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      Chapter 1. The Python Interpreter

      
      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 2nd chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      To develop software systems in Python, you write text files that contain Python source code. Use any text editor, including those in Integrated Development Environments (IDEs). Then, process the source files with the Python compiler and interpreter. You can do this directly, or within an IDE, or via another program that embeds Python. The Python interpreter also lets you execute Python code interactively, as do IDEs.

      
        The Python Program

        The Python interpreter program is run as python (it’s named python.exe on Windows). python includes both the interpreter itself and the Python compiler, which is implicitly invoked, as and if needed, on imported modules. Depending on your system, the program may typically have to be in a directory listed in your PATH environment variable. Alternatively, as with any other program, you can give a complete pathname to it at a command (shell) prompt, or in the shell script (or shortcut target, etc.) that runs it.1

        
          PEP 397

          On Windows, since PEP 397, py.exe, the launcher, installs in the system area, meaning it is sure—barring further manipulation on your part—to be on the PATH.

        

        On Windows, press the Windows key and start typing python: “Python 3.x (command-line)” appears, along with other choices, such as “IDLE (Python GUI).” If you have the py.exe launcher installed (which is the normal case), at any command prompt, typing py launches Python.

        
          Environment Variables

          Besides PATH, other environment variables affect the python program. Some environment variables have the same effects as options passed to python on the command line, as we show in the next section. Several environment variables provide settings not available via command-line options. The following list covers just the basics of a few frequently used ones; for all details, see the online docs.

          
            	
              PYTHONHOME
            

            	
              The Python installation directory. A lib subdirectory, containing the standard Python library, must exist under this directory. On Unix-like systems, the standard library modules should be in lib/python-3.x for Python 3.x, where x is the minor Python version. If not set, Python uses some heuristics to locate the installation directory.

            

            	
              PYTHONPATH
            

            	
              A list of directories, separated by colons on Unix-like systems, and by semicolons on Windows. Python can import modules from these directories. This list extends the initial value for Python’s sys.path variable. We cover modules, importing, and sys.path in Chapter “Modules.”

            

            	
              PYTHONSTARTUP
            

            	
              The name of a Python source file to run each time an interactive interpreter session starts. No such file runs if you don’t set this variable, or set it to the path of a file that is not found. The PYTHONSTARTUP file does not run when you run a Python script; it runs only when you start an interactive session.

            

          

          How to set and examine environment variables depends on your operating system. In Unix, use shell commands, often within startup shell scripts. On Windows, press the Windows key and start typing environment var and a couple of shortcuts appear: one for user env vars, the other for system ones. On a Mac, you can work like in other Unix-like systems, but you have options, including a MacPython-specific IDE. For more information about Python on the Mac, see Using Python on a Mac.

        

        
          Command-Line Syntax and Options

          The Python interpreter command-line syntax can be summarized as follows:

        
            [path]python {options} [-c command | -m module | file | -] {args}

          Brackets ([]) enclose what’s optional, braces ({}) enclose items of which zero or more may be present, and bars (|) mean a choice among alternatives. Python uses a slash (/) for file paths, as in Unix.

          Running a Python script at a command line can be as simple as:

            $ python hello.py
Hello World

          You can also explicitly provide the path to the script:

            $ python ./hello/hello.py
Hello World

          The filename of the script can be any absolute or relative file path, and need not have any specific extension (though it is conventional to use a .py extension). Each operating system has its own way to make the Python scripts themselves executable, but we do not cover those details here.

          Options are case-sensitive short strings, starting with a hyphen, that ask python for non-default behavior. python accepts only options that start with a hyphen (-). The most frequently used options are in Table 2-1. Each option’s description gives the environment variable (if any) that, when set, requests that behavior. Many options have longer versions, starting with two hyphens, as shown by python -h. For all details, see the online docs.

          
            Table 2-1. Python frequently used command-line options
          

          
            
              	
                Option
              
              	
                Meaning (and environment variable, if any)
              
            

            
              	
                -B
              
              	Don’t save compiled bytecode files to disk (PYTHONDONTWRITEBYTECODE)
            

            
              	
                -c
              
              	Gives Python statements within the command line
            

            
              	
                -E
              
              	Ignores all environment variables
            

            
              	
                -h
              
              	Show then full list of options, then terminate
            

            
              	
                -i
              
              	Runs an interactive session after the file or command runs (PYTHONINSPECT)
            

            
              	
                -m
              
              	Specifies a Python module to run as the main script
            

            
              	
                -O
              
              	Optimizes bytecode (PYTHONOPTIMIZE)—note that this is an uppercase letter O, not the digit 0
            

            
              	
                -OO
              
              	Like -O, but also removes docstrings from the bytecode 
            

            
              	
                -S
              
              	Omits the implicit import site on startup (covered in “The site and sitecustomize Modules”)
            

            
              	
                -t, -tt
              
              	Issues warnings about inconsistent tab usage (-tt instead issues errors for the same issues)
            

            
              	
                -u
              
              	Uses unbuffered binary files for standard output and standard error (PYTHONUNBUFFERED)
            

            
              	
                -v
              
              	Verbosely traces module import and cleanup actions (PYTHONVERBOSE)
            

            
              	
                -V
              
              	Prints the Python version number, then terminates
            

            
              	
                -W arg
              
              	Adds an entry to the warnings filter (see “The warnings Module”)
            

            
              	
                -x
              
              	Excludes (skips) the first line of the script’s source
            

          

          Use -i when you want to get an interactive session immediately after running some script, with top-level variables still intact and available for inspection. You do not need -i for normal interactive sessions, though it does no harm.

          -O and -OO yield small savings of time and space in bytecode generated for modules you import, turning assert statements into no-operations, as covered in “The assert Statement.” -OO also discards documentation strings.2

          After the options, if any, tell Python which script to run. A file path means a Python source or bytecode file to run; on any platform, you may use a slash (/) to separate components in this path. On Windows only, you may alternatively use a backslash (\). Instead of a file path, you can use -c command to execute a Python code string command. command normally contains spaces, so you need quotes around it to satisfy your operating system’s shell or command-line processor. Some shells (e.g., bash) let you enter multiple lines as a single argument, so that command can be a series of Python statements. Other shells (e.g., Windows shells) limit you to a single line; command can then be one or more simple statements separated by semicolons (;), as we discuss in “Statements.”

          Another way to specify which Python script to run is -m module. This option tells Python to load and run a module named module (or the __main__.py member of a package or ZIP file named module) from some directory that is part of Python’s sys.path; this is useful with several modules from Python’s standard library. For example, as covered in “The timeit module,” -m timeit is often the best way to perform micro-benchmarking of Python statements.

          A hyphen, or the lack of any token in this position, tells the interpreter to read program source from standard input—normally, an interactive session. You need a hyphen only if arguments follow. args are arbitrary strings; the Python you run can access these strings as items of the list sys.argv.

          For example, on a standard Windows installation, you can enter the following at a command prompt to have Python print the current date and time:

          
            C:\> py -c "import time; print(time.asctime())"

          On Cygwin, Linux, OpenBSD, macOS, and other Unix-like systems, with a default installation of Python from sources, enter the following at a shell prompt to start an interactive session with verbose tracing of module import and cleanup:

          
            $ /usr/local/bin/python -v

          You can start the command with just python (you do not have to specify the full path to Python) if the directory of the Python executable is in your PATH environment variable. (If you have multiple versions of Python installed, you can specify the version, with, for example, python3, or python3.10, as appropriate; then, the version used if you just say python is the one you installed most recently.)

        

        
          Interactive Sessions

          When you run python without a script argument, Python starts an interactive session and prompts you to enter Python statements or expressions. Interactive sessions are useful to explore, to check things out, and to use Python as a powerful, extensible interactive calculator. (IPython, mentioned in “IPython,” is like “Python on steroids” specifically for interactive-session usage.)

          When you enter a complete statement, Python executes it. When you enter a complete expression, Python evaluates it. If the expression has a result, Python outputs a string representing the result and also assigns the result to the variable named _ (a single underscore) so that you can immediately use that result in another expression. The prompt string is >>> when Python expects a statement or expression and ... when a statement or expression has been started but not completed. In particular, Python prompts you with ... when you have opened a parenthesis (or other matched delimiter) on a previous line and have not closed it yet.

          There are several ways you can end an interactive session. The most common are:

          
          	Enter the end-of-file keystroke for your operating system (Ctrl-Z on Windows, Ctrl-D on Unix-like systems).


          	Execute either of the built-in functions quit or exit, using the form quit() or exit(). (Omitting the trailing ()’s will display a message like “Use quit() or Ctrl-D (i.e. EOF) to exit,” but will still leave you in the interpreter.)


          	Execute the statement raise SystemExit, or call sys.exit(), either interactively or in running code (we cover SystemExit and raise in Chapter “Exceptions”).


        

          
            Use the Python Interactive Interpreter for Simple Experimenting

            Trying out Python statements in the interactive interpreter is a quick way to experiment with Python and immediately see the results. For example, here is a simple test of the built-in enumerate function:

            >>> print(list(enumerate("abc")))
            (0, 'a'), (1, 'b'), (2, 'c')]

            The interactive interpreter is a great introductory platform for learning basic Python syntax and features. (Even experienced Python developers will often open a Python interpreter to quickly check out an infrequently-used command or function.)

          

          Line-editing and history facilities depend in part on how Python was built: if the readline module was included, all features of the GNU readline library are available. Windows has a simple but usable history facility for interactive textmode programs like python. To use other line-editing and history facilities, install pyreadline on Windows, or pyrepl for Unix.

          In addition to the built-in Python interactive environment, and those offered as part of richer development environments covered in the next section, you can freely download other alternative, powerful interactive environments. The most popular one is IPython, covered in “IPython,” which offers a dazzling wealth of features. A simpler, lighter-weight, but still quite handy alternative read-line interpreter is bpython.

        

      

      
        Python Development Environments

        The Python interpreter’s built-in interactive mode is the simplest development environment for Python. It is primitive, but is lightweight, has a small footprint, and starts fast. Together with a good text editor (as discussed in “Free Text Editors with Python Support”), and line-editing and history facilities, the interactive interpreter (or, alternatively, the much more powerful IPython/Jupyter command-line interpreter) is a usable development environment. However, there are several other development environments you can use.

        
          IDLE

          Python’s Integrated DeveLopment Environment (IDLE) comes with standard Python distributions on most platforms. IDLE is a cross-platform, 100% pure Python application based on the Tkinter GUI. IDLE offers a Python shell similar to the interactive Python interpreter, but richer. It also includes a text editor optimized to edit Python source code, an integrated interactive debugger, and several specialized browsers/viewers.

          For more functionality in IDLE, install IdleX, a substantial collection of free third-party extensions to it.

          To install and use IDLE in macOS, follow these specific instructions.

        

        
          Other Python IDEs

          IDLE is mature, stable, easy, fairly rich, and extensible. There are, however, many other IDEs—cross-platform and platform-specific, free and commercial (including commercial IDEs with free offerings, especially if you’re developing open source software), standalone and add-ons to other IDEs.

          Some of these IDEs sport features such as static analysis, GUI builders, debuggers, and so on. Python’s IDE wiki page lists over 30, and points to many other URLs with reviews and comparisons. If you’re an IDE collector, happy hunting!

          We can’t do justice to even a tiny subset of those IDEs, but it’s worth singling out the popular cross-platform, cross-language modular IDE Eclipse: the free third-party plug-in PyDev for Eclipse has excellent Python support. Steve is a long-time user of Wing IDE by Archaeopteryx, the most venerable Python-specific IDE. Paul’s IDE of choice, and perhaps the single most popular third-party Python IDE today may be PyCharm. And, not to be overlooked, Microsoft’s Visual Studio Code (also referred to as Visual Studio, or VSCode) is an excellent cross-platform IDE, with support for a number of languages, including Python. If you use Visual Studio, check out PTVS, an open source plug-in that’s particularly good at allowing mixed-language debugging in Python and C as and when needed.

        

        
          Free Text Editors with Python Support

          You can edit Python source code with any text editor, even simplistic ones such as Notepad on Windows or ed on Linux. Powerful free editors support Python with extra features such as syntax-based colorization and automatic indentation. Cross-platform editors let you work in uniform ways on different platforms. Good text editors also let you run, from within the editor, tools of your choice on the source code you’re editing. An up-to-date list of editors for Python can be found on the Python wiki, which lists dozens of them.

          The very best for sheer editing power may be classic Emacs (see the Python wiki for Python-specific add-ons). Emacs is not easy to learn, nor is it lightweight. Alex’s personal favorite is another classic, vim, Bram Moolenaar’s improved version of traditional Unix editor vi: perhaps not quite as powerful as Emacs, but still well worth considering—fast, lightweight, Python-programmable, runs everywhere in both text-mode and GUI versions, and excellently taught in O’Reilly’s book “Learning the vi and vim editors,” now in its 8th edition. See the Python wiki for Python-specific tips and add-ons. Steve and Anna also use vim. Where it’s available, Steve also uses the commercial editor Sublime Text 2, with good syntax coloring and enough integration to run your programs from inside the editor. For quick editing and executing of short Python scripts (and as a fast and lightweight general text editor, even for multi-megabyte text files), SciTE is Paul’s go-to editor.

        

        
          Tools for Checking Python Programs

          The Python compiler does not check programs and modules thoroughly: the compiler checks only the code’s syntax. If you want more thorough checking of your Python code, download and install third-party tools for the purpose. Pyflakes is a very fast, lightweight checker: it’s not thorough, but does not import the modules it’s checking, which makes using it safer. At the other end of the spectrum, PyLint is very powerful and highly configurable. PyLint is not lightweight, but repays that by being able to check many style details in a highly configurable way based on customizable configuration files.

          For more thorough checking of Python code for proper variable type usages, tools like mypy are used; see more discussion in “Type Annotations.”

        

      

      
        Running Python Programs

        Whatever tools you use to produce your Python application, you can see your application as a set of Python source files, which are normal text files. A script is a file that you can run directly. A module is a file that you can import (as covered in Chapter “Modules”) to provide functionality to other files or interactive sessions. A Python file can be both a module (providing functionality when imported) and a script (OK to run directly). A useful and widespread convention is that Python files that are primarily intended to be imported as modules, when run directly, should execute some self-test operations, as covered in “Testing.”

        The Python interpreter automatically compiles Python source files as needed. Python source files normally have the extension .py. Python saves the compiled bytecode in subdirectory __pycache__ of the directory with the module’s source, with a version-specific extension, and annotated to denote optimization level.

        Run Python with option -B to avoid saving compiled bytecode to disk, which can be handy when you import modules from a read-only disk. Also, Python does not save the compiled bytecode form of a script when you run the script directly; rather, Python recompiles the script each time you run it. Python saves bytecode files only for modules you import. It automatically rebuilds each module’s bytecode file whenever necessary—for example, when you edit the module’s source. Eventually, for deployment, you may package Python modules using tools covered in Chapter “Distributing Extensions and Programs.”

        You can run Python code with the Python interpreter or an IDE3. Normally, you start execution by running a top-level script. To run a script, give its path as an argument to python, as covered earlier in “The python Program.” Depending on your operating system, you can invoke python directly from a shell script or command file. On Unix-like systems, you can make a Python script directly executable by setting the file’s permission bits x and r and beginning the script with a shebang line, a line such as:

        
          #!/usr/bin/env python

        or some other line starting with #! followed by a path to the python interpreter program, in which case you can optionally add a single word of options, for example:

        
          #!/usr/bin/python -O

        On Windows, you can use the same style #! line, in accordance with PEP 397, to specify a particular version of Python, so your scripts can be cross-platform between Unix-like and Windows systems. You can also run Python scripts with the usual Windows mechanisms, such as double-clicking their icons. When you run a Python script by double-clicking the script’s icon, Windows automatically closes the text-mode console associated with the script as soon as the script terminates. If you want the console to linger (to allow the user to read the script’s output on the screen), ensure the script doesn’t terminate too soon. For example, use, as the script’s last statement:

        
          input('Press Enter to terminate')

        This is not necessary when you run the script from a command prompt.

        On Windows, you can also use extension .pyw and interpreter program pythonw.exe instead of .py and python.exe. The w variants run Python without a text-mode console, and thus without standard input and output. This is good for scripts that rely on GUIs, or run invisibly in the background. Use them only when a program is fully debugged, to keep standard output and error available for information, warnings, and error messages during development. On a Mac, use interpreter program pythonw, rather than python, when you want to run a script that needs to access any GUI toolkit, rather than just text-mode interaction.

        Applications coded in other languages may embed Python, controlling the execution of Python for their own purposes. We examine this briefly in “Embedding Python.”

      

      
        The PyPy Interpreter

        PyPy may be run similarly to python:

        
          [path]pypy {options} [-c command | file | - ] {args}

        See the PyPy homepage for complete, up-to-date information.

      

    1 This may involve using quotes if the pathname contains spaces—again, this depends on your operating system. 
2 This may affect code that parses docstrings for meaningful purposes; we suggest you avoid writing such code. 
3 or, online: one of the authors, for example, maintains an online list of online Python interpreters. 




      Chapter 2. The Python Language

      
            A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 3rd chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      This chapter is a guide to the Python language. To learn Python from scratch, we suggest you start with the appropriate links from the online docs. If you already know at least one other programming language well, and just want to learn specifics about Python, this chapter is for you. However, we’re not trying to teach Python: we cover a lot of ground at a pretty fast pace. We focus on the rules, and only secondarily point out best practices and style; as your Python style guide, use PEP 8 (optionally augmented by extra guidelines such as The Hitchhiker’s Guide, CKAN’s, and Google’s).

      
        Lexical Structure

        The lexical structure of a programming language is the set of basic rules that govern how you write programs in that language. It is the lowest-level syntax of the language, specifying such things as what variable names look like and how to denote comments. Each Python source file, like any other text file, is a sequence of characters. You can also usefully consider it a sequence of lines, tokens, or statements. These different lexical views complement each other. Python is very particular about program layout, especially lines and indentation: pay attention to this information if you are coming to Python from another language.

        
          Lines and Indentation

          A Python program is a sequence of logical lines, each made up of one or more physical lines. Each physical line may end with a comment. A hash sign # that is not inside a string literal starts a comment. All characters after the #, up to but excluding the line end, are the comment: Python ignores them. A line containing only whitespace, possibly with a comment, is a blank line: Python ignores it. In an interactive interpreter session, you must enter an empty physical line (without any whitespace or comment) to terminate a multiline statement.

          In Python, the end of a physical line marks the end of most statements. Unlike in other languages, you don’t normally terminate Python statements with a delimiter, such as a semicolon (;). When a statement is too long to fit on a physical line, you can join two adjacent physical lines into a logical line by ensuring that the first physical line has no comment and ends with a backslash (\). However, Python also automatically joins adjacent physical lines into one logical line if an open parenthesis ((), bracket ([), or brace ({) has not yet been closed: take advantage of this mechanism to produce more readable code than you’d get with backslashes at line ends. Triple-quoted string literals can also span physical lines. Physical lines after the first one in a logical line are known as continuation lines. Indentation rules apply to the first physical line of each logical line, not to continuation lines.

          Python uses indentation to express the block structure of a program. Python does not use braces, or other begin/end delimiters, around blocks of statements; indentation is the only way to denote blocks. Each logical line in a Python program is indented by the whitespace on its left. A block is a contiguous sequence of logical lines, all indented by the same amount; a logical line with less indentation ends the block. All statements in a block must have the same indentation, as must all clauses in a compound statement. The first statement in a source file must have no indentation (i.e., must not begin with any whitespace). Statements that you type at the interactive interpreter primary prompt >>> (covered in “Interactive Sessions”) must also have no indentation.

          Python treats each tab as if it was up to eight spaces, so that the next character after the tab falls into logical column 9, 17, 25, and so on. Standard Python style is to use four spaces (never tabs) per indentation level.

          If you must use tabs, Python does not allow mixing tabs and spaces for indentation.

          
            Use Spaces, Not Tabs

            Configure your favorite editor to expand a Tab keypress into four spaces, so that all Python source code you write contains just spaces, not tabs. This way, all tools, including Python itself, are consistent in handling indentation in your Python source files. Optimal Python style is to indent blocks by exactly four spaces: use no tab characters.

          

        

        
          Character Sets

          A Python source file can use any Unicode character, encoded by default as UTF-8. (Characters with codes between 0 and 127, AKA ASCII characters, encode in UTF-8 into the respective single bytes, so an ASCII text file is a fine Python source file, too.)

          You may choose to tell Python that a certain source file is written in a different encoding. In this case, Python uses that encoding to read the file. To let Python know that a source file is written with a nonstandard encoding, start your source file with a comment whose form must be, for example:

          
            # coding: iso-8859-1

          
          After coding:, write the name of an ASCII-compatible codec from the codecs module, such as utf-8 or iso-8859-1. Note that this coding directive comment (also known as an encoding declaration) is taken as such only if it is at the start of a source file (possibly after the “shebang line” covered in “Running Python Programs”). Best practice is to use utf-8 for all of your text files, including Python source files.

        

        
          Tokens

          Python breaks each logical line into a sequence of elementary lexical components known as tokens. Each token corresponds to a substring of the logical line. The normal token types are identifiers, keywords, operators, delimiters, and literals, which we cover in the following sections. You may freely use whitespace between tokens to separate them. Some whitespace separation is necessary between logically adjacent identifiers or keywords; otherwise, Python would parse them as a single, longer identifier. For example, ifx is a single identifier; to write the keyword if followed by the identifier x, you need to insert some whitespace (typically only one space character, i.e., you write if x).

          
            Identifiers

            An identifier is a name used to specify a variable, function, class, module, or other object. An identifier starts with a letter (any character that Unicode classifies as a letter) or an underscore (_), followed by zero or more letters, underscores, digits or other characters that Unicode classifies as digits or combining marks (as defined in Unicode® Standard Annex #31). 

            For example, in the 8-bit ASCII-plus character range, the valid leading characters for an identifier are:

            
              ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
ªµºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿ

            
            After the leading character, the valid identifier body characters are:

            
              0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
ªµ·ºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿ

            
            Case is significant: lowercase and uppercase letters are distinct. Punctuation characters such as @, $, and ! are not allowed in identifiers.

            
              Beware of Using Unicode Characters that are Homoglyphs

              Some Unicode characters look very similar to, if not indistinguishable from, other characters - such character pairs are called homoglyphs. For instance, compare capital letter ‘A’ and capital Greek letter alpha 'Α'. These are actually two different letters that just look very similar in most fonts. In Python, they define two different variables:

              >>> A = 100
>>> Α = 200  # this variable is GREEK CAPITAL LETTER ALPHA
>>> print(A, Α)
100 200

              If you want to make your Python code widely usable, we recommend a policy that all identifiers, comments, and documentation are written in English, avoiding, in particular, non-English homoglyph characters. For more information, see PEP 3131.

            

            Unicode normalization strategies add further complexities (Python uses NFKC normalization when parsing identifiers containing Unicode characters). See Jukka K. Korpela’s “Unicode Explained” and other technical information at https://unicode.org, particularly all books in the list they recommend.

            
              Unicode Normalization can Create Unintended Overlap Between Variables

              Python may create an unintended alias between variables when one contains certain Unicode characters. This normalization internally converts the name as shown in the Python script to one using normalized characters. For example, the letters “ª” and “º” normalize to the ASCII lowercase letters “a” and “o”. See how variables using these letters could clash with other variables:

              >>> a, o = 100, 101
>>> ª, º = 200, 201
>>> print(a, o, ª, º)
200 201 200 201  # not "100 101 200 201"

              It is best to avoid using normalizable Unicode characters in your Python identifiers.

            

            Normal Python style is to start class names with an uppercase letter, and other identifiers with a lowercase letter. Starting an identifier with a single leading underscore indicates by convention that the identifier is meant to be private. Starting an identifier with two leading underscores indicates a strongly private identifier; if the identifier also ends with two trailing underscores, however, this means that the identifier is a language-defined special name. Identifiers composed of multiple words should be all lowercase with underscores between words, sometimes referred to as “snake case,” as in login_password.

            
              Single Underscore _ in the Interactive Interpreter

              The identifier _ (a single underscore) is special in interactive interpreter sessions: the interpreter binds _ to the result of the last expression statement it has evaluated interactively, if any.

            

          

          
            Keywords

            Python has 35 keywords, which are identifiers that Python reserves for special syntactic uses. Like identifiers, keywords are case-sensitive. You cannot use keywords as regular identifiers (thus, they’re sometimes known as “reserved words”). Some keywords begin simple statements or clauses of compound statements, while other keywords are operators. We cover all the keywords in detail in this book, either in this chapter or in Chapters “Object-Oriented Python”, “Exceptions”, and “Modules”. The keywords in Python are:

            
              
                	
                  
                    and

                  
                
                	
                  
                    break

                  
                
                	
                  
                    elif

                  
                
                	
                  
                    from

                  
                
                	
                  
                    is

                  
                
                	
                  
                    pass

                  
                
                	
                  
                    with

                  
                
              

              
                	
                  
                    as

                  
                
                	
                  
                    class

                  
                
                	
                  
                    else

                  
                
                	
                  
                    global

                  
                
                	
                  
                    lambda

                  
                
                	
                  
                    raise

                  
                
                	
                  
                    yield

                  
                
              

              
                	
                  
                    assert

                  
                
                	
                  
                    continue

                  
                
                	
                  
                    except

                  
                
                	
                  
                    if

                  
                
                	
                  
                    nonlocal

                  
                
                	
                  
                    return

                  
                
                	
                  
                    False

                  
                
              

              
                	
                  
                    async

                  
                
                	
                  
                    def

                  
                
                	
                  
                    finally

                  
                
                	
                  
                    import

                  
                
                	
                  
                    not

                  
                
                	
                  
                    try

                  
                
                	
                  
                    None

                  
                
              

              
                	
                  
                    await

                  
                
                	
                  
                    del

                  
                
                	
                  
                    for

                  
                
                	
                  
                    in

                  
                
                	
                  
                    or

                  
                
                	
                  
                    while

                  
                
                	
                  
                    True

                  
                
              

            

            You can list them by importing the keyword module and printing keyword.kwlist.

            ||3.9++|| In addition, Python 3.9 introduced the concept of soft keywords. Soft keywords are keywords that are context-sensitive. They are language keywords for some specific syntax constructs, but outside of those constructs they may be used as variable or function names, so they are not reserved words. No soft keywords were defined in Python 3.9, but Python 3.10 introduced the following soft keywords:

            
              
                	
                  
                    _

                  
                
                	
                  
                    case

                  
                
                	
                  
                    match

                  
                
              

            

            You can list them from the keyword module by printing keyword.softkwlist.

          

          
            Operators

            Python uses non-alphanumeric characters and character combinations as operators. Python recognizes the following operators, which are covered in detail in “Expressions and Operators”:

            
              +  -  *  /  %   **  //  <<  >>  &   @
|  ^  ~  <  <=  >   >=  <>  !=  ==  @=  :=

            
            You can use @ as an operator (in matrix multiplication, covered in Chapter 15), although the character is technically a delimiter.

          

          
            Delimiters

            Python uses the following characters and combinations as delimiters in expressions, list, dictionary, and set literals and comprehensions, and various statements, among other purposes:

            
              (    )    [    ]    {    }
,    :    .    `    =    ;   @
+=   -=   *=   /=   //=  %=
&=   |=   ^=   >>=  <<=  **=

            
            The period (.) can also appear in floating-point literals (e.g., 2.3) and imaginary literals (e.g., 2.3j). The last two rows are the augmented assignment operators, which are delimiters, but also perform operations. We discuss the syntax for the various delimiters when we introduce the objects or statements using them.

            The following characters have special meanings as part of other tokens:

            
              '  "  #  \

            
            ' and " surround string literals. # outside of a string starts a comment, which ends at the end of the current line. \ at the end of a physical line joins the following physical line into one logical line; \ is also an escape character in strings. The characters $ and ?, and all control characters1 except whitespace, can never be part of the text of a Python program, except in comments or string literals.

          

          
            Literals

            A literal is the direct denotation in a program of a data value (a number, string, or container). The following are number and string literals in Python:

            
              42                       # Integer literal
3.14                     # Floating-point literal
1.0j                     # Imaginary literal
'hello'                  # String literal
"world"                  # Another string literal
"""Good
night"""                 # Triple-quoted string literal, spanning 2 lines

            
            Combining number and string literals with the appropriate delimiters, you can build literals that directly denote data values of container types:

            
              [42, 3.14, 'hello']     # List
[]                      # Empty list
100, 200, 300           # Tuple
()                      # Empty tuple
{'x':42, 'y':3.14}      # Dictionary
{}                      # Empty dictionary
{1, 2, 4, 8, 'string'}  # Set

# There is no literal to denote an empty set; use set() instead

            
            We cover the syntax for literals in detail in “Data Types”, when we discuss the various data types Python supports.

          

        

        
          Statements

          You can look at a Python source file as a sequence of simple and compound statements.

          
            Simple statements

            A simple statement is one that contains no other statements. A simple statement lies entirely within a logical line. As in many other languages, you may place more than one simple statement on a single logical line, with a semicolon (;) as the separator. However, one statement per line is the usual and recommended Python style, and makes programs more readable.

            Any expression can stand on its own as a simple statement (we discuss expressions in “Expressions and Operators”). When working interactively, the interpreter shows the result of an expression statement you enter at the prompt (>>>) and binds the result to a global variable named _ (underscore). Apart from interactive sessions, expression statements are useful only to call functions (and other callables) that have side effects (e.g., perform output, change global variables, or raise exceptions).

            An assignment is a simple statement that assigns values to variables, as we discuss in “Assignment Statements”. An assignment in Python using the = operator is a statement and can never be part of an expression. To perform an assignment as part of an expression, you must use the := (jokingly known as the “walrus”) operator.

          

          
            Compound statements

            A compound statement contains one or more other statements and controls their execution. A compound statement has one or more clauses, aligned at the same indentation. Each clause has a header starting with a keyword and ending with a colon (:), followed by a body, which is a sequence of one or more statements. Normally, these statements, also known as a block, are on separate logical lines after the header line, indented four spaces rightward. The block lexically ends when the indentation returns to that of the clause header (or further left from there, to the indentation of some enclosing compound statement). Alternatively, the body can be a single simple statement, following the : on the same logical line as the header. The body may also consist of several simple statements on the same line with semicolons between them, but, as we’ve already mentioned, this is not good Python style.

          

        

      

      
        Data Types

        The operation of a Python program hinges on the data it handles. Data values in Python are known as objects; each object, AKA value, has a type. An object’s type determines which operations the object supports (in other words, which operations you can perform on the value). The type also determines the object’s attributes and items (if any) and whether the object can be altered. An object that can be altered is known as a mutable object, while one that cannot be altered is an immutable object. We cover object attributes and items in “Object attributes and items”.

        The built-in type(obj) accepts any object as its argument and returns the type object that is the type of obj. The built-in function isinstance(obj, type) returns True when object obj has type type (or any subclass thereof); otherwise, it returns False.

        Python has built-in types for fundamental data types such as numbers, strings, tuples, lists, dictionaries, and sets, as covered in the following sections. You can also create user-defined types, known as classes, as discussed in “Classes and Instances”.

        
          Numbers

          The built-in numeric types in Python include integers, floating-point numbers, and complex numbers. The standard library also offers decimal floating-point numbers, covered in “The decimal Module”, and fractions, covered in “The fractions Module”. All numbers in Python are immutable objects; therefore, when you perform an operation on a number object, you produce a new number object. We cover operations on numbers, also known as arithmetic operations, in “Numeric Operations”.

          Numeric literals do not include a sign: a leading + or -, if present, is a separate operator, as discussed in “Arithmetic Operations”.

          
            Integer numbers

            Integer literals can be decimal, binary, octal, or hexadecimal. A decimal literal is a sequence of digits in which the first digit is nonzero. A binary literal is 0b followed by a sequence of binary digits (0 or 1). An octal literal is 0o followed by a sequence of octal digits (0 to 7). A hexadecimal literal is 0x followed by a sequence of hexadecimal digits (0 to 9 and A to F, in either upper- or lowercase). For example:

            
              1, 23, 3493                  # Decimal integer literals
0b010101, 0b110010           # Binary integer literals
0o1, 0o27, 0o6645            # Octal integer literals
0x1, 0x17, 0xDA5, 0xda5      # Hexadecimal integer literals

            
            Integer literals have no defined upper bound.

            An int object i supports the following methods:

            
              
                	
                  as_integer_ratio
                
                	||3.8++|| i.as_integer_ratio()
 Returns a tuple of 2 ints, whose exact ratio is the original integer value. (Since i is always int, the tuple is always (i, 1); compare with float.as_integer_ratio.)
              

              
                	
                  bit_count
                
                	||3.10++|| i.bit_count()
 Returns the number of ones in a binary representation of abs(i).
              

              
                	
                  bit_length
                
                	i.bit_length()
 Returns the minimum number of bits needed to represent i. Equivalent to the length of the binary representation of abs(i), after removing 'b' and all leading zeros. (0).bit_length() returns 0.
              

              
                	
                  to_bytes
                
                	i.to_bytes(length, byteorder, signed=False)
 Returns a bytes value length bytes in size representing the binary value of i. byteorder must be the str value 'big' or 'little', indicating whether the return value should be big-endian (most-significant byte first) or little-endian (least-significant byte first). For example, (258).to_bytes(2, 'big') returns b'\x01\x02', and (258).to_bytes(2, 'little') returns b'\x02\x01'. When i < 0 and signed is True, to_bytes returns the bytes of i represented in 2’s complement. If i < 0 and signed is False, to_bytes raises OverflowError.
              

              
                	
                  from_bytes
                
                	int.from_bytes(bytes_value, byteorder, signed=False)
 Returns an int from the bytes in bytes_value following the same argument usage as in to_bytes. (Note that from_bytes is a classmethod of int.)
              

            

          

          
            Floating-point numbers

            A floating-point literal is a sequence of decimal digits that includes a decimal point (.), an exponent suffix (e or E, optionally followed by + or -, followed by one or more digits), or both. The leading character of a floating-point literal cannot be e or E; it may be any digit or a period (.). For example:

            
              0., 0.0, .0, 1., 1.0, 1e0, 1.e0, 1.0e0   # Floating-point literals

            
            A Python floating-point value corresponds to a C double and shares its limits of range and precision, typically 53 bits of precision on modern platforms. (For the exact range and precision of floating-point values on the current platform, and many other details, see sys.float_info: we do not cover that in this book—see the online docs.)

            A float object f supports the following methods:

            
              
                	
                  as_integer_ratio
                
                	f.as_integer_ratio()
 Returns a tuple of 2 ints, a numerator and a denominator, whose exact ratio is the original float value, f. Example:
 >>> f=2.5
 >>> f.as_integer_ratio()
 (5, 2)
              

              
                	
                  is_integer
                
                	f.is_integer()
 Returns a bool value indicating if f is an integer value. Equivalent to int(f) == f.
              

              
                	
                  hex
                
                	f.hex()
 Returns a hexadecimal representation of f, with leading 0x and trailing p and exponent. For example, (99.0).hex() returns '0x1.8c00000000000p+6'.
              

              
                	
                  from_hex
                
                	float.from_hex(s)
 Returns a float value from the hexadecimal str value s. s can be of the form returned by f.hex(), or simply a string of hexadecimal digits. When the latter is the case, from_hex returns float(int(s,16)).
              

            

          

          
            Complex numbers

            A complex number is made up of two floating-point values, one each for the real and imaginary parts. You can access the parts of a complex object z as read-only attributes z.real and z.imag. You can specify an imaginary literal as any floating-point or integer decimal literal followed by a j or J:

            
              0j, 0.j, 0.0j, .0j, 1j, 1.j, 1.0j, 1e0j, 1.e0j, 1.0e0j

            
            The j at the end of the literal indicates the square root of -1, as commonly used in electrical engineering (some other disciplines use i for this purpose, but Python has chosen j). There are no other complex literals. To denote any constant complex number, add or subtract a floating-point (or integer) literal and an imaginary one. For example, to denote the complex number that equals one, use expressions like 1+0j or 1.0+0.0j. Python performs the addition or subtraction at compile time, so, no need to worry about overhead.

            A complex object c supports the following method:

            
              
                	
                  conjugate
                
                	c.conjugate()
 Returns a new complex number complex(c.imag,c.real) (i.e., the return value has c’s real and imag attributes exchanged).
              

            

            See “The math and cmath Modules” for several other functions that use floats and complex numbers.

          

          
            Underscores in numeric literals

            To assist visual assessment of the magnitude of a number, numeric literals can include single underscore (_) characters between digits or after any base specifier. It’s not only decimal numeric constants that can benefit from this notational freedom:

            
              >>> 100_000.000_0001, 0x_FF_FF, 0o7_777, 0b_1010_1010
(100000.0000001, 65535, 4095, 170)

            
            There is no enforcement of location of the underscores (except that two may not occur consecutively), so 123_456 and 12_34_56 both represent the same int as 123456. 

          

        

        
          Sequences

          A sequence is an ordered container of items, indexed by integers. Python has built-in sequence types known as strings (bytes and Unicode), tuples, and lists. Library and extension modules provide other sequence types, and you can write yet others yourself (as discussed in “Sequences”). You can manipulate sequences in a variety of ways, as discussed in “Sequence Operations”.

          
            Iterables

            A Python concept that generalizes the idea of “sequence” is that of iterables, covered in “The for Statement,” “Iterators,” and “Iterables vs. Iterators”. All sequences are iterable: whenever we say you can use an iterable, you can, in particular, use a sequence (for example, a list).

            Also, when we say that you can use an iterable, we mean, usually, a bounded iterable: an iterable that eventually stops yielding items. All sequences are bounded. Iterables, in general, can be unbounded, but, if you try to use an unbounded iterable without special precautions, you could produce a program that never terminates, or one that exhausts all available memory.

          

          
            Strings

            Python has two built-in string types, str and bytes2. A str object is a sequence of characters used to store and represent text-based information. A bytes object stores and represents arbitrary sequences of binary bytes. Strings of both types in Python are immutable: when you perform an operation on strings, you always produce a new string object of the same type, rather than mutating an existing string. String objects provide many methods, as discussed in detail in “Methods of String and Bytes Objects”.

            A string literal can be quoted or triple-quoted. A quoted string is a sequence of zero or more characters within matching quotes, single (') or double ("). For example:

            
              'This is a literal string'
"This is another string"

            
            The two different kinds of quotes function identically; having both lets you include one kind of quote inside of a string specified with the other kind, with no need to escape quote characters with the backslash character (\):

            
              'I\'m a Python fanatic'         # a quote can be escaped
"I'm a Python fanatic"          # this way may be more readable

            
            Most (but not all) style guides that pronounce on the subject suggest that you use single quotes when the choice is otherwise indifferent.

            To have a string literal span multiple physical lines, you can use a \ as the last character of a line to indicate that the next line is a continuation:

            
              'A not very long string \
that spans two lines'       # comment not allowed on previous line

            
            You can embed a newline in the string to make it print over two lines rather than just one:

            
              'A not very long string\n\
that prints on two lines'   # comment not allowed on previous line

            
            A better approach is to use a triple-quoted string, enclosed by matching triplets of quote characters (''', or better, as mandated by PEP 8, """). In a triple-quoted string literal, line breaks in the literal remain as newline characters in the resulting string object:

            
              """An even bigger
string that spans
three lines"""              # comments not allowed on previous lines

            
            You can start a triple-quoted literal with an escaped newline, to avoid having the first line of the literal string’s content at a different indentation level from the rest. For example:

            
              the_text = """\
First line
Second line
"""  # the same as "First line\nSecond line\n" but more readable

            
            The only character that cannot be part of a triple-quoted string literal is an unescaped backslash, while a single-quoted string literal cannot contain unescaped backslashes, nor line ends, nor the quote character that encloses it. The backslash character starts an escape sequence, which lets you introduce any character in either kind of string literal. See all of Python’s string escape sequences in Table 3-1.

            
              Table 2-1. String escape sequences
              
                	
                  Sequence
                
                	
                  Meaning
                
                	
                  ASCII/ISO code
                
              

              
                	
                  \<newline>
                
                	Ignore end of line
                	None
              

              
                	
                  \\
                
                	Backslash
                	0x5c
              

              
                	
                  \'
                
                	Single quote
                	0x27
              

              
                	
                  \"
                
                	Double quote
                	0x22
              

              
                	
                  \a
                
                	Bell
                	0x07
              

              
                	
                  \b
                
                	Backspace
                	0x08
              

              
                	
                  \f
                
                	Form feed
                	0x0c
              

              
                	
                  \n
                
                	Newline
                	0x0a
              

              
                	
                  \r
                
                	Carriage return
                	0x0d
              

              
                	
                  \t
                
                	Tab
                	0x09
              

              
                	
                  \v
                
                	Vertical tab
                	0x0b
              

              
                	\ DDD
                	Octal value DDD
                	As given
              

              
                	\x XX
                	Hexadecimal value XX
                	As given
              

              
                	\N{Unicode char name}
                	Unicode character
                	As given
              

              
                	\ other
                	Any other character: a two-character string
                	0x5c + as given
              

            

            A variant of a string literal is a raw string literal. The syntax is the same as for quoted or triple-quoted string literals, except that an r or R immediately precedes the leading quote. In raw string literals, escape sequences are not interpreted as in Table 3-1, but are literally copied into the string, including backslashes and newline characters. Raw string literal syntax is handy for strings that include many backslashes, especially regular expression patterns (see “Pattern-String Syntax”) and Windows absolute filenames (which use backslashes as directory separators). A raw string literal cannot end with an odd number of backslashes: the last one would be taken as escaping the terminating quote.

            
              Raw and Triple-Quoted String Literals are Different Source Code Representations, Not Different Types

              Raw and triple-quotes string literals are not different types from other strings; they are just alternative syntaxes for literals of the usual two string types, bytes and str.

            

            In str literals, you can use \u followed by four hex digits, or \U followed by eight hex digits, to denote Unicode characters; you can also include the escape sequences listed in Table 3-1. str literals can also include Unicode characters using the escape sequence \N{name}, where name is a standard Unicode name. For example, \N{Copyright Sign} indicates a Unicode copyright sign character (©).

            Formatted string literals let you inject formatted expressions into your string “literals”, which are therefore no longer constant, but rather are subject to evaluation at execution time. The formatting process is described in “String Formatting.” From a syntactic point of view, these new literals can be regarded just as another kind of string literal.

            Multiple string literals of any kind—quoted, triple-quoted, raw, bytes, formatted—can be adjacent, with optional whitespace in between (as long as you do not mix text and bytes strings). The compiler concatenates such adjacent string literals into a single string object. Writing a long string literal in this way lets you present it readably across multiple physical lines and gives you an opportunity to insert comments about parts of the string. For example:

            
              marypop = ('supercalifragilistic' # Open paren->logical line continues
           'expialidocious')      # Indentation ignored in continuation

            
            The string assigned to marypop is a single word of 34 characters.

          

          
            Bytes

            A bytes object is a sequence of ints from 0 to 255. Bytes objects are usually encountered when reading data from or writing data to a binary source (e.g, a file, a socket, or a network resource). 

            A bytes object can be initialized from a list of ints or from a string of characters. A bytes literal has the same syntax as a str literal, prefixed with 'b':

            
              b'abc'
bytes([97, 98, 99])        # same as the previous line
rb'\ = solidus'            # a raw bytes literal, containing a '\'

            
            To convert a bytes object to a str, use the bytes.decode() method. To convert a str object to a bytes, use the str.encode() method, as described in detail in Chapter “Strings and Things”.

          

          
            Bytearray

            A bytearray is a mutable ordered sequence of ints from 0 to 255; like bytes, you can construct it from a sequence of ints or characters. Apart from mutability, it is just like a bytes object. As they are mutable, bytearray objects support methods and operators that modify elements within the array of byte values.

            
              ba = bytearray([97, 98, 99]) # like bytes, can construct from a sequence of ints
ba[1] = 97                   # unlike bytes, contents can be modified
print(ba.decode())           # prints 'aac'

            
            Chapter “Strings and Things” has additional material on creating and working with bytearray objects.

          

          
            Tuples

            A tuple is an immutable ordered sequence of items. The items of a tuple are arbitrary objects and may be of different types. You can use mutable objects (such as lists) as tuple items; however, best practice is to avoid tuples with mutable items.

            To denote a tuple, use a series of expressions (the items of the tuple) separated by commas (,); if every item is a literal, the whole construct is a tuple literal. You may optionally place a redundant comma after the last item. You may group tuple items within parentheses, but the parentheses are necessary only where the commas would otherwise have another meaning (e.g., in function calls), or to denote empty or nested tuples. A tuple with exactly two items is also known as a pair. To create a tuple of one item, add a comma to the end of the expression. To denote an empty tuple, use an empty pair of parentheses. Here are some tuple literals, all with the optional parentheses (the parentheses are not optional in the last case):

            
              (100, 200, 300)            # Tuple with three items
(3.14,)                    # Tuple with 1 item needs trailing comma
()                         # Empty tuple (parentheses NOT optional)

            
            You can also call the built-in type tuple to create a tuple. For example:

            
              tuple('wow')

            
            This builds a tuple equal to that denoted by the tuple literal:

            
              ('w', 'o', 'w')

            
            tuple() without arguments creates and returns an empty tuple, like (). When x is iterable, tuple(x) returns a tuple whose items are the same as those in x.

          

          
            Lists

            A list is a mutable ordered sequence of items. The items of a list are arbitrary objects and may be of different types. To denote a list, use a series of expressions (the items of the list) separated by commas (,), within brackets ([]); if every item is a literal, the whole construct is a list literal. You may optionally place a redundant comma after the last item. To denote an empty list, use an empty pair of brackets. Here are some examples of list literals:

            list() without arguments creates and returns an empty list, like []. When x is iterable, list(x) returns a list whose items are the same as those in x.

            
              [42, 3.14, 'hello']          # List with three items
[100]                        # List with one item
[]                           # Empty list

            
            You can also call the built-in type list to create a list. For example:

            
              list('wow')

            
            This builds a list equal to that denoted by the list literal:

            
              ['w', 'o', 'w']

            
            You can also build lists with list comprehensions, covered in “List comprehensions”.

          

        

        
          Sets

          Python has two built-in set types, set and frozenset, to represent arbitrarily ordered collections of unique items. Items in a set may be of different types, but they must be hashable (see hash in Table 7-2). Instances of type set are mutable, and thus, not hashable; instances of type frozenset are immutable and hashable. You can’t have a set whose items are sets, but you can have a set (or frozenset) whose items are frozensets. Sets and frozensets are not ordered.

          To create a set, you can call the built-in type set with no argument (this means an empty set) or one argument that is iterable (this means a set whose items are those of the iterable). You can similarly build a frozenset by calling frozenset.

          Alternatively, to denote a (non-frozen, non-empty) set, use a series of expressions (the items of the set) separated by commas (,) within braces ({}); if every item is a literal, the whole assembly is a set literal. You may optionally place a redundant comma after the last item. Some example sets (two literals, one not):

          
            {42, 3.14, 'hello'}      # Literal for a set with three items
{100}                    # Literal for a set with one item
set()                    # Empty set (can't use {}--empty dict!)

          
          You can also build non-frozen sets with set comprehensions, as discussed in “Set comprehensions”.

        

        
          Dictionaries

          A mapping is an arbitrary collection of objects indexed by nearly3 arbitrary values called keys. Mappings are mutable and, like sets but unlike sequences, are not (necessarily) ordered.

          Python provides a single built-in mapping type: the dictionary type. Library and extension modules provide other mapping types, and you can write others yourself (as discussed in “Mappings”). Keys in a dictionary may be of different types, but they must be hashable (see hash in Table 7-2). Values in a dictionary are arbitrary objects and may be of any type. An item in a dictionary is a key/value pair. You can think of a dictionary as an associative array (known in some other languages as a “map,” “hash table,” or “hash”).

          To denote a dictionary, you can use a series of colon-separated pairs of expressions (the pairs are the items of the dictionary) separated by commas (,) within braces ({}); if every expression is a literal, the whole construct is a dict literal. You may optionally place a redundant comma after the last item. Each item in a dictionary is written as key: value, where key is an expression giving the item’s key and value is an expression giving the item’s value. If a key’s value appears more than once in a dictionary expression, only an arbitrary one of the items with that key is kept in the resulting dictionary object—dictionaries do not allow duplicate keys. To denote an empty dictionary, use an empty pair of braces.

          Here are some dictionary literals:

          
            {'x':42, 'y':3.14, 'z':7}    # Dictionary with three items, str keys
{1:2, 3:4}                   # Dictionary with two items, int keys
{1:'za', 'br':23}            # Dictionary with mixed key types
{}                           # Empty dictionary

          
          You can also call the built-in type dict to create a dictionary in a way that, while usually less concise, can sometimes be more readable. For example, the dictionaries in the preceding snippet can equivalently be written as:

          
            dict(x=42, y=3.14, z=7)      # Dictionary with three items, str keys
dict([(1, 2), (3, 4)])       # Dictionary with two items, int keys
dict([(1,'za'), ('br',23)])  # Dictionary with mixed key types
dict()                       # Empty dictionary

          
          dict() without arguments creates and returns an empty dictionary, like {}. When the argument x to dict is a mapping, dict returns a new dictionary object with the same keys and values as x. When x is iterable, the items in x must be pairs, and dict(x) returns a dictionary whose items (key/value pairs) are the same as the items in x. If a key value appears more than once in x, only the last item from x with that key value is kept in the resulting dictionary.

          When you call dict, in addition to, or instead of, the positional argument x, you may pass named arguments, each with the syntax name=value, where name is an identifier to use as an item’s key and value is an expression giving the item’s value. When you call dict and pass both a positional argument and one or more named arguments, if a key appears both in the positional argument and as a named argument, Python associates to that key the value given with the named argument (i.e., the named argument “wins”).

          You can also create a dictionary by calling dict.fromkeys. The first argument is an iterable whose items become the keys of the dictionary; the second argument is the value that corresponds to each and every key (all keys initially map to the same value). If you omit the second argument, it defaults to None. For example:

          
            dict.fromkeys('hello', 2)   # same as {'h':2, 'e':2, 'l':2, 'o':2}
dict.fromkeys([1, 2, 3])    # same as {1:None, 2:None, 3:None}

          
          You can also build dicts with dict comprehensions, as discussed in “Dict comprehensions”.

        

        
          None

          The built-in None denotes a null object. None has no methods or other attributes. You can use None as a placeholder when you need a reference but you don’t care what object you refer to, or when you need to indicate that no object is there. Functions return None as their result unless they have specific return statements coded to return other values. None is hashable and can be used as a dict key.

        

        
          Ellipsis (...)

          The Ellipsis, written as three periods with no intervening spaces "...", is a special object in Python used in numerical applications, or as an alternative to None when None is a valid entry. For instance, to initialize a dict that may take None as a legitimate value, you can initialize it with ... as an indicator of “no value supplied, not even None”. Ellipsis is hashable and can be used as a dict key.

          
            # use None for "None of the above", ... for "no entry"
votes_tally = dict.fromkeys(['Candidate A', 'Candidate B', None, ...], 0)

          
        

        
          Callables

          In Python, callable types are those whose instances support the function call operation (see “Calling Functions”). Functions are callable. Python provides several built-in functions (see “Built-in Functions”) and supports user-defined functions (see “The def Statement”). Generators are also callable (see “Generators”).

          Types are also callable, as we already saw for the dict, list, set, and tuple built-in types. (See “Built-in Types” for a complete list of built-in types.) As we discuss in “Python Classes”, class objects (user-defined types) are also callable. Calling a type normally creates and returns a new instance of that type.

          Other callables include methods, which are functions bound as class attributes, and instances of classes that supply a special method named __call__.

        

        
          Boolean Values

          Any data value in Python can be used as a truth value: true or false. Any nonzero number or nonempty container (e.g., string, tuple, list, set, or dictionary) is true. 0 (of any numeric type), None, and empty containers are false.

          
            Beware Using a float as a Truth Value

            Be careful about using a floating-point number as a truth value: that’s like comparing the number for exact equality with zero, and floating-point numbers should almost never be compared for exact equality.

          

          The built-in type bool is a subclass of int. The only two values of type bool are True and False, which have string representations of 'True' and 'False', but also numerical values of 1 and 0, respectively. Several built-in functions return bool results, as do comparison operators.

          You can call bool(x) with any x as the argument. The result is True when x is true and False when x is false. Good Python style is not to use such calls when they are redundant, as they most often are: always write if x:, never any of if bool(x):, if x is True:, if x==True:, if bool(x)==True:. However, you can use bool(x) to count the number of true items in a sequence. For example:

          
            def count_trues(seq):
    return sum(bool(x) for x in seq)

          
          In this example, the bool call ensures each item of seq is counted as 0 (if false) or 1 (if true), so count_trues is more general than sum(seq) would be.

          When we say “expression is true” we mean that bool(expression) would return True. This is also known as “expression being truthy” (the other possibility is that “expression is falsy”).

        

      

      
        Variables and Other References

        A Python program accesses data values through references. A reference is a “name” that refers to a value (object). References take the form of variables, attributes, and items. In Python, a variable or other reference has no intrinsic type. The object to which a reference is bound at a given time always has a type, but a given reference may be bound to objects of various types in the course of the program’s execution.

        
          Variables

          In Python, there are no “declarations.” The existence of a variable begins with a statement that binds the variable (in other words, sets a name to hold a reference to some object). You can also unbind a variable, resetting the name so it no longer holds a reference. Assignment statements are the usual way to bind variables and other references. The (rarely used) del statement unbinds references.

          Binding a reference that was already bound is also known as rebinding it. Whenever we mention binding, we implicitly include rebinding (except where we explicitly exclude it). Rebinding or unbinding a reference has no effect on the object to which the reference was bound, except that an object goes away when nothing refers to it. The cleanup of objects with no references is known as garbage collection.

          You can name a variable with any identifier except the 30-plus reserved as Python’s keywords (see “Keywords”). A variable can be global or local. A global variable is an attribute of a module object (see Chapter “Modules”). A local variable lives in a function’s local namespace (see “Namespaces”).

          
            Object attributes and items

            The main distinction between the attributes and items of an object is in the syntax you use to access them. To denote an attribute of an object, use a reference to the object, followed by a period (.), followed by an identifier known as the attribute name. For example, x.y refers to one of the attributes of the object bound to name x, specifically that attribute whose name is ‘y’.

            To denote an item of an object, use a reference to the object, followed by an expression within brackets ([]). The expression in brackets is known as the item’s index or key, and the object is known as the item’s container. For example, x[y] refers to the item at the key or index bound to name y, within the container object bound to name x.

            Attributes that are callable are also known as methods. Python draws no strong distinctions between callable and noncallable attributes, as some other languages do. All general rules about attributes also apply to callable attributes (methods).

          

          
            Accessing nonexistent references

            A common programming error is to access a reference that does not exist. For example, a variable may be unbound, or an attribute name or item index may not be valid for the object to which you apply it. The Python compiler, when it analyzes and compiles source code, diagnoses only syntax errors. Compilation does not diagnose semantic errors, such as trying to access an unbound attribute, item, or variable. Python diagnoses semantic errors only when the errant code executes—that is, at runtime. When an operation is a Python semantic error, attempting it raises an exception (see Chapter “Exceptions”). Accessing a nonexistent variable, attribute, or item—just like any other semantic error—raises an exception.

          

        

        
          Assignment Statements

          Assignment statements can be plain or augmented. Plain assignment to a variable (e.g., name=value) is how you create a new variable or rebind an existing variable to a new value. Plain assignment to an object attribute (e.g., x.attr=value) is a request to object x to create or rebind the attribute named 'attr'. Plain assignment to an item in a container (e.g., x[k] = value) is a request to container x to create or rebind the item with index or key k.

          Augmented assignment (e.g., name+=value) cannot, per se, create new references. Augmented assignment can rebind a variable, ask an object to rebind one of its existing attributes or items, or request the target object to modify itself. When you make any kind of request to an object, it is up to the object to decide whether and how to honor the request, and whether to raise an exception.

          
            Plain assignment

            A plain assignment statement in the simplest form has the syntax:

            
              target = expression

            
            The target is known as the left-hand side (LHS), and the expression is the right-hand side (RHS). When the assignment executes, Python evaluates the RHS expression, then binds the expression’s value to the LHS target. The binding never depends on the type of the value. In particular, Python draws no strong distinction between callable and noncallable objects, as some other languages do, so you can bind functions, methods, types, and other callables to variables, just as you can numbers, strings, lists, and so on. This is part of functions and other callables being first-class objects.

            Details of the binding do depend on the kind of target. The target in an assignment may be an identifier, an attribute reference, an indexing, or a slicing:

            
              	An identifier

              	
                Is a variable name. Assigning to an identifier binds the variable with this name.

              

              	An attribute reference

              	
                Has the syntax obj.name, where obj is an arbitrary expression, and name is an identifier, known as an attribute name of the object. Assigning to an attribute reference asks object obj to bind its attribute named ‘name’.

              

              	An indexing

              	
                Has the syntax obj[expr]. obj and expr are arbitrary expressions. Assigning to an indexing asks container obj to bind its item indicated by the value of expr, also known as the index or key of the item in the container.

              

              	A slicing

              	
                Has the syntax obj[start:stop] or obj[start:stop:stride].obj, start, stop, and stride are arbitrary expressions. start, stop, and stride are all optional (i.e., obj[:stop:] and obj[:stop] are also syntactically correct slicings, each being equivalent to obj[None:stop:None]). Assigning to a slicing asks container obj to bind or unbind some of its items. Assigning to a slicing such as obj[start:stop:stride] is equivalent to assigning to the indexing obj[slice(start, stop, stride)]. See Python’s built-in type slice in (Table 7-1), whose instances represent slices.

              

            

            We’ll get back to indexing and slicing targets when we discuss operations on lists, in “Modifying a list”, and on dictionaries, in “Indexing a Dictionary”.

            When the target of the assignment is an identifier, the assignment statement specifies the binding of a variable. This is never disallowed: when you request it, it takes place. In all other cases, the assignment statement denotes a request to an object to bind one or more of its attributes or items. An object may refuse to create or rebind some (or all) attributes or items, raising an exception if you attempt a disallowed creation or rebinding (see also __setattr__ in Table 4-1 and __setitem__ in “Container methods”).

            A plain assignment can use multiple targets and equals signs (=). For example:

            
              a = b = c = 0

            
            binds variables a, b, and c to the same value, 0. Each time the statement executes, the RHS expression evaluates just once, no matter how many targets are in the statement. Each target, left to right, is bound to the one object returned by the expression, just as if several simple assignments executed one after the other.

            The target in a plain assignment can list two or more references separated by commas, optionally enclosed in parentheses or brackets. For example:

            
              a, b, c = x

            
            This statement requires x to be an iterable with exactly three items, and binds a to the first item, b to the second, and c to the third. This kind of assignment is known as an unpacking assignment. The RHS expression must be an iterable with exactly as many items as there are references in the target; otherwise, Python raises an exception. Each reference in the target gets bound to the corresponding item in the RHS. An unpacking assignment can be used, for example, to swap references:

            
              a, b = b, a

            
            This assignment statement rebinds name a to what name b was bound to, and vice versa. Exactly one of the multiple targets of an unpacking assignment may be preceded by *. That starred target, if present, is bound to a list of all items, if any, that were not assigned to other targets. For example:

            
              first, *middle, last = x

            
            when x is a list, is the same as (but more concise, clearer, more general, and faster than):

            
              first, middle, last = x[0], x[1:-1], x[-1]

            
            Each of these forms requires x to have at least two items. This feature is known as extended unpacking.

          

          
            Augmented assignment

            An augmented assignment (sometimes also known as an in-place assignment) differs from a plain assignment in that, instead of an equals sign (=) between the target and the expression, it uses an augmented operator, which is a binary operator followed by =. The augmented operators are +=, -=, *=, /=, //=, %=, **=, |=, >>=, <<=, &=, ^=, and @=. An augmented assignment can have only one target on the LHS; augmented assignment does not support multiple targets.

            In an augmented assignment, like in a plain one, Python first evaluates the RHS expression. Then, when the LHS refers to an object that has a special method for the appropriate in-place version of the operator, Python calls the method with the RHS value as its argument (it is up to the method to modify the LHS object appropriately and return the modified object; “Special Methods” covers special methods). When the LHS object has no applicable in-place special method, Python uses the corresponding binary operator on the LHS and RHS objects, then rebinds the target to the result. E.g.: x+=y is like x=x.__iadd_(y) when x has special method __iadd__, “in-place addition”. Otherwise, x+=y is like x=x+y.

            Augmented assignment never creates its target reference; the target must already be bound when augmented assignment executes. Augmented assignment can rebind the target reference to a new object, or modify the same object to which the target reference was already bound. Plain assignment, in contrast, can create or rebind the LHS target reference, but it never modifies the object, if any, to which the target reference was previously bound. The distinction between objects and references to objects is crucial here. For example, x=x+y never modifies the object to which name x was originally bound, if any. Rather, it rebinds name x to refer to a new object. x+=y, in contrast, modifies the object to which the name x is bound, when that object has special method __iadd__; otherwise, x+=y rebinds the name x to a new object, just like x=x+y.

          

        

        
          del Statements

          Despite its name, a del statement unbinds references—it does not, per se, delete objects. Object deletion may automatically follow, by garbage collection, when no more references to an object exist.

          A del statement consists of the keyword del, followed by one or more target references separated by commas (,). Each target can be a variable, attribute reference, indexing, or slicing, just like for assignment statements, and must be bound at the time del executes. When a del target is an identifier, the del statement means to unbind the variable. If the identifier was bound, unbinding it is never disallowed; when requested, it takes place.

          In all other cases, the del statement specifies a request to an object to unbind one or more of its attributes or items. An object may refuse to unbind some (or all) attributes or items, raising an exception if you attempt a disallowed unbinding (see also __delattr__ in “General-Purpose Special Methods” and __delitem__ in “Container methods”). Unbinding a slicing normally has the same effect as assigning an empty sequence to that slicing, but it is up to the container object to implement this equivalence.

          Containers are also allowed to have del cause side effects. For example, assuming del C[2] succeeds, when C is a dict, this makes future references to C[2] invalid (raising KeyError) until and unless you assign to C[2] again; but when C is a list, del C[2] implies that every following item of C “shifts left by one”—so, if C is long enough, future references to C[2] are still valid, but denote a different item than they did before the del (generally, what you’d have used C[3] to refer to, before the del statement).

        

      

      
        Expressions and Operators

        An expression is a “phrase” of code, which Python evaluates to produce a value. The simplest expressions are literals and identifiers. You build other expressions by joining subexpressions with the operators and/or delimiters listed in Table 3-2. This table lists operators in decreasing order of precedence, higher precedence before lower. Operators listed together have the same precedence. The third column lists the associativity of the operator: L (left-to-right), R (right-to-left), or NA (non-associative). 

        
          Table 2-2. 
            Operator precedence in expressions
          
          
            	
              Operator
            
            	
              Description
            
            	
              Associativity
            
          

          
            	
              { key : expr ,...}
            
            	Dictionary creation
            	NA
          

          
            	
              { expr ,...}
            
            	Set creation
            	NA
          

          
            	
              [ expr ,...]
            
            	List creation
            	NA
          

          
            	
              ( expr ,...)
            
            	Tuple creation (parentheses recommended, but not always required; 1+ commas required), or just parentheses
            	NA
          

          
            	
              f ( expr ,...)
            
            	Function call
            	L
          

          
            	
              x [ index : index ]
            
            	Slicing
            	L
          

          
            	
              x [ index ]
            
            	Indexing
            	L
          

          
            	
              x . attr
            
            	Attribute reference
            	L
          

          
            	
              x ** y
            
            	Exponentiation (x to the yth power)
            	R
          

          
            	
              ~ x
            
            	Bitwise NOT
            	NA
          

          
            	
              +x, -x
            
            	Unary plus and minus
            	NA
          

          
            	
              x*y, x/y, x//y, x%y
            
            	Multiplication, division, floor division, remainder
            	L
          

          
            	
              x+y, x-y
            
            	Addition, subtraction
            	L
          

          
            	
              x<<y, x>>y
            
            	Left-shift, right-shift
            	L
          

          
            	
              x & y
            
            	Bitwise AND
            	L
          

          
            	
              x ^ y
            
            	Bitwise XOR
            	L
          

          
            	
              x | y
            
            	Bitwise OR
            	L
          

          
            	
              x<y, x<=y, x>y, x>=y,x!=y, x==y
            
            	Comparisons (less than, less than or equal, greater than, greater than or equal, inequality, equality)
            	NA
          

          
            	
              x is y, x is not y
            
            	Identity tests
            	NA
          

          
            	
              x in y, x not in y
            
            	Membership tests
            	NA
          

          
            	
              not x
            
            	Boolean NOT
            	NA
          

          
            	
              x and y
            
            	Boolean AND
            	L
          

          
            	
              x or y
            
            	Boolean OR
            	L
          

          
            	
              x if expr else y
            
            	Ternary operator
            	NA
          

          
            	
              lambda arg,...: expr
            
            	Anonymous simple function
            	NA
          

        

        
          
            	
              (id := expr)
            
            	Assignment expression (parentheses recommended, but not always required)
            	NA
          

        

        In Table 3-2, expr, key, f, index, x, and y mean any expression, while attr, arg and id mean any identifier. The notation ,... means commas join zero or more repetitions; in such cases, a trailing comma is optional and innocuous.

        
          Comparison Chaining

           You can chain  comparisons, implying a logical and. For example:

          
            a < b <= c < d

          
          where a, b, c, and d are arbitrary expressions, has (in the absence of evaluation side-effects) the same value as:

          
            a < b and b <= c and c < d

          
          The chained form is more readable, and evaluates each subexpression at most once. 

        

        
          Short-Circuiting Operators

           The and and or operators short-circuit their operands’ evaluation: the right hand operand evaluates only when its value is needed to get the truth value of the entire and or or operation.

          In other words, x and y first evaluates x. When x is false, the result is x; otherwise, the result is y. Similarly, x or y first evaluates x. When x is true, the result is x; otherwise, the result is y.

          and and or don’t force their results to be True or False, but rather return one or the other of their operands. This lets you use these operators more generally, not just in Boolean contexts. and and or, because of their short-circuiting semantics, differ from other operators, which fully evaluate all operands before performing the operation. and and or let the left operand act as a guard for the right operand.

        

        
          The ternary operator

           Another short-circuiting operator is the ternary operator if/else: 

          
            whentrue if condition else whenfalse

          
          Each of whentrue, whenfalse, and condition is an arbitrary expression. condition evaluates first. When condition is true, the result is whentrue; otherwise, the result is whenfalse. Only one of the subexpressions whentrue and whenfalse evaluates, depending on the truth value of condition.

          The order of the subexpressions in this ternary operator may be a bit confusing. The recommended style is to always place parentheses around the whole expression. 

        

        
          Numeric Operations

           Python offers the usual numeric operations, as we’ve just seen in Table 3-2. Numbers are immutable objects: when you perform operations on number objects, you produce new number objects, never modify existing ones. You can access the parts of a complex object z as read-only attributes z.real and z.imag. Trying to rebind these attributes raises an exception.

           A number’s optional + or - sign, and the + or - that joins a floating-point literal to an imaginary one to make a complex number, are not part of the literals’ syntax. They are ordinary operators, subject to normal operator precedence rules (see Table 3-2). For example, -2**2 evaluates to -4: exponentiation has higher precedence than unary minus, so the whole expression parses as -(2**2), not as (-2)**2. (Again, parentheses are recommended, to avoid confusing a reader of the code).

