioning in S3 needs to be enabled before you can use it.

			Note

			If versioning is disabled and you try to copy the object with the same name (key), it will overwrite the existing object.

			A combination of bucket, key, and version ID allows you to uniquely identify each object in Amazon S3.

			For example, if your bucket name is aws-serverless and the object name is CreateS3Object.csv, the following would be the fully qualified path of an object in S3:

			
				
					[image: Figure 2.1: Fully qualified URL to access the aws-serverless bucket that has an object called CreateS3Object.csv

]
				

			

			Figure 2.1: Fully qualified URL to access the aws-serverless bucket that has an object called CreateS3Object.csv

			Key Characteristics of Amazon S3

			Now, let's understand some of the key characteristics of using the Amazon S3 service:

			
					Durability and high availability: Amazon S3 provides durable infrastructure to store your data and promises a durability of Eleven 9s (99.999999999%). The Amazon S3 service is available in multiple regions around the world. Amazon S3 provides geographic redundancy within each region since your data gets copied automatically to at least three different availability zone locations within a region. Also, you have the option to replicate your data across regions. As we saw earlier, you can maintain multiple versions of your data as well, which can be used for recovery purposes later.In the following diagram, you can see that when the S3 bucket in source-region-A goes down, route 53 is redirected to the replicated copy in source-region-B:

			

			
				
					[image: Figure 2.2: Amazon S3 Geographic Redundancy

]
				

			

			Figure 2.2: Amazon S3 Geographic Redundancy

			Note

			Geographic redundancy enables the replication of your data and stores this backup data in a separate physical location. You can always get your data back from this backup physical location just in case the main site fails.

			
					Scalability: Amazon S3 is a highly scalable service as it can scale up or scale down easily based on your business needs. Suppose, today, that you have an urgent need to run analytics on 500 GB of data and before you do analytics, you have to bring that data into the AWS ecosystem. Don't worry, as you can just create a new bucket and start uploading your data into it. All of the scalability work happens behind the scenes, without any impact on your business.

					Security: In Amazon S3, you can enable server-side encryption, which encrypts your data automatically while it is getting written on the S3 bucket. Data decryption happens by itself when someone wants to read the data. Amazon S3 also supports data transfer over SSL, and you can also configure bucket policies to manage object permissions and control access to your data using AWS Identity and Access Management (IAM). We will look at permissions in more detail in a later part of this chapter.Note
Since it is server-side encryption, there is no user interference required. Hence, when a user tries to read the data, the server decrypts the data automatically.

					Integration: You can use Amazon S3 as a standalone service to store data or you can integrate it with other AWS services such as Lambda, Kinesis, and DynamoDB. We will look at some of these AWS services and their integration as part of our exercises in a later part of this chapter.

					Low cost: Like other AWS serverless services, Amazon S3 works on a pay-as-you-go model. This means that there are no upfront payments and you pay based on your usage. Since it is a serverless offering, you don't need to manage any underlying hardware or network resources. Therefore, there is no need to buy and manage expensive hardware. This helps to keep costs low with Amazon S3.

					Access via APIs: You can use the REST API to make requests to Amazon S3 endpoints.

			

			Deploying a Static Website

			With Amazon S3, you can host your entire static website at a low cost, while leveraging a highly available and scalable hosting solution to meet varied traffic demands.

			Exercise 2: Setting up a Static Website with an S3 Bucket Using a Domain Name in Route 53

			In this exercise, we'll look at doing the following:

			
					Creating an S3 bucket and providing required permissions

					Uploading a file onto an S3 bucket, which will be used to set the default page of your website

					Configuring your S3 bucket

			

			So, let's get started. Here are the steps to perform this exercise:

			
					Log in to your AWS account using your credentials.

					Click on the dropdown next to Services on top-left side and type S3:[image: Figure 2.3: Searching Amazon S3 services via the dropdown option

]
Figure 2.3: Searching Amazon S3 services via the dropdown option

					The Amazon S3 page will open. Click on Create Bucket:[image: Figure 2.4: Creating an Amazon S3 bucket

]
Figure 2.4: Creating an Amazon S3 bucket

					The Create bucket dialog box will open. You need to provide the following information:Bucket Name: Enter a unique bucket name. For this book, we've used www.aws-serverless.tk since we will host a website using our S3 bucket. As per AWS guidelines, a bucket name must be unique across all existing bucket names in Amazon S3. So, you need to choose your individual bucket names.
Region: Click on the dropdown next to Region and select the region where you want to create the bucket. We will go with the default region, US-East (N. Virginia).
If you want to copy these settings from any other bucket and want to apply them to the new bucket, you can click on the dropdown next to Copy settings from an existing bucket. We will configure the settings for this bucket here, so we will leave this option blank:
[image: Figure 2.5: The Create bucket menu: Name and region section

]
Figure 2.5: The Create bucket menu: Name and region section

					Click on Next. We will be taken to the Properties window. Here, we can set the following properties of the S3 bucket:Versioning
Server access logging
Tags
Object-level logging
Default encryption
[image: Figure 2.6: The Create bucket menu: Set properties section

]
Figure 2.6: The Create bucket menu: Set properties section
For this exercise, go with the default properties and click on the Next button.

					The next window is Set permissions. Here, we grant read and write permissions for this bucket to other AWS users and manage public permissions as well. We can see in the following screenshot that the owner of the bucket has both read and write permissions by default. If you want to give permission for this bucket to any other AWS account as well, you can click on Add Account:[image: Figure 2.7: The Create bucket menu: Set permissions option

]
Figure 2.7: The Create bucket menu: Set permissions option

					Keep all of the checkboxes unchecked. We'll host a website using this S3 bucket.

					Keep Manage system permissions with the default settings and click on the Next button to go to the Review screen. Here, you can review all of the settings for your S3 bucket. If you want to change anything, click on the Edit button and change it. Alternatively, click on Create Bucket and your bucket will be created:[image: Figure 2.8: The Create bucket menu: Review section

]
Figure 2.8: The Create bucket menu: Review section

					Click on the newly created bucket name and click on the second tab, Properties, and enable Static website hosting:[image: Figure 2.9: Enabling the Static website hosting option under the Properties section

]
Figure 2.9: Enabling the Static website hosting option under the Properties section

					Select the Use this bucket to host a website option. Enter the name of the index document. This document will be used to display the home page of your website. You can also add an error.html file, which will be used to display the page in case of any error. We aren't adding an error.html file for this exercise. You can also set redirection rules to redirect requests for an object to another object in the same bucket or to an external URL. Click on the Save button to save it:[image: Figure 2.10: The Static website hosting menu

]
Figure 2.10: The Static website hosting menu
Note
At the top, note the Endpoint information. This will be the URL to access your website. In this case, it is http://www.aws-serverless.com.s3-website-us-east-1.amazonaws.com/.

					Next, click on the Overview tab.

					In the Overview tab, click on Upload. Click on Add files. Upload the index.html page (found in the Chapter02 folder of the code bundle) as an object into our S3 bucket. Now, click on the Next button:[image: Figure 2.11: Uploading the Index.html file to the Amazon S3 bucket

]
Figure 2.11: Uploading the Index.html file to the Amazon S3 bucket
Note
The index.html file is a simple HTML file that contains basic tags, which are for demonstration purposes only.

					Under Manage Public Permissions, select Grant public read access to this object(s). Keep the rest of the settings as they are.

					Click on Next. Keep all of the properties to their default values on the Set properties screen. On the next screen, review the object properties and click on the Upload button.Congratulations! You have just deployed your website using the Amazon S3 bucket.

					Go to a browser on your machine and go to the endpoint that we noted in step 10. You should see the home page (index.html) displayed on your screen:

			

			
				
					[image: Figure 2.12: Viewing the uploaded Index.html file on the browser

]
				

			

			Figure 2.12: Viewing the uploaded Index.html file on the browser

			We have successfully deployed our S3 bucket as a static website. There are different use case scenarios for S3 services, such as media hosting, backup and storage, application hosting, software, and data delivery.

			Enabling Versioning on S3 Bucket

			Now, we'll look at enabling versioning on an S3 bucket. Here are the steps to do so:

			
					Log in to your AWS account.

					In the S3 bucket name list, choose the name of the bucket that you want to enable versioning for.

					Select Properties.

					Select Versioning.

					Choose Enable versioning or Suspend versioning and then click on Save.

			

			S3 and Lambda Integration

			Your Lambda function can be called using Amazon S3. Here, the event data is passed as a parameter. This integration enables you to write Lambda functions that process Amazon S3 events, for example, when a new S3 bucket gets created and you want to take an action. You can write a Lambda function and invoke it based on the activity from Amazon S3:

			
				
					[image: Figure 2.13: Demonstrating the integration of AWS S3 with AWS Lambda Services

]
				

			

			Figure 2.13: Demonstrating the integration of AWS S3 with AWS Lambda

			Exercise 3: Writing a Lambda Function to Read a Text File

			In this exercise, we will demonstrate AWS S3 integration with the AWS Lambda service. We will create an S3 bucket and load a text file. Then, we will write a Lambda function to read that text file. You will see an enhancement for this demonstration later in this chapter when we integrate it further with the API Gateway service to show the output of that text file as an API response.

			Here are the steps to perform this exercise:

			
					Go to the AWS services console and open the S3 dashboard. Click on Create bucket and provide a bucket name. Let's call it lambda-s3-demo. Note that your bucket name must be unique:[image: Figure 2.14: Creating an S3 bucket named lambda-s3-demo]
Figure 2.14: Creating an S3 bucket named lambda-s3-demo

					Click on Next and follow the instructions to create the bucket. Set all of the settings as default. Since we will write the Lambda function using the same account, we don't need to provide any explicit permission to this bucket.

					Create a file in your local disk and add the content Welcome to Lambda and S3 integration demo Class!! in the file. Save it as sample.txt.

					Drag and drop this file into the Upload window to upload it to the newly created S3 bucket.

					Click on Upload:[image: Figure 2.15: Uploading a sample text file to the newly created S3 bucket

]
Figure 2.15: Uploading a sample text file to the newly created S3 bucket
Note
Observe the contents of this file's text message: Welcome to Lambda and S3 integration demo Class!!.

					Go to the AWS service portal, search for Lambda, and open the Lambda dashboard. Click on Create function and provide the following details:Provide the name of the Lambda function. Let's name it read_from_s3.
Choose the runtime as Node.js 6.10.
Choose the Create a new role from one or more templates option. Provide the role name as read_from_s3_role.
Under policy templates, choose Amazon S3 object read-only permissions.

					Click on Create function.

					Once the Lambda function has been created, jump to the Function code section and replace the contents of the index.js file with the following code and save it. You can also copy this code from the s3_with_lambda.js file. In this script, we are creating two variables, src_bkt and src_key, which will contain the name of the S3 bucket and the name of the file that was uploaded to the bucket. Then, we will retrieve that file as an object from the S3 bucket using s3.getObject and return the contents of the file as an output of the Lambda function:var AWS = require('aws-sdk');
var s3 = new AWS.S3();
exports.handler = function(event, context, callback) {
 // Create variables the bucket & key for the uploaded S3 object
 var src_bkt = 'lambdas3demo';
 var src_key = 'sample.txt';
 // Retrieve the object
 s3.getObject({
 Bucket: src_bkt,
 Key: src_key
 }, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 callback(err);
 }
else {
 console.log('\n\n' + data.Body.toString()+'\n');
 callback(null, data.Body.toString());
 }
 });
};
Note that the default output of the data will be in binary format, so we are using the toString function to convert that binary output to a string:
[image: Figure 2.16: Illustrating the use of the toString() function

]
Figure 2.16: Illustrating the use of the toString() function

					Click on the Save button to save the Lambda function.

					Test the function now. But, before you can test it, you will have to configure test events, like we have done in earlier exercises. Once a test event is configured, click on Test to execute the Lambda function.

			

			Once the function has been executed, you should see the highlighted message Welcome to Lambda and S3 integration demo Class !!, as provided in the following screenshot. This message was the content of the sample.txt file that we uploaded into our S3 bucket in step 3:

			
				
					[image: Figure 2.17: Demonstrating the Lambda function’s execution

]
				

			

			Figure 2.17: Demonstrating the Lambda function's execution

			Now, we have completed our discussion about S3 integration with a Lambda function.

			API Gateway

			API development is a complex process, and is a process that is constantly changing. As part of API development, there are many inherent complex tasks, such as managing multiple API versions, implementation of access and authorization, managing underlying servers, and doing operational work. All of this makes API development more challenging and impactful on an organization's ability to deliver software in a timely, reliable, and repeatable way.

			Amazon API Gateway is a service from Amazon that takes care of all API development-related issues (discussed previously) and enables you to make your API development process more robust and reliable. Let's look into this in more detail now.

			What is API Gateway?

			Amazon API Gateway is a fully managed service that focuses on creating, publishing, maintaining, monitoring, and securing APIs. Using API Gateway, you can create an API that acts as a single point of integration for external applications while you implement business logic and other required functionality at the backend using other AWS services.

			With API Gateway, you can define your REST APIs with a few clicks in an easy-to-use GUI environment. You can also define API endpoints, their associated resources and methods, manage authentication and authorization for API consumers, manage incoming traffic to your backend systems, maintain multiple versions of the same API, and perform operational monitoring of API metrics as well. You can also leverage the managed cache layer, where the API Gateway service stores API responses, resulting in faster response times.

			The following are the major benefits of using API Gateway. We have seen similar benefits of using other AWS services, such as Lambda and S3:

			
					Scalability

					Operational monitoring

					Pay-as-you-go model

					Security

					Integration with other AWS services

			

			API Gateway Concepts

			Let's understand certain concepts of the API Gateway and how they work. This will help you build a better understanding on how the API Gateway works:

			
					API endpoints: An API endpoint is one end of the communication, a location from where the API can access all the required resources.

					Integration requests: The integration request specifies how your frontend will communicate with the backend system. Also, requests may need to be transformed based on the type of backend system running. Possible integration types are Lambda, AWS service, HTTP, and Mock.

					Integration response: After the backend system processes the requests, API Gateway consumes it. Here, you specify how the errors/response codes received from backend systems are mapped to the ones defined in API gateway.

					Method request: The method request is a contract between the user (public interface) and the frontend system on what will be the request mode. This includes the API authorization and HTTP definitions.

					Method response: Similar to the API method request, you can specify the method response. Here, you can specify the supported HTTP status codes and header information.

			

			Exercise 4: Creating a REST API and Integrating It with Lambda

			Now, we will look at a demo of API Gateway and explore its different features. Along with this demo, we will also create a simple REST API using API Gateway and integrate it with a Lambda function. We will extend our earlier exercise on S3 integration with Lambda and create a REST API to show the contents of "sample.txt" as API response. This API will be integrated with Lambda to execute the function, and a GET method will be defined to capture the contents of the file and show it as the API response:

			
				
					[image: Figure 2.18: Illustrating the various feature integrations of the API Gateway with Lambda functions

]
				

			

			Figure 2.18: Illustrating the various feature integrations of API Gateway with Lambda functions

			Here are the steps to perform this exercise:

			
					Open a browser and log in to the AWS console: https://aws.amazon.com/console/.

					Click on the dropdown next to Services or type API Gateway in the search box and click on the service:[image: Figure 2.19: Searching for the API Gateway from the Services section

]
Figure 2.19: Searching for API Gateway from the Services section

					On the API Gateway dashboard, if you're visiting the page for the first time, click on Get Started. Otherwise, you will see the following Create New API screen:[image: Figure 2.20: The Create new API page

]
Figure 2.20: The Create new API page
Here, you have three options for choose from:
New API
Import from Swagger
Example API

					Select New API and provide the following details:API name: Enter read_from_S3_api
Description: Enter sample API
Endpoint Type: Choose Regional and click on Create API.
[image: Figure 2.21: Creating a new API with the specified details

]
Figure 2.21: Creating a new API with the specified details

					On the next page, click on Actions. You will see some options listed as Resources and Methods. A resource works as a building block for any RESTful API and helps in abstracting the information. Methods define the kind of operation to be carried out on the resources. A resource has a set of methods that operate on it, such as GET, POST, and PUT.We haven't created any resources yet as part of this exercise, so the AWS console will only have the root resource and no other resources.

					Now, create a resource. On the resource dashboard, provide the resource name and click on Create Resource from the dropdown of Action.

					Type read_file_from_s3 in the Resource Name field and click on Create Resource:[image: Figure 2.22: Creating a resource with the provided information

]
Figure 2.22: Creating a resource with the provided information

					Create a method to access the information. Select that resource and then click on Actions to create a method. Choose GET from the available methods and click on ✓ to confirm the GET method type:[image: Figure 2.23: Creating a method to access the available information

]
Figure 2.23: Creating a method to access the available information

					Now, choose Lambda Function as the integration type:[image: Figure 2.24: Selecting Lambda Function as an integration type

]
Figure 2.24: Selecting Lambda Function as an integration type

					Once you click on Save, you will get following warning. Here, AWS is asking you to provide API Gateway permission to invoke the Lambda function:[image: Figure 2.25: Warning notification to enable the API gateway’s permission

]
Figure 2.25: Warning notification to enable API Gateway's permission

					Click on the OK button. The following screen will appear, which shows the workflow of the API. The following are the steps taken by the API:Your API will invoke the Lambda function.
The Lambda function gets executed and sends the response back to the API.
The API receives the response and publishes it:
[image: Figure 2.26: Illustrating the workflow of an API

]
Figure 2.26: Illustrating the workflow of an API

					Now, it's time to deploy the API. Click on the Actions dropdown and select Deploy API:[image: Figure 2.27: The Deploy API menu

]
Figure 2.27: The Deploy API menu

					Create a new deployment stage. Let's call it prod. Then, click on Deploy to deploy your API:[image: Figure 2.28: Creating a new deployment stage named prod

]
Figure 2.28: Creating a new deployment stage named prod

					Once the API has been deployed, you should see the following screen. This screen has a few advanced settings so that you can configure your API. Let's skip this:[image: Figure 2.29: The menu options of the deployed API

]
Figure 2.29: The menu options of the deployed API

					Click on prod to open the submenu and select the GET method that you created for the API. Invoke the API URL that appears on the screen. You can access this link to access your API:

			

			
				
					[image: Figure 2.30: Invoking the API URL

]
				

			

			Figure 2.30: Invoking the API URL

			This is what will appear on your screen:

			
				
					[image: Figure 2.31: Illustrating the web page of the invoked URL

]
				

			

			Figure 2.31: Illustrating the web page of the invoked URL

			Great! You have just integrated the API Gateway with Lambda and S3.

			Other Native Services

			We'll now turn our focus to other native services. We'll begin with Amazon SNS and then move on to Amazon SQS.

			Amazon SNS

			Amazon Simple Notification Services (SNS) is the cloud-based notification service that's provided by AWS that enables the delivery of messages to the recipients or to the devices. SNS uses the publisher/subscriber model for the delivery of messages. Recipients can either subscribe to one or more "topics" within SNS or can be subscribed by the owner of a particular topic. AWS SNS supports message deliveries over multiple transport protocols.

			AWS SNS is very easy to set up and can scale very well depending on the number of messages. Using SNS, you can send messages to a large number of subscribers, especially mobile devices. For example, let's say you have set up the monitoring for one of your RDS instances in AWS, and once the CPU goes beyond 80%, you want to send an alert in the form of an email. You can set up an SNS service to achieve this notification goal:

			
				
					[image: Figure 2.32: Establishing the alert mechanism using the SNS services

]
				

			

			Figure 2.32: Establishing the alert mechanism using the SNS services

			You can set up AWS SNS using the AWS Management Console, AWS command-line interface, or using the AWS SDK. You can use Amazon SNS to broadcast messages to other AWS services such as AWS Lambda, Amazon SQS, and to HTTP endpoints, email, or SMS as well.

			Let's quickly understand the basic components, along with their functions, of Amazon SNS:

			
					Topic: A topic is a communication channel that is used to publish messages. Alternatively, you can subscribe to a topic to start receiving messages. It provides a communication endpoint for publishers and subscribers to talk to each other.

					Publication of messages: Amazon SNS allows you to publish messages that are then delivered to all the endpoints that have been configured as subscribers for a particular topic.

			

			Here are some of the applications of Amazon SNS:

			
					Subscription to messages: Using SNS, you can subscribe to a particular topic and start receiving all the messages that get published to that particular topic.

					Endpoints: With Amazon SNS, you publish messages to the endpoints, which can be different applications based on your needs. You can have an HTTP endpoint, or you can deliver your messages to other AWS services (as endpoints) such as SQS and Lambda. Using SNS, you can configure emails or mobile SMS as possible endpoints as well. Please note that the mobile SMS facility is available in limited countries. Please check the Amazon SNS documentation for more details.

			

			Amazon SQS

			In a simple message queue service, we have applications playing the roles of producers and consumers. The applications, known as producers, create messages and deliver them to the queues. Then, there is another application, called the consumer, which connects to the queue and receives the messages. Amazon SQL is a managed service adaptation of such message queue services.

			Amazon Simple Queue Service (SQS) is a fully managed messaging queue service that enables applications to communicate by sending messages to each other:

			
				
					[image: Figure 2.33: Enabling the Amazon Simple Queue Service for better communication between applications

]
				

			

			Figure 2.33: Enabling Amazon SQS for better communication between applications

			Amazon SQS provides a secure, reliable way to set up message queues. Currently, Amazon SQS supports two types of message queues:

			
					Standard queues: Standard queues can support close to unlimited throughput, that is, an unlimited number of transactions per second. These queues don't enforce the ordering of messages, which means that messages may be delivered in a different order than they were originally sent. Also, standard queues work on the at-least-once model, in which messages are delivered at least once, but they may be delivered more than once as well. Therefore, you need to have a mechanism in place to handle message duplication. You should use standard queues, whose throughput is more important than the order of requests.

					FIFO queues: FIFO queues work on the First-In-First-Out message delivery model, wherein the ordering of messages is maintained. Messages are received in the same order in which they were sent. Due to ordering and other limitations, FIFO queues don't have the same throughput as what's provided by standard queues. Note that FIFO queues are available in limited AWS regions. Please check the AWS website for more details. You should use FIFO queues when the order of messages is important. Note
There is a limit on the number of messages supported by FIFO queues.

					Dead Letter (DL) queues: DL queues are queues that can receive messages that can't be processed successfully. You can configure a dead letter queue as a target for all unprocessed messages from other queues.

			

			Just like Amazon SNS, you can also set up the AWS SQS service using the AWS Management Console, AWS command-line interface, or using the AWS SDK.

			DynamoDB

			Amazon DynamoDB is a NoSQL database service that is fully managed. Here, you won't have to face the operative and scaling challenges of a distributed database. Like other serverless AWS services, with DynamoDB, you don't have to worry about hardware provisioning setup, configuration data replication, or cluster scaling.

			DynamoDB uses the concept of partition keys to spread data across partitions for scalability, so it's important to choose an attribute with a wide range of values and that is likely to have evenly distributed access patterns.

			With DynamoDB, you pay only for the resources you provision. There is no minimum fee or upfront payment required to use DynamoDB. The pricing of DynamoDB depends on the provisioned throughput capacity.

			Throughput Capacity

			In DynamoDB, when you plan to provision a table, how do you know the throughput capacity required to get optimal performance out of your application?

			The amount of capacity that you provision depends on how many reads you are trying to execute per second, and also how many write operations you are trying to do per second. Also, you need to understand the concept of strong and eventual consistency. Based on your settings, DynamoDB will reserve and allocate enough Amazon resources to keep low response times and partition data over enough servers to meet the required capacity to keep the application's read and write requirements.

			Note

			Eventual consistency is a type of consistency where there is no guarantee that what you are reading is the latest updated data. Strong consistency is another type of consistency where you always read the most recent version of the data. Eventual consistent operations consume half of the capacity of strongly consistent operations.

			Now, let's look at some important terms:

			
					Read capacity: How many items you expect to read per second. You also have to specify the item size of your request. Two kilobyte items consume twice the throughput of one kilobyte items.

					Write capacity: How many items you expect to write per second.Note
You are charged for reserving these resources, even if you don't load any data into DynamoDB. You can always change the provisioned read and write values later.

			

			DynamoDB Streams

			DynamoDB Streams is a service that helps you capture table activity for DynamoDB tables. These streams provide an ordered sequence of item-level modifications in a DynamoDB table and store the information for up to 24 hours. You can combine DynamoDB Streams with other AWS services to solve different kinds of problems, such as audit logs, data replication, and more. DynamoDB Streams ensure the following two things:

			
					No duplicity of stream records, which ensures that each stream record will only appear once

					The ordered sequence of streams is maintained, which means that stream records appear in the same sequence as the modifications to the table

			

			AWS maintains separate endpoints for DynamoDB and DynamoDB Streams. To work with database tables and indexes, your application must access a DynamoDB endpoint. To read and process DynamoDB Stream records, your application must access a DynamoDB Streams endpoint in the same region.

			DynamoDB Streams Integration with Lambda

			Amazon DynamoDB is integrated with AWS Lambda. This enables you to create triggers that can respond to events automatically in DynamoDB Streams. With triggers, you can build applications that react to data modifications in DynamoDB tables.

			Integration with Lambda allows you to perform many different actions with DynamoDB Streams, such as storing data modifications on S3 or sending notifications using AWS services such as SNS.

			Exercise 5: Creating an SNS topic and Subscribing to It

			In this exercise, we'll create an SNS topic and subscribe to it. So, let's get started:

			
					Go to AWS services and type SNS in the search box. Once you click on Simple Notification Service (SNS), the following screen will appear. Click on Get started, which will take you to the SNS dashboard:[image: Figure 2.34: Creating a new SNS service

]
Figure 2.34: Creating a new SNS service

					Click on Topics on the left menu and click on Create new topic:[image: Figure 2.35: Creating a new topic from the Topics section

]
Figure 2.35: Creating a new topic from the Topics section

					Provide the Topic name as TestSNS and the Display name as TestSNS, and click on Create topic. The Topic name and Display name can be different as well:[image: Figure 2.36: Providing a Topic and Display name for the topic

]
Figure 2.36: Providing a Topic and Display name for the topic

					Once the topic has been created successfully, the following screen appears. This screen has the name of the topic and the topic's ARN. Note
ARN stands for Amazon Resource Name, and it is used to identify a particular resource in AWS.
[image: Figure 2.37: Summary page of the newly created topic

]
Figure 2.37: Summary page of the newly created topic
Note that if you need to reference a particular AWS resource in any other AWS service, you do so using the ARN.
We have successfully created a topic. Let's go ahead and create a subscription for this topic. We will set up an email notification as part of the subscription creation so that whenever something gets published to the topic, we will get an email notification.

					Click on Subscriptions on the left menu and then click on Create subscription:[image: Figure 2.38: Creating a subscription for the SNS service

]
Figure 2.38: Creating a subscription for the SNS service

					Provide the ARN for the topic that we created in step 4. Click on the dropdown next to Protocol and choose Email. Provide an email address as a value for the endpoint. Then, click on Create subscription:[image: Figure 2.39: Providing details to create a new subscription

]
Figure 2.39: Providing details to create a new subscription

					Once the subscription has been created successfully, you should see the following screenshot. Note that the current status of the subscription is PendingConfirmation:[image: Figure 2.40: The summary of the newly created subscription

]
Figure 2.40: The summary of the newly created subscription

					Check your emails. You should have received an email notification from Amazon to confirm the subscription. Click on Confirm Subscription:[image: Figure 2.41: Verifying the subscription from the registered email address

]
Figure 2.41: Verifying the subscription from the registered email address
Once the subscription is confirmed, you should see the following screenshot:
[image:]
Figure 2.42: The Subscription confirmed message

					Now, go back to the Subscription page and you will notice that PendingConfirmation is gone. Click on the refresh button if you still see PendingConfirmation. It should now be gone:

			

			
				
					[image: Figure 2.43: Summary of the confirmed ARN subscription

]
				

			

			Figure 2.43: Summary of the confirmed ARN subscription

			So, you have successfully created an SNS topic and have successfully subscribed to that topic as well. Whenever anything gets published to this topic, you will get an email notification.

			Exercise 6: SNS Integration with S3 and Lambda

			In this exercise, we will see create a Lambda function and integrate it with SNS to send email notifications:

			
				
					[image: Figure 2.44: Integrating a Lambda function with SNS to enable an email subscription

]
				

			

			Figure 2.44: Integrating a Lambda function with SNS to enable an email subscription

			Here are the steps to perform this exercise:

			
					Go to the AWS service console and type Lambda in the search box. Then, open the Lambda management page.

					Click on Create function and continue with the current selection, that is, Author from scratch:[image: Figure 2.45: Creating a Lambda function from scratch

]
Figure 2.45: Creating a Lambda function from scratch

					Now, provide the following details:Name: Write lambda_with_sns.
Runtime: Keep it as Node.js.
Role: Select Create role from template from the dropdown. Here, we are creating a Lambda function to send an SNS notification.
Role name: Provide the role name as LambdaSNSRole.
Policy templates: Choose SNS publish policy:
[image: Figure 2.46: The menu options to create a Lambda function from scratch

]
Figure 2.46: The menu options to create a Lambda function from scratch

					Now, click on Create function. Once the function has been created successfully, you should see the following message:[image: Figure 2.47: The function created notification

]
Figure 2.47: The function created notification

					Let's jump to the function's code section. Go to the Git project and copy and paste the code in the code section of this page:[image: Figure 2.48: Adding code from the Git project to the code section of the function

]
Figure 2.48: Adding code from the Git project to the code section of the function
The following is an explanation of the main parts of the code:
sns.publish: The publish action is used to send a message to an Amazon SNS topic. In our case, we have an email subscription on the topic, we are trying to publish onto. Therefore, a successful publishing here will result in an email notification.
Message: The message you want to send to the topic. This message text will be delivered to the subscriber.
TopicArn: The topic you want to publish to. Here, we are publishing to the "TestSNS" topic, which we created in our previous exercise. So, copy and paste the ARN of the topic that we created in the earlier exercise here.