        

        
          Numeric Conversions

           You can perform arithmetic operations and comparisons between any two numbers of Python built-in types. If the operands’ types differ, Python converts the operand with the “smaller” type to the “larger” type4. Builtin number types, in order from smallest to largest, are integers, floating-point numbers, and complex numbers. You can request an explicit conversion by passing a non-complex numeric argument to any of the built-in number types: int, float, and complex. int drops its argument’s fractional part, if any (e.g., int(9.8) is 9). You can also call complex with two numeric arguments, giving real and imaginary parts. You cannot convert a complex to another numeric type in this way, because there is no single unambiguous way to convert a complex number into, for example, a float.

          You can also call each built-in numeric type with a string argument with the syntax of an appropriate numeric literal, with small extensions: the argument string may have leading and/or trailing whitespace, may start with a sign, and—for complex numbers—may sum or subtract a real part and an imaginary one. int can also be called with two arguments: the first one a string to convert, and the second the radix, an integer between 2 and 36 to use as the base for the conversion (e.g., int('101', 2) returns 5, the value of '101' in base 2). For radices larger than 10, the appropriate subset of ASCII letters from the start of the alphabet (in either lower- or uppercase) are the extra needed “digits.”

        

        
          Arithmetic Operations

           Python arithmetic operations behave in rather obvious ways, with the possible exception of division and exponentiation.

          
            Division

            When the right operand of /, //, or % is 0, Python raises an exception at runtime. Otherwise, the // operator performs floor division, which means it returns an integer result (converted to the same type as the wider operand) and ignores the remainder, if any. The / operator performs true division, returning a floating-point result (or a complex result if either operand is a complex number). The % operator returns the remainder of the (floor) division.

             The built-in divmod function takes two numeric arguments and returns a pair whose items are the quotient and remainder, so you don’t have to use both // for the quotient and % for the remainder5.

          

          
            Exponentiation

             The exponentiation (“raise to power”) operation, when a is less than zero and b is a floating-point value with a nonzero fractional part, returns a complex number. The built-in pow(a, b) function returns the same result as a**b. With three arguments, pow(a, b, c) returns the same result as (a**b)%c but is faster. Note that, unlike other arithmetic operations, exponentiation evaluates right-to-left: in other words, a**b**c evaluates as a**(b**c) .

          

          
            Comparisons

             All objects, including numbers, can be compared for equality (==) and inequality (!=). Comparisons requiring order (<, <=, >, >=) may be used between any two numbers, unless either operand is complex, in which case they raise exceptions at runtime. All these operators return Boolean values (True or False). Beware comparing floating-point numbers for equality, as the online tutorial explains.

          

          
            Bitwise Operations on Integers

             Integers can be interpreted as strings of bits and used with the bitwise operations shown in [Link to Come]. Bitwise operators have lower priority than arithmetic operators. Positive integers are conceptually extended by an unbounded string of 0 bits on the left. Negative integers, since they’re held in two’s complement representation, are conceptually extended by an unbounded string of 1 bits on the left. 

          

        

        
          Sequence Operations

           Python supports a variety of operations applicable to all sequences, including strings, lists, and tuples. Some sequence operations apply to all containers (including sets and dictionaries, which are not sequences); some apply to all iterables (meaning “any object over which you can loop,” as covered in [Link to Come]; all containers, be they sequences or not, are iterable, and so are many objects that are not containers, such as files, covered in [Link to Come], and generators, covered in “Generators”). In the following we use the terms sequence, container, and iterable quite precisely, to indicate exactly which operations apply to each category.

          
            Sequences in General

            Sequences are ordered containers with items that are accessible by indexing and slicing .

            The built-in len function takes any container as an argument and returns the number of items in the container. 

            The built-in min and max functions take one argument, an iterable whose items are comparable, and return the smallest and largest items, respectively. You can also call min and max with multiple arguments, in which case they return the smallest and largest arguments, respectively.

            min and max also accept two keyword-only optional arguments: key, a callable to apply to each item (the comparisons are then performed on the callable’s results rather than on the items themselves); and default, the value to return when the iterable is empty (when the iterable is empty and you supply no default argument, the function raises ValueError). For example, max('who', 'why', 'what', key=len) returns ‘what’.

            The built-in sum function takes one argument, an iterable whose items are numbers, and returns the sum of the numbers.

          

          
            Sequence conversions

             There is no implicit conversion between different sequence types. You can call the built-ins tuple and list with a single argument (any iterable) to get a new instance of the type you’re calling, with the same items, in the same order, as in the argument.

          

          
            Concatenation and repetition

             You can concatenate sequences of the same type with the + operator. You can multiply a sequence S by an integer n with the * operator. S*n is the concatenation of n copies of S. When n<=0, S*n is an empty sequence of the same type as S.

          

          
            Membership testing

             The x in S operator tests to check whether object x equals any item in the sequence (or other kind of container or iterable) S. It returns True when it does and False when it doesn’t. The x not in S operator is equivalent to not (x in S). For dictionaries, x in S tests for the presence of x as a key. In the specific case of strings, x in S is more widely applicable; in this case, x in S tests whether x equals any substring of S, not just any single character.

          

          
            Indexing a sequence

             To denote the nth item of a sequence S, use indexing: S[n]. Indexing is zero-based (S’s first item is S[0]). If S has L items, the index n may be 0, 1…up to and including L-1, but no larger. n may also be -1, -2…down to and including -L, but no smaller. A negative n (e.g., -1) denotes the same item in S as L+n (e.g., L + -1) does. In other words, S[-1], like S[L-1], is the last element of S, S[-2] is the next-to-last one, and so on. For example:

            
              x = [1, 2, 3, 4]
x[1]                  # 2
x[-1]                 # 4

            
            Using an index >=L or <-L raises an exception. Assigning to an item with an invalid index also raises an exception. You can add elements to a list, but to do so you assign to a slice, not to an item, as we’ll discuss shortly.

          

          
            Slicing a sequence

             To indicate a subsequence of S, you can use slicing, with the syntax S[i:j], where i and j are integers. S[i:j] is the subsequence of S from the ith item, included, to the jth item, excluded. In Python, ranges always include the lower bound and exclude the upper bound. A slice is an empty subsequence when j is less than or equal to i, or when i is greater than or equal to L, the length of S. You can omit i when it is equal to 0, so that the slice begins from the start of S. You can omit j when it is greater than or equal to L, so that the slice extends all the way to the end of S. You can even omit both indices, to mean a shallow copy of the entire sequence: S[:]. Either or both indices may be less than 0. Here are some examples:

            
              x = [1, 2, 3, 4]
x[1:3]                 # [2, 3]
x[1:]                  # [2, 3, 4]
x[:2]                  # [1, 2]

            
            A negative index n in slicing indicates the same spot in S as L+n, just like it does in indexing. An index greater than or equal to L means the end of S, while a negative index less than or equal to -L means the start of S.

            Slicing can use the extended syntax S[i:j:k]. k is the stride of the slice, meaning the distance between successive indices. S[i:j] is equivalent to S[i:j:1], S[::2] is the subsequence of S that includes all items that have an even index in S, and S[::-1] is a slicing, also whimsically known as “the Martian smiley,” with the same items as S but in reverse order. With a negative stride, in order to have a nonempty slice, the second (“stop”) index needs to be smaller than the first (“start”) one—the reverse of the condition that must hold when the stride is positive. A stride of 0 raises an exception.

            
              y = list(range(10))
y[-5:]           #  last five items
[5, 6, 7, 8, 9]
y[::2]           #  every other item
[0, 2, 4, 6, 8]
y[10:0:-2]       #  every other item, in reverse order
[9, 7, 5, 3, 1]
y[:0:-2]         #  every other item, in reverse order (simpler)
[9, 7, 5, 3, 1]
y[::-2]          #  every other item, in reverse order (best)
[9, 7, 5, 3, 1]

            
          

        

        
          Strings

           String objects (byte strings, as well as text, AKA Unicode, ones) are immutable: attempting to rebind or delete an item or slice of a string raises an exception. (For bytes, though not for text, there’s a mutable, but otherwise equivalent, built-in type, bytearray). The items of a text string (each of the characters in the string) are themselves text strings, each of length 1—Python has no special data type for “single characters” (the items of a bytes or bytearray object are ints). All slices of a string are strings of the same kind. String objects have many methods, covered in [Link to Come].

        

        
          Tuples

           Tuple objects are immutable: therefore, attempting to rebind or delete an item or slice of a tuple raises an exception. The items of a tuple are arbitrary objects and may be of different types; tuple items may be mutable, but we recommend not mutating them, as doing so can be confusing. The slices of a tuple are also tuples. Tuples have no normal (nonspecial) methods, except count and index, with the same meanings as for lists; they do have many of the special methods covered in [Link to Come].

        

        
          Lists

           List objects are mutable: you may rebind or delete items and slices of a list. Items of a list are arbitrary objects and may be of different types. Slices of a list are lists.

          
            Modifying a list

             You can modify a single item in a list by assigning to an indexing. For instance:

            
              x = [1, 2, 3, 4]
x[1] = 42                # x is now [1, 42, 3, 4]

            
            Another way to modify a list object L is to use a slice of L as the target (LHS) of an assignment statement. The RHS of the assignment must be an iterable. When the LHS slice is in extended form (i.e., the slicing specifies a stride!=1), then the RHS must have just as many items as the number of items in the LHS slice. When the LHS slicing does not specify a stride, or explicitly specifies a stride of 1, the LHS slice and the RHS may each be of any length; assigning to such a slice of a list can make the list longer or shorter. For example:

            
              x = [1, 2, 3, 4]
x[1:3] = [22, 33, 44]     # x is now [1, 22, 33, 44, 4]
x[1:4] = [8, 9]           # x is now [1, 8, 9, 4]

            
            There are some important special cases of assignment to slices:

            
              	
                Using the empty list [] as the RHS expression removes the target slice from L. In other words, L[i:j]=[] has the same effect as del L[i:j] (or the peculiar statement L[i:j]*=0).

              

            

            Using an empty slice of L as the LHS target inserts the items of the RHS at the appropriate spot in L. For example, L[i:i]=['a','b'] inserts ‘a’ and 'b' before the item that was at index i in L prior to the assignment.

            
              	
                Using a slice that covers the entire list object, L[:], as the LHS target, totally replaces the contents of L.

              

            

            You can delete an item or a slice from a list with del. For instance:

            
              x = [1, 2, 3, 4, 5]
del x[1]                 # x is now [1, 3, 4, 5]
del x[::2]               # x is now [3, 5]

            
          

          
            In-place operations on a list

             List objects define in-place versions of the + and * operators, which you can use via augmented assignment statements. The augmented assignment statement L+=L1 has the effect of adding the items of iterable L1 to the end of L, just like L.extend(L1). L*=n has the effect of adding n-1 copies of L to the end of L; if n<=0, L*=n makes L empty, like L[:]=[] or del L[:]. 

          

          
            List methods

             List objects provide several methods, as shown in Table 3-3. Nonmutating  methods return a result without altering the object to which they apply, while mutating methods may alter the object to which they apply. Many of a list’s mutating methods behave like assignments to appropriate slices of the list. In Table 3-3, L indicates any list object, i any valid index in L, s any iterable, and x any object. 

            Table 3-3. List object methods

            
              
                	
                  Method
                
                	
                  Description
                
              

              
                	
                  Nonmutating
                
                	
              

              
                	L .count( x )
                	Returns the number of items of L that are equal to x.
              

              
                	L .index( x )
                	Returns the index of the first occurrence of an item in L that is equal to x, or raises an exception if L has no such item.
              

              
                	
                  Mutating
                
                	
              

              
                	L .append( x )
                	Appends item x to the end of L ; like L[len(L):]=[x].
              

              
                	L .extend( s )
                	Appends all the items of iterable s to the end of L ; like L[len(L):]=s or L += s.
              

              
                	L.insert(i, x)
                	Inserts item x in L before the item at index i, moving following items of L (if any) “rightward” to make space (increases len(L) by one, does not replace any item, does not raise exceptions; acts just like L[i:i]=[x]).
              

              
                	L .remove( x )
                	Removes from L the first occurrence of an item in L that is equal to x, or raises an exception if L has no such item.
              

              
                	
                  L
                  .pop(
                  i
                  =-1)
                
                	Returns the value of the item at index i and removes it from L; when you omit i, removes and returns the last item; raises an exception if L is empty or i is an invalid index in L. 
              

              
                	
                  L
                   
                  .reverse()
                
                	Reverses, in place, the items of L.
              

              
                	
                  L
                  .sort(key=None, reverse=False)
                
                	Sorts, in-place, the items of L (in ascending order, by default; in descending order, if argument reverse is true) When argument key is not None, what gets compared for each item x is key(x), not x itself. For more details, see “
              Sorting a list
            ”.
              

            

             All mutating methods of list objects, except pop, return None.

          

          
            
              Sorting a list
            

             A list’s method sort causes the list to be sorted in-place (reordering items to place them in increasing order) in a way that is guaranteed to be stable (elements that compare equal are not exchanged). In practice, sort is extremely fast, often preternaturally fast, as it can exploit any order or reverse order that may be present in any sublist (the advanced algorithm sort uses, known as timsort  to honor its inventor, great Pythonista Tim Peters, is a “non-recursive adaptive stable natural mergesort/binary insertion sort hybrid”—now there’s a mouthful for you!).

            The sort method takes two optional arguments, which may be passed with either positional or named-argument syntax. The argument key, if not None, must be a function that can be called with any list item as its only argument. In this case, to compare any two items x and y, Python compares key(x) and key(y) rather than x and y (internally, Python implements this in the same way as the decorate-sort-undecorate idiom presented in [Link to Come], but much faster). The argument reverse, if true, causes the result of each comparison to be reversed; this is not exactly the same thing as reversing L after sorting, because the sort is stable (elements that compare equal are never exchanged) whether the argument reverse is true or false. In other words, Python sorts the list in ascending order by default, in descending order if reverse is true.

            
            mylist = ['alpha', 'Beta', 'GAMMA']
            mylist.sort() # ['Beta', 'GAMMA', 'alpha']
            mylist.sort(key=str.lower) # ['alpha', 'Beta', 'GAMMA']

            Python also provides the built-in function sorted (covered in [Link to Come]) to produce a sorted list from any input iterable. sorted, after the first argument (which is the iterable supplying the items), accepts the same two optional arguments as a list’s method sort.

            The standard library module operator (covered in [Link to Come]) supplies higher-order functions attrgetter, itemgetter, and methodcaller, which produce functions particularly suitable for the key= optional argument of lists’ method sort and the built-in function sorted. The key= optional argument also exists, with exactly the same meaning, for built-in functions min and max, as well as for functions nsmallest, nlargest, and merge in standard library module heapq, covered in [Link to Come], and class groupby in standard library module itertools, covered in [Link to Come]. 

          

        

      

      
        
          Set Operations
        

         Python provides a variety of operations applicable to sets (both plain and frozen). Since sets are containers, the built-in len function can take a set as its single argument and return the number of items in the set. A set is iterable, so you can pass it to any function or method that takes an iterable argument. In this case, iteration yields the items of the set in some arbitrary order. For example, for any set S, min(S) returns the smallest item in S, since min with a single argument iterates on that argument (the order does not matter, because the implied comparisons are transitive).

        
          
            Set Membership
          

           The k in S operator checks whether object k equals one of the items of set S. It returns True when it does, False when it doesn’t. k not in S is like not (k in S).

        

        
          
            Set Methods
          

           Set objects provide several methods, as shown in Table 3-4. Nonmutating methods return a result without altering the object to which they apply, and can also be called on instances of frozenset; mutating methods may alter the object to which they apply, and can be called only on instances of set. In Table 3-4, S denotes any set object, S1 any iterable with hashable items (often but not necessarily a set or frozenset), x any hashable object. 

          Table 3-4. Set object methods

          
            
              	
                Method
              
              	
                Description
              
            

            
              	
                Nonmutating
              
              	
            

            
              	
                S
                 
                .copy()
              
              	Returns a shallow copy of S (a copy whose items are the same objects as S’s, not copies thereof), like set(S)
            

            
              	S .difference( S1 )
              	Returns the set of all items of S that aren’t in S1
            

            
              	S .intersection( S1 )
              	Returns the set of all items of S that are also in S1
            

            
              	S .issubset( S1 )
              	Returns True when all items of S are also in S1; otherwise, returns False
            

            
              	S .issuperset( S1 )
              	Returns True when all items of S1 are also in S; otherwise, returns False (like S1.issubset(S))
            

            
              	S .symmetric_difference( S1 )
              	Returns the set of all items that are in either S or S1, but not both
            

            
              	S .union( S1 )
              	Returns the set of all items that are in S, S1, or both
            

            
              	
                Mutating
              
              	
            

            
              	S .add( x )
              	Adds x as an item to S; no effect if x was already an item in S
            

            
              	
                S
                 
                .clear()
              
              	Removes all items from S, leaving S empty
            

            
              	S .discard( x )
              	Removes x as an item of S; no effect when x was not an item of S
            

            
              	
                S
                 
                .pop()
              
              	Removes and returns an arbitrary item of S
            

            
              	S .remove( x )
              	Removes x as an item of S; raises a KeyError exception when x was not an item of S
            

          

           All mutating methods of set objects, except pop, return None.

           The pop method can be used for destructive iteration on a set, consuming little extra memory. The memory savings make pop usable for a loop on a huge set, when what you want is to “consume” the set in the course of the loop. Besides saving memory, a potential advantage of a destructive loop such as

          while S:
              item = S.pop()
              ...handle item...

          in comparison to a nondestructive loop such as

          for item in S:
              ...handle item...

          is that, in the body of the destructive loop, you’re allowed to modify S (adding and/or removing items), which is not allowed in the nondestructive loop.

          Sets also have mutating methods named difference_update, intersection_update, symmetric_difference_update, and update (corresponding to non-mutating method union). Each such mutating method performs the same operation as the corresponding nonmutating method, but it performs the operation in place, altering the set on which you call it, and returns None.

          The four corresponding non-mutating methods are also accessible with operator syntax: where S2 is a set or frozenset, respectively, S-S2, S&S2, S^S2, and S|S2; the mutating methods are accessible with augmented assignment syntax: respectively, S-=S2, S&=S2, S^=S2, and S|=S2. In addition, sets (and frozensets) also support comparison operators: == (the sets have the same items, AKA, they’re “equal” sets), != (the reverse of ==), >= (issuperset), <= (issubset), < (issubset and not equal), > (issuperset and not equal).

          When you use operator or augmented assignment syntax, both operands must be sets or frozensets; however, when you call named methods, argument S1 can be any iterable with hashable items, and it works just as if the argument you passed was set(S1).

        

      

      
        
          Dictionary Operations
        

         Python provides a variety of operations applicable to dictionaries. Since dictionaries are containers, the built-in len function can take a dictionary as its argument and return the number of items (key/value pairs) in the dictionary. A dictionary is iterable, so you can pass it to any function that takes an iterable argument. In this case, iteration yields only the keys of the dictionary, in insertion order. For example, for any dictionary D, min(D) returns the smallest key in D.

        
          
            Dictionary Membership
          

           The k in D operator checks whether object k is a key in dictionary D. It returns True when it is, False otherwise. k not in D is like not (k in D).

          
            Indexing a Dictionary
          

           To denote the value in a dictionary D currently associated with key k, use an indexing: D[k]. Indexing with a key that is not present in the dictionary raises an exception. For example:

          d = {'x':42, 'y':3.14, 'z':7}
          d['x'] # 42
          ['z'] # 7

          d['a'] # raises KeyError exception

          Plain assignment to a dictionary indexed with a key that is not yet in the dictionary (e.g., D[newkey]=value) is a valid operation and adds the key and value as a new item in the dictionary. For instance:

          d = {'x':42, 'y':3.14}

          d['a'] = 16 # d is now {'x':42, 'y':3.14, 'a':16}

          The del statement, in the form del D[k], removes from the dictionary the item whose key is k. When k is not a key in dictionary D, del D[k] raises a KeyError exception.​

        

        
          
            Dictionary Methods
          

           Dictionary objects provide several methods, as shown in Table 3-5. Nonmutating methods return a result without altering the object to which they apply, while mutating methods may alter the object to which they apply. In Table 3-5, D and D1 indicate any dictionary objects, k any hashable object, and x any object.

          
            Table 2-3. 
              Dictionary object methods
            
            
              	
                Method
              
              	
                Description
              
            

            
              	
                Nonmutating
              
              	
            

            
              	
                D
                .copy()
              
              	Returns a shallow copy of the dictionary (a copy whose items are the same objects as D’s, not copies thereof), like dict(D)
            

            
              	D.get(k[, x])
              	Returns D[k] when k is a key in D; otherwise, returns x (or None, when x is not given)
            

            
              	
                D
                 
                .items()
              
              	Returns an iterable “view” object whose items are all current items (key/value pairs) in D.
            

            
              	
                D
                .keys()
              
              	Returns an iterable “view” object whose items are all current keys in D
            

            
              	
                D
                 
                .values()
              
              	Returns an iterable “view” object whose items are all current values in D
            

            
              	
                Mutating
              
              	
            

            
              	
                D
                .clear()
              
              	Removes all items from D, leaving D empty
            

            
              	D.pop(k[, x])
              	Removes and returns D[k] when k is a key in D; otherwise, returns x (or raises a KeyError exception when x is not given)
            

            
              	
                D
                .popitem()
              
              	Removes and returns an arbitrary item (key/value pair)
            

            
              	D.setdefault(k[, x])
              	Returns D[k] when k is a key in D; otherwise, sets D[k] equal to x (or None, when x is not given) and returns x
            

            
              	D.update( D1 )
              	For each k in mapping D1, sets D[k] equal to D1[k]
            

          

          The items, keys, and values methods return values known as view objects. If the underlying dict changes, the retrieved view changes also; and you are not allowed to alter the set of keys in the underlying dict while using a for loop on any of its view objects.

          Iterating on any of the view objects yields values in insertion order. In particular, when you call more than one of these methods without any intervening change to the dict, the order of the results is the same for all.

          
            Never modify a dict’s set of keys while iterating on it

            Never modify the set of keys in a dict (i.e., never add nor remove keys) while iterating over that dict, or any of the iterable views returned by its methods. If you need to avoid such constraints against mutation during iteration, iterate instead on a list explicitly built from the dict or view; for example, iterate on list(D). Iterating directly on a dict D is exactly like iterating on D.keys().

            The return values of methods items and keys also implement set nonmutating methods and behave much like frozensets; the return value of method values doesn’t, since, differently from the others (and from sets), it may contain duplicates.

            The popitem method can be used for destructive iteration on a dictionary. Both items and popitem return dictionary items as key/value pairs. popitem is usable for a loop on a huge dictionary, when what you want is to “consume” the dictionary in the course of the loop.

            D.setdefault(k, x) returns the same result as D.get(k, x), but, when k is not a key in D, setdefault also has the side effect of binding D[k] to the value x. (In modern Python, setdefault is not often used, since type collections.defaultdict, covered in #defaultdict, often offers similar, faster, clearer functionality.) 

            The pop method returns the same result as get, but, when k is a key in D, pop also has the side effect of removing D[k] (when x is not specified, and k is not a key in D, get returns None, but pop raises an exception). d.pop(key, None) is a useful shortcut for removing a key from a dict without having to first check if the key is present, much as s.discard(x) (as opposed to s.remove(x)) when s is a set.

            The update method is accessible with augmented assignment syntax: where D2 is a dict, D|=D2 is the same as D.update(D2). Operator syntax, D|D2, mutates neither dictionary: rather, it returns a new dictionary result, such that D3=D|D2 is equivalent to D3=D.copy(); D3.update(D2).

            The update method (but not the | and |= operators) can also accept an iterable of key/value pairs, as an alternative argument instead of a mapping, and can accept named arguments instead of—or in addition to—its positional argument; the semantics are the same as for passing such arguments when calling the built-in dict type, as covered in #dictionaries.

          

        

      

      
        Control Flow Statements

        A program’s control flow regulates the order in which the program’s code executes. The control flow of a Python program mostly depends on conditional statements, loops, and function calls. (This section covers the if conditional statement and for and while loops; we cover the match conditional statement in “The match statement”, and functions in “Functions”.) Raising and handling exceptions also affects control flow; we cover exceptions in Chapter “Exceptions”.

        
          The if Statement

          Often, you need to execute some statements only when some condition holds, or choose statements to execute depending on mutually exclusive conditions. The compound statement if—comprising if, elif, and else clauses—lets you conditionally execute blocks of statements. The syntax for the if statement is:

          
            if expression:
    statement(s)
elif expression:
    statement(s)
elif expression:
    statement(s)
...
else:
    statement(s)

          
          The elif and else clauses are optional. Before the introduction of the match construct (see “The match statement”), if, elif, and else had to be used for all conditional processing.

          Here’s a typical if statement with all three kinds of clauses:

          
            if x < 0:
    print('x is negative')
elif x % 2:
    print('x is positive and odd')
else:
    print('x is even and non-negative')

          
          Each clause controls one or more statements (known as “a block”): place the block’s statements on separate logical lines after the line containing the clause’s keyword (known as the header line of the clause), indented 4 spaces from the header line. The block terminates when the indentation returns to that of the clause header (or further left from there). (This is the style mandated by PEP 8).

          You can use any Python expression as the condition in an if or elif clause. Using an expression this way is known as using it in a Boolean context. In this context, any value is taken as either true or false. As mentioned earlier, any nonzero number or nonempty container (string, tuple, list, dictionary, set, ...) evaluates as true; zero (of any numeric type), None, and empty containers evaluate as false. To test a value x in a Boolean context, use the following coding style:

          
            if x:

          
          This is the clearest and most Pythonic form. Do not use any of the following:

          
            if x is True:
if x == True:
if bool(x):

          
          There is a crucial difference between saying that an expression returns True (meaning the expression returns the value 1 with the bool type) and saying that an expression evaluates as true (meaning the expression returns any result that is true in a Boolean context). When testing an expression, for example in an if clause, you only care about what it evaluates as, not what, precisely, it returns. Informally, “evaluates as true” is often expressed as “is truthy”, and “evaluated as false” as “is falsy”.

          When the if clause’s condition evaluates as true, the statements within the if clause execute, then the entire if statement ends. Otherwise, Python evaluates each elif clause’s condition, in order. The statements within the first elif clause whose condition evaluates as true, if any, execute, and the entire if statement ends. Otherwise, when an else clause exists, it executes. In any case, statements following the entire if construct, at the same level, execute next.

        

        
          ||3.10+|| The match statement

          The match statement brings structural pattern matching to the Python language. You might think of this as doing for other Python types something similar to what the re module (see “Regular expressions and the re module”) does for strings: it allows easy testing of the structure and contents of Python objects6. Resist the temptation to use match unless there is a need to analyse the structure of an object.

          The overall syntactic structure of the statement is the new (soft) keyword match followed by an expression whose value becomes the matching subject. This is followed by one or more indented case clauses, each of which controls the execution of the indented code block it contains.

          
            match expression:
    case pattern [if guard]:
        statement(s)
	...

          
          In execution, Python first evaluates the expression, then tests the resulting subject value against the pattern in each case in turn, in order from first to last, until one matches: then, the block indented within the matching case clause evaluates. A pattern can do two things:

          
            	
              verify that the subject is an object with a particular structure, and

            

            	
              bind matched components to names for further use (usually within the associated case clause).

            

          

          When a pattern matches the subject, the guard allows a final check before selection of the case for execution. All the pattern’s name bindings have occurred and you can use them in the guard. When there is no guard, or when the guard evaluates as true, the case’s indented code block executes, after which the match statement’s execution is complete and no further cases are checked.

          Unlike the if statement, there is no syntactic equivalent to the else clause. The match statement, per se, provides no default action. If one is needed, the last case clause must specify a wildcard case—one whose syntax ensures it matches any subject value. It is a SyntaxError to follow a case clause having such a wildcard pattern with any further case clauses.

          Pattern elements cannot be created in advance, bound to variables and (for example) re-used in multiple places. Pattern syntax is only valid immediately following the (soft) keyword case, so there is no way to perform such an assignment. For each execution of a match statement, the interpreter is free to cache pattern expressions that repeat inside the cases, but the cache starts empty for each new execution.

          We first describe the various types of pattern expressions, before discussing guards and providing some more complex examples.

          
            Pattern Expressions

            The syntax of pattern expressions can seem familiar, but their interpretation is sometimes quite different from their non-pattern interpretation, which could mislead readers unaware of the differences. Specific syntactic forms are used in the case clause to indicate matching of particular structures. To summarise all this syntax would require more than the simplified notation we use in this book7. We therefore prefer to explain this new feature in plain language, with examples. For more detailed examples, refer to the Python documentation, which details the match statement features and the various pattern types.

          

          
            Building Patterns

            Patterns are expressions, though with a syntax specific to the case clause, so familiar grammatical rules apply, despite different interpretation of various features. They can be in parentheses, to let elements of a pattern be treated as a single expression unit. Like other expressions, patterns have a recursive syntax and can be combined to form more complex patterns. Let’s start with the simplest patterns first.

          

          
            Literal Patterns

          Most literal values are valid patterns. Integer, float, complex number and string literals (but not formatted string literals) are all permissible, and all succeed in matching subjects of the same type and value.

            
              >>> for subject in (42, 42.0, 42.1, 1+1j, b'abc', 'abc'):
...     print(subject, end=': ')
...     match subject:
...         case 42: print('integer')  # note this matches 42.0,too!
...         case 42.1: print('float')
...         case 1+1j: print('complex')
...         case b'abc': print('bytestring')
...         case 'abc': print('string')
42: integer
42.0: integer
42.1: float
(1+1j): complex
b'abc': bytestring
abc: string

            
            For most matches, the interpreter checks for equality, without type checking, which is why 42.0 matches integer 42. If the distinction is important, consider using class matching (see “Class Patterns”) rather than literal matching. True, False, and None being singleton objects, each matches itself.

          

          
            The Wildcard Pattern

            In pattern syntax, the underscore (_) plays the role of a wildcard expression. As the simplest wildcard pattern, _ matches any value at all:

            
              >>> for subject in 42, 'string', ('tu', 'ple'), ['list'], object:
...     match subject:
...         case _: print('matched', subject)
...
matched 42
matched string
matched ('tu', 'ple')
matched ['list']
matched <class 'object'>

            
          

          
            

          

          
            

          

          
            

          

          
            Capture Patterns

            The use of unqualified names (names with no dots in them) is so different in patterns that we feel it necessary to begin this section with a warning note.

            
              Simple Names Bind to Matched Elements Inside Patterns

              Unqualified names—simple identifiers (e.g., color) rather than attribute references (e.g., name.attr)—do not necessarily have their usual meaning in pattern expressions. Some names, rather than being references to values, are instead bound to elements of the subject value during pattern matching.

            

            Unqualified names, except _, are capture patterns—they’re wildcards, matching anything, but with a side-effect: the name, in the current local namespace, gets bound to the object matched by the pattern. Bindings created by matching remain after the statement has executed, allowing the statements in the case clause and subsequent code to process extracted portions of the subject value.

            The example below is similar to the preceding one, except that the name x, instead of the underscore, matches the subject. The absence of exceptions shows that the name captures the whole subject in all cases.

            
              >>> for subject in 42, 'string', ('tu', 'ple'), ['list'], object:
...     match subject:
...         case x: assert x == subject
...

            
          

          
            Value Patterns

            This section, too, begins with a warning to remind readers that simple names can’t be used to inject their bindings into pattern values to be matched.

            
              Represent Variable Values in Patterns with Qualified Names

              Because simple names capture values during pattern matching, you must use attribute references (qualified names like name.attr) to express values that may change between different executions of the same match statement.

            

            Though this feature is useful, it means you can’t reference values directly with simple names. Therefore, in patterns, values must be represented by qualified names, which are known as value patterns—they represent values, rather than capturing them as simple names do. While slightly inconvenient, the use of qualified names is easily accomplished by setting attribute values on an otherwise empty class8; for example:

            
              >>> class m: v1 = "one"; v2 = 2; v3 = 2.56
...
>>> match ('one', 2, 2.56):
...     case (m.v1, m.v2, m.v3):  print('matched')
...
matched

            
            It is also relatively easy to give yourself access to the current module’s global namespace, like this:

            
              >>> import sys
>>> g = sys.modules[__name__]
>>> v1 = "one"; v2 = 2; v3 = 2.56
>>> match ('one', 2, 2.56):
...     case (g.v1, g.v2, g.v3):  print('matched')
...
matched

            
          

          
            OR Patterns

            When P1 and P2 are patterns, the expression P1 | P2 is an OR pattern, matching anything that matches either P1 or P2, as shown below. Any number of alternate patterns can be used, and matches are attempted from left to right.

            
              >>> for subject in range(5):
...     match subject:
...         case 1 | 3: print('odd')
...         case 0 | 2 | 4: print('even')
even
odd
even
odd
even

            
            It is a syntax error to follow a wildcard pattern with further alternatives, since they can never be activated. While our initial examples are simple, remember that the syntax is recursive, so patterns of arbitrary complexity can replace any of the sub-patterns in our examples.

          

          
            Group Patterns

            If P1 is a pattern, then (P1) is also a pattern that matches the same values. This addition of “grouping” parentheses can be useful when patterns become complicated, just as it is with standard expressions. As in other expressions, take care to distinguish between (P1), a simple grouped pattern matching P1, and (P1, ), a sequence pattern (see “Sequence Patterns”) matching a sequence with a single element matching P1.

          

          
            Sequence Patterns

            A list or tuple of patterns, optionally with a single starred wildcard (*_) or starred capture pattern (*name), is a sequence pattern. When the starred pattern is absent, the pattern matches a fixed-length sequence of values of the same length as the pattern. Elements of the sequence are matched one at a time, until all elements have matched (then, matching succeeds), or, an element fails to match (then, matching fails).

            When the sequence pattern includes a starred pattern, that sub-pattern matches a sequence of elements sufficiently long to allow the remaining unstarred patterns to match the final elements of the sequence. When the starred pattern is of the form *name, name is bound to the (possibly empty) list of the elements in the middle that don’t correspond to individual patterns at the beginning or end.

            You can match a sequence with patterns that look like tuples or lists—it makes no difference to the matching process. The next example shows an unnecessarily complicated way to extract the first, middle, and last elements of a sequence.

            
              >>> for sequence in (["one", "two", "three"], range(2), range(6)):
...     match sequence:
...         case  (first, *vars, last): print(first, vars, last)
one ['two'] three
0 [] 1
0 [1, 2, 3, 4] 5

            
          

          
            AS Patterns

            You can use so-called AS patterns to capture values matched by more complex patterns, or components of a pattern, which simple capture patterns (see “Capture Patterns” above) cannot.

            When P1 is a pattern, then P1 as name is also a pattern; when P1 succeeds, Python binds the matched value to name name in the local namespace. The interpreter tries to ensure that, even with complicated patterns, the same bindings always take place when a match occurs.

            
              >>> match subject:
...     case ((0 | 1) as x) | 2: print(x)
...
SyntaxError: alternative patterns bind different names
>>> match subject:
...     case (2 | x): print(x)
...
SyntaxError: alternative patterns bind different names
>>> match 42:
...     case (1 | 2 | 42) as x: print(x)
42

            
          

          
            Mapping Patterns

            Mapping patterns match mapping objects, usually dictionaries, which associate keys with values. The syntax of mapping patterns uses key: pattern pairs. The keys must be either literal or value patterns.

            The interpreter iterates over the keys in the mapping pattern, processing each as follows.

            
              	
                Python looks up the key in the subject mapping; a lookup failure causes immediate match failure.

              

              	
                Python then matches the extracted value against the pattern associated with the key; if the value fails to match the pattern, then the whole match fails.

              

            

            When all keys match, the whole match succeeds.

            
              >>> match {1: "two", "two": 1}:
...     case {1: v1, "two": v2}: print(v1, v2)
...
two 1

            
            You can also use a mapping pattern together with an as clause:

            
              >>> match {1: "two", "two": 1}:
...     case {1: v1} as v2: print(v1, v2)
...
two {1: 'two', 'two': 1}

            
            The as pattern in the second example binds v2 to the whole subject dictionary, not just the matched keys.

            The final element of the pattern may optionally be a double-starred capture pattern such as **name; when that is the case, Python binds name to a possibly-empty dictionary whose items are the (key, value) pairs from the subject mapping whose keys were not present in the pattern.

            
              >>> match {1: 'one', 2: 'two', 3: 'three'}:
...     case {2: middle, **others}: print(middle, others)
...
two {1: 'one', 3: 'three'}

            
          

          
            Class Patterns

            The final, and maybe the most versatile kind of pattern, is the class pattern, offering the ability to match instances of particular classes and their attributes.

            A class pattern is of the general form

            
              name_or_attr(patterns)

            
            where name_or_attr is a simple or qualified name bound to a class – specifically, an instance of the built-in type type (or of a subclass thereof, but, no super-fancy metaclasses need apply!). patterns is a (possibly empty) comma-separated list of pattern specifications. When no pattern specifications are present in a class pattern, the match succeeds whenever the subject is an instance of the given class, so for example the pattern int() matches any integer.

            Like function arguments and parameters, the pattern specifications can be positional (like pattern) or named (like name=pattern). If a class pattern has positional pattern specifications, they must all precede the first named pattern specification. User-defined classes cannot use positional patterns without setting the class’s __match_args__ attribute (see “Configuring Classes for Positional Matching.”)

            The built-in types bool, bytearray, bytes, dict, float, frozenset, int, list, set, str, and tuple, are all configured to take a single positional pattern, which is matched against the instance value. For example, the pattern str(x) matches any string and binds its value to x by matching the string’s value against the capture pattern—as does str() as x.

            You may remember a literal pattern example we presented earlier, showing that literal matching could not discriminate between the integer 42 and the float 42.0 because 42 == 42.0. You can use class matching to overcome that issue:

            
              >>> for subject in 42, 42.0:
...     match subject:
...         case int(x): print('integer', x)
...         case float(x): print('float', x)
...
integer 42
float 42.0

            
            Once the type of the subject value has matched, for each of the named patterns name=pattern, Python retrieves the attribute name from the instance and matches its value against pattern. If all named pattern matches succeed, the whole match succeeds. Python handles positional patterns by converting them to named patterns, as we describe in “Configuring Classes for Positional Matching.”

          

          
            Guards

            When a case clause’s pattern succeeds, it is often convenient to determine on the basis of values extracted from the match whether this case should execute. When a guard is present, it executes after a successful match. If the guard expression evaluates as false, Python abandons the current case, despite the match, and moves to consider the next case. This example uses a guard to exclude odd integers by checking the value bound in the match.

            
              >>> for subject in range(5):
...     match subject:
...         case int(i) if i % 2 == 0: print(i, "is even")
...
0 is even
2 is even
4 is even 

            
          

          
            Configuring Classes for Positional Matching

            When you want your own classes to handle positional patterns in matching, you have to tell the interpreter which attribute of the instance (not “which argument to __init__”) each positional pattern corresponds to. You do this by setting the class’s __match_args__ attribute to a sequence of names. The interpreter raises a TypeError exception if you attempt to use more positional patterns than you defined.

            
              >>> class Color:
...     __match_args__ = ('red', 'green', 'blue')
...     def __init__(self, r, g, b, name='anonymous'):
...         self.name = name
...         self.red, self.green, self.blue = r, g, b
...
>>> red = Color(255,0,0, 'red')
>>> blue = Color(0, 0, 255)
>>> for subject in (42.0, red, blue):
...     match subject:
...         case float(x):
                print('float', x)
...         case Color(a, b, c, name='red'):
                print(type(subject).__name__, subject.name a, b, c)
...         case Color(a, b, c=255) as blue:
...             print(type(blue).__name__, a, b, c, blue.name,)
…		    case _: print(type(subject), subject)
...
float 42.0
Color red 255 0 0
Color 0 0 255 anonymous
>>> match red:
...     case Color(1, 2, 3, 4): print("matched")
...
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
TypeError: Color() accepts 3 positional sub-patterns (4 given)

            
          

        

        
          The while Statement

          The while statement repeats execution of a statement, or block of statements, as long as a conditional expression evaluates as true. Here’s the syntax of the while statement:

          
            while expression:
    statement(s)

          
          A while statement can also include an else clause, covered in “The else Clause on Loop Statements”, and break and continue statements, covered in “The break Statement” and “The continue Statement”.

          Here’s a typical while statement:

          
            count = 0
while x > 0:
    x //= 2            # floor division
    count += 1
print('The approximate log2 is', count)

          
          First, Python evaluates expression, which is known as the loop condition, in a Boolean context. When the condition is false, the while statement ends. When the loop condition evaluates as true, the statement or block of statements that make up the loop body execute. Once the loop body finishes executing, Python evaluates the loop condition again, to check whether another iteration should execute. This process continues until the loop condition evaluates as false, at which point the while statement ends.

          The loop body should contain code that eventually makes the loop condition false, otherwise the loop never ends (unless the body raises an exception or executes a break statement). A loop within a function’s body also ends if the loop body executes a return statement, since in this case the whole function ends.

        

        
          The for Statement

          The for statement repeats execution of a statement, or block of statements, controlled by an iterable expression. Here’s the syntax of the for statement:

          
            for target in iterable:
    statement(s)

          
          The in keyword is part of the syntax of the for statement; its purpose here is distinct from the in operator, which tests membership.

          Here’s a rather typical for statement:

          
            for letter in 'ciao':
    print(f'give me a {letter}...')

          
          A for statement can also include an else clause, covered in “The else Clause on Loop Statements”, and break and continue statements, covered in “The break Statement” and “The continue Statement”. iterable may be any iterable Python expression (as explained in detail in the next section). In particular, any sequence is iterable. The interpreter calls the iterable’s __iter__ method to produce an iterator (see “Iterators”), which it then iterates over.

          target is normally an identifier naming the control variable of the loop; the for statement successively rebinds this variable to each item of the iterator, in order. The statement or statements that make up the loop body execute once for each item in iterable (unless the loop ends because of an exception or a break or return statement). Since the loop body may terminate before the iterator is exhausted, this is one case in which you may use an unbounded iterable—one that, per se, would never cease yielding items.

          You can also use a target with multiple identifiers, as in an unpacking assignment. In this case, the iterator’s items must themselves be iterables, each with exactly as many items as there are identifiers in the target. Precisely one of the identifiers may be preceded by a star, in which case the starred identifier is bound to a list of all items not assigned to other targets. For example, when d is a dictionary, this is a typical way to loop on the items (key/value pairs) in d:

          
            for key, value in d.items():
    if key and value:             # print only truish keys and values
        print(key, value)

          
          The items method returns another kind of iterable (a “view”), whose items are key/value pairs; so, we use a for loop with two identifiers in the target to unpack each item into key and value. Although components of a target are commonly identifiers, values can be bound to any acceptable LHS expression as covered in “Assignment Statements”:

          
            prototype = [1, 'placeholder', 3]
for prototype[1] in 'xyz':
    print(prototype)
# prints [1, 'x', 3], then [1, 'y', 3], then [1, 'z', 3]

          
          
            Don’t Alter Mutable Objects While Looping on Them

            When an iterator has a mutable underlying iterable, don’t alter that underlying object during a for loop on the iterable. For example, the preceding key/value printing example cannot alter d. The items method returns a “view” iterable whose underlying object is d, so the loop body cannot mutate the set of keys in d (e.g., by executing del d[key]). To ensure that d is not the underlying object of the iterable, you may, for example, iterate over list(d.items()) to allow the loop body to mutate d. Specifically:

            
              	
                When looping on a list, do not insert, append, or delete items (rebinding an item at an existing index is OK) into that list.

              

              	
                When looping on a dictionary, do not add or delete items (rebinding the value for an existing key is OK) into that dict.

              

              	
                When looping on a set, do not add or delete items (no alteration permitted).

              

            

          

          The loop body may rebind control target variable(s), but the next iteration of the loop will always rebind them again. If the iterator yields no items, the loop body does not execute at all. In this case, the for statement does not bind or rebind its control variable it in any way. However, if the iterator yields at least one item, then, when the loop statement ends, the control variable remains bound to the last value to which the loop statement bound it. The following code is therefore correct only when someseq is not empty:

          
            for x in someseq:
    process(x)
print(f'Last item processed was {x}')  # potential NameError on empty sequence

          
          
            Iterators

            An iterator is an object i such that you can call next(i), which returns the next item of iterator i or, when exhausted, raises a StopIteration exception. Alternatively, you can call next(i, default), in which case, when iterator i has no more items, the call returns default.

            When you write a class (see “Classes and Instances”), you can let instances of the class be iterators by defining a special method __next__ that takes no argument except self, and returns the next item or raises StopIteration. Most iterators are built by implicit or explicit calls to built-in function iter, covered in Table 7-2. Calling a generator also returns an iterator, as we discuss in “Generators”.

            As pointed out in “The for statement”, the for statement implicitly calls iter on iits iterable to get an iterator. The statement:

            
              for x in c:
    statement(s)

            
            is exactly equivalent to:

            
              _temporary_iterator = iter(c)
while True:
    try:
	    x = next(_temporary_iterator)
    except StopIteration:
	    break
    statement(s)

            
            where _temporary_iterator is an arbitrary name not used elsewhere in the current scope.

            Thus, when iter(c) returns an iterator i such that next(i) never raises StopIteration (an unbounded iterator), the loop for x in c continues indefinitely unless the loop body includes suitable break or return statements, or raises or propagates exceptions. iter(c), in turn, calls special method c.__iter__() to obtain and return an iterator on c. We’ll talk more about the special method __iter__ in “Container methods”.

            Many of the best ways to build and manipulate iterators are found in the standard library module itertools, covered in “The itertools Module”.

          

          
            Iterables vs. Iterators

            Python’s built-in sequences, like all iterables, implement an __iter__ method, which the interpreter calls to produce an iterator over the iterable. Because each call to an iterable’s __iter__ method produces a new iterator, it is possible to nest multiple iterations over the same iterable.

            
              >>> iterable = [1, 2]
>>> for i in iterable:
...     for j in iterable:
...         print(i, j)
...
1 1
1 2
2 1
2 2

            
            Iterators also implement an __iter__ method, but it always returns self, so nesting iterations over them doesn’t work as expected.

            
              >>> iterator = iter([1, 2])
>>> for i in iterator:
...     for j in iterator:
...         print(i, j)
...
1 2

            
            Here both the inner and outer loops are iterating over the same iterator. By the time the inner loop first gets control, the first value from the iterator has already been consumed. The first iteration of the inner loop exhausts the iterator, which therefore terminates the loops when the next iteration is attempted.

          

          
            range

            Looping over a sequence of integers is a common task, so Python provides built-in function range to generate integer sequences. The simplest way to loop n times in Python is:

            
              for i in range(n):
    statement(s)

            
            range(x) generates the consecutive integers from 0 (included) up to x (excluded). range(x, y) generates a list whose items are consecutive integers from x (included) up to y (excluded). range(x, y, stride) generates a list of integers from x (included) up to y (excluded), such that the difference between each two adjacent items is stride. If stride is less than 0, range counts down from x to y.

            range generates an empty iterator when x is >= y and stride is > 0, or when x is <= y and stride is < 0. When stride == 0, range raises an exception.

            range returns a special-purpose object, intended just for use in iterations like the for statement shown previously. range returns an iterable, not an iterator; you can easily obtain such an iterator, should you need one, by calling iter(range(...)). The special-purpose object returned by range consumes less memory (for wide ranges, much less memory) than the equivalent list object would. If you need a list that’s an arithmetic progression of ints, call list(range(...)). You will most often find that you don’t, in fact, need such a complete list to be fully built in memory.

          

          
            List comprehensions

            A common use of a for loop is to inspect each item in an iterable and build a new list by appending the results of an expression computed on some or all of the items. The expression form known as a list comprehension or listcomp lets you code this common idiom concisely and directly. Since a list comprehension is an expression (rather than a block of statements), you can use it wherever you need an expression (e.g., as an argument in a function call, in a return statement, or as a subexpression of some other expression).

            A list comprehension has the following syntax:

            
              [ expression for target in iterable lc-clauses ]

            
            target and iterable are the same as in a regular for statement. When expression denotes a tuple, you must enclose it in parentheses.

            lc-clauses is a series of zero or more clauses, each with one of the two forms:

            
              for target in iterable
if expression

            
            target and iterable in each for clause of a list comprehension have the same syntax and meaning as those in a regular for statement, and the expression in each if clause of a list comprehension has the same syntax and meaning as the expression in a regular if statement.

            A list comprehension is equivalent to a for loop that builds the same list by repeated calls to the resulting list’s append method. For example (assigning the list comprehension result to a variable for clarity):

            
              result1 = [x+1 for x in some_sequence]

            
            is (apart from the different variable name) the same as the for loop:

            
              result2 = []
for x in some_sequence:
    result2.append(x+1)

            
            Here’s a list comprehension that uses an if clause:

            
              result3 = [x+1 for x in some_sequence if x>23]

            
            This list comprehension is the same as a for loop that contains an if statement:

            
              result4 = []
for x in some_sequence:
    if x>23:
        result4.append(x+1)

            
            Here’s a list comprehension using a nested for clause to flatten a “list of lists” into a single list of items:

            
              result5 = [x for sublist in listoflists for x in sublist]

            
            This is the same as a for loop with another for loop nested inside:

            
              result6 = []
for sublist in listoflists:
    for x in sublist:
        result6.append(x)I 

            
            As these examples show, the order of for and if in a list comprehension is the same as in the equivalent loop, but, in the list comprehension, the nesting remains implicit. If you remember “order for clauses as in a nested loop,” that can help you correctly get the ordering of the list comprehension’s clauses.

            
              Don’t Build A List Unless You Need To

              If you are just going to loop over the items, rather than needing an actual, indexable, list, use a generator expression instead (covered in “Generator expressions”). This avoids list creation, and uses less memory. In particular, resist the temptation to use comprehensions as a “single-line loop” such as

              [side_effects_but_no_return_value(x) for x in seq]

              -- just use a normal for loop instead!

            

            
              List Comprehensions And Variable Scope

              A list comprehension expression evaluates in its own scope (as do set and dict comprehensions, described in the following sections, and generator expressions—see “Generator expressions”). When a target component in the for statement is a name, the name is defined solely within the expression scope and is not available outside it.

            

          

          
            Set comprehensions

            A set comprehension has exactly the same syntax and semantics as a list comprehension, except that you enclose it in braces ({}) rather than in brackets ([]). The result is a set; for example:

            
              s = {n//2 for n in range(10)}
print(sorted(s))  # prints: [0, 1, 2, 3, 4]

            
            A similar list comprehension would have each item repeated twice, but a set removes duplicates.

          

          
            Dict comprehensions

            A dict comprehension has the same syntax as a set comprehension, except that, instead of a single expression before the for clause, you use two expressions with a colon : between them—key:value. The result is a dict, which retains insertion ordering. For example:

            
              d = {s: i for (i, s) in enumerate(['zero', 'one', 'two'])}
print(d)  # prints: {'zero': 0, 'one': 1, 'two': 2}

            
          

        

        
          The break Statement

          You can use a break statement only within a loop body. When break executes, the loop terminates without executing any else clause the loop may have. When loops are nested, a break terminates only the innermost nested loop. In practice, a break is typically within a clause of an if (or, occasionally, a match) statement in the loop body, so that break executes conditionally.

          One common use of break is to implement a loop that decides whether it should keep looping only in the middle of each loop iteration (what Donald Knuth called the “loop and a half” structure in his great 1974 paper “Structured Programming with go to Statements”9). For example:

          
            while True:          # this loop can never terminate “naturally”
    x = get_next()
    y = preprocess(x)
    if not keep_looping(x, y):
        break
    process(x, y)

          
        

        
          The continue Statement

          The continue statement can exist only within a loop body. It causes the current iteration of the loop body to terminate, and execution continues with the next iteration of the loop. In practice, a continue is usually within a clause of an if (or, occasionally, a match) statement in the loop body, so that continue executes conditionally.

          Sometimes, a continue statement can take the place of nested if statements within a loop. For example, here each x has to pass multiple tests before being completely processed:

          
            for x in some_container:
    if seems_ok(x):
        lowbound, highbound = bounds_to_test()
        if lowbound <= x < highbound:
            pre_process(x)
            if final_check(x):
                do_processing(x)

          
          Nesting increases with the number of conditions. Equivalent code with continue flattens the logic:

          
            for x in some_container:
    if not seems_ok(x):
        continue
    lowbound, highbound = bounds_to_test()
    if x < lowbound or x >= highbound:
        continue
    pre_process(x)
    if final_check(x):
        do_processing(x)

          
          
            Flat Is Better Than Nested

            Both versions work the same way, so which one you use is a matter of personal preference and style. One of the principles of The Zen of Python (which you can see at any time by typing import this at an interactive Python interpreter prompt) is “Flat is better than nested.” The continue statement is just one way Python helps you move toward the goal of a less-nested structure in a loop, if you so choose.

          

        

        
          The else Clause on Loop Statements

          while and for statements may optionally have a trailing else clause. The statement or block under that else executes when the loop terminates naturally (at the end of the for iterator, or when the while loop condition becomes false), but not when the loop terminates prematurely (via break, return, or an exception). When a loop contains one or more break statements, you often want to check whether the loop terminates naturally or prematurely. You can use an else clause on the loop for this purpose:

          
            for x in some_container:
    if is_ok(x):
        break  # item x is satisfactory, terminate loop
else:
    print('Beware: no satisfactory item was found in container')
    x = None

          
        

        
          The pass Statement

          The body of a Python compound statement cannot be empty; it must always contain at least one statement. You can use a pass statement, which performs no action, as an explicit placeholder when a statement is syntactically required but you have nothing to do. Here’s an example of using pass in a conditional statement as a part of somewhat convoluted logic to test mutually exclusive conditions:

          
            if condition1(x):
    process1(x)
elif x>23 or (x<5 and condition2(x)):
    pass  # nothing to be done in this case
elif condition3(x):
    process3(x)
else:
    process_default(x)

          
          
            Empty def or class Statements: Use a Docstring, Not pass

            As the body of an otherwise empty def or class statement, use a docstring, covered in “Docstrings”; when you do write a docstring, you do not need to also add a pass statement (you can do so if you wish, but it’s not optimal Python style).

          

        

        
          The try and raise Statements

          Python supports exception handling with the try statement, which includes try, except, finally, and else clauses. Your code can explicitly raise an exception with the raise statement. All of this is discussed in detail in “Exception Propagation” in Chapter “Exceptions”. When code raises an exception, normal control flow of the program stops, and Python looks for a suitable exception handler.

        

        
          The with Statement

          A with statement can often be a more readable, useful alternative to the try/finally statement. We discuss it in detail in “The with Statement and Context Managers” in Chapter “Exceptions”. A good grasp of context managers can often help you structure code more clearly without compromising efficiency.

        

      

      
        Functions

        Most statements in a typical Python program are part of some function. Code in a function body may be faster than at a module’s top level, as covered in “Avoid exec and from ... import *”, so there are excellent practical reasons to put most of your code into functions, and no disadvantages: clarity, readability and code reusability all improve when you avoid having any substantial chunks of module-level code.

        A function is a group of statements that execute upon request. Python provides many built-in functions and lets programmers define their own functions. A request to execute a function is known as a function call. When you call a function, you can pass arguments that specify data upon which the function performs its computation. In Python, a function always returns a result value, either None or a value, the result of the computation. Functions defined within class statements are also known as methods. We cover issues specific to methods in “Bound and Unbound Methods”; the general coverage of functions in this section, however, also applies to methods.

        Python is somewhat unusual in the flexibility it affords the programmer in defining and calling functions. This flexibility does mean that some constraints are not adequately expressed solely by the syntax. In Python, functions are objects (values), handled just like other objects. Thus, you can pass a function as an argument in a call to another function, and a function can return another function as the result of a call. A function, just like any other object, can be bound to a variable, can be an item in a container, and can be an attribute of an object. Functions can also be keys into a dictionary. The fact that functions are ordinary objects in Python is often expressed by saying that functions are first-class objects.

        For example, given a dict keyed by functions, with values being each function’s inverse, you could make the dictionary bidirectional by adding the inverse values as keys, with their corresponding keys as values. Here’s a small example of this idea, using some functions from module math, covered in “The math and cmath Modules”, that takes a one-way mapping of inverse pairs and then adds the inverse of each entry to complete the mapping:

        
          def add_inverses(i_dict):
    for f in list(i_dict):  #  iterates over keys while mutating i_dict 
        i_dict[i_dict[f]] = f
math_map = {sin:asin, cos:acos, tan:atan, log:exp}
add_inverses(math_map)

        
        Note that in this case the function mutates its argument (whence its need to use a list call). In Python, the usual convention is for such functions not to return a value (see “The return statement”).

        
          Defining Functions: the def Statement

          The def statement is the usual way to create a function. def is a single-clause compound statement with the following syntax:

          
            def function_name(parameters):
   statement(s)

          
          function_name is an identifier, and the non-empty indented statement(s) are the function body. When the interpreter meets a def statement, it compiles the function body, creating a function object, and binds (or rebinds, if there was an existing binding) function_name to the compiled function object in the containing namespace (typically the module namespace, or a class namespace when defining methods).

          parameters is an optional list specifying the identifiers that will be bound to values that each function call provides. We distinguish between those identifiers, and the values provided for them in calls, by referring to the former as parameters and the latter as arguments.

          In the simplest case, a function defines no parameters, meaning the function won’t accept any arguments when you call it. In this case, the def statement has empty parentheses after function_name, as must all calls. Otherwise, parameters will be a list of specifications (see “Parameters” below). The function body does not execute when the def statement executes. Rather, Python compiles it into bytecode, saves it as the function object’s __code__ attribute, and executes it later on each call to the function. The function body can contain zero or more occurrences of the return statement, as we’ll discuss shortly.

          Each call to the function supplies argument expressions corresponding to the parameters defined in the function definition. The interpreter evaluates the argument expressions from left to right and creates a new namespace in which it binds the argument values to the parameter names as local variables of the function call (as we discuss later in “Calling functions”). Then, Python executes the function body, with the function-call namespace as the local namespace.

          Here’s a simple function that returns a value that is twice the value passed to it each time it’s called:

          
            def twice(x):
    return x*2

          
          The argument can be anything that you can multiply by two, so you could call the function with a number, string, list, or tuple as an argument: each call returns a new value of the same type as the argument.

          
            Function signatures

            The number of parameters of a function, together with the parameters’ names, the number of mandatory parameters, and the information on whether and where unmatched arguments should be collected, are a specification known as the function’s signature. A signature defines how you can call the function.

          

        

        
          Parameters

          Parameters (pedantically, formal parameters) name the values passed into a function call, and may specify default values for them. Each time you call the function, the call binds each parameter name to the corresponding argument value in a new local namespace, which Python later destroys on function exit.

          Besides letting you name individual arguments, Python also lets you collect argument values not matched by individual parameters, and lets you specifically require that some arguments be positional, or named. 

          
            Positional parameters

            Each positional parameter is an identifier name, which names the parameter. You use these names inside the function body to access the argument values to the call. Callers can normally provide values for these parameters with either positional or named arguments (see “Matching arguments to parameters”).

          

          
            Named parameters

            Each of these takes the form name=expression. They are also known as default, optional, and even, alas!—confusingly, since they do not involve any Python keyword—keyword parameters. Executing the def statement, the interpreter evaluates each such expression and saves the resulting value, known as the default value for the parameter, among the attributes of the function object. A function call need not provide an argument value for a named parameter: in that case, the call binds it to its default value. Unless a function’s signature includes a positional argument collector (see below), the call may provide positional arguments as values for some named parameters (see “Matching arguments to parameters”).

            Python computes each default value exactly once, when the def statement executes, not each time you call the resulting function. In particular, this means that Python binds exactly the same object, the default value, to the named parameter, whenever the caller does not supply a corresponding argument.

            
              Beware Using Mutable Default Values

              A function can alter a mutable default value, such as a list, each time you call the function without an argument corresponding to the respective parameter. This is usually not the behavior you want; see all details under “Mutable default parameter values”.

            

          

          
            Positional-only marker

            ||3.8++|| A function’s signature may contain a single positional-only marker (/) as a dummy parameter. The parameters preceding the marker are known as positional-only parameters, and must be provided as positional arguments, not named arguments, when calling the function. Using named arguments for these parameters raises a TypeError exception.

          

          
            Positional argument collector

            This can take one of two forms, either *name or (||3.8++||) just *. In the former case, name is bound at call-time to a tuple of unmatched positional arguments (see “Matching arguments to parameters”—when all positional arguments are matched, the tuple is empty). In the latter case (the * is a dummy parameter), a call with unmatched positional arguments raises a TypeError exception.

            When a function’s signature has a positional argument collector, no call can provide a positional argument for a named parameter: either the collector prohibits (in the * form), or provides a destination for (in the *name form), positional arguments not corresponding to positional parameters.

          

          
            Named argument collector

            This final, optional parameter specification has the form **name. When the function is called, name is bound to a dictionary whose items are the (name, value) pairs of any unmatched named arguments (see “Matching arguments to parameters”), or an empty dictionary if there are no such arguments.

          

          
            Parameter sequence

            Generally speaking, positional parameters are followed by named parameters, with the positional and named argument collectors (if present) last. The positional-only marker, however, may appear at any position in the list of parameters.

          

        

        
          Mutable default parameter values

          When a named parameter’s default value is a mutable object, things get tricky if the function body alters the parameter. For example:

          
            def f(x, y=[]):
    y.append(x)
    return id(y), y
print(f(23))             # prints: (4302354376, [23])
print(f(42))             # prints: (4302354376, [23, 42])

          
          The second print prints [23, 42] because the first call to f altered the default value of y, originally an empty list [], by appending 23 to it. The id values confirm that both calls return the same object. If you want y to be a new, empty list object, each time you call f with a single argument (a far more frequent need!), use the following idiom instead:

          
            def f(x, y=None):
    if y is None:
        y = []
    y.append(x)
    return id(y), y
print(f(23))             # prints: (4302354376, [23])
print(f(42))             # prints: (4302180040, [42])

          
          Of course, there are cases in which you explicitly want to alter a parameter’s default value, most often for caching purposes, as in the following example:

          
            def cached_compute(x, _cache={}):
    if x not in _cache:
        _cache[x] = costly_computation(x)
    return _cache[x]

          
          Such caching behavior (also known as memoization), however, is usually best obtained by decorating the underlying function with functools.lru_cache, covered in Table 7-4.

        

        
          Argument collector parameters

          The presence of argument collectors (the special forms *, *name and **name) in a function’s signature allows functions to prohibit (*) or collect positional (*name) or named(**name) arguments that do not match any parameters (see “Matching arguments to parameters”). There is no requirement to use particular names—you can use any identifier you want in each special form. args and kwds or kwargs, as well as a and k, are popular choices. We discuss positional and named arguments in “Calling Functions”.

          The presence of the special form * causes calls with unmatched positional arguments to raise a TypeError exception. 

          *args specifies that any extra positional arguments to a call (i.e., positional arguments not matching positional parameters in the signature, as we cover in “Function signatures”) get collected into a (possibly empty) tuple, bound in the call’s local namespace to the name args. Without a positional arguments collector, unmatched positional arguments raise a TypeError exception.

          Similarly, **kwds specifies that any extra named arguments (i.e., those named arguments not explicitly specified in the signature, as we cover in “Function signatures”) get collected into a (possibly empty) dictionary whose items are the names and values of those arguments, bound to the name kwds in the function call namespace. Without a named arguments collector, unmatched named arguments raise a TypeError exception.

          For example, here’s a function that accepts any number of positional arguments and returns their sum (and demonstrates the use of an identifier other than *args):

          
            def sum_sequence(*numbers):
    return sum(numbers)
print(sum_sequence(23, 42))        # prints: 65

          
        

        
          Attributes of Function Objects

          The def statement sets some attributes of a function object f. String attribute f.__name__ is the identifier that def uses as the function’s name. You may rebind __name__ to any string value, but trying to unbind it raises a TypeError exception. f.__defaults__, which you may freely rebind or unbind, is the tuple of default values for named parameters (empty, if the function has no named parameters).

          
            Docstrings

            Another function attribute is the documentation string, also known as the docstring. You may use or rebind a function f’s docstring attribute as f.__doc__. When the first statement in the function body is a string literal, the compiler binds that string as the function’s docstring attribute. A similar rule applies to classes (see “Class documentation strings”) and modules (see “Module documentation strings”). Docstrings can span multiple physical lines, so it’s best to specify them in triple-quoted string literal form. For example:

            
              def sum_sequence(*numbers):
    """Return the sum of multiple numerical arguments.

    The arguments are zero or more numbers.
    The result is their sum.
    """

    return sum(numbers)

            
            Documentation strings should be part of any Python code you write. They play a role similar to that of comments, but the’re even more useful, since they remain available at runtime (unless you run your program with python -OO, as covered in “Command-Line Syntax and Options”). Python’s help function (see “The help function”), development environments, and other tools, can use the docstrings from function, class, and module objects to remind the programmer how to use those objects. The doctest module (covered in “The doctest Module”) makes it easy to check that sample code present in docstrings is accurate and correct, and remains so as the code and docs get edited and maintained.

            To make your docstrings as useful as possible, respect a few simple conventions, as detailed in PEP 257. The first line of a docstring should be a concise summary of the function’s purpose, starting with an uppercase letter and ending with a period. It should not mention the function’s name, unless the name happens to be a natural-language word that comes naturally as part of a good, concise summary of the function’s operation. Use imperative rather than descriptive form: e.g., say “Return xyz…” rather than “Returns xyz…”. If the docstring is multiline, the second line should be empty, and the following lines should form one or more paragraphs, separated by empty lines, describing the function’s parameters, preconditions, return value, and side effects (if any). Further explanations, bibliographical references, and usage examples (which you should check with doctest) can optionally (and often very usefully!) follow, toward the end of the docstring.

          

          
            Other attributes of function objects

            In addition to its predefined attributes, a function object may have other arbitrary attributes. To create an attribute of a function object, bind a value to the appropriate attribute reference in an assignment statement after the def statement executes. For example, a function could count how many times it gets called:

            
              def counter():
    counter.count += 1
    return counter.count
counter.count = 0

            
            Note that this is not common usage. More often, when you want to group together some state (data) and some behavior (code), you should use the object-oriented mechanisms covered in Chapter “Object-oriented Python”. However, the ability to associate arbitrary attributes with a function can sometimes come in handy.

          

        

        
          Function Annotations

          Every parameter in a def clause can be annotated with an arbitrary expression—that is, wherever within the def’s parameter list you can use an identifier, you can alternatively use the form identifier:expression, and the expression’s value becomes the annotation for that parameter.

          You can also annotate the return value of the function, using the form -> expression between the ) of the def clause and the : that ends the def clause; the expression’s value becomes the annotation for name 'return'. For example:

          
            >>> def f(a:'foo', b)->'bar': pass
...
>>> f.__annotations__{'a': 'foo', 'return': 'bar'}

          
          As shown in this example, the __annotations__ attribute of the function object is a dict mapping each annotated identifier to the respective annotation.

          You can currently, in theory, use annotations for whatever purpose you wish: Python itself does nothing with them, except construct the __annotations__ attribute. However, this is possibly due to change ||3.11++||, focusing annotation on “type-hinting” purposes only. For detailed information about annotations used for type hinting, see Chapter “Type Annotations”.

        

        
          The return Statement

          You can use the return keyword in Python only inside a function body, and you can optionally follow it with an expression. When return executes, the function terminates, and the value of the expression is the function’s result. A function returns None when it terminates by reaching the end of its body, or by executing a return statement with no expression (or by explicitly executing return None).

          
            Good Style in return Statements

            As a matter of good style, when some return statements in a function have an expression, then all return statements in the function should have an expression. return None should only ever be written explicitly to meet this style requirement. Never write a return statement without an expression at the end of a function body. Python does not enforce these stylistic conventions, but your code is clearer and more readable when you follow them.

          

        

        
          Calling Functions

          A function call is an expression with the following syntax:

          
            function_object(arguments)

          
          function_object may be any reference to a function (or other callable) object; most often, it’s just the function’s name. The parentheses denote the function-call operation itself. arguments, in the simplest case, is a series of zero or more expressions separated by commas (,), giving values for the function’s corresponding parameters. When the function call executes, the parameters are bound to the argument values in a new namespace, the function body executes, and the value of the function-call expression is whatever the function returns. Objects created inside and returned by the function are liable to garbage-collection unless the caller retains a reference to them.

          
            Don’t Forget The Trailing () To Call A Function

            Just mentioning a function (or other callable object) does not, per se, call it. To call a function (or other object) without arguments, you must use () after the function’s name (or other reference to the callable object).

          

          
            Positional and named arguments

            Arguments can be of two types. Positional arguments are simple expressions; named (also known, alas!, as keyword10) arguments take the form

            
              identifier=expression

            
            It is a syntax error for named arguments to precede positional ones in a function call. Zero or more positional arguments may be followed by zero or more named arguments. Each positional argument supplies the value for the parameter that corresponds to it by position (order) in the function definition. There is no requirement for positional arguments to match positional parameters, or vice versa—if there are more positional arguments than positional parameters, the additional arguments are bound by position to named parameters, if any, for all parameters preceding an argument collector in the signature. For example:

            
              def f(a, b, c=23, d=42, *x):
    print(a, b, c, d, x)
f(1,2,3,4,5,6)  # prints (1, 2, 3, 4, (5, 6))

            
            Note that it matters where in the function signature the argument collector occurs—see “Matching arguments to parameters” for all the gory details!

            
              def f(a, b, *x, c=23, d=42):
    print(a, b, x, c, d)
f(1,2,3,4,5,6)  # prints 1 2 (3, 4, 5, 6) 23 42

            
            In the absence of any **kwds parameter, each argument’s name must be one of the parameter names used in the function’s signature11. The expression supplies the value for the parameter of that name. Many built-in functions do not accept named arguments: you must call such functions with positional arguments only. However, functions coded in Python usually accept named as well as positional arguments, so you may call them in different ways. Positional parameters can be matched by named arguments, in the absence of matching positional arguments.

            A function call must supply, via a positional or a named argument, exactly one value for each mandatory parameter, and zero or one value for each optional parameter12. For example:

            
              def divide(divisor, dividend=94):
    return dividend // divisor
print(divide(12))                            # prints: 7
print(divide(12, 94))                        # prints: 7
print(divide(dividend=94, divisor=12))       # prints: 7
print(divide(divisor=12))                    # prints: 7

            
            As you can see, the four calls to divide are equivalent. You can pass named arguments for readability purposes whenever you think that identifying the role of each argument and controlling the order of arguments enhances your code’s clarity.

            A common use of named arguments is to bind some optional parameters to specific values, while letting other optional parameters take default values:

            
              def f(middle, begin='init', end='finis'):
    return begin+middle+end
print(f('tini', end=''))                   # prints: inittini

            
            With named argument end='', the caller specifies a value (the empty string '') for f’s third parameter, end, and still lets f’s second parameter, begin, use its default value, the string 'init'. You may pass the arguments as positional, even when parameters are named; for example, with the preceding function:

            
              print(f('a','c','t'))                      # prints: cat

            
            At the end of the arguments in a function call, you may optionally use either or both of the special forms *seq and **dct. If both forms are present, the form with two asterisks must be last. *seq passes the items of iterable seq to the function as positional arguments (after the normal positional arguments, if any, that the call gives with the usual syntax). seq may be any iterable. **dct passes the items of dct to the function as named arguments, where dct must be a mapping whose keys are all strings. Each item’s key is a parameter name, and the item’s value is the argument’s value.

            You may want to pass an argument of the form *seq or **dct when the parameters use similar forms, as covered earlier in “Parameters”. For example, using the function sum_sequence defined in that section (and shown again here), you may want to print the sum of all the values in dictionary d. This is easy with *seq:

            
              def sum_sequence(*numbers):
    return sum(numbers)
print(sum_sequence(*d.values()))

            
            (Of course, print(sum(d.values())) would be simpler and more direct.)

            You may also pass arguments *seq or **dct when calling a function that does not use the corresponding forms in its signature. In that case, you must ensure that iterable seq has the right number of items, or, respectively, that dictionary dct uses the right identifier strings as keys; otherwise, the call raises an exception. As noted in “‘Keyword-only’ Parameters”, below, a positional argument cannot match a keyword-only parameter; only a named argument, explicit or passed via **kwargs, can do that.

            A function call may have zero or more occurrences of *seq and/or **dct, as specified in PEP 448.

          

          
            “Keyword-only” parameters

            Parameters after a positional argument collector (*name or *) in the function’s signature are known as keyword-only parameters: corresponding arguments, if any, must be named arguments. In the absence of any match by name, such a parameter is bound to its default value, as set when you defined the function.

            Keyword-only parameters can be either positional or named. You must pass them as named arguments, not as positional ones. It’s more usual and readable to have simple identifiers, if any, at the start of the keyword-only parameter specifications, and identifier=default forms, if any, following them, though this is not a requirement of the Python language.

            Functions requiring keyword-only parameter specifications without collecting positional arguments indicate the start of the keyword-only parameter specifications with a dummy parameter consisting solely of an asterisk (*), to which no argument corresponds. For example:

            
              def f(a, *, b, c=56):    # b and c are keyword-only
    return a, b, c
f(12,b=34)  # returns (12, 34, 56) – c's optional, since it has a default
f(12)       # raises a TypeError exception, since you didn’t pass `b`:
# error message is: missing 1 required keyword-only argument: 'b'

            
            If you also specify the special form **kwds, it must come at the end of the parameter list (after the keyword-only parameter specifications, if any). For example:

            
              def g(x, *a, b=23, **k):   # b is keyword-only
    return x, a, b, k
g(1, 2, 3, c=99)  # returns (1, (2, 3), 23, {'c': 99})

            
          

          
            Matching arguments to parameters

            A call must provide an argument for all positional parameters, and may do so for named parameters.

            The matching proceeds as follows.

            
              	
                Arguments of the form *expression are internally replaced by a sequence of positional arguments obtained by iterating over expression.

              

              	
                Arguments of the form **expression are internally replaced by a sequence of keyword arguments whose names and values are obtained by iterating over expression’s items().

              

              	
                Say that the function has N positional parameters and the call has M positional arguments:

                
                  	
                    When M≤N, bind all the positional arguments to the first M positional parameter names; remaining positional parameters, if any, must be matched by named arguments.

                  

                  	
                    When M>N, bind remaining positional arguments to named parameters in the order in which they appear in the signature. This process terminates in one of three ways:

                    	All positional arguments have been bound.


                    	The next item in the signature is a * argument collector: the interpreter raises a TypeError exception.


                    	The next item in the signature is a *name argument collector: the remaining positional arguments are collected in a tuple that is then bound to name in the function call namespace.



                  

                

              

              	
                The named arguments are then matched, in the order of the arguments’ occurrences in the call, by name with the parameters—both positional and named. Attempts to rebind an already-bound parameter name raise a TypeError exception.

              

              	
                If unmatched named arguments remain at this stage:

                
                  	
                    When the function signature includes a **name collector, the interpreter creates a dictionary that keys the argument values with their names and binds it to name in the function call namespace.

                  

                  	
                    In the absence of such an argument collector, Python raises a TypeError exception.

                  

                

              

              	
                Any remaining unmatched named parameters are bound to their default values.

              

              	
                At this point, the function call namespace is fully populated, and the interpreter executes the function’s body using that “call namespace” as the local namespace for the function.

              

            

          

          
            The semantics of argument passing

            In traditional terms, all argument passing in Python is by value (although, in modern terminology, to say that argument passing is by object reference is more precise and accurate; you may also check out the synonym call by sharing). When you pass a variable as an argument, Python passes to the function the object (value) to which the variable currently refers(not “the variable itself”!), binding this object to the parameter name in the function call namespace. Thus, a function cannot rebind the caller’s variables. However, if you pass a mutable object as an argument, the function may make changes to that object, because Python passes a reference to the object itself, not a copy. Rebinding a variable and mutating an object are totally disjoint concepts. For example:

            
              def f(x, y):
    x = 23
    y.append(42)
a = 77
b = [99]
f(a, b)
print(a, b)             # prints: 77 [99, 42]

            
            print shows that a is still bound to 77. Function f’s rebinding of its parameter x to 23 has no effect on f’s caller, nor, in particular, on the binding of the caller’s variable that happened to be used to pass 77 as the parameter’s value. However, print also shows that b is now bound to [99, 42]. b is still bound to the same list object as before the call, but f has appended 42 to that list object, mutating it. In neither case has f has altered the caller’s bindings, nor can f alter the number 77, since numbers are immutable. However, f can alter a list object, since list objects are mutable.

          

        

        
          Namespaces

          A function’s parameters, plus any names that are bound (by assignment or by other binding statements, such as def) in the function body, make up the function’s local namespace, also known as its local scope. Each of these variables is known as a local variable of the function.

          Variables that are not local are known as global variables (in the absence of nested function definitions, which we’ll discuss shortly). Global variables are attributes of the module object, as covered in “Attributes of module objects”. Whenever a function’s local variable has the same name as a global variable, that name, within the function body, refers to the local variable, not the global one. We express this by saying that the local variable hides the global variable of the same name throughout the function body.

          
            The global statement

            By default, any variable that is bound within a function body is a local variable of the function. If a function needs to bind or rebind some global variables (not a good practice!), the first statement of the function’s body must be:

            
              global identifiers

            
            where identifiers is one or more identifiers separated by commas (,). The identifiers listed in a global statement refer to the global variables (i.e., attributes of the module object) that the function needs to bind or rebind. For example, the function counter that we saw in “Other attributes of function objects” could be implemented using global and a global variable, rather than an attribute of the function object:

            
              _count = 0
def counter():
    global _count
    _count += 1
    return _count

            
            Without the global statement, the counter function would raise an UnboundLocalError exception when called, because _count would then be an uninitialized (unbound) local variable. While the global statement enables this kind of programming, this style is inelegant and ill-advised. As we mentioned earlier, when you want to group together some state and some behavior, the object-oriented mechanisms covered in “Object-oriented Python” are usually best.

            
              Eschew global

              Never use global if the function body just uses a global variable (including mutating the object bound to that variable, when the object is mutable). Use a global statement only if the function body rebinds a global variable (generally by assigning to the variable’s name). As a matter of style, don’t use global unless it’s strictly necessary, as its presence causes readers of your program to assume the statement is there for some useful purpose. Never use global except as the first statement in a function body.

            

          

          
            Nested functions and nested scopes

            A def statement within a function body defines a nested function, and the function whose body includes the def is known as an outer function to the nested one. Code in a nested function’s body may access (but not rebind) local variables of an outer function, also known as free variables of the nested function.

            The simplest way to let a nested function access a value is often not to rely on nested scopes, but rather to pass that value explicitly as one of the function’s arguments. If need be, you can bind the argument’s value at nested-function def time: just use the value as the default for an optional argument. For example:

            
              def percent1(a, b, c):
    def pc(x, total=a+b+c):
        return (x*100.0) / total
    print('Percentages are:', pc(a), pc(b), pc(c))

            
            Here’s the same functionality using nested scopes:

            
              def percent2(a, b, c):
    def pc(x):
        return (x*100.0) / (a+b+c)
    print('Percentages are:', pc(a), pc(b), pc(c))

            
            In this specific case, percent1 has one tiny advantage: the computation of a+b+c happens only once, while percent2’s inner function pc repeats the computation three times. However, when the outer function rebinds local variables between calls to the nested function, repeating the computation can be necessary: be aware of both approaches, and choose the appropriate one case by case.

            A nested function that accesses values from outer local variables is also known as a closure. The following example shows how to build a closure:

            
              def make_adder(augend):
    def add(addend):
        return addend+augend
    return add

            
            Closures are sometimes an exception to the general rule that the object-oriented mechanisms covered in Chapter “Object-Oriented Python” are the best way to bundle together data and code. When you need specifically to construct callable objects, with some parameters fixed at object-construction time, closures can be simpler and more effective than classes. For example, the result of make_adder(7) is a function that accepts a single argument and returns 7 plus that argument. An outer function that returns a closure is a “factory” for members of a family of functions distinguished by some parameters, such as the value of argument augend in the previous example, and may often help you avoid code duplication.

            The nonlocal keyword acts similarly to global, but it refers to a name in the namespace of some lexically surrounding function. When it occurs in a function definition nested several levels deep (a rarely-needed structure!), the compiler searches the namespace of the most deeply nested containing function, then the function containing that one, and so on, until the name is found or there are no further containing functions, in which case the compiler raises an error.

            Here’s a nested-functions approach to the “counter” functionality we implemented in previous sections using a function attribute, then a global variable:

            
              def make_counter():
    count = 0
    def counter():
        nonlocal count
        count += 1
        return count
    return counter
c1 = make_counter()
c2 = make_counter()
print(c1(), c1(), c1())     # prints: 1 2 3
print(c2(), c2())           # prints: 1 2
print(c1(), c2(), c1())     # prints: 4 3 5

            
            A key advantage of this approach versus the previous ones is that these two nested functions, just like an OOP approach would, let you make independent counters, here c1 and c2—each closure keeps its own state and doesn’t interfere with the other one. This approach, and OOP, are both quite acceptable.

          

        

        
          lambda expressions

          If a function body is a single return expression statement, you may (very optionally!) choose to replace the function with the special lambda expression form:

          
            lambda parameters: expression

          
          A lambda expression is the anonymous equivalent of a normal function whose body is a single return statement. Note that the lambda syntax does not use the return keyword. You can use a lambda expression wherever you could use a reference to a function. lambda can sometimes be handy when you want to use an extremely simple function as an argument or return value. Here’s an example that uses a lambda expression as an argument to the built-in filter function (covered in Table 7-2):

          
            a_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
low = 3
high = 7
list(filter(lambda x: low<=x<high, a_list))    # returns: [3, 4, 5, 6]

          
          Alternatively, you can always use a local def statement to give the function object a name, then use this name as an argument or return value. Here’s the same filter example using a local def statement:

          
            a_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
def within_bounds(value, low=3, high=7):
    return low<=value><high
filter(within_bounds, a_list)           # returns: [3, 4, 5, 6]

          
          While lambda can at times be handy, def is usually better: it’s more general, and makes the code more readable, since you can choose a clear name for the function.

        

        
          Generators

          When the body of a function contains one or more occurrences of the keyword yield, the function is known as a generator, or more precisely a generator function. When you call a generator, the function body does not execute. Instead, the generator function returns a special iterator object, known as a generator object (sometimes, quite confusingly, also called just “a generator”), wrapping the function body, its local variables (including parameters), and the current point of execution, initially the start of the function.

          When you (implicitly or explicitly) call next on a generator object, the function body executes from the current point up to the next yield, which takes the form:

          
            yield expression

          
          A bare yield without the expression is also legal, and equivalent to yield None. When yield executes, the function execution is “frozen,” preserving current point of execution and local variables, and the expression following yield becomes the result of next. When you call next again, execution of the function body resumes where it left off, again up to the next yield. When the function body ends, or executes a return statement, the iterator raises a StopIteration exception to indicate that the iteration is finished. The expression after return, if any, is the argument to the StopIteration.

          yield is an expression, not a statement. When you call g.send(value) on a generator object g, the value of the yield is value; when you call next(g), the value of the yield is None. We cover this in “Generators as near-coroutines”: it’s the elementary building block to implement coroutines in Python.

          A generator function is often a handy way to build an iterator. Since the most common way to use an iterator is to loop on it with a for statement, you typically call a generator like this (with the call to next being implicit in the for statement):

          
            for avariable in somegenerator(arguments):

          
          For example, say that you want a sequence of numbers counting up from 1 to N and then down to 1 again. A generator can help:

          
            def updown(N):
    for x in range(1, N):
        yield x
    for x in range(N, 0, -1):
        yield x
for i in updown(3):
    print(i)              # prints: 1 2 3 2 1

          
          Here is a generator that works somewhat like built-in range, but returns an iterator on floating-point values rather than on integers:

          
            def frange(start, stop, stride=1.0):
    while start < stop:
        yield start
        start += stride

          
          This frange example is only somewhat like range because, for simplicity, it makes arguments start and stop mandatory, and assumes that stride is positive.

          Generators are more flexible than functions that return lists. A generator may return an unbounded iterator, meaning one that yields an infinite stream of results (to use only in loops that terminate by other means, e.g., via a conditionally-executed break statement). Further, a generator-object iterator performs lazy evaluation: the iterator can compute each successive item only when and if needed, “just in time”, while the equivalent function does all computations in advance and may require large amounts of memory to hold the results list. Therefore, if all you need is the ability to iterate on a computed sequence, it is usually best to compute the sequence in a generator, rather than in a function returning a list. If the caller needs a list of all the items produced by some bounded generator g(arguments), the caller can simply use the following code to explicitly request Python to build a list:

          
            resulting_list = list(g(arguments))

          
          
            yield from

            To improve execution efficiency and clarity when multiple levels of iteration are yielding values, you can use the form yield from expression, where expression is iterable. This yields the values from expression one at a time into the calling environment, avoiding the need to yield repeatedly. We can thus simplify the updown generator we defined earlier:

            
              def updown(N):
    yield from range(1, N)
    yield from range(N, 0, -1)
for i in updown(3):
    print(i)                   # prints: 1 2 3 2 1

            
            Moreover, using yield from lets you use generators as full-fledged coroutines, as covered in Chapter “Multitasking”.

          

          
            Generator expressions

            Python offers an even simpler way to code particularly simple generators: generator expressions, commonly known as genexps. The syntax of a genexp is just like that of a list comprehension (as covered in “List comprehensions”), except that a genexp is within parentheses (()) instead of brackets ([]). The semantics of a genexp are the same as those of the corresponding list comprehension, except that a genexp produces an iterator yielding one item at a time, while a list comprehension produces a list of all results in memory (therefore, using a genexp, when appropriate, saves memory). For example, to sum the squares of all single-digit integers, you could code sum([x*x for x in range(10)]); however, you can express this better as sum(x*x for x in range(10)) (just the same, but omitting the brackets): you get just the same result but consume less memory. The parentheses that indicate the function call also “do double duty” and enclose the genexp. Parentheses are, however, required when the genexp is not the sole argument. Additional parentheses don’t hurt, but are usually best omitted, for clarity.

          

          
            Generators as near-coroutines

            Generators are further enhanced, with the possibility of receiving a value (or an exception) back from the caller as each yield executes. This lets generators implement coroutines, as explained in PEP 342. When a generator resumes (i.e., you call next on it), the corresponding yield’s value is None. To pass a value x into some generator g (so that g receives x as the value of the yield on which it’s suspended), instead of calling next(g), call g.send(x) (g.send(None) is just like next(g)).

            Other enhancements to generators regard exceptions: we cover them in “Generators and Exceptions”.

          

        

        
          Recursion

          Python supports recursion (i.e., a Python function can call itself, directly or indirectly), but there is a limit to how deep the recursion can go. By default, Python interrupts recursion and raises a RecursionLimitExceeded exception (covered in “Standard Exception Classes”) when it detects that recursion has exceeded a depth of 1,000. You can change this default recursion limit by calling setrecursionlimit in module sys, covered in Table 7-3.

          However, changing the recursion limit does not give you unlimited recursion; the absolute maximum limit depends on the platform on which your program is running, particularly on the underlying operating system and C runtime library, but it’s typically a few thousand levels. If recursive calls get too deep, your program crashes. Such runaway recursion, after a call to setrecursionlimit that exceeds the platform’s capabilities, is one of the few ways a Python program can crash—really crash, hard, without the usual safety net of Python’s exception mechanism. Therefore, beware “fixing” a program that is getting RecursionLimitExceeded exceptions by raising the recursion limit with setrecursionlimit. While it’s a valid technique, most often you’re better advised to look for ways to remove the recursion, unless you are confident you’ve been able to limit the depth of recursion that your program needs.

          Readers who are familiar with Lisp, Scheme, or functional programming languages, must in particular be aware that Python does not implement the optimization of “tail-call elimination,” which is so crucial in those languages. In Python, any call, recursive or not, has the same “cost” in terms of both time and memory space, dependent only on the number of arguments: the cost does not change, whether the call is a “tail-call” (meaning that the call is the last operation that the caller executes) or any other, non-tail call. This makes recursion removal even more important.

For example, consider a classic use for recursion: “walking a binary tree.” Suppose you represent a binary tree structure as nodes, where each node is a three-element (payload, left, right) tuple where left and right are either similar tuples or None representing the left-side and right-side descendants respectively. A simple example might be: (23, (42, (5, None, None), (55, None, None)), (94, None,None)) to represent the tree shown here.

          
            
            

          

          To write a generator function that, given the root of such a tree, “walks the tree,” yielding each payload in top-down order, the simplest approach is recursion:

          
            def rec(t):
    yield t[0]
    for i in (1, 2):
        if t[i] is not None:
            yield from rec(t[i])

          
          However, if a tree is very deep, recursion becomes a problem. To remove recursion, we can handle our own stack—a list used in last-in, first-out fashion, thanks to its append and pop methods. To wit:

          
            def norec(t):
    stack = [t]
    while stack:
        t = stack.pop()
        yield t[0]
        for i in (2, 1):
            if t[i] is not None:
                stack.append(t[i])

          
          The only small issue to be careful about, to keep exactly the same order of yields as rec, is switching the (1, 2) index order in which to examine descendants, to (2, 1), adjusting to the “reversed” (last-in, first-out) behavior of stack.

        

      

    1 Control characters include nonprinting characters such as \t (tab) and \n (newline), both of which count as whitespace; and others such as \a (alarm, AKA “beep”) and \b (backspace), which are not whitespace. 
2 Also see bytearray, covered later, for a bytes-like “string” which, however, is mutable. 
3 Each specific mapping type may put constraints on the type of keys it accepts: in particular, dictionaries only accept hashable keys. 
4 This is not, strictly speaking, the “coercion” you observe in other languages, but, among builtin number types, it produces pretty much the same effect. 
5 Note that the second item of divmod's result, just like the result of %, is the remainder, not the modulo, despite the function’s misleading name. The difference matters when the divisor is negative. In some other languages, such as C# and Javascript, the result of a % operator is the modulo; in others yet, such as C and C++, it’s machine-dependent whether the result is the modulo or the remainder, when either operand is negative. 
6 It is notable that the match statement specifically excludes matching values of type str, bytes, and bytearray with sequence patterns. 
7 Indeed, the syntax notation used in the Python online documentation required, and got, updates to concisely describe some of Python’s more recent syntax additions. 
8 for this unique use-case, it’s common to break the normal style conventions about making class names have an uppercase initial and avoiding semicolons to stash multiple assignments within one line, although the authors haven’t yet found a style-guide that blesses this peculiar, rather-new usage. 
9 in that paper, Knuth also first proposed using “devices like indentation, rather than delimiters” to express program structure—just as Python does! 
10 “alas!” because they have nothing to do with Python keywords, so the terminology is confusing. 
11 Python developers introduced positional-only arguments when they realised that parameters to many built-in functions effectively had no valid names as far as the interpreter was concerned. 
12 an “optional parameter” being one for which the function’s signature supplies a default value. 




      Chapter 3. Exceptions

      
            A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 5th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      Python uses exceptions to indicate errors and anomalies. An exception is an object that indicates an error or anomaly. When Python detects an error, it raises an exception—that is, Python signals the occurrence of an anomalous condition by passing an exception object to the exception-propagation mechanism. Your code can explicitly raise an exception by executing a raise statement.

      Handling an exception means catching the exception object from the propagation mechanism and taking actions as needed to deal with the anomalous situation. If a program does not handle an exception, the program terminates with an error traceback message. However, a program can handle exceptions and keep running, despite errors or other anomalies, by using the try statement with except clauses.

      Python also uses exceptions to indicate some situations that are not errors, and not even abnormal. For example, as covered in “Iterators”, calling the next built-in on an iterator raises StopIteration when the iterator has no more items. This is not an error; it is not even an anomaly, since most iterators run out of items eventually. The optimal strategies for checking and handling errors and other special situations in Python are therefore different from other languages’, and we cover that in “Error-Checking Strategies”. This chapter shows how to use exceptions for errors and special situations. It also covers the logging module of the standard library, in “Logging Errors”, and the assert statement, in “The assert Statement”.

      
        The try Statement

        The try statement is Python’s core exception-handling mechanism. It’s a compound statement with three kinds of optional clauses:

        
          	
            it may have zero or more except clauses, defining how to handle particular classes of exceptions

          

          	
            if it has except clauses, then it may also have, right afterwards, one else clause, executed only if the try suite raised no exceptions, and

          

          	
            whether or not it has except clauses, it may have a single finally clause, unconditionally executed, with behavior covered in “The try/except/finally Statement”.

          

        

        Python’s syntax requires the presence of at least one except clause or a finally clause, both of which might also be present in the same statement; else is only valid following one or more excepts.

        
          try/except

          Here’s the syntax for the try/except form of the try statement:

          
            try:
    statement(s)
except [expression [as target]]:
    statement(s)
[else:
    statement(s)]
[finally:
    statement(s)]

          
          This form of the try statement has one or more except clauses, as well as an optional else clause (and an optional finally clause, whose meaning does not depend on whether except and else clauses are present: we cover it in the “try/finally” section below).

          The body of each except clause is known as an exception handler. The code executes when the expression in the except clause matches an exception object propagating from the try clause. expression is a class (or tuple of classes, in parentheses), and matches any instance of one of those classes or their subclasses. The optional target is an identifier that names a variable that Python binds to the exception object just before the exception handler executes. A handler can also obtain the current exception object by calling the exc_info function of module sys (covered in Table 7-3).

          Here is an example of the try/except form of the try statement:

          
            try:
    1/0
    print('not executed')
except ZeroDivisionError:
    print('caught divide-by-0 attempt')

          
          When an exception is raised, execution of the try suite immediately ceases. If a try statement has several except clauses, the exception-propagation mechanism checks the except clauses in order; the first except clause whose expression matches the exception object executes as the handler, and the exception-propagation mechanism checks no further except clauses after that.

          
            Place Handlers For Specific Exceptions Before More General Ones

            Place handlers for specific cases before handlers for more general cases: when you place a general case first, the more specific except clauses that follow never execute.

          

          The last except clause need not specify an expression. An except clause without any expression handles any exception that reaches it during propagation. Such unconditional handling is rare, but it does occur, often in “wrapper” functions that must perform some extra task before reraising an exception, as we discuss in “The raise Statement” later in this chapter.

          
            Avoid A “Bare Except” That Doesn’t Re-raise The Exception

            Beware of using a “bare except” (an except clause without an expression) unless you’re re-raising the exception in it: such sloppy style can make bugs very hard to find, since the bare except is over-broad and can easily mask coding errors and other kinds of bugs by allowing execution to continue after an unanticipated exception.

            New programmers who are “just trying to get things to work” may even write code like:

            try:
    ...code that has a problem...
except:
    pass

            This is a dangerous practice, since it catches important process-exiting exceptions such as KeyboardInterrupt or SystemExit - a loop with such an exception handler can’t be exited with Ctrl-C, nor terminated with a system kill command. At the very least, such code should use except Exception:, which is still overly broad but at least does not catch the process-exiting exceptions.

          

          Exception propagation terminates when it finds a handler whose expression matches the exception object. When a try statement is nested (lexically in the source code, or dynamically within function calls) in the try clause of another try statement, a handler established by the inner try is reached first on propagation, so it handles the exception when it matches it. This may not be what you want. For example:

          
            try:
    try:
        1/0
    except:
        print('caught an exception')
except ZeroDivisionError:
    print('caught divide-by-0 attempt')
# prints: caught an exception

          
          In this case, it does not matter that the handler established by the clause except ZeroDivisionError: in the outer try clause is more specific than the catch-all except: in the inner try clause. The outer try does not enter into the picture: the exception doesn’t propagate out of the inner try. For more on exception propagation, see “Exception Propagation”.

          The optional else clause of try/except executes only when the try clause terminates normally. In other words, the else clause does not execute when an exception propagates from the try clause, or when the try clause exits with a break, continue, or return. Handlers established by try/except cover only the try clause, not the else clause. The else clause is useful to avoid accidentally handling unexpected exceptions. For example:

          
            print(repr(value), 'is ', end=' ')
try:
    value + 0
except TypeError:
    # not a number, maybe a string...?
    try:
        value + ''
    except TypeError:
        print('neither a number nor a string')
    else:
        print('some kind of string')
else:
    print('some kind of number')

          
        

        
          try/finally

          Here’s the syntax for the try/finally form of the try statement:

          
            try:
    statement(s)
finally:
    statement(s)

          
          This form has 1 finally clause (and no else clause—unless it also has 1+ except clauses, as covered in “The try/except/finally Statement”).

          The finally clause establishes what is known as a clean-up handler. The code always executes after the try clause terminates in any way. When an exception propagates from the try clause, the try clause terminates, the clean-up handler executes, and the exception keeps propagating. When no exception occurs, the cleanup handler executes anyway, regardless of whether the try clause reaches its end or exits by executing a break, continue, or return statement.

          Clean-up handlers established with try/finally offer a robust and explicit way to specify finalization code that must always execute, no matter what, to ensure consistency of program state and/or external entities (e.g., files, databases, network connections); such assured finalization is nowadays usually best expressed via a context manager used in a with statement (see “The with Statement and Context Managers”). Here is an example of the try/finally form of the try statement:

          
            f = open(some_file, 'w')
try:
    do_something_with_file(f)
finally:
    f.close()

          
          and here is the corresponding, more concise and readable, example of using with for exactly the same purpose:

          
            with open(some_file, 'w') as f:
    do_something_with_file(f)

          
          
          
            Avoid break and return statements in a finally clause

            A finally clause may contain one or more of the statements continue ||3.8++||, break , or return. Such usage may make your program less clear: exception propagation stops when such a statement executes, and most programmers would not expect propagation to be stopped within a finally clause. The usage may confuse people who are reading your code, so we recommend you avoid it.

          

        

        
          The try/except/finally Statement

          A try/except/finally statement, such as:

          
            try:
    ...guarded clause…
except ...expression...:
    ...exception handler code…
finally:
    ...clean-up code...

          
          is equivalent to the nested statement:

          
            try:
    try:
        ...guarded clause...
    except ...expression...:
        ...exception handler code…
finally:
    ...clean-up code...

          
          A try statement can have multiple except clauses, and optionally an else clause, before a terminating finally clause. In all variations, the effect is always as just shown—that is, just like nesting a try/except statement, with all the except clauses and the else clause if any, into a containing try/finally statement.

        

      

      
        The with Statement and Context Managers

        The with statement is a compound statement with the following syntax:

        
          with expression [as varname] [, ...]:
    statement(s)
||3.10++||
with (expression [as varname], ...):
    statement(s)

        
        The semantics of with are equivalent to:

        
          _normal_exit = True
_manager = expression
varname = _manager.__enter__()
try:
    statement(s)
except:
    _normal_exit = False
    if not _manager.__exit_(*sys.exc_info()):
        raise
    # note that exception does not propagate if __exit__ returns a true value
finally:
    if _normal_exit:
        _manager.__exit__(None, None, None)

        
        where _manager and _normal_exit are arbitrary internal names that are not used elsewhere in the current scope. If you omit the optional as varname part of the with clause, Python still calls _manager.__enter__(), but doesn’t bind the result to any name, and still calls _manager.__exit_() at block termination. The object returned by the expression, with methods __enter__ and __exit__, is known as a context manager.

        The with statement is the Python embodiment of the well-known C++ idiom “resource acquisition is initialization” (RAII): you need only write context manager classes—that is, classes with two special methods __enter__ and __exit__. __enter__ must be callable without arguments. __exit__ must be callable with three arguments: all None when the body completes without propagating exceptions; otherwise, the type, value, and traceback of the exception. This provides the same guaranteed finalization behavior as typical ctor/dtor pairs have for auto variables in C++, and try/finally statements have in Python or Java. In addition, they can finalize differently depending on what exception, if any, propagates, and optionally block a propagating exception by returning a true value from __exit__.

        For example, here is a simple, purely illustrative way to ensure <name> and </name> tags are printed around some other output:

        
          class tag(object):
    def __init__(self, tagname):
        self.tagname = tagname
    def __enter__(self):
        print(f'<{self.tagname}>', end='')
    def __exit__(self, etyp, einst, etb):
        print(f'</{self.tagname}>')
# to be used as:
tt = tag('sometag')
with tt:
    ...statements printing output to be enclosed in
       a matched open/close `sometag` pair

        
        A simpler way to build context managers is to use the contextmanager decorator in the contextlib module of the standard Python library. This decorator turns a generator function into a factory of context manager objects.

        The contextlib way to implement the tag context manager, having imported contextlib earlier, is:

        
          @contextlib.contextmanager
def tag(tagname):
    print(f'<{tagname}>', end='')
    try:
        yield
    finally:
        print(f'</{tagname}>')
# to be used the same way as before

        
         contextlib supplies, among others, the class and functions listed in Table 5-1.

        
          Table 3-1. The contextlib module summarised
          
            	
              AbstractContextManager
            
            	AbstractContextManager
 Abstract base class with two overridable methods: __enter__, which defaults to return self, and __exit__, which defaults to return None.
          

          
            	
              contextmanager
            
            	contextmanager
 The above-described decorator, which you apply to a generator to make it into a context manager.
          

          
            	
              closing
            
            	closing(something)
 A context manager whose __enter__ is return something, and whose __exit__ calls something.close().
          

          
            	
              nullcontext
            
            	nullcontext(something)
 A context manager whose __enter__ is return something, and whose __exit__ does nothing.
          

          
            	
              redirect_stderr
            
            	redirect_stderr(destination)
 A context manager which temporarily redirects, within the body of the with statement, sys.stderr to file or file-like object destination.
          

          
            	
              redirect_stdout
            
            	redirect_stdout(destination)
 A context manager which temporarily redirects, within the body of the with statement, sys.stdout to file or file-like object destination.
          

          
            	
              suppress
            
            	suppress(*exception_classes)
 A context manager which silently suppresses exceptions, occurring in the body of the with statement, of any of the classes listed in exception_classes. Use sparingly, since silently suppressing exceptions is often bad practice.
          

          
            	
            	
          

          
            	
            	
          

          
            	
            	
          

          
            	
            	
          

          
            	
            	
          

          
            	
            	
          

          
            	
            	
          

          
            	
            	
          

        

        For more details, examples, “recipes”, and even more (somewhat abstruse) classes, see Python’s online docs.

        
          Generators and Exceptions

          To help generators cooperate with exceptions, yield statements are allowed inside try/finally statements. Moreover, generator objects have two other relevant methods, throw and close. Given a generator object g, built by calling a generator function, the throw method’s signature is:

          
            g.throw(exc_value)

          
          When the generator’s caller calls g.throw, the effect is just as if a raise statement with the same argument executed at the spot of the yield at which generator g is suspended.

          The generator method close has no arguments; when the generator’s caller calls g.close(), the effect is like calling g.throw(GeneratorExit())1. GeneratorExit is a built-in exception class that inherits directly from BaseException. Generators also have a finalizer (special method __del__) which implicitly calls close when the generator object is garbage-collected.

          If a generator raises or propagates StopIteration, Python turns the exception’s type into RuntimeError.

        

      

      
        Exception Propagation

        When an exception is raised, the exception-propagation mechanism takes control. The normal control flow of the program stops, and Python looks for a suitable exception handler. Python’s try statement establishes exception handlers via its except clauses. The handlers deal with exceptions raised in the body of the try clause, as well as exceptions propagating from functions called by that code, directly or indirectly. If an exception is raised within a try clause that has an applicable except handler, the try clause terminates and the handler executes. When the handler finishes, execution continues with the statement after the try statement (in the absence of any explicit change to the flow of control such as a raise or return).

        If the statement raising the exception is not within a try clause that has an applicable handler, the function containing the statement terminates, and the exception propagates “upward” along the stack of function calls to the statement that called the function. If the call to the terminated function is within a try clause that has an applicable handler, that try clause terminates, and the handler executes. Otherwise, the function containing the call terminates, and the propagation process repeats, unwinding the stack of function calls until an applicable handler is found.

        If Python cannot find any applicable handler, by default the program prints an error message to the standard error stream (file sys.stderr). The error message includes a traceback that gives details about functions terminated during propagation. You can change Python’s default error-reporting behavior by setting sys.excepthook (covered in Table 7-3). After error reporting, Python goes back to the interactive session, if any, or terminates if execution was not interactive. When the exception type is SystemExit, termination is silent, and ends the interactive session, if any.

        Here are some functions to show exception propagation at work:

        
          def f():
    print('in f, before 1/0')
    1/0    # raises a ZeroDivisionError exception
    print('in f, after 1/0')
def g():
    print('in g, before f()')
    f()
    print('in g, after f()')
def h():
    print('in h, before g()')
    try:
        g()
        print('in h, after g()')
    except ZeroDivisionError:
        print('ZD exception caught')
    print('function h ends')

        
        Calling the h function prints the following:

        
          >>> h()
in h, before g()
in g, before f()
in f, before 1/0
ZD exception caught
function h ends

        
        That is, none of the “after” print statements execute, since the flow of exception propagation “cuts them off.”

        The function h establishes a try statement and calls the function g within the try clause. g, in turn, calls f, which performs a division by 0, raising an exception of type ZeroDivisionError. The exception propagates all the way back to the except clause in h. The functions f and g terminate during the exception-propagation phase, which is why neither of their “after” messages is printed. The execution of h’s try clause also terminates during the exception-propagation phase, so its “after” message isn’t printed either. Execution continues after the handler, at the end of h’s try/except block.

      

      
        The raise Statement

        You can use the raise statement to raise an exception explicitly. raise is a simple statement with the following syntax:

        
          raise [expression]

        
        Only an exception handler (or a function that a handler calls, directly or indirectly) can use raise without any expression. A plain raise statement re-raises the same exception object that the handler received. The handler terminates, and the exception propagation mechanism keeps going up the call stack, searching for other applicable handlers. Using raise without any expression is useful when a handler discovers that it is unable to handle an exception it receives, or can handle the exception only partially, so the exception should keep propagating to allow handlers up the call stack to perform their own handling and cleanup.

        When expression is present, it must be an instance of a class inheriting from the built-in class BaseException, and Python raises that instance.

        Here’s an example of a typical use of the raise statement:

        
          def cross_product(seq1, seq2):
    if not seq1 or not seq2:
        raise ValueError('Sequence arguments must be non-empty')
    return [(x1, x2) for x1 in seq1 for x2 in seq2]

        
        This cross_product example function returns a list of all pairs with one item from each of its sequence arguments, but first, it tests both arguments. If either argument is empty, the function raises ValueError rather than just returning an empty list as the list comprehension would normally do.

        
          Check Only What You Need To

          There is no need for cross_product to check whether seq1 and seq2 are iterable: if either isn’t, the list comprehension itself raises the appropriate exception, presumably a TypeError.

        

        Once an exception is raised, by Python itself or with an explicit raise statement in your code, it is up to the caller to either handle it (with a suitable try/except statement) or let it propagate further up the call stack.

        
          Don’t Use raise for Duplicate, Redundant Error Checks

          Use the raise statement only to raise additional exceptions for cases that would normally be okay but that your specification defines to be errors. Do not use raise to duplicate the same error-checking that Python already, implicitly, does on your behalf.

        

      

      
        Exception Objects

        Exceptions are instances of BaseException (more specifically, instances of one of its subclasses). Any exception has attribute args, the tuple of arguments used to create the instance; this error-specific information is useful for diagnostic or recovery purposes. Some exception classes interpret args and set convenient named attributes on the classes’ instances.

        
          The Hierarchy of Standard Exceptions

          Exceptions are instances of subclasses of BaseException.

          The inheritance structure of exception classes is important, as it determines which except clauses handle which exceptions. Most exception classes extend the class Exception; however, the classes KeyboardInterrupt, GeneratorExit, and SystemExit inherit directly from BaseException and are not subclasses of Exception. Thus, a handler clause except Exception as e: does not catch KeyboardInterrupt, GeneratorExit, or SystemExit (we cover exception handlers in “try/except”). Instances of SystemExit are normally raised via the exit function in module sys (covered in Table 7-3). We cover GeneratorExit in “Generators and Exceptions”. When the user hits Ctrl-C, Ctrl-Break, or other interrupting keys on their keyboard, that raises KeyboardInterrupt.

          The hierarchy of built-in expression classes is, roughly:

          
            BaseException
  Exception
    AssertionError, AttributeError, BufferError, EOFError,
    MemoryError, ReferenceError, OsError, StopAsyncIteration,
    StopIteration, SystemError, TypeError
    ArithmeticError
      OverflowError, ZeroDivisionError
    ImportError
      ModuleNotFoundError, ZipImportError
    LookupError
      IndexError, KeyError
    NameError
      UnboundLocalError
    OSError
      ...
    RuntimeError
      RecursionError
      NotImplementedError
    SyntaxError
      IndentationError
        TabError
    ValueError
      UnsupportedOperation
      UnicodeError
        UnicodeDecodeError, UnicodeEncodeError,
        UnicodeTranslateError
    Warning
      ...
  GeneratorExit
  KeyboardInterrupt
  SystemExit

          
          There are other exception subclasses (in particular, Warning and OSError have many, summarized above with ellipses ...), but this is the gist of the hierarchy. A more complete list is in Python’s online docs.

          Two subclasses of Exception are abstract ones, never instantiated directly. Their purpose is to make it easier for you to specify except clauses that handle a range of related errors. The two abstract subclasses of Exception are:

          
            	
              ArithmeticError
            

            	
              The base class for exceptions due to arithmetic errors (i.e., OverflowError, ZeroDivisionError, and the currently-unused FloatingPointError)

            

            	
              LookupError
            

            	
              The base class for exceptions that a container raises when it receives an invalid key or index (i.e., IndexError, KeyError)

            

          

        

        
          Standard Exception Classes

          Common runtime errors raise exceptions of the following classes:

          
            	
              AssertionError
            

            	
              An assert statement failed.

            

            	
              AttributeError
            

            	
              An attribute reference or assignment failed.

            

            	
              ImportError
            

            	
              An import or from...import statement (covered in “The import Statement”) couldn’t find the module to import (in this case, what Python raises is actually an instance of ImportError’s subclass ModuleNotFoundError), or couldn’t find a name to be imported from the module.

            

            	
              IndentationError
            

            	
              The parser encountered a syntax error due to incorrect indentation. Extends SyntaxError.

            

            	
              IndexError
            

            	
              An integer used to index a sequence is out of range (using a noninteger as a sequence index raises TypeError). Extends LookupError.

            

            	
              KeyError
            

            	
              A key used to index a mapping is not in the mapping. Extends LookupError.

            

            	
              KeyboardInterrupt
            

            	
              The user pressed the interrupt key combination (Ctrl-C, Ctrl-Break, Delete, or others, depending on the platform’s handling of the keyboard).

            

            	
              M
              emoryError
            

            	
              An operation ran out of memory.

            

            	
              NameError
            

            	
              A name was referenced, but it was not bound to any variable in the current scope.

            

            	
              NotImplementedError
            

            	
              Raised by abstract base classes to indicate that a concrete subclass must override a method.

            

            	
              OSError
            

            	
              Raised by functions in the module os (covered in “The os Module” and “Running Other Programs with the os Module”) to indicate platform-dependent errors. It has many subclasses, covered at “OSError and subclasses”.

            

            	
              RecursionError
            

            	
              Python detects that recursion depth has been exceeded. Extends RuntimeError.

            

            	
              RuntimeError
            

            	
              Raised for any error or anomaly not otherwise classified.

            

            	
              SyntaxError
            

            	
              Python’s parser encounters a syntax error.

            

            	
              SystemError
            

            	
              Python has detected an error in its own code, or in an extension module. Please report this to the maintainers of your Python version, or of the extension in question, including the error message, the exact Python version (sys.version), and, if possible, your program’s source code.

            

            	
              TypeError
            

            	
              An operation or function was applied to an object of an inappropriate type.

            

            	
              UnboundLocalError
            

            	
              A reference was made to a local variable, but no value is currently bound to that local variable. Extends NameError.

            

            	
              UnicodeError
            

            	
              An error occurred while converting Unicode(i.e., an str) to a byte string, or vice versa. Extends ValueError.

            

            	
              ValueError
            

            	
              An operation or function was applied to an object that has a correct type but an inappropriate value, and nothing more specific (e.g., KeyError) applies.

            

            	
              ZeroDivisionError
            

            	
              A divisor (the righthand operand of a /, //, or % operator, or the second argument to the built-in function divmod) is 0. Extends ArithmeticError.

            

          

          
            OSError and subclasses

            OSError represents errors detected by the operating system. To handle such errors much more elegantly, OSError has many subclasses, whose instances are what actually get raised—see Python’s online docs.

            For example, consider this task: try to read and return the contents of a certain file; return a default string if the file does not exist; propagate any other exception that makes the file unreadable (except for the file not existing). Using an OSError subclass, you can accomplish the task quite simply:

            
              def read_or_default(filepath, default):
    try:
        with open(filepath) as f:
            return f.read()
    except FileNotFoundError:
        return default

            
            The FileNotFoundError subclass of OSError makes this kind of common task simple and direct to express in code.

          

          
            Exceptions “wrapping” other exceptions or tracebacks

            Sometimes, you cause an exception while trying to handle another. To let you clearly diagnose this issue, each exception instance holds its own traceback object; you can make another exception instance with a different traceback with the with_traceback method.

            Moreover, Python automatically stores which exception it’s handling as the __context__ attribute of any further exception raised during the handling (unless you set the new exception’s __suppress_context__ attribute to true, which you do with the raise...from statement, which we cover shortly). If the new exception propagates, Python’s error message uses that exception’s __context__ attribute to show details of the problem. For example, take the (deliberately!) broken code:

            
              try: 1/0
except ZeroDivisionError:
    1+'x'

            
            The error displayed is:

            
              Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
  File "<stdin>", line 3, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

            
            Thus, Python clearly displays both exceptions, the original and the intervening one.

            To get more control over the error display, you can, if you wish, use the raise...from statement: when you execute raise e from ex, both e and ex are exception objects: e is the one that propagates, and ex is its “cause;” Python records ex as the value of e.__cause__, and sets e.__suppress_context__ to true. (Alternatively, ex can be None: then, Python sets e.__cause__ to None, but still sets e.__suppress_context__ to true, and thus leaves e.__context__ alone). For all details and motivations, see PEP 3134.

          

        

      

      
        Custom Exception Classes

        You can extend any of the standard exception classes in order to define your own exception class. Often, such a subclass adds nothing more than a docstring:

        
          class InvalidAttribute(AttributeError):
    """Used to indicate attributes that could never be valid"""

        
        
          An Empty Class Or Function Should Have A Docstring, Not pass

          As covered in “The pass Statement”, you don’t need a pass statement to make up the body of a class. The docstring (which you should always write, to document the class’s purpose if nothing else!) is enough to keep Python happy. Best practice for all “empty” classes (regardless of whether they are exception classes), just like for all “empty” functions, is to always have a docstring and no pass statement.

        

        Given the semantics of try/except, raising a custom exception class such as InvalidAttribute is almost the same as raising its standard exception superclass, AttributeError. Any except clause that can handle AttributeError can handle InvalidAttribute just as well. In addition, client code that knows about your InvalidAttribute custom exception class can handle it specifically, without having to handle all other cases of AttributeError when it is not prepared for those. For example:

        
          class SomeFunkyClass:
    """much hypothetical functionality snipped"""
    def __getattr__(self, name):
        """only clarifies the kind of attribute error"""
        if name.startswith('_'):
            raise InvalidAttribute(f'Unknown private attribute {name!r}')
        else:
            raise AttributeError(f'Unknown attribute {name!r}')

        
        Now, client code can, if it so chooses, be more selective in its handlers. For example:

        
          s = SomeFunkyClass()
try:
    value = getattr(s, thename)
except InvalidAttribute as err:
    warnings.warn(str(err), stacklevel=2)
    value = None
# other cases of AttributeError just propagate, as they're unexpected

        
        
          Define And Raise Custom Exception Classes

          It’s an excellent idea to define, and raise, custom exception classes in your modules, rather than plain standard exceptions: by using custom exception classes which extend standard ones, you make it easier for callers of your module’s code to handle exceptions that come from your module separately from others, if they choose to.

        

        
          Custom Exceptions and Multiple Inheritance

          An effective approach to custom exceptions is to multiply-inherit exception classes from your module’s special custom exception class and a standard exception class, as in the following snippet:

          
            class CustomAttributeError(CustomException, AttributeError):
    """An AttributeError which is ALSO a CustomException."""

          
          Now, when your code raises an instance of CustomAttributeError, that exception can be caught by calling code that’s designed to catch all cases of AttributeError as well as by code that’s designed to catch all exceptions raised only, specifically, by your module.

          
            Use Multiple Inheritance For Custom Exceptions

            Whenever you must decide whether to raise a specific standard exception, such as AttributeError, or a custom exception class you define in your module, consider this multiple-inheritance approach, which gives you the best of both worlds in such cases. Make sure you clearly document this aspect of your module, because the technique, although handy, is not widely used. Users of your module may not expect it unless you clearly and explicitly document what you are doing.

          

        

        
          Other Exceptions Used in the Standard Library

          Many modules in Python’s standard library define their own exception classes, which are equivalent to the custom exception classes that your own modules can define. Typically, all functions in such standard library modules may raise exceptions of such classes, in addition to exceptions in the standard hierarchy covered in “Standard Exception Classes”. We cover the main cases of such exception classes throughout the rest of this book, in chapters covering the standard library modules that supply and may raise them.

        

      

      
        Error-Checking Strategies

        Most programming languages that support exceptions raise exceptions only in rare cases. Python’s emphasis is different. Python deems exceptions appropriate whenever they make a program simpler and more robust, even if that makes exceptions rather frequent.

        
          LBYL Versus EAFP

          A common idiom in other languages, sometimes known as “Look Before You Leap” (LBYL), is to check in advance, before attempting an operation, for anything that might make the operation invalid. This approach is not ideal for several reasons:

          
            	
              The checks may diminish the readability and clarity of the common, mainstream cases where everything is okay.

            

            	
              The work needed for checking purposes may duplicate a substantial part of the work done in the operation itself.

            

            	
              The programmer might easily err by omitting a needed check.

            

            	
              The situation might change between the moment when you perform the checks, and the moment when, later (even by a tiny fraction of a second!), you attempt the operation.

            

          

          The preferred idiom in Python is to attempt the operation in a try clause and handle the exceptions that may result in one or more except clauses. This idiom is known as “it’s Easier to Ask Forgiveness than Permission” (EAFP), a motto widely credited to Rear Admiral Grace Murray Hopper, co-inventor of COBOL. EAFP shares none of the defects of LBYL. Here is a function using the LBYL idiom:

          
            def safe_divide_1(x, y):
    if y==0:
        print('Divide-by-0 attempt detected')
        return None
    else:
        return x/y

          
          With LBYL, the checks come first, and the mainstream case is somewhat hidden at the end of the function. Here is the equivalent function using the EAFP idiom:

          
            def safe_divide_2(x, y):
    try:
        return x/y
    except ZeroDivisionError:
        print('Divide-by-0 attempt detected')
        return None

          
          With EAFP, the mainstream case is upfront in a try clause, and the anomalies are handled in the following except clause, making the whole function easier to read and understand.

          
            Proper usage of EAFP

            EAFP is a good error-handling strategy, but it is not a panacea. In particular, never cast too wide a net, catching errors that you did not expect and therefore did not mean to catch. The following is a typical case of such a risk (we cover built-in function getattr in Table 7-2):

            
              def trycalling(obj, attrib, default, *args, **kwds):
    try:
        return getattr(obj, attrib)(*args, **kwds)
    except AttributeError:
        return default

            
            The intention of function trycalling is to try calling a method named attrib on object obj, but to return default if obj has no method thus named. However, the function as coded does not do just that: it also accidentally hides any error case where AttributeError is raised inside the sought-after method, silently returning default in those cases. This may easily hide bugs in other code. To do exactly what’s intended, the function must take a little bit more care:

            
              def trycalling(obj, attrib, default, *args, **kwds):
    try:
        method = getattr(obj, attrib)
    except AttributeError:
        return default
    else:
        return method(*args, **kwds)

            
            This implementation of trycalling separates the getattr call, placed in the try clause and therefore guarded by the handler in the except clause, from the call of the method, placed in the else clause and therefore free to propagate any exception. The proper approach to EAFP involves frequent use of the else clause on try/except statements (which is more explicit, and thus better Python style, than just placing the nonguarded code after the whole try/except statement).

          

        

        
          Handling Errors in Large Programs

          In large programs, it is especially easy to err by making your try/except statements too wide, particularly once you have convinced yourself of the power of EAFP as a general error-checking strategy. A try/except combination is too wide when it catches too many different errors, or an error that can occur in too many different places. The latter is a problem when you need to distinguish exactly what went wrong and where, and the information in the traceback is not sufficient to pinpoint such details (or you discard some or all of the information in the traceback). For effective error handling, you have to keep a clear distinction between errors and anomalies that you expect (and thus know how to handle) and unexpected errors and anomalies that indicate a bug in your program.

          Some errors and anomalies are not really erroneous, and perhaps not even all that anomalous: they are just special, “edge” cases, perhaps somewhat rare but nevertheless quite expected, which you choose to handle via EAFP rather than via LBYL to avoid LBYL’s many intrinsic defects. In such cases, you should just handle the anomaly, often without even logging or reporting it.

          
            Keep Your try/except Constructs Narrow

            Be very careful to keep try/except constructs as narrow as feasible. Use a small try clause that contains a small amount of code that doesn’t call too many other functions, and use very specific exception-class tuples in the except clauses; if need be, further analyze the details of the exception in your handler code, and raise again as soon as you know it’s not a case this handler can deal with.

          

          Errors and anomalies that depend on user input or other external conditions not under your control are always expected, precisely because you have no control over their underlying causes. In such cases, you should concentrate your effort on handling the anomaly gracefully, reporting and logging its exact nature and details, and keeping your program running with undamaged internal and persistent state. The breadth of try/except clauses under such circumstances should also be reasonably narrow, although this is not quite as crucial as when you use EAFP to structure your handling of not-really-erroneous special/edge cases.

          Lastly, entirely unexpected errors and anomalies indicate bugs in your program’s design or coding. In most cases, the best strategy regarding such errors is to avoid try/except and just let the program terminate with error and traceback messages. (You might want to log such information and/or display it more suitably with an application-specific hook in sys.excepthook, as we’ll discuss shortly.) In the unlikely case that your program must keep running at all costs, even under dire circumstances, try/except statements that are quite wide may be appropriate, with the try clause guarding function calls that exercise vast swaths of program functionality, and broad except clauses.

          In the case of a long-running program, make sure to log all details of the anomaly or error to some persistent place for later study (and also report to yourself some indication of the problem, so that you know such later study is necessary). The key is making sure that you can revert the program’s persistent state to some undamaged, internally consistent point. The techniques that enable long-running programs to survive some of their own bugs, as well as environmental adversities, are known as checkpointing (basically, periodically saving program state, and writing the program so it can reload the saved state and continue from there) and transaction processing; we do not cover them further in this book.

        

        
          Logging Errors

          When Python propagates an exception all the way to the top of the stack without finding an applicable handler, the interpreter normally prints an error traceback to the standard error stream of the process (sys.stderr) before terminating the program. You can rebind sys.stderr to any file-like object usable for output in order to divert this information to a destination more suitable for your purposes.

          When you want to change the amount and kind of information output on such occasions, rebinding sys.stderr is not sufficient. In such cases, you can assign your own function to sys.excepthook: Python calls it when terminating the program due to an unhandled exception. In your exception-reporting function, output whatever information will help you diagnose and debug the problem and direct that information to whatever destinations you please. For example, you might use module traceback (covered in “The traceback Module”) to format stack traces. When your exception-reporting function terminates, so does your program.

          
            The logging package

            The Python standard library offers the rich and powerful logging package to let you organize the logging of messages from your applications in systematic, flexible ways. Pushing things to the limit, you might write a whole hierarchy of Logger classes and subclasses; you might couple the loggers with instances of Handler (and subclasses thereof); you might also insert instances of class Filter to fine-tune criteria determining what messages get logged in which ways.

            Messages are formatted by instances of the Formatter class—the messages themselves are instances of the LogRecord class. The logging package even includes a dynamic configuration facility, whereby you may dynamically set logging-configuration files by reading them from disk files, or even by receiving them on a dedicated socket in a specialized thread.

            While the logging package sports a frighteningly complex and powerful architecture, suitable for implementing highly sophisticated logging strategies and policies that may be needed in vast and complicated software systems, in most applications you may get away with using a tiny subset of the package. First, import logging. Then, emit your message by passing it as a string to any of the module’s functions debug, info, warning, error, or critical, in increasing order of severity. If the string you pass contains format specifiers such as %s (as covered in “Legacy String Formatting with %”) then, after the string, pass as further arguments all the values to be formatted in that string. For example, don’t call:

            
              logging.debug('foo is %r' % foo)

            
            which performs the formatting operation whether it’s needed or not; rather, call:

            
              logging.debug('foo is %r', foo)

            
            which performs formatting if and only if needed (i.e., if and only if calling debug is going to result in logging output, depending on the current threshold level).

            Unfortunately, the logging module does not support the more readable formatting approach covered in “String Formatting”, but only the antiquated one covered in “Legacy String Formatting with %”. Fortunately, it’s very rare to need any formatting specifier beyond the simple %s and %r.

            By default, the threshold level is WARNING: any of the functions warning, error, or critical results in logging output, but the functions debug and info do not. To change the threshold level at any time, call logging.getLogger().setLevel, passing as the only argument one of the corresponding constants supplied by module logging: DEBUG, INFO, WARNING, ERROR, or CRITICAL. For example, once you call:

            
              logging.getLogger().setLevel(logging.DEBUG)

            
            all of the logging functions from debug to critical result in logging output until you change level again; if later you call:

            
              logging.getLogger().setLevel(logging.ERROR)

            
            then only the functions error and critical result in logging output (debug, info, and warning won’t result in logging output); this condition, too, persists until you change level again, and so forth.

            By default, logging output goes to your process’s standard error stream (sys.stderr, as covered in Table 7-3) and uses a rather simplistic format (for example, it does not include a timestamp on each line it outputs). You can control these settings by instantiating an appropriate handler instance, with a suitable formatter instance, and creating and setting a new logger instance to hold it. In the simple, common case in which you just want to set these logging parameters once and for all, after which they persist throughout the run of your program, the simplest approach is to call the logging.basicConfig function, which lets you set up things quite simply via named parameters. Only the very first call to logging.basicConfig has any effect, and only if you call it before any of the logging functions (debug, info, and so on). Therefore, the most common use is to call logging.basicConfig at the very start of your program. For example, a common idiom at the start of a program is something like:

            
              import logging
logging.basicConfig(
    format='%(asctime)s %(levelname)8s %(message)s',
    filename='/tmp/logfile.txt', filemode='w')

            
            This setting writes logging messages to a file, nicely formatted with a precise human-readable timestamp, followed by the severity level right-aligned in an eight-character field, followed by the message proper.

            For excruciatingly large amounts of detailed information on the logging package, and all the wonders you can perform with it, be sure to consult Python’s rich online information about it.

          

        

      

      
        The assert Statement

        The assert statement allows you to introduce “sanity checks” into a program. assert is a simple statement with the following syntax:

        
          assert condition[, expression]

        
        When you run Python with the optimize flag (-O, as covered in “Command-Line Syntax and Options”), assert is a null operation: the compiler generates no code for it. Otherwise, assert evaluates condition. When condition is satisfied, assert does nothing. When condition is not satisfied, assert instantiates AssertionError with expression as the argument (or without arguments, if there is no expression) and raises the resulting instance.2

        assert statements can be an effective way to document your program. When you want to state that a significant, nonobvious condition C is known to hold at a certain point in a program’s execution (known as an invariant of your program), assert C is often better than a comment that just states that C holds.

        The advantage of assert is that, when C does not in fact hold, assert immediately alerts you to the problem by raising AssertionError, if the program is running without the -O flag. Once the code is thoroughly debugged, run it with -O, turning assert into a null operation and incurring no overhead (the assert remains in your source code to document the invariant).

        
          Don’t Overuse assert

          Never use assert for other purposes besides sanity-checking program invariants. A serious but very common mistake is to use assert about the values of inputs or arguments: checking for erroneous arguments or inputs is best done more explicitly, and in particular must not be turned into a null operation by a command-line flag.

        

        
          The __debug__ Built-in Variable

          When you run Python without option -O, the __debug__ built-in variable is True. When you run Python with option -O, __debug__ is False. Also, with option -O, the compiler generates no code for any if statement whose sole guard condition is __debug__.

          To exploit this optimization, surround the definitions of functions that you call only in assert statements with if __debug__:. This technique makes compiled code smaller and faster when Python is run with -O, and enhances program clarity by showing that those functions exist only to perform sanity checks.

        

      

    1 except that multiple calls to close are allowed and innocuous: all but the first one perform no operation. 
2 Some third-party frameworks, such as pytest, materially improve the usefulness of the assert statement. 




      Chapter 4. Modules

      
            A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 6th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      A typical Python program is made up of several source files. Each source file is a module, grouping code and data for reuse. Modules are normally independent of each other, so that other programs can reuse the specific modules they need. Sometimes, to manage complexity, you group together related modules into a package—a hierarchical, tree-like structure.

      A module explicitly establishes dependencies upon other modules by using import or from statements. In some programming languages, global variables provide a hidden conduit for coupling between modules. In Python, global variables are not global to all modules, but rather are attributes of a single module object. Thus, Python modules always communicate in explicit and maintainable ways, clarifying the couplings between them by making them explicit.

      Python also supports extension modules—modules coded in other languages such as C, C++, Java, or C#—for use in Python. For the Python code importing a module, it does not matter whether the module is pure Python or an extension. You can always start by coding a module in Python. Later, should you need more speed, you can refactor and recode some parts of modules in lower-level languages, without changing the client code that uses those modules. Chapter “Extending and Embedding Classic Python” shows how to write extensions in C and Cython.

      This chapter discusses module creation and loading. It also covers grouping modules into packages, using Python’s distribution utilities (the older, deprecated distutils, and the currently-recommended setuptools) to install packages, and how to prepare packages for distribution; this latter subject is more thoroughly covered in Chapter “Distributing Extensions and Programs.” This chapter closes with a discussion on how best to manage your Python environment(s).

      
        Module Objects

        A module is a Python object with arbitrarily named attributes that you can bind and reference. The Python code for a module named aname usually lives in a file named aname.py, as covered in “Module Loading.”

        In Python, modules are objects (values), handled like other objects. Thus, you can pass a module as an argument in a call to a function. Similarly, a function can return a module as the result of a call. A module, just like any other object, can be bound to a variable, an item in a container, or an attribute of an object. Modules can be keys or values in a dictionary, and can be members of a set. For example, the sys.modules dictionary, covered in “Module Loading,” holds module objects as its values. The fact that modules can be treated like other values in Python is often expressed by saying that modules are first-class objects.

        
          The import Statement

          You can use any Python source file as a module by executing an import statement in another Python source file. import has the following syntax:

          
            import modname [as varname][,...]

          
          After the import keyword come one or more module specifiers separated by commas. In the simplest, most common case, a module specifier is just modname, an identifier—a variable that Python binds to the module object when the import statement finishes. In this case, Python looks for the module of the same name to satisfy the import request. For example:

          
            import mymodule

          
          looks for the module named mymodule and binds the variable named mymodule in the current scope to the module object. modname can also be a sequence of identifiers separated by dots (.) to name a module contained in a package, as covered in “Packages.”

          When as varname is part of a module specifier, Python looks for a module named modname and binds the module object to the variable varname. For example:

          
            import mymodule as alias

          
          looks for the module named mymodule and binds the module object to variable alias in the current scope. varname must always be a simple identifier.

          
            Module body

            The body of a module is the sequence of statements in the module’s source file. There is no special syntax required to indicate that a source file is a module; you can use any valid Python source file as a module. A module’s body executes immediately the first time a given run of a program imports it. When the body starts executing, the module object has already been created, with an entry in sys.modules already bound to the module object. The module’s (global) namespace is gradually populated as the module’s body executes.

          

          
            Attributes of module objects

            An import statement creates a new namespace containing all the attributes of the module. To access an attribute in this namespace, use the name or alias of the module as a prefix:

            
              import mymodule
a = mymodule.f()

            
            or:

            
              import mymodule as alias
a = alias.f()

            
            Normally, it’s statements in the module body that bind the attributes of a module object. When a statement in the module body binds a (global) variable, what gets bound is an attribute of the module object.

            
              A Module Body Exists To Bind the Module’s Attributes

              The normal purpose of a module body is to create the module’s attributes: def statements create and bind functions, class statements create and bind classes, and assignment statements can bind attributes of any type. For clarity and cleanliness of your code, be wary about doing anything else in the top logical level of the module’s body except binding the module’s attributes.

            

            You can also bind module attributes in code outside the body (i.e., in other modules); just assign a value to the attribute reference syntax M.name (where M is any expression whose value is the module, and identifier name is the attribute name). For clarity, however, it’s best to bind module attributes only in the module’s own body.

            The import statement binds some module attributes as soon as it creates the module object, before the module’s body executes. The __dict__ attribute is the dict object that the module uses as the namespace for its attributes. Unlike other attributes of the module, __dict__ is not available to code in the module as a global variable. All other attributes in the module are items in __dict__ and are available to code in the module as global variables. Attribute __name__ is the module’s name; attribute __file__ is the filename from which the module was loaded; other dunder-named attributes hold other module metadata. (Also see “Special Attributes of Package Objects” for attribute __path__, in packages only).

            For any module object M, any object x, and any identifier string S (except __dict__), binding M.S = x is equivalent to binding M.__dict__['S'] = x. An attribute reference such as M.S is also substantially equivalent to M.__dict__['S']. The only difference is that, when S is not a key in M.__dict__, accessing M.__dict__['S'] raises KeyError, while accessing M.S raises AttributeError. Module attributes are also available to all code in the module’s body as global variables. In other words, within the module body, S used as a global variable is equivalent to M.S (i.e., M.__dict__['S']) for both binding and reference (when S is not a key in M.__dict__, however, referring to S as a global variable raises NameError).

          

          
            Python built-ins

            Python supplies several built-in objects (covered in Chapter “Core Built-ins and Standard Library Modules”). All built-in objects are attributes of a preloaded module named builtins. When Python loads a module, the module automatically gets an extra attribute named __builtins__, which refers either to the module builtins or to its dictionary. Python may choose either, so don’t rely on __builtins__. If you need to access the module builtins directly (a rare need), use an import builtins statement. When you access a variable found neither in the local namespace nor in the global namespace of the current module, Python looks for the identifier in the current module’s __builtins__ before raising NameError.

            The lookup is the only mechanism that Python uses to let your code access builtins. The built-ins’ names are not reserved, nor are they hardwired in Python itself. Your own code can use the access mechanism directly (do so in moderation, or your program’s clarity and simplicity will suffer). Since Python accesses built-ins only when it cannot resolve a name in the local or module namespace, it is usually sufficient to define a replacement in one of those namespaces. You can, however, add your own built-ins or substitute your functions for the normal built-in ones, in which case all modules see the added or replaced one. The following toy example shows how you can wrap a built-in function with your own function, allowing abs() to take a string argument (and return a rather arbitrary mangling of the string):

            
              # abs takes a numeric argument; let's make it accept a string as well
import builtins
_abs = builtins.abs                          # save original built-in
def abs(str_or_num):
    if isinstance(str_or_num, str):          # if arg is a string
        return ''.join(sorted(set(str_or_num)))  # get this instead
    return _abs(str_or_num)                  # call real built-in
builtins.abs = abs                    # override built-in w/wrapper

            
          

          
            Module documentation string

            If the first statement in the module body is a string literal, Python binds that string as the module’s documentation string attribute, named __doc__. Documentation strings are also called docstrings; we cover them in “Docstrings.”