					Click on the Save button on the top right corner. Now, we are ready to test the code.

					Click on the Test button. You need to configure the test event. Let's create a test event with the name TestEvent and click on the Save button:[image: Figure 2.49: Creating a test event named TestEvent

]
Figure 2.49: Creating a test event named TestEvent

					Click on the Test button now, and you should see the following screen:[image: Figure 2.50: The test execution was successful notification

]
Figure 2.50: The test execution was successful notification

					Expand the execution result. Here, you can find more details about the function executions. Here, you can review the duration of the function's execution, the resources that have been configured, billed duration, and max memory used:[image: Figure 2.51: Summary of test execution

]
Figure 2.51: Summary of test execution

					Review the execution results under the Function code section as well:

			

			
				
					[image: Figure 2.52: Reviewing the test execution results under the function code

]
				

			

			Figure 2.52: Reviewing the test execution results under the function code

			As we can see, the following message in the execution results is Message sent successfully. This confirms that the Lambda code was successful in sending a notification to the SNS topic.

			Time to check your email account, which was configured as part of the subscriber in the preview exercise. You should see the following AWS notification message:

			
				
					[image: Figure 2.53: Sample email from the SNS service named TestSNS

]
				

			

			Figure 2.53: Sample email from the SNS service named TestSNS

			This concludes our exercise on the simple integration of Lambda with Amazon SNS.

			Activity 3: Setting Up a Mechanism to Get an Email Alert When an Object Is Uploaded into an S3 Bucket

			In the last exercise, we showcased lambda integration with Amazon SNS. As part of the exercise, whenever our lambda function was executed, we got an email alert generated by SNS service.

			Now, we will extend that exercise to perform an activity here.

			Let's assume that you are processing certain events and whenever there is an error with processing of a particular event, you move the problematic event into a S3 bucket so you can process them separately. Also, you want to be notified via an email whenever any such an event arrives in the S3 bucket.

			So, we will do an activity to create a new S3 bucket and set up a mechanism that enables you to get an email alert whenever a new object is uploaded into this S3 bucket. When a new object is added to the S3 bucket, it will trigger the Lambda function created in the earlier exercise which will send the required email alert using SNS service.

			Here are the steps for completion:

			
					Go to AWS S3 service and click on Create bucket.

					Provide details such as name and region.

					Select the appropriate permissions.

					Go to the Lambda function created in the earlier exercise. Add S3 as a trigger under Lambda configuration section.

					Add the required details related to S3 bucket configuration, mainly the bucket name.

					Click on Add to add that S3 bucket as a trigger to execute Lambda function.

					Click on Save to save the changes to the Lambda function.

					Now, try to upload a new sample file to the S3 bucket. You should see an email alert in your mailbox.Note
The solution for this activity can be found on page 154.

			

			Summary

			In this chapter, we looked at Amazon S3 and serverless deployments. We worked with API Gateway and its integration with AWS. We delved into fully managed services such as SNS, SQS, and DynamoDB. Finally, we integrated SNS with S3 and Lambda.

			In the next chapter, we'll build an API Gateway that we covered in this chapter. A comparison with a traditional on-premises web application will be done as we replace traditional servers with serverless tools while making the application scalable, highly available, and performant.

		

	

			3

		

		
			Building and Deploying a Media Application

		

		
			Learning Objectives

			By the end of this chapter, you will be able to:

			
					Explain the challenges of a traditional web application and making a traditional application serverless

					Build an API Gateway API and upload binary data using it

					Work with media processing using AWS Lambda

					Explain image processing using AWS Rekognition

			

			This chapter teaches you how to deploy your first serverless project step by step, by building a simple serverless application that uploads and processes media files.

		

		
			Introduction

			Enterprises can face tremendous pressure and challenges when building and scaling even simple media-based applications. The conventional ways of building applications require enterprises to invest a lot of time and money up front, so that even simple application development can become a big project for companies.

			When it comes to building media-processing applications, which are generally very resource intensive, the situation gets even worse.

			In this chapter, we are going to look at the challenges around building such applications and how cloud native development has changed the way applications are built and delivered to customers.

			Designing a Media Web Application – from Traditional to Serverless

			Building media web applications in the traditional way follows a certain path. This is displayed in the following diagram:

			
				
					[image: Figure 3.1: Traditional way of building media applications]
				

			

			Figure 3.1: Traditional way of building media applications

			However, in serverless application development, you don't manage the infrastructure but depend upon cloud providers for it. You have to develop your application to be independently deployable as microservices. During serverless development, you might want to break your big monolithic application into smaller independent business units.

			Such a serverless development brings many important patterns as well as development methodologies to be considered. Also, cloud providers provide many managed services at every stage of the software development life cycle to help you build faster with out-of-the-box monitoring/visibility in your serverless infrastructure.

			In the next section of this chapter, we will take a look at the steps we need to follow if a media application has to be built in serverless mode. You will see we don't really need to talk to our IT department to raise any infrastructure requests and wait on them for weeks or months. Infrastructure is available with you within minutes from cloud providers.

			Building a Simple Serverless Media Web Application

			You have realized by now that by using traditional structures, there is a lot of time-consuming technical administration.

			In the cloud era, this is not the case. Cloud providers take care of all the infrastructure, as well as scaling and reliability, and the other needs of your application, so you can focus on the business logic. This not only helps you focus on the right things, but also helps you reduce your time to market drastically.

			To depict this, let's do a quick demo of our use case and look at how we can implement it in the AWS Cloud.

			We'll deploy our web application locally. Clients will use this application to upload images to AWS. (Figure 3.2 depicts what we want to achieve in this tutorial.) Clients will call the APIs to upload images. These APIs will be hosted in an API Gateway and expose endpoints to upload images to S3. Once the image is uploaded to S3, an event will be triggered by S3 automatically that will launch a Lambda function. This Lambda function will read the image and process it using the AWS Rekognition service to find data inside the image. All the infrastructure required for this is managed by AWS automatically.

			Auto scaling and reliability come out of the box by deploying the application on AWS Cloud's global infrastructure:

			
				
					[image: Figure 3.2: Demonstrating working mechanism of serverless media web application]
				

			

			Figure 3.2: Demonstrating working mechanism of serverless media web application

			Exercise 7: Building the Role to Use with an API

			In the following demo, we are using the AWS web console to build the role and assign it to the API.

			Before you start creating the API, you need to create a proper role to assign to the API when it is created. This role should have access to create/read/update/delete S3 buckets and APIGatewayInvokeFullAccess. This role should also have apigateway.amazonaws.com added to its trusted entities so that API Gateway can acquire this role.

			Here are the steps to perform this exercise:

			
					Search for IAM in the AWS console and open the Identity and Access Management window.

					Click on Roles to view existing roles.

					Click on Create role and select AWS service under Select type of trusted entity.

					Select API Gateway and click on Next: Permissions:[image: Figure 3.3: Creating role window]
Figure 3.3: Creating role window

					Click on Next: Review without changing anything.

					Name the role and give a description, as shown in the following screenshot. Name it api-s3-invoke-demo:[image: Figure 3.4: Providing the role information in the Review section]
Figure 3.4: Providing the role information in the Review section
Your role is created. Let's add the required policy to it to work with S3.

					Click on the newly created role to go to its Summary page. On the Summary page of that role, click on Attach Policy:[image: Figure 3.5: Summary page of newly created page]
Figure 3.5: Summary page of newly created page

					On the policies page, search and add two policies: AmazonS3FullAccess and AmazonAPIGatewayInvokeFullAccess.

					After attaching the policies, the final role summary should be as follows:

			

			
				
					[image: Figure 3.6: Summary page view with newly attached policies]
				

			

			Figure 3.6: Summary page view with newly attached policies

			Exercise 8: Creating an API to Push to / Get from an S3 Bucket

			In this exercise, we will create an API that will interact with the AWS S3 service.

			We will push files to S3 and also create the GET method in the API to fetch the contents of the S3 bucket. All this will be serverless, meaning we are not going to provision any EC2 instances, but use AWS's managed serverless infrastructure.

			Here are the steps to perform this exercise:

			
					In the Amazon API Gateway section of the AWS console, click on the Create API button:[image: Figure 3.7: Creating a new API from the APIs section]
Figure 3.7: Creating a new API from the APIs section

					Select the New API radio and add the following details:API Name: image-demo
Description: this is a demo api for images
Endpoint Type: Regional
[image: Figure 3.8: Creating a new API with specified details]
Figure 3.8: Creating a new API with specified details

					Click on Actions and select Create Resource to create a child resource named image and set it as a path variable under the resource path:[image: Figure 3.9: Creating resource for newly created API]
Figure 3.9: Creating resource for newly created API
Make sure you add { } in Resource Path.

					Create another child resource of image child and name it file:[image: Figure 3.10: Creating another resource for the API]
Figure 3.10: Creating another resource for the API

					Now that the resource has been created, you need to create methods for your API. Click on "/{image}" and from Actions, select Create Method:[image: Figure 3.11: Creating methods for the API]
Figure 3.11: Creating methods for the API

					Then, select GET in the setup and click on the tick mark:[image: Figure 3.12: Selecting the GET method from the dropdown list]
Figure 3.12: Selecting the GET method from the dropdown list

					Select the integration type as AWS Service and fill in the details for the GET method, as shown next. Also, select Use patch override under the Action type, and fill in the details as {bucket} in the execution role. Mention the ARN of the role that was created. Then, click on Save:[image: Figure 3.13: Selecting options to set up the GET method]
Figure 3.13: Selecting options to set up the GET method

					Click on Save. You should see what is shown in the following screenshot for the GET method:[image: Figure 3.14: The Method Execution window of the GET method]
Figure 3.14: The Method Execution window of the GET method
You can see four sections in the preceding screenshot:
Method Request
Integration Request
Integration Response
Method Response

					Go back to Method Execution and click on Method Request, then add the Content-Type to the HTTP Request Headers section:[image: Figure 3.15: HTTP Request Headers section]
Figure 3.15: HTTP Request Headers section
Now, you need to map the path variable in the Method Request to the Integration Request. This is required because we want to send the data coming in to the API request to the backend system. Method Request represents the incoming data request and Integration Request represents the underlying request that is sent to the system actually doing the work. In this case, that system is S3.

					Click on Integration Request and scroll to URL Path Parameters. Click on Add Path to add following.Name: bucket
Mapped from: method.request.path.image

					In Integration Request in the HTTP headers section, add two headers:x-amz-acl = 'authenticated-read'
Content-Type = method.request.header.Content-Type
Note
x-amz-acl is required to tell S3 that this is the authenticated request. The user needs to be provided read access to the bucket.
Your URL path parameters and HTTP headers for the Integration Request should look as follows now:
[image: Figure 3.16: HTTP Headers and URL Path Parameters section]
Figure 3.16: HTTP Headers and URL Path Parameters section

					Repeat steps 5 to 11 to create the PUT method. Instead of selecting GET in step 6, you have to select PUT. We will use this method to create a new bucket.Your API should now look like this:
[image: Figure 3.17: Method Execution window of the PUT method]
Figure 3.17: Method Execution window of the PUT method

					Next, create the API to upload the image into the specified bucket. Click on /{file} and then select Create Method from the Action dropdown. Select the PUT method and configure it as shown in the following screenshot. Make note of the path override. It should be set to {bucket}/{object}. Role ARN should be same as in previous steps. Click on Save.
[image: Figure 3.18: The Setup window of the PUT method]
Figure 3.18: The Setup window of the PUT method

					In the Method Request, add the HTTP Header Content-type.

					Click on Integration Request, and add in URL Path Parameters, the mapping of the bucket and object as shown here, and click on the tick mark:bucket = method.request.path.image
object = method.request.path.file

					Also, add the Content-Type header mapping to method.request.header.Content-Type as done earlier for other methods. [image: Figure 3.19: Method Request window of the PUT method]

Figure 3.19: Method Request window of the PUT method
One more thing we need to do is to configure the API to accept binary image content.

					Now, go to Settings from the left navigation panel to configure the API to accept binary image content:[image: Figure 3.20: Settings options to accept binary image content]
Figure 3.20: Settings options to accept binary image content

					Add image/png under Binary Media Types and click on Save Changes:[image: Figure 3.21: Add the Binary Media Type option under the Binary Media Types section]
Figure 3.21: Add the Binary Media Type option under the Binary Media Types section
All changes are done. We are now ready to deploy our API.

					Click on Deploy API from the Actions dropdown:[image: Figure 3.22: Deploying the API by clicking on the Deploy API option from the Actions dropdown list]
Figure 3.22: Deploying the API by clicking on the Deploy API option from the Actions dropdown list

					Enter the stage details and description, and click on Deploy:[image: Figure 3.23: Deploying the API after providing all the details]
Figure 3.23: Deploying the API after providing all the details
All changes are done. We are now ready to deploy our API.

					Your API is deployed on the dev stage. Note the Invoke URL:[image: Figure 3.24: Invoke URL of the newly deployed API]
Figure 3.24: Invoke URL of the newly deployed API

					You can use any API client, such as SoapUI or Postman, for testing your API. We'll use the ReadyAPI tool as it has robust support.Note
You can download a 14-day free trial at this link: https://smartbear.com/product/ready-api/free-trial/ (you have to enter details of yourself for the download to start).

					Now, create a bucket. In SoapUI, create a new project for a PUT request and enter the invoke URL copied earlier. Enter the bucket name in the path after /dev:[image: Figure 3.25: Creating a new project for the PUT request]
Figure 3.25: Creating a new project for the PUT request

					Click on OK. Click on Continue to describe your API:[image: Figure 3.26: Selecting appropriate options for the project]
Figure 3.26: Selecting appropriate options for the project

					Specify the bucket name after dev/ in Resource. In the following screenshot, mohit-1128-2099 is the bucket name. Change the Media Type to application/xml:
[image: Figure 3.27: Specifying the bucket name]
Figure 3.27: Specifying the bucket name
In our exercise, we are creating the S3 bucket in us-east-1. So, we will keep request body as blank. However, if you want to create the bucket in some other region (us-west-, 1 in our, example below), you have to set following text in the request body and hit send. You should get HTTP 200 Response status and your bucket should be created in S3:
<CreateBucketConfiguration>
<LocationConstraint>us-west-1</LocationConstraint>
</CreateBucketConfiguration>
Now the S3 bucket should get created. Go to the AWS S3 service and check the existence of the bucket. You can also do a GET API call to check the existence of the bucket along with its contents.

					Now, make another call to our API to upload an image. Update the path in the Resource textbox of ReadyAPI to include the filename that you want to upload in the S3 bucket. You need to attach the file and set the media-type to image/png. Go to the Attachments tab at the bottom of the request, and attach any PNG image. Click No on the Cache request dialog box.

					Click on Send and you should be able to get back 200 OK response. Go back to the AWS S3 service and you should see the newly created bucket now:

			

			
				
					[image: Figure 3.28: Output showing the newly created bucket]
				

			

			Figure 3.28: Output showing the newly created bucket

			So far, we have created an API with the GET and PUT methods that is accepting requests from the user and uploading images to S3. Note that we haven't had to spawn a server so far for building the entire working service.

			Exercise 9: Building the Image Processing System

			You have just created the API. Now, you need to create the backend Lambda function that gets triggered every time an image is uploaded.

			This function will be responsible for analyzing the image and detecting the labels inside the image, such as objects. It will call the Rekognition API and feed the image into it, which will then analyze the image and return data.

			The returned data will be pushed to a topic in SNS. SNS is AWS Simple Notification Service and works on the pub/sub mechanism. We will then subscribe our email address to that SNS so any messages that are sent to the topic get delivered to our email address also.

			The final functionality will be that when a user uploads an image using the API to the S3 bucket, our infrastructure analyzes it and emails us the data found in the image.

			We are going to create this infrastructure step by step, as follows:

			
					Create the IAM role. As we created the role for API Gateway, we need to follow similar steps; however, we have to select Lambda on the first screen under Choose the service that will use this role, and the permissions should be AWSLambdaFullAccess, AmazonRekognitionFullAccess, and AmazonSNSFullAccess. No need to add any tags for now. This is how your role should look after creation:[image: Figure 3.29: Summary of the newly created ARN role]
Figure 3.29: Summary of the newly created ARN role

					Use the S3 bucket created with our API.One more thing before creating the Lambda function is to create an SNS and subscribe your email to it. This SNS will be used by the Lambda to publish image analysis data. Once published, the SNS will send that message to your subscribed email.

					Go to the SNS console and click on Create Topic to publish the extracted text:[image: Figure 3.30: Create new topic window]
Figure 3.30: Create new topic window

					Click on Create subscription:[image: Figure 3.31: Topic details window]
Figure 3.31: Topic details window

					Create the subscription for the topic. Choose Email under Protocol and provide an email address under Endpoint. There will be an email sent your email account. You have to confirm the subscription:[image: Figure 3.32: Create subscription window]
Figure 3.32: Create subscription window

					Keep a note of the Topic ARN as it will be required in the Lambda code.We have created an API Gateway API, S3 bucket, SNS Topic, and email subscription. Now, we have to create a Lambda function.

					In the Lambda console, click on Create function. Make sure that you have the same region selected as the one in which you have created the S3 bucket. Select Author from scratch.

					In the next wizard, fill the name of the Lambda, choose an existing role, and choose the S3 bucket name that you created:[image: Figure 3.33: Screenshot of the Using blueprint rekognition-python window]
Figure 3.33: Screenshot of the Using blueprint rekognition-python window

					Scroll to the end and hit Create function.

					In the configuration section of the Lambda, go to the function code and replace it with the following code. In the code, we create the SDK object, AWS Rekognition client, and AWS SNS client. We then handle the incoming Lambda request. We create the bucket and image names. We call the detectLabels function to get all the labels using the AWS Rekognition service. Create the message to post and publish to the SNS. The detectLabels function is used to make the call to the Rekognition service using the bucket name:var A = require('aws-sdk');
var rek = new A.Rekognition();
var sns = new A.SNS();
AWS.config.update({region: 'us-east-1'});
exports.handler = (event, context, callback) => {
 console.log('Hello, this is nodejs!');
 // Get the object from the event
 var bucket = event['Records'][0]['s3']['bucket']['name'];
 var imageName = event['Records'][0]['s3']['object']['key'];
 detectLabels(bucket, imageName)
 .then(function(response){
 var params = {
 Message: JSON.stringify(response['Labels']), /* required */
 Subject: imageName,
 TopicArn: 'arn:aws:sns:us-east-1:XXXXXXXXXXXX:extract-image-labels-sns'
};
 sns.publish(params, function(err, data) {
 if (err) console.log(err, err.stack); // an error occurred
 else console.log(data); // successful response
});
 });
 callback(null, 'Hello from Lambda');
};
function detectLabels(bucket, key) {
 let params = {
 Image: {
 S3Object: {
 Bucket: bucket,
 Name: key
 }
 }
 };
 return rekognition.detectLabels(params).promise();
}

					Another thing to note is in the Lambda configuration in the S3 section. Make sure the trigger is enabled. If it is not, toggle the button to enable it:

			

			
				
					[image: Figure 3.34: The Configure triggers window]
				

			

			Figure 3.34: The Configure triggers window

			
				
					[image: Figure 3.35: Enabling the S3 trigger for the Lambda function]
				

			

			Figure 3.35: Enabling the S3 trigger for the Lambda function

			Note

			Make sure the S3 bucket is in the same region as the Lambda, or it won't be able to trigger the Lambda.

			This concludes the creation of all the infrastructure.

			Now, when you call the API to upload any image, you should see an email in your inbox with content similar to this:

			

			
				
					[image: Figure 3.36: Sample email after uploading an image]
				

			

			Figure 3.36: Sample email after uploading an image

			Deployment Options in the Serverless Architecture

			We have seen how we can create a serverless application using the AWS console. This is not the only way to achieve it. In the cloud world, infrastructure automation is a key aspect of any deployment. Cloud providers have built strong frameworks around their services that can be used to script out the entire infrastructure. AWS provides APIs, SDKs, and a CLI that can be consumed in various ways to provision infrastructure automatically.

			In general, there are three additional ways we can achieve the previous functionality without using the AWS console:

			
					AWS CLI: AWS provides a command-line interface for working with AWS services. It is built on top of an AWS Python SDK called boto. You just need to install Python on your Mac, Windows, or Linux machine and then install the AWS CLI.Once installed, you can run the following command in your Terminal or command line to check it is properly installed:
$ aws --version
aws-cli/1.11.96 Python/2.7.10 Darwin/16.7.0 botocore/1.8.2

					AWS Code SDKs: AWS provides many SDKs that can be used directly in your favorite programing language for working with AWS services. As of today, these are the programing languages AWS supports:.NET
Java
C++
JavaScript
Python
Ruby
Go
Node.js
PHP

					Serverless Framework: This is one option that is becoming more popular by the day. It is a command-line tool that can be used to build and deploy serverless cloud services. It can be used not only with AWS, but also with many other major cloud providers, such as Azure, Google Cloud Platform (GCP), and IBM Cloud.

			

			It is built in JavaScript and requires Node.js v6.5.0 or later to be installed. For deployment, you provide a YAML-based file, serverless.yml, to the CLI. It internally translates all the content of YAML into an AWS CloudFormation template and uses it to provision the infrastructure.

			It is again a very powerful tool for working with serverless AWS-managed services.

			Like the AWS CLI, it can also be very nicely integrated into a CI/CD process in an enterprise to achieve automation.

			Activity 4: Creating an API to Delete the S3 Bucket

			Create an API to delete the S3 bucket that we just created in the preceding exercise. In this activity, you need to expose an API that will accept the bucket name and will delete the S3 bucket.

			Here are the steps to complete the activity:

			
					Go to the AWS API Gateway console and in the API created in this chapter, create a Delete API.

					Configure the incoming headers and path parameters properly in the Method Request and Integration Request sections.

					Change the authorization of the Delete method from NONE to AWS_IAM.

					Click on the Deploy API.

					Test the Delete method using the Test Tool (Ready API).

			

			You should see the bucket getting deleted in the AWS S3 console.

			Note

			The solution for this activity can be found on page 157.

			Summary

			In this chapter, you have seen the challenges of traditional web application development and how serverless development can address them. You also learned how to work with API Gateway and expose a REST-based API with it. You integrated AWS S3 with API Gateway and created and read a bucket using PUT and GET APIs. We then created Lambda functions. We worked with AWS Rekognition in the event-based architecture to analyze images at runtime and identify important data inside them.

			In the next chapter, we'll explore the capabilities of AWS Athena. We'll also work with AWS Glue, and learn how to populate the AWS Glue Data Catalog.

		

	

			4

		

		
			Serverless Amazon Athena and the AWS Glue Data Catalog

		

		
			Learning Objectives

			By the end of this chapter, you will be able to:

			
					Explain serverless AWS Athena capabilities, as well as its storage and querying concepts

					Access Amazon Athena and its different use cases

					Create databases and tables in Athena

					Explain AWS Glue and its benefits

					Work with data catalogs and populate the AWS Glue Data Catalog

			

			This chapter delves into the capabilities of AWS Athena. You'll also work with AWS Glue, and learn how to populate the AWS Glue Data Catalog.

		

		
			Introduction

			Consider a situation where you're just about to leave for the day from the office, and at that very moment your boss asks you to run a report on a new, complex dataset. You're asked to finish this report before you leave for the day.

			In the past, completing such a report would've taken hours. You would have to first analyze the data, create a schema, and then dump the data before you could execute queries to create the required report.

			Now, with the AWS Glue and Athena services, you can get such reports done very quickly and leave for the day on time.

			In the previous chapter, we saw how serverless application development can address the challenges of traditional application development. In this chapter, we'll explore the capabilities of AWS Athena. We'll also work with AWS Glue, and learn how to populate the AWS Glue Data Catalog.

			Amazon Athena

			In simple terms, Amazon Athena is nothing but an interactive query service that is serverless. It makes use of standard SQL to analyze data in Amazon S3. It allows you to quickly query structured, unstructured, and semi-structured data that is stored in S3. With Athena, you don't need to load any datasets locally or write any complex ETLs (Extracts, Transforms, and Loads) as it provides the capability to read data directly from S3.

			Note

			ETL is a popular concept from the data warehouse world, where three separate functions are used to prepare data for data analysis. The term extract refers to data extraction from the source dataset, transform refers to data transformation (if required), and load refers to data loading in the final tables, which will be used for data analysis.

			The Amazon Athena service uses Presto technology. Presto is a distributed SQL query engine that is open source. Presto provides a SQL-like dialect for querying data and is designed to provide fast performance for running interactive analytic queries. The size of the data sources doesn't matter. The AWS management console, Athena API, Athena CLI, or a simple JDBC connection can be used to access Amazon Athena.

			Athena is a serverless offering, meaning that you don't need to set up or manage any underlying data servers. What you must do is set up a connection to your data in Amazon S3. Then, you must define the schema. Once you've done that, you can start querying with the help of the query editor in the AWS management console. You can use ANSI SQL queries with Amazon Athena, including the support of joins and functions, to query data in S3. Therefore, it's easy for anyone with basic skills in SQL to analyze large-scale datasets quickly.

			Amazon Athena supports multiple data formats such as CSV, JSON, and Parquet. With Athena, you can query encrypted data (be it encrypted on the server side or client side). Amazon Athena also gives you the option to encrypt your result sets by integrating with KMS (Key Management Service):

			
				
					[image: Figure 4.1: Ad hoc analysis using Amazon Athena]
				

			

			Figure 4.1: Ad hoc analysis using Amazon Athena

			Note

			Amazon Athena is priced per query. You will be charged for the data scanned per query. As you might've noticed, data can be stored in different formats on Amazon S3. Therefore, you can use different formats to store data in a compressed form, resulting in lower amounts of data being scanned by your query. You can partition your data or convert your data to columnar storage formats to read only the columns that are required to process the data. Amazon Athena costs start from $5/TB of data scanned.

			AWS provides native integration of Athena with the AWS Glue Data Catalog. The AWS Glue Data Catalog provides you with a metadata store that is persistent for your data in Amazon S3. You can, thereby, create tables and query data in Athena. We will study this concept in more detail later in this chapter, along with an exercise.

			Here are some of the use cases of Amazon Athena:

			
					Ad hoc analysis

					Analyzing server logs

					Understanding unstructured data – works well with complex data types such as arrays or maps

					Quick reporting

			

			Here are some of the tools that are used to access Amazon Athena:

			
					AWS Management Console

					A JDBC or ODBC connection

					API

					Command-line interface

			

			Databases and Tables

			Amazon Athena allows you to create databases and tables. A database is basically a grouping of tables. By default, we have a sampledb database that has been created in Athena, but you can create a new database and start creating your tables underneath it if you like. Also, you will find a table called elb_logs under sampledb:

			
				
					[image: Figure 4.2: The Database page]
				

			

			Figure 4.2: The Database page

			Exercise 10: Creating a New Database and Table Using Amazon Athena

			Let's go ahead and create a new database and table so that we can understand Athena, alongside a quick demo, in more detail. Athena works on data that's stored in S3. Before going to Athena, let's create an S3 bucket and upload the sample dataset that's provided. In this exercise, we will use the flavors_of_cacao.csv dataset that was provided with this book:

			
					Go to AWS services and search for Athena.You should be able to see the following window:
[image: Figure 4.3: Query Editor

]
Figure 4.3: Query Editor

					Now, click on Create table and choose Manually.Note
We will look into the Automatically (AWS Glue crawler) option in the next part of this chapter.

					Provide the required details, such as the database name, table name, and S3 bucket details. You need to provide the S3 bucket's details in the same place where you have the data stored that you want to analyze via Athena.

					Click on the Next button.You can create the table under the default (already selected) database as well:
[image: Figure 4.4: Add table

]
Figure 4.4: Add table
Note
The table name needs to be unique here, so choose a different table name than what you see here. Before creating the table, I uploaded the flavors_of_cacao.csv dataset into my S3 bucket, that is, s3://aws-athena-demo-0606/. However, you can make any changes in the underlying dataset post table creation, as long as you don't change the underlying schema. We will look at this in more detail.

					Click on Next, and you will see the different data formats that you can access using AWS Athena.

					Choose CSV and click on Next:[image: Figure 4.5: Data Format

]
Figure 4.5: Data Format

					On the next screen, define the columns, along with their data types. Either you can define all of the columns one by one, or you can click on the Bulk add columns option to add all of the columns' details into one place.We have nine columns in our datasets, so we will add the following information, along with their data types:
Company string,Bean_Origin string,REF int,Review_Date int,Cocoa_Percent string,Company_Location string,Rating decimal,Bean_Type string,Broad_Bean_Origin string
Note that the header is removed from the data file. The column details can be understood from the following screenshot:
[image: Figure 4.6: Bulk add columns

]
Figure 4.6: Bulk add columns

					Once you click on the Add button, you will note that all of the columns, along with their data types, are displayed. You can make any changes (as required) here as well:[image: Figure 4.7: The Columns section]
Figure 4.7: The Columns section

					Click on Next. You can configure partitions on this screen. Partitions allow you to create logical groups of information together, which helps with the faster retrieval of information. Partitions are generally recommended for larger datasets.However, since our dataset is quite small, we will skip configuring partitions for now:
[image: Figure 4.8: Partitions

]
Figure 4.8: Partitions

					Click on Create Table and Athena will run the create table statement. Your table will be created. Now, you should see following screen:[image: Figure 4.9: Run query

]
Figure 4.9: Run query
Here, we can note that our database, Athena_demo, has been created, and a new table, flavours_of_cocoa, has been created as well. You can see the table definition on the right of the screen.
Note
If you don't want to go through GUI for table creation, you can write the table Data Definition Language (DDL) directly into the query window and create the table. You can also use the ALTER and DROP TABLE commands to modify and drop the existing tables, respectively.

					Click on the Save as button and provide a name for the query:[image:]
Figure 4.10: Choosing a name window
Now, the table has been created, and you can run SQL statements to view the table data.