          

          
            Module-private variables

            No variable of a module is truly private. However, by convention, every identifier starting with a single underscore (_), such as _secret, is meant to be private. In other words, the leading underscore communicates to client-code programmers that they should not access the identifier directly.

            Development environments and other tools rely on the leading-underscore naming convention to discern which attributes of a module are public (i.e., part of the module’s interface) and which are private (i.e., to be used only within the module).

            
              Respect the “Leading Underscore Means Private” Convention

              It’s important to respect the “leading underscore means private” convention, particularly when you write client code that uses modules written by others. Avoid using any attributes in such modules whose names start with _. Future releases of the modules will strive to maintain their public interface, but are quite likely to change private implementation details: private attributes are meant exactly for such details.

            

          

        

        
          The from Statement

          Python’s from statement lets you import specific attributes from a module into the current namespace. from has two syntax variants:

          
            from modname import attrname [as varname][,...]
from modname import *

          
          A from statement specifies a module name, followed by one or more attribute specifiers separated by commas. In the simplest and most common case, an attribute specifier is just an identifier attrname, which is a variable that Python binds to the attribute of the same name in the module named modname. For example:

          
            from mymodule import f

          
          modname can also be a sequence of identifiers separated by dots (.) to name a module within a package, as covered in “Packages.”

          When as varname is part of an attribute specifier, Python gets from the module the value of attribute attrname and binds it to variable varname. For example:

          
            from mymodule import f as foo

          
          attrname and varname are always simple identifiers.

          You may optionally enclose in parentheses all the attribute specifiers that follow the keyword import in a from statement. This can be useful when you have many attribute specifiers, in order to split the single logical line of the from statement into multiple logical lines more elegantly than by using backslashes (\):

          
            from some_module_with_a_long_name import (
    another_name, and_another as x, one_more, and_yet_another as y)

          
          
            from ... import *

            Code that is directly inside a module body (not in the body of a function or class) may use an asterisk (*) in a from statement:

            
              from mymodule import *

            
            The * requests that “all” attributes of module modname be bound as global variables in the importing module. When module modname has an attribute named __all__, the attribute’s value is the list of the attribute names that this type of from statement binds. Otherwise, this type of from statement binds all attributes of modname except those beginning with underscores.

            
              Beware Using From M Import * in Your Code

              Since from M import * may bind an arbitrary set of global variables, it can have unforeseen, undesired side effects, such as hiding built-ins and rebinding variables you still need. Use the * form of from very sparingly, if at all, and only to import modules that are explicitly documented as supporting such usage. Your code is most likely better off never using this form, which is meant mostly as a convenience for occasional use in interactive Python sessions.

            

          

          
            from Versus import

            The import statement is often a better choice than the from statement. When you always access module M with the statement import M and always access M’s attributes with explicit syntax M.A, your code is slightly less concise but far clearer and more readable. One good use of from is to import specific modules from a package, as we discuss in “Packages.” In most other cases, import is better style than from.

          

        

      

      
        Module Loading

        Module-loading operations rely on attributes of the built-in sys module (covered in “The sys Module”) and are implemented in the built-in function __import__. Your code could call __import__ directly, but this is strongly discouraged in modern Python; rather, import importlib and call importlib.import_module with the module name string as the argument. import_module returns the module object or, should the import fail, raises ImportError. However, it’s best to have a clear understanding of the semantics of __import__, because import_module and import statements both depend on it.

        To import a module named M, __import__ first checks dictionary sys.modules, using string M as the key. When key M is in the dictionary, __import__ returns the corresponding value as the requested module object. Otherwise, __import__ binds sys.modules[M] to a new empty module object with a __name__ of M, then looks for the right way to initialize (load) the module, as covered in “Searching the Filesystem for a Module.”

        Thanks to this mechanism, the relatively slow loading operation takes place only the first time a module is imported in a given run of the program. When a module is imported again, the module is not reloaded, since __import__ rapidly finds and returns the module’s entry in sys.modules. Thus, all imports of a given module after the first one are very fast: they’re just dictionary lookups. (To force a reload, see “Reloading Modules.”)

        
          Built-in Modules

          When a module is loaded, __import__ first checks whether the module is built-in. The tuple sys.builtin_module_names names all built-in modules, but rebinding that tuple does not affect module loading. When Python loads a built-in module, as when it loads any other extension, Python calls the module’s initialization function. The search for built-in modules also looks for modules in platform-specific locations, such as the Registry in Windows.

        

        
          Searching the Filesystem for a Module

          If module M is not built-in, __import__ looks for M’s code as a file on the filesystem. __import__ looks at the strings, which are the items of list sys.path, in order. Each item is the path of a directory, or the path of an archive file in the popular ZIP format. sys.path is initialized at program startup, using the environment variable PYTHONPATH (covered in “Environment Variables”), if present. The first item in sys.path is always the directory from which the main program is loaded. An empty string in sys.path indicates the current directory.

          Your code can mutate or rebind sys.path, and such changes affect which directories and ZIP archives __import__ searches to load modules. Changing sys.path does not affect modules that are already loaded (and thus already recorded in sys.modules) when you change sys.path.

          If there is a text file with the extension .pth in the PYTHONHOME directory at startup, Python adds the file’s contents to sys.path, one item per line. .pth files can contain blank lines and comment lines starting with the character #; Python ignores any such lines. .pth files can also contain import statements (which Python executes before your program starts to execute), but no other kinds of statements.

          When looking for the file for module M in each directory and ZIP archive along sys.path, Python considers the following extensions in this order:

          
            	
              .pyd and .dll (Windows) or .so (most Unix-like platforms), which indicate Python extension modules. (Some Unix dialects use different extensions; e.g., .sl on HP-UX.) On most platforms, extensions cannot be loaded from a ZIP archive—only source or bytecode-compiled Python modules can.

            

            	
              .py, which indicates Python source modules.

            

            	
              .pyc, which indicates bytecode-compiled Python modules.

            

            	
              When it finds a .py file, Python also looks for a directory called ___pycache__; if it finds such a directory, Python looks in that directory for the extension .<tag>.pyc, where <tag> is a string specific to the version of Python that is looking for the module.

            

          

          One last path in which Python looks for the file for module M is M/__init__.py: a file named __init__.py in a directory named M, as covered in “Packages.”

          Upon finding source file M.py, Python compiles it to M.<tag>.pyc, unless the bytecode file is already present, is newer than M.py, and was compiled by the same version of Python. If M.py is compiled from a writable directory, Python creates a __pycache__ subdirectory if necessary and saves the bytecode file to the filesystem in that subdirectory so that future runs won’t needlessly recompile. When the bytecode file is newer than the source file (based on an internal timestamp in the bytecode file, not on trusting the date as recorded in the filesystem), Python does not recompile the module.

          Once Python has the bytecode, whether built anew by compilation or read from the filesystem, Python executes the module body to initialize the module object. If the module is an extension, Python calls the module’s initialization function.

        

        
          The Main Program

          Execution of a Python application starts with a top-level script (known as the main program), as explained in “The python Program.” The main program executes like any other module being loaded, except that Python keeps the bytecode in memory, not saving it to disk. The module name for the main program is '__main__', both as the __name__ variable (module attribute) and as the key in sys.modules.

          
            Don’t Import the .py File You’re Using as the Main Program

            You should not import the same .py file that is the main program. If you do, Python loads the module again, and the body executes again in a separate module object with a different __name__.

          

          Code in a Python module can test if the module is being used as the main program by checking if global variable __name__ has the value '__main__'. The idiom:

          
            if __name__ == '__main__':

          
          is often used to guard some code so that it executes only when the module runs as the main program. If a module is meant only to be imported, it should normally execute unit tests when run as the main program, as covered in “Unit Testing and System Testing.”

        

        
          Reloading Modules

          Python loads a module only the first time you import the module during a program run. When you develop interactively, you need to reload your modules after editing them (some development environments provide automatic reloading).

          To reload a module, pass the module object (not the module name) as the only argument to the function reload from the importlib module. importlib.reload(M) ensures the reloaded version of M is used by client code that relies on import M and accesses attributes with the syntax M.A. However, importlib.reload(M) has no effect on other existing references bound to previous values of M’s attributes (e.g., with a from statement). In other words, already-bound variables remain bound as they were, unaffected by reload. reload’s inability to rebind such variables is a further incentive to use import rather than from.

          reload is not recursive: when you reload module M, this does not imply that other modules imported by M get reloaded in turn. You must reload, by explicit calls to reload, every module you have modified.

        

        
          Circular Imports

          Python lets you specify circular imports. For example, you can write a module a.py that contains import b, while module b.py contains import a.

          If you decide to use a circular import for some reason, you need to understand how circular imports work in order to avoid errors in your code.

          
            Avoid Circular Imports

            In practice, you are nearly always better off avoiding circular imports, since circular dependencies are fragile and hard to manage.

          

          Say that the main script executes import a. As discussed earlier, this import statement creates a new empty module object as sys.modules['a'], then the body of module a starts executing. When a executes import b, this creates a new empty module object as sys.modules['b'], and then the body of module b starts executing. a’s module body cannot proceed until b’s module body finishes.

          Now, when b executes import a, the import statement finds sys.modules['a'] already bound, and therefore binds global variable a in module b to the module object for module a. Since the execution of a’s module body is currently blocked, module a is usually only partly populated at this time. Should the code in b’s module body try to access some attribute of module a that is not yet bound, an error results.

          If you keep a circular import, you must carefully manage the order in which each module binds its own globals, imports other modules, and accesses globals of other modules. You get greater control over the sequence in which things happen by grouping your statements into functions, and calling those functions in a controlled order, rather than just relying on sequential execution of top-level statements in module bodies. Removing circular dependencies (for example, by moving an import away from module scope and into a referencing function) is easier than ensuring bomb-proof ordering to deal with circular dependencies.

        

        
          sys.modules Entries

          __import__ never binds anything other than a module object as a value in sys.modules. However, if __import__ finds an entry already in sys.modules, it returns that value, whatever type it may be. import and from statements rely on __import__, so they too can use objects that are not modules.

        

        
          Custom Importers

          Another advanced, rarely-needed functionality that Python offers is the ability to change the semantics of some or all import and from statements.

          
            Rebinding __import__

            You can rebind the __import__ attribute of module builtin to your own custom importer function—for example, one using the generic built-in-wrapping technique shown in “Python built-ins.” Such a rebinding affects all import and from statements that execute after the rebinding and thus can have an undesired global impact. A custom importer built by rebinding __import__ must implement the same interface and semantics as the built-in __import__, and, in particular, it is responsible for supporting the correct use of sys.modules.

            
              Beware Rebinding Builtin __import__

              While rebinding __import__ may initially look like an attractive approach, in most cases where custom importers are necessary, you’re better off implementing them via import hooks.

            

          

          
            Import hooks

            Python offers rich support for selectively changing the details of imports’ behavior. Custom importers are an advanced and rarely-needed technique, yet some applications may need them for purposes such as importing code from archives other than ZIP files, databases, network servers, and so on.

            The most suitable approach for such highly advanced needs is to record importer factory callables as items in the attributes meta_path and/or path_hooks of the module sys, as detailed in PEP 451. This is how Python hooks up the standard library module zipimport to allow seamless importing of modules from ZIP files, as previously mentioned. A full study of the details of PEP 451 is indispensable for any substantial use of sys.path_hooks and friends, but here’s a toy-level example to help understand the possibilities, should you ever need them.

            Suppose that, while developing the first outline of some program, you want to be able to use import statements for modules that you haven’t written yet, getting just messages (and empty modules) as a consequence. You can obtain such functionality (leaving aside the complexities connected with packages, and dealing with simple modules only) by coding a custom importer module as follows:

            
              import sys, types
class ImporterAndLoader(object):
     '''importer and loader can be a single class'''
     fake_path = '!dummy!'
     def __init__(self, path):
         # only handle our own fake-path marker
         if path != self.fake_path:
             raise ImportError
     def find_module(self, fullname):
         # don't even try to handle any qualified module name
         if '.' in fullname:
             return None
         return self
     def create_module(self, spec):
         # create module "the default way"
         return None
     def exec_module(self, mod):
         # populate the already-initialized module
         # just print a message in this toy example
         print(f'NOTE: module {mod!r} not yet written')
sys.path_hooks.append(ImporterAndLoader)
sys.path.append(ImporterAndLoader.fake_path)
if __name__ == '__main__':      # self-test when run as main script
    import missing_module       # importing a simple *missing* module
    print(missing_module)       # ...should succeed
    print(sys.modules.get('missing_module'))  # ...should also succeed

            
            We just write trivial versions of create_module (which in this case just returns None, asking the system to create the module object in the “default way”) and exec_module (which receives the module object already initialized with dunder attributes, and whose task would normally be to populate it appropriately).

            We could, alternatively, use the powerful new module spec concept as detailed in PEP 451. However, that requires the standard library module importlib; for this toy example, we don’t need all that extra power. Therefore, we choose instead to implement the method find_module, which, although now deprecated, still works fine for backward compatibility.

          

        

      

      
        Packages

        A package is a module containing other modules. Some or all of the modules in a package may be subpackages, resulting in a hierarchical tree-like structure. A package named P typically resides in a subdirectory, also called P, of some directory in sys.path. Packages can also live in ZIP files; in this section, we explain the case in which the package lives on the filesystem, since the case in which a package is in a ZIP file is similar, relying on the hierarchical filesystem-like structure within the ZIP file.

        The module body of P is in the file P/__init__.py. This file must exist (except for namespace packages, covered in “Namespace Packages”), even if it’s empty (representing an empty module body), in order to tell Python that directory P is indeed a package. Python loads the module body of a package when you first import the package (or any of the package’s modules), behaving just like for any other Python module. The other .py files in directory P are the modules of package P. Subdirectories of P containing __init__.py files are subpackages of P. Nesting can proceed to any depth.

        You can import a module named M in package P as P.M. More dots let you navigate a hierarchical package structure. (A package’s module body always loads before any module in the package.) If you use the syntax import P.M, the variable P is bound to the module object of package P, and the attribute M of object P is bound to the module P.M. If you use the syntax import P.M as V, the variable V is bound directly to the module P.M.

        Using from P import M to import a specific module M from package P is a perfectly acceptable, indeed highly recommended practice: the from statement is specifically okay in this case. from P import M as V is also just fine, and exactly equivalent to import P.M as V. You can also use relative paths: that is, module M in package P can import its “sibling” module X (also in package P) with from . import X.

        
          Sharing Objects Among Modules In A Package

          The simplest, cleanest way to share objects (e.g., functions or constants) among modules in a package P is to group the shared objects in a module conventionally named P/common.py. That way, you can use from . import common in every module in the package that needs to access some of the common objects, and then refer to the objects as common.f, common.K, and so on.

        

        
          Special Attributes of Package Objects

          A package P’s __file__ attribute is the string that is the path of P’s module body—that is, the path of the file P/__init__.py. P’s __package__ attribute is the name of P’s package.

          A package P’s module body—that is, the Python source that is in the file P/__init__.py—can optionally set a global variable named __all__ (just like any other module can) to control what happens if some other Python code executes the statement from P import *. In particular, if __all__ is not set, from P import * does not import P’s modules, but only names that are set in P’s module body and lack a leading _. In any case, this is not recommended usage.

          A package P’s __path__ attribute is the list of strings that are the paths to the directories from which P’s modules and subpackages are loaded. Initially, Python sets __path__ to a list with a single element: the path of the directory containing the file __init__.py that is the module body of the package. Your code can modify this list to affect future searches for modules and subpackages of this package. This advanced technique is rarely necessary, but can be useful when you want to place a package’s modules in various directories; a namespace package, as covered next, is however the usual way to accomplish this goal.

        

        
          Namespace Packages

          On import foo, when one or more directories that are immediate children of sys.path members are named foo, and none of them contains a file named __init__.py, Python deduces that foo is a namespace package. As a result, Python creates (and assigns to sys.modules['foo']) a package object foo without a __file__ attribute; Python sets foo.__path__ to the list of all the various directories that make up the package (like for any other package, your code may optionally choose to further alter it). This advanced approach is rarely needed.

        

        
          Absolute Versus Relative Imports

          As mentioned in “Packages,” an import statement normally expects to find its target somewhere on sys.path, a behavior known as an absolute import. Alternatively, you can explicitly use a relative import, meaning an import of an object from within the current package. Relative imports use module or package names beginning with one or more dots, and are only available within the from statement. from . import X looks for the module or object named X in the current package; from .X import y looks in module or subpackage X within the current package for the module or object named y. If your package has subpackages, their code can access higher-up objects in the package by using multiple dots at the start of the module or subpackage name you place between from and import. Each additional dot ascends the directory hierarchy one level. Getting too fancy with this feature can easily damage your code’s clarity, so use it with care, and only when necessary.

        

      

      
        Distribution Utilities (distutils) and setuptools

        Python modules, extensions, and applications can be packaged and distributed in several forms:

        
          	Compressed archive files

          	
            Generally .zip or .tar.gz (AKA .tgz) files—both forms are portable, and many other forms of compressed archives of trees of files and directories exist

          

          	Self-unpacking or self-installing executables

          	
            Normally .exe for Windows

          

          	Self-contained, ready-to-run executables that require no installation

          	
            For example, .exe for Windows, ZIP archives with a short script prefix on Unix, .app for the Mac, and so on

          

          	Platform-specific installers

          	
            For example, .msi on Windows, .rpm and .srpm on many Linux distributions, .deb on Debian GNU/Linux and Ubuntu, .pkg on macOS

          

          	Python Wheels

          	
            Popular third-party extensions, covered in “Python Wheels”

          

        

        When you distribute a package as a self-installing executable or platform-specific installer, a user installs the package simply by running the installer. How to run such an installer program depends on the platform, but it doesn’t matter which language the program was written in. We cover building self-contained, runnable executables for various platforms in Chapter “Distributing Extensions and Programs.”

        When you distribute a package as an archive file or as an executable that unpacks but does not install itself, it does matter that the package was coded in Python. In this case, the user must first unpack the archive file into some appropriate directory, say C:\Temp\MyPack on a Windows machine or ~/MyPack on a Unix-like machine. Among the extracted files there should be a script, conventionally named setup.py, which uses the Python facility known as the distribution utilities (the now-deprecated, but still functioning, standard library package distutils1) or, better, the more popular, modern, and powerful third-party package setuptools. The distributed package is then almost as easy to install as a self-installing executable. The user opens a command prompt window and changes to the directory into which the archive is unpacked. Then the user runs, for example:

        
          C:\Temp\MyPack> python setup.py install

        
        (pip is the preferred way to install packages nowadays, and is briefly discussed in “Python Environments.”) The setup.py script, run with this install command, installs the package as a part of the user’s Python installation, according to the options specified by the package’s author in the setup script. Of course, the user needs appropriate permissions to write into the directories of the Python installation, so permission-raising commands such as sudo may also be needed; or, better yet, you can install into a virtual environment, covered in “Python Environments.” distutils and setuptools, by default, print some information when the user runs setup.py. Option --quiet, right before the install command, hides most details (the user still sees error messages, if any). The following command gives detailed help on distutils or setuptools, depending on which toolset the package author used in their setup.py:

        
          C:\Temp\MyPack> python setup.py --help

        
        Recent versions of Python come with the excellent installer pip (a recursive acronym for “pip installs packages”), copiously documented online, yet very simple to use in most cases. pip install package finds the online version of package (usually on the huge PyPI repository, hosting more than 300,000 packages at the time of this writing), downloads it, and installs it for you (in a virtual environment, if one is active—see “Python Environments”). This books’ authors have been using that simple, powerful approach for well over 90% of their installs for quite a while now.

        Even if you have downloaded the package locally (say to /tmp/mypack), for whatever reason (maybe it’s not on PyPI, or you’re trying out an experimental version that is not yet there), pip can still install it for you: just run pip install --no-index --find-links=/tmp/mypack and pip does the rest.

        
          Python Wheels

          Python wheels are an archive format including structured metadata as well as Python code. Wheels offer an excellent way to package and distribute your Python packages, and setuptools (with the wheel extension, easily installed with pip install wheel) works seamlessly with them. Read all about them online and in Chapter “Distributing Extensions and Programs.”

        

      

      
        Python Environments

        A typical Python programmer works on several projects concurrently, each with its own list of dependencies (typically, third-party libraries and data files). When the dependencies for all projects are installed into the same Python interpreter, it is very difficult to determine which projects use which dependencies, and impossible to handle projects with conflicting versions of certain dependencies.

        Early Python interpreters were built on the assumption that each computer system would have “a Python interpreter” installed on it, to be used to run any Python program on that system. Operating system distributions started to include Python in their base installation, but, because Python has always been under active development, users often complained that they would like to use a version of the language more up-to-date than the one their operating system provided.

        Techniques arose to let multiple versions of the language be installed on a system, but installation of third-party software remained nonstandard and intrusive. This problem was eased by the introduction of the site-packages directory as the repository for modules added to a Python installation, but it was still not possible to maintain projects with conflicting requirements using the same interpreter.

        Programmers accustomed to command-line operations are familiar with the concept of a shell environment. A shell program running in a process has a current directory, variables that you can set with shell commands (very similar to a Python namespace), and various other pieces of process-specific state data. Python programs have access to the shell environment through os.environ.

        Various aspects of the shell environment affect Python’s operation, as mentioned in “Environment Variables.” For example, the PATH environment variable determines which program, exactly, executes in response to python and other commands. You can think of those aspects of your shell environment that affect Python’s operation as your Python environment. By modifying it you can determine which Python interpreter runs in response to the python command, which packages and modules are available under certain names, and so on.

        
          Leave the System’s Python to the System

          We recommend taking control of your Python environment. In particular, do not build applications on top of a system-distributed Python. Instead, install another Python distribution independently, and adjust your shell environment so that the python command runs your locally installed Python rather than the system’s Python.

        

        
          Enter the Virtual Environment

          The introduction of the pip utility created a simple way to install (and, for the first time, to uninstall) packages and modules in a Python environment. Modifying the system Python’s site-packages still requires administrative privileges, and hence so does pip (although it can optionally install somewhere other than site-packages). Installed modules are still visible to all programs.

          The missing piece is the ability to make controlled changes to the Python environment, to direct the use of a specific interpreter and a specific set of Python libraries. That is just what virtual environments (virtualenvs) give you. Creating a virtualenv based on a specific Python interpreter copies or links to components from that interpreter’s installation. Critically, though, each one has its own site-packages directory, into which you can install the Python resources of your choice.

          Creating a virtualenv is much simpler than installing Python, and requires far less system resources (a typical newly created virtualenv takes less than 20 MB). You can easily create and activate them on demand, and deactivate and destroy them just as easily. You can activate and deactivate a virtualenv as many times as you like during its lifetime, and if necessary use pip to update the installed resources. When you are done with it, removing its directory tree reclaims all storage occupied by the virtualenv. A virtualenv’s lifetime can be from minutes to months.

        

        
          What Is a Virtual Environment?

          A virtualenv is essentially a self-contained subset of your Python environment that you can switch in or out on demand. For a Python X.Y interpreter it includes, among other things, a bin directory containing a Python X.Y interpreter and a lib/pythonX.Y/site-packages directory containing pre-installed versions of easy-install, pip, pkg_resources, and setuptools. Maintaining separate copies of these important distribution-related resources lets you update them as necessary rather than forcing reliance on the base Python distribution.

          A virtualenv has its own copies of (on Windows), or symbolic links to (on other platforms), Python distribution files. It adjusts the values of sys.prefix and sys.exec_prefix, from which the interpreter and various installation utilities determine the location of some libraries. This means that pip can install dependencies in isolation from other environments, in the virtualenv’s site-packages directory. In effect, the virtualenv redefines which interpreter runs when you run the python command and which libraries are available to it, but leaves most aspects of your Python environment (such as the PYTHONPATH and PYTHONHOME variables) alone. Since its changes affect your shell environment, they also affect any subshells in which you run commands.

          With separate virtualenvs you can, for example, test two different versions of the same library with a project, or test your project with multiple versions of Python. You can also add dependencies to your Python projects without needing any special privileges, since you normally create your virtualenvs somewhere you have write permission.

          The modern way to deal with virtualenvs is the venv module of the standard library: just run python -m venv envpath.

        

        
          Creating and Deleting Virtual Environments

          The command python -m venv envpath creates a virtual environment (in the envpath directory, which it also creates if necessary) based on the Python interpreter used to run the command. You can give multiple directory arguments to create, with a single command, several virtual environments (running the same Python interpreter); you can then install different sets of dependencies in each virtualenv. venv can take a number of options, as shown in Table 6-1.

          
            Table 4-1. venv options
            
              	
                Option
              
              	
                Purpose
              
            

            
              	
                --clear
              
              	Removes any existing directory content before installing the virtual environment
            

            
              	
                --copies
              
              	Installs files by copying on the Unix-like platforms where using symbolic links is the default
            

            
              	
                --h or
              
              	Prints out a command-line summary and a list of available options
            

            
              	
                --help
              
              	
            

            
              	
                --system-site-packages
              
              	Adds the standard system site-packages directory to the environment’s search path, making modules already installed in the base Python available inside the environment
            

            
              	
                --symlinks
              
              	Installs files by using symbolic links on platforms where copying is the system default
            

            
              	
                --upgrade
              
              	Installs the running Python in the virtual environment, replacing whichever version had originally created the environment
            

            
              	
                --without-pip
              
              	Inhibits the usual behavior of calling ensurepip to bootstrap the pip installer utility into the environment
            

          

          The following Unix terminal session shows the creation of a virtualenv and the structure of the directory tree created. The listing of the bin subdirectory shows that this particular user, by default, uses an interpreter installed in /usr/local/bin.

          
            machine:~ user$ python3 -m venv /tmp/tempenv
machine:~ user$ tree -dL 4 /tmp/tempenv
/tmp/tempenv
|--- bin
|--- include
|___ lib
     |___ python3.5
          |___ site-packages
               |--- __pycache__
               |--- pip
               |--- pip-8.1.1.dist-info
               |--- pkg_resources
               |--- setuptools
               |___ setuptools-20.10.1.dist-info
11 directories
machine:~ user$ ls -l /tmp/tempenv/bin/
total 80
-rw-r--r-- 1 sh wheel 2134 Oct 24 15:26 activate
-rw-r--r-- 1 sh wheel 1250 Oct 24 15:26 activate.csh
-rw-r--r-- 1 sh wheel 2388 Oct 24 15:26 activate.fish
-rwxr-xr-x 1 sh wheel  249 Oct 24 15:26 easy_install
-rwxr-xr-x 1 sh wheel  249 Oct 24 15:26 easy_install-3.5
-rwxr-xr-x 1 sh wheel  221 Oct 24 15:26 pip
-rwxr-xr-x 1 sh wheel  221 Oct 24 15:26 pip3
-rwxr-xr-x 1 sh wheel  221 Oct 24 15:26 pip3.5
lrwxr-xr-x 1 sh wheel    7 Oct 24 15:26 python->python3
lrwxr-xr-x 1 sh wheel   22 Oct 24 15:26 python3->/usr/local/bin/python3

          
          Deleting the virtualenv is as simple as removing the directory in which it resides (and all subdirectories and files in the tree: rm -rf envpath in Unix-like systems). Ease of removal is a helpful aspect of using virtualenvs.

          The venv module includes features to help the programmed creation of tailored environments (e.g., by pre-installing certain modules in the environment or performing other post-creation steps). It is comprehensively documented online; we do not cover the API further in this book.

        

        
          Working with Virtual Environments

          To use a virtualenv you activate it from your normal shell environment. Only one virtualenv can be active at a time—activations don’t “stack” like function calls. Activation tells your Python environment to use the virtualenv’s Python interpreter and site-packages (along with the interpreter’s full standard library). When you want to stop using those dependencies, deactivate the virtualenv and your standard Python environment is once again available. The virtualenv directory tree continues to exist until deleted, so you can activate and deactivate it at will.

          Activating a virtualenv in Unix-based environments requires use of the source shell command so that the commands in the activation script make changes to the current shell environment. Simply running the script would mean its commands were executed in a subshell, and the changes would be lost when the subshell terminated. For bash and similar shells, you activate an environment located at path envpath with the command:

          
            source envpath/bin/activate

          
          Users of other shells are supported by scripts activate.csh and activate.fish located in the same directory. On Windows systems, use activate.bat:

          
            envpath/Scripts/activate.bat

          
          Activation does many things; most importantly:

          
            	
              Adds the virtualenv’s bin directory at the beginning of the shell’s PATH environment variable, so its commands get run in preference to anything of the same name already on the PATH

            

            	
              Defines a deactivate command to remove all effects of activation and return the Python environment to its former state

            

            	
              Modifies the shell prompt to include the virtualenv’s name at the start

            

            	
              Defines a VIRTUAL_ENV environment variable as the path to the virtualenv’s root directory (scripts can use this to introspect the virtualenv)

            

          

          As a result of these actions, once a virtualenv is activated, the python command runs the interpreter associated with that virtualenv. The interpreter sees the libraries (modules and packages) installed in that environment, and pip—now the one from the virtualenv, since installing the module also installed the command in the virtualenv’s bin directory—by default installs new packages and modules in the environment’s site-packages directory.

          Those new to virtualenvs should understand that a virtualenv is not tied to any project directory. It’s perfectly possible to work on several projects, each with its own source tree, using the same virtualenv. Activate it, then move around your filesystem as necessary to accomplish your programming tasks, with the same libraries available (because the virtualenv determines the Python environment).

          When you want to disable the virtualenv and stop using that set of resources, simply issue the command deactivate.

          This undoes the changes made on activation, removing the virtualenv’s bin directory from your PATH, so the python command once again runs your usual interpreter. As long as you don’t delete it, the virtualenv remains available for future use by repeating the invocation to activate it.

        

        
          Managing Dependency Requirements

          Since virtualenvs were designed to complement installation with pip, it should come as no surprise that pip is the preferred way to maintain dependencies in a virtualenv. Because pip is already extensively documented, we mention only enough here to demonstrate its advantages in virtual environments. Having created a virtualenv, activated it, and installed dependencies, you can use the pip freeze command to learn the exact versions of those dependencies:

          
            (tempenv) machine:- user$ pip freeze
appnope==0.1.0
decorator==4.0.10
ipython==5.1.0
ipython-genutils==0.1.0
pexpect==4.2.1
pickleshare==0.7.4
prompt-toolkit==1.0.8
ptyprocess==0.5.1
Pygments==2.1.3
requests==2.11.1
simplegeneric==0.8.1
six==1.10.0
traitlets==4.3.1
wcwidth==0.1.7

          
          If you redirect the output of this command to a file called filename, you can recreate the same set of dependencies in a different virtualenv with the command pip install -r filename.

          To distribute code for use by others, Python developers conventionally include a requirements.txt file listing the necessary dependencies. When you are installing software from the Python Package Index, pip installs the packages you request along with any indicated dependencies. When you’re developing software it’s convenient to have a requirements file, as you can use it to add the necessary dependencies to the active virtualenv (unless they are already installed) with a simple pip install -r requirements.txt.

          To maintain the same set of dependencies in several virtualenvs, use the same requirements file to add dependencies to each one. This is a convenient way to develop projects to run on multiple Python versions: create virtualenvs based on each of your required versions, then install from the same requirements file in each. While the preceding example uses exactly versioned dependency specifications as produced by pip freeze, in practice you can specify dependencies and version requirements in quite complex ways.

        

        
          Other environment management solutions

          Python virtual environments are focused on providing an isolated Python interpreter, into which you can install dependencies for one or more Python applications. The virtualenv package was the original way to create and manage virtualenvs. It has extensive facilities, including the ability to create environments from any available Python interpreter. Now maintained by the Python Packaging Authority team, a subset of its functionality has been extracted as the standard library venv module covered above, but virtualenv is worth learning about if you need more control.

          The pipenv package is another dependency manager for Python environments. It maintains virtual environments whose contents are recorded in a file named Pipfile. Much in the manner of similar Javascript tools, it provides deterministic environments through the use of a Pipfile.lock file, allowing the exact same dependencies to be deployed as in the original installation.

          The conda packages have a rather broader scope and can provide package, environment and dependency management for any language. An alternative miniconda package works exactly the same way but downloads only those packages it needs, while the full anaconda package pre-loads many hundreds of extension packages; the two are otherwise equivalent.

          conda is written in Python, and installs its own Python interpreter in the base environment. Whereas a standard Python virtualenv normally uses the Python interpreter with which it was created, Python itself (when it is included in the environment) is simply another dependency. This makes it practical to update the version of Python used in the environment if necessary. You can also, if you wish, use pip to install packages in a Python-based conda environment. conda can dump an environment’s contents as a YAML file, and you can use the file to replicate the environment elsewhere.

          Because of its additional flexibility, coupled with comprehensive open source support led by its originators Anaconda, Inc. (formerly Continuum), conda is widely used in academic environments, particularly in data science and engineering, artificial intelligence, and financial analytics. It installs software from what it calls channels. The default channel maintained by Anaconda contains a wide range of packages, and third parties maintain specialised channels such as the bioconda channel for bioinformatics software. There is a community-based conda-forge channel, open to anyone who wants to join up and add software. Signing up for an account on the anaconda.org site lets you create your own channel, and also to distribute software through the conda-forge channel.

        

        
          Best practices with virtualenvs

          There is remarkably little advice on how best to manage your work with virtualenvs, though there are several sound tutorials: any good search engine gives you access to the most current ones. We can, however, offer a modest amount of advice that we hope will help you to get the most out of them.

          When you are working with the same dependencies in multiple Python versions, it is useful to indicate the version in the environment name and use a common prefix. So for project mutex you might maintain environments called mutex_39 and mutex_310 for development under two different versions of Python. When it’s obvious which Python is involved (remember, you see the environment name in your shell prompt), there’s less risk of testing with the wrong version. You maintain dependencies using common requirements to control resource installation in both.

          Keep the requirements file(s) under source control, not the whole environment. Given the requirements file it’s easy to re-create a virtualenv, which depends only on the Python release and the requirements. You distribute your project, and let your consumers decide which version(s) of Python to run it on and create the appropriate virtual environment(s).

          Keep your virtualenvs outside your project directories. This avoids the need to explicitly force source code control systems to ignore them. It really doesn’t matter where else you store them.

          Your Python environment is independent of your projects’ location in the filesystem. You can activate a virtual environment and then switch branches and move around a change-controlled source tree to use it wherever convenient.

          To investigate a new module or package, create and activate a new virtualenv and then pip install the resources that interest you. You can play with this new environment to your heart’s content, confident in the knowledge that you won’t be installing unwanted dependencies into other projects.

          You may find that experiments in a virtualenv require installation of resources that aren’t currently project requirements. Rather than “pollute” your development environment, fork it: create a new virtualenv from the same requirements plus the testing functionality. Later, to make these changes permanent, use change control to merge your source and requirements changes back in from the fork.

          If you are so inclined, you can create virtual environments based on debug builds of Python, giving you access to a wealth of instrumentation information about the performance of your Python code (and, of course, of the interpreter itself).

          Developing your virtual environment itself requires change control, and the ease of virtualenv creation helps here too. Suppose that you recently released version 4.3 of a module, and you want to test your code with new versions of two of its dependencies. You could, with sufficient skill, persuade pip to replace the existing copies of dependencies in your existing virtualenv.

          It’s much easier, though, to branch your project using source control tools, update the requirements, and create an entirely new virtual environment based on the updated requirements. You still have the original virtualenv intact, and you can switch between virtualenvs to investigate specific aspects of any migration issues that might arise. Once you have adjusted your code so that all tests pass with the updated dependencies, you check in your code and requirement changes, and merge into version 4.4 to complete the update, advising your colleagues that your code is now ready for the updated versions of the dependencies.

          Virtual environments won’t solve all of a Python programmer’s problems. Tools can always be made more sophisticated, or more general. But, by golly, virtualenvs work, and we should take all the advantage of them that we can.

        

      

    1 Planned to be deleted in Python 3.12. 




      Chapter 5. Strings and Things

      
            A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 8th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      Python’s str type implements Unicode text strings with operators, built-in functions, methods, and dedicated modules. The somewhat similar bytes type represents arbitrary binary data as a sequence of bytes, also known as a bytestring or byte string. Many textual operations are possible on objects of either type: since these types are immutable, methods mostly create and return a new string unless returning the subject string unchanged. A mutable sequence of bytes can be represented as a bytearray, briefly introduced in “Built-In Types.”

      This chapter covers the methods available on these three types, in “Methods of String and Bytes Objects”; string formatting, in “String Formatting”; and the modules string (in “The string Module”) and pprint (in “The pprint Module”). Issues related specifically to Unicode are covered in “Unicode”. Formatted string literals are covered in “Formatted string literals”.

      
        Methods of String, Bytes and Bytearray Objects

        str, bytes and bytearray objects are sequences, as covered in “Strings”; of these, only bytearray objects are mutable. All immutable-sequence operations (repetition, concatenation, indexing, and slicing) apply to instances of all three types, returning a new object of the same type. Unless otherwise specified in Table 8-1 methods are present on objects of all three types. Methods of str, bytes and bytearray objects return values of the same type.

        Terms such as “letters,” “whitespace,” and so on, refer to the corresponding attributes of the string module, covered in “The string Module”. Although bytearray objects are mutable, their methods returning a bytearray result do not mutate the object but instead return a newly-created bytearray even when the result is the same as the subject string.

        For brevity the discussions below describe bytes and bytearray objects as bytes. Take care when mixing these types: while they are generally interoperable, the type of the result usually depends on the order of the operands.

          In Table 8-1, for conciseness, we use sys.maxsize for integer default values meaning, in practice, “any number, no matter how large.”

        
          Table 5-1. Significant string and bytes methods.
          
            	
              capitalize
            
            	s.capitalize()
 Returns a copy of s where the first character, if a letter, is uppercase, and all other letters, if any, are lowercase.
          

          
            	
              casefold
            
            	s.casefold()
 str only. Returns a string processed by the algorithm described in section 3.13 of the Unicode standard. This is similar to s.lower (described later in this list) but also takes into account equivalences such as that between the German 'ß' and 'ss', and is thus better for case-insensitive matching.
          

          
            	
              center
            
            	s.center(n, fillchar=' ')
 Returns a string of length max(len(s), n), with a copy of s in the central part, surrounded by equal numbers of copies of character fillchar on both sides (e.g., 'ciao'.center(2) is 'ciao' and 'x'.center(4,'_') is '_x__').
          

          
            	
              count
            
            	s.count(sub, start=0, end=sys.maxsize)
 Returns the number of nonoverlapping occurrences of substring sub in s[start:end].
          

          
            	
              decode
            
            	s.decode(encoding='utf-8', errors='strict')
 Not str. Returns a str object decoded from the bytes s according to the given encoding. errors specifies how to handle decoding errors: 'strict' cause errors to raise UnicodeError exceptions, 'ignore' ignores the malformed data, and 'replace' replaces them with question marks; see “Unicode” for details. Other values can be registered via codecs.register_error(), covered in Table 8-7.
          

          
            	
              encode
            
            	s.encode(encoding='utf-8', errors='strict')
 str only. Returns a bytes object obtained from s with the given encoding and error handling. See “Unicode” for more details.
          

          
            	
              endswith
            
            	s.endswith(suffix,start=0,end=sys.maxsize)
 Returns True when s[start:end] ends with string suffix; otherwise, False. suffix can be a tuple of strings, in which case endswith returns True when s[start:end] ends with any one of them.
          

          
            	
              expandtabs
            
            	s.expandtabs(tabsize=8)
 Returns a copy of s where each tab character is changed into one or more spaces, with tab stops every tabsize characters.
          

          
            	
              find
            
            	s.find(sub,start=0, end=sys.maxsize)
 Returns the lowest index in s where substring sub is found, such that sub is entirely contained in s[start:end]. For example, 'banana'.find('na') is 2, as is 'banana'.find('na',1), while 'banana'.find('na',3) is 4, as is 'banana'.find('na',-2). find returns -1 when sub is not found.
          

          
            	
              format
            
            	s.format(*args, **kwargs)
 str only. Formats the positional and named arguments according to formatting instructions contained in the string s. See “String Formatting” for further details.
          

          
            	
              format_map
            
            	s.format_map(mapping)
 str only. Formats the mapping argument according to formatting instructions contained in the string s. Equivalent to s.format(**mapping) but uses the mapping directly. See “String Formatting” for formatting details.
          

          
            	
              index
            
            	s.index(sub, start=0, end=sys.maxsize)
 Like find, but raises ValueError when sub is not found.
          

          
            	
              isalnum
            
            	s.isalnum()
 Returns True when len(s) is greater than 0 and all characters in s are letters or digits. When s is empty, or when at least one character of s is neither a letter nor a digit, isalnum returns False.
          

          
            	
              isalpha
            
            	s.isalpha()
 Returns True when len(s) is greater than 0 and all characters in s are letters. When s is empty, or when at least one character of s is not a letter, isalpha returns False.
          

          
            	
              isascii
            
            	Return True when the string is empty or all characters in the string are ASCII, False otherwise. ASCII characters have code points in the range U+0000-U+007F.
          

          
            	
              isdecimal
            
            	s.isdecimal()
 str only. Returns True when len(s) is greater than 0 and all characters in s can be used to form decimal-radix numbers. This includes Unicode characters defined as Arabic digits.a
          

          
            	
              isdigit
            
            	s.isdigit()
 Returns True when len(s) is greater than 0 and all characters in s are digits. When s is empty, or when at least one character of s is not a digit, isdigit returns False.
          

          
            	
              isidentifier
            
            	s.isidentifier()
 str only. Returns True when s is a valid identifier according to the Python language’s definition; keywords also satisfy the definition, so, for example, 'class'.isidentifier() returns True.
          

          
            	
              islower
            
            	s.islower()
 Returns True when all letters in s are lowercase. When s contains no letters, or when at least one letter of s is uppercase, islower returns False.
          

          
            	
              isnumeric
            
            	s.isnumeric()
 str only. Similar to s.isdigit(), but uses a broader definition of numeric characters that includes all characters defined as numeric in the Unicode standard (such as fractions).
          

          
            	
              isprintable
            
            	s.isprintable()
 str only. Returns True when all characters in s are spaces ('\x20') or are defined in the Unicode standard as printable. Because the null string contains no unprintable characters, ''.isprintable() returns True.
          

          
            	
              isspace
            
            	s.isspace()
 Returns True when len(s) is greater than 0 and all characters in s are whitespace. When s is empty, or when at least one character of s is not whitespace, isspace returns False.
          

          
            	
              istitle
            
            	s.istitle()
 Returns True when letters in s are titlecase: a capital letter at the start of each contiguous sequence of letters, all other letters lowercase (e.g., 'King Lear'.istitle() is True). When s contains no letters, or when at least one letter of s violates the titlecase condition, istitle returns False (e.g., '1900'.istitle() and 'Troilus and Cressida'.istitle() return False).
          

          
            	
              isupper
            
            	s.isupper()
 Returns True when all letters in s are uppercase. When s contains no letters, or when at least one letter of s is lowercase, isupper returns False.
          

          
            	
              join
            
            	s.join(seq)
 Returns the string obtained by concatenating the items of seq separated by copies of s (e.g., ''.join(str(x) for x in range(7)) is '0123456' and 'x'.join('aeiou') is 'axexixoxu').
          

          
            	
              ljust
            
            	s.ljust(n, fillchar=' ')
 Returns a string of length max(len(s),n), with a copy of s at the start, followed by zero or more trailing copies of character fillchar.
          

          
            	
              lower
            
            	s.lower()
 Returns a copy of s with all letters, if any, converted to lowercase.
          

          
            	
              lstrip
            
            	s.lstrip(x=string.whitespace)
 Returns a copy of s after removing any leading characters found in string x. For example, 'banana'.lstrip('ab') returns 'nana'.
          

          
            	
              removeprefix
            
            	||3.9++||s.removeprefix(prefix)
 When s begins with prefix returns the remainder of s, otherwise returns s
          

          
            	
              removesuffix
            
            	||3.9++||s.removesuffix(suffix)
 When s ends with suffix returns the rest of s, otherwise returns s
          

          
            	
              replace
            
            	s.replace(old,new,count=sys.maxsize)
 Returns a copy of s with the first count (or fewer, if there are fewer) nonoverlapping occurrences of substring old replaced by string new (e.g., 'banana'.replace('a', 'e', 2) returns 'benena').
          

          
            	
              rfind
            
            	s.rfind(sub,start=0,end=sys.maxsize)
 Returns the highest index in s where substring sub is found, such that sub is entirely contained in s[start:end]. rfind returns -1 if sub is not found.
            
          

          
            	
              rindex
            
            	s.rindex(sub,start=0,end=sys.maxsize)
 Like rfind, but raises ValueError if sub is not found.
            
          

          
            	
              rjust
            
            	s.rjust(n,fillchar=' ')
 Returns a string of length max(len(s),n), with a copy of s at the end, preceded by zero or more leading copies of character fillchar.
            
          

          
            	
              rstrip
            
            	s.rstrip(x=string.whitespace)
 Returns a copy of s, removing trailing characters that are found in string x. For example, 'banana'.rstrip('ab') returns 'banan'.
            
          

          
            	
              split
            
            	s.split(sep=None,maxsplit=sys.maxsize)
 Returns a list L of up to maxsplit+1 strings. Each item of L is a “word” from s, where string sep separates words. When s has more than maxsplit words, the last item of L is the substring of s that follows the first maxsplit words. When sep is None, any string of whitespace separates words (e.g., 'four score and seven years'.split(None,3) is ['four','score','and','seven years']).
 Note the difference between splitting on None (any string of whitespace is a separator) and splitting on ' ' (each single space character, not other whitespace such as tabs and newlines, and not strings of spaces, is a separator). For example:

              >>> x = 'a  b' # two spaces between a and b
>>> x.split() # or x.split(None) ['a', 'b']
>>> x.split(' ') ['a', '', 'b']

               In the first case, the two-spaces string in the middle is a single separator; in the second case, each single space is a separator, so that there is an empty string between the two spaces.

            
          

          
            	
              splitlines
            
            	s.splitlines(keepends=False)
 Like s.split('\n'). When keepends is true, however, the trailing '\n' is included in each item of the resulting list (except the last one, if s does not end with '\n').
            
          

          
            	
              startswith
            
            	s.startswith(prefix,start=0,end=sys.maxsize)
 Returns True when s[start:end] starts with string prefix; otherwise, False. prefix can be a tuple of strings, in which case startswith returns True when s[start:end] starts with any one of them.
            
          

          
            	
              strip
            
            	s.strip(x=string.whitespace)
 Returns a copy of s, removing both leading and trailing characters that are found in string x. For example, 'banana'.strip('ab') is 'nan'.
            
          

          
            	
              swapcase
            
            	s.swapcase()
 Returns a copy of s with all uppercase letters converted to lowercase and vice versa.
            
          

          
            	
              title
            
            	s.title()
 Returns a copy of s transformed to titlecase: a capital letter at the start of each contiguous sequence of letters, with all other letters (if any) lowercase.
            
          

          
            	
              translate
            
            	s.translate(table,delete=b’’)
 Returns a copy of s where characters found in table are translated or deleted. When s is a str, you cannot pass argument delete; table is a dict whose keys are Unicode ordinals; values are Unicode ordinals, Unicode strings, or None (to delete the corresponding character)—for example:
 tbl = {ord('a'):None, ord('n'):'ze'}
print('banana'.translate(tbl)) # prints: 'bzeze'
 When the value of s is bytes, table is a bytes object of length 256; the result of s.translate(t, d) is a bytes object with each item b of s omitted if b is one of the items of delete, otherwise changed to t[ord(b)].
 Each of bytes and str have a class method named maketrans which you can use to build tables suitable for the respective translate methods.
            
          

          
            	
              upper
            
            	s.upper()
 Returns a copy of s with all letters, if any, converted to uppercase.
            
          

        	a Note that this does not include the punctuation marks used as a radix, such as dot (.) and comma (,). 



      

      
        The string Module

        The string module supplies several useful string attributes:

        
          	
            ascii_letters
          

          	The string ascii_lowercase+ascii_uppercase

          	
            ascii_lowercase
          

          	The string 'abcdefghijklmnopqrstuvwxyz'

          	
            ascii_uppercase
          

          	The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

          	
            digits
          

          	The string '0123456789'

          	
            hexdigits
          

          	The string '0123456789abcdefABCDEF'

          	
            octdigits
          

          	The string '01234567'

          	
            punctuation
          

          	The string '!"#$%&\'()*+,-./:;<=>?@[\]^_'{|}~' (i.e., all ASCII characters that are deemed punctuation characters in the 'C' locale; does not depend on which locale is active)

          	
            printable
          

          	The string of those ASCII characters that are deemed printable (i.e., digits, letters, punctuation, and whitespace)

          	
            whitespace
          

          	A string containing all ASCII characters that are deemed whitespace: at least space, tab, linefeed, and carriage return, but more characters (e.g., certain control characters) may be present, depending on the active locale

        

        You should not rebind these attributes; the effects of doing so are undefined, since other parts of the Python library may rely on them.

        The module string also supplies the class Formatter, covered in “String Formatting”.

      

      
        String Formatting

        Python provides a flexible mechanism for formatting strings (but not byte strings: for those, see “Legacy String Formatting with %”). A format string is simply a string containing replacement fields enclosed in braces ({}), made up of a value part, a conversion part and a format specifier.

          





          The value part differs depending on the string type.

          
            	
              For formatted string literals, the value part is evaluated as a Python expression (see “Formatted string literals”); expressions cannot end in an exclamation mark.

            

            	
              For other strings the value part selects an argument or an element of an argument to the format method.

            

          

          The optional conversion part is an exclamation mark (!) followed by one of the letters s, r, or a.

          The optional format specifier begins with a colon (:) and determines how the converted value is rendered for interpolation in the format string in the place of the original replacement field.

          Here’s a simple formatted string literal example. Notice that text surrounding the replacement fields is copied through literally into the result: 

          
            >>> n = 10; s = 'zero', 'one', 'two', 'three'; i=2
>>> f'start {"-"*n} : {s[i]} end'
'start ---------- : two end'

          
          For other strings, the formatting operation is performed by a call to the string’s format method. In these cases the replacement field begins with a value part that selects an argument of the call. You can specify both positional and named arguments. A simple format method call is shown below:

          
            >>> "This is a {0}, {1}, type of {type}".format("large", "green", type="vase")
'This is a large, green type of vase'

          
          For simplicity, none of the replacement fields above contain a conversion part or a format.

          
            Values by expression evaluation

            Because these expressions occur inside formatted string literals, take care to avoid syntax errors when attempting to use value part expressions that themselves contain string quotes. With four different string quotes plus the ability to use escape sequences most things are possible, though admittedly readability can suffer.

          

          
            Values by argument lookup

            The argument selection mechanism can handle positional and named arguments. The simplest replacement field is the empty pair of braces ({}), representing an automatic positional argument specifier. Each such replacement field automatically refers to the value of the next positional argument to format:

            
              >>> 'First: {} second: {}'.format(1, 'two')
'First: 1 second: two'

            
            To repeatedly select an argument, or use it out of order, use the argument’s number to specify its position in the list of arguments (counting from zero):

            
              >>> 'Second: {1}, first: {0}'.format(42, 'two')
'Second: two, first: 42'

            
            You cannot mix automatic and numbered replacement fields: it’s an either-or choice.

            For named arguments, use argument names and if desired mix them with (automatic or numbered) positional arguments:

            
              >>> 'a: {a}, 1st: {}, 2nd: {}, a again: {a}'.format(1, 'two', a=3)
'a: 3, 1st: 1, 2nd: two, a again: 3'
>>> 'a: {a} first:{0} second: {1} first: {0}'.format(1, 'two', a=3)
'a: 3 first:1 second: two first: 1'

            
            If an argument is a sequence, you can use numeric indexes to select a specific element of the argument as the value to be formatted. This applies to both positional (automatic or numbered) and named arguments:

            
              >>> 'p0[1]: {[1]} p1[0]: {[0]}'.format(('zero', 'one'), ('two', 'three'))
'p0[1]: one p1[0]: two'
>>> 'p1[0]: {1[0]} p0[1]: {0[1]}'.format(('zero', 'one'), ('two', 'three'))
'p1[0]: two p0[1]: one'
>>> '{} {} {a[2]}'.format(1, 2, a=(5, 4, 3))'1 2 3'

            
            If an argument is a composite object, you can select its individual attributes as values to be formatted by applying attribute-access dot notation to the argument selector. Here is an example using complex numbers, which have real and imag attributes that hold the real and imaginary parts, respectively:

            
              >>> 'First r: {.real} Second i: {a.imag}'.format(1+2j, a=3+4j)
'First r: 1.0 Second i: 4.0'

            
            Indexing and attribute-selection operations can be used multiple times, if required.

          

          
            Value Conversion

            You may apply a default conversion to the value via one of its methods. You indicate this by following any selector with !s to apply the object’s __str__ method, !r for its __repr__ method, or !a for the ascii built-in.

            In the presence of a conversion part the converted value replaces the original value in the remainder of the formatting process.

          

          
            Value Formatting

            The formatting of the value (if any further formatting is required) is determined by a final (optional) portion of the replacement field, following a colon (:), known as the format specifier. The absence of a colon in the replacement field means that the converted value is used with no further formatting. Format specifiers may include one or more of the following: fill, alignment, sign, radix indicator, width, comma separation, precision, type.

            
              Alignment, with optional (preceding) fill

              If alignment is required the formatted value is filled to the correct field width. The default fill character is the space, but an alternative fill character (which may not be an opening or closing brace) can, if required, precede the alignment indicator. See Table 8-2.

              
                Table 5-2. Alignment indicators
                
                  	
                    Character
                  
                  	
                    Significance as alignment indicator
                  
                

                
                  	
                    '<'
                  
                  	Align value on left of field
                

                
                  	
                    '>'
                  
                  	Align value on right of field
                

                
                  	
                    '^'
                  
                  	Align value in the center of the field
                

                
                  	
                    '='
                  
                  	Only for numeric types: add fill characters between the sign and the first digit of the numeric value
                

              

              When no alignment is specified, most values are left-aligned, except that numeric values are right-aligned. Unless a field width is specified later in the format specifier, no fill characters are added, whatever the fill and alignment may be.

            

            
              Optional sign indication

              For numeric values only, you can indicate how positive and negative numbers are differentiated by optionally including a sign indicator. See Table 8-3.

              
                Table 5-3. Sign indicators
                
                  	
                    Character
                  
                  	
                    Significance as sign indicator
                  
                

                
                  	
                    '+'
                  
                  	Insert '+' as sign for positive numbers; '-' as sign for negative numbers
                

                
                  	
                    '-'
                  
                  	Insert '-' as sign for negative numbers; do not insert any sign for positive numbers (default behavior if no sign indicator is included)
                

                
                  	
                    ' '
                  
                  	Insert ' ' as sign for positive numbers; '-' as sign for negative numbers
                

              

            

            
              Radix indicator

              For numeric integer formats only, you can include a radix indicator, the '#' character. If present, this indicates that the digits of binary-formatted numbers are preceded by '0b', those of octal-formatted numbers by '0o', and those of hexadecimal-formatted numbers by '0x'. For example, '{:x}'.format(23) is '17', while '{:#x}'.format(23) is '0x17'.

            

            
              Field width

              You can specify the width of the field to be printed. If the width specified is less than the length of the value, the length of the value is used (no truncation). If alignment is not specified, the value is left-justified (except numbers, which are right-justified):

              
                >>> s = 'a string'
>>> '{^i2s}'.format(s)' a string '
>>> '{:.>12s}'.format(s)'....a string'

              
              The field width can be a format argument too:

              
                >>> '{:.>{}s}'.format(s, 20)
'............a string'

              
            

            
              Digit grouping

              For numeric values only in decimal (default) format type, you can insert either a comma (,) or an underscore (_) to request that each group of three digits in the result be separated by that character. For example:

              
                print('{:,}'.format(12345678))# prints 12,345,678

              
              This behavior ignores system locale; for a locale-aware use of appropriate digit grouping and decimal point character, see format type 'n' in Table 8-4.

            

            
              

            

            
              Precision specification

              The precision (e.g., .2) has different meanings for different format types (see the following section), with .6 as the default for most numeric formats. For the f and F format types, it specifies the number of decimal digits to which the value should be rounded in formatting; for the g and G format types, it specifies the number of significant digits to which the value should be rounded; for non-numeric values, it specifies truncation of the value to its leftmost characters before formatting.

              
                >>> s = 'a string'
>>> x = 1.12345
>>> 'as f: {:.4f}'.format(x)
'as f: 1.1235'
>>> 'as g: {:.4g}'.format(x)
'as g: 1.123'
>>> 'as s: {:.6s}'.format(s)
'as s: a stri'

              
            

            
              Format type

              The format specification ends with an optional format type, which determines how the value gets represented in the given width and at the given precision. When the format type is omitted, the value being formatted applies a default format type.

              The s format type is used to format Unicode strings.

              Integer numbers have a range of acceptable format types, listed in Table 8-4.

              
                Table 5-4. Table caption to come
                
                  	
                    Format type
                  
                  	
                    Formatting description
                  
                

                
                  	
                    'b'
                  
                  	Binary format—a series of ones and zeros
                

                
                  	
                    'c'
                  
                  	The Unicode character whose ordinal value is the formatted value
                

                
                  	
                    'd'
                  
                  	Decimal (the default format type)
                

                
                  	
                    'o'
                  
                  	Octal format—a series of octal digits
                

                
                  	'x' or 'X'
                  	Hexadecimal format—a series of hexadecimal digits, with the letters, respectively, in lower- or uppercase
                

                
                  	
                    'n'
                  
                  	Decimal format, with locale-specific separators (commas in the UK and US) when system locale is set
                

              

              Floating-point numbers have a different set of format types, shown in Table 8-5.

              
                Table 5-5. Table caption to come
                
                  	
                    Format type
                  
                  	
                    Formatting description
                  
                

                
                  	'e' or 'E'
                  	Exponential format—scientific notation, with an integer part between one and nine, using 'e' or 'E' just before the exponent
                

                
                  	'f' or 'F'
                  	Fixed-point format with infinities ('inf') and nonnumbers ('nan') in lower- or uppercase
                

                
                  	'g' or 'G'
                  	General format—uses a fixed-point format when possible, otherwise exponential format; uses lower- or uppercase representations for 'e', 'inf', and 'nan', depending on the case of the format type
                

                
                  	
                    'n'
                  
                  	Like general format, but uses locale-specific separators, when system locale is set, for groups of three digits and decimal points
                

                
                  	
                    '%'
                  
                  	Percentage format—multiplies the value by 100 and formats it as a fixed-point followed by '%'
                

              

              When no format type is specified, a float uses the 'g' format, with at least one digit after the decimal point and a default precision of 12.

              
                >>> n = [3.1415, -42, 1024.0]
>>> for num in n:
...     '{:>+9,.2f}'.format(num)
... 
'    +3.14'
'   -42.00'
'+1,024.00'

              
            

            
              Nested format specifications

              In some cases you want to include an argument to format to help determine the precise format of another argument: you can use nested formatting to achieve this. For example, to format a string in a field four characters wider than the string itself, you can pass a value for the width to format, as in:

              
                >>> s = 'a string'
>>> '{0:>{1}s}'.format(s, len(s)+4)
'    a string'
>>> '{0:_^{1}s}'.format(s, len(s)+4)
'__a string__'

              
              With some care, you can use width specification and nested formatting to print a sequence of tuples into well-aligned columns. For example:

              
                def columnar strings(str_seq, widths):
    for cols in str_seq:
        row = ['{c:{w}.{w}s}'.format(c=c, w=w)
               	for c, w in zip(cols, widths)]
        print(' '.join(row))

              
              ('{c:{w}.{w}s}'.format(c=c, w=w) can be simplified to f'{c:{w}.{w}s}', as covered in “Formatted String Literals”.) Given this function, the following code:

              
                c = [
        'four score and'.split(),
        'seven years ago'.split(),
        'our forefathers brought'.split(),
        'forth on this'.split(),
    ]
print(columnar_strings(c, (8, 8, 8)))

              
              prints:

              
                four     score    and
seven    years    ago
our      forefathers brought
forth    on       this

              
            

            
              Formatting of user-coded classes

              Values are ultimately formatted by a call to their __format__ method with the format specifier as an argument. Built-in types either implement their own method or inherit from object, whose format method only accepts an empty string as an argument.

              
                >>> object().__format__('')
'<object object at 0x110045070>'
>>> math.pi.__format__('18.6')
'           3.14159'

              
              You can use this knowledge to implement an entirely different formatting mini-language of your own, should you so choose. The following simple example demonstrates the passing of format specifications and the return of a (constant) formatted string result. The interpretation of the format specification is under your control, and you may choose to implement whatever formatting notation you choose.

              
                >>> class S:
...     def __init__(self, value):
...         self.value = value
...     def __format__(self, fstr):
...         match fstr:
...             case "U":
...                 return self.value.upper()
...             case 'L':
...                 return self.value.lower()
...             case 'T':
...                 return self.value.title()
...             case _:
...                 return ValueError(f’Unrecognised format code {fstr!r}’)
...
>>> my_s = S('random string')
>>> f'{my_s:L}, {my_s:U}, {my_s:T}'
'random string, RANDOM STRING, Random String'

              
              The return value of the __format__ method is substituted for the replacement field in the output of the call to format, allowing any desired interpretation of the format string.

              To help you format your objects more easily, the string module provides a Formatter class with many helpful methods for handling formatting tasks. See the documentation for Formatter in the online docs.

            

          

          
            Formatted String Literals

            This feature helps use the formatting capabilities just described. It uses the same formatting syntax, but lets you specify expression values inline rather than through parameter substitution. Instead of argument specifiers, f-strings use expressions, evaluated and formatted as specified. For example, instead of:

            
              >>> name = 'Dawn'
>>> print('{name!r} is {l} characters long'
           .format(name=name, l=len(name)))
'Dawn' is 4 characters long

            
            you can use the more concise form:

            
              >>> print(f'{name!r} is {len(name)} characters long')
'Dawn' is 4 characters long

            
            You can use nested braces to specify components of formatting expressions:

            
              >>> for width in 8, 11:
...     for precision in 2, 3, 4, 5:
...         print(f'{3.14159:{width}.{precision}}')
...
     3.1
    3.14
   3.142
  3.1416
        3.1
       3.14
      3.142
     3.1416

            
            Do remember, though, that these string literals are not constants—they evaluate each time a statement containing them runs, causing runtime overhead.

            
              Debug printing with formatted string literals

              ||3.8++|| As a convenience for debugging, the last non-blank character of the value expression in a formatted string literal can be followed by an equals sign (=), optionally surrounded by spaces. In this case the text of the expression itself and the equals sign, including any leading and trailing spaces, is output before the value. If no format is specified the interpreter uses the repr() of the value as output, otherwise the str() of the value is used unless a !r value conversion is specified.

              
                >>> f'{a*s=}'
"a*s='*-*-*-*-*-*-*-*-*-*-*-*-'"
>>> f'{a*s = :30}'
'a*s = *-*-*-*-*-*-*-*-*-*-*-*-      '

              
              Note that this form is only available in formatted string literals.

            

          

          
            Legacy String Formatting with %

            A legacy form of string formatting expression in Python has the syntax:

            
              format % values

            
            where format is a string, bytes or bytearray containing format specifiers and values are the values to format, usually as a tuple (in this book we cover only the subset of this legacy feature, the format specifier, that you must know to properly use the logging module, covered in “The logging package”). Unlike Python’s newer formatting capabilities, you can use %-formatting with bytes and bytearray objects.

            The equivalent use in logging would be, for example:

            
              logging.info(format, *values)

            
            with the values coming as positional arguments after the first, format one.

            The legacy string-formatting approach has roughly the same set of features as the C language’s printf and operates in a similar way. Each format specifier is a substring of format that starts with a percent sign (%) and ends with one of the conversion characters shown in Table 8-6.

            
              Table 5-6. String-formatting conversion characters
              
                	
                  Character
                
                	
                  Output format
                
                	
                  Notes
                
              

              
                	
                  d, i
                
                	Signed decimal integer
                	Value must be a number.
              

              
                	
                  u
                
                	Unsigned decimal integer
                	Value must be a number.
              

              
                	
                  o
                
                	Unsigned octal integer
                	Value must be a number.
              

              
                	
                  x
                
                	Unsigned hexadecimal integer (lowercase letters)
                	Value must be a number.
              

              
                	
                  X
                
                	Unsigned hexadecimal integer (uppercase letters)
                	Value must be a number.
              

              
                	
                  e
                
                	Floating-point value in exponential form (lowercase e for exponent)
                	Value must be a number.
              

              
                	
                  E
                
                	Floating-point value in exponential form (uppercase E for exponent)
                	Value must be a number.
              

              
                	
                  f, F
                
                	Floating-point value in decimal form
                	Value must be a number.
              

              
                	
                  g, G
                
                	Like e or E when exp is >=4 or < precision; otherwise, like f or F
                	exp is the exponent of the number being converted.
              

              
                	
                  a
                
                	String
                	Converts any value with ascii.
              

              
                	
                  r
                
                	String
                	Converts any value with repr.
              

              
                	
                  s
                
                	String
                	Converts any value with str.
              

              
                	
                  %
                
                	Literal % character
                	Consumes no value.
              

            

            The a, r and s conversion characters are the ones most often used with the logging module. Between the % and the conversion character, you can specify a number of optional modifiers, as we’ll discuss shortly.

            What is logged with a formatting expression is format, where each format specifier is replaced by the corresponding item of values converted to a string according to the specifier. Here are some simple examples:

            
              import logging
logging.getLogger().setLevel(logging.INFO)
x = 42
y = 3.14
z = 'george'
logging.info('result = %d', x)        # logs: result = 42
logging.info('answers: %d %f', x, y)  # logs: answers: 42 3.140000
logging.info('hello %s', z)           # logs: hello george

            
          

          
            Format Specifier Syntax

            A format specifier can include modifiers to control how the corresponding item in values is converted to a string. The components of a format specifier, in order, are:

            
              	
                The mandatory leading % character that marks the start of the specifier

              

              	
                Zero or more optional conversion flags:

                
                  	
                    # The conversion uses an alternate form (if any exists for its type).

                  

                  	
                    0 The conversion is zero-padded.

                  

                  	
                    - The conversion is left-justified.

                  

                  	
                    A space Negative numbers are signed, a space is placed before a positive number.

                  

                  	
                    + A numeric sign (+ or -) is placed before any numeric conversion.

                  

                

              

              	
                An optional minimum width of the conversion: one or more digits, or an asterisk (*), meaning that the width is taken from the next item in values

              

              	
                An optional precision for the conversion: a dot (.) followed by zero or more digits, or by a *, meaning that the precision is taken from the next item in values

              

              	
                A mandatory conversion type from Table 8-6

              

            

            Each format specifier corresponds to an item in values by position, and there must be exactly as many values as format has specifiers (plus one extra for each width or precision given by *). When a width or precision is given by *, the * consumes one item in values, which must be an integer and is taken as the number of characters to use as width or precision of that conversion.

            
              When to use %r (or %a)

              Most often, the format specifiers in your format string are all %s; occasionally, you’ll want to ensure horizontal alignment on the output (for example, in a right-justified, maybs-truncated space of exactly 6 characters, in which case you’d use %6.6s). However, there is an important special case for %r or %a.

              
                Always Use %r (or %a) to Log Possibly Erroneous Strings

                When you’re logging a string value that might be erroneous (for example, the name of a file that is not found), don’t use %s: when the error is that the string has spurious leading or trailing spaces, or contains some nonprinting characters such as \b, %s can make this hard for you to spot by studying the logs. Use %r or %a instead, so that all characters are clearly shown, possibly via escape sequences.

              

            

          

      

      
        Text Wrapping and Filling

        The textwrap module supplies a class and a few functions to format a string by breaking it into lines of a given maximum length. To fine-tune the filling and wrapping, you can instantiate the TextWrapper class supplied by textwrap and apply detailed control. Most of the time, however, one of the these functions exposed by textwrap suffices:

        
          
            	
              wrap
            
            	wrap(s,width=70)
 Returns a list of strings (without terminating newlines), each no longer than width characters. s.wrap also supports other named arguments (equivalent to attributes of instances of class TextWrapper); for such advanced uses, see the online docs.
          

          
            	
              fill
            
            	fill(s,width=70)
 Returns a single multiline string equal to '\n'.join(wrap(s,width)).
          

          
            	
              dedent
            
            	dedent(s)
 Takes a multiline string and returns a copy in which all lines have had the same amount of leading whitespace removed, so that some lines have no leading whitespace.
          

        

      

      
        The pprint Module

        The pprint module pretty-prints complicated data structures, with formatting that strives to be more readable than that supplied by the built-in function repr (covered in Table 7-2). To fine-tune the formatting, you can instantiate the PrettyPrinter class supplied by pprint and apply detailed control, helped by auxiliary functions also supplied by pprint. Most of the time, however, one of two functions exposed by pprint suffices:

        
          
            	
              pformat
            
            	pformat(obj)
 Returns a string representing the pretty-printing of obj.
          

          
            	
              pprint
            
            	pprint(obj, stream=sys.stdout)
 Outputs the pretty-printing of obj to open-for-writing file object stream, with a terminating newline.
 The following statements do exactly the same thing:print(pprint.pformat(x)) pprint.pprint(x)

 Either of these constructs is roughly the same as print(x) in many cases, for example for a container that can be displayed within a single line. However, with something like x=list(range(30)), print(x) displays x in two lines, breaking at an arbitrary point, while using the module pprint displays x over 30 lines, one line per item. Use pprint when you prefer the module’s specific display effects to the ones of normal string representation.
          

        

      

      
        The reprlib Module

        The reprlib module supplies an alternative to the built-in function repr (covered in Table 7-2), with limits on length for the representation string. To fine-tune the length limits, you can instantiate or subclass the Repr class supplied by the module and apply detailed control. Most of the time, however, the function exposed by the module suffices.

        
          
            	
              repr
            
            	repr(obj)
 Returns a string representing obj, with sensible limits on length.
          

        

      

      
        Unicode

        To convert bytestrings into Unicode strings use the decode method of bytestrings. The conversion must always be explicit, and is performed using an auxiliary object known as a codec (short for coder-decoder). A codec can also convert Unicode strings to bytestrings using the encode method of strings. To identify a codec, pass the codec name to decode, or encode. When you pass no codec name Python uses a default encoding, normally 'utf8'.

        Every conversion has a parameter errors, a string specifying how conversion errors are to be handled. Sensibly, the default is 'strict', meaning any error raises an exception.

        When errors is 'replace', the conversion replaces each character causing errors with '?' in a bytestring result, with u'\ufffd' in a Unicode result. When errors is 'ignore', the conversion silently skips characters causing errors. When errors is 'xmlcharrefreplace', the conversion replaces each character causing errors with the XML character reference representation of that character in the result. You may code your own function to implement a conversion error handling strategy and register it under an appropriate name by calling codecs.register_error, covered in Table 8-7 below.

        
          The codecs Module

          The mapping of codec names to codec objects is handled by the codecs module. This module also lets you develop your own codec objects and register them so that they can be looked up by name, just like built-in codecs. The codecs module also lets you look up any codec explicitly, obtaining the functions the codec uses for encoding and decoding, as well as factory functions to wrap file-like objects. Such advanced facilities are rarely used, and we do not cover them in this book.

          The codecs module, together with the encodings package of the standard Python library, supplies built-in codecs useful to Python developers dealing with internationalization issues. Python comes with over 100 codecs; a list of these codecs, with a brief explanation of each, is in the online docs. It’s not good practice to install a codec as the site-wide default in the module sitecustomize; rather, the preferred usage is to always specify the codec by name whenever converting between byte and Unicode strings. A popular codec in Western Europe is 'latin-1', a fast, built-in implementation of the ISO 8859-1 encoding that offers a one-byte-per-character encoding of special characters found in Western European languages; beware that it lacks the Euro currency character '€'-- if you need that, use 'iso8859-15'.

          The codecs module also supplies codecs implemented in Python for most ISO 8859 encodings, with codec names from 'iso8859-1' to 'iso8859-15'. On Windows systems only, the codec named 'mbcs' wraps the platform’s multibyte character set conversion procedures. The codecs module also supplies various code pages with names from 'cp037' to 'cp1258', and Unicode standard encodings 'utf-8' (likely to be most often the best choice, thus recommended, and the default) and 'utf-16' (which has specific big-endian and little-endian variants: 'utf-16-be' and 'utf-16-le'). For use with UTF-16, codecs also supplies attributes BOM_BE and BOM_LE, byte-order marks for big-endian and little-endian machines, respectively, and BOM, the byte-order mark for the current platform.

          The codecs module also supplies a function to let you register your own conversion-error-handling functions, as described in Table 8-7.

          
            Table 5-7. Table caption to come
            
              	
                register_error
              
              	register_error(name, func)
 name must be a string. func must be callable with one argument e that’s an instance of exception UnicodeDecodeError, and must return a tuple with two items: the Unicode string to insert in the converted-string result and the index from which to continue the conversion (the latter is normally e.end). The function’s body can use e.encoding, the name of the codec of this conversion, and e.object[e.start:e.end], the substring that caused the conversion error.
            

          

        

        
          The unicodedata Module

          The unicodedata module supplies easy access to the Unicode Character Database. Given any Unicode character, you can use functions supplied by unicodedata to obtain the character’s Unicode category, official name (if any), and other relevant information. You can also look up the Unicode character (if any) that corresponds to a given official name. 

          
>>> unicodedata.name("🌈")
'RAINBOW'
>>> unicodedata.name("Ⅵ")
'ROMAN NUMERAL SIX'
>>> int("Ⅵ")
ValueError: invalid literal for int() with base 10: 'Ⅵ'
>>> unicodedata.numeric("Ⅵ")  # use unicodedata to get the numeric value
6.0
>>> unicodedata.lookup("MUSICAL SCORE")
§'🎼'

          
        

      

    


      Chapter 6. Regular Expressions

      
      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 9th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      Regular expressions (REs) let you specify pattern strings and perform searches and substitutions. Regular expressions are not easy to master, but they can be a powerful tool for processing text. Python offers rich regular expression functionality through the built-in re module. In this chapter, we thoroughly present all of Python’s REs.

      
        Regular Expressions and the re Module

        A regular expression (RE) is built from a string that represents a pattern. With RE functionality, you can examine any string and check which parts of the string, if any, match the pattern.

        The re module supplies Python’s RE functionality. The compile function builds an RE object from a pattern string and optional flags. The methods of an RE object look for matches of the RE in a string or perform substitutions. The re module also exposes functions equivalent to an RE object’s methods, but with the RE’s pattern string as the first argument.

        REs can be difficult to master, and this book does not purport to teach them; we cover only the ways in which you can use REs in Python. For general coverage of REs, we recommend the book Mastering Regular Expressions, by Jeffrey Friedl (O’Reilly), offering thorough coverage of REs at both tutorial and advanced levels. Many tutorials and references on REs can also be found online, including an excellent, detailed tutorial in Python’s online docs. Sites like Pythex and regex101 let you test your REs interactively.

        
          REs and bytes Versus str

          REs in Python work in two ways, depending on the type of the object being matched: when applied to str instances, an RE matches accordingly (for example, a Unicode character c is deemed to be “a letter” if 'LETTER' in unicodedata.name(c)); when applied to bytes instances, an RE matches in terms of ASCII (for example, a byte c is deemed to be “a letter” if c in string.ascii_letters). For example:

          
            import re
print(re.findall(r'\w+', 'cittá'))# prints ['cittá']
print(re.findall(rb'\w+', 'cittá'.encode())) # prints [b'citt']

          
        

        
          Pattern-String Syntax

          The pattern string representing a regular expression follows a specific syntax:

          
            	
              Alphabetic and numeric characters stand for themselves. An RE whose pattern is a string of letters and digits matches the same string.

            

            	
              Many alphanumeric characters acquire special meaning in a pattern when they are preceded by a backslash (\).

            

            	
              Punctuation works the other way around: self-matching when escaped, special meaning when unescaped.

            

            	
              The backslash character is matched by a repeated backslash (i.e., pattern \\).

            

          

          Since RE patterns often contain backslashes, it’s best to always specify them using raw string literal form (covered in “Strings”). Pattern elements (such as r'\t', equivalent to the string literal '\\t') do match the corresponding special characters (in this case, the tab character '\t'); so, you can use a raw string literal even when you need a literal match for such special characters.

          Table 9-1 lists the special elements in RE pattern syntax. The exact meanings of some pattern elements change when you use optional flags, together with the pattern string, to build the RE object. The optional flags are covered in “Optional Flags”.

          
            Table 6-1. RE pattern syntax
            
              	
                Element
              
              	
                Meaning
              
            

            
              	
                .
              
              	Matches any single character except \n (if DOTALL, also matches \n)
            

            
              	
                ^
              
              	Matches start of string (if MULTILINE, also matches right after \n)
            

            
              	
                $
              
              	Matches end of string (if MULTILINE, also matches right before \n)
            

            
              	
                *
              
              	Matches zero or more cases of the previous RE; greedy (match as many as possible)
            

            
              	
                +
              
              	Matches one or more cases of the previous RE; greedy (match as many as possible)
            

            
              	
                ?
              
              	Matches zero or one case of the previous RE; greedy (match one if possible)
            

            
              	*?, +?, ??
              	Non-greedy versions of *, +, and ?, respectively (match as few as possible)
            

            
              	{m}
              	Matches m cases of the previous RE
            

            
              	{m, n}
              	Matches between m and n cases of the previous RE; m or n (or both) may be omitted, defaulting to m=0 and n=infinity (greedy)
            

            
              	{m, n}?
              	Matches between m and n cases of the previous RE (non-greedy)
            

            
              	
                [...]
              
              	Matches any one of a set of characters contained within the brackets
            

            
              	
                [^...]
              
              	Matches one character not contained within the brackets after the caret ^
            

            
              	
                |
              
              	Matches either the preceding RE or the following RE
            

            
              	
                (...)
              
              	Matches the RE within the parentheses and indicates a group
            

            
              	
                (?aiLmsux)
              
              	Alternate way to set optional flags; no effect on matcha
            

            
              	
                (?:...)
              
              	Like (...) but does not capture the matched characters in a group
            

            
              	
                (?P<
                id
                >...)
              
              	Like (...) but the group also gets the name id
            

            
              	
                (?P=
                id
                )
              
              	Matches whatever was previously matched by group named id
            

            
              	
                (?#...)
              
              	Content of parentheses is just a comment; no effect on match
            

            
              	
                (?=...)
              
              	Lookahead assertion: matches if RE ... matches what comes next, but does not consume any part of the string
            

            
              	
                (?!...)
              
              	Negative lookahead assertion: matches if RE ... does not match what comes next, and does not consume any part of the string
            

            
              	
                (?<=...)
              
              	Lookbehind assertion: matches if there is a match ending at the current position for RE ... (... must match a fixed length)
            

            
              	
                (?<!...)
              
              	Negative lookbehind assertion: matches if there is no match ending at the current position for RE ... (... must match a fixed length)
            

            
              	\ number
              	Matches whatever was previously matched by group numbered number (groups are automatically numbered left to right, from 1 to 99)
            

            
              	
                \A
              
              	Matches an empty string, but only at the start of the whole string
            

            
              	
                \b
              
              	Matches an empty string, but only at the start or end of a word (a maximal sequence of alphanumeric characters; see also \w)
            

            
              	
                \B
              
              	Matches an empty string, but not at the start or end of a word
            

            
              	
                \d
              
              	Matches one digit, like the set [0-9] (in Unicode mode, many other Unicode characters also count as “digits” for \d, but not for [0-9])
            

            
              	
                \D
              
              	Matches one non-digit, like the set [^0-9] (in Unicode mode, many other Unicode characters also count as “digits” for \D, but not for [^0-9])
            

            
              	
                \s
              
              	Matches a whitespace character, like the set [\t\n\r\f\v]
            

            
              	
                \S
              
              	Matches a non-whitespace character, like the set [^\t\n\r\f\v]
            

            
              	
                \w
              
              	Matches one alphanumeric character; unless in Unicode mode, or LOCALE or UNICODE is set, \w is like [a-zA-Z0-9_]
            

            
              	
                \W
              
              	Matches one non-alphanumeric character, the reverse of \w
            

            
              	
                \Z
              
              	Matches an empty string, but only at the end of the whole string
            

            
              	
                \\
              
              	Matches one backslash character
            

          	a Always place the (?...) construct for setting flags, if any, at the start of the pattern, for readability; placing it elsewhere raises a DeprecationWarning. 



          Using a '\' character followed by an alphabetic character not listed here or in Table 3-1 raises a re.error exception.

        

        
          Common Regular Expression Idioms

          
            Always Use r’...’ Syntax for RE Pattern Literals

            Use raw string literals for all RE pattern literals, and for them only: this ensures you’ll never forget to escape a backslash (\), and improves code readability as it makes your RE pattern literals stand out.

          

          .* as a substring of a regular expression’s pattern string means “any number of repetitions (zero or more) of any character.” In other words, .* matches any substring of a target string, including the empty substring. .+ is similar, but matches only a nonempty substring. For example:

          
            r'pre.*post'

          
          matches a string containing a substring 'pre' followed by a later substring 'post', even if the latter is adjacent to the former (e.g., it matches both 'prepost' and 'pre23post'). On the other hand:

          
            r'pre.+post'

          
          matches only if 'pre' and 'post' are not adjacent (e.g., it matches 'pre23post' but does not match 'prepost'). Both patterns also match strings that continue after the 'post'. To constrain a pattern to match only strings that end with 'post', end the pattern with \Z. For example:

          
            r'pre.*post\Z'

          
          matches 'prepost', but not 'preposterous'.

          All of these examples are greedy, meaning that they match the substring beginning with the first occurrence of 'pre' all the way to the last occurrence of 'post'. When you care about what part of the string you match, you may want to specify nongreedy matching, meaning to match the substring beginning with the first occurrence of 'pre' but only up to the first following occurrence of 'post'.

          For example, when the string is 'preposterous and post facto', the greedy RE pattern r'pre.*post' matches the substring 'preposterous and post'; the nongreedy variant r'pre.*?post' matches just the substring 'prepost'.

          Another frequently used element in RE patterns is \b, which matches a word boundary. To match the word 'his' only as a whole word and not its occurrences as a substring in such words as 'this' and 'history', the RE pattern is:

          
            r'\bhis\b'

          
          with word boundaries both before and after. To match the beginning of any word starting with 'her', such as 'her' itself and 'hermetic', but not words that just contain 'her' elsewhere, such as 'ether' or 'there', use:

          
            r'\bher'

          
          with a word boundary before, but not after, the relevant string. To match the end of any word ending with 'its', such as 'its' itself and 'fits', but not words that contain 'its' elsewhere, such as 'itsy' or 'jujitsu', use:

          
            r'its\b'

          
          with a word boundary after, but not before, the relevant string. To match whole words thus constrained, rather than just their beginning or end, add a pattern element \w* to match zero or more word characters. To match any full word starting with 'her', use:

          
            r'\bher\w*'

          
          To match just the first three letters of any word starting with 'her', but not the word 'her' itself, use a negative word boundary \B:

          
            r'\bher\B'

          
          To match any full word ending with 'its', including 'its' itself, use:

          
            r'\w*its\b'

          
        

        
          Sets of Characters

          You denote sets of characters in a pattern by listing the characters within brackets ([]). In addition to listing characters, you can denote a range by giving the first and last characters of the range separated by a hyphen (-). The last character of the range is included in the set, differently from other Python ranges. Within a set, special characters stand for themselves, except \, ], and -, which you must escape (by preceding them with a backslash) when their position is such that, if not escaped, they would form part of the set’s syntax. You can denote a class of characters within a set by escaped-letter notation, such as \d or \S. \b in a set means a backspace character (chr(8)), not a word boundary. If the first character in the set’s pattern, right after the [, is a caret (^), the set is complemented: such a set matches any character except those that follow ^ in the set pattern notation.

          A frequent use of character sets is to match “a word”, using a definition of which characters can make up a word that differs from \w’s default (letters and digits). To match a word of one or more characters, each of which can be an ASCII letter, an apostrophe, or a hyphen, but not a digit (e.g., "Finnegan-O'Hara"), use:

          
            r"[a-zA-Z'\-]+"

          
          
            Escape a Hyphen that’s Part of an RE Character Set, for Readability

            It’s not strictly necessary to escape the hyphen with a backslash in this case, since its position at the end of the set makes the situation syntactically unambiguous. However, the backslash is advisable because it makes the pattern more readable, by visually distinguishing the hyphen that you want to have as a character in the set from those used to denote ranges.

          

        

        
          Alternatives

          A vertical bar (|) in a regular expression pattern, used to specify alternatives, has low syntactic precedence. Unless parentheses change the grouping, | applies to the whole pattern on either side, up to the start or end of the pattern, or to another |. A pattern can be made up of any number of subpatterns joined by |. It is important to note that an RE of subpatterns joined by | will match the first matching subpattern, not the longest. A pattern like r'ab|abc' will never match 'abc', because the 'ab' match gets evaluated first.

          Given a list L of words, an RE pattern that matches any one of the words is:

          
            '|'.join(rf'\b{word}\b' for word in L)

          
          
            Escaping Strings

            If the items of L can be more general strings, not just words, you need to escape each of them with the function re.escape (covered in Table 9-3), and you may not want the \b word boundary markers on either side. In this case, you could use the following RE pattern (sorting the list in reverse order by length to avoid “masking” a longer word by a shorter one):

          

          
            '|'.join(re.escape(s) for s in sorted(L, key=len, reverse=True))

          
        

        
          Groups

          A regular expression can contain any number of groups, from none to 99 (or even more, but only the first 99 groups are fully supported). Parentheses in a pattern string indicate a group. Element (?P<id>...) also indicates a group, and gives the group a name, id, that can be any Python identifier. All groups, named and unnamed, are numbered, left to right, 1 to 99; “group 0” means the string that the whole RE matches.

          For any match of the RE with a string, each group matches a substring (possibly an empty one). When the RE uses |, some groups may not match any substring, although the RE as a whole does match the string. When a group doesn’t match any substring, we say that the group does not participate in the match. An empty string ('') is used as the matching substring for any group that does not participate in a match, except where otherwise indicated later in this chapter. For example:

          
            r'(.+)\1+\Z'

          
          matches a string made up of two or more repetitions of any nonempty substring. The (.+) part of the pattern matches any nonempty substring (any character, one or more times) and defines a group, thanks to the parentheses. The \1+ part of the pattern matches one or more repetitions of the group, and \Z anchors the match to the end of the string.

        

        
          Optional Flags

          A regular expression pattern element with one or more of the letters aiLmsux between (? and ) lets you set RE options within the pattern, rather than by the flags argument to the compile function of the re module. Options apply to the whole RE, no matter where the options element occurs in the pattern.

          
            Always Place Options at the Start of an RE’s Pattern

            In particular, placement at the start is mandatory if x is among the options, since x changes the way Python parses the pattern. Options not at the start of the pattern produce a deprecation warning.

          

          Using the explicit flags argument is more readable than placing an options element within the pattern. The flags argument to the function compile is a coded integer built by bitwise ORing (with Python’s bitwise OR operator, |) one or more of the following attributes of the module re. Each attribute has both a short name (one uppercase letter), for convenience, and a long name (an uppercase multi-letter identifier), which is more readable and thus normally preferable:

          
            	A or ASCII

            	
              Uses ASCII-only characters for \w, \W, \b, \B, \d and \D; overrides the default UNICODE flag

            

            	I or IGNORECASE

            	
              Makes matching case-insensitive

            

            	L or LOCALE

            	
              Uses the Python LOCALE setting to determine characters for \w, \W, \b, \B, \d and \D markers; can only be used with bytes patterns

            

            	M or MULTILINE

            	
              Makes the special characters ^ and $ match at the start and end of each line (i.e., right after/before a newline), as well as at the start and end of the whole string (\A and \Z always match only the start and end of the whole string)

            

            	S or DOTALL

            	
              Causes the special character . to match any character, including a newline

            

            	U or UNICODE

            	
              Uses full Unicode to determine characters for \w, \W, \b, \B, \d and \D markers; although retained for backwards compatibility, this flag is now the default

            

            	X or VERBOSE

            	
              Causes whitespace in the pattern to be ignored, except when escaped or in a character set, and makes a non-escaped # character in the pattern begin a comment that lasts until the end of the line

            

          

          For example, here are three ways to define equivalent REs with function compile, covered in Table 9-3. Each of these REs matches the word “hello” in any mix of upper- and lowercase letters:

          
            import re
r1 = re.compile(r'(?i)hello')
r2 = re.compile(r'hello', re.I)
r3 = re.compile(r'hello', re.IGNORECASE)

          
          The third approach is clearly the most readable, and thus the most maintainable, though slightly more verbose. The raw string form is not strictly necessary here, since the patterns do not include backslashes. However, using raw string literals does no harm, and we recommend you always do that for RE patterns, and only for RE patterns, to improve clarity and readability.

          Option re.VERBOSE (or re.X) lets you make patterns more readable and understandable by appropriate use of whitespace and comments. Complicated and verbose RE patterns are generally best represented by strings that take up more than one line, and therefore you normally want to use a triple-quoted raw string literal for such pattern strings. For example, to match a string representing an integer that may be in octal, hex, or decimal format:

          
            repat_num1 = r'(0o[0-7]*|0x[\da-fA-F]+|[1-9]\d*)\Z'
repat_num2 = r'''(?x)            # (re.VERBOSE) pattern matching int literals
              (  0o [0-7]*       # octal: leading 0o, 0+ octal digits
               | 0x [\da-fA-F]+  # hex: 0x, then 1+ hex digits
               | [1-9] \d*       # decimal: leading non-0, 0+ digits
              )\Z                # end of string
              '''

          
          The two patterns defined in this example are equivalent, but the second one is made more readable and understandable by the comments and the free use of whitespace to visually group portions of the pattern in logical ways.

        

        
          Match Versus Search

          So far, we’ve been using regular expressions to match strings. For example, the RE with pattern r'box' matches strings such as 'box' and 'boxes', but not 'inbox'. In other words, an RE match is implicitly anchored at the start of the target string, as if the RE’s pattern started with \A.

          Often, you’re interested in locating possible matches for an RE anywhere in the string, without anchoring (e.g., find the r'box' match inside such strings as 'inbox', as well as in 'box' and 'boxes'). In this case, the Python term for the operation is a search, as opposed to a match. For such searches, use the search method of an RE object; the match method matches only from the start. For example:

          
            import re
r1 = re.compile(r'box')
if r1.match('inbox'):
    print('match succeeds')
else:
    print('match fails')          # prints: match fails

if r1.search('inbox'):
    print('search succeeds')      # prints: search succeeds
else:
    print('search fails')

          
        

        
          Anchoring at String Start and End

          \A and \Z are the pattern elements ensuring that a regular expression match is anchored at the string’s start or end. Elements ^ for start and $ for end are also used in similar roles. For RE objects that are not flagged as MULTILINE, ^ is the same as \A, and $ is the same as \Z. For a multiline RE, however, ^ can anchor at the start of the string or the start of any line (where “lines” are determined based on \n separator characters). Similarly, with a multiline RE, $ can anchor at the end of the string or the end of any line. \A and \Z always anchor exclusively at the start and end of the string, whether the RE object is multiline or not. For example, here’s a way to check whether a file has any lines that end with digits:

          
            import re
digatend = re.compile(r'\d$', re.MULTILINE)
with open('afile.txt') as f:
    if digatend.search(f.read()):
        print('some lines end with digits')
    else:
        print('no line ends with digits')

          
          A pattern of r'\d\n' is almost equivalent, but in that case the search fails if the very last character of the file is a digit not followed by an end-of-line character. With the preceding example, the search succeeds if a digit is at the very end of the file’s contents, as well as in the more usual case where a digit is followed by an end-of-line character.

        

        
          Regular Expression Objects

          A regular expression object r has the following read-only attributes that detail how r was built (by the function compile of the module re, covered in Table 9-3):

          
            	
              flags
            

            	
              The flags argument passed to compile, or re.UNICODE when flags is omitted; also includes any flags specified in the pattern itself using a leading (?...) element

            

            	
              groupindex
            

            	
              A dictionary whose keys are group names as defined by elements (?P<id>...); the corresponding values are the named groups’ numbers

            

            	
              pattern
            

            	
              The pattern string from which r is compiled

            

          

          These attributes make it easy to get back from a compiled RE object to its pattern string and flags, so you never have to store those separately.

          An RE object r also supplies methods to locate matches for r within a string, as well as to perform substitutions on such matches (Table 9-2). Matches are generally represented by special objects, covered in “Match Objects”.

          
            Table 6-2. Methods of RE objects
            
              	
                findall
              
              	r.findall(s)
 When r has no groups, findall returns a list of strings, each a substring of s that is a nonoverlapping match with r. For example, to print out all words in a file, one per line:
import re 
reword = re.compile(r'\w+')
with open('afile.txt') as f: 
    for aword in reword.findall(f.read()): 
        print(aword)


        When r has one group, findall also returns a list of strings, but each is the substring of s that matches r’s group. For example, to print only words that are followed by whitespace (not the ones followed by punctuation or end of string), you need to change only one statement in the example:
 reword = re.compile('(\w+)\s')
 When r has n groups (with n>1), findall returns a list of tuples, one per non-overlapping match with r. Each tuple has n items, one per group of r, the substring of s matching the group. For example, to print the first and last word of each line that has at least two words:
import re 
first_last = 
re.compile(r'^\W*(\w+)\b.*\b(\w+)\W*$',re.MULTILINE) 
with open('afile.txt') as f: 
    for first, last in first_last.findall(f.read()): 
        print(first, last)

            

            
              	
                finditer
              
              	r.finditer(s)
 finditer is like findall, except that, instead of a list of strings or tuples, it returns an iterator whose items are match objects. In most cases, finditer is therefore more flexible and performs better than findall.
            

            
              	
                fullmatch
              
              	r.fullmatch(s,start=0,end=sys.maxsize)
 Returns a match object when the complete substring s, starting at index start and ending at index end, matches r. Otherwise, fullmatch returns None.
            

            
              	
                match
              
              	r.match(s, start=0,end=sys.maxsize)
 Returns an appropriate match object when a substring of s, starting at index start and not reaching as far as index end, matches r. Otherwise, match returns None. match is implicitly anchored at the starting position start in s. To search for a match with r at any point in s from start onward, call r.search, not r.match. For example, here one way to print all lines in a file that start with digits:
import re
digs = re.compile(r'\d') 
with open('afile.txt') as f:
    for line in f: 
        if digs.match(line): 
            print(line, end='')

            

            
              	
                search
              
              	r.search(s, start=0, end=sys.maxsize)
 Returns an appropriate match object for the leftmost substring of s, starting not before index start and not reaching as far as index end, that matches r. When no such substring exists, search returns None. For example, to print all lines containing digits, one simple approach is as follows:
import re
digs = re.compile(r'\d')
with open('afile.txt') as f:
    for line in f:
        if digs.search(line):
            print(line, end='')

            

            
              	
                split
              
              	r.split(s, maxsplit=0)
 Returns a list L of the splits of s by r (i.e., the substrings of s separated by nonoverlapping, nonempty matches with r). For example, here’s one way to eliminate all occurrences of substring 'hello' (in any mix of lowercase and uppercase) from a string:
import re
rehello = re.compile(r'hello', re.IGNORECASE) 
astring = ''.join(rehello.split(astring))

When r has n groups, n more items are interleaved in L between each pair of splits. Each of the n extra items is the substring of s that matches r’s corresponding group in that match, or None if that group did not participate in the match. For example, here’s one way to remove whitespace only when it occurs between a colon and a digit:
import re 
re_col_ws_dig = re.compile(r'(:)\s+(\d)')
astring = ''.join(re_col_ws_dig.split(astring))

 If maxsplit is greater than 0, at most maxsplit splits are in L, each followed by n items as above, while the trailing substring of s after maxsplit matches of r, if any, is L’s last item. For example, to remove only the first occurrence of substring 'hello' rather than all of them, change the last statement in the first example above to:
 astring=''.join(rehello.split(astring, 1))
            

            
              	
                sub
              
              	r.sub(repl,s,count=0)
 Returns a copy of s where non-overlapping matches with r are replaced by repl, which can be either a string or a callable object, such as a function. An empty match is replaced only when not adjacent to the previous match. When count is greater than 0, only the first count matches of r within s are replaced. When count equals 0, all matches of r within s are replaced. For example, here’s another, more natural way to remove only the first occurrence of substring 'hello' in any mix of cases:
import re 
rehello = re.compile(r'hello', re.IGNORECASE) 
astring = rehello.sub('', astring, 1)

 Without the final 1 argument to sub, the example removes all occurrences of 'hello'.
 When repl is a callable object, repl must accept one argument (a match object) and return a string (or None, which is equivalent to returning the empty string '') to use as the replacement for the match. In this case, sub calls repl, with a suitable match-object argument, for each match with r that sub is replacing. For example, here’s one way to uppercase all occurrences of words starting with 'h' and ending with 'o' in any mix of cases:
import re 
h_word = re.compile(r'\bh\w*o\b', re.IGNORECASE) 
def up(mo): 
    return mo.group(0).upper() 
astring = h_word.sub(up, astring)

 When repl is a string, sub uses repl itself as the replacement, except that it expands back references. A back reference is a substring of repl of the form \g<id>, where id is the name of a group in r (established by syntax (?P<id>...) in r’s pattern string) or \dd, where dd is one or two digits taken as a group number. Each back reference, named or numbered, is replaced with the substring of s that matches the group of r that the back reference indicates. For example, here’s a way to enclose every word in braces:
import re 
grouped_word = re.compile('(\w+)') 
astring = grouped_word.sub(r'{\1}', astring)

            

            
              	
                subn
              
              	r.subn(repl,s,count=0)
 subn is the same as sub, except that subn returns a pair (new_string, n), where n is the number of substitutions that subn has performed. For example, here’s one way to count the number of occurrences of substring 'hello' in any mix of cases:
import re 
rehello = re.compile(r'hello', re.IGNORECASE)
_, count = rehello.subn('', astring) 
print(f'Found {count} occurrences of "hello"')

            

          

        

        
          Match Objects

          Match objects are created and returned by the methods match and search of a regular expression object, and are the items of the iterator returned by the method finditer. They are also implicitly created by the methods sub and subn when the argument repl is callable, since in that case the appropriate match object is passed as the only argument on each call to repl. A match object m supplies the following read-only attributes that detail how a search or match created m:

          
            	
              pos
            

            	
              The start argument that was passed to search or match (i.e., the index into s where the search for a match began)

            

            	
              endpos
            

            	
              The end argument that was passed to search or match (i.e., the index into s before which the matching substring of s had to end)

            

            	
              lastgroup
            

            	
              The name of the last-matched group (None if the last-matched group has no name, or if no group participated in the match)

            

            	
              lastindex
            

            	
              The integer index (1 and up) of the last-matched group (None if no group participated in the match)

            

            	
              re
            

            	
              The RE object r whose method created m

            

            	
              string
            

            	
              The string s passed to finditer, match, search, sub, or subn

            

          

          A match object m also supplies several methods, detailed in Table 9-3.

          
            Table 6-3. Methods of match object
            
              	
                end, span, start
              
              	m.end(groupid=0) m.span(groupid=0) m.start(groupid=0)
 These methods return the limit indices, within m.string, of the substring that matches the group identified by groupid (a group number or name; “group 0”, the default value for groupid, means “the whole RE”). When the matching substring is m.string[i:j], m.start returns i, m.end returns j, and m.span returns (i, j). If the group did not participate in the match, i and j are -1.
            

            
              	
                expand
              
              	m.expand(s)
 Returns a copy of s where escape sequences and back references are replaced in the same way as for the method r.sub, covered in Table 9-2.
            

            
              	
                group
              
              	m.group(groupid=0, *groupids)
 When called with a single argument groupid (a group number or name), group returns the substring that matches the group identified by groupid, or None if that group did not participate in the match. The idiom m.group(), also spelled m.group(0), returns the whole matched substring, since group number 0 means the whole RE. Groups can also be accessed using m[index] notation, as if called using m.group(index)(in either case, index may be an int or a str).
 When group is called with multiple arguments, each argument must be a group number or name. group then returns a tuple with one item per argument, the substring matching the corresponding group, or None if that group did not participate in the match.
            

            
              	
                groups
              
              	m.groups(default=None)
 Returns a tuple with one item per group in r. Each item is the substring that matches the corresponding group, or default if that group did not participate in the match. The tuple does not include the 0-group representing the full pattern match.
            

            
              	
                groupdict
              
              	m.groupdict(default=None)
 Returns a dictionary whose keys are the names of all named groups in r. The value for each name is the substring that matches the corresponding group, or default if that group did not participate in the match.
            

          

        

        
          Functions of the re Module

          The re module supplies the attributes listed in “Optional Flags”. It also provides one function for each method of a regular expression object (findall, finditer, fullmatch, match, search, split, sub, and subn), each with an additional first argument, a pattern string that the function implicitly compiles into an RE object. It is usually better to compile pattern strings into RE objects explicitly and call the RE object’s methods, but sometimes, for a one-off use of an RE pattern, calling functions of the module re can be handier. For example, to count the number of occurrences of 'hello' in any mix of cases, one concise, function-based way is:

          
            import re
_, count = re.subn(r'hello', '', astring, flags=re.I)
print(f'Found {count} occurrences of "hello"')

          
          The re module internally caches RE objects it creates from the patterns passed to functions; to purge the cache and reclaim some memory, call re.purge().

          The re module also supplies error, the class of exceptions raised upon errors (generally, errors in the syntax of a pattern string), and two more functions (Table 9-4):

          
            Table 6-4.  Add legend here.
            
              	
                compile
              
              	compile(pattern,flags=0)
 Creates and returns an RE object, parsing string pattern as per the syntax covered in “Pattern-String Syntax”, and using integer flags, as covered in “Optional Flags”.
            

            
              	
                escape
              
              	escape(s)
 Returns a copy of string s with each nonalphanumeric character escaped (i.e., preceded by a backslash \); useful to match string s literally as part of an RE pattern string.
            

          

        

        
          REs and the := operator

          The introduction of the := operator in Python 3.8 established support for a successive-match idiom in Python similar to one that’s common in Perl. In this idiom, a series of if-elif branches tests a string against different regular expressions. In Perl, the if ($var =~ /regExpr/) statement both evaluates the regular expression and saves the successful match in the variable var.1 

          
            if    ($statement =~ /I love (\w+)/) {
  print "He loves $1\n";
}
elsif ($statement =~ /Ich liebe (\w+)/) {
  print "Er liebt $1\n";
}
elsif ($statement =~ /Je t\'aime (\w+)/) {
  print "Il aime $1\n";
}

          
          Prior to Python 3.8, this behavior of evaluate-and-store was not possible in a single if-elif statement; developers had to use a cumbersome cascade of nested if-else statements:

          
            m = re.match('I love (\w+)', statement)
if m:
    print(f'He loves {m.group(1)}')
else:
    m = re.match('Ich liebe (\w+)', statement)
    if m:
        print(f'Er liebt {m.group(1)}')
    else:
	     m = re.match('J'aime (\w+)', statement)
        if m:
 	        print(f'Il aime {m.group(1)}')

          
          Using the := operator, this code simplifies to:

          
            if m := re.match(r'I love (\w+)', statement):
    print(f'He loves {m.group(1)}')
elif m := re.match(r'Ich liebe (\w+)', statement):
    print(f'Er liebt {m.group(1)}') 
elif m := re.match(r'J'aime (\w+)', statement):
    print(f'Il aime {m.group(1)}')

          
        

        
          The 3rd party regex module

          In addition to Python’s built-in re module, a popular package for regular expressions is the third-party regex module, by Matthew Barnett. regex has a compatible API with the re module and adds a number of extended features, including:

          Recursive expressions

          Applying some of the inline flags to only a part of the pattern

          Define character sets by Unicode property/value

          Overlapping matches

          Fuzzy matching

          Multithreading support – releases GIL during matching

          Matching timeout

          Unicode case folding in case-insensitive matches

          Nested sets

        

      

    1 Example taken from regex - Match groups in Python - Stack Overflow 




      Chapter 7. Time Operations

      
      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 12th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      A Python program can handle time in several ways. Time intervals are floating point numbers in units of seconds (a fraction of a second is the fractional part of the interval): all standard library functions accepting an argument that expresses a time interval in seconds accept a float as the value of that argument. Instants in time are expressed in seconds since a reference instant, known as the epoch. (Midnight, UTC, of January 1, 1970, is a popular epoch used on both Unix and Windows platforms.) Time instants often also need to be expressed as a mixture of units of measurement (e.g., years, months, days, hours, minutes, and seconds), particularly for I/O purposes. I/O, of course, also requires the ability to format times and dates into human-readable strings, and parse them back from string formats.

      
        The time Module

        The time module is somewhat dependent on the underlying system’s C library, which determines the range of dates that the time module can handle. On Unix systems, years 1970 and 2038 are typical cut-off points, a limitation that datetime avoids. Time instants are normally specified in UTC (Coordinated Universal Time, once known as GMT, or Greenwich Mean Time). The time module also supports local time zones and daylight saving time (DST), but only to the extent the underlying C system library does.

        As an alternative to seconds since the epoch, a time instant can be represented by a tuple of nine integers, called a timetuple. (Timetuples are covered in Table 12-1.) All items are integers: timetuples don’t keep track of fractions of a second. A timetuple is an instance of struct_time. You can use it as a tuple, and you can also, more usefully, access the items as the read-only attributes x.tm_year, x.tm_mon, and so on, with the attribute names listed in Table 12-1. Wherever a function requires a timetuple argument, you can pass an instance of struct_time or any other sequence whose items are nine integers in the right ranges (all ranges in the table include both lower and upper bounds; in the table, upper bounds are included).

        
          Table 7-1. Tuple form of time representation
          
            	
              Item
            
            	
              Meaning
            
            	
              Field name
            
            	
              Range
            
            	
              Notes
            
          

          
            	
              0
            
            	Year
            	
              tm_year
            
            	1970–2038
            	Wider on some platforms.
          

          
            	
              1
            
            	Month
            	
              tm_mon
            
            	1–12
            	1 is January; 12 is December.
          

          
            	
              2
            
            	Day
            	
              tm_mday
            
            	1–31
            	
          

          
            	
              3
            
            	Hour
            	
              tm_hour
            
            	0–23
            	0 is midnight; 12 is noon.
          

          
            	
              4
            
            	Minute
            	
              tm_min
            
            	0–59
            	
          

          
            	
              5
            
            	Second
            	
              tm_sec
            
            	0–61
            	60 and 61 for leap seconds.
          

          
            	
              6
            
            	Weekday
            	
              tm_wday
            
            	0–6
            	0 is Monday; 6 is Sunday.
          

          
            	
              7
            
            	Year day
            	
              tm_yday
            
            	1–366
            	Day number within the year.
          

          
            	
              8
            
            	DST flag
            	
              tm_isdst
            
            	−1 to 1
            	−1 means the library determines DST.
          

        

        To translate a time instant from a “seconds since the epoch” floating-point value into a timetuple, pass the floating-point value to a function (e.g., localtime) that returns a timetuple with all nine items valid. When you convert in the other direction, mktime ignores redundant items six (tm_wday) and seven (tm_yday) of the tuple. In this case, you normally set item eight (tm_isdst) to −1 so that mktime itself determines whether to apply DST.

        time supplies the functions and attributes listed in Table 12-2.

        
          Table 7-2. Table caption to come
          
            	
              asctime
            
            	asctime([tupletime])
 Accepts a timetuple and returns a readable 24-character string such as 'Sun Jan 8 14:41:06 2017'. asctime() without arguments is like asctime(localtime(time())) (formats current time in local time).
          

          
            	
              ctime
            
            	ctime([secs])
 Like asctime(localtime(secs)), accepts an instant expressed in seconds since the epoch and returns a readable 24-character string form of that instant, in local time. ctime() without arguments is like asctime() (formats current time in local time).
          

          
            	
              gmtime
            
            	gmtime([secs])
 Accepts an instant expressed in seconds since the epoch and returns a timetuple t with the UTC time (t.tm_isdst is always 0). gmtime() without arguments is like gmtime(time()) (returns the timetuple for the current time instant).
          

          
            	
              localtime
            
            	localtime([secs])
 Accepts an instant expressed in seconds since the epoch and returns a timetuple t with the local time (t.tm_isdst is 0 or 1, depending on whether DST applies to instant secs by local rules). localtime() without arguments is like localtime(time()) (returns the timetuple for the current time instant).
          

          
            	
              mktime
            
            	mktime(tupletime)
 Accepts an instant expressed as a timetuple in local time and returns a floating-point value with the instant expressed in seconds since the epoch.a DST, the last item in tupletime, is meaningful: set it to 0 to get solar time, to 1 to get DST, or to −1 to let mktime compute whether DST is in effect at the given instant.
          

          
            	
              monotonic
            
            	monotonic()
 Like time(), returns the current time instant, a float with seconds since the epoch. Guaranteed to never go backward between calls, even when the system clock is adjusted (e.g., due to leap seconds).
          

          
            	
              perf_counter
            
            	perf_counter()
 Returns the value in fractional seconds using the highest-resolution clock available to get accuracy for short durations. It is system-wide and includes time elapsed during sleep. Use only the difference between successive calls, as there is no defined reference point.
          

          
            	
              process_time
            
            	process_time()
 Returns the value in fractional seconds using the highest-resolution clock available to get accuracy for short durations. It is process-wide and doesn’t include time elapsed during sleep. Use only the difference between successive calls, as there is no defined reference point.
          

          
            	
              sleep
            
            	sleep(secs)
 Suspends the calling thread for secs seconds. The calling thread may start executing again before secs seconds (when it’s the main thread and some signal wakes it up) or after a longer suspension (depending on system scheduling of processes and threads). You can call sleep with secs=0 to offer other threads a chance to run, incurring no significant delay if the current thread is the only one ready to run.
          

          
            	
              strftime
            
            	strftime(fmt[, tupletime])
 Accepts an instant expressed as a timetuple in local time and returns a string representing the instant as specified by string fmt. If you omit tupletime, strftime uses localtime(time()) (formats the current time instant). The syntax of string format is similar to the one covered in “Legacy String Formatting with %.” Conversion characters are different, as shown in Table 12-3. Refer to the time instant specified by tupletime; the format can’t specify width and precision.
 For example, you can obtain dates just as formatted by asctime (e.g., 'Tue Dec 10 18:07:14 2002') with the format string:
 '%a %b %d %H:%M:%S %Y’
 You can obtain dates compliant with RFC 822 (e.g., 'Tue, 10 Dec 2002 18:07:14 EST') with the format string:
 '%a, %d %b %Y %H:%M:%S %Z’
          

          
            	
              strptime
            
            	strptime(str,[fmt='%a %b %d %H:%M:%S %Y'])
 Parses str according to format string fmt and returns the instant as a timetuple. The format string’s syntax is as covered in strftime earlier.
          

          
            	
              time
            
            	time()
 Returns the current time instant, a float with seconds since the epoch. On some (mostly, older) platforms, the precision of this time is as low as one second. May return a lower value in a subsequent call if the system clock is adjusted backward between calls (e.g., due to leap seconds).
          

          
            	
              timezone
            
            	timezone
 The offset in seconds of the local time zone (without DST) from UTC (>0 in the Americas; <=0 in most of Europe, Asia, and Africa).
          

          
            	
              tzname
            
            	tzname
 A pair of locale-dependent strings, which are the names of the local time zone without and with DST, respectively.
          

        	a mktime’s result’s fractional part is always 0, since its timetuple argument does not account for fractions of a second. 



        
          Table 7-3. Conversion characters for strftime
          
            	
              Type char
            
            	
              Meaning
            
            	
              Special notes
            
          

          
            	
              a
            
            	Weekday name, abbreviated
            	Depends on locale
          

          
            	
              A
            
            	Weekday name, full
            	Depends on locale
          

          
            	
              b
            
            	Month name, abbreviated
            	Depends on locale
          

          
            	
              B
            
            	Month name, full
            	Depends on locale
          

          
            	
              c
            
            	Complete date and time representation
            	Depends on locale
          

          
            	d
 
 
            	Day of the month
            	Between 1 and 31
 
          

          
            	f
            	Microsecond as decimal, padded on left 
            	1 to 6 digits
          

          
            	
              G
            
            	ISO 8601:2000 standard week-based year number
            	
          

          
            	
              H
            
            	Hour (24-hour clock)
            	Between 0 and 23
          

          
            	
              I
            
            	Hour (12-hour clock)
            	Between 1 and 12
          

          
            	
              j
            
            	Day of the year
            	Between 1 and 366
          

          
            	
              m
            
            	Month number
            	Between 1 and 12
          

          
            	
              M
            
            	Minute number
            	Between 0 and 59
          

          
            	
              p
            
            	A.M. or P.M. equivalent
            	Depends on locale
          

          
            	
              S
            
            	Second number
            	Between 0 and 61
          

          
            	
              u
            
            	day of week
            	Monday is 1, up to 7
          

          
            	
              U
            
            	Week number (Sunday first weekday)
            	Between 0 and 53
          

          
            	
              V
            
            	ISO 8601:2000 standard week-based week number
            	
          

          
            	
              w
            
            	Weekday number
            	0 is Sunday, up to 6
          

          
            	
              W
            
            	Week number (Monday first weekday)
            	Between 0 and 53
          

          
            	
              x
            
            	Complete date representation
            	Depends on locale
          

          
            	
              X
            
            	Complete time representation
            	Depends on locale
          

          
            	
              y
            
            	Year number within century
            	Between 0 and 99
          

          
            	
              Y
            
            	Year number
            	1970 to 2038, or wider
          

          
            	z
            	UTC offset as a string: ±HHMM[SS[.ffffff]]
            	
          

          
            	
              Z
            
            	Name of time zone
            	Empty if no time zone exists
          

          
            	
              %
            
            	A literal % character
            	Encoded as %%
          

        

      

      
        The datetime Module

        datetime provides classes for modeling date and time objects, which can be either aware of time zones or naive (the default). The class tzinfo, whose instances model a time zone, is abstract: module datetime supplies only one simple implementation, datetime.timezone (for all the gory details, see the online docs); module zoneinfo, covered in “The zoneinfo Module,” offers a richer concrete implementation of tzinfo, which lets you easily create timezone-aware datetime objects. All types in datetime have immutable instances: attributes are read-only, instances can be keys in a dict or items in a set, and all functions and methods return new objects, never altering objects passed as arguments.

        
          The date Class

          Instances of the date class represent a date (no time of day in particular within that date) between date.min<=d<=date.max, are always naive, and assume the Gregorian calendar was always in effect. date instances have three read-only integer attributes: year, month, and day:

          
            
              	
                date
              
              	date(year,month,day)
 Returns a date object for the given year, month, and day arguments, in the valid ranges 1<=year <=9999, 1<=month<=12, and 1<=day<= number of days for the given month and year. Raises ValueError if invalid values are given. 
            

            
              	The date class also supplies these class methods usable as alternative constructors:
            

            
              	
                fromordinal
              
              	date.fromordinal(ordinal)
 Returns a date object corresponding to the proleptic Gregorian ordinal ordinal, where a value of 1 corresponds to the first day of year 1 CE.
            

            
              	
                fromtimestamp
              
              	date.fromtimestamp(timestamp)
 Returns a date object corresponding to the instant timestamp expressed in seconds since the epoch.
            

            
              	
                today
              
              	date.today()
 Returns a date representing today’s date.
            

          

          Instances of the date class support some arithmetic: the difference between date instances is a timedelta instance; you can add or subtract a timedelta to/from a date instance to make another date instance. You can compare any two instances of the date class (the later one is greater).

          An instance d of the class date supplies the following methods:

          
            
              	
                ctime
              
              	d.ctime()
 Returns a string representing the date d in the same 24-character format as time.ctime (with the time of day set to 00:00:00, midnight).
            

            
              	
                isocalendar
              
              	d.isocalendar()
 Returns a tuple with three integers (ISO year, ISO week number, and ISO weekday). See the ISO 8601 standard for more details about the ISO (International Standards Organization) calendar.
            

            
              	
                isoformat
              
              	d.isoformat()
 Returns a string representing date d in the format 'YYYY-MM-DD'; same as str(d).
            

            
              	
                isoweekday
              
              	d.isoweekday()
 Returns the day of the week of date d as an integer, 1 for Monday through 7 for Sunday; like d.weekday() + 1.
            

            
              	
                replace
              
              	d.replace(year=None,month=None,day=None)
 Returns a new date object, like d except for those attributes explicitly specified as arguments, which get replaced. For example:
 date(x,y,z).replace(month=m) == date(x,m,z)
            

            
              	
                strftime
              
              	d.strftime(fmt)
 Returns a string representing date d as specified by string fmt, like:
 time.strftime(fmt, d.timetuple())
            

            
              	
                timetuple
              
              	d.timetuple()
 Returns a time tuple corresponding to date d at time 00:00:00 (midnight).
            

            
              	
                toordinal
              
              	d.toordinal()
 Returns the proleptic Gregorian ordinal for date d. For example:
 date(1,1,1).toordinal() == 1
            

            
              	
                weekday
              
              	d.weekday()
 Returns the day of the week of date d as an integer, 0 for Monday through 6 for Sunday; like d.isoweekday() - 1.
            

          

        

        
          The time Class

          Instances of the time class represent a time of day (of no particular date), may be naive or aware regarding time zones, and always ignore leap seconds. They have five attributes: four read-only integers (hour, minute, second, and microsecond) and an optional read-only tzinfo (None for naive instances).

          
            
              	
                time
              
              	time(hour=0,minute=0,second=0,microsecond=0, tzinfo=None)
 Instances of the class time do not support arithmetic. You can compare two instances of time (the one that’s later in the day is greater), but only if they are either both aware or both naive.
            

          

          An instance t of the class time supplies the following methods:

          
            
              	
                isoformat
              
              	t.isoformat()
 Returns a string representing time t in the format 'HH:MM:SS'; same as str(t). If t.microsecond!=0, the resulting string is longer: 'HH:MM:SS.mmmmmm'. If t is aware, six more characters, '+HH:MM', are added at the end to represent the time zone’s offset from UTC. In other words, this formatting operation follows the ISO 8601 standard.
            

            
              	
                replace
              
              	t.replace(hour=None, minute=None,second=None, microsecond=None[, tzinfo])
 Returns a new time object, like t except for those attributes explicitly specified as arguments, which get replaced. For example:
 time(x,y,z).replace(minute=m) == time(x,m,z)
            

            
              	
                strftime
              
              	t.strftime(fmt)
 Returns a string representing time t as specified by the string fmt.
 
            

          

          An instance t of the class time also supplies methods dst, tzname, and utcoffset, which accept no arguments and delegate to t.tzinfo, returning None when t.tzinfo is None.

        

        
          The datetime Class

          Instances of the datetime class represent an instant (a date, with a specific time of day within that date), may be naive or aware of time zones, and always ignore leap seconds. datetime extends date and adds time’s attributes; its instances have read-only integers year, month, day, hour, minute, second, and microsecond, and an optional tzinfo (None for naive instances).

          Instances of datetime support some arithmetic: the difference between datetime instances (both aware, or both naive) is a timedelta instance, and you can add or subtract a timedelta instance to/from a datetime instance to construct another datetime instance. You can compare two instances of the datetime class (the later one is greater) as long as they’re both aware or both naive.

          
            
              	
                datetime
              
              	datetime(year,month, day,hour=0,minute=0, second=0, microsecond=0,tzinfo=None)
 Returns a datetime object following similar constraints as the date class constructor.
            

            
              	The class datetime also supplies some class methods usable as alternative constructors.
            

            
              	
                combine
              
              	datetime.combine(date, time)
 Returns a datetime object with the date attributes taken from date and the time attributes (including tzinfo) taken from time. datetime.combine(d, t) is like:
 datetime(d.year, d.month, d.day,
 t.hour, t.minute, t.second,
 t.microsecond, t.tzinfo)
            

            
              	
                fromordinal
              
              	datetime.fromordinal(ordinal)
 Returns a datetime object for the date given proleptic Gregorian ordinal ordinal, where a value of 1 means the first day of year 1 CE, at midnight.
            

            
              	
                fromtimestamp
              
              	datetime.fromtimestamp(timestamp, tz=None)
 Returns a datetime object corresponding to the instant timestamp expressed in seconds since the epoch, in local time. When tz is not None, returns an aware datetime object with the given tzinfo instance tz.
            

            
              	
                now
              
              	datetime.now(tz=None)
 Returns a datetime object for the current local date and time. When tz is not None, returns an aware datetime object with the given tzinfo instance tz.
            

            
              	
                strptime
              
              	datetime.strptime(str, fmt)
 Returns a datetime representing str as specified by string fmt. When %z is present in fmt, the resulting datetime object is time zone-aware.
            

            
              	
                today
              
              	datetime.today()
 Returns a naive datetime object representing the current local date and time, same as the now class method (but not accepting optional argument tz).
            

            
              	
                utcfromtimestamp
              
              	datetime.utcfromtimestamp(timestamp)
 Returns a naive datetime object corresponding to the instant timestamp expressed in seconds since the epoch, in UTC.
            

            
              	
                utcnow
              
              	datetime.utcnow()
 Returns a naive datetime object representing the current date and time, in UTC.
            

          

          An instance d of datetime also supplies the following methods:

          
            
              	
                astimezone
              
              	d.astimezone(tz)
 Returns a new aware datetime object, like d (which must also be aware), except that the time zone is converted to the one in tzinfo object tz. a
            

            
              	
                ctime
              
              	d.ctime()
 Returns a string representing date and time d in the same 24-character format as time.ctime.
            

            
              	
                date
              
              	d.date()
 Returns a date object representing the same date as d.
            

            
              	
                isocalendar
              
              	d.isocalendar()
 Returns a tuple with three integers (ISO year, ISO week number, and ISO weekday) for d’s date.
            

            
              	
                isoformat
              
              	d.isoformat(sep='T')
 Returns a string representing d in the format 'YYYY-MM-DDxHH:MM:SS', where x is the value of argument sep (must be a string of length 1). If d.microsecond!=0, seven characters, '.mmmmmm', are added after the 'SS' part of the string. If t is aware, six more characters, '+HH:MM', are added at the end to represent the time zone’s offset from UTC. In other words, this formatting operation follows the ISO 8601 standard. str(d) is the same as d.isoformat(' ').
            

            
              	
                isoweekday
              
              	d.isoweekday()
 Returns the day of the week of d’s date as an integer; 1 for Monday through 7 for Sunday.
            

            
              	
                replace
              
              	d.replace(year=None,month=None,day=None,hour=None,minute=None,second=None,
 microsecond=None[,tzinfo])
 Returns a new datetime object, like d except for those attributes specified as arguments, which get replaced (but does no timezone conversion, see footnote 2). For example:
 datetime(x,y,z).replace(month=m) == datetime(x,m,z)
            

            
              	
                strftime
              
              	d.strftime(fmt)
 Returns a string representing d as specified by the format string fmt.
            

            
              	
                time
              
              	d.time()
 Returns a naive time object representing the same time of day as d.
            

            
              	
                timestamp
              
              	d.timestamp()
 Returns a float with the seconds since the epoch. Naive instances are assumed to be in the local time zone.
            

            
              	
                timetz
              
              	d.timetz()
 Returns a time object representing the same time of day as d, with the same tzinfo.
            

            
              	
                timetuple
              
              	d.timetuple()
 Returns a timetuple corresponding to instant d.
            

            
              	
                toordinal
              
              	d.toordinal()
 Returns the proleptic Gregorian ordinal for d’s date. For example:
 datetime(1,1,1).toordinal() == 1
            

            
              	
                utctimetuple
              
              	d.utctimetuple()
 Returns a timetuple corresponding to instant d, normalized to UTC if d is aware.
            

            
              	
                weekday
              
              	d.weekday()
 Returns the day of the week of d’s date as an integer; 0 for Monday through 6 for Sunday.
 
            

          	a Note that d.astimezone(tz) is quite different from d.replace(tzinfo=tz): the latter does no time zone conversion, but rather just copies all of d’s attributes except for d.tzinfo.



          An instance d of the class datetime also supplies the methods dst, tzname, and utcoffset, which accept no arguments and delegate to d.tzinfo, returning None when d.tzinfo is None (i.e., when d is naive).

        

        
          The timedelta Class

          Instances of the timedelta class represent time intervals with three read-only integer attributes: days, seconds, and microseconds.

          
            
              	
                timedelta
              
              	timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0)
 Converts all units with the obvious factors (a week is 7 days, an hour is 3,600 seconds, and so on) and normalizes everything to the three integer attributes, ensuring that 0<=seconds<3600*24 and 0<=microseconds<1000000. For example:
 print(repr(timedelta(minutes=0.5))
 #prints: datetime.timedelta(seconds=30)
 print(repr(timedelta(minutes=-0.5))) datetime.timedelta(days=-1, seconds=86370)
 Instances of timedelta support arithmetic: + and - between themselves and with instances of the classes date and datetime; * with integers; / with integers and timedelta instances (floor division, true division, divmod, %); and comparisons between themselves. 
            

          

          An instance td of timedelta supplies the following method:

          
            
              	
                total_seconds
              
              	td.total_seconds()
 Returns the total seconds represented by a timedelta instance.
            

          

          
            The 
            zoneinfo
             Module
          

          The zoneinfo module ||3.9++||1 is a concrete implementation of timezones for use with datetime’s tzinfo. zoneinfo uses the system’s timezone data by default, with tzdata (available on PyPI) as a fallback.2 zoneinfo provides one class: ZoneInfo, a concrete implementation of the datetime.tzinfo abstract class. You can assign it to tzinfo or tz during construction of an aware datetime instance, or use it with datetime.replace or datetime.astimezone methods. You can find a list of the time zones on Wikipedia. Here is an example of construction: 

          
            >>> from datetime import datetime
>>> from zoneinfo import ZoneInfo
>>> d=datetime.now(tz=ZoneInfo("America/Los_Angeles"))
>>> d
datetime.datetime(2021,10,21,16,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key='America/Los_Angeles'))

          
          Update the timezone to a different one without changing other attributes:

          
            >>> dny=d.replace(tzinfo=ZoneInfo("America/New_York"))
>>> dny
datetime.datetime(2021,10,21,16,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key='America/New_York'))

          
          Convert a datetime instance to UTC:

          
            >>> dutc=d.astimezone(tz=ZoneInfo("UTC"))
>>> dutc
datetime.datetime(2021,10,21,23,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key='UTC'))

          
          Convert the datetime instance into a different timezone:

          
            >>> dutc.astimezone(ZoneInfo("Europe/Rome"))datetime.datetime(2021,10,22,1,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key='Europe/Rome'))

          
          
            Always Use The Utc Time Zone Internally

            The best way to program around the traps and pitfalls of time zones is to always use the UTC time zone internally, converting from other time zones on input, and use datetime.astimezone only for display purposes.

          

        

      

      
        The dateutil Module

        The third-party package dateutil (which you can install with pip install python-dateutil) offers modules to manipulate dates in many ways: time deltas, recurrence, timezones, Easter dates, and fuzzy parsing. (See the package’s website for complete documentation of its rich functionality.) In addition to timezone-related operations (now best performed with zoneinfo), dateutil’s main modules are:

        
          
            	
              easter
            
            	easter.easter(year)
 Returns the datetime.date object for Easter of the given year. For example:

from dateutil import easterprint(easter.easter(2006))
# prints 2006-04-16

          

          
            	
              parser
            
            	parser.parse(s)
 Returns the datetime.datetime object denoted by string s, with very permissive (AKA “fuzzy”) parsing rules. For example:

from dateutil import parser
print(parser.parse('''Saturday, January 28, 2006, at 11:15pm'''))
# prints 2006-01-28 23:15:00

          

          
            	
              relativedelta
            
            	relativedelta.relativedelta(...)
 relativedelta allows, among other things, an easy way to find “next Monday,” “last year,” etc. dateutil’s docs offer detailed explanations of the rules defining the inevitably complicated behavior of relativedelta instances.
          

          
            	
              rrule
            
            	rrule.rrule(freq, ...)
 Module rrule implements RFC2445 (also known as the iCalendar RFC), in all the glory of its 140+ pages. rrule allows you to deal with recurring events, providing such methods as after, before, between, and count. See the dateutil docs for more information . 
 
          

        

      

      
        The sched Module

        The sched module implements an event scheduler, letting you easily deal, along a single thread of execution or in multithreaded environments, with events that may be scheduled in either a “real” or a “simulated” time scale. sched supplies a scheduler class:

        
          
            	
              scheduler
            
            	class scheduler([timefunc],[delayfunc])
 The arguments timefunc and delayfunc are optional and default to time.monotonic and time.sleep, respectively.
 timefunc must be callable without arguments to get the current time instant (in any unit of measure); for example, you can pass time.time or time.monotonic. delayfunc is callable with one argument (a time duration, in the same units as timefunc) to delay the current thread for that time; for example, you can pass time.sleep. scheduler calls delayfunc(0) after each event to give other threads a chance; this is compatible with time.sleep. By taking functions as arguments, scheduler lets you use whatever “simulated time” or “pseudotime” fits your application’s needs (a great example of the dependency injection design pattern for purposes not necessarily related to testing).
          

        

        If monotonic time (time cannot go backward, even if the system clock is adjusted backward between calls, e.g., due to leap seconds) is important to your application, use time.monotonic for your scheduler. A scheduler instance s supplies the following methods:

        
          
            	
              cancel
            
            	s.cancel(event_token)
 Removes an event from s’s queue. event_token must be the result of a previous call to s.enter or s.enterabs, and the event must not yet have happened; otherwise, cancel raises RuntimeError.
          

          
            	
              empty
            
            	s.empty()
 Returns True when s’s queue is currently empty; otherwise, False.
          

          
            	
              enterabs
            
            	s.enterabs(when,priority,func,args=(),kwargs={})
 Schedules a future event (a callback to func(args, kwargs)) at time when. when is in the units used by the time functions of s. Should several events be scheduled for the same time, s executes them in increasing order of priority. enterabs returns an event token t, which you may later pass to s.cancel to cancel this event.
          

          
            	
              enter
            
            	s.enter(delay,priority,func,args=(),kwargs={})
 Like enterabs, except that delay is a relative time (a positive difference forward from the current instant), while enterabs’s argument when is an absolute time (a future instant).
 To schedule an event for repeated execution, use a little wrapper function; for example:
def enter_repeat(s, first_delay, period, priority, 
func, args):
    def repeating_wrapper(): 
        s.enter(period, priority, 
            repeating_wrapper, ()) 
        func(*args) 
    s.enter(first_delay, priority, 
        repeating_wrapper, args)

          

          
            	
              run
            
            	s.run(blocking=True)
 Runs scheduled events. If blocking is true, s.run loops until s.empty(), using the delayfunc passed on s’s initialization to wait for each scheduled event. If blocking is false, executes any soon-to-expire events, then returns the next event’s deadline (if any). When a callback func raises an exception, s propagates it, but s keeps its own state, removing the event from the schedule. If a callback func runs longer than the time available before the next scheduled event, s falls behind but keeps executing scheduled events in order, never dropping any. Call s.cancel to drop an event explicitly if that event is no longer of interest.
          

        

      

      
        The calendar Module

        The calendar module supplies calendar-related functions, including functions to print a text calendar for a given month or year. By default, calendar takes Monday as the first day of the week and Sunday as the last one. To change this, call calendar.setfirstweekday. calendar handles years in module time’s range, typically (at least) 1970 to 2038.

        The calendar module supplies the following functions:

        
          
            	
              calendar
            
            	calendar(year,w=2, l=1,c=6)
 Returns a multiline string with a calendar for year year formatted into three columns separated by c spaces. w is the width in characters of each date; each line has length 21*w+18+2*c. l is the number of lines for each week.
          

          
            	
              firstweekday
            
            	firstweekday()
 Returns the current setting for the weekday that starts each week. By default, when calendar is first imported, this is 0, meaning Monday.
          

          
            	
              isleap
            
            	isleap(year)
 Returns True if year is a leap year; otherwise, False.
          

          
            	
              leapdays
            
            	leapdays(y1,y2)
 Returns the total number of leap days in the years within range(y1,y2) (remember, this means that y2 is excluded).
          

          
            	
              month
            
            	month(year,month,w=2,l=1)
 Returns a multiline string with a calendar for month month of year year, one line per week plus two header lines. w is the width in characters of each date; each line has length 7*w+6. l is the number of lines for each week.
          

          
            	
              monthcalendar
            
            	monthcalendar(year,month)
 Returns a list of lists of ints. Each sublist denotes a week. Days outside month month of year year are set to 0; days within the month are set to their day-of-month, 1 and up.
          

          
            	
              monthrange
            
            	monthrange(year,month)
 Returns two integers. The first one is the code of the weekday for the first day of the month month in year year; the second one is the number of days in the month. Weekday codes are 0 (Monday) to 6 (Sunday); month numbers are 1 to 12.
          

          
            	
              prcal
            
            	prcal(year,w=2,l=1,c=6)
 Like print(calendar.calendar(year, w,l,c)).
          

          
            	
              prmonth
            
            	prmonth(year,month,w=2,l=1)
 Like print(calendar.month(year,month,w,l)).
          

          
            	
              setfirstweekday
            
            	setfirstweekday(weekday)
 Sets the first day of each week to weekday code weekday. Weekday codes are 0 (Monday) to 6 (Sunday). calendar supplies the attributes MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY, whose values are the integers 0 to 6. Use these attributes when you mean weekdays (e.g., calendar.FRIDAY instead of 4) to make your code clearer and more readable.
          

          
            	
              timegm
            
            	timegm(tupletime)
 Just like time.mktime: accepts a time instant in timetuple form and returns that instant as a float num of seconds since the epoch.
          

          
            	
              weekday
            
            	weekday(year,month,day)
 Returns the weekday code for the given date. Weekday codes are 0 (Monday) to 6 (Sunday); month numbers are 1 (Jan) to 12 (Dec).
          

        

        python -m calendar offers a useful command-line interface to the module’s functionality: run python -m calendar -h to get a brief help message.

      

    1 pre-3.9, use instead third-party module pytz 
2 On some platforms, you may need to pip install tzdata; once installed, you don’t import tzdata in your program -- rather, zoneinfo uses it automatically. 




Chapter 8. Controlling Execution


      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 13th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




Python directly exposes, supports, and documents many of its internal mechanisms. This may help you understand Python at an advanced level, and lets you hook your own code into such Python mechanisms, controlling them to some extent. For example, “Python built-ins” covers the way Python arranges for built-ins to be visible. This chapter covers some other advanced Python techniques; Chapter 16 covers issues specific to testing, debugging, and profiling. Other issues related to controlling execution are about using multiple threads and processes, covered in Chapter 14.