					In the following screenshot, you will see the 10 rows that have been selected from the table:[image: Figure 4.11: Selecting 10 rows

]
Figure 4.11: Selecting 10 rows

					Write SQL functions as well to analyze the data from different perspectives. Here, we will list the total products of a company that have a rating greater than 4 by performing a group by operation on the company and getting the required count:select company, count(*) cnt from flavours_of_cocoa
where rating > 4
group by company
order by cnt desc
limit 10;

					Execute the query.

			

			You'll see the following output in the result pane:

			
				
					[image: Figure 4.12: Output window

]
				

			

			Figure 4.12: Output window

			Since Athena is based on hive SQL and Presto, you can use many of the Hive functions with Athena.

			Note

			For the complete documentation on supported SQL queries, functions, and operators, go to https://docs.aws.amazon.com/athena/latest/ug/functions-operators-reference-section.html.

			With this, we have completed our exercise on AWS Athena. As we stated earlier in this chapter, Athena is a wonderful query service that simplifies analyzing data from Amazon S3 directly.

			Be aware that you get charged on the amount of data being analyzed for your query. In the preceding query, you can see the highlighted part for the amount of data being scanned by the query. However, if you don't apply the proper filters, you can end up scanning unnecessarily huge amounts of data, which eventually escalates the overall costs.

			AWS Glue

			AWS Glue is a serverless, cloud-optimized, and fully managed ETL service that provides automatic schema inference for your structured and semi-structured datasets. AWS Glue helps you understand your data, suggests transformations, and generates ETL scripts so that you don't need to do any ETL development.

			You can also set up AWS Glue for running your ETL jobs, automatically provisioning and scaling the resources needed to complete them. You can point AWS Glue to your data that's stored on different AWS services such as S3, RDS, and Redshift. It finds out what your data is. It stores the related metadata, such as schemas and table definitions, in the AWS Glue Data Catalog.

			Once your data is cataloged, you can start using it for different kinds of data analysis. For executing data transformations and data loading processes, AWS Glue generates code.

			First, let's understand the major components of AWS Glue, which might be new to the students:

			
					AWS Glue Data Catalog: A data catalog is used to organize your data. Generally, glue crawlers populate data catalogs, but you can use DDL statements as well to populate it. You can bring in metadata information from multiple data sources such as Amazon S3, Redshift, or RDS instances, and create a single data catalog for all of them. Now, all of the metadata is in one place and is searchable. The Glue catalog is basically a replacement for Hive Metastore.Note
A data catalog is mainly comprised of metadata information (definitions) related to database objects such as tables, views, procedures, indexes, and synonyms. Almost all databases in the market today have data catalogs populated in the form of information schema. Data catalogs help users to understand and consume data for their analysis. It is a very popular concept in the big data world.

					AWS Glue Crawlers: Crawlers are primarily used to connect with different data sources, discover the schema, and partition and store associated metadata into the data catalogs. Crawlers detect schema changes and version updates, and keep the data catalog in sync. They also detect if data is partitioned in the underlying tables.Crawlers have data classifiers written to infer the schemas for several popular data formats such as relational data stores, JSON, and Parquet format. You can also write a custom data classifier for a custom file format (using Grok pattern) that Glue doesn't recognize and associates it with the crawler. You can write multiple classifiers and, once your data is classified, Glue will ignore subsequent data classifiers.

			

			You can run Glue crawlers on an ad hoc basis or on a particular schedule. Moreover, with Glue crawlers being serverless, you only pay when they are in use.

			The following diagram depicts the complete workflow for AWS Glue:

			
				
					[image: Figure 4.13: AWS Glue

]
				

			

			Figure 4.13: AWS Glue

			In the preceding diagram, we have multiple data sources such as Amazon S3, Redshift, and RDS instances, which are connected by AWS Glue crawlers to read and populate the AWS Glue data catalogs. Also, you can use Amazon Athena or AWS Redshift Spectrum to access AWS Glue data catalogs for the purpose of data analysis.

			Exercise 11: Using AWS Glue to Build a Metadata Repository

			Let's look at an example of how AWS Glue automatically identifies data formats and schemas and then builds a metadata repository, thereby eliminating the need to manually define and maintain schemas. We will use the same chocolate-barratings dataset that we used previously for our Glue exercise:

			
					Log in to the AWS Management Console and go to AWS Glue service.

					Go to Crawlers and click on Add crawler to open the Add crawler screen. Let's name the crawler chocolate_ratings:[image: Figure 4.14: Crawler information

]
Figure 4.14: Crawler information

					Click on Next. Here, you can specify the Amazon S3 path where your dataset is located. We can either use the S3 picker (highlighted in yellow) for this or just paste in the S3 path:[image: Figure 4.15: Adding a data store

]
Figure 4.15: Adding a data store

					Click on Next. If you have data across multiple S3 buckets or other data sources such as RDS and Redshift, you can add them on this screen. We will only go with a single S3 source for this demonstration for now:[image: Figure 4.16: Adding another data store

]
Figure 4.16: Adding another data store

					On the next screen, define an IAM role for the crawler. This role provides the crawler with the required permissions to access the different data stores. Click on Next:[image: Figure 4.17: Choosing an IAM role

]
Figure 4.17: Choosing an IAM role

					Now, set up the schedule for the crawler. We can either run this crawler on demand or on schedule. If we automatically schedule a crawler, it helps us to identify any changes to the underlying data and keeps the data catalog up to date. This automatic update of the data catalog is very helpful for datasets that change on frequently. We will run it on demand for now:[image: Figure 4.18: Creating a schedule for the crawler

]
Figure 4.18: Creating a schedule for the crawler

					Here, you can either select an existing database to keep the data catalog or create a new one. We will create a new database called glue-demo for this demonstration. Also, if you want to add a prefix to all of the tables that have been created by crawler for easy identification, you can add the prefix here. We will skip this:[image: Figure 4.19: Adding a database

]
Figure 4.19: Adding a database

					Also, as we discussed earlier in this chapter, crawlers can handle changes to the schemas to ensure that table metadata is always in sync with the underlying data. As you can see in the following screenshot, the default settings allow crawlers to modify the catalogue schemas if the underlying data is updated or deleted. We can disable it as well, based on our needs:[image: Figure 4.20: Configuring the crawler’s output

]
Figure 4.20: Configuring the crawler's output

					Click on Next to review the crawler specifications and click on Finish to create the crawler:[image: Figure 4.21: Review all of the steps

]
Figure 4.21: Review all of the steps

					Now that the crawler has been created, let's go ahead and run it. Once the crawler has completed running, you will notice in the following screenshot that one new table has been added in the data catalog. This table is a metadata representation of data and points to the location where the data is physically located:[image: Figure 4.22: Adding the crawler

]
Figure 4.22: Adding the crawler

					Go to Tables and click the aws_athena_demo_0606 table to take a look at the schema that has been populated by the crawlers:

			

			
				
					[image: Figure 4.23: Editing the table

]
				

			

			Figure 4.23: Editing the table

			You can also change the data type of any column as required here. Also, you can view the partitions associated with the table.

			Since our table is defined in the catalog, we can query it using Amazon Redshift Spectrum or Amazon Athena. Both products allow you to query data directly from S3. We already looked at how to query it using Amazon Athena earlier in this chapter. The only difference will be that the database name will be different this time. Please go ahead and try it yourself.

			Now, we have seen how AWS Glue makes it easy to crawl data and maintain metadata information in the data catalog. Although there are multiple other ways to populate your catalog with tables such as manually defining the table, importing from an external Hive Metastore, or running Hive DDL queries to create the catalog, AWS Glue provides an easy to use method to create and maintain data catalogs on a regular basis. This concludes our discussion on AWS Glue.

			Activity 5: Building an AWS Glue Catalog for a CSV-Formatted Dataset and Analyzing the Data Using AWS Athena

			Imagine you are a data analyst. You have been provided with a dataset that contains inventory-to-sales ratios for each month since 1992.

			These ratios can be better explained as follows:

			Ratio = Number of months of inventory/Sales for a month

			Considering this, a ratio of 3.5 means that the business has an inventory that will cover three and a half months of sales. You have been asked to quickly review the data. You have to prepare a report to get a count of the months for the last 10 years when the inventories to sales ratio was < 1.25. For example, if the ratio was low four times in the month of January since 1992, then January 4 should be the result.

			A CSV formatted dataset called total business-inventories-to-sales ratio has been provided with this book. This dataset is derived from another dataset that's available on the Kaggle website (https://www.kaggle.com/census/total-business-inventories-and-sales-data). This dataset has two columns:

			
					Observed_Data: Date when the observation was made

					Observed_Value: Inventories to sales ratios

			

			Here are the steps to complete this activity:

			
					Create an AWS Glue crawler and build a catalog for this dataset. Verify that the data types are reflected correctly.

					Go to AWS Athena and create a new schema and table for the data, which you cataloged in step 1.

					Once you have the data exposed in Athena, you can start building your reports.

					Write a query to filter the data, where the inventories to sales ratios (observed_values) was less than 1.25, and group the output by month. Then, you will have the reports ready to share.Note
The solution for this activity can be found on page 158.

			

			Summary

			In this chapter, we learned about serverless AWS Athena capabilities, its storage, and its querying concepts. We also discussed different use cases for AWS Athena. Later, we learned about AWS Glue and its benefits. We looked at what data catalogs are, their uses, and how to populate the AWS Glue Data Catalog. In the end, we leveraged the catalog that we created via AWS Glue in AWS Athena to access the underlying data and analyze it.

			In the next chapter, we'll focus on the capabilities of Amazon Athena and AWS Glue.

		

	

			5

		

		
			Real-Time Data Insights Using Amazon Kinesis

		

		
			Learning Objectives

			By the end of this chapter, you will be able to:

			
					Explain the concept of real-time data streams

					Create a Kinesis stream using Amazon Kinesis Data Streams

					Use Amazon Kinesis Data Firehose to create a delivery stream

					Set up an analytics application and process data using Amazon Kinesis Data Analytics

			

			This chapter shows you how to unleash the potential of real-time data insights and analytics using Amazon Kinesis. You'll also combine Amazon Kinesis capabilities with AWS Lambda to create lightweight, serverless architectures.

		

		
			Introduction

			We live in a world surrounded by data. Whether you are using a mobile app, playing a game, browsing a social networking website, or buying your favorite accessory from an online store, companies have set up different services to collect, store, and analyze high throughput information to stay up to date on customer's choices and behaviors. These types of setups, in general, require complex software and infrastructures that can be expensive to provision and manage.

			Many of us have worked on aggregating data from different sources to accomplish reporting requirements, and most of us can attest that this whole data crunching process is often very demanding. However, a more painful trend has been that as soon as the results of this data are found, the information is out of date again. Technology has drastically changed over the last decade, which has resulted in real-time data being a necessity to stay relevant for today's businesses. Moreover, real-time data helps organizations improve on operational efficiency and many other metrics.

			We also need to be aware of the diminishing value of data. As time goes on, the value of old data continues to decrease, which makes recent data very valuable; hence, the need for real-time analysis increases even further.

			In this chapter, we'll look at how Amazon Kinesis makes it possible to unleash the potential of real-time data insights and analytics, by offering capabilities such as Kinesis Video Streams, Kinesis Data Streams, Kinesis Data Firehose, and Kinesis Data Analytics.

			Amazon Kinesis

			Amazon Kinesis is a distributed data streaming platform for collecting and storing data streams from hundreds of thousands of producers. Amazon Kinesis makes it easy to set up high capacity pipes that can be used to collect and analyze your data in real time. You can process incoming feeds at any scale, enabling you to respond to different use cases, such as customer spending alerts and click stream analysis. Amazon Kinesis enables you to provide curated feeds to customers on a real-time basis rather than performing batch processing on large, text-based log files later on. You can just send each event to Kinesis and have it analyzed right away to find patterns and exceptions, and keep an eye on all of your operational details. This will allow you to take decisive action instantly.

			Benefits of Amazon Kinesis

			Like other AWS serverless services, Amazon Kinesis has several benefits. Most of the benefits have already been discussed in terms of other services, so I will restrain myself from going into the details. However, here is the list of the benefits of using Amazon Kinesis' services:

			
					Easy administration

					Low cost

					Security

					Pay as you go capabilities

					Durability

					High scalability

					Choice of framework

					Replayability

					Continuous processing

					Highly concurrent processing

			

			Amazon Kinesis provides different capabilities, depending on different use cases. We will now look at three of the major (and most important) capabilities in detail.

			Amazon Kinesis Data Streams

			Amazon Kinesis Data Streams is a managed service that makes it easy for you to collect and process real-time streaming data. Kinesis Data Streams enable you to leverage streaming data to power real-time dashboards so that you can look at critical information about your business and make quick decisions. The Kinesis Data Stream can scale easily from megabytes to terabytes per hour, and from thousands to millions of records per second.

			You can use Kinesis Data Streams in typical scenarios, such as real-time data streaming and analytics, real-time dashboards, and log analysis, among many other use cases. You can also use Kinesis Data Streams to bring streaming data as input into other AWS services such as S3, Amazon Redshift, EMR, and AWS Lambda.

			How Kinesis Data Streams Work

			Kinesis Data Streams are made up of one or more shards. What is a shard? A shard is a uniquely identified sequence of data records in a stream, providing a fixed unit of capacity. Each shard can ingest data of up to a maximum of 1 MB per second and up to 1,000 records per second, while emitting up to a maximum of 2 MB per second. We can simply increase or decrease the number of shards allocated to your stream in case of changes in input data. The total capacity of the stream is the sum of the capacities of its shards.

			By default, Kinesis Data Streams keep your data for up to 24 hours, which enables you to replay this data during that window (in case that's required). You can also increase this retention period to up to 7 days if there is a need to keep the data for longer periods. However, you will incur additional charges for extended windows of data retention.

			A producer in Kinesis is any application that puts data into the Kinesis Data Streams, and a consumer consumes data from the data stream.

			The following diagram illustrates the simple functionality of Kinesis Data Streams. Here, we are capturing real-time streaming events from a data source, such as website logs to Amazon Kinesis Streams, and then providing it as input to another AWS Lambda service for interpretation. Then, we are showcasing the results on a PowerBI dashboard, or any other dashboard tool:

			
				
					[image: Figure 5.1: An image showing the simple functionality of Kinesis data streams

]
				

			

			Figure 5.1: An image showing the simple functionality of Kinesis data streams

			Exercise 12: Creating a Sample Kinesis Stream

			Let's go to the AWS console and create a sample Kinesis stream, which will then be integrated with Lambda to move the real-time data into DynamoDB. Whenever an event is published in the Kinesis stream, it will trigger the associated Lambda function, which will then deliver that event to the DynamoDB database.

			The following is a high-level diagram showcasing the data flow of our exercise. There are many real-world scenarios that can be accomplished using this architecture:

			
				
					[image: Figure 5.2: An image showing the data flow of our activity

]
				

			

			Figure 5.2: An image showing the data flow of the architecture

			Suppose you run an e-commerce company and want to contact customers that put items in to their shopping carts but don't buy them. You can build a Kinesis stream and redirect your application to send information related to failed orders to that Kinesis stream, which can then be processed using Lambda and stored in a DynamoDB database. Now, your customer care team can look into the data to get the information related to failed orders in real time, and then contact the customers.

			Here are the steps to perform this exercise:

			
					Go to AWS services and search for Kinesis. Once it has been selected, you will be redirected to the Kinesis dashboard. Here, you can view the services that have been created for all four different flavors of Amazon Kinesis:[image: Figure 5.3: A screenshot of the Amazon Kinesis dashboard

]
Figure 5.3: A screenshot of the Amazon Kinesis dashboard
Note
Our focus for this exercise is Kinesis Data Streams. We will look at other Kinesis services later in this chapter.

					Go to Data Streams and click on Create Kinesis stream:[image: Figure 5.4: A screenshot showing how to create Kinesis streams

]
Figure 5.4: A screenshot showing how to create Kinesis streams

					Provide the name of the Kinesis stream. Let's name it kinesis-to-dynamodb. Also, provide the estimated number of shards that you will need to handle the data. As we discussed earlier, read and write capacities are calculated based on the number of configured shards. Since we are creating it for demonstration purposes, let's put its value as 1.You will notice that the values against write and read get changed based on the number being provided against the number of shards. Once you are done, click on Create Kinesis Stream:
[image: Figure 5.5: A screenshot showing the process of naming the Kinesis stream and estimating the number of shards

]
Figure 5.5: A screenshot showing the process of naming the Kinesis stream and estimating the number of shards

					Once the stream has been created, you will notice the status of the stream as Active. Now, you are ready to use this stream for your incoming data:[image: Figure 5.6: A screenshot showing the status of the stream after creation]
Figure 5.6: A screenshot showing the status of the stream after creation
So, we have created a Kinesis data stream and we will integrate it now with DynamoDB using an AWS Lambda function.

					Let's go ahead and create a new table in DynamoDB that will store the data coming from the Kinesis Data Stream. Go to AWS services and search for DynamoDB. Then, click on Create table:[image: Figure 5.7: A screenshot showing how to create a new table

]
Figure 5.7: A screenshot showing how to create a new table

					Name your table sample-table and specify the createdate column partition key. Click on Create. This will create the required destination table for you:[image: Figure 5.8: A screenshot showing the creation of the destination table

]
Figure 5.8: A screenshot showing the creation of the destination table

					In the AWS Lambda service, write a Lambda function to fetch the records from the Kinesis data stream and store them in DynamoDB.

					Click on Create function under Lambda service. Click on Blueprints and search for kinesis-process-record. Click on kinesis-process-record template:[image: Figure 5.9: A screenshot showing the creation of the function under the Lambda service

]
Figure 5.9: A screenshot showing the creation of the function under the Lambda service

					Give a name to the Lambda function. Create a new role, which will allow Lambda to insert records into the DynamoDB database. Take a look at the following screenshot to find out which policies you need to attach to the role:[image: Figure 5.10: A screenshot showing the creation of a new role for the function

]
Figure 5.10: A screenshot showing the creation of a new role for the function

					Provide the required details about the kinesis stream. You can set up the appropriate value of the batch size, depending on the flow of messages. For now, we will keep the default value. Once you are done, click on create function:[image: Figure 5.11: A screenshot of setting the appropriate value for the batch size]
Figure 5.11: A screenshot of setting the appropriate value for the batch size

					When you create a Lambda function from a blueprint, you need to create the function first, before changing any code.

					Go to the section function code and replace the nodeJS code with the one provided in the kinesis-lambda-dynamodb-integration.js file.We are populating two columns in this code. The first one is the createdate column, which was also defined as PK in our DynamoDB table definition earlier, in step 7. We are using the default value for this column. The second column is the ASCII conversion for the base64 data, which is coming in as a part of the Kinesis data stream. We are storing both values as data in our DynamoDB table, sample-table. Then, we are using the putItem method of the AWS.DynamoDBclient class to store the data in a DynamoDB table:
[image: Figure 5.12: A screenshot of the code that’s used for populating two columns

]
Figure 5.12: A screenshot of the code that's used to populate the two columns

					Go ahead and save the code. To execute it, we need to create a Kinesis test event that will trigger the Lambda function and store the event data in the DynamoDB database. Click on Configure test event, provide a name (for example, KinesisTestEvent), and click on Create.

					Once the test event is created, go ahead and execute the lambda function. Your lambda function should get executed successfully. Execute it couple of times and you should start seeing data into your table in DynamoDB database.

			

			
				
					[image:]
				

			

			Figure 5.13: A screenshot showing the execution of the Lambda function that we created earlier

			This concludes our exercise on Amazon Kinesis data events and their integration with the DynamoDB database, via the AWS Lambda service.

			Amazon Kinesis Firehose

			Let's suppose you're working with stock market data and you want to run minute-by-minute analytics on the market stocks (instead of waiting until the end of the day). You will have to create dynamic dashboards such as top performing stocks, and update your investment models as soon as new data arrives.

			Traditionally, you could achieve this by building the backend infrastructure, setting up the data collection, and then processing the data. But it can be really hard to provision and manage a fleet of servers to buffer and batch the data arriving from thousands of sources simultaneously. Imagine that one of those servers goes down or something goes wrong in the data stream; you could actually end up losing data.

			Amazon Kinesis Firehose makes it easy for you to capture and deliver real-time streaming data reliably to Amazon S3, Amazon Redshift, or Amazon Elasticsearch Service. Using Amazon Firehose, you can respond to data in near real time, enabling you to deliver powerful interactive experiences and new item recommendations, and do real-time alert management for critical applications.

			Amazon Firehose scales automatically as volume and throughput varies and it takes care of stream management, including batching, compressing, encrypting, and loading the data into different target data stores supported by Amazon Firehose. As with other AWS services, there is no minimum fee or setup cost required, so you only pay for the data being sent by you by adjusting streaming data quickly and automating administration tasks.

			Amazon Firehose allows you to focus on your application and deliver great real-time user experiences rather than being stuck with the provisioning and management of a backend setup:

			
				
					[image: Figure 5.14: A diagram showing the functionalities of Amazon Kinesis Data Firehose]
				

			

			Figure 5.14: A diagram showing the functionalities of Amazon Kinesis Data Firehose

			Exercise 13: Creating a Sample Kinesis Data Firehose Delivery Stream

			In this exercise, we'll go to the AWS console and create a sample Kinesis Data Firehose delivery stream. As part of this exercise, we will deliver data to an S3 bucket:

			
					On Amazon Kinesis Dashboard, go to Data Firehose and click on Create delivery stream:[image: Figure 5.15: A screenshot showing how to create a Firehose delivery stream]
Figure 5.15: A screenshot showing how to create a Firehose delivery stream

					Provide the delivery stream's name. Let's call it Kinesis-firehose_to_S3. Now, there are two options here to specify the source of data. The first one is Direct PUT, which you can use as a source if you want to send data directly from applications, such as IOT, CloudWatch logs, or any other AWS application. The second one is the Kinesis Stream, which you can use if you have data coming via a regular Kinesis stream. Let's take Direct PUT as the source for this exercise. We will discuss using a Kinesis stream as a data source in a later part of this chapter: [image: Figure 5.16: A screenshot showing how to specify the source of data]
Figure 5.16: A screenshot showing how to specify the source of data
Click Next to go to Step 2: Process records.

					On this page, you can transform the records as required. As we discussed earlier in this chapter, Firehose allows you to do ETL with streaming data. To do the transformations, write a Lambda function. Let's skip this option for now:[image: Figure 5.17: A screenshot showing the options for Record transformation]
Figure 5.17: A screenshot showing the options for Record transformation
Just click on Next to move to Step 3: Choose destination.

					Kinesis Firehose also allows you to convert data formats on the go (for example, Parquet to JSON). You can write a Lambda function to easily achieve this. Let's skip this option for now, and click on Next to move to Step 4: Configure settings.

					On this page, you need to select the destination of your streaming data. As we discussed earlier, you can send your data to different destinations, such as S3, Redshift, or the Elasticsearch service. For this demo, we will choose Amazon S3 as the destination.Specify the S3 bucket details, such as where you want to save the data. Here, you can specify an existing bucket or create a new one. Leave the prefix blank. Once you are done, click on Next to move to Step 4: Configure settings:
[image: Figure 5.18: A screenshot showing how to create a new bucket or provide

details about an existing one]
Figure 5.18: A screenshot showing how to create a new bucket or provide details about an existing one

					Here, you can configure the buffer conditions, encryption, and compression settings. Buffer settings enable Firehose to buffer the records before they get delivered to S3. Let's set the buffer size as 1 MB and the buffer interval as 60 seconds. When either of these two conditions are met, the records will be moved to the destination.Note that you can specify the buffer interval to be between 60 and 900 seconds:
[image: Figure 5.19: A screenshot showing the configuration of the buffer conditions, encryption, and compression settings]
Figure 5.19: A screenshot showing the configuration of the buffer conditions, encryption, and compression settings
Let's keep encryption, compression, and error logging disabled, for now.

					Also, you need to specify the role that will be used to deliver the data to S3. We will go ahead and create a new role now:[image: Figure 5.20: A screenshot showing how to specify the role that will be used to

deliver the data to S3]
Figure 5.20: A screenshot showing how to specify the role that will be used to deliver the data to S3

					At this point, we need to create a new role, so we will open a separate AWS window and search for Roles. Click on Create role. We will go back to proceed from step 6 once the role has been created (step 12):[image: Figure 5.21: A screenshot showing the creation of a new role]
Figure 5.21: A screenshot showing the creation of a new role

					Select AWS service under trusted entity and choose Kinesis from the list of services that will use this role. Once you select Kinesis, Kinesis Firehose will appear as the possible use case. Click on Permissions:[image: Figure 5.22: A screenshot showing the selection of the trusted entity

type and service for the role]
Figure 5.22: A screenshot showing the selection of the trusted entity type and service for the role

					Attach the Permission policy now. Search for S3 and attach the AmazonS3FullAccess policy with the role, and click on Review:[image: Figure 5.23: A screenshot showing the attachment of the permission policy]
Figure 5.23: A screenshot showing the attachment of the permission policy

					Click on Review. Provide a name for the role, and click on Create role:[image: Figure 5.24: A screenshot showing how to add the role name and description]
Figure 5.24: A screenshot showing how to add the role name and description

					Now, the role has been created, so let's put in the required information on the screen from step 6:[image: Figure 5.25: A screenshot showing the fulfillment of details like the IAM Role and policy name]
Figure 5.25: A screenshot showing the fulfillment of details like the IAM Role and policy name

					Click on Review to verify the settings for Kinesis Firehose:[image: Figure 5.26: A screenshot showing the verification of settings for Kinesis Firehose]
Figure 5.26: A screenshot showing the verification of settings for Kinesis Firehose

					Click on Create delivery stream, and your Firehose delivery stream should be created successfully:[image: Figure 5.27: A screenshot showing the successful creation of the delivery stream]
Figure 5.27: A screenshot showing the successful creation of the delivery stream

					Let's try to ingest some sample data into our delivery stream and verify whether it reaches the destination.Click on the delivery stream to go to the details page for that stream. Under Test with demo data, click on Start sending demo data. This will start ingesting test data into the Firehose delivery stream:
[image: Figure 5.28: A screenshot showing the details of a particular stream]
Figure 5.28: A screenshot showing the details of a particular stream

					Once data ingestion has started, you should see the following message:[image: Figure 5.29: A screenshot showing the confirmation about demo data being sent to the delivery stream]
Figure 5.29: A screenshot showing the confirmation about demo data being sent to the delivery stream
You will have to wait for a few seconds (20 seconds) for the data to be ingested. Once data ingestion is done, you can click on Stop sending demo data.

					Now, it is time to verify whether the data has been delivered successfully to S3 or not. Go to the S3 location that we configured earlier to receive the data, and you should see the data there:

			

			
				
					[image: Figure 5.30: A screenshot showing the data has been successfully delivered]
				

			

			Figure 5.30: A screenshot showing the data has been successfully delivered

			Note that there might be some delay for data to appear in S3, depending on your buffer settings.

			This concludes our demo of Amazon Kinesis Firehose delivery streams.

			Activity 6: Performing Data Transformations for Incoming Data

			In the last exercise, we worked on a Kinesis Firehose demo that was integrated with Lambda to move real-time data into S3. You may have noticed a Lambda function in the architectural diagram, but we didn't use it in our exercise. There was a data transformation section (step 3) in the last exercise that we kept disabled.

			Now, as part of this activity, we will perform data transformation for incoming data (from Firehose) by using a Lambda function, and then store that transformed data in the S3 bucket. With data transformation, we can solve many real-world business problems. We are going to create a Kinesis Firehose data stream, transform the data using a Lambda function, and then finally store it in S3. The following are some examples of this:

			
					Data format conversion, such as from JSON to CSV, or vice versa

					Adding identifiers

					Data Curation and Filtering

					Data enhancements, like the addition of date or time

			

			Here are the steps to perform this activity:

			
					Start by creating a Kinesis Firehose data stream, and follow the steps that we followed in the last exercise.

					We disabled data transformation using Lambda in the last exercise. This time, enable the Transform source records with AWS Lambda option.

					Once it has been enabled, create a Lambda function to do the data transformation on incoming data.

					There are already some sample functions provided by Amazon. So, for the sake of simplicity, pick one of them, as well. Try out General Firehose Processing. You can read more about it on the AWS website, if required.

					Once the Lambda function has been created, ensure that it has the required privileges.

					Keep the rest of the settings as is.

					Now, configure an Amazon S3 bucket as the Firehose destination, like we did in the ast exercise.

					Send the test data from the Test with demo data section by clicking on Start sending demo data:[image: Figure 5.31: The Test with demo data window]
Figure 5.31: The Test with demo data window

					Go to the S3 location that was configured earlier to receive the data, and you should see the data file. Upon downloading this data file and opening it with Notepad, you should see the data in the CSV format, as shown here:

			

			
				
					[image: Figure 5.32: Screenshot showing data in the CSV format]
				

			

			Figure 5.32: Screenshot showing data in the CSV format

			Note

			The solution for this activity can be found on page 161.

			Amazon Kinesis Data Analytics

			You are now able to consume real-time streaming data using Amazon Kinesis and Kinesis Firehose, and move it to a particular destination. How can you make this incoming data useful for your analysis? How can you make it possible to analyze the data in real time and perform actionable insights?

			Amazon Kinesis Data Analytics is a fully managed service that allows you to interact with real-time streaming data, using SQL. This can be used to run standard queries, so that we can analyze the data and send processed information to different business intelligence tools and visualize it.

			A common use case for the Kinesis Data Analytics application is time series analytics, which refers to extracting meaningful information from data, using time as a key factor. This type of information is useful in many scenarios, such as when you want to continuously check the top performing stocks every minute and send that information to your data warehouse to feed your live dashboard, or calculate the number of customers visiting your website every ten minutes and send that data to S3. These time windows of 1 minute and 10 minutes, respectively, move forward in time continuously as new data arrives, thus computing new results.

			Different kinds of time intervals are used, depending on different use cases. Common types of time intervals include sliding and tumbling windows. Sharing different windows intervals is out of the scope of this book, but the students are encouraged to look online for more information.

			The following diagram illustrates a sample workflow for Amazon Kinesis Analytics:

			
				
					[image: Figure 5.33: An image showing the workflow of Amazon Kinesis Analytics]
				

			

			Figure 5.33: An image showing the workflow of Amazon Kinesis Analytics

			You can configure the Amazon Kinesis Data Analytics application to run your queries continuously. As with other serverless AWS services, you only pay for the resources that your queries consume with Amazon Kinesis Data Analytics. There is no upfront investment or setup fee.

			Exercise 14: Setting Up an Amazon Kinesis Analytics Application

			In the AWS console, set up the Amazon Kinesis Analytics application. We will also look at the interactive SQL editor, which allows you to easily develop and test real-time streaming analytics using SQL, and also provides SQL templates that you can use to easily implement this functionality by simply adding SQL from the templates.

			Using a demo stream of stock exchange data that comes with Amazon Kinesis Analytics, we will count the number of trades for each stock ticker and generate a periodic report every few seconds. You will notice that the report is progressing through time, generating the time series analytics where the latest results are emitted every few seconds, based on the chosen time window for this periodic report.

			The steps are as follows:

			
					Go to the Data Analytics tab in the Amazon Kinesis dashboard and click on the Create application button to open the Create application form. Provide the application's name. Let's call it kinesis-data-analytics, and click on Create application. You can leave the Description blank:[image: Figure 5.34: A screenshot showing the creation of the Kinesis Analytics application]
Figure 5.34: A screenshot showing the creation of the Kinesis Analytics application

					Once the data analytics application has been created successfully, you should get the following message on the screen:[image: Figure 5.35: A screenshot showing the success message, stating that the Kinesis Analytics application was created successfully]
Figure 5.35: A screenshot showing the success message, stating that the Kinesis Analytics application was created successfully

					Now, you need to connect this application with the source of the streaming data so that our analytics application starts getting data. Click on Connect Streaming data.

					You can choose either an existing Kinesis stream or a Kinesis Firehose delivery stream. Alternatively, you can configure a new stream as well. We will configure a new stream here, so let's select Configure a new stream:[image: Figure 5.36: A screenshot showing how to connect the application with the streaming data source]
Figure 5.36: A screenshot showing how to connect the application with the streaming data source

					Click on Create a demo stream. This will create a new stream and populate it with sample stock ticker data:[image: Figure 5.37: A screenshot showing the creation of the demo stream]
Figure 5.37: A screenshot showing the creation of the demo stream

					As you can see in the following screenshot, new demo stream creation involves the following steps:Creating an IAM role, creating and setting up a new Kinesis stream, populating the new stream with data, and finally, auto-discovering the schema and date formats:
[image: Figure 5.38: A screenshot showing the status of different processes while

the demo stream is being created]
Figure 5.38: A screenshot showing the status of different processes while the demo stream is being created

					Once the setup for the demo stream is complete, it gets selected as a source for the Kinesis data stream. The name of the stream in this example is SOURCE_SQL_STREAM_001. It takes you back to choosing the streaming data source, with the newly created stream selected:[image: Figure 5.39: A screenshot displaying the name of the created stream, and its details]
Figure 5.39: A screenshot displaying the name of the created stream, and its details

					Also, you will notice the sample of the data being generated by the Kinesis data stream. Please note that this schema has been auto-discovered by the Kinesis data analytics application. If you see any issues with the sample data or want to fix it, you can edit it or retry schema discovery.We will keep the other options disabled for now and move on:
[image: Figure 5.40: A screenshot displaying a sample of the data generated by the stream]
Figure 5.40: A screenshot displaying a sample of the data generated by the stream

					Click on Save and continue and you should be redirected to the Kinesis data analytics application page. Now, the Kinesis data stream setup has been completed, and we can start configuring other settings for our data analytics application:Note
You have the option to connect reference data with the real-time streaming data. Reference data can be any of your static data or output from other analytics, which can enrich data analytics. It can be either in JSON or CSV data format, and each data analytics application can be attached with only one piece of reference data. We will not attach any reference data for now.
[image:]
Figure 5.41: A screenshot displaying the READY status of the Kinesis Data Analytics application

					Now, we will go ahead and set up real-time analytics. This will enable us to write SQL queries or use an SQL from many templates that are available with it. Click on Go to SQL editor under Real time analytics.Click on Yes, start application in the pop-up window:
[image: Figure 5.42: A screenshot showing the dialog box to start an application]
Figure 5.42: A screenshot showing the dialog box to start an application
Now, we are in the SQL editor. Here, we can see the sample data from earlier that we configured in the Kinesis Data Stream. We will also notice a SQL editor, where we can write SQL queries.

					You can also add SQL from templates. For our demo, we will pick on SQL from the template and fetch the real-time results:[image: Figure 5.43: A screenshot showing the SQL editor used for writing SQL queries]
Figure 5.43: A screenshot showing the SQL editor used for writing SQL queries

					Click on Add SQL from templates and choose the second query from the left, which aggregates data in a tumbling time window.You will see the SQL query on the right-hand side. Click on Add this query to the editor:
[image: Figure 5.44: A screenshot showing the list of SQL queries that are generated when the Aggregate function in a tumbling time window is selected]
Figure 5.44: A screenshot showing the list of SQL queries that are generated when the Aggregate function in a tumbling time window is selected

					If you see any issue with the sample data, you can click on Actions to take the appropriate step:[image:]
Figure 5.45: A screenshot showing a list of different actions that can be used in case of issues with sample data

					Once your query appears in the SQL editor, click on Save and run SQL:[image:]
Figure 5.46: A screenshot showing the options to save and run SQL

					Once SQL is executed against the stream data, you will start to see results, as shown in the following screenshot:[image: Figure 5.47: A screenshot showing real-time analytics once SQL is executed]
Figure 5.47: A screenshot showing real-time analytics once SQL is executed

					Now, the Kinesis data analytics application is running this SQL against live streaming data every 10 seconds because that is the window that's specified in the SQL query. You will notice a change in the results in the following screenshot as compared to our last screenshot. This is because the results were refreshed while the screenshots were being taken:[image: Figure 5.48: A screenshot showing a list of data that changes every 10 seconds]
Figure 5.48: A screenshot showing a list of data that changes every 10 seconds
So, you have accomplished the task of querying the streaming data in real time, using simple standard SQL statements.

					Next, configure the destination of your real-time analysis. You can send this analysis to a Kinesis stream or a Kinesis Firehose delivery stream, and publish it on your BI dashboards. Alternatively, you can store them in Redshift or DynamoDB using the Firehose delivery stream. Go to the Destination tab and click on Connect to a destination:[image: Figure 5.49: A screenshot showing the Destination tab, where an application can be connected to any strea3m]
Figure 5.49: A screenshot showing the Destination tab, where an application can be connected to any stream
After clicking on Destination, you should see the following screenshot:
[image:]
Figure 5.50: A screenshot showing the different suggested destinations once the Destination tab has been selected

					Choose an existing Kinesis stream, and choose DESTINATION_SQL_STREAM for the in-application stream name; click on Save and continue.Now, you have completed the setup for the Kinesis data analytics application.

					You can review the settings for Source, Real-time analytics, and Destination on the application dashboard, as shown in the following screenshot. Note that at this point, your data analytics application is running real-time analytics using SQL statements on real-time data ingestion, which is happening via a Kinesis stream, and sending the query output to another Kinesis stream:[image: Figure 5.51: A screenshot showing the settings for the source, real-time analytics, and destination for the application]
Figure 5.51: A screenshot showing the settings for the source, real-time analytics, and destination for the application

					Once you have collected the required information, you can click on Actions to stop the data analytics application (and later, to start it again, as required):

			

			
				
					[image: Figure 5.52: A screenshot showing the status of the application once we have stopped running it]
				

			

			Figure 5.52: A screenshot showing the status of the application once we have stopped running it

			This concludes our exercise on the Kinesis Data Analytics application.

			In our last exercise, we created a Kinesis Data Analytics stream, where we could analyze data in real time. This is very useful when you want to understand the impact of certain data changes in real time, and make decisions for further changes. It has many real-word applications as well, such as in dynamic pricing on e-commerce websites, where you want to adjust the pricing based on the product demand in real time.

			Sometimes, there can be a requirement to join this real-time analysis with some reference data to create patterns within the data. Alternatively, you may just want to further enhance your real-time data with some static information to make better sense of your data.

			Activity 7: Adding Reference Data to the Application and Creating an Output, and Joining Real-Time Data with the Reference Data

			Earlier in this chapter, we saw that the Kinesis Data Analytics application provides capabilities to add reference data into existing real-time data. In the next activity, we will enhance our test stock ticker data (that was produced natively by Kinesis Data Streams) by joining it with static data. Currently, our data contains abbreviations for company names, and we will join it with our static dataset to publish full company names in the query output.

			Note

			There is a reference data file named ka-reference-data.json, which is provided in the code section. This is a JSON-formatted sample file. You can use either CSV or JSON as the format of the reference data.

			Here are the steps to complete this activity:

			
					Make sure that you have Kinesis data analytics in working condition, and that you are able to do real-time analysis, like we accomplished in the last exercise.

					Create an S3 bucket and upload the ka-reference-data.json file into the bucket.

					Go to the Kinesis data analytics application and add the reference data. Provide the bucket, S3 object, and table details, and populate the schema using schema discovery.

					Make sure that the IAM role is configured properly.

					Now, you should have the real-time streaming data and reference data available in the Kinesis Data Analytics application.

					Go to the SQL prompt and write the SQL statement to join the real-time streaming data with the reference data and out the company details whose names are provided in the reference file.

					You should be able to see the output with both the ticker symbol and the company name as an output in real time, and it should get refreshed every few minutes.Note
The solution for this activity can be found on page 165.

			

			Summary

			In this chapter, we focused on the concept of real-time data streams. We learned about the key concepts and use cases for Amazon Kinesis Data Streams, Amazon Kinesis Data Firehose, and Amazon Kinesis Data Analytics. We also looked at examples of how these real-time data streams integrate with each other and help us build real-world use cases.

			In this book, we embarked on an example-driven journey of building serverless applications on AWS, applications that do not require the developers to provision, scale, or manage any underlying servers. We started with an overview of traditional application deployments and challenges associated with it and how those challenges resulted in the evolution of serverless applications. With serverless introduced, we looked at the AWS Cloud computing platform, and focused on Lambda, the main building block of serverless models on AWS.

			Later, we looked at other capabilities of the AWS serverless platform, such as S3 storage, API Gateway, SNS notifications, SQS queues, AWS Glue, AWS Athena, and Kinesis applications. Using an event-driven approach, we studied the main benefits of having a serverless architecture, and how it can be leveraged to build enterprise-level solutions. Hopefully, you have enjoyed this book and are ready to create and run your serverless applications, which will take advantage of the high availability, security, performance, and scalability of AWS. So, focus on your product instead of worrying about managing and operating the servers to run it.

		

	

			>

		

		
			Appendix

		

		
			About

			This section is included to assist the students to perform the activities in the book. It includes detailed steps that are to be performed by the students to achieve the objectives of the activities.

		

		
			Chapter 1: AWS, Lambda, and Serverless Applications

			Solution for Activity 1: Creating a New Lambda Function That Finds the Square Root of the Average of Two Input Numbers

			
					Click on Create a function to create your first Lambda function on the AWS Lambda page.

					On the Create function page, select Author from scratch.

					In the Author from scratch window, fill in the following details:Name: Enter myFirstLambdaFunction.
Runtime: Choose Node.js 6.10. The Runtime window dropdown shows the list of languages that are supported by AWS Lambda and you can author your Lambda function code in any of the listed options. For this activity, we will author our code in Node.js.
Role: Choose Create new role from template(s). In this section, you specify an IAM role.
Role name: Enter lambda_basic_execution.
Policy templates: Select Simple Microservice permissions.

					Now click on Create function.

					Go to the Function code section.

					Use the Edit code inline option, and enter this code:exports.handler = (event, context, callback) => {
 // TODO
 let first_num = 10;
 let second_num = 40;
 let avgNumber = (first_num+second_num)/2
 let sqrtNum = Math.sqrt(avgNumber)
 callback(null, sqrtNum);
};

					Click on the dropdown next to Select a test event in the top-right corner of the screen and select Configure test event.

					When the popup appears, click on Create new test event and give it a name. Click on Create and the test event gets created.

					Click on the Test button next to test events and you should see the following window upon successful execution of the event:

			

			
				
					[image: Figure 1.18: Test successful window]
				

			

			Figure 1.18: Test successful window

			Solution for Activity 2: Calculating the Total Lambda Cost

			
					Note the monthly compute price and compute time provided by the Free Tier.The monthly compute price is $0.00001667 per GB-s and the Free Tier provides 400,000 GB-s.

					Calculate the total compute time in seconds.Total compute (seconds) = 20M * (1s) = 20,000,000 seconds

					Calculate the total compute time in GB-s.Total compute (GB-s) = 20,000,000 * 512MB/1024 = 10,000,000 GB-s

					Calculate the monthly billable compute in GB- s. Here's the formula:Monthly billable compute (GB- s) = Total compute – Free tier compute
 = 10,00,000 GB-s – 400,000 Free Tier GB-s
 = 9,600,000 GB-s

					Calculate the monthly compute charges in dollars. Here's the formula:Monthly compute charges = Monthly billable compute (GB-s) * Monthly compute price
 = 9,600,000 * $0.00001667
 = $160.02

					Calculate the monthly billable requests. Here's the formula:Monthly billable requests = Total requests – Free tier requests
 = 20M requests – 1M Free Tier requests
 = 19M Monthly billable requests

					Calculate the monthly request charges. Here's the formula:Monthly request charges = Monthly billable requests * Monthly request price
 = 19M * $0.2/M
 = $3.8

					Calculate the total cost. Here's the formula:Total cost = Monthly compute charge + Monthly request charges
 = $160.02 + $3.8
 = $163.82

			

			Chapter 2: Working with the AWS Serverless Platform

			Solution for Activity 3: Setting up a Mechanism to Get an Email Alert When An Object is Uploaded into an S3 Bucket

			
					Go to the AWS S3 service and click on Create bucket.

					Provide a Bucket name and select the region where the S3 bucket will be created. Click on Next. Note that the bucket name can't be duplicated.

					If you want to change any configuration, you can do it here. Click on Next.

					Now, you can change the settings related to the security of the S3 bucket. If you want to allow public access to the S3 bucket, you can uncheck the options here. Click on Next.

					Review all of the configuration settings. If you want to change anything, you can go back. Alternatively, click on Finish and your bucket should be created successfully.

					Go to the Lambda function that we created in the earlier exercise. Add S3 as a trigger under the Lambda configuration section:[image:]
Figure 2.54: Lambda configuration window

					Click on Configuration required and add the required details related to S3 bucket configuration, mainly the bucket name. Keep the rest of the settings as default:[image:]
Figure 2.55: Configure triggers window

					Click on Add to add that S3 bucket as a trigger to execute the Lambda function:[image: Figure 2.56: Window showing S3 bucket being added as a trigger]
Figure 2.56: Window showing S3 bucket being added as a trigger

					Click on Save to save the changes to the Lambda function:[image: Figure 2.57: Window showing S3 bucket getting saved]
Figure 2.57: Window showing S3 bucket getting saved

					Also, the email message will have changed in the Lambda code to reflect our activity. See line # 8 in the following screenshot. You can customize it based on your needs:[image: Figure 2.58: Window showing code of index.js]
Figure 2.58: Window showing code of index.js

					Now, upload a new sample file to the S3 bucket. You should see an email alert in your mailbox.

					Go back to the Amazon S3 service, click on the bucket name, and click on the Upload button.

					Click on Add files and select the file that you want to load into the S3 bucket. Click on Next.

					Set the file level permissions. Click on Next.

					Select the storage class. You can continue with the default option. Click on Next.

					Review the configuration and click on Upload.

					The file should be uploaded successfully:[image: Figure 2.59: Overview section of Amazon S3]
Figure 2.59: Overview section of Amazon S3

					Once the file has been uploaded, go to your mailbox and you should see an email alert:

			

			
				
					[image: Figure 2.60: Output showing a new object being uploaded to the S3 bucket]
				

			

			Figure 2.60: Output showing a new object being uploaded to the S3 bucket

			This concludes our activity.

			Chapter 3: Building and Deploying a Media Application

			Solution for Activity 4: Creating an API to Delete the S3 Bucket

			
					Go to the AWS API Gateway console and in the API created in this chapter, create a Delete API.

					Configure the incoming headers and path parameters properly in the Method Request and Integration Request sections.Your API configuration should look similar to the following screenshot:
[image: Figure 3.37: The DELETE method execution window]
Figure 3.37: The DELETE method execution window

					Remember to change the authorization of the Delete method from NONE to AWS_IAM.

					Click on the Deploy API.

					Test the Delete method using the Test Tool (Ready API). Set content-type as application/xml:

			

			
				
					[image: Figure 3.38: Output showing the bucket getting deleted]
				

			

			Figure 3.38: Output showing the bucket getting deleted

			You should see the bucket getting deleted in the AWS S3 console.

			Chapter 4: Serverless Amazon Athena and the AWS Glue Data Catalog

			Solution for Activity 5: Building a AWS Glue catalog for a CSV-Formatted Dataset and Analyzing the Data Using AWS Athena

			
					Log in to your AWS account.

					Upload the data file total-business-inventories-to-sales-ratio.csv (provided with this book) into a S3 bucket. Make sure that the required permissions are in place:[image: Figure 4.24: Uploading the data file]
Figure 4.24: Uploading the data file

					Go to the AWS Glue service.

					Select Crawlers and click on Add Crawler.

					Provide the crawler name and click on Next.

					Provide the path of the S3 bucket, where the file was uploaded in step 2. Click on Next.

					Click on Next, as we don't want to add another data store.

					Choose an existing IAM role that was created in Exercise 11: Using AWS Glue to Build a Metadata Repository. Alternatively, you can create a new one. Click on Next.

					Let's keep it as Run on demand and click on Next.

					Either you can create a new database here or click on the dropdown to select an existing one. Click on Next.

					Review the settings and click on Finish. You have successfully created the crawler.

					Now, go ahead and run the crawler.

					Once the run of the crawler is completed, you will see a new table being created under the schema that you chose in step 10:[image: Figure 4.25: The new table after the crawler run was completed]
Figure 4.25: The new table after the crawler run was completed

					Go to tables, and you should see the newly created table, inventory_sales_ratio. Note that the table name is derived from the bucket name.

					Go to the AWS Athena service. You should see a new table name under the database that was selected in step 10.

					Click on new query and write the following query to get the expected output:select month(try(date_parse(observed_date, '%m/%d/%Y'))) a, count(*) from inventory_sales_ratio
where observed_value < 1.25 group by month(try(date_parse(observed_date, '%m/%d/%Y')))
order by a ;

					When the query gets executed, you should see the expected output:[image: Figure 4.26: The output after the query has run]
Figure 4.26: The output after the query has run

					Looking at the output, we have a total of 8 months since 1992 where the inventories to sales ratios was < 1.25. We also have the month level count as well.

			

			We have successfully completed the activity.

			Chapter 5: Real-Time Data Insights Using Amazon Kinesis

			Solution for Activity 6: Performing Data Transformations for Incoming Data

			
					Start by creating a Kinesis Firehose Data Stream and follow the steps that we completed in the last exercise.

					We disabled data transformation using Lambda in the last exercise. This time, enable the Transform source records with AWS Lambda option.

					Once enabled, create a Lambda function to do the data transformation for incoming data:[image: Figure 5.54: The Transform source records with AWS Lambda window]
Figure 5.54: The Transform source records with AWS Lambda window

					There are already some sample functions that have been provided by Amazon. You can click on Create New and it will open up the list of transformation functions provided by AWS. Let's choose General Firehose Processing:[image: Figure 5.55: The Choose Lambda blueprint window]
Figure 5.55: The Choose Lambda blueprint window

					This opens up the Lambda function window. Here, you need to provide the name of the function, along with the IAM role information:[image: Figure 5.56: The Basic information window]
Figure 5.56: The Basic information window

					Edit the code inline and replace the existing code with the code provided in the json2csv_transform.js file, under the code section. Keep the rest of the settings as is:[image: Figure 5.57: Window showing code of index.js]
Figure 5.57: Window showing code of index.js

					Once the Lambda function has been created, go back to the Firehose screen and configure the rest of the settings, such as the Amazon S3 bucket, which will work the same as the Firehose destination that we configured in the last exercise:[image: Figure 5.58: The Convert record format window]
Figure 5.58: The Convert record format window

					Also, once the Lambda function has been created, update the IAM role in the Firehose configuration to reflect the required access for the Lambda function:[image: Figure 5.59: The Test with demo data window]
Figure 5.59: The Test with demo data window

					Everything else remains the same as in the last exercise.

					Send the test data from the Test with demo data section by clicking on Start sending demo data:[image: Figure 5.60: Window showing the Start sending demo data button]
Figure 5.60: Window showing the Start sending demo data button

					Go to the S3 location that we configured earlier to receive the data and you should see the data file, as shown here:[image: Figure 5.61: Window showing the data file added successfully]
Figure 5.61: Window showing the data file added successfully

					Upon downloading this data file and opening it with Notepad, you should see the data in CSV format, as shown here:

			

			
				
					[image: Figure 5.62: Screenshot showing data in the CSV format]
				

			

			Figure 5.62: Screenshot showing data in the CSV format

			Solution for Activity 7: Adding Reference Data to the Application and Creating an Output, Joining Real-Time Data with the Reference Data

			
					Ensure that you have Kinesis Data Analytics in working condition and that you are able to do real-time analysis, like we accomplished in the last exercise:[image: Figure 5.63: The kinesis-data-analytics page]
Figure 5.63: The kinesis-data-analytics page

					Create a S3 bucket and upload the ka-reference-data.json file into the bucket:[image: Figure 5.64: Screenshot showing the ka-reference-data.json file added to the S3 bucket]
Figure 5.64: Screenshot showing the ka-reference-data.json file added to the S3 bucket

					Go to the Kinesis Data Analytics application page and click on Connect reference data. Provide the bucket, S3 object, and table details, and populate the schema using schema discovery:[image: Figure 5.65: The Connect reference data source page]
Figure 5.65: The Connect reference data source page
You will notice in the preceding screenshot that the Kinesis application will create the IAM role with required access.
Schema discovery will detect the schema for the reference data file and show you the sample data:

[image: Figure 5.66: The Schema section]
Figure 5.66: The Schema section

					Click on Save and close button. You will have successfully added the referenced data:[image: Figure 5.67: Page showing the referenced data added successfully]
Figure 5.67: Page showing the referenced data added successfully
Now, you should have the real-time streaming data and reference data available in the Kinesis Data Analytics application. The following screenshot is showing real-time streaming data: The following image is showing the added reference data:
[image: Figure 5.68: The Real-time analytics section]
Figure 5.68: The Real-time analytics section
[image: Figure 5.69: The Source data section]
Figure 5.69: The Source data section

					Go to the SQL prompt and write the SQL statement to join real-time streaming data with the reference data, and out the company details whose names are provided in the reference file.

					Run the following query in the SQL prompt. In this query, we are joining (left join) SOURCE_SQL_STREAM_001 with the ka_reference_data dataset and filtering where company name is not null:CREATE STREAM "KINESIS_SQL_STREAM" (ticker_symbol VARCHAR(14), "Company_Name" varchar(30), sector VARCHAR(22), change DOUBLE, price DOUBLE);
CREATE PUMP "STREAM_PUMP" AS INSERT INTO "KINESIS_SQL_STREAM"
 SELECT STREAM ticker_symbol, "kar"."Company", sector, change, price
 FROM "SOURCE_SQL_STREAM_001" LEFT JOIN "ka_reference_data" as "kar"
 ON "SOURCE_SQL_STREAM_001".ticker_symbol = "kar"."Ticker"
 where "kar"."Company" is not null ;
Note
You can use the inner join while removing the where clause to achieve the same results.
[image: Figure 5.70: The result page for real-time analytics]
Figure 5.70: The result page for real-time analytics

					You should be able to see the output with both the ticker symbol and company name as output in real-time. It should get refreshed every few minutes:

			

			
				
					[image: Figure 5.71: Output showing both the ticker symbol and company name]
				

			

			Figure 5.71: Output showing both the ticker symbol and company name

			This concludes our activity on adding reference data and using it to perform real-time data analytics on Amazon Kinesis Data Analytics.

		

	
OEBPS/Images/C09510_Fig5.10.jpg
Lambda > Functions) Createfunction > Using blueprint kinesis-process-record

Basic information o

Defines the permissions of your function. Note that new roles may not be available for a fow minutes after creation. Learn more.
about Lambda execution roles.

‘ Create new role from template(s) v ‘

Lambda wil automatically create a role with permissions from the selected policy templates. Note that basic Lambda permissions
(logging to CloudWatch) will automatically be added. If your function accesses a VPC, the required permissions will also be added.

Role name
Enter a name for your new role.

© This new role will be scoped to the current function. To use it with other functions, you can modify it in the IAM console.

Policy templates
Choose one or more policy templates. A role will be generated for you before your function i created. Learn more about the
permissions that each policy template wil add to your role.

OEBPS/Images/C09510_Fig5.14.jpg
Lambda

Transform
Input Kinesis
Data Stream Firehose

Amazon Kinesis
Data Firehose

Redshift

Elasticsearch

Output
Data

OEBPS/Images/C09510_Fig5.13.jpg
sampledable Cose
ont e o a= .o

v | Y e e s T o
= MY - - oo
@ sample-table. Scan: [Table] sample-table: createdate A

Viswing 1102 ftems

[Table] sample table: reatedate 3 ~

© Ada mer

createcate @~ message -

1534194467985 Hello, i s atest 222 HROaXMgaXMgY SBOZXNOIDIZ

1504194472104

est 232 SGVSDGESIHROIXMQaXIAGYS

ZXNODIM

OEBPS/Images/C09510_Fig5.12.jpg
Goto

Tools Window

B indexis

exports. handler

L
15 Tab?
16 i

18 doc. put
19 i

2 re

event. Records. forgach((record)
t

- (event, context, callback) => {

t

crestedate: Date.nou(). tostring(),
Faudata; record.finests.dats,
message: new BuFfer record.kinesis.data, ‘basess’).ostring(*ascii’)

Lenane:

‘sample-tavle’

(params, function(err, data) {
(err) {
callback(err, null);

1se {
callback(null, data);

OEBPS/Images/C09510_Fig5.11.jpg
Kinesis trigger

Kinesis stream
Select a Kinesis strea to listen for updates on.

\ *]

Batch size
The largest number of records that will be read from your stream at once.

[1o \

Starting position
The position in the stream to start reading from. For more information, see SharditeratorType in the Amazon Kinesis API Reference.

[t v

In order to read from the Kinesis trigger, your execution role must have proper permissions.

[] Enable trigger
Enable the trigger now, or create it in a disabled state for testing (recommended).

OEBPS/Images/C09510_Fig5.18.jpg
Kinesis Firehose - Create delivery stream

SigriaNameandsource Select destination (%)
Step 2: Process records
Destination® @ Amazon 53 @
Amazon Redshift @
Amazon Elasticsearch Service @
Step 5: Review Splunk @

| step 3: Choose destination

Step 4: Configure settings

Firehose to S3 data flow overview

Source Firehose delivery stream 53 bucket

OO0 | —s |[souce Processed
records records

ODD|iB® @ (destination)
OD0O|iB®@E

If processing fails

53 bucket

-- -~ Optional (optional backup)
S3 destination
S3bucket" | kinesis-s3-0810 v | & || createnew
View kinesis-s3.0810 in $3 console 7
Prefix | Specily prefix o

* Required Cancel Previous m

OEBPS/Images/C09510_Fig5.17.jpg
Step 1: Name and source Process records

| step 2: Process records
Kinesis Firenose can transform records o convert record format before delivery.

Step 3: Choose destination
Process records data flow overview
Step 4: Configure settings

Step 5 Review Source records Processed records

oo0n

Transform Gonvert record _

L BED
BB

noo source records . format
Invoke AWS Refer to AWS Glue
Lambda function table for schema

Optional

Transform source records with AWS Lambda

To retumn records from AWS Lambda to Kinesis Firehose after transformation, the Lambda function you invoke must be
compliant with the required record transformation output model. Learn more

Record transformation® @ Disabled
Enabled

Convert record format

Data in Apache parquet or Apache ORC format is typically more efficient to query than JSON. Kinesis Data Firehose can
convert your JSON-formatted source records using a schema from a table defined in AWS Gilue (7. For records that aren't in
JSUN format, create a Lambda function that converts them to JSUN in the Transtorm source records with AWS Lambda
section above. Leam more

Record format conversion* @ Disabled
Enabled
f record format conversion is enabled, Firehose can deliver data to Amazon S3 only. Record

format conversion will be configured using the OpenX JSON SerDe. For other options use the
AWS CLL

* Required Cancel Previous m

OEBPS/Images/C09510_Fig5.16.jpg
Kinesis Firehose - Create delivery stream

| step 1: Name and source New delivery stream [2)

Step 2: Process records
Delivery streams load data, automatically and continuously, to the destinations that you specify. Kinesis Firehose resources are

Step 3: Choose destination not covered under the AWS Free Tier, and usage-based charges apply. For more information, see Kinesis Firehose pricing

Step 4: Configure settings
Delivery stream name® | kinesis-firehose_{o_s3

Step 5 Review
Acceptable are and letters, numbers, . hyphens,
‘and periods.

Choose source

Choose how you would prefer to send records to the delivery stream.