Per-Site Customization


Python provides a specific “hook” to let each site customize some aspects of Python’s behavior at the start of each run.


We strongly recommend that you avoid altering the site.py file that performs the base customization, because it might cause Python to behave differently on your system than elsewhere, and, in any case, the file would be overwritten each and every time you update your Python installation.


If, as a system administrator (or in an equivalent role, such as a user who did a Python install in their home directory for their sole use) you think you absolutely need some customization, perform it in a new file you will name sitecustomize.py (create it in the same directory where site.py lives).



The site and sitecustomize Modules


Python loads the standard module site just before the main script. If Python is run with option -S, it does not load site. -S allows faster startup but saddles the main script with initialization chores.


site’s tasks are, chiefly, to put sys.path in standard form (absolute paths, no duplicates), including as directed by environment variables, by virtual environments, and by each .pth file found in a directory in sys.path.


Secondarily, if the session starting is an interactive one, site adds several handy built-ins, such as exit, copyright, etc., and, if readline is enabled, configure completion as the function of the tab key.


In any normal Python installation, the installation process sets everything up to ensure that site’s work is sufficient to let Python programs and interactive sessions run “normally”, i.e., as they would on any other system with that version of Python installed. In exceptional cases, as the system admin or in an equivalent role, you’re sure you need further tweaks, write a sitecustomize.py file in the same directory where site.py is found. In the rare cases where sitecustomize.py is present, what it typically does is add yet more dictionaries to sys.path--the best way to perform this task is for sitecustomize.py to import site and then to call site.addsitedir(path_to_a_dir).







Termination Functions


The atexit module lets you register termination functions (i.e., functions to be called at program termination, “last in, first out”). Termination functions are similar to clean-up handlers established by try/finally or with. However, termination functions are globally registered and get called at the end of the whole program, while clean-up handlers are established lexically and get called at the end of a specific try clause or with statement. Termination functions and clean-up handlers are called whether the program terminates normally or abnormally, but not when the program ends by calling os._exit (so you normally call sys.exit instead). The atexit module supplies a function called register:



	
		
				register
				register(func, *args, **kwds)

			Ensures that func(*args,**kwds) is called at program termination time.
		

	






Dynamic Execution and exec


Python’s exec built-in function can execute code that you read, generate, or otherwise obtain during a program’s run. exec dynamically executes a statement or a suite of statements. exec is a built-in function with the syntax:




exec(code, globals=None, locals=None)



code can be a string, bytes, or code object. globals is a dict; locals, any mapping.


If both globals are locals are present, they are the global and local namespaces in which code runs. If only globals is present, exec uses globals as both namespaces. If neither is present, code runs in the current scope.



Never run exec in the current scope

Running exec in the current scope is a very bad idea: it can bind, rebind, or unbind any global name. To keep things under control, use exec, if at all, only with specific, explicit dictionaries.





Avoiding exec


A frequently asked question about Python is “How do I set a variable whose name I just read or built?” Literally, for a global variable, exec allows this, but it’s a bad idea. For example, if the name of the variable is in varname, you might think to use:




exec(varname + ' = 23')



Don’t do this. An exec like this in current scope makes you lose control of your namespace, leading to bugs that are extremely hard to find, and making your program unfathomably difficult to understand. Keep the “variables” that you need to set with dynamically-found names, not as variables, but as entries in a dictionary, say mydict. You could then use:




exec(varname+'=23', mydict)



While this is not quite as terrible as the previous example, it is still a bad idea. Keeping such “variables” as dictionary entries means that you don’t have any need to use exec to set them. Just code:




mydict[varname] = 23



This way, your program is clearer, direct, elegant, and faster. There are some valid uses of exec, but they are extremely rare: just use explicit dictionaries instead.



Strive to avoid exec

Use exec only when it’s really indispensable, which is extremely rare. Most often, it’s best to avoid exec and choose more specific, well-controlled mechanisms: exec weakens your control of your code’s namespace, can damage your program’s performance, and exposes you to numerous hard-to-find bugs and huge security risks.







Expressions


exec can execute an expression, because any expression is also a valid statement (called an expression statement). However, Python ignores the value returned by an expression statement. To evaluate an expression and obtain the expression’s value, see the built-in function eval, covered in Table 7-2. (Note, however, that most of the same caveats as for exec also apply to eval).







Compile and Code Objects


To make a code object to use with exec, call the built-in function compile with the last argument set to ‘exec’ (as covered in Table 7-2).


A code object c exposes many interesting read-only attributes whose names all start with 'co_', such as:



		co_argcount

		
	Number of parameters of the function of which c is the code (0 when c is not the code object of a function, but rather is built directly by compile)

	

		co_code

		
	A bytestring with c’s bytecode

	

		co_consts

		
	The tuple of constants used in c

	

		co_filename

		
	The name of the file c was compiled from (the string that is the second argument to compile, when c was built that way)

	

		co_firstlineno

		
	The initial line number (within the file named by co_filename) of the source code that was compiled to produce c, if c was built by compiling from a file

	

		co_name

		
	The name of the function of which c is the code ('<module>' when c is not the code object of a function but rather is built directly by compile)

	

		co_names

		
	The tuple of all identifiers used within c

	

		co_varnames

		
	The tuple of local variables’ identifiers in c, starting with parameter names

	




Most of these attributes are useful only for debugging purposes, but some may help advanced introspection, as exemplified later in this section.


If you start with a string that holds one or more statements, first use compile on the string, then call exec on the resulting code object—that’s better than giving exec the string to compile and execute. This separation lets you check for syntax errors separately from execution-time errors. You can often arrange things so that the string is compiled once and the code object executes repeatedly, which speeds things up. eval can also benefit from such separation. Moreover, the compile step is intrinsically safe (both exec and eval are extremely risky if you execute them on code that you don’t 100%-trust), and you may be able to perform some checks on the code object, before it executes, to lessen the risk (though never truly down to zero).


A code object has a read-only attribute co_names, which is the tuple of the names used in the code. For example, say that you want the user to enter an expression that contains only literal constants and operators—no function calls or other names. Before evaluating the expression, you can check that the string the user entered satisfies these constraints:




def safer_eval(s):
    code = compile(s, '<user-entered string>', 'eval')
    if code.co_names:
        raise ValueError('No names {!r} allowed in expression {!r}'
                         .format(code.co_names, s))
    return eval(code)



This function safer_eval evaluates the expression passed in as argument s only when the string is a syntactically valid expression (otherwise, compile raises SyntaxError) and contains no names at all (otherwise, safer_eval explicitly raises ValueError). (This is similar to the standard library function ast.literal_eval, covered in “Standard Input”, but a bit more powerful, since it does allow the use of operators.)


Knowing what names the code is about to access may sometimes help you optimize the preparation of the dictionary that you need to pass to exec or eval as the namespace. Since you need to provide values only for those names, you may save work by not preparing other entries. For example, say that your application dynamically accepts code from the user with the convention that variable names starting with data_ refer to files residing in the subdirectory data that user-written code doesn’t need to read explicitly. User-written code may in turn compute and leave results in global variables with names starting with result_, which your application writes back as files in subdirectory data. Thanks to this convention, you may later move the data elsewhere (e.g., to BLOBs in a database instead of files in a subdirectory), and user-written code won’t be affected. Here’s how you might implement these conventions efficiently (in v3; in v2, use exec user_code in datadict instead of exec(user_code, datadict)):




def exec_with_data(user_code_string):
    user_code = compile(user_code_string, '<user code>', 'exec')
    datadict = {}
    for name in user_code.co_names:
        if name.startswith('data_'):
            with open('data/{}'.format(name[5:]), 'rb') as datafile:
                datadict[name] = datafile.read()
        elif name.startswith('result_'):
            pass  # user code can assign to variables named `result_…`
        else:
            raise ValueError(f'invalid variable name {name!r}')
    exec(user_code, datadict)
    for name in datadict:
        if name.startswith('result_'):
            with open('data/{}'.format(name[7:]), 'wb') as datafile:
                datafile.write(datadict[name])




Never exec or eval Untrusted Code


Old versions of Python tried to supply tools to ameliorate the risks of using exec and eval, under the heading of “restricted execution,” but those tools were never entirely secure against the ingenuity of able hackers, and recent versions of Python have therefore dropped them. If you need to ward against such attacks, take advantage of your operating system’s protection mechanisms: run untrusted code in a separate process, with privileges as restricted as you can possibly make them (study the mechanisms that your OS supplies for the purpose, such as chroot, setuid, and jail; in Windows, you might purchase third-party, commercial add-on WinJail, or run untrusted code in a separate, highly constrained virtual machine (or container, if you’re an expert on how to securitize containers). To guard against “denial of service” attacks, have the main process monitor the separate one and terminate the latter if and when resource consumption becomes excessive. Processes are covered in “Running Other Programs”.



exec and eval are unsafe with untrusted code

The function exec_with_data is not at all safe against untrusted code: if you pass it, as the argument user_code_string, some string obtained in a way that you cannot entirely trust, there is essentially no limit to the amount of damage it might do. This is unfortunately true of just about any use of both exec and eval, except for those rare cases in which you can set very strict and checkable limits on the code to execute or evaluate, as was the case for the function safer_eval.









Internal Types


Some of the internal Python objects in this section are hard to use, and indeed not meant for use most of the time. Using such objects correctly and to good effect requires some study of your Python implementation’s own C (or Java, or C#) sources. Such black magic is rarely needed, except to build general-purpose development tools, and similar wizardly tasks. Once you do understand things in depth, Python empowers you to exert control if and when needed. Since Python exposes many kinds of internal objects to your Python code, you can exert that control by coding in Python, even when an understanding of C (or Java, or C#) is needed to read Python’s sources to understand what’s going on.



Type Objects


The built-in type named type acts as a callable factory, returning objects that are types. Type objects don’t have to support any special operations except equality comparison and representation as strings. However, most type objects are callable and return new instances of the type when called. In particular, built-in types such as int, float, list, str, tuple, set, and dict all work this way; specifically, when called without arguments, they return a new empty instance, or, for numbers, one that equals 0. The attributes of the types module are the built-in types, each with one or more names, but only for built-in types that don’t already have a built-in name, as covered in Chapter 7. Besides being callable to generate instances, many type objects are also useful because you can inherit from them, as covered in “Classes and Instances”.





The Code Object Type


Besides using the built-in function compile, you can get a code object via the __code__ attribute of a function or method object. (For the attributes of code objects, see “Compile and Code Objects”.) Code objects are not callable, but you can rebind the __code__ attribute of a function object with the right number of parameters in order to wrap a code object into callable form. For example:




def g(x): print('g', x)
code_object = g.__code__
def f(x): pass
f.__code__ = code_object
f(23)     # prints: g 23


Code objects that have no parameters can also be used with exec or eval. To create a new object, call the type object you want to instantiate. However, directly creating code objects requires many parameters; see Stack Overflow’s nonofficial docs (http://stackoverflow.com/questions/16064409/how-to-create-a-code-object-in-python) on how to do it (almost always, you’re better off calling compile instead).





The frame Type


The function _getframe in the module sys returns a frame object from Python’s call stack. A frame object has attributes giving information about the code executing in the frame and the execution state. The modules traceback and inspect help you access and display such information, particularly when an exception is being handled. Chapter 16 provides more information about frames and tracebacks, and covers the module inspect, which is the best way to perform such introspection. As the leading underscore in the name _getframe hints, the function is “somewhat private”, meant for use only by tools such as debuggers, ones which inevitably require deep introspection into Python’s internals.







Garbage Collection


Python’s garbage collection normally proceeds transparently and automatically, but you can choose to exert some direct control. The general principle is that Python collects each object x at some time after x becomes unreachable—that is, when no chain of references can reach x by starting from a local variable of a function instance that is executing, nor from a global variable of a loaded module. Normally, an object x becomes unreachable when there are no references at all to x. In addition, a group of objects can be unreachable when they reference each other but no global or local variables reference any of them, even indirectly (such a situation is known as a mutual reference loop).


Classic Python keeps with each object x a count, known as a reference count, of how many references to x are outstanding. When x’s reference count drops to 0, CPython immediately collects x. The function getrefcount of the module sys accepts any object and returns its reference count (at least 1, since getrefcount itself has a reference to the object it’s examining). Other versions of Python, such as Jython or IronPython, rely on other garbage-collection mechanisms supplied by the platform they run on (e.g., the JVM or the MSCLR). The modules gc and weakref therefore apply only to CPython.


When Python garbage-collects x and there are no references at all to x, Python then finalizes x (i.e., calls x.__del__()) and makes the memory that x occupied available for other uses. If x held any references to other objects, Python removes the references, which in turn may make other objects collectable by leaving them unreachable.



The gc Module


The gc module exposes the functionality of Python’s garbage collector. gc deals only with unreachable objects that are part of mutual reference loops. In such a loop, each object in the loop refers to others, keeping the reference counts of all objects positive. However, no outside references to any one of the set of mutually referencing objects exist any longer. Therefore, the whole group, also known as cyclic garbage, is unreachable, and therefore garbage-collectable. Looking for such cyclic garbage loops takes time, which is why the module gc exists: to help you control whether and when your program spends that time. The functionality of “cyclic garbage collection,” by default, is enabled with some reasonable default parameters: however, by importing the gc module and calling its functions, you may choose to disable the functionality, change its parameters, and/or find out exactly what’s going on in this respect.


gc exposes functions you can use to help you keep cyclic garbage-collection times under control. These functions can sometimes let you track down a memory leak—objects that are not getting collected even though there should be no more references to them—by helping you discover what other objects are in fact holding on to references to them:



	
		
				collect
				collect()

			Forces a full cyclic garbage collection run to happen immediately.

		

		
				disable
				disable()

			Suspends automatic, periodic cyclic garbage collection.

		

		
				enable
				enable()

			Reenables periodic cyclic garbage collection previously suspended with disable
.
		

		
				garbage
				A read-only attribute that lists the unreachable but uncollectable objects. This happens when any object in a cyclic garbage loop has a __del__ special method, as there may be no demonstrably safe order for Python to finalize such objects.

		

		
				get_debug
				get_debug()

			Returns an int bit string, the garbage-collection debug flags set with set_debug.

		

		
				get_objects
				get_objects()

			Returns a list of all objects currently tracked by the cyclic garbage collector.
		

		
				get_referrers
				get_referrers(*objs)

			Returns a list of all container objects, currently tracked by the cyclic garbage collector, that refer to any one or more of the arguments.
		

		
				get_threshold
				get_threshold()

			Returns a three-item tuple (threshe, thresh1, thresh2), the garbage-collection thresholds set with set_threshold.
		

		
				isenabled
				isenabled()

			Returns True when cyclic garbage collection is currently enabled. Returns False when collection is currently disabled.
		

		
				set_debug
				set_debug(flags)

			Sets debugging flags for garbage collection. flags is an int, interpreted as a bit string, built by ORing (with the bitwise-OR operator |) zero or more constants supplied by the module gc:
			
				DEBUG_COLLECTABLE

				Prints information on collectable objects found during collection

				DEBUG_LEAK

				The set of debugging flags that make the garbage collector print all information that can help you diagnose memory leaks; same as the bitwise-OR of all other constants (except DEBUG_STATS, which serves a different purpose)

				DEBUG_SAVEALL

				Saves all collectable objects to the list gc.garbage (where uncollectable ones are also always saved) to help you diagnose leaks

				DEBUG_STATS

				Prints statistics during collection to help you tune the thresholds

				DEBUG_UNCOLLECTABLE

				Prints information on uncollectable objects found during collection


		

		
				set_threshold
				set_threshold(thresh0[, thresh1[, thresh2]])

			Sets thresholds that control how often cyclic garbage-collection cycles run. A thresh0 of 0 disables garbage collection. Garbage collection is an advanced, specialized topic, and the details of the generational garbage-collection approach used in Python (and consequently the detailed meanings of these thresholds) are beyond the scope of this book; see the online docs for some details.
		

	



When you know there are no cyclic garbage loops in your program, or when you can’t afford the delay of cyclic garbage collection at some crucial time, suspend automatic garbage collection by calling gc.disable(). You can enable collection again later by calling gc.enable(). You can test whether automatic collection is currently enabled by calling gc.isenabled(), which returns True or False. To control when time is spent collecting, you can call gc.collect() to force a full cyclic collection run to happen immediately. To wrap some time-critical code:



import gc
gc_was_enabled = gc.isenabled()
if gc_was_enabled:
    gc.collect()
    gc.disable()
# insert some time-critical code here
if gc_was_enabled:
    gc.enable()



Other functionality in the module gc is more advanced and rarely used, and can be grouped into two areas. The functions get_threshold and set_threshold and debug flag DEBUG_STATS help you fine-tune garbage collection to optimize your program’s performance. The rest of gc’s functionality can help you diagnose memory leaks in your program. While gc itself can automatically fix many leaks (as long as you avoid defining __del__ in your classes, since the existence of __del__ can block cyclic garbage collection), your program runs faster if it avoids creating cyclic garbage in the first place.



Instrumenting garbage collection


gc.callbacks is an initially empty list to which you can add functions f(phase, info) which Python is to call upon garbage collection. When Python calls each such function, phase is 'start' or 'stop' to mark the beginning or end of a collection, and info is a dictionary containing information about the generational collection used by CPython. You can add functions to this list, for example to gather statistics about garbage collection. See the documentation for more details.







The weakref Module


Careful design can often avoid reference loops. However, at times you need objects to know about each other, and avoiding mutual references would distort and complicate your design. For example, a container has references to its items, yet it can often be useful for an object to know about a container holding it. The result is a reference loop: due to the mutual references, the container and items keep each other alive, even when all other objects forget about them. Weak references solve this problem by allowing objects to reference others without keeping them alive.


A weak reference is a special object w that refers to some other object x without incrementing x’s reference count. When x’s reference count goes down to 0, Python finalizes and collects x, then informs w of x’s demise. Weak reference w can now either disappear or get marked as invalid in a controlled way. At any time, a given w refers to either the same object x as when w was created, or to nothing at all; a weak reference is never retargeted. Not all types of objects support being the target x of a weak reference w, but classes, instances, and functions do.


The weakref module exposes functions and types to create and manage weak references:



	
		
				getweakrefcount
				getweakrefcount(x)

			Returns len(getweakrefs(x)).
		

		
				getweakrefs
				getweakrefs(x)

			Returns a list of all weak references and proxies whose target is x.
		

		
				proxy
				proxy(x[,f])

			Returns a weak proxy p of type ProxyType (CallableProxyType when x is callable) with object x as the target. In most contexts, using p is just like using x, except that, when you use p after x has been deleted, Python raises ReferenceError. p is not hashable (thus, you cannot use p as a dictionary key), even when x is. When f is present, it must be callable with one argument and is the finalization callback for p (i.e., right before finalizing x, Python calls f(p)). f executes right after x is no longer reachable from p.
		

		
				ref
				ref(x[,f])

			Returns a weak reference w of type ReferenceType with object x as the target. w is callable without arguments: calling w() returns x when x is still alive; otherwise, w() returns None. w is hashable when x is hashable. You can compare weak references for equality (==, !=), but not for order (<, >, <=, >=). Two weak references x and y are equal when their targets are alive and equal, or when x is y. When f is present, it must be callable with one argument and is the finalization callback for w (i.e., right before finalizing x, Python calls f(w)). f executes right after x is no longer reachable from w.
		

		
				WeakKeyDictionary
				class WeakKeyDictionary(adict={})

			A WeakKeyDictionary d is a mapping weakly referencing its keys. When the reference count of a key k in d goes to 0, item d[k] disappears. adict is used to initialize the mapping.
		

		
				WeakValueDictionary
				class WeakValueDictionary(adict={})

			A WeakValueDictionary d is a mapping weakly referencing its values. When the reference count of a value v in d goes to 0, all items of d such that d[k] is v disappear. adict is used to initialize the mapping.
		

	



WeakKeyDictionary lets you noninvasively associate additional data with some hashable objects, with no change to the objects. WeakValueDictionary lets you noninvasively record transient associations between objects, and build caches. In each case, use a weak mapping, rather than a dict, to ensure that an object that is otherwise garbage-collectable is not kept alive just by being used in a mapping.


A typical example is a class that keeps track of its instances, but does not keep them alive just in order to keep track of them:




import weakref
class Tracking(object):
    _instances_dict = weakref.WeakValueDictionary()
    def __init__(self):
        Tracking._instances_dict[id(self)] = self
    @classmethod
    def instances(cls):
       return cls._instances_dict.values()









      Chapter 9. Numeric Processing

      
      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 15th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      You can perform some numeric computations with operators (covered in “Numeric Operations”) and built-in functions (covered in “Built-in Functions”). Python also provides modules that support additional numeric computations, covered in this chapter: math and cmath in “The math and cmath Modules”, statistics in “The statistics Module”, operator in “The operator Module”, random and secrets in “The random Module”, fractions in “The fractions Module”, and decimal in “The decimal Module”. Numeric processing often requires, more specifically, the processing of arrays of numbers, covered in “Array Processing”, focusing on the standard library module array and popular third-party extension NumPy. Finally, “Additional Numeric Packages” lists several additional numeric processing packages produced by the Python community. 

      
        Floating-point Values

        Python represents real numeric values (that is, those that are not integers) using variables of type float. Unlike integers, computers can rarely represent floats exactly, due to their internal implementation as a fixed-size binary integer significand (often incorrectly called “mantissa”) and a fixed-size binary integer exponent. They are limited in terms of how many decimal places they can represent, how large an integer they can accurately store, and how large an overall number they can store.

        For most everyday applications, floats are sufficient for arithmetic, but they are limited in the number of decimal places they can represent.

        
          >>> f = 1.1 + 2.2 - 3.3  # f should be equal to 0
>>> f
4.440892098500626e-16

        
        They are also limited in the range of integer values they can accurately store (“accurately” meaning “can distinguish from next largest or smallest integer value”).

        
          >>> f = 2**53
>>> f
9007199254740992
>>> f + 1
9007199254740993    # integer arithmetic is not bounded
>>> f + 1.0
9007199254740992.0  # conversion to float loses integer precision at 2**53

        
        Always keep in mind that floats are not entirely precise, due to their internal representation in the computer. The same consideration applies to complex numbers.

        
          Don’t use == between floating-point or complex numbers

          Given the approximate nature of floating-point arithmetic, it rarely makes sense to check if two floats x and y are equal. Tiny variations in how each was computed can easily result in unexpected differences. Instead, use function isclose exported by built-in module math. The following code illustrates why:

          >>> import math
>>> f = 1.1 + 2.2 - 3.3 # f is intuitively equal to 0
>>> f==0
False
>>> f
4.440892098500626e-16
>>> # default tolerance is fine for this comparison
>>> math.isclose(-1, f-1) 
True

          For some values, you may have to set the tolerance value explicitly (it is always necessary when comparing with 0):

          >>> # near-0 comparison with default tolerances
>>> math.isclose(0,f)
False
>>> # use abs_tol for near-0 comparison
>>> math.isclose(0,f,abs_tol=1e-15) 
True




          Don’t use a float as a loop control variable

          A common error is to use a floating-point value as the control variable of a loop, assuming that it will eventually equal some ending value, such as 0. However, the following loop, expected to loop 5 times and then end, will loop forever:

          >>> f = 1
>>> while f != 0:
... f -= 0.2 # even though f started as int, it's now a float

          This code shows why:

          >>> 1 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 # should be 0, but...
5.551115123125783e-17

          Even using the inequality operator > results in incorrect behavior, looping 6 times instead of 5 (since the residual float value is still greater than 0):

          >>> f = 1
>>> count = 0
>>> while f > 0:
... count += 1
... f -= 0.2
>>> print(count)
6 # 1 time too many!

          Using math.isclose for comparing f with 0, the for loop now repeats the correct number of times:

          >>> f = 1
>>> count = 0
>>> while not math.is_close(0,f,abs_tol=1e-15):
... count += 1
... f -= 0.2
>>> print(count)
5 # just right this time!

          In general, it is better practice to use an int for a loop’s control variable, rather than a float.

        

      

      
        The math and cmath Modules

        The math module supplies mathematical functions on floating-point numbers; the cmath module supplies equivalent functions on complex numbers. For example, math.sqrt(-1) raises an exception, but cmath.sqrt(-1) returns 1j.

        Just like for any other module, the cleanest, most readable way to use these is to have, for example, import math at the top of your code, and explicitly call, say, math.sqrt afterward. However, if your code includes a large number of calls to the modules’ well-known mathematical functions, it is allowed (though it may lose some readability) to either use from math import *, or use from math import sqrt, and afterward just call sqrt.

        Each module exposes three float attributes bound to the values of fundamental mathematical constants, e, pi, and tau, and a variety of functions, including those shown in Table 15-1.

        The math and cmath modules are not fully symmetric. The following table lists the methods in these modules, and, for each method, indicates whether it is in math, cmath, or both.

        
          Table 9-1. Methods in the math and cmath modules
          
            	
            	
            	math
            	cmath
          

          
            	acos,
 asin,
 atan,
 cos, sin,
 tan
            	acos(x)
 Returns the arccosine, arcsine, arctangent, cosine, sine, or tangent of x, respectively, in radians.
            	✓
            	✓
          

          
            	acosh,
 asinh,
 atanh,
 cosh,
 sinh,
 tanh
            	acosh(x)
 Returns the arc hyperbolic cosine, arc hyperbolic sine, arc hyperbolic tangent, hyperbolic cosine, hyperbolic sine, or hyperbolic tangent of x, respectively, in radians.
            	✓
            	✓
          

          
            	
              atan2
            
            	atan2(y,x)
 Like atan(y/x), except that atan2 properly takes into account the signs of both arguments. For example:
>>> import math 
>>> math.atan(-1./-1.) 0.78539816339744828 
>>> math.atan2(-1., -1.) -2.3561944901923448
When x equals 0, atan2 returns pi/2, while dividing by x would raise ZeroDivisionError.
            	✓
            	
          

          
            	
              ceil
            
            	ceil(x)
 Returns float(i), where i is the lowest integer such that i>=x.
            	✓
            	
          

          
            	
              comb
            
            	||3.8++|| comb(n, k)
 Returns the number of combinations of n items taken k items at a time, regardless of order. When counting the number of combinations taken from 3 items A, B, and C, 2 at a time (comb(3, 2)), A-B and B-A are considered the same combination. Raises ValueError if k or n is negative; raises TypeError if k or n are not int.
            	✓
            	
          

          
            	
              copysign
            
            	copysign(x, y)
 Returns the absolute value of x with the sign of y.
            	✓
            	
          

          
            	
              degrees
            
            	degrees(x)
 Returns the degree measure of the angle x given in radians.
            	✓
            	
          

          
            	
              dist
            
            	||3.8++|| dist(pt0, pt1)
 Returns the Euclidean distance between two n-dimensional points, where each point is represented as a sequence of values (coordinates). Raises ValueError if pt0 and pt1 are not the same length.
            	✓
            	
          

          
            	
              e
            
            	The mathematical constant e (2.718281828459045).
            	✓
            	✓
          

          
            	
              erf
            
            	erf(x)
 Returns the error function of x as used in statistical calculations.
            	✓
            	
          

          
            	
              erfc
            
            	erfc(x)
 Returns the complementary error function at x, defined as 1.0 - erf(x).
            	✓
            	
          

          
            	
              exp
            
            	exp(x)
 Returns e**x.
            	✓
            	✓
          

          
            	
              expm1
            
            	expm1(x)
 Returns e**x - 1. Inverse of log1p.
            	✓
            	
          

          
            	
              fabs
            
            	fabs(x)
 Returns the absolute value of x.
            	✓
            	
          

          
            	
              factorial
            
            	factorial(x)
 Returns the factorial of x. Raises ValueError when x is negative and TypeError when x is not integral.
            	✓
            	
          

          
            	
              floor
            
            	floor(x)
 Returns float(i), where i is the greatest integer such that i<=x.
            	✓
            	
          

          
            	
              fmod
            
            	fmod(x,y)
 Returns the float r, with the same sign as x, such that r==x-n*y for some integer n, and abs(r)<abs(y). Like x%y, except that, when x and y differ in sign, x%y has the same sign as y, not the same sign as x.
            	✓
            	
          

          
            	
              frexp
            
            	frexp(x)
 aReturns a pair (m, e) where m is a floating-point number, and e is an integer such that x==m*(2**e) and 0.5<=abs(m)<1, except that frexp(0) returns (0.0,0). 
            	✓
            	
          

          
            	
              fsum
            
            	fsum(iterable)
 Returns the floating-point sum of the values in iterable to greater precision than the sum built-in function.
            	✓
            	
          

          
            	
              gamma
            
            	gamma(x)
 Returns the Gamma function evaluated at x.
            	✓
            	
          

          
            	
              gcd
            
            	gcd(x,y)
 Returns the Greatest Common Divisor of x and y. When x and y are both zero, returns 0. (||3.9++|| gcd can accept any number of values)
            	✓
 
            	
          

          
            	
              hypot
            
            	hypot(x,y)
 Returns sqrt(x*x+y*y). (||3.8++|| can accept any number of values, to compute a hypotenuse length in n-dimensions)
            	✓
            	
          

          
            	
              inf
            
            	inf
 A floating-point positive infinity, like float('inf').
            	✓
            	✓
          

          
            	
              infj
            
            	infj
 A complex imaginary infinity, equal to complex(0, float('inf'))
            	
            	✓
          

          
            	
              isclose
            
            	isclose(x, y, rel_tol=1e-09, abs_tol=0.0)
Returns True when x and y are approximately equal, within relative tolerance rel_tol, with minimum absolute tolerance of abs_tol; otherwise, returns False. Default is rel_tol within 9 decimal digits. rel_tol must be greater than 0. abs_tol is used for comparisons near zero: it must be at least 0.0. NaN is not considered close to any value (including NaN itself); each of -inf and inf is only considered close to itself. Except for behavior at +/- inf, isclose is like:
abs(x-y) <= max(rel_tol*max(abs(x), abs(y)),abs_tol)

            	✓
 
            	✓
          

          
            	
              isfinite
            
            	isfinite(x)
 Returns True when x (in cmath, both the real and imaginary part of x) is neither infinity nor NaN; otherwise, returns False.
            	✓
 
            	✓
          

          
            	
              isinf
            
            	isinf(x)
 Returns True when x (in cmath, either the real or imaginary part of x, or both) is positive or negative infinity; otherwise, returns False.
            	✓
            	✓
          

          
            	
              isnan
            
            	isnan(x)
 Returns True when x (in cmath, either the real or imaginary part of x, or both) is NaN; otherwise, returns False.
            	✓
            	✓
          

          
            	
              isqrt
            
            	||3.8++|| isqrt(x)
 Returns int(sqrt(x)).
            	✓
            	
          

          
            	
              lcm
            
            	||3.9++|| lcm(x, ...)
 Returns the Least Common Multiple of the given ints. If all values are not ints, raises TypeError.
            	
            	
          

          
            	
              ldexp
            
            	ldexp(x,i)
 Returns x*(2**i) (i must be an int; when i is a float, ldexp raises TypeError). Inverse of frexp.
            	✓
            	
          

          
            	
              lgamma
            
            	lgamma(x)
 Returns the natural log of the absolute value of the Gamma function evaluated at x.
            	✓
            	
          

          
            	
              log
            
            	log(x)
 Returns the natural logarithm of x.
            	✓
            	✓
          

          
            	
              log10
            
            	log10(x)
 Returns the base-10 logarithm of x.
            	✓
            	✓
          

          
            	
              log1p
            
            	log1p(x)
 Returns the natural log of 1+x. Inverse of expm1.
            	✓
            	
          

          
            	
              log2
            
            	log2(x)
 Returns the base-2 logarithm of x.
            	✓
            	
          

          
            	
              modf
            
            	modf(x)
 Returns a pair (f,i) with fractional and integer parts of x, meaning two floats with the same sign as x such that i==int(i) and x==f+i.
            	✓
            	
          

          
            	
              nan
            
            	nan
 A floating-point “Not a Number” (NaN) value, like float('nan') or complex('nan').
            	✓
            	✓
          

          
            	
              nanj
            
            	A complex number with a 0.0 real part and floating-point “Not a Number” (NaN) imaginary part.
            	
            	✓
          

          
            	
              nextafter
            
            	||3.9++|| nextafter(a, b)
 Returns the next higher or lower float value from a in the direction of b.
            	✓
            	
          

          
            	
              perm
            
            	||3.8++|| perm(n, k)
 Returns the number of permutations of n items taken k items at a time, where selections of the same items but in differing order are counted separately. When counting the number of permutations of 3 items A, B, and C, taken 2 at a time (perm(3, 2)), A-B and B-A are considered to be different permutations. Raises ValueError when k or n is negative; raises TypeError when k or n are not int.
            	✓
            	
          

          
            	
              pi
            
            	The mathematical constant π, 3.141592653589793.
            	✓
            	✓
          

          
            	
              phase
            
            	phase(x)
 Returns the phase of x, as a float in the range (-π, π). Like math.atan2(x.imag, x.real). See “Conversions to and from polar coordinates” in the Python online docs.
            	
            	✓
          

          
            	
              polar
            
            	polar(x)
 Returns the polar coordinate representation of x, as a pair (r, phi) where r is the modulus of x and phi is the phase of x. Like (abs(x), cmath.phase(x)). See “Conversions to and from polar coordinates” in the Python online docs.
            	
            	✓
          

          
            	
              pow
            
            	pow(x,y)
 Returns x**y.
            	✓
            	
          

          
            	
              prod
            
            	||3.8++|| prod(seq, start=1)
 Returns the product of all values in the sequence, beginning with the given start value, which defaults to 1.
            	✓
            	
          

          
            	
              radians
            
            	radians(x)
 Returns the radian measure of the angle x given in degrees.
            	✓
            	
          

          
            	
              rect
            
            	rect(r, phi)
 Returns the complex value representing the polar coordinates (r, phi) converted to rectangular coordinates as (x + yj).
            	
            	✓
          

          
            	
              remainder
            
            	remainder(x, y)
 Returns the remainder from dividing x / y.
            	✓
            	
          

          
            	
              sqrt
            
            	sqrt(x)
 Returns the square root of x.
            	✓
            	✓
          

          
            	
              tau
            
            	The mathematical constant τ=2π, 6.283185307179586.
            	✓
            	✓
          

          
            	
              trunc
            
            	trunc(x)
 Returns x truncated to an int.
            	✓
            	
          

          
            	
              ulp
            
            	||3.9++|| ulp(x)
 Returns the least significant bit of floating-point value x. For positive values, equals math.nextafter(x, x+1) - x. For negative values, equals ulp(-x). If x is NaN or inf, returns x. ulp stands for “Unit of Least Precision.”
            	✓
            	
          

        	a Formally, m is the mantissa or, rather, significand, and e is the exponent. Used to render a cross-platform portable representation of a floating-point value. 



        
          The statistics Module
        

        The statistics module supplies functions to compute common statistics, and the class NormalDist to perform distribution analytics.

        
          
            	
              
                harmonic_mean
              
            
            	
              
                median_high
              
            
            	
              
                pvariance
              
            
          

          
            	
              
                mean
              
            
            	
              
                median_low
              
            
            	
              
                stdev
              
            
          

          
            	
              
                median
              
            
            	
              
                mode
              
            
            	
              
                variance
              
            
          

          
            	
              
                median_grouped
              
            
            	
              
                pstdev
              
            
            	 
            
          

        

        
          ||3.8++||

        
        
          
            	
              
                  fmean 
              
            
            	
            
                  multimode 
              
            
            	
              
                NormalDist
              
            
          

          
            	
              
                  geometric_mean 
              
            
            	
              
                  quantiles 
              
            
            	
              
            
          

        

        
          ||3.10++||

        
        
          
            	
              
                  correlation 

              
            
            	
              

                  covariance 

              
            
            	
              

                  linear_regression 

              
            
          

        

        The Python online docs contain detailed information on the signatures and use of these functions.

      

      
        The operator Module

        The operator module supplies functions that are equivalent to Python’s operators. These functions are handy in cases where callables must be stored, passed as arguments, or returned as function results. The functions in operator have the same names as the corresponding special methods (covered in “Special Methods”). Each function is available with two names, with and without “dunder” (leading and trailing double underscores): for example, both operator.add(a,b) and operator.__add__(a,b) return a+b.

        Matrix multiplication support has been added for the infix operator @, but you must implement it by defining your own __matmul__, __rmatmul__, and/or __imatmul__; NumPy currently supports @ (but, as of this writing, not yet @=) for matrix multiplication.

        Table 15-2 lists some of the functions supplied by the operator module.

        
          Table 9-2. Functions supplied by the operator module
          
            	
              Method
            
            	
              Signature
            
            	
              Behaves like
            
          

          
            	
              abs
            
            	
              abs( a )
            
            	
              abs(
              a
              )
            
          

          
            	
              add
            
            	
              add( a,
               
              b )
            
            	a + b
          

          
            	
              and_
            
            	
              and_(a,
               
              b )
            
            	a & b
          

          
            	
              concat
            
            	
              concat
              ( a,
               
              b )
            
            	a + b
          

          
            	
              contains
            
            	
              contains( a,
               
              b )
            
            	b in a
          

          
            	
              countOf
            
            	
              countOf
              ( a,
               
              b )
            
            	
              a
              .count
              (
              b
              )
            
          

          
            	
              delitem
            
            	
              delitem
              ( a,
               
              b )
            
            	del a[b]
          

          
            	
              delslice
            
            	
              delslice
              ( a,
               
              b,
               
              c)
            
            	del a[b:c]
          

          
            	
              div
            
            	
              div(a, b)
               
            
            	a / b
          

          
            	
              eq
            
            	
              eq(
               
              a, b
               
              )
            
            	
              a == b
            
          

          
            	
              floordiv
            
            	
              floordiv
              ( a, b
               
              )
            
            	
              a // b
            
          

          
            	
              ge
            
            	
              ge
              ( a, b
               
              )
            
            	
              a >= b
            
          

          
            	
              getitem
            
            	
              getitem
              ( a, b
               
              )
            
            	a [ b ]
          

          
            	
              getslice
            
            	
              getslice
              ( a, b, c
               
              )
            
            	a [ b : c ]
          

          
            	
              gt
            
            	
              gt
              ( a, b
               
              )
            
            	
              a > b
            
          

          
            	
              indexOf
            
            	
              indexOf
              ( a, b
               
              )
            
            	
              a
              .index
              (
              b
              )
            
          

          
            	
              invert, inv
            
            	
              invert( a ),
               
              inv( a )
            
            	~a
          

          
            	
              is_
            
            	
              is_( a, b )
            
            	a is b
          

          
            	
              is_not
            
            	
              is_not
              ( a, b )
            
            	a is not b
          

          
            	
              le
            
            	
              le( a, b )
            
            	
              a <= b
            
          

          
            	
              lshift
            
            	
              lshift
              ( a, b )
            
            	
              a << b
            
          

          
            	
              lt
            
            	
              lt
              (
               
              a, b
               
              )
            
            	
              a < b
            
          

          
            	
              matmul
            
            	
              matmul
              ( m1,
               
              m2 )
            
            	
              m1 @ m2
            
          

          
            	
              mod
            
            	
              mod( a, b
               
              )
            
            	
              a % b
            
          

          
            	
              mul
            
            	
              mul
              (
               
              a, b
               
              )
            
            	
              a * b
            
          

          
            	
              ne
            
            	
              ne( a, b
               
              )
            
            	
              a != b
            
          

          
            	
              neg
            
            	
              neg(
               
              a
               
              )
            
            	- a
          

          
            	
              not_
            
            	
              not_( a
               
              )
            
            	not a
          

          
            	
              or_
            
            	
              or_( a, b
               
              )
            
            	
              a | b
            
          

          
            	
              pos
            
            	
              pos(
               
              a
               
              )
            
            	+ a
          

          
            	pow
            	
              pow(a, b)
            
            	a ** b
          

          
            	
              repeat
            
            	
              repeat(a,
               
              b
               
              )
            
            	
              a * b
            
          

          
            	
              rshift
            
            	
              rshift
              (
               
              a,
               
              b
               
              )
            
            	
              a >> b
            
          

          
            	
              setitem
            
            	
              setitem
              ( a,
               
              b,
               
              c
               
              )
            
            	a [ b ]= c
          

          
            	
              setslice
            
            	
              setslice
              ( a,
               
              b
              , 
              c
              , 
              d )
            
            	a [ b : c ]= d
          

          
            	
              sub
            
            	
              sub( a,
               
              b
               
              )
            
            	
              a - b
            
          

          
            	
              truediv
            
            	
              truediv
              (
               
              a,
               
              b
               
              )
            
            	
              a/b
               # "true" div -> no truncation
            
          

          
            	
              truth
            
            	
              truth(
               
              a
               
              )
            
            	
              bool(
              a
              ), not not a
            
          

          
            	
              xor
            
            	
              xor
              ( a,
               
              b
               
              )
            
            	
              a ^ b
            
          

        

        The operator module also supplies additional higher-order functions. Three of these functions, attrgetter, itemgetter, and methodcaller, return functions suitable for passing as named argument key= to the sort method of lists, the sorted, min, and max built-in functions, and several functions in standard library modules such as heapq and itertools.

        
          
            	
              attrgetter
            
            	attrgetter(attr)
 Returns a callable f such that f(o) is the same as getattr(o,attr). The attr string can include dots (.), in which case the callable result of attrgetter calls getattr repeatedly. For example, operator.attrgetter('a.b') is equivalent to lambda o: getattr(getattr(o, 'a'), 'b').
 attrgetter(*attrs)
 When you call attrgetter with multiple arguments, the resulting callable extracts each attribute thus named and returns the resulting tuple of values.
          

          
            	
              itemgetter
            
            	itemgetter(key)
 Returns a callable f such that f(o) is the same as getitem(o, key). itemgetter(*keys)
 When you call itemgetter with multiple arguments, the resulting callable extracts each item thus keyed and returns the resulting tuple of values.
 For example, say that L is a list of lists, with each sublist at least three items long: you want to sort L, in-place, based on the third item of each sublist, with sublists having equal third items sorted by their first items. The simplest way:import operator L.sort(key=operator.itemgetter(2, 0))

          

          
            	
              length_hint
            
            	length_hint(iterable, default=0)
 Used to try to pre-allocate storage for items in iterable. Calls object iterable’s __len__ method to try to get an exact length. If __len__ is not implemented, then Python tries calling iterable’s __length_hint__ method. If also not implemented, length_hint returns the given default.
          

          
            	
              methodcaller
            
            	methodcaller(methodname, args...)
 Returns a callable f such that f(o) is the same as o.methodname(args, ...). The optional args may be given as positional or named arguments.
          

        

      

      
        Random and Pseudorandom Numbers

        The random module of the standard library generates pseudorandom numbers with various distributions. The underlying uniform pseudorandom generator uses the popular Mersenne Twister algorithm, with a period of length 2**19937-1.

        
          The random Module

          All functions of the random module are methods of one hidden global instance of the class random.Random. You can instantiate Random explicitly to get multiple generators that do not share state. Explicit instantiation is advisable if you require random numbers in multiple threads (threads are covered in Chapter “Threads and Processes”). Alternatively, instantiate SystemRandom if you require higher-quality random numbers. (See “Physically Random and Cryptographically Strong Random Numbers”.) This section documents the most frequently used functions exposed by module random:

          
            
              	
                choice
              
              	choice(seq)
 Returns a random item from nonempty sequence seq.
            

            
              	
                choices
              
              	choices(seq, *, weights, cum_weights, k=1)
 Returns k elements from nonempty sequence seq, with replacement. If weights or cum_weights are given (as a list of floats or ints), then their respective choices are weighted by that amount during choosing. The cum_weights argument accepts a list of floats or ints as would be returned by itertools.accumulate(weights) ; e.g., if weights for a seq containing 3 items were [1, 2, 1], then the corresponding cum_weights would be [1, 3, 4]. Only one of weights or cum_weights may be specified, and the one specified must be the same length as seq. If neither is specified, elements are chosen with equal probability. (If used, cum_weights and k must be given as named arguments.)
            

            
              	
                getrandbits
              
              	getrandbits(k)
 Returns an int >=0 with k random bits, like randrange(2**k) (but faster, and with no problems for large k).
            

            
              	
                getstate
              
              	getstate()
 Returns a hashable and pickleable object S representing the current state of the generator. You can later pass S to function setstate to restore the generator’s state.
            

            
              	
                jumpahead
              
              	jumpahead(n)
 Advances the generator state as if n random numbers had been generated. This is faster than generating and ignoring n random numbers.
            

            
              	
                randbytes
              
              	randbytes(k)
 ||3.9++|| Generates k random bytes. To generate bytes for secure or cryptographic applications, use secrets.randbits(k*8), then unpack the int it returns into k bytes, using int.to_bytes(k, 'big').
            

            
              	
                randint
              
              	randint(start, stop)
 Returns a random int i from a uniform distribution such that start<=i<=stop. Both endpoints are included: this is quite unnatural in Python, so you would normally prefer randrange.
            

            
              	
                random
              
              	random()
 Returns a random float r from a uniform distribution, 0<=r<1.
            

            
              	
                randrange
              
              	randrange([start,]stop[,step])
 Like choice(range(start,stop,step)), but much faster.
            

            
              	
                sample
              
              	sample(seq,k)
 Returns a new list whose k items are unique items randomly drawn from seq. The list is in random order, so that any slice of it is an equally valid random sample. seq may contain duplicate items. In this case, each occurrence of an item is a candidate for selection in the sample, and the sample may also contain such duplicates.
            

            
              	
                seed
              
              	seed(x=None)
 Initializes the generator state. x can be any int, float, str, bytes, or bytearray. When x is None, and when the module random is first loaded, seed uses the current system time (or some platform-specific source of randomness, if any) to get a seed. x is normally an int up to 2**256, a float, or a str, bytes, or bytearray up to 32 bytes in size. Larger x values are accepted, but may produce the same generator state as smaller ones.
            

            
              	
                setstate
              
              	setstate(S)
 Restores the generator state. S must be the result of a previous call to getstate (such a call may have occurred in another program, or in a previous run of this program, as long as object S has correctly been transmitted, or saved and restored).
            

            
              	
                shuffle
              
              	shuffle(alist)
 Shuffles, in place, mutable sequence alist.
            

            
              	
                uniform
              
              	uniform(a,b)
 Returns a random floating-point number r from a uniform distribution such that a<=r<b.
            

          

          The random module also supplies several other functions that generate pseudo random floating-point numbers from other probability distributions (Beta, Gamma, exponential, Gauss, Pareto, etc.) by internally calling random.random as their source of randomness.

        

        
          Physically and Cryptographically Strong Random Numbers:
the secrets module

          Pseudorandom numbers provided by the random module, while sufficient for simulation and modeling, are not of cryptographic quality. To get random numbers and sequences for use in security and cryptography applications, use the functions defined in the secrets module. Those functions use the random.SystemRandom class, which in turn calls os.urandom. os.urandom returns random bytes, read from physical sources of random bits such as /dev/urandom on older Linux releases, or the getrandom() syscall on Linux 3.17 and above. On Windows, os.urandom uses cryptographical-strength sources such as the CryptGenRandom API. If no suitable source exists on the current system, os.urandom raises NotImplementedError. Module secrets exports the following functions:

          
            
              	
                choice
              
              	choice(seq)
 Returns a randomly selected item from nonempty sequence seq.
            

            
              	
                randbelow
              
              	randbelow(n)
 Returns a random int x in the range 0 <= x < n
            

            
              	
                randbits
              
              	randbits(k)
 Returns an int with k random bits.
            

            
              	
                token_bytes
              
              	token_bytes(n)
 Returns a bytes object of n random bytes. If n is omitted, a default value, such as 32, is used.
            

            
              	
                token_hex
              
              	token_hex(n)
 Returns a string of hexadecimal characters from n random bytes, with two characters per byte. If n is omitted, a default value, such as 32, is used.
            

            
              	
                token_urlsafe
              
              	token_urlsafe(n)
 Returns a string of base64-encoded characters from n random bytes; the resulting string’s length is approx 1.3 times n. If n is omitted, a default value, such as 32, is used.
            

          

          Additional recipes and best cryptographic practices are listed in Python’s online documentation.

          An alternative source of physically random numbers is online, from Fourmilab.

        

      

      
        The fractions Module

        The fractions module supplies a rational number class called Fraction whose instances can be constructed from a pair of integers, another rational number, or a string. You can pass a pair of (optionally signed) ints: the numerator and denominator. When the denominator is 0, a ZeroDivisionError is raised. A string can be of the form '3.14', or can include an optionally signed numerator, a slash (/) , and a denominator, such as '-22/7'. Fraction also supports construction from decimal.Decimal instances, and from floats (although the latter may not provide the result you’d expect, given floats’ bounded precision). Fraction class instances have the properties numerator and denominator.

        
          Reduced to Lowest Terms

          Fraction reduces the fraction to the lowest terms—for example, f = Fraction(226, 452) builds an instance f equal to one built by Fraction(1, 2). The specific numerator and denominator originally passed to Fraction are not recoverable from the instance thus built.

        

        
          >>> from fractions import Fraction
>>> Fraction(1,10)
Fraction(1, 10)
>>> Fraction(Decimal('0.1'))
Fraction(1, 10)
>>> Fraction('0.1')
Fraction(1, 10)
>>> Fraction('1/10')
Fraction(1, 10)
>>> Fraction(0.1)
Fraction(3602879701896397, 36028797018963968)
>>> Fraction(-1, 10)
Fraction(-1, 10)
>>> Fraction(-1,-10)
Fraction(1, 10)

        
        Fraction supplies methods, including limit_denominator, which allows you to create a rational approximation of a float—for example, Fraction(0.0999).limit_denominator(10) returns Fraction(1,    10). Fraction instances are immutable and can be keys in dictionaries and members of sets, as well as being used in arithmetic operations with other numbers. See the fractions online docs for more complete coverage.

        The fractions module also supplies a function called gcd that works just like math.gcd, covered in Table 15-1.

      

      
        The decimal Module

        A Python float is a binary floating-point number, normally according to the standard known as IEEE 754, implemented in hardware in modern computers. An excellent, concise, practical introduction to floating-point arithmetic and its issues can be found in David Goldberg’s essay “What Every Computer Scientist Should Know about Floating-Point Arithmetic”. A Python-focused essay on the same issues is part of the online tutorial; another excellent summary, not focused on Python, is also available online.

        Often, particularly for money-related computations, you may prefer to use decimal floating-point numbers; Python supplies an implementation of the standard known as IEEE 854, for base 10, in the standard library module decimal. The module has excellent documentation: there, you can find complete reference documentation, pointers to the applicable standards, a tutorial, and advocacy for decimal. Here, we cover only a small subset of decimal’s functionality, the most frequently used parts of the module.

        The decimal module supplies a Decimal class (whose immutable instances are decimal numbers), exception classes, and classes and functions to deal with the arithmetic context, which specifies such things as precision, rounding, and which computational anomalies (such as division by zero, overflow, underflow, and so on) raise exceptions when they occur. In the default context, precision is 28 decimal digits, rounding is “half-even” (round results to the closest representable decimal number; when a result is exactly halfway between two such numbers, round to the one whose last digit is even), and the anomalies that raise exceptions are: invalid operation, division by zero, and overflow.

        To build a decimal number, call Decimal with one argument: an integer, float, string, or tuple. If you start with a float, it is converted losslessly to the exact decimal equivalent (which may require 53 digits or more of precision):

        
          >>> from decimal import Decimal
>>> df = Decimal(0.1)
>>> df
Decimal('0.1000000000000000055511151231257827021181583404541015625')

        
        If this is not the behavior you want, you can pass the float as a string; for example:

        
          >>> ds = Decimal(str(0.1))  # or, directly, Decimal('0.1')
>>> ds
Decimal('0.1')

        
        You can easily write a factory function for ease of interactive experimentation with decimal:

        
          def dfs(x):
    return Decimal(str(x))

        
        Now dfs(0.1) is just the same thing as Decimal(str(0.1)), or Decimal('0.1'), but more concise and handier to write.

        Alternatively, you may use the quantize method of Decimal to construct a new decimal by rounding a float to the number of significant digits you specify:

        
          >>> dq = Decimal(0.1).quantize(Decimal('.00'))
>>> dq
Decimal('0.10')

        
        If you start with a tuple, you need to provide three arguments: the sign (0 for positive, 1 for negative), a tuple of digits, and the integer exponent:

        
          >>> pidigits = (3, 1, 4, 1, 5)
>>> Decimal((1, pidigits, -4))
Decimal('-3.1415')

        
        Once you have instances of Decimal, you can compare them, including comparison with floats (use math.isclose for this); pickle and unpickle them; and use them as keys in dictionaries and as members of sets. You may also perform arithmetic among them, and with integers, but not with floats (to avoid unexpected loss of precision in the results), as demonstrated here:

        
          >>> a = 1.1
>>> d = Decimal('1.1')
>>> a == d
False
>>> math.isclose(a, d)
True
>>> a + d
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +:
  'decimal.Decimal' and 'float'
>>> d + Decimal(a) # new decimal constructed from a
Decimal('2.200000000000000088817841970') # whoops
>>> d + Decimal(str(a)) # convert a to decimal with str(a)
Decimal('2.20')

        
        The online docs include useful recipes for monetary formatting, some trigonometric functions, and a list of Frequently Asked Questions (FAQ).

      

      
        Array Processing

        You can represent arrays with lists (covered in “Lists”), as well as with the array standard library module (covered in “The array Module”). You can manipulate arrays with loops; indexing and slicing; list comprehensions; iterators; generators; genexps (all covered in Chapter “The Python Language”); built-ins such as map, reduce, and filter (all covered in “Built-in Functions”); and standard library modules such as itertools (covered in “The itertools Module”). If you only need a lightweight, one-dimensional array, stick with array. However, to process large arrays of numbers, such functions may be slower and less convenient than third-party extensions such as NumPy and SciPy (covered in “Extensions for Numeric Array Computation”). When you’re doing data analysis and modeling, pandas, which is built on top of NumPy, might be most suitable.

      

      
        The array Module

        The array module supplies a type, also called array, whose instances are mutable sequences, like lists. An array a is a one-dimensional sequence whose items can be only characters, or only numbers of one specific numeric type, fixed when you create a.

        array.array’s advantage is that, compared to a list, it can save memory to hold objects all of the same (numeric or character) type. An array object a has a one-character, read-only attribute a.typecode, set on creation: the type code of a’s items. Table 15-3 shows the possible type codes for array.

        
          Table 9-3. Type codes for the array module
          
            	
              typecode
            
            	
              C type
            
            	
              Python type
            
            	
              Minimum size
            
          

          
            	
              'b'
            
            	
              char
            
            	
              int
            
            	1 byte
          

          
            	
              'B'
            
            	
              unsigned char
            
            	
              int
            
            	1 byte
          

          
            	
              'u'
            
            	
              unicode char
            
            	
              str (length 1)
            
            	see note
          

          
            	
              'h'
            
            	
              short
            
            	
              int
            
            	2 bytes
          

          
            	
              'H'
            
            	
              unsigned short
            
            	
              int
            
            	2 bytes
          

          
            	
              'i'
            
            	
              int
            
            	
              int
            
            	2 bytes
          

          
            	
              'I'
            
            	
              unsigned int
            
            	
              int
            
            	2 bytes
          

          
            	
              'l'
            
            	
              long
            
            	
              int
            
            	4 bytes
          

          
            	
              'L'
            
            	
              unsigned long
            
            	
              int
            
            	4 bytes
          

          
            	
              'q'
            
            	
              long long
            
            	
              int
            
            	8 bytes
          

          
            	
              'Q'
            
            	
              unsigned long long
            
            	
              int
            
            	8 bytes
          

          
            	
              'f'
            
            	
              float
            
            	
              float
            
            	4 bytes
          

          
            	
              'd'
            
            	
              double
            
            	
              float
            
            	8 bytes
          

        

          Note: 'u' has an item size of 2 on a few platforms (mostly, Windows) and 4 on just about every other platform. You can check the build type of a Python interpreter by using array.array('u').itemsize.

        The size in bytes of each item may be larger than the minimum, depending on the machine’s architecture, and is available as the read-only attribute a.itemsize.

        The module array supplies just the type object called array:

        
          
            	
              array
            
            	array(typecode,init='')
 Creates and returns an array object a with the given typecode. init can be a string (a bytestring, except for typecode 'u') whose length is a multiple of itemsize: the string’s bytes, interpreted as machine values, directly initialize a’s items. Alternatively, init can be an iterable (of chars when typecode is 'u', otherwise of numbers): each item of the iterable initializes one item of a.
 Array objects expose all methods and operations of mutable sequences (as covered in “Sequence Operations”), except sort. Concatenation with + or +=, and slice assignment, require both operands to be arrays with the same typecode; in contrast, the argument to a.extend can be any iterable with items acceptable to a.
          

        

        In addition to the methods of mutable sequences (append, extend, insert, pop, etc.), an array object a exposes the following methods and properties.

        
          
            	
              buffer_info
            
            	a.buffer_info()
 Returns a 2-item tuple (address, array_length), where array_length is the number of elements that can be stored in a. The size of a in bytes is a.buffer_info()[1] * a.itemsize.
          

          
            	
              byteswap
            
            	a.byteswap()
 Swaps the byte order of each item of a.
          

          
            	
              frombytes
            
            	a.frombytes(s)
 frombytes appends to a the bytes, interpreted as machine values, of bytes s. len(s) must be an exact multiple of a.itemsize.
          

          
            	
              fromfile
            
            	a.fromfile(f, n)
 Reads n items, taken as machine values, from file object f and appends the items to a. Note that f should be open for reading in binary mode—for example, with mode 'rb'. When fewer than n items are available in f, fromfile raises EOFError after appending the items that are available.
          

          
            	
              fromlist
            
            	a.fromlist(L)
 Appends to a all items of list L.
          

          
            	
              fromunicode
            
            	a.fromunicode(s)
 Appends to a all characters from string s. a must have typecode 'u'; otherwise, Python raises ValueError.
          

          
            	
              itemsize
            
            	a.itemsize
 Property that returns the size in bytes of an element in a.
          

          
            	
              tobytes
            
            	a.tobytes()
 tobytes returns the bytes representation of the items in a. For any a, len(a.tobytes())== len(a)*a.itemsize. f.write(a.tobytes()) is the same as a.tofile(f).
          

          
            	
              tofile
            
            	a.tofile(f)
 Writes all items of a, taken as machine values, to file object f. Note that f should be open for writing in binary mode—for example, with mode 'wb'.
          

          
            	
              tolist
            
            	a.tolist()
 Creates and returns a list object with the same items as a, like list(a).
          

          
            	
              tounicode
            
            	a.tounicode()
 Creates and returns a string with the same items as a, like ''.join(a). a must have typecode 'u'; otherwise, Python raises ValueError.
          

          
            	
              typecode
            
            	a.typecode
 Property that returns the type code character used to create a.
          

        

      

      
        Extensions for Numeric Array Computation

        As you’ve seen, Python has great support for numeric processing. However, third-party library SciPy and packages such as NumPy, Matplotlib, Sympy, numba, pandas, and TensorFlow provide even more tools. We introduce NumPy here, then provide a brief description of SciPy and other packages, with pointers to their documentation.

        
          NumPy

          If you need a lightweight one-dimensional array of numbers, the standard library’s array module may suffice. If you are handling scientific computing, image processing, multidimensional arrays, linear algebra, or other applications involving large amounts of data, the popular third-party NumPy package meets your needs. Extensive documentation is available online; a free PDF of Travis Oliphant’s Guide to NumPy book is also available.

          
            NumPy or numpy?

            The docs variously refer to the package as NumPy or Numpy; however, in coding, the package is called numpy, and you usually import it with import numpy as np. In this section, we use all of these monikers.

          

          NumPy provides class ndarray, which you can subclass to add functionality for your particular needs. An ndarray object has n dimensions of homogenous items (items can include containers of heterogenous types). An ndarray object a has a number of dimensions (AKA axes) known as its rank. A scalar (i.e., a single number) has rank 0, a vector has rank 1, a matrix has rank 2, and so forth. An ndarray object also has a shape, which can be accessed as property shape. For example, for a matrix m with 2 columns and 3 rows, m.shape is (3,2).

          NumPy supports a wider range of numeric types (instances of dtype) than Python; the default numerical types are: bool_, one byte; int_, either int64 or int32 (depending on your platform); float_, short for float64; and complex_, short for complex128.

        

        
          Creating a NumPy Array

          There are several ways to create an array in NumPy; among the most common are:

          
            	
              with the factory function np.array, from a sequence (often a nested one), with type inference or by explicitly specifying dtype

            

            	
              with factory functions zeros, ones, empty, which default to dtype float64, and indices, which defaults to int64

            

            	
              with factory function arange (with the usual start, stop, stride), or with factory function linspace (start, stop, quantity) for better floating-point behavior

            

            	
              reading data from files with other np functions (e.g., CSV with genfromtxt)

            

          

          Here are examples of creating an array, as just listed:

          
            import numpy as np
np.array([1, 2, 3, 4])  # from a Python list
array([1, 2, 3, 4])

np.array(5, 6, 7)  # a common error: passing items separately (they
                   # must be passed as a sequence, e.g. a list)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: only 2 non-keyword arguments accepted

s = 'alph', 'abet'  # a tuple of two strings
np.array(s)
array(['alph', 'abet'], dtype='<U4')

t = [(1,2), (3,4), (0,1)]  # a list of tuples
np.array(t, dtype='float64')  # explicit type designation
array([[ 1.,  2.],
       [ 3.,  4.],
       [ 0.,  1.]]

x = np.array(1.2, dtype=np.float16)  # a scalar
x.shape
()
x.max()
1.2

np.zeros(3)  # shape defaults to a vector
array([ 0.,  0.,  0.])

np.ones((2,2))  # with shape specified
array([[ 1.,  1.],
       [ 1.,  1.]])

np.empty(9)  # arbitrary float64s
array([  4.94065646e-324,   9.88131292e-324,   1.48219694e-323,
         1.97626258e-323,   2.47032823e-323,   2.96439388e-323,
         3.45845952e-323,   3.95252517e-323,   4.44659081e-323])

np.indices((3,3))
array([[[0, 0, 0],
        [1, 1, 1],
        [2, 2, 2]],

       [[0, 1, 2],
        [0, 1, 2],
        [0, 1, 2]]])

np.arange(0, 10, 2)  # upper bound excluded
array([0, 2, 4, 6, 8])

np.linspace(0, 1, 5)  # default: endpoint included
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ])

np.linspace(0, 1, 5, endpoint=False)  # endpoint not included
array([ 0. ,  0.2,  0.4,  0.6,  0.8])

import io
np.genfromtxt(io.BytesIO(b'1 2 3\n4 5 6'))  # using a pseudo-file
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

with io.open('x.csv', 'wb') as f:
    f.write(b'2,4,6\n1,3,5')
np.genfromtxt('x.csv', delimiter=',')  # using an actual CSV file
array([[ 2.,  4.,  6.],
       [ 1.,  3.,  5.]])

          
        

        
          Shape, Indexing, and Slicing

          Each ndarray object a has an attribute a.shape, which is a tuple of ints. len(a.shape) is a’s rank; for example, a one-dimensional array of numbers (also known as a vector) has rank 1, and a.shape has just one item. More generally, each item of a.shape is the length of the corresponding dimension of a. a’s number of elements, known as its size, is the product of all items of a.shape (also available as property a.size). Each dimension of a is also known as an axis. Axis indices are from 0 and up, as usual in Python. Negative axis indices are allowed and count from the right, so -1 is the last (rightmost) axis.

          Each array a (except a scalar, meaning an array of rank-0) is a Python sequence. Each item a[i] of a is a subarray of a, meaning it is an array with a rank one less than a’s: a[i].shape==a.shape[1:]. For example, if a is a two-dimensional matrix (a is of rank 2), a[i], for any valid index i, is a one-dimensional subarray of a that corresponds to a row of the matrix. When a’s rank is 1 or 0, a’s items are a’s elements (just one element, for rank-0 arrays). Since a is a sequence, you can index a with normal indexing syntax to access or change a’s items. Note that a’s items are a’s subarrays; only for an array of rank 1 or 0 are the array’s items the same thing as the array’s elements.

          As for any other sequence, you can also slice a: after b=a[i: j], b has the same rank as a, and b.shape equals a.shape except that b.shape[0] is the length of the slice i: j (j- i when a.shape[0]>j>=i>=0, and so on).

          Once you have an array a, you can call a.reshape (or, equivalently, np.reshape with a as the first argument). The resulting shape must match a.size: when a.size is 12, you can call a.reshape(3,4) or a.reshape(2,6), but a.reshape(2,5) raises ValueError. Note that reshape does not work in place: you must explicitly bind or rebind the array—that is, a = a.reshape(i, j) or b = a.reshape( i, j).

          You can also loop on (nonscalar) a in a for, just as you can with any other sequence. For example:

          
            for x in a:
    process(x)

          
          means the same thing as:

          
            for _ in range(len(a)):
    x = a[_]
    process(x)

          
          In these examples, each item x of a in the for loop is a subarray of a. For example, if a is a two-dimensional matrix, each x in either of these loops is a one-dimensional subarray of a that corresponds to a row of the matrix.

          You can also index or slice a by a tuple. For example, when a’s rank is >=2, you can write a[i][j] as a[i,j], for any valid i and j, for rebinding as well as for access; tuple indexing is faster and more convenient. Do not put parentheses inside the brackets to indicate that you are indexing a by a tuple: just write the indices one after the other, separated by commas. a[i,j] means the same thing as a[(i,j)], but the form without parentheses is more readable.

          An indexing is a slicing when one or more of the tuple’s items are slices, or (at most once per slicing) the special form ... (the Python built-in Ellipsis). ... expands into as many all-axis slices (:) as needed to “fill” the rank of the array you’re slicing. For example, a[1,...,2] is like a[1,:,:,2] when a’s rank is 4, but like a[1,:,:,:,:,2] when a’s rank is 6.

          The following snippets show looping, indexing, and slicing:

          
            a = np.arange(8)
a
array([0, 1, 2, 3, 4, 5, 6, 7])
a = a.reshape(2,4)
a
array([[0, 1, 2, 3],
       [4, 5, 6, 7]])
print(a[1,2])
6
a[:,:2]
array([[0, 1],
       [4, 5]])
for row in a:
    print(row)
[0 1 2 3]
[4 5 6 7]
for row in a:
    for col in row[:2]:  # first two items in each row
        print(col)
0
1
4
5

          
        

        
          Matrix Operations in NumPy

          As mentioned in “The operator Module”, NumPy implements the operator @ for matrix multiplication of arrays. a1 @ a2 is like np.matmul(a1,a2). When both matrices are two-dimensional, they’re treated as conventional matrices. When one argument is a vector, you conceptually promote it to a two-dimensional array, as if by temporarily appending or prepending a 1, as needed, to its shape. Do not use @ with a scalar; use * instead (see the following example). Matrices also allow addition (using +) with a scalar (see example), as well as with vectors and other matrices of compatible shapes. Dot product is also available for matrices, using np.dot(a1, a2). A few simple examples of these operators follow:

          
            a = np.arange(6).reshape(2,3)  # a 2-d matrix
b = np.arange(3)               # a vector
a
array([[0, 1, 2],
       [3, 4, 5]])
a + 1     # adding a scalar
array([[1, 2, 3],
       [4, 5, 6]])
a + b    # adding a vector
array([[0, 2, 4],
       [3, 5, 7]])
a * 2    # multiplying by a scalar
array([[ 0,  2,  4],
       [ 6,  8, 10]])
a * b    # multiplying by a vector
array([[ 0,  1,  4],
       [ 0,  4, 10]])
a @ b    # matrix-multiplying by vector
array([ 5, 14])
c = (a*2).reshape(3,2)   # using scalar multiplication to create
c                        # another matrix
array([[ 0,  2],
       [ 4,  6],
       [ 8, 10]])
a @ c    # matrix multiplying two 2-d matrices
array([[20, 26],
       [56, 80]])

          
          NumPy is rich enough to warrant books of its own; we have only touched on a few details. See the NumPy documentation for extensive coverage of its many features.