Firehose data flow overview

Source Firehose delivery stream Destination
OO0 | —s |[souce | { Processed noo
records records

DOD| BB B
D00 BB B

-~ Optional

Source” @ Direct PUT or other sources.
‘Choose this option to send records directly to the delivery stream, or o send records from
AWS IoT, CloudWatch Logs, or CloudWatch Events.

Kinesis stream

OEBPS/Images/C09510_Fig5.15.jpg
Firehose delivery streams

Kinesis Firehose delivery streams continuously collect, transform, and load streaming data into the destinations that you specify.

Amazon Kinesis «

Dashboard
PETENPSESL Testwithdemodata Delete
Data Streams
 Fiter or search by name
| pata Firehose

Data Analytics Name status Created + Source

OEBPS/Images/C09510_Fig5.19.jpg
Kinesis Firehose - Create delivery stream

Step 1: Name and source

Configure settings (2]

S ROCSSE s Configure buffer, compression, logging, and IAM role settings for your delivery stream

Step 3: Choose destination

| step 4: Configure settings S3 buffer conditions
Step 5: Review Firehose buffers incoming records before delivering them to your S3 bucket. Record delivery will be triggered once either of
these conditions has been satisfied. Learn more
Buffersize® | 1 M8

‘Specify a buffer size betveen 1-128 MB

Buffer interval® | 60 seconds

‘Specify a bufer interval between 60-900 seconds

S3 compression and encryption

Firehose can compress records before delivering them to your S3 bucket. Compressed records can also be encrypted in the
S3 bucket using a KMS master key. Leam more

$3 compression” @ Disabled
czIP
‘Snappy
zp

S3encryption” @ Disabled
Enabled

OEBPS/Images/C09510_Fig5.21.jpg
Search 1AM < Roles

Dashboard
What are IAM roles?
Groups.
1AM roles are a secure way to grant permissions to entities that you trust. Examples of entites include the following
Users.
- « 1AM user in another account
oles
= Application code running on an EC2 instance that needs to perform actions on AWS resources
Policies = An AWS service that needs to act on resources in your account to provide its features
Identity providers = Users from a corporate directory who use identty federation with SAML
Account settings 1AM roles issue keys that are valid for short durations, making them a more secure way to grant access.

Credential report Additional resources:

« 1AM Roles FAQ
5 - 1AM Roles Documentation
Encryption keys
+ Tulorial. Seliing Up Cross Account Access

« Common Scenarios for Roles

oo

OEBPS/Images/C09510_Fig5.20.jpg
Error logging

Firehose can log record delivery erfors to CloudWatch Logs. If enabled, a CloudWatch log group and corresponding log
streams are created on your benalf. Learn more

Error logging® Disabled
® Enabled

IAM role

Firehose uses an IAM role to access your specified resources, such as the S3 bucket and KMS key. Leam more

IAMrole* | Create new or choose ('

* Required Ccancel Previous m

OEBPS/Images/C09510_Fig5.25.jpg
Amazon Kinesis Firehose is requesting permission to use resources in your account

Cl

Allow to give Amazon Kinesis Firehose Read and Wite access to resources in your account.

~ Hide Details

Role Summary @

Role Description Provides access to AWS Services and Resources.
IAM Role firehose_delivery_role_0815
Poli

Name Create a new Role Policy v

¥ View Policy Document

OEBPS/Images/C09510_Fig5.24.jpg
Create role 12 o

Review

Provide the required information below and review this role before you create it

Role name*

Use alphanumeric and +=, @-_' characters. Maximum 64 characters.

Role description | Allows Kinesis Firehose to transform and deliver data to your destinations using CloudWatch
Logs, Lambda, and S3 on your behalf

Maximum 1000 characters. Use alphanumeric and “+=, @-_ characlers.

AWS service: firehose.amazonaws.com

WF AmazonS3FullAccess 7

Permissions boundary ~Permissions boundary is not set

OEBPS/Images/C09510_Fig5.23.jpg
Create role

~ Attach permissions policies

Choose one or more policies to attach to your new role.

Policy name +.
» W8 AmazonDMSRedshiftS3Role
¥l » W AmazonS3FullAccess
» W AmazonS3ReadOnlyAccess
» AWSLambdaS3ExecutionRole-a¢2ad675-ceb.
» AWSLambdaS3ExecutionRole-f62c9fa-4824-

» W QuickSightAccessForS3StorageManagementA

» Set permissions boundary

* Required

Permissions policy (2)

Permissions policy (1)

Permissions policy (1)

N

e

Showing 6 results

Description
Provides access to manage S3 settings f.
Provides full access to al buckets via the

Provides read only access to all buckets

Policy used by QuickSight team to acces.

Cancel Previous

OEBPS/Images/C09510_Fig5.22.jpg
Create role

Select type of trusted entity

0 :

AWS service Another AWS account Web identty SAML 2.0 federation
AP o2 o nc overs o || @ Gogriaorany Openid Vour corratedrectoy

Allows AWS services to perform acions on your behalf. Lear more
Choose the service that will use this role

EC2

Allows EC2 instances to call AWS services on your behalf

Lambda

Allows Lambda functions to call AWS services on your behalf.

API Gateway Config EMR loT Rekognition

AWS Support oMs ElastiCache Kinesis s3

AppSync Data Lifecycle Manager Elastic Beanstalk Lambda sws

Application Auto Scaling Data Pipeline Elastic Container Service Lex SNs

Auto Scaling Deeplens Elastic Transcoder Machine Leaming SWF

Baich Directory Service ElasticLoadBalancing Macie SageMaker
CloudFormation DynamoDB Glue MediaConvert Service Catalog
CloudHSM EC2 Greengrass OpsWorks Step Funcions
CloudWatch Events EC2- Fleet GuardDuty RDS Storage Gateway
CodeBuild EKS Inspector Redshift Trusted Advisor
CodeDeploy

Select your use case

inesis Firehose

Allows Kinesis Firehose to transform and deliver data to your destinations using CloudWatch Logs, Lambda, and S3 on your behalf.

Cancel

OEBPS/Images/C09510_Fig5.29.jpg
Kinesis Firehose delivery streams > kinesis-firehose_to_s3

kinesis-firehose_to_s3

~ Test with demo data

"QZ", "sector":"HEALTHCARE", "change":-0.85, "price":84.51}

This test runs a scriptin your browser to put demo data in your Firehose delivery stream, which sends to your S3 destination. The format of the demo data is {"ticker_symool":

Step 1

Start sending demo data to your delivery stream. If you already have data streaming to this destination, demo data is sent along with your source records.

© Demo data is being sent to your delivery stream
If the test is successful, you will see demo records in this destination kinesis-s3-0810 (2

O Sending demo data

Step 2
Stop sending demo data to your delivery stream after you've concluded your test.

(i |
| stop sending demo data |

OEBPS/Images/C09510_Fig5.28.jpg
Kinesis Firehose delivery streams > kinesis-firehose_to_s3

kinesis-firehose_to_s3

~ Test with demo data

", "sector”:"HEALTHCARE", "change":-0.05, "pric

in your Firshose delivery stream, which sends to your S3 destination. The format of the demo data is {"ticker_symbol”

This test runs a script i

your browser to put demo dat

Step 1

Start sending demo data to your delivery stream. If you already have data streaming to this destination, demo data is sent along with your source records.

Start sending demo data

Step 2

Stop sending demo data to your delivery stream after you've concluded your test.

Stop sending demo data

OEBPS/Images/C09510_Fig5.27.jpg
Amazon Kinesis.

Dashboard

Data Steams
 Data Firehose
Data Analycs

Video Sreams

Extemal resources

Whats new

Firehose delivery streams

Kinesis Firehose delivery streams continuously collect, transform, and load streaming data into the destinations that you speciy.

© Successfully created delivery stream kinesis-firehose_to_s3

Noxt,send records dirctly o the deivry siream using the Amazon Kinesis Agent or the Firghose API using the AWS SDK. o send records from AWS loT, CloudWatch Logs, or CloudWatch Events. Lear more

)

Y Filter or search by nan

Name - Status 4 Croated

Kinesis-firchose_to_s3 Active 2018.08-14703 560530

Source

Direct PUT and.

Record transformation @

Disabled

«

< Viowing 1-3 of 3 delivery streams >

Destination

Amazon 3
Kinesis-s30810 &

>

OEBPS/Images/C09510_Fig5.26.jpg
Step 1 Name and source REGiSH

SR PRI oeSieCon Review your configuration detals before creating your delivery stream.

Step 3 Choose destination

Step 4 Configure setings Name and source =
Step 5: Revi
[senzpaes) Delivery stream name kinesis-firshose_to_s3
Source Direct PUT or other sources
Afte creatig the deivery siream, send recorcs direcly o the defvery sieam, or send records.
ffom AVWS IoT. CloudWatch Logs, o CloudWaich Events

Process records =8
Source record transformation Disabled

Record format conversion ~ Disabled

Destination (M=
Destination Amazon $3
S3 bucket kinesis-s3-0810 (7'

3 bucket Prefix None

Settings Edit
53 buffer conditions 1M or 60 seconds
Compression Disabled
Encryption Disabled
Error logging Enabled

IAMrole firehose_delivery_role_0815

Cancel | Previous | (ST R

OEBPS/Images/default_cover.jpeg
Serverless
Architectures
with AWS

OEBPS/Images/C09510_Fig5.50.jpg
Connect to destination

Destination” ® Kinesis stream @
Kinesis Firehose delivery stream @
AWS Lambda function @

Kinesis stream” | kinesis-to-dynamodb v | & || createnew @

View kinesis.to-dynamodb in Kinesis Streams 7

In-application stream

In-application streams are continuous flows of data records. You create in-application streams in SQL to contain the data you want to persist to the

specified destination. Learn more.

Connectin-application stream @ Choose an existing in-application stream
‘Specify a new in-application stream name
Use this option for in-application streams that you havent created yet,
but plan to create t a later fime. Specifing a siream name ensures
that you don' lose output data

In-application stream name* | DESTINATION_SQL_STREAM vz

Output format @ JSON
csv

Access to chosen resources

Create or choose IAM role with the required permissions. Leam more

Access to chosen resources” @ Create / update IAM role kinesis-analytics-kinesis-data-analytics-us-east-1
Choose from IAM roles that Kinesis Analytics can assume.

[Save and continue

OEBPS/Images/C09510_Fig3.12.jpg
Resources ‘ Actions ~ \./{Image} Methods

=il No methods defined for the resource.
v fimage}

ANY
DELETE
GET
HEAD
OPTIONS
PATCH
POST
PUT

OEBPS/Images/C09510_Fig5.54.jpg
Transform source records with AWS Lambda

Kinesis Firehose can transform source records before delivery. To return transformed source records to Kinesis Firehose, the Lambda function you invoke must be compliant with the required record transformation output

model. Learn more

Source record transformation

Lambda function”

Lambda function version”

Description
Runtime

Disabled
® Enabled
ison2csv_transform

View json2csv_transtorm in Lambca (7

SLATEST

Q

o
<

Create new

An Amazon Kinesis Firehose stream processor that accesses the records in the input and returns them with a processing status.

nodejs6 10

OEBPS/Images/C09510_Fig3.11.jpg
Resources Actions ~ ./{image} Methods

RESOURCE ACTIONS

v/ Create Method No methods defined for the resource.

. 4 I(irnagej

Afile} Create Resource

Enable CORS
Edit Resource Documentation

Delete Resource

API ACTIONS
Deploy API

Import API
Edit API Documentation
Delete API

OEBPS/Images/C09510_Fig3.10.jpg
Resotirces Actions~ | @ New Child Resource

v/ Use this page to create a new child resource for your resource. ®
i{imagel Configure as (Z'proxy resource ol]
Resource Name* file
Resource Path* /{image}/ ‘{file)]

You can add path parameters using brackets. For example, the resource path {username}
represents a path parameter called ‘username'. Configuring /{image}/{proxy+} as a proxy
resource catches all requests to its sub-resources. For example, it works for a GET request to
/{image}/foo. To handle requests to /{image}, add a new ANY method on the /{image} resource.

Enable APl Gateway CORS (i)

* Required

OEBPS/Images/C09510_Fig5.52.jpg
Kinesis Analytics applications e

Kinesis Analytics applications continuously read and process data from streaming sources in realtime. Learn more.

s

Y Fleror soarh by spplcation mame < Viowing 11 of applcations >
Applcaton name . swe =
o v inesisdaaanaytics Running
o Created: Aug 16, 2018 1.08:19 AV
Last Updateds Aug 16. 2018 127,08 A
armawsbinasis us-oast. AIRESER rssrikinsis-anahtcs-demo-strosm oREoR
o " p—
50N
Output
Destination

‘am aws Kinesis us-east- WSURIIEII rsam Kinesis-to-dynamodb

Role ARN: - am.aws frSMRMISSRSS osfsenice o inesis-anabyic Kineisdata-anlylcs-us-east
Format: JSON

OEBPS/Images/C09510_Fig5.51.jpg
kinesis-data-analytics Application status: RUNNING

Application ARN: s eTESmuglyiiciisssast NN pptootuniinasiseisimmminion
Application version ID: 4 @
Application metrics: View in CloudWatch Metrics &

+ i

Source

Streaming data

Connect to an existing Kinesis stream or Firehose delivery stream, or easily create and connect to a new demo Kinesis stream. Each
application can connect to one streaming data source. Leam more
Source In-application stream name 1D @ Record pre-processing @

Kinesis stream

2 SOURCE_SQL_STREAM_001 2.1 Disabled
Kinesis-analytics-demo-stream (' = -

Reference data (optional)

Enrich data from your streaming data source with JSON or CSV data stored as an object in Amazon S3. Each application can connect
to one reference data source. Leam more

Connect reference data

Real time analytics

Continuously analyzing your source data with SQL. Leam more

Go to SQL results.

Destination

(Optional) Connect an in-application stream to a Kinesis stream, or to a Firehose delivery stream, to continuously deliver SQL results
to AWS destinations. The limit is three destinations for each application

Connect new destination | Disconnect destination

Destination In-application stream name ne

Kinesis stream kinesis-to-dynamodb (7' DESTINATION_SQL_STREAM 41

OEBPS/Images/C09510_Fig5.58.jpg
Convert record format

Data in Apache parquet or Apache ORC format is typically more efficient to query than JSON. Kinesis Data Firehose can convert your JSON-formatted source records using a schema from a table defined in AWS Glue &
For records thal aren't in JSON forma, create a Lambda function that converts them to JSON in the Transform source records with AWS Lambda section above. Learn more

Record format conversion Disabled

Source record S3 backup

Source record 3 backup Disabled

Amazon S3 destination

S3bucket aws-athena-demo-0606 (7'
Prefix apache
Buffer conditions 1 MB or 60 seconds
Compression Disabled

Encryption Disabled

OEBPS/Images/C09510_Fig3.16.jpg
¥ URL Path Parameters

Name Mapped from @
bucket method.request.path.image
© Add path

» URL Query String Parameters

v HTTP Headers

Name Mapped from @
x-amz-acl ‘authenticated-read'
Content-Type

method.request.header.Content-Type

© Add header

Caching

Caching

$0

#£0

$£0

OEBPS/Images/C09510_Fig3.15.jpg
v HTTP Request Headers

Name

Content-Type

© Add header

Required

Caching

=/ %]

OEBPS/Images/C09510_Fig5.57.jpg
Handler Info

Code entry type Runtime
Edit code inline. v Nodejs 610 index handler
4+ Fle Edt Find View Goto Tools Window Lfdc o)
5 {2 sson2csv_transform B indexjs x
£
£ o) indexss 1 use strict’;
2 console. log(‘Loading function’);
z 3
& 4 exports.handler - (avent, context, callback) =>
5 /" brocess the List of records */
6 const output - event.records.map((record) > {
7 Const entry = (Buffer. from(record.data, "basea")). tostring("uts");
1 Lt pansed_entry - JSON. parse(entry);
s
10 1* Transfora the parsed results */
n onst resut - s{parse,etryticke, sybol) S{parsed sntr.sctor} S(pased.entry.change) {parse entey-price) + "
2 const payload - (Buffer. from(result, “utfs’)) . toString('baseet
13 retupn
1
s
16
7)
18
) 5
2 cailback(ul,
2 reconds:
2y
ol

OEBPS/Images/C09510_Fig5.56.jpg
information info

‘ json2csv_transform ‘

Role
Defines the permissions of your function. Note that new roles may ot be available for a few minutes after creation. Learn more
about Lambda execution roles.

‘ Choose an existing role v ‘

Existing role
You can use an existing role with this function. Lambda must be able to assume this role, and the role must have Amazon
CloudWatch Logs permissions.

‘ firehose_delivery_role_0814 v ‘

Lambda function code
Code is pre-configured by the chosen blueprint. You can configure it after you create the function. Learn more about deploying Lambda functions.

Runtime
Nodejs 6.10

OEBPS/Images/C09510_Fig3.14.jpg
Resources

Y

~ /{image)
GET

I{file}y

Actions~ | @ /(image} - GET - Method Execution

TEST

,

Client

Method Request

Auth: NONE

ARN: ain.aws execule-api.us-east-
1 shriojs6lj/*/GET/*

Method Response

HTTP Status: 200
Models: application/json => Empty

Integration Request

Type: AWS
Reglon: us-easl-1

Integration Response

HTTP status pattern: - v

Output passthrough: Yes

(£) 201108 abelo)s ajdws

OEBPS/Images/C09510_Fig5.55.jpg
Choose Lambda blueprint

Choose the blueprint you want to use to configure your function in Lambda. Then return here, close this dialog box, and

choose the newly created Lambda function.

Y Filter Lambda blueprints

Lambda blueprint

General Firehose Processing (4

Apache Log to JSON

Apache Log to CSV

Syslog to JSON (7'

Syslog to CSV

Description
An Amazon Kinesis Firehose stream processor that
accesses the records in the input and returns them

with a processing status. Use this processor for any
custom transformation logic

An Amazon Kinesis Firehose stream processor that
converts input records from Apache Common Log
format to JSON.

An Amazon Kinesis Firehose stream processor that
converts input records from Apache Common Log
format to CSV.

An Amazon Kinesis Firehose stream processor that
converts input records from RFC3164 Sysiog format to
JSON.

An Amazon Kinesis Firehose stream processor that

Close

OEBPS/Images/C09510_Fig3.13.jpg
Actions v

Resources
Choose the integration point for your new method.
v/
It
M ((;n;jge) Integration type Lambda Function @
e} HTTP @
Mock @
® AWS Service @
VPC Link @
AWS Region s_east-1
AWS Service Simple Storage Service (S3)

AWS Subdomain

HTTP method

Action Type

Path override (optional)
Execution role
Content Handling

Use Default Timeout

GET, v

Use action name

® Use path override

{bucket}

arn:aws:iam: ‘-role/api-s3-invoke-demo
Passthrough ve

e)

OEBPS/Images/C09510_Fig3.19.jpg
- f
~ /image}
GET
PUT
- /ffile}
PUT

Credentials cache Do not add caller credentials to cache key "
Content Handling Passthrough +* @
Use Default Timeout ¥ @

v URL Path Parameters

Name

Mapped from @
bucket method.request.path.image
object method.request.path file
© Add path

» URL Query String Parameters

v HTTP Headers

Name Mapped from &

Content-Type method request header.Content-Type

© Add header

» Mapping Templates @

Caching

Caching

£0

£0

£0

OEBPS/Images/C09510_Fig3.18.jpg
Resources Actions »

~ /{image}
GET
PUT

- /file}

PUT

Choose the integration point for your new method.

Integration type

AWS Region

AWS Service

AWS Subdomain

HTTP method

Action Type *

Path override (optional)
Execution role
Content Handling

Use Default Timeout

Lambda Function @
HTTP &
Mock @

® AWS Service @

VPC Link @

us-east-1

Simple Storage Service (S3)

PUT v

Use action name

® Use path override

{bucket}/{object}

am-aws:iam’ role/api-s3-invoke-demo
Passthrough ve
XY

OEBPS/Images/C09510_Fig3.17.jpg
Resources | Actions~ @ /fimage} - PUT - Method Execution

vl

v Himage} (] Method Request L] Integration Request
TEST
GET P Auth: NONE Type: AWS
B ARN: am aws execute-api.us-east- Paths: bucket
Afile} -— 1 shriojs6l"/PUT/* p—

Headers: Content-T)
we Headers: Content-Type

Region: us-east-1

Client

Method Response . Integration Response

HTTP Status: 200
Models: application/json => Empty

HTTP status pattern: - v
Output passthrough: Yes

(cs) 291198 abeuo)s ajdwis

OEBPS/Images/C09510_Fig5.59.jpg
» Test with demo data

Detail Monitoring
o
Delivery stream ARN arn aws firehose us-east- 1 S ideliverystream/KF
Status Active
Created 2018-11-27T08.01+0530
1AM role firehose_delivery_role_0815 (7
Create new or update ('

Source

To send records directly to the delivery stream use the Amazon Kinesis Agent of the Firehose API using the AWS SDK, or send records from AWS IoT, CloudWatch Logs, or CloudWalch Events. Leam more

Source Direct PUT or other sources.

OEBPS/Images/C09510_Fig5.61.jpg
AmazonS3 > aws-athena-demo-0606 / json2csv2018 / 12 / 10 / 11

Overview

Q. Type a prefix and press Enter to search. Press ESC to clear.

2, Upload Create folder ownload | | Actions v

O Name 1=

[[KF-9-2018-12-10-11-37-59-6459c927-961d-4a77-b855-4215C955e a8

OEBPS/Images/C09510_Fig3.23.jpg
Deploy APl @

Choose a stage where your API will be deployed. For example, a test version of your AP|
could be deployed to a stage named beta.

Deployment stage [New Stage] 4
Stage name* dev
Stage description this is first development stage
Z
Deployment description this is the deployment
descriotionl p

Cancel Deploy

OEBPS/Images/C09510_Fig5.65.jpg
Connect reference data source Sepllcation status: Rutaing

Enrich data from your streaming data source by connecting to JSON or CSV data, up to 1GB in size, that is stored as an object in Amazon S3. Each
application can connect to one reference data source. Learn more

Amazon S3 bucket® aws-athena-demo-0613 v Fa) Create new
View aws-athena-demo-0613 in Amazon S3 (7

Path to Amazon S$3 object” ka-reference-data json

o lookup an object's path, go to Amazon S3 (2, navigate to the JSON or CSV object you want to use for reference
data, and then choose Copy path from the object's details.
View specified object in Amazon S3 (2

In-application reference table name

Specify a name for your reference data table when authoring SQL queries. Names with lowercase characters will need to be wrapped in quotes in SQL
queries. Leam more

In-application reference table name* ka_reference_data

Up to 32 characters. Must begin with a letter, and may only contain letters, numbers, and underscores.

Access permissions

Create or choose IAM role with the required permissions. Lear more

Access permissions® @ Create / update IAM role kinesis lytics-kinesis-dat: lyti t-1

Choose from IAM roles that Kinesis Analytics can assume

OEBPS/Images/C09510_Fig5.64.jpg
Amazon S3 > aws-athena-demo-0613

Overview
Pubi

Q_ Type a prefix and press Enter to search. Press ESC to clear.

load ate folder Actions v

2

[J Name 1=

[D ka-reference-datajson

OEBPS/Images/C09510_Fig3.22.jpg
Resources Actions~ ./ Methods

| RESOURCE ACTIONS
v - | Create Method
v Aimage} Create Resource
GET
PUT Enable CORS
v /{file} Edit Resource Documentation
PUT
APIACTIONS
Deploy API
Import API

Edit APl Documentation
Delete API

OEBPS/Images/C09510_Fig3.21.jpg
Settings

Configure settings for your API deployments

API Key Source

Choose the source of your API Keys from incoming requests. Configure deployments to receive API keys from the x-api-key header or from a Lambda Authorizer

API Key Source HEADER

Content Encoding

Allow compression of response bodies based on client's Accept: ing header. C ion is triggered when response body size is greater than or equal to your configured threshold. The maximum body size
threshold is 10 MB (10,485,760 Bytes). The following compression types are supported: gzip, deflate, and identity.

Content Encoding enabled
Binary Media Types

You can configure binary support for your API by specifying which media types should be treated as binary types. API Gateway will look at the Content-Type and Accept HTTP headers to decide how to handle the
body.

image/png X}

© Add Binary Media Type

Save Changes

OEBPS/Images/C09510_Fig5.63.jpg
kinesis-data-analytics Application status: RUNNING

Application ARN: arn‘aws kinesisanalytics:us-east- | WS 2pplication/kinesis-data-analytics

Application version ID: 2 @
Application metrics: View in CloudWatch Metrics (7

WV Source

Streaming data

Connect to an existing Kinesis stream or Firehose delivery stream, or easily create and connect to a new demo Kinesis stream. Each
application can connect to one streaming data source. Learn more

Source In-application streamname 1D @ Record pre-processing @

ra Kinesis stream kinesis-analytics-demo-stream (72 SOURCE_SQL_STREAM_001 2.1 Disabled

Reference data (optional)

Enrich data from your streaming data source with JSON or CSV data stored as an object in Amazon S3. Each application can connect to
one reference data source. Learn more

Connect reference data

OEBPS/Images/C09510_Fig5.62.jpg
TBV, HEALTHCARE, -9.54,181.46
BFH, RETAIL,0.58,17.63

10P, TECHNOLOGY, 0.43,119.19
NFLX, TECHNOLOGY, -1.23, 97.77
PPL, HEALTHCARE, —0.26, 30.02
WEC, FINANCIAL,-0.19,46.6
SAC, ENERGY, 3.4,58.97

CVB, TECHNOLOGY, —0.65,52.17
DFG, TECHNOLOGY, 1.56,137.77
WSB, FINANCIAL,-3.14,107.39
ABC, RETAIL,-0.78,24

KIN, ENERGY,-0.01,5.04

WEFC, FINANCIAL, -1.36,45.24
PPL, HEALTHCARE, -1.1, 28.92
WMT, RETAIL,-1.16,69.35

XTC, HEALTHCARE, -0.55,112.49
SAC, ENERGY,-2.71,56.26

JYB, HEALTHCARE, -1.77, 43.45
ABC, RETAIL,0.8,24.8

10P, TECHNOLOGY, -1.1,118.09
DFG, TECHNOLOGY, —0.36,137.41

OEBPS/Images/C09510_Fig3.20.jpg
image-demo
Resources
Stages
Authorizers
Gateway Responses
Models
Resource Policy
Documentation

I Settings

OEBPS/Images/C09510_Fig3.27.jpg
Projects

SMARTBEAR

LoadU| ™

File Edit View Project AP Operation Metnod Request Tools Help

< > Psed I Hsave ¥ Addtotest [Default environment v @ wssconfig f AuthManager €3 Refactoring

8l vroy @ envionments M Events < Databases @l Ms K Preferences

[Search Q] Request 1
Projects [Projects] Method Endpoint Resource Parameters
- 88 RESTProject 1 | |https/shrtoj: ste-api.us-east-1. -+ [dev/mohit-1128-2099 Add to TestCase |
32 hitpse/ciflozcdes.execute-api.us-east-1.ama
= [Dev [/dev/mohit-1126-2099] % +6
Dev Request Response
ur
5 Request1
Request Raw Outline Form XML JSON HIML Raw Outline = Overview
=X O v oa HITP/1.1 200 OK 4]
Date: Mon, 03 Dec 2018 09:23:32 GMT
Content-Type: application/ison
Content-Length: 0
Connection: keep-arive
x-amz-apigu-id: RUSKGHDOIAMFUDA=
4 Add Parameter % ae3e7
[(——a——)
A Advanced options
Request Properties | Request Params
Property Value Media Type [sovlication/sml__[v] [[7] Post QueryString
Name Request 1 -
Description
Encoding
Endpoint https://shelojsBlj.execut..
Timeout
Bind Address
Follow Redirects true
Follow 302 Redirect with...false:
Username
Password
Domain 1| D
Authentication Type No Authorization TR il s 03| WS I o [sSLinfo @ carsi] @
S5L Keystore L SSLinfo (4 certs)| Headers (&)
Strip Whitespaces false

£ c s ~ Learn about the request editor

R S Logs response time: 545ms (0 bytes)

OEBPS/Images/C09510_Fig5.69.jpg
Application status: RUNNING

Source data Real-time analytics Destination

Streaming data

2
SOURCE_SQL_STREAM_001 The reference data below represents the first 100 rows from the connected Amazon S3 object (7, and is current as of

the last application or service update. If it appears out of date, choose Synchronize reference data table from the

Reference data (optional) @ Actions options to reload. Learn more

O ka_reference_data

Actions v
Q

Ticker Company
VARCHAR(4) VARCHAR(16)
AMZN TopCompany
PSD CompanyA
AsD CompanyB
BMB CompanyC
MMB CompanyD
WAS CompanyE

SAW CompanyF

OEBPS/Images/C09510_Fig3.26.jpg
Project Created X

What do you want to do next?

© Continue t descrie your APE
Stay in Projects and edit r
(You can create test cases by

parameters and requests.

O Create a test case
Select to create a test case in SoapUl, add r
- rtions, transfer values, create data-driven ts

nse
and more.

Leam about AP interfaces and test cases

[] Remember my selection Cox]

OEBPS/Images/C09510_Fig5.68.jpg
Real-time analytics

Save and run SQL Add saL from D saL saL guide (7 Kinesis data generator tool (7

T
2 /e
3 * Welcome to the SQL editor
3z .
“AE
6 | * The SQL code you write here will continuously transform your streaming data
7 | * when your application is running.
il
9 | * Get started by clicking "Add SQL from templates” or pull up the
10 | * documentation and start writing your own custom queries.
1. *
bt
13
oo
Application status: RUNNING
Sourcedata | Real-timeanalytics | Destination
Streaming data The streaming data below is a sample from Kinesis data stream kinesis-analytics-demo-stream (2
© SOURCE_SQL_STREAM_001 g i 8 -
Reference data (optional) @ Actions w
ka_reference_data
Q
ROWTIME TICKER_SYMBOL = SECTOR CHANGE PRICE PARTITION_KEY -
TIMESTAMP VARCHAR(4) VARCHAR(16) REAL REAL VARCHAR(12)
2018-12-07 11:4151547 ALY ENERGY 187 9097 PartionKey
2018-12-07 11:4151547 TGH FINANCAL 029 6632 Partiionkey

2018-12-07 11:41:51.547 KIN ENERGY 014 519 PartitionKey

OEBPS/Images/C09510_Fig3.25.jpg
@ New Project

W Create a project from REST URL

API Definition [https://cifiozcaes.execute-apius-east-1.amazonaws.com/dev |
REST Discovery httpi//example.com/rescue/patch/search?parameter=value
. Default method
Empty Project [,m v]
Learn about creating projects from REST URLs
Learn about creating projects

OEBPS/Images/C09510_Fig5.67.jpg
LR

Streaming data
Connect to an existing Kinesis stream or Firehose delivery stream, or easily create and connect to a new demo Kinesis stream. Each
application can connect to one streaming data source. Learn more

Source In-application streamname 1D @ Record pre-processing @

s Kinesis stream kinesis-analytics-demo-stream (## SOURCE_SQL_STREAM_001 2.1 Disabled

Reference data (optional)

Enrich data from your streaming data source with JSON or CSV data stored as an object in Amazon S3. Each application can connect to
one reference data source. Learn more

Connect reference data Disconnect
Source In-application reference table name. DO
Amazon S3 object (& ka_reference_data 211

Real time analytics
Author your own SQL queries or add SQL from templates to easily analyze your source data. Learn more

Go to SQL editor

OEBPS/Images/C09510_Fig3.24.jpg
dev Stage Editor oo

v & dev

k.d @® Invoke URL: https://0c .execute-api.us-east-1.amazonaws.com/dev

Settings Logs Stage Variables SDK Generation Export History History Canary

Configure the metering and caching settings for the dev stage.
Cache Settings

Enable APl cache '
Default Method Throttling

Choose the default throttling level for the methods in this stage. Each method in this stage will respect these rate and burst settings. Your current account level
throttling rate is 10000 requests per second with a burst of 5000 requests. Read more about AP| Gateway throttling

Enable throttling ¥ @

Rate 10000 requests per second

Burst 5000 requests

OEBPS/Images/C09510_Fig5.66.jpg
Schema

Schema discovery can generate a schema using records from the source. Schema column names are the same as in the source, unless they contain special
characters, repeated column names, or reserved keywords. Learn more

Schema discovery successful x
Detected JSON format and applied schema
« To capture a new sample from the chosen reference data source for discovery, choose Retry schema discovery below.

Edit schema Retry schema discovery

Raw Formatted

Q Filter by column name
Ticker Company
VARCHAR(4) VARCHAR(16)
AMZN TopCompany
PSD CompanyA
ASD CompanyB
BMB CompanyC
MMB CompanyD
WAS CompanyE
SAW CompanyF

OEBPS/Images/C09510_Fig3.29.jpg
Roles » api-lambda-rekog-demo

Summary
Role ARN arn:aws:iam:: rrole/api-lambda-rekog-demo ()
Role description Allows Lambda functions to call AWS services on your behalf. | Edit
Instance Profile ARNs 74
Path /
Creation time 2018-04-15 20:36 UTC+0530
Maximum CLI/API session duration 1 hour Edit
Trust Access Advisor Revoke sessions

Attach policy Attached policies: 3

Policy name +
» W AWSLambdaFullAccess
» W AmazonRekognitionFullAccess

» W AmazonSNSFullAccess

Policy type +
AWS managed policy
AWS managed policy
AWS managed policy

© Add inline policy

OEBPS/Images/C09510_Fig3.28.jpg
SMARTBEAR

File Edit View Project APl Operation Method Request Tools Help

<> Pseds

[Search Q

Projects [Projects]
= [REST Project 1
2 https://cjflozcded.execute-api.us-east-1.ama
-0 Dev [/dev/mohit-1128-2099/firstimage.pt
& [Dev

2 Request1

Hisave 3 Addtotest [Default environment

Dashb

~] B Wssconfig) AuthManager €} Refactoring

ecure 8 | | pady) = jiceV #

Integrations

8§l vroy @ Envionments M Events S Databases @) Ms ¥ pr

Request 1

Method __Endpoint Parameters
PUT || ttps://shrlojsélj.execute-api.us-east-1.amazonaws.com || /dev/mohit-1128-2099/firstimage.png

Request Response

Request Rew Outline Form
+X mO v

+ Add Parameter

A Advanced options

XML JSON HTML Raw Outline = Overview

O | [Frresiiz00 ox
Date: Mon, 03 Dec 2018 09:54:01 QT

Content-Type: application/ison

Content-Length: 0

Connection: keepalive

Id: Scvel
x-amz-apigw-id: RUyBAEQbIAMF£Dw=

1eSdellns7

[Post QueryString

X-Amzn-Trace-Id: 22,

[Request Properties |

Property [Value
Name Request 1 -
Description
Encoding
Endpoint
Timeout
Bind Address
Follow Redirects
Follow 302 Redirect with..
|Username

UTF-8
hitps://shrlojsj execut...

Name Content type Size Part

Type

o

| Cached |

|C:/Users/mo001.... image/png 21909

OEBPS/Images/C09510_Fig4.11.jpg
© Newaquery 1 © crsate_table_flv... © +

4 kelect * from flavours_of cocoa linit 10;

Fiter ables and views
~ Tables (1) Create table
»favours_of_cocoa :
~Views (0) Croat view

You have ol crssted any views. To ceate a viw, 1 query and
ek "Croae view from query”

M) Sevess | Createviewtromaquery (Runtime: 144 seconds, Data scanned 124 58K8) Fomatquery Clear

Use - Entr o un quary, G- Space o atocompite

Resuts o
company boan_origin o roview_dte ‘cocon_percont riing bean_type broad_bean_origin

1 AMoin Agua Grande s 206 % n 20 Tome

2 Avoin Koime s a0ts % 3 Togo

3 Ao Ausane s 05 ™% 3 Togo

4 AMoin Avata o 2015 ™% s oo

5 AMoin outs e a0 % G ponu

5 Aoin Carenero B 20m 0% 3 Ciiolo Venezueia

7 Ao cuba nis 204 % i cuba

5 Aoin SurdelLago B 20 % 4 Cilo Vonezuela

9 AMoin Puerto Cabelo s 201 0% 1 Cioto Venezuela

OEBPS/Images/C09510_Fig5.32.jpg
TBV, HEALTHCARE, -9.54,181.46
BFH, RETAIL,0.58,17.63

I0P, TECHNOLOGY, 0.43,119.19
NFLX, TECHNOLOGY, -1.23,97.77
PPL, HEALTHCARE, —0.26,30.02
WFC, FINANCIAL,-0.19,46.6
SAC, ENERGY, 3.4, 58.97

CVB, TECHNOLOGY, —0.65,52.17
DFG, TECHNOLOGY, 1.56,137.77
WSB, FINANCIAL,-3.14,107.39
ABC, RETAIL,-0.78,24

KIN, ENERGY,-0.01,5.04

WFC, FINANCIAL,-1.36,45.24
PPL, HEALTHCARE, -1.1,28.92
WMT, RETAIL,-1.16,69.35

XTC, HEALTHCARE, —0.55,112.49
SAC, ENERGY,-2.71,56.26

JYB, HEALTHCARE, -1.77,43.45
ABC, RETAIL,0.8,24.8

I0P, TECHNOLOGY,-1.1,118.09
DFG, TECHNOLOGY, —0.36,137.41

OEBPS/Images/C09510_Fig4.10.jpg
Choose a name

New query 1 Ney

create_table_flavours_of_cocoa

Save as Run tir

OEBPS/Images/C09510_Fig5.31.jpg
~ Test with demo data

This test runs a script in your browser to put demo data in your Firehose delivery stream, which sends to your S3 destination. The format of the demo data is {"ticker_symbol":"QXz", "sector

EALTHCARE", "change":-0.05, "price”:84.51}

Step 1

Start sending demo data to your delivery stream. I you already have data streaming to this destination, demo data is sent along with your source records.

Step 2
‘Stop sending demo data to your delivery stream after you've concluded your test.

Stop sending demo data

OEBPS/Images/C09510_Fig5.30.jpg
AmazonS3 > kinesis-s3-0810 / 2018 / 08 / 13 / 22

Overview

| Q. Type a prefix and press Enter to search. Press ESC to clear.

& Upload ll + Create folder [IIVCIEG

a
]

Name 1=

[kinesis-firehose_to_s3-1-2018-08-13-22-27-42-T16a4428-9c6a-4db8-8be2-39ccc8e937d5

US East (N. Virginia)

Viewing 1to 1

Last modified

Size 1= Storage class

Aug 14,2018 3:56:43 AM GMT+0530 2.8KB Standard

Viewing 1101

OEBPS/Images/C09510_Fig4.15.jpg
Add a data store

@© Crawer info

chocolate_ratings
Choose a data store

QO Data store
S3 v
@)
e Crawl data in
o ®) Specified path in my account
() Specified path in another account
@)

Include path

s3://aws-athena-demo-0606/ ‘ -

Al folders and files contained in the include path are crawled. For example, type s3://MyBucket/MyFolder/ to crawl all
objects in MyFolder within MyBucket

» Exclude patterns (optional)

Back Next

OEBPS/Images/C09510_Fig5.36.jpg
Kinesis Analytics applications > kinesis-data-analytics > Streaming data)

Connect streaming data source

hose delivery streams, or quickly configure a demo Kinesis stream that can be used to explore Kinesis

streams and

Choose from your
Anaytics

Choose source Configure a new stream

Kinesis Firehose delivery stream @

Choose Kinesis stream - £ | Create new

In-application stream name In your SQL queries, refer to this source
as

SOURCE_SQL_STREAM_001

Record pre-processing with AWS Lambda

Kinesis Analytics can invoke your Lambda function to pre-process records before they are used in this application. To pre-process records, your Lambda
function must be compliant with the required record transformation output model. Lear more

Record pre-processing” ® Disabled
Enabled

OEBPS/Images/C09510_Fig5.35.jpg
Kinesis Analytics applications > kinesis-data-analytics @

kinesis-data-analytics

Application ARN: am-aws kines i A applicationlkinesis-d: vt

Application version ID: 1 @

© Successfully created Application kinesis-data-analytics
Next, choose Connect streaming data.

Source

Streaming data

Connect to an existing Kinesis stream or Firehose delivery stream, or easily create and connect to a new demo Kinesis stream. Each
‘application can connectto one streaming data source. Leam more

Connect streaming data

vy Real time analytics

OEBPS/Images/C09510_Fig4.14.jpg
Add crawler

© Brienio Add information about your crawler
o Crawler name

(@] chocolate_ratings

9 -) N ")

o » Description, security configuration, and classifiers (optional)

(@)

» Grouping behavior for S3 data (optional)

OEBPS/Images/C09510_Fig4.13.jpg
Data
Sources

Amazon
Redshift Ame
Athena
E - e
AWS GLUE AWS GLUE DATA
"";3"“‘ CRAWLERS CATALOG
AWS Glue
Amazon Amazon
RDS Redshitt

Spectrum

OEBPS/Images/C09510_Fig5.34.jpg
‘Amazon Kinesis «

Dashboard

Data Streams
Data Firehose
| Data Analytics.

Video Streams

External resources

What's new

Kinesis Analytics - Create application

Kinesis Analytics applications continuously read and analyze data from a connected streaming source in reak-ime. To enable interactivity with your
data during configuration you will be prompted to run your application. Kinesis Analytics resources are not covered under the AWS Free Tier, and
usage-based charges apply. For more information, see Kinesis Analytics pricing

Application name* | kinesis-data-analtics

Description

OEBPS/Images/C09510_Fig5.33.jpg
Lambda
Transform

.\ﬁ—’

Kinesis
Firehose
Kinesis Analytics
Input Analytics Tools.
Data Stream

Kinesis
Stream o
Amazon Kinesis

Data Analytics

OEBPS/Images/C09510_Fig4.12.jpg
© Newquery 1 O create_table flav... @ +
1 belect company, count(*) cnt From flavours_of_cocos
© uhere rating 34
= group by conpany
2 Srder by et detc
5 Tinit 10

Swveas | Croateviw trom query (R tie: 163 seconcs, DA SEARAEE TZASOKD) Fommatquery Clar

Use Ctrl + Enter to run query, Ciri+ Space to autocomplete

Results

3

company

Fresco
“Smooth Chocolator

Heirloom Cacao Preservation (Gutard)
Ritual

=

(Felchiin)
Amedei
Pitch Dark

Hotel Chocolat (Coppeneur)

Me R NN e e ey

© e N e o s LN

Wm

OEBPS/Images/C09510_Fig4.19.jpg
Add database

Database name

glue-demo

» Description and location (optional)

OEBPS/Images/C09510_Fig4.18.jpg
@ Crawler info
chocolate_ratings
(@ Data store
S3: s3://aws-athena...
@ IAM Role

am:aws:iam::9893014
60252:role/service-
role/AWSGlueService
Role-glue-demo

QO Schedule
O
O

Frequency

Run on demand

Create a schedule for this crawler

Next

OEBPS/Images/C09510_Fig5.39.jpg
Kinesis Analytics applications > kinesis-data-analytics > Streaming data)

Connect streaming data source

Choose from your Kinesis streams and Firehose delivery streams, or quickly configure a demo Kinesis stream that can be used to explore Kinesis.
Anaytics

Choose source Configure a new stream

Source® @ Kinesis stream @
Kinesis Firehose delivery stream @

Kinesis stream” | kinesis-analytics-demo-stream v | | & || Create new 7
View Kinesis-analytics-demo-stream in Kinesis Stieams
In-application stream name In your SQL queries, refer to this source
as

SOURCE_SQL_STREAM_001

Record pre-processing with AWS Lambda

Kinesis Analytics can invoke your Lambda function to pre-process records before they are used in this application. To pre-process records, your Lambda
function must be compliant with the required record transformation output model. Lear more

ing* @ Disabled
Enabled

Record pre-proces:

OEBPS/Images/C09510_Fig5.38.jpg
Kinesis Analytics applications > kinesis-data-analytics > Streaming data)

Connect streaming data source

hose delivery streams, or quickly configure a demo Kinesis stream that can be used to explore Kinesis

Choose from your streams and

Anaytics

Choose source Configure new stream

Create a demo stream that you can use to explore Kinesis Analytics. Tt
with sample stock ticker data. See (' Kinesis Streams pricing

stream will be populated Create a demo stream

v Createlupdate 1AM role kinesis-analytics-kinesis-data-analytics-us-east-1

Create Kinesis stream kinesis analytics demo stream (takes on average 30-10 seconds)

Begin populating stream kinesis-analytics-demo-stream with sample stock ticker data

Discover schema: capture a stream sample, identify data format, apply schema

Qe

Select stream kinesis-analytics-demo-stream from your streams

Configure a Firehose delivery stream to continuously deliver source data (to Amazon S3, Redshift, | & GotoKinesis Firehose |
or Elasticsearch) and make source data available to applications. -

Configure a Kinesis stream to continuously collect and temporarily store source data, which can be | @ 6o to Kinesis Streams |
consumed by an application. —_—

OEBPS/Images/C09510_Fig4.17.jpg
@ Crawer info
chocolate._ratings
(@ Data store.

$3: s3://aws-athena...

Q 1AM Role
(¢]
o
O

Choose an IAM role

The IAM role allows the crawler to run and access your Amazon S3 data stores. Leamn more

Update a policy in an IAM role
Choose an existing 1AM role
(@ Create an |IAM role

1AM role @

AWSGlueServiceRole- glue-demd|

To create an IAM role, you must have CreateRole, CreatePolicy, and AttachRolePolicy permissions.

Create an IAM role named "AWSGlueServiceRole-rolename” and attach the AWS managed policy,
AWSGlueServiceRole, plus an inline policy that allows read access to:

+ s3://aws-athena-demo-0606/

‘You can also create an IAM role on the IAM console.

o]

OEBPS/Images/C09510_Fig5.37.jpg
Kinesis Analytics appli > kinesis-data-analytics > ing data

Connect streaming data source

Choose from your Kinesis streams and Firehose delivery streams, or quickly configure a demo Kinesis stream that can be used to explore Kinesis.

Anayics

Choose source Configure a new stream

Create a demo stream that you can use to explore Kinesis Analytics. This stream will be populated
with sample stock ticker data. See (' Kinesis Streams pricing

Configure a Firehose delivery stream to continuously deliver source data (to Amazon S3, Reds!
or Elasticsearch) and make source data available to applications

c a Kinesis stream to continuously collect and temporarily store source data, which can be
consumed by an application

Create a demo stream

@ Go to Kinesis Firehose

 Go to Kinesis Streams

Cancel

OEBPS/Images/C09510_Fig4.16.jpg
Add crawler

@ Crawler info Add another data store
chocolate_ratings
QO Data store
S3: s3://aws-athena.

O

(©]
(©]
®

OEBPS/Images/C09510_Fig5.43.jpg
Real-time analytics

Download SQL | SQL reference guide (7 Kinesis data generator tool (7

The SqL code you write here will continuously transfors your streaming data
when your application is running.

Get started by clicking "Add QL fron templates” or pull up the

* documentation and start writing your own custon queries.
t/

Source data Real-time analytics Destination Application status: RUNNING

Streaming data The streaming data below is a sample from Kinesis data stream kinesis-analytics-demo-stream (7

@ SOURCE_SQL_STREAN 001
Actions v

Reference data (optional) @

Connect reference data Y Filter by column name

ROWTIME TICKER_SYMBOL ~ SECTOR CHANGE PRICE PARTITION_ *
TIMESTAMP VARCHAR(4) VARCHAR(16) ~REAL REAL VARCHAR(S'
2018.08-15 194752493 MMB ENERGY 132 16.87 PariiionKey
2018-08-15 194752493 WNIT RETAIL 221 7481 PartiionKey
2018.08-15 1947552493 QWE TECHNOLOGY -4.02 21861 PartionKey
2018.08-15 194752493 AZL HEALTHCARE 0.45 1415 PariiionKey
2018.08-15 194752493 ABC RETAIL 09 2414 PartionKey
2018.08-15 1947552493 WFC FINANCIAL 072 5087 PartionKey
2018.08-15 194752493 DFT RETAIL 221 8624 PartionKey
20180815 1947552493 QXZ FINANCIAL 059 22241 PartionKey
2018.08-15 1947552493 CVB TECHNOLOGY 014 531 PartionKey
2018.08-15 194752493 TBV HEALTHCARE 18.87 33778 PartionKey
2018.08-15 194752493 DFT RETAIL 0.46 867 PartionKey

“ »

OEBPS/Images/C09510_Fig4.22.jpg
Crawlers A crawler connecls to a data store, progresses through a prioritized list of classifiers to determine the schema for your data, and then creates metadata tables in your data catalog.

Add crawler Showing: 1

=] Name Schedule status Logs Last runtime Median runtime Tables updated Tables added

=] chocolate_ratings. Stopping 36 secs 36 secs 0 1

OEBPS/Images/C09510_Fig4.21.jpg
© Crauerinfo
chocolate_ratings

@ patastore
53: s3/laws-athena

@ 1AM Role
amausiam: 9693014
60252 rolefservice-
role/AWSGlueService
Role.glue.demo

@ scheduie
Run on demand

@ output
glue-demo

O Reviewallseps

Name

Data store
Include path
Exclude patterns

1AM role

Schedule

Database
Prefix added to tables (optional)
~ Configuration options

Schema updates in the data store
Object deletion in the data store

Crawler info

chocolate_ratings.

Data stores

53
‘S37/aws-athena-demo-0606/

IAM role
‘armaws iam- ARSI olc/sCrVice-Tolc/AWS GlucServiceRole-gluc-demo

Schedule

Run on demand

Output

glue-demo

Update the table definition in the data catalog.
Mark the table as deprecated in the cata catalog

=

OEBPS/Images/C09510_Fig5.42.jpg
Would you like to start running "kinesis-data-analytics"?

The SQL editor is much more powerful when your application is running,

See samples from your source data stream
= Getfeedback on any errors in your configuration or SQL
= Watch as your data is processed in reak-time by your SQL code

OEBPS/Images/C09510_Fig5.41.jpg
Kinesis Analyics applications > kinesis-data-analytics)

kinesis-data-analytics Application status: READY

Application ARN: am'aws kinesisanalytics us-east-

S s kinesis-data-analytics

Application version ID: 2 @

b‘&

1

i

+ 4

Source

Streaming data

Connect to an existing Kinesis stream or Firehose delivery stream, or easily create and connect to a new demo Kinesis stream. Each
application can connectto one streaming data source. Leam more
Source In-application stream name 1D @ Record pre-processing @

gt SOURCE_SQL_STREAM_001 2.1 Disabled
Kinesis-analytics-demo-stream (' = -

Reference data (optional)

Enrich data from your streaming data source with JSON or CSV data stored as an objectin Amazon S3. Each application can connect
to one reference data source. Leam more

Connect reference data

Real time analytics

Author your own SQL queries or add SQL from templates to easily analyze your source data. Learn more

Go to SQL editor

OEBPS/Images/C09510_Fig4.20.jpg
@ Crawler info
chocolate_ratings
(@ Data store
$3: s3/aws-athena
@ 1AM Role

am:aws:iam::9893014
60252:0le/service-
role/AWSGlueService
Role-glue-demo

(@ Schedule
Run on demand
QO Output

(¢]

Configure the crawler's output

Database @

glue-demo v

Add database

Prefix added to tables (optional) @

Type a prefix added to table names

~ Configuration options (optional)

During the crawler run, all schema changes are logged.
When the crawler detects schema changes in the data store, how should AWS Glue handle table
updates in the data catalog?
® Update the table definition i the data catalog.

Add new columns only.

Ignore the change and don't update the table in the data catalog. @

Update all new and existing partitions with metadata from the table. €
How should AWS Glue handle deleted objects in the data store?

Delete tables and paritions from the data catalog.
_ Ignore the change and don't update the table in the data catalog.
® Mark the table as deprecated in the data catalog. @

OEBPS/Images/C09510_Fig5.40.jpg
Access to chosen resources

Create or choose IAM role with the required permissions. Leam more

Access to chosen resources” @ Create / update IAM role kinesis-analytics-kinesis-data-analytics-us-east-1
Choose from IAM roles that Kinesis Analytics can assume.

Schema

Schema discovery can generate a schema using recent records from the source. Schema column names are the same as in the source, unless they
‘contain special characters, repeated column names, or reserved keywords. Lear more

® Schema discovery successful
Detected JSON format and applied schema
= To define a custom schema, choose "Edit schema’ in the stream sample below.
« To capture a new stream sample from the selected source for discovery, choose Retry schema discovery below.
(Optional) Send AWS a sample of your data to help improve schema discovery in Amazon Kinesis Analytics

Help improve schema discovery

Editschema | | Retry schema discovery
Raw | Lambdaoutput | Formatted

Y Filter by column name or Golumn type

TICKER_SYMBOL SECTOR CHANGE PRICE
VARCHAR(4) VARCHAR(16) REAL REAL
10P TECHNOLOGY 031 11845
NFS ENERGY 033 10062
ALY ENERGY 1.4000000000000001 8306
BAC FINANCIAL o1 1474
PPL HEALTHCARE -0.30000000000000004 2998
TBY HEALTHCARE 038 191.38
AMZN TECHNOLOGY 1268 748.19
ASD FINANCIAL 0.9400000000000001 6674
AzL HEALTHCARE -0.30000000000000004 1737

RFV FINANCIAL 004 5089

OEBPS/Images/C09510_Fig4.26.jpg
Newquery1 © Newquery2 © o Newquery3 © +
select month(try(date._parse(observed_date, '%a/S/51")) 8, count(*) from inventory_sales_ratio
uhere observed value <

se(observed_date, “%a/%d/¥1")))

Group by monthitry(date_p:
Grder by 3

sren] (o] (o 028 sconts, Ot scamod 47616)

Use Cil + Enter to run query, Ctl + Space to autocomplete:

Results
a _colt
1 3 7
2 4 1
3 5 i
4 6 7
5 7 1
6 8 7
i 9 1
8 12 9

OEBPS/Images/C09510_Fig5.47.jpg
Kinesis Analyics applications > kinesis-data-analytics > SQL editor)

Real-time analytics

Save and run SQI Add SQL from templates | | Download SQL | SQL reference guide (7' Kinesis data generator tool (7

T 5 .
10 |-- STREAM (in-application): a continuously updated entity that you can SELECT from and INSERT into like a TABLE =
11 |-- PUWP: an entity used to continuously 'SELECT ... FROM' a Source STREAM, and INSERT SQL results into an output STREAM

12 |-- Create output stream, which can be used to send to a destination

13 | CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ticker_symbol VARCHAR(4), ticker_symbol_count INTEGER);

14 |- Create a pump which continuously selects from a source stream (SOURCE_SQL_STREAN_6e1)

15 |- perforns an ageregate count that is grouped by columns ticker over a 1e-sacond tumbling window

16 |-- and inserts into output stream (DESTINATION_SQL_STREAM)

17 |CREATE OR REPLACE PUMP "STREAM PUNP" AS INSEAT INTO "DESTINATION SQL_STREAN"

18 | -- Aggregate function COUNT|AVGIMAX|MIN|SUM|STODEV_POP|STODEV_SAHP|VAR_POP|VAR_SANP)

19 | SELECT STREAM ticker_symbol, COUNT(®) AS ticker_symbol_count

20 | FROM "SOURCE_SQL_STREAM_6e1"

21 |-- Uses a 10-second tumbling time window

22 | GROUP BY ticker_symbol, FLOOR(("SOURCE SQL_STREAM 691".ROWTINE - TIMESTAMP '1570-91-81 00:00:00') SECOND / 10 TO SECOND); e

Source data Real-time analytics. Destination Application status: RUNNING
In-application streams: Pause results) New results are added every 2-10 seconds. The results below are sampled. @
DESTINATION:SOL STREM Scroll to bottom when new results arive.
error_stream
g4 imn name
ROWTIME TICKER_SYMBOL TICKER_SYMBOL_COUNT

2018-08-15 19:54:20.0 AMZN 2

OEBPS/Images/C09510_Fig4.25.jpg
Name
Description
Database
Classification
Location
Connection
Deprecated
Last updated
Input format
Output format
Serde serialization lib

Serde parameters

inventory_sales_ratio

sampledb
csv
s3://inventory-sales-ratio/

No

Thu Nov 22 00:09:48 GMT+530 2018
org.apache.hadoop.mapred. TextinputFormat
org.apache.hadoop.hive.ql.io.HivelgnoreKeyTextOutputFormat
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

field.delim

OEBPS/Images/C09510_Fig5.46.jpg
Kinesis Analyics applications > kinesis-data-analytics > SQL editor)

Real-time analytics

| Add SQL from templates | | Download SQL | SQL reference guide (7 Kinesis data generator tool (7
T S
2
3 |- = sgaregate (comm, ave, etc.) + Tumbling Tine window =
2 |7 perfores function on the aggregate rous over a 16 second tusbling window for a specified column.
s 3 : :
: Somce | | meen | oesran. |
7 | source-rs| St [-->] & SeLecr |-»| STREAN |--soestinstion
: 171 Gy 11
15 |7 sthemn (in application): a continuously updated entity that you can SELECT from and TUSERT into Like a TABLE
32 |2 Fiies an entaty used o continuousiy SELECT " 2 source STRER, and INSERT SQL results into an output STREM
12 |2 Create output Strean, which con be usea fo send to 2 destination
13 | CREATE 0% REPLACE STREA “DESTINATION SQL STREMH" (ticker. synbol VARCHAR(3), ticker_symbol_count TVTEGER); -
12 | T Create o pump unich Continiously SeLecEs rom a Source stresm (SoURCe sol_sTaEai 6o
© SaingsaL
& Rumingsal

Close

OEBPS/Images/C09510_Fig4.24.jpg
Amazon S3 > Inventory-sales-ratio

e [R NN

‘ Q Type a prefix and press Enter to search. Press ESC to clear.