        

        
          SciPy

          NumPy contains classes and methods for handling arrays; the SciPy library supports more advanced numeric computation. For example, while NumPy provides a few linear algebra methods, SciPy provides many more functions, including advanced decomposition methods, and also more advanced functions, such as allowing a second matrix argument for solving generalized eigenvalue problems. In general, when you are doing advanced numerical computation, it’s a good idea to install both SciPy and NumPy.

          SciPy.org also hosts docs for a number of other packages, which are integrated with SciPy and NumPy: Matplotlib, which provides 2D plotting support; Sympy, which supports symbolic mathematics; Jupyter/Notebook, a powerful interactive console shell and web-application kernel; and pandas, which supports data analysis and modeling.

        

      

      
        Additional Numeric Packages

        The Python community has produced many more packages in the field of numeric processing.

        Anaconda - Anaconda is a consolidated environment that simplifies the installation of pandas, numpy, and many related numerical processing, analytical, and visualization packages, and provides package management via its own conda package installer.

        gmpy2 - the gmpy2 module supports the GMP/MPIR, MPFR, and MPC libraries, to extend and accelerate Python’s abilities for multiple-precision arithmetic.

        numba - numba is a just-in-time compiler to convert numba-decorated Python functions and Numpy code to LLVM. Numba-compiled numerical algorithms in Python can approach the speeds of C or FORTRAN. ()

        TensorFlow - TensorFlow is a comprehensive machine learning platform that operates at large scale and in mixed environments. It uses dataflow graphs to represent computation, shared state, and state manipulation operations. TensorFlow supports processing across multiple machines in a cluster, and within-machine across multicore CPUs, GPUs, and custom-designed ASICs. TensorFlow’s main and most popular API uses Python.

      

    


Chapter 10. Networking Basics


      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 17th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




Connection-oriented protocols are like making a telephone call. You request a connection to a particular network endpoint (equivalent to dialing somebody’s phone number), and your party either answers or doesn’t. If they do, you can talk to them and hear them talking back (simultaneously, if necessary), and you know that nothing is getting lost. At the end of the conversation you both say goodbye and hang up, so it’s obvious something has gone wrong if that finale doesn’t occur (for example, if you just suddenly stop hearing the other party). TCP is the main connection-oriented transport protocol of the Internet, used by web browsers, secure shells, email, and many other applications.


Connectionless or datagram protocols are more like communicating by sending postcards. Mostly, the messages get through, but if anything goes wrong you have to be prepared to cope with the consequences—the protocol doesn’t notify you whether your messages have been received, and messages can arrive out of order. To exchange short messages and get answers, datagram protocols have less overhead than connection-oriented ones, as long as the overall service can cope with occasional disruptions. A Domain Name Service (DNS) server may fail to respond, for example: most DNS communication was until recently connectionless. UDP is the main connectionless transport protocol for Internet communications.


Nowadays, security is increasingly important: understanding the underlying basis of secure communications helps you ensure that your communications are as secure as they need to be. If this summary dissuades you from trying to implement such technology yourself without a thorough understanding of the issues and risks, it will have served a worthwhile purpose.


All communications across network interfaces exchange strings of bytes. To communicate text or indeed most other information the sender must encode it as bytes, which the receiver must decode. We limit our discussion in this chapter to the case of a single sender and a single receiver.



The Berkeley Socket Interface


Most networking nowadays uses sockets. Sockets give access to pipelines between independent endpoints, using a transport layer to move information between those endpoints. The socket concept is general enough that the endpoints can be on the same computer, or on different computers networked together locally or via a wide-area network.


The most typical transport layers are UDP (the User Datagram Protocol, for connectionless networking) and TCP (the Transmission Control Protocol, for connection-oriented networking) carried over a common IP (Internet Protocol) network layer. These ubiquitous protocols, along with the many application protocols that run over them, are collectively known as TCP/IP. A good introduction appears in the (dated but still perfectly valid)) Gordon McMillan’s Socket Programming How-To online overview.


The two most common socket families are Internet sockets based on TCP/IP communications (available in two flavors to accommodate the modern IPv6 and the more traditional IPv4), and Unix sockets, though other families are also available. Internet sockets allow communication between any two computers that can exchange IP datagrams; Unix sockets can only communicate between processes on the same Unix machine.


To support many concurrent Internet sockets, the TCP/IP protocol stack uses endpoints identified by an IP address, a port number, and a protocol. The port numbers allow the protocol-handling software to distinguish between different endpoints at the same IP address using the same protocol, in the same way that PABX telephone systems allow direct dialing to individual members of a large organization. A connected socket is also associated with a remote endpoint, the counter-party socket to which it is connected and with which it can communicate.


Most Unix sockets have names in the Unix filesystem. On Linux platforms, sockets whose names begin with a zero byte live in a name pool maintained by the kernel. These are useful for communicating with a chroot-jail process, for example, where no filesystem is shared between two processes.


Both Internet and Unix sockets support connectionless and connection-oriented networking, so if you write your programs carefully they can work over either socket family. It is beyond the scope of this book to discuss other socket families, though we should mention that raw sockets, a subtype of the Internet socket family, let you send and receive link-layer packets (for example, Ethernet packets) directly. This is useful for some experimental applications.


After creating an Internet socket, you can associate (bind) a specific port number with the socket (as long as that port number is not in use by some other socket). This is the strategy many servers use, offering service on so-called well-known port numbers defined by Internet standards as being in the range 1-1,023. On Unix systems, root privileges are required to gain access to these ports. A typical client is unconcerned with the port number it uses, and so it typically requests an ephemeral port, assigned by the protocol driver and guaranteed to be unique on that host. There is no need to bind client ports.


Imagine two processes on the same computer, both acting as clients to the same remote server. The full association for their sockets has five components (local_IP_address, local_port_number, protocol, remote_IP_address, remote_port_number). When packets arrive at the server, the destination their source IP address, destination port number, protocol, and source IP address are the same for both clients. The guarantee of uniqueness for ephemeral port numbers makes it possible for the server to distinguish between traffic from the two clients. This is how TCP/IP handles multiple conversations between the same two IP addresses.



Socket Addresses


The different types of sockets use different address formats.


Unix socket addresses are strings naming a node in the filesystem (on Linux platforms, strings starting with b'\0' correspond to names in a kernel table).


IPv4 socket addresses are pairs (address, port). The first item is an IPv4 address, the second a port number in the range 1-65,535.


IPv6 socket addresses are four-item (address, port, flowinfo, scopeid) tuples. When providing an address as an argument, the flowinfo and scopeid items can generally be omitted without problems as long as the address scope is unimportant.





Client-Server Computing


The pattern we discuss hereafter is usually referred to as client-server networking, where a server listens for traffic on a specific endpoint from clients requiring the service. We do not cover peer-to-peer networking, which, lacking any central server, has to include the ability for peers to discover each other.


Most, though by no means all, network communication is performed using client/server techniques. The server listens for incoming traffic at a predetermined or advertised network endpoint. In the absence of such input, it does nothing, simply sitting there waiting for input from clients. Communication is somewhat different between connectionless and connection-oriented endpoints.


In connectionless networking such as UDP, requests arrive at a server randomly and are dealt with immediately: a response is dispatched to the requester without delay. Each message is handled on its own, usually without reference to any communications that may previously have occurred between the two parties. Connectionless networking is thus well-suited to short-term, stateless interactions such as those required by DNS or network booting.


In connection-oriented networking, the client engages in an initial exchange with the server that effectively establishes a connection across a network pipeline between two processes (sometimes referred to as a virtual circuit), across which the processes can communicate until both have indicated their willingness to end the connection. Serving under these conditions requires the use of parallelism using a concurrency mechanism (such as threads, processes, and asynchronous programming – see Chapter “Multitasking”) to handle each incoming connection asynchronously or simultaneously. Without such parallelism, the server would be unable to handle new incoming connections before earlier ones had terminated, since calls to socket methods normally block (meaning they pause the thread calling them until they terminate or time-out). Connections are the best way to handle lengthy interactions such as mail exchanges, command-line shell interactions, or the transmission of web content, and offer automatic error detection and correction when TCP is used.



Connectionless client and server structures


The broad logic flow of a connectionless server is as follows:



		
	Create a socket of type socket.SOCK_DGRAM by calling socket.socket.

	

		
	Associate the socket with the service endpoint by calling the socket’s bind method.

	

		
	Repeat the following steps ad infinitum:


	
			
		Request an incoming datagram from a client by calling the socket’s recvfrom method; this call blocks until a datagram is received.

		

			
		Compute the result.

		

			
		Send the result back to the client by calling the socket’s sendto method.

		

	

	




The server spends most of its time in step 3a, awaiting input from clients.


A connectionless client’s interaction with the server proceeds as follows:



		
	Create a socket of type socket.SOCK_DGRAM by calling socket.socket.

	

		
	Optionally, associate the socket with a specific endpoint by calling the socket’s bind method.

	

		
	Send a request to the server’s endpoint by calling the socket’s sendto method.

	

		
	Await the server’s reply by calling the socket’s recvfrom method; this call blocks until the response is received. It is always necessary to apply a timeout to this call, to handle the case where a datagram goes missing, and either retry or abort the attempt: connectionless sockets do not guarantee delivery.

	

		
	Use the result in the remainder of the client program’s logic.

	




A single client program can perform several interactions with the same or multiple servers, depending on the services it needs to use. Many such interactions are hidden from the application programmer inside library code. A typical example is the resolution of a hostname to the appropriate network address, which commonly uses the gethostbyname library function (implemented in Python’s socket module). Connectionless interactions normally involve sending a single packet to the server and receiving a single packet in response. The main exceptions involve streaming protocols, such as RTP1, typically layered on top of UDP to minimize latency and delays: in streaming, many datagrams are sent and received.





Connection-oriented client and server structures


The broad flow of logic of a connection-oriented server is as follows:



		
	Create a socket of type socket.SOCK_STREAM by calling socket.socket.

	

		
	Associate the socket with the appropriate server endpoint by calling the socket’s bind method.

	

		
	Start the endpoint listening for connection requests by calling the socket’s listen method.

	

		
	Repeat the following steps ad infinitum:


	
			
		Await an incoming client connection by calling the socket’s accept method; the server process blocks until an incoming connection request is received. When such a request arrives, a new socket object is created whose other endpoint is the client program.

		

			
		Create an asynchronous control thread to handle this specific connection, passing it the newly created socket; after which, the main thread continues by looping back to step 4a.

		

			
		In the new control thread, interact with the client using the new socket’s recv and send methods, respectively, to read data from the client and send data to it. The recv method blocks until data is available from the client (or the client indicates it wishes to close the connection, in which case recv returns an empty result). The send method only blocks when the network software has so much data buffered that communication has to pause until the transport layer has emptied some of its buffer memory. When the server wishes to close the connection, it can do so by calling the socket’s close method, optionally calling its shutdown method first.

		

	

	




The server spends most of its time in step 4a, awaiting connection requests from clients.


A connection-oriented client’s overall logic is as follows:



		
	Create a socket of type socket.SOCK_STREAM by calling socket.socket.

	

		
	Optionally, associate the socket with a specific endpoint by calling the socket’s bind method.

	

		
	Establish a connection to the server by calling the socket’s connect method.

	

		
	Interact with the server using the socket’s recv and send methods, respectively, to read data from the server and send data to it. The recv method blocks until data is available from the server (or the server indicates it wishes to close the connection, in which case the recv call returns an empty result). The send method only blocks when the network software has so much data buffered that communications have to pause until the transport layer has emptied some of its buffer memory. When the client wishes to close the connection, it can do so by calling the socket’s close method, optionally calling its shutdown method first.

	




Connection-oriented interactions tend to be more complex than connectionless ones. Specifically, determining when to read and write data is more complicated, because inputs must be parsed to determine when a transmission from the other end of the socket is complete. The protocols used in connection-oriented networking have to accommodate this determination; sometimes this is done by indicating the data length as a part of the content, sometimes by more complex methods.







The socket Module


Python’s socket module handles networking with the socket interface. There are minor differences between platforms, but the module hides most of them, making it relatively easy to write portable networking applications.


The module defines four exceptions: their base class socket.error, a (deprecated) alias for exceptions.OSError, and three exception subclasses as follows:



	
		
				herror
				socket.herror is raised for hostname-resolution errors—that is, when a name cannot be converted to a network address by the socket.gethostbyname function or no hostname can be found for a network address by the socket.gethostbyaddr function. The accompanying value is a two-element tuple (h_errno, string) where h_errno is the integer error number returned by the operating system and string is a description of the error.
		

		
				gaierror
				socket.gaierror is raised for addressing errors encountered in the getaddrinfo or getnameinfo functions.
		

		
				timeout
				socket.timeout is raised when an operation takes longer than the timeout limit (established by the module’s setdefaulttimeout function, overridable on a per-socket basis).
		

	



The module also defines a large set of constants. The most important of these are the address families (AF_*) and the socket types (SOCK_*) listed next, members of IntEnum collections. The module defines many other constants, used to set socket options, but the documentation does not define them fully: to use them you must be familiar with documentation for the C sockets libraries and system calls.



	
		
				AF_INET
				Use to create sockets of the IPv4 address family.
		

		
				AF_INET6
				Use to create sockets of the IPv6 address family.
		

		
				AF_UNIX
				Use to create sockets of the Unix address family. This constant is only defined on platforms that make Unix sockets available.
		

		
				AF_CAN
				Use to create sockets for the Controller Area Network (CAN) address family, not covered in this book, but widely used in automation, automotive, and embedded device applications.
		

		
				SOCK_STREAM
				Use to create connection-oriented sockets, which provide full error detection and correction facilities.
		

		
				SOCK_DGRAM
				Use to create connectionless sockets, which provide best-effort message delivery without connection capabilities or error detection.
		

		
				SOCK_RAW
				Use to create sockets that give direct access to the link-layer drivers, typically used to implement lower-level network features outside the scope of this book.
		

		
				SOCK_RDM
				Use to create reliable connectionless message sockets used in the TIPC protocol, which is outside the scope of this book.
		

		
				SOCK_SEQPACKET
				Use to create reliable connection-oriented message sockets used in the TIPC protocol, outside the scope of this book.
		

	



The module defines a number of functions to create sockets, manipulate address information, and assist with representing data in a standard way. We do not cover them all in this book, as the socket module documentation is comprehensive; we deal with the ones that are essential in writing networked applications.



Miscellaneous socket module functions


The socket module contains many functions, but most of them are only useful in specific situations. When communication takes place between network endpoints, the computers at either end might have architectural differences and therefore represent the same data in different ways, and so there are functions to handle translation of a limited number of data types to and from a network-neutral form, for example. Here are a few of the more generally applicable functions:



	
		
				getaddrinfo
				socket.getaddrinfo(host, port, family=0, type=0, proto=0,
 flags=0)

			Takes a host and port, returns a list of five-item tuples of the form (family, type, proto, canonical_name, socket) that can be used to create a socket connection to a specific service. The canonical_name item is an empty string unless the socket.AI_CANONNAME bit is set in the flags argument. When you pass a hostname, rather than an IP address, the function returns a list of tuples, one for each IP address associated with the name.
		

		
				getdefaulttimeout
				socket.getdefaulttimeout()

			Returns the default timeout value in seconds for socket operations, or None if no value has been set. Some functions let you specify explicit timeouts.
		

		
				getfqdn
				socket.getfqdn([host])

			Returns the fully qualified domain name associated with a hostname or network address (by default, that of the computer on which you call it).
		

		
				gethostbyaddr
				socket.gethostbyaddr(ip_address)

			Takes a string containing an IPv4 or IPv6 address and returns a three-item tuple of the form (hostname, aliaslist, ipaddrlist). hostname is the canonical name for the IP, aliaslist a list of alternative names, and ipaddrlist a list of IPv4 and IPv6 addresses.
		

		
				gethostbyname
				socket.gethostbyname(hostname)

			Returns a string containing the IPv4 address associated with the given hostname. If called with an IP address, returns that address. This function does not support IPv6: use getaddrinfo for IPv6.
		

		
				getnameinfo
				socket.getnameinfo(sock_addr, flags=0)

			Takes a socket address and returns a (host, port) pair. Without flags, host is an IP address and port is an int.
		

		
				setdefaulttimeout
				socket.setdefaulttimeout(timeout)

			Sets sockets’ timeout as a value in floating-point seconds. Newly created sockets operate in the mode determined by the timeout value, as discussed in the next section. Pass timeout as None to cancel the implicit use of timeouts on subsequently created sockets.
		

	








Socket Objects


The socket object is the primary means of network communication in Python. A new socket is also created when a SOCK_STREAM socket accepts a connection, each such socket being used to communicate with the relevant client.



Socket objects and with statements

Every socket object is a context manager, so you can use any socket object in a with statement’s initial clause to ensure proper termination of the socket at exit from the with statement’s body.




There are a number of ways you can create a socket, as detailed in the next section. The socket can operate in different modes, determined by its timeout value, established in one of three ways:



		
	By providing the timeout value on creation

	

		
	By calling the socket object’s settimeout method

	

		
	According to the socket module’s default timeout value as returned by the socket.getdefaulttimeout function

	




The timeout values to establish each mode are as follows:



	
		
				None
				Sets blocking mode. Each operation suspends the process (blocks) until the operation completes, unless the operating system raises an exception.
		

		
				0
				Sets nonblocking mode. Each operation raises an exception when it cannot be completed immediately, or when an error occurs. Use the selectors module, covered in “The selectors Module”, to find out whether an operation can be completed immediately.
		

		
				>0.0
				Sets timeout mode. Each operation blocks until complete, or the timeout elapses (then, a socket.timeout exception is raised), or an error occurs.
		

	




Socket creation functions


Socket objects represent network endpoints. There are a number of different functions supplied by the socket module to create a socket:



	
		
				create_connection
				create_connection([address, [timeout, [source_address]]])

			Creates a socket connected to a TCP endpoint at an address (a (host, port) pair). host can either be a numeric network address or a DNS hostname; in the latter case, name resolution is attempted for both AF_INET and AF_INET6, and then a connection is attempted to each returned address in turn—a convenient way to create client programs using either IPv6 or IPv4 as appropriate.

			The timeout argument, if given, specifies the connection timeout in seconds and thereby sets the socket’s mode; when not present, the socket.getdefaulttimeout function is called to determine the value. The source_address argument, if given, must also be a pair (host, port) that the remote socket gets passed as the connecting endpoint. When host is '' or port is 0, the default OS behavior is used.
		

		
				socket
				socket(family=AF_INET, type=SOCK_STREAM, proto=0,
 fileno=None)

			Creates and returns a socket of the appropriate address family and type (by default, a TCP socket on IPv4). The protocol number proto is only used with CAN sockets. When you pass the fileno argument, other arguments are ignored: the function returns the socket already associated with the given file descriptor.

			The socket does not get inherited by child processes.
		

		
				socketpair
				socketpair([family[, type[, proto]]])

			Returns a connected pair of sockets of the given address family, socket type, and (CAN sockets only) protocol. When family is not specified, the sockets are of family AF_UNIX on platforms where the family is available, and otherwise of family AF_INET. When type is not specified, it defaults to SOCK_STREAM.
		

	



A socket object s provides the following methods (out of which, those dealing with connections or requiring connected sockets work only for SOCK_STREAM sockets, while the others work with both SOCK_STREAM and SOCK_DGRAM sockets). In the following table, the exact set of flags available depends on your specific platform; the flags values available are documented on the appropriate Unix manual page for recv(2) or manual page for send(2):



	
		
				accept
				accept()

			Blocks until a client establishes a connection to s, which must have been bound to an address (with a call to s.bind) and set to listening (with a call to s.listen). Returns a new socket object, which can be used to communicate with the other endpoint of the connection.
		

		
				bind
				bind(address)

			Binds s to a specific address. The form of the address argument depends on the socket’s address family (see “Socket Addresses”).
		

		
				close
				close()

			Marks the socket as closed. It does not necessarily close the connection immediately, depending on whether other references to the socket exist. If immediate closure is required, call the s.shutdown method first. The simplest way to ensure a socket is closed in a timely fashion is to use it in a with statement, since sockets are context managers.
		

		
				connect
				connect(address)

			Connects to a remote socket at address. The form of the address argument depends on the address family (see “Socket Addresses”).
		

		
				detach
				detach()

			Puts the socket into closed mode, but allows the socket object to be reused for further connections.
		

		
				dup
				dup()

			Returns a duplicate of the socket, not inheritable by child processes.
		

		
				fileno
				fileno()

			Returns the socket’s file descriptor.
		

		
				get_inheritable
				get_inheritable()

			Returns True when the socket is going to be inherited by child processes. Otherwise, returns False.
		

		
				getpeername
				getpeername()

			Returns the address of the remote endpoint to which this socket is connected.
		

		
				getsockname
				getsockname()

			Returns the address being used by this socket.
		

		
				gettimeout
				gettimeout()

			Returns the timeout associated with this socket.
		

		
				listen
				listen([backlog])

			Starts the socket listening for traffic on its associated endpoint. If given, the integer backlog argument determines how many unaccepted connections the operating system allows to queue up before starting to refuse connections.
		

		
				makefile
				makefile(mode, buffering=None, *, encoding=None,
 newline=None)

			Returns a file object allowing the socket to be used with file-like operations such as read and write. The mode can be 'r' or 'w'; 'b' can be added for binary transmission. The socket must be in blocking mode; if a timeout value is set, unexpected results may be observed if a timeout occurs. The arguments are like for the built-in open function.
		

		
				recv
				recv(bufsiz, [flags])

			Receive a maximum of bufsiz bytes of data on the socket. Returns the received data.
		

		
				recvfrom
				recvfrom(bufsiz, [flags])

			Receive a maximum of bufsiz bytes of data from s. Returns a pair (bytes, address): bytes is the received data, address the address of the counter-party socket that sent the data.
		

		
				recvfrom_into
				recvfrom_into(buffer, [nbytes, [flags]])

			Receive a maximum of nbytes bytes of data from s, writing it into the given buffer object. Returns a pair (nbytes, address): nbytes is the number of bytes received, address the address of the counter-party socket that sent the data.
		

		
				recv_into
				recv_into(buffer, [nbytes, [flags]])

			Receive a maximum of nbytes bytes of data from s, writing it into the given buffer object. Returns the number of bytes received.
		

		
				recvmsg
				recvmsg(bufsiz, [ancbufsiz, [flags]])

			Receive a maximum of bufsiz bytes of data on the socket and a maximum of ancbufsiz of ancillary (“out-of-band”) data. Returns a four-item tuple (data, ancdata, msg_flags, address), where bytes is the received data, ancdata is a list of three-item

			(cmsg_level, cmsg_type, cmsg_data) tuples representing the received ancillary data, msg_flags holds any flags received with the message, and address is the address of the counter-party socket that sent the data (if the socket is connected, this value is undefined, but the sender can be determined from the socket).
		

		
				send
				send(bytes, [flags]])

			Send the given data bytes over the socket, which must already be connected to a remote endpoint. Returns the number of bytes sent, which you should check: the call may not transmit all data, in which case transmission of the remainder will have to be separately requested.
		

		
				sendall
				sendall(bytes, [flags])

			Send all the given data bytes over the socket, which must already be connected to a remote endpoint. The socket’s timeout value applies to the transmission of all the data, even if multiple transmissions are needed.
		

		
				sendto
				sendto(bytes, address) or

			sendto(bytes, flags, address)

			Transmit the bytes (s must not be connected) to the given socket address.
		

		
				sendmsg
				sendmsg(buffers, [ancdata, [flags, [address]]])

			Send normal and ancillary (out-of-band) data to the connected endpoint. buffers should be an iterable of bytes-like objects. The ancdata argument should be an iterable of (data, ancdata, msg_flags, address) tuples representing the ancillary data, and msg_flags are flags values documented on the Unix manual page for the send(2) system call. address should only be provided for an unconnected socket, and determines the endpoint to which the data is sent.
		

		
				sendfile
				sendfile(file, offset=0, count=None)

			Send the contents of file object file (which must be open in binary mode) to the connected endpoint. On platforms where os.sendfile is available, it’s used; otherwise, the send call is used. offset, if any, determines the starting byte position in the file from which transmission begins; count sets maximum number of bytes to transmit. Returns the total number of bytes transmitted.
		

		
				set_inheritable
				set_inheritable(flag)

			Determines whether the socket gets inherited by child processes, according to the truth value of flag.
		

		
				setblocking
				setblocking(flag)

			Determines whether s operates in blocking mode (see “Socket Objects”) according to the truth value of flag. s.setblocking(True) works like s.settimeout(None); s.set_blocking(False) works like s.settimeout(0.0).
		

		
				settimeout
				settimeout(timeout)

			Establishes the mode of s (see “Socket Objects”) according to the value of timeout.
		

		
				shutdown
				shutdown(how)

			Shuts down one or both halves of a socket connection according to the value of the how argument, as detailed here:
		

		
				socket.SHUT_RD
				No further receive operations can be performed on s.
		

		
				socket.SHUT_WR
				No further send operations can be performed on s.
		

		
				socket.SHUT_RDWR
				No further receive or send operations can be performed on s.
		

	



A socket object s also has the following attributes:



	
		
				family
				An attribute that is s’s socket family
		

		
				type
				An attribute that is s’s socket type
		

	








A Connectionless Socket Client


Consider a simplistic packet-echo service. Text encoded in UTF-8 (the assumed encoding of most Python source files, though here we have made it explicit) is sent to a server, which sends the same information back to the client originating it. In a connectionless service, all the client has to do is send each chunk of data to the defined server endpoint.



# coding: utf-8
import socket

UDP_IP = 'localhost'
UDP_PORT = 8883
MESSAGE = u"""\
This is a bunch of lines, each
of which will be sent in a single
UDP datagram. No error detection
or correction will occur.
Crazy bananas! £€ should go through."""

sock = socket.socket(socket.AF_INET,  # IP v4
                     socket.SOCK_DGRAM)  # UDP
server = UDP_IP, UDP_PORT
for line in MESSAGE.splitlines():
    data = line.encode('utf-8')
    sock.sendto(data, server)
    print('SENT', repr(data), 'to', server)
    response, address = sock.recvfrom(1024)  # buffer size: 1024
    print('RCVD', repr(response.decode('utf-8')), 'from', address)
sock.close()



Note that the server is only expected to perform a byte-oriented echo function. The client, therefore, encodes its Unicode data into specific bytestrings, and decodes the bytestring responses received from the server back into Unicode text using the same encoding.





A Connectionless Socket Server


A server for this service is also quite simple. It binds to its endpoint, receives packets (datagrams) at that endpoint, and returns a packet to the client sending each datagram, with exactly the same data. The server treats all clients equally and does not need to use any kind of concurrency (though this handy characteristic might not hold for a service where request handling takes more time).


The following server works, but offers no way to terminate the service other than by interrupting it (typically from the keyboard, with Ctrl-C or Ctrl-Break):




import socket
UDP_IP = 'localhost'
UDP_PORT = 8883
sock = socket.socket(socket.AF_INET, # Internet
                     socket.SOCK_DGRAM) # UDP
sock.bind((UDP_IP, UDP_PORT))
print('Serving at', UDP_IP, UDP_PORT)
while True:
    data, addr = sock.recvfrom(1024)  # buffer size is 1024 bytes
    print('RCVD', repr(data), 'from', addr)
    sock.sendto(data, addr)
    print('SENT', repr(data), 'to', addr)



Neither is there any mechanism to handle dropped packets and similar network problems. This is often acceptable in simple services.


The same programs will run using IPv6 by replacing the socket type, AF.INET, with AF_INET6.





A Connection-Oriented Socket Client


Consider a simplistic connection-oriented “echo-like” protocol: a server lets clients connect to its listening socket, receives arbitrary bytes from them, and sends back to each client the same bytes that client sent to the server, until the client closes the connection. Here’s an example of an elementary test client:2




# coding: utf-8
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
    sock.connect(('localhost', 8881))
    print('Connected to server')
    data = u"""\
A few lines of text
including non-ASCII characters: €£
to test the operation
of both server
and client."""
    for line in data.splitlines():
        sock.sendall(line.encode('utf-8'))
        print('Sent:', line)
        response = sock.recv(1024)
        print('Recv:', response.decode('utf-8'))
sock.close()
print('Disconnected from server')



Note that the data is text, so it must be encoded with a suitable representation, for which we chose the usual suspect—UTF-8. The server works in terms of bytes (since it is bytes, AKA octets, that travel on the network); the received bytes object gets decoded with UTF-8 back into Unicode text before printing. Any other suitable codec could be used: the key point is that text must be encoded before transmission and decoded after reception. The server, working in terms of bytes, does not even need to know which encoding is being used, except maybe for logging purposes.





A Connection-Oriented Socket Server


Here is a simplistic server corresponding to the testing client shown in “A Connection-Oriented Socket Client”, using multithreading via concurrent.futures, covered in “The concurrent.futures Module”:




from concurrent import futures
import socket
def handle(new_sock, address):
    print('Connected from', address)
    while True:
        received = new_sock.recv(1024)
        if not received:
            break
        s = received.decode('utf-8', errors='replace')
        print('Recv:', s)
        new_sock.sendall(received)
        print('Echo:', s)
    new_sock.close()
    print('Disconnected from', address)
servsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
servsock.bind(('localhost', 8881))
servsock.listen(5)
print('Serving at', servsock.getsockname())
with futures.ThreadPoolExecutor(20) as e:
    try:
        while True:
            new_sock, address = servsock.accept()
            e.submit(handle, new_sock, address)
    except KeyboardInterrupt:
        pass
    finally:
        servsock.close()



This server has its limits. In particular, it runs only 20 threads, so it cannot be simultaneously serving more than 20 clients; any further client trying to connect while 20 are being served waits in servsock’s listening queue, and (should that queue fill up with 5 clients waiting to be accepted) further clients attempting connection get rejected outright. This server is intended just as an elementary example for demonstration purposes, not as a solid, scalable, or secure system.


As before, the same programs will run using IPv6 by replacing the socket type, AF.INET, with AF_INET6.







Transport Layer Security (TLS, AKA SSL)


The Transport Layer Security (TLS) is often also known as the Secure Sockets Layer (SSL), which was in fact the name of its predecessor protocol. TLS provides privacy and data integrity over TCP/IP, helping you defend against server impersonation, eavesdropping on the bytes being exchanged, and malicious alteration of those bytes. For an introduction to TLS, we recommend the extensive Wikipedia entry.


In Python, you can use TLS via the ssl module of the standard library, documented in detail online. To use ssl well, you need its rich online docs, as well as a deep and broad understanding of TLS itself (the Wikipedia article, excellent and vast as it is, can only begin to cover this large, difficult subject). In particular, you must learn and thoroughly understand the security considerations section of the online docs, as well as all the materials found at the many links helpfully offered in that section.


If these considerations make it look like a perfect implementation of security precautions is a daunting task, that’s because it is. In security, you’re pitting wits and skills against those of sophisticated attackers who may be more familiar with the nooks and crannies of the problems involved, since they specialize in finding workarounds and breaking in, while (usually) your focus can’t be exclusively on such issues—rather, you’re trying to provide some useful services in your code. It’s risky to see security as an afterthought or a secondary point—it has to be front-and-center throughout, to win said battle of skills and wits.


That said, we strongly recommend undertaking the above-outlined study of TLS to all readers—the better all developers understand security considerations, the better off we all are (except, we guess, for “black-hat” security-breaker wannabes).


Unless you have acquired a really deep and broad understanding of TLS and Python’s ssl module (in which case, you’ll know what exactly to do—better than we possibly could!), we recommend using an SSLContext instance to hold all details of your use of TLS. Build that instance with the ssl.create_default_context function, add your certificate if needed (it is needed if you’re writing a secure server), then use the instance’s wrap_socket method to wrap (almost3) every socket.socket instance you make into an instance of ssl.SSLSocket—behaving almost identically to the socket object it wraps, but nearly transparently adding security checks and validation “on the side.”


The default TLS contexts strike a good compromise between security and broad usability, and we recommend you stick by them (unless you’re knowledgeable enough to fine-tune and tighten security for special needs). If you need to support outdated counterparts, those unable to use the most recent, most secure implementations of TLS, you may feel tempted to learn just enough to relax your security demands; do that at your own risk—we most definitely don’t recommend wandering into such territory!


In the following sections, we cover the minimal subset of ssl you need if you just want to follow our recommendations. But, remember, even if that is the case, please also read up on TLS and ssl, just to gain some background knowledge about the intricate issues involved. It may stand you in good stead one day!



SSLContext


The ssl module supplies an ssl.SSLContext class, whose instances hold information about TLS configuration (including certificates and private keys) and offer many methods to set, change, check, and use that information. If you know exactly what you’re doing, you can manually instantiate, set up, and use your own SSLContext instances for your own specialized purposes.


However, we recommend instead that you instantiate an SSLContext using the well-tuned function named ssl.create_default_context with a single argument: ssl.Purpose.CLIENT_AUTH if your code is a server (and thus may need to authenticate clients), or ssl.Purpose.SERVER_AUTH if your code is a client (and thus definitely needs to authenticate servers). If your code is both a client to some servers and a server to other clients (as, for example, some Internet proxies are), then you’ll need two instances of SSLContext, one for each purpose.


For most client-side uses, your SSLContext is ready. If you’re coding a server, or a client for one of the rare servers that require TLS authentication of the clients, you need to have a certificate file and a key file, and add them to the SSLContext instance (so that counter-parties can verify your identity) with code such as, for example:




ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
ctx.load_cert_chain(certfile='mycert.pem', keyfile='mykey.key')



passing the paths to the certificate and key files to the load_cert_chain method. (See the online docs to learn how to obtain key and certificate files.)


Once your context instance ctx is ready, if you’re coding a client, just call ctx.wrap_socket to wrap any socket you’re about to connect to a server, and use the wrapped result (an instance of ssl.SSLSocket) instead of the socket you just wrapped. For example:




sock = socket.socket(socket.AF_INET)
sock = ctx.wrap_socket(sock, server_hostname='www.example.com')
sock.connect(('www.example.com', 443))# just use 'sock' normally from here onwards



Note that, in the client case, you should also pass wrap_socket a server_hostname argument corresponding to the server you’re about to connect to; this way, the connection can verify that the identity of the server you end up connecting to is indeed correct, one absolutely crucial step to any Internet security.


Server-side, don’t wrap the socket that you are binding to an address, listening on, or accepting connections on; just bind the new socket to accept returns. For example:




sock = socket.socket(socket.AF_INET)
sock.bind(('www.example.com', 443))
sock.listen(5
while True:
    newsock, fromaddr = sock.accept()
    newsock = ctx.wrap_socket(newsock, server_side=True)
    # deal with 'newsock' as usual, shut down and close it when done



In this case, what you need to pass to wrap_socket is an argument server_side=True, so it knows that you’re on the server side of things.


Again, we recommend the online docs, particularly the examples, for better understanding even this simple subset of ssl operations.





1 and the relatively-newfangled multiplexed-connections transport protocol QUIC 
2 This client example isn’t secure; see “Transport Layer Security (TLS, AKA SSL)” for an introduction to making it secure. 
3 We say “almost” because, when you code a server, you don’t wrap the socket you bind, listen on, and accept connections from. 




Chapter 11. Client-Side Network Protocol Modules


      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 19th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




Python’s standard library supplies several modules to simplify the use of Internet protocols, particularly on the client side (or for some simple servers). These days, the Python Package Index, best known as PyPI, offers many more such packages. These third-party packages support a wider array of protocols, and several offer better APIs than the standard library’s equivalents. When you need to use a network protocol that’s missing from the standard library, or covered by the standard library in a way you think is not satisfactory, be sure to search PyPI—you’re likely to find better solutions there.


In this chapter, we cover some standard library packages that may prove satisfactory for some uses of network protocols, especially simple ones: when you can code without requiring third-party packages, your application or library is easier to install on other machines. We also mention a few third-party packages covering important network protocols not included in the standard library. We do not cover third-party packages using asynchronous programming.


For the very frequent use case of HTTP1 clients and other network resources (such as anonymous FTP sites) best accessed via URLs,2 the standard library is seriously inferior to the splendid third-party package requests, so we cover and recommend that instead of standard library modules.



Email Protocols


Most email today is sent via servers implementing the Simple Mail Transport Protocol (SMTP) and received via servers and clients using Post Office Protocol version 3 (POP3) and/or IMAP4 (either in the original version, per RFC 1730, or the IMAP4rev1 one, per RFC 2060). Clients for these protocols are supported by the Python standard library modules smtplib, poplib, and imaplib respectively.


If you need to write a client that can connect via either POP3 or IMAP4, a standard recommendation would be to pick IMAP4, since it is more powerful, and—according to Python’s own online docs—often more accurately implemented on the server side. Unfortunately imaplib is very complex, and far too vast to cover in this book. If you do choose to go that route, use the online docs, inevitably complemented by voluminous RFCs 1730 or 2060, and possibly other related RFCs, such as 5161 and 6855 for capabilities, and 2342 for namespaces. Using the RFCs, in addition to the online docs for the standard library module, can’t be avoided: many of the arguments passed to imaplib functions and methods, and results from calling them, are strings with formats that are only documented in the RFCs, not in Python’s own docs. We don’t cover imaplib in this book; in the following sections, we only cover poplib and smtplib.


If you do want to use the rich and powerful IMAP4 protocol, we highly recommend that you do so, not directly via the standard library’s imaplib, but rather by leveraging the simpler, higher-abstraction-level third-party package IMAPClient, available with a pip install and well-documented online.



The poplib Module


The poplib module supplies a class POP3 to access a POP mailbox. The specifications of the POP protocol are in RFC 1939.



	
		
				POP3
				class POP3(host,port=110)

			Returns an instance p of class POP3 connected to host and port. Class POP3_SSL behaves just the same, but connects to the host (by default on port 995) over a secure TLS channel; it’s needed to connect to email servers that demand some minimum security, such as pop.gmail.com.a
		

	
	a To connect to a Gmail account, in particular, you need to configure that account to enable POP, “Allow less secure apps,” and avoid 2-step verification—things that in general we don’t recommend, as they weaken your email’s security. 




Instance p supplies many methods, of which the most frequently used are the following (in each case, msgnum, the identifying number of a message, can be a string or an int):



	
		
				dele
				p.dele(msgnum)

			Marks message msgnum for deletion and returns the server response string. The server queues such deletion requests, and executes them later when you terminate this connection by calling p.quit.
		

		
				list
				p.list(msgnum=None)

			Returns a tuple (response, messages, octets), where response is the server response string; messages a list of bytestrings, each of two words b'msgnum bytes’, message number and length in bytes of each message in the mailbox; octets is the length in bytes of the total response. When msgnum is not None, list returns a string, the response for the given msgnum, not a tuple.
		

		
				pass_
				p.pass_(password)

			Sends the password to the server. Must be called after p.user. The trailing underscore in the name is needed because pass is a Python keyword. Returns the server response string.
		

		
				quit
				p.quit()

			Ends the session and tells the server to perform deletions that were requested by calls to p.dele. Returns the server response string.
		

		
				retr
				p.retr(msgnum)

			Returns a three-item tuple (response, lines, bytes), where response is the server response string, lines the list of all lines in message msgnum as bytestrings, and bytes the total number of bytes in the message.
		

		
				set_debuglevel
				p.set_debuglevel(debug_level)

			Sets debug level to int debug_level: 0, default, for no debugging; 1 for a modest amount of debugging output; and 2 or more for a complete output trace of all control information exchanged with the server.
		

		
				stat
				p.stat()

			Returns pair (num_msgs,bytes), where num_msgs is the number of messages in the mailbox, bytes the total number of bytes.
		

		
				top
				p.top(msgnum,maxlines)

			Like retr, but returns at most maxlines lines from the message’s body (in addition to all the lines from the headers). Can be useful for peeking at the start of long messages.
		

		
				user
				p.user(username)

			Sends the server the username; invariably followed up by a call to p.pass_.
		

	






The smtplib Module


The smtplib module supplies a class SMTP to send mail via an SMTP server. The specifications of the SMTP protocol are in RFC 2821.



	
		
				SMTP
				class SMTP([host,port=25])

			Returns an instance s of the class SMTP. When host (and optionally port) is given, implicitly calls s.connect(host,port). Class SMTP_SSL behaves just the same, but connects to the host (by default on port 465) over a secure TLS channel; it’s needed to connect to email servers that demand some minimum security, such as smtp.gmail.com.
		

	



The instance s supplies many methods, of which the most frequently used are the following:



	
		
				connect
				s.connect(host=127.0.0.1,port=25)

			Connects to an SMTP server on the given host (by default, the local host) and port (port 25 is the default port for the SMTP service; 465 is the default port for the more secure “SMTP over TLS”).
		

		
				login
				s.login(user, password)

			Logs into the server with given user and password. Needed only if the SMTP server requires authentication (as just about all do).
		

		
				quit
				s.quit()

			Terminates the SMTP session.
		

		
				sendmail
				s.sendmail(from_addr, to_addrs ,msg_string)

			Sends mail message msg_string from the sender whose address is in string from_addr to each of the recipients whose addresses are the items of list to_addrs. msg_string must be a complete RFC 822 message in a single multiline bytestring: the headers, an empty line for separation, then the body. from_addr and to_addrs only direct the mail transport, and don’t affect any header in msg_string. To prepare RFC 822-compliant messages, use the package email, covered in “MIME and Email Format Handling”.
		

	








HTTP and URL Clients


Most of the time, your code uses HTTP and FTP protocols through the higher-abstraction URL layer, supported by the modules and packages covered in the following sections. Python’s standard library also offers lower-level, protocol-specific modules that are less often used: for FTP clients, ftplib; for HTTP clients, http.client (we cover HTTP servers in Chapter 20). If you need to write an FTP server, look at the third-party module pyftpdlib. Implementations of the newer HTTP/2 may not be fully mature, but your best bet as of this writing is the third-party module HTTPX. We do not cover any of these lower-level modules in this book: we focus on higher-abstraction, URL-level access throughout the following sections.



URL Access


A URL is a type of URI (Uniform Resource Identifier). A URI is a string that identifies a resource (but does not necessarily locate it), while a URL locates a resource on the Internet. A URL is a string composed of several optional parts, called components: scheme, location, path, query, and fragment. (The second component is sometimes also known as a net location, or netloc for short.) A URL with all parts looks like:




scheme://lo.ca.ti.on/pa/th?qu=ery#fragment



In https://www.python.org/community/awards/psf-awards/#october-2016, for example, the scheme is http, the location is www.python.org, the path is /community/awards/psf-awards/, there is no query, and the fragment is #october-2016. (Most schemes default to a “well-known port” when the port is not explicitly specified; for example, 80 is the “well-known port” for the HTTP scheme.) Some punctuation is part of one of the components it separates; other punctuation characters are just separators, not part of any component. Omitting punctuation implies missing components. For example, in mailto:me@you.com, the scheme is mailto, the path is me@you.com (mailto:me@you.com), and there is no location, query, or fragment. No // means the URI has no location, no ? means it has no query, and no # means it has no fragment.


If the location ends with a colon followed by a number, this denotes a TCP port for the endpoint. Otherwise, the connection uses the “well-known port” associated with the scheme (e.g., port 80 for HTTP).



The urllib.parse module


The urllib.parse module supplies functions for analyzing and synthesizing URL strings. The most frequently used of these functions are urljoin, urlsplit, and urlunsplit:



	
		
				urljoin
				urljoin(base_url_string, relative_url_string)

			Returns a URL string u, obtained by joining relative_url_string, which may be relative, with base_url_string. The joining procedure that urljoin performs to obtain its result u may be summarized as follows:

			
				When either of the argument strings is empty, u is the other argument.

				When relative_url_string explicitly specifies a scheme that is different from that of base_url_string, u is relative_url_string. Otherwise, u’s scheme is that of base_url_string.

				When the scheme does not allow relative URLs (e.g., mailto), or when relative_url_string explicitly specifies a location (even when it is the same as the location of base_url_string), all other components of u are those of relative_url_string. Otherwise, u’s location is that of base_url_string.

				u’s path is obtained by joining the paths of base_url_string and relative_url_string according to standard syntax for absolute and relative URL paths, as per RFC 1808. For example:

from urllib import parse as urlparse
urlparse.urljoin(
'http://host.com/some/path/here','../other/path')# Result is:
# 'http://host.com/some/other/path'



		

		
				urlsplit
				urlsplit(url_string,default_scheme='',allow_fragments=True)

			Analyzes url_string and returns a tuple (actually an instance of SplitResult, which you can treat as a tuple or use with named attributes) with five string items: scheme, netloc, path, query, and fragment. default_scheme is the first item when the url_string lacks an explicit scheme. When allow_fragments is False, the tuple’s last item is always '', whether or not url_string has a fragment. Items corresponding to missing parts are ''. For example:

			urlparse.urlsplit('http://www.python.org:80/faq.cgi?src=file')
# Result is:
# ('http','www.python.org:80','/faq.cgi','src=file','')

		

		
				urlunsplit
				urlunsplit(url_tuple)

			url_tuple is any iterable with exactly five items, all strings. Any return value from a urlsplit call is an acceptable argument for urlunsplit. urlunsplit returns a URL string with the given components and the needed separators, but with no redundant separators (e.g., there is no # in the result when the fragment, url_tuple’s last item, is ''). For example:

urlparse.urlunsplit((

'http','www.python.org','/faq.cgi','src=fie',''))
# Result is:
# 'http://www.python.org/faq.cgi?src=fie'

			urlunsplit(urlsplit(x)) returns a normalized form of URL string x, which is not necessarily equal to x because x need not be normalized. For example:

urlparse.urlsplit('http://a.com/path/a?'))# Result is:
# 'http://a.com/path/a'

			In this case, the normalization ensures that redundant separators, such as the trailing ? in the argument to urlsplit, are not present in the result.

		

	








The Third-Party requests Package


The third-party requests package (very well documented online) is how we recommend you access HTTP URLs. As usual for third-party packages, it’s best installed with a simple pip install requests. In this section, we summarize how best to use it for reasonably simple cases.


Natively, requests only supports the HTTP transport protocol; to access URLs using other protocols, you need to install other third-party packages (known as protocol adapters), such as requests-ftp for FTP URLs, or others supplied as part of the rich requests-toolbelt package of requests utilities.


requests’ functionality hinges mostly on three classes it supplies: Request, modeling an HTTP request to be sent to a server; Response, modeling a server’s HTTP response to a request; and Session, offering continuity across a sequence of requests, also known as a session. For the common use case of a single request/response interaction, you don’t need continuity, so you may often just ignore Session.



Sending requests


Most often, you don’t need to explicitly consider the Request class: rather, you call the utility function request, which internally prepares and sends the Request, and returns the Response instance. request has two mandatory positional arguments, both strs: method, the HTTP method to use, and url, the URL to address; then, many optional named parameters may follow (in the next section, we cover the most commonly used named parameters to the request function).


For further convenience, the requests module also supplies functions whose names are the HTTP methods delete, get, head, options, patch, post, and put; each takes a single mandatory positional argument, url, then the same optional named arguments as the function request.


When you want some continuity across multiple requests, call Session to make an instance s, then use s’s methods request, get, post, and so on, which are just like the functions with the same names directly supplied by the requests module (however, s’s methods merge s’s settings with the optional named parameters to prepare each request to send to the given url).





request’s optional named parameters


The function request (just like the functions get, post, and so on—and methods with the same names on an instance s of class Session) accepts many optional named parameters—refer to the requests package’s excellent online docs for the full set, if you need advanced functionality such as control over proxies, authentication, special treatment of redirection, streaming, cookies, and so on. The most frequently used named parameters are:



		data

		
	A dict, a sequence of key/value pairs, a bytestring, or a file-like object, to use as the body of the request

	

		headers

		
	A dict of HTTP headers to send in the request

	

		json

		
	Python data (usually a dict) to encode as JSON as the body of the request

	

		files

		
	A dict with names as keys, file-like objects, or file tuples as values, used with the POST method to specify a multipart-encoding file upload; we cover the format of values for files= in the next section

	

		params

		
	A dict of (name, value) items, or a bytestring to send as the query string with the request

	

		timeout

		
	A float number of seconds, the maximum time to wait for the response before raising an exception

	




data, json, and files are mutually incompatible ways to specify a body for the request; use only one of them, and only for HTTP methods that do use a body, namely PATCH, POST, and PUT. The one exception is that you can have both data= passing a dict, and a files=, and that is very common usage: in this case, both the key/value pairs in the dict, and the files, form the body of the request as a single multipart/form-data whole, according to RFC 2388.





The files argument (and other ways to specify the request’s body)


When you specify the request’s body with json=, or data= passing a bytestring or a file-like object (which must be open for reading, usually in binary mode), the resulting bytes are directly used as the request’s body; when you specify it with data= (passing a dict, or a sequence of key/value pairs), the body is built as a form, from the key/value pairs formatted in application/x-www-form-urlencoded format, according to the relevant web standard.


When you specify the request’s body with files=, the body is also built as a form, in this case with the format set to multipart/form-data (the only way to upload files in a PATCH, POST, or PUT HTTP request). Each file you’re uploading is formatted into its own part of the form; if, in addition, you want the form to give to the server further non-file parameters, then in addition to files= also pass a data= with a dict value (or a sequence of key/value pairs) for the further parameters—those parameters get encoded into a supplementary part of the multipart form.


For flexibility, the value of the files= argument can be a dict (its items are taken as a sequence of name/value pairs), or a sequence of name/value pairs (order is maintained in the resulting request body).


Either way, each value in a name/value pair can be a str (or, best,3 a bytes or byte array) to be used directly as the uploaded file’s contents; or, a file-like object open for reading (then, requests calls .read() on it, and uses the result as the uploaded file’s contents; we strongly urge that, in such cases, you open the file in binary mode, to avoid any ambiguity regarding content-length). When any of these conditions apply, requests uses the name part of the pair (e.g., the key into the dict) as the file’s name (unless it can improve on that because the open file object is able to reveal its underlying filename), takes its best guess at a content-type, and uses minimal headers for the file’s form-part.


Alternatively, the value in each name/value pair can be a tuple with two to four items: fn, fp, [ft, [fh]] (using square brackets as meta-syntax to indicate optional parts). In this case, fn is the file’s name, fp provides the contents (in just the same way as in the previous paragraph), optional ft provides the content type (if missing, requests guesses it, as in the previous paragraph), and the optional dict fh provides extra headers for the file’s form-part.





How to study examples of requests


In practical applications, you don’t usually need to consider the internal instance r of the class requests.Request, which functions like requests.post are building, preparing, and then sending on your behalf. However, to understand exactly what requests is doing, working at a lower level of abstraction (building, preparing, and examining r—no need to send it!) is instructive. For example:



import requests
r = requests.Request('GET', 'http://www.example.com',
    data={'foo': 'bar'}, params={'fie': 'foo'})
p = r.prepare()
print(p.url)
print(p.headers)
print(p.body)



prints out (splitting the p.headers dict’s printout for readability):




http://www.example.com/?fie=foo
{'Content-Length': '7',
 'Content-Type': 'application/x-www-form-urlencoded'}
foo=bar



Similarly, when files= is involved:




import requests
r = requests.Request('POST', 'http://www.example.com',
    data={'foo': 'bar'}, files={'fie': 'foo'})
p = r.prepare()
print(p.headers)
print(p.body)



prints out (with several lines split for readability):




{'Content-Length': '228',
 'Content-Type': 'multipart/form-data; boundary=dfd600d8aa584962709b936134b1cfce'}
b'--dfd600d8aa584962709b936134b1cfce\r\nContent-Disposition: form-data; name="foo"\r\n\r\nbar\r\n--dfd600d8aa584962709b936134b1cfce\r\nContent-Disposition: form-data; name="fie"; filename="fie"\r\n\r\nfoo\r\n--dfd600d8aa584962709b936134b1cfce--\r\n'



Happy interactive exploring!





The Response class


The one class from the requests module that you always have to consider is Response: every request, once sent to the server (typically, that’s done implicitly by methods such as get), returns an instance r of requests.Response.


The first thing you usually want to do is to check r.status_code, an int that tells you how the request went, in typical “HTTPese”: 200 means “everything’s fine,” 404 means “not found,” and so on. If you’d rather just get an exception for status codes indicating some kind of error, call r.raise_for_status(); that does nothing if the request went fine, but raises a requests.exceptions.HTTPError otherwise. (Other exceptions, not corresponding to any specific HTTP status code, can and do get raised without requiring any such explicit call: e.g., ConnectionError for any kind of network problem, or TimeoutError for a timeout.)


Next, you may want to check the response’s HTTP headers: for that, use r.headers, a dict (with the special feature of having case-insensitive string-only keys, indicating the header names as listed, e.g., in Wikipedia, per HTTP specs). Most headers can be safely ignored, but sometimes you’d rather check. For example, you may check whether the response specifies which natural language its body is written in, via r.headers.get('content-language'), to offer the user different presentation choices, such as the option to use some kind of language translation service to make the response more usable for the user.


You don’t usually need to make specific status or header checks for redirects: by default, requests automatically follows redirects for all methods except HEAD (you can explicitly pass the allow_redirection named parameter in the request to alter that behavior). If you allow redirects, you may want to check r.history, a list of all Response instances accumulated along the way, oldest to newest, up to but excluding r itself (r.history is empty if there have been no redirects).


Most often, maybe after checking status and headers, you want to use the response’s body. In simple cases, just access the response’s body as a bytestring, r.content, or decode it as JSON (once you’ve checked that’s how it’s encoded, e.g., via r.headers.get('content-type')) by calling r.json().


Often, you’d rather access the response’s body as (Unicode) text, with property r.text. The latter gets decoded (from the octets that actually make up the response’s body) with the codec requests thinks is best, based on the content-type header and a cursory examination of the body itself. You can check what codec has been used (or is about to be used) via the attribute r.encoding, the name of a codec registered with the codecs module, covered in “The codecs Module”. You can even override the choice of codec to use by assigning to r.encoding the name of the codec you choose.


We do not cover other advanced issues, such as streaming, in this book; check requests’ online docs.







The urllib Package


In addition to urllib.parse, covered in “The urllib.parse module”, the urllib package supplies the module urllib.robotparser for the specific purpose of parsing a site’s robots.txt file as per a well-known informal standard; the module urllib.error, containing all exception types raised by other urllib modules; and, mainly, the module urllib.request, for opening and reading URLs.


For full coverage of urllib.request, check the online docs, and Michael Foord’s HOWTO.







Other Network Protocols


Many, many other network protocols are in use—a few are best supported by Python’s standard library, but, for most of them, you’ll be happier researching third-party modules on PyPI.


To connect as if you were logging into another machine (or, into a separate login session on your own node), you can use the secure SSH protocol, supported by the third-party module paramiko, or the higher abstraction layer wrapper around it, the third-party module spur. (You can also, with some likely security risks, still use classic telnet, supported by the standard library module telnetlib.)


Other network protocols include:



		
	NNTP, to access Usenet News servers, supported by the standard library module nntplib

	

		
	XML-RPC, for a rudimentary remote procedure call functionality, supported by xmlrpc.client

	

		
	gRPC, for a more modern remote procedure functionality, supported by third-party module grpcio

	

		
	NTP, to get precise time off the network, supported by third-party module ntplib

	

		
	SNMP, for network management, supported by third-party module pysnmp

	




...among many others. No single book (not even this one!) could possibly cover all these protocols and their supporting modules. Rather, our best suggestion in the matter is a strategic one: whenever you decide that your application needs to interact with some other system via a certain networking protocol, don’t rush to implement your own modules to support that protocol. Instead, search and ask around, and you’re likely to find excellent existing Python modules (third-party, or standard-library ones) supporting that protocol.4


Should you find some bug or missing feature in such modules, open a bug or feature request (and, ideally, supply a patch or pull request that would fix the problem and satisfy your application’s needs). In other words, become an active member of the open-source community, rather than just a passive user: you will be welcome there, scratch your own itch, and help many others in the process. “Give forward,” since you cannot “give back” to all the awesome people who contributed to give you most of the tools you’re using!



1 HTTP, the Hypertext Transfer Protocol, is the core protocol of the World Wide Web: every web server and browser uses it, and it has become the dominant application-level protocol on the Internet today. 
2 Uniform Resource Locators 
3 As it gives you complete, explicit control of exactly what octets are uploaded. 
4 Even more important: if you think you need to invent a brand-new protocol and implement it on top of sockets, think again, and search carefully: it’s far more likely that one or more of the huge number of existing Internet protocols meets your needs just fine! 




Chapter 12. Serving HTTP


      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 20th chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




When a browser (or any other web client) requests a page from a server, the server may return either static or dynamic content. Serving dynamic content involves server-side web programs generating and delivering content on the fly, often based on information stored in a database.


In the prehistory of the web, the standard for server-side programming was CGI (the Common Gateway Interface), which required the server to run a separate program each time a client requested dynamic content. Process startup time, interpreter initialization, connection to databases, and script initialization add up to measurable overhead; CGI did not scale up well.


Nowadays, web servers support many server-specific ways to reduce overhead, serving dynamic content from processes that can serve for several hits rather than starting up a new process per hit. Therefore, we do not cover CGI in this book. To maintain existing CGI programs, or port them to more modern approaches, consult the online docs for the standard library modules cgi and http.cookies.1


HTTP has become even more fundamental to distributed systems design with the emergence of systems based on microservices, offering a convenient way to transport between processes the JSON content that is frequently used. There are thousands of publicly available HTTP data APIs on the Internet. While HTTP’s principles remain almost unchanged since its inception in the mid-1990s, it has been significantly enhanced over the years to extend its capabilities. For a more thorough grounding with excellent reference materials we recommend O’Reilly’s HTTP: The Definitive Guide2.



http.server


Python’s standard library includes a module containing the server and handler classes to implement a simple HTTP server.


You can run this server from the command line by just entering:




python -m http.server port_number



By default, the server listens on all interfaces and provides access to the files in the current directory. One author uses this as a simple means for file transfer: start up a Python http.server in the file directory on the source system, and then copy files to the destination using a utility such as wget or curl.



http.server has very limited security features

For production use, use one of the frameworks mentioned in the following sections.




You can find further information on http.server in the online docs.





WSGI


Python’s Web Server Gateway Interface (WSGI) is the standard way for all modern Python web development frameworks to interface with underlying web servers or gateways. WSGI is not meant for direct use by your application programs; rather, you code your programs using any one of many higher-abstraction frameworks, and the framework, in turn, uses WSGI to talk to the web server.


You need to care about the details of WSGI only if you’re implementing the WSGI interface for a web server that doesn’t already provide it (should any such server exist), or if you’re building a new Python web framework.3 If so, study the WSGI PEP, the docs for the standard library package wsgiref, and the archive of wsgi.org.


A few WSGI concepts may be important to you if you use lightweight frameworks (i.e., ones that match WSGI closely). WSGI is an interface, and that interface has two sides: the web-server/gateway side, and the application/framework side.


The framework side’s job is to provide a WSGI application object, a callable object (often the instance of a class with a __call__ special method, but that’s an implementation detail) respecting conventions in the PEP, and to connect the application object to the server by whatever means the specific server documents (often a few lines of code, or configuration files, or just a convention such as naming the WSGI application object application as a top-level attribute in a module). The server calls the application object for each incoming HTTP request, and the application object responds appropriately so that the server can form the outgoing HTTP response and send it on—all according to said conventions. A framework, even a lightweight one, shields you from such details (except that you may have to instantiate and connect the application object, depending on the specific server).



WSGI Servers


An extensive list of servers and adapters you can use to run WSGI frameworks and applications (for development and testing, in production web setups, or both) is available online—extensive, but just partial. For example, it does not mention that Google App Engine’s Python runtime is also a WSGI server, ready to dispatch WSGI apps as directed by the app.yaml configuration file.


If you’re looking for a WSGI server to use for development, or to deploy in production behind, say, an Nginx-based load balancer, you should be happy, at least on Unix-like systems, with Green Unicorn: pure Python goodness, supporting nothing but WSGI, very lightweight. A worthy (also pure Python and WSGI only) alternative, currently with better Windows support, is Waitress. If you need richer features (such as support for Perl and Ruby as well as Python, and many other forms of extensibility), consider the bigger, more complex uWSGI.4


WSGI also has the concept of middleware—a subsystem that implements both the server and application sides of WSGI. A middleware object “wraps” a WSGI application; can selectively alter requests, environments, and responses; and presents itself to the server as “the application.” Multiple layers of wrappers are allowed and common, forming a “stack” of middleware, offering services to the actual application-level code. If you want to write a cross-framework middleware component, then you may, indeed, need to become a WSGI expert.





ASGI


If you’re into asynchronous Python (which we don’t cover in this book), WSGI’s “moral successor” for the role is ASGI – as is usually the case for asynchronous programs in a networking environment, it can offer greatly improved performance, albeit (arguably) at some conceptual cost in learning and practicing.







Python Web Frameworks


For a survey of most Python web frameworks, see the Python wiki page. It’s authoritative, since it’s on the official python.org website, and community-curated, so it stays up to date as time goes by. It lists and points to dozens of frameworks5 that it identifies as “active,” plus many more it identifies as “discontinued/inactive.” In addition, it points to separate wiki pages about Python content management systems, web servers, and web components and libraries thereof.



“Full-Stack” Versus “Lightweight” Frameworks


Roughly speaking, Python web frameworks can be classified as being either full-stack (trying to supply all the functionality you may need to build a web application) or lightweight (supplying just a handy interface to web serving itself, and letting you pick and choose your own favorite components for tasks such as interfacing to databases, covered in “The Python Database API (DBAPI) 2.0”, and templating, covered in “Templating”—as well as other tasks covered by web components, as mentioned in the next section). Of course, like all taxonomies, this one is imprecise and incomplete, and requires value judgments; however, it’s one way to start making sense of the many Python web frameworks.


In this book, we do not cover full-stack frameworks—each is far too complex. Nevertheless, one of them might be the best approach for your specific applications, so we mention a few of the most popular ones, and recommend that you check out their websites.



When you use lightweight frameworks


By definition of “lightweight”, if you need any database, templating, or other functionality not strictly related to HTTP, you’ll be picking and choosing separate components for that purpose (we cover aspects of databases and templating in other chapters). However, the lighter in weight your framework, the more components you will need to understand and integrate, for purposes such as authenticating a user or maintaining state across web requests by a given user. Many WSGI middleware packages can help you with such tasks. Some excellent ones are quite focused—for example, Oso for access control, Beaker for maintaining state in the form of lightweight sessions of any one of several kinds, and so forth.


However, when we (the authors of this book) require good WSGI middleware for just about any purpose, we almost invariably first check Werkzeug, a collection of such components that’s amazing in breadth and quality. We don’t cover Werkzeug in this book (just as we don’t cover other middleware), but we recommend it highly (Werkzeug is also the foundation on which is built Flask, our favorite lightweight framework, which we do cover later in this chapter).







A Few Popular Full-Stack Frameworks


By far the most popular full-stack framework is Django, which is vast and extensible. Django’s so-called applications are in fact reusable subsystems, while what’s normally called “an application” Django calls a project. Django requires its own unique mindset, but offers vast power and functionality in return.


An excellent full-stack alternative is web2py, just about as powerful, easier to learn, and well known for its dedication to backward compatibility (if it keeps up its great track record, any web2py application you code today will keep working indefinitely far in the future). Its documentation is outstanding.


A third worthy contender is TurboGears, which starts out as a lightweight framework, but achieves “full-stack” status by fully integrating other, independent third-party projects for the various other functionalities needed in most web apps, such as database interfacing and templating, rather than designing its own. Another, somewhat philosophically similar, “light but rich” framework is Pyramid.





Some Popular Lightweight Frameworks


As mentioned, Python has multiple frameworks, including many lightweight ones. We cover two of the latter: popular, general-purpose Flask, and API-centric FastAPI.



Lightweight frameworks: you must know what you’re doing!

You may well notice that properly using lightweight frameworks requires you to understand HTTP (in other words, to know what you’re doing), while a full-stack framework tries to lead you by the hand and have you do the right thing without really needing to understand how or why it is right—at the cost of time and resources, and of accepting the full-stack framework’s conceptual map and mindset. The authors of this book are enthusiasts of the knowledge-heavy, resources-light approach of lightweight frameworks, but we acknowledge that there are many situations where the rich, heavy, all-embracing full-stack frameworks are more appropriate. To each their own!





Flask


The most popular Python lightweight framework is Flask. Although lightweight, it includes a development server and debugger, and explicitly relies on other, well-chosen packages such as Werkzeug for middleware and jinja for templating (both packages were originally authored by Armin Ronacher, the author of Flask).


In addition to the project website (which includes rich, detailed docs), look at the sources on GitHub and the PyPI entry. To run Flask on Google App Engine (locally on your computer, or on Google’s servers at appspot.com), Dough Mahugh’s Medium article can be quite handy.


We also highly recommend Miguel Greenberg’s book Flask Web Development, 2nd edition (O’Reilly): although the 2nd edition is rather dated (almost 4 years old at the time of this writing), it still provides an excellent foundation, on top of which you’ll have a far easier time learning the latest new additions.


The main class supplied by the flask package is named Flask. An instance of flask.Flask, besides being a WSGI application itself, also wraps a WSGI application as its wsgi_app property. When you need to further wrap the WSGI app in some WSGI middleware, use the idiom:




import flask
app = flask.Flask(__name__)
app.wsgi_app = some_middleware(app.wsgi_app)



When you instantiate flask.Flask, always pass it as the first argument the application name (often just the __name__ special variable of the module where you instantiate it; if you instantiate it from within a package, usually in __init__.py, __name__.partition('.')[0] works). Optionally, you can also pass named parameters such as static_folder and template_folder to customize where static files and jinja templates are found; however, that’s rarely needed—the default values (sub-folders named static and templates, respectively, located in the same folder as the Python script that instantiates flask.Flask) make perfect sense.


An instance app of flask.Flask supplies more than 100 methods and properties, many of them decorators to bind functions to app in various roles, such as view functions (serving HTTP verbs on a URL) or hooks (letting you alter a request before it’s processed, or a response after it’s built; handling errors; and so forth).


flask.Flask takes just a few parameters at instantiation (and the ones it takes are not ones that you usually need to compute in your code), and it supplies decorators you’ll want to use as you define, for example, view functions. Thus, the normal pattern in flask is to instantiate app early in your main script, just as your application is starting up, so that the app’s decorators, and other methods and properties, are available as you def view functions and so on.


Since there is a single global app object, you may wonder how thread-safe it can be to access, mutate, and rebind app’s properties and attributes. Not to worry: the names you see are actually just proxies to actual objects living in the context of a specific request, in a specific thread or greenlet. Never type-check those properties (their types are in fact obscure proxy types), and you’ll be fine.


Flask also supplies many other utility functions and classes; often, the latter subclass or wrap classes from other packages, to add seamless, convenient Flask integration. For example, Flask’s Request and Response classes add just a little handy functionality by subclassing the corresponding Werkzeug classes.





Flask request objects


The class flask.Request supplies a large number of thoroughly documented properties. Table 20-1 lists the ones you’ll be using most often.



	
		
				Property
				Content
		

		
				cookies
				A dict with the cookies from the request
		

		
				data
				A string, the request’s body (for POST and PUT requests)
		

		
				files
				A MultiDict whose values are file-like objects, all the files uploaded in the request (for POST and PUT requests), the mapping’s keys being the files’ names
		

		
				headers
				A MultiDict with the request’s headers
		

		
				values
				A MultiDict with the request’s parameters (either from the query string or, for POST and PUT requests, from the form that’s the request’s body)
		

	



A MultiDict is like a dict, except that it can have multiple values for a key. Indexing, and get, on a MultiDict instance m, return an arbitrary one of the values; to get the list of values for a key (an empty list, if the key is not in m), call m.getlist(key).