+ Create folder Actions v US Easf

Name 1= Last modified Size 1= Storage class

[] D total-business-inventories-to-sales-ratio.csv Nov 22, 2018 12:08:04 AM GMT+0530 4.8 KB Standard

OEBPS/Images/C09510_Fig5.45.jpg
Source data Real-time analytics Destination Application status: RUNNING

Streaming data The streaming data below is a sample from Kinesis data stream
@ SOURCE_SQL_STREAN 001

is-analytics-demo-stream ('

Reference data (optional) @

Connect reference data
e SECTOR CHANGE PRICE PARTITION_ *
Refresh sample VARCHAR(16) ~ REAL REAL VARCHAR(5'
2018.08-15 19:48:42.478 WY HEALTHCARE 1.42 3149 PartionKey
2018.08-15 194842478 BAC FINANCIAL 0.4 1432 PariionKey
2018.08-15 194842478 BAC FINANCIAL 0.14 1446 PartionKey
2018.08-15 194842478 WAS RETAIL 019 1123 PariiionKey
2018.08-15 194842478 CRM HEALTHCARE 159 2553 PartionKey
2010-00-15 19:40:42.470 TGII TINANCIAL 0.34 6269 PartiionKey
2018.08-15 194842478 SAC ENERGY 0.96 437 PartionKey
2018-08-15 19:48:42.478 SLW ENERGY 76 7981 PartionKey
2018.08-15 194842478 KIN ENERGY 002 201 PartionKey
2018.08-15 194842478 TGH FINANCIAL 172 60.97 PartionKey
2018.08-15 194842478 SED HEALTHCARE -0.15 202 PartionKey

q »

OEBPS/Images/C09510_Fig5.44.jpg
Kinesis Analytics applications > kinesis-data-analytics > SQL template

Continuous filter

Aggregate function in a tumbling
time window

Aggregate function in a sliding time
window

Aggregate function in a sliding row
window

Muli-step application

Anomaly detection

Approximate top-K items

Approximate distinct count
Data enrichment (join)

Aggregate using two time windows

= aggregate (COUNT, AVG, etc.) + Tumbling Time Window **
perforas function on the aggregate rous over a 10 second tumbling window for 3 specified colu

| mseRr || oestn. |

souRce |
Source-->| STREAM |-->| & SELECT |-->| STREAM |-->estination
1

~ stRean (in-application). itinuously updated entity that you can SELECT from and INSERT in
- PUBP: an entity used o continuously 'SELECT ... FRON' 3 source STREAN, and INSERT SQL result
- Create output stream, which can be used to send to a destination

CREATE 0% REPLACE STREAN "DESTINATION_SQL_STREAW" (ticker_symbol VARCHAR(4), ticker_symbol_count
- Create a pusp which continuously selects from a source stream (SOURCE_SQL_STREAH 601)

- performs an aggregate count that is grouped by columns ticker over a 10-second tubling windo
- and inserts into output stream (DESTINATION_SQL_STREAM)

CREATE OR REPLACE PUMP "STREAW_PUNP" AS INSERT INTO "DESTINATION SQL_STREAH"

—- aggregate function COUNT|AVG]MAX|MTN| SUM]| STODEV_POP | STODEV_Sap | VAR_POP|vAR_SawP)

SELECT STREAN ticker_synbol, CONT(®) A5 ticker_symbol_count

FR0 "SOURCE_sQL_STREAN_se1"

-~ uses a 16-second tunbling time window

GROUP Y ticker_symbol, FLOOR(("SOURCE_SQL_STREAM 991" .RONTINE - TIMESTANP '1570-01-01 09:00:08"

@y 1

| ¢ mi— >] »

Cancel (return to editor) [JREREC LS

OEBPS/Images/C09510_Fig4.23.jpg
Data catalog

Databases
Taties
Connectons.

Craviers
Classiters

ETL

Jovs

Trggers

Dev endpoints

Tutorials
Aad crawer
Explore tabie:
Addjob
Resources

vinats new @D

. [e | e e

Name aws_aihena_demo_0606

Database glue-demo
Classification csv
Location 53:aws athens demo 0606/

Deprecated o
Lastupdated Sun Jun 17 02 5141 GUT+530 2016

Inputformat crg apache hadoop mapred TextinputFormat
Output format 0rg.apache nadoop nive gl o Hvelgnorekey TextOUpUIFOrMal

Serde serialization b org apache hadoop nive serde? lazy LazySmpleSerDe

Schema

Serde parameters e delm

SzeKey 127667 obpctCount 1 UPDATED_BY CRAWLER chocolate ratings cowmmsOrdered true Geimier , CrawlerSchemaSeraizenverson 1.0 fecordCount 2603
“Table properties.
averageRecorosze | 49 10 Ype none fypeOTDaia tie
Showing 1-90f9
Column name Datatype Partition key Comment
o0 stnng
cont stng

con bignt

Eat screm:

OEBPS/Images/C09510_Fig5.49.jpg
Application status: RUNNING

Source data Real-time analytics Destination

(Optional) Connect an in-application stream to a Kinesis stream, or to a Firehose delivery stream, to continuously deliver SQL results to AWS destinations.
The limit is three destinations for each application.

Connect to a destination

Close

OEBPS/Images/C09510_Fig5.48.jpg
Save and run SQ Add SQL from templates | | Download SQL | SQL reference guide (7 Kinesis data generator tool (7

- - - -
10 |- Steean (in-application): a continuously updated entity that you can SELECT from and INSERT into like a TABLE &
11 |2 pwp: an entity used to continuously 'SELECT ... FROM' a source STREAN, and INSERT SQL results into an output STREAM
12 |2 Create output stream, which can be used to send to a destination
13 [CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (ficker_symbol VARCAAR(4), ticker_symbol_count INTEGER);

14 |- Create o pump which continuously selects from a source stream (SOURCE_SQL_STREAM 6e1)

15 |- perfores an aggregate count that is grouped by colums ticker over a le-second tubling window

16 |- and inserts into output stream (DESTINATION_SQL STREAM)

17 | CREATE 0R REPLACE PUNP "STREAM PUIP® AS TNSERT INTO "DESTINATION SQL STREAH

18 |- Aggregate function COUNT|AVGTHAX TN |SUN[STODEV_POP| STODEV_SANF [VAR_POP VAR _SaP)

15 [SELECT STREAN ticker_symsol, CONT(*) A5 ticker_symbol_count

20 | 20M "SOURCE_SaL_sTRERM_ge1*

21 | - uses a 10-second tunbling tise window

22 | GRouP e ticker synbol, FLODR(("SOURCE SoL STREAH 001" RONTINE - TINESTAMP 1970-01-21 09:00:00") SECOMD / 10 TO SECOND); o

Source data Real-time analytics | Destination Application status: RUNNING
In-application streams: Pause results {3 New results are added every 2-10 seconds. The results below are sampled. @

DESTINALION.SOL STREA Scroll to bottom when new results arive.

error_stream

ROWTIME TICKER_SYMBOL TICKER_SYMBOL_COUNT =
2018-08-15 19:54:20.0 AMZN 2
2018-08-15 19:54:40.0 XTC 4
2018-08-15 19:54:40.0 DFT 2
2018-08-15 19:54:40.0 BFH 2
2018-08-15 19:54:40.0 CRM 1
2018-08-15 19:54:40.0 AMZN 1
2018-08-15 19:54:40.0 oxz 2
2018-08-15 19:54:40.0 s 1
2018-08-15 19:54:40.0 J¥B 1
2018-08-15 19:54:40.0 wsB B
2018-08-15 19:54:40.0 ABC 2
2018-08-15 19:54:40.0 RFV 1
2018-08-15 19:54:40.0 KFU 2 -

Close

OEBPS/Images/C09510_Fig4.8.jpg
Databases > Add table

Step 1: Name & Location ~ Step 2: Data Format ~ Step 3: Columns ~ Step 4: Partitions

Configure Partitions (Optional)

Pai

ns are a way to group specific information together. Parttion are virtual columns. In case of parttioned tables, subdirectories are created under the table’s data directory for each unique value of a partition column. In case
the table is partitioned on multiple columns, then nested subdirectories are created based on the order of parttion columns in the table definition. Lear more.

Add a partition

OEBPS/Images/C09510_Fig4.7.jpg
Databases > Add table

Step 1 Name & Location

Column Name.

Column type

Column Name.

Column type

Column Name.

Column type

Column Name.

Step 2: Data Format ~ Step

olumns Step 4 Partitions.

Column name must be single words that start with a letter or a digit.

stiing v
Type for this column. Certain advanced types (namely, structs) are not exposed in thi

lbean_ori

Column name must be single words that start with a letter or a digit.

stiing v
Type for this column. Certain advanced types (namely, structs) are not exposed in thi

I

Column name must be single words that start with a letter or a digit.

it v
Type for this column. Certain advanced types (namely, structs) are not exposed in this interface.

z
£
i

Column name must be single words that start with a letter or a digit.

OEBPS/Images/C09510_Fig4.9.jpg
Database 2
Newquery1l @ Newquery2 © +
lsateca- oo)< 1 creare extemiaL TasLe TF NOT EXISTS athena_demo. Flavours_of_cocos (
2 Mcompany" string,
Filter tables and views. 3 bean_origin® string,
3 crerine
S reviewdate int,
~ Tables (1) Create table © cocompercent’ string,
7 company_location® string,
» flavours_of cocoa H & rating' decimal,
5 hean fype stritg,
10 “brosd bean_origin’ string
¥ Views (0) Create view 11

)
12 ROW FORMAT SERDE 'org.apache.hadoop.hive. serde2. lazy. LazySimpleSerDe"
13 WITH SERDEPROPERTIES (
12 serialization.format’ = °,',
click "Create view from query” 15 field.delin’ = °,°

16) LOCATION '53://aws-athena-demo-0606/"
17 TBLPROPERTIES ('has_encrypted_data’='false’);

You have not created any views. To create a view, run a query and

Saveas Create view from query (Runtime: 0.72 seconds, Data scanned: 0KB)

Use Cir + Enter to run query, Cirl + Space to autocomplete

OEBPS/Images/C09510_Fig4.4.jpg
Databases > Add table

Step 1: Name & Location

Database

Table Name

Location of Input Data Set

Step2: Data Format ~ Step 3: Columns ~ Step 4: Partiions

Create a new database v

Choose an existing database or create a new one by selecting "Create new database”.

athena_demo
Name of the new database

flavours_of_cocoa

Name of the new table. Table names must be globally unique. Table names tend to correspond to the directory where the data will be stored

s3//aws-athena-demo-0606/ [Encrypted data set @

Input the path to the data set you want to process on Amazon S3. For example if your data is stored at s3:/input-data-setflogs/1 csv, please enter s3-/input-data-setllogs!. If our data is already parttioned,
&g s3/finput-data-setllogs/year=2004/month=12/day=11/ just input the base path s3:/input-data-setllogs/

v
Note: Amazon Athena only allows you to create tables with the EXTERNAL keyword. Dropping a table created with the Extemal keyword does not delete the underlying data

OEBPS/Images/C09510_Fig1.10.jpg
myFirstLambdaFunction soncowmome v |[v J{ sme

Function code 1

Code entrytype Runtime Handier oto
Editcodentine v Nodes 610 v indexhandier
~ Fle Et Fnd Ve Goo Toos Wndow
IR S B)
£ b e 3 exsorts.naaier - (event, concent, cotisac) o> (
H 3 et
H 5 e g
s body: 50N.stringiy("Hello from Lasocal"),
&
[—
[
Bl

o1 st spacos: 4 £

OEBPS/Images/C09510_Fig2.31.jpg
C | @ Secure | httpsy/ogrjhadtzi execute-api us-east-1.amazonaws.com/prod/read-from-s3

// 20180419154045
// https://ogrjhzdtzi.execute-api.us-east-1.amazonaws.com/prod/read-from-s3

"Welcome to Lambda and S3 integration demo Class !!"

OEBPS/Images/C09510_Fig4.3.jpg
Athena QueryEditor Saved Queries History ~ AWS Glue Data Catalog (2

Database [+
New query1 +
| sampledb v | <) —
\ 1 -- Run an ANSI SQL or Hive Data Definition
2
Filter tables and views... 3 -- ANSI SQL Example:
4
5 -- SELECT * FROM default.cloudfront_logs 1i
v Tables (2) Create table 6 =
. 7 -- Hive DDL Example:
» cloudtrail_logs 8 v *amp
Create table 9 -- CREATE EXTERNAL TABLE IF NOT EXISTS clou
B from S3 bucket data [0} == Date Date,
11 -- Time STRING,
. from AWS Glue Crawler (' 12 -- Location STRING,
~ Views (0) _ 13 -- Bytes INT,
sQL templates 14 -- RequestIP STRING,
You have not created any views. To create a 15 -- Method STRING,
g . Y CREATE TABLE 16 -- Host STRING,
click "Create view from query" - i
ewiromgquery CREATE TABLE AS SELECT (RSN il
18 -- Status INT,
19 -- Referrer STRING,
20 -- OS String,

Run query Save as Create v

Use Ctrl + Enter to run query, Ctrl + Space to autocomplete

OEBPS/Images/C09510_Fig2.30.jpg
va prod
Invoke URL: neigyl us-east 1 flo-trom-s3

~ /read-file-from-s3
GET Use this page to override the prod stage settings for the GET to /read-fle-from-s3 method.

Settings ® Inhert from stage
© Overide for this method

OEBPS/Images/C09510_Fig4.6.jpg
Bulk add columns

Define columns in name value pairs, using commas to separate definitions (col1_name
data_type, col2_name data_type. .). Certain advanced data types (namely, structs) are not
supported in this interface, but are supported using DDL statements

Company string Bean_Origin string, REF int Review_Date int,Cocoa_Percent
string Company_Location string Rating decimal Bean_Type string Broad_Bean_Origin string

= .

OEBPS/Images/C09510_Fig4.5.jpg
Databases > Add table

Step 1: Name & Location ~ Step 2: Data Format Step 3 Columns Step 4: Partiions

Data Format © Apache Web Logs
® csv
o Tsv
© TextFile with Custom Delimiters.
© JSON
© Parquet
© ORC

OEBPS/Images/C09510_Fig1.14.jpg
Configure test event

A function can have up to 10 test events. The events are persisted so you can switch to another computer or web browser
and test your function with the same events.

O Create new test event

Event template

Hello World v

Event name

myTestEvent]

OEBPS/Images/C09510_Fig2.35.jpg
'SNS dashboard
| Topics
Applications
Subscriptions
Text messaging (SMS)

« Topics

Publish to topic Create new topic

() Name ARN

Actions v

OEBPS/Images/C09510_Fig1.13.jpg
Qualifiers ¥ H Actions v ‘ ‘Szlzctatestzvznt._ v H Test ‘ Save

OEBPS/Images/C09510_Fig2.34.jpg
Simple Notification Service
Amazon Simple Notification Service (SNS) is a fast, flexible, fully managed push messaging service.

| Getstarted |

OEBPS/Images/C09510_Fig1.12.jpg
myFirstLambdaFunction qualifiers v | [Actions ¥ Sclectatestevent. ¥ [save |

OEBPS/Images/C09510_Fig2.33.jpg
==
:

Message Queue

OEBPS/Images/C09510_Fig4.2.jpg
~Views (0)
Youhave not created any views. To ceate a view, fun a query and
ik Crate view from query”

Creats table

Createviow,

© Newquery 1+

CREATE EXTERIAL TABLE "elb_logs” (|
i e

H i

H 5 Comn

H

H cerlng Comin

5 v

§ et processing time doubte covent
18 chient response, clae. doutie COTENT "
B rezpante code sering

3 Eacken esgonce-code. riring COweNt °

n o Bigine Comenr v,

)

91 WL 19 (1

1) (1 194(0-91) (L

RS
25 S10to A SpuroRAAT
26 rorg:sache. hodoop mapred. Textinputtornat
27 ot

o ey qls S bveTyer sty T v ptEor

1/ lb/platatext’

rs
% LoaaTh
S Tathena- examples-us:
51 eLpRoPERTIES.

52 ionsient 15st0d17ine =" 1480275335")

WP savess Crote viewlrom query (Run time: 077 seconds, Data scannod: 0KB)

Use Ot + Enter 1o un quey, ot + Space o autocomplete

Format query

1) 1 1w o

Clear

OEBPS/Images/C09510_Fig2.32.jpg
Message

Publisher

OEBPS/Images/C09510_Fig1.11.jpg
Basic settings

Description

myFirstLambdaFunction_settingg

Memory (MB) Info
Your function is allocated CPU proportional to the memory
configured.

0

128 MB

Timeout Info

o min

OEBPS/Images/C09510_Fig4.1.jpg
(CSV Format)

Amazon Athena

Ad-hoc Analysis using
Amazon Athena

Amazon $3 bucket
(Parquet Format)

OEBPS/Images/C09510_Fig1.18.jpg
© Execution result: succeeded (logs)

» Details

OEBPS/Images/C09510_Fig2.39.jpg
Create subscription

Topic ARN arn:aws:sns:us-east-1:989301460252: TestSNS

Protocol | Email <

Endpoint | piser@example.com J

e

OEBPS/Images/C09510_Fig1.17.jpg
Memory (MB) Free tier seconds per month Price per 100ms ($)

128 3,200,000 0.000000208
192 2,133,333 0.000000313
256 1,600,000 0.000000417
320 1,280,000 0.000000521
384 1,066,667 0.000000625
448 914,286 0.000000729
512 800,000 0.000000834
576 711,11 0.000000938
640 640,000 0.000001042
704 581,818 0.000001146

768 533,333 0.000001250

OEBPS/Images/C09510_Fig2.38.jpg
SNS dashboard
Topics

Applications

| Subscriptions

Text messaging (SMS)

4

Subscriptions

Create subscription Request confirmations

Filter

Subscription ARN

Actions v

OEBPS/Images/C09510_Fig2.37.jpg
Publish to topi Create new topic Actions v

Filter

Name ARN
TestSNS am:aws:sns:us-east-1 QAN TestSNS

OEBPS/Images/C09510_Fig1.16.jpg
© Execution result: succeeded (logs)
[petaits

The area below shows the result returned by your function execution. Learn more about returning results from your function.

Summary

Code SHA-256 FPZhAVO7NQOIECTG+nD+E3WVRIOHIIRIBNZ/ZCIly TM= Request ID 519fdfb5-2560-11e8-ae20-€37b20048a93
Duration 1552ms Billed duration 100 ms

Resources configured 128 MB Max memory used 20 MB.

Log output

The area below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda function. Click here to view the CloudWatch log
group.

START Requestld: 519f0fbS-2560-11e8-a¢20-e37020048a93 Version: SLATEST :
END RequestId: S19fdfbS-2560-11e3-ae20-e37b2004893 b
REPORT Requestld: 519fd¢65-2560-11e8-2e20-e37b20043a93 Duration: 15.52 ms Billed Duration: 100 ms Memory Size: 128 MB Max Memory Used: 20 HB H

OEBPS/Images/C09510_Fig2.36.jpg
Create new topic

A topic name will be used to create a permanent unique identifier called an Amazon Resource Name (ARN).

Topic name | TestSNS|

Display name TestSNS

Cancel Create topic

OEBPS/Images/C09510_Fig1.15.jpg
© Execution result: succeeded (logs)

» Details

OEBPS/Images/C09510_Fig3.7.jpg
@ Secure | https://console.aws.amazon.com/

aws Services v Resource Groups v

* Amazon API Gateway APIs

| APt
4

OEBPS/Images/C09510_Fig3.6.jpg
Roles > api-s3-invoke-demo

Summary
Role ARN arm:aws:iam:: irole/api-s3-invoke-demo (7]
Role description Allows API Gateway to call other services on your behalf | Edit
Instance Profile ARNs (2]
Path /
Creation time 2018-04-15 10:20 UTC+0530
Maximum CLI/API session duration 1 hour Edit
Per Trust n Access Revoke sessions
Attach policy Attached policies: 3
Policy name v Policy type v
» Wl AmazonS3FullAccess AWS managed policy
» W AmazonAPIGatewaylnvokeFullAccess AWS managed policy
» Wl AmazonAPIGatewayPushToCloudWatchLogs AWS managed policy

© Add inline policy

OEBPS/Images/C09510_Fig3.9.jpg
Actions~ @ New Child Resource

Resources

Configure as (Z'proxy resource
Resource Name*

Resource Path*

Enable APl Gateway CORS

* Required

Use this page to create a new child resource for your resource. ®

(i]

image

/ [{image}]

You can add path parameters using brackets. For example, the resource path {username}
represents a path parameter called 'username'. Configuring /{proxy+} as a proxy resource
catches all requests to its sub-resources. For example, it works for a GET request to /foo. To
handle requests to /, add a new ANY method on the / resource.

]

Cancel Create Resource

OEBPS/Images/C09510_Fig3.8.jpg
Create new API

In Amazon API Gateway, an AP refers to a collection of resources and methods that can be invoked through HTTPS endpoints.

© New API Clone from existing APl Import from Swagger Example API

Settings

Choose a friendly name and description for your API.

APl name* image-demo
Description this is demo api for images
Endpoint Type Regional N

“IRequired Create API

OEBPS/Images/C09510_Fig3.3.jpg
Create role

Select type of trusted entity

o:

S AWS service Another AWS account Yoty oty SAML 2.0 federation
. - EC2, Lambda and others Ml Belonging to you or 3rd party @ gr‘;%:‘(‘,‘; or ey OpeniD Your corporate directory
Allows AWS services to perform actions on your behalf. Learn more
Choose the service that will use this role
EC2
Allows EC2 instances to call AWS services on your behalf.
Lambda
Allows Lambda functions to call AWS services on your behalf.
API Gateway Config Elastic Container Service Lex SWF
AppSync DMS Elastic Transcoder Machine Learning SageMaker
Application Auto Scaling Data Pipeline ElasticLoadBalancing MediaConvert Service Catalog
Auto Scaling DeeplLens Glue OpsWorks Step Functions
Batch Directory Service Greengrass RDS Storage Gateway
CloudFormation DynamoDB GuardDuty Redshift
CloudHSM EC2 Inspector Rekognition
CloudWatch Events EMR loT S3
* Required

OEBPS/Images/C09510_Fig2.42.jpg
webservices™ Simple Notification Service

Subscription confirmed!

You have subscribed gy to the topic:

TesteNs.

Your subscription's id is
arn:aus:snsius-east-1:
8032a8a16c03

89301460252 : TestSNS :493d9dfd-bdf7-4419-b941 -

If it was not your intention to subscribe, click here to unsubscribe.

OEBPS/Images/C09510_Fig3.2.jpg
updl e ™

53 Bucket for
image
sus zopie

AT Gateway

Extract Text using Reko
Bakoguition B L & e

OEBPS/Images/C09510_Fig2.41.jpg
AWS Notification - Subscription Confirmation 'inbex x

FirstTopic <no-reply@sns.amazonaws.com>
tome =

You have chosen to subscribe to the topic:
arn:aws:sns:us-east-1:98930146025!

tTopic

To confirm this subscription, click or visit the link below (If this was in error no action is necessary):
Confirm subscription

Please do not reply directly to this email If you wish to remove yourseif from receiving al uture SNS subscription confirmation requests please send an email to sns-o

OEBPS/Images/C09510_Fig2.40.jpg
Actions v

Q
]

Create subscription

Filter

Subscription ARN Proto... Endpoint Topic ARN
PendingConfirmation email G am:aws:sns:us-east-1:98930146025....

OEBPS/Images/C09510_Fig3.5.jpg
Roles > api-s3-invoke-demo

Summary

Role ARN

Role description

Instance Profile ARNs

Path

Creation time

Maximum CLI/API session duration

Permissions Trust relationships

JR—

Policy name ~

am:awsiam:: irole/api-s3-invoke-demo (7]
Allows AP| Gateway to call other services on your behalf | Edit
@

/

2018-04-15 10:20 UTC+0530

1 hour Edit

Access Advisor Revoke sessions

» W8 AmazonAPIGatewayPushToCloudWatchLogs

Policy type ~
AWS managed policy

© Add inline policy

OEBPS/Images/C09510_Fig3.4.jpg
Create role T2 °

Review

Provide the required information below and review this role before you create it.

Role name* | api-s3-invoke-demo

Use alphanumeric and '+=,.@-_' characters. Maximum 64 characters.

Role description Allows AP| Gateway to call other services on your behalf

Maximum 1000 characters. Use alphanumeric and '+=,.@-_' characters.

Trusted entities AWS service: apigateway.amazonaws.com

Policies

AmazonAPIGatewayPushToCloudWatchLogs (7'

* Required Cancel Previous

OEBPS/Images/C09510_Fig2.46.jpg
Author from scratch nio

Name.

lambda_with_sns

Runtime

Nodejs 6.10 v

Role
Defines the permissions of your function. Note that new roles may not be available for few minutes after creation. Learn more about Lambda execution roles.

Create new role from template(s) v
Lambda will automaticaly create a role with permissions from the selected policy templates. Note that basic Lambda permissions (logging to CloudWatch) will automaticaly be
added. If your function accesses a VPC, the required permissions will aso be added.

Role name
Enter a name for your new rol.

LambdaSNSRold

Policy templates
Choose one or more poliy templates. A role will be generated for you before your function iscreated. Lear more about the permissions that each policy template will add to
your ole.

SNS publish policy X

Cancel

OEBPS/Images/C09510_Fig2.45.jpg
Create function

Author from scratch) Blueprints Serverless Application Repository
Start with a simple “hello world" example. Choose a preconfigured template as a starting point for your Find and deploy serverless apps published by developers,
Lambda function. companies, and partners on AWS.

2 = e

OEBPS/Images/C09510_Fig2.44.jpg
Lambda Email
Function Subscription

Lambda SNS
Integration

OEBPS/Images/C09510_Fig3.1.jpg
Have predefined infrastructure in the data center

Provision the servers where the application is to be hosted

Deploy the right software prerequisites for application

Build the web service and do the deployment

Provision enough hardware before launching for customers to cater the incoming traffic

Work on its scaling and reliability aspects from scratch

Build reliability into the system

OEBPS/Images/C09510_Fig2.43.jpg
Subscriptions

Create subs: n Requi

Filter

onfirmations Actions v

Q
o

Subscription ARN Proto... Endpoint Topic ARN
arn:aws:sns:us-east-1:989301460252: TestSNS:493d9dfd-bdf7-4419-b941-8032a8a16c03 email R arn:aws:sns:us-east-1:98930146025...

OEBPS/Images/C09510_Fig2.49.jpg
Configure test event

A function can have up to 10 test events. The events are persisted 5o you can switch to another computer or web browser
and test your function with the same events.

O Create new test event

Event template

Hello World v

Event name

I TestEven

“value3",

OEBPS/Images/C09510_Fig2.48.jpg
B

index js xi @
var aws_sdk - require(’aws-sdk’);
aus_sdk. config.region - us-east-1';

exports.handler - function(event, context) {
var sns = new aws_sdk.SNS();

sns.publish({
Message: "Publish Test Message to SNS from Lambda’,
TopicArn: "arn:aws:sns:us-east-1:989301460252: TestSNS"
}, function(err, data) {

i (err) {
console.log(err.stack);
return;

¥

console.log('Message sent successfully’);
console.log(data);

16:27 JavaScript Spaces: 4 TF

OEBPS/Images/C09510_Fig2.47.jpg
lambda_with_sns Throttle Qualifiers v Actions ¥ Select a test event.. v [Test Save

© Congratulations! Your Lambda function “lambda_with_sns" has been successfully created. You can now change its code and configuration. Click o the "Test” button to input test event when you are X
ready to test your function.

Configuration Monitoring

v Designer
Add triggers »

Clck on a rigger from the st lambda_with_sns
below 0 30d it o your functon.

APl Gateway

Add triggers from the lston the left @ Amazon Cloudwatch Logs
Aws loT

Alexa Skills Kit ' Amazon SNS
exa Smart Home

Resources the function'srole has access to will be shown here
CloudFront

OEBPS/Images/C09510_Fig2.6.jpg
Versioning
B Keep all versions of an object in the same bucket. Leam more (7'

Server access logging
B Log requests for access to your bucket. Learn more (7'

Tags
You can use tags to track project costs. L eam more (7'

Object-level logging
B Record object-level AP activity using AWS CloudTrail for an additional cost. See CloudTrall pricing (' of leam more 7!

Default encryption
B Automatically encrypt objects when they are stored in S3. Leam more (7'

» Advanced settings

Management

OEBPS/Images/C09510_Fig2.5.jpg
Create bucket P

@ Name and region (2) conngure options. (3) setpemissions (@) Review

Name and region

Bucket name

Region

US East (Ohio) v

Copy settings from an existing bucket

Next

OEBPS/Images/C09510_Fig2.8.jpg
US East(N.

Options Edit
Versioning Disabled

Server access logging Disabled

Tagging 0 Tags

Object-level logging Disabled

Default encryption None

CloudWatch request metrics Disabled

Object lock Disabled

P il Edit
Block new public ACLs and S

uploading public objects.

Remove public access granted _

through public ACLs

Block new public bucket policies
Block public and cross-account
access if bucket has public
policies

False

False

OEBPS/Images/C09510_Fig2.7.jpg
Create bucket >

@) Name and region @) conngure options. @ Set permissions (@) Review

Note: You can grant access to specific users after you create the bucket

Public access settings for this bucket

Use the Amazon S3 block public access settings to enforce that buckets don't allow public access o data. You can also configure the Amazon S3 block public
access settings at the account level

Manage public access control lists (ACLS) for this bucket

Il Block new public ACLS and uploading public objects (Recommended)

Ml Remove public access granted through public ACLS (Recommended)

Manage public bucket policies for this bucket
Il Block new public bucket policies (Recommended)
Il Block public and cross-account access if bucket has public policies (Recommended)

Manage system permissions

= -

OEBPS/Images/C09510_Fig2.2.jpg
source-region-B

route 53

source.region-A

Amazon $3
Geographic Redundaney

OEBPS/Images/C09510_Fig3.30.jpg
Create new topic

Building a mobile app? Try AWS Mobile Hub.

A topic name will be used to create a permanent unique identifier called an Amazon Resource Name (ARN).