Flask response objects


Often, a Flask view function can just return a string (which becomes the response’s body): Flask transparently wraps an instance r of flask.Response around the string, so you don’t have to worry about the response class. However, sometimes you want to alter the response’s headers; in this case, in the view function, call r = flask.make_response(astring), alter MultiDict r.headers as you want, then return r. (To set a cookie, don’t use r.headers; rather, call r.set_cookie, with arguments as mentioned in set_cookie in Table 20-1.)


Some of Flask’s built-in integrations with other systems don’t require subclassing: for example, the templating integration implicitly injects into the jinja context the Flask globals config, request, session, and g (the latter being the handy “globals catch-all” object flask.g, a proxy in application context, on which your code can store whatever you want to “stash” for the duration of the request being served), and the functions url_for (to translate an endpoint to the corresponding URL, same as flask.url_for) and get_flashed_messages (to support flashed messages, which we do not cover in this book; same as flask.get_flashed_messages). Flask provides convenient ways for your code to inject more filters, functions, and values into the jinja context, without any subclassing.


Most of the officially recognized or approved Flask extensions (hundreds are available from PyPI at the time of this writing) adopt similar approaches, supplying classes and utility functions to seamlessly integrate other popular subsystems with your Flask applications.


Flask also introduces other features such as signals, to provide looser dynamic coupling in a “pub/sub” pattern, and blueprints, offering a substantial subset of a Flask application’s functionality to ease refactoring large applications in highly modular, flexible ways. We do not cover these advanced concepts in this book.


Example 20-1 shows a simple Flask example.



Example 12-1. A Flask example



import datetime, flask
app = flask.Flask(__name__)
app.permanent_session_lifetime = datetime.timedelta(days=365)
app.secret_key = b'\xc5\x8f\xbc\xa2\x1d\xeb\xb3\x94;:d\x03'
@app.route('/')
def greet():
    lastvisit = flask.session.get('lastvisit')
    now = datetime.datetime.now()
    newvisit = now.ctime()
    template = '''
      <html><head><title>Hello, visitor!</title>
      </head><body>
      {% if lastvisit %}
        <p>Welcome back to this site!</p>
        <p>You last visited on {{lastvisit}} UTC</p>
        <p>This visit on {{newvisit}} UTC</p>
      {% else %}
        <p>Welcome to this site on your first visit!</p>
        <p>This visit on {{newvisit}} UTC</p>
        <p>Please Refresh the web page to proceed</p>
      {% endif %}
      </body></html>'''
    flask.session['lastvisit'] = newvisit
    return flask.render_template_string(
      template, newvisit=newvisit, lastvisit=lastvisit)




This Flask example just shows how to use a few of the many building blocks that Flask offers—the Flask class, a view function, and rendering the response (in this case, using render_template_string on a jinja template; in real life, templates are usually kept in separate files rendered with render_template). The example also shows how to maintain continuity of state among multiple interactions with the server from the same browser, with the handy flask.session variable. (The example might alternatively have put together the HTML response in Python code instead of using jinja, and used a cookie directly instead of the session; however, real-world Flask apps do tend to use jinja and sessions by preference.)


If this app had multiple view functions, it might want to set lastvisit in the session whatever URL the app was getting “visited” in. Here’s how to code and decorate a hook function to execute after each request:




@app.after_request()
def set_lastvisit(response):
    now = datetime.datetime.now()
    flask.session['lastvisit'] = now.ctime()
    return response



You can now remove the flask.session['lastvisit'] = newvisit statement from the view function greet, and the app will keep working fine.





FastAPI


FastAPI is of more recent design than Flask or Django. While both of the latter have very usable extensions to provide API services, FastAPI aims squarely at producing HTTP-based APIs, as its name suggests. It’s also perfectly capable of producing dynamic web pages intended for browser consumption, making it a versatile server. FastAPI’s home page provides simple, short examples showing how it works and highlighting the advantages, and is followed by very thorough and detailed reference documentation.


As type annotations (covered in Chapter “Type Annotations”) entered the language, they found wider use than originally intended in tools like pydantic, which uses them to perform runtime data validation. The FastAPI server exploits this support for validated structures, demonstrating great potential to improve web coding productivity through built-in validation of inputs.


FastAPI also relies on Starlette, a high-performance asynchronous web framework, which in turn uses an ASGI server such as Uvicorn or Hypercorn. You don’t need to use async directly to take advantage of FastAPI—you can write your application in more traditional Python style, though your application might perform even faster if you do switch to the async style.


FastAPI’s ability to provide type-accurate APIs (and automatically generated documentation for them) aligned with the types indicated by your annotations means it can provide automatic validation of incoming data and conversion on both input and output of data.


Consider the sample code shown in Example 20-2, which defines a simple model for both pydantic and mongoengine. Each has four fields; name and description are strings, price and tax are decimal. Values are required for the name and price fields but description and tax are optional. Pydantic establishes a default value of None for the description and tax fields; mongoengine does not store a value for fields whose value is None.



Example 12-2. models.py: Pydantic and Mongoengine data models



from decimal import Decimal
from pydantic import BaseModel, Field
from mongoengine import Document, StringField, DecimalField
from typing import Optional

class PItem(BaseModel):
    "pydantic typed data class."
    name: str
    price: Decimal
    description: Optional[str] = None
    tax: Optional[Decimal] = None

class MItem(Document):
    "mongoengine document."
    name = StringField(primary_key=True)
    price = DecimalField()
    description = StringField(required=False)
    tax = DecimalField(required=False)




Suppose you wanted to accept such data through a web form or as JSON, and to be able to retrieve them as JSON or display them in HTML, the skeletal example 20-5 below (offering no facilities to maintain existing data) shows you how you might do this with FastAPI. This uses the uvicorn HTTP server, but makes no attempt to explicitly use Python’s async features. As with Flask, the program begins by creating an application object app, whose route decorator is then used to determine which view function handles requests to which path.


The home_page function, which takes no arguments, simply renders a minimal HTML home page containing a form from the index.html file, shown in Example 20-3. The form submits to the /items/new/form/ endpoint, which triggers a call to the create_item_from_form function, which is declared in the routing decorator as producing an HTML response rather than the default JSON.



Example 12-3. The index.html file



<!DOCTYPE html>
<html lang="en">
  <body>
  <h2>FastAPI Demonstrator</h2>
  <form method="POST" action="/items/new/form/">
    <table>
    <tr><td>Name</td><td><input name="name"></td></tr>
    <tr><td>Price</td><td><input name="price"></td></tr>
    <tr><td>Description</td><td><input name="description"></td></tr>
    <tr><td>Tax</td><td><input name="tax"></td></tr>
    <tr><td></td><td><input type="submit"></td></tr>
    </table>
  </form>
  </body>
</html>




Figure 20-1 is handled by create_item_from_form function, whose signature takes an argument for each form field, with annotations defining each as a form field. Note that the signature defines its own default values for description and tax. The function creates an MItem object from the form data and tries to save it in the database. The save function forces insertions, inhibiting the update of an existing record, and reports failure by returning None; the return value is used to formulate a simple HTML reply. In a production application a templating engine such as jinja2 would typically be used to render the response.




Figure 12-1. Please add a caption here.





Example 12-4. server.py: FastAPI sample code to accept and display item data



from decimal import Decimal
from fastapi import FastAPI, Form
from fastapi.responses import HTMLResponse, FileResponse
from mongoengine import connect
from mongoengine.errors import NotUniqueError
from typing import Optional
import json
import uvicorn
from models import PItem, MItem

DATABASE_URI = "mongodb://localhost:27017"
db=DATABASE_URI+"/mydatabase"
connect(host=db)
app = FastAPI()

def save(item):
    try:
        return item.save(force_insert=True)
    except NotUniqueError:
        return None

@app.get('/')
def home_page():
    "View function to display a simple form."
    return FileResponse("index.html")

@app.post("/items/new/form/", response_class=HTMLResponse)
def create_item_from_form(name: str=Form(...),
                          price: Decimal=Form(...),
                          description: Optional[str]=Form(""),
                          tax: Optional[Decimal]=Form(Decimal("0.0"))):
    "View function to accept form data and create an item."
    mongoitem = MItem(name=name, price=price, description=description, tax=tax)
    value = save(mongoitem)
    if value:
        body = f"Item({name!r}, {price!r}, {description!r}, {tax!r})"
    else:
        body = f"Item {name!r} already present."
    return f"""<html><body><h2>{body}</h2></body></html>"""

@app.post("/items/new/")
def create_item_from_json(item: PItem):
    "View function to accept JSON data and create an item."
    mongoitem = MItem(**item.dict())
    value = save(mongoitem)
    if not value:
        return f"Primary key {item.name!r} already present"
    return item.dict()

@app.get("/items/{name}/")
def retrieve_item(name: str):
    "View function to return the JSON contents of an item."
    m_item = MItem.objects(name=name).get()
    return json.loads(m_item.to_json())

if __name__ == "__main__":
    uvicorn.run("__main__:app", host="127.0.0.1"6, port=8000, reload=True)





The create_item_from_json function, routed from the /items/new/ endpoint, takes JSON input from a POST request. Its signature accepts a pydantic record, so in this case FastAPI will use pydantic’s validation to determine whether the input is acceptable. The function returns a Python dictionary, which FastAPI automatically converts to a JSON response. This can easily be tested with a simple client, shown in Example 20-5.



Example 12-5. FastAPI test client



import requests, json

result = requests.post('http://localhost:8000/items/new/',
                       json={"name": "Item1",
                             "price": 12.34,
                             "description": "Rusty old bucket"})
print(result.status_code, result.json())
result = requests.get('http://localhost:8000/items/Item1/')
print(result.status_code, result.json())
result = requests.post('http://localhost:8000/items/new/',
                       json={"name": "Item2",
                             "price": "Not a number"})
print(result.status_code, result.json())




The results of running this program are shown in Example 20-6.



Example 12-6. FastAPI test client output



200 {'name': 'Item1', 'price': 12.34, 'description': 'Rusty old bucket', 'tax': None}
200 {'_id': 'Item1', 'price': 12.34, 'description': 'Rusty old bucket'}
422 {'detail': [{'loc': ['body', 'price'], 'msg': 'value is not a valid decimal', 'type': 'type_error.decimal'}]}




The first post request to /items/new/ sees the server returning the same data it was presented with, confirming that it has been saved in the database. Note that the tax field was not supplied, so the pydantic default value is used here. The second line shows the output from retrieving the newly stored item (mongoengine identifies the primary key using the name _id). The third line shows an error message, generated by the attempt to store a non-numeric value in the price field.


Finally, the retrieve_item view function, routed from URLs such as /items/Item1/, extracts the key as the second path element and returns the JSON representation of the given item. It looks up the given key in mongoengine and converts the returned record to a dictionary that is rendered as JSON by FastAPI.









Summary


While this chapter can only give a flavor of the many options for serving web content, we hope this is enough to demonstrate Python’s suitability for what is becoming an increasingly complex and common task. From lightweight to heavyweight, Python remains a popular language among web developers.



1 One historical legacy is that, in CGI, a server provided the CGI script with information about the HTTP request to be served mostly via the operating system’s environment (in Python, that’s os.environ); to this day, interfaces between web servers and application frameworks rely on “an environment” that’s essentially a dictionary and generalizes and speeds up the same fundamental idea. 
2 even more advanced versions of HTTP exist, but we do not cover them in this book. 
3 Please don’t. As Titus Brown once pointed out, Python is (in)famous for having more web frameworks than keywords. One of this book’s authors once showed Guido how to easily fix that problem when he was first designing Python 3—just add a few hundred new keywords—but, for some reason, Guido was not very receptive to this suggestion. 
4 Installing uWSGI on Windows currently requires compiling it with cygwin. 
5 Since Python has barely more than 30 keywords, you can see why Titus Brown once pointed out that Python has more web frameworks than keywords. 
6 Using “127.0.0.1” only allows local apps to access the web page; to allow apps on other hosts to access it you could use “0.0.0.0”, but we do not recommend this, since you might incur security risks. 




      Chapter 13. Structured Text: HTML

      
      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 22nd chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      Most documents on the web use HTML, the HyperText Markup Language. Markup is the insertion of special tokens, known as tags, in a text document, to structure the text. HTML is, in theory, an application of the large, general standard known as SGML, the Standard General Markup Language. In practice, many documents on the web use HTML in sloppy or incorrect ways.

      HTML1 is not suitable for much more than presenting documents on a browser. Complete, precise extraction of the information in the document, working backward from what most often amounts to the document’s presentation, often turns out to be unfeasible. To tighten things up, HTML tried evolving into a more rigorous standard called XHTML. XHTML is similar to traditional HTML, but it is defined in terms of XML, and more precisely than HTML. You can handle well-formed XHTML with the tools covered in Chapter “Structured text: XML”. However, as of this writing, XHTML does not appear to have enjoyed overwhelming success, getting scooped instead by the (non-XML) newest version, HTML5.

      Despite the difficulties, it’s often possible to extract at least some useful information from HTML documents (a task known as screen-scraping, or just scraping). Python’s standard library tries to help, supplying the html package for the task of parsing HTML documents, whether this parsing is for the purpose of presenting the documents, or, more typically, as part of an attempt to extract (“scrape”) information. However, when you’re dealing with somewhat-broken web pages (which is almost always!), the third-party module BeautifulSoup usually offers your last, best hope. In this book, we mostly cover BeautifulSoup, ignoring the standard library modules competing with it.

      Generating HTML, and embedding Python in HTML, are also reasonably frequent tasks. The standard Python library doesn’t support HTML generation or embedding, but you can use Python string formatting, and third-party modules can also help. BeautifulSoup lets you alter an HTML tree (so, in particular, you can build one up programmatically, even “from scratch”); an (often preferable) alternative approach is templating, supported, for example, by the third-party module jinja2, whose bare essentials we cover in “The jinja2 Package.”

      
        The html.entities Module

        The html.entities module in Python’s standard library supplies a few attributes, all of them being mappings. They come in handy whatever general approach you’re using to parse, edit, or generate HTML, including the BeautifulSoup package covered in “The BeautifulSoup Third-Party Package.”

        
          	
            codepoint2name
          

          	
            A mapping from Unicode codepoints to HTML entity names. For example, entities.codepoint2name[228] is 'auml', since Unicode character 228, ä, “lowercase a with diaeresis,” is encoded in HTML as '&auml;'.

          

          	
            entitydefs
          

          	
            A mapping from HTML entity names to Unicode equivalent single-character strings. For example, entities.entitydefs['auml'] is 'ä', and entities.entitydefs['sigma'] is 'σ'.

          

          	
            html5
          

          	
            html5 is a mapping from HTML5 named character references to equivalent single-character strings. For example, entities.html5['gt;'] is '>'. The trailing semicolon in the key does matter—a few, but far from all, HTML5 named character references can optionally be spelled without a trailing semicolon, and, in those cases, both keys (with and without the trailing semicolon) are present in entities.html5.

          

          	
            name2codepoint
          

          	
            A mapping from HTML entity names to Unicode codepoints. For example, entities.name2codepoint['auml'] is 228.

          

        

        
          The BeautifulSoup Third-Party Package

          BeautifulSoup lets you parse HTML even if it’s rather badly formed—BeautifulSoup uses simple heuristics to compensate for typical HTML brokenness, and succeeds at this hard task with surprisingly good frequency. The current major version of BeautifulSoup is version 4, also known as bs4; in this book, we specifically cover version 4.10, the latest stable one as of this writing, of bs4.

          
            Installing Versus Importing Beautifulsoup

            You install the module, for example, by running, at a shell command prompt, pip install beautifulsoup4; but when you import it, in your Python code, use import bs4.

          

        

        
          The BeautifulSoup Class

          The bs4 module supplies the BeautifulSoup class, which you instantiate by calling it with one or two arguments: first, htmltext—either a file-like object (which is read to get the HTML text to parse) or a string (which is the text to parse)—and next, an optional parser argument.

          
            Which parser BeautifulSoup uses

            If you don’t pass a parser argument, BeautifulSoup “sniffs around” to pick the best parser (you may get a warning in this case). If you haven’t installed any other parser, BeautifulSoup defaults to html.parser from the Python standard library (to specify that parser explicitly, use the string 'html.parser'). To get more control – to avoid the differences between parsers mentioned in the BeautifulSoup documentation, pass the name of the parser library to use as the second argument as you instantiate BeautifulSoup. Unless specified otherwise, the following examples use the default Python html.parser.

            For example, if you have installed the third-party package html5lib (to parse HTML in the same way as all major browsers do, albeit more slowly), you may call:

            
              soup = bs4.BeautifulSoup(thedoc, 'html5lib')

            
            When you pass 'xml' as the second argument, you must have installed2 the third-party package lxml, mentioned in “ElementTree,” and BeautifulSoup parses the document as XML, rather than as HTML. In this case, the attribute is_xml of soup is True; otherwise, soup.is_xml is False. (If you have installed lxml, you can also use it to parse HTML, by passing as the second argument 'lxml').

            
              >>> import bs4
>>> s = bs4.BeautifulSoup('<p>hello', 'html.parser')
>>> sx = bs4.BeautifulSoup('<p>hello', 'xml')
>>> sl = bs4.BeautifulSoup('<p>hello', 'lxml')
>>> s5 = bs4.BeautifulSoup('<p>hello', 'html5lib')
>>> print(s, s.is_xml)
<p>hello</p> False
>>> print(sx, sx.is_xml)
<?xml version="1.0" encoding="utf-8"?><p>hello</p> True
>>> print(sl, sl.is_xml)
<html><body><p>hello</p></body></html> False
>>> print(s5, s5.is_xml)<html><head></head><body><p>hello</p></body></html> False

            
            
              Differences Between Parsers in Fixing Invalid HTML Input

              In the example, 'html.parser' just inserts end-tag </p>, missing from the input. As also shown, other parsers go further in repairing invalid HTML input, adding required tags such as <body> and <html>, to different extents depending on the parser.

            

          

          
            BeautifulSoup, Unicode, and encoding

            BeautifulSoup uses Unicode, deducing or guessing the encoding3 when the input is a bytestring or binary file. For output, the prettify method returns an str (thus, Unicode) representation of the tree, including tags, with attributes, plus extra white-space and newlines to indent elements, to show the nesting structure; to have it instead return a bytes object (a byte string) in a given encoding, pass it the encoding name as an argument. If you don’t want the result to be “prettified,” use the encode method to get a bytestring, and the decode method to get a Unicode string. For example:

            
              >>> s = bs4.BeautifulSoup('<p>hello', 'html.parser')
>>> print(s.prettify())
<p>
 hello
</p>
>>> print(s.decode())
<p>hello</p>
>>> print(s.encode())
b'<p>hello</p>'

            
          

        

        
          The Navigable Classes of bs4

          An instance b of class BeautifulSoup supplies attributes and methods to “navigate” the parsed HTML tree, returning instances of classes Tag and NavigableString (and subclasses of NavigableString: CData, Comment, Declaration, Doctype, and ProcessingInstruction—differing only in how they are emitted when you output them).

          
            Navigable Classes Terminology

            When we say “instances of NavigableString,” we include instances of any of its subclasses; when we say “instances of Tag,” we include instances of BeautifulSoup, since the latter is a subclass of Tag. Instances of navigable classes are also known as the elements or nodes of the tree.

          

          Each instance of a “navigable class” lets you keep navigating, or dig for more information, with pretty much the same set of navigational attributes and search methods as b itself. There are differences: instances of Tag can have HTML attributes and children nodes in the HTML tree, while instances of NavigableString cannot (instances of NavigableString always have one text string, a parent Tag, and zero or more siblings, i.e., other children of the same parent tag).

          All instances of navigable classes have attribute name: it’s the tag string for Tag instances, '[document]' for BeautifulSoup instances, and None for instances of NavigableString.

          Instances of Tag let you access their HTML attributes by indexing; or, you can get them all as a dict via the .attrs Python attribute of the instance.

          
            Indexing instances of Tag

            When t is an instance of Tag, a construct like t['foo'] looks for an HTML attribute named foo within t’s HTML attributes, and returns the string for the foo HTML attribute. When t has no HTML attribute named foo, t['foo'] raises a KeyError exception; just like on a dict, call t.get( 'foo', default=None) to get the value of the default argument, instead of an exception, when t has no HTML attribute named foo.

            A few attributes, such as class, are defined in the HTML standard as being able to have multiple values (e.g., <body class="foo bar">...</body>); in these cases, the indexing returns a list of values—for example, soup.body['class'] would be ['foo', 'bar'] (again, you get a KeyError exception when the attribute isn’t present at all; use the get method, instead of indexing, to get a default value instead).

            To get a dict that maps attribute names to values (or, in a few cases defined in the HTML standard, lists of values), use the attribute t.attrs:

            
              >>> s = bs4.BeautifulSoup('<p foo="bar" class="ic">baz')
>>> s.get('foo')
>>> s.p.get('foo')
'bar'
>>> s.p.attrs
{'foo': 'bar', 'class': ['ic']}

            
            
              How To Check if a Tag Instance Has a Certain Attribute

              To check if a Tag instance t’s HTML attributes include one named 'foo', don’t use if 'foo' in t:—the in operator on Tag instances looks among the Tag’s children, not its attributes. Rather, use if 'foo' in t.attrs: or if t.has_attr('foo'):.

            

            When you have an instance of NavigableString, you often want to access the actual text string it contains; when you have an instance of Tag, you may want to access the unique string it contains, or, should it contain more than one, all of them—perhaps with their text stripped of any whitespace surrounding it. Here’s how you can best accomplish these tasks.

          

          
            Getting an actual string

            When you have a NavigableString instance s and you need to stash or process its text somewhere, without further navigation on it, call str(s). Or, use s.encode(codec='utf8') to get a bytestring, and s.decode() to get a string (Unicode). These give you the actual string, without references to the BeautifulSoup tree impeding garbage collection (s supports all methods of Unicode strings, so call those directly if they do all you need).

            Given an instance t of Tag, you can get its single contained NavigableString instance with t.string (so t.string.decode() could be the actual text you’re looking for). t.string only works when t has a single child that’s a NavigableString, or a single child that’s a Tag whose only child is a NavigableString; otherwise, t.string is None.

            As an iterator on all contained (navigable) strings, use t.strings (''.join(t.strings) could be the string you want). To ignore whitespace around each contained string, use the iterator t.stripped_strings (it also skips strings that are all-whitespace).

            Alternatively, call t.get_text()—it returns a single (Unicode) string with all the text in t’s descendants, in tree order (equivalently, access the attribute t.text). You can optionally pass, as the only positional argument, a string to use as a separator (default is the empty string '' ); pass the named parameter strip=True to have each string stripped of whitespace around it, and all-whitespace strings skipped:

            
              >>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> print(soup.p.string)
None
>>> print(soup.p.b.string)
bold
>>> print(soup.get_text())
Plain bold
>>> print(soup.text)
Plain bold
>>> print(soup.get_text(strip=True))
Plainbold

            
            The simplest, most elegant way to navigate down an HTML tree or subtree in bs4 is to use Python’s attribute reference syntax (as long as each tag you name is unique, or you care only about the first tag so named at each level of descent).

          

          
            Attribute references on instances of BeautifulSoup and Tag

            Given any instance t of a Tag, a construct like t.foo.bar looks for the first tag foo within t’s descendants, gets a Tag instance ti for it, looks for the first tag bar within ti’s descendants, and returns a Tag instance for the bar tag.

            It’s a concise, elegant way to navigate down the tree, when you know there’s a single occurrence of a certain tag within a navigable instance’s descendants, or when the first occurrence of several is all you care about, but beware: if any level of look-up doesn’t find the tag it’s looking for, the attribute reference’s value is None, and then any further attribute reference raises AttributeError.

            
              Beware typos in attribute references on Tag instances

              Due to this BeautifulSoup behavior, any typo you may make in an attribute reference on a Tag instance gives a value of None, not an AttributeError exception—so, be especially careful!

            

            bs4 also offers more general ways to navigate down, up, and sideways along the tree. In particular, each navigable class instance has attributes that identify a single “relative” or, in plural form, an iterator over all relatives of that ilk.

          

          
            contents, children, descendants

            Given an instance t of Tag, you can get a list of all of its children as t.contents, or an iterator on all children as t.children. For an iterator on all descendants (children, children of children, and so on), use t.descendants.

            
              >>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> list(t.name for t in soup.p.children)
[None, 'b']
>>> list(t.name for t in soup.p.descendants)
[None, 'b', None]

            
            The names that are None correspond to the NavigableString nodes; only the first one of them is a child of the p tag, but both are descendants of that tag.

          

          
            parent, parents

            Given an instance n of any navigable class, its parent node is n.parent; an iterator on all ancestors, going upwards in the tree, is n.parents. This includes instances of NavigableString, since they have parents, too. An instance b of BeautifulSoup has b.parent None, and b.parents is an empty iterator.

            
              >>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> soup.b.parent.name
'p'

            
          

          
            next_sibling, previous_sibling, next_siblings, previous_siblings

            Given an instance n of any navigable class, its sibling node to the immediate left is n.previous_sibling, and the one to the immediate right is n.next_sibling; either or both can be None if n has no such sibling. An iterator on all left siblings, going leftward in the tree, is n.previous_siblings; an iterator on all right siblings, going rightward in the tree, is n.next_siblings (either or both iterators can be empty). This includes instances of NavigableString, since they have siblings, too. An instance b of BeautifulSoup has b.previous_sibling and b.next_sibling both None, and both of its sibling iterators are empty.

            
              >>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> soup.b.previous_sibling, soup.b.next_sibling
('Plain ', None)

            
          

          
            next_element, previous_element, next_elements, previous_elements

            Given an instance n of any navigable class, the node parsed just before it is n.previous_element, and the one parsed just after it is n.next_element; either or both can be None when n is the first or last node parsed, respectively. An iterator on all previous elements, going backward in the tree, is n.previous_elements; an iterator on all following elements, going forward in the tree, is n.next_elements (either or both iterators can be empty). Instances of NavigableString have such attributes, too. An instance b of BeautifulSoup has b.previous_element and b.next_element both None, and both of its element iterators are empty.

            
              >>> soup = bs4.BeautifulSoup('<p>Plain <b>bold</b></p>')
>>> soup.b.previous_element, soup.b.next_element
('Plain ', 'bold')

            
            As shown in the previous example, the b tag has no next_sibling (since it’s the last child of its parent); however, as shown here, it does have a next_element—the node parsed just after it (which in this case is the 'bold' string it contains).

          

        

        
          bs4 find... Methods (“Search Methods”)

          Each navigable class in bs4 offers several methods whose names start with find, known as search methods, to locate tree nodes that satisfy conditions you specify.

          Search methods come in pairs—one method of each pair walks all the relevant parts of the tree and returns a list of nodes satisfying the conditions, and the other one stops and returns a single node satisfying the conditions as soon as it finds it (or None when it finds no such node). So, calling the latter method is like calling the former one with argument limit=1, and indexing the resulting one-item list to get its single item, but a bit faster and more elegant.

          So, for example, for any Tag instance t and any group of positional and named arguments represented by ..., the following equivalence always holds:

          
            just_one = t.find(...)
other_way_list = t.find_all(..., limit=1)
other_way = other_way_list[0] if other_way_list else None
assert just_one == other_way

          
          The method pairs are:

          
            
              	
                find, 
                find_all
              
              	b.find(...) b.find_all(...)
 Searches the descendants of b, except that, if you pass named argument recursive=False (available only for these two methods, not for other search methods), it searches b’s children only. These methods are not available on NavigableString instances, since they have no descendants; all other search methods are available on Tag and NavigableString instances.
 Since find_all is frequently needed, bs4 offers an elegant shortcut: calling a tag is like calling its find_all method. That is, b(...) is the same as b.find_all(...).
 Another shortcut, already mentioned in “Attribute references on instances of BeautifulSoup and Tag,” is that b.foo.bar is like b.find('foo').find('bar').
            

            
              	
                find_next
                , 
                find_all_next
              
              	b.find_next(...) b.find_all_next(...)
 Searches the next_elements of b.
            

            
              	
                find_next_sibling
                , 
                find_next_siblmgs
              
              	b.find_next_sibling(...) b.find_next_siblings(...)
 Searches the next_siblings of b.
            

            
              	
                find_parent
                , 
                find_parents
              
              	b.find_parent(...) b.find_parents(...)
 Searches the parents of b.
            

            
              	
                find_previous
                , 
                find_all_previous
              
              	b.find_previous(...) b.find_all_previous(...)
 Searches the previous_elements of b.
            

            
              	
                find_previous_sibling
                , 
                find_previous_siblings
              
              	b.find_previous_sibling(...) b.find_previous_siblings(...)
 Searches the previous_siblings of b.
            

          

          
            Arguments of search methods

            Each search method has three optional arguments: name, attrs, and string. name and string are filters, as described later in this section; attrs is a dict, also described later in this section. In addition, find and find_all only (not the other search methods) can optionally be called with the named argument recursive=False, to limit the search to children, rather than all descendants.

            Any search method returning a list (i.e., one whose name is plural or starts with find_all) can optionally have the named argument limit, whose value, if passed, is an integer, putting an upper bound on the length of the list it returns.

            After these optional arguments, each search method can optionally have any number of arbitrary named arguments, whose name can be any identifier (except the name of one of the search method’s specific arguments), while the value is a filter.

          

          
            Search method arguments: filters

            A filter is applied against a target that can be a tag’s name (when passed as the name argument); a Tag’s string or a NavigableString’s textual content (when passed as the string argument); or a Tag’s attribute (when passed as the value of a named argument, or in the attrs argument). Each filter can be:

            
              	A Unicode string

              	
                The filter succeeds when the string exactly equals the target

              

              	A bytestring

              	
                It’s decoded to Unicode using utf8, and then the filter succeeds when the resulting Unicode string exactly equals the target

              

              	A regular expression object (AKA RE, as produced by re.compile, covered in “Regular Expressions and the re Module”)

              	
                The filter succeeds when the search method of the RE, called with the target as the argument, succeeds

              

              	A list of strings

              	
                The filter succeeds if any of the strings exactly equals the target (if any of the strings are bytestrings, they’re decoded to Unicode using utf8)

              

              	A function object

              	
                The filter succeeds when the function, called with the Tag or NavigableString instance as the argument, returns True

              

              	
                True
              

              	
                The filter always succeeds

              

            

            As a synonym of “the filter succeeds,” we also say, “the target matches the filter.”

            Each search method finds the relevant nodes that match all of its filters (that is, it implicitly performs a logical and operation on its filters on each candidate node).

          

          
            Search method arguments: name

            To look for Tags whose name matches a filter, pass the filter as the first positional argument to the search method, or pass it as name=filter:

            
              soup.find_all('b') # or soup.find_all(name='b')
# returns all instances of Tag 'b' in the document
soup.find_all(['b', 'bah'])
# returns all instances of Tags 'b' and 'bah' in the document
soup.find_all(re.compile(r'^b'))
# returns all instances of Tags starting with 'b' in the document
soup.find_all(re.compile(r'bah'))
# returns all instances of Tags including string 'bah' in the document
def child_of_foo(tag):
  return tag.parent == 'foo'
soup.find_all(name=child_of_foo)
# returns all instances of Tags whose parent's name is 'foo'

            
          

          
            Search method arguments: string

            To look for Tag nodes whose .string’s text matches a filter, or NavigableString nodes whose text matches a filter, pass the filter as string=filter:

            
              soup.find_all(string='foo')
# returns all instances of NavigableString whose text is 'foo'
soup.find_all('b', string='foo')
# returns all instances of Tag 'b' whose .string's text is 'foo'

            
          

          
            Search method arguments: attrs

            To look for tag nodes who have attributes whose values match filters, use a dict d with attribute names as keys, and filters as the corresponding values. Then, pass d as the second positional argument to the search method, or pass attrs=d.

            As a special case, you can use, as a value in d, None instead of a filter; this matches nodes that lack the corresponding attribute.

            As a separate special case, if the value f of attrs is not a dict, but a filter, that is equivalent to having an attrs of {'class' : f}. (This convenient shortcut helps because looking for tags with a certain CSS class is a frequent task.)

            You cannot apply both special cases at once: to search for tags without any CSS class, you must explicitly pass attrs={'class' : None} (i.e., use the first special case, but not at the same time as the second one):

            
              soup.find_all('b', {'foo': True, 'bar': None})
# returns all instances of Tag 'b' w/an attribute 'foo' and no 'bar'

            
            
              Matching Tags with Multiple CSS Classes

              Differently from most attributes, a tag can have multiple values for its attribute 'class'. These are shown in HTML as a space-separated string (e.g., '<p class='foo bar baz'>...'), and in bs4 as a list of strings (e.g., t['class'] being ['foo', 'bar', 'baz']).

              When you filter by CSS class in any search method, the filter matches a tag if it matches any of the multiple CSS classes of such a tag.

              To match tags by multiple CSS classes, you can write a custom function and pass it as the filter to the search method; or, if you don’t need other added functionality of search methods, you can eschew search methods and instead use the method t.select, covered in “bs4 CSS Selectors,” and go with the syntax of CSS selectors.

            

          

          
            Search method arguments: other named arguments

            Named arguments, beyond those whose names are known to the search method, are taken to augment the constraints, if any, specified in attrs. For example, calling a search method with foo=bar is like calling it with attrs={'foo': bar}.

          

        

        
          bs4 CSS Selectors

          bs4 tags supply the methods select and select_one, roughly equivalent to find_all and find but accepting as the single argument a string that’s a CSS selector and returning the list of tag nodes satisfying that selector, or, respectively, the first such tag node.

          bs4 supports only a subset of the rich CSS selector functionality, and we do not cover CSS selectors further in this book. (For complete coverage of CSS, we recommend the book CSS: The Definitive Guide, 4th Edition [O’Reilly].) In most cases, the search methods covered in “bs4 find... Methods (“Search Methods”)” are better choices; however, in a few special cases, calling select can save you the (small) trouble of writing a custom filter function:

          
            def foo_child_of_bar(t):
    return t.name=='foo' and t.parent and t.parent.name=='bar'
soup(foo_child_of_bar)
# returns tags with name 'foo' children of tags with name 'bar'
soup.select('foo < bar')
# exactly equivalent, with no custom filter function needed

          
        

        
          An HTML Parsing Example with BeautifulSoup

          The following example uses bs4 to perform a typical task: fetch a page from the web, parse it, and output the HTTP hyperlinks in the page.

          
            import urllib.request, urllib.parse, bs4
f = urllib.request.urlopen('http://www.python.org')
b = bs4.BeautifulSoup(f)
seen = set()
for anchor in b('a'):
    url = anchor.get('href')
    if url is None or url in seen:
        continue
    seen.add(url)
    pieces = urllib.parse.urlparse(url)
    if pieces[0]=='http':
        print(urllib.parse.urlunparse(pieces))

          
          The example calls the instance of class bs4.BeautifulSoup (equivalent to calling its find_all method) to obtain all instances of a certain tag (here, tag '<a>'), then the get method of instances of the tag in question to obtain the value of an attribute (here, 'href'), or None when that attribute is missing.

        

      

      
        Generating HTML

        Python does not come with tools specifically meant to generate HTML, nor with ones that let you embed Python code directly within HTML pages. Development and maintenance are eased by separating logic and presentation issues through templating, covered in “Templating.” An alternative is to use bs4 to create HTML documents, in your Python code, by gradually altering very minimal initial documents. Since these alterations rely on bs4 parsing some HTML, using different parsers affects the output, as covered in “Which parser BeautifulSoup uses.”

        
          Editing and Creating HTML with bs4

          You can alter the tag name of an instance t of Tag by assigning to t.name; you can alter t’s attributes by treating t as a mapping: assign to an indexing to add or change an attribute, or delete the indexing—for example, del t['foo'] removes the attribute foo. If you assign some str to t.string, all previous t.contents (Tags and/or strings—the whole subtree of t’s descendants) are discarded and replaced with a new NavigableString instance with that str as its textual content.

          Given an instance s of NavigableString, you can replace its textual content: calling s.replace_with('other') replaces s’s text with 'other'.

          
            Building and adding new nodes

            Altering existing nodes is important, but creating new ones and adding them to the tree is crucial for building an HTML document from scratch.

            To create a new NavigableString instance, just call the class, with the textual content as the single argument:

            
              s = bs4.NavigableString(' some text ')

            
            To create a new Tag instance, call the new_tag method of a BeautifulSoup instance, with the tag name as the single positional argument, and optionally named arguments for attributes:

            
              t = soup.new_tag('foo', bar='baz')
print(t)
<foo bar="baz"></foo>

            
            To add a node to the children of a Tag, you can use the Tag’s append method to add the node at the end of the existing children, if any:

            
              t.append(s)
print(t)
<foo bar="baz"> some text </foo>

            
            If you want the new node to go elsewhere than at the end, at a certain index among t’s children, call t.insert(n, s) to put s at index n in t.contents (t.append and t.insert work as if t was a list of its children).

            If you have a navigable element b and want to add a new node x as b’s previous_sibling, call b.insert_before(x). If instead you want x to become b’s next_sibling, call b.insert_after(x).

            If you want to wrap a new parent node t around b, call b.wrap(t) (which also returns the newly wrapped tag). For example:

            
              print(t.string.wrap(soup.new_tag('moo', zip='zaap')))
<moo zip="zaap"> some text </moo>
print(t)
<foo bar="baz"><moo zip="zaap"> some text </moo></foo>

            
          

          
            Replacing and removing nodes

            You can call t.replace_with on any tag t: the call replaces t, and all its previous contents, with the argument, and returns t with its original contents. For example:

            
              soup = bs4.BeautifulSoup(
       '<p>first <b>second</b> <i>third</i></p>', 'lxml')
i = soup.i.replace_with('last')
soup.b.append(i)
print(soup)
<html><body><p>first <b>second<i>third</i></b> last</p></body></html>

            
            You can call t.unwrap() on any tag t: the call replaces t with its contents, and returns t “emptied,” that is, without contents. For example:

            
              empty_i = soup.i.unwrap()
print(soup.b.wrap(empty_i))
<i><b>secondthird</b></i>
print(soup)
<html><body><p>first <i><b>secondthird</b></i> last</p></body></html>

            
            t.clear() removes t’s contents, destroys them, and leaves t empty (but still in its original place in the tree). t.decompose() removes and destroys both t itself, and its contents. For example:

            
              soup.i.clear()
print(soup)
<html><body><p>first <i></i> last</p></body></html>
soup.p.decompose()
print(soup)
<html><body></body></html>

            
            Lastly, t.extract() removes t and its contents, but—doing no actual destruction—returns t with its original contents.

          

        

        
          Building HTML with bs4

          Here’s an example of how to use bs4’s methods to generate HTML. Specifically, the following function takes a sequence of “rows” (sequences) and returns a string that’s an HTML table to display their values:

          
            def mktable_with_bs4(seq_of_rows):
  tabsoup = bs4.BeautifulSoup('<table>', 'html.parser')
  tab = tabsoup.table
  for row in seq_of_rows:
    tr = tabsoup.new_tag('tr')
    tab.append(tr)
    for item in row:
      td = tabsoup.new_tag('td')
      tr.append(td)
      td.string = str(item)
  return tab

          
          Here is an example using the function we just defined:

          
            example = (
  ('foo', 'g>h', 'g&h'),
  ('zip', 'zap', 'zop'),
)
print(mktable_with_bs4(example))
# prints:
<table><tr><td>foo</td><td>g&gt;h</td><td>g&amp;h</td></tr><tr><td>zip</td><td>zap</td><td>zop</td></tr></table>

          
          Note that bs4 automatically “escapes” strings containing mark-up characters such as <, >, and &; for example, 'g>h' renders as 'g&gt;h'.

        

        
          Templating

          To generate HTML, the best approach is often templating. Start with a template, a text string (often read from a file, database, etc.) that is almost valid HTML, but includes markers, known as placeholders, where dynamically generated text must be inserted. Your program generates the needed text and substitutes it into the template.

          In the simplest case, you can use markers of the form {name}. Set the dynamically generated text as the value for key 'name' in some dictionary d. The Python string formatting method .format (covered in “String Formatting”) lets you do the rest: when t is the template string, t.format(d) is a copy of the template with all values properly substituted.

          In general, beyond substituting placeholders, you also want to use conditionals, perform loops, and deal with other advanced formatting and presentation tasks; in the spirit of separating “business logic” from “presentation issues,” you’d prefer it if all of the latter were part of your templating. This is where dedicated third-party templating packages come in. There are many of them, but all of this book’s authors, having used and authored some in the past, currently prefer jinja2, covered next.

        

        
          The jinja2 Package

          For serious templating tasks, we recommend jinja2 (available on PyPI, like other third-party Python packages, so, easily installable with pip install jinja2).

          The jinja2 docs are excellent and thorough, covering the templating language itself (conceptually modeled on Python, but with many differences to support embedding it in HTML, and the peculiar needs specific to presentation issues); the API your Python code uses to connect to jinja2, and expand or extend it if necessary; as well as other issues, from installation to internationalization, from sandboxing code to porting from other templating engines—not to mention, precious tips and tricks.

          In this section, we cover only a tiny subset of jinja2’s power, just what you need to get started after installing it: we earnestly recommend studying jinja2’s docs to get the huge amount of extra, useful information they effectively convey.

        

        
          The jinja2.Environment Class

          When you use jinja2, there’s always an Environment instance involved—in a few cases you could let it default to a generic “shared environment,” but that’s not recommended. Only in very advanced usage, when you’re getting templates from different sources (or with different templating language syntax), would you ever define multiple environments—usually, you instantiate a single Environment instance env, good for all the templates you need to render.

          You can customize env in many ways as you build it, by passing named arguments to its constructor (including altering crucial aspects of templating language syntax, such as which delimiters start and end blocks, variables, comments, etc.), but the one named argument you’ll almost always pass in real-life use is loader=....

          An environment’s loader specifies where to load templates from, on request—usually some directory in a filesystem, or perhaps some database (you’d have to code a custom subclass of jinja2.Loader for the latter purpose), but there are other possibilities. You need a loader to let templates enjoy some of jinja2’s most powerful features, such as template inheritance.

          You can equip env, as you instantiate it, with custom filters, tests, extensions, and so on (each of those can also be added later).

          In the following sections’ examples, we assume env was instantiated with nothing but loader=jinja2.FileSystemLoader('/path/to/templates'), and not further enriched—in fact, for simplicity, we won’t even make use of the loader. In real life, however, the loader is almost invariably set; other options, seldom.

          env.get_template(name) fetches, compiles, and returns an instance of jinja2.Template based on what env.loader(name) returns. In the following examples, for simplicity, we’ll instead use the rarely-warranted env.from_string(s) to build an instance of jinja2.Template from string s.

        

        
          The jinja2.Template Class

          An instance t of jinja2.Template has many attributes and methods, but the one you’ll be using almost exclusively in real life is:

          
            
              	
                render
              
              	t.render(...context...)
 The context argument(s) are the same you might pass to a dict constructor—a mapping instance, and/or named arguments enriching and potentially overriding the mapping’s key-to-value connections.
 t.render(context) returns a (Unicode) string resulting from the context arguments applied to the template t.
            

          

          
            Building HTML with jinja2

            Here’s an example of how to use a jinja2 template to generate HTML. Specifically, just like previously in “Building HTML with bs4,” the following function takes a sequence of “rows” (sequences) and returns an HTML table to display their values:

            
              TABLE_TEMPLATE = '''\
<table>
{% for s in s_of_s %}
  <tr>
  {% for item in s %}
    <td>{{item}}</td>
  {% endfor %}
  </tr>
{% endfor %}
</table>'''
def mktable_with_jinja2(s_of_s):
    env = jinja2.Environment(
        trim_blocks=True,
        lstrip_blocks=True,
        autoescape=True)
    t = env.from_string(TABLE_TEMPLATE)
    return t.render(s_of_s=s_of_s)

            
            The function builds the environment with option autoescape=True, to automatically “escape” strings containing mark-up characters such as <, >, and &; for example, with autoescape=True, 'g>h' renders as 'g&gt;h'.

            The options trim_blocks=True and lstrip_blocks=True are purely cosmetic, just to ensure that both the template string and the rendered HTML string can be nicely formatted; of course, when a browser renders HTML, it does not matter whether the HTML itself is nicely formatted.

            Normally, you would always build the environment with option loader=..., and have it load templates from files or other storage with method calls such as t = env.get_template(template_name). In this example, just in order to present everything in one place, we omit the loader and build the template from a string by calling method env.from_string instead. Note that jinja2 is not HTML- or XML-specific, so its use alone does not guarantee the validity of the generated content, which you should carefully check if standards conformance is a requirement.

            The example uses only the two most common features out of the many dozens that the jinja2 templating language offers: loops (that is, blocks enclosed in {% for ... %} and {% endfor %}) and parameter substitution (inline expressions enclosed in {{ and }}).

            Here is an example use of the function we just defined:

            
              example = (
  ('foo', 'g>h', 'g&h'),
  ('zip', 'zap', 'zop'),
)
print(mktable_with_jinja2(example))
# prints:
<table>
  <tr>
    <td>foo</td>
    <td>g&gt;h</td>
    <td>g&amp;h</td>
  </tr>
  <tr>
    <td>zip</td>
    <td>zap</td>
    <td>zop</td>
  </tr>
</table>

            
          

        

      

    1 Except perhaps for its latest version (HTML5), when properly applied 
2 The BeautifulSoup documentation provides detailed information about installing various parsers. 
3 As explained in the BeautifulSoup documentation, which also shows various ways to guide or override BeautifulSoup’s guesses. 




      Chapter 14. Structured Text: XML

      
      A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.


This will be the 23rd chapter of the final book. Please note that example code will be hosted at https://github.com/holdenweb/pynut4.


If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at pynut4@gmail.com.




      XML, the eXtensible Markup Language, is a widely used data-interchange format. On top of XML itself, the XML community (in good part within the World Wide Web Consortium [W3C]) has standardized many other technologies, such as schema languages, namespaces, XPath, XLink, XPointer, and XSLT.

      Industry consortia have defined industry-specific markup languages on top of XML for data exchange among applications in their respective fields. XML, XML-based markup languages, and other XML-related technologies are often used for inter-application, cross-language, cross-platform data interchange in specific industries.

      Python’s standard library, for historical reasons, has multiple modules supporting XML under the xml package, with overlapping functionality; this book does not cover them all--see the online documentation.

      This book (and, specifically, this chapter) covers only the most Pythonic approach to XML processing: ElementTree, whose elegance, speed, generality, multiple implementations, and Pythonic architecture make it the package of choice for Python XML applications. For complete tutorials and all details on the xml.etree.ElementTree module, see the online docs) and the website of ElementTree’s creator, deeply-missed Fredrik Lundh, best known as “the effbot.”1

      This book takes for granted some elementary knowledge of XML itself; if you need to learn more about XML, we recommend the book XML in a Nutshell (O’Reilly).

      Parsing XML from untrusted sources puts your application at risk for many possible attacks; this book does not cover this issue specifically–see the online documentation, which recommends third-party modules to help safeguard your application if you do have to parse XML from sources you can’t fully trust. In particular, if you need an ElementTree implementation with safeguards against parsing untrusted sources, consider defusedxml.ElementTree.

      
        ElementTree

        Python and third-party add-ons offer several alternative implementations of the ElementTree functionality; the one you can always rely on in the standard library is the module xml.etree.ElementTree. Just importing xml.etree.ElementTree gets you the fastest implementation available in your Python installation’s standard library. The third-party package defusedxml, mentioned in the previous section of this chapter, offers slightly slower but safer implementations if you ever need to parse XML from untrusted sources; another third-party package, lxml, gets you faster performance, and some extra functionality, via lxml.etree.

        Traditionally, you get whatever available implementation of ElementTree you prefer, by a from...import...as statement such as:

        
          from xml.etree import ElementTree as et

        
        (or more than one such statement, with try...except ImportError: guards to discover what’s the best implementation available), then use et (some prefer the uppercase variant, ET) as the module’s name in the rest of your code.

        ElementTree supplies one fundamental class representing a node within the tree that naturally maps an XML document, the class Element. ElementTree also supplies other important classes, chiefly the one representing the whole tree, with methods for input and output and many convenience classes equivalent to ones on its Element root—that’s the class ElementTree. In addition, the ElementTree module supplies several utility functions, and auxiliary classes of lesser importance.

        
          The Element Class

          The Element class represents a node in the tree that maps an XML document, and it’s the core of the whole ElementTree ecosystem. Each element is a bit like a mapping, with attributes that are a mapping from string keys to string values, and a bit like a sequence, with children that are other elements (sometimes referred to as the element’s “subelements”). In addition, each element offers a few extra attributes and methods. Each Element instance e has four data attributes or properties:

          
            
              	
                attrib
              
              	A dict containing all of the XML node’s attributes, with strings, the attributes’ names, as its keys (and, usually, strings as corresponding values as well). For example, parsing the XML fragment <a x="y">b</a>c, you get an e whose e.attrib is {'x': 'y'}.
            

            
              	
                tag
              
              	The XML tag of the node, a string, sometimes also known as “the element’s type.” For example, parsing the XML fragment <a x="y">b</a>c, you get an e with e.tag set to 'a'.
            

            
              	
                tail
              
              	Arbitrary data (a string) immediately “following” the element. For example, parsing the XML fragment <a x="y">b</a>c, you get an e with e.tail set to 'c'.
            

            
              	
                text
              
              	Arbitrary data (a string) directly “within” the element. For example, parsing the XML fragment <a x="y">b</a>c, you get an e with e.text set to 'b'.
            

          

          
            Avoid Accessing Attrib On Element Instances, If Feasible

            It’s normally best to avoid accessing e.attrib when possible, because the implementation might need to build it on the fly when you access it. e itself, as covered later in this section, offers some typical mapping methods that you might otherwise want to call on e.attrib; going through e’s own methods allows a smart implementation to optimize things for you, compared to the performance you’d get via the actual dict e.attrib.

          

          e has some methods that are mapping-like and avoid the need to explicitly ask for the e.attrib dict:

          
            
              	
                clear
              
              	e.clear()
 e.clear() leaves e “empty,” except for its tag, removing all attributes and children, and setting text and tail to None.
            

            
              	
                get
              
              	e.get(key, default=None)
 Like e.attrib.get(key, default), but potentially much faster. You cannot use e[key], since indexing on e is used to access children, not attributes.
            

            
              	
                items
              
              	e.items()
 Returns the list of (name, value) tuples for all attributes, in arbitrary order.
            

            
              	
                keys
              
              	e.keys()
 Returns the list of all attribute names, in arbitrary order.
            

            
              	
                set
              
              	e.set(key, value)
 Sets the value of the attribute named key to value.
            

          

          The other methods of e (including indexing with the e[i] syntax, and length as in len(e)) deal with all e’s children as a sequence, or in some cases—indicated in the rest of this section—with all descendants (elements in the subtree rooted at e, also known as subelements of e).

          
            Don’t Rely On Implicit Bool Conversion Of An Element

            In all versions up through Python 3.10, an Element instance e evaluates as false if e has no children, following the normal rule for Python containers’ implicit bool conversion. However, it is documented that this behavior may change in some future version of Python. For future compatibility, if you want to check whether e has no children, explicitly check if len(e) == 0:—don’t use the normal Python idiom if not e:.

          

          The named methods of e dealing with children or descendants are the following (we do not cover XPath in this book: see the online docs). Many of the following methods take an optional argument namespaces, defaulting to None. When present, namespaces is a mapping with XML namespace prefixes as keys and corresponding XML namespace full names as values.

          
            
              	
                append
              
              	e.append(se)
 Adds subelement se (which must be an Element) at the end of e’s children.
            

            
              	
                extend
              
              	e.extend(ses)
 Adds each item of iterable ses (every item must be an Element) at the end of e’s children.
            

            
              	
                find
              
              	e.find(match, namespaces=None)
 Returns the first descendant matching match, which may be a tag name or an XPath expression within the subset supported by the current implementation of ElementTree. Returns None if no descendant matches match.
            

            
              	
                findall
              
              	e.findall(match, namespaces=None)
 Returns the list of all descendants matching match, which may be a tag name or an XPath expression within the subset supported by the current implementation of ElementTree. Returns [] if no descendants match match.
            

            
              	
                findtext
              
              	e.findtext(match, default=None, namespaces=None)
 Returns the text of the first descendant matching match, which may be a tag name or an XPath expression within the subset supported by the current implementation of ElementTree. The result may be an empty string '' if the first descendant matching match has no text. Returns default if no descendant matches match.
            

            
              	
                insert
              
              	e.insert(index, se)
 Adds subelement se (which must be an Element) at index index within the sequence of e’s children.
            

            
              	
                iter
              
              	e.iter(tag='*')
 Returns an iterator walking in depth-first order over all of e’s descendants. When tag is not '*', only yields subelements whose tag equals tag. Don’t modify the subtree rooted at e while you’re looping on e.iter.
            

            
              	
                iterfind
              
              	e.iterfind(match, namespaces=None)
 Returns an iterator over all descendants, in depth-first order, matching match, which may be a tag name or an XPath expression within the subset supported by the current implementation of ElementTree. The resulting iterator is empty when no descendants match match.
            

            
              	
                itertext
              
              	e.itertext(match, namespaces=None)
 Returns an iterator over the text (not the tail) attribute of all descendants, in depth-first order, matching match, which may be a tag name or an XPath expression within the subset supported by the current implementation of ElementTree. The resulting iterator is empty when no descendants match match.
            

            
              	
                remove
              
              	e.remove(se)
 Removes the descendant that is element se (as covered in Identity tests, in Table 3-2).
            

          

        

        
          The ElementTree Class

          The ElementTree class represents a tree that maps an XML document. The core added value of an instance et of ElementTree is to have methods for wholesale parsing (input) and writing (output) of a whole tree (Table 23-1), namely:

          
            Table 14-1. ElementTree instance parsing and writing methods
            
              	
                parse
              
              	et.parse(source,parser=None)
 source can be a file open for reading, or the name of a file to open and read (to parse a string, wrap it in io.StringIO, covered in “In-Memory “Files”: io.StringIO and io.BytesIO”), containing XML text. et.parse parses that text, builds its tree of Elements as the new content of et (discarding the previous content of et, if any), and returns the root element of the tree. parser is an optional parser instance; by default, et.parse uses an instance of class XMLParser supplied by the ElementTree module (this book does not cover XMLParser; see the online docs).
            

            
              	
                write
              
              	et.write(file, encoding='us-ascii', xml_declaration=None, default_namespace=None, method='xml', short_empty_elements=True)
 file can be a file open for writing, or the name of a file to open and write (to write into a string, pass as file an instance of io.StringIO, covered in “In-Memory “Files”: io.StringIO and io.BytesIO”). et.write writes into that file the text representing the XML document for the tree that’s the content of et.
 encoding should be spelled according to the standard—for example, 'iso-8859-1', not 'latin-1', even though Python itself accepts both spellings for this encoding. You can also pass encoding as 'unicode'; this outputs text (Unicode) strings, when file.write accepts such strings; otherwise, file.write must accept bytestrings, and that is the type of strings et.write outputs, using XML character references for characters not in the encoding—for example, with the default ASCII encoding, “e with an acute accent”, é, is output as &#233;.
 You can pass xml_declaration as False to not have the declaration in the resulting text, as True to have it; the default is to have the declaration in the result only when encoding is not one of 'us-ascii', 'utf-8', or 'unicode'.
 You can optionally pass default_namespace to set the default namespace for xmlns constructs.
 You can pass method as 'text' to output only the text and tail of each node (no tags). You can pass method as 'html' to output the document in HTML format (which, for example, omits end tags not needed in HTML, such as </br>). The default is 'xml', to output in XML format.
 You can optionally (only by name, not positionally) pass short_empty_elements as False to always use explicit start and end tags, even for elements that have no text or subelements; the default is to use the XML short form for such empty elements. For example, an empty element with tag a is output as <a/> by default, as <a></a> if you pass short_empty_elements as False.
            

          

          In addition, an instance et of ElementTree supplies the method getroot—et.getroot() returns the root of the tree—and the convenience methods find, findall, findtext, iter, and iterfind, each exactly equivalent to calling the same method on the root of the tree—that is, on the result of et.getroot().

        

        
          Functions in the ElementTree Module

          The ElementTree module also supplies several functions, described in Table 23-2.

          
            Table 14-2. Caption to come
            
              	
                Comment
              
              	Comment(text=None)
 Returns an Element that, once inserted as a node in an ElementTree, will be output as an XML comment with the given text string enclosed between '<!--' and '-->'. XMLParser skips XML comments in any document it parses, so this function is the only way to get comment nodes.
            

            
              	
                ProcessingInstruction
              
              	ProcessingInstruction(target,text=None)
 Returns an Element that, once inserted as a node in an ElementTree, will be output as an XML processing instruction with the given target and text strings enclosed between '<?' and '?>'. XMLParser skips XML processing instructions in any document it parses, so this function is the only way to get processing instruction nodes.
            

            
              	
                SubElement
              
              	SubElement(parent, tag, attrib={}, **extra)
 Creates an Element with the given tag, attributes from dict attrib and others passed as named arguments in extra, and appends it as the rightmost child of Element parent; returns the Element it has created.
            

            
              	
                XML
              
              	XML(text,parser=None)
 Parses XML from the text string and returns an Element. parser is an optional parser instance; by default, XML uses an instance of the class XMLParser supplied by the ElementTree module (this book does not cover class XMLParser; see the online docs).
            

            
              	
                XMLID
              
              	XMLID(text,parser=None)
 Parses XML from the text string and returns a tuple with two items: an Element and a dict mapping id attributes to the only Element having each (XML forbids duplicate ids). parser is an optional parser instance; by default, XMLID uses an instance of the class XMLParser supplied by the ElementTree module (this book does not cover the XMLParser class; see the online docs).
            

            
              	
                dump
              
              	dump(e)
 Writes e, which can be an Element or an ElementTree, as XML to sys.stdout; it is meant only for debugging purposes.
            

            
              	
                fromstring
              
              	fromstring(text,parser=None)
 Parses XML from the text string and returns an Element, just like the XML function just covered.
            

            
              	
                fromstringlist
              
              	fromstringlist(sequence,parser=None)
 Just like fromstring(''.join(sequence)), but can be a bit faster by avoiding the join.
            

            
              	
                iselement
              
              	iselement(e)
 Returns True if e is an Element.
            

            
              	
                iterparse
              
              	iterparse(source,events=['end'],parser=None)
 source can be a file open for reading, or the name of a file to open and read, containing an XML document as text. iterparse returns an iterator yielding tuples (event, element), where event is one of the strings listed in argument events (each string must be 'start', 'end', 'start-ns', or 'end-ns'), as the parsing progresses and iterparse incrementally builds the corresponding ElementTree. element is an Element for events 'start' and 'end', None for event 'end-ns', and a tuple of two strings (namespace_prefix, namespace_uri) for event 'start-ns'. parser is an optional parser instance; by default, iterparse uses an instance of the class XMLParser supplied by the ElementTree module (this book does not cover class XMLParser; see the online docs).
 The purpose of iterparse is to let you iteratively parse a large XML document, without holding all of the resulting ElementTree in memory at once, whenever feasible. We cover iterparse in more detail in “Parsing XML Iteratively”.
            

            
              	
                parse
              
              	parse(source,parser=None)
 Just like the parse method of ElementTree, covered in Table 23-1, except that it returns the ElementTree instance it creates.
            

            
              	
                register_namespace
              
              	register_namespace(prefix,uri)
 Registers the string prefix as the namespace prefix for the string uri; elements in the namespace get serialized with this prefix.
            

            
              	
                tostring
              
              	tostring(e,encoding='us-ascii,method='xml', short_empty_elements=True)
 Returns a string with the XML representation of the subtree rooted at Element e. Arguments have the same meaning as for the write method of ElementTree, covered in Table 23-1.
            

            
              	
                tostringlist
              
              	tostringlist(e,encoding='us-ascii,method='xml',short_empty_elements=True)
 Returns a list of strings with the XML representation of the subtree rooted at Element e. Arguments have the same meaning as for the write method of ElementTree, covered in Table 23-1.
            

          

          The ElementTree module also supplies the classes QName, TreeBuilder, and XMLParser, which we do not cover in this book, and the class XMLPullParser, covered in “Parsing XML Iteratively.”

        

        
          Parsing XML with ElementTree.parse

          In everyday use, the most common way to make an ElementTree instance is by parsing it from a file or file-like object, usually with the module function parse or with the method parse of instances of the class ElementTree.

          For the examples in this chapter, we use the simple XML file found at http://www.w3schools.com/xml/simple.xml; its root tag is 'breakfast_menu', and the root’s children are elements with the tag 'food'. Each 'food' element has a child with the tag 'name', whose text is the food’s name, and a child with the tag 'calories', whose text is the string representation of the integer number of calories in a portion of that food. In other words, a simplified representation of that XML file’s content of interest to the examples is:

          
            <breakfast_menu>
  <food>
    <name>Belgian Waffles</name>
    <calories>650</calories>
  </food>
  <food>
    <name>Strawberry Belgian Waffles</name>
    <calories>900</calories>
  </food>
  <food>
    <name>Berry-Berry Belgian Waffles</name>
    <calories>900</calories>
  </food>
  <food>
    <name>French Toast</name>
    <calories>600</calories>
  </food>
  <food>
    <name>Homestyle Breakfast</name>
    <calories>950</calories>
  </food>
</breakfast_menu>

          
          Since the XML document lives at a WWW URL, you start by obtaining a file-like object with that content, and passing it to parse; the simplest way uses the urllib.request module:

          
            from urllib import request
from xml.etree import ElementTree as et
content = request.urlopen('http://www.w3schools.com/xml/simple.xml')
tree = et.parse(content)

          
          
            Selecting Elements from an ElementTree

            Let’s say that we want to print on standard output the calories and names of the various foods, in order of increasing calories, with ties broken alphabetically. The code for this task:

            
              def bycal_and_name(e):
    return int(e.find('calories').text), e.find('name').text
for e in sorted(tree.findall('food'), key=bycal_and_name):
    print(f"{e.find('calories').text} {e.find('name').text}")

            
            When run, this prints:

            
              600 French Toast
650 Belgian Waffles
900 Berry-Berry Belgian Waffles
900 Strawberry Belgian Waffles
950 Homestyle Breakfast

            
          

          
            Editing an ElementTree

            Once an ElementTree is built (be that via parsing, or otherwise), it can be “edited”—inserting, deleting, and/or altering nodes (elements)—via various methods of ElementTree and Element classes, and module functions. For example, suppose our program is reliably informed that a new food has been added to the menu—buttered toast, two slices of white bread toasted and buttered, 180 calories—while any food whose name contains “berry,” case-insensitive, has been removed. The “editing the tree” part for these specs can be coded as follows:

            
              # add Buttered Toast to the menu
menu = tree.getroot()
toast = et.SubElement(menu, 'food')
tcals = et.SubElement(toast, 'calories')
tcals.text = '180'
tname = et.SubElement(toast, 'name')
tname.text = 'Buttered Toast'
# remove anything related to 'berry' from the menu
for e in menu.findall('food'):
    name = e.find('name').text
    if 'berry' in name.lower():
        menu.remove(e)

            
            Once we insert these “editing” steps between the code parsing the tree and the code selectively printing from it, the latter prints:

            
              180 Buttered Toast
600 French Toast
650 Belgian Waffles
950 Homestyle Breakfast

            
            The ease of “editing” an ElementTree can sometimes be a crucial consideration, making it worth your while to keep it all in memory.

          

        

        
          Building an ElementTree from Scratch

          Sometimes, your task doesn’t start from an existing XML document: rather, you need to make an XML document from data your code gets from a different source, such as a CSV document or some kind of database.

          The code for such tasks is similar to the one we showed for editing an existing ElementTree—just add a little snippet to build an initially empty tree.

          For example, suppose you have a CSV file, menu.csv, whose two comma-separated columns are the calories and name of various foods, one food per row. Your task is to build an XML file, menu.xml, similar to the one we parsed in previous examples. Here’s one way you could do that:

          
            import csv
from xml.etree import ElementTree as et
menu = et.Element('menu')
tree = et.ElementTree(menu)
with open('menu.csv') as f:
    r = csv.reader(f)
    for calories, namestr in r:
        food = et.SubElement(menu, 'food')
        cals = et.SubElement(food, 'calories')
        cals.text = calories
        name = et.SubElement(food, 'name')
        name.text = namestr
tree.write('menu.xml')

          
        

        
          Parsing XML Iteratively

          For tasks focused on selecting elements from an existing XML document, sometimes you don’t need to build the whole ElementTree in memory—a consideration that’s particularly important if the XML document is very large (not the case for the tiny example document we’ve been dealing with, but stretch your imagination and visualize a similar menu-focused document that lists millions of different foods).

          So, again, what we want to do is print on standard output the calories and names of foods, this time only the 10 lowest-calorie foods, in order of increasing calories, with ties broken alphabetically; and menu.xml, which for simplicity’s sake we now suppose is a local file, lists millions of foods, so we’d rather not keep it all in memory at once, since, obviously, we don’t need complete access to all of it at once.

          Here’s some code that one might think would let us ace this task:

          
            import heapq
from xml.etree import ElementTree as et
def cals_and_name():
    # generator for (calories, name) pairs
    for _, elem in et.iterparse('menu.xml'):
        if elem.tag != 'food':
            continue
        # just finished parsing a food, get calories and name
        cals = int(elem.find('calories').text)
        name = elem.find('name').text
        yield (cals, name)
lowest10 = heapq.nsmallest(10, cals_and_name)
for cals, name in heap:
    print(cals, name)

          
          
            Simple But Memory-Intensive Approach

            This approach does indeed work, but it consumes just about as much memory as an approach based on a full et.parse would!

          

          Why does the simple approach still eat up memory? Because iterparse, as it runs, builds up a whole ElementTree in memory, incrementally, even though it only communicates back events such as (by default) just 'end', meaning “I just finished parsing this element.”

          To actually save memory, we can at least toss all contents of each element as soon as we’re done processing it—that is, right after the yield, add elem.clear() to make the just-processed element empty.

          This approach would indeed save some memory—but not all of it, because the tree’s root would end up with a huge list of empty children nodes. To be really frugal in memory consumption, we need to get 'start' events as well, so we can get hold of the root of the ElementTree being built, and remove each element from it as it’s used, rather than just clearing the element—that is, change the generator into:

          
            def cals_and_name():
    # memory-thrifty generator for (calories, name) pairs
    root = None
    for event, elem in et.iterparse('menu.xml', ['start', 'end']):
        if event == 'start':
            if root is not None:
                root = elem
            continue
        if elem.tag != 'food':
            continue
        # just finished parsing a food, get calories and name
        cals = int(elem.find('calories').text)
        name = elem.find('name').text
        yield (cals, name)
        root.remove(elem)

          
          This approach saves as much memory as feasible, and still gets the task done!

          
            Parsing XML within an asynchronous loop

            While iterparse, used correctly, can save memory, it’s still not good enough to use within an asynchronous loop. That’s because iterparse makes blocking read calls to the file object passed as its first argument: such blocking calls are a no-no in async processing.

            ElementTree offers the class XMLPullParser to help with this issue. See the ElementTree docs for the class’s usage pattern.

          

        

      

    1 Alex is far too modest to mention it, but from around 1995 to 2005 both he and Fredrik were, along with Tim Peters, the Python bots. Known as such for their encyclopedic and detailed knowledge of the language, the effbot, the martellibot, and the timbot have created software and documentation that are of immense value to millions of people. 
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