Topic name extract-image-labels-sns i}

Display name ext-image o

Cancel Create topic

OEBPS/Images/C09510_Fig5.71.jpg
Source data Real-time analytics Destination

In-application streams:

O KINESIS_SQL_STREAM
error_stream

Pause results * New results are added every 2-10 seconds. The results below are sampled. @

Scroll to bottom when new results arrive

Q

2018-12-07 11:54:06 623
2018-12-07 11:54:16 615
2018-12-07 11:54:16 615
2018-12-07 11:54:16 615
2018-12-07 11:54:26 61

2018-12-07 11:54:31.626
2018-12-07 11:54:36.622
2018-12-07 11:54:36.622
2018-12-07 11:54:46 636
2018-12-07 11:54:46 636
2018-12-07 11:54:46 636
2018-12-07 11:54:56 632
2018-12-07 11:55:01.63

2018-12-07 11:55:01.63
“

ASD
ASD
AMZN
MMB
MMB
MMB
WAS
MMB
MMB
ASD
AMZN
ASD

MMB

CompanyB
CompanyB
TopCompany
CompanyD
CompanyD
CompanyD
CompanyE
CompanyD
CompanyD
CompanyB
TopCompany
CompanyB
CompanyE
CompanyD

FINANCIAL
FINANCIAL
TECHNOLOGY
ENERGY
ENERGY
ENERGY
RETAIL
ENERGY
ENERGY
FINANCIAL
TECHNOLOGY
FINANCIAL
RETAIL
ENERGY

-0.289999991655349 &
0.970000028610229¢
-5.429999828338623
0.9399999976158142
1.179999947547912€
1.179999947547912€
0.159999996423721,
1.7999999523162847
-0.740000009536743
0.959999978542327¢
9.229999542236328
-0.200000002980232
0.259999990463256¢
20 -

OEBPS/Images/C09510_Fig2.1.jpg
http://aws-serverless.s3.amazonaws.com/CreateS30bject.csv

Bucket Name Object Name

OEBPS/Images/C09510_Fig2.4.jpg
‘ Amazon S3

Q Search for buckets

bucket | | Empty buc

+ Create bucket D

OEBPS/Images/C09510_Fig5.70.jpg
Save and run SQL Add SQL from templates Download SQL SQL reference guide (7 Kinesis data generator tool (7

CREATE STREAN "KINESTS_SQL_STREAN" (ticker_symbol VARCHAR(14), "Company Name" varchar(38), sector VARCHAR(22), change DOUBLE, price DOUBLE);

T
7
3| | CRETE Wi ESTREMIGIIRIEIS BiSERT I IS ISRl o e
a SELECT STREAM ticker_symbol, "kar"."Company”, sector, change, price
5 FROM "SOURCE_SQL_STREAN 601" LEFT Som “ka_reference_data"

6 STt oan ticker symbcl “kar" . "Ticker

57 ompany™ 15 not nu

Application status: RUNNING

Source data Real-time analytics Destination

In-application streams:

O KINESIS_SQL_STREAM

Pause results +New results are added every 2-10 seconds. The results below are sampled. @

Scroll to bottom when new results arrive

error_stream
Q
ROWTIME TICKER_SYMBOL ~ Company_Name ~SECTOR CHANGE =
2018-12-07 11:5401.627 AMZN TopCompany TECHNOLOGY -13.72099954223632
2018-12-07 11:5401.627 MMB CompanyD ENERGY 0.709999978542327¢
2018-12-07 11:54:06.623 ASD CompanyB FINANCIAL -0.289999991655349
2018-12-07 11:54:16.615 ASD CompanyB FINANCIAL 0.970000028610229¢
2018-12-07 11:54:16.615 AMZN TopCompany TECHNOLOGY -5.429999828338623
2018-12-07 11:54:16.615 MMB CompanyD ENERGY 0.939999997615814Z

2018-12-07 11:54:26 61 MMB CompanyD ENERGY 1.179999947547912€

OEBPS/Images/C09510_Fig2.3.jpg
Resource Groups v

sq

OEBPS/Images/C09510_Fig2.13.jpg
$32 Lambda
[Ersme-any

OEBPS/Images/C09510_Fig3.34.jpg
Configure triggers

Bucket
Please select the 3 bucket that serves as the event source. The bucket must be in the same region as the function.

‘ mohit-1128-2099 v ‘

Event type
Select the events that you want to have trigger the Lambda function. You can optionally set up a prefix or suffix for an event. However, for each bucket, individual events cannot have multiple
configurations with overtapping prefixes or suffixes that could match the same object key.

‘ Object Created (All) v ‘

Prefix
Enter a single optional prefix to limit the notifications to objects with keys that start with matching characters.

Enter a single optional suffix to limit the notifications to objects with keys that end with matching characters.

Lambda will add the necessary permissions for Amazon S3 to invoke your Lambda function from this trigger. Learn more about the Lambda permissions model.

Enable trigger
Enable the trigger now, or create

in a disabled state for testing (recommended).

OEBPS/Images/C09510_Fig2.12.jpg
& C' | @ Secure | https://s3.amazonaws.com/www.aws-serverless.com/index.html

Welcome to Class on ""Serverless Architectures on AWS 2018"

‘We are deploying a static website with a serverless architecture here!!

OEBPS/Images/C09510_Fig3.33.jpg
Lambda » Functions > Create function » Using blueprint rekognition-python

/A This function contains external libraries. b ¢

Basic information info

Name

| image-analyzer-lambda ‘

Role

Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn more
about Lambda execution roles.

I Choose an existing role v j

Existing role

YYou may use an existing role with this function. Note that the role must be assumable by Lambda and must have Cloudwatch
Logs permissions.

| api-lambda-rekog-demo v ‘

s3

Bucket
Please select the S3 bucket that serves as the event source. The bucket must be in the same region as the function.

OEBPS/Images/C09510_Fig2.11.jpg
Upload

@ Select files @ Set permissions @ Set properties

1Files Size:405.0B Target path: www.aws-serverless.com

index.html
-40508

OEBPS/Images/C09510_Fig3.32.jpg
Create subscription

Topic ARN arn:aws:sns:us-east-1: I D extract-image-labels-sns

Protocol Emal -]

Endpoint | csssnansish Bnteem |

OEBPS/Images/C09510_Fig2.10.jpg
Static website hosti

Endpoint : http://www.aws-serverless.com.s3-website-us-east-
1.amazonaws.com

@ Use this bucket to host a website @ Leam more

Index document €@

‘ index.htm| ‘

Error document @

‘ error.html ‘

Redirection rules (optional) @

O Redirect requests @ Learn more

O Disable website hosting

Cancel

Save

OEBPS/Images/C09510_Fig3.31.jpg
Topic details: extract-image-labels-sns

blish to topic Other topic actions v

A aws'sns Nm——R {1 (i age-labels-sns

Topic ARN
Topic owner
Region

Display name
Encryption at rest

Subscriptions

Create subscription

Filter

989301460252
us-east-1
extimage
Disabled @

Request confirmations | Confirm subscription

Other subscription actions

OEBPS/Images/C09510_Fig3.38.jpg
DELETE ~ https://b8y019hz0l.execute-api.us-east-1.amazonaws.com/dev/mohit-s3-2011-east-30 Params “ Save v

Authorization Headers (1) Body PrerequestScript Tests Cookies Code
KEY VALUE DESCRIPTION ese BulkEdit Presets v
Content-Type application/xml
Key Value Description

Body Cookies Headers (7) Test Results s N DR IR kTN ms S e b0 H

Pretty Raw Preview [}

OEBPS/Images/C09510_Fig2.17.jpg
Environment

9 read from 53

ndexss

T indexis N

1 var AW - require(*aus-sdk’);
2 var 53 - new NiS.S30;

5

2 oxports.handler = function(event, context, callback) {
5

6 //Create variables the bucket & key for the uploaded 53 object
7 var src bkt - ‘lasbdas3deno';

8 var srckey - “sample.txt

o

10/ Retrieve the object

1 s.getdbgect((

2 Bucket: src_bke,

13 Key: src_key

16}, functionGern, data)

15 i (ern)

1 Console.loa(err, err.stace)]

B Execution Result
v Execution esulls
Response:

a1l

Request 10:
43162610-4363- 1168 a17-claaf F7c9293"

Funceon Logs.

START Requestld: 4a162610-436a-1168-5a17-claaf 7c529a Version: SLATEST
2018-04-19700:40:44.0227 4162610-436a- 1168-8a17-c1aafF7c929

END Roquestd: 4a162610-436a-1168-8a17-clasf 769252

REPORT Requestld: 43162610-436a-11e8-8a17 <1asff7c929a Duration: 993.82 ms Billed Duration: 1000 ms

16:41 Javascript Spaces: 4 K}

Staus Succeeded | Max Memary Use 39 MB

Hemory Size: 128 B Max Mesory Used: 39 16

T

982 ms

OEBPS/Images/C09510_Fig2.16.jpg
index.js x

| //Create variables the bucket & key for the uploaded S3 object
var src_bkt - 'lanbdas3deno”
var src_key - "sample.txt’;

// Retrieve the object
s3.getObject({
Bucket: src_bkt,
Key: src_key
}, function(err, data) {
i (err) {
console.log(err, err.stack);
callback(err);
} else {
console.log(*\n\n" + data.Body.toString()+'\n");
callback(null, data.Body.toString());

6:4 JavaScript Spaces:4 T

OEBPS/Images/C09510_Fig3.37.jpg
Resources

v
~ fimage}
DELETE
file}

Actions~ | @ /limage} - DELETE - Method Execution

TEST

,

Client

Method Request ®
Auth: NONE
ARN: am aws execute-api us-east-
/DELETE N
Headers: Content-Type
Method Response ®

HTTP Status: 200
Models: application/json == Empty

Integration Request
Type: AWS
Paths: bucket

Headers: x-amz-acl, Content-Type

Region: us-east-1

Integration Response

HTTP status pattern: - v

Output passthrough: Yes

OEBPS/Images/C09510_Fig3.36.jpg
ext-image <no-reply@sns.amazonaws.com> 5:09 PM (15 minutes ago)
tome v

[{"Name""Text" "Confidence™99.11747741699219} {"Name":"Page","Confidence" 58 84266662597656} {"Name" "File","Confidence":56 4834976 19628906},{"Name" "Electronics" "
Confidence":55.50878143310547}]

It you wish to stop recewving notifications trom this topic, please click or visit the link below to unsuhscribe
https://sns us-east-1 amazonaws com/unsubscribe htmi?SubscriptionAm=arn-aws sns-us-eas dract-image-labels-sns:caf76256-4417-450-ace3-25ebef1 2aec68&
Endpoin 2gmailcom

R N

OEBPS/Images/C09510_Fig2.15.jpg
Upload >

@ Select files @ Set permissions @ Set properties @ Review

1Files Size:50.0B Target path: lambdas3demo

sample.txt
B -5008 x

Upload Next

OEBPS/Images/C09510_Fig2.14.jpg
Create bucket >
@ Name and region @ Set properties @ Set permissions @ Review
Name and region

Bucket name

lambda-s3-demo

Region

US East (N. Virginia) v

Copy settings from an existing bucket

OEBPS/Images/C09510_Fig3.35.jpg
S3

mohit-1128-2099 @ Enabled
armawsis3zmohit-1128-2099

Bucket: s3/mohit-1128-2099 Event type: ObjectCreated Notification name: b74b945c-1ae7-4353-9b48-8dc9371b751b

OEBPS/Images/C09510_Fig2.19.jpg
Resource Groups ~

[AP| Gateway|

@ Compute 3R Developer Tools
EC2 CodesStar
Lightsail &' CodeCommit
Elastic Container Service CodeBuild
Lambda CodeDeploy
Batch CodePipeline
Elastic Beanstalk Cloud9

X-Ray

OEBPS/Images/C09510_Fig2.18.jpg
E-lPp-w

AP Lambda §3 Bucket
Gateway Functon

API Gateway &
Lambda Integration

OEBPS/Images/C09510_Fig2.9.jpg
Amazon S3 > www.aws-serverless.com

_ RIpRies

_

Versioning

Keep multiple versions of an object in the
same bucket.

Learn more

Server access logging

Set up access log records that provide
details about access requests.

Learn more

Static website hosting

Host a static website, which does not
require server-side technologies.

Learn more

OEBPS/Images/C09510_Fig1.5.jpg
ices v Resource Gi

AWS services

‘ Lambdd

Lambda
Run Code without Thinking about Servers.

OEBPS/Images/C09510_Fig1.4.jpg
Sign In to the Console

OEBPS/Images/C09510_Fig1.7.jpg
Create function

Author from scratch o Blueprints Serverless Application Repository
Start with a simple *hello world” example. Choose a preconfigured template as a starting point for your Find and deploy serverless apps published by developers,
Lambda function. companies, and partners on AWS.

2 E %

OEBPS/Images/C09510_Fig1.6.jpg
Get started

Author a Lambda function from scratch, or
choose from one of many preconfigured
examples.

OEBPS/Images/C09510_Fig2.20.jpg
Create new API

In Amazon API Gateway, an AP refers to a collection of resources and methods that can be invoked through HTTPS endpoints.
* New API Import from Swagger Example API

Settings

Choose a friendly name and description for your API.

API name* MyFirstAPI
Description Sample API
Endpoint Type Regional .

* Required

OEBPS/Images/C09510_Fig1.1.jpg
Networking

Application Storage

Middleware

Virtualization

OEBPS/Images/C09510_Fig1.3.jpg
AWS Serverless

Lambda

s3

sas

Step Function

Ecosystem

SNS

DynamoDB

Amazon Kinesis

Athena

-
=
=
ol

OEBPS/Images/C09510_Fig1.2.jpg
Serverless Model

I

Web Client

APl Gateway
(Rest Interface)

DynamoDB
(Database)

Lambi
Eompte) '

3
(Storage)

OEBPS/Images/C09510_Fig2.24.jpg
Resources Ations~ | /read-file-from-s3 - GET - Setup

=y Choose the integration point for your new method.
~ Iread-file-from-s3
ceT
Integration type © Lambda Function @
HTTP @
Mock &
AWS Service @

VPCLink @
Use Lambda Proxy integration €
Lambda Region ys.east-1 i
Lambda Function read_from s3

Use Default Timeout * @

@

OEBPS/Images/C09510_Fig2.23.jpg
Resources | Actions~ | /read-file-from-s3 Methods

=1 No methods defined for the resource.
Iread-file-from-s3

[T +] @O

OEBPS/Images/C09510_Fig2.22.jpg
Actions~ New Child Resource

Resources

Use this page to create a new child resource for your resource. @

1
Configure as (Zproxy resource

Resource Name*

Resource Path*

Enable API Gateway CORS

* Required

i)

read_file_from_s3

/

read-file-from-s3

You can add path parameters using brackets. For example, the resource path {username} represents a path parameter
called 'username'. Configuring /{proxy+} as a proxy resource catches all requests 1o its sub-resources. For example, it
works for a GET request to /foo. To handle requests to /, add a new ANY method on the / resource.

o

OEBPS/Images/C09510_Fig2.21.jpg
Create new API

In Amazon API Gateway, an AP refers to a collectin of resources and methods that can be invoked through HTTPS endpoins.
* New API Clone from existing API Import from Swagger Example API

Settings

Choose a friendly name and description for your AP

Jr— read_from_S3_api
Description sampie API
Endpoint Type Regional v

* Required

Create API

OEBPS/Images/C09510_Fig2.28.jpg
Deploy APl @

Choose a stage where your APl will be deployed. For example, a test version of your APl
could be deployed to a stage named beta.
Deployment stage [New Stage] v
Stage name* prod

Stage description

Deployment description

Cancel Deploy

OEBPS/Images/C09510_Fig2.27.jpg
Deploy API @

Choose a stage where your API will be deployed. For example, a test version of your APl
could be deployed to a stage named beta.

Deployment stage v

Deployment description

Cancel Deploy

OEBPS/Images/C09510_Fig2.26.jpg
Resources | Actions;

.
~ Iread-file-from-s3
T

/read-file-from-s3 - GET - Method Execution

TEST

¥

Method Request

Auth: NONE

ARN: am:aws:execute-aplus-east-
1:989301460252:vbOnsigyl*/GETiread-fle-

from-s3

Method Response

HTTP Status: 200

Model

applicationfson => Empty

Integration Request

Type: LAMEDA
Region: us-east-1

Integration Response

HTTP status pattern: - v

Output passthrough: Yes

€57 woy pe) epque

OEBPS/Images/C09510_Fig2.25.jpg
Add Permission to Lambda Function

You are about to give APl Gateway permission to invoke your Lambda function:
arn:aws:lambda:us-east-1:989301460252:function:read_from_s3

e (G

OEBPS/Images/C09510_Fig2.29.jpg
® Invoke URL: hitps://ogrjhzditzi execute-api us-east-1.amazonaws.com/prod -

Settings Logs Stage Variables SDK Generation Export Deployment History Documentation History Canary
Configure the metering and caching settings for the prod stage.
Cache Settings
Enable API cache

Default Method Throttling

Choose the default throttling level for the methods in this stage. Each method in this stage will respect these rate and burst settings. Your current account level
throttling rate is 10000 requests per second with a burst of 5000 requests. Read more about API Gateway throttling

Enable throttling ¥ ©
Rate 10000 requests per second
Burst 5000 requests

Client Certificate

OEBPS/Images/C09510_Fig1.9.jpg
@ Congratulations! Your Lambda function “myFirstLambdaFunction” has been successfully created. You can now change its code and configuration. Click on the "Test" button to input a test event when X
you are ready to test your function.

OEBPS/Images/C09510_Fig1.8.jpg
Name*

‘ myFirstLambdaFunction ‘

Rui e*

‘ Nodejs 6.10 v ‘

Role*
Defines the permissions of your function. Note that new roles may not be available for a few minutes after creation. Learn more about Lambda execution
roles.

Create new role from template(s) v ‘

Lambda will automatically create a role with permissions from the selected policy templates. Note that basic Lambda permissions (logging to
CloudWatch) will automatically be added. If your function accesses a VPC, the required permissions will also be added.

Role name*
Enter a name for your new role.

‘ lambda_basic_execution ‘

Policy templates
Choose one or more policy templates. A role will be generated for you before your function is created. Learn more about the permissions that each policy
template will add to your role.

I "]

‘ Simple Microservice permissions X

Cancel Create function

OEBPS/Images/C09510_Fig2.53.jpg
AWS Notification Message inbox x

TestSNS <no-reply@sns.amazonaws.com>
tome [+

Publish Test Message to SNS from Lambda

I you wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:
htlps//sns us-east-1 amazonaws com/unsubscribe htmi?SubscriptionArn=arn-aws:sns-us-east-1:989301460252 TestSNS 493d9dfd-bdf7-4419-b941-8032a8a16c03&Endpoint=mohit353@gmail com

Please do not reply directly to this email. If you have any questions or comments regarding this email, please contact us at hitps://aws amazon com/support

OEBPS/Images/C09510_Fig2.52.jpg
Environment

Flo Edt Frnd Vow Golo Toos Wndow HE -]

(53 lamtca_with sns

ndexss

@ B indexjs PINC

1 vr aws_sdi - require(’sus-sdk');

2 aus sdk_config.reglon - ‘us-east1';

3

4 oxports.handler = function(event, context) {

i i ans = e aws_sdie. SIS,

6

7 e i

s ssage: “Publish Test Message to SHS fron Lanbda’

5 Topichon: - oes oo ense-LLOB3OLARRL5R: TN

10 3, function(err, data) {

u 1F Cerr) (

n console. logerr.stack);

5 return;

u

1 console. Log(‘Message sent successfully’);

10 console. Log(data);] 16:27 JavaScript Spaces: 4 K

B Execution Resutx &)
v Execution resuls Status Succeeded | Max Memory Used: 398 | e 145379 ms

1

Request 1

Function Logs:

START Recuest1d: 7855804a- 37561168500 -(7914373b0S9 Version: SLATEST

01804 13122:03:19.4732 7858804 3466 1108 a00F-791407abb59 Message sent successfully

201864 1312203110 5112 78588040 466 1168 a06¢ 1918070050 [Respenselatadatar | Requestid: ‘FuficES) dedl S5ia 898 9cicesseeite’),
Mocsageld: "OcSchcie-ddcl-S47d-bedl- 756206929)

EID Requestld: 7858804a 31661168 2007791473005

JEPORT Reestid 7E5ots. 66153090 751437339 Quration: 143979 s _ Billd Oration: 1390w _ ey Size: 125 10 o Memory Used: 3 1

OEBPS/Images/C09510_Fig2.51.jpg
lambda_with_sns Throttle H Qualifiers v H Actions v TestEvent v [Test Save

© Execution result: succeeded (logs)
v betails

‘The area below shows the result returned by your function execution. Learn more about returning resuits from your function,

Summary

Code SHA-256 DRStOAC3ekRAS+ QUFTXesOBZKmpSunixsITZwHaATMc= Request ID df24b687-3762-11¢8-8657-ad317f64af6b
Duration 141047 ms Billed duration 1500 ms

Resources configured 128 ME Maxmemoryused 34 M2

Log output

The area below shows the logging calls in your code. These correspond to a single row within the CloudWatch log group corresponding to this Lambda function. Click here to view the CloudWatch log

START Requestld: df24b687-3762-1168-8657-ad317f64af6b Version: SLATEST
| 2018-0a-13120:37:32.8772 4528b687-3662-118-657 - 2317 FSdafeb.

Loading handler

2018-04-13721:37:38.2172 452006873462 1165. 8657 -ad317F6AsFGb Hessage sent successfully

2018-04-13120:37:38.2072 4F20b687-3062-1168-8657-ad317f6af6b (ResponseMetadata: { Requestld: "5dacTbe-cbSe-5502-b99-94f5ee0c78s"),
Mazsageld: 96656226-3893-5442-b36a- 16 1bed%6es”]

END Reguestld: d£2:b587-3¢52-1165-8657-ad31764afeb.

OEBPS/Images/C09510_Fig2.50.jpg
Save

lambda_with_sns Throttte | | Qualifiers v | [Actions ¥ Testévent v

© Congratulations! Your Lamba function "lambda_with_sns" has been successfully created. You can now change its code and configuration. Click on the "Test" button to input a test event when you are X
ready to test your function.

© Execution result: succeeded (logs) X
[pesaits

OEBPS/Images/C09510_Fig2.57.jpg
lambda_with_sns Throttle Quatfiers v | [Actions v | [Testevent

Configuration | Monitoring

v Designer

CloudWatch Logs
CodeCommit — & lambda_with_sns

Cognito Sync Trigger g Layers ©

DynamoDB
53 X @ Amazon CloudWatch Logs
Kinesis © saved

3 Amazon SNS
Add triggers from the list on the left .

SNS
Resources that the function’s role has access to appear here

sQs

S3

kinesis-s3-0810 © enabled Delete
aniaws3:ckinesis-53-0810.

Bucket: s3/kinesis-s3-0810 Event type: ObjectCreated Notification name: 757ebf53-18fa-4cf1-aedb-f158373fed15

OEBPS/Images/C09510_Fig2.56.jpg
S3

New trigger 1

@© Unsaved changes
Bucket: 53/kinesis-s3-0810

Event type: ObjectCreated

Delete

OEBPS/Images/C09510_Fig2.55.jpg
Configure triggers

Bucket
Please slectthe 53 bucket that serves s the event source. The bucket must be in the same region as the function.

| kinesis-s3-0810 v]

Event type

St th ettty ware o g he s e o Gy e el e 3 o o e bk, ko s o e e
S ovtapg prefes o e tht ol tehthe e oject ke

(A mmess =i

prefix

Enter asingle optional prefx tolimit the notifications o objects with keys thatstart with matching characters.

eg. images/]

Suffix
Enter asingle optional suffx to it the notificatons to bjects with keys that end with matching characters.

(eaw]

Lambda will add the necessary permissions for Amazon §3 to invoke your Lambda function from this trigger. Lear more about the Lambda permissions model.

@ Enable trigger
Enatie the rigger now, o createtin disabled sta or testing recommendec).

OEBPS/Images/C09510_Fig2.54.jpg
Save

lambda_with_sns ki M

Configuration | Monitoring

v Designer

CloudWatch Logs
CodeCommit — & lambda_with_sns

Cognito Sync Trigger | < Layes)

Dynamona
s3 ° Amazon CloudWatch Logs
= B e s

S5
Add tiggers from the st on theleft Wp Amazon SNS

NS

Resources that the function's role has access to appear here
sas

Configure triggers

OEBPS/Images/C09510_Fig2.59.jpg
AmazonS3 > Kinesis-s3-0810

Sentes _—_

Q Type a prefix and press Enter to search. Press ESC to clear.

Name 1=

B Two-tier-retirement.cake-6-10-10-400-600x537.png

US East (N. Virginia)

Viewing 10 1

Last modified Size. Storage class

Dec4,2018 12:51:01 PMGMT+0530 520.1KB Standard

Viewing 1o 1

OEBPS/Images/C09510_Fig2.58.jpg
Environment

File Edt Find View Goto Toos Window

v ambawinss g+ B indexis x
&) indecss 1 var aus_sdk - require(‘aus-sdk);
2 aus_sdk-config.region - "us-east1';
3

Pl e ot B S

5 var sns = new aws_sdk. SNS(
6

7 sns-publish((

8 has been uj to the 53 bucket "kinesis-s3-6810°] ,
o optehn: - armaut o us oot 1100001460752 TestSHS.

10) Funtionerr data) {

1 if (err) {

12 console. log(err.stack);

15 return

1 3

15 console. log(Message sent successfully’);

15 console. log(data);

7 n

OEBPS/Images/C09510_Fig2.60.jpg
TestSNS <no-reply@sns.amazonaws.com> 12:56 PM (0 minutes ago) Yy 4

wme v

A new object has been uploaded to the S3 bucke! "kinesis-s3-0810"

lfyou wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:
hitps //sns us-east-1 htm =arn aws sns us-east-1 TestSNS:493d9dfd-bdf7-4419-b941-8032a8a16C0: fan

Please do not reply directly to this email. If you have any questions or comments regarding this email please contact us at https://aws amazon.com/support

OEBPS/Images/C09510_Fig5.9.jpg
Lanbde > Funcons > crese fonceon
Create function

Author from scratch

Stortwith smple el ol exsmple

o | Blueprints
Choose »preconfigure templat 5 3 starting pont foryour Lambda function.

=

Serverless Application Repository o
Find and deplo srvris aps publhed b developer, comparies, and artnrson
s,

Oy
-

Kinesis-process-record-python
A Ao Kiesis stram procesor tht g the
ot beng pubhes

python27 - kiness

Kinesis-process-record
A Amazon Kiess stesm precesor that g the
ot being bl

ol Kiness

Comel | configure

OEBPS/Images/C09510_Fig5.8.jpg
Create DynamoDB table Tuorial | @

DynamoD is a schema-less database that only requires a table name and primary key. The table’s primary key is made p of one or two attributes that uniquely identify items, partition the
data, and sort data within each partition.

Table name® | sample-table [
Primary key* Partition key
createdate o
) Add sort key
Table settings
Default settings provide the fastest way 1o get started with your table. You can modify these default settings now or afler your table has been created

¥l Use default settings

+ No secondary indexes.

« Provisioned capacity set o 5 reads and 5 writes.

« Basic alarms with 80% upper threshold using SNS topic "dynamodb”.
« On-Demand Backup and Restore Enabled (IR

© You do not have the required role to enable Auto Scaling by default.
Please refer to documentation

‘Addiional charges may apply if you exceed the AWS Free Tier levels for CloudWatch or Simple Notification Service. Advanced alarm seftings are available in the CloudWatch management console.

OEBPS/Images/C09510_Fig5.5.jpg
Create Kinesis stream)

Kinesis stream name* kinesis-to-dynamodb

are uppercase and letters, numbers, . hyphens, and periods.

Shards

A'shard is a unit of throughput capacity. Each shard ingests up to 1MB/sec and 1000 records/sec, and emits up to 2MB/sec. To accommodate for
higher or lower throughput, the number of shards can be modified after the Kinesis stream is created using the API. Learn more

Producers Kinesis stream Consumers

DOD [— || s @B ||— | DDOD
shard [[

D Estimate the number of shards you'll need

Number of shards* | 1

‘You can provision up to 499 more shards before hiting your account imit of 500.
Leam more or request a shard Imit increase for this account

Total stream capacity Values are calculated based on the number of shards entered above.

write | 1 MB per second
1000 Records per second
Read 2 MB per second

OEBPS/Images/C09510_Fig5.4.jpg
Kinesis streams
Amazon Kinesis 4

Kinesis data streams continuously capture and temporarily store real-time data. Configure producers [to put data records into a data

Dashboard
Total shards in use: 1 Total shards remaining: 499 €
| pata streams
Data Firehose Connect Kinesis consumers Actions v
Data Analytics
Video Streams
Kinesis stream name ¥ Number of shards v

External resourc

OEBPS/Images/C09510_Fig5.7.jpg
DynamoDB
PR Create tanie [EGEESEEEA

Dashboard
| Tavies QFilter by table name X
Backups o i
Name « status - Partition key - Sortkey - Indexes- Total read capacity -
Reserved capacity

Preferences|

DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalabilty. DynamoDB allows you to create a database table
DAX traffic. More info

Dastiboary

Clusters
‘Subnet groups
Parameter groups

Evenis

OEBPS/Images/C09510_Fig5.6.jpg
Kinesis streams
Amazon Kinesis 4

Dashboard Kinesis data streams continuously capture and temporarily store real-time data. Configure producers (7 to put data records into a data stream. Configure consumers (7' to continuously process data stream records.

Total shards in use: 1 Total shards remaining: 499 €@

| pata streams
Data Firehose o Creating stream kinesis-to-dynamodb
Data Analytics Creating a stream generally takes up to a minute.

Video Streams

External resources
What's new
Kinesis stream name ¥ Number of shards v status v

Consumers using enhanced fan-out €

kinesis-to-dynamodb 1 Active 0

OEBPS/Images/C09510_Fig5.1.jpg
Input
Data Stream

Amazon

Kinesis L

Amazon Kinesis
Data Streams

Output

OEBPS/Images/C09510_Fig5.3.jpg
Amazon Kinesis

| pashboard

Data Streams
Data Firehose
Data Analytics

Video Streams

External resources

What's new

Amazon Kinesis dashboard

Amazon Kinesis makes it easy to collect, process, and analyze video and data streams in real time, 50 you can get timely insights and react quickly to new

information. What is streaming data?

Kinesis data streams (1)
Name status
— Active
View all Create data stream

Kinesis analytics applications

Run continuous SQL queries on streaming data from Kinesis data
streams and Kinesis [irehose delivery streams. Leam more

$o-E-HeE

Create analytics ap|

Kinesis Firehose delivery streams (2) (i)
Name status
— Active
TS Active

View all Create delivery stream

Kinesis video streams

Build applications to process or analyze streaming media.
Leam more

Create video stream

OEBPS/Images/C09510_Fig5.2.jpg
Qo ha_, N
7 P

Input Amazon

veta stream Kinesis Lambde DamemeOB

Amazen Kinesis
Data Streams.

OEBPS/Images/9781789805024cov.png
Serverless
Architectures
with AWS

Discover how you can migrate from traditional deployments to
serverless architectures with AWS

Packt>

www.packt.com

Mohit Gupta

